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Preface

This volume collects the papers presented at LORI-4, the Fourth International
Workshop on Logic, Rationality and Interaction, held in Hangzhou, P.R. China,
during October 9–12 and hosted by the Center for the Study of Language and
Cognition (CSLC) of Zhejiang University.

The workshop received 42 submissions and the final program consisted of 23
full papers and 10 short papers presented at a dedicated poster session. Each
paper was selected on the basis of 2 to 4 reviews. The topics covered in this pro-
gram well represent the span and depth that has meanwhile become a trademark
of the LORI workshop series, where logic is interfaced with disciplines as diverse
as game theory and decision theory, philosophy and epistemology, linguistics,
computer science and artificial intelligence. The technical program of the work-
shop was further enriched with invited addresses by Giuseppe Dari-Mattiacci,
Valentin Goranko, Hannes Leitgeb, Beishui Liao, Christian List, Sonja Smets
and Dongmo Zhang.

The LORI series was kickstarted with a first event (LORI-1) hosted in August
2007 by Beijing Normal University in Beijing. That event was a great success
providing an effective platform for Chinese and non-Chinese logicians to meet
and exchange research ideas. The wish to perpetuate such a platform led to
two later editions: LORI-2, hosted by South-West University in Chongqing, and
LORI-3, hosted by Sun Yet-sen University in Guangzhou. A history of the series
can be accessed at a glance through the dedicated web portal www.golori.org.

As Organization and Program Committee chairs we would like to thank the
PC members and all the external reviewers for a truly outstanding job under
extremely tight time constraints. The program is greatly indebted to their con-
tribution. Our activity has been further widely supported by the indefatigable
work of the LORI Standing Committee: Fenrong Liu and Johan van Benthem.
We would also like to acknowledge the use of EasyChair, which has been a fantas-
tic tool for both organizing the reviewing process and creating these proceedings.
The final thanks should go to our colleagues from CSLC, for the hard ‘ground
work’ they put into making this workshop happen.

July 2013 Davide Grossi
Olivier Roy

Huaxin Huang
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Boolean Games with Epistemic Goals

Thomas Ågotnes1, Paul Harrenstein2,
Wiebe van der Hoek3, and Michael Wooldridge2

1 University of Bergen, Norway
thomas.agotnes@infomedia.uib.no

2 University of Oxford, UK
{mjw,paulh}@cs.ox.ac.uk

3 University of Liverpool, UK
wiebe@csc.liv.ac.uk

Abstract. We introduce and formally study games in which the goals of
players relate to the epistemic states of players in the game. For example,
one player might have a goal that another player knows a certain proposi-
tion, while another player might have as a goal that a certain player does
not know some proposition. The formal model we use to study epistemic
games is a variation of the increasingly popular Boolean games model
in which each player controls a number of Boolean variables, but has
limited ability to see the truth values of the overall set of formulae that
hold in the game. Each player in an epistemic Boolean game has a goal,
defined as a formula of modal epistemic logic. Using such a language for
goals allows us to explicitly and compactly represent desirable epistemic
states. After motivating and formally defining epistemic Boolean games
as a concise representation of epistemic Kripke structures, we investigate
their complexity and study their properties.

1 Introduction

In our everyday lives, we all quite naturally have goals and aspirations that
relate to the epistemic states (knowledge and belief) of other agents. You want
your children to know that you love them; you want your boss to know you
work hard; the politician wants you to know he is honest; and so on. The formal
analysis of such epistemic states is of course a well-established research topic
in artificial intelligence, with modal logic and Kripke semantics being the pre-
eminent tools of choice in such work [1]. Our aim in this paper is to begin
to extend this research to the game theoretic aspects of systems in which the
motivations of players relate to the epistemic states of others. Doing so, the
following question seems very relevant: If all players act rationally to bring about
their goals, then what epistemic states will result in equilibrium? We will refer
to games in which the goals and preferences of players relate to the epistemic
states of other players as epistemic games. In the present paper, we shall restrict
our attention to knowledge, leaving the study of belief to future work.

As the basis for our study, we adapt the increasingly popular game theoretic
model of Boolean games [2–5]. More precisely, we introduce epistemic Boolean

D. Grossi, O. Roy, and H. Huang (Eds.): LORI 2013, LNCS 8196, pp. 1–14, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



2 T. Ågotnes et al.

games (ebgs). In such a game, (as in regular Boolean games), each player i is asso-
ciated with a set of Boolean variables Φi , which are under his control in the sense
that he can assign Boolean values to the variables Φi in any way that he chooses.
That is, the strategies available to a player i in an ebg are the possible Boolean
assignments that can be made to the variablesΦi . The outcome of a Boolean game
is a valuation for the overall set of Boolean variables Φ, which will be composed of
the individual assignments made by the players i in the game to their variables
Φi . A player i is not assumed to have perfect information of the game. This we
formally capture by visibility sets Θi , that is, sets of propositional formulae. If a
formula ϕ is inΘi—in which case we say that “i can seeϕ”—it means that player i
can distinguish states in which ϕ holds from ones in which this is not the case. A
limit case is where every player can see every atomic formula, in which case the
game is one of perfect information.

As in regular Boolean games, each player i is assumed to have a goal that
he desires to be achieved. In conventional Boolean games, player i ’s goal γi is
represented as a formula of propositional logic. In our present work, however, the
goal is assumed to be represented as a formula of modal multi-agent epistemic
logic [1]. Thus, player i might have the goal that another player j comes to know
something (γi = Kjϕ), while player j might have a goal that another player k
does not know something (γj = ¬Kkψ). As in conventional Boolean games, the
ability of a player i to influence whether his goal is achieved lies within the
variables Φi under his control; but our ebgs bring a new twist to this story,
since the visibility sets of each player will have a part in determining whether
a players’s goal is achieved. The underlying ebg model we use (with sets of
controlled variables and visibility sets) derives in part from the work of van der
Hoek et al. on epistemic logics of propositional control [6], which in turn derives
from logics of propositional control [7].

The remainder of this paper is structured as follows. First, in the following
section we introduce ebgs. We then formalise Nash equilibria for our games,
and investigate the complexity of decision problems relating to Nash equilibria.
Sections 4 and 5 concern the conciseness of the representation of the strategic
and epistemic situations that ebgs provide with respect to Kripke structures
and regular Boolean games, respectively. We conclude in section 6 with a brief
discussion of related work and some issues for future research.

2 Epistemic Boolean Games

We adapt the basic model of Boolean games (see, e.g., [2–5]) to model partial
information.

Epistemic Logic. Let B = {�,⊥} be the set of Boolean truth values, with “�”
being truth and “⊥” being falsity. Throughout the paper, we will use Φ to denote
a fixed, finite, non-empty set of Boolean variables, with typical members p, q, . . .
etc. A valuation is a total function v : Φ→ B, assigning truth or falsity to every
Boolean variable. Let V denote the set of all valuations (over Φ). In the interests
of brevity, we sometimes use a binary representation of valuations; for example,
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if Φ = {p, q}, then the valuation 01 would be the one making p false and q true,
assuming a natural order on the propositional variables.

We make use of a multi-agent epistemic modal logic, which we will refer to
as EL [1]. The language of EL is that of the well-known multi-modal logic S5n .
The language EL extends classical propositional logic with a collection of indexed
unary modal operators Ki , where the intended interpretation of a formula Kiϕ
is that “agent i knows ϕ.” Formally, given a set Φ of propositional variables the
syntax of EL(Φ) is given by the following grammar:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | Kiϕ,

where p is a Boolean variable in Φ and i is an agent. We assume that the re-
maining classical connectives—“∧” (conjunction), “→” (material implication),
“↔” (material bi-implication)—are defined in the standard way. The proposi-
tional fragment of EL over Φ—i.e., the set of formulae without occurrences of
the epistemic operators Ki—we denote by L(Φ).

The semantics for the epistemic logic S5n , as formulated in the language
EL(Φ), is defined with respect to tuples K = (W ,R1, . . . ,Rn , π), also referred
to as S5n Kripke structures. Here, W is a non-empty set of (possible) worlds
and, for each agent i , Ri ⊆W ×W is an equivalence relation over W . Finally,
π : W×Φ→ B is a valuation function, indicating the truth value of every Boolean
variable in every world. For the purposes of this paper we assume W to be finite.
The formulae of EL(Φ) are interpreted with respect to pointed structures, i.e.,
pairs of the form (K ,w) as follows [1, pp.18–19]: An atom p is true in (K ,w)
iff π(w , p) = �; the clauses for negation and disjunction are standard, and for
knowledge, we have

(K ,w) |=K Kiϕ iff for all worlds w ′ with Ri(w ,w ′): (K ,w ′) |=K ϕ.

Epistemic Boolean Games. The standard framework of Boolean games involves
a set of agents or players, each of which has a goal formulated as a formula γi
of classical propositional logic and a set of Boolean variables she controls, in the
sense that he has the unique ability to set their value. Each player strives to
satisfy her goal by appropriately setting the values of the variables she controls.
Every such setting can be analysed as a strategic game in which the strategies
of the players are given by the ways they can assign values to the variables they
control. A profile of strategies then determines a unique truth value assignment
or valuation to all propositional variables. These are taken as the outcomes of
the game. Moreover, each player strictly prefers states that satisfy her goal to
ones that do not and is indifferent otherwise. The difficulty is that a player’s
goal γi may contain variables controlled by other players j 	= i , who will also
be trying to choose values for their variables in Φj so as to get their goals γj
satisfied, the satisfaction of which may in turn dependend on the variables Φi .

The setting we consider in this paper is similar, except that each player’s
goal is represented as a formula γi of the epistemic language EL(Φ). In order
to evaluate the players’ epistemic goals, each player is endowed with a visibility
set Θi consisting of formulae in the propositional fragment L(Φ) of EL(Φ). The
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idea is that player i can completely and correctly perceive truth values of the
formulae in Θi , i.e., player i can only distinguish outcomes that differ with
respect to the truth values they assign to some of the formulae contained in Θi .
A formula of the form Kiϕ then holds in a particular outcome if ϕ holds in all
outcomes i cannot distinguish from that outcome.

Formally, we define an epistemic Boolean game for EL(Φ) (hereafter simply
“game”) as a tuple

G = (N , Φ, Φ1, . . . , Φn , γ1, . . . , γn , Θ1, . . . , Θn), where:

– N = {1, . . . ,n} is a set of agents (also called the players of the game);
– Φ = {p, q, . . .} is a finite set of Boolean variables;
– Φi ⊆ Φ is the set of Boolean variables under the unique control of i ∈ N ;
– γi is an EL(Φ) formula representing the goal of player i ∈ N ; and
– Θi ⊆ L(Φ) is a finite visibility set for player i ∈ N consisting of propositional

formulae, with the intended interpretation that player i is able to correctly
observe the truth values of the propositional formulae in Θi .

As usual in Boolean games, we will require that Φi ∩ Φj = ∅ for i 	= j , and that
Φ1 ∪ · · · ∪ Φn = Φ (i.e., the sets Φ1, . . . , Φn form a partition of Φ).

A choice for player i ∈ N is a function vi : Φi → B, i.e., an allocation of truth
or falsity to all the variables under i ’s control. Let Vi denote the set of choices for
player i . The intuitive interpretation we give to Vi is that it defines the actions or
strategies available to player i . An outcome is a collection of choices, one for each
player. Formally, an outcome for a game is a tuple �v = (v1, . . . , vn) ∈ V1×· · ·×Vn .
An outcome uniquely defines an overall valuation for the variables in Φ and for
this reason we often treat outcomes for games as if they were valuations, for
example, writing �v(p) to denote the value of variable p ∈ Φ under the assignment
corresponding to outcome �v . We will also equivocate the set of valuations and
the set of outcomes writing V for V1 × · · · × Vn .

To model partial information, for every visibility set Θi , we define an equiva-
lence relation ∼Θi over outcomes as follows such that for all �v , �v ′ ∈ V :

�v ∼Θi �v
′ iff for all ϕ ∈ Θi : �v |= ϕ iff �v ′ |= ϕ.

Thus, �v ∼Θi �v
′ if and only if �v and �v ′ agree on the truth value of the formulae

in Θi . In the interests of readability, where there is no possibility of confusion,
we will write ∼i instead of ∼Θi .

One natural constraint to consider in our setting would be that Θi ⊆ Φ, i.e.,
that player i can only perceive the value of atomic propositions or propositional
variables. Such games we will refer to as atomic games. Most of the examples
in this paper pertain to this setting and we will see that they have quite a
specific structure. It would also be natural to require that Φi ⊆ Θi , i.e., a player
can see his own choice with respect to the variables he controls. However, we
will generally not place this as a requirement on games. Furthermore, if G is
such that for every player i ∈ N we have Φ ⊆ Θi , we say that G is a game of
perfect information: in a game of perfect information, every player can see every
propositional variable.
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We interpret formulae of EL(Φ) with respect to pointed games, i.e., pairs (G, �v)
consisting of a game G = (N , Φ, Φ1, . . . , Φn , γ1, . . . , γn , Θ1, . . . , Θn) and an out-
come �v , as follows (again, we only give the epistemic clause)

(G, �v ) |=EL Kiϕ iff for all valuations �v2 with �v ∼Θi �v2: (G, �v2) |=EL ϕ.

Observe that this semantics depend on neither Φ1, . . . , Φn nor γ1, . . . , γn .
We assume that a player i strictly prefers all those outcomes that satisfy

its goal γi over all those that do not, but is indifferent between outcomes that
satisfy its goal, and is indifferent between outcomes that do not satisfy its goal.
We define for each player i a utility function ui : V1 × · · · × Vn → {0, 1} over
outcomes representing these preferences as follows.

ui(�v ) =

{
1 if (G, �v ) |= γi , and

0 otherwise.

Example 1. Father (player 1) and Mother player (player 2) reason about picking
up their child Baby (player 3) from nursery: either father does this (p), or mother
(q). Assume Θ1 = Φ1 = {p}, Θ2 = Φ2 = {q}, and Θ3 = ∅. Mother wants to know
that Baby is being picked up, either by father or by herself. Father wants to know
that Mother knows, but also wishes to avoid both parents showing up at nursery.
Baby just wants to be picked up. Formally, the goals are:

γ1 = K1(K2(p ∨ q) ∧ ¬(p ∧ q))
γ2 = K2(p ∨ q) and γ3 = p ∨ q

The situation (call the game G1) is depicted in Figure 1(a). Now suppose that
Mother decides to pick up Baby, but Father does not, i.e., ¬p∧q. This obviously
fulfils the goal γ2, and even K2(p ∨ q) ∧ ¬(p ∧ q). Note, however, that Father is
still unhappy with this outcome. Indeed, it is easy to see that ¬γ1 is true in this
outcome. Note that each parent can bring about p ∨ q, but not the fact that the
spouse knows this.

We are now in a position to apply the well-known notion of (pure strategy)
Nash equilibrium [8] to ebgs. Formally, an outcome (v1, . . . , vi , . . . , vn) is a Nash
equilibrium if there is no player i ∈ N and choice v ′

i ∈ Vi for i such that

ui(v1, . . . , v
′
i , . . . , vn) > ui(v1, . . . , vi , . . . , vn).

Thus, an outcome is a Nash equilibrium if no player can unilaterally deviate to
obtain a better outcome for themselves, under the assumption that every other
player stays with their choice. The Nash equilibria of game G will be denoted
by N (G). Observe that, in general, we have that �v is a Nash equilibrium in G
if and only if for all players i ,

(G, �v ) 	|= γi implies (G, (v1, . . . , vi−1, v
′
i , v1+1, . . . , vn)) 	|= γi for all v

′
i ∈ Vi .
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2 2

1

(0,1,1) (0, 0, 0)¬p

1

(0,1,1) (0, 0, 1)p

q ¬q

(a) Game G1

2 2

1 1

(1,1,1) (0, 0, 0)¬p

1 1

(0, 1, 1) (0, 0, 1)p

q ¬q

(b) Game G2

Fig. 1. The games G1 and G2 as in Example 1. The utilities to the players of each out-
come are indicated by vectors (x , y , z), where x represents father’s utility, y mother’s,
and z baby’s. The outcomes father and mother cannot distinguish are indicated by
solid and dotted boxes, respectively and the Nash equilibria are in bold face.

Example 1 (continued). Recall the nursery Example 1. We noted that the out-
come where ¬p∧q satisfies K2(p∨q)∧¬(p∧q). This is indeed a Nash equilibrium,
even though Father’s goal γ1 is not satisfied (Father does not know that Mother
will go). It is a Nash equilibrium, because, given this outcome, father on his own
cannot fulfil his goal: the epistemic goal K1K2(p ∨ q) cannot be satisfied in our
model. Note that, since Baby cannot influence any proposition, every outcome
has the property that it cannot unilaterally deviate and improve its outcome,
i.e., it can never prevent an outcome from being a Nash equilibrium.

Note now that knowledge is power: if we change the game to G2, in which
Θ1 = {p, q} (but keep the rest as in G1), then Father will be informed as to
whether mother satisfies her own goal by making q true, and hence ¬p ∧ q is a
Nash equilibrium for this game in which both parents and the child are happy.

3 Computational Complexity

In this section we analyse the computational complexity of a number of natural
problems relating to ebgs. First, the Model Checking problem for EL is as
follows (cf. [10]):

Model Checking:
Given: Pointed game (G, �v ) and EL formula ϕ.
Question: Is it the case that (G, �v) |=EL ϕ?

We leave out the proof of the following due to lack of space.

Proposition 2. The Model Checking problem for EL is PSPACE-complete.

As an aside, we remark that this result may at first seem surprising, given
that the problem of model checking formulae of S5n over Kripke structures
may be solved in polynomial time [1, pp. 63–64]. There is no contradiction,
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Input: Game G and outcome �v for G
Output: “yes” if �v ∈ N (G), “no” otherwise.

1 for i := 1 to n do
2 if (G, (v1, . . . , vi , . . . , vn )) �|=EL γi then
3 for each v ′

i ∈ Vi do
4 if (G, (v1, . . . , v

′
i , . . . , vn)) |=EL γi then

5 return “no”
6 end if
7 end for
8 end if
9 end for

10 return “yes”

Algorithm 1. Algorithm for Membership

however: we are interpreting our EL formulae with respect to games, which can
be understood as compact representations of Kripke structures. The polynomial
time computational results for model checking over Kripke structures assumes
that each state is explicitly listed in the input to the problem, which we do
not assume. Thus, model checking S5n over Kripke structures assumes an input
that in the worst case is exponentially larger than our game representation. As a
general rule of thumb in complexity analysis, the more compact a representation
is, the higher will be the complexity of the decision problems associated with
these structures (see, e.g., [11, pp. 492–495]).

Two natural decision problems suggest themselves relating to the Nash equi-
libria of ebgs (cf. [12, pp. 8–9]). The first asks whether a given outcome �v is a
Nash equilibrium of a game G. We call this problem Membership:

Membership:
Instance: Game G and outcome �v for G.
Question: Is it the case that �v ∈ N (G)?

We first prove the upper bound for the Membership problem; we postpone
the lower bound for the moment.

Proposition 3. Membership for ebgs is in PSPACE.

Proof. First observe that from Proposition 2, the model-checking problem for EL
is PSPACE-complete. Let G be the game and let �v = (v1, . . . , vi , . . . , vn) be the
outcome given in the problem instance. Then, Algorithm 1. decides the problem
in PSPACE. The loop on lines (1)–(9) checks whether any player has a beneficial
deviation: if it finds such a beneficial deviation, the algorithm returns “no”
(line 5), indicating �v 	∈ N (G). We claim that the overall algorithm operates
in PSPACE. To see this, observe that for each player i ∈ N we carry out a
single PSPACE check (line 2, Proposition 2) followed by a loop (lines 3–7) that
iterates through all elements of Vi , in each case carrying out a PSPACE check
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(Proposition 2 again). The loop on lines 3–7 is in PSPACE as a consequence of
the fact that

PSPACE = PSPACEPSPACE.

Since PSPACE is closed under sequential PSPACE operations, the outer loop op-
erates in PSPACE. We conclude that the overall algorithm operates in PSPACE.

The second problem simply asks whether there exist any Nash equilibria for
a given ebg G. We call this problem Non-Emptiness:

Non-Emptiness:
Instance: Game G.
Question: Is it the case that N (G) 	= ∅?

The proofs of the following propositions are left out due to lack of space.

Proposition 4. Non-Emptiness for ebgs is PSPACE-complete.

Given this, we can prove the lower bound for the Membership problem:

Proposition 5. Membership for ebgs is PSPACE-hard.

4 Epistemic Boolean Games versus Kripke Structures

The semantics we have given to EL in terms of epistemic Boolean games is very
close to Kripke semantics, with outcomes for games essentially playing the role
of possible worlds. Let us make this idea both explicit and precise. We argue
that Boolean games of incomplete information can represent the same situations
modelled by S5n Kripke structures and, moreover, that they sometimes can do
so significantly more concisely.

We adapt the standard definition of bisimulation for modal logic [13, pp.64–67]
to games and Kripke structures. Given a game G for EL(Φ) and a Kripke struc-
ture K for EL(Φ′), for any Ψ ⊆ Φ ∩ Φ′, we say that G and K are Ψ -bisimilar if
there exists a relation

Z ⊆ V ×W

such that for all outcomes �v and all possible worlds w :

– if Z(�v ,w), then for all p ∈ Ψ , we have �v(p) = π(w , p);
– if Z(�v ,w) and for some i ∈ N and �v ′ we have �v ∼i �v

′, then there is some
w ′ such that Z(�v ′,w ′) and Ri(w ,w ′); and

– if Z(�v ,w) and for some i ∈ N and w ′ we have Ri(w ,w ′), then there is some
�v ′ such that Z(�v ′,w ′) and �v ∼i �v

′.

We write (G, �v) ∼=Ψ (K ,w) to mean that there is a Ψ -bisimulation relation Z
between G and K such that Z(�v ,w). If Φ = Φ′ = Ψ we omit the subscript in ∼=Ψ .
The key point about bisimulations is the following, readily established result.

Proposition 6. Let Ψ ⊆ Φ. If (G, �v ) ∼=Ψ (K ,w), then for all formulae ϕ ∈
EL(Ψ) we have:

(G, �v) |=EL ϕ iff (K ,w) |=K ϕ.
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We easily show that for every game G there exists a bisimilar Kripke structure
KG . Given an ebg G = (N , Φ, Φ1, . . . , Φn , γ1, . . . , γn , Θ1, . . . , Θn), we define the
Kripke structure KG = (W G ,RG

1 , . . . ,RG
n , πG) induced by G as follows.

– WG = V , i.e., WG is the set of outcomes for G;
– RG

i (�v , �v ′) iff �v ∼i �v
′; and

– for all �v and p ∈ Φ, we have πG(�v , p) = �v(p).

Then it is immediate by construction that we have:

Proposition 7. Let G be a game, �v an outcome, and KG be the Kripke struc-
ture induced by G. Then, (G, �v) ∼=Φ (KG , �v).

Notice that the construction of the set of worlds in KG makes the exponential
blow up of size in moving from games G to Kripke structures explicit. The
previous result essentially tells us that for every game G there is an “equivalent”
Kripke structure K , where equivalence is measured in terms of bisimulation.

Likewise, for every finite Kripke structure K = (W ,R1, . . . ,Rn , π) for EL(Φ),
a Φ-bisimilar ebg GK exists. This ebg, however, is defined on an extended
language, which also involves propositional variables for every possible world w ∈
W . Assuming without loss of generality that W ∩ Φ = ∅, we let Ψ = Φ ∪W .
Moreover, define for every w ∈W a formula χ(w) as follows.

χ(w) = w ∧
∧

w ′ �=w

¬w ′ ∧
∧

π(w,p)=�
p ∧

∧
π(w,p)=⊥

¬p

Let for each possible world w the outcome �vw : Ψ → B such that for all p ∈ Ψ ,

�vw (p) =

{
� if either π(w , p) = � or p = w ,

⊥ otherwise.

Note that the formula χ(w) characterises outcome �vw , in the sense that

(G, �vw ) |= χ(w ′) if and only if w = w ′.

Given K = (W ,R1, . . . ,Rn , π), we define for each agent i and each world w ,

θKi (w) =
∨

Ri(w,w ′)

χ(w ′).

Intuitively, θKi (w) characterises (in L(Ψ)) the set of worlds that player i can-
not distinguish from w in K along with their interpretation of the propositional
variables. That is, if θKi (w) is in player i ’s visibility set, i can distinguish worlds
that are in {w ′ ∈W : Ri(w ,w ′)} from those that are not. Moreover, as K is an
S5n model, each Ri is an equivalence relation. Hence, Ri(w ,w ′) implies θKi (w) =
θKi (w ′). The gameGK = (N , ΦK , ΦK

1 , . . . , ΦK
n , γK

1 , . . . , γK
n , ΘK

1 , . . . , ΘK
n ) induced

by K is now defined such that ΦK = Φ ∪W and for each agent i ,

ΘK
i = {θKi : w ∈W }.
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s

p

t

p

u

¬p
22 1

Fig. 2. S5 Kripke structure with no bisimilar atomic game models

The choices for ΦK
1 , . . . , ΦK

n and γK
1 , . . . , γK

n are arbitrary. Observe, however, that
the game GK does not in general represent the situation much more concisely
than the Kripke structure K .

Now define the relation Z such that for all �v ∈ V and all w ∈W ,

Z(�v ,w) if and only if �v = �vw .

We find that Z is witness to the fact that GK and K are Φ-bisimilar, giving us
the following result (proof left out due to lack of space).

Proposition 8. Let K be a Kripke structure, w a world, and let GK be the
game induced by K . Then, (GK , �vw ) ∼=Φ (K ,w).

However, if we restrict ourselves to atomic games, i.e., games with visibility
sets Θi that consist of propositional variables, Proposition 8 (or the converse of
Proposition 6) does not hold.

Proposition 9. There are Kripke structures K over N , Φ for which there is no
atomic game G over N , Φ such that G ∼= K.

Proof. Consider the S5n Kripke structure K with N = {1, 2} and Φ = {p} as
depicted in Figure 2. (Both R1 and R2 are equivalence relations, but for clarity
we have not drawn the reflexive arrows). Note that K1p ∨ K1¬p means that 1
knows the value of p. In K , this is true in s , but not in t or u. Hence we have
K , s |=K K1p∧¬K2(K1p∨K1¬p). However, we claim that in any atomic game G
and any valuation �v we have

(G, �v ) |=EL K1p → K2(K1p ∨K1¬p)

To see the latter, suppose that (G, �v ) |=EL K1p. This means not only that
�v(p) = �, but also that p ∈ Θ1. To appreciate the latter, observe that p 	∈ Θ1

would imply that there is some �u, which only differs from �v in that it assigns ⊥
to p rather than �, and, since �v and �u agree on all other variables (in particular
those in Θ1), for which �v ∼i �u . But this in turn implies that (G, �v ) |=EL ¬Kip,
a contradiction. But since p ∈ Θ1, it is obvious that G |=EL K1p ∨ K1¬p, and
hence we have (G, �v ) |=EL K2(K1p ∨K1¬p). So there is no (G, �v ) that satisfies
K1p ∧ ¬K2(K1p ∨ K1¬p), and hence, by Proposition 2, there is no (G, �v ) for
which (G, �v ) ∼= (K , s).

The upshot of this discussion is that atomic games induce Kripke structures
with a very particular structure. Specifically, they induce Kripke structures in
which: (i) the set of worlds corresponds exactly to the set of possible valuations;
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(ii) the accessibility relations Ri are derived solely from the visibility sets Θi

that consist of propositional variables; and (iii) which variables agents can see,
which variables they can manipulate, and what goals they have, is all common
knowledge. Issues like this (in the closely related model of interpreted systems
for knowledge [1, pp.103–114]) were studied in depth by Lomuscio [14].

5 Epistemic Boolean Games versus Boolean Games

What distinguishes epistemic Boolean games from regular Boolean games is the
language in which the players’ goals are phrased, viz., the language of EL and raw
propositional logic, respectively. Otherwise, the strategic structure of epistemic
Boolean games is very similar to that of regular Boolean games. Rather, in
this section, we argue that for every epistemic Boolean game a corresponding
regular Boolean game can be found that is in an important sense strategically
equivalent to it. However, we also show that, in the case of atomic games, the
regular Boolean game may be exponentially larger than the epistemic Boolean
game it corresponds to.

Given a set Φ of propositional variables the set of 2|Φ| outcomes are determined
by the set of valuations. As the only role of the visibility sets in ebgs is to enable
the evaluation of the epistemic formulae in EL(Φ), it can now easily be seen that
for every epistemic Boolean game there is a regular Boolean game with the same
strategic properties. (The claim in the opposite direction is trivial.)

Let G = (N , Φ, Φ1, . . . , Φn , γ1, . . . , γn , Θ1, . . . , Θn) be an epistemic Boolean
game. Associate with each outcome �v a propositional formula χ(�v) in much the
same way as in the previous section.

χ(�v) =
∧

�v(p)=�
p ∧

∧
�v(p)=⊥

¬p.

Now consider the regular Boolean game G ′ = (N , Φ, Φ1, . . . , Φn , γ
′
1, . . . , γ

′
n),

where for each player i ,

γ′
i =

∨
(G,�v)|=ELγi

χ(�v ).

We then have that for players i and all outcomes �v ,

(G, �v ) |=EL γi if and only if (G, �v ) |=EL γ′
i .

Hence, G and G ′ agree on the players, strategies, and outcomes. Moreover, each
goal γi induces the same preferences over the outcomes in G as γ′

i does in G ′.
Accordingly, G and G ′ could justifiably be said to be strategically equivalent.

It should be observed though, that the size of γ′
i , as defined above, is exponen-

tial in the size of γi . This raises the obvious question of whether we are in fact
gaining anything by using the epistemic language: can we find an equivalence
preserving translation τ from epistemic formulae to propositional formulae such
that τ(ϕ) is guaranteed to be of size polynomial in the size of ϕ? If the answer
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was “yes”, then this would indicate that our epistemic language was somewhat
redundant, in terms of raw expressive power and succinctness. In fact, there is a
compelling complexity theoretic argument that the epistemic language is expo-
nentially more succinct than the propositional language on our game structures:

Proposition 10. If P 	= PSPACE, then the epistemic language is exponentially
more succinct than the propositional language over game structures.

Proof. Recall that model checking for the epistemic language over our game
structures is PSPACE-complete, while the model checking problem for the propo-
sitional language is in P. Now, suppose there exists a polynomial time computable
equivalence preserving translation τ from the epistemic language to the propo-
sitional language. The existence of such a translation would imply PSPACE=P:
to solve a PSPACE hard model checking problem for the epistemic language, we
could apply the polynomial time translation τ and apply the polynomial time
model checking algorithm for the resulting formula, yielding a polynomial time
decision procedure for the PSPACE-hard model checking problem. We conclude
that no such translation can exist unless P=PSPACE.

Note that it is considered highly unlikely that PSPACE=P.
Thus, the epistemic language provides concrete benefits with respect to suc-

cinctness. We might also note that the use of epistemic modalities of course
provides benefits with respect to naturalness of expression and the readability
of formulae when compared to the use of raw propositional logic.

6 Related Work and Conclusions

In this paper, we formally defined and investigated games in which the goals of
players relate to the epistemic states of other players. In such a game, a player
will be strategically motivated to act in such a way as to bring about states
of knowledge—or indeed ignorance—in other players. We formally defined epis-
temic Boolean games, an extension to the now well-established Boolean games
model in which players have goals represented not as propositional logic formu-
lae, but as formulae of modal epistemic logic. We then investigated the compu-
tational complexity of questions relating to Nash equilibria in such games.

Our research is closely related to several other papers that have appeared
in the literature. In [15] we also considered Boolean games with visibility sets,
but the setting in that paper is very different: goals are propositional rather
than epistemic, and the focus is rather on identifying verifiable Nash equilibria;
equilibria that players know to be equilibria.

Van Otterloo et al. introduced knowledge condition games [16]. Knowledge
condition games are extensive form games, in which state sets are explicitly
listed. The basic question considered in the work of van Otterloo et al. is when
sets of players in extensive form games are able to act in such a way as to bring
about a state of knowledge; the basic result relating to this problem is that the
problem is Σp

2 -complete. Because the problem relates to strategic ability, van
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Otterloo also considered the use of the strategic ability logic ATL [17] and its
epistemic variant ATEL [18]. The work differs from the present paper in that
we consider a Boolean games framework, with visibility sets implicitly defining
epistemic accessibility relations; we also allow for players to have goals explicitly
represented as formulae of epistemic logic.

Ågotnes and van Ditmarsch also considered closely related issues [19]. They
introduced public announcement games. The foundation for their study was the
growing body of work on dynamic epistemic logic (DEL) [20]. In dynamic epis-
temic logic, agents are allowed to make announcements, which may be simple
objective statements about the state of the world (e.g., “p is true”) or may
be more complex announcements involving statements about the knowledge or
ignorance of agents (e.g., “I don’t know p”). Ågotnes and van Ditmarsch inves-
tigated how players in a game could use such announcements to bring about
states of knowledge. The main difference is that the announcements considered
by Ågotnes and van Ditmarsch are much richer than the mechanisms available
to players in our games for bringing about epistemic states; and the semantics
are correspondingly much more technically involved than in our setting. Our set-
ting offers a much more compact representation for epistemic games than that of
Ågotnes and van Ditmarsch, and one that is much closer to computational mod-
els. Additionally, we are able to prove results relating to (e.g.) the complexity of
Nash equilibria that were not considered in [19].

Finally, and perhaps the closest to the present paper is the work of Grant et
al. on Boolean games in which players have (possibly incorrect) beliefs about
the value of certain variables, and where an external principal is able to make
announcements about these variables in order to influence the beliefs of the
players within the game, and hence the rational choices that they subsequently
make [21]. The model of belief studied by Grant et al is much more restricted
than the model of knowledge we use in the present paper (every player simply
believes every proposition is either true or false).

Several avenues suggest themselves for future work. First, we might look at
richer computational models than simply setting variables to be true or false. For
example, we might model games using a practical system specification language
such as Reactive Modules [22], and, correspondingly, allow for richer strate-
gies as in the Alternating-time Temporal Logic [17]. This would bring the setting
of epistemic games much closer to practical systems, and would make it possible
to model practical protocols and systems. Second, we might consider the use
of mixed (probabilistic) strategies. If players are permitted to use randomised
strategies, then the set N (G) can be replaced by a probability distribution over
outcomes. In this case, instead of asking whether, for example, player i knows
ϕ in all outcomes, we can ask what the probability is that player i comes to
know ϕ, assuming that players play Nash equilibrium strategies.

Third, the epistemic concept we have worked with in this paper is knowledge,
in the sense of S5 modal logic [1]. It would also be interesting to consider the use
of belief, e.g., in the sense of the modal logic KD45. Finally, it looks worthwhile to
see whether the exponential blow-up when moving from games to Kripke models,



14 T. Ågotnes et al.

can be avoided by adopting a slightly different perspective on Kripke models, as
proposed in [9], viewing them as compositions of smaller agent models.
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Abstract. We propose a novel approach to preference change. We treat a set of
preferences as a special kind of theory, and define minimal change contraction
and revision operations in the spirit of minimal change as advocated by the Al-
chourron, Gardenfors, and Makinson (AGM) theory of belief revision. We char-
acterise minimal contraction of preference sets by a set of postulates and prove a
representation theorem. We also give a linear time algorithm which implements
minimal contraction by a single preference. We also define minimal contraction
by a set of preferences, and for a significant special case state postulates, prove a
representation theorem, and provide an efficient algorithm implementing minimal
contraction by a set of preferences.

1 Introduction

Preference plays a crucial role in agents’ reasoning and their intelligent interaction with
other agents. In this paper we consider the problem of preference change: the contrac-
tion and revision of an agent’s set of preferences by a single preference and by a set of
preferences. We are motivated by an analogy between preference change and the Al-
chourrón, Gärdenfors, and Makinson (AGM) theory of belief revision. Both contraction
and revision require maintaining consistency of the agent’s set of preferences. When a
new preference is inconsistent with an agent’s existing preferences, a rational agent
should remove as few preferences from its set of preferences as possible to restore con-
sistency. We are interested in efficient algorithms (at most polynomial in the size of the
agent’s preference set) for minimal contraction and revision that may be employed by
feasible, resource-bounded reasoners.

The contribution of this paper is as follows. We define minimal preference contrac-
tion and show how to define revision in terms of contraction. Next, we give postulates
for rational minimal preference contraction and prove a representation theorem. As far
as we know, this is the first representation theorem for minimal change preference con-
traction in the literature. We then give a linear time minimal preference contraction
algorithm. We also investigate the problem of contracting by a set of preferences rather
than by a single preference, or minimal iterative preference contraction. We define min-
imal iterative preference set contraction and state postulates characterising an impor-
tant special case in which contraction is by an uncoupled set of preferences. We also
give a polynomial time algorithm to compute minimal contraction by a set for that
case.

D. Grossi, O. Roy, and H. Huang (Eds.): LORI 2013, LNCS 8196, pp. 15–26, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



16 N. Alechina, F. Liu, and B. Logan

2 Formal Preliminaries

We assume an agent’s preferences are given by a binary relation over some finite set of
alternativesA. An agent’s preference state is represented by a preference set consisting
of preference sentences (or simply preferences) which are atomic statements of the form
A < B (B is preferred to A), A ≡ B (A and B are equally preferred) or A#B (A and
B are incomparable). In using these three basic relations, we essentially follow [1]. 1 In
addition, the agent’s preference set may contain a special sentence ⊥, which is used to
indicate a problem (derivability of an inconsistency).

We assume that preference sets are not necessarily complete, in the sense that they
may include no sentences expressing a relation between A and B, for A,B ∈ A. We
take this to be a natural feature of resource-bounded agents. We do assume that the
agents are rational, i.e., they don’t accept A < B and B < A or A#B at the same time,
they can complete their preference sets using transitivity of < and ≡ and symmetry of
#, etc.

The agent’s rational reasoning rules or integrity constraints in the sense of [7] are
given below. Rule 1 states that # is symmetric, rules 2-4 state that ≡ is an equivalence
relation, rule 5 states that < is transitive, and the rest of the rules state that at most one
of #,≡, <,> can hold between two alternatives2.

1. A#B ⇒ B#A
2. A ≡ A
3. A ≡ B ⇒ B ≡ A
4. A ≡ B,B ≡ C ⇒ A ≡ C
5. A < B,B < C ⇒ A < C
6. A < B,B < A ⇒ ⊥
7. A ≡ B, A < B ⇒ ⊥
8. A ≡ B, A#B ⇒ ⊥
9. A#B, A < B ⇒ ⊥

We denote by Cn(S) the closure of a set S under the rules above. Formally, Cn(S)
is the set of preferences which contains S, A ≡ A for every A ∈ A, and in addition for
every rule p1, . . . , pn ⇒ p above, if p1, . . . , pn ∈ Cn(S), then p ∈ Cn(S). A set of
preferences S is deductively closed iff S = Cn(S).

Sometimes we will use the notation S � p to say that p can be derived from S and
the reasoning rules above by application of the following inference rule (where n ≤ 2):

1 One may start with a different initial setting, for instance, taking as A ≤ B (B is at least as
good as A, cf. [8]) as the primitive relation, then define other relations and explore the similar
questions. We leave this possibility for another occasion.

2 Note that we do not have the following rules:

A ≡ B,B < C ⇒ A < C
A ≡ B,B#C ⇒ A#C

the agent may have a preference regarding B and C, and consider A and B indistinguishable,
but may not have a preference regarding A and C.
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p1, . . . , pn p1, . . . , pn ⇒ p
p

Clearly for any p, � p (p is derivable from an empty set) if, and only if, p is of the form
A ≡ A. Note that we do not assume any logical connectives or any other inference
rules.

In what follows, we always assume that the agent’s set of preferences S is deduc-
tively closed. The set of preferences is consistent if and only if it does not contain⊥.

3 Preference Revision

Clearly, if an agent acquires a new preference, its preference set may become inconsis-
tent. For example, if the agent used to prefer B to A (A < B) and C to B (B < C)
and has decided that it prefers A to C, its preference set is inconsistent since it contains
both A < C by transitivity from the old preferences and C < A (the new preference).
In order to incorporate the new preference and have a consistent preference set, the
agent needs to remove some of the old preferences. We are interested in minimal pref-
erence revision, namely removing as few sentences as possible to restore consistency.
As in AGM belief revision, we define revision in terms of contraction by a preference
sentence.

Revision of a preference set S by a preference p is defined as adding p to S if the
result is consistent and deductively closing the resulting set, otherwise first contracting
S by p−S , denoted S − p−S , where p−S is the S-complement of p. For a consistent set
of preferencesS and a preference p such that S∪{p} is inconsistent, the S-complement
of p is defined as follows:

– A ≡ B−S = S ∩ {A < B,B < A,A#B}
– A < B−S = S ∩ {A ≡ B,B < A,A#B}
– A#B−S = S ∩ {A ≡ B,A < B,B < A}

Contracting S by the S-complement of p makes p consistent with the result, and we
can add p to the resulting set and close it under consequence. Revision S ∗ p of S by
p is thus defined as Cn(S − p−S ∪ {p}). This is essentially the Levi identity [6, 12]
S ∗ p = (S − ¬p) + p.

3.1 Minimal Contraction

Definition 1. (Minimal contraction) Given a preference set S and a preference p, such
that 	� p, the result of a minimal contraction of S by p is a set S − p such that:

(1) S − p ⊆ S
(2) S − p 	� p
(3) for any other set S′ satisfying (1) and (2), |S′| ≤ |S − p|.

The removal of minimal number of preferences is similar to Hansson’s definition
of revising to the most similar preference relation (where the distance between pref-
erence relations is defined as the symmetrical difference between the sets of pairs of
alternatives in the two relations) [9].
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3.2 Minimal Contraction Postulates

Before we can state the postulates characterising minimal contraction, we need to in-
troduce the following abbreviations. By A<

S we will denote {C : A < C ∈ S}. By A>
S

we will denote {C : C < A ∈ S}. By A≡
S we will denote {C : A ≡ C ∈ S} \ {A}.

The cost cS(p) of p ∈ S (intuitively, the number of preferences a contraction by p has
to remove from S) is defined as follows:

– cS(A < B) = |A<
S ∩B>

S |+ 1
– cS(A ≡ B) = 2 ∗ |A≡

S |
– cS(A#B) = 2

The following postulates characterise minimal contraction. For readability, we will
omit subscript S when it is unambiguous.

C-Closure S − p = Cn(S − p)
C-Inclusion S − p ⊆ S
C-Vacuity If p 	∈ S, S − p = S
C-Success If p is not of the form A ≡ A, then p 	∈ S − p
C-Equivalence If Cn(p1) = Cn(p2), then S − p1 = S − p2
C-Minimality If p ∈ S, then |S − p| = |S| − cS(p)

The postulates of C-Closure, C-Inclusion, C-Vacuity, C-Success and C-Equivalence
are standard postulates for contraction of beliefs. Recovery (S ⊆ Cn((S − p) ∪ p))
does not hold, but this postulate has always been considered controversial [13]. The
C-Minimality postulates characterise specifically minimal contraction of preferences,
because for preferences it is possible to predict the cardinality of the resulting set.

Theorem 1. The result of any minimal contraction satisfies the minimal preference
contraction postulates above, and every contraction satisfying these postulates is a min-
imal preference contraction.

Proof. For the case when p 	∈ S, clearly the minimal contraction is S itself, and all the
postulates hold for S − p = S trivially.

Let us consider the case when p ∈ S. We show first that every minimal contraction
satisfies the postulates. C-Inclusion holds by Definition 1, and C-Vacuity trivially since
p ∈ S. To show that C-Closure holds, assume by contradiction that S − p is a minimal
contraction and it is not deductively closed. Since S − p 	� p (by Definition 1 (2)) and
S − p is not deductively closed, then there must be a consequence q of S − p such that
q 	∈ S − p. Since S − p 	� p and S � q, it follows that (S − p) ∪ {q} 	� p. Since
S−p ⊆ S (by Definition 1 (1)), S � q, and since S is deductively closed, q ∈ S. Hence
there is a set S′ = (S − p) ∪ {q} such that conditions (1) and (2) of Definition 1 hold
for S′, and its cardinality is greater than that of S − p. Hence S − p is not a minimal
contraction because it violates condition (3): a contradiction. C-Success holds for all p
which are not derivable from an empty preference set because there is always a subset
of S which does not derive p (in the worst case, ∅). C-Equivalence holds rather trivially
because the only cases when two syntactically different preferences have the same set
of consequences are: Cn(A ≡ B) = Cn(B ≡ A) and Cn(A#B) = Cn(B#A);
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due to symmetry rules, any successful contraction by one of A ≡ B, B ≡ A has to
get rid of both of them, similarly for A#B, B#A. Now let us consider the minimality
postulates. We need to prove that any minimal contraction removes exactly |S|−|S−p|
sentences for each of the cases. In particular, we need to prove that:

– a minimal contraction by A ≡ B removes exactly 2 ∗ |A≡| preferences;
– a minimal contraction by A < B removes exactly |A< ∩B>|+ 1 preferences;
– a minimal contraction by A#B removes exactly 2 preferences.

Let us consider the easiest case first. If A#B ∈ S and we want to remove it and
make sure that S 	� A#B, we need to remove A#B itself, and B#A (note that since
A#B ∈ S and S is deductively closed, B#A ∈ S). Clearly if one of those preference
is left in S then it would be possible to derive A#B. So both A#B and B#A have to
be removed. On the other hand, from the inspection of the reasoning rules, there is no
other way to derive A#B. So these two preferences are the only ones which have to be
removed. Hence any contraction satisfying (2) will remove these 2 sentences, and any
contraction satisfying (3) will only remove these 2 sentences.

Now consider the case of A < B ∈ S. In order to contract by A < B, we need
to remove A < B itself from S. However A < B may still be derivable, namely
using the transitivity rules. The number of possible derivations of A < B using the
rule A < C,C < B ⇒ A < B is exactly |A< ∩ B>|. We need to ‘destroy’ each such
derivation, and in order to do this we need to remove at least one of the premises in each
derivation, namely either A < C or C < B. So any contraction satisfying (1) and (2)
needs to remove at least |A<∩B>|+1 preferences (1 is for A < B itself). Conversely,
if one of the preferences for each possible derivation is removed, then A < B is no
longer derivable, so the operation already satisfies (1) and (2). (Note that if A < C for
C ∈ A< ∩ B> is itself derivable, one premise in the derivation of A < C is A < D
where D < C since C < B,D < C, so D ∈ A<∩B>, so A < D will be removed and
henceA < C is not re-derivable.) Hence, in order to satisfy (3), the operation should not
remove anything else. Hence any minimal contraction removes exactly |A< ∩B>|+ 1
preferences.

In the case when A ≡ B ∈ S, any contraction operation needs to remove A ≡ B
and B ≡ A. However after this A ≡ B may still be derivable by transitivity, using
A ≡ C,C ≡ B ⇒ A ≡ B. The number of such derivations is the number of elements
in A≡ \ {B} (we are only considering uses of transitivity rule where C is different
from both A and B). If for some of those derivations, both premises are left in S,
then A ≡ B can be re-derived. So any contraction satisfying (1) and (2) needs to
remove at least one of the premises, either A ≡ C or C ≡ B. Note that in order to
properly remove A ≡ C, we also need to remove C ≡ A, otherwise A ≡ C will
be rederivable by symmetry. This means that any contraction needs to remove at least
2 ∗ |A≡| preferences: A ≡ B,B ≡ A, and 2 ∗ (|A≡ \ {B}|). To show that this number
of removed preferences is sufficient, and hence that no minimal contraction needs to
remove more, we exhibit a concrete contraction which satisfies (1) and (2) and removes
only 2 ∗ |A≡| preferences. Namely, consider a contraction which removes A from its
equivalence class in S: it removes all A ≡ C, C ≡ A for C ∈ A≡. In the resulting set,
A is not connected by ≡ to any other alternative, hence A ≡ B is not derivable.
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The other direction: if an operation satisfies the postulates, it is a minimal contrac-
tion. Clearly, since the operation satisfies C-Closure, C-Inclusion and C-Success, it sat-
isfies conditions (1)-(2) of Definition 1. To show that it satisfies (3), we need to prove
that there is no set of strictly larger cardinality than S−p which still satisfies (1)-(2), in
other words that every successful contraction has to remove at least as many preferences
as is stated in C-Minimality postulates. The argument is exactly as above. �

3.3 Minimal Contraction Algorithm

We give an algorithm for the case when p is derivable from S, and 	� p.
The algorithm for computing S − p is given by cases (see Algorithm 1).

Algorithm 1. Minimal preference contraction algorithm
procedure MINIMAL-CONTRACTION(S,p)

case p �∈ S
return

case p == A < B
A< := {C | A < C}
B> := {C | C < B}
for each C ∈ A< ∩ B> do

S := S \ {A < C}
end for
S := S \ {A < B}

case p == A ≡ B
A≡ := {C | A ≡ C,C �= A}
for each C ∈ A≡ do

S := S \ {A ≡ C,C ≡ A}
end for

case p == A#B
S := S \ {A#B,B#A}

Theorem 2. The minimal preference contraction algorithm computes a minimal pref-
erence contraction.

Proof. We show that the result of applying the algorithm to a preference set S and
p ∈ S, p not of the form A ≡ A, always satisfies the conditions in Definition 1.
Condition (1) holds because the algorithm only removes sentences from S. Condition
(2) holds because the algorithm removes a premise from every possible derivation of
p. Condition (3) holds because the algorithm result satisfies the minimal contraction
postulates hence it is a minimal contraction by Theorem 1. �

Theorem 3. The time complexity of the algorithm for minimal contraction is in O(|A|).
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Proof. We assume that we can order the alternatives in some order (e.g., lexicographic
order) and for each relation (<,≡,#) we can recover the ordered set of alternatives to
which an alternative A is related in constant time (e.g., a hash table for each
relation/position mapping from alternatives to sets (lists) of alternatives).

Then we can determine in constant time whether p 	∈ S (recall that S is deductively
closed).

For the A < B case, the maximum size of A< and B> is bounded by |A|, since
A and B can be related to at most |A| − 1 alternatives by <. Computing the set of
alternatives C ∈ A< ∩ B> is also linear in |A| (to be precise it requires at most
2|A|) and the number of such alternatives C is again bounded by |A|. Removing the
preferences A < C for C ∈ A< ∩ B> requires at most |A| operations (if the set of
preferences is implemented as, e.g., a linked list) and replacing the new set in the map is
constant time. For the A ≡ B case, replacing the entry for A in the≡ map is a constant
time operation. For the A#B case, we need to remove a single entry from the set of
preferences for A in the # map. This requires at most |A| steps. �

4 Minimal Set Contraction

In this section we turn to the problem of contracting by a set of preferences, which is
similar to the problem of iterated belief revision [3–5]. As in the case of single pref-
erences, we concentrate on the contraction rather than revision by a set of preferences,
since ‘minimal change’ has a more intuitive and straightforward interpretation in the
case of contraction.

We define a minimal contraction of a preference set S by a set of preference sen-
tences X as follows:

Definition 2. (Minimal contraction by a set) An operation − is a minimal contraction
of S by a set X if it satisfies the following properties:

1. S −X ⊆ S
2. if p ∈ X and 	� p, then S −X 	� p
3. for every other set S′ which satisfies properties (1)-(2) above, |S′| ≤ |S −X |.

A minimal revision of a preference set S by a set of preferences S′ can be defined
analogously to Hansson’s consolidation [10]: first compute Cn(S∪S′), then minimally
contract by contradictions. Note that contractingS′ by all sentencesX inconsistent with
S may not be enough to make⊥ underivable from S ∪ (S′ \X).

A natural question to ask is whether a minimal contraction of S by p1 followed by
a minimal contraction of S − p1 by p2 is a minimal contraction of S by {p1, p2}. The
answer is negative. Consider the following example:

– S = {A < B,A < C,C < B} ∪ {A ≡ A : A ∈ A}
– p1 = A < B
– p2 = C < B

A minimal contraction of S by A < B computed by Algorithm 1 is S − A < B =
{C < B} ∪ {A ≡ A : A ∈ A}. It removes two preferences, A < B itself and A < C.
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A minimal contraction of this set by C < B removes C < B. The set (S − p1)− p2 is
{A ≡ A : A ∈ A} which is the result of removing three preferences from S. However,
it is possible to make A < B and C < B underivable from S by removing just two
preferences: A < B and C < B. Recall that Algorithm 1 makes a particular choice in
contraction by A < B: it removes sentences of the form A < C where C ∈ A< ∩B>.
It could have just as well removed sentences of the form C < B; for a single step
contraction is does not matter which choice is made, since the number of removed
sentences would be the same in each case. However for the iterated case, we need
to look ahead to decide which choice to make. The problem of computing a minimal
contraction by a set is, of course, decidable, but may require considering exponentially
many (in |X |) choices. The problem only arises when several preferences in X share
alternatives, as A < B and C < B above.

We can however characterise minimal set contraction in an important special case,
when X has a specific form (which we call uncoupled) defined below. This special case
covers, for example, contraction by a set of (some other) agent’s preferences when that
agent has a linearly ordered preference set. Given a set X , we will denote by X(<) all
elements of X which are of the form A < B, by X(≡) all elements of X which are of
the form A ≡ B (we assume X does not contain tautologies A ≡ A), and by X(#)
all elements of X of the form A#B. The set X can therefore be represented as a set of
disjoint sets X1, . . . , Xk.

Definition 3. (Uncoupled set of preferences)

– the subset X(<) of X is partitioned into subsets X(A,<) of the form

{A < A1, A1 < A2, A < A2, . . . , A < An}

(where all Ai are linearly ordered between A and An) and X(B,>) of the form

{B1 < B,B1 < B2, B2 < B, . . . , Bn < B}

(where all Bi are linearly ordered between B1 and B) and no alternative occurs in
two different partitions of X(<)

– the subset X(≡) of X is partitioned into subsets X(A,≡) of the form

{A ≡ A1, A1 ≡ A2, . . . , An−1 ≡ An}

(or an equivalent way of stating that A,A1, . . . , An form an equivalence class) and
no alternative occurs in two different partitions of X(≡)

– X(#) is partitioned into two parts, X(#)1 which containsA#B such thatB#A 	∈
X , and X(#)2 which contains A#B,B#A such that A#B,B#A ∈ X .

Note that the last condition is not a restriction on X , just a notational convenience for
the postulates below.

4.1 Minimal Set Contraction Postulates

It is possible to provide a representation theorem and an efficient algorithm for the
case of contraction of S by an uncoupled set of preferences X . Essentially, minimal
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contraction by an uncoupled set X can be reduced to to an unordered set of minimal
contractions by single sentences, where those single sentences correspond to partitions
of X .

The following postulates characterise a minimal contraction of S by an uncoupled
X ⊆ S.

CX-Closure S −X = Cn(S −X)
CX-Inclusion S −X ⊆ S
CX-Vacuity If X ∩ S = ∅, S −X = S
CX-Success If p ∈ X is not of the form A ≡ A, then p 	∈ S −X
CX-Minimality If X ⊆ S, and X is uncoupled, then |S−X | = |S|−Σics(Xi) where

the costs of contracting by each Xi are defined as follows:
– cS(X(A,<)) = cS(A < An)
– cS(X(B,>)) = cS(B1 < B)
– cS(X(A,≡)) = (|A≡

X | + 1) ∗ |A≡
S |, where by A≡

X we denote the set of alter-
natives occurring in X(A,≡)

– cS(X(#)) = 2 ∗ |X(#)1|+ |X(#)2|)

Theorem 4. The result of any minimal set contraction by an uncoupled set of prefer-
ences satisfies the minimal set contraction postulates above, and every contraction by
an uncoupled set satisfying these postulates is a minimal set contraction.

Proof. Let us prove that every minimal set contraction satisfies the postulates. The proof
for CX-Closure, CX-Inclusion, CX-Vacuity, CX-Success is very similar to Theorem 1.
For CX-Minimality, observe that since the partitions Xi do not share alternatives, the
sets of sentences which have to be removed to contract by each Xi are disjoint. Note
that

– for each X(A,<), it is sufficient and necessary to remove {A < C : C ∈ A< ∩
A>

n } to make all sentences in X(A,<) underivable
– for each X(B,>), it is sufficient necessary to remove {B < C : C ∈ B<

1 ∩ B>}
to make all sentences in X(B,>) underivable

– for each X(A,≡), it is sufficient and necessary to remove connections between
alternatives occurring in X(A,≡) and other members of the equivalence class of A
in S, so assuming that |A≡| = m and X(A,≡) contains occurrences of alternatives
A,A1, . . . , An, then we need to remove (n+1) ∗m sentences (2 ∗m for removing
sentences connecting A to the equivalence set, 2 ∗ (m− 1) for removing sentences
connecting A1, . . . , 2 ∗ (m− n) for removing sentences connecting An).

– for the whole of X(#), we need to remove 2 ∗ |X(#)1| and |X(#)2|.

For the other direction, assume an operation satisfies the postulates for minimal set
contraction. Then it clearly satisfies (1) and (2) of Definition 2. It also satisfies (3),
since any other contraction by X has to remove at least as many preferences. �

A postulate corresponding to C-Equivalence: if Cn(X1) = Cn(X2), then S−X1 =
S −X2 does not hold. For example, let X1 = {A < B,B < C,A < C} X2 = {A <
B,B < C}, and S = {A < C,A ≡ A,B ≡ B,C ≡ C}. Clearly Cn(X1) = Cn(X2).
However, S −X1 = S \ {A < C} and S −X2 = S.
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4.2 Minimal Set Contraction Algorithm

We can also give a concrete polynomial time algorithm for contraction by an uncoupled
set of preferences.

Algorithm 2. Minimal preference set contraction algorithm
procedure MINIMAL-SET-CONTRACTION(S,X)

for each Xi ⊆ X do
case Xi == X(A,<)

A< := {C | A < C}
A>

n := {C | C < An}
for each C ∈ A< ∩ A>

n do
S := S \ {A < C}

end for
S := S \ {A < An}

case Xi == X(B,>)
B<

1 := {C | B1 < C}
B> := {C | C < B}
for each C ∈ B<

1 ∩ B> do
S := S \ {C < B}

end for
S := S \ {B1 < B}

case Xi == X(A,≡)
A≡ := {C | A ≡ C}
AX,≡ := {D | D occurs inX(A,≡)}
for each D ∈ AX,≡ ∪ {A} do

for each C ∈ A≡ \ {D} do
S := S \ {D ≡ C,C ≡ D}

end for
end for

case Xi == X(#)
for each A#B ∈ X(#) do

S := S \ {A#B,B#A}
end for

end for

The algorithm contracts by each Xi ⊆ X in turn; since Xi are disjoint, in the worst
case there are |X | members of the partition. Each contraction by Xi is linear in |A|, by
an argument similar to the proof of Theorem 3. This means that the time complexity of
Algorithm 2 is O(|X | × |A|).

5 Related Work

In this section we compare our results to those works which are most closely related to
our own, focusing on the main ideas rather than providing a full-fledged comparison,
and highlighting some future research directions.
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[9] describes four types of preference change: contraction and revision of preference
relations, and addition and subtraction of alternatives. We do not consider changes in
alternatives in our framework, thus we compare with the first two kinds. Hansson de-
fines contraction in terms of revision with the intuition that “to contract your state of
preference by α means to open it up for the possibility that ¬α” and gives postulates
for this operation. To define a minimal preference revision operator, Hansson intro-
duces a measure of similarity between preference relations. This involves a calculation
of the symmetric difference between two sets X and Y (XΔY ), which is equal to
(X\Y ) ∪ (Y \X). The result of the preference change is a preference relation that has
as small a distance from the original relation as possible. This idea inspired our notion
of minimal contraction. Since Hansson considers a full logical language with negations,
disjunctions etc. of preferences, the complexity of his operations is clearly much higher
than ours. [7] discuss logical constraints on preference — formal requirements that a
preference state has to satisfy. These are called reasoning rules in our framework. A fur-
ther distinction between logical constraints, input constraints that come with a specific
input, and priorities has been made in the same discussion, and various ways of formal-
izing those aspects in logical models are proposed. In our work, we consider reasoning
involving merely logical constraints. It would be interesting to study how to modify our
algorithms to incorporate other kinds of constraints.

There exists considerable work on iterated belief revision, see for example [3–5,
11]. We consider set contraction in this paper. However our focus is a special case
of contraction by an uncoupled set of preferences. [2] point out potential connections
between this area and preference aggregation as they study revision of a total preorder in
the context of iterated belief revision. We would like to extend our result to preference
aggregation in the future.

6 Conclusion

In this paper, we introduce a simple setting of preference change where it is possible to
define minimal preference contraction (revision). We propose rationality postulates and
an efficient algorithm for that setting. Then we study contraction by a set of preferences
and provide a characterisation and an efficient algorithm for the case where the set of
preferences is uncoupled. Finally, we compare our work with some related work and
highlight some directions for future research.
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Abstract. We present a new topological semantics for doxastic logic,
in which the belief modality is interpreted as the closure of the inte-
rior operator. We show that this semantics is the most general (exten-
sional) semantics validating Stalnaker’s epistemic-doxastic axioms [22]
for “strong belief”, understood as subjective certainty. We prove two
completeness results, and we also give a topological semantics for up-
date (dynamic conditioning), i.e. the operation of revising with “hard
information” (modeled by restricting the topology to a subspace). Using
this, we show that our setting fits well with the defeasibility analysis
of knowledge [18]: topological knowledge coincides with undefeated true
belief. Finally, we compare our semantics to the older topological inter-
pretation of belief in terms of Cantor derivative [23].

1 Introduction

Ever since Edmund Gettier published his famous counterexamples [14], formal
epistemologists have been concerned with understanding the relation between
belief and knowledge, and in particular with finding the conditions that dis-
tinguish an item of belief (no matter how true and justified) from an item of
knowledge. This question can be approached from two sides: 1) we start with the
weakest notion of true justified (or justifiable) belief and add conditions in order
to argue that they establish a “good” (e.g. factive, correctly-justified, unrevis-
able, coherent, stable, truth-sensitive) notion of knowledge; or 2) we start from
a chosen notion of knowledge and weaken it to obtain a “good” (e.g. consistent,
introspective, possibly false) notion of belief. Most research in formal epistemol-
ogy follows the first approach. In particular, the standard topological semantics
for knowledge (in terms of the interior operator) can be included within this
first approach, as based on a notion of knowledge as “correctly justified belief”:
according to the interior semantics, a proposition (set of possible worlds) P is
known if there exists some “true evidence” (i.e. an open set A containing the real
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world s) that entails P (i.e. A ⊆ P ). Another example of the first approach is
the so-called defeasibility analysis of knowledge proposed by Lehrer and Paxson
[18], Klein [16] and other authors: knowledge is defined as undefeated (justified)
true belief ; i.e. true belief that cannot be defeated by any new (true) evidence.

While most research in formal epistemology follows the first approach, the
second approach has to date received much less attention from formal logicians.
This is rather surprising, since such a “knowledge-first” approach has been per-
suasively defended by one of the most influential contemporary epistemologists
(Williamson [26]). The only formal account following this second approach that
we are aware of (prior to our own work) is the one given by Stalnaker [22], using
a relational semantics for knowledge, based on Kripke models in which the ac-
cessibility relation is a directed preorder. In this setting, Stalnaker argues that
the “true” logic of knowledge is the modal logic S4.2 and that belief can be
defined as the epistemic possibility of knowledge. In other words, believing p is
equivalent to “not knowing that you don’t know” p:

Bp = ¬K¬Kp.

Stalnaker justifies this identity from first principles based on a particular notion
of belief, namely belief as “subjective certainty”. Stalnaker refers to this concept
as “strong belief”, but we prefer to call it full belief 1. What is important about
this type of belief is that it is subjectively indistinguishable from knowledge: an
agent “fully believes” p iff in fact she “believes that she knows” p.

The resulting conception of knowledge is clearly different from Williamson’s
(who rejects the KK principle2), but it is closely related to the above-mentioned
defeasibility analysis [17]. Indeed, Stalnaker proceeds to formalize AGM belief
revision, based on a special case of the above semantics, in which the accessi-
bility relation is assumed to be a weakly connected preorder, and (conditional)
beliefs are defined by minimization. This validates the AGM principles for belief
revision. Stalnaker shows that in this special case his notion of knowledge coin-
cides with (a simplified and idealized version of) Lehrer’s concept of undefeated
(justified) true belief : i.e. true belief that cannot be defeated by (revising with)
any new (true) evidence. However, this special case supports a stronger logic of
knowledge (the system S4.3). Since Stalnaker defends the weaker S4.2 as the
“true” logic of knowledge, he is lead to argue against the defeasibility theory.

1 We adopt this terminology both because we want to avoid the clash with the very
different notion of strong belief (due to Battigalli and Siniscalchi [2]) that is standard
in epistemic game theory, and because we think that the intuitions behind Stalnaker’s
notion are very similar to the ones behind Van Fraassen’s probabilistic concept of
full belief [13].

2 In formal epistemology, the “KK principle” is one of the names given to the axiom
of Positive Introspection Kϕ→ KKϕ, also known as the modal axiom 4. The well-
known modal system S4 consists of this Positive Introspection axiom 4 together
with the axiom T of Factivity, or Truthfulness (Kϕ→ ϕ), as well as Kripke’s axiom
K (K(ϕ → ψ) → (Kϕ → Kψ)) and the rules of Modus Ponens and Necessitation.
Stalnaker’s system S4.2 includes the system S4, and hence contains the KK principle,
contradicting Williamson’s conception.
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In this paper, we aim to generalize Stalnaker’s formalization, making it inde-
pendent from the concept of plausibility order and from relational semantics. In
fact, we are looking for the most general extensional semantics for “full belief”
(in the above-mentioned sense). By an “extensional” semantics we mean here
any semantics that assigns the same meaning to sentences having the same ex-
tension. Essentially, an extensional semantics takes the meaning of a sentence to
be given by a “U.C.L.A. proposition” in the sense of Anderson-Belnap-Dunn3:
a set of possible worlds (intuitively thought of as the set of worlds at which
the proposition is true). We prove that the most general extensional semantics
validating Stalnaker’s axioms is a topological one, that extends the standard
topological interpretation of knowledge (as interior operator) with a new topo-
logical semantics for belief, given by the closure of the interior operator (with
respect to an extremally disconnected topology). We compare our new semantics
with the older topological interpretation of belief in terms of Cantor derivative,
giving several arguments in favor of our semantics.

We prove that the logic of knowledge and belief with respect to our semantics
is completely axiomatized by Stalnaker’s epistemic-doxastic principles. Further-
more, we show that the complete logic of knowledge in this setting is indeed the
system S4.2, while the complete logic of belief is the standard system KD45. We
formalize the action of learning (conditioning with) new “hard” (true) informa-
tion P as a topological update operator, using the relativization of the original
topology to (the subspace corresponding to) the set P . This allows us to model
belief revision of a more general type than the one axiomatized by the AGM
theory. We show that, in this generalized setting, Stalnaker’s objections to the
defeasibility theory of knowledge do not apply : when interpreted (as interior) over
topological spaces, Stalnaker’s notion of knowledge (having S4.2 as its complete
logic) coincides with undefeated (justified) true belief.

2 Background: Topological Interpretation of Knowledge

2.1 Topological Preliminaries

For the basic definitions of general topology we refer to [11] or any other textbook
in General Topology. Here we just recall that a topological space is a pair (X, τ),
where X is a non-empty set and τ is a topology on X , i.e. a family τ ⊆ P(X)
containing X and ∅ and closed under finite intersections and arbitrary unions.
Elements of τ are called open sets. Complements of open sets are called closed
sets. An open set containing x ∈ X is called an open neighbourhood of x. The
interior Int(A) of a set A ⊆ X is the largest open set contained in A. The
closure Cl(A) of A is the least closed set containing A. It is easy to check that
Int(A) = X \ Cl(X \A).
3 Dunn [10] explains this name as follows: ‘The name honors the university that has
had both R. Carnap and R. Montague in its faculty, since in modern times they
(together with others, e.g. S. Kripke and R. Stalnaker) have been proponents of this
construction. But the idea actually originates with Boole, who suggested thinking
of propositions as “sets of cases” (...).’
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An alternative definition of topological spaces (due to Kuratowski) takes the
closure operation (or equivalently, the interior) as the basic notion. Stated in
terms of interior, a topological space is a pair (X, Int), where X is a non-empty
set and Int : P(X) → P(X) is an operation satisfying the (dual of the) so-
called Kuratowski axioms : Int(X) = X , Int(A) ⊆ A, Int(Int(A)) = Int(A),
Int(A ∩B) = Int(A) ∩ Int(B). In this setting, the family of open sets is defined
by putting τ = {A ⊆ X : Int(A) = A}. It is easy to see that this is a topology.
Indeed, the two definitions of topological spaces are equivalent.

2.2 The Interior Semantics for Modal Logic

We start by recalling the standard topological semantics of modal (epistemic)
logic, originating in the work of Tarski and McKinsey [19]. We consider the
standard unimodal language LK with a countable set of propositional letters
Prop, and a modal operator K. Formulas are defined as usual by

ϕ ::= ⊥ | p | ¬ϕ | ϕ ∧ ϕ | Kϕ,

where p ∈ Prop. Abbreviations for the connectives ∨, → and ↔ are standard.
The possibility operator 〈K〉ϕ is defined as 〈K〉ϕ := ¬K¬ϕ.

Definition 1. A topological model M = (X, τ, ν) is a tuple where (X, τ) is
a topological space and ν is a valuation, i.e., a map ν : Prop → P(X). We let
Cl and Int denote the closure and interior operators, respectively. The topo-
logical semantics for modal formulas is defined by the following inductive
definition, where M = (X, τ, ν) is a topological model and p ∈ Prop:

[[⊥]]M = ∅, [[p]]M = ν(p)
[[ϕ ∧ ψ]]M = [[ϕ]]M ∩ [[ψ]]M [[¬ϕ]]M = X \ [[ϕ]]M
[[Kϕ]]M = Int[[ϕ]]M

As 〈K〉ϕ is equivalent to ¬K¬ϕ, it is easy to see that [[〈K〉ϕ]]M = Cl[[ϕ]]M.
We skip the index M if it is clear from the context. Truth, validity, soundness
and completeness wrt topological semantics are defined as usual.

Proposition 1. (see e.g. [3], [20] and [7]) The modal logic S4 is sound and
complete wrt all topological spaces.

2.3 Epistemic Interpretation: Open Sets as Pieces of Evidence

The original reason for interpreting interior as knowledge was that the Kura-
towski axioms match exactly the S4 axioms, and in particular the principles

(T ) Kp→ p

of Truthfulness of Knowledge (“factivity”) and

(KK) Kp→ KKp

of Positive Introspection of Knowledge (known as axiom 4 in modal logic).
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Philosophically, one of the best arguments in favor of the topological semantics
is negative: namely, the fact that it does not validate the principle

¬Kp→ K¬Kp

This principle, known as (5) or Negative Introspection, is rejected by essentially
all philosophers. One of its undesirable consequences is that it makes it impos-
sible for a rational agent to have wrong beliefs about her knowledge: she always
knows whatever she believes that she knows. This is known in the literature as
Voorbraak’s paradox [25]: it contradicts the day-to-day experience of encounter-
ing agents who believe they know things that they do not actually know4.

But, even beyond the issue of negative introspection, the topological seman-
tics can arguably give us a deeper insight into the nature of knowledge and its
evidential basis than the usual Kripke semantics. From an extensional point of
view, the properties U that are directly observable by an agent naturally form an
open basis for a topology: closure under finite intersections captures an agent’s
ability to combine finitely many pieces of evidence into a single piece5. A propo-
sition P is true at world w if w ∈ P . If an open U is included in a set P , then
we can say that proposition P is entailed (supported, justified) by evidence U .
Open neighbourhoods U of the actual world w play the role of sound (correct,
truthful) evidence. The actual world w is in the interior of P iff there exists such
a sound piece of evidence U that supports P . So the agent “knows” P if she
has a correct justification for P (based on a sound piece of evidence supporting
P ). Moreover, open sets will then correspond to properties that are in princi-
ple verifiable by the agent: whenever they are true they can be known. Dually,
closed sets will correspond to falsifiable properties. See Vickers [24] and Kelly
[15] for more on this interpretation and its connections to Epistemology, Logic
and Learning Theory.

So the knowledge-as-interior conception can be seen as an implementation of
one of the most widespread intuitive responses to Gettier’s challenge: knowledge
is “correctly justified belief” (rather than being simply true justified belief). To
qualify as knowledge, not only the content of one’s belief has to be truthful, but
its evidential justification has to be sound.

2.4 Extensions and Improvements

The interior-based semantics for knowledge has been extended to multiple agents
[4], to common knowledge [1,6], to logics of learning (“topo-logic”, see [20]), to
topological versions of dynamic-epistemic logic [27]. See [3] for a comprehensive
survey of the field.

4 This common experience can be considered the starting point of all epistemological
reflection, and historically played such a role, see e.g. in Platonic dialogues.

5 But see van Benthem and Pacuit [5] for a more general logical account of evidence-
management which relaxes this assumption: by using instead a neighbourhood se-
mantics, this account can deal with agents who have not yet managed to combine
all their pieces of evidence.
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But there are two other topologically-based logics that are of particular inter-
est in this paper. The first is an alternative semantics for modal logic, in terms
of Cantor’s derivative operation, which has been proposed as a semantics for
belief. We will give a critical presentation of this alternative in Section 6. The
second is a logic that strengthens S4, namely:

S4.2 = S4 + (〈K〉Kp→ K〈K〉p).
By L+ ϕ we denote the smallest normal modal logic containing L and ϕ.

Recall that a topological space (X, τ) is called extremally disconnected if the
closure of every open subset of X is open.

Proposition 2. [3, p. 253] S4.2 is sound and complete wrt all extremally dis-
connected topological spaces.

We also recall that a topological space (X, τ) is called an Alexandroff space
if the intersection of open sets of X is open. It is well known that Alexandroff
spaces correspond to reflexive and transitive Kripke frames, see e.g., [3], [20] or
[7]. Moreover, the evaluation of modal formulas in an Alexandroff space coincides
with their evaluation in the corresponding Kripke frame.

A Kripke frame (X,R) is called directed6 if

(∀x, y, z)(xRy ∧ xRz)→ (∃u)(yRu ∧ zRu).

It is well known, see e.g., [8] or [9] that S4.2 is sound and complete wrt reflexive,
transitive and directed Kripke frames.

We give a few examples of extremally disconnected spaces. Alexandroff spaces
corresponding to reflexive, transitive and directed Kripke frames are extremally
disconnected. Another classical example of an extremally disconnected space
is the Stone-Čech compactification β(N) of the set of natural numbers with a
discrete topology. Also it is well known that topological spaces that are Stone-
dual to complete Boolean algebras are extremally disconnected [21].

3 The Topology of Full Belief

3.1 Stalnaker’s Epistemic-Doxastic Axioms

In his paper [22], Stalnaker proposes a very interesting analysis of the relation-
ship between knowledge and (justified or justifiable) belief. This is based on a
conception of belief as “subjective certainty”: from the point of the agent in
question, her belief is subjectively indistinguishable from her knowledge. In this
paper, we will refer to Stalnaker’s notion as “full belief”.

The bimodal language LKB of knowledge and (full) belief is given recursively:

ϕ ::= ⊥ | p | ¬ϕ | ϕ ∧ ϕ | Kϕ | Bϕ,

where p ∈ Prop. We will also consider two unimodal fragments of this language
LK (having K as its only modality) and LB (having only B).

6 Directedness is also called confluence or the Church-Rosser property.
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Stalnaker’s epistemic-doxastic axioms for the logic KB are given in the Table
below.

Stalnaker’s Epistemic-Doxastic Axioms

(K) K(ϕ→ ψ)→ (Kϕ→ Kψ) Knowledge is additive
(T) Kϕ→ ϕ Knowledge implies truth
(KK) Kϕ→ KKϕ Positive introspection for K
(CB) Bϕ→ ¬B¬ϕ Consistency of belief
(PI) Bϕ→ KBϕ (Strong) positive introspection of B
(NI) ¬Bϕ→ K¬Bϕ (Strong) negative introspection of B
(KB) Kϕ→ Bϕ Knowledge implies Belief
(FB) Bϕ→ BKϕ Full Belief

Inference Rules

(MP) From ϕ and ϕ→ ψ infer ψ. Modus Ponens
(K-Nec) From ϕ infer Kϕ. Necessitation

We will refer to this axiomatic system as KB. The axioms seem very natu-
ral and uncontroversial: the first three are the S4 axioms for knowledge; (CB)
captures the consistency of beliefs, and in the context of the other axioms will
be equivalent to the modal axiom (D) for beliefs: ¬B⊥; (PI) and (NI) capture
strong versions of introspection of beliefs: the agent knows what she believes and
what not; (KB) means that agents believe what they know; and finally, (FB)
captures the essence of “full belief” as subjective certainty (the agent believes
that she knows all the things that she believes). Finally, the rules of Modus Po-
nens and Necessitation seem uncontroversial (for implicit knowledge, if not for
explicit knowledge) and are accepted by a majority of authors (and in particular,
they are implicitly used by Stalnaker).

The above axioms imply that belief can be defined in terms of knowledge:

Proposition 3. (Stalnaker) The equivalence

Bϕ↔ ¬K¬Kϕ

is provable in the system KB. Moreover, all the axioms of the standard system
KD45 for belief are provable in the system KB, and in particular: Kripke’s
axiom for belief (B(ϕ → ψ) → (Bϕ → Bψ)); the so-called axiom (D) (¬B⊥);
axiom 4 (positive introspection) for belief (Bϕ → BBϕ); the axiom 5 (negative
introspection) for belief (¬Bϕ→ B¬Bϕ).

Finally, the formula 〈K〉Kϕ → K〈K〉ϕ is also provable in KB: i.e. all the
axioms of the system S4.2 hold for knowledge in the system KB.

3.2 Our Topological Semantics for Full Belief

Definition 2. An extensional (and compositional) semantics for the lan-
guage LKB of knowledge and full belief is a triplet (X,B,K), where X is a set
of possible worlds, and B : P(X) → P(X) and K : P(X) → P(X) are unary
operations on (sub)sets of worlds.
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Any extensional semantics (X,B,K), together with a valuation ν : Prop →
P(X), gives us an extensional model M = (X,B,K, ν), in which we can
interpret the formulas ϕ of LKB in the obvious way: the clauses for propositional
connectives are the same as in the topological semantics above, and in rest we
put

[[Kϕ]]M = K[[ϕ]]M [[Bϕ]]M = B[[ϕ]]M.

As usual, a formula is valid in an extensional semantics (X,B,K) if it is true
at all worlds of all models M = (X,B,K, ν) based on it. An inference rule is
valid if it preserves validity of formulas.

A special case of extensional semantics for the language LKB is our proposed
topological semantics :

Definition 3. A topological semantics for the language LKB is an exten-
sional semantics (X,Kτ , Bτ ), where (X, τ) is a topological space, Kτ = Intτ is
the interior operator with respect to the topology τ , and Bτ = Clτ (Intτ ) is the
closure of the interior with respect to τ .

Proposition 4. A topological space validates all the axioms and rules of the
system KD45 for belief (with the semantics given above) iff it is extremally
disconnected.

The proof of this result is rather long and intricate, and is left for a future
journal publication.

Proposition 5. A topological space validates all the axioms and rules of Stal-
naker’s system KB (with the semantics given above) iff it is extremally discon-
nected.

Proof. It is easy to check that extremally disconnected spaces validate all the
the axioms of KB. The other direction follows from Propositions 3 and 4.

Now we can give a Topological Representation Theorem for extensional models
of KB:

Theorem 1. An extensional semantics (X,B,K) validates all the axioms and
rules of Stalnaker’s system KB iff it is a topological semantics given by an
extremally disconnected topology τ on X (such that K = Kτ = Intτ and B =
Bτ = Clτ (Intτ )).

Proof. One direction is proved in the previous Proposition, so let us look at the
other direction. Suppose an extensional semantics (X,B,K) validates the axioms
and rules of KB. Then the validity of the S4 axioms implies that K satisfies the
Kuratowski conditions for topological interior, and so it gives rise to a topology
τ in which K = Intτ . By the Proposition in the previous section, the KB axioms
imply that B = ¬K¬K, i.e. B = ¬Intτ¬Intτ = Clτ Intτ . Hence, (X,B,K) is
a topological semantics, in the sense above, for a topology τ . By the previous
Proposition, the validity of KB implies that τ is extremally disconnected.
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This last result shows that Stalnaker’s axioms are just an alternative axioma-
tization of extremally disconnected topological spaces, in which both interior and
the closure of interior are taken as primitive operations. The conclusion is that
our topological semantics is indeed the most general (extensional compositional)
semantics validating Stalnaker’s axioms.

3.3 Completeness Results

Let us first look at the bimodal logic KB of knowledge and (full) belief.

Theorem 2. The (sound and) complete logic of knowledge and belief on ex-
tremally disconnected spaces is given by Stalnaker’s system KB.

Proof. This follows trivially from our Topological Representation Theorem for
extensional models of KB (Theorem 1 in Section 3.2).

Next, we look at the unimodal fragment LK having K as the only modality.
In fact, this language has exactly the same expressivity as KB (since the belief
operator can be eliminated via the identity Bϕ = ¬K¬Kϕ). Moreover, we al-
ready know (by Proposition 2 in section 2.3) that the sound and complete logic
of knowledge on extremally disconnected spaces is S4.2.

Further, we look at the unimodal fragment LK having B as the only modality:
this logic is less expressive than the bimodal language KB, since knowledge is
not reducible to belief.

Theorem 3. The complete logic of belief on extremally disconnected spaces is
KD45.

This result, though unsurprising, is technically the hardest result in this paper.
The proof is long and intricate, and is left for a future journal publication.

4 From Updates to Defeasible Knowledge

Conditioning (with respect to some qualitative plausibility order or to a proba-
bility measure) is the most widespread way to model the learning of “hard” in-
formation7. The prior plausibility/probability assignment (encoding the agent’s
original beliefs before the learning) is changed to a new such assignment, ob-
tained from the first one by conditioning with the new information P . In the
qualitative case, this means just restricting the original order to P -worlds; while
in the probabilistic case, restriction has to be followed by re-normalization (to
ensure that the probabilities newly assigned to the remaining worlds add up
to 1). In Dynamic Epistemic Logic, one makes also a distinction between sim-
ple (“static”) conditioning and dynamic conditioning (also known as “update”).

7 This term is used to denote information that comes with an inherent warranty of
veracity, e.g. because of originating from an infallibly truthful source.
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The first essentially corresponds to conditional beliefs: the change is made only
locally, affecting only one occurrence of the belief operator Bϕ (which is thus
locally replaced by conditional belief BPϕ) or of the probability measure (which
is locally replaced by conditional probability). In contrast, an update is a global
change, at the level of the whole model (thus recursively affecting the meaning
of all occurrences of doxastic operators). In this paper, due to space restrictions,
we only investigate the natural topological analogue of dynamic conditioning.

Topological Updates. As recognized already in [27] (among others), the nat-
ural topological analogue of dynamic conditioning (update) is the operation of
taking the restriction (or “relativization”) of a topology τ on X to a subset
P ⊆ X . What we obtain in this way is a subspace of the original topological
space. Given a topological space (X, τ) and a set P ⊆ X , a space (P, τP ) is
called a subspace of (X, τ) if τP = {U ∩ P : U ∈ τ}. It is well-known that the
closure and interior operators in the relativized topology (P, τP ), denoted by
ClτP and IntτP respectively, satisfy the following equations for every A ⊆ P :

ClτP (A) = Cl(A) ∩ P, IntτP (A) = Int((X \ P ) ∪ A) ∩ P.

Update Modalities. The dynamic language LKB! is obtained by extending
LKB with (existential) dynamic update modalities 〈!ϕ〉ψ, meaning that: ϕ is
true and after the agent learns this, ψ becomes true. The corresponding universal
modality is defined by putting [!ϕ]ψ := ¬〈!ϕ〉¬ψ.

Definition 4. (Semantics of Updates) Let M = (X, τ, ν) be a topological
model. Given a formula ϕ we will denote by Mϕ the relativized model

Mϕ = ([[ϕ]], τ[[ϕ]], ν[[ϕ]]),

where [[ϕ]] = [[ϕ]]M is the interpretation of ϕ inM, τ[[ϕ]] is the relativized topology
and νP (p) = ν(p) ∩P , for each p ∈ Prop. The semantics of LKB! is obtained
by extending the semantics of LKB with the following clause:

[[〈!ϕ〉ψ]]M = [[ψ]]Mϕ .

Connection to the Defeasibility Theory of Knowledge. As promised in
the Introduction, we show now that in the generalized Belief Revision Theory
given by our topological semantics for conditional beliefs, topological knowledge
coincides with the one given by the defeasibility analysis :

Theorem 4. LetM = (X, τ, ν) be a topological model. The following are equiv-
alent, for all worlds x ∈ X and atomic sentences8 p:

1. x ∈ [[Kp]]M;
2. x ∈ [[[!θ]Bp]]M for every formula θ;
3. x ∈ [[Bp]]Mθ for every formula θ such that x ∈ [[θ]]M.

8 The restriction to atomic sentences in the other clauses is necessary because of the
so-called Moore sentences: these are epistemic formulas which change their truth
value after being learnt.
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Proof. The equivalence between (2) and (3) follows immediately from the seman-
tics of dynamic update modalities, so we only prove the equivalence between (1)
and (3). For this, let us first put A := [[p]]M, P := X \ Int(A), which gives us
X \P = Int(A). Then by the above equations we have IntτP (A) = Int((X \P )∪
A) ∩ P = Int(Int(A) ∪ A) ∩ P = Int(Int(A)) ∩ P = Int(A) ∩ (X \ Int(A)) = ∅.

To show (1)⇒ (3): assume that x ∈ [[Kp]]M, so x ∈ Int([[p]]M). Let θ be any
formula s.t. x ∈ [[θ]]M. Note that Int([[p]]M) ⊆ Int((X \ [[θ]]M) ∪ [[p]]M), since
[[p]]M ⊆ (X \ [[θ]]M)∪ [[p]]M. Then, since x ∈ [[θ]]M and [[p]]Mθ = [[p]]M∩ [[θ]]M, we
have x ∈ Int(X \ [[θ]]M ∪ [[p]]M)∩ [[θ]]M = Int((X \ [[θ]]M ∪ [[p]]M)∩X)∩ [[θ]]M =
Int((X \ [[θ]]M ∪ [[p]]M) ∩ (X \ [[θ]]M ∪ [[θ]]M)) ∩ [[θ]]M = Int(X \ [[θ]]M ∪ ([[p]]M ∩
[[θ]]M)) ∩ [[θ]]M = Intτ

[[θ]]M ([[p]]Mθ ) ⊆ Clτ
[[θ]]M (Intτ

[[θ]]M ([[p]]Mθ )) = [[Bp]]Mθ .

For (3) ⇒ (1): assume that (3) holds but (1) fails, i.e x 	∈ [[Kp]]M, and
hence x ∈ [[¬Kp]]M. By applying (3) to the formula θ := ¬Kp, we obtain
that x ∈ [[Bp]]Mθ . But since [[θ]]M = [[¬Kp]]M = X \ Int(A) = P , we have
x ∈ [[Bp]]Mθ = ClτP (IntτP(A)) = ClτP (∅) = ∅. Contradiction!

5 Comparison with Related Work

We compare now our topological interpretation of belief with a different (and
older) topological semantics that has been proposed for doxastic logic.

Cantor’s Derivative and Its Dual. Let (X, τ) be a topological space. We
recall that a point x is called a limit point (limit points are also called accumu-
lation points) of a set A ⊆ X if for each open neighbourhood U of x we have
(U \ {x}) ∩ A 	= ∅. Let d(A) denote the set of all limit points of A. This set is
called the derived set and d is called the derived set operator. For each A ⊆ X
we let t(A) = X \ d(X \ A). We call t the co-derived set operator. Also recall
that there is a close connection between the derived and co-derived set operators
and the closure and interior operators. In particular, for each A ⊆ X we have
Cl(A) = A ∪ d(A) and Int(A) = A ∩ t(A). Unlike the closure operator there
may exist elements of A that are not its limit points. In other words, in general
A 	⊆ d(A). Also note that for each x ∈ X we have x /∈ d(x), where d(x) is a
shorthand for d({x}).

Definition 5. Let M = (X, τ, ν) be a topological model. The co-derived set
semantics for LKB is obtained by extending the standard topological semantics
for LK (interpreting K as interior) with the following clause:

[[Bϕ]]M = t([[ϕ]]M)

This immediately gives us that [[〈B〉ϕ]]M = d([[ϕ]]M). We again skip the index
M if it is clear from the context. See [3], [20] and [7] for an overview of the results
on the co-derived set semantics. Here we only mention the completeness results
for the unimodal language LB with the co-derived set semantics: the complete
logic of belief over all topological spaces is wK4 = K + ((p ∧ Bp) → BBp)
[12], while the doxastic logic KD45 is complete wrt so-called DSO-spaces. Here,
a DSO-space is a topological space (X, τ) satisfying the following conditions:
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the TD-separation axiom9; for every A ⊆ X the set d(A) is open; and (X, τ) is
dense-in-itself, i.e., d(X) = X . See [23] for more details.

Criticism and Comparison with Our Conception. Steinsvold [23] was the
first to propose the co-derived set operator as a semantics for belief. However,
this interpretation has a major disadvantage: it entails (not just the possibility,
but) the necessity of error. To explain: all authors agree that one of the main
characteristics of belief is the possibility of error : it is possible that some of the
agent’s beliefs are false. In other words, any good semantics for belief should allow
for models and worlds at which some beliefs are false. However, we claim that,
according to the co-derived semantics the existence of false beliefs is a necessary
fact (holding for all possible agents at all possible worlds in all possible models!).

Indeed, as we pointed out above, for each x ∈ X we always have x /∈ d(x). So
x ∈ B(X\{x}). Thus, at a point x the agent believesX\{x}, which is false (since
x 	∈ X \ {x}). This means that in any topological model and any world in this
model, there is at least one false belief. Hence, the co-derived set interpretation
implies the “necessity of error”: the actual world is always dis-believed.

We think this consequence is an intuitively undesirable property. It generally
prevents any act of learning (updating with) the actual world. Indeed, the main
problem of Formal Learning Theory (learning the true world, or the correct
possibility, from a given set of possibilities) becomes automatically unattain-
able. Similarly, the physicist’s dream of finding a true “theory of everything”
is declared impossible by fiat, as a matter of logic. More importantly, even if
necessity of error might seem realistic within a Lewisian “large-world interpre-
tation” of possible-world semantics (in which each world must really come with
a full description of all the myriad of ontic facts of the world), this property
seems completely unrealistic when we adopt the more down-to-earth “small-
world” models that are common in Computer Science, Game theory and other
applications. In these fields, the “worlds” in any usable model come only with
the description of the facts that are relevant for the problem at hand: e.g. in a
scenario involving the throwing of a fair coin, the relevant fact is the upper face
of the coin. A model for this scenario will involve typically only two possible
worlds: Head and Tail. Requiring that the agent must always have a false belief
means in this context that the agent can never find out which of the coin’s faces
is the upper one: an obviously absurd conclusion!

There is another objection, maybe even more decisive, against the co-derived
set semantics, namely that it can be easily “Gettierized”. As mentioned above,
we have Int(A) = A∩t(A), which means that in the co-derived set interpretation,
knowledge is exactly the same as true (justified) belief. So this semantics is easily
vulnerable to all the well-known Gettier-type counterexamples!

Finally, here is an argument of a more technical nature. As mentioned above,
the co-derived set semantics validates the KD45 axioms only on DSO-spaces,
while our semantics validates them on extremally disconnected spaces. So the

9 Recall that the TD separation axiom states that every point is the intersection of a
closed and open set. This condition is equivalent to d(d(A)) ⊆ d(A), see e.g., [11].
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following result shows that our topological interpretation “works” on a larger
class of models than the co-derived set semantics :

Proposition 6. Every DSO-space is extremally disconnected.

Proof. Let (X, τ) be a DSO-space and U ∈ τ . Recall that for any A ⊆ X ,
Cl(A) = d(A) ∪ A. So Cl(U) = d(U) ∪ U . Since (X, τ) is a DSO-space, d(U) is
an open subset of X . Thus, since U is open as well, d(U) ∪ U = Cl(U) is open.

6 Conclusions and Future Work

In this paper, we proposed a new topological semantics for belief and argued
that it is the “correct” one, at least as far as full belief (understood as subjective
certainty) is concerned: it is the “canonical” (most general) semantics for (Stal-
naker’s axioms for) full belief. Moreover, our proposal comes with an independent
motivation and has an intrinsic philosophical and intuitive value. Topologically,
a point is in the interior of a set P iff it can be sharply distinguished (separated)
from all non-P points (by an open set); similarly, a point is in the closure of
P iff it is “very close” to P , i.e. it cannot be sharply distinguished from all P
points. Thus, an agent knows P if she can sharply distinguish the actual world
from all non-P -worlds. Hence, according to our semantics for full belief, an agent
(fully) believes P if she cannot sharply distinguish the actual world w from the
worlds in which she has knowledge of P . In this sense, one can say that belief is
topologically “very close” to knowledge: indeed, the agent cannot sharply distin-
guish it from knowledge. We thus think that our topological semantics perfectly
captures the essence of full belief as “subjective certainty”.

From a philosophical perspective, the main importance of our paper is that
it connects three different epistemological conceptions that were proposed as
responses to Gettier’s challenge: Stalnaker’s epistemic definition of full belief
(in the spirit of the “knowledge-first” approach), the “knowledge as correctly-
justified-belief” approach (underlying the topological semantics of knowledge)
and the defeasibility analysis of knowledge. Indeed (as shown in Section 4), in
our semantics knowledge is undefeated-true-belief. To show this, we needed the
topological analogue of dynamic conditioning (update), as it was already defined
in [27].

In on-going work, we also explore the corresponding “static” conditioning, by
giving a topological semantics for conditional belief ; we investigate the properties
of the resulting topological belief revision, showing that it satisfies only the
AGM Postulates 1-6 (but not postulates 7 and 8). In the same work, we give a
complete axiomatization of the logic of conditional beliefs (with the topological
semantics), as well as a complete axiomatization of the corresponding dynamic
logic (obtained by adding dynamic update operators, as in Section 4). We plan
to present these results (as well as the proofs that are missing from the current
paper) in a future journal publication.
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Abstract. Planning and plan recognition are arguably essential to all
rational, co-operative activities, and linguistic communication is no ex-
ception. Recently, Lewis (2012) argues that recognizing the importance
of plan helps settle a debate regarding the semantics and pragmatics of
indefinites. More specifically, Lewis argues against the dynamic approach
(e.g. Kamp (1981), Heim (1982), Groenendijk and Stokhof (1991),
Kamp and Reyle (1993), and Asher and Lascarides (2003)), according to
which indefinites are subject to a semantic “Novelty” condition; instead,
she offers a neo-Gricean account and analyzes Novelty as a pragmatic,
cancelable implicature. I argue that Lewis’ analysis is inadequate. Her
pragmatic picture not only rests on dubious assumptions concerning plan
recognition, but offers no real explanation of the alleged counterexamples
against the dynamic theories. Moreover, I provide evidence that supports
a more semantic analysis of the Novelty condition.

1 Introduction

According to the traditional static approach, the semantic content of a sentence
is its truth-conditions, and the semantic content of sub-sentential expressions
is their contributions to the truth-conditions of the sentence in which they are
embedded. Following Russell (1905), indefinite expressions—expressions of the
form “a F”— are semantically equivalent to existential quantification. Such is
a widely endorsed picture. In actual practice, however, it is not difficult to see
indefinites play a dual function: they not only assert existence, but introduce an
element that can figure in subsequent discourse. For example, take

(1) John wrote a paper on quantifier domain restriction, and he has submit-
ted it to a prestigious journal for publication.

(2) Every man who has a daughter adores her.

We have no problem understanding the pronouns as anaphoric, but semantic
theories of indefinites which follow Russell have few resources to explain how
indefinites can license anaphoric pronouns beyond their syntactic binding scope.

By contrast, dynamic semantics takes the meaning of a discourse (i.e., a single
or multiple sentences) as its context change potential (CCP); the meaning of sub-
sentential expressions is consequently defined as their contributions to the overall

D. Grossi, O. Roy, and H. Huang (Eds.): LORI 2013, LNCS 8196, pp. 41–53, 2013.
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CCP. This is not to say that truth-conditions are not important; yet in order
to fully capture what goes on in linguistic communication, one needs to keep
track of something more. In particular, one needs to keep a record of “things
being talked about,” or the “objects under discussion” in a conversation. To be
sure, the discourse interlocutors’ task in understanding what is being said in the
course of a conversation consists in (a) cataloguing discourse referents as well as
(b) altering the information associated with them as the discourse unfolds; only
the latter is strictly speaking truth-evaluable.

Regarding the aforementioned dual function of definites, the dynamic theorists
offer a non-quantificational analysis: the CCP of indefinites is the introduction
of a new “discourse referent” in Discourse Representation Structures (DRS) as
in Kamp’s (1981) and Kamp and Ryle’s (1993) Discourse Representation Theory
(DRT), or the addition of a “file card” in Heim’s (1982, 1983) File Change Se-
mantics. The existential quantification traditionally associated with indefinites
is implicit: the quantificational force is construed as part of the verification con-
dition of a DRS, or the satisfaction condition of updating a file with an utterance
that contains an indefinite. By taking the “Novelty Condition” as the defining
characteristic of indefinites, together with a formalism that allows for a wider
binding scope, dynamic theories can successfully account for sentences like (1)
and (2).

Lewis (2012) claims that the dynamic approach cannot be right, since Nov-
elty is definitely not semantic. She argues on the basis of some interesting data
concerning what she calls the “summary” uses of indefinites that Novelty must
be analyzed as a pragmatic, cancelable implicature. Moreover, by appealing to
the notion of plan and plan recognition, Lewis offers a neo-Gricean account that
purportedly explains cases in which the behavior of indefinites does conform to
Novelty, and those that do not, respectively.

This paper argues that Lewis’ analysis is deeply problematic and offers em-
pirical evidence that a more semantic construal of Novelty should not be easily
dismissed. Section 2 reviews Lewis’ argument that Novelty cannot be a semantic
feature of indefinites and her own pragmatic picture. Section 3 argues that the
criticism of dynamic theories results from a confusion. Moreover, I demonstrate
that Lewis’ pragmatic proposal not only rests on problematic bases, but falls
short of explaining the very examples that she herself brings to salience and a
wider range of linguistic phenomena involving indefinites. Section 4 discusses
some general lessons from the dialectic.

2 A Pragmatic Account of Indefinites

Lewis holds that indefinites have their traditional Russellian semantic content,
i.e. they are simply existential quantifiers. The static semantic account, however,
needs to be supplanted with a broadly Gricean story to explain how indefinites
are capable of (a) introducing a new “object under discussion” into the conversa-
tion and (b) licensing anaphora beyond their standard binding scope. Lewis ar-
gues that not only can these two features, which she calls Novelty and Licensing,
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respectively, be accounted for pragmatically, but that a pragmatic picture is
empirically superior to the competing dynamic semantic view.

The critical evidence for the pragmatic view comes from the following:1

(3) a. A student walked into Sue’s office and asked her about his exam.

b. Finally, a student needed her help!

(4) a. I went to see Star Trek on Sunday.

b. That’s pretty much all I did all weekend: I saw a movie.

(5) a. We have this nail here.

b. Unfortunately, now we have a nail and no hammer.

(6) a. I went out to dinner with the woman from the bar last night.

b. Can you believe it— a woman went out to dinner with me!

Another example of this kind is found in Gundel, Hedberg and Zacharski
(1993):

(7) a. Dr. Smith told me that exercise helps.

b. Since I heard it from a doctor, I’m inclined to believe it.2

In all these examples, the indefinite expressions in (b)— “a student,” “a
movie,” “a nail,” “a woman,” and “a doctor”— do not pick out a new object in
the discourse. Rather, their use is justified by an object previously mentioned
in (a).3 So, Lewis argues that (3) through (7) are not introductory uses; rather
they exemplify the summary uses of indefinites. More importantly, if Novelty is a
semantic feature of indefinites, it must be conventional, systematic, and cannot
be overridden. That summary uses of indefinites are felicitous and robust thus
argues strongly against treating Novelty as semantic.4

Lewis then contends that a broadly Gricean pragmatic analysis of Novelty
is preferable, as it will allow for both the introductory and summary uses. So
long as Novelty is treated as an implicature, that it is sometimes cancelable
poses no problem. In fact, cancelability is often viewed as an indicator that
the phenomenon in question is pragmatic rather than semantic. Now, the real
challenge is how to provide a plausible and coherent pragmatic story. According
to Lewis, the key lies in recognizing planning as fundamental in conversation
and communication.

Humans are essentially planning creatures. We are intelligent actors that in-
habit complex, dynamic environments, which we manipulate in complex ways.
One of the important ways that we connect to and affect our environments,
including other agents, is through language. From this perspective, “a well-run
conversation is just like any other co-operative, rational activities.”5

1 These examples are from Lewis (2012) examples (6), (7), (8), and (9), p.318.
2 Gundel, Hedberg, Zacharski (1993), p296, example (49).
3 The “antecedent” of the indefinites may be an indefinite (as in (3) and (7)), a proper
name (as in (4)), a demonstrative (as in (5)), or a definite (as in (6)).

4 Szabo (2000, 2003) also makes the same argument.
5 Lewis (2012), p.322.
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“A successful conversation [also] requires a coherent series of plans: not just
what to talk about or how to answer a question under discussion, but also how
an object under discussion relates to a question under discussion.”6 In other
words, interlocutors “do not make random, disconnected utterances.”

Planning and plan recognition are clearly closely related to intending and in-
tention recognition. Lewis maintains that thinking of plan recognition as central
is compatible with and extends Gricean pragmatics, since it emphasizes, besides
‘what a speaker wants the interlocutors to believe (or understand, or presume),”
“how the speaker wants to fit her contribution into the overall conversation.”
Moreover, the plan recognition framework provides a natural explanation of the
fundamental inter-relatedness between Grice’s maxim of relation (i.e. be rele-
vant) and the maxim of of manner (i.e. be perspicuous). Lewis acknowledges
that a complete plan for a conversation is oftentimes not pre-determined,7 nev-
ertheless, local discourse plans should be recognizable, as they are the driving
forces of particular utterances. A local plan is recognizable partly because it
connects to the overall discourse plan in a transparent way. Put differently, “rec-
ognizable, perspicuous plans go hand in hand with relevant utterances.”

How does this explain Novelty and the introductory uses of indefinites? Con-
sider (8):

(8) a. A woman walked in.

b. She looked gloomy.

The derivation goes like this. Semantically speaking, a sentence with an in-
definite is simply a general, existential claim. By assumption, participants of a
conversation are co-operative so that they only make relevant contributions to
the conversation. So, the existential claim made in (8a) must be relevant to the
conversational context and the overall discourse plan. If the speaker had wanted
to talk about a woman already under discussion, she had less misleading ways
to do so: pronouns, definite descriptions, or names would all be more appro-
priate. Hence, using the indefinite “a woman” is indicative of a plan to covey
information about a new woman under discussion. Furthermore, the use of an
indefinite is frequently a marker of a plan to say something further about its
referent, which accounts for the anaphoric pronoun in (8b).

To sum up, Lewis thinks that Novelty and Licensing should be analyzed prag-
matically. So long as the file-card metaphor is construed in pragmatic terms, she
has no objection against it. Tracking a conversation, or updating a conversa-
tional context, is a pragmatic process that involves plan recognition. The con-
versational context that interlocutors must keep track of is, at the very least,
a stack of file-cards, or a collection of the objects under discussion. From the
speaker’s point of view, the use of an indefinite is a perspicuous way to signal
that a new object is being introduced into the conversation; the addressee grasps

6 ibid. p.323.
7 ibid. “[A] complete plan for a typical conversation is not decided upon beforehand,
but the sort of plans we will be concerned with are speakers’ short-term plans, which
we can call local plans.”
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the speaker’s communicative intention and understands the speaker’s utterance
as relevant to the overall discourse, resulting in the addition of a new card.
Planning and plan recognition are not ad hoc; they are general reasoning mech-
anisms that are independently motivated. Taking them seriously as the underly-
ing principles governing discourses makes explicit the coordination necessary for
communication.

3 Adjudicating between Semantics and Pragmatics

While I agree that planning and plan recognition are crucial in rational, co-
operative activities, and that linguistic communication is arguably no excep-
tion, I think both Lewis’ objection against the dynamic semantic theories and
her own pragmatic account do not stand close examination. First, the criticism
of the dynamic theories is a misreading. Once the thesis of the dynamic approach
is properly understood, the so-called summary uses constitute no counter exam-
ples. Moreover, the positive proposal lacks explanatory power. Not only does it
hinge on dubious assumptions, it does not adequately account for the specific
examples that Lewis herself brings to spotlight, nor the data involving indefinite
expressions in general.

3.1 Is There Anything Wrong with the Dynamic Theories?

To begin, as the dynamic theories conceive it, Novelty is not a matter of reference,
or objects in the model, but a constraint on the construction of the semantic rep-
resentation of the utterance containing an indefinite. In Heim’s FCS or Kamp’s
DRT, the CCP of an indefinite is the introduction of a new file-card to the file
or a new discourse referent to the DRS, where a file or a DRS is a theoretical,
representational construct mediating between language and the world. Novelty
simply leaves open whether distinct cards or discourse referents are mapped to
the same or different objects in the model.

Discourse reference and genuine reference are two distinct notions in dynamic
theories. Here are some quotes from Heim (1983):

“[D]iscourse referents behave in ways which it wouldn’t make any sense to
attribute to real referents: not only are there discourse referents for NPs
that have no referents, but moreover, discourse referents may suddenly
go out of existence, depending on certain properties of the utterance.”
“[I]t is quite conceivable for there to be a file card that fails to describe
a referent, or for two different file cards to happen to describe the same
thing, or for file cards to be introduced into and be removed from the
file, depending on what is getting uttered.”8

In fact, with this distinction firmly in place, Heim discusses an example that
bears much on the present discussion:

8 The quotes are from Heim (1983), p.166 and p.168, respectively.



46 H.-Y. Chen

(9) John came, and so did Mary. One of them bought a cake.9

“On of them” is an indefinite noun phrase. Without doubt, its referent, be
it John or Mary, has already been mentioned in the first part of (9). This is
not a violation of the Novelty condition, however. The prediction about “one of
them” is simply that “its discourse referent must be new and must be distinct
from the discourse referents of “John” and “Mary” in particular. There is no
prediction about the reference of these three NPs, and we may consistently hold
any assumption we please about those. In particular, we may assume that NPs
with discourse reference sometimes happen to coincide in reference(my italics),
and that [(9)], being a case of this kind, involves three discourse referents, but
only two referents.”10

As is clear from this example, a new discourse referent, or file-card, does not
entail a new individual.11 Judging from this light, examples of the summary uses
are no challenges to the Novelty condition as the dynamic theories depict it.

Of course, what is interesting about (3) through (7) is that the file-cards must
have the same genuine reference. Lewis briefly considers a potential response
from the proponent of a dynamic semantic account that explores the merging of
file-cards: file-cards may be merged when conversation participants realize that
what were being treated as distinct objects under discussion are in fact satisfied
by the same object in the world. She then criticizes that merging is ad hoc and
unsatisfactory as it “saves a technical notion of Novelty” by sacrificing the the
significance and explanatory power of the file-card metaphor. While I am not
convinced that the merging process is ever needed, I am sympathetic to the
concern of how contentful the Novelty constraint really is.

Still, treating the summary uses as a decisive evidence against a semantic
account strikes me as a hasty conclusion. First, note that in the examples of
summary uses (i.e.(3)–(7)), expressions such as “finally,” “can you believe it,”
and “since” play an important role. The minimal pair (10) and (11) provides a
vivid illustration:

(10) a. A student walked into Sue’s office and asked her about his exam.

b. A student needed her help!

(11) a. A student walked into Sue’s office and asked her about his exam.

b. Finally, a student needed her help!

9 Ibid. p.165.
10 Ibid. p.166.
11 To be fair, Lewis is not completely unaware of this. She notes that “[i]t is important

to note that Novelty is not a matter of reference or denotation; no one claims that
the object in the world that actually satisfies the indefinite description has to be new
to the conversation. Novelty is the claim that, roughly, a speaker is talking about
something that is novel for the purposes of the conversation.”(Lewis (2012), p.316.)
Nevertheless, it seems to me that her characterization of Novelty is unsatisfactory.
Novelty has nothing to do with “the purpose of the conversation”; it is just a property
of indefinite expressions.
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In the absence of “finally,” the discourse in (10) allows for various interpreta-
tions; but in (11), there is no such flexibility. It is no longer ambiguous whether
the two occurrences of “a student” pick out the same individual. The summary
uses become natural only when there is a discourse particle that signals the dis-
course structure by marking the rhetoric relation between sentence (a) and (b).
This is exactly what the dynamic theories predict.

Second, the effects these structural markers contribute to do not seem to be
cancelable. Take

(12) a. A student walked into Sue’s office and asked her about his exam.

b. Finally, a student needed her help!

c. #But he is not the same student as the first one./ #But they are
not the same students.

What happens in (12) is that once the second occurrence of “a student” is
interpreted as an instance of the summary use, that bit of information cannot
be overridden no matter how the conversation further develops.

The contrast between (10), (11) and (12) is evidence that indefinite expres-
sions (e.g. “a student”) and discourse particles (e.g. “finally”) must interact in
such a way that systematically constrains how the discourse can be interpreted.
One the one hand, the two occurrences of “a student” need not pick out the same
individual in the model in (10), though they must so in (11). On the other hand,
the use of subsequent anaphora is highly regulated: while the speaker in (10)
may carry on with the information that she is really talking about two distinct
students, she cannot do so once the sentence that contains “finally” appears
in the discourse, as (12) demonstrates. If the interplay between indefinites and
markers of the rhetoric relations is confined at the pragmatic level, however, it
makes no sense why the summary uses cannot be retracted.

In short, Lewis’ objection to the dynamic accounts is misguided. She fails
to recognize the status of file-cards as theoretical, representational entities, so
there is actually no objection to the dynamic approach. Even if examples of the
summary uses raise a question of the exact content of the Novelty constraint, they
are no knock-down arguments against a semantic treatment of indefinites. As a
matter of fact, considerations of the interaction between indefinites and other
parts of the discourse, particularly those signaling the conversational structure,
favor such a treatment.

3.2 What Is Wrong with the Pragmatic Story?

The pragmatic account of Novelty that Lewis proposes does not stand close
scrutiny. Besides lacking crucial details regrading the nature of plans, her theory
suffers from obvious counterexamples and does not even explain the data she
herself raises to salience.

One fundamental difficulty with the kind of account Lewis proposes concerns
the speaker’s explicit denial of any discourse plan. Take
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(13) a. I do not have any plan in telling you the following.

b. A student walked into Sue’s office and asked her about his exam.

c. Finally, a student needed her help!

Despite the speaker’s straightforward confession that she has no plan for the
conversation, the addressee would engage in some plan recognition: the speaker’s
utterance of the indefinite “a student” in (4b) introduces into the conversational
context a new file-card no matter what. This raises the question of the nature
of plans that the addressee is supposed to be able to recognize.

At one point, Lewis states that “speakers use and participants recognize maxi-
mally strategic plans.”12 Taken as an unrestricted, empirical claim, this is plainly
false as conversations are oftentimes random and extemporaneous. Lewis’ claim
is more realistically viewed as an idealization or the goal of conversations. But
what are maximally strategic plans and what makes them recognizable? One
would expect that an account that rests on the centrality of plans to address
these fundamental questions. Yet Lewis says surprisingly little on either, and
what she does say raises more worries.

In the AI literature, planning is typically understood as “the process of for-
mulating a program of action to achieve some specific goal.”13 Given some initial
conditions and the specification of a specific goal, the planning agent (or system)
produce a series of actions whose execution will achieve that goal. I am not sure
if this is the picture Lewis has in mind, for she wants to “remain neutral” on
the nature of plan. She does, however, assert that her focus is on the speaker’s
short-term, or local, plans, which may be thought of as elements or sub-plans
of an overall plan. Crucially, local plans should be recognizable, as they are the
type of plans that “drive particular utterances.”14

It strikes me that there is a puzzle regarding the connection between local
plans and the overall discourse plan. On the one hand, Lewis admits that “a
complete plan for a typical conversation is not decided upon beforehand.” Yet
according to her, a well-run conversation must be one where the local plans
are maximally relevant and perspicuous with respect to the discourse plan. But
if a complete plan is not established in the first place, it is unclear how local
plans—the pragmatic import of sub-sentential, sub-discourse elements—can ever
be judged as relevant and perspicuous. On the other hand, the problem that
discourses such as (4) bring out is even more telling. In the sheer absence of an
overall discourse plan, what maximally strategic local plans can there be? To
maintain the idea that conversation participants recognize maximally strategic
local plans, Lewis would have to admit that these plans must, in general, be
autonomous. But then it makes little sense to talk about local plans coming
together and being relevant and perspicuous for the purpose of a conversation.

12 Lewis (2012), p.329.
13 Pollack (1992), p.3.
14 The recognition of local plans allows “the participants to track the discourse, i.e.

know what to expect will likely be a topic of conversation, an object under discussion,
or a question being addressed.”(Lewis (2012). p.329.)
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Once again, the relation between local plans and the entire discourse becomes a
mystery. Furthermore, as the denial of a complete discourse plan can be easily
generalized, it is not helpful to counter the challenge by restricting the analysis to
task-oriented dialogues. So doing seriously reduces the significance of the theory
and leaves the real problem unresolved.

Whether or not (4) is deviant, the general points it illustrates are transparent.
A theory of linguistic understanding and communication that builds upon plan-
ning and plan recognition is faced with two inter-connected tasks of coordination.
First, it must explain what makes possible the coordination between the speaker
and the addressee. It must allow for the possible gap between the speaker’s pos-
sibly nonexistent plan, incomplete plan, multiple plans and what the address is
able to recognize. Second, it must explain what makes up a discourse plan. If
its composition involves fine-grained levels of sub-plans, it must account for the
contributions these sub-elements make to the global plan, and how this bears
on the speaker’s production and the addressee’s understanding. There can be
no dodging a precise explication of the nature of plans and what makes them
recognizable. Lewis’ proposal fails to adequately address these metaphysical and
epistemological issues.

My second objection concerns the pragmatic account’s inability to successfully
account for the relevant linguistic phenomena, including both the summary uses
and the introductory uses.

First, consider the following:

(14) a. A student walked into Sue’s office and asked her about his exam.

b. Finally, a student needed her help!

(15) a. A student walked into Sue’s office and asked her about his exam.

b. ?Finally, some/at least one student needed her help!

(16) a. A student walked into Sue’s office and asked her about his exam.

b. #Finally, he/the student/John needed her help!

Replacing the second occurrence of “a student” in (b) of the above discourses
with other truth-conditionally equivalent phrases results in, if not infelicity, at
least some difference in acceptability. But why is this the case? The question
has two faces: (a) substituting “a” with other indefinite expressions like “some”
and “at least one”; (b) substituting “a student” with a definite expression— the
pronoun “he,” the definite description “the student,” or a proper name. Even
if type (a) substitution is marginally acceptable, type (b) substitution appears
much worse.15 However, it is not clear how the pragmatic analysis of indefinites
can coherently explain these phenomena without being self-defeating. Here is a
quote from Lewis:

15 If (16) is to make sense at all, it seems to me, the discourse as a whole means
something quite different, and the speaker must assume her addressee to have some
familiarity with the said individual.
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In the summary uses the existential, general meaning of the indefinite is
emphasized. [(14b)] is appropriate to utter in a context in which Sue had
been waiting and hoping for some student or other to need her help—
she isnt happy or relieved because that particular student came to her
office in need of help, but that some student at all needed her help. The
speaker has a special reason to use an existential claim, since it expresses
something a definite expression cannot (italics mine). If we replaced a
with the in the summary uses, they would each convey something differ-
ent, if they made sense at all. Since there is this special reason to use an
indefinite and only an indefinite, we have reason to believe novelty wont
be implicated.16

This remark is curious. For one thing, Lewis recognizes that what indefinites
do in their summary uses is something definites cannot. For another, while the
introductory uses are meant to pick out an individual, Lewis says here that the
summary uses are not supposed to pick out any specific individual, though such
uses are justified by such a person. She too emphasizes that it is the purely
existential, general meaning that underlies the summary uses.

This admission seems to me to suggest strongly that the summary uses of
indefinites, just like the introductory uses, introduce some new file-cards into
the conversational context. However, the file-cards so triggered are special: they
denote a concept or a category rather than individual instances thereof. This
way, the summary uses of an indefinite does something more than the introduc-
tory uses in that they contributes to a conversation, besides an individual (who
is precisely the individual picked out by the introductory use in the same con-
versation), a reference to the kind of which the individual is an instance. Hence,
one is committed to discourse referents of different types in the representations:
one for the particular instances and one for the general kind. This, of course, is
not a challenge to but a confirmation of a semantic account of Novelty.

Further problems for the pragmatic approach concerns the introductory uses
are abundant. Take the embedding of indefinites in negation:

(17) a. Bill didn’t see a woman. # She was walking her dog.17

b. Bill didn’t see a woman who was walking her dog.

The occurrence of “a woman” is embedded in negation in both (17a) and
(17b). Hence, the pragmatic account ought to predict no addition of a file-card,
and a fortiori no later anaphoric expression on the presumably non-existent
object under discussion. Anaphora is nevertheless permitted in (17b).

Consider also the contrast between (18) and (19):

(18) a. A woman walked in.

b. She looked gloomy.

16 Lewis (2012), p.322.
17 The intended reading here is not one where “a woman” receives a wide-scope, de re

interpretation.
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(19) a. It is not the case that not every woman didn’t walk in.

b. # She looked gloomy.

Since Lewis equates content to truth-conditions, (18a) and (19a) have exactly
the same existential entailing content. But the use of anaphora in (19b) appar-
ently is infelicitous. What is truth-conditionally equivalent to an indefinite (e.g.
“a F G” and “not every F note G”) does not possess the matching Licensing
capacity. This discrepancy cannot be explained away by claiming that a file-card
is only introduced via linguistic acts that contain an explicit device of existen-
tial quantification. That response begs the question; it is not an argument nor
an explanation of the phenomena, but merely a restatement of the view that
indefinites, but not other truth-conditionally equivalent expressions, provide the
optimal, most perspicuous way of signaling a new object under discussion.

In addition, it is not transparent what answers the pragmatic account can
supply regarding the ensuing minimal pair:18

(20) a. A wolf might come in.

b. It would will eat you first.

(21) a. A wolf might come in.

b. # It will eat you first.

The kind of analysis that Lewis advocates faces a general difficulty. The in-
troductory uses of indefinites are supposedly the default, but subsequent use of
anaphora is not ubiquitous. Various particles in the discourse can give rise to a
control effect— negation and modals, for example, often constitute barriers to
back-referencing the object previously mentioned. Yet such control effects and
the lack thereof cannot be sufficiently justified by pragmatics. By contrast, a
semantic account along the lines of dynamic theories offers a straightforward
and more plausible explanation. The difference in the availability of subsequent
anaphoric reference is analyzed in terms of a well-defined accessibility constraint,
with no need to appeal to any equivocal notion of plan recognition.

4 Concluding Remarks

Let me conclude with two general morals from the foregoing discussion. First,
whether one takes the dynamic or the static stance, the right analysis must make
recourse to a two-stage process. The dynamic theories have the two-level analy-
sis built in in its own nature. The Novelty condition associated with indefinites
applies at the level of the construction of the representation, that is, an indefi-
nite invariably adds a new file-card to the representation of the discourse; it is a
separate issue if more than one files-cards are mapped to the same object in the

18 Such phenomena is referred to as modal subordination in the literature. See, for
example, Roberts (1987, 1989), Frank and Kamp (1997), and Asher and Pogodalla
(2010).
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model. In this sense, cases involving the summary uses of indefinites are no coun-
terexamples to a semantic construal of Novelty. What those examples do show,
however, is that there are clear further constraints on the verification or satisfac-
tion conditions of the dynamic discourse representations. Recent developments
in the dynamic approach confront precisely this: how various linguistic expres-
sions, for instance, those that signal rhetoric relations and discourse structures,
affect the question under discussion and the at-issueness to which conversation
participants are remarkably sensitive.19

The static approach that Lewis defends and supplements with a neo-Gricean
pragmatic account invokes two distinct steps in the analysis as well. She needs
to first accounts for the systematicity of Novelty, and then explain how it is
cancelable. However, given the many difficulties that I manifest in the previous
sections, Lewis fails to make a strong case.

Second, one sees that what Lewis calls local plans get recognized regardless
of the speaker’s intention or plan for the entire discourse. This strikes me as evi-
dence that local plans are nothing but the semantic content. Given the close tie
between plan and intention, a case in point is Bratman’s (1984) distinction be-
tween “the intention to A” and “intentionally A.” According to Bratman, when
an agent intentionally A , she intends something, but she may not specifically
intend to A. A is an intended action when it is an agent’s intention to carry out
A; by contrast, when one A intentionally, A may be an unintended consequence,
or side effect, of one’s intended action.

In the case of linguistic communication, a speaker’s use of an indefinite is
indicative of some communicative intention, but whatever that is, it need not
be identical to the addition of a file-card. In other words, one should distinguish
between “introducing a file-card intentionally” and “the intention to introduce a
file-card.” Since a file-card may be introduced by the use of an indefinite whether
or not the speaker has a plan for the very introduction, the mechanism of file-card
addition must operate in a way independent of planning and plan recognition.
The best explanation is that the so-called local plan associated with a speaker’s
use of an expression is simply its semantic content. Uttering an indefinite triggers
the introduction of a new file-card; what the speaker plans or whether she has a
plan is beside the point.

To conclude, there is no knock-down argument for the pragmatic interpreta-
tion of Novelty, and a semantic characterization should not be easily dismissed.
Once a wider range of linguistic phenomena involving indefinites is taken into
consideration, it seems that it is the semantic approach that makes more sense.
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Abstract. In this paper, I will develop a semantic model for interrogatives, an 
important sentence type expressing a special aspect of uncertainty. The model is 
based on the notions of generalized quantifiers and bilattices, and is used to 
model several aspects of interrogative semantics, including resolvedness condi-
tions, answerhood, exhaustivity and interrogative inferences. It will be shown 
that the semantic model satisfies a number of adequacy criteria. 

1 Introduction 

Interrogatives are an important sentence type in natural language expressing a special 
aspect of uncertainty. Yet the study on interrogatives in logic and formal semantics 
has been a difficult task because classical logical and formal semantics are basically 
truth conditional while there is not an intuitive and uncontroversial notion of truth 
values for interrogatives. While the topic of interrogatives seems to be a linguistic 
one, some scholars (such as [2], [6]) have studied this topic from the perspectives of 
logic and formal semantics and have identified a number of aspects for study. The 
aspects studied in this paper, i.e. resolvedness, exhaustivity, answerhood, interroga-
tive inferences, are the standard ones in the studies on interrogatives. A good sum-
mary of these aspects can be found in [6]. 

According to [11], an adequate semantic model for interrogatives should satisfy the 
following adequacy criteria: 1. material adequacy – semantic notions of answerhood, 
entailment and equivalence should be definable under the model; 2. formal adequa-
cy – the semantic notions should be interpretable as set-theoretic relations / opera-
tions; 3. empirical adequacy – the semantic notions should correspond to native 
speaker intuitions. What this criterion in fact meant according to [11] is that certain 
inferential relations that are intuitively correct should be provable under the model. 

In this paper, I will propose a semantic model that satisfies the aforesaid adequacy 
criteria. This model combines elements from a framework developed by [7, 8] that is 
based on generalized quantifiers (GQs) and a framework developed by [10, 11] that is 
based on bilattices. In Section 2, I will review the basic ideas proposed in [7, 8] and 
[10, 11], and point out some of their merits and demerits, and the need for enhancing 
and combining the frameworks. In Section 3, I will introduce the enhanced model and 
discuss the formal semantics of various types of interrogatives. In Section 4, I will 
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discuss the issue of interrogative inferences. In Section 5, I will conclude the paper by 
discussing how the adequacy criteria are satisfied by my model. 

2 Two Previous Models on Interrogatives 

According to [5], the semantic frameworks for interrogatives may be classified into 
two broad approaches – the Categorial Approach and the Propositional Approach. 
Under the Categorial Approach, an interrogative is seen as an incomplete object, i.e. a 
function, which requires a constituent answer for completion. Since different consti-
tuent answers correspond to different semantic types, this approach does not assume a 
uniform type for interrogatives. 

The semantic framework developed by [7, 8] is an example of the Categorial Ap-
proach. This framework is based on the Generalized Quantifier Theory (GQT)1 and 
views WH-words as a special type of GQs, i.e. interrogative quantifiers (IQs). In a 
nutshell, a GQ can be seen as a second-order predicate with ordinary sets as argu-
ments. The semantics of a GQ can be delineated by its truth condition expressed as a 
set-theoretic relation. For example, every can be seen as a GQ with 2 sets as argu-
ments satisfying the truth condition ║every(A, B)║ = t ⇔ A ⊆ B 2. Different from 
ordinary GQs, IQs have an additional argument corresponding to the answer to the 
interrogative. The purpose of this answer argument is to make the interrogaive be-
come a proposition. For example, under this framework, the truth condition of which 
can be represented by ║which(A, B, X)║ = t ⇔ A ∩ B = X 3, where X is the answer 
argument. This truth condition says that ‘X’ is the answer to the interrogative “Which 
‘A’ is ‘B’?” iff A ∩ B = X 4. 

Contrary to the Categorial Approach, the Propositional Approach assumes that in-
terrogatives are of one uniform type and the semantic type of interrogatives is to be 
analysed in terms of propositions. 

The semantic framework developed by [10, 11] is an example of the Propositional 
Approach. This framework adopts the language of First Order Logic augmented by 
the symbol “?” for forming questions. Semantically, this framework adopts a bilattice 
model. According to [1], a bilattice is an algebraic structure composed of two  

                                                           
1  This paper adopts the standard notation as used in [12] for denoting quantified statements. 

Using this notation, a quantified statement such as “Every boy sang” is represented by 
every(BOY, SING), where every (in italics) is a quantifier with BOY and SING as argu-
ments. Here the sets BOY and SING are semantic denotations of “boy” and “sang”,  
respectively. 

2  In this paper, I use ║s║ to denote the truth value of a proposition / question s and “t” to  
denote the truth value “true”. 

3  Strictly speaking, according to [7, 8], the truth condition of which should involve a context 
set because the interpretation of which is dependent on context. For simplicity, I have  
ignored the context-dependent effect of which in this paper. 

4  In this paper, I use ‘S’ to denote the natural language word / phrase corresponding to the set 
S. I also use ‘s’ to denote the natural language declarative / interrogative sentence  
corresponding to the proposition / question s. 
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complete lattices ordered separately but sharing a common negation operator “¬”, 
such that “¬” reverses the order in one constituent lattice but preserves the order in the 
other. Now the framework developed by [10, 11] assumes a uniform type for both 
declarative and interrogative sentences. The denotation of declaratives and interroga-
tives are thus both truth values. However, to distinguish declaratives and interroga-
tives, they distinguish 2 subsets of truth values. For declaratives, there are 3 truth 
values: t (“known to be true”), f (“known to be false”) and uk (“unknown whether 
true or false”). For interrogatives, they borrow the concept of “resolvedness” from [4] 
and assume 2 truth values: r (“resolved”) and ur (“unresolved”). These 5 truth values 
thus form a bilattice composed of a declarative lattice and an interrogative lattice. The 
declarative lattice is ordered by f ≤ uk ≤ t and the interrogative lattice ordered by ur ≤ 
r. Obviously, “¬” reverses the order in the declarative lattice because if p1 and p2 are 
propositions and ║p1║ ≤ ║p2║, then ║¬p2║ ≤ ║¬p1║. As for the negation of inter-
rogatives, the discussion will be postponed to Section 4. 

Under this framework, the semantics of interrogatives is expressed by the resol-
vedness conditions which relate the two groups of truth values. For illustration, con-
sider the polar interrogative “Did Mary kiss John?”. The formal representation and 
resolvedness condition of this interrogative is ║?(KISS(m, j))║= r iff ║KISS(m, j)║ 
∈ {t, f}, which means this polar interrogative is resolved iff it is known whether Mary 
kissed John. 

Compared with the GQT framework developed by [7, 8], the bilattice framework 
developed by [10, 11] has some merits. Since their framework has a clear definition 
for truth values of both declaratives and interrogatives, it is straightforward to define 
entailment and equivalence relations between interrogatives and is thus convenient to 
study the issue of interrogative inferences under this model. On the other hand, inter-
rogatives are interpreted as functions under the GQT framework. Although we may 
define entailment as set inclusion (note that functions can be seen as sets), this defini-
tion is only applicable to objects of the same category. Since interrogatives may  
belong to different categories, it is not clear how to come up with an appropriate  
definition for the general entailment relation between interrogatives. 

Nevertheless, the bilattice framework developed by [10, 11] can only deal with a 
very small set of WH-words because it uses only one operator “?x” for WH-
interrogatives. This is in sharp contrast with the GQT framework developed by [7, 8] 
which has defined a whole range of IQs for different WH-words. Thus, in comparison 
with the bilattice framework, the GQT framework has greater expressive power. It is 
also an attractive model because WH-words do share certain characteristics with ordi-
nary GQs. In fact, in the GQT literature, WH-words are sometimes seen as a subtype 
of quantifiers. Moreover, it is also found that IQs possess certain properties that are 
thoroughly studied in GQT, such as conservativity, monotonicity, intersectivity, etc. 

Given the merits and demerits of the aforesaid two frameworks, I will propose a 
novel semantic model for interrogatives that combines the merits and avoids the deme-
rits of the two frameworks. Moreover, this semantic model will also deal with certain 
phenomena that are not dealt with in the two frameworks, such as non-exhaustive  
interrogatives and certain types of interrogative inferences. 
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3 A Novel Semantic Model for Interrogatives 

3.1 Strongly Exhaustive IQs 

The novel semantic model will adopt a bilattice structure that distinguishes 5 truth 
values as described in Section 2. Apart from this, we need some additional defini-
tions. Under a 2-valued universe, with respect to every concept we have two comple-
mentary sets, e.g. X and ¬X. But under a 3-valued universe, we need 3 notions: Xt, Xf 
and Xuk, with the following definitions (in what follows, U denotes the universe or 
domain of discourse): 

 Xt = {x ∈ U: ║x ∈ X║ = t} (1) 

 Xf = {x ∈ U: ║x ∈ X║ = f} (2) 

 Xuk = {x ∈ U: ║x ∈ X║ = uk} (3) 

Thus, Xt, Xf and Xuk are sets containing elements that are known to belong to X, 
known not to belong to X and unknown whether to belong to X, respectively. 

We now consider WH-interrogatives. Following [7, 8], I will treat these interroga-
tives as quantified statements containing IQs. But contrary to [7, 8], I do not employ 
the notion of “answer arguments” and will treat IQs in the same way as ordinary GQs. 
For instance, since in everyday use, “which” is used with a noun phrase and a verb 
phrase, such as in “Which boy sang?”, which will be treated as an IQ with 2 argu-
ments, just like the ordinary GQ every. Thus, the WH-interrogative “Which boy 
sang?” will be expressed as which(BOY, SING). In this way, IQs are similar to ordi-
nary GQs as they function as second-order predicates with ordinary sets as arguments. 
Moreover, just like ordinary GQs, the semantics of IQs will be delineated by  
their truth conditions (or more precisely, resolvedness conditions) expressed as  
set-theoretic relations. 

How can we derive the resolvedness condition of an IQ like which? Before answer-
ing this question, I need to introduce the notion of “exhaustivity”, which is concerned 
with what constitutes an acceptable answer to a certain interrogative. From the litera-
ture, we can identify two most important types of exhaustivity: strong exhaustivity 
and non-exhaustivity. While non-exhaustivity only requires the answer to contain 
some true and no false information requested by the interrogative, strong exhaustivity 
requires the answer to contain all and only (i.e. exactly) the true information. In other 
words, strongly exhaustive answers differ from non-exhaustive ones in that the former 
are unique while the latter are not. For example, if it is known that John and Bill are 
exactly the boys who sang, then “John and Bill and no other boys” would be a strong-
ly exhaustive answer to the interrogative “Which boy sang?”. Since strong exhaustivi-
ty is easier to handle and is assumed by the most important theories on interrogatives, 
including [7, 8] and [10, 11], the simplest IQs are interpreted as strongly exhaustive 
IQs in this paper. 
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Under the strongly exhaustive interpretation, we know the answer to the interroga-
tive “Which boy sang?” iff for every element x of U, we know whether x is a boy who 
sang. In other words, there is no element x such that we do not know whether x is a 
boy who sang. Thus, the resolvedness condition of “Which boy sang?” can be written 
as ║which(BOY, SING)║ = r ⇔ (BOY ∩ SING)uk = ∅. This condition reflects the 
following intuition: (BOY ∩ SING)uk represents the area of uncertainty with respect 
to the interrogative “Which boy sang?”. If this area is empty, then the uncertainty 
does not exist and the interrogative is thus resolved. 

The resolvedness conditions of which and some other commonly used strongly ex-
haustive IQs can be generalized as follows5: 

 ║which(A, B)║ = r ⇔ (A ∩ B)uk = ∅ (4) 

 ║(all except which)(A, B)║ = r ⇔ (A – B)uk = ∅ (5) 

 ║who(B)║ = r ⇔ (PERSON ∩ B)uk = ∅ (6) 

 ║(everybody except who)(B)║ = r ⇔ (PERSON – B)uk = ∅ (7) 

Note that the right-hand side of the above all have the form Suk = ∅ for an appropriate 
set S. 

The semantics of IQs is more complicated than other GQs in that one does not only 
need to study the resolvedness conditions but also the resolved answers of IQs. For a 
typical WH-interrogative, the resolved answer may take two forms. The short form 
appears as a noun phrase. This form is called the constituent answer (CA). The full 
form appears as a complete sentence. This form is called the sentential answer (SA). 

For strongly exhaustive IQs, it is easy to specify the semantic denotations of their 
CAs, as the form they take is closely related to their resolvedness conditions. For 
example, provided that ║which(BOY, SING)║ = r, we have (BOY ∩ SING)uk = ∅, 
and the semantic denotation of the CA to “Which boy sang?” is then (BOY ∩ SING)t, 
i.e. all those entities who are known to be boys who sang. We can generalize the 
above: let q be a strongly exhaustive question whose resolvedness condition has the 
form Suk = ∅, then the semantic denotation of the CA to ‘q’ is St. 

Moreover, since SA is just the result of writing a CA in the form of a complete sen-
tence, we can express the semantic denotation of an SA by making use of this relation 
as follows: let q be a strongly exhaustive question whose resolvedness condition has 
the form Suk = ∅, then the semantic denotation of the SA to ‘q’ is the proposition S = 
St. Note that this proposition can often be re-expressed in the standard form as appears 
in the GQT literature by using the truth conditions of GQs. For illustration, suppose in 
a universe all entities who are known to be boys who sang are John and Bill,  
 

                                                           
5  Due to limited space, only the resolvedness conditions of a handful of IQs are given in  

this paper. The resolvedness conditions of other IQs may be derived in a similar fashion,  
although one needs to define some additional notions or domains for some IQs, such as a 
“possession” predicate for whose, a spatial domain for where, etc. 
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i.e. (BOY ∩ SING)t = {j, b}, and suppose (BOY ∩ SING)uk = ∅. Then the semantic 
denotation of the SA to “Which boy sang?” is the proposition BOY ∩ SING = {j, b}, 
which can be re-expressed as (no … except {j, b})(BOY, SING)6. This expression 
corresponds to the natural language sentence “No boy except John and Bill sang”. 

An advantage of modeling WH-words as quantifiers is that we can derive the re-
solvedness conditions of WH-interrogatives involving predicates with an arity of 2 or 
higher by applying certain established operations in GQT. Under GQT, a sentence 
containing a higher-arity predicate can be viewed as containing a polyadic quantifier. 
There is an important subtype of polyadic quantifiers, called iterated quantifiers, 
whose truth conditions can be derived by using an operation called “iteration”. For 
example, consider the sentence “Every boy loves every girl” which contains a binary 
predicate “loves”. The truth condition of this sentence can be expressed as: 

║every(BOY, {x: every(GIRL, {y: LOVE(x, y)})})║ = t ⇔ BOY ⊆ {x:  
GIRL ⊆ {y: LOVE(x, y)}} 

(8)

The above formula says that “Every boy loves every girl” is true iff every boy x is 
such that for every girl y, x loves y. 

A WH-interrogative containing a higher-arity predicate can be treated in a similar 
fashion. For illustration, consider the interrogative “Which girl does every boy love?”. 
According to the literature, this interrogative has at least 2 different readings: an indi-
vidual reading and a pair-list reading. In this paper, I will only consider the individual 
reading, which can be paraphrased as “Which girl is such that every boy loves her?”7. 
Using iteration, one can easily derive the resolvedness condition of this reading as: 

║which(GIRL, {y: every(BOY, {x: LOVE(x, y)})})║ = r ⇔ (GIRL ∩ {y: 
BOY ⊆ {x: LOVE(x, y)}})uk = ∅ 

(9)

The above formula says that “Which girl does every boy love?” is resolved iff there is 
no entity y such that it is not known whether y is a girl and is loved by every boy. 

3.2 Non-exhaustive IQs 

Apart from “strongly exhaustive” interrogatives requesting complete information con-
cerning a subject matter, there are also “non-exhaustive” interrogatives which request 
only partial information. [3] listed certain markers in natural languages and pointed out 
that interrogatives with these markers have inherent exhaustivity. For instance, “for 
example” is a marker of non-exhaustivity as exemplified by the interrogative “Which 
boy sang, for example?”. In this paper, WH-phrase “which … for example” will be 
expressed as a non-exhaustive IQ (at least which). A non-exhaustive WH-interrogative 
such as “Which boy sang, for example?” is resolved in two mutually exclusive  
                                                           
6  According to the standard GQT literature, the truth condition of the GQ “(no … except C)(A, 

B)” where C is a non-empty set of individuals manifested as (conjoined) proper names is 
║(no … except C)(A, B)║ = t ⇔ A ∩ B = C. 

7  To handle the pair-list reading properly, we need more notions which are definable under the 
semantic model developed in this paper. 
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situations: (1) at least one member of U is known to belong to BOY ∩ SING; (2) all 
members of U are known not to belong to BOY ∩ SING. Thus, the resolvedness con-
dition can be written as ║(at least which)(BOY, SING)║ = r ⇔ (BOY ∩ SING)t ≠ ∅ 
∨ (BOY ∩ SING)f = U. Note that situations (1) and (2) are represented by the two 
disjuncts on the right-hand side of this resolvedness condition. Generalizing the above 
discussion, the resolvedness conditions of two non-exhaustive IQs are given below: 

 ║(at least which)(A, B)║ = r ⇔ (A ∩ B)t ≠ ∅ ∨ (A ∩ B)f = U (10) 

 ║(at least who)(B)║ = r ⇔ (PERSON ∩ B)t ≠ ∅ ∨ (PERSON ∩ B)f = U (11) 

Next I derive the semantic denotation of the CA to the non-exhaustive interrogative 
“Which boy sang, for example?”. Since the CA to a non-exhaustive interrogative is 
not unique, I will provide the set of the semantic denotations of all possible CAs, 
called the CA set, as follows: 

CA set = 

{X: X ⊆ (BOY ∩ SING)t ∧ X ≠ 
∅}, 

if (BOY ∩ SING)t ≠ ∅ 

(12)

{∅}, if (BOY ∩ SING)f = U 

The above piecewise-defined function provides the CA set under two mutually exclu-
sive situations. If (BOY ∩ SING)f = U, no boy sang and so the unique CA should be 
“none of them”, represented by a set consisting of ∅ as the unique member. If (BOY 
∩ SING)t ≠ ∅, then every non-empty subset of (BOY ∩ SING)t, i.e. any set X satis-
fying X ⊆ (BOY ∩ SING)t ∧ X ≠ ∅, is the semantic denotation of an acceptable CA. 
So all these Xs are collected into a set, and the CA can be represented by any member 
of this set. For illustration, suppose (BOY ∩ SING)t = {j, b}, then the CA set is {{j}, 
{b}, {j, b}}, i.e. any one of “John”, “Bill” and “John and Bill” is an acceptable CA to 
the non-exhaustive interrogative “Which boy sang, for example?”. 

Similar to CA, the SA to “Which boy sang, for example?” is also not unique and 
may be represented by a set of propositions, called the SA set, as shown below: 

SA set =

{X ⊆ BOY ∩ SING: X ⊆ (BOY ∩
SING)t ∧ X ≠ ∅}, 

 if (BOY ∩ SING)t ≠ ∅ 

(13)

{BOY ∩ SING = ∅}, if (BOY ∩ SING)f = U 

For illustration, suppose (BOY ∩ SING)t = {j, b}, then the SA set is {{j} ⊆ BOY ∩ 
SING, {b} ⊆ BOY ∩ SING, {j, b} ⊆ BOY ∩ SING}, i.e. any one of the sentences 
“John sang”, “Bill sang” and “John and Bill sang” is an acceptable SA to the non-
exhaustive interrogative “Which boy sang, for example?”. 

It is not hard to generalize (12) and (13) to a general non-exhaustive question q 
whose resolvedness condition has the form St ≠ ∅ ∨ Sf = U for an appropriate set S. 
All we need to do is replace the set BOY ∩ SING in (12) and (13) by S. 
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3.3 Polar Interrogatives 

In this subsection I will discuss polar interrogatives. I propose that a polar interroga-
tive be represented by whether(p) where whether is a Boolean operator asking for the 
truth value of p, where ‘p’ is the declarative associated with the polar interrogative. In 
this respect, whether is similar to the unary Boolean operator “¬”. While the latter 
may be manifested as “It is not the case that”, the former may be manifested as “Is it 
the case that”. For example, since the declarative associated with the polar interroga-
tive “Does John love Mary?” is “John loves Mary”, the formal representation of this 
polar interrogative is whether(LOVE(j, m)). 

Since a polar interrogative is resolved iff its associated declarative is known to be 
true or false, we can easily write down the resolvedness conditions for polar inter-
rogatives: 

 ║whether(p)║ = r ⇔ ║p║ ≠ uk (14) 

I next determine the semantic denotations of the CA and SA to a polar interroga-
tive. For a polar question whether(p), the semantic denotation of its CA can be easily 
written down as ║p║. In English, ║p║ can be represented by particular words, such 
as “yes” (corresponding to ║p║ = t) and “no” (corresponding to ║p║ = f). As for the 
semantic denotation of the SA to a polar interrogative, it can be expressed as 

Semantic denotation of SA =
p, if ║p║ = t 

(15)
¬p, if ║p║ = f 

4 Interrogative Inferences 

To study interrogative inferences, we need to define entailment and equivalence rela-
tions involving questions. Under the present framework, it is straightforward to define 
these notions. First, we define the notion of entailments: let S = {s1, … sn} be a set of 
questions / propositions (called the premises) and q a question (called the conse-
quence), then S entails q (denoted S  q) iff in every model, if ║s1║∈ {t, r} 
and …║sn║∈ {t, r}, then ║q║ = r. 

Next we define the notion of equivalence: let q1 and q2 be questions, then q1  
is equivalent to q2 (denoted q1 ⇔ q2) iff in every model, ║q1║ = r if and only if  
║q2║ = r. 

4.1 Interrogative Entailments 

Based on the resolvedness conditions of IQs and the above definitions, we can derive 
valid inferential patterns of IQs. We first consider some basic entailments: 

 which(A, B)  (at least which)(A, B) (16) 

 which(A, B)  whether(some(A, B)) (17) 
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These two entailments are in accord with our intuition. For example, if we know the 
answer to the strongly exhaustive interrogative “Which boy sang?”, we automatically 
know an answer to the non-exhaustive interrogative “Which boy sang, for example?” 
as well as the answer to the polar interrogative “Did any boy sing?”. 

To prove (16) and (17), we first assume that ║which(A, B)║ = t. By (4), this is true 
iff (A ∩ B)uk = ∅, i.e. for all x ∈ U, ║x ∈ A ∩ B║ is either equal to t or f. From this 
we can deduce that either there is an x such that ║x ∈ A ∩ B║ = t, or for all x, ║x ∈ 
A ∩ B║ = f, which is equivalent to the following two propositions: 

 (A ∩ B)t ≠ ∅ ∨ (A ∩ B)f = U (18) 

 ║A ∩ B ≠ ∅║ = t ∨ ║A ∩ B ≠ ∅║ = f (19) 

From (18) we can then deduce ║(at least which)(A, B)║ = r by (10) and thus com-
plete the proof of (16). From (19) we can then deduce ║A ∩ B ≠ ∅║ ≠ uk. By (14), 
we have ║whether(some(A, B))║ = r and thus complete the proof of (17) since A ∩ B 
≠ ∅ is the truth condition of some(A, B), according to the GQT literature. 

Apart from inferences with only one premise, we may also consider interrogative 
inferences with more than one premise, such as the following: 

 {which(C, B), which(C, A), A ⊆ C}  which(A, B) (20) 

Note that (20) is a generalization of a result in [5]. An instance of this inference 
schema is that the two questions “Which child does Mary teach?” and “Which child is 
a boy?” collectively entail the question “Which boy does Mary teach?” (on the under-
standing that boys are children). 

To prove (20), we first write down the resolvedness conditions of the first two 
premises: 

 (C ∩ B)uk = ∅, (C ∩ A)uk = ∅ (21) 

We then observe that (C ∩ B) ∩ (C ∩ A) = A ∩ B, given the third premise A ⊆ C. 
Next we need to apply the following result: 

 For any sets A and B, (A ∩ B)uk ⊆ Auk ∪ Buk. (22) 

(22) can be proved as follows: let x ∈ (A ∩ B)uk, then ║x ∈ A ∩ B║ = uk. This im-
plies that ║x ∈ A║ = uk or ║x ∈ B║ = uk. But this is equivalent to x ∈ Auk or x ∈ 
Buk, i..e. x ∈ Auk ∪ Buk. 

Combining the above results, we have (A ∩ B)uk ⊆ (C ∩ B)uk ∪ (C ∩ A)uk. By (21) 
we have (A ∩ B)uk ⊆ ∅ ∪ ∅, i.e. (A ∩ B)uk = ∅. The consequence of (20) thus  
obtains. 

Monotonicity inferences constitute a special subtype of entailments. Monotonicity 
is concerned with truth preservation of a quantified statement when the arguments of 
the statement are replaced by their supersets / subsets. Here are the definitions of in-
creasing and decreasing monotonicities: let Q(X1, … Xn) be a GQ with n arguments, 
then Q is increasing in the ith argument (1 ≤ i ≤ n) iff for all X1, … Xi, Xi’, … Xn such 
that Xi ⊆ Xi’, Q(X1, … Xi, … Xn)  Q(X1, … Xi’, … Xn). Q is decreasing in the ith 
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argument iff for all X1, … Xi, Xi’, … Xn such that Xi ⊇ Xi’, Q(X1, … Xi, … Xn)  
Q(X1, … Xi’, … Xn). Q is called monotonic in the ith argument iff it is either increas-
ing or decreasing in the ith argument. Otherwise, it is called non-monotonic in the ith 
argument. 

By treating WH-words as quantifiers, we may also talk about the monotonicities of 
WH-words. But the basic results turn out to be negative. First, according to the defini-
tion of entailments, “Which boy sang?” does not entail “Which boy sang Auld Lang 
Syne?”. The point is that even if you know exactly who sang, you may still not know 
exactly who sang Auld Lang Syne, because the latter interrogative requires more in-
formation than the former. In fact, we can show that8 

Proposition 1 All strongly exhaustive IQs studied in this paper are non-
monotonic in all of their arguments. 

Here I will only prove which is not decreasing. The remaining part of the proof and 
the proofs for other strongly exhaustive IQs are similar. I construct a counterexample 
model. Let U = At = {a, b, c}, Af = Auk = ∅, Bt = {b, c}, Bf = {a}, B’t = {b}, B’f = 
{a}, B’uk ={c}. It is obvious that this model satisfies B ⊇ B’ and (A ∩ B)uk = ∅. Thus, 
according to (4), ║which(A, B)║ = r. But since (A ∩ B’)uk ≠ ∅, we have ║which(A, 
B’)║ = ur. The above fact shows that which is not decreasing. 

I next consider the non-exhaustive IQs. According to (10) and (11), the resolved-
ness condition of each of these IQs is composed of two disjuncts. Due to this com-
plexity, it turns out that all these IQs are in general non-monotonic in all of their ar-
guments. For example, from the fact that all boys are children, we cannot deduce the 
following entailment: 

 (at least which)(BOY, SING)  (at least which)(CHILD, SING) (23) 

because it may be the case that the children in question consist of boys and girls, and it 
is known that no boy sang, while it is not known whether there was any girl who sang. 
In this case, the premise is resolved, but the consequence is not. The invalidity of (23) is 
mainly due to the fact that the resolvedness condition of the premise of (23) is com-
posed of two disjuncts: “either at least one boy is known to have sung, or it is known 
that no boy sang”. If we now discard the second disjunct, then the resulting premise 
entails that at least one child is known to have sung. Thus in this case, (23) is valid. 

The above discussion shows that the non-exhaustive IQs are in general non-
monotonic, but may become increasing in certain specific cases. In fact, we have: 

Proposition 2 Within the domain {<A, B>: (A ∩ B)f ≠ U}, (at least which) is 
increasing in both of its arguments, whereas within the domain {B: 
(PERSON ∩ B)f ≠ U}, (at least who) is increasing in its unique 
argument.  

                                                           
8  As a matter of fact, [7] contended that all IQs are decreasing. But his conclusion is based on 

his special definitions for monotonicities of IQs, which look very different from the usual de-
finitions for monotonicities as used in the GQT literature. I thus do not adopt his definitions 
and obtain a different conclusion. 
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Here I will only prove that within the domain {<A, B>: (A ∩ B)f ≠ U}, (at least 
which) is increasing in A. The remaining part of the proof and the proof for (at least 
who) is similar. Suppose ║(at least which)(A, B)║ = r and A ⊆ A’. According to (10), 
within the given domain, ║(at least which)(A, B)║ = r iff (A ∩ B)t ≠ ∅. So we must 
have (A’ ∩ B)t ≠ ∅. This implies that ║(at least which)(A’, B)║ = r, thus showing 
that (at least which) is increasing in A. 

4.2 Interrogative Equivalences 

Based on the definition of equivalences and the resolvedness conditions of IQs, we 
can easily derive (and prove) simple equivalences between IQs such as the following: 

 who(B) ⇔ which(PERSON, B) (24) 

 which(A, ¬B) ⇔ (all except which)(A, B) (25) 

These two equivalences are in accord with our intuition that “Who sang?” has the 
same meaning as “Which person sang?”9, whereas “Which boy did not sing?” has the 
same meaning as “All except which boy sang?” 

The equivalence in (25) involves “inner negation”, i.e. negation on an argument of 
the IQ. We now consider the notion of “outer negation”, i.e. negation of a question, 
and see if we can derive any equivalence10. Our first problem is whether we can make 
a proper definition for the negation of a question which should conform to the re-
quirement of the negation operator “¬” in the definition of bilattices set out in Section 
2, i.e. “¬” should preserve the order in the interrogative lattice. One way to achieve 
this is to define “¬” such that for any question q, 

 ║¬q║ = r ⇔ ║q║ = r (26) 

For example, [10, 11] stipulated that “¬” has null effect on questions, which is equiva-
lent to defining ¬q = q. But this definition runs counter to our intuition about nega-
tion. Therefore, I will try to provide alternative definitions for negated questions 
which satisfy (26). I will consider WH-questions and polar questions in turn. 

First consider a strongly exhaustive WH-question q asking for S, where S is a cer-
tain set. Its outer negation ¬q can be defined as another strongly exhaustive WH-
question asking for ¬S. Now the resolvedness condition of q is Suk = ∅. When Suk = 
∅, we have S = St and ¬S = Sf. Thus, St and Sf are the semantic denotations of the 
resolved CAs to ‘q’ and ‘¬q’, respectively. In contrast, when Suk ≠ ∅, we cannot de-
termine S and ¬S because we do not know whether the elements in Suk belong to S  
or ¬S. Thus, Suk = ∅ is both a resolvedness condition of q and ¬q, and so (26) is  
satisfied. 

                                                           
9  This is true only if we ignore the context-dependent effect of which. 
10 The formal definitions of inner negation and outer negation can be found in [12]. 
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However, under the above definition, the outer negation of a strongly exhaustive 
WH-question often results in an unnatural question. For example, the outer negation 
of “Which boy sang” is something like the following: 

 Which individual was not a boy who sang? (27) 

Note that the above is a rather strange way to form an interrogative. It is completely 
different from the natural interrogative “Which boy did not sing?”. While the latter 
asks for BOY ∩ ¬SING, the former asks for ¬(BOY ∩ SING). Since the outer nega-
tion of a strongly exhaustive WH-question is unnatural, no sensible equivalence can 
be derived for this type of questions11. 

Next consider a polar question whether(p). Its outer negation can be defined as the 
polar question whether(¬p)12. Now the resolvedness condition of whether(p) is ║p║ ≠ 
uk, which is equivalent to ║p║ ∈ {t, f}. This last statement is true iff ║¬p║ ∈ {t, f}, 
which is equivalent to ║¬p║ ≠ uk. Thus we have the following equivalence: 

 whether(p) ⇔ whether(¬p) (28) 

and (26) is satisfied. 
Under the above definition, the outer negation of a polar interrogative is its nega-

tive counterpart. For example, the outer negation of “Does John love Mary?” is 
“Doesn’t John love Mary?”, provided that this negative polar interrogative is not read 
as a rhetorical question. 

According to [9], we can derive logical equivalences by combining the inner nega-
tion and outer negation of different GQs. For example, [9] proposed the following 
valid inference schema: 

 Q1(A, {x: Q2(B, {y: P(x, y)})}) ⇔ (Q1¬)(A, {x: ¬Q2(B, {y: P(x, y)})}) (29) 

where Q1¬ represents the inner negation of Q1, whereas ¬Q2 represents the outer ne-
gation of Q2. If we now substitute a suitable IQ for Q1 and an ordinary GQ for Q2 in 
(29), we will obtain an equivalence relation involving both IQs and ordinary GQs, 
such as the following: 

which(A, {x: some(B, {y: P(x, y)})}) ⇔ (all except which)(A, {x: no(B, 
{y: P(x, y)})}) 

(30)

In the above, I have made use of the fact that (all except which) is the inner negation 
of which whereas no is the outer negation of some. The above schema may be exem-
plified by a concrete example: 

                                                           
11 In principle, it is also possible to define outer negation for non-exhaustive WH-questions. 

But the result is even more bizarre. Given limited space, I will not discuss this issue in this 
paper. 

12 Although “¬” appears inside the argument position of whether, whether(¬p) should be seen 
as the outer negation of whether(p), because whether(¬p) satisfies the definition of outer  
negation. 
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 Which boy has got some prize? ⇔ All except which boy has got no prize? (31) 

Note that the above is a sensible equivalence. 

4.3 Answerhood 

According to [10, 11], there is a special entailment relation between an interrogative 
and the SA to that interrogative. Let p be a proposition and q a question. Then we 
have the following13: 

Proposition 3 If ‘p’ is an SA to ‘q’, then p  q. 

To prove this, I have to consider several cases. When q is a polar question in the form 
whether(s), then p is either s or ¬s. Let ║p║ = t, which entails ║s║ = t or ║s║ = f. In 
either case, ║s║ ≠ uk. Then by (14), we have ║q║ = r. When q is a strongly exhaus-
tive WH-question whose resolvedness condition has the form Suk = ∅, p has the form 
S = St. Now let ║p║ = t, i.e. ║S = St║ = t. According to the definition of St, we have 
for all x, ║x ∈ St║ is either equal to t or f. This is equivalent to (St)uk = ∅. But since S 
= St, we have Suk = ∅. Thus the resolvedness condition of q is satisfied, and so ║q║ = 
r. When q is a non-exhaustive WH-question whose resolvedness condition has the 
form St ≠ ∅ ∨ Sf = U, p has the form X ⊆ S (where X ⊆ St ∧ X ≠ ∅) or S = ∅. Now 
let ║p║ = t, i.e. either ║X ⊆ S║ = t or ║S = ∅║ = t. In the former case, we have St ≠ 
∅. In the latter case, we have Sf = U. In either case, the resolvedness condition of q is 
satisfied, and so we have ║q║ = r. 

Proposition 3 shows that p  q is a necessary condition for ‘p’ is an SA to ‘q’. In 
other words, we can show that ‘p’ is not an SA to ‘q’ by showing that p # q. For 
instance, we can show that “John sang” is not a resolved SA to “Which boy sang?” by 
proving that “John sang” (assuming that “John” is a boy) does not entail “Which boy 
sang?”. To prove this, we may construct a counterexample model. Let U = BOYt = {j, 
b}, BOYf = BOYuk = ∅, SINGt = {j}, SINGf = ∅, SINGuk = {b}. With respect to this 
model, on the one hand, we find that ║j ∈ SING║ = t, i.e. “John sang” is true. On the 
other hand, we also find that ║b ∈ BOY ∩ SING║ = uk, which shows that (BOY ∩ 
SING)uk ≠ ∅. According to (4), we have ║which(BOY, SING)║ ≠ r. Thus, “John 
sang” does not entail “Which boy sang?”, and so the former is not a resolved SA to 
the latter. 

5 Conclusion 

In Section 1, I have mentioned 3 adequacy criteria which an adequate framework for 
interrogatives should satisfy. It is now time to see if the semantic model developed in 
this paper satisfies these criteria. 

                                                           
13 The central idea of the following proposition is from [11]. But the proof is my own and is 

presented in terms of the definitions and results in this paper. 
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It is clear that the semantic model is materially adequate, as the notions of answer-
hood, entailments and equivalences are all definable under the model. Not only have I 
provided the resolvedness conditions for various types of interrogatives, but I have 
also provided explicit expressions for the semantic denotations of the CAs and SAs 
corresponding to these interrogatives. 

The model is also formally adequate, as the semantic notions are interpretable as 
set-theoretic relations / operations. This point is particularly obvious as the resolved-
ness conditions and the semantic denotations of the CAs and SAs corresponding  
to various types of interrogatives are all expressed as set-theoretic relations or  
operations. 

Finally, the model is also empirically adequate in that certain inferential relations 
that are intuitively correct are provable under the model. These include the interroga-
tive entailments and equivalences recorded in Section 4 as well as Propositions 1 and 
2 concerning the monotonicities of IQs. 
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Abstract. We propose a new dynamic hybrid logic to reason about
social networks and their dynamics building on the work of “Logic in the
Community” by Seligman, Liu and Girard. Our framework distinguishes
between the purely private sphere of agents, namely their mental states,
and the public sphere of their observable behavior, i.e., what they seem
to believe. We then show how such a distinction allows our framework
to model many social phenomena, by presenting the case of pluralistic
ignorance as an example and discussing some of its dynamic properties.

In recent years, information dynamics and belief formation in groups of inter-
acting agents have been widely studied within the field of logic [1]. The topic has
also been extensively studied for agents situated in a network structure within
the field of social network analysis [2, 3]. However, there has been very little
information flow between these two fields. A recent exception is the work on
influence in a community and peer pressure effects by Patrick Girard, Fenrong
Liu, and Jeremy Seligman [4–8]. This paper attempts to continue building the
bridge between the two fields.

A possible explanation for the lack of interaction between logic and social
network analysis is their very distinct paradigmatic cases of inspiration. In social
network research, the inspiration mainly comes from diffusion phenomena such
as the spreading of diseases. In the logic tradition, rational agents are taken
to be equipped with unlimited higher-order reasoning powers aiming for the
truth. The work of Girard, Liu, and Seligman goes in both directions. On the
one hand, their initial work [4–6] presents an extremely simple model of how
knowledge, belief and preferences change under influence within social networks.
On the other hand, their latest work [7, 8] aims at fully describing information
dynamics in networks of agents with unlimited higher-order reasoning power.

Our goal is to design a framework to model real-life social phenomena and
their corresponding information dynamics. As we will show, the setting of [6] can-
not model situations involving a discrepancy between what the agents actually
believe and what they seem to believe. Yet, we claim that the very possibility of
such a discrepancy is an important feature of many social phenomena. However,
we do not want to turn to much more complex frameworks such as [7] either.
Therefore, we will build on the setting of [6] to design a framework which remains
relatively simple but is capable of capturing more complex social phenomena.

In the next section, we briefly recall the “one-layer” framework of Seligman,
Girard and Liu and we explain why it cannot model some particular social

D. Grossi, O. Roy, and H. Huang (Eds.): LORI 2013, LNCS 8196, pp. 68–81, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



A Two-Tiered Formalization of Social Influence 69

phenomena. In Section 2, we give an example of such a phenomenon, known
from social psychology as pluralistic ignorance – a situation where all individuals
of a group believe that their private attitudes differ from the ones of the rest
of the group despite the fact that everyone in the group acts identically. This
example illustrates the need for a more fine-grained definition of social influence
which we then offer, by distinguishing what agents privately believe from how
they publicly behave. In Section 3, we introduce a new general hybrid logic to
reason about network dynamics taking into account these two different layers.
Finally, in Section 4, we model the case of pluralistic ignorance and characterize
some of its dynamic properties within this new framework.

1 The Network Logic of Girard, Liu, and Seligman

In [6], a hybrid logic in the original Facebook logic style of [4] is designed to model
belief change induced by social influence in a community. The social network
structure is represented by a set of agents and an irreflexive and symmetric
relation (as in a real Facebook friendship) between them. A modal operator F
quantifies over friends (or accessible agents): F reads “all of my friends” and
its dual, 〈F 〉, “some of my friends”. Some hybrid logic machinery is also used:
nominals, to refer to the agents, and operators @i, to switch the evaluation
point to the unique agent named by i. Each agent is always in one of the three
following doxastic states, relatively to a given proposition ϕ: either she believes
that ϕ (Bϕ), or she believes that ¬ϕ (B¬ϕ), or she is undecided about ϕ: (Uϕ
– an abbreviation of ¬Bϕ ∧ ¬B¬ϕ). Sentences are interpreted indexically at an
agent: if p means “I am blonde”, BFp reads “I believe that all my friends are
blonde” and FBp reads “each of my friends believes that s/he is blonde”.

This static framework is combined with an influence operator to represent how
belief repartition changes in a community, according to the following peer pres-
sure principle: every agent tends to align her belief with the ones of her friends.
The notions of Strong Influence and Weak Influence are defined, corresponding
respectively to the belief changing operators of revision and contraction in the
tradition of [9]. An agent is strongly influenced (SI) to believe ϕ when all of her
friends (and at least one) believe that ϕ:

SIϕ := FBϕ ∧ 〈F 〉Bϕ

An agent under strong influence with ϕ will come to believe ϕ too (assuming
that revision is successful) whatever her initial attitude towards ϕ. An agent is
already weakly influenced (WI) with ϕ when some of her friends believe that ϕ
and none of her friends believe that ¬ϕ:

WIϕ := F¬B¬ϕ ∧ 〈F 〉Bϕ

Under weak influence, if the agent was undecided or if she already believed that
ϕ, nothing changes; but if she believed that ¬ϕ, she will drop her belief and
become undecided.
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This simple framework makes it unproblematic to identify the stability and
stabilization conditions of social-doxastic configurations, both of which can be
characterized directly in the language of friendship and belief. However, this
simplicity is pricey: even though this is not explicitly mentioned as such, it
relies on an extremely strong assumption: agents’ belief states are influenced
directly by their friends’ belief states. Thus, either all agents have direct access to
their friends’ beliefs (as mind-readers would), or their observed behavior always
reflects their private beliefs, i.e., there is no difference between what they seem to
believe and what they actually believe. This transparency assumption (all agents
always automatically know what their friends believe) trivially rules out the
modeling of situations where agents act in a way which does not reflect their
mental states.1

Similar issues arise for preferences. Indeed, even if we agree that you are
influenced in the very similar way described in [5], if you end up wearing a hat
rather than none, it is probably not directly because all of your friends privately
prefer to wear one too, but because they act as if they did. They could all be
pretending because they all observe that everybody else is wearing a hat, and
everyone could be following a trend that nobody actually likes. This is a crucial
component of social science if we think for instance about real life cases where
agents are enforcing a norm which they individually do not agree with. It is
precisely because they do not have access to each other’s preferences and beliefs
that a collective behavior can result which goes against the opinions of most or
even all agents, considered individually.2 In the next section we will consider a
class of similar situations called pluralistic ignorance and develop a two-layer
notion of social influence to represent the distinction between what an agent
privately believes and what beliefs she publicly expresses.

2 Pluralistic Ignorance and a Two-Layer Definition
of Influence

The term “pluralistic ignorance” originates in the social and behavioral sciences
in the work Allport and Katz [11]. It can be roughly defined as a situation where
each individual of a group believes that her private attitude towards a proposition
or norm differs from the rest of the group members’, even though everyone in
the group acts identically. For instance, after a difficult lecture which none of
the students understood, it can happen that none of them asks any question
even though the teacher explicitly requested them to do so in case they did not
understand the material. There are numerous examples of pluralistic ignorance
in the social and psychological literature such as, in addition to this classroom

1 Such an additional layer is also necessary for cases involving higher-order beliefs,
since the complexity of such cases usually arises precisely from the fact that there
might be a difference between what agent a believes that agent b believes and what
agent b actually believes. However, we will not pursue the issue of higher-order beliefs
any further in this paper.

2 See for instance [10] on this issue.



A Two-Tiered Formalization of Social Influence 71

example, drinking among college students, attitudes towards racial segregation,
and many more.3

Even though different definitions have been given in the literature [16–18, 11,
19], we will follow [19] and define pluralistic ignorance as a collective discrepancy
between the agents’ private attitudes and their public behavior, namely a situation
where all the individuals of a group have the same private attitude towards a
proposition ϕ (say a belief in ϕ), but publicly “display” a conflicting attitude
towards ϕ (say a belief in ¬ϕ).

From a dynamic perspective, pluralistic ignorance is often reported as being
both a robust and fragile phenomenon. It is robust in the sense that, if nothing
changes in the environment, the phenomenon might persist over a long period of
time – the college students might keep obeying an unwanted drinking norm for
generations. On the other hand, it is fragile in the sense that if just one agent
announces her private belief, it may be enough to dissolve the phenomenon – if
just one student of the classroom example starts to ask questions about the dif-
ficult lecture the rest of the students might soon follow. The two-layer definition
of social influence which we develop below will allow us to explain how pluralistic
ignorance may dissolve in a community by cascading effects and thus allow us
to illustrate both its robustness and its fragility. Moreover, in Section 4 we will
show formal results about these dynamic properties of pluralistic ignorance.

To reflect the fact that agents do not have access to what the others privately
believe, we introduce a distinction between private belief, which we name “in-
ner belief” (IB) and public (or observable) behavior, which we name “expressed
belief” (EB). We define two undecidedness or “unbelief” notions accordingly:

UIBϕ := ¬IBϕ ∧ ¬IB¬ϕ (inner unbelief)

UEBϕ := ¬EBϕ ∧ ¬EB¬ϕ (expressed unbelief)

To define our new influence operator, we make the following simplifying as-
sumption: from the subjective perspective of each agent, what matters (what
influences her) is what she herself privately believes and what the others seem
to believe. This reflects the fact that influence occurs (at least in good part) at
the behavioral (observable, visible, displayed) level. We now redefine strong and
weak influence accordingly: 2-layer strong influence (SI2) with respect to ϕ is
the situation where all (and some) of my friends express the belief that ϕ.

SI2 := FEBϕ ∧ 〈F 〉EBϕ

In this case, whatever my own initial (inner and expressed) state, I end up
expressing the belief that ϕ (EBϕ). Similarly, 2-layer weak influence (WI2) with

3 An extensive study of the classroom phenomenon was done by Miller and McFarland
[12]. In a study of college students, Prentice and Miller [13] found that most students
believed that the average student was much more comfortable with alcohol norms
than they themselves were. Fields and Schuman [14] conducted a similar study, which
showed that on issues of racial and civil liberties most people perceived others to be
more conservative than they actually were. O’Gorman and Garry [15] found a similar
tendency among whites to overestimate other whites’ support for racial segregation.
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respect to ϕ is the situation where some of my friends express the belief that ϕ
and none of them expresses the belief that ¬ϕ.

WI2 := 〈F 〉EBϕ ∧ F¬EB¬ϕ

As a result, I will express the belief that ϕ (EBϕ) if I was initially privately
undecided about ϕ (UIB) or if I already privately believed that ϕ (IBϕ), and I
will act as if I was indifferent (UEBϕ) if I initially privately believed ¬ϕ (IBϕ).

According to these definitions, my reaction depends on asymmetrical informa-
tion: what I privately believe and what the others seem to believe. This reflects the
fundamental asymmetry between the first and third person perspectives which
is needed to model pluralistic ignorance. It is symmetrical in that everybody
reacts in the same way and in that everybody interprets the behavior of others
in the same way; but it is asymmetric in that people don’t have access to others’
mental states and have a “privileged” access to their own.

Inner state 〈F 〉EBϕ 〈F 〉EB¬ϕ 〈F 〉EUϕ Type 1 Type 2 Type 3

1 IBϕ � EBϕ � EUϕ � EBϕ

2 IB¬ϕ 1 1 1 � EB¬ϕ � EUϕ � EB¬ϕ
3 IUϕ � EUϕ � EUϕ � EUϕ

4 IBϕ � EBϕ � EUϕ � EBϕ

5 IB¬ϕ 1 1 0 � EB¬ϕ � EUϕ � EB¬ϕ
6 IUϕ � EUϕ � EUϕ � EUϕ

7 IBϕ � EBϕ � EBϕ � EBϕ

8 IB¬ϕ 1 0 1 � EUϕ � EUϕ � EUϕ

9 IUϕ � EUϕ � EUϕ � EUϕ

10 IBϕ

11 IB¬ϕ 1 0 0 � EBϕ � EBϕ � EBϕ

12 IUϕ

13 IBϕ � EUϕ � EUϕ � EUϕ

14 IB¬ϕ 0 1 1 � EB¬ϕ � EB¬ϕ � EB¬ϕ
15 IUϕ � EB¬ϕ � EB¬ϕ � EB¬ϕ
16 IBϕ

17 IB¬ϕ 0 1 0 � EB¬ϕ � EB¬ϕ � EB¬ϕ
18 IUϕ

19 IBϕ � EBϕ � EBϕ � EUϕ

20 IB¬ϕ 0 0 1 � EB¬ϕ � EB¬ϕ � EUϕ

21 IUϕ � EUϕ � EUϕ � EUϕ

22 IBϕ � EBϕ � EBϕ � EBϕ

23 IB¬ϕ 0 0 0 � EB¬ϕ � EB¬ϕ � EB¬ϕ
24 IUϕ � EUϕ � EUϕ � EUϕ

Fig. 1. Influence on three different types of agents
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Figure 1 lists the 24 possible situations of an individual among her friends,
from her perspective, and describes her (observable) reaction. Her private atti-
tude appears in the first column, the possible repartition of her friends’ behaviors
(expressed belief states) in columns 2,3,4 (in a truth table format – 1 for “true”
and 0 for “false”), and her resulting behavior in one of the last three columns
(depending of which type of agents we are considering). It is easy to see that our
strong influence (rows 10 to 12 and 16 to 18 of the table) is still similar to the
one from Seligman et al. but defined on the level of “expressed belief” instead
of what was simply called “belief”. However, weak influence (when not strong,
rows 7 to 9 and 15 to 18) now results in a different state depending on the initial
private belief state of the agent herself (see for instance rows 7 and 8).

There are two possible cases in which I have friends (unlike in rows 22 to
24) but I am neither strongly nor weakly influenced: whenever all of my friends
express undecidedness (rows 19 to 21) and whenever some of them express the
belief that ϕ while some express the belief that ¬ϕ (rows 1 to 6). In the setting
of [6], nothing happens, i.e, the agent continues to believe whatever she did
before. In our setting, we have to make a choice as to what the agent expresses.
The simplest one is to assume that in both these cases, agents express their
true private belief (act sincerely). This corresponds to agent of type 1 in the
table. However, some agents might be more inclined to follow the others, and
in different ways. Types 2 and 3 in the table are examples of other possible
types of agents which still comply with our definition of two-layer strong and
weak influence. If I am a type 2 agent, I will be sincere (i.e., my expressed belief
state will correspond to my inner belief state) whenever I face no opposition.
For instance, if I privately believe that ϕ, I will express this belief if none of my
friends expresses a belief in ¬ϕ. And if I am a type 3 agent, I will be sincere
whenever some of my friends express support for my private belief state, I will
for instance express my inner belief in ϕ if some of my friends express a belief
in ϕ too. Type 1 agents are thus simply the ones that are sincere in both cases:
when they get some support and when they face no opposition.

We will see in section 4 how the dynamic properties of social phenomena
like pluralistic ignorance depend on the type of agents involved but let us first
introduce the formal framework we will use to represent changes of the (multi-
layered) state of agents in a social network.

3 A Hybrid Network Logic

In this section, we introduce a hybrid logic to reason about networks and their
dynamics, which will allow us to model cases like pluralistic ignorance. We start
with a static logic and then move on to give the full dynamics.

In section 2 we introduced two characteristics of each agent, namely her inner
(private) belief state and her expressed belief state. Each of the two could be of
three kinds. For instance, the inner belief state could be inner belief, inner non-
belief, or inner undecidedness. We will generalize this idea by assuming that each
agent has n different characteristics, each of which is taken from a finite set of
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possible values. More formally, we assume a finite set of variables/characteristics
{V1, V2, ..., Vn}, where each variable Vl takes a value from a finite set Rl, for each
l ∈ {1, ..., n}.

The atomic propositions of our language will then be of the form

Vl = r,

for an l ∈ {1, . . . , n} and an r ∈ Rl. We will refer to these as characteristic
propositions and we will refer to the set of all characteristic propositions as
PROP. If the proposition Vl = r is true of an agent, we will read it as the agent
possessing the particular characteristic r of type Vl.

4

In addition to characteristic propositions, we will assume a countable infinite
set of nominals (NOM) used as names for agents in possible networks, just as
nominals are used to refer to possible states in traditional hybrid logic [20]. The
syntax of our static language is then be given by:

ϕ ::= p | i | ¬ϕ | ϕ ∧ ϕ | Fϕ | Gϕ | @iϕ ,

where p ∈ PROP and i ∈ NOM. We will use the standard abbreviations for ∨,
→, and ↔ and denote the dual operator of F by 〈F 〉 and the dual of G by
〈G〉. The intuitive meaning of the F and @i operators were already discussed in
Section 1. The G-operator is the global modality quantifying over all agents in
the network and Gϕ is read as “all agents (satisfy) ϕ”.

We now move on to define the semantics of our language. A (network) model
is a tuple M = (A,∼, g, ν), where A is a non-empty set of agents, ∼ is a binary
relation on A representing the network structure5, g : NOM → A is a function
assigning an agent to each nominal, and ν : A → V is a valuation assigning
characteristics to all agents in the network. Here V denotes the set of all assign-
ments s : {1, ..., n} → R1 × ...×Rn. Hence, an assignment assigns a value in Rl

to each variable Vl and given an agent a ∈ A, ν(a) is an assignment assigning
characteristics to a for all variables V1, ..., Vn.

Given a M = (A,∼, g, ν), an a ∈ A and a formula ϕ, we define the truth of
ϕ at a in M inductively by:

M, a |= Vl = r iff ν(a)(l) = r
M, a |= i iff g(i) = a
M, a |= ¬ϕ iff it is not the case that M, a |= ϕ
M, a |= ϕ ∧ ψ iff M, a |= ϕ and M, a |= ψ
M, a |= Gϕ iff for all b ∈ A;M, b |= ϕ
M, a |= Fϕ iff for all b ∈ A; a ∼ b implies M, b |= ϕ
M, a |= @iϕ iff M, g(i) |= ϕ

Satisfiability, validity etc. are as usual. To obtain the full dynamic language,
we add dynamic modalities, which, as in standard Dynamic Epistemic Logic

4 Characteristic propositions are obviously a generalization of classical propositional
variables.

5 If we are talking about undirected networks, we will assume that ∼ is symmetric.
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[21, 22], come from event models. On the syntactic level, given an event model E
and a formula ϕ, we will add the construct [E ]ϕ to our language. Event models
are defined by simultaneous induction with the syntax of the language: An event
model is a pair E = (Φ, post) consisting of a finite set Φ of pairwise inconsistent
formulas of our language and a post-condition function post : Φ→ V . The set Φ
will be referred to as “preconditions”, and given a precondition ϕ ∈ Φ, we will
call post(ϕ) ∈ V the post-condition of ϕ. The intuition behind this is that if an
agent satisfy a ϕ ∈ Φ (in which case, ϕ is necessarily unique), then after the
event E , a will have the characteristics specified by post(ϕ).

As in standard Dynamics Epistemic Logic, the semantics of formulas involving
event models requires a definition of product update of models with event models.
Given a model M = (A,∼, g, ν) and an event model E = (Φ, post), the product
update is M⊗E = (A,∼, g, ν′), where ν′ is defined by:

ν′(a) =

{
post(ϕ) if there is a ϕ ∈ Φ such that M, a |= ϕ

ν(a) otherwise
(1)

Then, the semantics of a formula of the form [E ]ϕ is given by:

M, a |= [E ]ϕ iff M⊗E , a |= ϕ

This way, we obtain the semantics of our full dynamic logic and satisfiability,
validity etc. are extended to this in the obvious way.6

Given a model M = (A,∼, g, ν) and an event model E = (Φ, post), let

M⊗k E :=
(
...((M⊗E)⊗ E)⊗ ...

)
⊗ E︸ ︷︷ ︸

k times

for every k ∈ N0.

An interesting question is whether the network stabilizes, that is if successive
updates by E will result in a network model that does not change under update
by E , i.e. a fixed-point of E . Let us formally define this.

Definition 1. A network model M = (A,∼, g, ν) is said to be stable under the
dynamics of an event model E = (Φ, post) if M =M⊗E. M is said to stabilize
under the dynamics of E if there is a k ∈ N such that M⊗k E is stable.

We can express in our language that a network is stable. Given a model
M = (A,∼, g, ν), the assignment ν(a) completely describes the characteristics
of a, thus the complete characteristics of a is expressed by:

ϕν(a) :=

n∧
l=1

Vl = ν(a)(l).

6 A sound and complete Hilbert-style proof system for the logic can be obtained from
the authors.
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Moreover, note that the set of all possible assignments V is finite. Thus, we can
quantify over it in our language and express that a network model is stable by7:

ϕstable :=
∧
s∈V

(
ϕs → [E ]ϕs

)
. (2)

Then, it is easy to see that:

Lemma 1. A network model M is stable if, and only if,

M |= ϕstable.

4 Pluralistic Ignorance Revisited

We will use the logic of the previous section to model pluralistic ignorance.
We assume that everyone in a “group” is connected to everyone else through
some finite number of steps (a “community” in the sense of [4]). In other words,
we will work with connected network models, i.e, networks containing a unique
community. Moreover, we will assume that the ∼ relation is symmetric in the
rest of the section.

To begin with, we consider two variables VI and VE as corresponding respec-
tively to inner belief and expressed belief. Moreover, we assume that RI = RE =
{Bϕ,B¬ϕ,UPϕ}, such that VI = Bϕ corresponds to an inner belief in ϕ, for
instance. Note that “Bϕ” is a value assigned to a variable, and as such, the
“ϕ” here is NOT a formula of our formal language – ϕ will only occur as part
of a value for a variable. However, we write IBϕ as a short hand notation for
VI = Bϕ etc..

Pluralistic ignorance, in the sense that everybody inner believes ϕ but ex-
presses a belief in ¬ϕ, can be formalized by:

PIϕ := G(IBϕ ∧ EB¬ϕ) (3)

If PIϕ is true in a network modelM we will say thatM is in a state of pluralistic
ignorance.

To investigate how social influence affects pluralistic ignorance we need to de-
fine an event model that captures the two-layer influence described in Section 2.
This is fairly straightforward given the table of Figure 1. For now we assume that
all agents are of type 1 mentioned in Section 2. We will return to considering
other types of agents later on. For each of the 24 rows, the conjunction of the

7 Another way of expressing that a network model is stable would be to follow the line
of [6]. If VL = r is true of some agent and the network is stable, this means that none
of the preconditions ϕ ∈ Φ of E for which post(ϕ) would change the value of Vl can be
satisfied at the agent. Then, for every full characteristic we can write the conjunction
of the negation of all preconditions that would change this characteristic. Finally,
we can take the disjunction over all possible full characteristics and thereby obtain
a formula for a network being stable.
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first four columns will be a precondition. These 24 preconditions will clearly be
pairwise inconsistent. For instance, the fourth row gives the precondition formula

IBϕ ∧ 〈F 〉EBϕ ∧ 〈F 〉EB¬ϕ ∧ ¬〈F 〉EUϕ.

The corresponding post-condition will be the assignment assigning Bϕ to VI

and Bϕ to VE as specified by the first and the fifth column of the table. The
resulting event model will be denoted I.

As claimed in Section 2, pluralistic ignorance constitutes a “robust” state, or
“equilibrium”, in the sense that if a network is in a state of pluralistic ignorance
it will stay in this state. We now formalize this in the following lemma:

Proposition 1. A connected network model in a state of pluralistic ignorance
is stable and the condition for being stable reduces to

PIϕ→ [I]PIϕ. (4)

Proof. If a network model M satisfies PIϕ, then clearly every agent satisfies
the assignment that assigns Bϕ to VI and B¬ϕ to VE and thus the truth of (2)
reduces to the truth of (4). Now, an inspection of row 16 in the table of Figure 1
shows that all agents will keep expressing a belief in ¬ϕ and keep their inner
belief in ϕ after an update with I. Thus, PIϕ will remain true after the update,
i.e. [I]PIϕ is true and the network is stable. ��

The “fragility” component of pluralistic ignorance is a little more complex. If
just one agent announces her private belief this may “dissolve” the phenomenon
or it may not, depending on the structure of the network. We take pluralistic
ignorance (in the form of (3)) to be dissolved when it is true that G(IBϕ∧EBϕ).
Assume that the network model M is in a state of pluralistic ignorance, i.e.
M satisfies PIϕ. Now assume that some agent (maybe by mistake) suddenly
expresses her true inner belief in ϕ. Let us refer to this agent by the nominal i.
Then the following is now satisfied in M

UPIϕ := @i(IBϕ ∧ EBϕ) ∧G
(
¬i→ (IBϕ ∧EB¬ϕ)

)
.

A model satisfying UPIϕ (where i might be replaced by another nominal) will
be said to be in a state of unstable pluralistic ignorance.8 How M will evolve
under the influence event I depends on several factors. First, consider the case
where i will keep expressing her true belief.9 Then, ifM is connected (and finite)
it is easy to show that after a finite number of updates by the influence event I,
M will end up in a stable state where everyone expresses their true beliefs: By

8 The reader should not be confused by the name of “unstable pluralistic ignorance”,
which does not refer to a particular case of pluralistic ignorance, but to a state
of “almost” pluralistic ignorance, a state which minimally differs from it at the
observable level, by one agent expressing her private beliefs, when the others do not.

9 Formally, we have to make a small change to I to make sure that i will not change
her expressed belief.
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inspecting row 4 in the table of Figure 1, it follows that after one update by I
all of i’s friends will express a belief in ϕ and that after another update with I
the friends of friends of i will also express their true belief. In this way, a cascade
effect will spread the change throughout the network and result in a stable state
where everyone expresses the same true belief.

Now, if i is only made to express her true belief for a single round, things get
more complicated as she will, in the next round already, revert to expressing a
belief in ¬ϕ by the influence event I (as all of i’s friends originally expressed a
belief in ¬ϕ). For this reason, the network might keep “fluctuating” and never
stabilize. Here is an example of the later case, where i refers to agent a10:

a
EBϕ
IBϕ

b
EB¬ϕ
IBϕ

�

I
a

EB¬ϕ
IBϕ

b
EBϕ
IBϕ

�

I
a

EBϕ
IBϕ

b
EB¬ϕ
IBϕ

�

I . . .

The above example shows that an unstable state of pluralistic ignorance will
not necessarily stabilize, and hence not necessarily result in a state where plural-
istic ignorance is dissolved. Below, we give a characterization of the ones which
do result in such a state, given our assumption that all agents are of type 1.

Proposition 2. Let M = (A,∼, g, ν) be a finite, connected, symmetric net-
work model in a state of unstable pluralistic ignorance. Then the following are
equivalent:

(i) After a finite number of updates by the influence event I, M will end up in
a stable state where pluralistic ignorance is dissolved, i.e. there is a k ∈ N
such that M⊗k I |= G(IBϕ ∧ EBϕ) and M⊗k I =M⊗k+1 I.

(ii) There is an agent that expresses her true belief in ϕ for two rounds in a
row, i.e. there is an a ∈ A and a k ∈ N such that M⊗k I, a |= EBϕ and
M⊗k+1 I, a |= EBϕ.

(iii) There are two agents that are friends and both express their true beliefs in
ϕ in the same round, i.e. there are a, b ∈ A and a k ∈ N such that a ∼ b,
M⊗k I, a |= EBϕ, and M⊗k I, b |= EBϕ.

(iv) There are two agents that are friends and have paths of the same length to
the agent named by i, i.e. there are agents a, b ∈ A and a k ∈ N such that
a ∼ b, M, a |= 〈F 〉ki, and M, b |= 〈F 〉ki.

(v) There is a cycle in M of odd length starting at the agent named by i, i.e.
there is a k ∈ N such that M |= @i〈F 〉2k−1i.

(vi) There is a cycle in M of odd length, i.e. there is a k ∈ N and a1, a2, ...,
a2k−1 ∈ A such that a1 ∼ a2, a2 ∼ a3, ..., a2k−2 ∼ a2k−1, a2k−1 ∼ a1.

The proof of this proposition is a little lengthy and will be omitted here,
however, it can be obtained from the authors.

10 Here we regain the same fluctuation case that was given in [6], except that it now
occurs, as wanted, at the level of expressed belief instead of “belief”.
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By this proposition (and its proof) we can also come up with an upper bound
of the number of update-steps needed for a network model in an unstable pluralis-
tic ignorance state to dissolve, if it stabilizes. If a network modelM = (A,∼, g, ν)
stabilizes it follows from (iv) that there are a, b ∈ A and a k ∈ N such that a ∼ b
and a and b both have a path of length k to g(i). Choose the smallest such k.
For all c ∈ A, let m(c) be the length of the shortest path to either a or b. Then,
by inspecting the proof it is not hard to see that M stabilizes in a state where
pluralistic ignorance is dissolved in at most k +maxc∈A{m(c)} steps.

As mentioned in section 2, the type of agents might also influence whether
unstable pluralistic ignorance will dissolve. In the above we have focused on
what happens when agents are of type 1. If one wants all agents to be of another
type, then one can simply change the definition of I. First, note that agents in a
state of pluralistic ignorance will always be strongly influenced and since all the
three different kinds of agents react the same to strong influence, Proposition 1
remains true for all types.

Now, let us consider a network of type 3 agents (expressing their inner belief
whenever they have some support for it). The lines 1, 4, 7, and 10 of Figure 1
will stay unchanged. Thus, Proposition 2 will remain true for this type of agents.
The only case left to consider is therefore whether Proposition 2 holds for type
2 agents (expressing their inner belief whenever they face no opposition). We
leave this as an open problem.

Another interesting case would be networks with mixed types of agents. Our
framework can be used to model this as well. We simply add another variable
VT to keep track of the agents’ types, i.e. we take RT = {1, 2, 3}. Now, we can
modify the definition of I such that in the lines where the agent’s type affects
what they will do we split each line into three new lines distinguished by the
extra preconditions of the form VT = k. Then we change the corresponding
post-conditions accordingly. In this way, a new event model I ′ can be defined,
resulting in an influence dynamics that also depends on the agents types. We
will leave the details of this for future research.

Even though we have shown that pluralistic ignorance is stable, there is a sense
in which the phenomenon will not continue forever. The discrepancy between
one’s inner beliefs and one’s expressed beliefs is a conflict which might have
negative consequences for the agents and as such they may very well try to
resolve it. This is a well studied issue in the social and psychological literature
on pluralistic ignorance. It is usually assumed [13] that the agents have three
different ways in which they can act to resolve this conflict: They can either
internalize the perceived view of their peers, i.e. change their private beliefs,
attempt to change the perceived view of their peers, or alienate themselves form
their peers. In our setting, the first option simply corresponds to the agents
changing their inner beliefs in ϕ to inner beliefs in ¬ϕ. the only way they can
try and change the opinion of others is by their expressed belief. Thus, the most
natural interpretation of the second option would be that the agents will start
expressing their true beliefs in ϕ. Finally, one interpretation of the action of
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alienating oneself from one’s peers would be to remove friendship links to all
agents that express a belief in ¬ϕ.

Different agents might choose different reactions to a conflict between their
inner and expressed beliefs. Therefore, it would be natural to add a new variable
VA to keep track of what action an agent will chose in case of such a conflict.
Moreover, it would be natural to assume that agents only try to eliminate this
conflict after experiencing it for some time, i.e., for a given number of rounds.
We could also capture this by adding another variable that acts as a “counter”
of rounds. These new variables can then be included in the preconditions of
the influence event I. For the first two options it is obvious what the new post-
conditions should be, but for the third option we need an extension of our notion
of event model such that it can also change the links in a network model. We
believe this can be done, but we leave the details for future research.

5 Conclusion

We developed a hybrid logic to describe networks dynamics. Obtained as a for-
malization and extension of the simple framework of [6] with added dynamic
modalities and event models, this new setting allows for agents to have multiple
(changing) characteristics.

We extended the notion of social influence from [6] to a two-layered version,
distinguishing between what agents actually (privately) believe and what they
express to their friends. We argued that this distinction is a component of many
social phenomena, and discussed the case of pluralistic ignorance – a phenomenon
widely discussed in social psychology and behavioral economics.

We then formalized pluralistic ignorance and some of its dynamic properties in
our new framework. Finally, we obtained a characterization result of the network
configurations for which pluralistic ignorance will dissolve into a stable state
where everybody agrees into expressing what they truly believe.
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Elimination Algorithms from Regret Viewpoint
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Abstract. In this paper, we re-explain four types of players’ rational-
ity from the viewpoint of strategy-choosing regret, and we provide a uni-
fied logic of epistemic characterization of the four iterated elimination al-
gorithms IESD (Iterated Elimination Strictly Dominated strategy), Ra-
tionalizablity (also called iterated elimination strategies that are never
best responses), IA (Iterated Admissibility) and IERS (Iterated Elimi-
nation Regret-dominated Strategy). The unified characterization extends
van Benthem’s work of linking game theory with epistemic logic and pro-
vides further insights into exploring the rationale of these iterated elim-
inating algorithms. In addition, to clarify the proof-theoretic principles
assumed in players’ reasoning, we also develop an axiomatic presentation
for our results.

1 Introduction

It is well-known in game theory that rationality implies that every player is
motivated by maximizing his own utilities. Thus, every player should be able
to calculate the result of every strategy profile. So, the utility maximization is
one of the customary criterions for judging whether or not a player is rational in
game theory. However, the criterion of rationality is also one of the factors that
lead to many differences between predicted outcomes (Nash Equilibriums [18])
and empirical observations in many games, such as in the Traveler Dilemma [5],
the Centipede game [17] and so on. Actually, if a player considers every strategy
of his opponents, whichever strategy he chooses, he would feel regret more or
less. That is, the regret consideration can implicitly play an important role in the
players’ decision making in a game. In this sense, one of reasons why a rational
player will not choose a strictly dominated strategy can be that there must be
a better strategy for him in a game, which can mitigate his regret irrespective
of how his opponents move. Moreover, it has been justified that a player feels
inclined to choose a strategy min-maximizing his regret value in many games [14].

Thus, what can we conclude if we reconsider the meaning of players’ ratio-
nality in a game from a strategy-choosing regret perspective? To answer this
question, we construct in this paper a unified epistemic game structure for the
four customary iterated elimination algorithms, i.e., IESD (Iterated Elimina-
tion Strictly Dominated strategy), Rationalizablity (also called iterated elim-
ination strategies that are never best responses), IA (Iterated Admissibility)

� Corresponding author.

D. Grossi, O. Roy, and H. Huang (Eds.): LORI 2013, LNCS 8196, pp. 82–95, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Epistemic Analysis, Iterated Elimination Algorithms, Regret Viewpoint 83

and IERS (Iterated Elimination Regret-dominated Strategy). More specifically,
we re-explain the four types of players’ rationality associated with these algo-
rithms from the strategy-choosing regret viewpoint and provide a unified logic
epistemic characterization of these iterated elimination algorithms in Public An-
nouncement Logic from a regret viewpoint. The unified characterization extends
van Benthem’s work of linking game theory with dynamic epistemic logic [21]
and provides further insight into exploring the rationale of an iterated eliminat-
ing algorithm. In addition, to clarify the proof-theoretic principles assumed in
players’ reasoning, we develop an axiomatic presentation of our result.

The paper is organized as follows. Section 2 recalls the iterated elimination
algorithms in game theory. In Sections 3 and 4, after transforming a strategic
form game model into a regret game model, we offer an epistemic regret-game
structure and semantic interpretations of types of players’ rationality. In Section
5, we construct an axiomatic epistemic game logic and discuss the relevant prop-
erties. Section 6 discusses related work. Finally, Section 7 concludes the paper
with interesting future work.

2 Preliminaries

This paper explores four types of iterated elimination algorithms in game theory.
Therefore, in this section we recall these algorithms and relevant concepts and
notations (See [18,14] for more details). In the paper, we focus on finite games
with pure strategies (i.e., the pure strategic set and players set are both finite).

Definition 1. A strategic form game G = 〈N , {Si}i∈N , {ui}i∈N 〉, where

– N is a finite set of players in game G,
– Si is the finite set of strategies of player i, and
– ui is a function that assigns a real value to every strategy profile s=(s1,. . . ,sn).

We are interested in a ‘one-shot’ strategic game, where each player i chooses a
strategy from its strategy set Si. Let S = S1 × . . . × Sn be the set of strategy
profiles, and S−i be the set of strategy profiles of the players other than i.
When focusing on player i, we denote the strategy profile s ∈ S by (si, s−i)
where si ∈ Si and s−i ∈ S−i. The following concepts are about various strategy
preferences over strategies of player i corresponding to dominated strategies in
game theory, which play important roles in the paper.

Definition 2. Given strategic form game G = 〈N, {Si}i∈N , {ui}i∈N〉, (i) strat-
egy si is strictly dominated by s′i if ∀s−i ∈ S−i, ui(s

′
i, s−i) > ui(si, s−i); (ii)

strategy si is weakly dominated by s′i if ∀s−i ∈ S−i, ui(s
′
i, s−i) ≥ ui(si, s−i)

and ui(s
′
i, s

′
−i) > ui(si, s

′
−i) for some s′−i ∈ S−i; and (iii) strategy s∗i is a best

response in G to s−i ∈ S−i if ∀si ∈ Si, ui(s
∗
i , s−i) ≥ ui(si, s−i).

Following the notation in [8], we call a weakly dominated strategy si by strategy
s′i an inadmissible strategy for player i, while strategy s′i is an admissible strategy.
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And in a game without players’ mixed-strategies, a pure strategy for player i is
rationalizable if it is a best response to the joint strategies of his opponents [11].
In order to characterize algorithm IERS developed in [14], we need the following
definition:

Definition 3. For strategic form game G = 〈N, {Si}i∈N , {ui}i∈N 〉, player i’s
ex post regret with respect to any pure strategy profile (si, s−i) is given by:

Rei(si) = max{rei(si, s−i) | ∀s−i ∈ S−i}, (1)

where
rei(si, s−i) = max{ui(s

′
i, s−i) | ∀s′i ∈ Si} − ui(si, s−i). (2)

Intuitively, rei(si, s−i) means the regret for a player choosing si when his op-
ponents choose s−i, and Rei(si) is the maximal regret value of choosing si
whichever strategy his opponents choose. That is, Rei(si) refers to player i’s
ex post regret associated with his strategy si without excluding any strategy of
his opponents.

Definition 4. Given strategic form game G = 〈N, {Si}i∈N , {rei}i∈N 〉, si is
regret-dominated by s′i if Rei(s

′
i) < Rei(si). A regret-dominated strategy of si

is called regrettable for player i; while strategy s′i ∈ Si is un-regretted if no
strategies in G regret-dominate s′i

3 Algorithms and Regret Game Model

In this section we will redefine the elimination process of the four algorithms
IESD [18], Rationalizablity [11], IA [8] and IERS [14], as the recursive sets of
player strategies. And by transforming a model of a strategic form game into a
model of a strategic form regret game, we redefine the concepts regarding these
algorithms.

Definition 5. Given strategic game G = 〈N, {Si}i∈N , {ui}i∈N 〉, let S(Pα) (α =
1, 2, 3, 4) be the set of iterated strategies with properties Pα recursively defined

by S(Pα) =
∏

i∈N Si(Pα), where Si(Pα) =
⋂

m�0 S
(m)
i (Pα) (m is an ordinal)

with S
(0)
i (Pα) = Si and S

(0)
i (NPα) = {si | si ∈ S

(0)
i (Pα)} is a strategy without

properties Pα respect to S
(0)
i (Pα). For m � 1,

S
(m)
i (Pα) = S

(m−1)
i (Pα) \ S(m−1)

i (NPα), (3)

where S
(m)
i (NPα) = {si | si ∈ S

(m)
i (Pα)} is a strategy without properties Pα in

G(m)}.1

In Definition 5, when α is 1, 2, 3 and 4 respectively, Pα denotes properties of the
strictly un-dominated, Rationalizable, admissible and un-regrettable strategy re-
spectively. For example, Si(P1) is the set of strategies surviving after iterated

1 G(m) is a sub-game of G, in which Si = S
(m)
i (Pα) and G(0) = G.
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Table 1. The game model of G1

S1

S2
a b c

A (0,5) (3,2) (0,3)

B (0,0) (3,2) (1,1)

C (3,0) (0,1) (2,0)

elimination of strictly dominated strategies for player i. More importantly, ac-
cording to Definition 5, at each of the elimination stages, all strategies without
Pα of all players are simultaneously deleted. Therefore, these algorithms always
yield a rectangular set of strategy profiles. In G1 as shown in Table 1, since
Re2(a) = Re2(c) = 2 and Re2(b) = 3, strategy b is regret-dominated for player
2, by a and c, and there are no regret-dominated strategies for player 1 in the
initial game G(0). Then at the first deletion round, strategy b is deleted. Since
strategy b does not exist there any longer, in the sub-game G(1), Re1(A) and
Re1(B) are both 3, while Re1(C) becomes 0. Thus, regret-dominated strategies
A and B of player 1 are deleted at the second round. Continuing these steps, we
finally can obtain a set of strategy profiles S(P4) = {(C, a), (C, c)}:

S
(0)
1 (P4) = {A,B,C}, S(0)

1 (NP4) = ∅;S(0)
2 (P4) = {a,b,c}, S(0)

2 (NP4) = {b};
S
(1)
1 (P4) = {A,B,C},S(1)

1 (NP4) = {A,B};S(1)
2 (P4) = {a,c},S(1)

2 (NP4) = ∅;
S
(2)
1 (NP4) = ∅, S(2)

1 (P4) = {C} = S1(P4);

S
(2)
2 (P4) = {a,c} = S2(P4), S

(2)
2 (NP4) = ∅;

S(P4) = {(C, a), (C, c)}.

Note that in some games the outcomes or solutions computed from algorithm
IERS are inconsistent with Nash Equilibriums (NE). For instance, (B, b) is the
only NE of players’ pure strategies in the game, which is also the outcome of the
Rationalizability algorithm, i.e., S(P2) = {(B, b)} as show in Table 1. However,
the solutions attained by the IERS algorithm exhibit the same behavior as that
observed in experiments of many famous games in real-life (e.g., the Traveler’s
Dilemma [4], the Centipede Game [18]), which have been proved to be problem-
atic for the Nash Equilibrium concept.2 Therefore, the IERS algorithm is also
very worth being explored further, and it has been studied in [15,14,19,9].

Definition 6. For strategic form game G = 〈N, {Si}i∈N , {ui}i∈N 〉, its regret
game is game G′ = 〈N , {Si}i∈N , {rei}i∈N〉, where rei(si, s−i) is given by for-
mula (2).

In effect, rei assigns a regret value for player i’s strategy si given other the
other players’ strategies s−i. Game G1 with regret is illustrated by G′

1 in Table
3.3 Thus, we can extend the above concepts relevant to dominated strategy as
follows:
2 More details on the IERS algorithm and its solutions can be found in [14].
3 For convenience of comparison, game G1 is depicted in Table 2 again.
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Table 2. The game model of G1

S1

S2
a b c

A (0,5) (3,2) (0,3)

B (0,0) (3,2) (1,1)

C (3,0) (0,1) (2,0)

Table 3. The game model of G′
1

S1

S2
a b c

A (3,0) (0,3) (2,2)

B (3,2) (0,0) (1,1)

C (0,1) (3,0) (0,1)

Definition 7. Given regret game G′ = 〈N,{Si}i∈N ,{rei}i∈N〉, (i) strategy s′i is
strictly R-dominated by si if ∀s−i ∈ S−i, rei(si, s−i) < rei(s

′
i, s−i); (ii) strategy

s′i is weakly R-dominated by si if ∀s−i ∈ S−i, rei(si, s−i) ≤ rei(s
′
i, s−i) and

rei(si, s
′
−i) < rei(s

′
i, s

′
−i) for some s′−i ∈ S−i; and (iii) strategy si is a best

R-response in G to s−i ∈ S−i if ∀s′i ∈ Si, rei(si, s−i) ≤ rei(s
′
i, s−i).

Since according to the above definition a larger utility always means a smaller
regret value, a strictly dominated strategy (or weakly dominated) amounts to
a strictly R-dominated strategy (or weakly R-dominated), similar to a best re-
sponse for a player. That is:

Fact1. Strategy si is a strictly (or weakly) dominated for player i in game G if
and only if si is a strictly (or weakly) R-dominated for him in regret-game
G′ over G.

Fact2. Strategy s∗i for player i is a best response to some strategy profile s−i of
his opponents in game G if and only if s∗i is a best R-response for him given
his opponents’ joint strategies in regret-game G′ over G.

4 An Epistemic Model for a Game with Regret

In the section, we first will extend the language in Public Announcement Logic
(PAL) by adding new atomic propositions,4 which are used to express concepts
and properties in game theory. Then we provide semantic interpretations for
various concepts of players’ epistemic rationality based on our epistemic game-
regret model.

Definition 8. Let G′ be a regret game regarding game G. Then Θ is a collection
of the following atomic propositions set, and Θ = Si ∪ PERi ∪GP , where

– Si = {si | i ∈ N} is the set of strategies for player i. The intended interpre-
tation of si is that player i chooses strategy si.

– GP is the set of some specific concepts in game theory. For example, its el-

ements Ra
(α)
i means player i is α-type epistemically rational (α = 1, 2, 3, 4),

symbol Br
(γ)
i means the γ-type best response of player i (γ = 1, 2), and GS

is read it is a Regret-Game Solution, NE is a Nash Equilibrium.

4 Because of space limitations, we assume that the reader is familiar with PAL and
omit an introduction of PAL. If not, the readers can consult [16,3].
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– PREi denotes the strategy preference set of player i. Its elements are the
atomic propositions of the form si � s′i and si �′ s′i, which encode two types
of player i’s weak preferences over his strategies, while si � s′i and si �′ s′i
stand for two types of his strict preferences over his strategies.

We call PAL including these special atomic propositions PAL-G. Thus, the lan-
guage of PAL-G over an infinite set of primitive propositions Γ (Γ = P ∪Θ, and
P is a general atomic propositions set) is defined as follows:

ϕ ::= p | ¬ϕ | ϕ1 ∧ ϕ2 | Kiϕ | CNϕ | [ϕ!]ψ

where p ranges over Γ . [ϕ!]ψ means that ψ is true after a truthful public an-
nouncement of ϕ, and 〈ϕ!〉ψ means that ϕ is true and ψ is true after ϕ is
announced, K̂iϕ is read as i considers ϕ possible, where 〈ϕ!〉ψ and K̂iϕ are for
the dual ¬[ϕ!]¬ψ and ¬Ki¬ϕ, respectively. CNϕ means ϕ is common knowledge
among set of players N .

Definition 9. Given G′ = 〈N, {Si}i∈N , {rei}i∈N 〉, an epistemic (Kripke) model
over G′ is a tuple of MG′ = 〈W, {∼i}i∈N , {fi}i∈N , V 〉, where

– W (	= ∅) consists of all players’ pure strategy profiles;
– ∼i is an epistemic accessibility relation for player i, which is defined as the

equivalence relation of agreement of profiles in the i’th coordinate;
– fi :W→Si is a pure strategic function, which satisfies the following property

: if w ∼i v then fi(w) = fi(v); and
– V :Γ→2W assingns atomic propositions to the worlds in which they are true.

The property of function fi, i.e., if w ∼i v then fi(w) = fi(v), tends to state
players’ intuition in a strategic form game, i.e., if i chooses strategy si then he
knows that he chooses si. For convenience, Ri(w) = {v | w ∼i v, w, v ∈W}, i.e.,
the set of worlds that player i believes possible in world w, and ‖si‖ = {w ∈
W | fi(w) = si}, i.e., the set of the worlds where player i chooses strategy si.
The interpretation of formulae in pointed epistemic model MG′ , w is defined as
follows:5

Definition 10. Given an epistemic game structure MG′ over game G′:

– MG′ , w � p⇔ w ∈ V (p), where p ∈ P ;
– MG′ , w � si ⇔ w ∈ ‖si‖;
– MG′ , w � (si � s′i)⇔ rei(si, f−i(w)) ≤ rei(s

′
i, f−i(w));

– MG′ , w � (si �′ s′i)⇔ ∃v ∈ ‖s′i‖, rei(si, f−i(w)) ≤ rei(s
′
i, f−i(v));

– MG′ , w � (si � s′i)⇔ rei(si, f−i(w)) < rei(s
′
i, f−i(w));

– MG′ , w � (si �′ s′i)⇔ ∀v ∈ ‖s′i‖, rei(si, f−i(w)) < rei(s
′
i, f−i(v));

– MG′ , w � Br
(1)
i ⇔

∧
si �=fi(w)(fi(w) � a);

– MG′ , w � Br
(2)
i ⇔ Rei(fi(w)) = min{Rei(si)|∀si ∈ Si};

– MG′ , w � Ra
(1)
i ⇔ (MG′ , w) �

∧
si �=fi(w)(K̂i(fi(w) � si));

5 The truth definition of formulas ¬ϕ, ϕ1 ∧ ϕ2 and CNϕ are the same as in classic
epistemic logic, see [6] for more details.
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– MG′ , w � Ra
(2)
i ⇔ (MG′ , w) � K̂i((

∧
si �=fi(w)(fi(w) � si)));

– MG′ , w � Ra
(3)
i ⇔ (MG′ , w) �

∧
si �=fi(w)(Ki((fi(w) � si)∨K̂i(fi(w) � si)));

– MG′ , w � Ra
(4)
i ⇔MG′ , w �

∧
si �=fi(w)(Ki(fi(w) �′ si));

– MG′ , w � NE ⇔MG′ , w �
∧

i∈N Br
(1)
i ;

– MG′ , w � GS ⇔MG′ , w �
∧

i∈N Br
(2)
i ;

– MG′ , w � Kiϕ ⇔ ∀v ∈ Ri(w), MG′ , v � ϕ; and
– MG′ , w � [ϕ!]ψ ⇔MG′ , w � ϕ implies MG′ |ϕ, w � ψ where MG′ |ϕ is a

sub-model of MG′ where ϕ is true.

In the above definition, except that atomic proposition si holds in world w if
player i’s strategy is the current strategy fi(w) (i.e., fi(w) = si) and the truths
of atomic proposition p, formulas ¬ϕ and ϕ1 ∧ ϕ2 in a pointed epistemic game
model (MG′ , w) are the same as the interpretations in PAL.6 Now we focus on
the interpretations of players’ preferences and the properties of their rational-
ity. There is a difference between the IERS algorithm and other algorithms. In
fact, IERS is an algorithm of min-maximizing players’ regret, instead of simply
minimizing players’ regret. So, to characterize the four algorithms in a unified
epistemic framework, we need to offer a semantic interpretation of the specific
strategy preference of players regarding the IERS algorithm, i.e., si �′ s′i and
si �′ s′i. Here, si �′ s′i says that si is strictly better than s′i for player i in the
current world w if whichever strategies his opponents choose, the regret raising
from s′i is larger than the regret of his current strategy; while si � s′i in world w
means that player i prefers the current strategy si to s′i if given his opponents’
current action f−i(w), the regret deriving from s′i is larger than the regret of si.
In the same way, we can interpret preference si �′ s′i and si � s′i.

Furthermore, we can interpret the current strategy that is a best response,

denoted as Br
(1)
i , of player i, as the strategy such that the strategy regret associ-

ated with the current strategy fi(w) is minimal among his other strategies’ given
his opponents’ strategies f−i(w). The semantic interpretation is intuitive since it
is true that minimizing a player’s strategy regret is maximizing his utilities. How-

ever, we cannot explain Br
(2)
i associated with the IERS algorithm in a similar

way, i.e., we cannot define the truth ofBr
(2)
i in world w as

∧
si �=fi(w)(fi(w) �′ si).

The reason is that the algorithm is to compute a strategy that can minimize the
maximum regret without excluding any strategy of his opponents, rather than
finding a strategy minimizing regret given the opponents’ strategies. So, we have

to use function Rei to achieve it, i.e., Br
(2)
i holds in world w if Rei(fi(w)) of the

current strategy is minimal among the rest strategies for player i.
Nevertheless, we can again obtain the intuition by adding epistemic ingredi-

ents into the definition of rationality Ra
(4)
i : player i is Ra

(4)
i -type epistemically

rational in world w if for all of his strategies, he knows that his current strat-
egy is at least as good as his other strategies, or if for all of his strategies, he

6 More details about the interpretation of the formulas can be found in [6]. Because
of the page limit, we omit them to focus on interpretations for the players’ strategy
preferences and their rationalities, which play generic important roles in the paper.
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(3,0) (0,3) (2,2)

(3,2)

(3,0)

(0,0)

(0,1) (0,1)

(1,1)

c

Fig. 1. The epistemic regret-game model MG′
1
(left hand-side) corresponding to game

G1, where dashed lines for epistemic accessibility of player 1, and solid lines for player
2. For convenience, regret game G′

1 with players’ utilities is also illustrated in the right
hand-side.

knows that his currently chosen strategy is the strategy that can minimize his

regret.7 Meanwhile, player i is Ra
(1)
i -type epistemically rational in world w if for

an arbitrary strategy si of him (not the current strategy fi(w)), i thinks it is

possible that his current strategy is at least as good as si; player i is Ra
(2)
i -type

epistemically rational in world w if i considers it possible that his current strat-

egy is at least as good as all of his other strategies, and Ra
(3)
i holds in world w

if for an arbitrary strategy si of him (except the current strategy fi(w)), either
player i considers it possible that his current strategy is strictly better than his
other strategies or player i knows that his current strategy is at least as good
as his other strategies.8 Thus, it is easy to verify that in an epistemic regret

game model MG′ , Ra
(α)
i (α = 1, 2, 3, 4) fails exactly at the rows or the columns

corresponding to R-dominated (or regret-dominated) strategies of players in a

regret-game model G′. For example, in MG′
1
as shown in Figure 1, Ra

(4)
2 fails in

worlds (A, b), (B, b) and (C, b).

5 Axiom System of PAL-G

In this section, we provide an axiom system to prove some interesting prop-
erties regarding a game, such as introspections of players’ rationality, strength
relationships among these different rationalities, and so on. More importantly,
a characterization theorem is presented to express the relation between PAL
and the above algorithms, which establishes a generic result that links true

7 Again it indicates that it is necessary to add epistemic ingredients into definitions
of rationality.

8 The semantic explanations of Ra
(α)
i (α = 1, 2, 3) are inspired by the definitions of

rationality provided in [21] and [10] from the players’ utility perspective, respectively.
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common knowledge of players’ rationality with outcomes obtained by using these
algorithms.

Axioms: Let G = 〈N , {Si}i∈N , {rei}i∈N 〉 be a regret game, logic PAL-G system
over G′ with the following additional axioms: ∀i ∈ N and ∀si, s′i ∈ Si:

(PA′) All principles of Public Announcement Logic;

(RA1)
∨

s′i �=si
Ki(s

′
i � si) ∧ si ↔ ¬Ra

(1)
i ;

(RA2) Ki(
∨

s′i �=si
(s′i � si)) ∧ si ↔ ¬Ra

(2)
i ;

(RA3)
∨

s′i �=si
(K̂i(s

′
i � si) ∧Ki(s

′
i � si)) ∧ si ↔ ¬Ra

(3)
i ;

(RA4)
∨

s′i �=si
K̂i(s

′
i �′ si) ∧ si ↔ ¬Ra

(4)
i ;

(ST1)
∨

si∈Si
si;

(ST2) ¬(si ∧ s′i);

(ST3) (si � s′i) ∨ (s′i � si);

(ST3′) (si �′ s′i) ∨ (s′i �′ si);

(ST4) (si � s′i)↔ (si � s′i) ∧ ¬(s′i � si);

(ST4′) (si �′ s′i)↔ ((si �′ s′i) ∧ ¬(s′i �′ si));

(ST5) si → Kisi;

(ST6) ¬si → Ki¬si;
( PP′) Ki(si �′ s′i)→ (K̂i(si � s′i)).

The intuitive meanings of these axioms are as follows. Axioms RA1-RA4 are
the properties of different rationalities. For instance,RA3 says that a player with

Ra
(3)
i -type of rationality should not choose a weakly R-dominated strategy, and

RA4 means that a Ra
(4)
i -type of player i must not choose a regrettable strategy.

While ST1-ST6 plus axioms ST3′ and ST4′ offer some principles for strategy
choosing during a game. In fact, axioms ST1 and ST2 together imply that each
player i chooses exactly one strategy; ST3, ST3′, ST4 and ST4′ mean that the
ordering of strategies is complete and that the corresponding strict ordering is
defined as usual; ST5 and ST6 states that player i is aware of his own choice.
Finally, axiom PP′ indicates a strength relationship between preference � and
preference �′, when the preferences are intertwined players’ epistemic ability.

We write � ϕ if ϕ is a theorem of logic PAL-G. The following theorems reveal
the relationships between the different rationalities and all of the rationalities
are epistemically introspective.9

Theorem 1. ∀i ∈ N , ∀α ∈ {1, 2, 3, 4}, ∀β ∈ {2, 3, 4} the following hold:

(1a) �PAL−G Ra
(α)
i ↔ KiRa

(α)
i ; and

(1b) �PAL−G Ra
(β)
i → Ra

(1)
i .

9 Because of page limit, the proofs of all the theorems in the paper are put at
http://logic.sysu.edu.cn/faculty/cuijianying/en/.
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It is clear that Ra
(1)
i is the weakest rationality among the rationalities discussed

in the paper. However, we cannot determine a relationship between Ra
(β)
i (β =

2, 3, 4). For example, in the epistemic regret game model of MG′
1
depicted in

Figure 1, proposition Ra
(3)
2 holds in the whole model, Ra

(4)
2 holds in the worlds

of (A, a), (B, a), (C, a), (A, c), (B, c), and (C, c), but Ra
(2)
2 is true in the worlds

of (A, a), (B, a), (C, a), (A, b), (B, b), and (C, b). While Ra
(2)
1 and Ra

(4)
1 are both

true in the model, Ra
(3)
1 is false in worlds (B, a), (B, b), and (B, c).

Theorem 2. Logic PAL-G is sound with respect to the class of models MG′ .

According to [21], for any model M one can keep announcing ϕ, retaining only
those worlds in which ϕ holds. This yields a sequence of nested decreasing sets,
which must stop in finite models, denoted by �(ϕ,M) [21]:

Definition 11. For anymodelM and formula ϕ, the announcement limit �(ϕ,M)
is the first sub-model in the repeated announcement sequence where announcing ϕ
has no further effect. If �(ϕ,M) is non-empty, we have a model where ϕ has become
common knowledge. We call such statements self-fulfilling in the given model, and
all others self-refuting.

Pursuing the above idea, we see that public announcement [!ϕ] of true proposi-
tions ϕ yields the information that changes the current model irrevocably, dis-
carding worlds that fail to satisfy ϕ. Meanwhile, the agents’ interactive knowl-
edge about ϕ will be increased as the model changes. In addition, dominated
strategies are deleted because in game theory players’ rationality is postu-
lated as high-order interactive information among players. Therefore, after re-
defining the above rationalities (see Definition 10), in the following we will
show that an announcement limit has close connections with the equilibri-
ums or game solutions found by using many iterated elimination algorithms,
when we refer to the rationalities as announcement assertions (see Theorem
4 later). As an announcement rule in PAL, players publicly announce asser-
tions, which must be the statements that they know are true. Theorems 1 and 3
(in the following) enables us to successively remove the worlds in which Ra(α)

(Ra(α) = ∩i∈NRa
(α)
i , α = 1, 2, 3, 4) does not hold in model MG′ after repeatedly

announcing some rationality.

Theorem 3. Every finite epistemic regret-game model has worlds in which
Ra(α) is true, where α = 1, 2, 3, 4.

In Figure 2, the left-most model is the epistemic regret-game model MG′
1
shown

in Figure 1. The other models are obtained by public announcements of Ra(4)

successively for two times. So, in the last sub-model, we have:

MG′
2
, (C, a) � [Ra(4)!][Ra(4)!]CN (GS).

This indicates that if the players iteratively simultaneously announce that they

are Ra
(4)
i -type of rationality, the process of regret-dominated strategies elimina-

tion leads them to the solutions that are commonly known to be a game solution
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Fig. 2. The public announcement of Ra(4)

(GS). Similarly, announcing different types of rationality can be described as the
iterated elimination procedure of the four algorithms.

Theorem 4. (Characterization Theorem) Let G be a game, MG′ be an epis-
temic regret-game model associated with G, for all w in MG′ , if �(Ra(α),MG′),

(α = 1, 2, 3, 4) is stable by repeated announcements of Ra
(α)
i in MG′ , then:

w ∈ �(Ra(α),MG′)⇔ f(w) ∈ S(Pα) .

6 Related Work

There is a large amount of literature on the algorithms of iterated elimination
in the field of logic[12,21,22], computer science [1,13] and game theory [7,8,15].
In particular, [21] and [1] are closely related to our research.

In [21], van Benthem characterizes two different algorithms of IESD and Ra-
tionalizability by analyzing the two types of rationality in PAL: (i) the weak
rationality (WR), which is used to characterize the classic algorithm IESD; and
(ii) the strong rationality (SR), which is relevant to the Rationalizability algo-
rithm of Pearce [11]. Our work in this paper further extends the work of [21] to
characterize the four types of rationality, and furthermore lays epistemic foun-
dations for all of the algorithms IESD, Rationalizability, AI and IERS in our
epistemic regret-game model. Thus, the properties of these different types of ra-
tionality can be discussed in our unified framework. By contrast, the rationalities
defined by us cannot be analyzed in [21]’s epistemic model for lack of semantic
interpretations of some concepts related to agents’ regret in that work.

In [1], Apt et al. offer a simple generalization of the above public announce-
ment approach, which has been used to study the effect of the IESD and Ratio-
nalizability algorithms, to cover arbitrary strategic games and many optimality
notions [1]. To provide a characterization of various iterated elimination algo-
rithms based on the concept of a public announcement, they make a distinction
between ‘global properties’ and ‘local properties’ to an optimal strategy for a
player. They write: “. . . to assess the optimality of si globally, player i must
consider all of his strategies that occur in his strategy set in the initial game”.
For example, the strategy si of player i is not strictly dominated in G by any
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Table 4. The regret game model of G′
2

S1

S2
a b c

A (3,3) (0,0) (0,2)

B (0,2) (2,1) (0,0)

C (1,1) (0,2) (2,0)

Table 5. The sub-game model of G′
2

S1

S2
b c

B (2,1) (0,0)

C (0,2) (2,0)

strategy from his strategy set in the initial game, i.e., ¬∃s′i ∈ Hi, s
′
i �G si.

10

Therefore, although it seems that the achievements in [1] imply some of our
results (as we mentioned in the proof of Theorem 4), because the property of
regret-dominated strategy cannot be defined as a “global property”, their obser-
vations cannot cover the epistemic analysis for the IERS algorithm. So, actually
the conclusion in their theorem 7 in [1] is derived by our characterization theo-
rem. In this sense, our work is also an extension to the work of [1].

Tables 4 and 5 illustrate the reason why the property of regret-dominated
strategy cannot be defined as a “global property”. In MG′

2
, since strategy a

is regret-dominated by b and c for player 2 and A is a regret-dominated for
player 1, we can delete a and A at the same time in the first elimination round.
Thus, in the sub-game model M

G
′(1)
2

, because of H1 = {A,B,C}, according to

the definition of “global optimal strategy” in [1], neither B nor C are globally
optimal strategies for player 1. Therefore, they should be deleted simultaneously
in the second round, and then there are no strategies for player 1 to take in the
next sub-game. It is an impossible situation in a game. Therefore, for the IERS
algorithm we cannot distinguish “global optimal” and “local optimal”. Still, both
[21] and [1] explore the relationship between common knowledge of rationality
and the results from iterated elimination algorithms based on Fix-point Logic
[20], while ours is just based on PAL.

7 Conclusion and Further Research

In this paper, we have constructed a unified epistemic regret-game model to
provide a dynamic epistemic characterization of four kinds of iterated elimination
algorithms. In the future, we will try to generalize the characterization result in
the paper even more, providing characterizations for any iterative algorithm
that as certain basic properties. Meanwhile, there are some directions of future
research relevant to our work in the paper. For example:

– Comparing, combining, and reducing methods. Comparing methods like
IESD and IERS, we can see that one may be better than another depending
on the structure of a given game. It is interesting to investigate what happens

10 In [1], G can be read as a set of strategy profiles of all players in a sub-game con-
cerning an initial game, and Hi is a set of strategies for player i in the initial game
model.
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if a variety of such methods are used. One possibility is that one method may
simulate another by means of translating the given game systematically into
one with changed outcome values. Moreover, there are games where both
methods make sense intuitively. We will start with sequential combinations
of solution methods, and the eventual goal would be an algebra of solution
methods.

– Linking up with limit behavior in learning theory. In our unified structure,
we have only considered the cases where games are solved through iterated
soft updates with regret statements. However, many other scenarios have the
same features, including infinite sequences where the approximation behavior
itself is the focus of interest. Particularly, it is interesting to connect our
setting with the learning-theoretic scenarios and extended temporal update
logics suggested by the results of [2] and [23].
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Abstract. In public announcement logic it is assumed that all agents
pay attention (listen to/observe) to the announcement. Weaker observa-
tional conditions can be modelled in event (action) model logic. In this
work, we propose a version of public announcement logic wherein it is
encoded in the states of the epistemic model which agents pay attention
to the announcement. This logic is called attention-based announcement
logic, abbreviated ABAL. We give an axiomatization and prove that com-
plexity of satisfiability is the same as that of public announcement logic,
and therefore lower than that of action model logic [2]. We exploit our
logic to formalize the concept of joint attention that has been widely
discussed in the philosophical and cognitive science literature. Finally,
we extend our logic by integrating attention change.

1 Introduction

In public announcement logic it is assumed that announcements are perceived by
all agents: it models the consequences of each of the agents incorporating a new
formula into the set of beliefs. The argument of the dynamic modal operator
in public announcement logic is therefore called an announcement. Once the
government has announced a new election, they cannot be held liable when you
forget to vote on election day. You were supposed to know.

In this work we take one step back from that point of view. When an an-
nouncement is made, it may well be that some agents were not paying attention
and therefore did not hear it. Also, there may be uncertainty among the agents
about who is paying attention and who not, and therefore, who heard the mes-
sage and who not. Contrarily to action model logic, in our modelling it is not an
aspect of the description of the action to which subset of all agents the announce-
ment is made, but this is now an aspect of the state in which the announcement
is executed.

Additional to the usual set of propositional variables we add designated vari-
ables for each agent, that express that the agent is paying attention. A given
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state of a Kripke model therefore contains information about which agents are
paying attention and which agents are not paying attention. This determines
the meaning of what we call attention-based announcements. A special case is
that of introspective agents that know whether they are paying attention. We
axiomatize our attention-based announcement logic ABAL, including a version
with introspection for beliefs and attention.

An announcement by an outside observer that is public for a subset of all
agents is modelled in [9,6] as a private announcement to that subset of agents.
The agents’ attention configuration behind such announcements can be modelled
in our logic by a particular formula built from our attention variables. Our logic
generalizes Gerbrandy’s because the ‘attention level’ of a given agent can vary
between the states. Our logic can in turn be mapped to action model logic: each
configuration of attention corresponds to a particular class of action models.

We show that the complexity of satisfiability in our logic remains in the same
range as that of public announcement logic, viz. PSPACE. This contrasts with
the higher complexity of action model logic. As the action models corresponding
to attention-based announcements can be quite large, we consider that this is
indeed a valuable result.

In the ABAL we can formalize a concept that has been widely discussed in
the philosophical and in the cognitive science literature, namely joint attention
[15,13,7]. This concept has been shown to be crucial for explaining the genesis
of common belief in a group of agents.

Finally, we add other dynamics to our logic, namely change of attention. This
is an elementary further addition to the logical framework and this logic also
has a complete axiomatization.

2 Attention-Based Announcement Logic ABAL

Let AGT be a finite set of agents, let ATM be a (disjoint) countable set of propo-
sitional variables, and let H = {ha | a ∈ AGT} be a disjoint set of propositional
variables. A proposition ha (for ‘a is hearing what is being said’ or more simply
‘a is listening’ ) expresses that agent a is paying attention and so will hear public
announcements.

Definition 1 (Language). The language L of attention-based announcement
logic ABAL is defined as follows, where p ∈ ATM and a ∈ AGT.

L � ϕ ::= p | ha | ¬ϕ | (ϕ ∧ ϕ) | Baϕ | [ϕ]ϕ

We abbreviate
∧

a∈A ha by hA.

We write q to denote a variable that is either p ∈ ATM or ha ∈ H . Other propo-
sitional connectives, and the dual modalities, are defined as usual. Formula Baϕ
is read as ‘agent a believes that ϕ is true’, and formula [ϕ]ψ as ‘after the public
announcement of ϕ, ψ holds’.
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Definition 2 (Epistemic attention model). An epistemic attention model
is a triple M = (S,R, V ) with S a non-empty set, R a function assigning to each
agent an accessibility relation Ra and V a function assigning to each proposi-
tional variable q ∈ ATM ∪ H the subset V (q) ⊆ S where the variable is true.

Definition 3 (Attention introspection). Given an epistemic attention model
M = (S,R, V ), the model satisfies the property of attention introspection if for
all s, t ∈ S, if (s, t) ∈ Ra, then s ∈ V (ha) iff t ∈ V (ha).

When attention introspection holds, an agent knows whether she is paying
attention.

Boolean constructions as well as operators of belief Ba are interpreted in
the standard way. The truth condition for attention-based announcements [ϕ] is
different from that of (world eliminating) truthful public announcement [14] and
also different from that of (arrow eliminating) public announcement [9], although
it comes closer to the latter in spirit: it is also arrow eliminating.

Definition 4 (Semantics of attention-based announcements)

M, s |= [ϕ]ψ iff Mϕ, (s, 0) |= ψ

where Mϕ = (S′, R′, V ′) is defined as follows.

– S′ = S × {0, 1}
– for each agent a, ((s, i), (t, j)) ∈ R′

a if and only if (s, t) ∈ Ra and:
1. i = 0, j = 0, (M, s) |= ha and (M, t) |= ϕ, or
2. i = 0, j = 1, and (M, s) 	|= ha, or
3. i = 1, j = 1.

– for each p ∈ ATM, (s, 0) ∈ V ′(p) iff s ∈ V (p) and (s, 1) ∈ V ′(p) iff s ∈ V (p).

The model Mϕ is the extended disjoint union of the (arrows to) ϕ restriction of
M , called M |ϕ, and M itself, plus — that is the extension — a number of addi-
tional accessibility pairs between states for those agents that are not attentive.
Roughly speaking, Mϕ = M |ϕ⊕M plus some edges. After the announcement of
ϕ, the agents that are attentive only consider possible the 0-copies of the states
of the original model M in which ϕ is true. In contrast, the agents that are not
attentive only consider possible 1-copies of the states of the original model M .
This construction of the updated model Mϕ ensures that attentive agents learn
ϕ while inattentive agents don’t learn anything.

Example 1. Ann (a) and Bill (b) have lunch in the cafeteria and each consider
the possibility of snowfall this afternoon (p) — a regular occurrence in Nancy,
many times of the year. In fact Bill has seen the weather report and knows
whether it will snow, while Ann does not. However, Bill never knows whether
Ann is paying attention. Ann knows that Bill is attentive. Both agents know
whether they are attentive. This situation is depicted as model M in Fig. 1
(there is no particular actual state: any of the four may do.) Now Cath comes
along and says she just read the weather report: it will snow. This results in the
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model transition depicted in Figure 1, where Cath’s announcement is modelled
as an announcement by an outsider. Any of the four points in M |p can be the
actual state of the resulting model, but not any of the M copy on the right hand
side. If Ann and Bill pay attention and p is true, as on the bottom-left side of
M |p, Bill remains uncertain if Ann now knows that p, as he considers it possible
that she was not paying attention (top-left of M |p), in which case she would
have remained uncertain about p.

Proposition 1 (Preservation of attention introspection). If M satisfies
attention introspection then Mϕ satisfies attention introspection.

Although we consider Prop. 1 a valuable result, it takes somewhat away from
the glamour when we realize that models with empty accessibility relations also
satisfy attention introspection. For example, suppose that agent a is paying at-
tention in the actual state s (ha is true) and also in the (uniquely) accessible
state t, and where s is also considered possible. Attention introspection is satis-
fied. After the announcement with attentive agents ¬ha, the agent a no longer
considers state t possible but also no longer considers the actual state possible.
Because the agent was paying attention, she has come to believe that she is
not paying attention; but at the price of still also believing that she is paying
attention — where the latter remains in fact the truth.

In this paper we focus on two classes of models: Kn, where n = |AGT|, that is,
multiple agents and no special properties of the accessibility relations, and K45hn,
that is, multiple agents with transitive and Euclidean accessibility relations, and
with attention introspection as well. (The classes S5hn and KD45hn are unsuitable:
they are not closed under announcements because the property of seriality (D)
may be lost after an announcement.) The set of valid L-formulas on the class of
models Kn is called ABAL, and the set of valid L formulas on the class of models
K45hn is called ABALintro.

3 Relation with Action Models

Every attention-based announcement is definable as an action model. Whether
an announcement ϕ is heard in a given state depends on the value of ha for
every agent a in that state. The agents who hear the announcement retain all
arrows pointing to states where ϕ holds and delete all arrows pointing to states
where ϕ does not hold, and that is independent of the truth of ϕ in the actual
state; whereas the agents who do not hear the announcement think that nothing
has happened, i.e., also independent of the truth of ϕ they think that the trivial
action with precondition � happened. There is an economic way to define such
an action model (in the sense of producing a resulting model with a minimal
duplication of states into bisimilar states). Definition 5 spells out the inductive
clause for attention-based announcement of an obviously inductively defined
translation.



100 H. van Ditmarsch et al.

p,¬ha, hb ¬p,¬ha, hb

p, ha, hb ¬p, ha, hb
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Fig. 1. Example of an attention-based announcement

Definition 5 (Action model for attention-based announcements). Given
a formula ϕ, the action model for the attention-based announcement of ϕ is the
multi-pointed action model Aϕ = (A, R, Pre, P ) where:

– A = {(i, J) | i ∈ {0, 1} and J ⊆ AGT} ∪ {w�};
– R maps each agent a ∈ AGT to

Ra = {((i, J), (1,K)) | i ∈ {0, 1} and a ∈ J} ∪
{((i, J), w�) | a 	∈ J} ∪ {(w�, w�)};

– Pre : A→ L is defined as follows:
• Pre((i, J)) = ϕ ∧

∧
a∈AGT ha where ϕ is either ϕ if i = 1 or ¬ϕ if i = 0

and ha is either ha if a ∈ J or ¬ha if a 	∈ J for all a ∈ AGT;
• Pre(w�) = �;

– P = {(i, J) | i ∈ {0, 1} and J ⊆ AGT} is the set of points.

Informally, the action model for the attention-based announcement of ϕ consists
of 2n+1+1 actions and has 2n+1 initial points (alias actual actions). Each of
these points is identified by the complete and disjoint set of preconditions ϕ ∧∧

a∈AGT ha, where ϕ is either ϕ or ¬ϕ and where ha is either ha or ¬ha. Moreover,
there is a ‘nothing happens’ alternative with precondition �, that is not an
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initial point. An attentive agent believes that any action point with precondition
entailing ϕ may be the actual action. An inattentive agent believes that the
action with precondition � is the actual action.

The action model for attention-based announcements is depicted in Figure 2
for the example of two agents a and b and the announcement ϕ. For example,
if ϕ is false, ha is true, and hb is false, agent a hears the announcement ϕ and
believes it to be true, therefore she believes the real action to be the one where
ϕ is true — regardless of the values of ha and hb in states wherein it can be
executed (we take the case of general accessibility, i.e., logic Kn). So that makes
for four arrows. On the other hand, agent b does not hear the announcement
and believes that nothing at all happens: a single arrow to the alternative with
precondition � (and with reflexive arrows for a and b: b believes, incorrectly,
that all agents believe that nothing happened).

¬ϕ,¬ha,¬hb

¬ϕ,¬ha, hb

¬ϕ, ha,¬hb

¬ϕ, ha, hb

ϕ,¬ha,¬hb

ϕ,¬ha, hb

ϕ, ha,¬hb

ϕ, ha, hb

�

a, b

a

b

a, b

a

b

a, b

a

b

a, b

a

b

a, b

Fig. 2. The action model A corresponding to an attention-based announcements ϕ to
two agents. An arrow pointing to a box points to all actions in the box.

This action model construction maps nicely with the semantics of [ϕ]ψ that
given a model M produces a model Mϕ twice that size, consisting of a ‘trivial’
copy M plus a ‘heard’ copy M |ϕ. As all the 2n+1 different preconditions in the
action model are exclusive, the product of that entire part of the action model
produces a model of the same size as M , but with merely some removed arrows.
A recursive translation defines an embedding from ABAL into action model logic.

Proposition 2. Let M be an epistemic attention model. Let Aϕ be the action
model (according to Def. 5) corresponding to ϕ. Then Mϕ ↔ M ⊗Aϕ.

4 Axiomatization and Complexity

Table 1 shows the axiomatization. It follows the pattern of believed announce-
ments (arrow eliminating), not that of truthful announcements (state eliminat-
ing). The crucial axiom is
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[ϕ]Baψ ↔ ((ha → Ba(ϕ→ [ϕ]ψ)) ∧ (¬ha → Baψ))

It says that the belief consequences of an attention-based announcement are
either, if the agent pays attention, what the agent believes to be the consequences
of the announcement in case it was true, or else, if the agent does not pay
attention, what the belief consequences were before the announcement (i.e., an
agent not hearing the announcement does not change her beliefs). Note that our
axiom resembles Gerbrandy’s axiom for private announcements. The axioms *
formalize that agents have introspective beliefs and are not uncertain about what
they hear. (Attention introspection is therefore just like awareness introspection
in a the logic of awareness [8].) The axiomatization ABAL consists of all the
derivation rules and axioms of Table 1. The axiomatization ABALintro consists of
ABAL plus the *-ed axioms and rules. Soundness follows straightforwardly from
the action model modelling of attention-based announcements that we will give
in Section 3.

Table 1. The axiomatizations for ABAL and ABALintro

all propositional tautologies Baϕ→ BaBaϕ ∗
Ba(ϕ→ ψ)→ (Baϕ→ Baψ) ¬Baϕ→ Ba¬Baϕ ∗
[ϕ]Baψ ↔ ((ha → Ba(ϕ→ [ϕ]ψ)) ∧ (¬ha → Baψ)) ha → Baha ∗
[ϕ](ψ ∧ χ)↔ ([ϕ]ψ ∧ [ϕ]χ) ¬ha → Ba¬ha ∗
[ϕ]¬ψ ↔ ¬[ϕ]ψ From ϕ infer Baϕ
[ϕ]q ↔ q From ϕ infer [ψ]ϕ

Proposition 3. The axiomatization of ABAL is sound and complete for the
class of Kn models. The axiomatization of ABALintro is sound and complete for
the class of K45hn models.

Proof. The standard reduction argument applies: all axioms for the consequences
of announcements push the announcement operator deeper into the formula on
the right hand side, until one finally arrives at an announcement before a propo-
sitional variable, [ϕ]p, which is equivalent to p. Therefore the logic is equally
expressive to the base modal logic — which is complete.

We note that by Proposition 1 the belief modality of ABALintro does not col-
lapse into a knowledge modality; see [5] for an investigation of this issue.

In the remainder of the section we focus on the ABAL satisfiability problem on
the class of all Kn frames. The satisfiability problem of a formula in the language
of action model logic [6] plus the union operator over actions is NEXPTIME-
complete [2]. ABAL is the fragment of action model logic for an action model
of size exponential in the number of agents (see Section 3). So the satisfiability
problem of ABAL is decidable.

It is difficult to turn the tableau method for action model logic into a PSPACE
procedure because each node may contain an exponential amount of information
in the length of the input formula. Surprisingly, we can adapt the tableau method
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of action model logic so that the amount of information in a node is polynomial
in the size of the input.

Proposition 4. Satisfiability of L formulas in the class of Kn models is
PSPACE-complete.

We leave open the complexity of satisfiability of formulas of the ABAL on
the class of K45hn models. We conjecture that it equals that of the underlying
epistemic logic, viz. PSPACE complete.

5 Joint Attention

The attention introspection axiom ha → Baha of ABALintro only guarantees
attention introspection for individuals, not for groups: it may happen that hA is
true while some a ∈ A does not believe that hA. We now investigate a condition
under which attention introspection obtains in terms of common belief: joint
attention or joint attentional state. That concept was widely discussed in the
philosophical and in the cognitive science literature [15,13,7], and we show that
it can be captured in our logic ABALintro.

We assume a common belief operator CA for a subgroup A of the set of all
agents, so that CAϕ stands for ‘the agents in group A commonly believe ϕ’, and
which is interpreted in the usual way by the transitive closure of the union of all
accessibility relations Ra for the agents in A.

Let A ⊆ AGT. The idea is that the agents in A have a joint attention (or
are in a joint attentional state) if and only if they are looking at the source of
information together, that is to say, every agent in A is looking at the source
of information, every agent in A believes that every agent in A is looking at
the source of information, and so on. More concisely, the agents in A are in a
joint attentional state if and only if each of them is looking at the source of
information and focusing his attention on it and they have common belief that
each of them is looking at the source of information and focusing his attention
on it. Formally:

JointAttA ≡def hA ∧CAhA.

Note that joint attention is closed under attention-based announcements: if
M, s |= JointAttA then Mϕ, s |= JointAttA for every ϕ such that M, s |= ϕ. Note
moreover that when joint attention of all agents is satisfied then attention-based
announcements are the same as public announcements.

As pointed out by [13,7], joint attention explains the genesis of common beliefs
in the context of social interaction. Such genesis is often considered as related
to public events in the sense that a common belief is either a consequence of
an event whose occurrence is so evident (viz. public) that agents cannot but
recognize it as when, during a soccer match, players mutually believe that they
are playing soccer, or the product of a communication process as when the ref-
eree publicly announces that one player is expelled. From there on each player
believes that each other player believes and so on that one of them has been
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expelled. Intuitively, an event is considered public as long as its occurrence is
epistemically accessible by everybody such that it becomes common belief be-
tween them. But what are the intuitive conditions that make an event public?
What are the reasons to believe that an occurring event is commonly believed?
In a normal situation (what is announced is true, there is no noise in the commu-
nication channel, etc.) looking at the source of information and having a common
belief that everyone is looking at the source of information (i.e., being in a joint
attentional state) provide a sufficient condition for the formation of a common
belief. This is captured by a validity of ABAL (to avoid Moorean phenomena we
restrict ourselves to learning propositional variables):

|= JointAttA → [p]CAp (1)

We can actually characterize the formation of common belief of an atomic
fact p as follows:

|= [p]CAp↔ CA

∧
a∈A

(ha ∨Bap) (2)

Note that the equivalence is not valid if we replace p by ha.

6 Attention Change

A good way to have your addressees pay attention is to clap your hands before
making an announcement. Even if they were not paying attention, they now do.
In other words, if ¬ha was true before, ha is true now. And this is the case for
all agents. This is a public way to make everybody pay attention to you. Even
more, you have achieved their joint attention.

A less public way to make someone listen to you is to tap on her shoulder
before you speak. This only makes that person attentive and not the other
agents. Suppose that agents a and b are both not paying attention. If I tap on
a’s shoulder and then say something, only a and not b will hear it. If, on the
other hand, I first tap a’s shoulder and then b’s then both a and b will hear
the announcement, but they consider it possible that the other was not paying
attention and does not hear it. The order does not make a difference. In contrast,
clapping your hands is a way to ensure joint attention.

Drawing inspiration from [17,16], we model such fine-grained attention change
by an assignment. Given a set of agents A ⊆ AGT, we distinguish the assignment
+A (merely shorthand for a simultaneous assignment a1 := �, . . . , an := �) that
makes all agents a ∈ A pay attention and hear subsequent announcements, from
an assignment −A that makes all ha false. To the inductive definition of the
language L (Def. 1) we add clauses for the modal operators [+A] and [−A], for
A ⊆ AGT. We write [+a1, . . . , an] instead of [+{a1, . . . , an}]. The semantics of
attention-based assignment is then:

M, s |= [+A]ψ iff M+A, (s, 0) |= ψ

M, s |= [−A]ψ iff M−A, (s, 0) |= ψ

whereM+A = (S′, R′, V ′) is defined as follows (the definition ofM−A is similar).
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– S′ = S × {0, 1};
– if a ∈ A and s, t ∈ S then ((s, i), (t, j)) ∈ R′

a iff (s, t) ∈ Ra and
1. (1) i=0 and j=0; or
2. (2) i=1 and j=1;

– if a 	∈ A and s, t ∈ S then ((s, i), (t, j)) ∈ R′
a iff (s, t) ∈ Ra and

1. (1) i=0, j=0, and (M, s) |= ha; or
2. (2) i=0, j=1, and (M, s) 	|= ha; or
3. (3) i=1 and j=1;

– (s, 0) ∈ V ′(p) iff s ∈ V (p), and (s, 1) ∈ V ′(p) iff s ∈ V (p);
– if a ∈ A then

1. (s, 0) ∈ V ′(ha) iff s ∈ V (ha), and
2. (s, 1) ∈ V ′(ha) iff s ∈ V (ha);

– if a 	∈ A then
1. (s, 0) ∈ V ′(ha), and
2. (s, 1) ∈ V ′(ha) iff s ∈ V (ha).

In the case of the singleton attention assignment +a, agent a will now pay
attention in the 0-copy of the initial model and may or may not be paying
attention in the 1-copy (that copies the prior information state). If another
agent b was already paying attention he will now know that a is now paying
attention (the first item of the clause for agents not paying attention, above,
wherein arrows point to other 0-worlds); else his knowledge of a’s attention span
is as before (the second item of the clause for agents not paying attention). The
only factual information change takes place in the 0-copy, and only for ha (this
is the part (s, 0) ∈ V ′(ha) in the last item, i.e., for all states s in the 0-copy ha

is now true).
Attention assignment preserves attention introspection. The order in succes-

sive change of attention does not matter, but it does not achieve joint attention:

– |= [+a][+b]ϕ↔ [+b][+a]ϕ;
– 	|= [+a, b]ϕ↔ [+b][+a]ϕ.

Just as attention-based announcements, an attention assignment correspond
to an action model that is a function of (1) who is paying attention and who
not before the assignment, and (2) the assignment. The logic to which attention
assignment has been added can therefore also easily be axiomatized. (Details of
this action model are omitted.)

The validities of the language extended by assignments can be axiomatized by
means of reduction axioms for [+A] and [−A]. Separate axioms are needed for
all inductive cases [+A]ϕ (again, just as for attention-based announcement, as a
function of a rather complex action model). For the case of epistemic operators
these are:

[+A]Baϕ↔
{
Ba[+A]ϕ if a ∈ A

(ha → Ba[+A]ϕ) ∧ (¬ha → Baϕ) if a 	∈ A

[−A]Baϕ↔
{
Ba[−A]ϕ if a ∈ A

(ha → Ba[−A]ϕ) ∧ (¬ha → Baϕ) if a 	∈ A
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Finally, let [[ϕ]]A be the modal operator of private announcement to group A
according to [9]. Then [[ϕ]]Aψ is equivalent to [+A][−A][ϕ]ψ, where A is AGT\A.
It follows that the public announcement of ϕ can be captured in our logic by
[+AGT][ϕ].

7 Comparison and Further Research

Our proposal is related to several other logics in the DEL literature: arrow
update logic [12], wherein a simple dynamic operator can have a large action
model equivalent; reasoning about perception [18]; reasoning about perceptual
beliefs [11]; reasoning about visually oriented agents [3]; action languages [1].

We plan to study the extension of attention-based announcement logic with
common belief that we have sketched in Section 5. On a similar setting we intend
to model trust-based announcement logic.
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Annex: Tableaux and Complexity

Let Lab be a countable set of labels designed to represent worlds of the epistemic
model (M,w). Our tableau method manipulates terms that we call tableau terms.
They are of the following kind:

– (σ Σ ϕ) where σ ∈ Lab is a symbol (that represents a world in the initial
model) and Σ is a sequence of formulas (where [] denotes the empty list).
This term means that ϕ is true after the announcements of the formulas of
the sequence Σ (in that order) in the world denoted by σ;

– (σ Σ �) means that the sequence Σ is executable in σ;
– (σ Σ ⊗) means that the sequence Σ is not executable in the world denoted

by σ;
– (σRaσ1) means that the world denoted by σ is linked by Ra to the world

denoted by σ1;
– ⊥ denotes an inconsistency.

A tableau rule is represented by a numerator N above a line and a finite list of
denominators D1, . . . ,Dk below this line, separated by vertical bars:

N
D1 | . . . | Dk

The numerator and the denominators are finite sets of tableau terms.
A tableau tree is a finite tree with a set of tableau terms at each node. A

rule with numerator N is applicable to a node carrying a set Γ , if Γ contains an
instance of N . If no rule is applicable, Γ is said to be saturated. We call a node
σ an end node, if the set of formulas Γ it carries is saturated or if ⊥ ∈ Γ . The
tableau tree is extended as follows:

1. Choose a leaf node n carrying Γ where n is not an end node, and choose a
rule ρ applicable to n.
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2. (a) If ρ has only one denominator, add the appropriate instantiation to Γ .
(b) If ρ has k denominators with k>1, create k successor nodes for n, where

each successor i carries the union of Γ with an appropriate instantiation
of denominator Di.

A branch in a tableau tree is a path from the root to an end node. A branch
is closed if its end node contains ⊥, otherwise it is open. A tableau tree is closed
if all its branches are closed, otherwise it is open. The tableau tree for a formula
ϕ ∈ L is the tableau tree obtained from the root {(σ0 [] ϕ)} when all leaves are
end nodes.

The tableau rules are depicted in Figure 3. They contain the classical Boolean
rules (∧), (¬¬) and a non-deterministic rule (¬∧) handling disjunctions. The rule
(⊥) makes the current execution fail. The rules (←p) and (←¬p) correspond to
the fact that valuations are not changed by announcements. The rule (hear)
decides non-deterministically for all atomic propositions ha whether they are
true or false. Note that this is a non-analytic rule: the formulas in its denominator
are not necessarily subformulas of the input formula. Depending on the value of
ha, there are two versions of the rule for Ba and for ¬Ba. The rules (�), (⊗),
(clash�,⊗) and (ε⊗) deal with executability of the sequence Σ.

Proposition 5 (Soundness and Completeness of the Tableau Method).
A L formula ϕ is satisfiable iff there exists an open branch for ϕ.

Proof. ⇐ If the formula ϕ is satisfiable, there exists a pointed model (M,w)
such that M,w |= ϕ. We use the model M and the updated models from M
and the announcement in ϕ as an oracle to guide the execution of the tableau
method yielding to an open branch.
⇒ Given an open branch, we construct a model M where worlds are the

nodes σ, relations are inferred from terms of the form (σ Ra σ1) and valuations
are inferred from terms of the form (σ ε p) and (σ ε ¬p). We prove by induction
over Σ,ψ that (σ Σ ψ) is in the branch iff MΣ , σ |= ψ, where MΣ is the model
obtained by updating M by the sequence Σ.

Proposition 6. Satisfiability of L formulas in the class of Kn models is
PSPACE-complete.

Proof. As explained in [10], a tableau method leads to a PSPACE procedure
if we can apply the rules by only keeping in memory the content of a branch.
In our case the argument is essentially the same (see also [4]): we only keep in
memory the information concerning the current node and its path to the root
node, in order to be able to backtrack. We implicitly restrict the applicability
of the (hear) rule to those ha such that a occurs in the input formula. It is
PSPACE-hard because we may reduce polynomially the satisfiability problem
for Kn (the multi-agent version of the minimal modal logic K).
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(σ Σ ϕ ∧ ψ)

(σ Σ ϕ)
(σ Σ ψ)

(∧) (σ Σ ¬¬ϕ)
(σ Σ ϕ)

(¬¬)

(σ Σ ¬(ϕ ∧ ψ))

(σ Σ ¬ϕ) | (σ Σ ¬ψ) (¬∧) (σ Σ p)(σ Σ ¬p)
⊥ (⊥)

(σ Σ [ϕ]ψ)

(σ Σ :: ϕ ψ)
([ϕ])

(σ Σ ¬[ϕ]ψ)
(σ Σ : ϕ ¬ψ) (¬[ϕ])

(σ Σ p)

(σ [] p)
(←p)

(σ Σ ¬p)
(σ [] ¬p) (←¬p)

(σ Σ :: ϕ �)

(σ Σ ϕ)
(σ Σ �)

(�)
(σ Σ :: ϕ ⊗)

(σ Σ �)
(σ Σ ¬ϕ) (σ Σ ⊗)

(⊗)

(σ Σ ⊗)(σ Σ �)

⊥ (clash�,⊗)
(σ [] ⊗)

⊥ ([]⊗)

(σ Σ Baϕ)(σ [] ha)
(σ Ra σ1)

(σ1 Σ �)
(σ1 Σ ϕ)

(σ1 Σ ⊗)

(Ba)

(σ Σ Baϕ)(σ [] ¬ha)
(σ Ra σ1)

(σ1 [] ϕ)
(Ba)

(σ [] ha)(σ Σ ¬Baϕ)

(σ Ra σnew)
(σnew Σ �)
(σnew Σ ¬ϕ)

(¬Ba) (σ [] ¬ha)(σ Σ ¬Baϕ)

(σ Ra σnew)
(σnew [] ¬ϕ)

(¬Ba)

(σ [] ha) (σ [] ¬ha)
(hear)

Fig. 3. Tableau rules
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Abstract. We study a recently introduced extension of normal form
games with a phase before the actual play of the game, where each player
can make binding offers for payments of utility to the other players after
the play of the game, contingent on the recipient playing the strategy
indicated in the offer. Such offers transform the payoff matrix of the
original game and allow for some degree of cooperation between rational
players while preserving the non-cooperative nature of the game. We
focus on 2-player negotiations games arising in the preplay phase when
offers for payments are made conditional on a suggested matching offer of
the same kind being made in return by the receiver. We study and analyze
such bargaining games, obtain results describing their possible solutions
and discuss the degrees of efficiency and fairness that can be achieved in
such negotiation process depending on whether time is valuable or not.

1 Introduction

It is well-known that many solution concepts in non-cooperative games can in-
duce outcomes that are far from being Pareto optimal. Some studies have consid-
ered various forms of preplay interaction between the players, aiming at improving
the resulting payoffs. Such interaction range from cheap talk to signing contracts.
Cheap talk affects neither the payoffs nor the non-cooperative rational behavior of
the players, whereas by signing contracts the players pre-determine the outcome
of the resulting normal form game, essentially playing as a coalition.

The problem in the focus of the present study is: what can rational players
achieve by means of interactive negotiations prior to playing a non-cooperative
game? In [3] we consider a version of preplay interaction between players, whereby
they try to negotiate better outcomes in the forthcoming game by means of ex-
changing offers for additional (side) payments of utility conditional on the recip-
ient playing the strategy indicated in the offer. More precisely, before the actual
game is played any player, say A (Ann), can make a binding offer to any other
player, say B (Bob), to pay him, after the end of the game, an explicitly declared
amount of utility δ if B plays a strategy s specified in the offer by A. Such an offer

D. Grossi, O. Roy, and H. Huang (Eds.): LORI 2013, LNCS 8196, pp. 110–123, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



An Offer You Cannot Refuse 111

effects a simple transformation of the payoff matrix of the game, by transferring
the declared amount from the payoff of A to the payoff of B in every outcome cor-
responding to B playing δ. Players can exchange multiple such offers in attempt
to transform the game into one where their expected payoffs, assuming rational
behaviour of the other players according to a commonly adopted solution concept,
would be better than those expected from the original game. Furthermore, players
can make such offers conditional on receiving desired matching offers, which can
be in turn accepted or rejected. Thus, a whole preplay negotiation phase emerges
before the original normal form game is actually played, and it can be regarded as
another game in which players bargain towards a mutually optimal transforma-
tion of the former.

This paper studies 2-player negotiations games arising in the preplay phase
when conditional offers for payments are made on a suggested matching offer of
the same kind made in return by the receiver. We study and analyze such bar-
gaining games, obtain results describing their possible solutions and discuss the
degrees of efficiency, in the sense of Pareto optimality of the resulting distribu-
tion, and fairness, in the sense of equitability of the resulting distribution, that
can be achieved in such negotiation process in the cases where time is valuable
or not. We focus on the ideas and intuitions behind preplay negotiation games
with conditional offers, while, for space reasons, some core technical results are
stated with brief proof sketches. Full proofs of those results are available in [4].

The paper is organized as follows. In Section 2 we introduce the preliminary
game-theoretical notions. In Section 3 we discuss preplay offers in two-player
normal form games and define the framework of preplay negotiation games. The
analysis and main results are in Section 4. In Section 5 we discuss some related
work and end with concluding remarks and further agenda in Section 6.

2 Preliminaries

Let G = ({A,B}, {ΣA, ΣB}, u) be a two player normal form game (henceforth
NFG), where {A,B} is a set of players, {ΣA, ΣB} a set of finitely many strategies
for each player and u : {A,B}×ΣA×ΣB → R is a payoff function assigning to
each player a utility for each strategy profile. The game is played by each player
i choosing a strategy from Σi. The resulting strategy profile σ is the outcome
of the play and ui(σ) = u(i, σ) is the associated payoff for i. An outcome of a
play of the game G is called maximal if it is a Pareto optimal outcome with the
highest sum of the payoffs of all players. Let GN be the set of all normal form
games for a set of players N . By solution concept for GN we mean a map S
that associates with each G ∈ GN a non-empty set S(G) of outcomes of G, called
the S-solution of the game. For a player i, we denote Si the restriction of
the mapping S to i returning only the strategies of player i consistent with S,
i.e., Si(G) = {σi ∈ Σi | σ ∈ S(G)}. We also use −i for any i ∈ {A,B} to denote
i’s opponent. In this work we do not commit to a specific solution concept
for the normal form games but we assume that the one adopted by the players
satisfies the necessary condition that every outcome in any solution prescribed
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by that solution concept must survive iterated elimination of strictly dominated
strategies. We call such solution concepts acceptable.

Games for which the solution concept S yileds a set of payoff equivalent out-
comes will be called uniformly S-solvable. Games for which S yileds only
maximal outcomes will be called optimally S-solvable. Games that are both
optimally S-solvable and uniformly S-solvable will be called perfectly
S-solvable. S-solvable games for which the solution concept S yields a sin-
gle outcome will be called S-solved. For instance, every game with a strongly
dominating strategy profile is S-solved for any acceptable solution concept S.
Ideally, preplay negotiation games should transform the starting NFG into a
perfectly S-solved, or at least perfectly S-solvable, one.

It is necessary for the preplay negotiation phase for each player to have an
expected value of any NFG that can be played. For sake of definiteness we
adopt here a conservative, risk-averse approach and will define for every accept-
able solution concept S, game G and a player i, the expected value of G for i
relative to the solution concept S to be:

vSi (G) = max
σi∈Si(G)

min
σ−i∈S−i(G)

ui(σ)

We note that our further analysis does not depend essentially on this particular
assumption; any other realistic notion of expected value of a NFG would yield
similar results.

3 Two-Player Normal Form Games with Preplay Offers

3.1 Preplay Offers

Following [3] we use the notation A
δ/σB−−−→ B to denote an offer made by player

A to pay an amount δ to player B after the play of the game if player B plays
strategy σB. Any preplay offer by A to B is assumed binding for A, upon B
playing the specified strategy. However, such offer does not create any obligation
for B, who is still at liberty to choose his strategy when the game is actually
played. In particular, after her offer A does not know in advance whether B will
play the desired by A strategy σB , and thus make use of the offer or not. The
key observation applying here is that after any preplay offer the game remains
a non-cooperative normal form game, only the payoff matrix changes according
to the offer. We now illustrate preplay offers in a well-known scenario.

Motivating example: Prisoners’ Dilemma. Consider a version of the Prisoner’ s
Dilemma (PD) game in Figure 1, left. The only Nash Equilibrium (NE) of the
game is (D,D), yielding a payoff of (1, 1). Now, suppose player Row makes the

offer Row
2/C−−−→ Column to the player Column . That offer transforms the game

by transferring 2 utils from the payoff of Row to the payoff of Column in every
entry of the column where Column plays C, as in Figure 1, middle.
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C D
C 3, 3 0, 4
D 4, 0 1, 1

Row
2/C−−−→ Column

C D
C 1, 5 0, 4
D 2, 2 1, 1

Column
2/C−−−→ Row

C D
C 3, 3 2, 2
D 2, 2 1, 1

Fig. 1. From left to right: A Prisoner’s Dilemma game; the game after the first offer
by player Row; the game after the second offer by player Column

In this game player Row still has the incentive to play D, which strictly
dominates C for him, but the dominant strategy for Column now is C, and thus
the only NE is (D,C) with payoff (2, 2) – strictly dominating the original payoff
(1, 1). Of course, Column can now realize that if player Row is to cooperate, an

extra incentive is needed. That incentive can be created by an offer Column
2/C−−−→

Row , that is, if Column, too, makes an offer to Row to pay him 2 utils after
the game, if player Row cooperates. Then the game transforms as in Figure 1,
right. In this game, the only Nash equilibrium is (C,C) with payoff (3, 3), which
is also Pareto optimal. Note that this is the same payoff for (C,C) as in the
original PD game, but now both players have created incentives for each other
to cooperate, thus escaping1 from the original bad Nash equilibrium (D,D).

3.2 Conditional Offers

Consider now an instance of the Battle of the Sexes (Figure 2, left), with the
column player called Him and the row player Her. It has two Nash equilibria:
one preferred by Her: (Ballet, Ballet), and the other – by Him: (Soccer, Soccer).

Her\Him Ballet Soccer
Ballet 5, 3 1, 1
Soccer 0, 0 3, 5

Her\Him Ballet Soccer
Ballet 5, 3 1, 1
Soccer 2,−2 5, 3

Her\Him Ballet Soccer
Ballet 5, 3 0, 2
Soccer 2,−2 4, 4

Fig. 2. From left to right: A Battle of the Sexes game; the game transformed by the

offer Him
2/Soc−−−−→ Her favouring Her; further transformed by an offer Her

1/Soc−−−−→ Him

An offer Him
2/Soccer−−−−−−→ Her2 would transforms the game to one in Figure

2, middle. By doing so, Him makes the equilibrium (Soccer,Soccer) equally
beneficial for Her as (Ballet,Ballet) and also sends the clear message that he
intends to play Soccer, thus essentially breaking the coordination problem and
deciding the game. However, this offer comes at a cost for Him and puts him

1 Clearly, preplay offers can only work in case when at least part of the received payoff
can actually be transferred from a player to another. They obviously cannot apply
to scenarios such as the original PD, where one prisoner cannot offer to the other to
stay in prison for him, even if they could communicate before the play.

2 which can be made, for example, in the form of invitation to a dinner in a luxury
restaurant after the soccer match, if Her pitches up there.
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in a relatively disadvantaged position: with respect to the original game, he is
worse off in one of the two Nash equilibria and he is not better off in the other.

The loss and disadvantage incurred by Him in the example above could be

partly neutralized by an offer Her
1/Soccer−−−−−−→ Him, which transforms the game

to the one in Figure 2, right.
But, of course, Her has no incentive to make such an offer to Him in the middle

game on Figure 2. So, the only realistic way for Him to force such matching offer

by Her is to make his offer Him
2/Soccer−−−−−−→ Her conditional on Her making to

Him the matching offer Her
1/Soccer−−−−−−→ Him3. This conditional offer is denoted

hereafter as Him
2/Soccer | 1/Soccer−−−−−−−−−−−−−→ Her. The effect is that players reach an

equitable redistribution of the payoffs in the expected (maxmin) outcome.

In practice, a conditional offer A
α/σB | β/ρA−−−−−−−−−→ B enables the offering player

to suggest a transformation of the game G into a game G(A α/σB | β/ρA−−−−−−−−−→ B)
that is updated according to the offer.

In other words, a suggested transformation updates the original game into a
new game where only the payoff vectors change, according to the conditional offer
that is made. At each profile, each player collects the positive reward received
in the part of the conditional offer consistent with the profile, subtracting in the
same fashion the payments given.

There are two possible responses to a conditional offer A
α/σB | β/ρA−−−−−−−−−→ B: it

can be accepted or rejected by the receiving player. If rejected, the offer is imme-
diately cancelled and does not commit any of the players to any payment, and
therefore it does not induce any transformation of the game matrix. If accepted,
the actual transformation induced by the offer is the suggested transformation
defined above.

For space reasons we do not consider the possibility of withdrawing previously
made offers, which is treated in [4].

3.3 Preplay Negotiation Games

Similarly to [6], our setting for normal form games with preplay offers begins
with a given ‘starting’ normal form game G and consists of two phases:

– A preplay negotiation phase, where players negotiate on how to transform
the game G by making offers, accepting or rejecting conditional offers they
receive.

– An actual play phase where, after having agreed on some transformation X
in the previous phase, the players play the game G updated with X .

We will call the resulting games preplay negotiation games.
In order to define a PNG we need to introduce some preliminaries: moves,

histories and plays. Depending on some of the optional assumptions, the players

3 For instance, Her could offer to bring a coolbox with cold beer and chips to the
stadium if Him comes there.
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can have several possible moves in a PNG. Let us consider the case where condi-
tional offers are allowed. Then the moves available to the player whose turn is to
play depend on whether or not he/she has received since his/her previous move
any conditional offers. If so, we say that the player has pending conditional
offers. The possible moves of the player in turn are as follows.

1. A player who has no pending conditional offers can:
(a) Make an offer (conditional or not).
(b) Pass.

2. A player who has pending conditional offers, can for each of them:
(a) Accept the pending offer , and then make an offer of his/her own or pass.
(b) Reject the pending offer, and then make an offer of his/her own or pass.

The PNG is over when all players have passed at their last move, or a player has
opted out.

We now define the notion of a history in a PNG as a sequence of moves
by the players who take their turns according to an externally set protocol (a
detailed discussion of the possible external protocols is provided in [3]). Every
finite history in such a game is associated with the current NFG: the result of
the transformation of the starting game by all offers that are so far made and
accepted. The current NFG of the empty history is the input NFG of the PNG. A
play of a PNG is any finite history at the end of which the preplay negotiations
game is over, or any infinite history.

In order to eventually define realistic solution concepts for preplay negotia-
tions games we need to endow every history in such games with a value for every
player. Intuitively, the value of a history is the value for the player of the
current NFG associated with that history, in the case of non-valuable time, and
the same value accordingly discounted in the case of valuable time.

Disagreements. The PNG may terminate if all players pass at some stage, in
which case we say that the players have reached agreement, or may go on forever,
in which case the players have failed to reach agreement; we call such situation a
(passive) disagreement and we denote any such infinite history with D. We will
not discuss disagreements and their consequences here, but will make the explicit
assumption that any agreement is better for every player than disagreement in
terms of the payoffs, e.g. by assigning payoffs of −∞ in the entire game for
each player if the PNG evolves as a disagreement. In [3] we also outline a more
flexible and possibly more realistic alternative, whereby players can explicitly
express tentative acceptance of the current NFG – the one on which they are
currently negotiating by making offers or can terminate the negotiations by
explicitly opting out, which would revert to the current game to the currently
accepted by everyone NFG.

A preplay negotiation game (PNG) starts with an input NFG G and either
ends with a transformed game G′ or goes on forever, which we discuss further.
The outcome of a play of the PNG is the resulting transformed game G′ in
the former case and ’Disagreement’ (briefly D) in the latter case. By a solution
of a PNG we mean the set of all transformed normal form games that can be
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obtained as outcomes of plays induced by subgame perfect equilibrium strategy
profiles in the PNG. Finally, we say that a strategy in a PNG is strongly
efficient if the vector of payoffs of the outcome it attains is a redistribution of
the vector of payoffs of a maximal outcome.

4 Preplay Negotiations Games with Conditional Offers

First, let us state a useful general result, also valid in the case of many players
PNG. An extensive form game is said to have the One Deviation Property
(ODP) [8, Lemma 98.2] if, in order to check that a strategy profile is a Nash
equilibrium in (some subgame of) that game, it suffices to consider the possible
profitable deviations of each player not amongst all of its strategies (in that
subgame), but only amongst the ones differing from the considered profile in the
first subsequent move (in that subgame).

Lemma 1. Every PNG has the One Deviation Property.

Proof. It is easy to check that a strategy profile of a PNG is a subgame perfect
equilibrium if and only if it is a subgame perfect equilibrium of the same PNG
without disagreement histories as, notice, strategies leading to disagreement are
cannot be used as credible threats. But, a PNG without disagreement histories
is an extensive game of perfect information and finite horizon. By [8, Lemma
98.2] the PNG has the one deviation property.

4.1 The Case of Non-valuable Time

The value for a player of a history in a PNG is the value for the player of the
current NFG associated with that history. When time is not valuable players
assign the same value to the NFG associated with the current moment and the
same game associated with any other moment in the future, which means that
players can afford delaying offers at no extra cost.

To analyze equilibrium strategies of PNG when time is not valuable we con-
sider so called stationary acceptance strategieswhere players have a minimal
acceptance threshold d and a minimal passing threshold d′ ≥ d (both of which
may vary among the players).

Proposition 1. Every subgame perfect equilibrium strategy profile of a two-
player PNG with non-valuable time consisting of stationary acceptance strategies
is strongly efficient.

Proof. Suppose not. Let d− be a vector of expected values that is not the redis-
tribution of a maximal outcome of the starting game associated to some subgame
perfect equilibrium strategy profile. We know that such strategy profile yields
a history h that ends with: 1) the proposal of d−; 2) the acceptance of that
proposal; 3) a pass; 4) a pass. Consider now some redistribution d∗ of a maximal
outcome where both players get more than in d− and the history h where the
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last four steps are substituted by the following ones: 1) the proposal of d∗; 2)
the acceptance of that proposal; 3) pass; 4) pass. By stationarity of strategies
and the ODP, the player moving at step 1) is better off deviating from d− and
instead proposing d∗: a contradiction.

The condition of stationarity of acceptance strategies is needed if we want to
avoid equilibrium strategies that lead to inefficiency. The example below provides
a detailed instance of such cases.

Example 1 (Attaining inefficiency). Consider the following starting NFG.

L R
U 2, 2 4, 3
D 3, 3 2, 2

As there are no dominant strategy equilibria, there are acceptable solution
concepts assigning 2 to each player.

We now construct a strategy profile of the PNG starting from that game, such
that: (i) it is a SPE strategy profile and (ii) it attains an inefficient outcome.

1. At the root node player A proposes outcome (D,L) with payoff distribution
(3, 3) — i.e., makes a conditional offer where D,L is dominant strategy
equilibrium and yields the payoff vector (3, 3) .

2. After such proposal playerB accepts. However, ifA had made a different offer
(so, off the equilibrium path) B would reject and keep proposing outcome
(U,R) with distribution of 5 for him and 2 for A and accepting (and passing
on) maximal outcomes guaranteeing him at least 5. A, on the other hand,
would not have better option than proposing the same distribution (5 for
B and 2 for her) and accepting only maximal outcomes guaranteeing her
at least 2. Notice that once they enter this subgame neither A nor B can
profitably deviate from such distribution.

3. If, however, B did not accept the (3, 3) deal then A would keep proposing
outcome (U,R) with a redistribution of (5, 2) (5 for her, 2 for him) and ac-
cepting at least that much. B on the other hand would also stick to the
same distribution, accepting at least 2. Again, no player can profitably de-
viate from this stationary strategy profile starting from B’s rejection.

4. After player B has accepted the deal (3, 3), then A passes. If A did not pass,
player B would go back to his (2, 5) redistribution threat. Likewise with the
next round. That eventually leads to the inefficient outcome (3, 3).

It is easy to check that the strategy profile described above is a subgame
perfect equilibrium. No player can at any point deviate profitably by proposing
the outcome (U,L) with dominating payoff distribution, e.g., (3.5, 3.5) .

In general, in PNG with non-valuable time every redistribution of a maximal
outcome can be attained as a solution.
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Proposition 2. Let E be PNG with non-valuable time starting from a NFG G
and let d = (xA, xB) be any redistribution of a maximal outcome of the starting
NFG. The following strategy profile σ = (σA, σB) is a subgame perfect equilbrium:

For each player i ∈ {A,B}:
• if i is the first player to move, he proposes a transformation of G where
the vector of expected values in the transformed game is d;

• when i can make an offer and the previously made offer has not been
accepted, he proposes a transformation of the current NFG where the
vector of expected values in the transformed game is d;

• when i can make an offer and the previously made offer has been accepted,
he passes;

• when i has a pending offer of a suggested transformation where the vector
of expected values in the transformed game is d′, he accepts it if and only
if x′

i ≥ xi, and rejects it otherwise;
• when i can pass and the other player has just passed, he passes;
• when i can pass and the other player has not just passed, he proposes d;
• when i has just accepted a proposal he passes;

Proof. We have to show that there is no subgame where a player i can profitably
deviate from this strategy at its root. By Lemma 1 we can restrict ourselves to
considering only first move deviations to the above described strategy.

Suppose the player has a pending offer that induces a transformation of the
current NFG where the vector of expected values is d∗. If she accepts it then the
outcome will be d∗, due to the definition of the strategy profile; if she rejects it,
it will be the starting offer d. And she will accept if and only if she will get more
from d∗ than from d. So the acceptance component is optimal. For the remaining
cases, if player i deviates from the prescribed strategy, due to the construction
of the strategy and Lemma 1, the vector of payoffs associated to the outcome of
E will be d anyway.

As a consequence of the previous proposition we obtain:

Corollary 1. The game associated to the outcome of a subgame perfect equilib-
rium strategy profile consisting of stationary acceptance strategies in a two-player
PNG with non-valuable time is optimally solvable.

In summary, our analysis of two-player PNG with non-valuable time shows
that efficiency can be attained when conditional offers are allowed and stationary
acceptance strategies are followed. Indeed, any redistribution of the vector of
payoffs of a maximal outcome can be made the unique solution of the final NFG
by such SPE strategies. However, non-stationary acceptance strategies may lead
to inefficient equilibria, as illustrated in the comment to Proposition 1.

To sum up, while SPE strategies in a two-player PNG can attain efficiency,
some important issues are still remaining:

– SPE strategies with non-stationary acceptance need not be strongly efficient.
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– players can keep making unfeasible moves as a part of a SPE strategy, i.e.,
there are forms of equilibria where some players strictly decrease their ex-
pected payoff with respect to the original game;

– even strongly efficient strategies do not always yield perfectly solved games,
as there is no notion of most fair redistribution of the payoff vectors in the
solution of the original game.

Thus, when time is of no value, even the option of making conditional offers
is not sufficient to guarantee that fair and efficient outcomes are ever reached.

4.2 The Case of Valuable Time

We will see here that when time is of value all the problems mentioned above
can be at least partially solved. To impose value on time we introduce, for each
player i, a payoff discounting factor δi ∈ (0, 1) applied at every round of the
PNG associated to offers that are made to his payoffs. These factors measure
the players’ impatience, i.e., how much they value time, and reduce the payoffs
accordingly as time goes by. The general intuition in this case, which we will
justify further, is that for the sake of time efficiency, in a SPE strategy profile:

1. If any player is ever going to make an offer, she would never make any earlier
offer that gives her, if accepted, a lesser value of the resulting game.

2. If any player is ever going to accept a given offer (or any other offer, at least
as good for her) she should do it the first time when she receives such offer.

To facilitate the compatison we bargaining games we however restrict players’
possible strategies, imposing some additional constraints:

– every game associated with a history of a PNG does not have outcomes in
the solution (but, possibly elsewhere) that assign negative utility to players.
Notice, that we do allow payoff vectors consisting of negative reals to be
present in the game matrix, only we do not allow such vectors to be associ-
ated to outcomes in the solution. This constraint that we impose has several
practical consequences:

• players’ expected payoffs decrease in time, i.e.,the discounting factor δ
has always a negative effect on the expected payoff.

• players can make offers that redistribute the payoff vectors associated
with outcomes in the solution, leaving some nonnegative amount to each
player and some strictly positive amount to some.

– the expected payoff of each player at any disagreement history can be as-
sumed 0.

We will use the following notational conventions:

– (x, t) denotes the payoff vector x at time t, where each component xi is
discounted by δti ; (x, t)i denotes the payoff of player i in vector x at time t.
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– GX will denote the set of all possible redistributions of payoffs of outcomes in
a NFG G that assign nonnegative payoffs to all players. This set is compact,
but generally not connected, as in the bargaining games of [4]. However,
it is a finite union of compact and connected sets, and that will suffice to
generalize the results from [4] that we need.

The following properties of every 2-person PNG with valuable time starting
from a given NFG G are the four fundamental assumptions of Osborne and
Rubinstein’s bargaining model [8, p.122].

1. For each x, y ∈ GX such that x 	= y, if (x, 0)i = (y, 0)i then (x, 0)−i 	=
(y, 0)−i. This holds because the set GX is made by payoff vectors and sub-
tracting some payoff to a player means adding it to the other.

2. (bi, 1)−i = (bi, 0)−i = (D)−i, where bi is the highest payoff that i obtains
in GX and (D)−i the payoff for −i in any disagreement history. As bi is the
best agreement for player i it is also the worst one for player −i.

3. If x is Pareto optimal amongst the payoff vectors in GX then, by definition
of GX , there is no y with (x, 0)i ≥ (y, 0)i for each i ∈ N . Moreover, x is a
redistribution of a maximal outcome in G.

4. There is a unique pair (x∗, y∗) with x∗, y∗ ∈ GX such that (x∗, 1)A =
(y∗, 0)A and (y∗, 1)B = (x∗, 0)B and both x∗, y∗ are Pareto optimal amongst
the payoff vectors in GX .

The first three statements above are quite straightforward. To see the last
one, let x∗ = (x∗

A, x
∗
B) and y∗ = (y∗A, y

∗
B) and let the sum of the payoffs in any

maximal outcome in G be d. Then (x∗
A, x

∗
B, y

∗
A, y

∗
B) is the unique solution of the

following, clearly consistent and determined system of equations:
yA = δAxA, xB = δByB, xA + xB = d, yA + yB = d.

The solution (see also [8]) is:

xA = d
1− δB

1− δAδB
; yA = δAd

1− δB
1− δAδB

xB = δBd
1− δA

1− δAδB
; yB = d

1− δA
1− δAδB

.

Relation with Bargaining Games. In the remaining part of the section we
will explicitly view preplay negotiation as a bargaining process on how to play
the starting normal form game. Using our observations and assumptions, we
can adapt the results from [8] to show that when time is valuable not only all
equilibria consisting of stationary acceptance strategies attain efficiency but they
also do it by redistributing the payoff vector in relation to players’ impatience.
Stationary acceptance strategies will be needed to focus only on the maximal
connected subspace of the set GX . To say it with a slogan, while in [8] efficiency
and fairness can be obtained in scenarios that resemble the division of a cake,
in our setting we prove similar results for a set of cakes, of possibly different
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size. We extend the efficiency and fairness results obtained in [8] for bargaining
games of the type of ‘division of a cake’ to similar results for somewhat more
general bargaining games of the type where players have to choose a cake from
a set of cakes, of possibly different sizes and divide it. Our claim, in a nutshell,
is that, when players employ stationary acceptance strategies, they immediately
choose the largest cake and then bargain on how to divide it.

First, recall that in our framework time passes as new proposals are made.
So, from a technical point if the PNG start with a game that is already perfectly
solved, the player moving first will not be punished by passing immediately.

Then, without restriction of the generality of our analysis, we can assume a
unique discounting factor for both players. Indeed, the discount factor of e.g.,
player A can be made equal to that of B while preserving the relative preferences
of A on the set of outcomes by suitably re-scaling the payoffs of A in the input
NFG, and therefore the expected value for A of that game; for technical details
see [8, p.119] following an idea of Fishburn and Rubinstein quoted there.

Now we are ready to state the main result for this case:

Theorem 1. Let (x∗, y∗) be the unique pair of payoff vectors defined above.
Then, in a PNG with valuable time starting from a NFG G with a unique dis-
counting factor δ for both players, the strategy of player A in every subgame
perfect equilibrium consisting of stationary acceptance strategies satisfies the fol-
lowing (to obtain the strategy for B simply swap x∗ and y∗):

– if A is the first player to move she ’proposes’ outcome x∗, i.e., makes a
conditional offer that, if accepted, would update the game into one with is
dominant strategy equilibrium yielding the Pareto maximal outcome x∗ as
payoff vector;

– when A has a pending offer y′, she accepts it if and only if the payoff she
gets in y′ is at least as much as in y∗;

– when A can pass, she passes if and only if the expected value associated to
the proposed game y′A is at least as much as y∗A; otherwise she proposes x∗.

Proof idea To prove the claim we use a variant of the argument given in [8]
for bargaining games, summarized as follows.4 We first show [Step 1] that the
best SPE payoff for player A in any subgame G′

A starting with her proposal
and where G′ is the currently accepted game — let us denote it by MA(G

′
A) —

yields the same utility as the worst one — mA(G′
A) — which, in turn, is the

payoff of A at x∗. The argument for B is symmetric. Then we show [Step 2] that
in every SPE the initial proposal is x∗, which is immediately accepted by the
other player, followed by each player passing. Finally, we show [Step 3] that the
acceptance and the passing conditions are shared by every SPE strategy profile.

To summarize, when time is valuable and players’ value of time (impatience)
is measured by a vector of discount factors δ the SPEs following stationary
acceptance strategies are essentially unique, efficient and redistribute a maximal

4 A full proof can be found in [4].
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payoff vector in a fair way, depending on players’ impatience, viz. in each SPE
play, players agree as soon as possible and divide (almost) evenly any of the
maximal outcomes in the game. Thus, introducing value of time solves both
problems of efficiency and fairness at once.

If a PNG starts with a game that is uniformly solvable but not optimally
solvable (i.e. there is space for improvement), the player moving first can improve
on the expected outcome of the initial game only on the condition to ensure to
her opponent at least his expected value in the initial game.

5 Related Work

The present study has a rich pre-history, related to earlier work on bargain-
ing and various pre-play negotiation procedures, notable examples of which are
[2, 5, 7, 9, 10]; see [3] for a broad discussion. Here we only mention the most
relevant recent work. To our knowledge, Jackson and Wilkie [6] are the first
to have studied arbitrary transfers from a player to a player in a normal form
game. Their framework bears essentiial similarities with ours, as it studies a two-
stage transformation on a normal form game where players announce transfers
of payments between each other on the initial normal form game and then play
the updated game. Yet, there are substantial differences with our framework,
the most important ones being that in [6] players make positive side payments
to other players conditional on the entire outcome of the game, by announcing
their offers simultaneously, and therefore time and its value do not play a role in
the negotiations phase. Ellingsen and Paltseva [1] generalize [6] in several ways.
In their framework each player specifies a (possibly negative) transfer to the
other players for each (possibly mixed) strategy profile σ and, at the same time,
specifies a signing decision for each contract of the other players. The authors
show that their more general contracting game always has efficient equilibria.
In particular, they show that all efficient outcomes guaranteeing to each player
at least as much as the worst Nash-equilibrium payoff in the original game can
be attained in some equilibrium. The message conveyed by this stream of works
is that efficiency can be reached if the structure of players’ offers is complex
enough. Instead, we focus on the effects that additional factors in the preplay
negotiation game, such as valuable time, withdrawals, and opting out have on
attaining outcomes with desirable properties, such as efficiency and fairness.

6 Conclusion

We have analyzed the role and effect of conditional offers in preplay negotiation
games under various assumptions concerning players’ rationality, their value of
time, possibility of revoking previous commitments and opting out from the
negotiations. We have shown that when time is of no value efficiency can be at-
tained, provided some coherence in players’ behaviour is assumed (Prop. 1). Yet,
there are cases in which inefficiency can occur in equilibrium outcomes (com-
ment to Prop. 1). When time is not valuable, the outcomes reached in the PNG
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can be extremely unfair, even if efficient (Prop. 2). However, when time is valu-
able, under some natural assumptions players reach efficient and relatively fair
outcomes (Theorem 1). The latter result draws an explicit connection between
our preplay negotiation games and bargaining games studied in [8].

Some related issues remain still open, in particular the possibility of ruling
out the existence of non-stationary acceptance strategies in all SPE profiles of
PNGs with valuable time. As for the potential future developments, the frame-
work can be extended in various ways, as also discussed in [3]. In particular, we
conjecture that when players can only make unconditional offers, not contingent
on matching offers by the recipients, the analysis of the preplay negotiations
phase changes radically and in a way becomes even more challenging. Its com-
plete analysis is the subject of an ongoing work. Lastly, the analysis of preplay
negotiation phase in games with three and more players is substantially more
complicated and is one of the main future directions in this research.
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Sequent Calculi for Multi-modal Logic

with Interaction

Norbert Gratzl�

Munich Center for Mathematical Philosophy

Abstract. This paper studies Gentzen-style sequent calculi for multi-
modal logics with interaction between the modalities. We prove cut elim-
ination and some of its usual corollaries for two such logics: Standard
Deontic Logic with the Ought-implies-Can principle, and a non-normal
deontic logic where obligation, permissions and abilities interact in a
complex way. The key insight of these results is to make rules sensitive
to the shape of the formulas on either sides of the sequents. This way one
can devise rules in a much more modular fashion. This feature of Hilbert-
style systems is notoriously lost when one moves to sequent calculi. By
partly restoring modularity the method proposed here can potentially
provide a unified approach to the proof theory of multi-modal systems.

1 Introduction and Motivations

Inter-modal interaction is a key feature of many well-known multi-modal logics.
In propositional dynamic logic [7] modalities for complex programmes are built
compositionally from simpler ones. Modern logics for knowledge and beliefs (e.g.
[3]) often contain principles such as “knowledge implies belief” (KA→ BA) and,
when augmented with temporal modalities, principles such as “perfect recall”
and “no miracle” [19].1 Standard Deontic Logic (SDL) [10], one of our case studies
for this paper, is usually taken to contain the Ought-implies-Can-principle:

OA→ ¬�¬A (Ought-Can)

Dealing with such interaction is relatively easy within Hilbert-style calculi.
This is arguably due to the strong modular character of such axiom systems. This
situation changes for Gentzen-style (sequent) calculi. Here extending a system
with new (interaction) rules can break proof-theoretic properties of the original
system.2

� This research is supported by the Alexander von Humboldt Foundation.
1 The perfect recall principle states that if an agent can distinguish between two
histories now she will be able to do so forever after. The no miracle principle states
that if an agent cannot distinguish between two histories, then she cannot distinguish
the result of executing the same action in these histories.

2 This typically was true for standard Gentzen-style formulations of S5. The proof-
theoretically “nice” properties of a hypersequent formulation of S5 is one of the main
reasons for “going hypersequent” in this paper. An extension of 5 (stated below) to
first order logic can be found in [6].

D. Grossi, O. Roy, and H. Huang (Eds.): LORI 2013, LNCS 8196, pp. 124–134, 2013.
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In this paper we make a first step towards the development of a modular
approach to sequent calculi for multi-modal systems. It is true that cut-free
sequent calculi are known for the individual modalities constituting the systems
just mentioned [8,13,21]. Known solutions include labelled sequents [11] or, as
we will use here, hypersequents [15]. Likewise, some of these combined systems
do enjoy a cut-free sequent calculus, for instance PDL [8], multi-agent epistemic
logic [13] and temporal logic [4]. But these solutions do not generalize in a
straightforward way to arbitrary multi-modal systems.

This paper takes a new route. The driving idea is to treat the different modal-
ities modularly by formulating rules that are sensitive to the syntactic shape—
intuitively, the main modal operator—of the formulas on which they operate.

We do so through two case studies. The first one is Standard Deontic Logic
(SDL). This logic contains deontic and alethic modalities. They interact in a
simple way, namely through the Ought-implies-Can principle. We propose such
a syntax-sensitive rule—coined (DI)—that captures this interaction. This sensi-
tivity is key to the admissibility of (Cut) and its corollaries. The alethic modal
logic is S5. Arguably, S5 is typically taken to model logical necessity, but other
interpretations are possible. The study of the first system lays the foundation
for our second case study.

We then move to a more complex multi-modal logic with interaction. Like
SDL, this is a deontic logic with alethic modalities. In this logic, however, obli-
gation and permission are not dual notions, they are both non-normal modalities,
and they interact in a sophisticated way with alethic notions. We choose to de-
velop the proof theory of this system for two reasons. First, it provides a more
complex testing ground for our modular approach, and thus shows its math-
ematical robustness. Second, this logic is well-suited to model obligations and
permissions bearing on agents in games and interactive situations [16,17].

2 Deontic Language with an Alethic Modality

All through this paper we work in a propositional modal logic with “boxes” for
deontic and alethic operators.

A := p | ¬A | A ∨ A | �A | P A | OA

Formulas of the form OA and PA should be read, respectively, as “A is oblig-
atory” and “A is permitted”. Obligation and permission are duals in SDL, but
not in our second case study, thus their introduction as primitives. �A is an
alethic modality, to be read “all actions available to the agent are A-actions.”
This modality has a dual, ♦A, to be read “it is possible for the agent to choose
an A-action.”

3 First Case Study: SDL with Ought-implies-Can

For reasons of easy generalization we start right away with hypersequents [1,2].
We use | as a metalinguistic expression; Γ,Δ, Φ, and Ψ denote multisets of for-
mulas; Σ,Σ′, Σ′′ . . . denote hypersequents.
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Definition 1. A hypersequent is a syntactic object of the form:

Γ ⇒ Δ | Γ1 ⇒ Δ2 | · · · | Γn ⇒ Δn

We take the logic of the alethic modality to be S5, and take its hypersequent
formulation directly from [14,12]; i.e. we take the proof-theoretic methods for
5 developed there, add and extend them further in order to cope with (some)
multi-modal logics.

System 5

(Ax) Σ | A,Γ ⇒ Δ,A if A is atomic

Σ | Γ ⇒ Δ,A
(¬L)

Σ | ¬A,Γ ⇒ Δ

Σ | A,Γ ⇒ Δ
(¬R)

Σ | Γ ⇒ Δ,¬A

Σ | A,Γ ⇒ Δ Σ | B,Γ ⇒ Δ
(∨L)

Σ | A ∨B,Γ ⇒ Δ

Σ | Γ ⇒ Δ,A,B
(∨R)

Σ |Γ ⇒ Δ,A ∨B

Σ | A,�A,Γ ⇒ Δ
(�L1)

Σ | �A,Γ ⇒ Δ

Σ | �A,Γ ⇒ Δ | A,Γ ′ ⇒ Δ′
(�L2)

Σ | �A,Γ ⇒ Δ | Γ ′ ⇒ Δ′

Σ |Γ ⇒ Δ | ⇒ A
(�R)

Σ | Γ ⇒ Δ,�A

We now extend 5 with additional rules. The basic rule for the deontic operator(s)
is the Gentzen-style analogue of the K-axiom.3

Σ | Γ ⇒ A
(K)

Σ | OΓ ⇒ OA

This rule indeed allows for a derivation of (a hypersequent analogue of) K:

B ⇒ B

A,B ⇒ A

A,¬A,B ⇒
¬A ∨B,A⇒ B

(K)
O(¬A ∨B), OA⇒ OB

Now for the interaction principles. SDL contains in fact two of them. The
first one is that obligation implies permission (OA→ PA) or equivalently, that
obligations are consistent (OA → ¬O¬A). This is derivable using the following
rule:

Σ|Γ ⇒
(D)

Σ|OΓ ⇒

3 Deontic logic is rarely studied in sequent calculi; a rare exception is [5].
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The derivation goes as follows:

A⇒ A
A,¬A⇒

(D)
OA,O¬A ⇒
OA⇒ ¬O¬A

Our main target is (Ought-Can). The next rule (DI) makes that principle
derivable, and allows also for the proof of the admissibility of (Cut) in the next
section.

Σ | Γ,Δ� ⇒
(DI)

Σ | OΓ,Δ� ⇒

In this rule Δ� is a multi-set of “boxed” formulas. Each A ∈ Δ� has to be of
the form �B with B a formula of our language. This syntactic restriction can
be seen at work in the following derivation of (Ought-Can):

A,�¬A⇒ A

¬A,A,�¬A⇒
A,�¬A⇒

(DI)
OA,�¬A⇒
OA⇒ ¬�¬A

We call the system consisting of 5 and the rules just mentioned: 5DI. Δ�

plays two roles. It restricts application of the rule. Δ� must contain only boxed
formulas. This blocks derivations of (hyper)sequents as

OA⇒ A

The other role is to enable the interaction between alethic and deontic modalities
in a formally desirable way (i.e. admitting the admissibility of cut).

3.1 Proof Theory of 5DI

In this section we state the admissibility of some structural rules (merge, external
and internal weakening, contraction) and cut in 5DI. First some preparatory
lemmas.

Definition 2 (Height of a derivation, weight of a formula).
The height of a derivation is the greatest number of successive applications of
rules in it. The axiom (Ax) has height 0. A rule is height-preserving admissible
whenever for each derivation of height n of a particular hypersequent Σ in which
that rule is applied there is a derivation of that sequent that is of the same height
and the rule (in question) is not applied.

The weight of a formula is defined as: (i) w(A) = 0 for A is an atom. (ii)
w(A∨B) = w(A)+w(B)+ 1. (iii) w(¬A) = w(A)+ 1. (iv) w(�A) = w(OA) =
w(A) + 1.
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Lemma 1. Every hypersequent of the form Σ | A⇒ A is derivable in 5DI.

The proof of this is standard. For the alethic modal cases see [12, p.177] and
[14]. By use of (K) the deontic case is dealt with.

Lemma 2. (Merge), i.e.,

Σ | Γ ⇒ Δ | Φ⇒ Ψ
(Merge)

Σ | Γ, Φ⇒ Δ,Ψ

is height-preserving admissible in 5DI.

Lemma 3 (External and internal weakening).
Both (EW) and (IW), i.e.

Σ(EW)
Σ | Σ′

Σ | Γ ⇒ Δ
(IW)

Σ | Γ, Φ⇒ Δ,Ψ

are height-preserving admissible in 5DI.

(EW) is proved straightforwardly by induction on the height of the derivation;
the proof of (IW) also uses (Merge) and (EW).

Lemma 4. The rules of contraction, i.e.

Σ | A,A, Γ ⇒, Δ
(CL)

Σ | A,Γ ⇒ Δ

Σ | Γ ⇒, Δ,A,A
(CR)

Σ | Γ ⇒, Δ,A

are admissible.

Definition 3. The cut-height of an instance of the rule of (Cut) in a derivation
is the sum of heights of derivation of the two premisses of (Cut).

Theorem 1.

(Cut), i.e.

Σ | Γ ⇒ Δ,A Σ′ | A,Φ⇒ Ψ
(Cut)

Σ | Σ′ | Γ, Φ⇒ Δ,Ψ

is admissible in 5DI.

The proof of the above theorem is by induction on the complexity of the cut
formula plus a side-induction on the sum of the heights of the premisses. There
are basically three main cases to consider. Case 1 : The left premiss of Cut is an
initial hypersequent. Case 2 : The left premiss of Cut is inferred by a rule of 5DI
but A is not principal in it. Cases 1 and 2 are dealt with as in [12, p.181f] for the
alethic modal cases; the deontic logic cases are settled with ease as well. Case
3 : The left premiss of Cut is inferred by a rule of 5DI and A is principal in it. In
addition to [12, p.182] there are cases where the cut-formula is of the form OA.
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There are two cases.

Case 3.1 : OA is introduced by (K).

Σ | Γ ⇒ A
(K)

Σ | OΓ ⇒ OA

Σ′ | A,Φ⇒ B
(K)

Σ′ | OA,OΦ⇒ OB
(Cut)

Σ | Σ′ | OΓ,OΦ⇒ OB

This transforms to:

Σ | Γ ⇒ A Σ′ | A,Φ⇒ B
(Cut)

Σ | Σ′ | Γ, Φ⇒ B
(K)

Σ | Σ′ | OΓ,OΦ⇒ OB

Case 3.2 : OA is introduced by (K) in the left premiss and by (DI) in the right
premiss of the (Cut).

Σ | Γ ⇒ A
(K)

Σ | OΓ ⇒ OA

Σ′ | A,Φ,Δ� ⇒
(DI)

Σ′ | OA,OΦ,Δ� ⇒
(Cut)

Σ | Σ′ | OΓ,OΦ,Δ� ⇒

This transforms to:

Σ | Γ ⇒ A Σ′ | A,Φ,Δ� ⇒
(Cut)

Σ | Σ′ | Γ, Φ,Δ� ⇒
(DI)

Σ | Σ′ | OΓ,OΦ,Δ� ⇒

Cut-elimination theorems have a number of important corollaries, some of
which we list for completeness. The proofs of these corollaries are immediate.
We use a standard definition of sub-formulas.

Corollary 1 (Subformula property). All formulas in a derivation of Σ in
5DI are subformulas of Σ.

Definition 4 (Consistency). 5DI is consistent iff the empty hypersequent is
not derivable.

Corollary 2 (Consistency). 5DI is consistent.

The next theorem establishes the deductive equivalence of a SDL� and 5DI. To
this end we repeat the axioms and rules of inference of SDL� as follows, with M
either � or O:



130 N. Gratzl

(Ax0) All Tautologies.
(Ax1) M(A→ B)→ (MA→MB)
(Ax2) �A→ A
(Ax3) �A→ ��A
(Ax4) ¬�¬A→ �¬�¬A
(Ax5) OA→ ¬O¬A
(Ax6) OA→ ¬�¬A

Rules of inference

A→ B,A
(MP)

B
A(Nec) �A

The key for the proof of the deductive equivalence is the following translation of
hypersequents into formulas of SDL [14]:

Definition 5 (Translation).

(i) (Γ ⇒ Δ)τ :=
∧
Γ →

∨
Δ

(ii) Σ1 | Σ2 | · · · | Σn := �Στ
1 ∨�Στ

2 ∨ · · · ∨�Στ
n

Theorem 2.

(i) If SDL� � A, then 5DI �⇒ A.
(ii) If 5DI � Σ, then SDL� � (Σ)τ .

The proof is again standard. The crucial part is (ii). 5DI �⇒ ¬OA ∨ ¬�¬A,
given the translation τ this means really that SDL� � �(¬OA ∨ ¬�¬A) and of

course it does so by (Nec); by (T), i.e. (Ax2), SDL� � ¬OA ∨ ¬�¬A.

4 Second Case Study: Obligation as Weakest Permission

The deontic logic of “obligation as weakest permission” (henceforth 5WP) has
been proposed in [16,17] to analyse rational recommendations to players in game-
theoretic situations. This logic departs in many ways from SDL. Its two deontic
modalities are non-normal. They do not validate K nor the rule of necessitation.
They are also two “boxes”, while in SDL P is a “diamond”. And they are not
dual to each other. Finally, and more importantly, the main interaction principle
between the deontic and the alethic modalities rests on the following idea: A is
obligatory only if it is the logically weakest permitted action type that the agent
can perform. Formally:

OA→ (PB → �(B → A)) (Weakest Perm)

5WP is thus a non-normal multi-modal system where the modalities interact
in a subtle way. It is thus not only a conceptually interesting logical system—
see again [16,17] for a detailed discussion of its motivations—but also a good
benchmark case for the robustness of our modular approach to interaction.

As base rule for O and P we have the following, which essentially has K above
but with a stronger antecedent [9], and with D either O or P :
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Σ|A⇒ B Σ|B ⇒ A
(Ext(D))

Σ|DA⇒ DB

As in SDL, � is a normal, S5 modality in 5WP. The rule for the interaction
between O and P needs to be modified, since these are no longer interdefinable.
The following rule clearly ensures the provability of OA⇒ PA:

Σ|A⇒ B
(OP)

Σ|OA⇒ PB

As above, our key rule (DI) takes care of the interaction rule between O and �,
with the same derivation as of (Ought-Can).

Finally, (Weakest Perm) is derivable using the following, with ‘D’ either for
‘O’ or ‘P ’.

Σ|A⇒ C Σ|B ⇒ E
(WP)

Σ|OA,DB ⇒ |C ⇒ E

The derivation goes as follows:4

A⇒ A B ⇒ B (WP)
OA,PB ⇒ |B ⇒ A

OA,PB ⇒ | ⇒ B → A
((�R)

OA,PB ⇒ �(B → A)

OA⇒ PB → �(B → A)

⇒ OA→ (PB → �(B → A))

The rules of the system are designed to allow for both the admissibility of Cut
and furthermore 5WP and its Hilbert-style formulation are deductively equiva-
lent (the corresponding theorem is stated below). The last fact establishes sound-
ness and completeness of 5WP.

4.1 Proof Theory of 5WP

The lemmas under 2.3 do also hold in this system.

Theorem 3.

(Cut), i.e.

Σ | Γ ⇒ Δ,A|Σ∗ Σ′ | A,Φ⇒ Ψ |Σ∗∗
(Cut)

Σ | Σ′ | Γ, Φ⇒ Δ,Ψ |Σ∗|Σ∗∗

is admissible in 5WP.

The proof employs the same strategy as above. We highlight here some critical
cases.

4 We tacitly assume a derivable rule for the right introduction of the arrow.
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– The cut-formula is PB introduced by (WP) in the left premiss and by (OP)
in the right premiss of the (Cut).

Σ|A⇒ C Σ|B ⇒ D
(WP)

Σ|OA,PB ⇒ |D ⇒ C

Σ′|E ⇒ B

Σ′|OE ⇒ PB

Σ|Σ′|OA,OE ⇒ |D ⇒ C

This transforms to:

Σ|B ⇒ D Σ′|E ⇒ B

Σ|Σ′|E ⇒ D Σ|A⇒ C

Σ|Σ|OA,OE ⇒ |D ⇒ C

– The cut-formula is PB, introduced by (WP) and (Ext(P)).

Σ|A⇒ C Σ|B ⇒ D
(WP)

Σ|OA,PB ⇒ |D ⇒ C

Σ′|E ⇒ B Σ′|B ⇒ E
(Ext(P))

Σ′|PE ⇒ PB

Σ|Σ′|OA,PE ⇒ |D ⇒ C

This transforms to:

Σ|B ⇒ D Σ′|E ⇒ B

Σ|Σ′|E ⇒ D Σ|A⇒ C

Σ|Σ′|OA,PE ⇒ |D ⇒ C

– The cut-formula is OA, introduced by (WP) and (Ext(O)) is structurally the
same as the previous one.

Given the definitions of sub-formula and consistency, the following two corollaries
are provable, as well as having deductive equivalence with the axiomatic system
presented in [16].

Corollary 3 (Subformula property). All formulas in a derivation of Σ in
5WP are subformulas of Σ.

Corollary 4 (Consistency).
5WP is consistent.

Let’s call the following system: HD5. It is the Hilbert-style counterpart to 5WP.

– All propositional tautologies.
– S5 for �.
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– For P and O and:
(OiC) OA→ ¬�¬A
(OiP) OA→ PA
(Weakest Perm) OA→ (PB → �(B → A))

– (MP), (Nec) for �, and the following for O and P:
• (RP) From A↔ B infer PA↔ PB.
• (RO) From A↔ B infer OA↔ OB.

The equivalence of both systems is established in the last theorem of this paper
and it depends on the definition 5 above.

Theorem 4 (Deductive equivalence of HD5 and 5WP).

(i) If HD5 � A, then 5WP �⇒ A.
(ii) If 5WP � Σ, then HD5 � (Σ)τ .

The proof is done by induction on the length of a derivation.

5 Conclusion

In this paper we studied two cases of multi-modal systems with interaction, for
which we proved the admissibility of (Cut) and its corollaries. The driving idea
was to split the hypersequents into their different modal parts, as exemplified
by the rule (DI), which was crucial for these two systems. In the second system,
in particular, it plays a key role in establishing the relation between normal and
non-normal modalities.

The next obvious step is to see to what extent this splitting/modular method-
ology can be extended to analyse other known multi-modal systems with interac-
tion. We would like to know for instance whether this methodology can help give
a sequent calculi for logics that combine obligations and preferences [20], pref-
erences and action [18], or different epistemic modalities [3]. Given how crucial
the modularity of Hilbert-style systems is in completely axiomatizing complex
interaction between modalities, we think that the results reported here promise
many other successful applications.
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Abstract. We introduce a display calculus for the logic of Epistemic Actions
and Knowledge (EAK) of Baltag-Moss-Solecki. This calculus is cut-free and
complete w.r.t. the standard Hilbert-style presentation of EAK, of which it is a
conservative extension, given that—as is common to display calculi—it is de-
fined on an expanded language in which all logical operations have adjoints. The
additional dynamic operators do not have an interpretation in the standard Kripke
semantics of EAK, but do have a natural interpretation in the final coalgebra. This
proof-theoretic motivation revives the interest in the global semantics for dynamic
epistemic logics pursued among others by Baltag [4], Cı̂rstea and Sadrzadeh [8].

1 Introduction

Dynamic logics form a large family of nonclassical logics, and perhaps the one en-
joying the widest range of applications. Indeed, they are designed to formalize change
caused by actions of diverse nature: updates on the memory state of a computer, dis-
placements of moving robots in an environment, measurements in models of quan-
tum physics, belief revisions, knowledge updates, etc. In each of these areas, formulas
express properties of the model encoding the present state of affairs, as well as the pre-
and post-conditions of a given action. Actions are semantically represented as trans-
formations of one model into another, encoding the state of affairs after the action
has taken place. Languages for dynamic logics are expansions of classical proposi-
tional logic with dynamic operators, parametrized with actions; dynamic operators are
modalities interpreted in terms of the transformation of models corresponding to their
action-parameters.

However, when dynamic logics feature both dynamic and ‘static’ modalities, as in
the case of the Dynamic Epistemic Logics, they typically lose many desirable proper-
ties, such as the closure under uniform substitution. This and other difficulties make
their algebraic and proof-theoretic treatment not straightforward, and indeed, the exist-
ing proposals appeal to technical solutions which do not meet some of the requirements
commonly sought for in proof-theoretic semantics [21, 22]. In [2], a tableaux calculus
is introduced, which is labelled, and restricted to the logic of Public Announcements
(PAL); in [15] and [16], sequent calculi are presented, covering truthful and arbitrary
public announcements respectively, which are again labelled. In [5] and [9], sequent cal-
culi are defined, which are nested; these calculi are sound and complete w.r.t. a certain
algebraic semantics which is more general than the standard Kripke semantics for the
logic of Baltag-Moss-Solecki; they manipulate sequents whose succedents are unary,

D. Grossi, O. Roy, and H. Huang (Eds.): LORI 2013, LNCS 8196, pp. 135–148, 2013.
© Springer-Verlag Berlin Heidelberg 2013
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and in which three types of objects feature on a par (formulas, agents and actions); fi-
nally, two different entailment relations occur, for actions and propositions, respectively,
which need to be brought together by means of rules of hybrid type.

In the present paper, we bring into focus that (at least one aspect of) the difficulties
hinted at above is the following. Whereas the interpretation of the adjoints of static
modal operators is equally available in standard models and in the final coalgebra, this
is no longer the case for dynamic modalities. In particular, Section 2 will emphasize that
dynamic modalities do not in general come in adjoint pairs w.r.t. the standard Kripke
semantics. In other words, display postulates (cf. Section 2) are not sound for dynamic
modalities w.r.t. to the standard semantics. However, the soundness of these display
postulates will be shown w.r.t. the final coalgebra semantics.

After reviewing dynamic epistemic logic (EAK) in Section 3, we define the Belnap’s
style display calculus D.EAK in Section 4. In Section 5, we outline the proofs that
D.EAK is sound w.r.t. the final coalgebra semantics, complete w.r.t. the well known
Hilbert-style presentation of EAK, and that the cut rule is eliminable. In Section 6 we
briefly discuss why D.EAK is a conservative extension of EAK, and we outline some
ongoing research directions.

2 Coalgebraic Semantics of Dynamic Logics

Modal formulas A are interpreted in Kripke models M = (W,R,V) as subsets of their
domains W, and we write [[A]]M ⊆ W for their interpretation. Equivalently, we can
describe the interpretation of A in each Kripke model via the final coalgebra1

Z first
by defining [[A]]Z to be the set of elements of Z satisfying A, and then by recovering
[[A]]M ⊆ W as

[[A]]M = f −1([[A]]Z), (1)

where f is the unique homomorphism M → Z. This construction works essentially
because, in the category of models/Kripke structures/coalgebras, homomorphisms (i.e.
functional bisimulations) preserve the satisfaction/validity of modal formulas. Bisimu-
lation invariance is also enjoyed by formulas of such dynamic logics as EAK (cf. Sec-
tion 3). Hence, for these dynamic logics, both Kripke semantics and the final coalgebra
semantics are equivalently available. However, so far the community has not warmed
up to adopting the final coalgebra semantics for dynamic logic, Baltag’s [4], and Cı̂rstea
and Sadrzadeh’s [8] being among the few proposals exploring this setting. This is unlike
the case of standard modal logic, in which the coalgebraic option has taken off, to the
point that it has given rise to a field in its own right. In the present section, we offer new
reasons to consider the final coalgebra semantics for dynamic logic; indeed, we bring
to the fore one aspect in which the final coalgebra semantics for dynamic logics is more
advantageous than the standard semantics.

The interpretation of dynamic modalities is given in terms of the actions parametriz-
ing them. Actions can be semantically represented as transformations of Kripke models,

1 Here we rely on the theorem of [1] that the final coalgebra Z exists. Moreover, even if the
carrier of Z is a proper class, it is still the case that subsets of Z correspond precisely to ‘modal
predicates’, that is, predicates that are invariant under bisimilarity, see [14].
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i.e., as relations between states of different Kripke models. From the viewpoint of the
final coalgebra, any action symbol α can then be interpreted as a binary relation αZ on
the final coalgebra Z. In this way, the following well known fact becomes immediately
applicable to the final coalgebra model:

Proposition 1. Every relation R ⊆ X × Y gives rise to the modal operators

〈R〉, [R] : PY → PX and 〈R◦〉, [R◦] : PX → PY

defined as follows: for every V ⊆ X and every U ⊆ Y,

〈R〉U = {x ∈ X | ∃y . xRy & y ∈ U} [R]U = {x ∈ X | ∀y . xRy ⇒ y ∈ U}
〈R◦〉V = {y ∈ Y | ∃x . xRy & x ∈ V} [R◦]V = {y ∈ Y | ∀x . xRy ⇒ x ∈ V}.

These operators come in adjoint pairs:

〈R〉U ⊆ V iff U ⊆ [R◦]V (2)

〈R◦〉V ⊆ U iff V ⊆ [R]U. (3)

Let 〈αZ〉, [αZ], 〈αZ◦〉, [αZ◦] be the semantic modal operators given by Proposition 1 in
the special case where X = Y is the carrier Z of Z; they respectively provide a natural
interpretation in the final coalgebra Z for the four connectives 〈α〉, [α], 〈α〉 , [α

] , para-
metric in the action symbol α. As a direct consequence of the adjunctions (2), (3), the
following display postulates, which are so crucial for the present work, are sound under
this interpretation (cf. Section 5.1 for more details on this interpretation).

{α}X � Y {α}

{α}

X � {α} Y
X � {α}Y

{α}

{α}

{α} X � Y

On the other hand, standard Kripke models are not in general closed under (the inter-
pretations of) α and α◦. As a direct consequence of this fact, we can show that e.g. the
display postulate

({α}

{α}

)
is not sound in some Kripke models M for any interpretation of

formulas of the form [α

] B in M.
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Fig. 1. The models Mα and M

Indeed, consider the model M represented on the right-hand side of the picture above;
let the action α be the public announcement (cf. [3]) of the atomic proposition r, and
let A := �p and B := q; hence Mα is the submodel on the left-hand side of the picture.
Let i : Mα ↪→ M be the submodel injection map. Clearly, [[�p]]M = ∅, which implies
that the inclusion [[A]]M ⊆ [[ [α

] B]]M trivially holds for any interpretation of [α

] B in M;
however, i[[[�p]]Mα ] = {u}, hence [[〈α〉�p]]M = [[α]]M ∩ i[[[�p]]Mα ] = V(r)∩ {u} = {u} �
{v} = [[q]]M, which falsifies the inclusion [[〈α〉A]]M ⊆ [[B]]M . This proves our claim.
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3 The Logic of Epistemic Actions and Knowledge

In the present section, the relevant preliminaries on the syntax and semantics of the
logic of epistemic actions and knowledge (EAK) [3] will be given, which are different
but equivalent to the original version [3], and follow the presentation in [13, 17].

Let AtProp be a countable set of proposition letters. The set L of formulas A of (the
single-agent2 version of) the logic of epistemic actions and knowledge (EAK) and the
set Act(L) of the action structures α over L are built simultaneously as follows:

A := p ∈ AtProp | ¬A | A ∨ A | �A | 〈α〉A (α ∈ Act(L)).

An action structure overL is a tuple α = (K, k, α, Preα), such that K is a finite nonempty
set, k ∈ K, α ⊆ K × K and Preα : K → L. Notice that α denotes both the action
structure and the accessibility relation of the action structure. Unless explicitly specified
otherwise, occurrences of this symbol are to be interpreted contextually: for instance,
in jαk, the symbol α denotes the relation; in Mα, the symbol α denotes the action
structure. Of course, in the multi-agent setting, each action structure comes equipped
with a collection of accessibility relations indexed in the set of agents, and then the
abuse of notation disappears.

Sometimes we will write Pre(α) for Preα(k). Let αi = (K, i, α, Preα) for every action
structure α = (K, k, α, Preα) and every i ∈ K. Intuitively, the actions αi for kαi encode
the uncertainty of the (unique) agent about the action that is actually taking place. The
standard stipulations hold for the defined connectives�, ⊥, ∧,→ and↔.

Models for EAK are relational structures M = (W,R,V) such that W is a nonempty
set, R ⊆ W×W, and V : AtProp→ P(W) is a map. The evaluation of the static fragment
of the language is standard. For every Kripke frameF = (W,R) and every α ⊆ K×K, let
the Kripke frame

∐
α F := (

∐
K W,R × α) be defined3 as follows:

∐
K W is the |K|-fold

coproduct of W (which is set-isomorphic to W × K), and R × α is the binary relation on∐
K W defined as

(w, i)(R × α)(u, j) iff wRu and iα j.

For every model M = (W,R,V) and every action structure α = (K, k, α, Preα), let
∐

α

M := (
∐

K

W,R × α,
∐

K

V)

be such that its underlying frame is defined as detailed above, and (
∐

K V)(p) :=
∐

K V(p)
for every p ∈ AtProp. Finally, the update of M with the action structure α is the sub-
model Mα := (Wα,Rα,Vα) of

∐
α M the domain of which is the subset

Wα := {(w, j) ∈
∐

K

W | M,w � Preα( j)}.

2 The multi-agent generalization of this simpler version is straightforward, and consists in taking
the indexed version of the modal operators, axioms, and interpreting relations (both in the
models and in the action structures) over a set of agents.

3 We will of course apply this definition to relations α which are part of the specification of
some action structure; in these cases, the symbol α in

∐
α F will be understood as the action

structure. This is why the abuse of notation turns out to be useful.
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Given this preliminary definition, formulas of the form 〈α〉A are evaluated as follows:

M,w � 〈α〉A iff M,w � Preα(k) and Mα, (w, k) � A.

Proposition 2 ( [3, Theorem 3.5]). EAK is axiomatized completely by the axioms and
rules for the minimal normal modal logic K plus the following axioms:

1. 〈α〉p↔ (Pre(α) ∧ p);
2. 〈α〉¬A ↔ (Pre(α) ∧ ¬〈α〉A);
3. 〈α〉(A ∨ B)↔ (〈α〉A ∨ 〈α〉B);
4. 〈α〉�A↔ (Pre(α) ∧∨{�〈αi〉A | kαi}).

An immediate and well known consequence of the theorem above is that every L-
formula is EAK-equivalent to some formula in the static fragment of L. This implies
in particular that L-formulas are invariant under standard bisimulation, and this fact
extends of course to the multi-agent version.

The representation of actions as action structures is just one possible approach. Here
we prefer to keep a black-box perspective on actions, and to identify agents a with the
indistinguishability relation they induce on actions; so, in the remainder of the paper,
the role of the action-structures αi for kαi will be played by actions β such that αaβ.

4 EAK Displayed

In the present section, the display calculus D.EAK for the logic EAK (cf. section 3) is
introduced piecewise: in the next subsection, display calculi will be presented which are
multi-modal versions of display-style sequent calculi proposed in the literature for the
(bi-)intuitionistic versions of basic and tense normal modal logic [11,21]. This presenta-
tion is modular w.r.t. intuitionistic logic: namely, for the sake of a more straightforward
extension to the intuitionistic counterparts of PAL and EAK [13, 17], it takes the con-
nectives in the language of IEAK as first-class citizens; the classical base is captured
by adding the two Grishin rules (see below) to the system. In section 4.2, the rules for
the dynamic connectives are introduced. The calculus D.EAK consists of all the rules
in the two subsections.

The language L(m-IK) of the multi-modal version of Fischer Servi’s intuitionistic
modal logic IK features one pair of modal connectives for each element a in a set A of
agents, and consists of formulas built from a set of atomic propositions {p, q, r, . . .} and
one constant ⊥, according to the following BNF grammar:

A := p | ⊥ | A∧A | A∨A | A→ A | �aA | �aA .
The language L(tm-IK) of the “tense-like” version of m-IK is obtained by expanding
L(m-IK) with one pair of (adjoint) modalities �a and �a, for each a in A.

The language L(btm-IK) of the bi-intuitionistic version of tm-IK is obtained by
expanding the language of tm-IK with � and one extra propositional connective > ,
referred to as subtraction or disimplication,4 which behaves as the dual intuitionistic im-
plication. The reader is referred to [18] for an axiomatic presentation of bi-intuitionistic
logic and to [11, 12] for its relative display calculi.

4 Formulas A > B are classically equivalent to ¬A ∧ B.
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4.1 The Static Fragment

Display calculi typically involve sequents X � Y, where X and Y are structures, built
from formulas A (in the present case, A ∈ L(m-IK) (resp. L(tm-IK), L(btm-IK))) and
the structural constant I by means of structural connectives (or proxies), according to
the following BNF grammar5:

X := I | A | X > X | X ; X | •aX | ◦aX .
Each structural connective is associated with a pair of logical connectives, as follows:

Proxies > ; I ◦a •a Structural symbols
Connectives > → ∧ ∨ � ⊥ �a �a �a �a Operational symbols

moreover, structural connectives form adjoint pairs by definition (which will be wit-
nessed in the ensuing display postulates), as follows:

; � > >� ; ◦a � •a •a � ◦a
The display calculi D.m-IK, D.tm-IK and D.btm-IK are defined by means of rules which
are classified as structural and as operational rules. The structural rules below only con-
cern structural connectives, and are common to the three of them (where the structures
X−α and Y−α are dynamic-proxy-free):6

Idp � p
X � Y

IL
I � X > Y

X � Z
WL

Y−α � X > Z
X ; X � Y

CL
X � Y

I � X I
◦aI � ◦aX

X � A A � Y
Cut

X � Y
Y � X

IR
X > Y � I

Z � Y
WR

Y > Z � X−α
Y � X ; X

CR
Y � X

I � X I
•aI � •aX

Y ; X � Z
EL

X ; Y � Z
X ; (Y ; Z) � W

AL
(X ; Y) ; Z � W

Y � ◦aX > ◦aZ >
◦aY � ◦a(X > Z)

X ; Y � Z ;
>

Y � X > Z

◦aX � Y ◦a
•aX � •aY

Z � X ; Y
ER

Z � Y ; X
W � (Z ; Y) ; X

AR
W � Z ; (Y ; X)

Y � •aX > •aZ >
•aY � •a(X > Z)

Z � Y ; X >
;

Y > Z � X

X � ◦aY •a
◦a•aX � Y

The operational rules govern the introduction of the logical connectives: here below
are the ones which are common to the three calculi:

⊥L⊥ � I
I � X �L� � X

A ; B � Z ∧L
A∧B � Z

B � Y A � X ∨L
B∨A � Y ; X

X � A B � Y →L
A→ B � X > Y

X � I ⊥R
X � ⊥ �R

I � �
X � A Y � B ∧R

X ; Y � A∧B
Z � B ; A ∨R
Z � B∨A

Z � A > B →R
Z � A→ B

5 Notice that, in the context of the full calculus, the variables X,Y,Z,W appearing in the rules in
the present subsection are to be interpreted as structures of the full language of D.EAK, unless
explicitly indicated otherwise with symbols such as X−α.

6 The weakening rules WL and WR are equivalent to the standard ones via the Display Postulates(
;
>

)
and
(
>
;

)
; in these rules, the principal structure appears ‘in display’; besides making an easier

life in the proof of the cut elimination, we believe that this feature of WL and WR is more in
line with the general design principles of display calculi. Notice also that the presence of the
rules EL and ER makes it possible for us to dispense with the structural connective < and its
relative rules, such as A ; B � C/A � C < B.
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Here below, from the left to right, are the operational rules completing D.m-IK (1st

and 2nd column), D.tm-IK (4th and 5th column), and D.btm-IK (3rd column):
◦aA � X

�aL
�aA � X

A � X �aL
�aA � ◦aX

A > B � Z
> L

A > B � Z
•aA � X

�aL
�aA � X

A � X �aL
�aA � •aX

X � A �aR◦aX � �aA
X � ◦aA �aR
X � �aA

A � X Y � B
> R

X > Y � A > B
X � A �aR•aX � �aA

X � •aA �aR
X � �aA

Finally, the classical versions of each of these calculi can be obtained from the above
ones e.g. by adding the following Grishin’s structural rules [12, 21]:

X > (Y ; Z) �W
GriL

(X > Y) ; Z �W

W � X > (Y ; Z)
GriR

W � (X > Y) ; Z

4.2 The Dynamic Fragment

The calculi introduced in the present subsection involve sequents X � Y, where X and Y
are structures, built from formulas A ∈ L(m-IEAK) (resp.L(tm-IEAK),L(btm-IEAK))
and the structural constant I according to the following BNF grammar:

X := I | A | X ; X | X > X | •aX | ◦aX | {α}X | {α} X.
Hence, the structural language above expands the one of the previous subsection with
structural connectives {α} and {α} for each action α; these are by definition adjoint to
each other as follows: {α} � {α} and {α} � {α}. The proxy {α} is associated with the logi-
cal connectives [α] and 〈α〉, and thus it occurs in the operational rules concerning them.
Likewise, new logical connectives 〈α〉 and [α

] are introduced which stand in an analo-
gous relation with {α} , and which are adjoint to [α] and 〈α〉 as follows: 〈α〉 � [α

] and

〈α〉 � [α]. As discussed in section 2, these new connectives have a natural interpretation
in the final coalgebra, but not in the standard semantics.

{α} {α}

[α] 〈α〉 〈α〉 [α

]

The display calculi D.m-IEAK, D.tm-IEAK and D.btm-IEAK are defined by adding
the rules of the present subsection to D.m-IK, D.tm-IK and D.btm-IK, respectively;
the display calculus D.EAK is obtained by adding the Grishin rules to D.m-IK. The
rules in the present subsection come in four groups: pure and contextual structural and
operational rules. Here follow the pure structural rules; the dynamic display postulates
appear in the 5th column below:

atomL
{α} p � p

atomR
p � {α} p

X � Y
balance

{α}X � {α}Y

{α}Y > {α}Z � X
{α}
>{α}(Y > Z) � X
{α}X ; {α}Y � Z

{α}
;

{α}(X ; Y) � Z

{α

} Y > {α

} X � Z

{α

}

>

{α

} (Y > X) � Z

{α

} X ; {α

} Y � Z

{α

}

;

{α

} (X ; Y) � Z

{α}X � Y
{α}

{α

}

X � {α

} Y

Y � {α}X > {α}Z >
{α}Y � {α}(X > Z)

Z � {α}Y ; {α}X ;
{α}Z � {α}(Y ; X)

Y � {α

} X > {α

} Z
>

{α

}

Y � {α

} (X > Z)

Z � {α

} Y ; {α

} X ;

{α

}

Z � {α

} (Y ; X)

Y � {α}X

{α

}

{α}

{α

} Y � X
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Here below are the pure operational rules:

{α}A � X 〈α〉L〈α〉A � X
X � A 〈α〉R{α}X � 〈α〉A

A � X
[α]L

[α]A � {α}X
X � {α}A

[α]R
X � [α]A

The contextual rules encode inferences which can be performed only in the presence
of a given assumption (in the case at hand, the preconditions of the action parametrizing
a dynamic proxy). Here below the contextual structural rules:

reduce swap-in swap-out

Pre(α) ; {α}A � X
rL{α}A � X

Pre(α) ; {α}◦aX � Y
s-inL

Pre(α) ; ◦a{β}αaβ X � Y

(
Pre(α) ; ◦a{β} X � Y | αaβ

)

s-outL

Pre(α) ; {α}◦aX � ;
(
Y | αaβ

)

X � Pre(α) > {α}A
rR

X � {α}A
Y � Pre(α) > {α}◦aX

s-inR
Y � Pre(α) > ◦a{β}αaβ X

(
Y � Pre(α) > ◦a{β}X | αaβ

)

s-outR

;
(
Y | αaβ

)
� Pre(α) > {α}◦aX

The swap-in rules are unary and should be read as follows: if the premise holds, then
the conclusion holds relative to any action β such that αaβ. The swap-out rules do not
have a fixed arity; they have as many premises7 as there are actions β such that αaβ;
in the conclusion, the symbol ;

(
Y | αaβ

)
refers to a string (· · · (Y ; Y) ; · · · ; Y) with

n occurrences of Y, where n is the number of actions β such that αaβ. Finally, the
contextual operational rules:

reverse

Pre(α) ; {α}A � X
revL

Pre(α) ; [α]A � X
X � Pre(α) > {α}A

revR
X � Pre(α) > 〈α〉A

5 Soundness, Completeness and Cut Elimination

5.1 Soundness in the Final Coalgebra

In the present section, we outline the soundness of D.EAK w.r.t. the final coalgebra se-
mantics. Structures will be translated into formulas, and formulas will be interpreted as
subsets of the final coalgebra, as discussed in section 2. In order to translate structures
as formulas, proxies need to be translated as logical connectives; to this effect, any given
occurrence of a proxy is translated as one or the other of its associated logical connec-
tives, according to which side of the sequent the given occurrence can be displayed on
as main connective [6, 21], as reported in Table 1.

Sequents A � B will be interpreted as inclusions [[A]]Z ⊆ [[B]]Z ; rules (Ai � Bi | i ∈
I)/C � D will be interpreted as implications of the form “if [[Ai]]Z ⊆ [[Bi]]Z for every
i ∈ I, then [[C]]Z ⊆ [[D]]Z”. As for rules not involving {α} , we will rely on the following
observation, which is based on the invariance of EAK-formulas under bisimulation (cf.
Section 3):

7 The swap-out rule could indeed be infinitary if action structures were allowed to be infinite,
which in the present setting, as in [3], is not the case.
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Table 1. Translation of proxies into logical connectives

Main if displayed in if displayed in
connective antecedent succedent

I � ⊥
A ; B A ∧ B A ∨ B

A > B A > B A→ B
◦A �A �A
•A �A �A
{α}A 〈α〉A [α]A

{α} A 〈α〉 A [α

] A

Lemma 1. The following are equivalent for all EAK-formulas A and B:
(1) [[A]]Z ⊆ [[B]]Z;
(2) [[A]]M ⊆ [[B]]M for every model M.

Proof. The direction from (2) to (1) is clear; conversely, fix a model M, and let f :
M → Z be the unique arrow; then (1) immediately implies that [[A]]M = f −1([[A]]Z) ⊆
f −1([[B]]Z) = [[B]]M.

In the light of the lemma above, and using the translations provided in Table 1, the
soundness of unary rules A � B/C � D not involving {α} , such as balance, 〈α〉R and
[α]L, can be straightforwardly checked as implications of the form “if [[A]]M ⊆ [[B]]M

on every model M, then [[C]]M ⊆ [[D]]M on every model M”. As an example, let us
check the soundness of balance: Let A, B be EAK-formulas such that [[A]]M ⊆ [[B]]M

on every model M. Let us fix a model M, and show that [[〈α〉A]]M ⊆ [[[α]B]]M . As
discussed in [13, Subsection 4.2], the following identities hold in any standard model:

[[〈α〉A]]M = [[Pre(α)]]M ∩ ι−1
k [i[[[A]]Mα ]], (4)

[[[α]A]]M = [[Pre(α)]]M ⇒ ι−1
k [i[[[A]]Mα ]], (5)

where the map i : Mα →∐α M is the submodel embedding, and ιk : M →∐α M is the
embedding of M into its k-colored copy. Letting g(−) := ι−1

k [i[−]], we need to show

[[Pre(α)]]M ∩ g([[A]]Mα ) ⊆ [[Pre(α)]]M ⇒ g([[B]]Mα ).

This is a direct consequence of the Heyting-valid implication “if b ≤ c then a ∧ b ≤
a → c”, the monotonicity of g, and the assumption that [[A]]M ⊆ [[B]]M holds on every
model, hence on Mα.

Actually, for all rules (Ai � Bi | i ∈ I)/C � D not involving {α} except balance, 〈α〉R
and [α]L, stronger soundness statements can be proven of the form “for every model M,
if [[Ai]]M ⊆ [[Bi]]M for every i ∈ I, then [[C]]M ⊆ [[D]]M” (this amounts to the soundness
w.r.t. the standard semantics). This is the case for all display postulates not involving

{α} , the soundness of which boils down to the well known adjunction conditions holding
in every model M. As to the remaining rules not involving {α} , thanks to the follow-
ing general principle of indirect (in)equality, the stronger soundness condition above
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boils down to the verification of inclusions which interpret validities of IEAK [13], and
hence, a fortiori, of EAK. Same arguments hold for the Grishin rules, except that their
soundness boils down to classical but not intuitionistic validities.

Lemma 2. (Principle of indirect inequality) Tfae for any preorder P and all a, b ∈ P:
(1) a ≤ b;
(2) x ≤ a implies x ≤ b for every x ∈ P;
(3) b ≤ y implies a ≤ y for every y ∈ P.

As an example, let us verify s-outL: fix a model M, fix EAK-formulas A and B, and
assume that for every action β, if αaβ then [[Pre(α)]]M ∩ [[�a〈β〉A]]M ⊆ [[B]]M, i.e.,
that [[Pre(α)]]M ∩ ⋃{[[�a〈β〉A]]M | αaβ} ⊆ [[B]]M; we need to show that [[Pre(α)]]M ∩
[[〈α〉�aA]]M ⊆ [[B]]M . By the principle of indirect inequality, it is enough to show that

[[〈α〉�aA]]M ⊆ [[Pre(α)]]M ∩
⋃
{[[�a〈β〉A]]M | αaβ},

which is true (cf. Proposition 2). Finally, the soundness of the rules which do involve

{α} remains to be shown. The soundness of the display postulates immediately follows

from Proposition 1. As an example, let us verify the soundness of
(

{α}

>

)
: translating the

structures into formulas, and applying the principle of indirect inequality, it boils down
to verifying that [[ 〈α〉 (A > B)]]Z ⊆ [[ [α

] A]]Z > [[ 〈α〉 B]]Z for all EAK-formulas A and B.
Since, in Z, 〈α〉 and [α

] are respectively interpreted as 〈α◦〉 and [α◦], this inclusion can
be rewritten as

〈α◦〉([[A]]Z > [[B]]Z) ⊆ [α◦][[A]]Z > 〈α◦〉[[B]]Z ,

where A > B can be interpreted classically, i.e. as ¬A ∧ B. The straightforward verifi-
cation that this is an instance of a principle valid in every frame is left to the reader.

5.2 Completeness

For the completeness of D.EAK, it is enough to show that all the axioms of EAK are
derivable in D.EAK. Due to space restrictions, here we only report on the derivations of
〈α〉�aA ↔ Pre(α)∧∨{�a〈β〉A | αaβ}. For ease of notation, we assume that the actions
β such that αaβ form the set {βi | 1 ≤ i ≤ n}.

Pre(α) � Pre(α)

A � A
{β1}A � 〈β1〉A
◦a{β1}A � �a〈β1〉A

Pre(α) ; ◦a{β1}A � �a〈β1〉A

· · ·
· · ·
· · ·
· · ·

A � A
{βn}A � 〈βn〉A
◦a{βn}A � �a〈βn〉A

Pre(α) ; ◦a{βn}A � �a〈βn〉A
s-out

Pre(α) ; {α}◦aA � ;(�a〈βi〉A
)

Pre(α) ; {α}◦aA � ∨
(
�a〈βi〉A

)

r
{α}◦aA � ∨

(
�a〈βi〉A

)

Pre(α) ; {α}◦aA � Pre(α)∧∨
(
�a〈βi〉A

)

r
{α}◦aA � Pre(α)∧∨

(
�a〈βi〉A

)

◦aA � {α} Pre(α)∧∨
(
�a〈βi〉A

)

�aA � {α} Pre(α)∧∨
(
�a〈βi〉A

)

{α}�aA � Pre(α)∧∨
(
�a〈βi〉A

)

〈α〉�aA � Pre(α)∧∨
(
�a〈βi〉A

)
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A � A
◦aA � �aA

{α}◦a A � 〈α〉�aA
Pre(α) ; {α}◦aA � 〈α〉�aA

s-in
Pre(α) ; ◦a{β1}A � 〈α〉�aA

◦a{β1}A � Pre(α) > 〈α〉�aA
{β1}A � •a(Pre(α) > 〈α〉�aA)

〈β1〉A � •a(Pre(α) > 〈α〉�aA)

◦a〈β1〉A � Pre(α) > 〈α〉�aA
�a〈β1〉A � Pre(α) > 〈α〉�aA

· · ·
· · ·
· · ·
· · ·
· · ·
· · ·
· · ·
· · ·
· · ·
· · ·

A � A
◦aA � �aA

{α}◦a A � 〈α〉�aA
Pre(α) ; {α}◦aA � 〈α〉�aA

s-in
Pre(α) ; ◦a{βn}A � 〈α〉�aA

◦a{βn}A � Pre(α) > 〈α〉�aA
{βn}A � •a(Pre(α) > 〈α〉�aA)

〈βn〉A � •a(Pre(α) > 〈α〉�aA)

◦a〈βn〉A � Pre(α) > 〈α〉�aA
�a〈βn〉A � Pre(α) > 〈α〉�aA

∨(
�a〈βi〉A

)
� ;(Pre(α) > 〈α〉�aA

)

∨ (
�a〈βi〉A

)
� Pre(α) > 〈α〉�aA

Pre(α) ;
∨(
�a〈βi〉A

)
� 〈α〉�aA

Pre(α)∧∨
(
�a〈βi〉A

)
� 〈α〉�aA

5.3 Cut-Elimination

In the present subsection, we outline the proof of the cut eliminability of D.EAK fol-
lowing the original strategy devised by Gentzen (cf. [20]). Without loss of generality,
we consider a derivation π of the sequent X � Y in D.EAK which contains a unique
application of Cut as the last rule (let us refer to this application as Cut∗), and we show
that a derivation of the same sequent exists in which Cut is not applied. We proceed
by induction on the set of tuples (ρ, δ), ordered lexicographically, where ρ is the com-
plexity of the cut formula in Cut∗ (the rank of Cut∗), and δ is the sum of the maximal
lengths of branches in the subdeductions of the premises of Cut∗ (the degree of Cut∗).
In the base case, Cut∗ can be directly eliminated by exhibiting a cut-free proof π′ with
the same conclusion. This is more in general the case when the cut formula is atomic.

The inductive step consists in transforming π into a derivation π′ with the same con-
clusion and one or more applications of Cut with lower rank or with same rank but
lower degree. The typical situation in the original Gentzen proof is that, when the cut
formula is not atomic and is not principal8 in at least one of the premises, the trans-
formation involves one or more Cut-applications of same rank and lower degree than
Cut∗, whereas when the cut formula is not atomic and is principal in both premises,
the transformation involves one or more Cut-applications of lower rank than Cut∗, as
illustrated, e.g., in the following transformation:

.

.

. π1

X � A
{α}X � 〈α〉A

.

.

. π2

{α}A � Y

〈α〉A � Y

{α}X � Y �

.

.

. π1

X � A

.

.

. π2

{α}A � Y

A � {α} Y
X � {α} Y

{α}X � Y

This regularity breaks down when the Cut-formula is principal in both premises and
has been introduced by means of an application of either contextual rules reverse. In

8 An occurrence of a formula in a node of a derivation is principal if that occurrence has been
introduced by means of the last rule applied in the subdeduction ending in that node.
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this case, such a simple transformation as the one above is not available, and we need
to consider all the possible ways in which the proxy {α} has been introduced in the
subdeduction of each premise of Cut∗. The proxy {α} might have been introduced by
〈α〉L, atomR, balance, and

(

{α}

{α}
)

(applied bottom-up) on the left premise, and by [α]R,

atomL, balance, and
({α}

{α}

)
(applied bottom-up) on the right premise. This creates 16 sub-

cases (each of which can be subdivided into simpler and more complicated instances),
of which we illustrate just two (in their least complicated incarnations), as examples:
the following one produces a Cut application of lower rank:

.

.

. π1

B � A
[α]B � {α}A

.

.

. π
∗
1

X � {α}A
X � [α]A

.

.

. π2

A � C
{α}A � 〈α〉C

.

.

. π
∗
2

Pre(α) ; {α}A � Y

Pre(α) ; [α]A � Y

[α]A � Pre(α) > Y

X � Pre(α) > Y �

.

.

. π1

B � A

.

.

. π2

A � C
B � C

{α}B � 〈α〉C
.
.
. π
∗
2

Pre(α) ; {α}B � Y

Pre(α) ; [α]B � Y

[α]B � Pre(α) > Y

.

.

. π
∗
1

X � Pre(α) > Y

the next one produces a Cut application of same rank and lower degree:

.

.

. π1

A � A
A � {α}A
.
.
. π
∗
1

X � {α}A
X � [α]A

.

.

. π2

A � C
{α}A � 〈α〉C

.

.

. π
∗
2

Pre(α) ; {α}A � Y

Pre(α) ; [α]A � Y

[α]A � Pre(α) > Y

X � Pre(α) > Y �

.

.

. π1

A � A
A � {α}A
.
.
. π
∗
1

X � {α}A
X � [α]A

.

.

. π2

A � C
[α]A � {α}C

X � {α}C
X � Pre(α) > {α}C
X � Pre(α) > 〈α〉C

Pre(α) ; X � 〈α〉C
.
.
. π
∗
2

Pre(α) ; (Pre(α) ; X) � Y

(Pre(α) ; Pre(α)) ; X � Y

Pre(α) ; Pre(α) � Y < X

Pre(α) � Y < X

Pre(α) ; X � Y

X � Pre(α) > Y

6 Conclusions, Conservativity, and Further Directions

Besides the cut-elimination, the results in the present paper can be summarized by the
following chain of inclusions between consequence relations, where K is the class of
standard Kripke models:

|=K = �EAK ⊆ �D.EAK ⊆ |=Z .
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D.EAK Conservatively Extends EAK. Of course, the language of the latter two con-
sequence relations is an expansion of the language of the former two. To be able to claim
that D.EAK adequately captures EAK, we need to show that �D.EAK is a conservative
extension of �EAK . To see this, let A, B be EAK-formulae such that A �D.EAK B. By the
soundness of D.EAK w.r.t. the final coalgebra semantics, this implies that [[A]]Z ⊆ [[B]]Z ,
which, by Lemma 1, implies that [[A]]M ⊆ [[B]]M for every Kripke model M, which, by
the completeness of EAK w.r.t. the standard Kripke semantics, implies that A �EAK B.

Proof-Theoretic Semantics for EAK. The rules of EAK enjoy the following require-
ments, which are well known in the literature of proof-theoretic semantics [21, 22]: the
fundamental structural rules of D.EAK are ‘eliminable’: i.e., Id can be restricted to
atomic formulas, and Cut can be removed without affecting the set of theorems. The
operational rules enjoy the properties of separation: each of them introduces exactly
one connective, and of symmetry: for each connective, its left-introduction rules and its
right-introduction rules form nonempty and disjoint sets. All of them but the reverse
rules also enjoy explicitness, which can be reformulated as follows: the side structures
occur unrestricted. However, the offending side substructure is limited to the formula
Pre(α), which can always be derived, e.g. via weakening. Hence, we conjecture that this
offense is essentially harmless. An entirely satisfactory motivation that D.EAK provides
proof-theoretic semantics for the connectives of EAK is work in progress.

Intuitionistic Coalgebraic Semantics. We wish to develop the intuitionistic version
of these results. This requires to work in the setting of the final coalgebra for the Vietoris
functor on discrete Esakia spaces (S4-frames and p-morphisms).

Cut-Elimination á la Belnap. Our proof of cut elimination, which is very lengthy
and could only be sketched in the present paper, follows the methodology of Gentzen’s
original proof. A shorter and more insightful route to the same result consists in either
applying Belnap’s meta-theorem for cut elimination [6] for display calculi, or some
suitable extension of it. In the latter case, this strengthening would be essentially anal-
ogous to extension of Belnap’s meta-theorem to linear logic [7, 19], and is the focus of
current investigation.
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Abstract. The paper introduces a notion of cellular game that is in-
tended to represent rationally behaving cells of a cellular automaton.
The focus is made on studying properties of functional dependence be-
tween strategies of different cells in a Nash equilibrium of such games.
The main result is a sound and complete axiomatization of these prop-
erties. The construction in the proof of completeness is based on the
Fibonacci numbers.

1 Introduction

Cellular Games. A (one-dimensional) cellular automaton is a two-way-infinite
row of cells that transition from one state to another under certain rules. The
rules are assumed to be identical for all cells. Usually, rules are chosen in such
a way that the next state of each cell is determined by the current states of the
cell itself and its two neighboring cells.

In this paper we consider an object similar to cellular automaton that we
call cellular game. Each cell of the row is now viewed as a player, whose pay-off
function only depends on the strategy of the cell itself and the strategies of its two
neighbors. The cellular game is homogeneous in the sense that all players have
the same pay-off function. Such games can model linearly-spaced homogeneous
economic agents who only interact with their neighbors.

As an example, consider a cellular game G in which each player has only two
strategies: 0 and 1. Let {si}i∈Z be any strategy profile of this game. Let the pay-
off of player i be defined as follows: the pay-off is positive if si−1 + si + si+1 ≡ 0
(mod 2) and is zero otherwise. A Nash equilibrium of this game will be any
strategy profile for which condition si−1 + si + si+1 ≡ 0 (mod 2) is satisfied for
each i ∈ Z. Hence, Nash equilibria in this game have one of the following two
forms:

. . . 000000000000000000 . . .

. . . 110110110110110110 . . .
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Functional Dependence. The main focus of this work is on properties of Nash
equilibria of cellular games. Specifically, we study if knowing the strategy of one
of the players in a Nash equilibria one can predict the strategy of the other
player. If knowing the strategy of a player a ∈ Z one can predict the strategy
of player b ∈ Z, then we say that the strategy of b is functionally dependent
on the strategy of player a and denote it by a � b. For example, in any Nash
equilibrium of the game G above, strategies of two players that are three-cells
apart are always the same. Thus, G � 1 � 4, G � 2 � 5, etc. In more general
terms, G � a � a + 3 for each a ∈ Z. Note that the property a � a + 3 is true
for cellular game G, but is not true for many other cellular games. For example,
it is not true for the cellular game where each player has a constant pay-off. In
this paper we are interested in the universal properties of functional dependence
that are true for all cellular games. The trivial examples of such properties are
Reflexivity and Transitivity:

a� a, (1)

a� b→ (b � c→ a� c). (2)

Since all players have the same pay-off function, we also have Homogeneity:

a� b→ (a+ c)� (b + c). (3)

Just like it is common to assume that cellular automata have a finite number
of states, we assume that in cellular games each player has only finitely many
strategies. As we will show in Lemma 4, this, perhaps unexpectedly, implies
Symmetry:

a� b→ b� a. (4)

In this paper we will answer the question whether there are any other univer-
sal properties of functional dependence in cellular games in addition to proper-
ties (1), (2), (3), and (4). To state a hypothetical example of such property, let
us get back to the previously discussed game G. As we have seen, G � a� a+3
for each a ∈ Z. At the same time, by simply analyzing the listed above Nash
equilibria of this game one can observe that G � a� a+1 and G � a� a+2. In
other words,

a� (a+ 3)→ (a� (a+ 1) ∨ a� (a+ 2))

is not a universal property of the functional dependence, because game G pro-
vides a counterexample. Note that this counterexample appears to heavily rely
on the fact that the pay-off function of each player takes into account the strate-
gies of exactly three players: the player herself and her two neighbors. Thus, one
might expect that there will be no game G′ for which the following property is
false:

a� (a+ 100)→ (a� (a+ 1) ∨ a� (a+ 2) ∨ · · · ∨ a� (a+ 99)). (5)

This would make formula (5) a valid universal principle of functional depen-
dence in cellular games.
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Surprisingly, however, such game G′ does exist. Indeed, if F100 is the 100th
Fibonacci number, then one can consider a “Fibonacci” cellular game in which
the set of strategies of each player is ZF100 . Let the pay-off of player i be a fixed
positive number if si−1 + si = si+1 in ZF100 and be zero otherwise. As we will
see later, for this game the assumption of formula (5) is true and each disjunct
in the conclusion is false.

Furthermore, the main result of this paper is that there are no other univer-
sal properties of the cellular games except for Reflexivity (1), Transitivity (2),
Homogeneity (3), and Symmetry (4). In other words, the set of these axioms is
complete with respect to the cellular game semantics.

Related Work. Assumptions on linear structure of the game could be relaxed to
an arbitrary “dependency graph” setting where a pay-off function of each player
is determined only by its own strategy and the strategies of its neighbors. Various
properties of such games have been studied before [1,2,3,4]. In particular, in our
work [5], we axiomatized properties of functional dependency between sets of
players universal to all games that share the same dependence graph. The key
difference of this work is the “homogeneity” assumption that all players have the
same pay-off function. This assumption leads to Symmetry and Homogeneity
axioms that were not present in any form in [5]. What is possibly even more
interesting, this assumption leads to the use of Fibonacci numbers in the proof
of completeness, which was not needed in [5].

One might argue that this work is not really about cellular games, but rather
about general information flow properties in cellular-automaton-like structures.
We would agree, except that the information flow setting that we study seems
to be the most natural when described in terms of Nash equilibria. Properties of
functional dependence relation in another network flow setting has been studied
by More and Naumov [6]. Information flow properties of linear communication
chains expressible in modal epistemic language were axiomatized by Kane and
Naumov [7].

2 Syntax and Semantics

Definition 1. Let Φ be the minimal set of formulas that satisfies the following
conditions:

1. ⊥ ∈ Φ,
2. a� b ∈ Φ for each a, b ∈ Z,
3. if ϕ ∈ Φ and ψ ∈ Φ, then ϕ→ ψ ∈ Φ.

Definition 2. Cellular game is a pair (S, u), where

1. S is a finite set of “strategies”,
2. u is a “pay-off” function from S3 to R.
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In the above definition domain of the function u is S3 because the pay-off of each
player is determined by her own strategy and the strategies of her two neighbors.
By a strategy profile of a cellular game (S, u) we mean any set {si}i∈Z such that
si ∈ S for each i ∈ Z.

Definition 3. A Nash Equilibrium {ei}i∈Z of a game (S, u) is any strategy pro-
file such that

u(ei−1, s, ei+1) ≤ u(ei−1, ei, ei+1),

for each i ∈ Z and each s ∈ S.

Lemma 1. For each k ∈ Z, if {ei}i∈Z is a Nash equilibrium of a cellular game,
then {ei+k}i∈Z is a Nash equilibrium of the same cellular game. ��

The set of all Nash equilibria of a cellular game G = (S, u) will be denoted by
NE(G). The next definition is one of the key definitions of this paper. In part 2
we formally specify the semantics of the predicate �.

Definition 4. For any formula ϕ ∈ Φ and any cellular game G, relation G � ϕ
is defined recursively as follows:

1. G � ⊥,
2. G � a � b iff for every {e′i}i∈Z ∈ NE(G) and {e′′i }i∈Z ∈ NE(G), if e′a = e′′a,

then e′b = e′′b ,
3. G � ψ → χ iff G � ψ or G � χ.

3 Axioms

Our logical system, in addition to propositional tautologies in the language Φ
and the Modus Ponens inference rule, contains the following axioms:

1. Reflexivity: a� a,
2. Transitivity: a� b→ (b� c→ a� c),
3. Homogeneity: a� b→ (a+ c)� (b+ c),
4. Symmetry: a� b→ b� a.

We write X � ϕ if formula φ is provable in our system extended by the set of
additional axioms X . We write � ϕ instead of ∅ � ϕ.

4 Example

Soundness of our logical system will be shown in the next section. Here we give
an example of a non-trivial property provable in our logical system. We will later
use this result in the proof of the completeness theorem.

Lemma 2. For any a, b ∈ Z,

� 0� a→ 0� a · b.
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Proof. If b = 0, then 0� a · b is an instance of Reflexivity axiom.
Suppose next that b > 0. From the assumption 0� a by Homogeneity axiom,

0� a a� 2a 2a� 3a 3a� 4a . . . (b− 1)a� ab

Thus, by multiple applications of Transitivity axiom, 0� a · b.
Finally, assume that b < 0. As we have just shown above, assumption 0 � a

implies 0 � a · |b|. Hence, by Homogeneity axiom, −a · |b| � 0. In other words,
a · b� 0. Therefore, 0� a · b by Symmetry axiom. ��

5 Soundness

Theorem 1 (soundness). If � φ, then G � φ for each cellular game G.

We prove soundness of each of the axioms as a separate lemma using Definition 4.

Lemma 3 (reflexivity). G � a� a.

Proof. For every {e′i}i∈Z, {e′′i }i∈Z ∈ NE(G), if e′a = e′′a, then e′a = e′′a. ��

Lemma 4 (symmetry). If G � a� b, then G � b� a.

Proof. Let V (a) = {ea | {ei}i∈Z ∈ NE(G)} for each a ∈ Z. Assume now that
G � a � b. Thus, there is a function f : V (a) → V (b) such that eb = f(ea) for
each {ei}i∈Z ∈ NE(G). We will show that function f is a surjection from V (a)
onto V (b). Let y ∈ V (b). Hence, y = eb for some {ei}i∈Z ∈ NE(G) due to the
definition of V (b). Then, f(ea) = eb = y. Therefore, f is a surjection of V (a)
onto V (b).

By Lemma 1, V (a) = V (b). Thus, f is a surjection of a finite set into a finite
set of the same size. It is well-known in set theory that any such function is a
bijection. Hence, ea = f−1(eb) for each e ∈ NE(G). Therefore, G � b� a. ��

Lemma 5 (transitivity). If G � a� b and G � b� c, then G � a� c.

Proof. Consider any {e′i}i∈Z, {e′′i }i∈Z ∈ NE(G). Suppose that e′a = e′′a . We will
show that e′c = e′′c . Indeed, by the first assumption of the lemma, e′b = e′′b .
Therefore, by the second assumption of the lemma, e′c = e′′c . ��

Lemma 6 (homogeneity). If G � a� b, then G � (a+ c)� (b+ c).

Proof. Consider any {e′i}i∈Z, {e′′i }i∈Z ∈ NE(G). Suppose that e′a+c = e′′a+c. We
will need to show that e′b+c = e′′b+c. Indeed, by Lemma 1, {e′i+c}i∈Z, {e′′i+c}i∈Z ∈
NE(G). Hence, by the assumption of the lemma, e′b+c = e′′b+c. ��

6 Completeness

In Theorem 2, given in the end of this section, we prove the completeness theorem
for our logical system. We start, however, with several technical definitions and
lemmas.
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6.1 Rank

For any nonempty set of integers A, by gcd(A) we mean the greatest common
divisor of all integers in the set A. If set A contains only zeros, then gcd(A) is
assumed to be equal to the smallest infinite ordinal ω.

The following lemma is well-known result in elementary number theory which
is commonly referred to as Bézout identity or Bézout lemma. It is usually proven
through an analysis of Euclidian algorithm [8, p. 7].

Lemma 7. For any integers a and b there are integers u and v such that
gcd(a, b) = ua+ vb. ��

In this paper, in addition to Bézout identity, we also refer to a lesser-known more
general result whose proof is reproduced below.

Lemma 8. For any non-empty set of integers {a1, a2, . . . , an}, there are integers
c1, . . . , cn such that gcd({a1, a2, . . . , an}) = c1a1 + · · ·+ cnan.

Proof. Induction on n. If n = 1, then let c1 be 1. Thus, gcd({a1}) = a1 = c1a1.
If n > 1, then by Lemma 7, there must exist u and v such that

gcd({a1, . . . , an})=gcd({gcd({a1, . . . , an−1}, an})=u·gcd({a1, . . . , an−1})+van.

At the same time, by the Induction Hypothesis, there are integers c1, . . . , cn−1

such that gcd({a1, a2, . . . , an−1}) = c1a1 + · · ·+ cn−1an−1. Therefore,

gcd({a1, . . . , an}) = u·gcd({a1, . . . , an−1})+van = uc1a1+· · ·+ucn−1an−1+van.

��

Lemma 9. For any set of integer numbers A = {a1, a2, . . . }, if gcd(A) is finite,
then there are an integer k > 0 and integers c1, . . . , ck such that

c1a1 + · · ·+ ckak = gcd(A).

Proof. Consider monotonic sequence

gcd{a1} ≥ gcd{a1, a2} ≥ gcd{a1, a2, a3} ≥ . . .

Due to the well-ordering principle, this sequence must have a smallest element,
which, thus, is equal to gcd(A). In other words, there is k such that gcd(A) =
gcd({a1, a2, a3, . . . , ak}). Finally, by Lemma 8, there are integers c1, . . . , ck such
that

c1a1 + · · ·+ ckak = gcd{a1, a2, a3, . . . , ak} = gcd(A).

��

Definition 5. For any set of statements X in language Φ, let

rank(X) = gcd{ d | X � 0� d }.
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Since we have only defined gcd(A) for nonempty set A, for the above definition
to be valid we need to show that set { d | X � 0 � d } is not empty, which is
true since X � 0� 0 by Reflexivity axiom.

Lemma 10. If rank(X) is finite, then X � 0� rank(X).

Proof. By Lemma 9, there are k ≥ 1 and c1, . . . , ck, d1, . . . , dk ∈ Z such that

c1d1 + · · ·+ ckdk = gcd{d | X � 0� d} (6)

and
X � 0� d1, X � 0� d2, . . . X � 0� dk.

By Lemma 2,

X � 0� c1d1, X � 0� c2d2, . . . X � 0� ckdk.

By the Homogeneity axiom,

X � 0� c1d1,

X � c1d1 � c1d1 + c2d2,

. . .

X � c1d1 + · · ·+ ck−1dk−1 � c1d1 + · · ·+ ckdk.

By the Transitivity axiom, applied k − 1 times,

X � 0� c1d1 + · · ·+ ckdk.

Therefore, X � 0� rank(X) due to equation (6). ��

Lemma 11. If rank(X) is finite, then X � a�b if and only if rank(X) | (b−a).

Proof. (⇒). Suppose that X � a � b. Thus, X � 0 � (b − a) by the Homo-
geneity axiom. Therefore, rank(X) | (b − a) by Definition 5. (⇐). Suppose that
rank(X) | (b− a). Thus, X � 0� (b− a) due to Lemma 2 and Lemma 10. There-
fore, X � a� b by the Homogeneity axiom. ��

Lemma 12. If rank(X) = ω, then X � a� b if and only if a = b.

Proof. (⇒). If X � a � b, then, by the Homogeneity axiom, X � 0 � (b − a).
Hence, b − a = 0 due to the assumption rank(X) = ω. Therefore, a = b. (⇐).
X � a� a by Reflexivity axiom. ��

6.2 Game Gd for 2 < d < ω

Definition 6. For any integer d > 2, let Gd be the game (ZFd
, u), where

u(x, y, z) =

{
1 if x+ y = z in ZFd

,

0 otherwise.
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Lemma 13. en−1+ en = en+1 for each {ei}i∈Z ∈ NE(Gd) and each n ∈ Z. ��

By F0, F1, F2, F3, F4, F5, . . . we mean Fibonacci numbers 0, 1, 1, 2, 3, 5, . . . and
by [F0], [F1], [F2], . . . their congruence classes in ZFd

.

Lemma 14. For each n, k ∈ Z and each {ei}i∈Z ∈ NE(Gd), if k > 0, then

en+k = [Fk−1]en + [Fk]en+1.

Proof. Induction on k. If k = 1, then

en+1 = [0] · en + [1] · en+1 = [F0] · en + [F1] · en+1.

If k = 2, then, by Lemma 13,

en+2 = en + en+1 = [1] · en + [1] · en+1 = [F1] · en + [F2] · en+1.

If k > 2, then by Lemma 13, the Induction Hypothesis, and the recurrence
relation for Fibonacci numbers,

en+k = en+k−2 + en+k−1

= ([Fk−3] · en + [Fk−2] · en+1) + ([Fk−2] · en + [Fk−1] · en+1)

= ([Fk−3] + [Fk−2]) · en + ([Fk−2] + [Fk−1]) · en+1

= [Fk−1] · en + [Fk] · en+1.

��

Lemma 15. For each n, q, d ∈ Z, if q ≥ 0, then

en+qd = [F q
d−1] · en,

where F q
d−1 is Fd−1 raised to power q.

Proof. Induction on q. If q = 0, then

en+qd = en = [1] · en = [F 0
d−1] · en.

Note that in the above we rely on the fact that F 0
d−1 = 1, which is true because

d > 2 and, thus, Fd−1 > 0.
Assume now that q > 0. Thus, by Lemma 14, the Induction Hypothesis, and

due to the fact that Fd = [0] in ZFd
,

en+qd = en+(q−1)d+d

= [Fd−1] · en+(q−1)d + [Fd] · en+(q−1)d+1

= [Fd−1] · en+(q−1)d + [0] · en+(q−1)d+1

= [Fd−1] · en+(q−1)d = [Fd−1] · [F q−1
d−1 ]en = [F q

d−1] · en.
��
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Lemma 16. If d | (b− a), then Gd � a� b.

Proof. Due to Lemma 4, we can assume that a < b. Suppose that b = a+qd and
that e′a = e′′a for some {e′i}i∈Z, {e′′i }i∈Z ∈ NE(Gd). We will show that e′b = e′′b .
Indeed, by Lemma 15,

e′b = e′a+qd = [F q
d−1] · e′a.

Similarly, e′′b = [F q
d−1] · e′′a. Thus,

e′b = [F q
d−1] · e′a = [F q

d−1] · e′′a = e′′b .

��

By 0 we mean the constant function from Z to ZFd
equal to [0] on all integer

numbers.

Lemma 17. 0 ∈ NE(Gd).

Proof. See Definition 6. ��

Note that the Fibonacci sequence

F0 = 0, F1 = 1, F2 = 1, F3 = 2, . . .

can be expanded to negative subscripts in a way that preserves the recurrence
relation Fn = Fn−1 + Fn−2 for the Fibonacci numbers:

F−1 = 1, F−2 = 0, F−3 = 1, F−4 = −1, F−5 = 2, . . .

By F we mean the function from Z to ZFd
such that F(z) = [Fz ].

Lemma 18. F ∈ NE(Gd).

Proof. See Definition 6. ��

Lemma 19. Element [Fd−1] is invertible in ZFd
for each d > 2.

Proof. Due to the identity Fn = Fn−1 + Fn−2, the Euclidian algorithm, when
applied to any two consecutive Fibonacci numbers, generates the complete se-
quence of Fibonacci numbers in reverse order:

Fn, Fn−1, Fn−2, Fn−3, . . . , 13, 8, 5, 3, 2, 1, 1, 0.

Hence, gcd(Fn, Fn−1) = 1 for each n ≥ 1. In particular, gcd(Fd, Fd−1) = 1. Thus,
due to Lemma 7, there are integers a and b such that

a · Fd + b · Fd−1 = 1.

Therefore, b · Fd−1 ≡ 1 (mod Fd). In other words, [b] · [Fd−1] = [1] in ZFd
. ��

Lemma 20. If d > 2 and Gd � a� b, then d | (b− a).
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Proof. Assume that Gd � a�b. Due to Lemma 4, we can also assume that a < b.
Suppose that b− a = qd+ r for 0 ≤ r < d. We will show that r = 0.

Consider strategy profiles {e′i}i∈Z and {e′′i }i∈Z such that

e′i = 0(i− a)

and
e′′i = F(i − a)

for each i ∈ Z. By Lemma 1, {e′i}i∈Z, {e′′i }i∈Z ∈ NE(G). Note that

e′a = 0(a− a) = [0] = F(a− a) = e′′a (mod Fd).

Thus, e′b = e′′b due to the assumption Gd � a � b. Hence, 0(b − a) = F(b − a).
In other words, F(b − a) = [0]. Hence, F(r + qd) = [0]. At the same time, by
Lemma 15,

F(r + qd) = [F q
d−1]F(r) = [F q

d−1 · Fr ] = [Fd−1]
q · [Fr].

Then, [Fd−1]
q · [Fr ] = [0]. By Lemma 19, element [Fd−1] is invertible in ZFd

.
Thus,

[Fd−1]
−q · [Fd−1]

q · [Fr] = [Fd−1]
−q · [0].

Hence, [Fr] = [0]. In other words, Fr ≡ 0 (mod Fd). Recall that 0 ≤ r < d by
the choice of r. Thus, 0 ≤ Fr < Fd. Taking into account Fr ≡ 0 (mod Fd), we
can conclude that Fr = 0. Recall now that r ≥ 0. Therefore, r = 0. ��

6.3 Special Cases: Game Gω, G1, and G2

Definition 7. Let Gω be the game ({0, 1}, u), where u(x, y, z) = 0 for all x, y,
z ∈ Z.

Lemma 21. Gω � a� b if and only if a = b.

Proof. Any strategy profile of game Gω is a Nash equilibrium. ��

Definition 8. let G1 be the game ({0, 1}, u), where

u(x, y, z) =

{
1 if y = z

0 otherwise.

In other words, in game G1 each player is paid to be equal to her right neighbor.

Lemma 22. G1 � a� b for any a, b ∈ Z.

Proof. Game G1 has only two Nash equilibria: . . . 000 . . . and . . . 111 . . . .
��

Definition 9. let G2 be the game ({0, 1, panic}, u), where u(x, y, z) is defined
as follows: if x = z 	= panic, then y is not paid no matter what its value is;
otherwise y is paid a positive amount if it is equal to panic.
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Lemma 23. Game G2 has five Nash equilibria:

1. all players are in the state of panic,
2. all players are in the state 0,
3. all players are in the state 1,
4. even-indexed players are in state 0, odd-indexed players are in state 1,
5. even-indexed players are in state 1, odd-indexed players are in state 0.

��

Lemma 24. G2 � a� b if and only if 2 | (a− b).

Proof. Follows from Lemma 23. ��

7 Completeness: Final Steps

Lemma 25. For any set of formulas X in the language Φ, there is a game G
such that, X � a� b if and only if G � a� b, for each a, b ∈ Z.

Proof. Case I: rank(X) = 1. Consider game G1. (⇒) : Note that G1 � a� b by
Lemma 22. (⇐) : By the assumption of this case, rank(X) = 1. Thus, X � 0� 1
by Lemma 10. Hence, X � 0 � (b − a), by Lemma 2. Therefore, X � a � b, by
the Homogeneity axiom.

Case II: rank(X) = 2. Consider game G2. (⇒) : Let G2 � a � b. Thus, by
Lemma 24, b − a = 2q + 1 for some q ∈ Z. We need to show that X � a � b.
Suppose the opposite, X � a � b. Hence, X � 0 � (b − a) by the Homogeneity
axiom. Thus, X � 0 � 2q + 1. This is a contradiction with the assumption
rank(X) = 2, because 2q+1 is not divisible by 2. (⇐) : Assume that G2 � a�b.
Thus, b − a = 2q, by Lemma 24. Recall the assumption rank(X) = 2. Thus,
by Lemma 10, X � 0 � 2. Hence, X � 0 � 2q by Lemma 2. In other words,
X � 0� (b− a). Thus, by the Homogeneity axiom, X � a� b.

Case III: 2 < d = rank(X) < ω. Consider game Gd. (⇒) : Let X � a � b.
Hence, by the Homogeneity axiom, X � 0 � (b − a). Thus, d | (b − a) due to
Definition 5. Thus, Gd � a � b, by Lemma 16. (⇐) : Assume that Gd � a � b.
Hence, d | (b − a) by Lemma 20. Thus, b − a = qd for some q ∈ Z. Recall
that d = rank(X) < ω. Thus, X � 0 � d by Lemma 10. Hence, X � 0 � qd,
by Lemma 2. In other words, X � 0 � (b − a). Therefore, X � a � b, by the
Homogeneity axiom.

Case IV: rank(X) = ω. Consider game Gω. (⇒) : Let X � a � b. Thus, by
the Homogeneity axiom, X � 0� (b− a). Hence, b− a = 0, due to the fact that
rank(X) = ω. Then Gω � a� b by Lemma 21. (⇐) : Assume that Gω � a � b.
Thus, a = b, by Lemma 21. Therefore, X � a� b by the Reflexivity axiom. ��

Lemma 26. For any maximal consistent set of formulas X ⊂ Φ, there is a
game G such that X � ψ if and only if G � ψ for each ψ ∈ Φ.
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Proof. Consider any maximal consistent set X ⊂ Φ. Let G be the game that
exists by Lemma 25. We will prove that X � ψ if and only if G � ψ by induction
on the structural complexity of formula ψ. The case when ψ is an atomic propo-
sition follows from Lemma 25. If ψ is constant ⊥, then G � ψ by Definition 4
and X � ψ due to consistency of the set X . The case when ψ is an implication
follows from the assumption of maximality and consistency of X in the standard
way. ��

Theorem 2 (completeness). If G � φ for each cellular game G, then � φ.

Proof. Suppose that � φ. Let X be a maximal consistent subset of Φ containing
formula ¬φ. By Lemma 26, there is a cellular game G such that G � ¬φ. ��

8 Conclusion

In this paper we gave a complete axiomatization of functional dependence in
linear cellular games with finite number of strategies. The two natural extensions
of this work are games with infinite number of strategies and cellular games on
a plane.

If players are allowed to have infinite number of strategies, then the Symme-
try axiom is no longer sound. Indeed, consider a game in which strategies are
infinite boolean sequences. Let a1, a2, a3, . . . be the strategies of a player u and
b1, b2, b3, . . . be the strategies of her right neighbor u + 1. The player u gets a
fixed positive pay-off if and only if

ai = bi−1 for all i ≥ 2. (7)

Note that equation (7) puts no restriction on the value of a1. It is easy to
see that the Nash equilibria of this game are all strategy profiles in which equa-
tion (7) is satisfied for all adjacent players u and u+1. Thus, for this game u�u+1
is true. At the same time, equation (7) puts no restrictions on a1 and, thus, for-
mula u+1�u is false. The complete axiomatization of functional dependence in
linear cellular games with infinite number of strategies remains an open problem.

a

b1

b2

b3

b4

b5

b6

b7 c

b8

b9

b10

Fig. 1. Plane Game

By a cellular game on the plane we mean a
game on a square grid where the pay-off of each
player is determined by her own strategy and the
strategies of her eight neighbors. Our attempts,
made together with Jeffrey Kane, to generalize
results of this paper to such games were unsuc-
cessful due to the fact that we were not able to
find the right “two-dimensional” version of of Fi-
bonacci numbers. We even do not know, for ex-
ample, if there is a game (see Figure 1) in which
formula a� c is true, but formulas bk � c are false
for each k ∈ {1, 2, . . . , 10}.
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Abstract. We introduce ATLEA, a novel extension of Alternating-time Temporal
Logic with explicit actions in the object language. ATLEA allows to reason about
abilities of agents under commitments to play certain actions. Pre- and postcon-
ditions as well as availability and unavailability of actions can be expressed. We
show that the multiagent extension of Reiter’s solution to the frame problem can
be encoded into ATLEA. We also consider an epistemic extension of ATLEA.
We demonstrate that the resulting logic is sufficiently expressive to reason about
uniform choices of actions. Complexity results for the satisfiability problem of
ATLEA and its epistemic extension are given in the paper.

1 Introduction

Several formalisms for reasoning about actions were suggested in AI, including situ-
ation calculus [19], event calculus [20], fluent calculus [21,22], and so-called action
languages such as A and C [9,14]. These formalisms provide languages to describe ac-
tions in terms of pre- and postconditions. We are interested in reasoning about actions
within the framework of Alternating-time Temporal Logic (ATL) [2], a logic for rea-
soning about strategic abilities. In ATL there are no names for actions and there is no
obvious way to describe the behaviour of actions. We therefore extend ATL to ATLEA:
ATL with Explicit Actions in the object language. We demonstrate that the resulting
logic allows to reason about multiagent actions. In particular, we show that ATLEA
allows us to specify the pre- and post-conditions of actions and to check whether in
a given situation an agent or coalition of agents has the capability to ensure a given
outcome.

The paper is organised as follows. Section 2 introduces ATLEA, and Section 3 il-
lustrates how pre- and postconditions of actions can be specified. We then consider an
epistemic extension of ATLEA and demonstrate that it is sufficiently expressive to rea-
son about the conditions under which an agent has a uniform choice to ensure a given
state of affairs (Section 4).

2 ATL with Explicit Actions

An action commitment is a pair (a, ω) consisting of an agent a and an action name
ω, also written a %→ ω: a is committed to perform ω at the current state. An action

D. Grossi, O. Roy, and H. Huang (Eds.): LORI 2013, LNCS 8196, pp. 162–175, 2013.
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commitment function is a finite set ρ of action commitments such that ρ is a partial
function in its first argument: for every two (a, ω) and (a, ω′) in ρ we have ω = ω′.
We write ρ(a) = ω if (a, ω) ∈ ρ; otherwise we say that ρ(a) is undefined. The partial
function ρ describes the commitments of the agents a in dom(ρ) to play action ρ(a) at
the current state.

Action commitment functions parameterise ATL path quantifiers. A formula of the
form 〈〈A〉〉ρψ is read: “while the agents in dom(ρ) perform the actions as specified in
ρ, the agents in A have a strategy to ensure the temporal property ψ, no matter what
the agents in Σ \ A do.” Just as in ATL, there is an existential quantification over the
strategies of the agents in coalition A and a universal quantification over the strategies
of the agents outside of A. The selection of strategies occurs simultaneously, without
interdependencies between the agents. The novel part in ATLEA is that we only quantify
over strategies respecting ρ. Note that in the path quantifier 〈〈A〉〉ρ , the function ρ may
commit both members of the coalition A (the proponents) and its opponents outside
A. A special case is when ρ = ∅: then 〈〈A〉〉ρ is nothing but the ATL operator 〈〈A〉〉.
For example, the formula 〈〈a, c〉〉{a �→ωa,b�→ωb}ψ holds at a state w if, and only if, there
is a strategy for coalition {a, c} where a performs ωa at w, such that for all strategies
for Σ \ {a, c} where b performs ωb at w, all paths resulting from the chosen strategies
satisfy the temporal property ψ.

We fix a set Π of atomic propositions, a set Σ of agents, and a set Ω of action names.
We assume that these three sets are countably infinite and disjoint.1 The language of
ATLEA is defined over the signature 〈Π,Σ,Ω〉.

Definition 1 (ATLEA syntax). The following grammar defines state formulas ϕ and
path formulas ψ:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | 〈〈A〉〉ρψ
ψ ::= ¬ψ | ©ϕ | ϕU ϕ

where p ranges over Π , A ranges over finite subsets of Σ and ρ ranges over action
commitment functions with action names from Ω. The language of ATLEA consists of
state formulas.

We sometimes omit set parentheses as in 〈〈a〉〉a �→ω©ϕ. For state formulas, the
Boolean operators ∧,→,↔, and the logical constants � and ⊥ are defined as usual by
means of ¬ and ∨. The commonly used temporal operators ‘sometime’ and ‘forever’
are defined as the path formulas �ϕ = (�U ϕ) and �ϕ = ¬(�U ¬ϕ), respectively.

Formulas are evaluated on concurrent game structures that additionally interpret ac-
tion names as moves of players.

Definition 2 (CGSN). Let S = {1, . . . , n} ⊂ Σ, n ≥ 1, be a finite set of agents,
P ⊂ Π a finite set of atomic propositions, and O ⊂ Ω be a finite set of action names.
A Concurrent Game Structure with action Names (CGSN) C for the signature 〈S, P,O〉
is a tuple C = 〈W,V,M,Mov,E, || · ||〉, where:

– W is a finite, non-empty set of worlds (alias states);
– V : W −→ 2P is a valuation function;
– M is a finite, non-empty set of moves;

1 Infinite signatures are relevant for the analysis of the complexity of the satisfiability problem.
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– Mov : W × S −→ 2M \ ∅ maps a world w and an agent a to the non-empty set
Mov(w, a) of moves available to a at w;

– E : W × MS −→ W is a transition function mapping a world w and a move
profile m = 〈m1, . . . ,mn〉 (one move for each agent) to the world E(w,m);

– || · || : O −→ M is a denotation function mapping action names in O to moves
in M .

CGSNs are finite objects. We obtain infinitely many classes of CGSNs, one per signa-
ture. In a CGSN, an action name is interpreted as a move (which may interpret several
action names). Mov(w, a) determines which of the moves from M are available to
a at state w. We say that action ωa is available to agent a at w if ||ωa|| = ma and
ma∈Mov(w, a).

A strategy for an agent a is a function fa that maps every world w to a move fa(w) ∈
Mov(w, a) available to a at w.2 A strategy for a coalition A ⊆ S is a function FA

that maps every agent a from A to a strategy FA(a) for a. Given an action commitment
function ρ, a strategyFA forA is called compatible with ρ atw if for all a ∈ A∩dom(ρ),

FA(a)(w) = ||ρ(a)||.
Clearly, when A ∩ dom(ρ) = ∅ then any strategy FA for coalition A is compatible
with ρ. We denote with strat(A, ρ, w) the set of all strategies for A that are compatible
with ρ at w. When the interpretation of agent a’s commitment is not among the moves
available at w, i.e., when ||ρ(a)|| /∈Mov(w, a), then no strategy for a is compatible with
ρ at w. This holds more generally for coalitions containing a: if ||ρ(a)|| /∈ Mov(w, a)
for some a ∈ A then strat(A, ρ, w)=∅.

A move profile is used to determine a successor of a state using the transition func-
tion E. We define the set of available move profiles at state w as follows:

prof(w) = {〈m1, . . . ,mn〉 | mi ∈Mov(w, i)}.
The set of possible successors of w is the set of states E(w,m) where m ranges over
prof(w). An infinite sequence λ = x0x1x2 · · · of worlds from W is called a computa-
tion if xi+1 is a successor of xi for all positions i ≥ 0. λ[i] denotes the i-th component
xi in λ, and with λ[0, i] the initial sequence x0 · · ·xi of λ.

The set out(w,FA) of outcomes of a strategy FA for A starting at a world w is the
set of all computations λ = x0x1x2 · · · such that x0 = w and, for every i ≥ 0, there is
a move profile m = 〈m1, . . . ,mn〉 ∈ prof(xi) such that:

– ma = FA(a)(xi), for all a ∈ A; and
– xi+1 = E(xi,m).

A strategy FS for all agents in the signature specifies exactly one play: out(w,FS)
is a singleton. A CGSN C for 〈S, P,O〉 allows to interpret an ATLEA formula ϕ if S
contains all agents, P all atomic propositions, and O all action names occurring in ϕ.
The satisfaction relation is defined as follows:3

2 The logic is defined for memoryless strategies. The extension to perfect recall strategies is
straightforward.

3 We skip the cases for atomic propositions, Boolean and temporal operators; they are defined
as in ATL [2].
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C, w |= 〈〈A〉〉ρψ iff there exists FA ∈ strat(A, ρ, w) such that

for all FS\A ∈ strat(S\A, ρ, w) it holds that

C, λ |= ψ, where {λ} = out(w,FA∪FS\A).

Validity and satisfiability are defined as expected: ϕ is valid if C, w |= ϕ for every state
w of every CGSN C whose signature contains that of ϕ; ϕ is satisfiable if ¬ϕ is not
valid.

With ATLEA we can express the (un-)availability of actions. A formula of the form
〈〈a〉〉a �→ωa©� states that action ωa is available to agent a at the current state. More
generally, we have that C, w |= 〈〈A〉〉ρ©� iff ||ρ(a)|| ∈ Mov(w, a) for all a ∈ A ∩
dom(ρ). The other way round, to express the unavailability of ωa to a, we have that
C, w |= ¬〈〈A〉〉ρ©� iff there is an a ∈ dom(ρ) ∩A such that ||ρ(a)|| /∈Mov(w, a).

ATL is the fragment of ATLEA where every action commitment function is empty.4

Without commitments ATLEA formulas can be interpreted in CGSNs with empty de-
notation functions, which are essentially concurrent game structures as used in ATL.
A crucial difference to ATL, however, is the fact that ATLEA can detect the differ-
ence between memoryless and perfect recall strategies. Consider a CGSN for one agent
with two states x and y such that p ∈ V (x) but p /∈ V (y), Mov(x, a) = {1, 2} and
Mov(y, a) = {1}, x = E(x, 1), y = E(x, 2) = E(y, 1), and ||ω|| = 1. The formula
〈〈a〉〉a �→ω©p ∧ 〈〈a〉〉a �→ω(�U ¬p) is false at a state x under memoryless strategies, but
it holds for strategies that allow a recall of at least one predecessor.

The proposition below illustrates that the status of some ATLEA counterparts of ATL
axioms [12] depends on the interplay of the two arguments in the ATLEA operator
〈〈A〉〉ρ.

Proposition 1. The following formulas are ATLEA valid.

1. 〈〈A〉〉ρ©� for dom(ρ) ∩ A empty
2. ¬〈〈A〉〉ρ©⊥ for dom(ρ) \A empty
3. (〈〈A〉〉ρ©ϕ ∧ 〈〈B〉〉ρ©ψ)→ 〈〈A ∪B〉〉ρ©(ϕ ∧ ψ) for A ∩B ⊆ dom(ρ)
4. 〈〈A〉〉ρ©ϕ→ 〈〈A〉〉ρ′©ϕ for ρ′ = ρ ∪ {a %→ ω}, a /∈ A
5. 〈〈A〉〉ρ′©ϕ→ 〈〈A〉〉ρ©ϕ for ρ′ = ρ ∪ {a %→ ω}, a ∈ A
6. 〈〈A ∪ {a}〉〉ρ©ϕ→ 〈〈A〉〉ρ©ϕ for a ∈ dom(ρ)
7. 〈〈A〉〉ρ(ϕU ψ)↔ ((ψ ∧ 〈〈A〉〉ρ©�) ∨ (ϕ ∧ 〈〈A〉〉ρ©〈〈A〉〉∅(ϕU ψ)))

Item 1 generalises the ATL axiom (�) (obtained when ρ is empty). Another particular
case is when A is empty: then both 〈〈∅〉〉ρ©� is valid. Item 2 generalises the ATL axiom
(⊥) (obtained when ρ is empty). To see that Item 1 is invalid when dom(ρ) and A are
not disjoint, suppose a ∈ dom(ρ) ∩ A: then we can always find a CGSN C and a state
w such that ||ρ(a)|| /∈ Mov(w, a), and then C, w 	|= 〈〈A〉〉ρ©�. Item 3 generalises
ATL’s superadditivity axiom (S), relaxing the constraint of disjointness of A and B.
Intuitively it says that when the actions of the agents that are in both, A and B, are
fixed by ρ then these agents cannot have different strategies to enforce ϕ and ψ. For
that reason, the powers of the two coalitions can be combined. Consider the case where

4 We note in passing: ATL does not allow for negated path formulas, while ATLEA does
(cf. Def. 1).
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A ⊆ dom(ρ). It then follows from the monotony of 〈〈A〉〉ρ and our superadditivity
axiom (Item 3) that 〈〈A〉〉ρ is a normal modal box operator. Items 4 and 5 are respectively
about increasing commitment of opponents and releasing commitment of proponents.
Item 6 is about dismissing committed proponents. Item 7 is a fixpoint axiom of ATL.
It allows to rewrite formulas in a way such that ρ is empty in all modal operators of
the form 〈〈A〉〉ρ(ϕU ψ).5 Moreover, the generalisations of the ATL inference rules of
Modus Ponens and Necessitation all preserve validity. However, we leave a complete
axiomatisation of ATLEA for future work.

Remark 1. As an extension of ATLEA, we may consider PDL program operators such
as sequential composition, iteration and test over action descriptions. For the one-agent
case, this is related to CTL with Path Relativisation [15]. It would also be interesting to
study complements of actions, as well as the loop construct, which allows to formulate
action commitments of the form a %→ ω∞ stating that a plays the action denoted with
ω at all states. We can also view a %→ ω∞ as a commitment of a to play ω in all
situations. In other words, ω∞ is a strategy. This means that we can specify entire
(memoryless) strategies within such an extension of ATLEA. This motivates a study of
the relationships between the extension of ATLEA and other logics with representations
of strategies in the object language such as ATLES [28] and Strategy Logic [6], which
we leave for furture work. The equivalence in Item 7 of Proposition 1 becomes invalid if
we generalise commitments from atomic actions to sequences of actions. The extension
of ATLEA by the program operators of PDL is subject of ongoing work.

Theorem 1. The satisfiability problem for ATLEA is ExpTime-complete.

The ExpTime lower bound carries over from the fragment ATL [29]. The matching
upper complexity bound can be shown by adapting the decision procedure for ATL [29],
which is a type elimination constructions inspired from [8].

3 Reasoning about Actions

We now put ATLEA to work and demonstrate its usefulness in reasoning about mul-
tiagent actions. We start by encoding in ATLEA Reiter’s action descriptions in terms
of complete conditions for the executability and the effects of actions. We build on the
mapping of Reiter’s solution to the frame problem into dynamic epistemic logics with
assignments as done in [7]. We take the multiagent context into account by integrat-
ing ideas stemming from logics of propositional control. There, the set of propositional
variables is partitioned among the agents, and an agent controlling a variable is the only
one able to change its truth value [26].

5 We note that ATL’sS-maximality axiom ¬〈〈S〉〉∅©¬ψ ↔ 〈〈∅〉〉∅©ψ (which relates the empty
coalition with the set of all agents) does not make sense in our setting: as formulas ϕ are
evaluated in CGSNs whose signature contains that of ϕ, there is no way of ‘grasping’ the set
of all agents S of a given model. Our ATLEA (and also the underlying version of ATL) is more
general than ATL as defined in [12]. The latter is actually a family of logics: each member of
the family is defined for a finite set of agents, yielding uncountably many axiomatisations.
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3.1 Action Descriptions

Let 〈S, P,O〉 be a finite signature. Let Φ be the set of propositional formulas over P .
An action description for 〈S, P,O〉 is a tuple T = 〈agt, poss, eff〉 where

– agt : O −→ S associates to each action name ω an agent agtω;
– poss : O −→ Φ associates to each action name ω a propositional formula possω

such that for every agent a,
∨

ω|agtω=a possω is valid in propositional logic;
– eff : O −→ P −→ Φ is a mapping associating to each action name ω a partial func-

tion effω : P −→ Φ, such that if possω1
and possω2

are satisfiable in propositional
logic and agtω1

	= agtω2
then the domains of effω1 and effω2 are disjoint.

The function agt associates actions to agents who can perform them. No two agents
have the same action. The propositional formula possω characterises the conditions
under which ω is executable by agtω; the constraint says that at every state, each agent
has at least one action that is executable. The intuition of the function eff is that when
effω is defined for p then one of the things ω does is to assign to p the truth value of
effω(p): if ϕ is true before ω then p is true after ω, and if ϕ is false before ω then p is
false after ω. When effω is undefined for p then ω leaves the truth value of p unchanged.
The disjointness constraint guarantees that there is no state where two different agents
have executable actions changing the truth value of p. This is more liberal a condition
than exclusive control6 that is common in logics of propositional control [26,10]. We
call ours local exclusive control.

Example 1. Consider a light that is controlled by two switches. The position of these
switches is described by two propositional variables; moreover, there are variables de-
scribing whether agent a is close to switch k or not: P = {up1, up2} ∪ {closea,k |
a, k ∈ {1, 2}}. The light is on if the switches are either both up (up1 ∧ up2) or both
down (¬up1 ∧ ¬up2); in other words, the light is on if and only if up1 ↔ up2. There
are two agents: S = {1, 2}. Each agent a can toggle each switch k (togglea,k) or do
nothing: O = {togglea,k | a, k ∈ {1, 2}} ∪ {nopa | a ∈ {1, 2}}. Therefore the action
description T = 〈agt, poss, eff〉 is as follows.

– agttogglea,k
= agtnopa

= a, for all agents a and switches k;
– posstogglea,k

= closea,k ∧ ¬closea′,k, for agents a 	= a′ (in order to flip a switch
the agent has to be the only one close to it);

– possnopa
= �;

– effnopa is undefined for all p ∈ P (the action nopa does not change any variable);
– efftogglea,k

is defined for upk, and efftogglea,k
(upk) = ¬upk.

Observe that the function eff obeys our constraints on action descriptions: for the con-
junction posstoggle1,1

∧ posstoggle2,2
to be propositionally satisfiable, the domains of eff,

dom(efftoggle1,1
) = {up1} and dom(efftoggle2,2

) = {up2}, have to be disjoint, which is
indeed the case.

6 According to [10], control is exclusive when agtω1
�= agtω2

implies that the domains
dom(effω1) and dom(effω2) are disjoint, whatever possω1

and possω2
are. (We have adapted

the notation.)
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Action descriptions are an economic description of a domain and ‘count as a solution
to the frame problem’ [19]: the descriptions only talk about what changes and do not
contain frame axioms. A given T = 〈agt, poss, eff〉 determines what Reiter calls a
successor state axiom for each p ∈ P ; in the situation calculus this takes the following
form:

p(do(x, s))↔
( ∨
ω|p∈dom(effω)

(x = ω ∧ effω(p))
)
∨
(
p(s) ∧ ¬

∨
ω|p∈dom(effω)

x = ω
)

where x is an action variable and s is a situation variable, both universally quantified. It
says that action x makes p true iff either x is an action whose precondition for making
p true holds, or p was true before and x is not an action changing p.

3.2 CGSNs for T

We now associate concurrent game structures with action names to a given action de-
scription.

Let 〈S, P,O〉 be a signature. Let T = 〈agt, poss, eff〉 be an action description and
let C = 〈W,V,M,Mov,E, || · ||〉 be CGSN. C is a CGSN for T iff:

– M = O;
– Mov(w, a) = {ω ∈ O | agtω = a & V (w) |= possω};
– V (E(w,m)) =

{p | ∃i ∈ S, effmi defined for p & V (w) |= effmi(p)} ∪
{p | p ∈ V (w) & ∀i ∈ S, effmi undefined for p};

– ||ω|| = ω.

In the clause for Mov, the condition V (w) |= possω has to be understood as truth of
possω in the propositional interpretation V (w). Note that the clause for E corresponds
to Reiter’s successor state axiom.

A state formula ϕ of the language of ATLEA is valid in the class of CGSNs for T iff
C, w |= ϕ for every state w of every CGSNs C for T whose signature contains that of
ϕ. Moreover, ϕ is satisfiable in a CGSN for T iff ¬ϕ is not satisfiable.

We can now formulate two important problems in reasoning about actions. Suppose
given a signature 〈S, P,O〉, an action description T , a formula describing the initial
state ϕi and a formula describing the goal state ϕg . The prediction problem for a se-
quence of multiagent actions ρ1,. . . , ρn is to decide whether it the case that

ϕi → 〈〈dom(ρ1)〉〉ρ1©· · · 〈〈dom(ρn)〉〉ρn©ϕg

is valid in the class of CGSNs for T ; the planning problem for a set of agents A is to
decide whether it the case that

ϕi → 〈〈A〉〉∅�ϕg

is valid in the class of CGSNs for T .
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Example 2. Let us take up Example 1. Whether

(close1,1∧¬close2,1∧close2,2∧¬close1,2∧up1∧¬up2)→
〈〈1, 2〉〉1�→nop1,2�→toggle2,2

©(up1 ↔ up2)

is valid in the CGSNs for T is a prediction problem. Whether

(close1,1 ∧ ¬close2,1 ∧ close2,2 ∧ ¬close1,2)→
〈〈1, 2〉〉∅©(up1 ↔ up2)

is valid in the CGSNs for T is a planning problem. Both implications are valid in the
class of CGSNs for T .

3.3 Reduction to ATLEA Satisfiability

We now show that for finite signatures, satisfiability in a CGSN for T can be reduced
to ATLEA satisfiability.

Proposition 2. Let 〈S, P,O〉 be a finite signature. Let T be an action description in
〈S, P,O〉 and let ϕ be a formula in 〈S, P,O〉. ϕ is satisfiable in a CGSN for T iff
ϕ ∧ 〈〈∅〉〉�(

∧
Γ ) is ATLEA satisfiable, where Γ collects the following sets of formulas,

for every a ∈ S, p ∈ P , and ω ∈ O:

1. possω ↔ 〈〈agtω〉〉agtω �→ω©�
2. effω(p)→ 〈〈∅〉〉agtω �→ω©p, for p ∈ dom(effω)
3. ¬effω(p)→ 〈〈∅〉〉agtω �→ω©¬p, for p ∈ dom(effω)

4.
(∧

ω|p∈dom(effω) ¬possω
)
→ (p→ 〈〈∅〉〉∅©p)

5.
(∧

ω|p∈dom(effω) ¬possω
)
→ (¬p→ 〈〈∅〉〉∅©¬p)

6. possω → (p→ 〈〈∅〉〉agtω �→ω′©p)
for p ∈ dom(effω) and p /∈ dom(effω′);

7. possω → (¬p→ 〈〈∅〉〉agtω �→ω′©¬p)
for p ∈ dom(effω) and p /∈ dom(effω′).

Formula 1 translates the information specified in T about the executability of ω. For-
mulas 2 and 3 translate the information about the effects of ω. The last four clauses are
about the frame axioms and basically express that those variables p for which effω is un-
defined are left unchanged by the execution of ω. Formulas 4 and 5 say that when none
of the actions changing p is executable then the truth value of p remains unchanged.
Consider formulas 6 and 7: suppose p is one of the effects of ω (p ∈ dom(effω)) and
suppose at the present state ω is executable (possω is true); then due to the local exclu-
sive control constraint on the eff function of T , at that state p can only be changed by
agtω. Therefore, when agtω performs a different action ω′ not affecting p then the truth
value of p remains unchanged, whatever the other agents do.

Observe that the cardinality of Γ is polynomial in the number of symbols in the
signature (more precisely: cubic). As the length of every formula in Γ is bound by the
cardinality of Γ (because of items 4 and 5), the length of the formula

∧
Γ is polynomial

in the number of symbols in the signature, too. We can therefore polynomially embed
the reasoning problems of prediction and planning into ATLEA.
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4 Epistemic Extension

We now sketch an epistemic extension of ATLEA along the lines of [25]. We call our
logic Alternating-time Temporal Epistemic Logic with Explicit Actions, ATELEA.

4.1 ATELEA

We add knowledge modalities Ka to the language, one per agent a in Σ, and as well as
common knowledge modalities CA, one per finite subset A of Σ. We read the formula
Kaϕ as “a knows that ϕ is true” and the formula CAϕ as “the agents in A have common
knowledge that ϕ is true”.

Concurrent Epistemic Game Structures with action Names CEGSNs) are of the form

C+ = 〈W,V,M,Mov,E, || · ||, {Ra}a∈S〉
where 〈W,V,M,Mov,E, || · ||〉 is a CGSN (cf. Def. 2) and where every Ra ⊆W ×W
is an equivalence relation.

Given a CEGSN C+ = 〈W,V,M,Mov,E, || · ||, {Ra}a∈S〉, the satisfaction relation
|= is defined as follows:

C+, w |= Kaϕ iff C+, v |= ϕ for all v ∈W with wRav

C+, w |= CAϕ iff C+, v |= ϕ for all v ∈W with wR+
Av

where RA =
⋃

a∈ARa and where R+
A is the transitive closure of RA. For the ATLEA

operators the definition is as before.
We can extend the decision procedure for ATLEA to allow for the epistemic oper-

ators. This is done similarly to ATEL compared to ATL [27]. We obtain the following
result.

Theorem 2. The satisfiability problem for ATELEA is ExpTime-complete.

Let us take over the concrete semantics for ATLEA given in Section 3 and con-
sider the class of CEGSNs structures induced by an action specification. Let T =
〈agt, poss, eff〉 be an action specification and C+ = 〈C, {Ra}a∈S〉 a CEGSN for a
finite signature 〈S, P,O〉. We say that C+ is a CEGSN for T if C is a CGSN for T as
defined in Section 3.2.

As the following proposition highlights, satisfiability in a CEGSN for an action spec-
ification T can be reduced to ATELEA satisfiability: satisfiability with respect to the
general class of CEGSNs.

Let dg(ϕ) be the maximal number of nestings of ATLEA operators 〈〈A〉〉ρ and
ATELEA epistemic operators Ka or CA within ϕ. Let (〈〈∅〉〉�CA)

nψ, for n ≥ 0, be
the formula where 〈〈∅〉〉�CA is iterated n times. (So (〈〈∅〉〉�CA)

0ψ is ψ.)

Proposition 3. Let T be an action specification in the finite signature 〈S, P,O〉 and
let dg(ϕ) = n. Let ϕ be a formula of the language of ATELEA in 〈S, P,O〉. ϕ is
satisfiable in a CEGSN for T iffϕ∧(〈〈∅〉〉�CS)

n(
∧
Γ )∧(CS〈〈∅〉〉�)n(

∧
Γ ) is ATELEA

satisfiable, where Γ is the finite set of formulas defined in Proposition 2.

The proof can be done in a way similar to that of Prop. 2.
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4.2 Reasoning about Uniform Choices in ATELEA

An interesting aspect of our logic is that it allows us to express the concept of uniform
choice. Specifically, we say that agent a has a uniform choice from the finite set of
actions O to ensure that ϕ will be true in the next state when there exists an action in
O such that a knows that by choosing this action she will ensure ϕ in the next state, no
matter what the other agents will do. This can be expressed in ATELEA as follows:

UCa(O,ϕ)
def
=

∨
ω∈O

Ka〈〈{a}〉〉{a �→ω}©ϕ

UCi(O,ϕ) has to be read “agent a has a uniform choice from the finite set of actions
O to ensure ϕ in the next state”. This concept of uniform choice is closely related to
the concept of power. In fact, a given agent a’s power of achieving a certain result ϕ
involves not only a’s capability of achieving a but also a’s knowledge about this capa-
bility. For example, for a thief to have the power of opening a safe, he must know the
safe’s combination. (See [16] for a detailed analysis of the distinction between capabil-
ity and power.)

Furthermore, in ATELEA we can draw non-trivial inferences showing that, given
certain initial conditions, an agent has (or has not) a uniform choice to ensure ϕ in the
next state. Consider the following continuation of Example 1.

Example 3 (cont.). Remember that the light is on if the switches are either both up
(up1 ∧ up2) or both down (¬up1 ∧ ¬up2). Let us therefore abbreviate the equivalence
up1 ↔ up2 by lightOn . Suppose that in the initial situation agent 1 knows that the
light is off. Moreover, suppose that agent 1 knows that he is close to switch 1. Finally,
let us assume that agent 1 knows that agent 2 cannot perform the action of toggling
switch 1 or switch 2 because he is far away from both switches. In other words, agent
1 knows that agent 2 cannot interfere with his actions. Then we can prove that agent 1
has a uniform choice to ensure that the light is on in the next state. Indeed, it is easy
to show the following formula is valid in the class of CEGSN determined by the action
description T of Example 1:

(K1¬lightOn ∧ K1close1,1 ∧ K1(¬close2,1 ∧ ¬close2,2))→
UC1({toggle1,1, toggle1,2, nop1},lightOn)

Thanks to the common knowledge operator we can generalize the previous notion
of uniform choice to coalitions of agents. It is reasonable to assume that the agents in a
coalitionA have the power to ensure a given outcomeϕ only if they can coordinate their
actions in such a way that ϕ will be true in the next state. In order to achieve this level of
coordination, the agents in A must have common knowledge that by performing a given
joint action they will together make ϕ true, that is, the agents in A must have a uniform
collective choice to ensure ϕ. Uniform collective choice can be formally expressed as
follows. Let A = {1, . . . , k}. Then:

UCA(O,ϕ)
def
=

∨
ω1,...,ωk∈O

CA〈〈A〉〉{1�→ω1,...,k �→ωk}©ϕ

UCA(O,ϕ) has to be read “coalition A has a uniform collective choice from the set of
actions O to ensure ϕ in the next state”.
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Example 4 (cont.). Let us continue our running example and suppose that agents 1 and
2 have common knowledge that: (1) the light is off, and (2) agent 1 is close to switch
1 and far from switch 2 while agent 2 is close to switch 2 and far from switch 1. Then
we can prove that the coalition {1, 2} has a uniform collective choice to ensure that the
light is on in the next state. Indeed, it is easy to show that the following formula is valid
in the class of CEGSN determined by the action description T of Example 1:(

C{1,2}¬lightOn ∧ C{1,2}(close1,1 ∧ close2,2)∧
C{1,2}(¬close1,2 ∧ ¬close2,1)

)
→ UC{1,2}(O,lightOn)

with O = {togglea,k | a, k ∈ {1, 2}} ∪ {nopa | a ∈ {1, 2}}. Furthermore, we can also
prove that if e.g. the agents do not have common knowledge whether the light is on then
there is no uniform collective choice ensuring that the light is on. That is,

(¬C{1,2}lightOn ∧ ¬C{1,2}¬lightOn)→
¬UC{1,2}(O,lightOn)

5 Related Work

Several authors have noted that while strategic logics provide an interesting abstract
formalism to reason about actions and strategies, it would nevertheless be useful to
have actions or strategies as first-class objects. This was tried for Coalition Logic (for
example by [4,13]) and for some very expressive logics that turned out to be undecidable
(for example [17,5,23]). We here only overview extensions of ATL.

Alternating-time temporal logic with Actions (ATL-A) together with its epistemic
extension was introduced in [1] to obtain a strategic logic for describing actions as well
as their interaction with knowledge, and to solve problems with previous approaches.
ATL-A corresponds to a version of ATLEA with commitment functions ρ defined over
non-deterministic composition of action names and in which any such ρ can only oc-
cur in formulas of the form 〈〈A〉〉ρ©ϕ. While we appreciate ATL-A as an interesting
contribution to incorporate actions in strategic logics, we argue that the better design
lies with ATLEA. The syntax of ATL-A is unwieldy as each alternative action for ev-
ery agent has to be mentioned in the formula. This makes it impossible to express a’s
commitment a %→ ωa to use action ωa in ATL-A with a general (infinite) action signa-
ture; and even if we restrict the logic to a finite action signature the resulting ATL-A
formula will be huge. Abbreviations were suggested (already in [1]) for ATL-A to be
more friendly to modellers. ATL-A defines the temporal operators ‘forever’ and ‘until’
with action specifications in terms of ‘next-time’ and the respective fixpoint equation
from ATL (cf. Item 7 in Proposition 1). While coupling one-step actions with ‘next-
time’ formulas is conceptually clear, using fixpoint equations to define other temporal
operators involves an exponential blowup in formula size, which may be an issue with
reasoning complexity. Extending ATL-A to plans of actions appears to require major
changes of its semantics, whereas extending ATLEA this way requires defining what
it means for a coalitional strategy to be compatible with a complex action description
(cf. the set strat(.) in Section 2). In [1], model checking for ATL-A was studied, while
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the satisfiability problem, which is relevant for synthesis and mechanism design, is not
considered.

Commitment ATL, CATL, [24] is an extension of ATL with ternary operators of the
form Ci(σi,ϕ) with the intended reading “if it were the case that agent i committed to
the strategy σi, then ϕ”. The interpretation of this operator is in terms of model updates:
Ci(σi,ϕ) is true at world w of a given model M if and only if ϕ holds at w of model M ′

that results from eliminating from M all moves that are not consistent with agent i’s
strategy σi.7 The complexity of the satisfiability problem for CATL has not been stud-
ied, whereas the complexity result for ATLEA and its epistemic extension is one of our
main contributions here. There is also an important conceptual difference: the former
considers commitments to play strategies while the latter considers commitments to
play actions. From this point of view, CATL is much closer to ATL with Explicit Strate-
gies (ATLES) by [28], where ATL-path quantifiers are parameterised with commitment
functions for strategies [28], than to our ATLEA.

As for the differences between our ATLEA and Walther et al.’s ATLES, it is worth
noting that with ATLEA we can formalise the (un-)availability of actions at states
(cf. the side conditions of items 1 and 2 in Prop. 1), whereas with ATLES one can
reference and reason with existing strategies but not reason about their availability. An-
other difference is the local nature of commitments in ATLEA, i.e., commitments to
atomic actions are released after one time step (cf. Item 7 in Prop. 1).

The integration of game-theoretic concepts into the situation calculus was a subject
of recent research. Belle and Lakemeyer [3] study games in extensive form (in its im-
perfect information version), where only one agent can act per state. Consequently no
interactions have to be accounted for. They don’t have path quantifiers, which allows
them to define regression. De Giacomo, Lespérance and Pearce [11] have studied a
multiagent version of the situation calculus in order to reason about extensive games
where at most one agent can act at a given state. That agent is identified by a predicate
Control(a) indicating that a controls the current state. Concurrency is simulated by
interleaving. They have a (first-order) language with ATL path quantifiers. For a given
signature, the quantifier 〈〈A〉〉©ϕ is basically regressed to

(∨
a∈A

Control(a) ∧
∨
ω∈O

〈ω〉ϕ
)
∨
(∨
a/∈A

Control(a) ∧
∧
ω∈O

[ω]ϕ
)

where 〈ω〉 and [ω] are the dynamic operators of PDL. This relies on finiteness of the set
of agent and action symbols. While all these approaches do not really allow for ‘true’
concurrency, Reiter [18] had proposed to extend his solution to the frame problem to
concurrent actions. Different from us, he allows for several actions to be performed si-
multaneously by the same agent and does not assume exclusive control of propositional
variables. This comes with the problem of interacting preconditions: there are states
where two actions ω1 and ω2 with inconsistent postconditions are performed concur-
rently. This is avoided by our condition of (local) exclusive control.

7 CATL models are called Action-based Alternating Transition Systems (AATSs) and are closely
related to CGSNs.
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6 Conclusion

We have introduced a variant of Alternating-time Temporal Logic that has explicit ac-
tions. The interesting aspect of our logic is that it combines ATL’s strategic reasoning
with reasoning about actions in terms of pre- and postconditions as traditionally done
in AI.

In future research, we will investigate the extension by regular expressions over ac-
tions. This will allow to talk not only about uniform choices, but also about uniform
strategies. Moreover, we intend to provide sound and complete axiomatizations both
for ATLEA and for its epistemic extension ATELEA.
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Abstract. We aim to present a deontic logic with updates as an ex-
tension of Boolean Modal Logic. The features of this logic include the
following: (a) deontic relations are defined on sets of finite sequences
of states, called histories, and consequently, formulas are evaluated at
histories, not states; and (b) it has two dynamic operators, which tend
to update the obligation states of agents in different ways. This logic
reflects the distinction between the descriptive and prescriptive use of
norm sentences.

1 Introduction

One fundamental issue of deontic logic is Jorgensen’s dilemma, as noted by [4].
This dilemma was originally about imperatives. There are inferences involving
imperatives in our lives. However, imperatives express orders and do not have
truth values, so it is hard to say that there is a logic of imperatives. A dilemma
arises. Traditionally, deontic logic does not consider imperatives. However, norm
sentences such as “you should stay” or “you may leave” are similar to imperatives
in many cases: they can also be used to change agents’ behaviors, and therefore
do not have truth values. Hence, this dilemma is also a serious problem in deontic
logic. There are two puzzles attached to this dilemma: Ross’s Paradox and the
Free Choice Permission Paradox, both of which were identified by [7]. The first
puzzle can be illustrated by the inference “you should mail this letter; therefore,
you should mail it or burn it”. This inference is intuitively strange, but valid
according to classical logic. The second puzzle is opposite to the first one; it
notes that the inference “you may drink coffee or tea; therefore, you may drink
coffee” is not valid in the classical logic but is intuitively plausible.

In order to solve Jorgensen’s dilemma, as mentioned in [3], many philosophers
have proposed a distinction between two different uses of norm sentences: de-
scriptive and prescriptive uses. Norm sentences are descriptively used to state
what the agent ought to do or what he is allowed to do, among other actions,
etc. These sentences can be true or false in these cases. In the prescriptive way,
norm sentences are used to generate norms and do not have truth values. Jor-
gensen’s dilemma would disappear if the prescriptive use of norm sentences were
not relevant to deontic logic. Deontic logic is “legalized” this way. We consider
this distinction reasonable. However, we do not think that prescriptive norm
sentences are irrelevant to deontic logic. We believe that for any moral agent,
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there is an obligation state regarding his obligations and freedoms. Descriptive
norm sentences describe these states, while prescriptive norm sentences change
them. In this paper, we present a dynamic deontic logic to realize this concept.

There is a “dynamic” direction in deontic logic, in which works are based
on dynamic logics. A fundamental work is that of [6], which provided a deontic
logic as an extension of Propositional Dynamic Logic. Influenced by Anderson-
Kanger Deontic Logic, this work introduced a propositional constant, that intu-
itively means that the requirements of morality are violated. Deontic operators
are defined by this constant, but they are applied to actions, not propositions.
There is also a “dynamic” direction in semantics for imperatives and permissions
starting from [8]. This work is based on update semantics. It proposed a notion
plans, i.e., a set of to-do lists, which can be viewed as sets of actions. Imperatives
and permissions update plans in different ways: the former tend to “strengthen”
them, while the latter tend to “weaken” them.

This paper attempts to combine the spirits of these two research lines. As a
propositional dynamic logic, Boolean Modal Logic contains these three action
constructors: complement, intersection and choice. Our work is an extension of
this logic in both language and semantics. The extended language contains a
deontic operator, applied to actions, and two dynamic operators, correspond-
ing to the descriptive utterance of obligations and the prescriptive utterance of
permissions. The prescriptive utterance of obligations is derived from other ut-
terances. A model is a labeled transition system plus a deontic relation, which is
defined on the set of finite sequences of states, called histories, not on the set of
states. The truth of a formula is defined against histories, not states. Histories
represent what the agent has done. In this way, the idea of what you have done
affects what you can do is reflected semantically. Descriptive norm sentences
describe models, while prescriptive norm sentences update models by changing
deontic relations. In this logic, Ross’s Paradox is not valid, but the Free Choice
Permission Paradox is. At the end, we axiomatize the logic not containing any
dynamic operators.

2 Language and Semantics

2.1 Language

Let Π0 be a countable set of atomic actions and Φ0 a countable set of atomic
propositions. Let a range over Π0 and p over Φ0. The sets Π of actions and Φ
of propositions are defined as follows:

α ::= a | 1 |α | (α ∩ α) | (α ∪ α)
φ ::= p | � |Oα | ¬φ | (φ ∧ φ) | 〈α〉φ | [↓ α]φ | [↑ α]φ

The empty action 0 is defined as 1. Other routine propositional connectives, the
falsity ⊥, and the dual [α]φ of 〈α〉φ are defined in the usual way. To perform
α is to do something that is not α. To perform α ∩ β is to perform α and β at
the same time. To perform α ∪ β is to perform α or β. This language does not
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have compositions of actions, and all actions are just one unit deep. Oα means
that the agent ought to do α. As the dual of Oα, Pα is defined as ¬Oα, which
means that the agent may do α. For any α, Oα is called a pure deontic formula.
↓ α denotes the action of descriptive utterance of “you should do α”, and [↓ α]φ
means after this utterance, φ is true. ↑ α denotes the prescriptive utterance of
“you may do α”, and [↑ α]φ indicates that φ is true after the utterance.

2.2 Models

Let W be a set of states. Let ΔW denote the set of finite non-empty sequences
of states in W . Each element of ΔW is called a history of W . Capitals like H, J
and K denote histories. For any H ∈ ΔW , let H̊ denote the last state of H . A
model is a tuple M = (W, {Rα |α ∈ Π},D, V ) where

(1) W is a non-empty set of states;
(2) Rα ⊆W ×W ;
(3) D ⊆ ΔW ×ΔW and for any (H, J) ∈ D, J = (H,w) for some w ∈W ;
(4) V is a function from Φ0 to 2W .

D is called the deontic relation. There is no loop for D, i.e., any historyH can not
reach itself in finite steps. This intuitively means that agents’ histories are always
going to be their histories. A model M is standard if it meets such constraints:

(1) R1 = W ×W ;
(2) Rα = W ×W −Rα;
(3) Rα∩β = Rα ∩Rβ ;
(4) Rα∪β = Rα ∪Rβ ;
(5) D is serial.

w1w2
b

a
w4

c

w3
d

w5

e

D((w2), (w2, w2))
D((w2, w2), (w2, w2, w1))

D((w2, w2, w1), (w2, w2, w1, w3))
D((w2, w2, w1), (w2, w2, w1, w4))

D((w2, w2, w1, w3), (w2, w2, w1, w3, w3))
...

Fig. 1. A Standard Model

Figure 1 depicts what a standard model looks like, where valuations are omit-
ted. A labeled transition system is on the left, and the deontic relation is on the
right. Histories are sequences of states. Since actions are transitions of states,
histories represent what the agent has done. Suppose he is standing in w2 with a
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blank history (w2) behind him, which means that he has done nothing. According
to the deontic relation, he now must perform a. After a is done, he is still in
w2, however, his history is now (w2, w2), and he must perform b, which will take
him to w1. What he is allowed to do is dependent on what he has done. There
are three actions possible for the agent to perform in w1: c, d and e. However,
given the history (w2, w2, w1), as a moral agent, he is not allowed to do e, and
he must perform c or d, although he can freely choose which one.

We require the deontic relation to be serial. We make this requirement for the
following reasons: we believe that for any action, no matter what the world is and
what the agent has done, he is allowed to perform it or the opposite of it, and we
do not think a coherent legal system could tolerate the existence of situations in
which the agent is forbidden to do anything. In some cases, performing an action
in a state might not change this state. For example, consider an agent pushing
a revolving door. It is not reasonable to think that what the agent has to do
never changes before and after performing this sort of actions, because otherwise
if the agent has to push this door, he might have to push it forever. This is
one reason we introduce histories as parameters in defining deontic relations. A
second reason will be explained later.

2.3 Updates of Models

Let M = (W, {Rα |α ∈ Π},D, V ) be a model, H a history, and α an action.

Definition 1 (Two Updates of Deontic Relations).

(1) DH
α = D − {(H, (H,w)) | ¬Rα(H̊, w)};

(2) Dα
H = D ∪ {(H, (H,w)) |Rα(H̊, w)}.

The only difference among D, DH
α and Dα

H lies in that H might “see” less
in DH

α and “see” more in Dα
H than in D. For any D, let gH(D) = {w ∈

W | D(H, (H,w))}, which is called the goodness set of H in D. Let RH̊
α =

{w |Rα(H̊, w)}. It can be verified gH(DH
α ) = gH(D) ∩ RH̊

α and gH(Dα
H) =

gH(D) ∪ RH̊
α . Essentially, the two updates are two different ways of changing

the goodness sets of H in D. If D is serial, then Dα
H is serial, but DH

α might not
be. However, given that D is serial, if there is a w such that D(H, (H,w)) and
Rα(H̊, w), then DH

α is serial. The following proposition includes some results
about manipulating updates, which will be used later:

Proposition 1.

(1) (DH
α )Jβ = (DJ

β )
H
α ;

(2) (Dα
H)βJ = (Dβ

J )
α
H ;

(3) (DH
α )βJ = (Dβ

J )
H
α , where J 	= H.
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Based on the updates of deontic relations, we define updates of models:

Definition 2 (Two Updates of Models).

(1) MH
α = (W, {Rα |α ∈ Π},DH

α , V );
(2) Mα

H = (W, {Rα |α ∈ Π},Dα
H , V ).

The two updates only change the deontic relations of models. We see if M is
standard, then Mα

H is standard, but MH
α might not be. MH

α can be viewed as the
result of updating M with the descriptive utterance of “you should do α” at the
history H , and Dα

H as the result of updating D with the prescriptive utterance
of “you may do α” at H . The first update tends to “stop” some transitions,
while the second tends to “free” some links. We take the model illustrated in
Figure 1 as an example. Uttering “you should do c” in the descriptive way at
(w2, w2, w1) would cut the deontic link between (w2, w2, w1) and (w2, w2, w1, w3).
This means the agent is not allowed to transition to w3 and must perform c.
Prescriptively uttering “you may do e” at (w2, w2, w1) would generate a link
between (w2, w2, w1) and (w2, w2, w1, w5), which means he can do e now.

2.4 Semantics

Let M = (W, {Rα |α ∈ Π},D, V ) be a model, and H a history. Here we do not
require M to be standard. Truth of formulas at H is defined as follows:

(1) M, H 	 p ⇔ H̊ ∈ V (p);
(2) M, H 	 � always holds;
(3) M, H 	 Oα ⇔ for any w ∈ W , if D(H, (H,w)), then Rα(H̊, w);
(4) M, H 	 ¬φ ⇔ not M, H 	 φ;
(5) M, H 	 (φ ∧ ψ) ⇔ M, H 	 φ and M, H 	 ψ;
(6) M, H 	 〈α〉φ ⇔ there is a w ∈W such that Rα(H̊, w) and M, (H,w) 	 φ;
(7) M, H 	 [↓ α]φ ⇔ M, H 	 Pα implies MH

α , H 	 φ;
(8) M, H 	 [↑ α]φ ⇔ Mα

H , H 	 φ.

It can be verified that

(9) M, H 	 Pα ⇔ there is a w ∈W such that D(H, (H,w)) and Rα(H̊, w);
(10) M, H 	 [α]φ ⇔ for any w ∈ W , if Rα(H̊, w), then M, (H,w) 	 φ.

The formula 〈α〉φ being true at H means that there is a way to perform α
such that after α is done, φ is true at the new history. It can be verified that

M, H 	 Oα if gH(D) ⊆ RH̊
α . This intuitively means that α is obligatory for the

agent if whatever he does without violating morality, α would be performed.

We can also verify that M, H 	 Pα if gH(D) ∩ RH̊
α 	= ∅. This means that he is

allowed to perform α if there is a way to perform α without violating morality.
Similar ideas can be found in [3].

We consider only standard models reasonable. As discussed, given that M
is standard, MH

α might not be standard, unless there is a w ∈ W such that
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D(H, (H,w)) and Rα(H̊, w), that is, M, H 	 Pα. This is why we define the
truth condition of [↓ α]φ as conditional. Those updates resulting in non-standard
models are unsuccessful ones. The truth of formulas is defined at histories in
general models, not just in standard models, so the definition is well-defined.
This semantics would collapse to classical relational semantics if the deontic
part were ignored; hence, it is a genuine extension of Boolean Modal Logic.

A formula φ is valid if for any standard model M and history H , M, H 	 φ.

3 Valid Formulas

Proposition 2. The following formulas are valid:

(1) Oα→ Pα;
(2) Pα→ 〈α〉�;
(3) [↓ α]Oα;
(4) 〈α〉� → [↑ α]Pα.

It is easy to verify this proposition. From the first two items in it, we obtain
that Kant’s Law, expressed as Oα→ 〈α〉�, is valid. The third indicates that the
agent ought to do α after the descriptive utterance of “you should do α”. The
last item expresses that he is allowed to do α after the prescriptive utterance of
“you may do α”, given that α is possible to perform.

[3] proposed a principle to explain why Ross’s Paradox seems invalid: in our
intuitions, if a norm sentence N1 entails N2, then the normative effects of N1

entail the normative effects of N2. The prescriptive utterance of “you should
mail the letter or burn it” gives the agent the permission to burn the mail, but
the utterance of “you should mail the letter” does not; therefore, the normative
effects of the former do not entail the normative effects of the latter. Then
Ross’s Paradox is not valid. We consider this principle plausible. Even further,
we believe that its converse is also reasonable. In fact, the bi-implication version
of this principle underlies update semantics in defining validity. According to the
stronger version, the Free Choice Permission Paradox is valid, as the prescriptive
utterance of “you may drink coffee” just gives the agent the freedom to drink
coffee, whereas the utterance of “you may drink coffee or tea” gives him the
freedom to drink tea, in addition to the freedom to drink coffee.

Our language contains dynamic operators and models contain normative fac-
tors; thus, the normative effects of utterances can be expressed in this setting.
We believe that prescriptive norm sentences generate not only obligations but
also permissions. In [5], we have argued that in the aspect of normative effects,
prescriptively uttering “you should do α” is equivalent to prescriptively uttering
“you may do α” and then descriptively uttering “you should do α”. Define [↑↓ α]
as [↑ α][↓ α], which represents the action of prescriptively uttering “you should
do α”. Ross’s Paradox fails here. Let c denote the action mailing the letter, and
e the action burning the letter. We look at the model illustrated in Figure 1. It
can be verified that [↑↓ c][↑↓ (c ∪ e)]Pe is true at the history (w2, w2, w1), but
[↑↓ c]Pe is false at it. Therefore, the normative effects of “you should mail the
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letter” do not entail the normative effects of “you should mail it or burn it”.
One may wonder why [↓ α][↑ α] is not used to denote prescriptive utterances of
“you should do α”. Here is the reason. The update sequence [↑ α][↓ α] might be
different from [↓ α][↑ α], and the only difference is this: given that α is possible to
perform, [↑ α][↓ α] would always be successful, but [↓ α][↑ α] might not, as [↓ α]
might make a standard model not serial. We believe that in real life, given α is
possible to perform, prescriptive utterance of “you should do α” is always mean-
ingful. The Free Choice Permission Paradox, [↑ (α ∪ β)][↑ α]φ↔ [↑ (α ∪ β)]φ, is
valid in this semantics, which is easy to check.

The following lemma says that the two updates do not change a model much:

Lemma 1. J is a proper super-sequence of H.

(1) MH
α , J 	 φ if and only if M, J 	 φ;

(2) Mα
H , J 	 φ if and only if M, J 	 φ.

Proposition 1 is used in proving this lemma. By this lemma, the following two
propositions hold:

Proposition 3. The following formulas are valid:

(1) [↓ α]p↔ (Pα→ p);
(2) [↓ α]� ↔ (Pα→ �);
(3) [↓ α]Oβ ↔ (Pα→ O(α ∪ β));
(4) [↓ α]¬φ↔ (Pα→ ¬[↓ α]φ);
(5) [↓ α](φ ∧ ψ)↔ ([↓ α]φ ∧ [↓ α]ψ);
(6) [↓ α]〈β〉φ↔ (Pα→ 〈β〉φ);
(7) [↓ α][↓ β]φ↔ [↓ (α ∩ β)]φ.

Proposition 4. The following formulas are valid:

(1) [↑ α]p↔ p;
(2) [↑ α]� ↔ �;
(3) [↑ α]Oβ ↔ (Oβ ∧ [α ∩ β]⊥);
(4) [↑ α]¬φ↔ ¬[↑ α]φ;
(5) [↑ α](φ ∧ ψ)↔ ([↑ α]φ ∧ [↑ α]ψ);
(6) [↑ α]〈β〉φ↔ 〈β〉φ;
(7) [↑ α][↑ β]φ↔ [↑ (α ∪ β)]φ.

From these propositions, we obtain that the formulas containing only one dy-
namic operator can be equivalently reduced to the formulas not containing any.
By introducing histories, we can obtain valid formulas [↓ α]〈β〉φ ↔ 〈β〉φ and
[↑ α]〈β〉φ↔ 〈β〉φ, and consequently obtain the reduction of dynamic operators.
This is the above mentioned second motivation for using the notion of histories.

4 Axiomatization

There is a complete axiomatization of this logic. For brevity, we only axiomatize
the logic restricted to Φ′, the sub-language of Φ not containing any dynamic
operators, and leave the full axiomatization for another occasion.
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4.1 Axiomatization

Let ΦPC be the language generated from Φ0 ∪ {�} under ¬,∧ and ∨, where Φ0

is the set of atomic propositions. Let f be a natural bijective function from the
set Π of actions to ΦPC . We say α and β are equivalent if f(α) ↔ f(β) is a
tautology. For instance, a ∩ b is equivalent to a ∪ b. The axiomatization of the
logic consists of six classes of axioms:

A. Basic axioms of normal modal logics:
(1) all propositional tautologies ;
(2) [α](φ→ ψ)→ ([α]φ→ [α]ψ).

B. The axiom for choice: 〈α ∪ β〉φ↔ 〈α〉φ ∨ 〈β〉φ.
C. Axioms for the universal modality:

(1) φ→ 〈1〉φ;
(2) φ→ [1]〈1〉φ;
(3) 〈1〉〈1〉φ→ 〈1〉φ;
(4) 〈α〉φ→ 〈1〉φ.

D. The axiom for the empty modality: [0]⊥.
E. Axioms for equivalence of actions: 〈α〉φ↔ 〈α′〉φ, if α and α′ are equivalent.
F. Axioms for the deontic operator O:

(1) (Oα ∧Oβ)↔ O(α ∩ β);
(2) ¬Oα→ Pα;
(3) (Oα ∧ Pβ)→ P (α ∩ β);
(4) Oα→ 〈α〉�;
(5) Pα→ 〈α〉�.

and two inference rules:

(1) Modus Ponens : given φ and φ→ ψ, prove ψ;
(2) Generalization: given φ, prove [α]φ.

The soundness of the logic is easy to show. We use the Henkin method to show
the completeness. For the part of Boolean Modal Logic, a technique from [2],
called the copy method, is borrowed.

To show the completeness, it suffices to show for any consistent formulas φ,
there is a standard model M and a history H such that M, H 	 φ. Let G be a
consistent formula. Let Σ be the smallest set of formulas such that G ∈ Σ and
Σ is closed under subformulas.

4.2 CINF

Let a1, . . . , an be all the atomic actions of Σ and A = {a1, . . . , an, a1, . . . , an}.
Each element of A is called a literal action. Define ΘA as such a set: {X ⊆
A | for any i ≤ n, exactly one of ai and ai is in X}. ΘA has 2n members. For
any X ∈ ΘA, γ =

⋂
X is called a path relative to Σ, which is an intersec-

tion of some literal actions. There are 2n paths, if we do not consider orders
of literal actions. Enumerate these paths as γ1, . . . , γ2n . In any standard model,
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Rγ1 , . . . , Rγ2n
are pairwise disjoint blocks and the union of them is W × W .

In other words, {Rγ1 , . . . , Rγ2n
} is a partition of W ×W . By some refections

we can get that for any α built from a1, . . . , an, if α is not equivalent to 0,
Rα is the union of some of these blocks. These blocks are like atomic parts of
W ×W . Here is an example. Suppose a, b and c are all the atomic actions un-
der considerations. There are 8 paths: a ∩ b ∩ c, . . . , a ∩ b ∩ c, and W ×W is
divided into 8 parts: Ra∩b∩c, . . . Ra∩b∩c. Each non-empty action whose atomic
actions occur in a, b and c is the union of some of these parts. For example,
R

a∩(b∩c)
= Ra∩b∩c ∪Ra∩b∩c ∪Ra∩b∩c.

The classes D and E of axioms guarantee this result:

Lemma 2. For any α occurring in Σ, if α is not equivalent to 0, there are paths
γn1 , . . . , γnm such that α is equivalent to γn1 ∪ . . . ∪ γnm .

For any α not equivalent to 0, we call γn1 ∪ . . . ∪ γnm the choice-intersection
normal form (CINF) of α relative to Σ. Actions equivalent to 0 such as a∩a do
not have corresponding CINFs.

Lemma 3.

(1) Let γh1 ∪ . . . ∪ γhi and γj1 ∪ . . . ∪ γjk be the CINFs of β and β. Then
{γj1 , . . . , γjk} = {γ1, . . . , γ2n} − {γh1 , . . . , γhi};

(2) Let γh1 ∪ . . . ∪ γhi , γj1 ∪ . . . ∪ γjk and γl1 ∪ . . . ∪ γlm be the CINFs of β, π
and β ∩ π. Then {γl1 , . . . , γlm} = {γh1 , . . . , γhi} ∩ {γj1 , . . . , γjk};

(3) Let γh1 ∪ . . . ∪ γhi , γj1 ∪ . . . ∪ γjk and γl1 ∪ . . . ∪ γlm be the CINFs of β, π
and β ∪ π. Then {γl1 , . . . , γlm} = {γh1 , . . . , γhi} ∪ {γj1 , . . . , γjk};

(4) If α is equivalent to 1, the CINF of α is γ1 ∪ . . . ∪ γ2n .

The axiom D is used in proving the second item.

4.3 An Incomplete Model and Its Generated Submodel

Let MC = (WC , {RC
α |α ∈ Π}, V C) be the structure where

(1) WC is the set of maximal consistent sets;
(2) Rαuv if and only if for any φ, φ ∈ v implies 〈α〉φ ∈ u;
(3) For any p, V (p) = {u ∈WC | p ∈ u}.

This structure is not a model, as the deontic relation is missing. Actually, if we
ignore the deontic part of the language, it is the canonical model.

Lemma 4.

(1) If 〈α〉φ ∈ u, there is a v ∈WC such that φ ∈ v and RC
αuv;

(2) RC
α∪β = RC

α ∪RC
β ;

(3) For any α equivalent to 0, RC
α = ∅.
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Let w be a maximal consistent set containing G. Let M = (W, {Rα |α ∈
Π}, V ) be the substructure of MC generated from w under the relation RC

1 .
The class C of axioms guarantee that R1 is the universal relation on W . Here a
similar lemma with Lemma 4:

Lemma 5.

(1) If 〈α〉φ ∈ u, there is a v ∈W such that φ ∈ v and Rαuv;
(2) Rα∪β = Rα ∪Rβ;
(3) For any α equivalent to 1, Rα = W ×W ;
(4) For any α equivalent to 0, Rα = ∅.

4.4 The Filtration

Define a relation ≈Σ on W as this: u ≈Σ v if and only if u∩Σ = v ∩Σ. This is
an equivalence relation. Let Mf = (W f , {Rf

α |α ∈ Π}, V f ) be such a structure:

(1) W f is the partition of W under ≈Σ ;
(2) Rf

α|u||v| if and only if there are x ∈ |u| and y ∈ |v| such that Rαxy;
(3) for any p, V f (p) = {|u| | p ∈ u}.

For any x, y ∈ |u| and φ ∈ Σ, φ ∈ x if and only if φ ∈ y. We use φ � |u| to
express that φ ∈ x for any x ∈ |u|. Here is a similar lemma with Lemma 5:

Lemma 6.

(1) If 〈α〉φ � |u|, there is a v ∈W such that φ� |v| and Rf
α|u||v|;

(2) Rf
α∪β = Rf

α ∪Rf
β;

(3) For any α equivalent to 1, Rf
α = W f ×W f ;

(4) For any α equivalent to 0, Rf
α = ∅.

With the help of Lemma 3 and 6, it is not hard to show the following lemma:

Lemma 7.

(1) For any α of Σ not equivalent to 0, Rf
α = Rf

γn1∪...∪γnm
, where γn1∪. . .∪γnm

is the CINF of α;
(2) Rf

γ1
∪ . . . ∪Rf

γ2n
= W f ×W f ;

(3) For any 〈α〉� and u ∈W , if 〈α〉�� |u|, there is a v ∈ W such that Rf
α|u||v|.

We present some observations on the situation confronting us. Our purpose
is to show the consistent formula G is satisfiable in a standard model. Two
things are important: a standard model and satisfiability. The structure Mf =
(W f , {Rf

α |α ∈ Π}, V f ) might not be standard even if we ignore the deontic

part, as Rf
α = W f ×W f − Rf

α and Rf
α∩β = Rf

α ∩ Rf
β might not be satisfied.

We hope to transform it to a standard model. Those actions not built from
a1, . . . , an are irrelevant, and we can freely manipulate the interpretations of
their parts not involving a1, . . . , an; therefore, these actions do not present a
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problem. However, we are using the Henkin method, so at least to some extent,
we should “respect” the interpretations of the actions built from a1, . . . , an, if
we want to obtain satisfiability. Via some reflections with the help of Lemma 3
and 6, we can see that if Rf

γ1
, . . . , Rf

γ2n
are real atomic blocks, Mf is standard.

That Rf
γ1
, . . . , Rf

γ2n
are real atomic blocks means that Rf

γ1
, . . . , Rf

γ2n
are pairwise

disjoint and Rf
γ1
∪ . . . ∪ Rf

γ2n
= W f × W f . The second condition holds by

Lemma 7. The situation is now clear: to achieve our goal, we only need to
achieve two things: making Rf

γ1
, . . . , Rf

γ2n
pairwise disjoint and respecting the

interpretations of the actions built from a1, . . . , an. The copy method given in
[2] can perform both at the same time, although it made a few mistakes, which
will be explained later in a footnote.

4.5 A Standard Model

Let M1 = (W1, {R1
α |α ∈ Π}, V1), . . . ,M2n = (W2n , {R2n

α |α ∈ Π}, V2n) be 2n

pairwise disjoint structures which are isomorphic to Mf . We now build up a
standard model from these structures.

For any i ≤ 2n, let fi be an isomorphism from Mi to Mf . Let f = f1∪. . .∪f2n
and U = W1∪ . . .∪W2n . Let g : U → {1, . . . , 2n} be this function: for any s ∈ U ,
g(s) is the index of the set from which s comes, i.e., for any s ∈ U , s ∈ Wg(s).
For any s ∈ U , let φ � s denote φ � f(s). For any i ≤ 2n, we define a relation
Bγi on U :

Definition 3 (Atomic Relations). Let s, t ∈ U . Let γk1 , . . . , γkm be the se-
quence such that (i) it consists of all paths γ such that Rf

γf(s)f(t) and (ii)
k1 < . . . < km. Bγist if and only if there is a j ≤ m such that i = kj and
j = (g(t) mod m) + 1.

The sequence γk1 , . . . , γkm is never empty, which is guaranteed by Lemma 7. If
a path γi is not occurring in γk1 , . . . , γkm , there is no j ≤ m such that i = kj ,
and so not Bγist. Suppose γi is occurring in γk1 , . . . , γkm . Then there is one and
only one j ≤ m such that i = kj , which means that γi is the j-th element in
γk1 , . . . , γkm . In this case, if j = (g(t) mod m) + 1, then Bγist, or else not.

Our purpose is to produce atomic relations. To do this, we must get this: for
any s, t ∈ U , (s, t) belongs to one and only one path. This definition gives a way
to assign (s, t) to the “right” path1. Here is a concrete example. Let a, b, c be all
the atomic actions of Σ. Paths are γ1 = a∩ b∩ c, . . . , γ8 = a∩ b∩ c. Let s, t ∈ U
and g(t) = 4. Then t ∈ W4. Suppose Rf

γ2
f(s)f(t), Rf

γ5
f(s)f(t), Rf

γ7
f(s)f(t),

and no other paths can do this. The sequence satisfying the two conditions in
Definition 3 is γ2, γ5, γ7. Then k1 = 2, k2 = 5 and k3 = 7. As j = 2 satisfies
that 5 = kj and j = (4 mod 3) + 1, we get Bγ5st. For any i ≤ 8, if i 	= 5, there

1 [2] made a mistake at this point: the definition of atomic relations given by it can
not guarantee that for any s, t ∈ U , (s, t) belongs to only one path. There are two
other mistakes in this work: (i) By Lemma 2, those actions equivalent to 0 do
not correspond to any CINF, but this paper did not notice this; (ii) Lemma 3 is
necessary to the proof of completeness, but it is not mentioned in this paper at all.
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is no j satisfying that i = kj and j = (4 mod 3) + 1, and so not Bγist. By the
following lemma, Bγ1 , . . . , Bγ2n

are real atomic relations:

Lemma 8.

(1) Bγ1 , . . . , Bγ2n
are pairwise disjoint;

(2) Bγ1 ∪ . . . ∪Bγ2n
= U × U .

Proof. (1) Assume there are i, j ≤ 2n such that i 	= j and Bγi ∩ Bγj 	= ∅. Then
there are s, t ∈ U such that Bγist and Bγjst. Let γk1 , . . . , γkm be the sequence
such that it consists of all paths γ such that Rf

γf(s)f(t) and k1 < . . . < km. Let
x, y ≤ m be such that i = kx and j = ky. As kx 	= ky, x 	= y. By the definitions
of Bγi and Bγj , we get that x = (g(t) mod m) + 1 and y = (g(t) mod m) + 1.
This is impossible. Then Bγ1 , . . . , Bγ2n

are pairwise disjoint.
(2) Trivially, we get Bγ1 ∪ . . . ∪Bγ2n

⊆ U × U . Let s, t ∈ U . Let γk1 , . . . , γkm

be the sequence such that it consists of all paths γ such that Rf
γf(s)f(t) and

k1 < . . . < km. Let x ≤ m be such that x = (g(t) mod m) + 1. By the definition
of Bγkx

, we have Bγkx
st.

Definition 4 (A Model). N = (U, {Sα |α ∈ Π}, E , Z) is the model where

(1) U is defined as above;
(2) For any atomic action a occurring in Σ, Sa = Bγn1

∪ . . . ∪ Bγnm
, where

γn1 ∪ . . . ∪ γnm is the CINF of a2; For any atomic action b not occurring
in Σ, Sb = U × U ; Interpretations of compound actions are defined from
interpretations of atomic actions by corresponding operations;

(3) E(H, J) if and only if there is a s ∈ U such that J = (H, s) and for any
Oα ∈ Σ, if Oα� H̊, then Sα(H̊, s);

(4) For any p, Z(p) =
⋃

i≤2n
Vi(p).

Sα = U×U−Sα, Sα∩β = Sα∩Sβ and Sα∪β = Sα∪Sβ . As S1 = Bγ1 ∪ . . .∪Bγ2n
,

S1 = U × U by Lemma 8. If E is serial, this is a standard model.
By the following lemma, in this model, the interpretations of the actions not

equivalent to 0 are unions of some atomic relations.

Lemma 9. For any α of Σ not equivalent to 0, Sα = Bγn1
∪ . . .∪Bγnm

, where
γn1 ∪ . . . ∪ γnm is the CINF of α.

In proving this lemma, we have to use Lemma 3. Now we show a crucial result:

Lemma 10. α occurs in Σ.

(1) For any s, t ∈ U , if Sαst, R
f
αf(s)f(t);

(2) For any s ∈ U and y ∈W f , if Rf
αf(s)y, there is a t ∈ U such that f(t) = y

and Sαst.

2 Here a might be the universal action 1.
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Proof. (1) Assume Sαst. By Definition 4, Sα is the result of operating on
atomic actions. Thus, if α is equivalent to 0, Sα is empty. Then α is not equivalent
to 0. Let γn1∪. . .∪γnm be the CINF of α. By Lemma 9, Sα = Bγn1

∪. . .∪Bγnm
.

There is an i ≤ m such that Bγni
st. By the definition of Bγni

, Rf
γni

f(s)f(t). By

Lemma 7 and 6, Rf
α = Rf

γn1
∪ . . . ∪Rf

γnm
. Then Rf

αf(s)(t).

(2) Assume Rf
αf(s)y. By Lemma 6, α is not equivalent to 0. Let γn1∪. . .∪γnm

be the CINF of α. Since Rf
α = Rf

γn1
∪ . . . ∪ Rf

γnm
, there is an i ≤ m such that

Rf
γni

f(s)y. Let γk1 , . . . , γkh
be the sequence such that it consists of all the paths γ

such that Rf
γf(s)y and k1 < . . . < kh. Then γni occurs in γk1 , . . . , γkh

. Let j ≤ h
be such that kj = ni. Suppose j = h. Let t ∈ U be such that g(t) = 1 and f(t) =
y. It can be verified that Bγkh

st, that is, Bγni
st. Since Sα = Bγn1

∪ . . . ∪Bγnm
,

Sαst. Suppose j < h. Let t ∈ U be such that g(t) = j + 1 and f(t) = y. It can
also be verified that Bγkj

st, that is, Bγni
st. Since Sα = Bγn1

∪ . . .∪Bγnm
, Sαst.

Lemma 11 (Existence Lemmas for 〈α〉φ and 〈α〉�).

(1) For any 〈α〉φ ∈ Σ, if 〈α〉φ � s, there is a t such that φ� t and Sαst;
(2) For any 〈α〉�, if 〈α〉� � s, there is a t such that Sαst.

By Lemma 6 and 7, this result is not hard to prove. By Axiom F1, F4 and
Lemma 11, this is the case:

Lemma 12. E is serial.

We now know that N is a standard model.

Lemma 13 (Existence Lemma for Pα). If Pα � H̊, there is a t ∈ U such
that E(H, (H, t)) and Sα(H̊, t).

This lemma can be shown by Axiom F1, F3, F5 and Lemma 11. Then by
Axiom F2, Lemma 10, 11 and 13, we can show the truth lemma. Finally, we
have the completeness.

Lemma 14 (Truth Lemma). For any φ ∈ Σ, φ� H̊ if and only if N, H 	 φ.

Proposition 5 (Completeness). The logic restricted to Φ′ is complete with
respect to the class of standard models.

From Definition 4 we see that actually the deontic relation in the standard
model collapses to be on the set of states. This implies that if dynamic operators
were ignored, a classical relational semantics would be enough for the logic, and
it would not be necessary to introduce the notion of histories.

Here are some words on the axiomatization of the whole logic. It can be shown
that the rule of equivalence replacement for the two dynamic operators holds in
this semantics: if φ↔ φ′ is valid, both [↓ α]φ↔ [↓ α]φ′ and [↑ α]φ↔ [↑ α]φ′ are
valid. Based on Propositions 3, 4, 5 and this rule, we can obtain a complete
axiomatization in a similar way as [1] for Public Announcement Logic.
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5 Future Work

Our semantics does not work for descriptive permissions. The descriptive utter-
ances of sentences such as “you may do α or β” might only inform the agent that
he is allowed to do something, but not specify it. After such utterances, the agent
might still not know how to act. This sort of utterances raises uncertainties, but
our semantics does not have any settings to handle them.

Next on our agenda are two questions. The language in this work contains
three action operators: complement, intersection and choice. It is natural to add
test and composition to obtain a more powerful language in which conditional
and sequential obligations and permissions can be expressed. This is an issue we
want to pursue in the future. According to our semantics, the last update always
overrides the previous ones. For example, given that α is possible to perform,
the prescriptive permission “you may do α” always gives the agent the freedom
to do α, regardless of what obligations have been put on him. This is the case
only if there is only one speaker or moral source. In real life, there are many
moral sources whose authorities are ranked, and only orders and permissions
from speakers with higher authorities can overwhelm those from speakers with
lower authorities. Introducing prioritized speakers into this framework is another
direction of future work for us.
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Sequent Systems for Nondeterministic

Propositional Logics without Reflexivity

Louwe B. Kuijer

University of Groningen

Abstract. In order to deal with ambiguity in statements made in a nat-
ural language I introduce nondeterministic semantics for propositional
logic with an arbitrary set C of connectives. The semantics are based
on the idea that Γ entails Δ if and only if every possible deterministic
disambiguation of Γ entails every possible deterministic disambiguation
of Δ. I also introduce a cut-free sequent style proof system SC that is
sound and complete for the given semantics. Finally I show that while
the semantics and proof system do not satisfy reflexivity they do allow
certain kinds of substitution of equivalents.

1 Introduction

When attempting to apply logical methods to sentences in natural language we
often run into problems related to ambiguity. This ambiguity could be caused
by ambiguous predicates, but it could also be caused by ambiguous connectives.
Take for example a sentence of the form “A or B”. Such a statement is ambiguous;
the “or” could be inclusively (∨) or exclusively (⊕).

One approach for dealing with such ambiguity is to require disambiguation
before allowing the sentence to be phrased in a logic. So “A or B” would have to
be represented by either the formula A∨B or by the formulaA⊕B. Unfortunately
this approach sometimes cannot be used, as it is not always possible to determine
which unambiguous sentence was meant by the speaker. Sometimes the speaker
is unable or unwilling to clarify their utterance and it is even possible that the
speaker is uncertain about what they meant.1

Another approach is to consider an ambiguous statement as nondeterministic,
where all possible disambiguations of the statement could be the meaning of
the statement. See for example [1] for an example of this approach applied to
ambiguous predicates. This approach has the advantage of being applicable even
if no good choice of disambiguation is available, at the cost of resulting in a
weaker logic. This nondeterministic approach is the one I use in this paper.

It should be noted that this approach is also to some extent usable for con-
nectives that are not merely ambiguous but not truth-functional. Consider a

1 For an example of a situation where the speaker is uncertain about what he means
consider the first paragraph of the introduction, where I state that an “or” can be
interpreted inclusively (∨) or exclusively (⊕). I do not know whether this or should
be considered inclusively or exclusively.

D. Grossi, O. Roy, and H. Huang (Eds.): LORI 2013, LNCS 8196, pp. 190–203, 2013.
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connective 
 representing a causal implication. The causal part of the implica-
tion is not truth-functional; the truth value of p 
 q is not known if either p
doesn’t hold or if both p and q hold. However, the truth value of p 
 q is known
if p holds and q does not, in that case it is false. Treating p 
 q as a formula
that is false if p is true and q is false and nondeterministically true or false in
other cases allows some reasoning about 
 in the framework of nondeterministic
propositional logic.

In this paper I define a type of nondeterministic propositional semantics that
allows all occurrences of nondeterministic connectives to be interpreted indepen-
dently. In order to do this I start with deterministic semantics and then define
the nondeterministic semantics based on all possible (deterministic) disambigua-
tions. I also give a sound and complete proof system for the nondeterministic
logic. Because of their pleasing properties with respect to automated reasoning
I use a cut-free sequent style proof system. The proof system also turns out to
be quite elegant, despite the complicated semantics.

The structure of the paper is as follows. First, in Section 1.1 I compare my
approach to a somewhat similar existing approach using Nmatrices (see [2–4]).
Then in Section 2 I define the deterministic logic LC and in Section 3 I define
the nondeterministic logic LC . In Section 4 I give a sequent style proof system
SC which I prove to be complete for LC in Section 5. Finally, in Section 6 I
consider a few properties of LC and SC .

1.1 Comparison to Nmatrices

Semantics for nondeterministic propositional logic have been introduced in
[2–4] using so-called Nmatrices. The semantics I use here for LC are in many
ways very similar to those using Nmatrices, but with one important difference.
When using Nmatrices different occurrences of a single nondeterministic connec-
tive are allowed to have different interpretations, but only insofar as identical
(sub)formulas have the same interpretation everywhere.

For example, let ∗ represent the “or” connective that can mean either ∨ or
⊕. Then in the Nmatrices approach the formula (p ∗ q) ∧ (p ∗ q) can mean two
things; either (p ∨ q) ∧ (p ∨ q) or (p ⊕ q) ∧ (p ⊕ q). The mixed disambiguations
(p∨q)∧ (p⊕ q) and (p⊕ q)∧ (p∨q) are not allowed because (p∗ q) and (p∗ q) are
the same formula and therefore must have the same choice of disambiguation.

The importance this approach gives to identity of formulas has a few unusual
consequences, such as substitution of equivalents being unsound, even if the
equivalents are provably equivalent. When using Nmatrices the formula (p∗q)→
(p ∗ q) is a tautology but the formula ((p ∧ p) ∗ q)→ (p ∗ q) is not.

In the semantics for LC I therefore allow different occurrences of a single
nondeterministic connective to have different interpretations without restriction.
The nondeterministic formula (p ∗ q) ∧ (p ∗ q) then allows four disambiguations;
(p ∨ q) ∧ (p ∨ q), (p⊕ q) ∧ (p⊕ q), (p ∨ q) ∧ (p⊕ q) or (p⊕ q) ∧ (p ∨ q).

The approach taken in this paper does lead to different unusual consequences.
In particular, the inference relation for LC is not reflexive since for example
p ∗ q |= p ∗ q might mean p ∨ q |= p⊕ q.
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2 Deterministic Semantics

First we need a few notational preliminaries. Let a nonempty set P of propo-
sitional variables be given. Furthermore, let C be a set of truth-functional
connectives. For each connective ◦ ∈ C let r◦ ∈ N be the arity of ◦ and
f◦ : {0, 1}r◦ → {0, 1} the truth function of ◦.

For binary connectives I use the standard infix notation. Nullary connectives
are denoted � if the associated truth function is the constant function 1 and ⊥
if the truth function is the constant function 0.

I use p, q as variables for propositional variables, lower case Greek letters for
formulas and uppercase Greek letters for multisets of formulas. Now let us define
the language LC and the models for LC .

Definition 1 (Language LC). The language LC using the connectives in C is
the smallest set such that if p ∈ P then p ∈ LC and if ◦ ∈ C and ϕ1, · · · , ϕr◦ ∈
LC then ◦(ϕ1, · · · , ϕr◦) ∈ LC.

Definition 2 (Models). A model M is a valuation function M : P → {0, 1}
that assigns to each propositional variable the value ‘true’ (1) or ‘false’ (0).

Now we can define the semantics for LC .

Definition 3 (Satisfaction relation |=). The satisfaction relation |= between
models and formulas is defined inductively by

– M |= p if and only if M(p) = 1,
– for every ◦ ∈ C we haveM |= ◦(ϕ1, · · · , ϕr◦) if and only if f◦(v1, · · · , vr◦) =

1 where vi = 1 if and only if M |= ϕi.

Furthermore, ∀γ ∈ Γ : M |= γ is denoted by M |=∧ Γ and ∃δ ∈ Δ :M |= δ is
denoted by M |=∨ Δ.

From this satisfaction relation we define an entailment relation.

Definition 4 (Entailment relation |=C). The entailment relation |=C is a
relation between multisets Γ,Δ ⊆ LC of formulas. We have Γ |=C Δ if and only
if for every model M such that M |=∧ Γ it holds that M |=∨ Δ.

Lemma 1. Let Γ,Δ ⊆ LC be any finite multisets of LC formulas such that
Γ |=C Δ, and let Φ be any set of propositional variables that contains all variables
that occur in Γ or Δ. Then for any partition Φ1, Φ2 of Φ one of the following
statements holds:

1. there is a γ ∈ Γ such that Φ1, γ |=C Φ2,
2. there is a δ ∈ Δ such that Φ1 |=C δ, Φ2.

Proof. All connectives in C are truth-functional, so the value of any formula in a
model is fully determined by the values of the propositional variables that occur
in the formula have in that model. Fix any partition Φ1, Φ2 of Φ and let M be



Sequent Systems for Nondeterministic Propositional Logics 193

the set of models that satisfy all of Φ1 and none of Φ2. Then for every ψ ∈ Γ ∪Δ
we either haveM |= ψ for every model M ∈M or M 	|= ψ for everyM ∈M.

Suppose there is a γ ∈ Γ such that the second possibility holds for that
formula, so M 	|= γ for everyM ∈M. Then every model that satisfies all of Φ1

and none of Φ2 does not satisfy γ, so every model that satisfies all of Φ1 and γ
must satisfy some of Φ2. We therefore have Φ1, γ |=C Φ2.

Suppose then that for every γ ∈ Γ the first possibility holds, so M |= γ for
everyM ∈M. We have Γ |=C Δ so for everyM∈M there is a δ ∈ Δ such that
M |= δ. But then M |= δ for every such model, as the value of δ is constant
on M. This implies that every model that satisfies all of Φ1 and none of Φ2 also
satisfies δ, so every model that satisfies all of Φ1 must either satisfy δ or one of
Φ2. We therefore have Φ1 |=C δ, Φ2.

Note that in particular Lemma 1 implies that if Φ contains all the propositional
variables of ϕ then Φ1, ϕ |=C Φ2 or Φ1 |=C ϕ,Φ2 since ϕ |=C ϕ.

3 Nondeterministic Semantics

Let us start by defining nondeterministic connectives.

Definition 5 (Nondeterministic connective). A nondeterministic connec-
tive ◦ is a connective with arity r◦ and partial truth function f◦ : {0, 1}r◦ →
{0, 1, ?}.

Note that besides � and ⊥ there is now a third possible nondeterministic
nullary connective that has the constant function ? as partial truth function. I
denote this connective by ? as well.

Definition 6 (Language LC). The language LC using the connectives in C is
the smallest set such that if p ∈ P then p ∈ LC and if ◦ ∈ C and ϕ1, · · · , ϕr◦ ∈
LC then ◦(ϕ1, · · · , ϕr◦) ∈ LC.

The logic LC is then based on the idea that a nondeterministic connective ◦
can be disambiguated as one of several deterministic connectives ◦.

Definition 7 (Disambiguation of a connective). Let ◦ be a nondetermin-
istic connective with arity r◦ and associated nondeterministic truth function f◦.
A truth-functional connective ◦ is a disambiguation of ◦ if r◦ = r◦ and for each
v ∈ {0, 1}r◦ such that f◦(v) ∈ {0, 1} it holds that f◦(v) = f◦(v).

So a disambiguation ◦ of a connective ◦ is a truth-functional connective with a
truth function f◦ where every ? from f◦ is replaced by either a 0 or a 1.

Example 1. Suppose ∗ is the nondeterministic connective with the following
truth table.

ϕ1 ϕ1 ϕ1 ∗ ϕ2

1 1 ?
1 0 1
0 1 1
0 0 0
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Then there are two possible disambiguations ∗ and ∗′ of ∗, namely

ϕ1 ϕ1 ϕ1∗ϕ2

1 1 1
1 0 1
0 1 1
0 0 0

ϕ1 ϕ1 ϕ1∗′ϕ2

1 1 0
1 0 1
0 1 1
0 0 0

So the disambiguations of ∗ are a disjunction (∨)and an “exclusive or” (⊕).

Definition 8 (Disambiguation of a formula). The disambiguations of for-
mulas are given inductively by the following.

– If p ∈ P then p is a disambiguation of p.

– If ϕ = ◦(ϕ1, · · · , ϕr◦), ϕi is a disambiguation of ϕi for each 1 ≤ 1 ≤ r◦ and
◦ is a disambiguation of ◦ then ◦(ϕ1, · · · , ϕr◦) is a disambiguation of ϕ.

If Γ is a multiset of formulas then Γ is a disambiguation of Γ if Γ can be
obtained from Γ by replacing formulas with one of their disambiguations.

Definition 9 (Entailment relation |=C). Let C be the set of all connectives
that are the disambiguation of a connective in C. The entailment relation |=C

is a relation between multisets Γ,Δ ⊆ LC of LC formulas. We have Γ |=C Δ if
and only if Γ |=C Δ for every disambiguations Γ of Γ and Δ of Δ.

Note that this is a very strong standard for entailment. If we have Γ |=C Δ
and Γ holds under some disambiguation then Δ must hold under every dis-
ambiguation. Using the terminology of [1] the relation |=C not only preserves
truth on some disambiguation (truth-osd) and truth on every disambiguation
(truth-osd only), it also requires a true-osd antecedent to have a true-osd only
consequent. This is a stronger condition than the ones discussed in [1], but it
has a very clear game-theoretical or dialectical interpretation: Γ |=C Δ if and
only if you can conclude Δ from Γ without any possibility for an opponent to
give a disambiguation that proves you wrong. Equivalently, Γ |=C Δ if and only
if one cannot rationally reject Δ while accepting Γ .

For the completeness theorems given later in the paper it is very useful to
be able to work with finite multisets of formulas. I therefore give a compactness
proof for |=C here. The compactness of deterministic propositional logic is quite
well known, see for example [5] for two different versions of the proof. The proof
for the compactness of nondeterministic propositional logic can be obtained by
some small (but notationally complicated) modifications to the existing proofs.
Here I give a topological proof using Tychonoff’s theorem [6, 7], which states
that every product of compact sets is compact.

Lemma 2 (Compactness of LC). Let Γ,Δ be any multisets of LC formulas.
If Γ |=C Δ then there are finite sub-multisets Γ ′ ⊆ Γ and Δ′ ⊆ Δ such that
Γ ′ |=C Δ′.
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Proof. In order to keep our notation simple I treat the multisets as sets in this
proof. This is purely a matter of notation, it amounts to the same thing as adding
a label to every occurrence of a formula in a multiset to make them distinct.

Let Γ,Δ be any sets of formulas such that Γ |=C Δ and suppose towards a
contradiction that there are no finite subsets Γ ′ ⊆ Γ and Δ′ ⊆ Δ such that
Γ ′ |=C Δ′. Let G and D be partitions of Γ and Δ respectively that contain only
finite sets. By padding G or D with multiple copies of the empty set if necessary
we can guarantee the existence of a bijection f : G→ D.

Consider the set {0, 1} as a finite topological space (with the discrete topol-
ogy). This topological space is compact. Then by Tychonoff’s theorem the set
{0, 1}P (with the product topology) is compact. The elements of {0, 1}P are
exactly the models of LC .

For any Φ ⊆ Γ and Ψ ⊆ Δ let V (Φ, Ψ) be the set of models M ∈ {0, 1}P
such that for some disambiguations Φ and Ψ of Φ and Ψ we have M |=∧ Φ and
M 	|=∨ Ψ . So V (Φ, Ψ) is the set of countermodels to Φ |=C Ψ . Take any G′ ⊆ G
and let D′ = f(G′). We will show that⋂

Φ∈G′
V (Φ, f(Φ)) = V

(⋃
G′,

⋃
D′
)
. (1)

The important step is that, sinceG andD are partitions of Γ andΔ, the elements
of G′ are mutually disjunct, as are those of D′. This implies that if for every
Φ ∈ G′ the set Φ is a disambiguation of Φ then

⋃
Φ∈G′ Φ is a disambiguation of⋃

G′, because the disambiguations of different elements of G′ cannot disagree
about how a formula should be disambiguated. We can also go the other way,
every disambiguation

⋃
G′ of G′ induces unique disambiguations Φ for every

Φ ∈ G′ such that
⋃
G′ =

⋃
Φ∈G′ Φ.

The same holds for the disambiguations of
⋃
D′ and the disambiguations for

every f(Φ) = Ψ ∈ D′; if given Ψ for all Ψ ∈ D′ then
⋃

Ψ∈D′ Ψ is a disambiguation

of
⋃
D′ and for each disambiguation

⋃
D′ there are unique disambiguations Ψ

for all Ψ ∈ D′ such that
⋃
D′ =

⋃
Ψ∈D′ Ψ .

Take any M ∈
⋂

Φ′∈G′ V (Φ′, f(Φ′)). This M has the property that for every

Φ ∈ G′ and Ψ = f(Φ) there are disambiguations Φ and Ψ such that M |=∧ Φ
and M 	|=∨ Ψ . The sets

⋃
Φ∈G′ Φ and

⋃
Φ∈G′ Φ are disambiguations of

⋃
G′

and
⋃
D′. Furthermore, M satisfies all of

⋃
Φ∈G′ Φ and none of

⋃
Φ∈G′ Φ so

M ∈ V (
⋃
G′,

⋃
D′). We therefore have⋂

Φ∈G′
V (Φ, f(Φ)) ⊆ V

(⋃
G′,

⋃
D′
)
. (2)

Now take any M ∈ V (
⋃
G′,

⋃
D′). This M has the property that there are

disambiguations
⋃
G′ and

⋃
D′ of

⋃
G′ and

⋃
D′ such that M satisfies all of⋃

G′ and none of
⋃
D′. For each Φ ∈ G′ and Ψ = f(Φ) ∈ D′ let Φ and Ψ be

the disambiguations such that
⋃
G′ =

⋃
Φ∈G′ Φ and

⋃
D′ =

⋃
Ψ∈D′ Ψ . Then for

each Φ ∈ G′ and Ψ = f(Φ) ∈ D′ the model M satisfies all of Φ and none of Ψ
so M ∈

⋂
Φ∈G′ V (Φ, f(Φ)). We therefore have
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V
(⋃

G′,
⋃

D′
)
⊆

⋂
Φ∈G′

V (Φ, f(Φ)) (3)

which together with (2) implies (1).
For any Γ ′ ∈ G and Δ′ ∈ D the set V (Γ ′, Δ′) is closed because all subsets

of {0, 1}p are clopen since we started with the discrete topology. Furthermore if
follows from (1) that for any n ∈ N and any Γ ′

1, · · · , Γ ′
n ∈ G we have

⋂
1≤i≤n

V (Γ ′
i , f(Γ

′
i )) = V

⎛⎝ ⋃
1≤i≤n

Γ ′
i ,

⋃
1≤i≤n

f(Γ ′
i )

⎞⎠ .

The set V (
⋃

1≤i≤n Γ
′
i ,
⋃

1≤i≤n f(Γ ′
i )) is nonempty because

⋃
1≤i≤n Γ ′

i and⋃
1≤i≤n f(Γ

′
i ) are finite subsets of Γ and Δ so by assumption

⋃
1≤i≤n Γ ′

i 	|=C⋃
1≤i≤n f(Γ

′
i ). Then

⋂
Γ ′∈G V (Γ ′, f(Γ ′)) is an intersection of closed sets with

the finite intersection property so it is nonempty by the compactness of {0, 1}P .
We have

⋂
Γ ′∈G

V (Γ ′, f(Γ ′)) = V

( ⋃
Γ ′∈G

Γ ′,
⋃

Γ ′∈G

f(Γ ′)

)
= V (Γ,Δ),

so V (Γ,Δ) is also nonempty. But this implies that Γ 	|=C Δ, which contradicts
the choice of Γ and Δ. The assumption that there are no finite subsets Γ ′ ⊆ Γ
and Δ′ ⊆ Δ such that Γ ′ |=C Δ′ must therefore be false, which proves the
lemma.

We also need a nondeterministic variant of Lemma 1.

Lemma 3. Let Γ,Δ be any finite multisets of LC formulas such that Γ |=C

Δ, and let Φ be any set of propositional variables that contains all variables
that occur in Γ or Δ. Then for any partition Φ1, Φ2 of Φ one of the following
statements holds:

1. there is a γ ∈ Γ such that Φ1, γ |=C Φ2,
2. there is a δ ∈ Δ such that Φ1 |=C δ, Φ2.

Proof. Suppose towards a contradiction that Φ1, γ 	|=C Φ2 for all γ ∈ Γ and
Φ1 	|=C δ, Φ2 for all δ ∈ Δ. Then for each γi ∈ Γ there is a disambiguation γi

such that Φ1, γi 	|=C Φ2 and for each δi ∈ Δ there is a disambiguation δi such
that Φ1 	|=C δi, Φ2.

Now let Γ = {γi | γi ∈ Γ} and Δ = {δi | δi ∈ Δ}. These Γ and Δ are
disambiguations of Γ and Δ so from Γ |=C Δ it follows that Γ |=C Δ. But Γ
and Δ live in a deterministic logic, so from Lemma 1 it follows that there either
is a γ ∈ Γ such that Φ1, γi |=C Φ2 or a δ ∈ Δ such that Φ1 |=C δi, Φ2. This
contradicts the choice of Γ and Δ, so the initial assumption must have been
wrong, which proves the lemma.
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4 Proof System

The proof system consists of a few structural rules and some rules that are based
on the abbreviated partial truth tables of the connectives.

Definition 10 (Rules of S∅). The rules of S∅ are the rules Axiom (Ax), Left
Contraction (CL), Right Contraction (CR), Left Weakening (WL) and Right
Weakening (WR), given by

Ax
p � p

Γ1, Γ2, Γ2 � Δ
CL

Γ1, Γ2 � Δ

Γ � Δ1, Δ2, Δ2
CR

Γ � Δ1, Δ2

Γ1 � Δ
WL

Γ1, Γ2 � Δ

Γ � Δ1
WR

Γ � Δ1, Δ2

The formula p in Ax is called principal, as are all elements of Γ2 in CL and WL
and all elements of Δ2 in CR and WR.

Note that the Axiom used here results in a very limited form of reflexivity. This
is because |=C is not reflexive. The logical rules correspond to the abbreviated
truth tables of the connectives and can be obtained by a multi-step procedure.

Definition 11 (Rules RC). The set RC rules for the abbreviated truth tables
are obtained using the following procedure.

1. Start with RC = ∅.
2. For any ◦ ∈ C, v ∈ {0, 1}r◦ and 1 ≤ i ≤ r◦ let Ui be the sequent Γ, ϕi � Δ if

the i-th entry of v is 0 and let Ui be the sequent Γ, ϕi � Δ if the i-th entry
of v is 1. Now for every ◦ ∈ C and v ∈ {0, 1}r◦ add the rule

U1 · · · Ur◦ R◦,v
Γ, ◦(ϕ1, · · · , ϕr◦) � Δ

to RC if f◦(v) = 0, add the rule

U1 · · · Ur◦ R◦,v
Γ � ◦(ϕ1, · · · , ϕr◦), Δ

to RC if f◦(v) = 1 and add no rule to RC if f◦(v) =?.
3. If there are two rules

U1 · · · Uj−1 Γ, ϕi � Δ Uj+1 · · · Uk
R◦,v

W

and

U1 · · · Uj−1 Γ � ϕi, Δ Uj+1 · · · Uk
R◦,v′

W

in RC then add the rule

U1 · · · Uj−1 Uj+1 · · · Uk
R◦,v′′

W
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where v′′ ∈ {0, 1, ?}r◦ is the vector with the same value as v and v′ where
they agree and ? where they do not agree. Repeat this step until no more
rules can be added.

4. If there are two rules

U1 · · · Uk R1W

U ′
1 · · · U ′

k′
R2W

in RC with {U1, · · · , Uk} ⊂ {U ′
1, · · · , U ′

k′} then remove the rule R2. Repeat
this step until no more rules can be removed.

The rules for �,⊥ and ? are degenerate cases, for � and ⊥ we have the rules

�
Γ � �, Δ ⊥

Γ,⊥ � Δ

and for ? we have no rules at all. The procedure given in Definition 11 terminates
for any finite set of connectives and gives a unique set of rules for a given set of
connectives. Let us consider a simple example of how this procedure works.

Example 2. Let ∗ be the binary connective with the following partial truth table.

ϕ1 ϕ2 ϕ1 ∗ ϕ2

0 0 ?
0 1 1
1 0 1
1 1 1

so ∗ behaves either like a disjunction or like guaranteed truth. Then in step 2 of
the procedure the following three rules are added.

Γ � ϕ1, Δ Γ, ϕ2 � Δ
R∗,(1,0)

Γ � ϕ1 ∗ ϕ2, Δ

Γ, ϕ1 � Δ Γ � ϕ2, Δ R∗,(0,1)
Γ � ϕ1 ∗ ϕ2, Δ

Γ � ϕ1, Δ Γ � ϕ2, Δ R∗,(1,1)
Γ � ϕ1 ∗ ϕ2, Δ

In step 3 we then combine the rule R∗,(1,1) with both the rule R∗,(1,0) and the
rule R∗,(0,1) to obtain the following two rules

Γ � ϕ2, Δ R∗,(?,1)
Γ � ϕ1 ∗ ϕ2, Δ

Γ � ϕ1, Δ R∗,(1,?)
Γ � ϕ1 ∗ ϕ2, Δ

Finally, in step 4 we remove the rules R∗,(1,0), R∗,(0,1) and R∗,(1,1) because their
premises are supersets of those of R∗,(?,1) and R∗,(1,?). In the end the rules for
∗ are therefore only the rules R∗,(?,1) and R∗,(1,?). These rules represent all we
know about ∗, namely that ϕ1 ∗ ϕ2 is true if at least one of ϕ1 and ϕ2 is true.

Definition 12 (Rule Cut). The rule Cut is given by

Γ1 � ϕ,Δ1 Γ2, ϕ � Δ2
Cut

Γ1, Γ2 � Δ1, Δ2
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Definition 13 (Proof system SC). The proof system SC consists of the rules
S∅ together with the rules RC . The proof system SC+Cut consists of the rules
of SC together with the rule Cut.

Definition 14 (Derivation). A derivation in a proof system S is a finite la-
beled tree T such that:

– every node of T is labeled by either a sequent or an empty label,
– if a node s of T with label V has child nodes t1, · · · , tn with labels U1, · · ·Un

then

U1 · · · Un

V

is an instance of a rule of S.

The non-empty labels of nodes that do not have child nodes are called the premises
of the derivation and the label of the root is called the conclusion of the derivation.

Definition 15 (Derivable). A sequent U is derivable in a proof system S if
there is a derivation in S that has no premises and U as conclusion.

Definition 16 (Admissible). A rule

U1 · · · Un
R

V

is admissible in S if every sequent that is derivable in S+R is derivable in S.

For most of the rules of SC+Cut it should be immediately clear that they are
sound for |=C . The only rules for which there could be some doubt about the
soundness are the contraction and Cut rules. For these rules it can also quite
easily be seen that they are sound. Consider for example left contraction.

If we have Γ1, Γ2, Γ2 |=C Δ then for any disambiguations Γ1 of Γ1, Γ2 of

Γ2, Γ2
′
of Γ2 and Δ of Δ we have Γ1, Γ2, Γ2

′ |=C Δ. In particular this is the

case if Γ2 = Γ2
′
, so we have Γ1, Γ2, Γ2 |=C Δ. CL is sound for deterministic

propositional logic so Γ1, Γ2 |=C Δ. This holds for any disambiguations Γ1, Γ2

and Δ so Γ1, Γ2 |=C Δ. Soundness for CR and Cut is obtained in the same way.

5 Completeness

I prove the completeness of SC by showing the completeness of SC+Cut and
showing that Cut is admissible in SC . I start with a very limited form of com-
pleteness and then use it to show full completeness.

Lemma 4. Let ϕ be any LC formula and let Φ be a set of propositional variables
that includes all the variables that occur in ϕ and let Φ1, Φ2 be any partition of
Φ. Then Φ1, ϕ |=C Φ2 implies that Φ1, ϕ � Φ2 is derivable in SC+Cut and
Φ1 |=C ϕ,Φ2 implies that Φ1 � ϕ,Φ2 is derivable in SC+Cut.
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Proof. I give the proof for the case where Φ1, ϕ |=C Φ2. The other case is analo-
gous by the duality of the left and right side. Suppose that ϕ,Φ, Φ1 and Φ2 are
as in the lemma and Φ1, ϕ |=C Φ2. To show is that Φ1, ϕ � Φ2 is derivable.

The proof now proceeds by induction on the construction of ϕ. First suppose
ϕ is atomic, so ϕ = p for some p ∈ P . Then ϕ ∈ Φ2 so Φ1, ϕ � Φ2 is derivable by
using Ax to obtain p � p and subsequently weakening.

Suppose therefore as induction hypothesis that ϕ is not atomic, and that
the lemma holds for all subformulas of ϕ. Then ϕ = ◦(ϕ1, · · · , ϕr◦) for some
◦ ∈ C and LC formulas ϕ1, · · · , ϕr◦ . Let N1 = {i ∈ {1, · · · , r◦} | Φ1, ϕi |= Φ2},
N2 = {i ∈ {1, · · · , r◦} | Φ1 |= ϕi, Φ2} and N3 = {1, · · · , r◦} \ (N1 ∪N2).

For i ∈ N1 let Ui be the sequent Φ1, ϕi � Φ2 and for i ∈ N2 let Ui be
the sequent Φ1 � ϕi, Φ2. Then by the induction hypothesis Ui is derivable for
i ∈ N1 ∪ N2. Now take any i ∈ N3. Then the value of ϕi under the partition
Φ1, Φ2 depends on the chosen disambiguation of ϕi. But for every disambiguation
ϕ of ϕ we have Φ1, ϕ |=C Φ2. This implies that, given the (fixed) values of ϕj

with j ∈ (N1 ∪N2) the value of ϕ is determinate and independent of the values
of ϕi with i ∈ N3.

Let v = (v1, · · · , vr◦) ∈ {0, 1}r◦ be any vector such that vi = 1 if i ∈ N1 and
vi = 0 if i ∈ N2 and v′ = (v′1, · · · , v′r◦) ∈ {0, 1, ?}r◦ the vector such that v′i = 1
if i ∈ N1, v

′
i = 0 if i ∈ N2 and v′i =? if i ∈ N3. The value of ϕ is independent of

the values of ϕi with i ∈ N3 so the rule

{Ui | 1 ≤ i ≤ r◦}
R◦,v

Φ1, ϕ � Φ2

was added in step 2 of Definition 11. This is true regardless of the choice of vi
for i ∈ N3, so in step 3 of Definition 11 a rule

{Ui | i ∈ N1 ∪N2}
R◦,v′

Φ1, ϕ � Φ2

is generated. It is possible that R◦,v′ is removed in step 4, but then there is a rule
R◦,v′′ that takes a subset of {Ui | i ∈ N1 ∪N2} as premises and has Φ1, ϕ � Φ2

as conclusion. So whether or not R◦,v′ gets removed in step 4 it follows from
the fact that Ui is derivable for i ∈ N1 ∪ N2 that Φ1, ϕ � Φ2 is derivable. This
completes the induction step and thereby the proof.

Theorem 1 (Weak completeness of SC+Cut). For every finite multisets
Γ,Δ of LC formulas we have that Γ |=C Δ implies that Γ � Δ is derivable in
SC+Cut.

Proof. Let Φ = {p1, · · · , pn} be the set of propositional variables that occur in
either Γ or Δ, and Φ1, Φ2 any partition of Φ. Then from Lemma 3 it follows that
there either is a γ ∈ Γ such that Φ1, γ |=C Φ2 or a δ ∈ Δ such that Φ1 |=C δ, Φ2.

From Lemma 4 it follows that in the first case the sequent Φ1, γ � Φ2 is
derivable and in the second case the sequent Φ1 � δ, Φ2 is derivable. In either
case the sequent Γ, Φ1 � Φ2, Δ can then be derived by weakening.
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So for every partition Φ1, Φ2 of Φ the sequent Γ, Φ1 � Φ2, Δ is derivable. For
0 ≤ m ≤ n let Φm = {p1, · · · , pn−m}. The proof now proceeds by induction
on m. I just showed that if m = 0 then for every partition Φm

1 , Φm
2 of Φm the

sequent Γ, Φm
1 � Φm

2 , Δ is derivable.
Suppose then as induction hypothesis that m > 0 and that for partitions

Φm−1
1 , Φm−1

2 of Φm−1 the sequent Γ, Φm−1
1 � Φm−1

2 , Δ is derivable. Let Φm
1 , Φm

2

be any partition of Φm. Then both Φm
1 ∪ {pn−m+1}, Φ2 and Φm

1 , Φ2 ∪ {pn−m+1}
are partitions of Φm−1 so Γ, Φm

1 , pn−m+1 � Φm
2 , Δ and Γ, Φm

1 � pn−m+1, Φ
m
2 , Δ

are both derivable. By using Cut (followed by CL and CR to get rid of extra
copies of Γ,Δ, Φm

1 and Φm
2 ) the sequent Γ, Φm

1 � Φm
2 , Δ is then also derivable.

This completes the induction step, so Γ, Φm
1 � Φm

2 , Δ is derivable for any m and
any partition Φm

1 , Φm
2 of Φm. Taking m = n we then get Γ � Δ being derivable,

which is what was to be shown.

Left to show now is that Cut is admissible in SC . The proof I give here is very
similar to existing proofs for Cut-elimination as given in for example [8–10].

Theorem 2 (Cut elimination). The rule Cut is admissible in SC .

Proof. The proof is by a case distinction on the rule R preceding the application
of Cut. In all possible cases the application of Cut could be “moved up”; that
is, it would have been possible to either apply Cut before R or to eliminate the
Cut entirely. Since Cut cannot be applied before the first step of a proof this
implies that at some point the Cut must be removed, so Cut is admissible.

Most of the cases are as in the existing Cut-elimination proofs. I omit those
cases, for details see the proofs in for example [8–10]. The case that is different
from the existing proofs is if both premises for the Cut rule are obtained using
a R◦,v rule where the Cut formula is principal. The last few steps of T are then

Γ1,±ϕ1 � ∓ϕ1, Δ1 · · · Γ1,±ϕr◦ � ∓ϕr◦ , Δ1
R◦,v

Γ1 � ϕ,Δ1

Γ2,±ϕ1 � ∓ϕ1, Δ2 · · · Γ2,±ϕr◦ � ∓ϕr◦ , Δ2
R◦,v′

Γ2, ϕ � Δ2
Cut

Γ1, Γ2 � Δ1, Δ2

where ϕ = ◦(ϕ1, · · · , ϕr◦). The application of R◦,v adds a ϕ on the right side of
the �, the application of R◦,v′ adds a ϕ on the left side of the �. The rules R◦,v
and R◦,v′ must therefore be different, so v 	= v′. This implies that there is at least
one i such that ϕi occurs on one side of the � in a premise Γ1,±ϕi � ∓ϕ1, Δ1

and on the other side in a premise Γ2,∓ϕ1 � ±ϕ1, Δ2. So

Γ1,±ϕi � ∓ϕ1, Δ1 Γ2,∓ϕ1 � ±ϕ1, Δ2
Cut

Γ1, Γ2 � Δ1, Δ2

is an alternative derivation of Γ1, Γ2 � Δ1, Δ2. The Cut could therefore have
been applied before the R◦,v rules, which is what was to be shown.

Corollary 1 (Strong completeness of SC). For every multisets Γ,Δ of LC

formulas we have that Γ |=C Δ implies that Γ � Δ is derivable in SC .

Proof. By the compactness Lemma 2 there are finite multisets Γ ′ ⊆ Γ and
Δ′ ⊆ Δ such that Γ ′ |=C Δ′, so by Theorems 1 and 2 the sequent Γ ′ � Δ′ is
derivable in SC . Then Γ � Δ is also derivable in SC by weakening from Γ ′ � Δ′.
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6 Properties and Applications of SC

Let us consider a few of the properties of SC . Reflexivity is not admissible in
SC , because it is not sound for |=C . Likewise, if ↔ is a classical bi-implication
and [ϕ/ψ] represents the substitution of ψ for ϕ the rule

Γ � Δ
ϕ↔ ψ, Γ [ϕ/ψ] � Δ[ϕ/ψ]

representing a very strong kind of substitution of equivalents is not admissible.
Two weaker kinds of substitution of equivalents are admissible though.

Lemma 5. If ↔ is the classical bi-implication and ↔∈ C the rule Substitution
of Deterministic Equivalents (EqDet) given by

ϕ � ϕ ψ � ψ Γ � Δ
EqDet

ϕ↔ ψ, Γ [ϕ/ψ] � Δ[ϕ/ψ]

and the rule Substitution of Provably Equivalents (EqPr) given by

ϕ � ψ ψ � ϕ Γ � Δ
EqPr

Γ [ϕ/ψ] � Δ[ϕ/ψ]

are admissible.

Proof. The easiest way to see that these rules are admissible is to use the sound-
ness and completeness of SC . A rule is admissible in SC if the conclusion of
the rule is derivable in SC if all the premises are. Let us first consider the rule
EqDet. Suppose that ϕ � ϕ, ψ � ψ and Γ � Δ are derivable. To show is that
ϕ↔ ψ, Γ [ϕ/ψ] � Δ[ϕ/ψ] is derivable.

By the soundness of SC we know that ϕ |=C ϕ, ψ |=C ψ and Γ |=C Δ. Now
letM be a model such that for some disambiguations ϕ of ϕ, ψ of ψ and Γ [ϕ/ψ]
of Γ [ϕ/ψ] we have M |= ϕ ↔ ψ and M |=∧ Γ [ϕ/ψ]. From ϕ |=C ϕ it follows
that for every model all disambiguations of ϕ have the same value. Likewise,
from ψ |=C ψ it follows that all disambiguations of ψ have the same value.

Since some disambiguations of ϕ and ψ have the same value ofM this implies
that every disambiguation of ϕ has the same value as every disambiguation of ψ
in M. The disambiguations live in a deterministic truth-functional logic so we
can replace any occurrence of any disambiguation of ψ by any disambiguation
of ϕ without changing the value on M. So from M |=∧ Γ [ϕ/ψ] it follows that
M |=∧ Γ for some disambiguation Γ of Γ .

Then by Γ � Δ we know that M |=∨ Δ for each disambiguation Δ of Δ.
We can replace any disambiguation of ϕ by any disambiguation of ψ without
changing the value on M so M |=∨ Δ[ϕ/ψ] for any disambiguation Δ[ϕ/ψ].

We started with any model M satisfying ϕ ↔ ψ and Γ [ϕ/ψ] for some dis-
ambiguations and found that M satisfies Δ[ϕ/ψ] for all disambiguations, so
ϕ↔ ψ, Γ [ϕ/ψ] |=C Δ[ϕ/ψ]. By completeness this implies that ϕ↔ ψ, Γ [ϕ/ψ] �
Δ[ϕ/ψ] is derivable which is what was to be shown.
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Left to show is that ExPr is admissible. Suppose towards a contradiction that
ϕ � ψ, ψ � ϕ and Γ � Δ are derivable in SC but Γ [ϕ/ψ] � Δ[ϕ/ψ] is not. Then
by the soundness of SC we have ϕ |=C ψ, ψ |=C ϕ and Γ |=C Δ while by the
completeness of SC we have Γ [ϕ/ψ] 	|=C Δ[ϕ/ψ].

So for some disambiguations Γ [ϕ/ψ] of Γ [ϕ/ψ] and Δ[ϕ/ψ] of Δ[ϕ/ψ] we
have Γ [ϕ/ψ] 	|=C Δ[ϕ/ψ]. There are disambiguations Γ of Γ , Δ of Δ, ϕ of ϕ and

ψ of ψ such that Γ [ϕ/ψ] = Γ [ϕ/ψ] and Δ[ϕ/ψ] = Δ[ϕ/ψ].
From ϕ |=C ψ and ψ |=C ϕ it follows that any disambiguations of ϕ and

ψ are equivalent, so in particular ϕ and ψ are equivalent. But from Γ |=C Δ
it follows that Γ |=C Δ and by substitution of equivalents in deterministic
propositional logic this implies that Γ [ϕ/ψ] |=C Δ[ϕ/ψ], which contradicts

Γ [ϕ/ψ] 	|=C Δ[ϕ/ψ]. Our initial assumption that ϕ � ψ, ψ � ϕ and Γ � Δ
are derivable and Γ [ϕ/ψ] � Δ[ϕ/ψ] is not must therefore be false. So if ϕ � ψ,
ψ � ϕ and Γ � Δ are derivable then so is Γ [ϕ/ψ] � Δ[ϕ/ψ].

7 Conclusion

I introduced nondeterministic semantics for propositional logic that do not sat-
isfy reflexivity. The main idea of the semantics is to use deterministic disam-
biguations of nondeterministic formulas and to say that Γ |=C Δ if and only if
Γ |=C Δ for all possible disambiguations Γ of Γ and Δ of Δ. I also introduced
a sequent-style proof system SC that is sound and complete for |=C and showed
that SC allows some types of substitution of equivalents.
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Abstract. This paper studies two ways of updating neighborhood models: up-
date by taking the intersection of the neighborhoods with the announced proposi-
tion, and update by selecting all the neighborhoods that can entail the announced
proposition. For each of these two ways, we establish reduction axioms and some
basic model-theoretic results on public announcement logic and dynamic epis-
temic logic of product update. We also study various notions of group knowledge
such as common and distributed knowledge over neighborhood models.

Public announcement logic (PAL) and dynamic epistemic logic of product update
(DEL) have been studied for a long time1. PAL was first presented by Plaza in [10], and
later DEL was explored by Baltag, Moss and Solecki in [2], and recently by van Ben-
them in [11] and other logicians. DEL provides us with a general theory for interpreting
update of multi-agent models. For some basics of DEL (under Kripke semantics), the
reader is referred to [11] and [15]. In this paper, we study neighborhood semantics
for both PAL and DEL. There were several papers (cf. [12]) on updating operation
on neighborhood models (or its generalization), while there is no study on DEL over
neighborhood models, to the best of the authors’ knowledge. What we would like to
propose in this paper is the two ways of update the neighborhood τ(w) of the current
state: taking ‘intersection’ and ‘subset’.

Fig. 1. τ(w) Fig. 2. Intersection-update by ϕ Fig. 3. Subset-update by ϕ

Let us explain the intuitive idea behind two ways of updating. Let the shaded circles
of Fig. 1 be neighborhoods around w and �ϕ� be the denotation of ϕ in the model.
The readers may regard τ(w) as the set of propositions that an agent does know at the
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12CZX054) and the work of the second author was supported by JSPS KAKENHI, Grant-in-
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state w. By taking intersection of all the neighborhoods, we obtain Fig. 2. This notion
was studied, e.g., in [12, pp.69-70]. On the other hand, by restricting our attention to
all the neighborhoods ‘inside’ the denotation �ϕ�, we obtain Fig. 3. It is clear that
the second notion is stronger than the first one. We can regard this subset-update as
restricting our knowledge to the propositions that ‘derive’ ϕ. In other words, the notion
of subset update by ϕ gives us the assumptions or evidences that explain ϕ. We should
note that the subset update is an ‘opposite’ operation to the notion of evidence removal
in [12]. We should also note that a similar idea to our subset update also appears in a
recent study of public announcements over subset space logics [1, p.239].

This paper explores the two ways of updating neighborhood models for both PAL
and DEL in terms of axiomatization and basic model theory. We also demonstrate when
the two ways of updating neighborhood models coincide with each other.

1 Neighborhood Semantics for Epistemic Logic

Now we introduce the neighborhood semantics for epistemic logic (EL), the static part
of dynamic epistemic logics. Henceforce, we fix a set G of agents and Prop of propo-
sitional variables. The language LEL of EL is defined as the expansion of the proposi-
tional syntax with �iϕ (i ∈ G), where �iϕ is read as: the agent i knows that ϕ.

A neighborhood frame is a pair F = (W, {τi}i∈G) where W is a non-empty set and
τi : W → ℘(℘(W)) is a mapping. Moreover, we define some types of neighborhood
frames as follows:

– F is monotone if X ∈ τi(w) and X ⊆ Y jointly imply Y ∈ τi(w), for all w ∈ W,
X, Y ∈ ℘(W) and i ∈ G.

– F is non-empty if W ∈ τi(w) for all w ∈ W and i ∈ G.
– F is closed under intersections if X ∈ τi(w) and Y ∈ τi(w) jointly imply X ∩ Y ∈
τi(w), for all w ∈ W, X, Y ∈ ℘(W) and i ∈ G.

– F is regular if F is monotone and closed under intersections.
– F is normal if F is regular and non-empty.

Given any neighborhood frame F = (W, {τi}i∈G), for each τi, we define the unary oper-
ation �τi : ℘(W) → ℘(W) by: �τi X = {w ∈ W | X ∈ τi(w) }. We will use �i as a modal
operator in the syntax of LEL and �τi as a unary operator in the semantic side, i.e., the
semantic operation to interpret the knowledge operator �i.

We say that F = (W, {τi}i∈G) is a topological space, if F is normal and satisfies the
following conditions: for all w ∈ W, X ⊆ W, and i ∈ G,

(T) X ∈ τi(w) implies w ∈ X; (4) X ∈ τi(w) implies �τi X ∈ τi(w).

In what follows in this paper, we concentrate on monotone neighborhood frames.
We define that a neighborhood model is a pair of neighborhood frame and a valuation
V : Prop→ ℘(W). Given any neighborhood modelM = (W, {τi}i∈G,V), any w ∈ W and
any formula ϕ of LEL, we define the satisfaction relationM, w |= ϕ as follows:

M, w |= p iff w ∈ V(p), M, w |= ϕ ∨ ψ iff M, w |= ϕ orM, w |= ψ,
M, w |= ¬ϕ iff M, w �|= ϕ, M, w |= �iϕ iff �ϕ�M ∈ τi(w),
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where �ϕ�M = { v ∈ W |M, v |= ϕ } is the truth set of ϕ inM. If (W, {τi}i∈G) is monotone,
the truth clause for �iϕ can be rewritten as follows:

M, w |= �iϕ iff X ⊆ �ϕ�M for some X ∈ τi(w).

Definition 1. Given any monotoneF = (W, {τi}i∈G) andF′ = (W′, {τ′i}i∈G), f : W → W′
is a bounded morphism, if for all w ∈ W and i ∈ G, the following hold: (Forth) ∀X ∈
τi(w)( f [X] ∈ τ′i ( f (w))); (Back) ∀X′ ∈ τ′i( f (w))( f −1[X′] ∈ τi(w)).

Definition 2. Given monotone neighborhood frames F = (W, {τi}i∈G) and F′ = (W′,
{τ′i }i∈G), we say that F′ is a generated subframe of F, if the inclusion map i : W′ → W
is a bounded morphism, i.e., for all w′ ∈ W and all X ⊆ W, X ∩W′ = i−1[X] ∈ τ′i(w′)
iff X ∈ τi(w′). We also say that F′ is a relational subframe of F, if W′ ⊆ W and τ′i (w

′) =
{ X ⊆ W′ | X ∈ τi(w′) } for all w′ ∈ W′ and i ∈ G.

The notion of relational subframe was first considered by Hansen [4] under a different
name. We can explain her underlying idea on the notion as follows: if we regard τi as a
relation between W and ℘(W), then τ′i in the above definition satisfies τ′i = τi ∩ (W′ ×
℘(W′)), i.e., τ′i is the restriction of τi to the domain W′. Moreover, a subframe and a
relational subframe coincide for certain classes of neighborhood frames.

Proposition 1. Let F = (W, {τi}i∈G) and F′ = (W′, {τ′i }i∈G) be regular neighborhood
frames. Assume that W′ = �τiW

′ for all i ∈ G. Then F′ is a generated subframe of F iff
F′ is a relational subframe of F.

Proof. The left-to-right direction is easy. For the other direction, assume that W′ =
�τiW

′ for all i ∈ G. It suffices to show that {X ∩W′|X ∈ τi(w′)} = {X ⊆ W′|X ∈ τi(w′)},
for all w′ ∈ W′ and i ∈ G. The ⊇-direction holds clearly for all monotone neighborhood
frames. For the other direction, take any X ∈ τ′i (w). By assumption, W′ ∈ τi(w′). Since
F is regular, X ∩W′ ∈ τ′i(w). ��
Definition 3. Let M = (W, {τi}i∈G,V) be a monotone neighborhood model, and ∅ �
X ⊆ W. Define the intersection submodelM∩X = (X, {τ∩X

i }i∈G,VX) and the subset sub-
modelM⊆X = (X, {τ⊆X

i }i∈G,VX) induced from X by:

τ∩X
i (w) = {P ∩ X | P ∈ τi(w)} and τ⊆X

i (w) = {P ⊆ X | P ∈ τi(w)}
for every w ∈ X and i ∈ G, and VX(p) = V(p) ∩ X for any p ∈ Prop.

Note that this definition allows the case where ∅ ∈ τ∩X
i (w), the case where ∅ ∈ τ⊆X

i (w),
or the case where τ⊆X

i (w) = ∅.

Proposition 2. Let M be a monotone neighborhood model. Then for any X ⊆ W, the
intersection submodelM∩X and the subset submodelM⊆X are monotone.

Proof. First, we establish monotonicity of τ∩X
i (w). Assume P ∈ τ∩X

i (w). Then P =
Q ∩ X for some Q ∈ τi(w). Fix any P′ such that P ⊆ P′ ⊆ X. Since τi is monotone,
Q∪P′ ∈ τi(w). Then (Q∪P′)∩X = P′. Hence P′ ∈ τ∩X

i (w). Second, we move to τ⊆X
i (w).

Assume P ∈ τ⊆X
i (w). Then P ⊆ X and P ∈ τi(w). Fix any P′ such that P ⊆ P′ ⊆ X. By

monotonicity of τi(w), P′ ∈ τi(w). Then P′ ∈ τ⊆X
i (w). ��
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Proposition 3. Let M be a monotone neighborhood model. The frame properties of
closure under intersections, (T), and (4), are preserved under taking the intersection
submodelM∩X and the subset submodelM⊆X. The frame property of non-emptiness is
also preserved under taking the intersection submodelM∩X.

In general, however, we cannot assure that the property of non-emptiness is preserved
under taking subset submodels2. We leave the detailed investigation of preservation of
non-emptiness as a further direction, and focus on the study of τ∩X and τ⊆X over a class
of monotone neighborhood frames in this paper.

2 Neighborhood Semantics for PAL

2.1 Subset and Intersection Semantics forLPAL

The language LPAL is the extension of LEL by adding public announcement formulas
[ϕ]ψ. We define 〈ϕ〉ψ as ¬[ϕ]¬ψ. Recall that Kripke semantics for LPAL interprets an
announcement operator [ϕ] in terms of a (Kripke) submodel induced by truth set of ϕ
in the given model. Here we introduce two kinds of neighborhood semantics for public
announcement operators. For this purpose, we employ the notions of intersection sub-
model and subset submodel (definition 3), which are based on the notions of generated
subframe and relational subframe (definition 2), respectively. These notions allow us
to define two kinds of neighborhood semantics for [ϕ]: intersection semantics and sub-
set semantics. Let us first introduce our intersection semantics, and then, move to our
subset semantics.

Definition 4 (Intersection Semantics). Given a monotone neighborhood model M =
(W, {τi}i∈G,V), the notion of truth of anLPAL-formula ϕ (notation:M, w |=∩ ϕ) is defined
recursively as usual, except the following clause for [ϕ]ψ:

M, w |=∩ [ϕ]ψ iffM, w |=∩ ϕ impliesM∩ϕ, w |=∩ ψ
whereM∩ϕ is the intersection submodelM∩�ϕ�M .

For the update of intersection submodel, we can also provide the reduction axioms
which are used for eliminating public announcements in all LPAL-formulas, where the
reduction axioms for propositional letters and connectives are the same as public an-
nouncement logic under Kripke semantics.

2 Let us consider the single agent case. Let F = (R, τR) be the real line with the ordinary Eu-
clidean topology. Fix any point x ∈ R. It is clear that F satisfies the non-emptiness condi-
tion. Then, τ∩N

R
(x) = { X ⊆ N | x ∈ X } but τ⊆N

R
(x) = ∅, since there is no open set O around x

such that O ⊆ N. One way to avoid this difficulty is that, when we are interested in normal
neighborhood frames or topological spaces, we revise the neighborhood mapping of the sub-
set submodel into: τ⊆X;∪{X }

i (w) = {P ⊆ X | P ∈ τi(w)} ∪ { X }. The underlying idea of this
definition is to add the trivial evidence (i.e., X) to the set of evidences around each of the
states in the subset-updated model. The update by τ⊆X;∪{X }

i preserves non-emptiness as well as
monotonicity, closure under intersections, (T) and (4).
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Table 1. List of Axioms for [ϕ] for Intersection and Subset Semantics

(RAtom) [ϕ]p↔ (ϕ→ p) (R�iint) [ϕ]�iψ↔ (ϕ→ �i[ϕ]ψ)
(R¬) [ϕ]¬ψ↔ (ϕ→ ¬[ϕ]ψ) (R[·]) [ϕ][ψ]ξ ↔ [ϕ ∧ [ϕ]ψ]ξ
(R∨) [ϕ](ψ ∨ ξ)↔ ([ϕ]ψ ∨ [ϕ]ξ) (R�isub) [ϕ]�iψ↔ (ϕ→ �i〈ϕ〉ψ)

Theorem 1. For any complete epistemic logic Λ under monotone neighborhood se-
mantics, the LPAL-extension under intersection semantics is completely axiomatized by
Λ plus (RAtom), (R¬), (R∨), (R�iint), and (R[·]) of Table 1.

Proof. We only check the validity of (R�iint) and (R[·]). Then, we can employ the
same proof-strategy as in the proof of Kripke completeness of PAL in [11] and [15],
i.e., the completeness of PAL-extension of Λ is reduced to that of Λ. We can establish
(R[·]) by the fact (Mϕ)ψ = Mϕ∧[ϕ]ψ. So, we concentrate on (R�iint). (1) From left to
right, assume M, w |=∩ [ϕ]�iψ and M, w |=∩ ϕ. It suffices to show �[ϕ]ψ�M ∈ τi(w).
By assumption, M∩ϕ, w |=∩ �iψ. Then �ψ�M∩ϕ ∈ τ∩ϕi (w). Then �ψ�M∩ϕ ⊇ X ∩ �ϕ�M
for some X ∈ τi(w). It follows that X ⊆ �ϕ�M ∪ �ψ�M∩ϕ = �[ϕ]ψ�M, where �ϕ�M
is the complement of �ϕ�M in M. This implies �[ϕ]ψ�M ∈ τi(w), as desired. (2) For
the other direction, assume M, w |=∩ ϕ → �i[ϕ]ψ and M, w |=∩ ϕ. Our goal is to
show M, w |= [ϕ]�iψ. By assumption, it suffices to show that �ψ�M∩ψ ∈ τ∩ϕi (w). By
assumption, M, w |=∩ �i[ϕ]ψ. Hence �[ϕ]ψ�M ∈ τi(w). Since �ψ�M∩ψ ∩ �[ϕ]ψ�M =
�[ϕ]ψ�M, we can conclude �[ϕ]ψ�M ∈ τ∩ϕi (w). ��
Definition 5 (Subset Semantics). Let M = (W, {τi}i∈G,V) be a neighborhood model.
The notion of truth of an LPAL-formula ϕ (notation:M, w |=⊆ ϕ) is defined recursively
as usual, except the following semantic clause for [ϕ]ψ:

M, w |=⊆ [ϕ]ψ iffM, w |=⊆ ϕ impliesM⊆ϕ, w |=⊆ ψ
whereM⊆ϕ is the subset submodelM⊆�ϕ�M .

For 〈ϕ〉ψ, we obtain the following truth clause:

M, w |=⊆ 〈ϕ〉ψ iffM, w |=⊆ ϕ andM⊆ϕ, w |=⊆ ψ.

Theorem 2. For any complete epistemic logic Λ under monotone neighborhood se-
mantics, the LPAL-extension under intersection semantics is completely axiomatized by
Λ plus (RAtom), (R¬), (R∨), (R�isub), and (R[·]) of Table 1.

Proof. Similar to the proof of Theorem 1. Here, let us check the validity of (R�isub)
alone: First of all, it is easy to show that

�ψ�M⊆ϕ = �ϕ ∧ [ϕ]ψ�M = �〈ϕ〉ψ�M. (∗)
Assume M, w |=⊆ [ϕ]�iψ and M, w |=⊆ ϕ. We show �〈ϕ〉ψ�M ∈ τi(w). By assumption,
M⊆ϕ, w |=⊆ �iψ. Then �ψ�M⊆ϕ ∈ τ⊆ϕi (w). We conclude from (∗) that �〈ϕ〉ψ�M ∈ τi(w),
as desired. Conversely, assume M, w |=⊆ ϕ → �i〈ϕ〉ψ and M, w |=⊆ ϕ. Then M, w |=⊆
�i〈ϕ〉ψ, which implies �〈ϕ〉ψ�M ∈ τi(w). By (∗) and �ψ�M⊆ϕ ⊆ �ϕ�M, we conclude
�ψ�M⊆ϕ ∈ τ⊆ϕi (w). ��
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Remark that the axioms (R�iint) and (R�isub) are different on the right-hand side
within the scope of the knowledge operator �i. This syntactic difference shows their
semantic difference.

As is shown in Proposition 1, if �ϕ�M = �τi�ϕ�M, then the subset model is the same
as the intersection model. It is well-known that the modal logic S4 is complete with
respect to the class of all topological spaces, where we can derive �ϕ ↔ ��ϕ as a
theorem of S4.

Proposition 4. For any topological modelM and formula ϕ,M∩�iϕ = M⊆�iϕ.

Proof. By reduction axioms, every LPAL-formula is logically equivalent to an LEL-
formula. We assume without loss of generality that ϕ ∈ LEL. Then the domains, and
hence valuations, of the two updated models are the same ��iϕ�M. SinceM is a topolog-
ical model, ��iϕ�M = ��i�iϕ�M = �τi��iϕ�M. By Proposition 1, τ∩�iϕ

i (w) = τ⊆�iϕ
i (w)

for each w in the domain. Therefore,M∩�iϕ = M⊆�iϕ. ��
We note that the proof of Proposition 4 does not require the non-emptiness of frames.

Every Kripke model M = (W, {Ri}i∈G,V) can be transformed into an equivalent
neighborhood model by defining: τRi (w) = {X ⊆ W | Ri(w) ⊆ X}. Let Nbhd(M) =
(W, {τRi}i∈G,V) be the equivalent neighborhood model.

Proposition 5. Given any Kripke modelM = (W, {Ri}i∈G,V) and any X ⊆ W, we have
(Nbhd(M))∩X = Nbhd(MX), whereMX = (X, (RX

i )i∈G,VX) where RX
i and VX are restric-

tions to X.

Proof. Consider the submodel MX = (X, (RX
i )i∈G,VX). For w ∈ X, it suffices to show

τRX
i
(x) = τ∩X

Ri
(x). Let P ∈ τRX

i
(x). Then Ri(x) ∩ X ⊆ P. By Ri(x) ∈ τRi(x), P ∈ τ∩X

Ri
(x).

Conversely, assume Q ∈ τ∩X
Ri

(x). Then, there exists P ∈ τRi (x) such that Q = P ∩ X.
Then Ri(x) ⊆ P and so Ri(x) ∩ X ⊆ Q ⊆ X. Thus Q ∈ τRX

i
(x). ��

This proposition implies that we can also analyze various examples of PAL under
Kripke semantics in terms of neighborhood semantics with the intersection-update (for
instance, backward induction, a procedure for solving extensive games, which was an-
alyzed by van Benthem in [11], and muddy children puzzle in [15]).

Example 1. Let us consider the single agent case. Consider the following Kripke model
for S4: M = (W,R,V) where W = {a, b}, R = W2 \ {(b, a)} and V(p) = {b}. Then, the
equivalent neighborhood model is defined by: τR(a) = {{a, b}} and τR(b) = {{b}, {a, b}}.
Note that M, a |= ¬p andM, b |= �p butM, a �|= �p. Thus, the domain of the updated
model ofM by announcing �p in either way is the single point of a, while the domain
by announcing¬p consists of the single point b. Then, τ∩¬p

R (a) = {{a}} and τ⊆¬p
R (a) = ∅,

which are not the same. However, τ∩�p(b) = τ⊆�p(b) = {{b}}, which coincides with the
result of Proposition 4.

The following provides us with a non-Kripke semantic but topological example.

Example 2. Let (R, τR) be the real line with the ordinary Euclidean topology, i.e., τR(x)
is the set of open sets containing x ∈ R. Define V(p) = [0,+∞) and writeM = (R, τR,V).
Then, ��p�M = (0,+∞). By Proposition 4, we obtain, e.g.,
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τ
⊆�p
R (1) = τ∩�p

R (1) =
{
O ⊆ (0,+∞) | O is open with respect to τR and 1 ∈ O

}
.

Next, let us consider subset- and intersection-updates by p. Then,

τ
∩p
R

(1) = {O ∩ [0,+∞) |O ∈ τR(1) } , τ
⊆p
R

(1) = {O ∈ τR(1) |O ⊆ [0,+∞) } .

It is easy to see that τ⊆p
R

(1) ⊆ τ
∩p
R

(1). However, the converse inclusion does not hold,
since [0, 2) ∈ τ∩p

R
(1) but [0, 2) � τ⊆p

R
(1). If we regard open sets as evidences (cf. [13,

sec.2.2]), the intersection update may give us the new evidences. That is, [0, 2) is not
open with respect to the original τR but it is open with respect to τ∩p

R
. On the other hand,

the subset-update selects from τR(x) all the evidences that can deduce the announced
formula.

Then, what is a possible merit of the subset semantics for [ϕ]? Intuitively, the public
announcement of ϕ in subset semantics deletes all propositions in the range of w which
cannot entail ϕ. We could use this procedure to interpret some reasoning patterns in
scientific inquiry.

Example 3. Let us introduce a pattern in scientific inquiry called finite identification [9].
Suppose that a scientist makes assumptions α0, . . . , αn, one of which is actual. Then, one
data ϕ occurs to the scientist. The announcement of ϕ can eliminate all assumptions
which cannot interpret ϕ. Given an assumption α, let α ≤ ϕ denote that the assumption
α can interpret ϕ. With the help of the subset semantics, we can explain this pattern. Fix
a state w and τ(w) in a neighborhood model M. Let α0, . . . , αn be propositions which
serve as our assumptions. Let X0, . . . , Xn ∈ τ(w) such that each Xi = �αi�M for all i ≤ n.
We interpret the expression α ≤ ϕ overM as follows: αi ≤ ϕ iff Xi ⊆ �ϕ�M. Thus all as-
sumptions which cannot interpretϕ are eliminated after the announcement of ϕ in subset
semantics. After when finitely many data occur (i.e., are announced), we can identify
the actual assumption. By this process, we can also capture the reasoning of abduction
in scientific inquiry. Let us consider one simple inference pattern of abduction: from ϕ
and ψ � ϕ, we may infer abductively ψ. That is, ψ is a possible reason of ϕ. In the subset
semantics for an announcement of ϕ, we keep all ‘possible reasons’ of ϕ. We hope that
the subset semantics could serve as a sort of ‘semantics’ for abductive reasoning.

2.2 Some Model Theory for Neighborhood PAL

We show some model-theoretic results about the neighborhood semantics forLPAL. We
first introduce the notion of neighborhood bisimulation [4].

Definition 6 (Neighborhood Bisimulation). Let M = (W, {τi}i∈G,V) and M′ = (W′,
{τ′i }i∈G,V ′) be monotone neighborhood models. A non-empty relation Z ⊆ W × W′ is
called a bisimulation betweenM andM′ (notation: Z : M � M′), if for all i ∈ G and
(w, w′) ∈ Z, the following conditions hold:

– (Atomic) w ∈ V(p) iff w′ ∈ V ′(p) for each propositional letter p;
– (Forth) Z[X] = { y ∈ W′ | ∃x ∈ X.xZy } ∈ τ′i (w) for all X ∈ τi(w);
– (Back) Z−1[X′] = { x ∈ W | ∃y ∈ X′.xZy } ∈ τi(w) for all X′ ∈ τ′i (w).
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ByM, w� M′, w′ we mean that there is a bisimulation Z : M� M′ with wZw′.

Remark 1. In the above definition, the forth condition holds iff for all X ∈ τi(w), there
exists X′ ∈ τ′i(w′) with ∀u′ ∈ X′∃u ∈ X(uZu′). The back condition holds iff for all
X′ ∈ τ′i (w′), there exists X ∈ τi(w) with ∀u ∈ X∃u′ ∈ X′(uZu′).

We say that two states w and w′ in two modelsM andM′ are LPAL-equivalent with
respect to ∗-semantics, for ∗ ∈ {∩,⊆} (notation: M, w ≡∗LPAL

M′, w′), if for all LPAL-
formulas ϕ,M, w |=∗ ϕ iffM′, w′ |=∗ ϕ.

Proposition 6. For any monotone neighborhood modelsM andM′, IfM, w � M′, w,
thenM, w ≡∩LPAL

M′, w′ andM, w ≡⊆LPAL
M′, w′.

Proof. By reduction axioms in both semantics, each LPAL-formula is equivalent to an
LEL-formula and hence invariant under neighborhood bisimulation. ��

As the submodel operation (·)ϕ under Kripke semantics respects bisimulation, here
in neighborhood setting, we first obtain the following respecting result.

Proposition 7. LetM andM′ be monotone neighborhood models. IfM� M′, then for
any LPAL-formula ϕ, (i)M∩ϕ � M′∩ϕ, and (ii)M⊆ϕ � M′⊆ϕ.

Proof. The item (ii) is similar to (i). For (i), assume Z : M � M′. Define Z∩ϕ ⊆
�ϕ�M×�ϕ�M′ by: Z|ϕ = {(w, w′) | wZw′ & w ∈ �ϕ�M & w′ ∈ �ϕ�M′ }. Then we show Z|ϕ :
M∩ϕ � M′∩ϕ. Only show the forth condition. Assume wZ|ϕw′. Then wZw′. Suppose
X∩�ϕ�M ∈ τ⊆ϕi (w) for some X ∈ τi(w). Then by wZw′ and X ∈ τi(w), we have Z−1[X] ∈
τ′i (w). Now consider the set Z−1[X]∩ �ϕ�M′ . For each v′ ∈ Z−1[X]∩ �ϕ�M′ , there exists
v ∈ X such that vZv′. Since LPAL-formulas are invariant under bisimulation, v ∈ X ∩
�ϕ�M, and vZ|ϕv′. ��

We show above that announcement operations (·)∩ϕ and (·)⊆ϕ respect bisimulation.
Then, a natural question is whether they respect themselves.

Proposition 8. For any LPAL-formula ϕ, |=∗ [ϕ]ϕ iff (·)∗ϕ respects itself, i.e., (M∗ϕ)∗ϕ =
M∗ϕ for all monotone neighborhood modelsM and ∗ ∈ {∩,⊆}.
Definition 7. An LPAL-formula ϕ is ∗-successful announcement, if |=∗ [ϕ]ϕ, for ∗ ∈
{∩,⊆}. Fix a single agent i ∈ G. Let Li be the set of all formulas α defined as:

α ::= p | ¬p | α ∧ β | α ∨ β | �iα, (p ∈ Prop).

Thus we concentrate on the agent i alone in Li. Now we are going to establish a
result on successful formulas of Li.

Lemma 1. Let M = (W, {τi}i∈G,V) be a regular model satisfying the condition (T ) of
topological space. �τi (X) ∩ �α�M ⊆ �α�M∗X , for all α ∈ Li, X ⊆ W.

Proof. By induction on α ∈ Li. We only show the case where α is �iβ (we need the
condition (T) in atomic case). Assume w ∈ �τi(X) ∩ ��iβ�M. Our goal is to show:
w ∈ ��iβ�M∗X , i.e., �β�M∗X ∈ τ∗Xi (w). Since our τi is regular, we obtain w ∈ �τi(X∩�β�M)
and so X ∩ �β�M ∈ τi(w). By induction hypothesis: X ∩ �β�M ⊆ �β�M∗X , we get
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�β�M∗X ∈ τi(w). When ∗ is ∩, we proceed as follows. By X ∈ τi(w), �β�M∩X ∩ X ∈ τi(w),
which implies our goal of �β�M∩X ∈ τ∩X

i (w). On the other hand, if ∗ is⊆, we can establish
our goal as follows. Since �β�M∗X ⊆ X, �β�M∗X ∈ τi(w) tells us that �β�M⊆X ∈ τ⊆X

i (w).
��

Theorem 3. For every α ∈ Li, [�iα]�iα is valid in all topological models under both
intersection and subset semantics.

Proof. Given α ∈ Li and a topological M = (W, {τi}i∈G,V), for any w ∈ W, assume
M, w |=∗ �iα. We need to showM∗�iα, w |=∗ �iα. By Lemma 1, �τi(��iα�M)∩��iα�M ⊆
��iα�M∗�iα (we put X := ��iα�M and α := �iα). Since M is a topological model,
��iα�M ⊆ �τi(��iα�M). Therefore, ��iα�M ⊆ ��iα�M∗�iα . By assumption of w ∈
��iα�M, we conclude w ∈ ��iα�M∗�iα . ��
Remark 2. For Kripke semantics, a stronger result [15, Proposition 4.36] holds on the
common knowledge for all agents than Theorem 3. It is a famous open question to
characterize successful announcements of PAL in Kripke semantics. Recently, the sin-
gle agent case is solved in [6].

3 Neighborhood Semantics for DEL

This section explores the general dynamic logic DEL of product update. As we do for
LPAL, we introduce two kinds of updating mechanism: intersection semantics and sub-
set semantics for the syntax LDEL. These enable us to consider private announcements
to a particular single agent as we can see in ‘Two Envelopes’ example in [11] for Kripke
semantics.

Let us define an epistemic neighborhood event model as a tuple E = (E, {σi}i∈G, Pre)
where E is a non-empty finite set of events, each σi is a monotone neighborhood map-
ping E → ℘(℘(E)) which represents the agent i’s uncertainty relation, and Pre is a
function such that it assigns each event e with a formula of LEL.

Given any two event neighborhood models E1 = (E1, {σi}i∈G, Pre1) and E2 = (E2,
{ρi}i∈G, Pre2), we define the composition event modelE1◦E2 = (E1×E2, (σi×ρi)i∈G, Pre)
as follows:

– (σi × ρi)(e1, e2) = { P ⊆ E1 × E2 | X × Y ⊆ P & X ∈ σi(e1) & Y ∈ ρi(e2) }.
– Pre(e1, e2) := 〈E1, e1〉Pre2(e2).

The map σi × ρi in composition of event model is easily seen to be monotone.

3.1 Subset and Intersection Semantics forLDEL

Definition 8 (Intersection Product Update). Let M = (W, {τi}i∈G,V) be a monotone
neighborhood model, and E = (E, {σi}i∈G, Pre) an event model. The product model
M ⊗ E = (W ⊗ E, {τi ⊗ σi}i∈G,U) is defined as follows:
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– W ⊗ E = {(w, e) |M, w |= Pre(e)} ⊆ W × E.
– (τi ⊗ σi)(w, e) = { P ∩ (W ⊗ E) | X × Y ⊆ P & X ∈ τi(w) & Y ∈ σi(e) }.
– U(p) = {(w, e) | w ∈ V(p)} for each propositional letter p.

The definition of (τi ⊗ σi)(w, e) can be written into: (τi ⊗ σi)(w, e) = {Q | ∃X ∈
τi(w) & ∃ Y ∈ σi(e)(X × Y) ∩ (W ⊗ E) ⊆ Q}. Moreover, the map τi ⊗ σi in intersection
product update is easily shown to be monotone.

The language LDEL is defined by adding operators [E, e] to LEL. We define 〈E, e〉
as an abbreviation of ¬[E, e]¬. Given any monotone neighborhood model M = (W,
{τi}i∈G,V) and w ∈ W, the EL-part is interpreted as usual. For a formula [E, e]ϕ, we
define:

M, w |=∩ [E, e]ϕ iffM, w |=∩ Pre(e) impliesM ⊗ E, (w, e) |=∩ ϕ.

An LDEL-formula ϕ is valid in intersection semantics (notation: |=∩ ϕ), if it is true at
every state of every model.

Theorem 4. The set of all validities of LDEL-formulas in intersection semantics is ax-
iomatized by a complete epistemic logic over monotone neighborhood models plus
(DRAtom), (DR¬), (DR∨), (DR�iint), and (DR[·]) of Table 2.

Proof. The completeness is reduced to completeness of static epistemic logic. As for
the soundness, we only show the validity of (DR�iint). Validity of (DR�iint) is shown
as follows: It suffices to show the equivalence between M ⊗ E, (w, e) |=∩ �iϕ and
M, (w, e) |=∩ ∨Y∈σi(e) �i

∧
y∈Y [E, y]ϕ. It proceeds as follows: M ⊗ E, (w, e) |=∩ �iϕ iff

there exist some X ∈ τi(w) and some Y ∈ σi(e) such that (X × Y) ∩W ⊗ E ⊆ �ϕ�M⊗E
iff there exist some X ∈ τi(w) and some Y ∈ σi(e) such that, for all x ∈ X and for
all y ∈ Y, (x, y) ∈ W ⊗ E implies (x, y) ∈ �ϕ�M⊗E iff there exist some Y ∈ σi(e) and
some X ∈ τi(w) such that, for all x ∈ X and for all y ∈ Y, M, (x, y) |=∩ [E, y]ϕ iff
M, (x, y) |=∩ ∨Y∈σi(e) �i

∧
y∈Y [E, y]ϕ. ��

Table 2. List of Axioms for [E, e] for Intersection and Subset Semantics

(DRAtom) [E, e]p↔ (Pre(e)→ p)
(DR¬) [E, e]¬ϕ↔ (Pre(e)→ ¬[E, e]ϕ)
(DR∨) [E, e](ϕ ∨ ψ)↔ ([E, e]ϕ ∨ [E, e]ψ)
(DR�iint) [E, e]�iϕ↔ (Pre(e)→ ∨Y∈σi(e) �i

∧
y∈Y[E, y]ϕ)

(DR[·]) [E1, e1][E2, e2]ϕ↔ [E1 ◦ E2, (e1, e2)]ϕ
(DR�isub) [E, e]�iϕ↔ (Pre(e)→ ∨Y∈σi(e) �i

∧
y∈Y〈E, y〉ϕ)

Definition 9 (Subset Update Product). LetM = (W, {τi}i∈G,V) be a monotone neigh-
borhood model, and E = (E, {σi}i∈G, Pre) an event model. The product modelM � E =
(W � E, {τi � σi}i∈G,U) is defined as follows:

– W � E = {(w, e) |M, w |= Pre(e)} ⊆ W × E.
– τi � σi(w, e) = { P ⊆ W � E | X × Y ⊆ P for some (X, Y) ∈ τi(w) × σi(e) }.
– U(p) = {(w, e) | w ∈ V(p)} for each propositional letter p.
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The subset semantics for LDEL is similar to intersection semantics, but we note that

M, w |=⊆ 〈E, e〉ϕ iffM, w |=⊆ Pre(e) andM � E, (w, e) |=⊆ ϕ.

Theorem 5. The set of all validities of LDEL-formulas in subset semantics is axioma-
tized by a complete epistemic logic over monotone neighborhood models plus(DRAtom),
(DR¬), (DR∨), (DR�isub), and (DR[·]) of Table 2.

Proof. The proof is almost the same as that for theorem 4. Here, we only show the valid-
ity of (DR�isub): We can show thatM � E, (w, e) |=⊆ �iϕ iff M, w |=⊆ ∨Y∈σi(e) �i

∧
y∈Y

〈E, y〉ϕ as follows: M � E, (w, e) |=⊆ �iϕ iff there exist some X ∈ τi(w) and some
Y ∈ σi(e) such that X × Y ⊆ W � E and X × Y ⊆ �ϕ�M�E iff there exist some X ∈ τi(w)
and some Y ∈ σi(e) such that X × Y ⊆ (W � E)∩ �ϕ�M�E iff there exist some X ∈ τi(w)
and some Y ∈ σi(e) such that, for all x ∈ X and for all y ∈ Y, (x, y) ∈ (W � E)∩ �ϕ�M�E
iff there exist some Y ∈ σi(e) and some X ∈ τi(w) such that, for all x ∈ X and for all
y ∈ Y,M, (x, y) |=⊆ 〈E, y〉ϕ iff M, (x, y) |=⊆ ∨Y∈σi(e) �i

∧
y∈Y〈E, y〉ϕ. ��

Finally, we show that intersection and subset updates by ϕ can be regarded as spe-
cial examples of intersection and subset semantics for LDEL. Let us say that M =
(W, { τi }i∈G,V) andM′ = (W′, { τ′i }i∈G,V ′) are isomorphic (notation:M � M′) if there is
a mapping f : W → W′ such that f is a bounded morphism (recall Definition 1), f is
one-to-one and onto and V(p) = f −1[V ′(p)] for all p ∈ Prop.

Definition 10. Fix any ϕ of LEL. Define Eϕ = (E, (σi)i∈G, pre), where E = { ∗ }, and
σi(∗) = { { ∗ } } for all i ∈ G, and pre(∗) = ϕ.

Proposition 9. Given any monotone neighborhood modelM and a formula ϕ of LEL,
M∩ϕ � M ⊗ Eϕ andM⊆ϕ � M � Eϕ.

Proof. Clearly, W � E = W ⊗ E = �ϕ�M × { ∗ }. Then, the mapping sending w ∈ �ϕ�M
to (w, ∗) ∈ �ϕ�M × { ∗ }, is a witness forM∩ϕ � M ⊗ Eϕ andM⊆ϕ � M � Eϕ. ��

3.2 Some Model Theory for Neighborhood DEL

As we have done for PAL, we also give some model-theoretic results forLDEL in neigh-
borhood semantics. We consider only neighborhood bisimulation and product update.
The question here is whether the operation (·) � E (where � ∈ {⊗,�}) for any given
event model E over the class of all monotone neighborhood epistemic models respects
bisimulation. The answer is yes.

Proposition 10. For any monotone neighborhood modelsM = (W, {τi}i∈G,V) andM′ =
(W′, {τ′i }i∈G,V ′), given any event model E = (E, {σi}i∈G, Pre), ifM� M′, thenM�E�
M � E.

Proof. Assume that Z : M � M′. We show only that the following relation Z⊗E =
{((w, e), (w′, e)) | wZw′ & M, w |=∩ Pre(e) & M′, w′ |=∩ Pre(e)} is a bisimulation be-
tween intersection updated models. For the forth condition, assume that X ∈ τi⊗σi(w, e)
and (w, e)Z⊗E(w′, e). Then wZw′ and there exist A ∈ τi(w) and B ∈ σi(e) such that
(A× B)∩ (W ⊗ E) ⊆ X. By wZw′ and A ∈ τi(w), we have Z[A] ∈ τ′i (w′). Then Z⊗E[X] ⊇
Z⊗E[(A × B) ∩ (W ⊗ E)] = (Z[A] × B) ∩ (W′ ⊗ E). By Z[A] ∈ τ′i (w) and B ∈ σi(e), we
obtain Z⊗E[X] ∈ τ′i ⊗ σi(w′, e). The back condition is similar. ��
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We say that two pointed neighborhood models (M, w) and (N, v) areLDEL-equivalent
with respect to ∗-semantics for ∗ ∈ {∩,⊆} (notation:M, w ≡∗LDEL

N, v), if for all LDEL-
formulas ϕ,M, w |=∗ ϕ iff N, v |=∗ ϕ. Then we have the following.

Proposition 11. If Z : M� N and wZv, thenM, w ≡∗LDEL
N, v.

Proof. By reduction axioms in both semantics, every LDEL-formula is equivalent to an
LEL-formula and hence invariant under neighborhood bisimulation. ��

4 Various Notions of Group Knowledge

Here we consider extensions of LPAL with various notions
of group knowledge over neighborhood models. The fol-
lowing right diagram is useful to explain our notions of
group knowledge (cf. [13]). Given two maps τ1 and τ2,
there are three basic ways for combining them: intersection,
composition and sum. For interpreting notions of knowledge, they correspond to three
different notions: general knowledge, common knowledge and distributed knowledge,
respectively.

General Knowledge: The general knowledge operator EGϕ is interpreted in neighbor-
hood models as follows: for modelM = (W, {τi}i∈G,V), for ∗ ∈ {∩,⊆},

M, w |=∗ EGϕ iffM, w |=∗ �iϕ for all i ∈ G.

From this semantic clause, it is easy to see that ϕ is a general knowledge of some given
group G at the current state w, iff every agent in the group knows it, i.e., the truth
set �ϕ�M ∈ ⋂i∈G τi(w). Moreover, the following reduction axioms for the operator of
general knowledge are easy to check:

(i) |=∩ [ϕ]EGψ↔ (ϕ→ EG(ϕ→ [ϕ]ψ)), |=⊆ [ϕ]EGψ↔ (ϕ→ EG(ϕ ∧ [ϕ]ψ)).
(ii) |=∗ [E, e]EGϕ↔ (Pre(e)→ ∧i∈G

∨
Yi∈σi(e) �i

∧
ei∈Yi

[E, ei]ϕ).

Common Knowledge: Common knowledge is a more complex notion ([11]). Here we
provide an interpretation of common knowledge over regular neighborhood models.

We use the notion of composition given in [3] to provide the neighborhood inter-
section semantics with common knowledge. Let τ1 and τ2 be neighborhood maps on a
non-empty set W. We define the composition of them as follows: for all w ∈ W,

τ1 ◦ τ2(w) = {X | ∃Y ∈ τ1(w)∀v ∈ Y.X ∈ τ2(v)}.
Then, we define truth condition of the operator of common knowledge as follows:

M, w |= CGϕ iff for all i1 . . . in ∈ G with n ≥ 1, �ϕ�M ∈ τi1 ◦ · · · ◦ τin (w).

It is easy to show that M, w |= CGϕ iff M, w |=∩ �i1 · · ·�inϕ for all i1, . . . , in ∈ G and
all n ∈ ω, over the class of all regular neighborhood models. It is also easy to check
that common knowledge is a greatest fixed point in the following sense: (i) |= CGϕ ↔
EGCGϕ, and (ii) |= CG(ϕ→ EGϕ)→ CGϕ.
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Now for dynamic operators over common knowledge, it seems hard to give reduction
axioms. For instance, the announcement formula [α]CGϕ has not been given a reduction
axiom yet. However, van Benthem, et.al. gave the notion of conditional common knowl-
edge Cϕ

Gψ and show a reduction axiom for [α]Cϕ
Gψ under Kripke semantics ([14]). Now,

in the neighborhood setting, we can provide the following neighborhood semantics with
the conditional common knowledge: for ∗ ∈ {∩,⊆},

M, w |=∗ Cϕ
Gψ iff for all i1 . . . in ∈ G with n ≥ 1, �ψ�M ∈ τ∗ϕi1 ◦ . . . ◦ τ

∗ϕ
i1

(w).

Then, we can easily obtain the reduction axioms, e.g., |=∩ [α]Cϕ
Gψ↔ (α→ Cα∧[α]ϕ

G [α]ψ).

Remark 3. Van Benthem and Sarenac [13] studied the logic of common knowledge over
product of epistemic topological models. Our approach is different from this topological
approach to knowledge in the following two respects. First, we employ the composi-
tion of neighborhood maps to treat the interaction between agents in a group directly
and define the notion of common knowledge. Second, we could also define the notion
of common knowledge in a weaker semantic setting than topological spaces, though
we need to assume that neighborhood frames are regular. For the common knowledge
and/or the belief operator possibly over non-regular neighborhood frames, the reader is
refered to [7], [8] and [5].

Distributed Knowledge: Finally, we make some observations on the sum of neighbor-
hood maps and distributed knowledge.

Definition 11. Let F = (W, {τi}i∈G) be a monotone neighborhood frame. Define the sum
of {τi}i∈G by: for every w ∈ W,

∑
i∈Gτi(w) =

{ ⋂
i∈GXi | (Xi)i∈G ∈∏i∈Gτi(w)

}

where
∏

i∈G τi(w) is the Cartesian product of {τi(w) | i ∈ G}.
Note that

∑
i∈Gτi is monotone: suppose that

⋂
i∈GXi ⊆ Z and

⋂
i∈GXi ∈ ∑i∈Gτi(w). By

assumption, we obtain Xi ∈ τi(w) for each i ∈ G. Since τi is monotone, Xi ∪ Z ∈ τi(w).
Then, Z = (

⋂
i∈G Xi) ∪ Z =

⋂
i∈G(Xi ∪ Z) ∈ ∑i∈Gτi(w), as desired.

Given a modelM = (W, {τi}i∈G,V) and a state w, we define

M, w |=∗ DGψ iff �ψ�M ∈ ∑i∈G τi(w).

Then, we can show the following (the converse of (iii) does not hold):

(i) |=∩ [ϕ]DGψ↔ (ϕ→ DG(ϕ→ [ϕ]ψ)), |=⊆ [ϕ]DGψ→ (ϕ→ DG(ϕ ∧ [ϕ]ψ)).
(ii) |=∩ [E, e]DGϕ↔ (Pre(e)→ ∨(Yi)i∈G∈∏i∈G σi(e) DG(

∧
y∈⋂i∈G Yi

[E, y]ϕ)).
(iii) |=⊆ [E, e]DGϕ→ (Pre(e)→ ∨(Yi)i∈G∈∏i∈G σi(e) DG(

∧
y∈⋂i∈G Yi

〈E, y〉ϕ)).

5 Conclusion and Open Questions

We have introduced two ways of updating monotone neighborhood models: taking the
intersection submodel and subset submodel, which correspond to two different seman-
tics for both the syntax of PAL and DEL. We emphasize that these two ways of updat-
ing neighborhood models are contributions of this paper. The most important point is
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that the subset semantics is different from the intersection semantics. The intersection
semantics can be regarded as a natural generalization of public announcement logic
over Kripke semantics, while the subset semantics gives a totally new perspective on
dynamic operators. Finally, let us list some open questions here.

(i) Characterize the fragment of successful announcements under two neighborhood
semantics we provided in this paper.

(ii) Characterizing the ‘substitution core’ of neighborhood PAL.
(iii) Extend Theorem 3 on successful formulas to multi-agent case.
(iv) Give an axiomatization of epistemic logic with distributed knowledge in monotone

neighborhood semantics.
(v) Show the axiomatization of epistemic logic with common knowledge in regular

neighborhood semantics.
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Abstract. We propose a logic for describing the interaction between
knowledge, preference, and the freedom to act, and their interactions
with the norms of a Priori and a Posteriori rationality, which we have
argued for in previous work [3]. We then apply it to strategic games to
characterise weak dominance and Nash equilibrium.

In [3] we proposed a model for rational decision making in which the facts about
knowledge, preference and freedom to act are clearly separated from the norms
of reasoning. Even the transitivity of the preference relation is considered nor-
mative, in our approach. The factual basis for decision making is modelled using
what we call ‘decision frames’ and their multi-agent extensions, ‘social decision
frames’. We proposed two norms for decision-making, called ‘a Priori rational-
ity’ and ‘a Posteriori rationality’, which apply to reasoning before making the
decision, and after. Before making a decision, one is concerned with making the
best, or at least an optimal, decision in ignorance of the effect of contextual
factors, especially, in the social setting, the actions of other agents. After mak-
ing a decision, one is more interested in which the decision was optimal given
the conditions that actually applied. We went on to show that these two gen-
eral norms specialise to the familiar norms of game theory: avoiding (weakly)
dominated strategies (a Priori) and wanting to have made a best response (a
Posteriori). The level of abstraction allowed us to provide a uniform account of
both pure-strategy and mixed-strategy games.

Here, we propose a language for describing and reasoning with these norms,
and show how it formalises and so justifies some of the processes of reasoning
that we use to make decisions.

In Section 1 we introduce decision frames and the corresponding concepts of
a Priori and a Posteriori rationality. In Section 2 we propose a language for
describing these, and show how it can be embedded in a more powerful language
in which an axiomatisation can be given. We go on in Section 3 to show how
this is applied to strategic game theory.

D. Grossi, O. Roy, and H. Huang (Eds.): LORI 2013, LNCS 8196, pp. 218–227, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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1 The Facts and Norms of Decision-Making

The perspective of our analysis is that of your evaluating a decision that you
have just made, to determine whether or not it was a good one. To model this,
we propose in [3] the following structures:

Definition 1. A decision frame F � �W,�,�,�� consists of a non-empty set
W of possible decision situations, with binary relations �, � and � on W ,
where

� is an equivalence relation u � v represents that v would have been pos-
sible in u had you acted differently, given the
contingencies of u that are beyond your control
(freedom).

� is an equivalence relation u � v represents that in situation u you would
not know that you weren’t in situation v (epis-
temic indistinguishability).

� is a relation u � v represents that you regard situation v as
at least as good as situation u.

Importantly, the structures only represent the facts related to your decision,
not the norms. In particular, the relation � is not required to have any special
properties (such as transitivity). Nonetheless, certain norms are definable on the
basis of these facts. In [3] we argue that the fundamental norm of decision-making
is that you should avoid situations in which you know that a strictly better
alternative was possible had you chosen differently. This is ambiguous between
two readings of the counterfactual. On the first, a Priori reading, you consider
only what was known to you at the time of making the decision. On the second,
a Posteriori reading, you also consider what is known to you after making the
decision, specifically those contingent factors such as the actual actions of other
agents and the actual circumstances relevant to your decision that you could not
have known in advance.

The first of these norms, is formalised using a generalisation of the � relation,
called ‘a Priori free preference’ that factors in the contribution of knowledge and
freedom.

Definition 2. The relation �F of a Priori free preference is defined by

u �F v iff u� � v� for all u� � u and all v� � v such that u� � v�.

Decision situation u is a Priori rational iff there is no v � u such that v �F u.

Various specific cases of the a Priori free preference relation are worthy of
mention. Firstly, assuming that your freedom to choose is unlimited (� is the
universal relation) and your knowledge unbounded (� is the identity relation),
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�F � �, so the free preference relation is a generalisation of the ordinary pref-
erence relation. Keeping knowledge unbounded, but allowing for limitations on
your freedom to choose, we get that �F � � � �. In other words, you only
compares your current situation with one that you may have been in had you
chosen differently. This is a special case of a more familiar ceteris paribus re-
striction on preference comparisons, which requires the compared situations to
be equivalent ceteris paribus. In the present setting, two situations are equiva-
lent ceteris paribus iff they are free alternatives.1 When your freedom to choose
is unlimited (� is universal) but there are some limitations to your knowledge,
u �F v iff u� � v� for all u� � u and all v� � v. In other words, since you do
not know that you are in situation u, only that you are in one of the situations
in 	u
 (the �-equivalence class of u) and, likewise, were you in situation v, you
would know only that you were in one of the situations in 	v
, to judge that v
is (as far as you know) at least as good as u, there should be no u� � 	u
 and
v� � 	v
 for which u� � v�. Further discussion of the justification of these various
preference relations, including our assuming neither reflexivity nor transitivity
of � are contained in [3] (p.186). A Priori rationality is closely related to the
norm of avoiding weakly dominated strategies in game theory, to be discussed
in Section 3.

The second norm of a Posteriori rationality is formalised using the relation of
‘a Posteriori free preference’ which is the restriction of a Priori free preference
to alternatives that were in fact possible had you chosen differently, even if you
didn’t know this at the time.

Definition 3. The relation �F � of a Posteriori free preference is defined by

u �F � v iff u� � v� for all u� � u and all v� � v such that u � u� � v� � v.

Decision situation u is a Posteriori rational iff there is no v � u such that
v �F � u.

A posteriori rationality is closely related to the norm of achieving a best response
in game theory, to be discussed in Section 3.

2 A Logic of Rational Decisions

To describe decision frames and the corresponding norms we will use the follow-
ing hybrid modal language.

1 Dealing with the ceteris paribus aspect of preference comparisons is a matter of
degree. Assume that � already involves all those ceteris paribus considerations that
are not concerned with freedom of choice. So, for example, if v is a situation that
is the same as your current situation u in all such relevant respects except that you
have one million dollars (more?) in your bank account, You may judge u � v (and
probably that u � v) but, unhappily, you are unlikely to be free to choose between
u and v and so u �F v. We could have started with a basic preference order �,
modelled ceteris paribus equivalence (not including considerations of achievability)
by an equivalence relation CP and then defined �� CP� �. Adding freedom as a
ceteris paribus condition, we would still have �F � � �CP� ��� � �.
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Definition 4. Given disjoint countably infinite sets Prop of propositional vari-
ables and Nom of nominals, the language L consists of the following formulas

ϕ ::= p 
 i 
 R 
 R� 
 �ϕ 
 �ϕ� ϕ� 
 Gϕ 
 Kϕ 
 Cϕ 
 @iϕ

for p � Prop, i � Nom.

We interpret Gϕ to mean that ϕ holds in all situations that would have been at
least as good for you as the present situation. They may, of course, be no longer
possible, as a result of your decision. Kϕ means, as usual, that you know that ϕ
in the present situation, or, more precisely, that ϕ holds in all situations that you
could be in, given your knowledge. We do not, of course, assume that you know
precisely which situation you are in. Cϕ means that ϕ holds in all situations in
which you could have been, had you acted differently. The sense of ‘could have’
here takes into account all those factors that are beyond your control, including
the actual actions of other agents and other contingent factors. Finally, R and
R� mean that present situation is a Priori or a Posteriori rational, respectively.

The semantics of L is the standard semantics for hybrid logic, taking G, K
and C to be the normal modal operators for the relations �, � and �. R and
R� are zero-ary operators that hold in the a Priori and a Posteriorirational
situations, respectively. That R and R� cannot be given an explicit definition in
terms of the other operators is easy to shown by a bisimulation argument. This
makes the derivation of logical principles relating them somewhat difficult and
to solve this problem we will embed the language L in the following, much more
powerful language.

Definition 5. The language of cpdl2 over a sets Prop of propositional vari-
ables, Nom of nominals and AtProg of atomic programs consists of the sets
Form of formulas and Prog of programs given by

ϕ � Form ::= p 
 i 
 	π
ϕ 
 �ϕ 
 �ϕ� ϕ�
π � Prog ::= a 
 ϕ? 
 π 
 π� 
 π� 
 �π;π� 
 �ϕ� ϕ�

for i � Nom, p � Prop and α � AtProg.
Abbreviations: � � p � �p, U � α � α (universal), I � �? (identity), �π� �
�	π
�, �π�ρ� � �π � ρ�, �π � ρ� � π � ρ plus the usual Booleans: �, ∨, �, �.
Also, where no confusion can arise, especially in the case of atomic programs,
we further abbreviate �π � ρ� as πρ. A formula ϕ is pure iff it contains no
propositional variables.

Definition 6. A structure F � �W,R� is a cpdl frame if R�α� �W 2 for each
α � AtProg. A structure M � �W,R, V � is a cpdl model if �W,R� is a cpdl
frame, V �i� �W for each i � Nom, and V �p� �W for each p � Prop.

2 What we are calling cpdl (Combinatory pdl)is also known as ‘full-cpdl’. The lan-
guage of cpdl without and � is also known as ‘hybrid pdl’ [1].



222 M. Guo and J. Seligman

Definition 7. Given a cpdl model M � �W,R, V �, and a state u � W , we
define 		ϕ

M � W for each ϕ � Form and 		π

M � W 2 for each π � Prog as
follows:

		i

M = �V �i��
		p

M = V �p�
			π
ϕ

M = �u �W 
 v � 		ϕ

M for each v �W such that �u, v� � 		π

M�
		�ϕ

M = W �		ϕ

M

		�ϕ� ψ�

M = 		ϕ

M � 		ψ

M

		α

M = R�α�
		ϕ?

M = ��u, u� 
 u � 		ϕ

M�
		π

M = ��u, v� 
 �u, v� � 		π

M�
		π�

M = ��u, v� 
 �v, u� � 		π

M�
		π�

M = the smallest transitive, reflexive relation containing 		π

M

		π; ρ

M = ��u, v� 
 �v, w� � 		π

M and �w, v� � 		ρ

M for some w �W �
		�π � ρ�

M = 		π

M � 		ρ

M

When M is clear from the context, we write 		ϕ

M as 		ϕ

. Note that 		�π �
ρ�

M � 		π

M � 		ρ

M and 		�π � ρ�

M �W if 		π

M � 		ρ

M , otherwise �.

As usual, a formula is valid on a model if M,u 
� ϕ for all u, valid on a frame
F if it is valid on all models �F, V � and simply valid if it is valid on all frames.

Theorem 1. [1] There is an axiomatisation K of cpdl which is sound and such
that for every extension KΓ of K with pure formulas Γ as axioms, if a formula
is consistent in KΓ then it has a countable model on a frame in which all the
formulas in Γ are valid. The system KΓ is therefore also complete for that class
of frames.

Comment on Axiomatisation and Complexity. Although the validity problem
for cpdl is known to be highly undecidable [8], it has a number of well-known
decidable fragments, include pdl itself and its extension to allow � and either
� or a, i.e., restricted to atomic programs, but not both [2] [5]. Hybrid pdl
namely pdl with nominals is also decidable [7] but even non-hybrid pdl with
unrestricted is not. Frame consequence is undecidable even for pdl [8] with
premises restricted to pure formulas, and so the decidability of validity for these
fragments of cpdl cannot be automatically extended to specific classes of frames
defined by pure formulas, despite the existence of a complete axiomatisation.

In order to describe a social decision frame as a frame F � �W,R� we take
AtProg � �g, k, c� with R�g� ��, R�k� �� and R�c� ��. Then the relations
of a Priori and a Posteriori free preference can be defined as

F � k; cg; k �a Priori free preference�

F� � ck; cg; ck �a Posteriori free preference�
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This enables us to embed L in cpdl as follows:

G :�	g

K:�	k

C :�	c


R :�	cFF�
�

R�:�	cF�F��
�

Theorem 2. A frame is a decision frame iff the following pure formulas D are
valid on F :

�@iK�i �@iC�i (reflexivity of � and �)
���KK�i�K�i� ���CC�i� C�i� (transitivity of � and �)
@iK�j � @jK�i @iC�j � @jC�i (symmetry of � and �)

Proof. It is enough to check that R and R� are satisfied by precisely the a Priori
and a Posteriori rational situations.

Corollary 1. The system KD is a complete axiomatisation of the formulas valid
in decision frames.

Proof. It follows from Theorem 1 and 2.

In the full paper we will consider larger fragments of cpdl extending L but
which are self-contained in terms of axiomatisation, i.e. to identify exactly which
auxiliary operators are needed.

Our language and its cpdl-extension can easily be extended to the multi-
agent setting. For a given finite set A of agents, we define the language L�A�
to have operators Ga,Ka, Ca, Ra and R�

a and interpret the resulting formulas in
‘social decision frames’.

Definition 8. A social decision frame F � �W,�,�,�� for A consists of a
decision frame Fa � �W,�a,�a,�a� for each a � A.

Theorems 2 and Corollary 1 can then be extended to social decision frames,
using the corresponding embedding into cpdl with AtProg � �ga, ka, ca�a�A
and the corresponding KDA.

3 Games

Our primary examples of social decision frames are taken from the concept of a
strategic game in Game Theory.

Definition 9. Given a set A of agents, sets Da of strategies (for each a � A),
and utility functions

Ua:
�

a�A

Da � R

the strategic game frame G�A,D,U� is the social decision frame �W,�,�,��
given by
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W �
�

a�ADa

w �a v iff wb � vb for all b � a in A
w �a v iff wa � va
w �a v iff Ua�w� � Ua�v�

For example, consider the game between players a and b, whose possible strate-
gies are �A,B,C� and �X,Y, Z� respectively, with utilities given by the table on
the left of Figure 1, with �x, y� representing a utility of x to a and y to b for
the corresponding outcome. This determines the strategic game frame shown on
the right, with a’s relations shown with solid lines, and b’s with dotted lines.
We assume reflexivity and transitivity without displaying the additional links
explicitly. The � relations are also not shown, since they can be calculated from
the capacity relations in a strategic game frame. So, for example, AY �a AZ,
AZ �a BZ, AY  a AZ, AY �b AZ ! AY .

b
X Y Z

a A 3, 1 1, 0 1, 0

B 3, 2 0, 1 2, 0

C 4, 2 0, 3 1, 3

Freedom Preference

Fig. 1. A two-player game and its representation as a strategic game frame

Theorem 3. The extension KG of KDA with the following axioms is complete
for the class of strategic game frames:

G1 " 	U � cA
� (connected)

G2 " 	cā � ka
� (isolated)

G3 " 	�ca; cb� � �cb; ca�
� (unordered)

G4 " 	ca � ka ��?
� (deterministic)

G5 " 	g�a � ga
� � 	U � �ga � ga��
� (linear)

Proof. The formulas correspond to the following frame conditions:

G1 is valid iff �u�A �W for every u �W (connected)
G2 is valid iff every a � A is isolated (isolated)
G3 is valid iff �a;�b��b;�a for every a, b � A (unordered)
G4 is valid iff �u�	u
 � �u� for every u �W (deterministic)
G5 is valid iff � is reflexive, transitive, and total (linear)
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Each formulas are all pure, so by Theorem 1 KG is complete for the class of frames
satisfying these conditions. By Theorem 1 of [3] (p. 194) a frame is isomorphic to
a strategic game frame iff each of these conditions holds and in addition, it has a
‘small’ value-size, which means that the number of sets of indifferent situations
(i.e. equivalence classes under the equivalence relation u � v and v � u) is
of cardinality � 2ℵ0 . Thus KG is a sound for strategic frames, and complete
if every formula satisfiable in such a frame is also satisfiable on a frame with
small value-size. But this is guaranteed by the existence of countable models in
Theorem 1.

Again, the full version of the paper will contain an exploration of which of these
axioms can be stated in fragments extending L with auxiliary operators.

Standard game theoretic concepts such as ‘best response’, ‘Nash equilibrium’,
‘dominated strategy,’ etc. all lift to the slightly more abstract setting of strategic
game frames, as shown in [3].

Definition 10. Given a strategic game frame G�A,D,U�, agent a’s strategy
d � Da is (weakly) dominated by another strategy d� � Da iff

1. d� is sure to be at least as good as d: w	ad�
 !a w	ad
 for all w � W �A,D�,3

and
2. d� may be better than d: w	ad�
 �a w	ad
 for some w �W �A,D�.

For example, b’s strategy Z is dominated by Y because (1) AY !b AZ, BY !b

BZ, CY !b CZ, and (2) BY �v BZ. In fact AY !bF AZ but AY �bF AZ,
so AY �bF AZ and since AY �b AZ, the decision situation AZ is not a Priori
rational for b. This connection between a Priori rationality and domination is
quite general.

Theorem 4. In a model M based on a strategic game frame G�D,U,A�, a strat-
egy wa is dominated iff M,w 
� �Ra.

Proof. By [3], Theorem 2, p.199, wa is dominated iff w is a Priori rational for
a.

Definition 11. A decision situation w in a strategic game frame G�A,D,U� is
a best response for agent a iff there is no strategy d � Da such that w  a w	ad

It is a Nash equilibrium iff it is a best response for all agents.

For example, AY is a best response for a because neither AY  a BY nor AY  a

CY . But it is not a best response for b because AY  b AX . This game has no
Nash equilibrium. Since �AY �a is �AY,BY,CY � and �AY �b is �AX,AY,AZ�,
we can also check that AY  F �b AX but there is no w such that AY  aF � w, so
AY is a Posteriori rational for a but not for b. Again, this connection is general.

3 w�ad� is the strategy profile obtained by replacing a’s strategy in w by d, i.e.

w�ad�	b
 �

�
d if b � a
wb otherwise
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Theorem 5. In a model M based on a strategic game frame G�D,U,A�, a sit-
uation w is Nash equilibrium iff M,w 
�

�
a�AR�

a.

Proof. By [3], Theorem 3, p.200. a Nash equilibrium is a situation that is a
Posteriori rational for all agents.

We can extend this analysis from ‘pure strategy’ games to ‘mixed strategy’
games, in which the players randomise their choice of strategy.

Definition 12. Given a strategic game frame G�A,D,U� with finite4 D, the
mixed-strategy extension of G is the strategic game frame G��A,D�, U�� in
which D�

a is the set of probability functions δ:Da � 	0, 1
 and for each δ � D�,

U�

a �δ� �
�

s�
�

b�A Db

ua�s�
�

b�A

δb�sb�

A frame is a mixed-strategy game frame iff it is isomorphic to G� for some
strategic game frame G.

There are, of course, formulas that are valid in every mixed-strategy game frame
that are not valid in every strategic game frame and so cannot be derived from
G. A central example is the following.

Theorem 6. KG # �U�
�

a�AR�

a but this formula is valid on all mixed-strategy
strategic game frames.

Proof. Let M be any model based on a strategic game frame G�. By [6], every
mixed-strategy game has a Nash equilibrium w, and so by Theorem 5, M,w 
��

a�A R�

a. So the formula is valid on all mixed-strategy strategic game frames.
Yet the the frame in Figure 1 does not validate this formula since it lacks a Nash
equilibrium, so by Theorem 3, it is not derivable in KG.

4 Concluding Remarks

We have presented a logic that formalises the approach to rational decision-
making adopted in [3]. Many salient features of games can be modelled using
strategic game frames, which conveniently generalise over pure and mixed strat-
egy games. Our logical investigations, however, are far from complete. In par-
ticular, we would like to investigate other fragments of cpdl that are sufficient
for use in game theory. A particularly interesting open problem is the axioma-
tisation of the class of mixed-strategy games. Theorem 6 gives one example of
a formula valid over these frames that is not valid in, for example, pure strat-
egy game frames. But approaches to the computation of Nash equilibria (e.g.[4])
suggest many structural features that could be analysed logically.

4 The restriction to finite D is essential, because U� is calculated as a finite sum. This
restriction prevent us from forming G�� because D� is always infinite.
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Abstract. This paper reports correspondence results between input/
output logic and the theory of joining-systems. The results have the
form: every norm (a, x) is logically derivable from a set of norms G if
and only if it is in the space of norms algebraically generated by G.

1 Introduction

In their influential book Normative Systems [1], Alchourroon and Bulygin con-
ceive a normative system as a deductive mechanism, like black boxes which
produce normative statement as output, given we feed them descriptive state-
ments as input. To this tradition belongs as well the input/output logic (I/O
logic) of David Makinson and Leon van der Torre in [6–8] and the theory of
joining-systems(TJS) proposed by Lars Lindahl and Jan Odelsad in e.g. [4, 5].

Although sharing the same ancestor, I/O logic and TJS have evolved quite
separately, and lool very different. I/O logic has a proof theory and a well de-
fined semantics of propositional logic. TJS uses algebra as a tool for modeling
normative systems. In this paper, I will show that, nevertheless the two accounts
essentially give the same results, and can be seen as ”two sides of one and the
same coin.” The results will illustrate that proof theory, semantics and algebra,
as three tools to model normative systems, have their own advantage and dis-
advantage. Proof theory is neat and easy to be tracked by computers, but hard
to be manipulated by human beings. Semantics is intuitive but hard to give us
the holistic view of normative systems. Algebra, although it’s neither as neat
as proof theory nor as intuitive as semantics, it can give rise to holistic results
to normative systems in the sense that we can build isomorphisms between the
algebraic representation of normative systems. It is their different features that
motivate us to use all of them.

The layout of this paper is as follows. In section 2 I will give a brief introduc-
tion to I/O logic and TJS. Then, in section 3 I will present two correspondence
results between I/O logic and TJS. Section 4 is the section for application of
the algebraic tools, illustrating those holistic views we gain by the algebraic rep-
resentation of normative systems. Section 5 will present some issues for future
research.
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2 Background

2.1 Input/Output Logic

In a series of papers [7–9], Makinson and van der Torre developed a class of
deontic logic called input/output logic. A gentle and comprehensive introduction
can be found in [10] and [14]. In general, the matured version of I/O logic is the
constrained version from [8]. For simplicity’s sake, the latter one will be put
aside, and only two unconstrained I/O logics will be considered in this paper. I
start by describing them.

Let P = {p0, p1, . . .} be a countable set of propositional letters and L be
the propositional logic built upon P. Throughout this paper L will be the only
logic language we talk about. Let G be a set of ordered pairs of formulas of
L. A pair (a, x) ∈ G, call it a norm, is read as “given a, it ought to be x”. G
can be viewed as a function from 2L to 2L such that for a set A of formulas,
G(A) = {x : (a, x) ∈ G for some a ∈ A}.

Makison and van der Torre define the operations out1 and out2 as following:

– out1(G,A) = Cn(G(Cn(A)))
– out2(G,A) =

⋂
{Cn(G(V )) : A ⊂ V, V is complete}

Here Cn is the classical consequence operator from propositional logic, and a
complete set is a set of formulas that is either maxi-consistent or equal to L.

out1(G,A) and out2(G,A) are called simple-minded output and basic output
respectively. In [7], simple-minded reusable output and basic reusable output are
also defined. I leave them as a topic for future research.

out1 and out2 can be fiben a proof theoretic characterization. We say that an
ordered pair of formulas is derivable from a set G iff (a, x) is in the least set that
includes G, contains the pair (t, t), where t is a tautology, and is closed under a
number of rules. The following are the rules we will use:

– SI (strengthening the input): from (a, x) to (b, x) whenever b � a
– WO (weakening the output): from (a, x) to (a, y) whenever x � y
– AND (conjunction of output): from (a, x),(a, y) to (a, x ∧ y)
– OR (disjunction of input): from (a, x),(b, x) to (a ∨ b, x)

The derivation system based on the rules SI, WO and AND is called deriv1.
Adding OR to deriv1 gives deriv2. We use (a, x) ∈ derivi(G), or equivalently
x ∈ derivi(G, a), to denote the norm (a, x) is derivable from G using rules of
derivation system derivi. Moreover, for a set A of formulas, we use (A, x) ∈
derivi(G), or equivalently x ∈ derivi(G,A) to denote the fact that there exist
a1 . . . an ∈ A such that (a1 ∧ . . . ∧ an, x) ∈ derivi(G). In [7], the following
completeness theorems for out1 and out2 are given:

Theorem 1 ([7]). Given an arbitrary normative system G and a set A of for-
mulas,

1. x ∈ out1(G,A) iff x ∈ deriv1(G,A)
2. x ∈ out2(G,A) iff x ∈ deriv2(G,A)
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2.2 Theory of Joining-Systems

An algebraic framework for analyzing normative systems was introduced by Lars
Lindahl and Jan Odelstad in their papers [3–5, 12, 13]. The most general form
of the theory is called theory of joining-systems(TJS) in [5, 12]. A theory of
joining-systems is a triple (B1, B2, J) where B1, B2 are two ordered algebraic
structures and J a relation between B1 and B2 satisfying some special conditions.
In Lindahl and Odelstad’s work, the algebraic structure is usually a Boolean
quasi-ordering. In this paper I will work with a Boolean algebra.

Definition 1 (Boolean algebra). A structure A = (A,+, ·,−, 0, 1) is a
Boolean algebra iff it satisfies the following identities:

(1) x+ y = y + x, x · y = y · x
(2) x+ (y + z) = (x+ y) + z, x · (y · z) = (x · y) · z
(3) x+ 0 = x, x · 1 = x
(4) x+ (−x) = 1, x · (−x) = 0
(5) x+ (y · z) = (x+ y) · (x+ z), x · (y + z) = (x · y) + (x · z)

We can order the elements of a Boolean algebra by defining a ≤ b if a ·
b = a. Here + can be considered as a disjunction, · as a conjunction and ≤
as a implication. With this order relation in hand, the narrowness(,) relation
between two ordered pairs can be naturally defined as (a, x) , (b, y) iff b ≤ a and
x ≤ y. Based on ordered structures, Lindahl and Odelstad define joining-systems
as follows:

Definition 2 (Joining-systems, Lindahl and Odelstad’s version [12]). A
triple (A,B, S), where A = (A,≤) and B = (B,≤) are ordered structures and
S ⊆ A×B, is called a joining-system if S satisfies the following conditions:

1. If (a, x) ∈ S and (a, x) , (b, y), then (b, y) ∈ S.
2. For all X ⊆ B, if for all x ∈ X,(a, x) ∈ S, then (a, y) ∈ S for all y ∈ glb(X).1

3. For all X ⊆ A, if for all x ∈ X, (x, b) ∈ S, then (y, b) ∈ S for all y ∈
lub(X).2

In this paper, the major mathematical tool is the joining-systems of Boolean
algebra, which is a modified version of Lindahl and Odelstad’s joining-systems
in the following sense: we let (1, 1) ∈ S and require the set X in item 2 and 3
above to be finite, of Lindahl and Odelstad’s joining-systems.

Definition 3 (Joining-systems of Boolean algebras). A joining-systems of
Boolean algebras is a structure S = (A,B, S) such that A,B are Boolean algebras
and S ⊆ A×B meets the following conditions:

1 Here glb is the abbreviation of greatest lower bound. Formally, glb(X) = {b : ∀x ∈
X, b ≤ x and ∀a, if ∀x ∈ X, a ≤ x, then a ≤ b}

2 lub is the abbreviation of least up bound. Formally, lub(X) = {a : ∀x ∈ X,x ≤ a
and ∀b, if ∀x ∈ X, x ≤ b, then a ≤ b}
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1. (1, 1) ∈ S
2. If (a, x) ∈ S and (a, x) , (b, y), then (b, y) ∈ S.
3. For all finite X ⊆ B, if for all x ∈ X,(a, x) ∈ S, then (a, y) ∈ S for all

y ∈ glb(X)
4. For all finite X ⊆ A, if for all x ∈ X, (x, b) ∈ S, then (y, b) ∈ S for all

y ∈ lub(X)

Here we call S a joining-space as Lindahl and Odelstad did in [5]. We can equiv-
alently replace condition (3) and (4) by the following respectively:

3′ If (a, x) ∈ S and (a, y) ∈ S, then (a, x · y) ∈ S
4′ If (a, x) ∈ S and (b, x) ∈ S, then (a+ b, x) ∈ S

Moreover, we can define joining-space using the standard algebraic terminol-
ogy of ideal and filter:

Definition 4 (Ideal). Let A = (A,+, ·,−, 0, 1) be a Boolean algebra and I a
subset of A. For I to be an ideal of A, it is necessary and sufficient that the
following three conditions be satisfied:

(1) 0 ∈ I
(2) for all x, y ∈ I, x+ y ∈ I
(3) for all x ∈ I and y ∈ A, if y ≤ x then y ∈ I

Definition 5 (Filter). Let A = (A,+, ·,−, 0, 1) be a Boolean algebra and F
a subset of A. For F to be a filter of A, it is necessary and sufficient that the
following three conditions are satisfied:

(1) 1 ∈ F
(2) for all x, y ∈ F , x · y ∈ F
(3) for all x ∈ F and y ∈ A, if x ≤ y then y ∈ F

Let F↑(X) be the filter generated by X and I↓(X) be the ideal generated by
X . Then I↓(X)(F↑(X)) is the smallest ideal(filter) containing X , and we have
the following proposition:

Proposition 1. Given a structure S = (A,B, S), S is a joining space in S if
and only if it satisfies the following conditions:

1. (1, 1) ∈ S
2. For every finite set X ⊆ A, if ∀x ∈ X, (x, b) ∈ S, then ∀y ∈ I↓(X), (y, b) ∈

S.
3. For every finite set X ⊆ B, if ∀x ∈ X, (a, x) ∈ S, then ∀y ∈ F↑(X),

(a, y) ∈ S.

Proof:
Assume S is a joining space in S. Then trivially we have (1, 1) ∈ S.
For the second condition, let X be an arbitrary finite subset of B. Without loss
of generality, we can let X = {x1, . . . , xn}. Suppose ∀x ∈ X , (a, x) ∈ S. Then by
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applying clause 3′ of Definition 3 finitely many times we have (a, x1 · . . . ·xn) ∈ S.
Since for all y ∈ F↑(X), x1 · . . . · xn ≤ y, therefore (a, y) ∈ S.

Similarly we can prove that the third condition is satisfied.
Now assume S satisfies the three conditions in this proposition. Then obvi-

ously (1, 1) ∈ S.
Assume (a, x) ∈ S and (a, x) , (b, y), then x ≤ y and y ∈ F↑(x), hence

(a, y) ∈ S. Moreover we have b ≤ a and b ∈ I↓(a), so we have (b, y) ∈ S.
Assume (a, x) ∈ S and (a, y) ∈ S. Since x · y ∈ F↑({x, y}), we know

(a, x · y) ∈ S.
Similarly we can prove if (a, x) ∈ S and (b, x) ∈ S, then (a+ b, x) ∈ S. There-

fore S is a joining space. -

Up to now, we have clearly defined what a joining-system and joining space are.
But does a joining space always exist? The answer is positive. As the following
proposition shows, the largest and the smallest joining space always exists.

Proposition 2. Given two boolean algebra A,B,

1 A×B is the largest joining space of A×B.
2 If {Si|i ∈ I} is a collection of joining spaces of A×B, then S∗ = ∩i∈ISi is

a joining space of A×B.

Proof:

1 It is easy to check that A×B satisfies the definition of joining space and it
is the largest one.

2 For every Si, we have (1, 1) ∈ Si, therefore (1, 1) ∈ S∗.
For every finite set X ⊆ A, if for every x ∈ X , (x, b) ∈ S∗, then (x, b) ∈ Si for
every i ∈ I. Therefore ∀y ∈ I↓(X), (y, b) ∈ Si. So we must have (y, b) ∈ S∗.
Similarly we can prove the third statement of Proposition 1 is true. Therefore
S∗ = ∩i∈ISi is a joining space of A×B.

3 Correspondence between I/O Logic and TJS

3.1 Basic I/O Logic and TJS

In this section, I will prove that for a set of norms G, a norm (a, x) is entailed by
G in basic I/O logic, if and only if it is in the joining space generated by G. To
show this, we need to introduce a special Boolean algebra named Lindenbaum-
Tarski algebra.

Let≡ be the provable equivalence relation on L, i.e. for every formula φ, ψ ∈ L,
φ ≡ ψ iff �L φ ↔ ψ. Let L/≡ be the equivalence classes that ≡ induces on L.
For any formula φ ∈ L, let [φ] denote the equivalence class contains φ.

Definition 6 (Lindenbaum-Tarski algebra). The Lindenbaum-Tarski alge-
bra for a logic L is a structure L = (L/≡,+, ·,−, 0, 1) where [φ] + [ψ] = [φ ∨ ψ],
[φ] · [ψ] = [φ ∧ ψ], −[φ] = [¬φ],0 = [⊥] and 1 = [�].
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For more details of Lindenbaum-Tarski algebra, readers can consult chapter
5 of [2]. It is not hard to check that every Lindenbaum-Tarski algebra is a
Boolean algebra. Let G be a set of ordered pairs of formulas of L. Let G≡ =
{([a], [x])|(a, x) ∈ G}. Let S = (L,L, S) be a joining-systems such that G≡ ⊆ S.
By Proposition 2 we know such joining system always exist. Moreover, there
must be a smallest joining space G∗ such that G≡ ⊆ G∗ and for every joining
space S that extends G≡, G∗ ⊆ S. Such a G∗ is the joining space generated by
G≡, and it satisfies following property:

Proposition 3. For every ([a], [x]) ∈ G∗, at least one of the following holds:

(1) ([a], [x]) is ([1], [1])
(2) for some ([b], [y]) ∈ G∗, ([b], [y]) , ([a], [x])
(3) there exist ([a], [y]), ([a], [z]) ∈ G∗ such that [x] = [y] · [z]
(4) there exist ([b], [x]), ([c], [x]) ∈ G∗ such that [a] = [b] + [c]

Proof: Suppose ([a], [x]) ∈ G∗ and satisfies none of the above four clause, then
we can prove G′ = G∗−{([a], [x])} is a joining system. This contradicts the fact
that G∗ is the smallest joining system.

With proposition 3 in hand, we can now prove one main correspondence result:

Theorem 2. The following three propositions are equivalent:

1 (a, x) ∈ deriv2(G)
2 ([a], [x]) ∈ G∗

3 x ∈ out2(G, a)

Proof:
1⇒ 2 : This can be proved simply by induction one the length of derivation.
2⇒ 3 : Assume ([a], [x]) ∈ G∗. By proposition 3 we need to deal with four cases.
(i) If ([a], [x]) is ([1], [1]), we need to prove � ∈ ∩{Cn(G∗(V )) : a ∈ V, V is
complete},which is obviously true.
(ii) If for some ([b], [y]) ∈ G∗, ([b], [y]) , ([a], [x]). Then by induction hypotheses
we know y ∈ ∩{Cn(G∗(V )) : b ∈ V, V is complete}. Since [a] ≤ [b] and [y] ≤ [x]
we know x ∈ Cn(y). Hence x ∈ ∩{Cn(G∗(V )) : b ∈ V, V is complete}. Moreover,
every complete set V contains a must contain b, therefore ∩{Cn(G∗(V )) : b ∈
V, V is complete} ⊆ ∩{Cn(G∗(V )) : a ∈ V, V is complete}. Therefore x ∈
∩{Cn(G∗(V )) : a ∈ V, V is complete}, x ∈ out2(G, a).
(iii) If there exist ([a], [y]), ([a], [z]) ∈ G∗ such that [x] = [y] · [z]. Then by
induction hypotheses we know y ∈ ∩{Cn(G∗(V )) : a ∈ V, V is complete} and
z ∈ ∩{Cn(G∗(V )) : a ∈ V, V is complete}. Therefore y∧z ∈ ∩{Cn(G∗(V )) : a ∈
V, V is complete}. That is, y ∧ z ∈ out2(G, a),x ∈ out2(G, a).
(iv) If there exist ([b], [x]), ([c], [x]) ∈ G∗ such that [a] = [b] + [c]. Then by
induction hypotheses we know x ∈ ∩{Cn(G∗(V )) : b ∈ V, V is complete} and
x ∈ ∩{Cn(G∗(V )) : c ∈ V, V is complete}. For every complete set V such that
b∨c ∈ V , it must be that either b ∈ V or c ∈ V . Therefore, for every complete set
V that contains b∨ c, x ∈ Cn(V ), which means x ∈ ∩{Cn(G∗(V )) : b∨ c ∈ V, V
is complete}, i.e. x ∈ out2(G, b ∨ c), x ∈ out2(G, a).
3⇒ 1 : This is a special case of observation 2 of [7].
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3.2 Simple-Minded I/O Logic and TJS

The previous section proved a correspondence result between basic I/O logic and
TJS. In fact, we can prove a similar result between simple-minded I/O logic and
a weaker version of TJS.

Definition 7 (Weak joining-systems). A weak joining-systems of Boolean
algebras is a structure S = (A,B, S−) such that A,B are boolean algebras and
S− ⊆ A × B satisfies the first three conditions of a joining space. Here we call
S− the weak joining space of S.

Similar to Proposition 2, we can prove the existence of the largest and the
smallest weak joining space.

Proposition 4. Given two Boolean algebra A,B,

1. A×B is the largest weak joining space of A and B.
2. If {Si|i ∈ I} is a collection of weak joining spaces of A and B, then S∗ =
∩i∈ISi is a weak joining space of A and B.

Let G be a set of ordered pairs of formulas of L and L(Φ) be the Lindenbaum-
Tarski algebra of L. Let G≡ = {([a], [x])|(a, x) ∈ G} where [a], [x] are the equiva-
lence classes in L(Φ) respective contains a and x. By Proposition 4 we know that
there exists a unique smallest weak joining-systems extends G≡. If we denote it
as G+, then we have the following:

Proposition 5. For every ([a], [x]) ∈ G+, at least one of the following holds:

(1) ([a], [x]) is ([1], [1])
(2) for some ([b], [y]) ∈ G+, ([b], [y]) , ([a], [x])
(3) there exists ([a], [y]), ([a], [z]) ∈ G+ such that [x] = [y] · [z]
Proof: Similar to the proof of proposition 2.

With Proposition 5 in hand, we can prove the following correspondence result:

Theorem 3. The following three proposition is equivalent:

1 (a, x) ∈ deriv1(G)
2 ([a], [x]) ∈ G+

3 x ∈ out1(G, a)

Proof:
1⇒ 2 : This can be proved simply by induction one the length of derivation.
2⇒ 3 : Assume ([a], [x]) ∈ G+.
(i) If ([a], [x]) is ([1], [1]), we need to prove � ∈ ∩{Cn(G(T ))},which is obviously
true.
(ii) If for some ([b], [y]) ∈ G+, ([b], [y]) , ([a], [x]). Then by induction hypothesis
we know y ∈ Cn(G(b)). Since [a] ≤ [b] and [y] ≤ [x] we know x ∈ Cn(y). Hence
x ∈ Cn(G(b)).
(iii) If there exists ([a], [y]), ([a], [z]) ∈ G+ such that [x] = [y] · [z]. Then by
induction hypotheses we know y ∈ Cn(G(a))} and z ∈ Cn(G(a))}. Therefore
y ∧ z ∈ Cn(G(a)). That is, y ∧ z ∈ out1(G, a),x ∈ out1(G, a).
3⇒ 1 : This is a special case of observation 1 of [7].
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4 Application

In this section, we discuss some of the insights obtained from the algebraic
approach to normative systems.

4.1 The Core of a Normative System

In section 2.2 the narrowness relation , is defined as (a, x) , (b, y) iff b ≤ a and
x ≤ y. We can further define the strict narrowness relation ≺ as (a, x) ≺ (b, y)
iff (a, x) , (b, y) and not (b, y) , (a, x). A norm (a, x) is minimal in a joining-
systems, or normative system, S iff there is no (b, y) ∈ S such that (b, y) ≺ (a, x).
In [11], such a minimal norm is called a connection from A to B.

As noticed by [11], the set of all minimal elements of a joining-systems can
be viewed as the core of the system. If the joining space is finite, then the whole
joining-systems is uniquely determined by its minimal norms. If we know the
core of the system, we can logically deduce the whole system. Let for a joining-
systems S, let core(S) = {(a, x) ∈ S|(a, x) is minimal in S} denote the set of all
its minimal norms. The following are formal statements about the properties of
the core of finite joining-systems.

Observation 1. For all joining-systems S = (A,B, S). If S is finite, then
core(S) 	= ∅

Proof: The proof is trivial. Due to the fact that S is finite, there is no infinite
descending chain on ≺.

Observation 2. For all joining-systems S = (A,B, S), if S is finite, then for
any (a, x) ∈ S, there exists (b, y) ∈ core(S) such that (b, y) , (a, x).

Proof: Let (a, x) be an arbitrary norm in S. If (a, x) ∈ core(S), then (a, x) ,
(a, x) and we are done. If (a, x) /∈ core(S), then (a, x) is not a minimal norm.
Hence there exist some (b, y) such that (b, y) ≺ (a, x). If (b, y) ∈ core(S) then we
are done. If not, then there exist some (c, z) such that (c, z) ≺ (b, y). Since S is
finite, this procedure will stop at some point. Then by transitivity of ,, there
must exist some (a′, x′) ∈ core(S) such that (a, x) , (a′, x′).

Observation 3. For any joining-systems S = (A,B, S) and S′ = (A,B, S′),if
both S and S′ are finite, then core(S) = core(S′) iff S = S′.

Proof: The right to left direction is trivial. For the left to right direction. Assume
core(S) = core(S′). For any (a, x) ∈ S, by Observation 2 there exist (b, y) ∈
core(S) such that (b, y ≺ (a, x)). By assumption we know (b, y) ∈ core(S′).
Then by the definition of joining space we know (a, x) ∈ S′. Therefore S ⊆ S′.
Similarly we can prove S ⊇ S′.
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4.2 Harshness of Normative Systems

Suppose there are two norms (a, x) and (a, x ∧ y), it is reasonable to say that
the latter is harsher than the former because the latter demand us to do more
than the former under the same situation. For illustration we can let a represent
“you are invited to a dinner”, x represent “you dress your suit” and y represent
“you wash your hair”. For similar reasons we can consider (a∨b, x) to be harsher
than (a, x).

In general, (a, x) , (b, y) can intuitively be read as (a, x) is “harsher” than
(b, y). Moreover, we can lift this harshness concept to the level of normative
system as long as we use joining-systems to represent them.

Definition 8 (Harshness). Let S = (A,B, S) and S′ = (A,B, S′) be two
joining-systems, S is harsher than S′, denote as S � S′, iff for all (a, x) ∈ core(S)
there exist (b, y) ∈ core(S′) such that (a, x) , (b, y) and for all (b, y) ∈ core(S′)
there exist (a, x) ∈ core(S) such that (a, x) , (b, y).

Observation 4. For any joining-systems S = (A,B, S) and S′ = (A,B, S′),if
S � S′, then S′ ⊆ S.

Prove: Assume (a, x) ∈ S′, then there exist (b, y) ∈ core(S′) such that (b, y) ,
(a, x). By the definition of harshness there exist (c, z) ∈ core(S) such that (c, z) ,
(b, y). There fore (c, z) , (a, x) and (a, x) ∈ S.

This observation shows the more obligation a normative system contains, the
harsher it is. Such a result coincides with our intuition quite well.

4.3 Structural Similarity of Normative Systems

For two algebraic structures A and B, if they are isomorphic then they are essen-
tially the same. We can extend the isomorphism of Boolean algebra to joining-
systems. But before we do this, we first review the isomorphism of Boolean
algebra.

Definition 9 (Isomorphism of Boolean algebra). For two Boolean algebras
A = (A,+, ·,−, 0, 1) and A′ = (A′,+, ·,−, 0, 1) and h a map from A to A′. We
say that h is an isomorphism from A to A′ iff for any x, y ∈ A, h satisfies the
following conditions:

1. h is bijective
2. h(x+ y) = h(x) + h(y)
3. h(x · y) = h(x) · h(y)
4. h(1) = 1

Given an isoporphism h from A to A′, it is easy to check that for all x, y ∈ A
and x′, y′ ∈ A′, if h(x) = x′ and h(y) = y′, then x ≤ y iff x′ ≤ y′.

Now we extend isomorphism to joining-systems.
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Definition 10 (Isomorphism of joining-systems). For two joining-systems
S = (A,B, S) and S′ = (A′, B′, S′) and h a map from A∪B to A′ ∪B′. We say
that h is an isomorphism from S to S′ iff h satisfies the following conditions:

1. h is bijective
2. the restriction of h on A is an isomorphism from A to A′

3. the restriction of h on B is an isomorphism from B to B′

4. (a, x) ∈ core(S) iff (h(a), h(x)) ∈ core(S′)

If there exist some isomorphism form S to S′, then we say S and S′ are isomorphic.
Two isomorphic joining-systems can naturally be understood as structurally the
same. Although in the last item of the above definition we restrict ourselves to
the core of a joining-systems, the correspondence in fact covers the whole system.
That is, we have the following observation:

Observation 5. For any joining-systems S = (A,B, S) and S′ = (A,B, S′),if
h is an isomorphism from S to S′, then for any (a, x) ∈ A × B, (a, x) ∈ S iff
(h(a), h(x)) ∈ S′.

5 Conclusion and Future Work

The main contribution of this paper is a correspondence result between in-
put/output logic and the theory of joining-system. These results illustrate that
normative systems can be equivalently analyzed using three different tools, proof
theory, semantics and algebra. Each tool will give us some special insights of nor-
mative systems.

There are a lot of future workto be done. A natural direction is to build a
correspondence result between constrained I/O logic and TJS. Another direction
is to use more advanced logic and algebra to relate I/O logic and TJS. For
example, temporal logic can serve as the basis of I/O logic and Boolean algebra
with temporal operator can be the underlying algebra of TJS. Then we can build
another correspondence result between the new I/O logic and TJS.
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Abstract. Under relational models, epistemic logic agents are logically
omniscient. A common strategy to avoid this has been to distinguish
between implicit and explicit knowledge, and approaches based on re-
lational models have used implicit knowledge as a primitive, defining
explicit knowledge as implicit knowledge that satisfies some additional
requirement. In this work we follow the opposite direction: using neigh-
bourhood models, we take explicit knowledge as a primitive, then defin-
ing implicit knowledge as what the agent will know explicitly in an
‘ideal’ state. This approach, though natural, does not satisfy two ‘in-
tuitive’ properties: explicit knowledge does not need to be implicit, and
the consequent of an explicitly known implication with explicitly known
antecedent does not need to be implicitly known; we discuss why this is
the case. Then a modus ponens operation is defined, and it is shown how
it satisfies a third ‘intuitive’ property: if the agent knows explicitly an
implication and its antecedent, then after a modus ponens step she will
know explicitly the consequent.

1 Introduction

Under relational (Kripke) models, epistemic logic (EL; [1,2]) agents are logi-
cally omniscient: they know every tautology and their knowledge is closed under
modus ponens, so their knowledge is closed under logical consequence. This prop-
erty has been criticised because the knowledge of ‘real’ agents does not need to
have such properties (not even that of computational ones, who might lack of
time and/or space to deal with every logical consequence of what they have).

One of the most prominent ideas for solving this logical omniscience problem
has been to distinguish between an agent’s explicit knowledge, what she actually
has, and her implicit knowledge, what she can eventually obtain (e.g., [3,4,5,6,7]).
In particular, within approaches based on relational models, the modal universal
operator � has been understood as describing the agent’s implicit knowledge,
and then explicit knowledge has been defined as implicit knowledge that satisfies
some extra condition (e.g., awareness of the involved formula [5]; awareness that
the formula is true [6]; the existence of a justification for the formula [7]).

But relational models are not the unique semantic model for the epistemic
logic language, and recently there have been approaches that, using the so called
minimal or neighbourhood models ([8,9]; see [10] or Chapter 7 of [11] for detailed
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presentations), have studied not only epistemic phenomena but also their dy-
namics (prominently, the approach to dynamics of evidence of [12]). The present
work uses neighbourhood models to deal with the logical omniscience problem
by defining the notions of implicit and explicit knowledge within it. Differently
from relational approaches (and given the properties of the operator � in this
setting), we use the notion of explicit knowledge as a primitive, reading for-
mulas of the form �ϕ as “the agent knows ϕ explicitly”. Then, by using the
established relation between neighbourhood and relational models, we define
the notion of implicit knowledge in terms of its explicit counterpart: implicit
knowledge is what the agent will know explicitly in some ‘ideal’ final state that
can be reached through deductive inference steps.

Interestingly this approach, though natural, does not satisfy two properties
found in most (if not all) approaches dealing with explicit and implicit knowl-
edge: here explicit knowledge does not need to be implicit, and the consequent of
an explicitly known implication with explicitly known antecedent does not need
to be implicitly known. Nevertheless, our approach does have a third ‘dynamic’
property: if the agent knows explicitly an implication and its antecedent, then
after a modus ponens step she will know explicitly the consequent.

Our work is organised as follows. In Section 2 we recall the neighbourhood
models framework, in particular, the class of models in which knowledge im-
plies truth (i.e., those where �ϕ→ ϕ is valid). Then in Section 3 we recall the
connection between neighbourhood and relational models, and also the model
operations that can take us from the first to the second. With these tools we
move to Section 4 where, using a modality standing for the sequence of model
operations that take a neighbourhood model to this ‘ideal’ state, we define the
notions of explicit and implicit knowledge in the lines mentioned above. We
also study properties of these definitions, comparing them with what relational
approaches typically provide. Then in Section 5 we define a modus ponens oper-
ation and we discuss its most important property. Section 6 presents a summary
of the work and further research questions.

On Implicit Knowledge. The concept of explicit knowledge is, intuitively,
easy to grasp: it simply corresponds to what an agent has ‘at hand’ at some give
moment. The concept of implicit knowledge, on the other hand, might differ
from work to work; thus, a brief discussion is worthwhile.

In works where explicit knowledge is the primitive concept, the understanding
of implicit knowledge is clear from its definition in terms of explicit knowledge
(typically, what is implicit is the closure under logical consequence of what is ex-
plicit). Even in approaches that use implicit knowledge as the primitive concept,
implicit knowledge can be understood as what the agent would know explicitly
if she satisfied some ‘ideal’ property. For example, one can say that while the
awareness of approach of [5] understands implicit knowledge as what would be
explicit if the agent were aware of every formula, the acknowledgement approach
of [6] understands it as what would be explicit if the agent had acknowledged as
true every formula that is so, and the justification approach of [7] understands it
as what would be explicit if the agent had a justification for every true formula.
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The present work understand implicit knowledge as the closure under logical
consequence of explicit knowledge or, from a dynamic epistemic perspective, as
what the agent will know explicitly in an ideal state reachable via deductive
inference steps. Other variations following the lines of (or even combining) the
mentioned approaches (implicit is what will be explicit in an ideal state reachable
by ‘becoming aware’ of every formula, or/and by ‘building’ justifications for all
true formulas) are also possible, but will be left for further work.

2 Neighbourhood Models

Let P be a countable non-empty set of atomic propositions.

Definition 1 (Language L). Formulas ϕ, ψ of the language L are given by

ϕ ::= p | ¬ϕ | ϕ ∧ ψ | �ϕ

with p ∈ P. Formulas of the form �ϕ can be read (for now) simply as “the agent
knows ϕ”. Logical constants (�, ⊥), other boolean operators (∨, →, ↔) and the
modal operator � are defined as usual (�ϕ := ¬�¬ϕ for the latter).

Definition 2 (Knowledge neighbourhoodmodel). A knowledge neighbour-
hood (KN ) model is a tuple M = 〈W,N, V 〉 where (i) W 	= ∅ is a finite set of
possible worlds; (ii) N : W → ℘(℘(W )) is the neighbourhood function, assign-
ing a set of sets of possible worlds to each w ∈ W , and satisfying the following
property (the truth property): for every w ∈ W , if U ∈ N(w) then w ∈ U ;
(iii) V : P→ ℘(W ) is a valuation function.

Definition 3 (Semantic interpretation). Take a KN model M = 〈W,N, V 〉.
Given a formula ϕ ∈ L, the set �ϕ�M , containing the possible worlds in M where
ϕ is true (the truth set of ϕ), is recursively defined as follows.

�p�M :=V (p) �ϕ ∧ ψ�M := �ϕ�M ∩ �ψ�M

�¬ϕ�M :=W \ �ϕ�M ��ϕ�M :=
{
w ∈ W | �ϕ�M ∈ N(w)

}
The relevant clause is the one for �ϕ: a world w is in ��ϕ�M (i.e., �ϕ is true at
w) if and only if the set of worlds where ϕ is true, �ϕ�M , is in the neighbourhood
of w, N(w), that is,

w ∈ ��ϕ�M iff �ϕ�M ∈ N(w)

By unfolding the definition of � we obtain ��ϕ�M =
{
w ∈ W | �¬ϕ�M 	∈ N(w)

}
,

that is, w ∈ ��ϕ�M if and only if �¬ϕ�M 	∈ N(w).

When reading �ϕ as “the agent knows ϕ”, the neighbourhood function can
be seen simply as a function that indicates the set of formulas the agent knows
at each possible world: “the agent knows ϕ” at w (w ∈ ��ϕ�M ) if and only
if �ϕ�M ∈ N(w). This is very similar to what is done in syntactic approaches,
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where an agent’s knowledge is given by a set of formulas; the only difference is
that in a neighbourhood function each formula is represented not by a string of
symbols, but rather by a set of worlds: those in which the formula is true.

Note also how, different from [12], we use the ‘weakest’ semantic interpretation
in neighbourhood models. A stronger alternative establishes that

��ϕ�M :=
{
w ∈ W | there is U ∈ N(w) s. t. U ⊆ �ϕ�M

}
Under this alternative, w does not need to have �ϕ�M in its neighbourhood in

order to satisfy �ϕ; a subset of it is enough.1 Under this alternative, if ϕ→ ψ is
a valid formula, then so is �ϕ→ �ψ, a property that does not hold under the
semantic interpretation of Definition 3. In later sections we will understand �

as indicating the agent’s explicit knowledge, so a system in which this operator
has less closure properties is better for our purposes since, from our perspective,
an agent’s explicit knowledge does not need to have any minimal amount of
information; what matters are the epistemic actions the agent can perform.

3 From Neighbourhood to Relational Models

When epistemic logic formulas are interpreted in relational models we obtain
omniscient agents: their knowledge contains every validity (the validity of ϕ
implies the validity of �ϕ), and is closed under modus ponens (the K formula
� (ϕ→ ψ) → (�ϕ → �ψ) is valid), thus making it also closed under logical
consequence. It is precisely because of these properties that, when working in
relational models, the operator � is better understood as describing the agent’s
implicit semantic information. Then, typically, explicit knowledge is defined as
implicit knowledge that satisfies certain additional properties.

In neighbourhood models, the operator � does not have the mentioned prop-
erties: �ϕ does not need to be valid, even if ϕ is, and �ψ does not need to be
true, even if � (ϕ→ ψ) and �ϕ are. The only closure property that � has is
closure under substitution of equivalents: if ϕ and ψ are true in the same worlds
of every model (if ϕ↔ ψ is valid), then the agent knows the former if and only
if she knows the latter (�ϕ↔ �ψ is valid). 2 Thus, under this semantic model,
it makes more sense to understand � as indicating the agent’s explicit knowl-
edge. One natural question is, then, can we define the agent’s implicit knowledge
within this framework? And, if so, how?

For this we can follow the idea of syntactic approaches where explicit knowl-
edge is the primitive concept (usually given by an arbitrary set of formulas
without any closure property) and implicit knowledge is defined as the closure

1 These two semantic interpretations are compared in [13].
2 This property, still an important idealisation, is unavoidable when the truth of a
formula depends only on the set of possible words where it holds. It does not need
to hold when a formula’s semantic interpretation involves additional components, as
its syntactic form or its justification.
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under logical consequence of its explicit counterpart (see, e.g., the AGM ap-
proach to belief revision [14] or the foundationalist discussion in [15]). Thus, we
can define implicit knowledge in terms of what can be derived from its explicit
counterpart or, in a more ‘dynamic’ way, in terms of the epistemic actions that
make the agent’s explicit knowledge closed under logical consequence. Within
neighbourhood models there is a very natural way to do this, and the key is
the known connection between the logically omniscient relational models and
the ‘more realistic’ neighbourhood models: a relational model can be seen as a
neighbourhood model in which the neighbourhood function satisfies certain clo-
sure properties. Then we can define implicit knowledge as what the agent knows
explicitly when she reaches such ‘ideal’ state.

Let us make the connection precise (see [11] and [10] for details and proofs).

Definition 4. Let N be a neighbourhood function N over a domain W . We say
that N (i) is closed under supersets at w whenever U ∈ N(w) and U ⊆ T imply
T ∈ N(w); (ii) is closed under binary intersections at w whenever U ∈ N(w)
and T ∈ N(w) imply (U ∩ T ) ∈ N(w); (iii) contains the unit at w whenever
W ∈ N(w). We say that the function N is closed under supersets/ is closed under
binary intersections/ contains the unit in case it has the respective property for
every element of its domain. Similarly, we will say that a KN model M has one
of this properties in case its neighbourhood function has it.

What makes the three properties in Definition 4 interesting is that a finite
neighbourhood model that satisfies them corresponds to a relational model.
First, we state formally what “correspond” means.

Definition 5 (Pointwise equivalence). Let MK = 〈W,R, V 〉 be a relational
model (the ‘K’ stands for Kripke) with R ⊆ W ×W its the epistemic indistin-
guishability relation; define the satisfiability relation 	 between (MK , w) and a
formula ϕ in L in the standard way. Let M = 〈W,N, V 〉 be a neighbourhood
model with the same domain and the same atomic valuation. We say that MK

and M are pointwise equivalent whenever for every w ∈ W and for every for-
mula ϕ in L,

(MK , w) 	 ϕ if and only if w ∈ �ϕ�M

Then the theorem in our ‘knowledge’ (�ϕ→ ϕ) setting.

Theorem 1. Let MK = 〈W,R, V 〉 be a finite and reflexive relational model;
then MK is pointwise equivalent to some KN model that is closed under supersets
and binary intersections and contains the unit. Likewise (the direction relevant
for us), let M = 〈W,N, V 〉 be a KN model that is closed under supersets and
binary intersections and contains the unit; then M is pointwise equivalent to
some finite and reflexive relational model.

Then, given any KN model, we can apply the appropriate operations to make
it satisfy the mentioned properties, and thus make it pointwise equivalent to a
reflexive relational model.
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Definition 6. Let M = 〈W,N, V 〉 be a KN model.

(i) The model M⊆∗ = 〈W,N⊆∗ , V 〉 differs from M only in the neighbourhood
function, given for every w ∈W by

T ∈ N⊆∗(w) iff U ⊆ T for some U ∈ N(w)

(ii) The model M∩∗ = 〈W,N∩∗ , V 〉 differs from M only in the neighbourhood
function, given for every w ∈W by

T ∈ N∩∗(w) iff T = T1 ∩ · · · ∩ Tn with n > 0 and Ti ∈ N(w) (1 ≤ i ≤ n)

(iii) The model M+W = 〈W,N+W , V 〉 differs from M only in the neighbourhood
function, given for every w ∈W by

T ∈ N+W (w) iff T ∈ (N(w) ∪ {W})

Each operation extends the original model, yielding one with the expected
properties.

Proposition 1. Let M = 〈W,N, V 〉 be a KN model.

(i) Take the model M⊆∗ = 〈W,N⊆∗ , V 〉. Then, (a) M⊆∗ is a KN model, (b) for
every w ∈W , N(w) ⊆ N⊆∗(w), and (c) M⊆∗ is closed under supersets.

(ii) Take the model M∩∗ = 〈W,N∩∗ , V 〉. Then, (a) M∩∗ is a KN model, (b) for
every w ∈W , N(w) ⊆ N∩∗(w), and (c) M∩∗ is closed under binary inter-
sections.

(iii) Take the model M+W = 〈W,N+W , V 〉. Then, (a) M+W is a KN model,
(b) for every w ∈ W , N(w) ⊆ N+W (w), and (c) M+W contains the unit.

Since each operation preserves KN models, so does their composition. This
has two readings. First, technically, it allows us to introduce a modality for
describing the model that results from such composition (it is a KN model, so
we can evaluate L formulas in it). Second, the truth property is what makes
�ϕ → ϕ valid, and therefore what makes the agent’s information true. The
fact that the operations (each one of them and their composition) preserve the
property tells us that they preserve truth, that is, each one of them can be seen
as a deductive inference operation. There are, of course, other operations that
preserve this property, like closure under union, but there are also operations
that do not preserve it, like closure under subsets.

4 Explicit and Implicit Knowledge

We now introduce a modality for describing the behaviour of the composition of
these operations.
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Definition 7 (Full closure operation). Take a KN model M . The KN model
M∗ is given by the application of closure under supersets, then closure under
binary intersections and finally adding the unit, that is,

M∗ := ((M⊆∗)∩∗)+W
3

Definition 8 (Full closure modality). Take a KN model M , and let ϕ be a
formula in L; then 〈∗〉ϕ is also in L. The truth-set of formulas with 〈∗〉 (the
full closure modality) is given by

�〈∗〉ϕ�M := �ϕ�M∗

Its dual formula [∗]ϕ is defined as [∗]ϕ := ¬〈∗〉 ¬ϕ.

As mentioned, the neighbourhood function can be seen as returning the set
of formulas the agent knows at each possible world, close to the idea of explicit
knowledge in syntactic approaches. Then it is natural to use formulas that allows
us to look into such set for defining our notion of explicit knowledge:

KExϕ := �ϕ

In words, the agent knows explicitly a given ϕ at a world w in a KN model M
if and only if �ϕ�M ∈ N(w), that is, if and only if the truth set of ϕ at M is in
the neighbourhood of w at M .

The notion of implicit knowledge, on the other hand, is not defined as what
the agent has in the neighbourhood of w at M , but rather as what she will have
in the neighbourhood of that world after the model reaches the ‘ideal’ relational-
model-pointwise-equivalent state M∗:

KImϕ := 〈∗〉�ϕ

Thus, the agent knows implicitly a given ϕ at a world w in a KN model M
if and only if �ϕ�M∗ ∈ N∗(w), that is, if and only if the truth set of ϕ at
M∗ is in the neighbourhood of w at M∗. This states that the agent knows ϕ
implicitly if and only if she knows it explicitly after her knowledge set (given by
the neighbourhood function) has reached certain ‘ideal’ closure properties.

It is worthwhile to emphasise some relevant features of these definitions. First,
we are using explicit knowledge as the primitive, and then defining implicit
knowledge in terms of it. This is the typical idea in syntactic approaches where
explicit knowledge is given as a set of formulas and implicit knowledge is given
as its closure under logical consequence. But in semantic approaches, like our
current one, what is typically done is the opposite: implicit knowledge is taken
as a primitive (in relational models it corresponds to the modal universal oper-
ator) and then explicit knowledge is defined in terms of it, usually as implicit
knowledge that satisfy some extra property(ies).

3 In fact, the three operations commute pairwise when working with finite models, so
we can apply them in any order.
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Second, we have defined implicit knowledge in M as what the agent knows
explicitly in a KN model that extends the current one (Proposition 1) and that
behaves like a relational model (Theorem 1). Thus, implicit knowledge has the
omniscient properties.

Fact 1. Let ϕ and ψ be formulas in L. Then

(i) if ϕ is valid then so is KImϕ (if ϕ is valid, then it is implicitly known),

(ii) the formula KIm(ϕ→ ψ) → (KImϕ → KImψ) is valid (implicit knowledge
is closed under modus ponens).

Proof. For the first, given any KM model M = 〈W,N, V 〉, M∗ is also a KM
model (Proposition 1) and therefore, since ϕ is valid, �ϕ�M∗ = W . By Propo-
sition 1 the neighbourhood of every w ∈ W at M∗ contains the unit, so W ∈
N∗(w), that is, �ϕ�M∗ ∈ N∗(w). Then w ∈ ��ϕ�M∗, that is, w ∈ �〈∗〉�ϕ�M .

For the second, observe that the full closure operation produces a unique re-
sult. Then, for any KN model M = 〈W,N, V 〉 and any world w ∈ W , w ∈
�〈∗〉� (ϕ→ ψ)∧〈∗〉�ϕ�M gives us w ∈ �〈∗〉 (� (ϕ→ ψ) ∧ �ϕ)�M (if the opera-
tion produced more than one result, we could have � (ϕ→ ψ) and �ϕ true in dif-
ferent models, not in the unique M∗). Then we have w ∈ �� (ϕ→ ψ) ∧ �ϕ�M∗,
that is, w is in both �� (ϕ→ ψ)�M∗ and ��ϕ�M∗. But since M∗ is pointwise
equivalent to a relational model (in which the K formula � (ϕ→ ψ) → (�ϕ →
�ψ) is valid), we also have w ∈ ��ψ�M∗ and hence w ∈ �〈∗〉�ψ�M .

When proving part (ii) we used the fact that implicit knowledge is defined as
what the agent knows explicitly in the single ‘ideal’ (and final, from a deductive
inference point of view) model M∗. We could have defined this notion as what
the agent knows explicitly in some intermediate point, stating in this way that
implicit knowledge is what the agent can eventually derive, but we did not follow
that idea because, as we will see and discuss (Subsection 4.1), the agent might
know explicitly a given ϕ at some KN model M and yet not know it explicitly
in the ‘ideal’ model M∗. Thus, we have chosen to define implicit knowledge
not as what might be explicitly known in some intermediate step, but rather as
what will survive all the reasoning process and therefore not only will become
explicitly known at some point, but also will still be explicitly known in the
‘ideal’ final state. This highlights that our implicit knowledge corresponds to
what will be explicit ‘in the limit’ of the deductive inference reasoning process,
that is, it is a form of stable explicit knowledge that will not be affected by
further deductive inferences.4

It is also interesting to observe how the model operations that define M∗ are
closure operations, that is, operations that make the neighbourhood function
of the model closed under certain operations between sets. Thus, it is not only
that we are defining implicit knowledge as what agent knows explicitly after

4 In this sense, our approach is close to the idea of identification in the limit [16]
proposed in learning theory, which has been already studied in a dynamic epistemic
logic framework [17].
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some operations: we are defining implicit knowledge as what the agent knows
explicitly after a certain fixed point is reached, the fixed point M∗ where the
neighbourhood function is closed under supersets and binary intersections and
contains the unit. From this perspective, the omniscient properties the agent’s
knowledge has in the ‘ideal’ relational-model-pointwise-equivalent state are then
not seen as ‘static’ properties that the agent’s knowledge either has or does not
have; instead, they are understood as the final result of the iterative application
of the adequate epistemic actions, in this case, truth-preserving reasoning steps.

4.1 Properties of the Defined Notions

Most approaches that deal with both explicit and implicit knowledge [3,4,5,6]
satisfy two intuitive properties. The first, a property that has been considered al-
most mandatory in any approach for these notions, states that explicit knowledge
is also implicit: if the agent knows explicitly any formula, then she will still know
it once her knowledge is closed under logical consequence. The second indicates
that the consequent of an explicitly known implication with explicitly known
antecedent is already implicitly known (what we might call an implicit/explicit
version of the K formula): if the agent knows explicitly and implication and its
antecedent, then surely the consequent is something she can derive.

These two properties are not satisfied in our framework. First, explicit knowl-
edge is not always implicit.

Fact 2. The formula KExϕ→ KImϕ is not valid in KN models.

Proof. We just need to provide a formula ϕ together with a KN model and a world
in it where KExϕ∧¬KImϕ (that is, �ϕ∧¬〈∗〉�ϕ) holds. Take ϕ as ¬� q, and
consider a four-worlds KN model M = 〈W = {w1, w2, w3, w4}, N, V 〉 over the
set of atomic propositions {p, q} where V (p) = {w1, w2} and V (q) = {w1, w3}.
Moreover, suppose that the neighbourhood function is given by

N(w1) :=
{
{w1, w2}, {w1, w3, w4},W

}
, N(w2) = N(w3) = N(w4) := ∅

Observe how �¬� q�M = W is in N(w1) so w1 ∈ ��¬� q�M : the agent knows
explicitly ¬� q at w1 in M . Now, this is the neighbourhood function of M∗:

N∗(w1) =
{
{w1}, {w1, w2}, {w1, w3}, {w1, w4},
{w1, w2, w3}, {w1, w2, w4}, {w1, w3, w4},W

}
N∗(w2) = N∗(w3) = N∗(w4) = {W}

Note how �¬� q�M∗ = {w2, w3, w4} is not in N∗(w1) so w1 	∈ ��¬� q�M∗, that
is, w1 	∈ �〈∗〉�¬� q�M : the agent does not know implicitly ¬� q at w1 in M .

Second, the consequent of an explicitly known implication whose antecedent
is also explicitly known does not need to be implicitly known.

Fact 3. The formula KEx(ϕ→ ψ) → (KExϕ → KImψ) is not valid in KN
models.
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Proof. Consider the KN model M in the proof of Fact 2 and take ϕ as � and
ψ as ¬� q; we will show that, at w1 in M , although � → ¬� q and � are
explicitly known, w1 ∈ �� (� → ¬� q) ∧ ���M , ¬� q is not implicitly known,
w1 /∈ �〈∗〉�¬� q�M .

We have ���M = �� → ¬� q�M = W in N(w1), so w1 ∈ �� (� → ¬� q) ∧
���M : the agent knows explicitly both � → ¬� q and � at w1 in M . Still, as
before, �¬� q�M∗ = {w2, w3, w4} is not in N∗(w1) so w1 	∈ ��¬� q�M∗, that is,
w1 	∈ �〈∗〉�¬� q�M : the agent does not know implicitly ¬� q at w1 in M .

The reason for the failure of these properties is that our agent has knowledge
not only about propositional facts but also about her own (and eventually other
agents’) knowledge. Since the agent’s knowledge (semantically, the neighbour-
hood function) changes through the operations, she might know something at
some point and not know it afterwards (semantically, we might have U ∈ N(w)
with U = �ϕ�M for some ϕ but, though Proposition 1 guarantees U ∈ N∗(w),
nothing guarantees U = �ϕ�M∗). This is nothing but an instance of the so called
‘Moorean phenomena’, which occurs when an epistemic action invalidates itself.
In its best known incarnation it appears as formulas that, after being publicly
announced [18,19], are not known [20,21]; in our case it appears as situations in
which some logical consequences of what is explicitly known at some stage are
not explicitly known after our closure-under-logical-consequence operation.

But this does not mean that neighbourhood models are not adequate for
representing explicit and implicit knowledge. They behave as expected when we
restrict our attention to formulas whose truth-values are not affected by the
operations (this includes every purely propositional formula).

Proposition 2. Let ϕ → ψ and ϕ be formulas whose truth-value is preserved
by the full closure operation, that is, assume

ϕ→ 〈∗〉ϕ, and (ϕ→ ψ)→ 〈∗〉 (ϕ→ ψ)

Then the following formulas are valid

KExϕ→ KImϕ, and KEx(ϕ→ ψ)→ (KExϕ→ KImψ)

Proof. Take any KN model M = 〈W,N, V 〉 and a world w ∈ W . The validity of
ϕ→ 〈∗〉ϕ says that w ∈ �ϕ�M implies w ∈ �〈∗〉ϕ�M , that is, �ϕ�M ⊆ �〈∗〉ϕ�M ,
i.e., �ϕ�M ⊆ �ϕ�M∗. Likewise, the validity of (ϕ → ψ) → 〈∗〉 (ϕ→ ψ) gives us
�ϕ→ ψ�M ⊆ �ϕ→ ψ�M∗. Recall that KExϕ := �ϕ and KImϕ := 〈∗〉�ϕ.

For the first, suppose w ∈ ��ϕ�M ; then �ϕ�M ∈ N(w). Since N∗(w) extends
N(w) we have �ϕ�M ∈ N∗(w); since �ϕ�M ⊆ �ϕ�M∗ and N∗(w) is closed under
supersets we have �ϕ�M∗ ∈ N∗(w), that is, w ∈ ��ϕ�M∗ so w ∈ �〈∗〉�ϕ�M .

For the second, suppose w ∈ �� (ϕ→ ψ) ∧ �ϕ�M ; then we have �ϕ → ψ�M

and �ϕ�M in N(w). Since N∗(w) extends N(w) we have �ϕ → ψ�M and �ϕ�M

in N∗(w); since �ϕ�M ⊆ �ϕ�M∗, �ϕ→ ψ�M ⊆ �ϕ→ ψ�M∗ and N∗(w) is closed
under supersets, we have �ϕ→ ψ�M∗ and �ϕ�M∗ in N∗(w), that is, w is in both
�� (ϕ→ ψ)�M∗ and ��ϕ�M∗, i.e., in both �〈∗〉� (ϕ→ ψ)�M and �〈∗〉�ϕ�M .
Then by Fact 1 we have w in �〈∗〉�ψ�M .
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Note how we have not required for ϕ’s (and (ϕ → ψ)’s) truth-value to be
invariant under the full closure operation (syntactically, ϕ↔ 〈∗〉ϕ; semantically,
�ϕ�M = �ϕ�M∗). We have only asked for ϕ’s (and (ϕ → ψ)’s) truth to be
preserved by it. Thus, in order to obtain the expected properties we do not need
to restrict ourselves to formulas ϕ whose truth set does not change after the full
closure operation, �ϕ�M = �ϕ�M∗; we just need to restrict ourselves to formulas
ϕ whose truth set does not shrink, �ϕ�M ⊆ �ϕ�M∗. More precisely, an explicitly
know formula is also implicitly known and the consequent of an explicitly known
implication whose antecedent is also explicitly known is implicitly known as long
as we are dealing with formulas whose truth set will not become smaller as a
consequence of our deductive inference operations.

5 A Modus Ponens Action

We have defined implicit knowledge in terms of an operation that makes the
agent’s knowledge closed under logical consequence (technically, an operation
that makes the neighbourhood model pointwise equivalent to a relational model).
The operation represents the result of several deductive inference steps, but it is
also interesting to see how the agent’s knowledge changes after just one of them.

Definition 9. Let M = 〈W,N, V 〉 be a KN model, and let η → χ be a formula
in L. The modus ponens operation with η → χ produces the model Mη→χ

↪−→ =

〈W,Nη→χ
↪−→ , V 〉 in which, for every w ∈ W , the set Nη→χ

↪−→ (w) is given by

Nη→χ
↪−→(w) :=

⎧⎨⎩N(w) ∪ {�χ�M} if {�η�M , �η → χ�M} ⊆ N(w)

N(w) otherwise

In words, a modus ponens operation adds the truth set of the implication’s con-
sequent to the neighbourhood of every world in which the agent already has the
truth set of both the implication and its antecedent.

Proposition 3. Let M = 〈W,N, V 〉 be a KN model. Then so is Mη→χ
↪−→ .

The previous proposition tells us that our operation represents a
truth-preserving (i.e., deductive) inference step. Now, for the language.

Definition 10. The modality 〈η→χ
↪−→〉 is semantically defined as follows:

�〈η→χ
↪−→〉ϕ�M := �ϕ�

Mη→χ
↪−→

There is no precondition for this action, but this does not affect its spirit. Instead
of understanding it as a partial function (defined only when the implication and
its antecedent are present), we understand it as a total one that in some cases
(the implication or its antecedent or both are not present) will have no effect.

Interestingly, if the agent knows explicitly an implication and its antecedent,
then after a modus ponens step she will know explicitly the consequent.
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Proposition 4. The following is valid in KN models:

KEx(η → χ)→ (KExη → 〈η→χ
↪−→〉KExχ)

In words, if the agent knows explicitly η and η → χ, then after a modus ponens
step she will know η explicitly.

Proof. Take any KN model M = 〈W,N, V 〉, any world w ∈ W , and suppose
{�η�M , �η → χ�M} ⊆ N(w); then �χ�M ∈ Nη→χ

↪−→(w). Now consider the models
M and Mη→χ

↪−→ : the only difference between them is that, in the second, the neigh-

bourhood of each world might have been extended with one single set: �χ�M .
But then, the only formulas whose truth set can be affected are those that state
something about the knowledge of χ, that is, formulas with �χ as a subformula.

Thus, the truth set of χ itself cannot change, so �χ�M = �χ�
Mη→χ

↪−→ . Therefore,

�χ�
Mη→χ

↪−→ ∈ Nη→χ
↪−→(w).

Note how it is essential that the operation adds only one set. Operations that
add two or more sets, even truth-preserving ones, do not guarantee that the agent
will know explicitly the just inferred formulas: one of them might state lack of
knowledge about the other. Consider a conjunction elimination operation for η∧χ
that adds the truth-set of η and the truth-set of χ: we might have χ := ¬� η so
χ might not be true after the operation, and hence cannot be known (recall that
in our models �ϕ→ ϕ is valid).5

Though at first sight this proposition might seem to contradict Fact 3, this is
not the case. The difference is that, while implicit knowledge is defined as what
will be explicit when truth-preserving inference steps have reached a fixed point,
our modus ponens operation represents one single such step that adds at most
one single formula to the agent’s knowledge. Together, these results tell us that
a single modus ponens step cannot invalidate itself (Proposition 4), but it might
be invalidated by further deductive steps (Fact 3). This is indeed what happens
in the proof of Fact 3: the agent knows explicitly both � and � → ¬� q (at w1 in
M) so after a modus ponens step she reaches a stage where she knows explicitly
¬� q. But she also knows explicitly both p and p→ q, so further modus ponens
steps will make q explicitly known, thus invalidating the previous outcome. This
is yet another proof that one should always know ‘where to stop’.

6 Conclusions and Further Work

We have recalled the neighbourhood models framework, arguing that from an
epistemic point of view, in these models formulas of the form �ϕ are better
read as describing the agent’s explicit knowledge. Then, using the known con-
nection between neighbourhood and relational models, we have defined a model
operation that makes a neighbourhood model pointwise equivalent to a rela-
tional model, and we have defined a modality for it. With this modality we have

5 The simplest instance of this, η := p, gives us exactly the paradigmatic form of
Moorean formulas, since η ∧ χ becomes p ∧ ¬� p (see [21]).
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defined the notion of implicit knowledge as what the agent will know explic-
itly in this ‘ideal’ final state, and we have discussed some properties of these
two notions, comparing them with some properties typically obtained in other
frameworks. We have also introduced and briefly discussed an operation and a
modality representing a single-step modus ponens action.6

There are several ways to extend the ideas presented in this work; here we
mention the ones we find more appealing. (i) As Proposition 1 shows, the de-
fined model operations preserve the truth property, and hence they can be seen
as deductive inference operations, but it would be also interesting to deal with
non-deductive inference steps. This is related to the following point since in the
present work (ii) we have worked only with the notion of knowledge, but it also
makes sense to work with other notions, like beliefs. Given the properties of �,
this would correspond to a notion of explicit beliefs, so we can also define a no-
tion of implicit beliefs in terms of the explicit ones. Finally, (iii) though studying
different attitudes and their dynamics separately is interesting, it is even more
interesting to study them together and, in particular, to explore the epistemic
actions that arise from their combination (e.g., [22] understand abductive reason-
ing as a process that changes the agent’s beliefs according to what she knows).
It would be interesting to work with both an agent’s knowledge and beliefs in a
neighbourhood model setting, and also to explore inference steps that combine
these two notions (e.g., in the style of [6]).

References

1. Hintikka, J.: Knowledge and Belief: An Introduction to the Logic of the Two No-
tions. Cornell University Press, Ithaca (1962)

2. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning about knowledge. The
MIT Press, Cambridge (1995)

3. Levesque, H.J.: A logic of implicit and explicit belief. In: Proc. of AAAI 1984,
Austin, TX, pp. 198–202 (1984)

4. Vardi, M.Y.: On epistemic logic and logical omniscience. In: Halpern, J.Y. (ed.)
TARK, pp. 293–305. Morgan Kaufmann Publishers Inc., San Francisco (1986)

5. Fagin, R., Halpern, J.Y.: Belief, awareness, and limited reasoning. Artificial Intel-
ligence 34(1), 39–76 (1988)

6. Velázquez-Quesada, F.R.: Dynamic epistemic logic for implicit and explicit beliefs
(2013), http://personal.us.es/frvelazquezquesada/docs/delieb-01-05.pdf

(accepted for publication)
7. Renne, B.: Multi-agent justification logic: Communication and evidence elimina-

tion. Synthese 185(suppl. 1), 43–82 (2012)
8. Scott, D.: Advice in modal logic. In: Lambert, K. (ed.) Philosophical Problems in

Logic, Reidel, Dordrecht, The Netherlands, pp. 143–173 (1970)
9. Montague, R.: Universal grammar. Theoria 36(3), 373–398 (1970)

10. Pacuit, E.: Neighborhood semantics for modal logic. an introduction. In: Lecture
Notes for the ESSLLI Course A Course on Neighborhood Structures for Modal
Logic (2007)

6 Derivation systems for the introduced modalities are not presented here for space
reasons.

http://personal.us.es/frvelazquezquesada/docs/delieb-01-05.pdf


252 F.R. Velázquez-Quesada

11. Chellas, B.F.: Modal Logic: An Introduction. Cambridge University Press, Cam-
bridge (1980)

12. van Benthem, J., Pacuit, E.: Dynamic logics of evidence-based beliefs. Studia Log-
ica 99(1), 61–92 (2011)

13. Areces, C., Figueira, D.: Which semantics for neighbourhood semantics? In:
Boutilier, C. (ed.) IJCAI 2009, pp. 671–676. Morgan Kaufmann Publishers Inc.,
San Francisco (2009)

14. Alchourrón, C.E., Gärdenfors, P., Makinson, D.: On the logic of theory change: Par-
tial meet contraction and revision functions. The Journal of Symbolic Logic 50(2),
510–530 (1985)

15. Rott, H.: Change, Choice and Inference: a Study of Belief Revision and Nonmono-
tonic Reasoning. Oxford Logic Guides, vol. 42. Oxford Science Publications (2001)

16. Gold, E.M.: Language identification in the limit. Information and Control 10(5),
447–474 (1967)

17. Gierasimczuk, N.: Bridging learning theory and dynamic epistemic logic. Synthese
(Knowledge, Rationality and Action) 169(2), 371–384 (2009)

18. Plaza, J.A.: Logics of public communications. In: Emrich, M.L., Pfeifer, M.S.,
Hadzikadic, M., Ras, Z.W. (eds.) Proceedings of the 4th International Sympo-
sium on Methodologies for Intelligent Systems, pp. 201–216. Oak Ridge National
Laboratory, ORNL/DSRD-24, Tennessee (1989)

19. Gerbrandy, J., Groeneveld, W.: Reasoning about information change. Journal of
Logic, Language, and Information 6(2), 147–196 (1997)

20. van Ditmarsch, H., Kooi, B.P.: The secret of my success. Synthese 151(2), 201–232
(2006)

21. Holliday, W.H., Icard, T.F.: Moorean phenomena in epistemic logic. In: Beklemi-
shev, L., Goranko, V., Shehtman, V. (eds.) Advances in Modal Logic, pp. 178–199.
College Publications (2010)

22. Velázquez-Quesada, F.R., Nepomuceno-Fernández, Á., Soler-Toscano, F.: An
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Abstract. We study the expressivity hierarchy of languages for epis-
temic awareness models based on the operators for implicit and explicit
knowledge, implicit and explicit possibility and awareness, providing in
each case an expressivity characterisation in terms of bisimulation.

1 Introduction

One of the most influential approaches to deal with the logical omniscience
problem within epistemic logic (EL; [1,2]) has been awareness logic [3]. This
approach is based on the idea of distinguishing between the agent’s potential
implicit knowledge, what she can eventually get, and her actual explicit knowl-
edge, what she currently has (see, e.g., [4,5,6]). In particular, the key observation
in awareness logic is that, in order for an implicitly known ϕ to be explicitly
known, the agent needs to be aware of it.

Of particular interest not only in logic but also in computer science and eco-
nomics has been the case of awareness based on atomic propositions, in which
an agent’s awareness is generated by a set of atoms. In such case, and within
the EL framework, the agent’s knowledge is semantically represented with an
epistemic awareness model : a relational model extended with a function A that
assigns a set of atomic propositions to the agent at each possible world. Then it
is said that the agent is aware of a given ϕ at some world w if and only if every
atom in ϕ is in A(w) (in symbols, atm(ϕ) ⊆ A(w)).

Typically, the language used for describing epistemic awareness models has
been the standard modal language extended with an operator that verifies wheth-
er the atoms of a given formula belong to the A-set of a given possible world, that
is, a language whose primitive epistemic operators are that of implicit knowl-
edge (the standard universal modal operator) and that of awareness (the just
described one). Yet, there are several other possibilities: one might consider a
language in which the basic operators are those for explicit knowledge and aware-
ness, or another based only on explicit knowledge, or even one that uses only
explicit possibility (the ‘dual’ of explicit knowledge). The choice of the language
is crucial: different languages might have different expressivity, and hence might
represent different intuitions about which kind situations (i.e., models) can or
cannot be distinguished from the agent’s perspective.
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The present work explores the expressivity hierarchy of different languages
over epistemic awareness models. We take primitive operators for the notions
of implicit knowledge, implicit possibility, explicit knowledge, explicit possibility
and awareness, and then we compare the expressivity of the different languages
that arise from these operator’s combinations.1 Besides the expressivity hier-
archy, the main results of our work are the characterisation of the discussed
languages’ expressivity in terms of their appropriate concepts of bisimulation.

Notation. Let L1 and L2 be languages for the same semantic model.

– L1 � L2, “L2 is at least as expressive as L1”, indicates that every formula
in L1 is semantically equivalent to some formula in L2. A typical proof for
such a statement is a translation tr : L1 → L2 from any formula ϕ in L1 to
a formula tr(ϕ) in L2 such that, in any given semantic model, ϕ holds if and
only if tr(ϕ) holds. Note how � is reflexive and transitive.

– L1 	� L2, “L2 is not as expressive as L1”, indicates that there is a formula
in L1 that does not correspond semantically to any formula in L2. A typical
proof for such a statement is to provide two semantic models that satisfy
exactly the same formulas in L2, and then provide a formula in L1 that holds
in one model but fails in the other.

– L1 ≺ L2, “L2 is more expressive than L1” (or, alternatively, “L1 is less
expressive than L2”), is defined as ≺ :=� ∩ 	�.

– L1 ≈ L2, “L1 and L1 are equally expressive”, is defined as ≈ :=� ∩ �.
– L1 0 L2, “L1 and L2 are incomparable”, is defined as 0 := 	� ∩ 	�.

2 Basic Definitions

Let P be a countable non-empty set of atomic propositions.

Definition 1 (Epistemic awareness model/state). An epistemic awareness
model (EAM ) M is a tuple 〈W,R,A, V 〉 where W is a non-empty set of possible
worlds, R ⊆ (W×W ) is an indistinguishability relation (we define R[w] := {u ∈
W | Rwu}), A : W → ℘(P) is an awareness function, and V : P → ℘(W ) is an
atomic valuation. A pair (M,w) with w ∈ W is called an epistemic awareness
state (EAS) and w is called its evaluation point. An epistemic awareness model
M is image-finite if and only if R[w] is finite for every world w in it.

Epistemic awareness models can be described with different languages, from
propositional ones to different variations of modal languages and even first-order
ones. Here we focus on extensions of the propositional language that include a
subset of the following modal operators:

�ϕ - The agent knows ϕ implicitly
Kϕ - The agent knows ϕ explicitly
Aϕ - The agent is aware of ϕ

�ϕ - The agent considers ϕ possible implicitly
Lϕ - The agent considers ϕ possible explicitly

1 We work in the single agent case, leaving group-knowledge operators like “everybody
knows” and “it is common knowledge that” for further work.
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Considering � and � is natural for any extension of a modal framework.
For A (awareness) and K (explicit knowledge), they are standard operators for
languages over epistemic awareness models. Finally, L is the dual of K.

Definition 2 (Languages).

– L( ) is the propositional language, crucially including the always true con-
stant �.

– L(O1, . . . , On) is the language extending L( ) with the operators O1, . . . , On.
– For any language L and any Q ⊆ P, L|Q is the set of formulas in L built by

using only atoms in Q, that is,

L|Q := {ϕ ∈ L | atm(ϕ) ⊆ Q}2

Here is the semantic interpretation for each one of our relevant operators.

Definition 3 (Semantic interpretation). Let (M,w) be an epistemic aware-
ness state with M = 〈W,R,A, V 〉. Then we have

(M,w) 	 �ϕ iff for all u ∈ R[w] we have (M,u) 	 ϕ
(M,w) 	 �ϕ iff there is a u ∈ R[w] such that (M,u) 	 ϕ
(M,w) 	 K ϕ iff atm(ϕ) ⊆ A(w) and for all u ∈ R[w] we have (M,u) 	 ϕ
(M,w) 	 Lϕ iff atm(ϕ) ⊆ A(w) and there is a u ∈ R[w] such that (M,u) 	 ϕ
(M,w) 	 Aϕ iff atm(ϕ) ⊆ A(w)

where the function atm, returning the set of atoms appearing in a given formula
ϕ, is formally defined as follows:

atm(�) := ∅ atm(�ϕ) := atm(ϕ)
atm(p) := {p} atm(�ϕ) := atm(ϕ)

atm(¬ϕ) := atm(ϕ) atm(K ϕ) := atm(ϕ)
atm(ϕ ∧ ψ) := atm(ϕ) ∪ atm(ψ) atm(Lϕ) := atm(ϕ)

atm(Aϕ) := atm(ϕ)

When negation is present, the implicit possibility operator � and the implicit
knowledge operator � can be defined in terms of each other (�ϕ ↔ ¬�¬ϕ
and �ϕ ↔ ¬�¬ϕ are valid), and hence one of them can be dropped from
any language (here we will drop �) without losing expressivity. This is not the
case with their explicit counterparts. Explicit possibility L is indeed definable in
terms of explicit knowledge K and propositional operators (Lϕ ↔ ¬K ¬ϕ ∧
K (ϕ ∨ ¬ϕ)), but the converse is not the case (this statement will be proved
formally later on). Thus, here we will work with the operators in {�,K, L,A}.

One last definition before starting our work.

Definition 4 (Modal equivalence). Let L be a language, and take any Q ⊆ P.
Two awareness epistemic states (M,w) and (M ′, w′) are L-modally equivalent
up to Q, notation (M,w) ≡L

Q (M ′, w′), whenever for all ϕ ∈ L|Q

(M,w) 	 ϕ if and only if (M ′, w′) 	 ϕ

2 The function atm is defined formally in Definition 3.
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3 Expressivity Hierarchy

3.1 Equivalence Classes for Languages L(�, A) and L(K,L)

The following results are from [7].

Proposition 1 ([7]). The languagesL(�, A), L(�,K), L(�, A,K),L(�, A, L),
L(�,K, L) and L(�, A,K,L) are all equally expressive.

Proof. The proposition follows from the following equivalences:

Aϕ ↔ K (ϕ ∨ ¬ϕ), K ϕ ↔ (�ϕ ∧ Aϕ), Lϕ ↔ (¬�¬ϕ ∧ Aϕ)

Proposition 2 ([7]). The languages L(K,L), L(K,A), L(L,A), L(K) and
L(K,L,A) are all equally expressive.

Proof. The proposition follows from the following equivalences:

Lϕ↔ (¬K ¬ϕ ∧ Aϕ), K ϕ↔ (¬L¬ϕ ∧ Aϕ), Aϕ↔ K (ϕ ∨ ¬ϕ)
Each one of these equivalence classes can be characterised semantically.

Definition 5 (Extended bisimulation [7]). Take any Q ⊆ P. An extended
Q-bisimulation between epistemic awareness models M = 〈W,R,A, V 〉 and M ′ =
〈W ′, R′,A′, V ′〉 is a relation ZQ ⊆ (W ×W ′) such that, for every (w,w′) in ZQ:

– atoms: for every p ∈ Q, w ∈ V (p) iff w′ ∈ V ′(p);
– aware: Q ∩ A(w) = Q ∩ A′(w′);
– forth: if u ∈ R[w] then there is a u′ ∈ R′[w′] such that ZQuu

′;
– back: if u′ ∈ R′[w′] then there is a u ∈ R[w] such that ZQuu

′.

(M,w) and (M ′, w′) are extended Q-bisimilar states, (M,w) 1A
Q (M ′, w′), when

there is an extended Q-bisimulation between M and M ′ that contains (w,w′).

Theorem 1 ([7]). Let (M,w) and (M ′, w′) be epistemic awareness states with
M and M ′ image-finite models, and take Q ⊆ P. Then,

(M,w) 1A
Q (M ′, w′) iff (M,w) ≡L(�,A)

Q (M ′, w′)

Definition 6 (Awareness bisimulation [7]). Take any Q ⊆ P. An awareness
Q-bisimulation between epistemic awareness models M = 〈W,R,A, V 〉 and M ′ =
〈W ′, R′,A′, V ′〉 is a relation ZQ ⊆ (W × W ′) such that every (w,w′) in ZQ

satisfies the clauses atoms and aware of Definition 5, plus:

– a-forth: if u ∈ R[w] then there is a u′ ∈ R′[w′] such that ZQ∩A(w)uu
′;

– a-back: if u′ ∈ R′[w′] then there is a u ∈ R[w] such that ZQ∩A′(w′)uu
′.

where ZQ∩A(w) is an awareness (Q ∩ A(w))-bisimulation and ZQ∩A′(w′) is an
awareness (Q∩A′(w′))-bisimulation, both between M and M ′. Two states (M,w)
and (M ′, w′) are awareness Q-bisimilar, (M,w)↔Q(M

′, w′), when there is an
awareness Q-bisimulation between M and M ′ that contains (w,w′).
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Theorem 2 ([7]). Let (M,w) and (M ′, w′) be epistemic awareness states with
M and M ′ image-finite models, and take Q ⊆ P. Then,

(M,w)↔Q(M
′, w′) iff (M,w) ≡L(K,L)

Q (M ′, w′)

The following relation between these equivalence classes can be established.

Proposition 3. L(K,L) is not as expressive as L(�, A) (L(�, A) 	� L(K,L)).

Proof. Consider the following epistemic awareness states N1 and N ′
1 (evaluation

point doubled circled), in which each possible world contains the atoms true at it
(absence represents falsity) and its respective A-set appears next to it.

p p

w u

{ } { }

N1

p

w′ u′

{ } { }

N ′
1

These states are awareness {p}-bisimilar, (N1, w)↔{p}(N ′
1, w

′): the evaluation
points coincide, modulo p, in atomic valuation and in A-sets, and their successors
are ({p}∩{ })- (i.e., ∅-) bisimilar. Thus, by Theorem 2, these states are modally
equivalent in L(K,L)|{p}. Still, � p ∈ L(�, A)|{p} distinguishes them: it holds
at (N1, w) but fails at (N ′

1, w
′)). Hence, L(�, A) 	� L(K,L).

Given that the operators in L(K,L) can be defined in terms of those in
L(�, A), in fact we have the following:

Corollary 1 ([7]). L(�, A) is more expressive than L(K,L) (L(K,L)
≺ L(�, A)).

Thus, we have the following relation between the languages in the equivalence
classes of L(�, A) and L(K,L) (an arrow from L1 to L2 indicates L1 ≺ L2):

L(K,L) L(�, A)

We are left with the task of finding the position of the following five languages:
L( ), L(�), L(A), L(L) and L(�, L).

3.2 Language L( )

We clearly have L( ) ≺ L(K,L) and, since L(K,L) ≺ L(�, A) and≺ is transitive,
we also have L( ) ≺ L(�, A).

3.3 Language L(�)

Clearly, L(�) is less expressive than L(�, A), that is, L(�) ≺ L(�, A). Also
clearly, L(�) is more expressive than L( ), that is, L( ) ≺ L(�).

In order to compare L(�) with the equivalence class of L(K,L), we recall the
definition of a standard bisimulation and its known relation with the language
L(�) (see, e.g., Chapter 2 of [8] for details).
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Definition 7 (Standard bisimulation). Let Q ⊆ P. A standard Q-bisimulation
between epistemic awareness models M = 〈W,R,A, V 〉 and M ′ = 〈W ′, R′,A′, V ′〉
is a relation ZQ ⊆ (W×W ′) such that every (w,w′) in ZQ satisfies atoms, forth
and back of Definition 5. The notation for standard Q-bisimilarity between epis-
temic awareness states is (M,w) 1Q (M

′, w′).

Theorem 3. Let (M,w) and (M ′, w′) be epistemic awareness states with M
and M ′ image-finite models, and take Q ⊆ P. Then,

(M,w) 1Q (M
′, w′) iff (M,w) ≡L(�)

Q (M ′, w′)

Proposition 4. L(�) and L(K,L) are incomparable (L(�) 0 L(K,L)).

Proof. For showing L(K,L) 	� L(�), consider the following EASs:

p

w

{p}

N2

p

w′

{ }

N ′
2

We have (N2, w) 1{p} (N ′
2, w

′) and by Theorem 3, the states are modally equiva-
lent in L(�)|{p}. Still, K p in L(K,L)|{p} holds at (N2, w) but fails at (N

′
2, w

′).
For showing L(�) 	� L(K,L), consider the EASs N1 and N ′

1 in the proof
of Proposition 3 (page 257). As mentioned, we have (N1, w)↔{p}(N ′

1, w
′) and

hence, by Theorem 2, the two states are modally equivalent in L(K,L)|{p}. Still,
the states can be distinguished by the formula � p in L(�)|{p}.

3.4 Language L(A)

Clearly, L( ) ≺ L(A). Moreover, L(A) ≺ L(K,L): A can be defined in terms
of K (so L(A) � L(K,L)) and, since L allows us to look at other worlds,
there are states indistinguishable with L(A) but distinguishable with L(K,L)
(so L(K,L) 	� L(A)). For comparing L(A) and L(�) we use the following.

Definition 8 (Local bisimulation). Let Q ⊆ P. A local Q-bisimulation between
epistemic awareness models M = 〈W,R,A, V 〉 and M ′ = 〈W ′, R′,A′, V ′〉 is a
relation ZQ ⊆ (W ×W ′) such that every (w,w′) in ZQ satisfies both atoms and
aware of Definition 5. The notation for local Q-bisimilarity between epistemic
awareness states is (M,w) 1l

Q (M
′, w′).

Theorem 4. Let (M,w) and (M ′, w′) be EASs, and take Q ⊆ P. Then,

(M,w) 1l
Q (M

′, w′) iff (M,w) ≡L(A)
Q (M ′, w′)

Proposition 5. L(A) and L(�) are incomparable (L(A) 0 L(�)).
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Proof. For L(�) 	� L(A), consider (N1, w) and (N ′
1, w

′) from Proposition 3 (page
257). We have (N1, w) 1l

{p} (N ′
1, w

′) and, by Theorem 4, the states are modally

equivalent in L(A)|{p}. Still, � p in L(�)|{p} distinguishes between them.
For L(A) 	� L(�)), consider (N2, w) and (N ′

2, w
′) from Proposition 4 (page

258). We have (N2, w) 1{p} (N ′
2, w

′) and, by Theorem 3, the states are modally
equivalent in L(�)|{p}. Still, Ap in L(A)|{p} distinguishes between them.

The expressivity picture so far is the following, with transitive arrows omitted
and unreachability indicating incomparability.

L( )

L(A)

L(�)

L(K,L)

L(�, A)

Up to now the results have been straightforward; the ones for the two remain-
ing languages, L(L) and L(�, L), constitute the core of the present work.

3.5 Language L(L)

Clearly, L( ) ≺ L(L). Moreover, L(L) � L(K,L); in order to establish L(K,L) 	�
L(L) (and hence L(L) ≺ L(K,L)), we use the following definition and results.

Definition 9 (Restricted awareness bisimulation). Let Q ⊆ P. A restricted
awareness Q-bisimulation between epistemic awareness models M = 〈W,R,A, V 〉
and M ′ = 〈W ′, R′,A′, V ′〉 is a relation ZQ ⊆ (W ×W ′) such that every (w,w′)
in ZQ satisfies atoms of Definition 5 plus the following two clauses:

– a-forth-bis: if u ∈ R[w] then (i) (Q ∩ A(w)) ⊆ (Q ∩ A′(w′)) and (ii) there
is a u′ ∈ R′[w′] such that ZQ∩A(w)uu

′;
– a-back-bis: if u′ ∈ R′[w′] then (i) (Q ∩A′(w′)) ⊆ (Q ∩A(w)) and (ii) there

is a u ∈ R[w] such that ZQ∩A′(w′)uu
′.

The notation for restricted awareness Q-bisimilar states is (M,w)↔r
Q(M

′, w′).

Note how a restricted awareness bisimulation does not ask for every pair in the
relation to satisfy the aware clause. Instead, this requirement is distributed as
an additional consequent within the a-forth-bis and a-back-bis clauses (their
respective item (i)).

Our first important characterisation result is that, in image-finite models,
restricted awareness bisimulation characterises modal equivalence in L(L).

Proposition 6. Let (M,w) and (M ′, w′) be epistemic awareness states, and
take Q ⊆ P. Then

(M,w)↔r
Q(M

′, w′) implies (M,w) ≡L(L)
Q (M ′, w′)

Proof. See appendix A.
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Proposition 7. Let (M,w) and (M ′, w′) be epistemic awareness states with M
and M ′ image-finite models, and take Q ⊆ P. Then

(M,w) ≡L(L)
Q (M ′, w′) implies (M,w)↔r

Q(M
′, w′)

Proof. See appendix A.

Theorem 5. Let (M,w) and (M ′, w′) be epistemic awareness states with M
and M ′ image-finite models, and take Q ⊆ P. Then,

(M,w)↔r
Q(M

′, w′) iff (M,w) ≡L(L)
Q (M ′, w′)

Now we can proceed.

Proposition 8. L(L) is not as expressive as L(K,L) (L(K,L) 	� L(L)).
Proof. Consider (N2, w) and (N ′

2, w
′) from Proposition 4 (page 258). Note how

(N2, w)↔r
{p}(N

′
2, w

′) and, by Theorem 5, the states are modally equivalent in

L(L)|{p}. Still, K (p ∨ ¬p) in L(K,L)|{p} distinguishes between them.

Incidentally, this also proves an earlier claim: K is not definable in L(L), that
is, it is not definable in terms of L and boolean operators.

Corollary 2. L(K,L) is more expressive than L(L) (L(L) ≺ L(K,L)).

We also have the following results.

Proposition 9. L(L) and L(�) are incomparable (L(L) 0 L(�)).
Proof. For L(�) 	� L(L) we use EASs (N1, w) and (N ′

1, w
′) from Proposition

3 (page 257). We have (N1, w)↔r
{p}(N

′
1, w

′) and, by Theorem 5, the states are

modally equivalent in L(L)|{p}. Still, � p in L(�)|{p} distinguishes them.
For L(L) 	� L(�) consider the states below: we have (N3, w) 1{p} (N ′

3, w
′)

and, by Theorem 3, the states are modally equivalent in L(�)|{p}. Still, Lp in
L(L)|{p} holds at (N3, w) but fails at (N ′

3, w
′).

p p

w u

{p} { }

N3

p p

w′ u′

{ } { }

N ′
3

Proposition 10. L(L) and L(A) are incomparable (L(L) 0 L(A)).
Proof. For L(A) 	� L(L) consider (N2, w

′) and (N ′
2, w

′) from Proposition 4, page
258: we have (N2, w)↔r

{p}(N
′
2, w

′) and, by Theorem 5, the states are modally

equivalent in L(L)|{p}. Still, Ap in L(A)|{p} distinguishes between them.
For L(L) 	� L(A) consider the states below: we have (N4, w) 1l

{p} (N ′
4, w

′)
and, by Theorem 4, the states are modally equivalent in L(A)|{p}. Yet, Lp in
L(L)|{p} distinguishes between them.

p p

w u

{p} { }

N4

p

w′

{p}

N ′
4
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3.6 Language L(�, L)

Proposition 11. L(�, L) is more expressive than L(L) (L(L) ≺ L(�, L)).

Proof. Clearly L(�, L) is at least as expressive as L(L) so L(L) � L(�, L).
Moreover, states (N1, w) and (N ′

1, w
′) (the proof of the first part of Proposition

4, page 258) are such that (N1, w)↔r
{p}(N

′
1, w

′) and hence (Theorem 5) modally

equivalent in L(L)|{p}. Nevertheless, the formula � p in L(�)|{p} distinguishes
between them, and therefore L(�, L) 	� L(L).

For comparing L(�, L) with L(A) and L(K,L) we use the following.

Definition 10 (Restricted extended bisimulation). Let Q ⊆ P. A restricted
extended Q-bisimulation between epistemic awareness models M = 〈W,R,A, V 〉
and M ′ = 〈W ′, R′,A′, V ′〉 is a relation ZQ ⊆ (W ×W ′) such that every (w,w′)
in ZQ satisfies atoms of Definition 5 plus the following two clauses:

– forth-bis: if u ∈ R[w] then (i) (Q ∩ A(w)) ⊆ (Q ∩ A′(w′)) and (ii) there is
a u′ ∈ R′[w′] such that ZQuu

′;
– back-bis: if u′ ∈ R′[w′] then (i) (Q∩A′(w′)) ⊆ (Q∩A(w)) and (ii) there is

a u ∈ R[w] such that ZQuu
′.

The notation for restricted extended Q-bisimilar states is (M,w) 1r
Q (M ′, w′).

Again, note how a restricted extended bisimulation does not ask for every
pair in the relation to satisfy the aware clause. Instead, this requirement is dis-
tributed as an additional consequent within the forth-bis and back-bis clauses
(their respective item (i)).

Our second important characterisation result is that, in image-finite models,
restricted extended bisimulation characterises modal equivalence in L(�, L).

Proposition 12. Let (M,w) and (M ′, w′) be epistemic awareness states, and
take Q ⊆ P. Then

(M,w) 1r
Q (M ′, w′) implies (M,w) ≡L(�,L)

Q (M ′, w′)

Proof. See appendix A.

Proposition 13. Let (M,w) and (M ′, w′) be epistemic awareness states with
M and M ′ image-finite models, and take Q ⊆ P. Then

(M,w) ≡L(�,L)
Q (M ′, w′) implies (M,w) 1r

Q (M
′, w′)

Proof. See appendix A.

Theorem 6. Let (M,w) and (M ′, w′) be epistemic awareness states with M
and M ′ image-finite models, and take Q ⊆ P. Then,

(M,w) 1r
Q (M

′, w′) iff (M,w) ≡L(�,L)
Q (M ′, w′)

Now we can proceed.
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Proposition 14. L(�, L) and L(A) are incomparable (L(�, L) 0 L(A)).

Proof. For L(A) 	� L(�, L), the states (N2, w) and (N ′
2, w

′) from Proposition
4 (page 258) are such that (N2, w) 1r

{p} (N ′
2, w

′) and, by Theorem 6, they

are modally equivalent in L(�, L)|{p}. Still, they can be distinguished by Ap
in L(A)|{p}.

For L(�, L) 	� L(A), the states (N4, w) and (N ′
4, w

′) from Proposition 10 (page
260) are such that (N4, w) 1l

{} (N ′
4, w

′) and, by Theorem 4, they are modally equiv-

alent in L(A)|{}. Still, they can be distinguished by �� in L(�, L)|{}.

Proposition 15. L(�, L) and L(K,L) are incomparable (L(�, L) 0 L(K,L)).

Proof. For L(K,L) 	� L(�, L), the states (N2, w) and (N ′
2, w

′) (Proposition 4,
page 258) satisfy (N2, w) 1r

{p} (N ′
2, w

′) and, by Theorem 6, they are modally equiv-

alent in L(�, L)|{p}. Still, they can be distinguished byK (p ∨ ¬p) in L(K,L)|{p}.
For L(�, L) 	� L(K,L), the states (N1, w) and (N ′

1, w
′) (Proposition 4, page

258) are awareness {p}-bisimilar (Definition 6) and, by Theorem 2, also modally
equivalent in L(K,L)|{p}. Still, they can be distinguished by � p in L(�, L)|{p}.

To complete the picture, we also have the following results.

Proposition 16. L(�) is less expressive than L(�, L) (L(�) ≺ L(�, L)).

Proposition 17. L(�, L) is less expressive than L(�, A) (L(�, L) ≺ L(�, A)).

Proof. For L(�, L) � L(�, A), L can be defined in terms of � and A (Propo-
sition 1). For L(�, A) 	� L(�, L), states (N2, w) and (N ′

2, w) (page 258) are
L(�)-equivalent (Proposition 4) and also L(L)-equivalent (first part of Proposi-
tion 10), thus L(�, L)-equivalent, yet distinguishable by Ap in L(A).

The full expressivity picture is shown in Figure 1 (arrows represent ≺, tran-
sitive arrows are omitted and unreachability indicates incomparability).

L( )

L(A)

L(L)

L(�)

L(�, L)

L(K,L)

L(�, A)

Fig. 1. Expressivity hierarchy for languages over epistemic awareness models
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3.7 Discussion

The bisimulations results (Theorems 1 and 2) show that the difference between
the two main expressivity classes, L(�, A) and L(K,L), is that the latter is
restricted to the atoms the agent is aware of every time an epistemically indis-
tinguishable world is visited. It can be argued, then, that L(K,L) is a more
adequate language to work with epistemic awareness models, since it gives us
exactly what the agent can see (just like L(�,�), equally expressive as L(�), is
the adequate language for an agent with full awareness).3

One relevant result is that, different from the implicit knowledge case, the lan-
guages with only explicit knowledge (L(K), in the equivalence class of L(K,L))
and that with only explicit possibility (L(L)) are not equally expressive. Their
respective bisimulation characterisations (awareness bisimulation, Theorem 2;
restricted awareness bisimulation, Theorem 5) tell us precisely which one is the
difference: different from L(K), the language L(L) can talk about the agent’s
awareness only when there are epistemic possibilities, that is, only when the in-
distinguishability relation is serial.4 In more epistemic terms, in L(L) the agent
can talk about her own awareness only when her implicit knowledge is consistent.

Another relevant result is the position in the expressivity hierarchy of the ‘hy-
brid’ language L(�, L) that combines implicit knowledge (and thus implicit pos-
sibility) with explicit possibility. The language lies between L(L) and L(�, A),
and jumps to the latter when the indistinguishability relation is serial, just like
the case of L(L). Interestingly, L(�, L) is incomparable to the language of ex-
plicit knowledge and explicit possibility, L(K,L), the differences being that while
the former can see differences in implicit knowledge that the latter cannot, the
latter can see differences in awareness, something the former can do only when
the agent’s implicit knowledge is consistent.

4 Summary and Further Work

We have presented the expressivity hierarchy of languages over epistemic aware-
ness models based on the operators of implicit knowledge (�), implicit possibility
(�), explicit knowledge (K), explicit possibility (L) and awareness (A). Besides
stating their position within the expressivity hierarchy, we have characterised (in
the class of image-finite epistemic awareness models) each one of these languages
in terms of a (semantic) notion of bisimulation.

There is still further work to do. First, there are other useful operators for
working with epistemic awareness models; in particular, we have the “speculative
knowledge” of [9,10]. This and other operators allow us to build languages whose
position within the expressivity hierarchy is also relevant.

3 Note how L(K,L) and L(K,L,A) are equally expressive, so in L(K,L) the agent
can talk about her own awareness.

4 In such cases we have the validity Aϕ ↔ L (ϕ ∨ ¬ϕ), and thus L(L) jumps to the
equivalence class where L(L,A) lies: that of L(K,L).
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Maybe more interesting are the languages that allows us to talk not only about
an agent’s (implicit and explicit) knowledge and awareness, but also about the
way these notions change. Previous works have introduced the so-called epistemic
awareness models [11,12], semantic structures that allow us to represent actions
that can change an agent’s knowledge and awareness. It is, thus, also relevant to
find if (and how) the expressivity of the languages studied in this paper changes
when we add modalities for representing the effect of such actions to each one
of them.

A Appendix

Proof of Proposition 6 The proof is by induction on formulas in L(L)|Q. The
case for atomic propositions follows from the atoms clause in the definition of a
restricted awareness bisimulation (Definition 9) and the cases for propositional
connectives follow from the inductive hypothesis. For the remaining case:

– Case L. Suppose atm(ϕ) ⊆ Q and (M,w) 	 Lϕ. Then atm(ϕ) ⊆ A(w) and
there is a u ∈ R[w] such that (M,u) 	 ϕ.
By (ii) of the a-forth-bis clause (Definition 9), there is a u′ ∈ R′[w′] such
that (M,u)↔r

Q∩A(w)(M
′, u′), and since atm(ϕ) ⊆ Q and atm(ϕ) ⊆ A(w)

we get atm(ϕ) ⊆ Q ∩ A(w); hence, since (M,u) 	 ϕ, inductive hypothesis
gives us (M ′, u′) 	 ϕ. But by (i) of the a-forth-bis clause, we also have
Q ∩ A(w) ⊆ Q ∩ A′(w′) and hence atm(ϕ) ⊆ Q ∩ A′(w′), that is, atm(ϕ) ⊆
A′(w′); then (M ′, w′) 	 Lϕ. The other direction (from (M ′, w′) 	 Lϕ to
(M,w) 	 Lϕ) is similar, using a-back-bis instead of a-forth-bis.

Proof of Proposition 7. The proof consists in showing that ≡L(L)
Q is a re-

stricted awareness Q-bisimulation, that is, that it satisfies atoms, a-forth-bis
and a-back-bis.

– atoms. Take any p ∈ Q with w ∈ V (p); then (M,w) 	 p and hence by ≡L(L)
Q

we get (M ′, w′) 	 p, that is, w′ ∈ V ′(p). The other direction is similar.
– a-forth-bis. Suppose there is a u ∈ R[w]; we will show that (i) Q∩A(w) ⊆

Q∩A′(w′) and (ii) there is a u′ ∈ R′[w′] such that (M,u) ≡L(L)
Q∩A(w) (M

′, u′).
For (ii) we work by contradiction. Suppose no element of R′[w′] is L(L)|Q∩
A(w)-modally equivalent to u. Observe that R′[w′] is finite and non-empty:
finite by image-finiteness, and non-empty because the existence of u ∈ R[w]

gives us (M,w) 	 L�, which by (M,w) ≡L(L)
Q (M ′, w′) implies (M ′, w′) 	

L�, that is, there is at least an element in R′[w′].
Now, since no element of R′[w′] is L(L)|Q ∩ A(w)-modally equivalent to
u, then each u′

i ∈ R′[w′] is distinguishable from u by some formula ϕ′
i in

L(L)|Q∩A(w) and thus, since negation is in the language, for each u′
i ∈ R′[w′]

there is a ϕi in L(L)|Q ∩ A(w) that holds at u but fails at u′
i. Define ϕ :=

ϕ1 ∧ · · · ∧ ϕn (with n the cardinality of R′[w′]); then (M,u) 	 ϕ (u satisfies
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every ϕi) but (M
′, u′

i) 		 ϕ (each u′
i fails at least in ϕi). Now, since each ϕi

is in L(L)|Q∩A(w), ϕ is also in L(L)|Q∩A(w) and thus atm(ϕ) ⊆ Q∩A(w)
so atm(ϕ) ⊆ A(w). Then, we get (M,w) 	 Lϕ. However, (M ′, w′) 		 Lϕ
because no u′

i satisfies ϕ. But Lϕ is in L(L)|Q so this contradicts our starting

point (M,w) ≡L(L)
Q (M ′, w′). Hence, there should be a u′ ∈ R′[w′] such that

(M,u) ≡L(L)
Q∩A(w) (M

′, u′).
In order to show (i), take any p in Q ∩ A(w). Then, p ∈ Q and p ∈ A(w),
and since R[w] is non-empty (this clause starts by assuming there is a u ∈
R[w]), we get (M,w) 	 L (p ∨ ¬p). But L (p ∨ ¬p) is in L(L)|Q and hence

(M,w) ≡L(L)
Q (M ′, w′) gives us (M ′, w′) 	 L (p ∨ ¬p), which implies p ∈

A′(w′) and hence p ∈ Q ∩ A′(w′). Thus, Q ∩ A(w) ⊆ Q ∩ A′(w′).
– a-back-bis. Similar to the previous one.

Proof of Proposition 12. The proof is by induction on formulas in L(�, L)|Q.
The case for atomic propositions follows from the atoms clause of Definition 10
and the cases for propositional connectives follow from inductive hypothesis. For
the remaining,

– Case L. Suppose atm(ϕ) ⊆ Q and (M,w) 	 Lϕ. Then atm(ϕ) ⊆ A(w) and
there is a u ∈ R[w] such that (M,u) 	 ϕ. By (ii) of the forth-bis clause of
Definition 10, there is a u′ ∈ R′[w′] such that (M,u) 1r

Q (M ′, u′); hence, since
atm(ϕ) ⊆ Q, inductive hypothesis gives us (M ′, u′) 	 ϕ. But by (i) of the
forth-bis clause, we also have Q∩A(w) ⊆ Q∩A′(w′); since atm(ϕ) ⊆ Q and
atm(ϕ) ⊆ A(w), we have atm(ϕ) ⊆ Q∩A(w) and hence atm(ϕ) ⊆ Q∩A′(w′),
that is, atm(ϕ) ⊆ A′(w′). Therefore we have (M ′, w′) 	 Lϕ. The other
direction is similar, using back-bis instead of forth-bis.5

– Case �. Suppose atm(ϕ) ⊆ Q and (M,w) 	 �ϕ. Then for all u ∈ R[w] we
have (M,u) 	 ϕ. Now take any u′ ∈ R′[w′]; by (ii) of back-bis there is a
u ∈ R[w] such that (M,u) 1r

Q (M
′, u′) but then, since atm(ϕ) ⊆ Q, induction

hypothesis gives us (M ′, u′) 	 ϕ. Given that u′ is an arbitrary element of
R′[w′], we get (M ′, w′) 	 �ϕ, as required. The other direction is similar,
using (ii) of forth-bis instead.

Proof of Proposition 13. The proof consists in showing that the relation

≡L(�,L)
Q is a restricted extended Q-bisimulation, that is, that it satisfies atoms,

forth-bis and back-bis. The proof of these clauses is very similar to the proof
of clauses atoms, a-forth-bis and a-back-bis (respectively) of Proposition 7.

5 This case is slightly different from the one for the same operator in Proposition 6 as
in the latter, clause (ii) gives us (restricted awareness) bisimilarity up to Q ∩ A(w)
and our current case gives us (restricted extended) bisimilarity up to Q.
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Abstract. In this paper we take the S5 definition of knowledge, and
have a new look at logics combining modalities for public announcements,
action models, common knowledge and relativized common knowledge.
In particular, we prove two expressivity results which previously have
only been shown for the case where knowledge is represented using arbi-
trary Kripke models but have remained open for the case of S5 models:
public announcement logic with relativized common knowledge is strictly
more expressive than public announcement logic with common knowl-
edge, and action model logic with common knowledge is strictly more
expressive than public announcement logic with common knowledge. We
also propose and study a definition of relativized common knowledge for
action model logic.

1 Introduction

Dynamic epistemic logics extend traditional (“static”) epistemic logic [1,2] in
order to be able to express epistemic pre- and post conditions of actions and other
events. The two probably most prominent examples are public announcement
logic [3] in which actions are assumed to be truthful public announcements, and
action model logic [4,5] which can be used to reason about a very general class
of events.

A key consideration in the study of dynamic epistemic logics is relative ex-
pressive power. For example, it is well known that public announcement logic
is not more expressive than (static) epistemic logic, but public announcement
logic with common knowledge is strictly more expressive than epistemic logic
with common knowledge. However, the latter is not true again when common
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knowledge is replaced by relativized common knowledge [6,7]: public announce-
ment logic with relativized common knowledge can be reduced to epistemic logic
with relativized common knowledge.

In this paper we settle two open problems. We show that:

(i) public announcement logic with relativized common knowledge is strictly
more expressive than public announcement logic with common knowledge;

(ii) action model logic with common knowledge is strictly more expressive than
public announcement logic with common knowledge;

under the S5 assumptions about knowledge. While the S5 assumption is very
common, in fact almost standard, in epistemic logic [1,2], these results have
so far only been proved, in [8] and [7] respectively, under the assumption that
knowledge is represented by general Kripke structures. van Ditmarsch et al. [9,
p242] says that “Whether [(i)] is true for S5 is still an open problem”. In general,
it is not trivial to transfer results for general Kripke models to S5. In order to
prove these expressivity results for S5, we introduce a class of models called
canyon models. (ii) was proved for general Kripke models in [8] by the use of
private actions (which were not S5 actions). We show that private actions also
exist in the S5 case, and that they are not expressible in public announcement
logic.

Relativized common knowledge was “designed” to provide reduction axioms
for public announcement logic. There is no corresponding notion of relativized
common knowledge for action model logic in the literature. In this paper we also
introduce and study a relativized common knowledge operator for action model
logic.

The paper is organized as follows. In the next section we briefly review back-
ground definitions and results, before proving the two expressivity results using
canyon models in Section 3. Relativized common knowledge for action model
logic is discussed in Section 4 and we end with a discussion in Section 5.

2 Background

We briefly review the key definition and results we build on from (dynamic)
epistemic logic. The presentation is terse due to lack of space; we refer the
reader to, e.g., [9] for details.

2.1 Epistemic Logic, Action Model Logic, and Public
Announcement Logic

Let prop be a countable set of propositional variables and ag a finite set of
agent symbols.

Definition 1 (Action models). Let L be a language. AL = (A,
, pre) is called
an action model for L (or simply an action for L), if the following hold:

– A is a non-empty finite set of action states, called the domain of AL;
– 
: ag→ ℘(A× A) maps every agent a to an equivalence relation 
a on A;

– pre : A→ L is a precondition function.
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(AL, a) is called a pointed action (model) for L, if AL is an action for L and a
is an action state in the domain of AL.

Example 2 (Public announcement actions). A public announcement action for a
formula ψ is an action Pub(ψ) = ({pub},
, pre) such that pre(pub) = ψ and for
all a ∈ ag, 
a= {(pub, pub)}.

Definition 3 (Languages). The languages of epistemic logics and action model
logics are given as follows:

(EL) ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Kaϕ
(ELC) ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Kaϕ | CAϕ

(AML) ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Kaϕ | [A, a]ϕ
(AMC) ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Kaϕ | CAϕ | [B, b]ϕ

where p ∈ prop, i ∈ ag, A ⊆ ag, and (A, a) (resp. (B, b)) is a pointed action
for AML (resp. AMC).1 The parentheses surrounding a pointed action is often
omitted, as we did in the above. We write K̂aϕ as a shorthand for ¬Ka¬ϕ,
ĈAϕ for ¬CA¬ϕ, and 〈A, a〉ψ for ¬[A, a]¬ψ, in addition to the standard derived
propositional connectives.

Let A = (A,
, preA) and B = (B,�, preB) be two L-actions, where L is one
of the languages above. Their composition, denoted A◦B, is the action (A×B,�
, pre) such that pre((a, b)) = 〈A, a〉preB(b), and for all a ∈ ag, (a, b) �a (a′, b′)
iff a 
a a′ & b �a b′. In this definition 〈A, a〉preB(b) is a formula starting with
the action operator 〈A, a〉 (see Definition 3). The composition of two pointed
actions, (A, a) ◦ (B, b), is defined as the pointed action ((A ◦B), (a, b)).

Our definition of action model logic only allows atomic actions. Standard
definitions [9] also allow compound actions to be constructed using a nondeter-
ministic choice operator ∪, but that operator does not increase the expressive
power and can be defined as a derived operator.2 Allowing only atomic actions as
primitives makes the technical treatment somewhat simpler. We emphasize that
our definition of the languages is equivalent to the standard definition in [9], and
that all the results in this paper trivially extend to the versions of the languages
with ∪ (and in fact test and sequential composition as well) as primitives.

Public announcement logic (PAL) [3] extends classical (static) epistemic logic
(EL) with an operator which can be used to express public announcements.
It is one of the simplest dynamic epistemic logics, and has been investigated
extensively in the past few decades.

The language PAL of public announcement logic is a sublanguage of AML
where only public announcement actions (Example 2) are allowed. In a similar

1 To show that AML is well defined, we can start with AML0 where only actions for
EL are allowed. Then, AMLn is defined such that only actions for AMLn−1 are
allowed. Finally, AML is defined as

⋃
i∈ω AMLi. Similarly for AMC.

2 [α ∪ α′]ϕ↔ ([α]ϕ ∧ [α′]ϕ) holds (also for all the logics with action model operators
considered in this paper).
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fashion, the language PAC of public announcement logic with common knowl-
edge is a sublanguage of AMC. In public announcement logics, we often use
[ψ]ϕ as a shorthand for [Pub(ψ), pub]ϕ. In other words, the languages PAL and
PAC look as follows:

(PAL) ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Kaϕ | [ϕ]ϕ
(PAC) ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Kaϕ | CAϕ | [ϕ]ϕ.

Interpretation of all these languages is defined in terms of epistemic models
(a.k.a. S5 models) M = (M,∼, V ) consisting of a set M of states, for each agent
a an indistiguishability relation ∼a which is an equivalence relation on M , and an
evaluation function V : prop → ℘(M). What we call a (general) Kripke model
is exactly like an epistemic model except that the indistinguishability relation is
not required to be an equivalence relation.

Definition 4 (Semantics). Given an epistemic model M = (M,∼, V ) and a
point m ∈M , the satisfaction relation, |=, is defined as follows:

M,m |= p iff m ∈ V (p)
M,m |= ¬ϕ iff M,m 	|= ϕ
M,m |= ϕ ∧ ψ iff M,m |= ϕ & M,m |= ψ
M,m |= Kaϕ iff ∀n ∈M. (m ∼a n⇒M, n |= ϕ)
M,m |= CAϕ iff ∀n ∈M. (m ∼A n⇒M, n |= ϕ)
M,m |= [A, a]ϕ iff M,m |= pre(a)⇒M⊗ A, (m, a) |= ϕ

in particular, M,m |= [ψ]ϕ iff M,m |= ψ ⇒M|ψ,m |= ϕ.

In the above, ∼A is the transitive closure of
⋃

a∈A ∼a and M⊗A = (N,≈, ν) is
an epistemic model such that

N = {(m, a) ∈M × A | M,m |= pre(a)}
(m, a) ≈a (n, b) iff m ∼a n & a 
a b, for all a ∈ ag
(m, a) ∈ ν(p) iff m ∈ V (p), for every p ∈ prop.

M|ψ is the submodel of M restricted to {m ∈M |M,m |= ψ}. To understand the
interpretation of the public announcement operator, observe that i) by definition
ψ = pre(pub), ii) M|ψ is the submodel of M restricted to {m ∈ M |M,m |=
pre(pub)}, and iii) the pointed epistemic models (M⊗A, (m, pub)) and (M|ψ,m)
are bisimilar. Validity is defined as usual.

We use capital letters (in roman font), e.g., EL, AML and AMC, to name the
logics induced by the interpretation of the different languages.

2.2 Relativized Common Knowledge

Relativized common knowledge is a variant of common knowledge proposed for
public announcement logic by treating knowledge update as relativization [6,7].
Public announcement logic with common knowledge cannot be reduced to epis-
temic logic with common knowledge, but it becomes reducible when we replace
common knowledge with relativized common knowledge.
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We consider the following languages with relativized common knowledge:

(ELRC) ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Kaϕ | Cϕ
Aϕ

(PARC) ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Kaϕ | Cϕ
Aϕ | [ϕ]ϕ.

As usual, Ĉψ
Aϕ is a shorthand for ¬Cψ

A¬ϕ. The clause Cψ
Aϕ is interpreted as

follows:
M,m |= Cψ

Aϕ iff ∀n ∈M. (m ∼A,ψ n⇒M, n |= ϕ),

where ∼A,ψ is the transitive closure of (
⋃

a∈A ∼a)∩ (M×{m ∈M |M,m |= ψ}).

2.3 Expressivity and Axiomatizations

Bisimulation is a well-known notion which can be used to compare expressivity.
Here we refer to standard modal logic textbooks (e.g., [10]) for details. The
PACP -game, as defined below, is a tool introduced in [11,7] for studying the
relative expressivity of the logic PACP ; PAC restricted to propositions from
the set P .

Definition 5 (PACP -game). Let P be a set of propositions. Let pointed epis-
temic models (M,m) = (M,∼, V,m) and (N, n) = (N,≈, ν, n) be given. The
r-round PACP -game between spoiler and duplicator on (M,m) and (N, n) is the
following:

– If r = 0, spoiler wins iff V (p) 	= ν(p) for some p ∈ P.
– If r > 0, spoiler can initiate one of the following scenarios (unless specified,

the rest of the game is the (r−1)-round PACP -game on (M,m′) and (N, n′)):
(K-forth) Spoiler chooses an agent a and an m′ ∈ M such that m ∼a m′.
Duplicator responds by choosing an n′ ∈ N such that n ≈a n′.
(K-back) Spoiler chooses an agent a and an n′ ∈ N such that n ≈a n′.
Duplicator responds by choosing an m′ ∈M such that m ∼a m′.
(C-forth) Spoiler chooses a group A and an m′ ∈ M such that m ∼A m′.
Duplicator responds by choosing an n′ ∈ N such that n ≈A n′.
(C-back) Spoiler chooses a group A and an n′ ∈ N such that n ≈A n′. Du-
plicator responds by choosing an m′ ∈M such that m ∼A m′.
([ϕ]-move) Spoiler chooses a number s < r, and sets M ′ ⊆ M and N ′ ⊆ N
such that m ∈M ′ and n ∈ N ′.
〈Stage 1〉 Duplicator chooses states x ∈M ′∪N ′ and y ∈ (M−M ′)∪(N−N ′).

Then the players play the s-round PACP -game on x and y. Duplicator wins
the r-round game if she wins this subgame.

〈Stage 2〉 Otherwise, the players continue with the (r − s − 1)-round PACP -
game on (M|M ′,m) and (N|N ′, n).

If either player cannot perform an action prescribed above, that player loses.

Lemma 6 (Invariance of games). Let (M,m) and (N, n) be two pointed epis-
temic models and P be a finite set of propositions. For all r ∈ N, duplicator has a
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winning strategy for the r-round PACP -game on (M,m) and (N, n), if and only
if (M,m) and (N, n) satisfy exactly the same set of PACP -formulas of degree at
most r.

Proof. This lemma is in fact [9, Theorem 8.53]. A proof can be found there.

Definition 7 (Expressivity relations). Let L and L′ be languages. L is at
least as expressive as L′ (notation: L′ , L) iff for every L′-formula there is
an L-formula equivalent to it (satisfied in exactly the same pointed models) on
a given class of models. Unless we say otherwise, the class of models is in the
following implicitly taken to be the class of all epistemic models (sometimes we
will consider the more general class of Kripke models). L and L′ are equally
expressive (notation: L ≡ L′) iff L , L′ and L′ , L. L is (strictly) more
expressive than L′ (notation: L′ ≺ L) iff L′ , L but L′ 	≡ L. We also say L′

is less expressive than L in this case. L and L′ are not comparable iff neither
L , L′ nor L′ , L.

It is easy to observe that all the introduced languages are equally expressive
when we allow only a single agent. We present the known results for the case
that |ag| > 1 in Fig. 1.

ELC �� PAC ��

��

AMC

EL ≡ PAL ≡ AML

��

ELRC ≡ PARC

Fig. 1. Overview of expressivity results in the literature. ≡ stands for the relationship
of being equally expressive. A solid arrow going from one logic to another means that
the first is strictly less expressive. A dashed arrow going from one logic to another
means that the first is not more expressive (over S5 models), and is known to be
strictly less expressive over arbitrary Kripke models.

It is known that AML is equally expressive as EL, while AMC is more
expressive than ELC [4] (in particular, PAL is as expressive as EL [3]), but
whether AMC and/or PARC is more expressive than PAC has been shown
only for arbitrary Kripke models [8,7] (see also [9, Chapter 8]).

A sound and complete axiomatization for EL is the well-known Hilbert system
S5 (Fig. 2). The axiomatization AML for AML (Fig. 2) is obtained by adding
to S5 reduction axioms for the action operators [4,9,11,12]. The axiomatization
AMC for AMC (Fig. 3) is obtained by adding to AML extra axioms and rules
for characterizing common knowledge [4,9]. Note that there is no reduction axiom
for common knowledge, and this closely relates to the fact that ELC ≺ AMC.
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(PC) Instances of tautologies (MP) � ϕ & � ϕ→ ψ ⇒ � ψ
(N) � ϕ⇒ � Kaϕ (K) Ka(ϕ→ ψ)→ Kaϕ→ Kaψ
(T) Kaϕ→ ϕ (5) ¬Kaϕ→ Ka¬Kaϕ
(AP) [A, a]p↔ (pre(a) → p) (AC) [A, a](ϕ ∧ ψ)↔ ([A, a]ϕ ∧ [A, a]ψ)
(AN) [A, a]¬ϕ↔ (pre(a)→ ¬[A, a]ϕ) (AA) [A, a][B, b]ϕ↔ [(A, a) ◦ (B, b)]ϕ
(AK) [A, a]Kaϕ↔ (pre(a)→ ∧

a�ab
Ka[A, b]ϕ)

Fig. 2. The axiomatization AML of action model logic, and the sub-system S5 consist-
ing of (PC), (MP), (N), (K), (T) and (5). The 4 axiom, i.e., Kaϕ→ KaKaϕ, meaning
positive introspection, is often also included, but technically redundant — it can be
derived in S5.

All axioms and rules of AML (NC) � ϕ⇒ � CAϕ
(KC) CA(ϕ→ ψ)→ (CAϕ→ CAψ) (TC) CAϕ→ ϕ
(C1) CAϕ→ EACAϕ (C2) CA(ϕ→ EAϕ)→ (ϕ→ CAϕ)
(NA) � ϕ⇒ � [A, a]ϕ
(RA) � ψb → [A, b]ϕ & � ψb ∧ pre(b)→ EAψc ⇒ � ψa → [A, a]CAϕ

Fig. 3. The axiomatization AMC of action model logic with common knowledge,
where A = (A,
, pre), a, b, c ∈ A, and a 
A b. For any x, y ∈ A, by writing ϕx and ϕy

we mean that ϕx[y/x] = ϕy and ϕy[x/y] = ϕx.

3 New Expressivity Results

Expressivity results for public announcement logics and action model logics have
been studied extensively in the literature (for a survey see [9, Chapter 8]). How-
ever, some results are based on interpretations over arbitrary Kripke models,
instead of epistemic models (S5 models). In particular we are interested in the
following open questions:

1. Is PARC more expressive than PAC?
2. Is AMC more expressive than PAC?
In the literature on action model logic [4,13,14,8,5], an important concept that

can be characterized in this logic is a private action. Private actions were used in
particular to show that AMC is more expressive than PAC (on arbitrary Kripke
models; cf. [8]). Since in S5 modeling, an action model must also be “S5” (see
Definition 1), we are interested in these questions:

3. Is there a private action under S5 modeling? And furthermore,

4. is there a private action under S5 modeling which is not equivalent to any
formula of public announcement logic?

The answers to all the above four questions are yes, and when showing PAC ≺
AMC (the answer to question 2) we make use of a private action (which answers
questions 3 and 4).

We now introduce and discuss canyon models before using them to prove the
two mentioned expressivity results.
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3.1 Canyon Models

We first illustrate canyon models in Fig. 4. Formal definitions of these models
will be given afterwards. Intuitively, a canyon model is composed of two “peeks”
which only differ by a •-state. A †-state links the two peeks, so that the •-state
is ∼{a,b},p-reachable from states in the right peek, but not from any state in the
left peek, while it is ∼{a,b}-reachable from all states (including those from the
left peek). Such models make a difference when interpreting common knowledge
operators and relativized common knowledge operators. Public announcements
update models by eliminating states; in regards to this we introduce weathering
of canyon models. The canyon models are designed to discern between com-
mon knowledge and relativized common knowledge operators, even when public
announcement operators are involved.

•
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(b) CY (n) with n an even number

Fig. 4. Illustration of Canyon Models. The dotted edges in the bottom of each diagram
stand for a path of a similar pattern.

Definition 8 (Canyon models). For any natural number x, we introduce a
canyon model ( canyon for short) CY (x) which is an epistemic model (M,∼, V )
such that

– M = { 2ji , ∗2ji , ◦2k+1
i , 22k+1

i | i ≤ x, 2j ≤ i, 2k + 1 ≤ i} ∪ {†, •}
– ∼a= [{( 02i,  02i+1) | 2i+ 1 ≤ x} ∪ {(∗02i′+1, ∗02i′+2) | 2i′ + 2 ≤ x} ∪
{( 2j2i+1, ◦

2j+1
2i+1 ) | 2i + 1 ≤ x, j ≤ i} ∪ {(∗2j

′
2i′+2, 2

2j′+1
2i′+2 ) | 2i′ + 2 ≤ x, j′ ≤

i′ + 1} ∪ {( 0x, †) |x is even} ∪ {(∗0x, †) |x is odd}]#
– ∼b= [{(∗02i, ∗02i+1) | 2i + 1 ≤ x} ∪ {( 02i′+1,  

0
2i′+2) | 2i′ + 2 ≤ x} ∪ {( 00, •)} ∪

{(∗2j2i+1, 2
2j+1
2i+1 ) | 2i + 1 ≤ x, j ≤ i} ∪ {( 2j

′
2i′+2, ◦

2j′+1
2i′+2 ) | 2i′ + 2 ≤ x, j′ ≤

i′ + 1} ∪ {(∗0x, †) |x is even} ∪ {( 0x, †) |x is odd}]#
– V (p) is the set of all  -, ∗-, and •-states,
where all i, i′, j, j′ and k are natural numbers, and the superscript # in the
definition of ∼ stands for the reflexive symmetric transitive closure of a relation.
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Every state of a canyon CY (x) = (M,∼, V ) has a depth, which is defined by
the function d : M → N such that

d(•) = 0,
d(†) = x+ 1,

d(mj
i ) = i− j, where m ∈ { , ∗, ◦, 2}

A positive state of a canyon is a state that is different from • and at which p
is true, i.e., a  - or ∗-state. Analogously, a negative state of a canyon is a state
that is different from • and at which p is false, i.e., a †-, ◦-, or 2-state.

We define the weathering of a canyon, to be used in the proof of Lemma 10
below.

Definition 9 (Weathering of a canyon). Let CY (x) be a canyon. For any
y ∈ N such that y ≤ x, a y-weathering of CY (x) is a submodel of CY (x) over
a set N of states such that N includes all states of depth no less than y. Such a
set N is called the core of a y-weathering of CY (x). A weathering of a canyon
is also called a weathered canyon. Intuitively, a y-weathered canyon is a canyon
with its surface weathered up to depth y.

We write CYy(x) for the set of all y-weatherings of CY (x). Clearly, CY (x) ∈
CYy(x), CYy−1(x) ⊆ CYy(x), and CY0(x) = {CY (x)}.

For a state m of a weathered canyon in CYy(x), the real depth of m is defined
by the function rd such that rd(m) = d(m) − y. Clearly, The real depth of a
canyon is equivalent to its depth, i.e., for any m ∈ CY (x), rd(m) = d(m).

3.2 PARC Is More Expressive Than PAC

We show that the PARC-formula Cp
ab¬(Kap ∧ Kbp) is not equivalent to any

PAC-formula.

Lemma 10. Let P be a finite set of propositions. Given a canyon model CY (x),
and M ∈ CYy(x) such that y ∈ N with y ≤ x,

1. For any positive states m and n in the core of M, any r ≤ min(rd(m), rd(n)),
duplicator has a winning strategy for the r-round PACP -game on (M,m) and
(M, n);

2. For any negative states m and n in the core of M, any r ≤ min(rd(m), rd(n)),
duplicator has a winning strategy for the r-round PACP -game on (M,m) and
(M, n).

Proof. We show items 1 and 2 simultaneously by mutual induction on the num-
ber of rounds. If the number of rounds is 0, then the two states only have to agree
on propositions. They do agree, as being both positive states or both negative
states.

Suppose the lemma holds for the number of rounds r. We show that it holds
also for r + 1. Note that we have the assumption r + 1 ≤ min(rd(m), rd(n)).We
first look at clause 1, and explore the three different kinds of moves spoiler can
take.
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– K-move. We consider K-forth here (K-back is similar). If spoiler chooses a
K-forth-move, he chooses i) a Ka-, Kb-, or Kc-move (c /∈ {a, b}) to a positive
state of real depth at least r, or ii) a Ka-, Kb-, or Kc-move to a negative
state of real depth at least r. Duplicator can always respond by choosing a
Ka-, Kb-, or Kc-move to a positive or negative state of real depth at least r,
respectively. They will then play the r-round game on the new states. By the
induction hypothesis, duplicator has a winning strategy.

– C-move. We consider C-forth here (C-back is similar). If spoiler choose a C-
forth-move, he chooses i) a C{a}∪A-, C{b}∪A-, or CA-move, where a, b /∈ A,
or ii) a C{a,b}∪A-move. Case (i) is just like a K-move, as it can only reach a
state of real depth at least r. Duplicator can respond likewise by choosing a
C{a}∪A-, C{b}∪A-, or CA-move. For case (ii), spoiler can reach any state. So
does duplicator. She responds by moving to that state as well. Since for any
state m of M, (M,m) is bisimilar to itself, duplicator has a winning strategy
by simply following spoiler’s move.

– [ϕ]-move. Let M = (M,∼, V ). Spoiler chooses a number of rounds s < r + 1
and two sets M ′ ⊆ M and M ′′ ⊆ M such that m ∈ M ′ and n ∈ M ′′. It
must be the case that M ′ = M ′′, since otherwise duplicator can choose the
same state twice in the s-round stage-1 subgame, and has a winning strategy
for it. Moreover, all states of real depth no less than s must be in M ′, since
otherwise duplicator has a winning strategy in the s-round stage-1 subgame
by choosing the state m and an m′ ∈M \M ′ with rd(m′) ≥ s, and then the
induction hypothesis applies.
In the stage-2 subgame the generated submodel over M ′ is an s-weathering of
M, i.e., an (s+ y)-weathering of CY (x).3 Let it be denoted by M′. The real
depth of m and n in M′ are rd(m) − s and rd(n)− s respectively. Moreover,
the new game is (r + 1 − s − 1)-round PACP game on (M′,m) and (M′, n).
Clearly, r+1−s−1 = r−s < min(rd(m)−s, rd(n)−s), since by assumption
we have r < min(rd(m), rd(n)). Therefore the induction hypothesis applies,
and duplicator has a winning strategy.

The cases for clause 2 are similar.

We get the following immediately by Lemmas 10 and 6.

Lemma 11. For all x ∈ N, (CY (x),  0x) ≡x
PAC (CY (x), ∗0x).

Theorem 12. PAC ≺ ELRC ≡ PARC

Proof. It is known that PAC , ELRC ≡ PARC. What remains is to show
that PARC is strictly more expressive that PAC. Kooi and van Benthem [11]
proved this for Kripke models, but not for epistemic models. Here we show it
by the canyon models introduced above. Suppose towards a contradiction that
ELRC is as expressive as PAC. Then there is a PAC-formula ϕ equivalent to
Cp

ab¬(Kap ∧ Kbp). It is not hard to see that for all x ∈ N, (CY (x),  0x) 	|=
3 Note that s+y ≤ x, because s < r+1 ≤ min(rd(m), rd(n)) = min(d(m)−y, d(n)−
y) ≤ x− y, where d(m) and d(n) are the depth of m and n in CY (x).
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Cp
ab¬(Kap∧Kbp) and (CY (x), ∗0x) |= Cp

ab¬(Kap∧Kbp), since • is the only state
where Kap ∧ Kbp is true. Suppose d(ϕ) = n. Therefore (CY (n),  0n) 	|= ϕ and
(CY (n), ∗0n) |= ϕ, which contradicts Lemma 11.

3.3 AMC Is More Expressive Than PAC

We now define a private (S5) action and use it, together with the canyon models
introduced previously, to show the expressivity result claimed in the heading.

Definition 13 (Private actions). A private knowledge update of ϕ for agent
a is an action Priva(ϕ) = ({p,np},
, pre) where:

– p and np are two action states;

– 
 is defined such that 
a= {(p, p), (np, np)} and for all agent x different from
a, 
x= {(p, p), (np, np), (p, np)};

– pre(p) = ϕ and pre(np) = ¬ϕ.

A private action for ϕ is illustrated in Figure 5.

pϕ
ag\{a}

np¬ϕ

Fig. 5. Priva(ϕ), a private action for ϕ. The precondition of an action state is written
as a superscript. A line labeled with a set of agents from an action state to another
means none of those agents can distinguish between the two action states.

Example 14 (Private actions in effect). Let M = ({m0,m1,m2},∼, V ) be an
epistemic model illustrated as follows:

m¬p
2

∼a
mp

0

∼b
m¬p

1

where a formula near a state means the formula is true at the state by the
definition of V . It is not hard to verify that Kap and Kbp are both false at the
state m0. Now the epistemic model M⊗ Priva(p) = (N,≈, ν) is as follows:

(m2, np)
¬p (m0, p)

p ≈b
(m1, np)

¬p

Clearly Kap is true at (m0, p) while Kbp not. Intuitively, the action Priva(p)
behaves like a private announcement of p to the agent a.

We now show that the AMC-formula [Priva(p), p]Ĉab(Kap ∧Kbp) is not ex-
pressible by any PAC-formula.

Lemma 15. For all x ∈ N, (CY (x),  0x) 	≡x
AMC (CY (x), ∗0x).

Proof. Given an n ∈ N, consider the epistemic model CY (n) ⊗ Priva(p) (cf.
Fig. 6). Note that (•, p) and ( 00, p) are the only states reachable from ∗0n and  0n at
whichKap∧Kbp is true. Therefore the AMC-formula [Priva(p), p]Ĉab(Kap∧Kbp)
makes a difference between ∗0n and  0n, i.e., CY (x)⊗Priva(p), ∗0n 	|= [Priva(p), p]Ĉab

(Kap ∧Kbp) and CY (x)⊗ Priva(p),  0n |= [Priva(p), p]Ĉab(Kap ∧Kbp).
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•p

∗00p �00p

b

�11np b

b

∗01p
b

�01p

a

◦11np

· · · · · ·
...

b
...

a

· · · · · ·

�nnnp b · · · �1nnp b

b

∗0np
b

†np b
�0np

a

◦1nnp b · · · ◦nnnp

Fig. 6. Epistemic models CY (n) ⊗ Priva(p) with n an odd number. It is analogous
when n is an even number. Parentheses and a comma are omitted in the notation of a
state, e.g., ∗0np stands for (∗0n, p).

Theorem 16. PAC ≺ AMC

Proof. It is known that PAC , AMC. That AMC is more expressive follows
from Lemmas 11 and 15.

4 Relativized Common Knowledge for Action Model
Logic

We now introduce a relativized common knowledge operator for action model
logic, in the spirit of the relativized common knowledge operator for public
announcement logic (enabling reduction axioms).

Definition 17 (A-Aaa′-paths). Let A be a set of agents. Let M = (M,∼, V )
be an epistemic model, and A = (A,
, pre) be an action model. Let m0 and mn

be two states of M. Let a and a′ be two action states of A.
An A-Aaa′-path from m0 to mn is a path 〈m0 ∼a0 · · · ∼an−1 mn〉 of M such

that {a0, . . . , an−1} ⊆ A and there is a sequence 〈a0 · · · an〉 satisfying i) a0 = a,
ii) an = a′, iii) 〈a0 
a0 · · · 
an−1 an〉 forms an path of A, and iv) for all i ≤ n,
M,mi |= pre(ai).

We write m ∼CAaa′
A

n iff there is an A-Aaa′-path from m to n.

Intuitively, an A-Aaa′-path is still a path in the updated epistemic model
M ⊗ A. We now define a formula of the form CAaa′

A ϕ to be true iff ϕ is true at
all states reachable via an A-Aaa′-path.

Formally, the language and semantics are defined as follows.

Definition 18 (Languages). The following grammar rules define the language
for epistemic logics with relativized common knowledge.

(ELRC′) ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Kaϕ | CAaa′
A ϕ

(AMRC) ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Kaϕ | CAaa′
A ϕ | [A, a]ϕ
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where the superscript ·Aaa′ is such that A is an action for the corresponding
language, and a and a′ are two action states of A. In case of possible confusion,
we use commas to separate the components (·A,a,a′). Other standard conventions
are used.

Definition 19 (Satisfaction). Let M = (M,∼, V ) be an epistemic model, and
m be a state in M . Satisfaction at (M,m) is defined as follows:

M,m |= p iff m ∈ V (p)
M,m |= ¬ϕ iff M,m 	|= ϕ
M,m |= ϕ ∧ ψ iff M,m |= ϕ & M,m |= ψ
M,m |= Kaϕ iff (∀n ∈M)(m ∼a n⇒M, n |= ϕ)

M,m |= CAaa′
A ϕ iff (∀n ∈M)(m ∼CAaa′

A
n⇒M, n |= ϕ)

M,m |= [A, a]ϕ iff M,m |= pre(a)⇒M⊗ A, (m, a) |= ϕ

Satisfaction in an epistemic model M (denoted by M |= ϕ) is defined as usual.
The notation |= ϕ denotes validity with respect to all epistemic models, i.e.,
M,m |= ϕ for any (M,m).

Proposition 20. The following ELRC′-formulas are valid:

1. CAaa′
A ϕ↔ EA

∧
b�EA

a(pre(b)→ CAba′
A ϕ)

2.
∧

a′ C
Aaa′
A (ϕa′ → EA(pre(b)→ ϕb))→ ((pre(a)→ ϕa)→ CAab

A ϕb)

3. [A, a]CBbb′
A ϕ↔ (preA(a)→

∧
a�Aa′ C

A◦B,(a,b),(a′,b′)
A [A ◦B, (a′, b′)]ϕ).

In the above proposition, Formula 1 is a fix-point characterization of the
CAaa′

A -operator. Formula 2 characterizes the induction principle of the CAaa′
A -

operator. Formula 1 tells the recursive construction of an A-Aaa′ from the tail,
while Formula 2 tells the construction from the head. Formula 3 is a reduction
principle for formulas of the type [A, a]CBbb′

A ϕ. Such a principle does not exist
when using the CA-operator instead.

We easily get the following theorem by Proposition 20(3).

Theorem 21. ELRC′ ≡ AMRC

We now introduce the axiomatization S5RC′ of the logic ELRC′. S5RC′ is
composed of all axioms and rules of S5, and several additional axioms and rules
for the CAaa′

A -operator. Details are given in Figure 7. In the remainder of this
section we will only be concerned with the logic ELRC′, and implicitly mean
“ELRC′-formula” when we say “formula”, and so on.

Theorem 22 (Soundness). S5RC′ is sound. I.e., for all formulas ϕ, if �S5RC′

ϕ, then |= ϕ.

Proof. It suffices to show that all axioms of S5RC′ are valid and all rules of
S5RC′ keep validity. The validity of RC′1 and RC′2 are stated in Proposition
20. The validity of other axioms and the validity preservation of the rules are
easy to verify.
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All axioms and rules of S5

(KRC′) CAaa′
A (ϕ→ ψ)→ (CAaa′

A ϕ→ CAaa′
A ψ)

(TRC′ ) CAaa′
A ϕ→ (pre(a)→ ϕ)

(RC′1) CAaa′
A ϕ↔ EA

∧
b�EA

a(pre(b) → CAba′
A ϕ)

(RC′2)
∧

a′ C
Aaa′
A (ϕa′ → EA(pre(c)→ ϕc))→ ((pre(a)→ ϕa)→ CAac

A ϕc)

(NRC′) � ϕ⇒ � CAaa′
A ϕ

Fig. 7. The proof system S5RC′, where A = (A,
, pre) and a, a′, b, c ∈ A such that
a′ 
EA c. For any x, y ∈ A, by writing ϕx and ϕy we mean that ϕx[y/x] = ϕy and
ϕy[x/y] = ϕx.

The following can be proved using a finitary canonical model method (the
proof is left out here due to lack of space).

Theorem 23 (Completeness). S5RC′ is weakly complete: for all ELRC′-
formulas ϕ, |= ϕ implies �S5RC′ ϕ.

The axiomatization AMRC (Fig. 8) for AMRC is achieved by adding to
S5RC′ reduction axioms for the [A, a]-operator. Compared with the reduction
axioms used in AML, we need an extra one for the relativized common knowl-
edge operator.

All axioms and rules of S5RC′ and AML

(ARC) [A, a]CBbb′
A ϕ↔ (preA(a)→ ∧

a�Aa′ C
A◦B,(a,b),(a′,b′)
A [A ◦B, (a′, b′)]ϕ)

Fig. 8. The proof system AMRC

It is easy to show the completeness of AMRC, based on the completeness
result of S5RC′ (Theorem 23).

5 Discussion

In this paper we proved two expressivity results for S5-based logics that previ-
ously have been shown only for the case of arbitrary Kripke models, solving what
[9] refers to as an open problem. As usual, the proofs for the latter case cannot be
trivially extended to the former. We showed how canyon models can be used to
compare expressivity of S5-based logics. Another key concept we discussed was
the existence of non-reducible private actions in S5-based logics. We believe that
the technical machinery can be useful also for future work on S5-based logics. A
final contribution of the paper was a definition of a relativized common knowl-
edge operator for action model logic, in the spirit of the relativized common
knowledge for public announcement logic, i.e., allowing reduction axioms.
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There are many opportunities for future work. When it comes to expressive
power, it has not been shown whether ELRC ≺ ELRC′ holds. Also, while the
expressivity of public announcement logics with distributed knowledge has re-
cently been studied [15], relative expressivity results for many of the languages
discussed in the current paper extended with distributed knowledge do not ex-
ist. In Section 2 we mentioned some action model composition operators that do
not change the expressive power of the language. One such operator that does,
however, is the Kleene star. Relative expressivity results for variants of the logics
considered here with Kleene star is interesting future work, as is the relationship
between AMRC and PDL. Other opportunities for future work include charac-
terizations of computational complexity for most of the logics considered in this
paper.
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Abstract. We study the possibility and impossibility of aggregating log-
ics, which may come from different sources (individuals, agents, groups,
societies, cultures). A logic is treated as a binary relation between sets
of formulas and formulas (or a set of accepted arguments). Logic aggre-
gation is treated as argument-wise. We prove that certain logical prop-
erties can be preserved by some desired aggregation functions, while
some other logical properties cannot be preserved together under non-
degenerate aggregation functions, as long as some natural conditions for
the aggregation function are satisfied. We compare our framework of
logic aggregation with other aggregation frameworks, including prefer-
ence aggregation and judgment aggregation.

1 Motivations

Judgment aggregation [15] is to study how to aggregate individual judgments
on logically correlated propositions to collective judgments. Since it is both a
generalization of preference aggregation in social choice theory, and closely re-
lated to deliberative democracy in political science, as well as belief merging
in informatics, it has been quickly developed in the past decade. For an up-to-
date survey of it, refer to [14] and [11] (more technical). This paper is a further
development of judgment aggregation, by setting up a framework called logic
aggregation, or aggregation of logics. The research issue of logic aggregation is:
given a set of logics, which may come from different sources (individuals, agents,
groups, societies, cultures, etc.), how to aggregate these logics into one by some
generally acceptable methods. Why is this problem interesting? Here are several
motivations for studying logic aggregation.

Firstly, when a pluralistic view on logic is taken, the problem of logic aggre-
gation arises naturally. All present research in judgment aggregation presumes
a unified underlying logic, though it need not be the classical logic (see [2]). Not
only different individuals have the same logic, but also the logic underlying the
collective judgments is the same as those of individuals. But different sources
may use different logics in judgments. This could be true for aggregating infor-
mation from distributed systems, which may come from different domains and
use different logics in representing their knowledge. It could also be the case for
judgment aggregation in a situation of cross-cultural communication, where indi-
viduals or groups from different cultures may have different reasoning patterns.

D. Grossi, O. Roy, and H. Huang (Eds.): LORI 2013, LNCS 8196, pp. 282–295, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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Moreover, even if different sources use a unified logic, it is not necessary for the
collective to use the same logic. In other words, it is unjustified to presume the
collective rationality to be the same as the normal rationality for individuals.

Secondly, logic aggregation provides a framework that may avoid some philo-
sophical difficulties in judgment aggregation. Most research in judgment aggre-
gation adopts a proposition-wise approach, i.e., aggregation of sets of judgments
is reduced to aggregation of propositions. When the standard independence con-
dition is assumed, the collective judgment of a proposition does not depend on
individual judgments on other propositions. Though independence is natural
in preference aggregation, it is controversial in judgment aggregation, because
different propositions may have relevance in content apart from pure logical
correlations. In particular, some propositions may be premises or reasons for
others. From a deliberative point of view, proposition-wise aggregation with in-
dependence is undesirable. There are several approaches to this problem. One
is to keep proposition-wise aggregation but weaken or generalize the notion of
independence [17,4]. The other is to give up the proposition-wise aggregation
completely and adopt a holistic method, like distance-based aggregation [18].
Logic aggregation is a compromised approach, going from proposition-wise ag-
gregation to argument-wise aggregation. To realize it, we treat a logic as a set
of (accepted) arguments. Then logic aggregation boils down to aggregation of
sets of arguments, where the aggregation is argument-wise – a proposition is
considered together with its premises (reasons) in aggregation.

Thirdly, logic aggregation opens the door for exploring more notions of ratio-
nality and collective rationality. In judgment aggregation, consistency is often
required to be preserved from individual judgment sets to the collective one. But
consistency is only one property in logic. There are other interesting properties
in logics that can be considered, for example, transitivity (a.k.a. cut). In other
words, going from judgment aggregation to logic aggregation, we are able to
consider more notions of rationality and collective rationality. Unlike [10], which
studies different rationality constraints for aggregation in different languages, we
explore different rationality in the same language.

Last but not the least, logic aggregation is more or less an application of graph
aggregation proposed in [5]. Graph aggregation is in effect the aggregation of
arbitrary binary relations on a given set. Though it generalizes preference aggre-
gation, where the binary relation is an ordering, it is too abstract to illustrate
interesting applications. Since a logic can also be treated as a binary relation
(between sets of formulas and formulas), logic aggregation can be roughly em-
bedded in graph aggregation and thus provides an interesting instantiation of
the latter. See Section 5 for more on this.

The problem of aggregating logics has been touched in judgment aggrega-
tion before [1,16]. But it was discussed in particular cases. In this paper, we
propose the problem explicitly and study it generally in the framework of logic
aggregation. The rest of the paper is organized as follows. In Section 2, we intro-
duce the general notion of logic and some typical properties for logic. Section 3
presents the framework of logic aggregation, for which we prove some possibility
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and impossibility results in Section 4. Section 5 compares logic aggregation with
other aggregation frameworks, including preference aggregation and judgment
aggregation. The conclusion section indicates some future works.

2 Logics

A logic used to be treated as a set of formulas (which are valid in the logic).
This view has been proved to be too narrow since the emergence of numerous
non-classical logics, in particular, logics without valid formulas at all, such as
Kleene’s three-valued logic. Now a logic is usually considered to be a consequence
relation (either syntactically or semantically defined), which we will adopt in this
paper.

Let L be a fixed language, namely a set of sentences, which has at least
three elements. It can be either finite or infinite. Generally, a logic for L is a
binary relation � between ℘(L) and L, where ℘(L) is the power set of L. A
pair (Σ,ϕ) ∈ ℘(L) × L is called an argument in L, with Σ the set of premises
and ϕ the conclusion. An argument with empty premise is called a judgment.
An argument (Σ,ϕ) is called valid (or accepted) in a logic �, if (Σ,ϕ) ∈ �,
which is often denoted by Σ � ϕ instead. Thus, a logic is treated as the set
of all valid (or accepted) arguments (rather than formulas) in it. As we do
not specify how validity is syntactically or semantically defined, as in standard
logic textbooks, we do not distinguish between validity and acceptance of an
argument. We assume that any binary relation between ℘(L) and L is a logic.
Instead of ∅ � ϕ, we write � ϕ. By Σ � Δ, we mean Σ � ϕ for all ϕ ∈ Δ.1 By
Σ,ϕ (or ϕ,Σ) and Σ,Σ′ occurring on the left hand side of � or ⊆, we mean
Σ ∪ {ϕ} and Σ ∪Σ′, respectively. The following are typical properties of logics
considered in the literature (see [8] for example).

– Non-triviality: A logic � for L is non-trivial if � 	= ℘(L) × L, i.e., a logic is
non-trivial, if it does not accept all arguments in the language.

– Consistency: For L with negation ¬, a logic � for L is consistent if there is
no ϕ ∈ L such that � ϕ and � ¬ϕ.

For classical logic, non-triviality and consistency boil down to the same notion.
But for non-classical logics, they are not the same. It is well known that para-
consistent logics can be inconsistent but non-trivial.

– Reflexivity: A logic � for L is reflexive if for all ϕ ∈ L, ϕ � ϕ.

This is also known as restricted reflexivity. A stronger version of reflexivity is as
follows.

– Strong reflexivity: A logic � for L is strongly reflexive if for all Σ,ϕ ⊆ L,
ϕ ∈ Σ implies Σ � ϕ.

1 Note that this is different from the standard multi-conclusion consequence, where
Σ � Δ means Σ � ϕ for some ϕ ∈ Δ.
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It is easily seen that strong reflexivity can be derived from reflexivity plus mono-
tonicity given below.

– Monotonicity: A logic � for L is monotonic if for all Σ,Σ′, ϕ ⊆ L, Σ � ϕ
implies Σ,Σ′ � ϕ.

Monotonicity is not as uncontroversial as reflexivity. In common sense reason-
ing, monotonicity is not obeyed, which motivates the branch of nonmonotonic
reasoning. The following restricted version of monotonicity is weaker but less
controversial.

– Cautious monotonicity: A logic � for L is cautiously monotonic if for all
Σ,ϕ, ϕ′ ⊆ L, Σ � ϕ together with Σ � ϕ′ imply Σ,ϕ′ � ϕ.

– Transitivity: A logic � for L is transitive if for all Σ,Σ′, ϕ, ϕ′ ⊆ L, Σ � ϕ
and ϕ,Σ′ � ϕ′ imply Σ,Σ′ � ϕ′.

Transitivity is also known as cut in proof theory. It is crucial in composing a valid
argument (proof) from other valid arguments (proofs). Many logics (such as rel-
evant logic, linear logic, nonmonotonic logic) lack monotonicity, while preserving
transitivity.

– Compactness: A logic � for L is compact if for all Σ,ϕ ⊆ L, if Σ � ϕ then
there is a finite Σ′ ⊆ Σ such that Σ′ � ϕ.

In some literature, compactness refers to the following stronger property, which
we call m-compactness.

– M-compactness: A logic � for L is m-compact if for all Σ,ϕ ⊆ L, Σ � ϕ iff
there is a finite Σ′ ⊆ Σ such that Σ′ � ϕ.

It is easily seen that m-compactness is actually the conjunction of compactness
and monotonicity.2

– Formality: A logic � for L is (universally) formal (a.k.a. structural) if for all
Σ,ϕ ⊆ L, for all substitution σ, Σ � ϕ implies Σσ � ϕσ, where ϕσ is the
substitution of ϕ by σ and Σσ = {ψσ | ψ ∈ Σ}.3

Formality, which is realized by the substitution rule (or in effect by axiom
schemes), is included in most logics, since it is the mechanism for a logic to be
characterized by a finite set of arguments (or, axioms and rules). Universal for-
mality, however, also restricts the power of logic to cover many valid arguments
in natural language. For instance, “all bachelors are unmarried” is not valid in
standard logic, since it is not true by its form but rather by the meanings of the
expressions in it, unless we formalize ‘bachelors’ as a compound predicate. For
this reason, defining a relativized formality as follows is reasonable.

2 In abstract algebraic logic theory [12], pioneered by Tarski, only a binary relation
� that satisfies reflexivity, monotonicity, and transitivity can be called a logic. In
Tarski’s original theory of logical consequence, the three minimal properties of a
logic are reflexivity, transitivity, and m-compactness.

3 As we do not specify the language L in our general framework, substitution here is
underspecified. It can be defined precisely as long as the language L is specified.
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Definition 1 (Formality). Given A ⊆ L, a logic � for L is A-formal if for
all Σ,ϕ ⊆ A, for all substitution σ, Σ � ϕ implies Σσ � ϕσ, where Σσ = {ψσ |
ψ ∈ Σ}. A logic for L is formal if it is L-formal.

For similar reasons, we propose relativized completeness and disjunctiveness as
follows.

Definition 2 (Syntactical completeness). For L with negation4 ¬ and
nonempty A ⊆ L, a logic � for L is A-complete if for all ϕ ∈ A, either � ϕ or
� ¬ϕ. A logic � for L is (syntactically) complete (a.k.a. negation complete) if
it is L-complete.

Definition 3 (Disjunction property). For L with disjunction5 ∨ and A ⊆ L
including at least one formula of the form ϕ∨ψ, a logic � for L is A-disjunctive
if for all ϕ ∨ ψ ∈ A, � ϕ ∨ ψ implies � ϕ or � ψ. A logic � for L has the
disjunction property if it is L-disjunctive.

It is well known that intuitionistic logic has the disjunction property. The fol-
lowing two properties are usually assumed for logics.

Definition 4 (Conjunction property). For L with conjunction ∧, a logic �
for L is conjunctive if for all Σ,ϕ, ψ ⊆ L, Σ � ϕ ∧ ψ iff Σ � ϕ and Σ � ψ.

Definition 5 (Confluency). A logic � for L is confluent if for all Σ,Σ′, ϕ ⊆
L, Σ � ϕ and Σ′ � ϕ imply Σ,Σ′ � ϕ.

Note that monotonicity implies confluency but not vice versa. Finally, we
introduce a property which is more familiar in informal logic than in formal
logic.

Definition 6 (Non-tautologicity). A logic � for L is non-tautological if for
all Σ,ϕ ⊆ L, Σ � ϕ implies ϕ /∈ Σ.

Non-tautologicity is usually not required in formal logic. Indeed, if a logic is
reflexive or monotonic, then it can not be non-tautological. But non-tautologicity
is rather plausible for natural language arguments, where begging the question is
not allowed. In other words, a good argument should not contain its conclusion
as one of its premises. To save monotonicity, we could slightly restrict it as:
Σ,ϕ′ � ϕ whenever Σ � ϕ and ϕ′ 	= ϕ.

For brevity, we use the following notations in the sequel:

– L: the set of all logics for L, namely, L = ℘(℘(L)× L).
– Lcc : the set of all consistent and complete logics for L.
– Lcj : the set of all conjunctive logics for L.
– Lnt : the set of all non-tautological logics for L.

4 For our purpose, it need not be interpreted as the standard negation. It can be any
unary connective or operator.

5 For our purpose, it need not be interpreted as the standard disjunction. It can be
any binary connective or operator.
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3 Social Logic Function

Let N = {1, . . . , n} be a finite set of agents (groups, societies, cultures) with
at least three members. A profile 	 = (�1, . . . ,�n) is a vector of logics in L.
Analogously, we write 	′ for the profile (�′1, . . . ,�′n). Let N�

Σ,ϕ be the set of

agents who accept the argument (Σ,ϕ) in the profile 	, namely, N�
Σ,ϕ = {i ∈

N | Σ �i ϕ}. We write N�
ϕ for N�

∅,ϕ and N�
ϕ,ψ for N�

{ϕ},ψ, respectively. Let
N�

Σ,Δ =
⋂

ϕ∈ΔN�
Σ,ϕ, namely, the set of agents who accept the arguments (Σ,ϕ)

for all ϕ ∈ Δ in 	. Instead of F (	), we write �F , and analogously, we write �′F
for F (	′).

Definition 7 (Social logic function). A social logic function (SLF) (for n
logics) for L is a map F : Ln → L.

Some natural desiderata for SLFs borrowed from social choice theory are listed
below.

Definition 8 (Unanimity). An SLF F : Ln → L is unanimous, if for all
Σ,ϕ ⊆ L, for all profiles 	 in Ln, Σ �i ϕ for all i ∈ N implies Σ �F ϕ, i.e., if
an argument is accepted by all individuals, then it is collectively accepted.

The following is the counterpart of groundedness proposed in [20].

Definition 9 (Groundedness). An SLF F : Ln → L is grounded, if for all
Σ,ϕ ⊆ L, for all profiles 	 in Ln, Σ �F ϕ implies Σ �i ϕ for some i ∈ N , i.e.,
if an argument is collectively accepted, then it must be accepted by one of the
individuals. An SLF is ungrounded if it is not grounded.

Unanimity and groundedness of F determine the lower and upper bound of �F ,
respectively. More precisely, if F is unanimous and grounded then for all profiles
	,
⋂

i∈N �i ⊆ �F ⊆
⋃

i∈N �i. We call an SLF bounded if it is both unanimous
and grounded. If we restrict arguments to judgments, we get weak unanimity
and weak groundedness, respectively.

Definition 10 (Weak unanimity). An SLF F : Ln → L is weakly unani-
mous, if for all ϕ ∈ L, for all profiles 	 in Ln, �i ϕ for all i ∈ N implies �F ϕ,
i.e., if a judgment is accepted by all individuals, then it is collectively accepted.

Definition 11 (Weak groundedness). An SLF F : Ln → L is weakly
grounded, if for all ϕ ∈ L, for all profiles 	 in Ln, �F ϕ implies �i ϕ for
some i ∈ N , i.e., if a judgment is collectively accepted, then it must be accepted
by one of the individuals.

The following fact should be easily verified. Recall that Lcc is the set of all
consistent and complete logics.

Proposition 1. F : Ln
cc → Lcc is weakly unanimous iff it is weakly grounded.

Definition 12 (IIA). An SLF F is independent of irrelevant arguments (IIA),
if for all Σ,ϕ ⊆ L, for all profiles 	 and 	′, N�

Σ,ϕ = N�′
Σ,ϕ implies that Σ �F ϕ

iff Σ �′F ϕ, i.e., the collective acceptance of an argument only depends on the
individual acceptance of this argument.
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Independence is the most controversial property in social choice, particularly
in judgment aggregation. Since we lift aggregation from proposition-wise to
argument-wise, independence in logic aggregation is more justified than that
in judgment aggregation. Of course, we can still ask the reasons for an argu-
ment, just as we can ask the reasons for a proposition. But we can then take the
reasons of an argument to be the premises of the argument and form a meta-
argument. Thus, an abstract argument-wise aggregation framework is applicable
unless we lift the level of arguments constantly.

Definition 13 (Neutrality). An SLF F is neutral (for arguments) if for all
Σ,Σ′, ϕ, ϕ′ ⊆ L, for all profiles 	, N�

Σ,ϕ = N�
Σ′,ϕ′ implies that Σ �F ϕ iff

Σ′ �F ϕ′, i.e. if two arguments receive the same individual acceptance, their
collective acceptances are also the same. In other words, all arguments are treated
equal.

We define two weak versions of neutrality as follows, which seem to have no
counterparts in the literature.

Definition 14 (C-Neutrality). An SLF F is neutral for conclusions if for all
Σ,ϕ, ϕ′ ⊆ L, for all profiles 	, N�

Σ,ϕ = N�
Σ,ϕ′ implies that Σ �F ϕ iff Σ �F ϕ′.

Definition 15 (P-Neutrality). An SLF F is neutral for premises if for all
Σ,Σ′, ϕ ⊆ L, for all profile 	, N�

Σ,ϕ = N�
Σ′,ϕ implies that Σ �F ϕ iff Σ′ �F ϕ.

Proposition 2. An IIA SLF is neutral iff it is both C-neutral and P-neutral.

Proof. The direction from left to right is obvious. For the other direction, suppose
F is both C-neutral and P-neutral. Given a profile 	, supposeN�

Σ,ϕ = N�
Σ′,ϕ′ =df

C and Σ �F ϕ. We need to show that Σ′ �F ϕ′. Consider a profile 	′ such that
N�′

Σ,ϕ = N�′
Σ,ϕ′ = N�′

Σ′,ϕ′ = C. Since N�
Σ,ϕ = N�′

Σ,ϕ, by IIA it follows from Σ �F ϕ
that Σ �′F ϕ, which implies Σ �′F ϕ′ by C-neutrality of F . It in turn implies
Σ′ �′F ϕ′ by P-neutrality of F . By IIA again, we have Σ′ �F ϕ′.

We call an SLF systematic if it is both IIA and neutral.

Definition 16 (N-monotonicity). An SLF F is n-monotonic if for all all
Σ,ϕ ⊆ L, for all profiles 	, N�

Σ,ϕ ⊆ N�
Σ′,ϕ′ and Σ �F ϕ imply Σ′ �F ϕ′, i.e.,

compared to a collectively accepted argument, any argument with the same or
additional acceptance will also be collectively accepted.

It is a bit surprising that this natural property had not been proposed before,
until its first presence in [6]. Note that n-monotonicity is different from the
standard notion of monotonicity, which involves two profiles rather than one. It
is easily seen that n-monotonicity implies neutrality but not vice versa.

Definition 17 (Dictatorship). An SLF F is dictatorial if there exists an i ∈
N such that for all profiles 	, �F = �i, i.e. the social logic is always the same
as i’s logic.
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We say that a profile 	 satisfies a property P if �i satisfies P for all i ∈ N . The
following notion is adapted from [10].

Definition 18 (Collective rationality, Robustness). An SLF F is collec-
tively rational for a property P if for all profiles 	, �F satisfies P whenever 	
satisfies P . In this case, we also say that P is robust under F .

We intentionally give another name for collective rationality. With the name of
collective rationality, preserving certain logical properties are considered to be
‘rational’ (and thus desired) for an aggregation function. But there is no reason
to assume that these properties on the individual level should also be satisfied
on the social level. If we take a serious social view on logic, the fact that some
logical properties are not preserved under aggregation does not mean that the
aggregation is not rational. It only indicates that the rationality or logic on
the social level is different. By using the name of robustness, we can compare
different logical properties under the framework of social choice and provide a
new perspective on logic.

The main question we are to address is: what logical properties are robust?
More precisely, which logical properties can be preserved under the desired social
logic functions?

4 Some Possibility and Impossibility Results

First we give some easy possibility results.

Proposition 3. (Strong) reflexivity is robust under any unanimous SLF F :
Ln → L.

Proof. Let F : Ln → L be unanimous and 	 satisfy (strong) reflexivity. Then
(given ϕ ∈ Σ), for every i ∈ N , ϕ �i ϕ (Σ �i ϕ). By unanimity, ϕ �F ϕ
(Σ �F ϕ).

Proposition 4. Monotonicity is robust under any n-monotonic SLF F : Ln →
L.

Proof. Let F : Ln → L be an n-monotonic SLF and 	 satisfy monotonicity.
Suppose Σ �F ϕ and Σ ⊆ Σ′. Since 	 is monotonic, N�

Σ,ϕ ⊆ N�
Σ′,ϕ. Then by

the n-monotonicity of F , we have Σ′ �F ϕ.

Proposition 5. A-formality is robust under any n-monotonic SLF F : Ln → L.

Proof. Let F : Ln → L be an n-monotonic SLF and 	 satisfy A-formality.
Suppose Σ,ϕ ⊆ A and Σ �F ϕ. For any substitution σ, we haveN�

Σ,ϕ ⊆ N�
Σσ,ϕσ ,

since 	 is A-formal. It follows from the n-monotonicity of F that Σσ �F ϕσ.

Proposition 6. M-compactness is robust under any n-monotonic SLF F : Ln →
L.
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Proof. Let F : Ln → L be an n-monotonic and grounded SLF and 	 satisfy m-
compactness. Since 	 is monotonic, by Proposition 4, �F is also monotonic. Thus
it suffices to prove that �F is compact. Suppose Σ �F ϕ. Since 	 is compact, for
each i ∈ N�

Σ,ϕ, there is a finite Δi ⊆ Σ such that Δi �i ϕ. Let Δ =
⋃

i∈N�
Σ,ϕ

Δi.

Then Δ ⊆ Σ is also finite. Since 	 is monotonic, Δ �i ϕ for all i ∈ N�
Σ,ϕ. Hence,

N�
Σ,ϕ ⊆ N�

Δ,ϕ. It follows from n-monotonicity of F that Δ �F ϕ, as required.

Note that m-compactness can not be replaced by compactness in the above
proposition. Actually, compactness alone is not robust even under the majority
rule. Consider �i = {({pi}, p), ({pi | i ∈ N}, p)} for i ∈ N . Then every �i
is compact. But by the majority rule, � = {({pi | i ∈ N}, p)}, which is not
compact.

Proposition 7. Cautious monotonicity is robust under any n-monotonic SLF
F : Ln

cj → Lcj.

Proof. Recall that Lcj is the set of all conjunctive logics. Let F : Ln
cj → Lcj be

an n-monotonic SLF and 	 satisfy cautious monotonicity. Suppose Σ �F ϕ and
Σ �F ϕ′. Since �F is conjunctive, we have Σ �F ϕ ∧ ϕ′. By the conjunction
property of 	, N�

Σ,ϕ∧ϕ′ ⊆ N�
Σ,ϕ∩N�

Σ,ϕ′ . By cautious monotonicity of 	, N�
Σ,ϕ∩

N�
Σ,ϕ′ ⊆ N�

Σ∪{ϕ′},ϕ. Hence, N
�
Σ,ϕ∧ϕ′ ⊆ N�

Σ∪{ϕ′},ϕ. Since F is n-monotonic, it

follows from Σ �F ϕ ∧ ϕ′ that Σ,ϕ′ �F ϕ.

Now we give some impossibility results. First, an easy one, which says that
n-monotonicity for non-trivial logics forces groundedness.

Proposition 8. There is no n-monotonic and ungrounded SLF F : Ln → L
that is collectively rational for non-triviality.

Proof. Suppose F : Ln → L is n-monotonic and ungrounded that is collectively
rational for non-triviality. Then there is a profile 	 of non-trivial logics and
Σ,ϕ ⊆ L such that no one accepts (Σ,ϕ) but Σ �F ϕ. Thus, for any Σ′, ϕ′ ⊆ L,
N�

Σ,ϕ = ∅ ⊆ N�
Σ′,ϕ′ , which implies by n-monotonicity that Σ′ �F ϕ′. Hence, �F

is trivial, contradicting the assumption.

This result is not as pessimistic as the usual impossibility results in social choice
theory. It only indicates that n-monotonicity should be applied together with
groundedness; otherwise, we may get a trivial logic by aggregation. The following
results are more parallel with the usual impossibility results. The proofs are
canonical, using the property of ultrafilters, which was first introduced in [7] for
an alternative proof of Arrow’s theorem, and later adapted and refined for other
aggregation frameworks in the literature, including [9], [3], and [13] for judgment
aggregation and [5] for graph aggregation.

Definition 19. A group C ⊆ N is a winning coalition of (Σ,ϕ) (under F ), if
for all profiles 	, N�

Σ,ϕ = C implies Σ �F ϕ.

The following lemma is easily verified.
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Lemma 1. Let F be an IIA SLF and WF
Σ,ϕ the set of all winning coalitions of

(Σ,ϕ) under F .

1. If there is a profile 	 such that N�
Σ,ϕ = C and Σ �F ϕ, then C is a winning

coalition of (Σ,ϕ).
2. For all profiles 	, Σ �F ϕ iff N�

Σ,ϕ ∈ WF
Σ,ϕ.

We often omit the superscript F in WF
Σ,ϕ if F is clear from the context. The

following lemma is adapted from [5].

Lemma 2. Suppose F is IIA. Let WΣ,ϕ be defined as above. Then

1. F is unanimous iff N ∈ WΣ,ϕ for all Σ,ϕ ⊆ L.
2. F is grounded iff ∅ /∈ WΣ,ϕ for all Σ,ϕ ⊆ L.
3. F is neutral iff WΣ,ϕ =WΣ′,ϕ′ for all Σ,Σ′, ϕ, ϕ′ ⊆ L.

Proof. The first two clauses are obvious. For (3), suppose F is neutral and
N�

Σ,ϕ ∈ WΣ,ϕ. Let 	′ be a profile such that N�′
Σ′,ϕ′ = N�′

Σ,ϕ = N�
Σ,ϕ. Since

N�
Σ,ϕ ∈ WΣ,ϕ, we have Σ �F ϕ, which implies Σ �′F ϕ by IIA. It in turn implies

Σ′ �′F ϕ′ by neutrality. Thus, N�
Σ,ϕ = N�′

Σ′,ϕ′ ∈ WΣ′,ϕ′ . Hence, WΣ,ϕ ⊆ WΣ′,ϕ′ .
Similarly, we have WΣ′,ϕ ⊆ WΣ,ϕ. For the other direction of (3), suppose
WΣ,ϕ = WΣ′,ϕ′ for all Σ,Σ′, ϕ, ϕ′ ⊆ L and N�

Σ,ϕ = N�
Σ′,ϕ′ . Then Σ �F ϕ

iff N�
Σ,ϕ ∈ WΣ,ϕ iff N�

Σ′,ϕ′ ∈ WΣ′,ϕ′ iff Σ′ �F ϕ′.

Now let’s recall the definition of ultrafilters.

Definition 20. (Ultrafilter) An ultrafilter W over N is a set of subsets of N
satisfying the following conditions:

1. W is proper, i.e. ∅ /∈ W;
2. W is closed under (finite) intersection, i.e. C1, C2 ∈ W implies C1∩C2 ∈ W;
3. W is maximal, i.e. for all C ⊆ N , either C ∈ W or C ∈ W, where C = N−C

is the complement of C.

An ultrafilterW over N is principal if W = {C ⊆ N | i ∈ C} for some i ∈ N .

The following is a well-known fact of ultrafilters.

Lemma 3. Any ultrafilter over a finite set is principal.

Theorem 1. For all nonempty A ⊆ L, any bounded and systematic SLF F :
Ln → L that is collectively rational for transitivity and A-completeness must be
dictatorial.

Proof. Let F : Ln → L be bounded (unanimous and grounded), systematic (IIA
and neutral), and collectively rational for transitivity and A-completeness. By
Lemma 2, there is a setW of winning coalitions such that Σ �F ϕ iff N�

Σ,ϕ ∈ W
for allΣ,ϕ ⊆ L. By Lemma 3, it suffices to prove thatW is an ultrafilter. First,W
is proper by Lemma 2(2), since F is grounded. Second, suppose C1, C2 ∈ W . Con-
sider a transitive profile 	 such that C1 = N�

ϕ , C2 = N�
ϕ,ψ, and C1 ∩ C2 = N�

ψ .
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This is possible since by the transitivity of 	, C1 ∩ C2 ⊆ N�
ψ . As C1, C2 are win-

ning coalitions, we have �F ϕ and ϕ �F ψ. It follows that �F ψ by the collective
rationality of F for transitivity. Hence, C1 ∩ C2 ∈ W . Finally, Let C ⊆ N . Con-
sider an A-complete profile 	 such that C = N�

ϕ and C = N�
¬ϕ, where ϕ ∈ A. By

the collective rationality of F for A-completeness, �F ϕ or �F ¬ϕ. Hence, C ∈ W
or C ∈ W .

Theorem 2. For all A ⊆ L including at least one formula of the form ϕ ∨ ψ
with ϕ 	= ψ, any bounded and systematic SLF F : Ln → L that is collectively
rational for transitivity and A-disjunctiveness must be dictatorial.

Proof. The proof is almost the same as above, except the verification of the
maximality of W . Let C ⊆ N . Consider an A-disjunctive profile 	 such that
C = N�

ϕ , C = N�
ψ , and N = N�

ϕ∨ψ, where ϕ ∨ ψ ∈ A. By unanimity, �F ϕ ∨ ψ.
Since F is collectively rational for A-disjunctiveness, we have �F ϕ or �F ψ.
Hence, C ∈ W or C ∈ W .

Here is a reformulation of the above two theorems: the conjunction of transitiv-
ity and A-completeness (A-disjunctiveness) is not robust under any bounded,
systematic, and non-dictatorial social logic function.

For non-tautological logic, the above theorems can be strengthened by drop-
ping neutrality in the assumption, due to the following lemma. Recall that Lnt

is the set of all non-tautological logics.

Lemma 4. Every unanimous and IIA SLF F : Ln
nt → Lnt that is collectively

rational for both transitivity must be neutral.

Proof. Let F be unanimous, IIA, and collectively rational for transitivity. Let
C be a winning coalition of (Σ,ϕ). By Lemma 2(3), it suffices to prove that
C is also winning coalition of (Σ′, ϕ′). First, we prove that C is a winning
coalition of (Σ,ϕ′). Let 	 be a transitive profile such that N�

Σ,ϕ = N�
Σ,ϕ′ = C

and N�
ϕ,ϕ′ = N . This is possible, since ϕ′ /∈ Σ by non-tautologicity. Since C

is a winning coalition of (Σ,ϕ), we have Σ �F ϕ. On the other hand, we have
ϕ �′F ϕ′ by unanimity. It follows that Σ �F ϕ′ by transitivity. Hence, C is a
winning coalition of (Σ,ϕ′). To prove that C is a winning coalition of (Σ′, ϕ′),
let 	 be a transitive profile such that N�

Σ,ϕ′ = N�
Σ′,ϕ′ = C and N�

Σ′,Σ = N . This
is possible, since ϕ′ /∈ Σ by non-tautologicity. Since C is a winning coalition of
(Σ,ϕ′), we have Σ �F ϕ′. On the other hand, we have Σ′ � Σ by unanimity. It
follows that Σ′ �F ϕ′ by transitivity. Hence, C is a winning coalition of (Σ′, ϕ′).

Using the above lemma, by slightly modifying the proofs of Theorem 1 and
Theorem 2, we obtain the following results.

Theorem 3. For all nonempty A ⊆ L, any bounded and IIA SLF F : Ln
nt →

Lnt that is collectively rational for transitivity and A-completeness must be dic-
tatorial.

Theorem 4. For all A ⊆ L including at least one formula of the form ϕ ∨ ψ
with ϕ 	= ψ, any bounded and IIA SLF F : Ln

nt → Lnt that is collectively rational
for transitivity and A-disjunctiveness must be dictatorial.
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In all the above theorems, transitivity can be replaced by confluency or the con-
junction property, proofs of which are almost the same. Actually, all properties
of the form A ∧ B → C can replace the role of transitivity in the above the-
orems. A parallel result in aggregation of general binary relations has already
been obtained in [5].

5 Relating to Other Aggregation Frameworks

Preference Aggregation. If we treat a logic as a binary relation on formulas,
instead of that between sets formulas and formulas, then a logic can be roughly
regarded as a preference. The reflexivity and transitivity of preferences can be
naturally assumed for logics. But the completeness of preferences are not suitable
for logics. In other words, when logic is treated as a binary relation on formulas,
a framework of general binary relation (as in [5]) or partial relation (as in [19])
is more suitable for logic aggregation than standard preference aggregation.

Conversely, preference aggregation can be embedded into logic aggregation,
since preference aggregation can be embedded into judgment aggregation, and
the latter can in turn be embedded into logic aggregation (see the next
subsection).

Judgment Aggregation. A logic � can be regarded as a set of judgments
J = {(Σ,ϕ) | Σ � ϕ} ∪ {¬(Σ,ϕ) | Σ � ϕ}. The difference is that J is infinite
if the language L is infinite, whereas in judgment aggregation a judgement set
is usually finite. Regardless of this difference, logic aggregation can be turned
to judgment aggregation of special propositions, where a proposition expresses
whether an argument holds.

On the other hand, each set J of judgments together with the underlying logic
� can be regarded as a new logic �′ =� ∪{(∅, p) | p ∈ J}. But notice that usually
the judgments in J are not formal, in the sense that the substitution rule is not
applicable to them in the new logic. In this way, judgment aggregation under a
unified logic can be regarded as logic aggregation, where the individual logics are
obtained from the unified logic augmented with the individual judgments as non-
logical axioms. In this sense, judgment aggregation can be translated into logic
aggregation. The relation between these two frameworks is just like that between
object language and metalanguage. We can always turn a metalanguage into an
object one and vice versa. The logics underlying the judgments expressed by
metalanguage in judgment aggregation are turned into object language in logic
aggregation, which helps to understand the logical properties better in judgment
aggregation.

Graph Aggregation. Graph aggregation proposed in [5] is the aggregation
of arbitrary binary relations on a given set V . If we take V to be the set of
formulas, and assume compactness of logic, then a logic can be treated as a binary
relation on V . An edge from vertex ϕ to ψ in a graph G represents an accepted
argument from premise ϕ to conclusion ψ in the logic G. But notice that in graph
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aggregation V is usually assumed to be finite, whereas in logic aggregation the
set of formulas are usually infinite. Besides this difference, vertices in a graph are
independent of each other while a formula in a logic can be composed from other
formulas. Hence, even for compact logics, graph aggregation is too abstract to
express logic aggregation.

On the other hand, if we take a graph as a frame for modal logic, then a set of
graphs define a logic. Thus the aggregation of sets of graphs can be transformed
to the aggregation of modal logics. Moreover, graph aggregation is a special case
of the aggregation of sets of graphs (aggregating singleton sets). In this way,
graph aggregation can be transformed to logic aggregation.

6 Conclusion and Future Works

We propose a formal framework for logic aggregation, in which some possibility
and impossibility results are proved. We also compare logic aggregation with
other aggregation frameworks. Our contribution is mainly conceptual rather than
technical. This is only a first step in applying the social choice framework to logic.
There are a lot left to be explored.

Firstly, more general possibility and impossibility results can be explored un-
der the framework we proposed. Secondly, the framework of logic aggregation
itself can also be generalized. An immediate generalization is to take a substruc-
tural view on logic, where a logic is no longer a binary relation between sets of
formulas and formulas, but between structures of formulas and formulas. Then
more nonclassical logics, such as linear logic and Lambek calculus can be incor-
porated in logic aggregation. Thirdly, logic can be treated in a more functional
or dynamic way, where a logic is a procedure (an algorithm, or a method) rather
than reducing it to the input-output data (accepted arguments). This means
that even if two algorithms produce the same set of valid arguments, they are
different logics. Finally, the method of logic aggregation need not be argument-
wise. Just as there are global or holistic methods in judgment aggregation, we
can also explore global or holistic methods in logic aggregation, for example, the
distance-based approach. If this approach is taken, we have to clarify what it
means for two logics to be close, and how to define the distance between logics.
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Abstract. To develop a court argumentation system of three agents: a plain-
tiff, a defendant, and a judge, this paper constructs task models of courtroom
investigation. More specifically, we develop the algorithms of evidence question-
ing and evaluation, and establish a mechanism for fact finding, which consists
of evidence-claim networks and evidence aggregation. Finally, we illustrate our
system with a real legal scenario.

1 Introduction

Argumentation is a communication process that aims at resolving a difference of opin-
ion with the addressee [1]. By proposing a constellation of propositions, the arguer, who
is challenged, can try to make his standpoint acceptable to a rational judge. Argumen-
tation not only is omnipresent every day but also has become an influential approach
in Artificial Intelligence [2]. So, many argumentation systems have been developed in
domains such as law [3] and medicine [4]. However, although a court argumentation
simulation system can help lawyers to analyse their cases, predict judicial decisions,
and prepare some strategies for legal processes, few such systems have been developed.

This paper is to address this issue. More specifically, our multi-agent system simu-
lates the process of conducting a civil lawsuit in accordance with Chinese civil procedu-
ral law. Normally, a lawsuit consists of four stages: courtroom investigation, courtroom
debate, mediation, and finally judgement.1 In this paper, we focus on dealing with the
courtroom investigation stage. The main goal of a courtroom investigation is to come
up with facts that can be admitted by law, called legal facts, and thus can be used as the
premises of the final judgement. According to [5], a courtroom investigation proceeds
as follows: (i) both parties present opening statements; (ii) the plaintiff provides evi-
dence; (iii) the defendant asks questions; (iv) the defendant provides evidence; (v) the

� Corresponding author.
1 The mediation part just indicates whether the judge should put forward a decision or leave the

things to a further mediation process.
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Fig. 1. The interaction process of courtroom investigation

plaintiff asks questions; and (vi) the judge asks questions. In our system, the pieces of
evidence are presented one by one and so actually steps (ii) and (iii) are repeated until
no more evidence. The same goes for steps (iv) and (v).

The three agents in our model are shown in Fig. 1. During the courtroom investiga-
tion process, after the left agent that corroborates (called corroborating agent) has pre-
sented some pieces of evidence and propositions, the right agent that addresses inquiries
to evidence (called querying agent) will first analyse the evidence and inferences by an-
swering some critical questions, and then decides how to respond accordingly. Each
time after steps (ii) to (iii) (or (iv) to (v)), the judging agent (in the middle of Fig. 1)
tries to check out any conflicts among all the received messages.2 If there is, he needs
judge which claim is more convincing, or asks questions for more information. During
the lawsuit process, each agent has its own actions and beliefs, but all the agents share
some premise knowledge, which includes legal rules and interpretations (stored in legal
knowledge base in Fig. 1) and a certain amount of common sense (stored in common
sense base in Fig. 1).3 So, basically our system is a knowledge based system [6].

Set of legal rules (LR)

Set of legal rules interpretation (IR)

Set of evidence (E)

Set of case facts (CF)

Set of Legal conclusions (C)

Fig. 2. General structure of judge’s litigation reasoning

2 By conflicts, we mean that there is evidence supporting claim A while there is another evidence
supporting claim ¬A.

3 The common sense knowledge base is used to support the reasoning on legal knowledge. If
there is inconsistency between these two bases, the legal knowledge base will override the
common sense knowledge.
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To solve the conflicts between the two disputing parties, the most important thing
for the judge is to give an acceptable justification of his legal decision. In [7], Xiong
presents a general structure of judge’s litigation reasoning, as shown in Fig. 2, where the
right part relates to fact finding and the left part relates to the debate. In this paper, our
focus is on the reasoning process involved in the right part in Fig. 2 (in other papers, we
will discuss the left part and the integration of two parts to form a complete system). In
this right part, before the judge can draw an inference from evidence to case fact (claim),
one agent needs to provide evidence and the other needs to question. Accordingly, our
system consists of the task models of evidence questioning, evaluating, and aggregating,
and an evidence-to-claim network, which is used to keep track of the reasoning process
during courtroom investigation.

The rest of the paper is organised as follows. Sections 2 and 3 detail the computa-
tional models of evidence questioning and evaluating. Sections 4 and 5 introduce the
mechanism of fact finding, which includes an evidence-claim network and an evidence
aggregation operator. Section 6 illustrates our system in a real civil case. Section 7
discusses related work. Finally, Section 8 concludes the paper with future work.

2 Task Model of Questioning on Evidence

This section presents the algorithm of evidence questioning.
Usually the corroborating agent cannot use indirect evidence ei to support some case

fact cfj directly. For example, a fingerprint at the scene of a crime cannot directly prove
that someone is involved in the case. Instead, the corroborating agent should introduce
an intermediate claim Ei to specify the usage of ei in the case, and then provide an
inference from Ei to cfj .4

Fig. 3 shows the algorithm of questioning on evidence. Firstly, the querying agent
classifies received evidence ei, according to the legal knowledge base, into: (i) docu-
mentary evidence; (ii) physical evidence; (iii) audio and visual material; (iv) testimony
of witnesses; (v) statements of the parties involved; (vi) conclusions of identification
experts; and (vii) transcripts of survey.

Secondly, the querying agent verifies the evidence of ei by answering the critical
questions about the legality and genuineness of evidence ei. The critical questions are
about the following key points [9]: whether it is obtained: (i) by infringing upon the
lawful rights and interests of other people, or (ii) by means prohibited by law. If ei is
verified as illegal, the querying agent will inform the judging agent about this to end
the cross-examination. The genuineness of evidence is examined in a similar way. All
these critical questions are sorted in legality and genuineness rule base.

Thirdly, if the querying agent can ensure that ei is illegal or non-genuine by above
steps, then he can select the rule from legal knowledge base that supporting his proof
and present it to the judging agent. Otherwise, the querying agent is assumed to believe

4 It allows multi-steps in the reasoning process of ei proving cfj , i.e., there is reasoning chain
ei→Ei1→Ei2→ . . .→Ein→cfj , but in this paper we restricted on the form of ei→Ei→
cfj where Ei is a key step in the above chain. And the reasoning involved is default reasoning
[8], i.e., if ei is admissible and the inference from ei to cfj is made, then cfj is admissible
when inconsistency information is not supplied.
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that ei is legal and genuine. Then in this case, he will further verify the relevance be-
tween ei and cfj . Since we introduce a key step Ei to connect the whole inference from
ei to cfj , the relevance check is started by verifying ei → Ei, followed by verifying
Ei→ cfj (if ei → Ei is assumed to be acceptable).

– When verifying ei → Ei, the querying agent will answer the following questions
(included in relevant rule base) [9,10], depending on types of ei:5 (i) Documentary
evidence, physical evidence, audio and visual material: e.g., is ei relevant to Ei? (ii)
Testimony of witnesses: e.g., does the witness not have interests in any of the party
involved? (iii) Conclusions of expert witnesses: e.g., is their assertion based on
evidence? (iv) Statements of the parties involved: e.g., do the parties provide other
relevant evidence? The critical questions are stored in the order of the difficulty
of answering them, i.e., from the easiest to the hardest. The system checks the
questions one by one starting from the top one in the list. If the querying agent
cannot acquire enough information to answer any of these questions (unknown), he
can choose to remain silent; if the answer to one of critical questions is negative,
the querying agent needs to select the relevant rule from legal knowledge base, and
present to the judging agent; otherwise, ei → Ei is assumed to be acceptable, and
he should go ahead to verify the strength of Ei→cfj .

– When verifying Ei → cfj , the querying agent just answers some questions such
as “Are they relevant?” and “How relevant are they?” (these questions are stored
in the relevance rule base). According to [11], the querying agent can determine
the strength of Ei → cfj . If highly relevant, the querying agent admits the evi-
dence and the relevant propositions, and then presents to the judging agent about
his admission; otherwise, he presents the result of irrelevance to the judging agent.

5 No doubts for transcripts of inspection and examination [9].
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3 Task Model of Evidence Evaluation

In this section, we discuss the algorithm of evidence evaluation.
After the querying agent finishes the evidence questioning process shown in Fig.

3, the judging agent will classify, as shown in Fig. 4, the received massages from the
querying agent to see whether or not the received evidence should be admitted as legal
evidence. Firstly, the judging agent classifies the received messages into three types:
silent, doubt and admit. According to different types, different evaluation process will
be carried out. (i) When the querying agent keeps silent, the judge needs to verify the
strength of ei→Ei because the judging agent knows that according to the method of
questioning (see Fig. 3), it means that the querying agent does not have sufficient infor-
mation. According to relevance rule base, if the verified result is yes, then the judging
agent affirm the evidence ei; if no, he should reject ei. Otherwise, if the judging agent
cannot decide the strength of ei → Ei, it is reasonable to set his temporary evalua-
tion result as hold up. (ii) when the querying agent doubts the admissibility of ei by
providing some propositions about rule violations, the judging agent’s job is more com-
plicated. That is, first the judging agent needs to identify which rule base the querying
agent talked about. Here are the following two possibilities:

– Relevance rule base, which is about the inference from evidence to case fact. In
the previous section, we divide the relevance check into two steps, but since giv-
ing a counter-argument is more critical than just presenting doubts, for both steps,
the judging agent evaluates the response of the querying agent by asking himself
questions such as: “Does he have opposite evidence or reasons?”, “Are the oppo-
site evidence or reasons powerful enough to rebut the evidence of the other party?”,
which are stored in the evaluation rule base. If the answers to these questions are
negative, the judging agent should reject the querying agent’s attack and affirm the
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related evidence provided by the corroborating agent (see [9]: Article 72), other-
wise he should admit the querying agent’s attack and reject that evidence. With
incomplete information, the judging agent cannot decide to admit the evidence or
not. So, in this case it is reasonable to set his temporary evaluation result as hold up
and do not let such evidence be the basis of his judgement.6

– Legality and genuineness rule base, which is about the legality and genuineness of
evidence, in which all are yes/no questions. So, the judging agent can easily decide
to accept some doubt or not. If he accepts the doubt, he will reject the related
evidence ei provided by the corroborating agent. Otherwise, he needs to further
verify whether or not that evidence supports the case fact by answering some critical
questions in the relevance rule base and the evaluation rule base.

And (iii) when the querying agent admits the evidence provided by the corroborating
agent, the judging agent needs not check it further but admits it (see [9]: Article 72).

4 Evidence-Claim Network

This section presents our evidence-claim network to record the process of courtroom
investigation.

The key to the success in a lawsuit is to provide the court sufficient, solid evidence.
However, often it is unclear how an inference from evidence to claim (i.e., fact of case)
is made. Therefore, the agents concerned, especially the judging agent, needs to figure
out the relationship between a piece of evidence and a certain case fact. To solve the
problem, we introduce an evidence-claim network, which consists of points (labelled by
cf , e, and E), links and marks. Its links are the relations between evidence and claims,
and also between pieces of evidence. Since evidence could be independent or not, there
are two kinds of link as shown in Figs. 5 and 6. The marks in the network are set to
indicate the status of evidence and consistency about the links. Therefore, the marks
are on the points and links both. In particular, symbol � marks acceptable, symbol ×
marks unacceptable, and symbol ? means doubts or need of more information.

After the corroborating agent provides evidence ei to support his claim cfj, each agent
uses the following operations to establish a network: add point(ei), add point(Ei), and
add point(cfj); add link(ei, Ei), and add link(Ei, cfj), where Ei is an intermediate
fact of agent that corroborates.

6 In fact, the judging agent can ask the other agents for more information, but then the case
involves to decide which questions could be asked and to ask which agent. Thus, the whole
problem becomes much more complicated and beyond the scope of this paper. So, we leave
the problem to our future work.
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After questioning: (i) The corroborating agent changes nothing in his network. (ii)
if admitting the other’s evidence and claims, the querying agent puts symbol � on the
related points and links; if doubts, put symbol ?; and if silent, do nothing. And (iii) for
the judging agent, as shown in Fig. 4, if he sorts the received message into the class of:

– Admit: Put symbol � on all the related points and links.
– Doubt: (a) On ei’s legality and genuineness: First put symbol ? on ei, then call the

evaluation method. If it is verified as legal and genuine, replace symbol ? with sym-
bol � and call a further evaluation; otherwise, with symbol ×. (b) On the strength
of ei→Ei (or Ei→ cfj): First put symbol ? on the link, then call the evaluation
algorithm. If the querying agent does not have any opposite evidence or reasons
powerful enough to rebut ei, replace symbol ? with symbol ×; otherwise, with
symbol �. However, if the judging agent cannot judge whether or not it is powerful
enough, then do not replace.

– Silent: First put symbol ? on link ei → Ei, then call the questioning algorithm
(as shown in Fig. 3). If any of the following cases is confirmed, the judging agent
will replace symbol ? with symbol ×, otherwise with symbol �: (a) Documentary
evidence, physical evidence, audio and visual material: ei is irrelevant to Ei. (b)
Testimony of witnesses: the witness has interests in some of the parties involved.
(c) Conclusions of expert witnesses: the assertion is not based on evidence. And (d)
statements of the parties involved: the party who claims cannot provide other rel-
evant evidence. As to transcripts of inspection and examination, the judging agent
just replaces symbol ? with symbol �. If the judging agent does not have enough
information to answer the above questions, he will not replace.

5 Evidence Aggregation

This section will discuss: (i) how the judging agent aggregates different evidence, which
support the same claim to some extents;7 and (ii) after such an aggregation, how the
judging agent judges whether or not the case fact is affirmative.

Now we answer the first question. When agents plaintiff and defendant identify dif-
ferent pieces of evidence to prove their contradicting facts, different types of evidence
have different probative forces. According to Articles 76 and 77 in [9], the probative
force of physical evidence, the conclusions of identification experts, the transcripts of
survey and the document evidence that have been notarised are, as a general rule, much
stronger than that of non-notarised document evidence, audio-visual materials and tes-
timonies. Thus, we can set the probative force of each type of evidence, denoted as
F (ei), with numbers in [0, 1] as shown in Table 1.8 Moreover, depending on support-
ing the truth of some case fact directly or not, different pieces of evidence could have

7 We will not discuss the reliability of intermediate facts. However, we will investigate the rela-
tionship between different intermediate facts (supportive or contradictory) and their effects on
the supportive of a claim.

8 Intuitively, the probative force of evidence e can be viewed as the judge’s subjective belief of
the statement that e proves by default, unless e is proved not admissible. The numbers in Table
1 could be changed for different judges but remain to reflect the preference order stated in [9].
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Table 1. Probative force of evidence of each type

F (ei) type of evidence ei
0.7 non-notarised document evidence
0.9 notarised document evidence
0.9 physical evidence
0.7 audio and visual material
0.7 testimony of witnesses
0.6 statements of involving parties
0.9 conclusions of expert witnesses
0.9 transcripts of inspection and examination

different influences, which we call the weight of evidence. The more important a piece
of evidence, the heavier its weight; and the stronger the probative force of a piece of
evidence, the more important it is. Formally, we have:

Definition 1. For each evidence ei (i = 1, . . ., n) that supports the same case fact cf ,
its weight wi is given by:

wi =
F (ei)

n∑
i=1

F (ei)
, (1)

where F (ei) is the probative force of evidence ei.

For the final network, if symbol × is on point ei, it means that evidence ei cannot
be admitted as legal evidence, and so the weight of evidence ei reduces to zero, i.e.,
wi = 0. Only in this case, the weight of a piece of evidence will change. Thus, we can
define the status of evidence as follows:

Definition 2. Evidence ei is rejected if wi = 0 or there is a symbol of × on the link
started from ei; evidence ei is admissible if symbol of � is on all the links started from
ei; otherwise, evidence ei cannot be a basis of a judgement.9

Although ei is verified as admissible, different admissibility strength of ei → cfj
influences the final status of cfj differently. According to the results of the evaluation
algorithm and the final network, for any link ei→Ei→ cfj , (i) if symbol � is on both
ei→Ei and Ei→ cfj (i.e., ei and cfj are highly relevant), and ei is admissible, then
cfj will be affirmed by the judging agent surely; (ii) if a symbol of× is on one of them,
then cfj cannot be affirmed; and (iii) otherwise, ei cannot be the basis of judgement
(namely, ei cannot affect the final status of cfj). More specifically, we have:

Definition 3. For link ei → Ei → cfj , its strength, which reflects the admissibility of
evidence ei to cfj , is given by:

S(ei → cfj) =

⎧⎨⎩
1 if symbol � is on both ei → Ei and Ei → cfj,
0.25 if symbol × is on one of ei → Ei and Ei → cfj ,
0.5 otherwise.

9 Especially, a piece of evidence ei cannot be a basis of case fact cf ’s final status judgement
(affirmed or not) if there is a symbol of ? on the link between ei and cf .
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To calculate the reliability of a case fact, cf , from its weight as well as the strength
of ei → cf , intuitively: (i) if the most important evidence is admitted and no evidence
is against cf , cf should be affirmed absolutely; (ii) if the most important evidence
is rejected and others are not strong enough to support cf , cf should be absolutely
rejected; (iii) if multiple pieces of evidence to support the same fact of cf and carry
an equal importance, the reliability of cf should increased with the amounts of the
evidence; (iv) if multiple pieces of evidence are against the same fact of cf and carry
an equal importance, the reliability of cf should be decreased with the amounts of the
evidence; and (v) if some evidence supports and the others are against the same fact
of cf , and all carry an equal importance, the reliability of cf should be inbetween the
reliability from support and that from against. Formally, we have:

Definition 4. The function of f : ([0, 1]× [0, 1])n → [0, 1] is a reliability function for
case fact cf from the admissibilities and weights of evidence e1, . . . , en if it satisfies:

(i) if wj = max{w1, . . . , wn}, S(ej → cf) = 1 and S(ek → cf) > 0.5(∀k 	= j)
then f((w1, S(ei → cf)), . . . , (wj , S(ej → cf))) = 1;

(ii) if wj = max{w1, . . . , wn}, S(ej → cf) = 0 and S(ek → cf) < 0.5(∀k 	= j)
then f((w1, S(ei → cf)), . . . , (wj , S(ej → cf))) = 0;

(iii) if ∀j, k ∈ {1, . . . , n}, wj = wk and ∀i ∈ {1, . . . , n}, S(ei → cf) > 0.5 then
∀j∈{1, . . . , n}, f((w1, S(ei → cf)), . . . , (wj , S(ej → cf))) ≤ f((w1, S(ei →
cf)), . . . , (wj+1, S(ej+1 → cf)));

(iv) if ∀j, k ∈ {1, . . . , n}, wj = wk and ∀i ∈ {1, . . . , n}, S(ei → cf) < 0.5 then
∀j∈{1, . . . , n}, f((w1, S(ei → cf)), . . . , (wj , S(ej → cf))) ≥ f((w1, S(ei →
cf)), . . . , (wj+1, S(ej+1 → cf)));

(v) if ∀j, k ∈ {1, . . . , n}, wj = wk and ∃m ∈ {1, . . . , n} such that ∀i ∈ {1, . . . ,m},
S(ei → cf) > 0.5 and ∀i ∈ {m+ 1, . . . , n}, S(ei → cf) < 0.5, then f((wm+1,
S(em+1 → cf)), . . . , (wn, S(en → cf))) ≤ f((wi, S(ei → cf)), . . . , (wn, S(en
→ cf))) ≤ f((w1, S(e1 → cf)), . . . , (wm, S(em → cf))).

According to [12,13], uninorm operator ⊕ has the following properties listed in the
following lemma.

Lemma 1. Let ⊕ is a uninorm with identity 0.5.

(i) Commutativity:⊕(a, b) = ⊕(b, a);
(ii) Associativity: ⊕(a,⊕(b, c)) = ⊕(⊕(a, b), c);

(iii) Monotonicity:⊕(a, b) ≥ ⊕(c, d) if a ≥ c and b ≥ c;
(iv) Strengthening: if an+1 > 0.5,⊕(a1, . . . , an) ≤ ⊕(a1, . . . , an, an+1);
(v) Weakening: if an+1 < 0.5, ⊕(a1, . . . , an) ≥ ⊕(a1, . . . , an, an+1);

(vi) Absorptivity:∀a ≥ 0.5,⊕(a, 1) = 1 and ∀a ≤ 0.5,⊕(0, 1) = 0; and
(vii) Comprising: for any a < 0.5 and b > 0.5, a ≤ ⊕(a, b) ≤ b.

The following theorem presents our evidence aggregation operator:

Theorem 1. Given a case fact of cf , let ei with wi 	=0 (i = 1, . . . , n) be the evidence
that supports cf . Then the following is the reliability function for cf :

R(cf) = ⊕n
i=1

(
wi

max{w1, . . . , wn}
× S(ei → cf)

)
, (2)
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where uninorm operator⊕ is given by:

⊕(a, b) = ab

ab+ (1− a)(1− b)
. (3)

Proof. (i) Assume that the most important evidence is admitted and others are not
strong enough to support cf , then there exists j such that wj = max{w1, . . . , wn}
and S(ej → cf) = 1, ∀k 	= j, S(ek → cf) ≥ 0.5, thus according to properties (i) -(iii)
and (vi) of Lemma 1, we have R(cf) = ⊕(1, b) = 1 where

b = ⊕(⊕j−1
i=1 (

wi × S(ei → cf)

max{w1, . . . , wj−1} ),⊕
n
i=j+1(

wi × S(ei → cf)

max{wj+1, . . . , wn} )).

(ii) Assume that the most important evidence is rejected and others are not strong enough to
support cf , then the proof is similar to that of case (i) above, but ∀k �= j, S(ek → cf) < 0.5.

(iii) Assume that multiple pieces of evidence to support the same fact of cf and carry an equal
importance, then ∀j, k ∈ {1, . . . , n}, wj = wk and ∀i ∈ {1, . . . , n}, S(ei → cf) > 0.5. Then
according to property (iv) of Lemma 1, for any j ∈ {1, . . . , n},

⊕j
i=1

(
wi

max{w1, . . . , wj} × S(ei → cf)

)
≤ ⊕j+1

i=1

(
wi

max{w1, . . . , wj+1} × S(ei → cf)

)
.

Therefore, R(cf) is increased with the amounts of the evidence.
(iv) Assume that multiple pieces of evidence are against the same fact of cf and carry an equal

importance, then the proof is similar to that of case (iii) above, but ∀i ∈ {1, . . . , n}, S(ei →
cf) < 0.5 and by property (v) of Lemma 1.

(v) Assume that some evidence supports and the others are against the same fact of cf , and
all carry an equal importance, then ∀j, k ∈ {1, . . . , n}, wj = wk and ∃j ∈ {1, . . . , n} such
that ∀i ∈ {1, . . . , j}, S(ei → cf) > 0.5 and ∀i ∈ {j + 1, . . . , n}, S(ei → cf) < 0.5. Then,
according to property (iii) of Lemma 1, we get

a = ⊕j
i=1

(
wi

max{w1, . . . , wj} × S(ei → cf)

)
≥ 0.5,

b = ⊕k
i=j+1

(
wi

max{wj+1, . . . , wk} × S(ei → cf)

)
≤ 0.5.

Therefore, by property (vii) of Lemma 1, b ≤ ⊕(a, b) ≤ a, i.e., b ≤ R(cf) ≤ a.  !

Formula (3) is a uninorm operator which concept is introduced by Yager in [12].
Finally, we answer the second question as follows:

Definition 5. Let θ ∈ [0, 1] be the priori reliability of case fact cf , then it is affirmed if
and only if R(cf) > θ; it is rejected if and only if R(cf) < θ; and it is neutral if and
only if R(cf) = θ.

In the above definition, θ is the priori reliability of cf , which can be viewed as the
judging agent’s subjective priori probability on the truth of cf . Thus, if the judging
agent has no bias, it is unknown to him whether cf is true or not, then it is reasonable to
set θ as 0.5 [14]. However, if the judging agent has bias, the case will become compli-
cated, and we will not discuss here since Chinese law does not allow this to happen [15].

Suppose evidence e1 and e2 support the same case fact of cf . According to reliability
function (2), Fig. 7 shows clearly the relation between evidence probative force F and
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Fig. 7. The relation between probative force and reliability, where (1,1) means that F (e2) = 1
and S(e2 → cf) = 1, and others are similar

reliability R: (i) when evidence e2 is more important, if it is 100% admissible, the
reliability of cf is always 1 for any probative force of e1; (ii) for a given probative
force of e2 and a given admissibility of e2 to cf (not equal to 1), if e1 is proven to be
absolutely relevant to the case (i.e., S(e1→cf)=1), then the reliability of cf increases
with the probative force of e1 (see the leftmost graph); otherwise, from the peak points
in the middle and in the rightmost subfigure, it is impossible to make cf affirmed (i.e.,
R(cf) > 0.5); and (iii) the peak points in each subfigure shows that the reliability of cf
depends on the less relevant evidence when e1 and e2 are equally important. From the
dropping lines from those peak points, we can see that irrelevant evidence is not helpful
and sometimes harmful to increase the reliability of cf .

6 A Legal Scenario

This section will show how our system simulates a real civil case [16]: Zhiqiang Zhang
sued Suning Company in Quanshan District Court for the injury of his rights and in-
terests as a consumer. Zhang alleged that he bought a refrigerator from Suning and had
it replaced due to its quality problems, but the replacement is a used one, which is a
fraudulent act. So, Zhang claimed against Suning for refunding the purchase price at
doubled amount and paying for his loss of income due to missed working time, the
relevant traffic expenses and telephone bill, i.e., 3320 Chinese Yuan in total. However,
Suning requested the court to reject Zhang’s claims because they replaced Zhang with
a new one without any quality problem.

Because of the page limit, we omit the procedure of evidence questioning and evalu-
ating, but just show that Zhang alleged some facts of case supported by certain evidence
in Table 2, and Suning Company argued that the fact of case in Table 3 is true.

Fig. 8 shows the judge’s final evidence-claim network with respect to this legal
case.10 By Definition 2, e0,. . ., e4, and e6 are admissible but e9 is rejected; e5 can-
not be a basis of cf4’s final status judgement; and e7 and e8 cannot be a basis of cf5’s

10 Suppose the judge has no bias. The number below each ei is its probative force in this case
according to Table 1.
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Fig. 8. The judge’s final network

Table 2. Case facts provided by the plaintiff

e0 cf0
cf0: Zhang (Z) bought refrigerator R from Suning (S).
e0: The invoices of R (Documentary).

e1 cf1
cf1: R has some quality problems because S dropped in and repaired it for twice

but failed.
e1: The statements provided by Z.

e2 cf2
cf2: To replace R, S provided Z with a new one, R′, of the same brand and the

same model on 24 July 2004.
e2: The pick-up list provided by S (Documentary).

cf3

E3

e3

E4

e4

cf3: S had subjective fault when providing commodities to Z.
E3: When S’s employees delivered R′ at the downstairs of Z’s apartment, they

unpacked it without Z presented, carried it to upstairs, and then left without
having it checked by Z.

e3: The statements provided by Z.
E4: S′s employees left R without taking back its voucher, or leaving the

voucher of R′.
e4: The voucher of R (Physical).

cf4

E5

e5

E6

e6
cf4: Z found stains and mildew on R′, and thought it was a second-hand one.
E5: A videotape manifested that R′ had some problems.
e5: A videotape on R′ (Audio and visual material).

E6: If R′ is a new one then there must be a certificate that indicates the date of
production. However, the fact is that there is no certificate provided for R′.

e6: The statements provided by Z.

Table 3. Case facts provided by the defendant

cf5

e7e8e9
cf5: S replaced R with a new one R′ without any quality problem.

e7: The inventory provided by S (Documentary);
e8: The pick-up list provided by S (Documentary); and
e9: The deliverer’s testimony.
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final status judgement, either. Thus, by Definition 1, Definition 3 and Theorem 1, we
have:

R(cf3) = ⊕
(
w3S(e3 → cf3)

max{w3, w4} ,
w4S(e4 → cf3)

max{w3, w4}
)

= ⊕
(

0.4 × 1

max{0.4, 0.6} ,
0.6× 1

max{0.4, 0.6}
)

=
0.67× 1

0.67× 1 + (1− 0.67) × (1− 1)

= 1.

Similarly, by formula (2) we can obtain R(cf0) = R(cf1) = R(cf2) = 1, R(cf4) =
0.86, and R(cf5) = 0.25. Then, by Definition 5, cf0, . . ., cf3 and cf4 are affirmed but
cf5 is rejected.

7 Related Work

Our work advanced the state-of-art in the following three aspects:
(i) Evidence admissibility. In dispute resolution, Prakken [17] modelled a third party

to allocate the burden of proof, decide the admissibility of evidence, and adjudicate the
conflict in the judge’s final decision. Our work is significantly different from theirs as
follows: (a) In our model, the judge’s belief changes on facts of case claimed by the
disputing parties can be recorded and represented clearly through our evidence-claim
network. (b) To judge the admissibility of evidence, we introduce a mechanism of fact
finding, which employs the fuzzy method of uninorm operation [12,13].

(ii) Argument diagram. Wigmore’ evidence chart is the most well-known argument
diagram, which is a directed graph structure made up of points (representing propo-
sitions) and arrows (representing steps of inference) [18,19]. The evidence-claim net-
work in our system is similar to Wigmore’s chart because we use nodes to represent
statements or evidence and links to represent relation between nodes. However, in our
network, we use the same kind of node to represent different type of evidence and indi-
cate their difference by showing their probative force under the node, while Wigmore’s
chart have different kinds of nodes. And more importantly, we have shown how to ag-
gregate all the probative force of relevant evidence in the network to obtain the overall
reliability of a legal fact, while this part is not involved in Wigmore’s work. More-
over, although Wigmore’s chart is widely used in the legal domain, it cannot be used to
predict judicial decisions. Rather, lawyers can use our system, especially our evidence-
claim network and fact finding mechanism, to predict and prepare court strategies by
guessing the judge’s subjective belief on evidence before going to the court. Since the
opening statement provided by the plaintiff can be read before the lawsuit, the defence
lawyers can use the algorithm of evidence questioning in Fig. 3 to find out some ways
to question and then build up a final evidence-claim network by using the algorithm of
evidence evaluation in Fig. 4. Through guessing the judge’s subjective prior belief on
evidence, the defence lawyers can find out facts with evidence aggregation.
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(iii) Evidence aggregation. The existing judgement aggregation work (e.g., [20]) is
to find a collective judgement for a group of judges, but they do not consider how a
judgement is made according to amounts of uncertain evidence. On the other hand, in
our model, only one judge is involved and his own judgement based on the multiple
pieces of uncertain evidence, and thus, in particularly, we design an evidence aggrega-
tion mechanism under uncertainty. Unfortunately, in their work there are no such ones.

8 Conclusions and Future Work

Based on knowledge engineering methodology for negotiating agent development [6],
to developed a multi-agent system of argumentation in court, which simulates the pro-
cess of a civil lawsuit in accordance with the Chinese civil law procedure, we present a
detailed task model to carry out court investigation. In particular, we introduce evidence-
claim network and design the evidence aggregation mechanism.

It remains for future work to investigate the computational properties of efficiency of
our algorithms and our contribution with respect to the techniques proposed in [12,13],
as well as to compare our work with Bayesian networks [21] and Carneades [3]. More-
over, it is worth studying how other factors could determine the weight of evidence.
The task model of courtroom debate needs to be developed and integrated with the
task model of courtroom investigation to form a completed simulation system of court
argumentation.
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Abstract. Here we choose an object-oriented approach to model a de-
ontic action logic. The interpretation of an action, related to its execu-
tion circumstance, is a set of events charactered by a structure, named
event-base, which satisfies some algebra properties. Different from Modal
Action Logic (MAL), this structure is not a Boolean one, but reflects the
algebra properties of sequent actions and true concurrent actions. At last,
our work includes an axiomatic system for deontic complex actions as
well as its completeness.

1 Introduction

This paper is about a Deontic Action Logic for complex action norms in human
life. It specifies the properties of normative sentences, which could talk about
norms for complex actions or behaviours in human society, and gives a sound
and complete axiomatic system for complex action norms.

In the opinion of von Wright [21], norms should be things that govern actions,
which are missing in Standard Deontic Logic. However, not until Segerberg’s ef-
fort did a formal analysis of action norms come up, and Meyer developed a
classical deontic action framework, called dynamic deontic logic (DDL), which
is an adaptation of the Andersonian-like reduction to character deontic notions
over actions [13]. According to the dynamic approach, an action is interpreted as
a modality of states transformation, which are treated as the executions of this
action. And then an action is permitted if all its executions do not lead to any
violated states. Such semantics reduces the deontic notion into all actual possi-
bilities or impossibilities to perform actions with violation constants. Yet Kent,
Maibaum, and Quirk proposed a Boolean algebraic semantics on action norms
to reject the dynamic modality reduction in MAL [15]. In this logic, the spec-
ifications of agents’ actions are related to deontic predicates over the actions’
executions, where the deontic predicates are different from action modalities.
Moreover, this Boolean action algebra works through many paradoxes in dy-
namic deontic logics, although it contains limited types of actions. However,
simple action norms are not enough for the normative formal theory about com-
plicated human-like reasoning.

To model the daily life normative reasoning, this paper will take complex ac-
tions into account, and define some algebraic structure which reflects the prop-
erties of choice actions, concurrent actions and sequential actions as well as their
corresponding norms. With the help of them, we have a new deontic action logic
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to analyse human normative reasoning. In our daily life, norms are not only
about simple actions, such as “permitted to read”, but also the complex ones.
For example, a fresh is permitted to spend weekend at home after provided his
signed himself out of college when he finishes his military training. The trandi-
tion deontic action logic could not properly describe these action norms.

The first example is for the concurrent action norms, called true concurrent
action norms. These days in China, it is not allowed to smoke in some indoor
public places. For instance, in the restaurant, office, store and so on. No one is
allowed to smoke inside a restaurant, but it is permitted to smoke if he or she
is outside the restaurant [20]. Let α denote “Sit inside”, β denote “Smoke”. In
trandition, P (α × β) → P (α) is valid. But it contradicts our intuition about
concurrent action norms in daily life. We want to find another way to describe
concurrent action norms, so that the characteration fits the true concurrent
action norms in daily life.

Secondly, we want to get rid of the norms similar to the example below: If
after shooting the president it is permitted to remain silent, then it is permitted
to shoot the president and remain silent. Denote “shoot the president” as α,
“Remain silent” as β. Then it could be formalized as 〈α〉P (β)→ P (α ;β). This
normative sentence is valid but undesired in Meyer’s approach. However, it can
not be expressed in [5][6][7][8]. So, it is also an important task for this paper to
character these sequential action norms.

2 A Deontic Action Logic for Complex Actions

This section gives out a deontic action logic for complex actions, including a
deductive system and its semantics, to describe complex action norms, such as
“permitted to drink water or whisky”, “not permitted to knock the door and
then come in the office in the restime”, and “not allowed to drink and drive”. So,
the action norms here are more close to our daily life and capture our intuitive
understanding of normative reasoning about human activity.

Let Φ0 be a countable set of propositional variables, and Δ0 be a finite set
of primitive actions, such that Φ0 and Δ0 are mutually disjoint. The primitive
symbols include 0, 1, and the elements of Φ0 and Δ0, where 0 and 1 are not
in Φ0 or Δ0. Actions in one norm are always finite, so are the primitive actions
here. In our language, compound actions are formed by the primitive actions
a ∈ Φ0, the impossible action 0 and the trivial action 1 with three kinds of
action operators ∪, ; ,×. Except for the boolean sentences, [α]ϕ and P (α), we
also have α ≡ β.

In our logic, the range of the execution of actions is always bigger than the
range of the permission of actions. For this reason, we describe the properties
of the impossible actions and the trivial action as follows: Let 0 denote the
impossible action and 1 denote the trivial action. If something is impossible to
be executed, it is always not allowed to be executed, meanwhile if do some action
changes noting, it is allowed to be executed since its result makes no harm to
the current state. Thus, this logic acesses the power of norms over the utility
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of executions. The axiomatization below will show us this opinion. The trivial
action 1 can not be defined as the non-deterministic choice of all the actions here.
Moreover, the compound actions α ∪ β, α ;β, α × β are respectively denoted as
the choice actions, the sequent actions and the concurrent actions. Here we do
not consider the finite repeated actions α∗ or the test actions ϕ? for simplicity,
and also the negative actions α in [9]. Being of lack of the negative action,
it is not possible for us to character negative action as well as the duality, a
weak permission, of P (α), a strong permission. According to [9], the obligation
is defined by the strong permission and the weak permission. However, these
notions are not hard to be added up into our system because of its algebra
semantics. P (α) means that the executing of action α is permitted or allowed.
α ≡ β is read as action α and action β are identical, representing that the utility
of do α is identical to the utilityof do β. For example, use a cipher card to open
a door has the same effect with the password.

Our deontic action logic for complex actions here contains the axioms in Table
1 and Table 2, meanwhile it contains the Modus Ponens and the Generated Rule.
To prove the completeness, we need to add axiom AM into the system:

γ ⊆ α O β ∧ α O β ≡ �Δα O β → γ ≡ α1 O β1 ∨ · · · ∨ γ ≡ αn O βm,

where αi O βj ∈ Δα O β , 1 ≤ i ≤ n, 1 ≤ j ≤ m,O ∈ {∪, ; ,×}, and �Δα is
closed under ∪, ; ,× in {γ ∈ Δo |� γ ⊆ α}, where α ∈ Δ0 ∪ {0,1}. We define
MDAL = CDAL +AM.

Table 1. Action axioms for Complex Action Terms

Ac1α ≡ α Ac11α× 1 ≡ 1× α ≡ α
Ac2α ∪ α ≡ α Ac12α× β ≡ β × α
Ac3α ∪ β ≡ β ∪ α Ac13 (α× β)× γ ≡ α× (β × γ)
Ac4 (α ∪ β) ∪ γ ≡ α ∪ (β ∪ γ) Ac14χ ⊆ α ∧ γ ⊆ β ↔ χ× γ ⊆ α× β
Ac5 γ ⊆ α ∪ β → γ ⊆ α ∨ γ ⊆ β Ac15α ≡ β ↔ α ⊆ β ∧ β ⊆ α
Ac6α ;0 ≡ 0 ;α ≡ 0 Ac16¬(0 ≡ 1)
Ac7α ;1 ≡ 1 ;α ≡ α Ac17 γ ⊆ a→ γ ≡ a, where a ∈ Δ0

Ac8 (α ;β) ; γ ≡ α ; (β ; γ) Ac18 γ ⊆ 0→ γ ≡ 0
Ac9χ ⊆ α ∧ γ ⊆ β ↔ χ ; γ ⊆ α ;β Ac19 γ ⊆ 1→ γ ≡ 1
Ac10α× 0 ≡ 0× α ≡ 0 Ac20 γ O α ∪ β ≡ γ O α ∪ γ O β,

where O ∈ {∪, ; ,×}

Table 2. Axioms for Action Norms

A1¬P (0) A6 [0]ϕ
A2P (1 A7ϕ→ [1]ϕ
A3P (α ∪ β) ↔ P (α) ∧ P (β) A8 [α]ϕ ∧ β ⊆ α→ [β]ϕ
A4P (α ;β) ∧ P (β ; γ)→ P (α ;β ; γ) A9 [α](ϕ→ ψ)→ ([α]ϕ→ [α]ψ)
A5P (α) ∧ β ⊆ α→ P (β) Subϕ ∧ (α ≡ β)→ ϕ(α/β)
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In the semantic part, we have to define a event-base Σ = 〈E, ◦,×, 0, 1〉, which
contain the annihilator elements 0, the identity element 1, the commutative and
associative operator ◦ as well as the associative operator ×, and it is also closed
under operatiors ◦ and ×. This structure gives out the properties of complex
events as well as their corresponding actions. Then we have the model defintion:

Definition 1. Structure M = 〈W,Σ, V, θ, I, P 〉 as a deontic action model for
L, if and only if it satisfies the following conditions:

1. W is a non-empty set, in which every element is treated as a possible world;
2. Σ = {Ew | Ew is a event-base, for any w ∈W};
3. V is a proposition evaluation function from Φ0 to ℘(W );
4. θ is a mapping from Ew to ℘(W ×W ), such that for any e ∈ Ew, we have

θ(e) ⊆W×W , denoted as θe, which is an event relation satisfies the following
condition: For any e, g ∈ Ew,0,1 ∈ Ew, we have θe◦g = θe ◦ θg, θ0 = ∅ and
θ1 = Id, where Id is an dentity function from W ×W .

5. I is a function on W such that for any w ∈W , I(w) is a function from Δ0∪
{0,1} to ℘(Ew), named as Iw, satisfies that Iw(a0) ⊆ Ew with | Iw(a0) |= 1,
Iw(0) = {0} and Iw(1) = {1}.

6. P ⊆ �w∈W {w} × Ew satisfies that: For any w ∈W, e1, e2, e3 ∈ Ew,
P-com If (w, e1 ◦ e2) ∈ P and (w, e2 ◦ e3) ∈ P , then (w, e1 ◦ e2 ◦ e3) ∈ P ;

P-E (w, 0) /∈ P ;
P-T (w, 1) ∈ P.

We use M(DA) for the class of all the deontic action models defined as above. In
this model, the interpretation of an action are a set of events. For every primitive
action, its interpretation is only one event, because the primitive action is exe-
cuted in a specific condition, and then one condition lead out one consequence.
However, it seems to be more natural that the execution of one action leads to
finite many outcome. We think this considerarion is easy to clarify under our
frame work, so we left it to our further work. Moreover, the function I could
be inductively extended by the Boolean operation ∪ and the event operations
◦ and × within the condition that if I∗w(γ) ⊆ I∗w(α O β), then there is some
χ ∈ Δα O β such that I∗w(γ) = I∗w(χ), where O ∈ {∪, ; ,×}. According to these,
we could define the truth of normative sentences. The truth of boolean sentences
are defined as usual, while given any M = 〈W,Σ, V, θ, I, P 〉 ∈M(DA), w ∈W ,

M,w � α ≡ β ⇔ Iw(α) = Iw(β),

M,w � [α]ϕ⇔ e ∈ Iw(α) and wθeu⇒M,u � ϕ,

M,w � P (α)⇔ e ∈ Iw(α)⇒ P (w, e).

At last, we show the completeness.
This paper not only give a sound and complete axiomazation for complex

action norms, but also give a more powerful theoretical tool than the dynamic
approach to character normative reasoning. It solves the same paradoxes as
dynamic deontic logic does, and make the dynamic deontic undesire but valid
sentences invalid.
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Abstract. A growing community investigates planning using dynamic
epistemic logic. Another framework based on similar ideas is knowledge-
based programs as plans. Here we show how actions correspond in the
two frameworks. We finally discuss fragments of DEL planning obtained
by the restriction of event models. Fragments are separated by virtue of
their computational complexity.

1 Introduction

We consider planning where actions may be non-deterministic and the environ-
ment partially observable. This requires modeling the agent’s knowledge state
as actions change it. In some cases we might want to consider planning problems
with less strict assumptions (e.g. non-deterministic actions in a fully observable
environment), and a desirable property of a planning formalism is that it allows
for doing so. In the following we explore the link between the knowledge-based
programs (KBPs) as plans approach of [5], and planning using dynamic epis-
temic logic (DEL) (see e.g [2,1]). This link is established by showing how actions
correspond in the two approaches.

Example 1. An agent has two dice cups and two coins with a white and red side
at her disposal. Her knowledge state is described by the coin configurations she
considers possible. She can shuffle a coin using a cup, she can lift a cup conceal-
ing a coin, and she can simply toss the coin without using a cup.

1 2

1 2 1 2

1 2 1 2 1 2 1 2

shuffle1

shuffle2

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

lift1 lift1

lift2 lift2 lift2 lift2

1 2

1 2 1 2

1 2 1 2 1 2 1 2

toss1 toss1

toss2 toss2 toss2 toss2

The actions change her knowledge state as depicted above, where a rectangle
containing coin configurations corresponds to a knowledge state. On the left we
see that shuffling a coin leads to ignorance of which side is up, contrasted by
the center illustration where feedback is received upon lifting a cup. The former
is an example of an ontic action, and the latter of an epistemic action as we
introduce below. On the right is illustrated the non-deterministic outcomes of
an observable coin toss.
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1.1 Preliminaries: Knowledge-Based Programs as Plans

We repeat the KBPs as plans approach of [5]. Let X = {x1, . . . , xn} be a fi-
nite set of propositional symbols, LP (X) (resp. LE(X)) denote formulas of the
propositional (resp. epistemic) language. A state s is a valuation of X assign-
ing each xi true or false (we also identify a state with a subset of X in the
obvious manner). A knowledge state M is a nonempty set of states. A formula
φ ∈ LE(X) is objective if it does not contain K, and for an objective φ we name
Kφ an epistemic atom. Formulas formed by the usual propositional connectives
and epistemic atoms are called purely subjective. Given a knowledge state M
and purely subjective formula φ, then satisfaction is as usual for combinations
of epistemic atoms with propositional connectives. For epistemic atoms we de-
fine M |= Kφ if s |= φ for all s ∈ M , where s |= φ is standard propositional
satisfaction.

Given is a set of ontic action symbols AO and a set of epistemic action sym-
bols AE . Let X ′ = {x′ | x ∈ X} and α ∈ AO, then its associated ontic the-
ory Σα is a formula of LP (X ∪X ′). Σα is required to be consistent, meaning
that for all states s ∈ 2X the set {s′ ∈ 2X

′ | ss′ |= Σα} is nonempty (ss′ is
the valuation obtained by combining two states — valuations — defined over
different symbols). Given a knowledge state M ′ involving only primed sym-
bols of the form x′ (x ∈ X), we write Plain(M ′) for the knowledge state ob-
tained by replacing x′ with x for all x ∈ X . γM (α) denotes the progression
of ontic action α in the knowledge state M , defined as the knowledge state
Plain({s′ | s′ ∈ 2X

′
, s ∈M, ss′′ |= Σα}).

For α ∈ AE its associated feedback theory Ωα = (Kφ1, . . . ,Kφk) is a list
of epistemic atoms, whose elements are named feedbacks. We require epistemic
actions to be tautological meaning that the objective formula φ1 ∨ · · · ∨ φk is
a tautology. The progression of feedback Kφj in M is given by γj

M (α) = {s ∈
M | s |= φj}, defined if M 	|= K¬φj , and undefined otherwise. The set of
immediate successors of α in M is denoted ΓM (α) and given by the set (of
defined progressions) {γ1

M (α), . . . , γk
M (α)}.

1.2 Preliminaries: Dynamic Epistemic Logic

A thorough introduction to DEL is [3], however here we use a version due to [4]
— particularly important is the inclusion of ontic change. We consider exclusively
the single agent version of DEL. Let P be a countable set of propositional symbols.
An epistemic model on P is a tupleM = (W,∼, V ), where W is a set of worlds,
∼ is an indistinguishably relation on W , and V : P → 2W is a valuation function.
Satisfaction of a formula φ ∈ LE(P ) is given as usual for epistemic logic. ¬K¬φ
is abbreviated K̂φ, andM |= φ is shorthand forM, w |= φ for all w ∈W .

An event model of LE(P ) is a tuple E = (E,R, pre, post), where E is a set of
events, R is the indistinguishability relation on E. Further, pre : E → LE(P )
maps each event to a precondition φ ∈ LE(P ), and post : E → (P → LE(P ))
assigns to each event a postcondition φ ∈ LE(P ) for each symbol. We con-
sider both ∼ and R to be equivalence relations, and we use 4M5 to denote
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the bisimulation contraction of M. M ⊗ E = (W ′,∼′, V ′) denotes the prod-
uct update of M with E , where W ′ = {(w, e) ∈ W × E | M, w |= pre(e)},
∼′= {((w, e), (w′, e′)) ∈ W ′ ×W ′ | w ∼ w′ and eRe′}, and V ′(p) = {(w, e) ∈
W ′ | M, w |= post(e)(p)} for each p ∈ P .

1.3 Induced Epistemic Models and Progression of Event Models

Given a knowledge state M = {s1, . . . , sm}, we define the induced epistemic
model (of M) as M = (W,W ×W,V ) on X where W = {w1, . . . , wm}, and for
1 ≤ i ≤ m: x ∈ V (wi) iff si |= x for all x ∈ X . Using this construction it is
easy to see that M |= φ iff M |= φ for any purely subjective formula φ, and
when this is the case we say that M and M are X-equivalent. Observe that M
is finite, connected and bisimulation minimal, as no two worlds of W have the
same valuation.

Knowledge states are simply special cases of epistemic models, but this not so
when considering KBP actions versus event models. We will define progression
in DEL planning using product update, motivated by the following observation.
A bisimulation minimal epistemic model represents a set of knowledge states;
i.e. each connected component is a knowledge state. Therefore each connected
component ofM′ =M⊗E describes an immediate successor of E inM, meaning
that progressions are induced by the connected components of E .

The feedbacks of E is the set ofR-equivalence classes ofE denoted {E1, . . . , Ek}.
The progression of Ej in M is given by γj

M(E) = 4M ⊗ (E � Ej)5, defined if

M |= K̂
∨

e∈Ej
pre(e), and otherwise undefined. The set of immediate succes-

sors of E in M is denoted ΓM(E) and given by the set (of defined progressions)
{γ1

M(E), . . . , γk
M(E)}. We say that E is applicable inM if some γj

M(E) is defined,
in which case ΓM(E) is non-empty.

2 Correspondence

Consider now an epistemic action α ∈ AE withΩα = (Kφ1, . . . ,Kφk). The corre-
sponding event model is denoted EΩα = (E,R, pre, post), whereE = {e1, . . . , ek},
R is the identity and for 1 ≤ j ≤ k: pre(ej) = φj and post(ej) is the identity (i.e.
post(ej)(x) = x, for each x ∈ X).

Proposition 1. Given a knowledge state M and α ∈ AE. Let M denote the
induced epistemic model of M , EΩα be as above, and for 1 ≤ j ≤ k we further
let Mj = γj

M (α) and Mj = γj
M(EΩα). Then Mj and Mj are X-equivalent.

Proof. By construction γj
M (α) is defined exactly when γj

M (EΩα) is. We have
that s ∈ Mj ⇔ s |= φj meaning that Mj contains every state satisfying φj.
Further we have that (w, ej) ∈ dom(Mj) ⇔ (w, ej) ∈ dom(4M⊗ (EΩα � {ej})5)
⇔ M, w |= pre(ej) ⇔ M, w |= φj , hence as R is the identity Mj contains
every world of M satisfying φj. Consequently with post(ej) being the identity
we see that Mj is exactly the induced epistemic model of Mj, and so they are
X-equivalent.
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The progression of an ontic action α in a knowledge state M can lead to a
knowledge state of size exponential in α and M — consider for instance the ontic
theory Σα = �. This succinctness cannot be achieved with a single event model,
as M⊗ E is polynomial in the size of M and E . Nonetheless, event models can
polynomially simulate ontic actions, by adding primer event models that “blow
up” an epistemic model.

Let X = {x1, . . . , xn} and define P = X ∪ X ′ ∪ {y0, . . . , yn}. In the post-
conditions below for an event e, we assume post(e)(p) = p for any unmentioned
proposition p ∈ P . For 1 ≤ i ≤ n construct the connected event model Ebi
of LE(P ) containing events ei and fi, where pre(ei) = pre(fi) = yi−1. Fur-
ther, post(ei)(yi−1) = post(fi)(yi−1) = ⊥, post(ei)(yi) = post(fi)(yi) = �,
post(ei)(x

′
i) = �, and post(fi)(x

′
i) = ⊥ (observe the difference in the assignment

of x′
i). For an ontic action α ∈ AO with ontic theory Σα, construct EΣα of LE(P )

containing a single event eΣα , where pre(eΣα) = yn ∧ Σa, post(eΣα)(yn) = ⊥,
post(eΣα)(y0) = � and post(eΣα)(xi) = x′

i for 1 ≤ i ≤ n. We say an epistemic
model on LE(P ) is i-ready when it satisfies yi−1 and no other y symbol distinct
from yi−1.

Proposition 2. Given a knowledge state M and α ∈ AO. Let M be an epis-
temic model on LE(P ), s.t.M is 1-ready and M and M are X-equivalent. With
γM (α) = M ′ and M′ denoting the iterated progression of Eb1 , . . . , Ebn , EΣα in
M, we have that M ′ and M′ are X-equivalent.

Proof. Let Mi be i-ready and consider ΓMi(Ebi) = {Mi+1}. Clearly Mi+1 is
(i+1)-ready, and is further double the size of Mi. To see this, for each world w
inMi,Mi+1 contains worlds (w, ei) and (w, fi), with x′

i being true in the former
and false in the latter. As M is 1-ready we have that the iterated progression of
Eb1 , . . . , Ebn in M is the (n + 1)-ready model Mn+1 exponential in the size of
M1, and where each world ofM gives rise to 2n worlds inMn+1 — one for each
valuation in 2X

′
. EΣα is applicable in Mn+1, and for ΓMn+1(EΣα) = {M′} we

have that M′ contains exactly the worlds of Mn+1 satisfying Σα and unprimed
symbols are assigned the truth value of their primed counterpart. Therefore M ′

and M′ are X-equivalent.

Given a KBP planning problem with actions AE and AO, we can transform
this into a DEL planning problem using the event models presented above. A
minor modification is needed for EΩα, namely pre(ej) = φj ∧ y0 ensuring EΩα

is applicable only in 1-ready epistemic models. We can map a plan for either
problem to a plan for the other, and this mapping is polynomial and preserves
weak bisimilarity of plans upto X-equivalence. This is shown by an inductive
proof on the plan structure. The base cases are slight variations of Propositions
1 and 2. Most pressing is the inductive step from DEL plans to KBP plans. Here
applicability guarantees that no EΩα can be interleaved within a sequence of
event models that simulate ontic actions, so we achieve the proper interleaving
of epistemic actions and ontic actions.
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3 DEL Fragments

From [5] we have that plan existence for a KBP planning problem is PSPACE-
Complete with only epistemic actions, EXPSPACE-Complete with only ontic
actions and 2EXP-Complete with both types. We now consider the correspond-
ing DEL fragments separated by computational complexity. From the previous
section we make the following observations. (i) Epistemic actions corresponds to
event models, where every event is distinguishable and have identity postcon-
ditions. (ii) Ontic actions corresponds to sequences of connected event models
with postconditions. (iii) We can combine event models as in (i) and (ii) to rep-
resent both epistemic and ontic actions. This reveals three DEL fragments with
distinct complexity.

The separation of epistemic actions and ontic actions in the KBPs as plans
approach does not lend itself to describing actions such as the observable coin
toss action described in Example 1. We can see this as epistemic actions cannot
make ontic change and ontic actions always have a single outcome. This is an
example of a fully observable and non-deterministic problem, whose correspond-
ing plan existence problem is EXP-Complete [6]. This is the fragment of DEL
planning where the event models of (i) is extended to include postconditions,
and we remark that postconditions in this case affect the computational com-
plexity of DEL planning. In the multi-agent case DEL planning is undecidable
[2]. The recent [7] discuss a decidable fragment obtained by extensively restrict-
ing the indistinguishability relation, having propositional preconditions and no
postconditions. Further work is to find more decidable fragments.

Acknowledgements. I thank the three anonymous reviewers of LORI-13 for
their useful feedback on a longer version of this paper.
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Abstract. This paper presents a quasi-lexicographic judgment aggre-
gation rule based on the hierarchy of judges. We do not assume com-
pleteness at both individual and collective levels, which means that a
judge can abstain from a proposition and the collective judgment on
a proposition can be undetermined. We prove that the proposed rule
is (weakly) oligarchic. This is by no means a negative result. In fact,
our result demonstrates that with abstentions, oligarchic aggregation is
not necessarily a single level determination but can be a multiple-level
democracy, which partially explains its pervasiveness in the real world.

1 Introduction

Judgment aggregation deals with the problem of how a group judgement on
certain issues can be formed based on individuals’ judgements on the same issues.
List and Pettit presented an impossibility result which says that no aggregation
rule can generate consistent collective judgments if we require the rule to satisfy
a set of “plausible” conditions [1]. However, such an impossibility result does not
discourage the investigation of judgement aggregation. By weakening or varying
these conditions, a growing body of literature on judgement aggregation has
emerged in recent years [2–6].

In our society the hierarchy is one of the most basic organization forms and
a hierarchical group may give individual members or subgroups the priority to
determine the collective judgments on certain propositions. However, such kind
of expert rights has been rarely investigated in the current literature [7], let alone
proposing a specific judgment aggregation rule to formally display how the hi-
erarchical groups generate the collective judgments. In addition, the potential
aggregation rule in the hierarchical group is likely to be oligarchic defined in [8],
but the non-oligarchs still have chance to make contributions to the collective
judgments on some issues. Then one of the challenges is to find the specific condi-
tion under which non-oligarchs have such power. To clarify these two questions,
it is feasible to explore a plausible judgment aggregation rule for hierarchical
groups.

In this paper, we focus on dealing with above questions by introducing a
quasi-lexicographic approach for hierarchical groups without requiring the com-
pleteness at both the collective and individual level. This proposed aggregate

D. Grossi, O. Roy, and H. Huang (Eds.): LORI 2013, LNCS 8196, pp. 321–325, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



322 G. Jiang, D. Zhang, and X. Tang

procedure is proved to be oligarchic. This is by no means a negative result. In
fact, our result reveals that with abstentions, oligarchic aggregation is no longer
a single level determination but can also be a multiple-level democracy, which
partially explains its pervasiveness in the real world.

2 The Model

The formal model of judgment aggregation with abstentions is the same as the
formalism in [1, 9] except the followings: First, we restrict the agenda to a finite
set of literals i.e., atomic propositions or their negation in the underlying logic
L. That is X = {p,¬p : p ∈ X∗} where X∗ ⊆ L is a set of unnegated atomic
propositions. Secondly, we will not assume that each individual’s judgment set
Φi ⊆ X and the collective judgment set Φ ⊆ X must be complete. And individual
i abstains from making a judgment on p, which is denoted by p#Φi. In other
words, p#Φi if and only if p 	∈ Φi and ¬p 	∈ Φi. Lastly, we will assume that
each individual’s judgment is individual consistence1. That is, for every p ∈ X ,
if p ∈ Φi, then ¬p /∈ Φi.

3 Conditions on Aggregation Rules

We now turn to investigating the conditions which are desirable to put on an
aggregation rule in terms of abstentions. Let F be an aggregation function.

Consistency (C). For each consistent profile (Φi)i∈N ∈ Dom(F )2, F ((Φi)i∈N )
is consistent as well. That is, p ∈ F ((Φi)i∈N ) implies ¬p /∈ F ((Φi)i∈N ) for
all p ∈ X.

Non-dictatorship (D). There is no x∈N such that for all {Φi}i∈N ∈Dom(F ),
F ({Φi}i∈N) = Φx. This is a basic democratic requirement: no single individ-
ual should always determine the collective judgment set.

Unanimity with Abstentions (U). For every p ∈ X and any α ∈ {p,¬p}, if
there is some V ⊆ N such that V 	= ∅, ∀i ∈ V.α ∈ Φi and ∀j ∈ N\V .α#Φj ,
then α ∈ F ((Φi)i∈N ). Intuitively, if a set of individuals agree on a certain
judgment on a proposition α while all the others abstain from α, then this
condition requires that F ((Φi)i∈N ) also make the same judgment on α.

Systematicity (S). For every p, q ∈ X and every profiles (Φi)i∈N , (Φ′
i)i∈N

∈ Dom(F ), if for every i ∈ N , p ∈ Φi iff q ∈ Φ′
i and ¬p ∈ Φi iff ¬q ∈ Φ′

i,
then p ∈ F ((Φi)i∈N ) iff q ∈ F ((Φ′

i)i∈N ). This condition including indepen-
dency and neutrality parts requires that propositions in the agenda should be
treated in an even-handed way by the aggregation function, and the collec-
tive judgments on each proposition should depend exclusively on the pattern
of individual judgment on that proposition.

1 Given that the agenda is a set of literals, it is equivalent to logical consistence, i.e.,
there is a valuation v such that v(p) = T for all p ∈ Φi.

2 Dom(F ) denotes the domain of F , i.e., the set of admissible profiles.
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Note that comparing to other conditions, Unanimity with Abstentions is spe-
cially designed for judgments with abstentions, and non-dictatorship can be de-
rived from it.

Proposition 1. Every judgment aggregation rule satisfying unanimity with ab-
stentions is non-dictatorial.

In the following, we denote Consistency, Unanimity with Abstentions and
Systematicity as CUS for short.

4 The Quasi-Lexicographic Aggregation Rule

In this section, we define an aggregation rule that satisfies the above-mentioned
three fundamental conditions. Firstly we need two auxiliary concepts, which are
precisely defined as follows:

Definition 1. Let N be a set of individuals, (N,<) is called a hierarchy over
N if < satisfies transitivity and asymmetry.

Definition 2. Let < be a hierarchy over N . For every p ∈ X, p is not collec-
tively rejected by aggregation rule F , denoted by p� F ((Φi)i∈N ), if there is an
individual with greater priority accepting it once it is rejected by some individual.
That is,

p� F ((Φi)i∈N ) iff ∀i ∈ N(¬p /∈ Φi ∨ ∃j ∈ N(i < j ∧ p ∈ Φj)) (1)

We denote the negation of p � F ((Φi)i∈N ) as p� F ((Φi)i∈N ), meaning that
p is neither collectively accepted nor collectively undetermined. Based on the
concept of “non-rejection” �, we can define an aggregate procedure F for that
p is collectively accepted, denoted by p ∈ F ((Φi)i∈N ), as follows.

Definition 3. For all p ∈ X,

p ∈ F ((Φi)i∈N ) iff p� F ((Φi)i∈N ) and ∃j ∈ N.p ∈ Φj (2)

Intuitively, this aggregate procedure says that p is accepted by a group if p is
not collectively rejected and there is at least one individual who accepts it.

Obviously, a proposition p is collectively undetermined is decided by the fol-
lowing condition:

p#F ((Φi)i∈N ) iff p /∈ F ((Φi)i∈N ) and ¬p /∈ F ((Φi)i∈N ). (3)

We will call the above defined rule F the quasi-lexicographic rule. And the
next proposition shows that the quasi-lexicographic rule F satisfies the desirable
conditions CUS.

Proposition 2. The quasi-lexicographic rule F satisfies conditions CUS.
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The following theorem has double value: on one hand, it is helpful to under-
stand the quasi-lexicographic rule more intuitively; on the other hand, it is useful
to prove the main result.

Theorem 1. Given that (N,<) is well-prioritized3, and let Φ = F ((Φi)i∈N ).
Then

1. p� Φ iff ∀i ∈ N((∀j > i.p#Φj)→ ¬p /∈ Φi).

2. p� Φ iff ∀i ∈ N(¬p /∈ Φi ∨ (∃j > i.p ∈ Φj ∧ ∀j′ > j.p#Φj′ )).

In the last part of this section, we will show that the quasi-lexicographic rule F
is weakly oligarchic 4 and displays nicely under what conditions the non-oligarchs
can have the power to affect the collective decision-making.

Proposition 3. The quasi-lexicographic rule F is weakly oligarchic, but not
strictly oligarchic.

In order to reveal how the non-oligarchs can have the power to make collective
decisions through F , we need two further definitions.

Definition 4. A set of judges D is decisive on p ∈ X for a judgment aggregation
function G iff for every profile (Φi)i∈N ∈ Dom(G), if p ∈ Φj for every j ∈ D,
then p ∈ G((Φi)i∈N ).

Definition 5. Given a hierarchy on N and induced by <, N can be divided into
subgroups M1, · · · ,Mn, where ∅ 	= Mi ⊆ N for every i ∈ N ,

⋃n
i=1 Mi = N and

Mi is inductively defined as follows:

– M1 = {i ∈ N : �j ∈ N.i < j}
– Mk+1 = {i ∈ N\(

⋃k
i=1 Mi) : �j ∈ N\(

⋃k
i=1 Mi).i < j}

We finally come to the following result, which displays that a proposition is
not rejected by every of the superiors is sufficient and necessary to make the
subgroup composed of the immediate inferiors a decisive set on this proposition.

Theorem 2. Given a hierarchy on N , and let M1, · · · ,Mn be the subgroups of
each level, for every k ∈ {1, · · · , n} and p ∈ X, Mk is decisive on p for the

quasi-lexicographic rule F if and only if ¬p /∈ Φi for every i ∈
⋃k−1

h=0 Mh.

This follows that non-oligarchs can have the power to make collective decisions
on some proposition if and only if the proposition is not rejected by the oligarchs,
which displays that with abstentions, oligarchic aggregation is no longer a single
level determination but can also be a multiple-level democracy.

3 If there is no infinite ascending sequence i1 < i2 < i3 < · · · , where in ∈ N , which is
automatically satisfied by every hierarchy over N

4 Refer to [10] for its precise definition.
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5 Conclusion

In this paper, we have investigated the aggregation rules for judgment aggrega-
tion without requiring the completeness at both individual and collective levels.
Different from the perspective in [7] which presents the first extension of Sen’s
liberal paradox, we focus on dealing with two questions: How does the hierar-
chical group generate the collective judgments? How can the non-oligarchs have
the power to make the collective decision in an oligarchic environment? We have
replied them by proposing a quasi-lexicographic rule for hierarchical groups,
which is inspired by [11]. This judgment aggregation rule turns out to satisfy
the desirable conditions and reveal that if certain issues are not rejected by the
oligarchs, then non-oligarchs have the decisive power in making group decisions
on these issues. This seems positive news to the result in [10], since this rule
demonstrates that with abstentions, even an oligarchic aggregation procedure
can also realize a multiple-level democracy. To some extent, this also explains
why hierarchical (oligarchic) systems exist widely in the real world.
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Abstract. This paper tackles some conceptual problems in the epis-
temic foundations of classical game theory. Focus is placed on the dis-
cussions of the asymmetry of different epistemic standpoints in modeling
a game and the thesis of no subjective probability for self-action in games.

1 Introduction

The theory of games is traditionally viewed as the study of strategic decision
making of mutually dependent agents. A foundational approach to the sub-
ject aims at analyzing the basic concepts of the mathematical structures which
serve as models for the games in question and making explicit the fundamental
assumptions employed in these models. Among the basic concepts and assump-
tions, the notion of epistemic mutual expectations of different parties of a game
plays an important role in comprehending the unfolding of a game. That is, in
order for a player to act rationally in a game situation it is necessary that the
player takes into account as to how other players reason about her, for the latter
will influence their respective choices of actions, which in turn will take effect
on her overall gain from the game. This line of thought has often been coined
with the epistemic approach to the analysis of games. Yet, illuminating as this
approach might be, great conceptual difficulties may emerge when attempts are
made to lay out precisely how epistemic interactions are taking place in a given
game situation. This has become a pressing issue in the foundations of game
theory, which has sometimes been met with drastically opposing viewpoints. In
this short note we revisit some problems concerning the epistemic status of the
“solution concepts” in game theory, where focus will be placed on the discussion
of the asymmetry of different epistemic standpoints in modeling a game. This
will then lead to the analysis of the so-called no probability for self-action thesis,
which, as we shall see in §3, posits a challenge to the epistemic configurations of
current game-theoretic models. The arguments below are built on earlier works
of Gaifman [3], Levi [5] (esp. [6]), Savage [7], Spohn [8], among others.

2 Different Points of View

One recurring issue in the foundations of games is the so-called problem of asym-
metric epistemic viewpoints. That is, many of the core assumptions that are the
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basis of different “solution concepts” in classical game theory, such as the com-
mon knowledge of Bayesian rationality on the behaviors of the participants in
a game and their prior probabilistic judgments on the incomplete information
about the underlying game etc., are formed from the perspective of an exter-
nal observer. However, from the viewpoint of an individual player, other players
and their mutual beliefs and behaviors are just as much parts of the setting of
the game as anything else, hence it seems that no principle of rationality man-
dates that one should, or even could, take the stance of an external observer and
accept the recommendations prescribed from “the above and beyond,” for the
implementation of which has exceeded the individual player’s epistemic capac-
ity. Let us refer to the asymmetry between different perspectives in the analysis
of a game, namely the point of view of an individual player and that of an
external observer, as the first-person/third-person distinction in the epistemic
standpoints of games. Then the aforementioned problem points to a concep-
tual gap in game-theoretic modeling created by the epistemic limitations of the
participating parties.

Aumann in [1] made considerable attempts to fill this gap, where he reformu-
lated the asymmetry of different epistemic viewpoints discussed above in terms
of the tension between the “Bayesian” and the “game-theoretic” views of the
world maintaining that the two accounts can be coherently integrated through
the notion of subjective correlated equilibrium. He claims that in the framework
of classical game theory the choices made by Bayesian rational players form a
correlated equilibrium (cf. ibid. p.7). The cornerstone of Aumann’s construction
is the use of “all-inclusive” states of the world, an assumption that has been
widely adopted in game theoretic literature.1 More precisely, a state is assumed
to be a complete description of the world (a possible world), which includes not
only the information about the actions the players may adopt and their mu-
tual beliefs about each other’s actions and beliefs (call information of this type
information at the theoretic level); it contains also substantial meta-theoretic
information which includes players’ prior probabilities judgments over all the
states, their criteria for rational decision making, and their information struc-
tures/partitions over the states. The slogan is “conditional on one particular
state, everybody knows everything!” In a given game situation the players are
uncertain as to which state is the true state of the world, they however are, it
is said, informed of a set of states which constitutes their information sets. It
is hence easily seen that the first-person/third-person distinction made above is

1 Aumann and Brandenburger in [2] adopted a more refined approach to the problem
where each player’s belief about other players’ actions and beliefs are explicitly rep-
resented respectively through the notions of conjectures and theories. Both concepts
are constituent components of the player’s types, an idea originated by Harsanyi
[4], which essentially plays the same role as all-inclusive states with perhaps less
informative contents about the physical world. But, at any rate, each type profile (a
state) includes a description of actions of all players and it is further assumed that
there is a common prior defined over all states. This implies that the players have
prior probabilistic judgments over their own actions. We will raise some concerns in
regard with this features of the model in the next section.
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really a nonstarter in any given state, for the latter encodes, as a basic assump-
tion of the model, both theoretic information (obtainable by each individual
player) and meta-theoretic information (accessible usually only to the theorist).
Then, given the assumption of all-inclusive states, the problem of asymmetry of
epistemic viewpoints seems to have disappeared.

However, the immediate epistemological question to ask here is: How can
anyone come across a state of this kind in the first place? So it seems that our
initial task of explicating the intriguing question about the epistemic asymmetry
between different viewpoints in traditional game-theoretic analyses has been
shifted to uncovering the status of all-inclusive states. In what follows, we discuss
one of the problems facing the concept of all-inclusive states, namely the so-called
no probabilities for acts thesis. It shows that there is no coherent way for the
players to assign subjective probabilities to their own actions, the latter however
is an unavoidable consequence of the assumption of all-inclusive states.

3 Probability and Act

The thesis that directly undermines the employment of all-inclusive states is
this: “Any adequate quantitative decision model must not explicitly or implicitly
contain any subjective probabilities for acts”.2 In the game-theoretic context, the
principle says that no subjective probabilities could be assigned by the players to
their own acts in a meaningful way.

The doctrine of no probabilities for self-actions is already hinted in Savage’s
discussion on the “small world” semantics where he mentioned in passing that
probabilities for acts play no role in individual decision making. To illustrate,
let us use the example Savage provided. Suppose that Jones is torn between
either buying a sedan, or buying a convertible, or canceling the plan of pur-
chase altogether and keeping the money. Now consider that, in a simple decision
situation, the execution of an action may be solely determined by the relative
ranking of the consequences to which the actions lead. Thus, if Jones prefers the
convertible the most, then he shall just proceed to buy a convertible. “Chance
and uncertainty are considered to have nothing to do with the situation.” One
might object that if Jones likes equally, say, the sedan, he might come to make
a decision on his future action of purchasing either a convertible or a sedan by
tossing a coin or by utilizing some internal randomizing mechanism (whim, im-
pulse, etc.) to help him to decide, then in this case there seems to be a sense
in which one could say that Jones will take an action with certain probability.
However the formulation of the objection itself make it clear that the derived
probability is essentially about the randomizer in use, which can hardly qualify
for the agent’s genuine subjective probability assignment for acts themselves.

In a more complicated situation where more careful deliberation is required,
the agent’s actions are further evaluated in terms of their respective consequences

2 Here we quote the version that is explicitly stated in [8]. Levi’s well-known thesis
that “deliberation crows out prediction” is largely in agreement with this principle,
see [6].
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under different circumstances, and, according to Savage, only the latter are sub-
ject to probabilistic evaluations. Say that Jones has finally reached a decision to
buy a convertible because he realized that it’s very likely that he will be taking
a vacation in Monterey next month, in which case the utility of driving a con-
vertible by the seaside in warm spring breeze will be maximally materialized.
Hence, as seen in both situations, the choices of actions are never deliberated
by a decision maker in isolation, they are always placed in a context in which
they are to be evaluated, and the context itself will provide the relevant details
(including the circumstances in which an act may take place and the conse-
quences it results in) under which the values of acts are measured and decided.
These considerations led Savage to his belief-act-consequence model, where acts
are treated as functions mapping from (act-independent) states to consequences,
but not directly as the subjects of uncertainty (see [7] §5.5).

Thus, according to this contextual interpretation of acts, when we say, for
instance, that “it is more likely that I will stay home reading this afternoon
than go playing tennis” we are not directly making any probabilistic judgements
over our future actions (not even a comparative probabilistic judgment over the
two possible acts). Rather, in deliberating these future actions, we are presenting
to ourselves the circumstances under which the acts are to take place. That is
to say, in our example, what actually come across in my mind might be things
like what would be the chance that the wind will stop blowing so wildly, or how
likely my partner could make to the tennis court on time, or how possible the
book I am about to read would interest me, etc.; and, on the current view, only
the latter are considered to be the subjects of probabilistic or value judgements.

Perhaps, part of the difficulties in incorporating the concept of all-inclusive
states in a game-theoretic model is originated from an unquantified reading of
Bayesianism. “According to the Bayesian view, subjective probabilities should be
assignable to every prospect, including that of players choosing certain strategies
in certain games” ([1] p.2, my emphasis). Here, it is not entire clear as to which
subjective Bayesian theory is under consideration, yet it has been made explicit
that each player is assumed to “conform to the Savage theory.” However, as
we have discussed a few lines above, any assignment of the players’ subjective
probabilities to their own acts/strategies actually falls outside the scope of the
decision model put forward by Savage.

Yet even if we grant a more general reading on Bayesianism in the respect
that subjective probabilities are manifested in their betting interpretation it will
soon be clear that no non-trivial probabilities can be assigned to one’s own future
acts. To see this, suppose that Jones is faced with choices of either going to an
Italian restaurant or to a French restaurant for dinner. In an attempt to elicit
his subjective probabilities assigned on the two possible future actions, Jones is
offered a bet with the condition that he wins X if he goes to an Italian restaurant
and nothing if he chooses French (here it is assumed that the monetary reward
of X is not too significant to take effect on Jones’ choice of restaurant but, at
the same time, it is not too small to be easily ignored by Jones either). Then, if
Jones’ subjective probability for his going to an Italian restaurant is p, then he
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shall be willing to pay a fee of pX to accept the bet in exchange of a reward of X
on the event that he indeed is having Italian food for dinner. So far the example
accords well with the standard betting interpretation of subjective probabilities,
but story will turn once we notice that Jones’ willingness to accept the bet of his
going to an Italian restaurant at a cost of pX > 0 implies that he will be going to
an Italian restaurant for sure! For, otherwise, it would be extremely unwise for
him to knowingly pay a fee of pX but actually go to a French restaurant while
gaining nothing from the bet he paid for, which can easily be avoided by simply
rejecting the bet. And this is true for any 0 < p ≤ 1. Further, if p = 0 then
Jones will be going to a French restaurant for sure. It follows that the betting
rate upon which Jones is willing to pay a fair price for his acts collapses into 1
or 0. In another word, personal probabilities tend to be “gappy” when it comes
to the agents’ own actions.3

On a further note, there has been suggestions that there is a straightforward
sense in which one can meaningfully assign subjective probabilities to one’s own
actions by referring to past experiences on choices in similar situations. Accord-
ing to this view, the reason why I believe that it’s more likely that I will stay at
home reading than playing tennis is perhaps because this is how it had always
been resolved in the past for such a windy and chilly weekday afternoon when my
partner is too occupied with work anyway. This line of thought however misses
the point on at least two fronts. First, by referring to “similar situations” one
has decomposed the deliberation of one’s own future actions into scenarios in
which these actions are taking place. As agued above, it is these contexts, rather
than the isolated actions themselves, that are subject to genuine probabilistic
analysis. More importantly, it seems that, in order for this frequentist view to
be credited as a basic philosophical account for personal probabilities over self-
actions (as opposed to an operational process attributed to another agent) it is
necessary that the players are treated as if they have no freedom to choose their
future actions: the acts that an agent will most likely to adopt are the ones that
have been most frequently repeated. This reduces the process of deliberation for
future actions to mere recollecting of past occurrences, then to fulfill an action is
just to answer to the statistics. This however undermines the very presumption
of the entire enterprise of decision sciences where great efforts are being made to
assist decision makers to maximize their eventual gains as a result of deliberate
and, in many cases, highly sophisticated planning/strategizing for their future
actions over which they are expected to have full control.
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1 Introduction

Tocharacterize the structures and reasonabout strategies of extensive games,much
work has been done to provide the logical systems for such games. These logic sys-
tems focus on various perspectives of extensive games: (Harrenstein et al., 2003)
concentrated on describing equilibrium concepts and strategic reasoning.
(van Benthem, 2002) used dynamic logic to describe games as well as strategies.

The assumption of common knowledge on game structures in traditional ex-
tensive games is sometimes too strong and unrealistic. For instance, in a game
like chess, the actual game space is exponential in the size of the game configu-
ration, and may have a computation path too long to be effectively handled by
most existing computers. So we often seek sub-optimal solutions by considering
only limited information or bounded steps foreseeable by a player that has rela-
tively small amount of computation resources. Grossi and Turrini proposed the
concept of games with short sight (Grossi and Turrini, 2012), in which players
can only see part of the game tree. However, there is no work on the logical
reasoning of the strategies in this game model.

Inspired by the previous logics for extensive games, this paper is devoted to
the logical analysis of game-theoretical notions of the solutions concepts in games
with short sight. The closely related work is (Harrenstein et al., 2003), in which
a logic was proposed for strategic reasoning and equilibrium concepts. In this
work, however, we present a new logical system called LS for games with short
sight. This logic introduces new additional modalities [�], [(σi)], [̊σ

s] to capture
interesting features such as restricted sight and limited steps.

2 Preliminaries

In this section, we recall the definition of finite games in extensive formwith perfect
information and games with short sight proposed by (Grossi and Turrini, 2012).

Definition 1. (Extensive game(with perfect information)) A finite extensive
game (with perfect information) is a tuple G=(N, V,A, t,Σi,6i), where (V,A) is
a tree with V , a set of nodes or vertices including a root v0, and A ⊆ V 2 a set of
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arcs. N is a non-empty set of the players, and 6i represents preference relation
for each player i, which is a partial order over V . For any two nodes v and v′, if
(v, v′) ∈ A, we call v′ a successor of v, thus A is also regarded as the successor
relation. Leaves are the nodes that have no successors, denoted by Z. t is turn
function assigning a member of N to each non-terminal node. Σi is a non-empty
set of strategies. A strategy of player i is a function σi : {v ∈ V \Z| t(v) = i} → V
which assigns a successor of v to each non-terminal node when t(v) = i.

As usual, σ = (σi)i∈N represents a strategy profile which is a combination
of strategies of all players and Σ represents the set of all strategy profiles. For
any M ⊆ N , σ−M denotes the collection of strategies in σ excluding those for
players in M . We define an outcome function O : Σ → Z assigning leaf nodes
to strategy profiles, i.e., O(σ) is the outcome if the strategy profile σ is followed
by all players. O(σ−M ) is the set of outcomes players in M can enforce provided
that the other players strictly follow σ. O(σ′

i, σ−i) is the outcome if player i uses
strategy σ′ while all other players employ σ.

Preference relation here is different from the conventional ones: In the litera-
ture the notion of preference is assumed to be a linear order over leaves, while
in this paper it is a partial order over all nodes in V . We assume that players
may not be able to precisely determine entire computation paths leading to leave
nodes, and allow them to make estimations or even conjecture a preference be-
tween non-terminal nodes. This assumption also provides technical convenience
for discussing games with short sight later.

In games with short sight, players’ available information is limited in the sense
that they are not able to see the nodes in some branches of the game tree or
have no access to some of the terminal nodes.

The following definition makes the notion of short sight mathematically
precise.

Definition 2. (sight function). Let G = (N, V,A, t,Σi,6i) be an extensive
game. A short sight function for G is a function s : V \Z → 2V |v\∅, associ-
ating to each non-terminal node v a finite subset of all the available nodes at v,
and satisfying:

v′ ∈ s(v) implies that v′′ ∈ s(v) for every v′′ � v′ with v′′ ∈ V |v, i.e. players’
sight is closed under prefixes.(� is the transitive closure of successor relation A.)

Intuitively, function s associates any choice point with vertices that each
player can see.

Definition 3. (Extensive game with short sight). An extensive game with short
sight (Egss) is a tuple S = (G, s) where G is a finite extensive game and s a
sight function for G.

Each game with short sight yields a family of finite extensive games, one for
each non-terminal node v ∈ V \ Z:

Definition 4. (sight-filtrated extensive game) Let S be an Egss given by (G, s)
with G=(N, V,A, t,Σi,6i). Given any non-terminal node v, a tuple S7v is a
finite extensive game by sight-filtration: S7v= (N7v, V 7v, A7v, t7v,Σi7v),6i7v)
where



334 C. Liu, F. Liu, and K. Su

– N7v= N ;
– V 7v= s(v), which is the set of nodes within the sight from node v. The

terminal nodes in V 7v are the nodes in V 7v of maximal distance, denoted by
Z7v;

– A7v= A ∩ (V 7v)2;
– t7v= V 7v\Z7v→ N so that t7v(v′) = t(v′);
– Σi7v is the set of strategies for each player available at v and restricted

to s(v). It consists of elements σi7v such that σi7v(v′) = σi(v
′) for each

v′ ∈ V 7v with t7v(v′) = i;
– 6i7v= 6i ∩ (V 7v)2.

Accordingly, we define the outcome function O7v: Σ7v→ Z7v assigning leaf
nodes of S7v to strategy profiles.

3 A Logic of Extensive Games with Short Sight

In this section we present a modal logic LS (Logic of Extensive Games with
Short sight). This logic supports reasoning about strategies in extensive games
with short sight.

3.1 LS: Syntax and Semantics

A language for general extensive games is proposed in (Harrenstein et al., 2003),
in which a strategy profile is taken as a modal operator, corresponding to an
accessibility relation connecting a non-terminal node to leaf nodes. This language
makes strategic reasoning simple, since one only needs to consider the outcome
of this strategy without getting confused with all the actions at every choice
point. To characterize what players can see in extensive games with short sight,
we extend their language mainly by adding the modality [�]. Let P be the set
of propositional variables, and Σ be the set of strategy profiles. The language
LS is given by the following BNF:

ϕ ::= p| ¬ϕ| ϕ0 ∧ ϕ1| 〈≤i〉ϕ| 〈̊σ〉ϕ| 〈̊σ−i〉ϕ| 〈�〉ϕ| 〈̊σs〉ϕ| 〈̊σs
−i〉ϕ

where p ∈ P , σ ∈ Σ. As usual, The dual of 〈.〉ϕ is [.]ϕ. We begin with a brief
explanation of the intuition behind the logic.

– The label ≤i denotes player i’s preference relation.
– The label σ̊ stands for the outcomes of strategy profiles. (v, v′) ∈ Rσ̊ iff v′ is
the terminal node reached from v by following σ.

– (v, v′) ∈ Rσ̊−i iff v′ is one of the leaf nodes extending v that player i can
enforce provided that the other players strictly follow their strategies in σ.

– The label � is sight function for the current player, and 〈�〉ϕ means “ϕ
holds in some node within the player t(v)’s sight at the present node v.”

– 〈̊σs〉ϕ means “ϕ holds in some state v′ in S7v, which is the terminal node
of S7v that is reachable from the starting point v when all players adopt
the strategy profile σ, i.e., v′ = O7v(σ7v).” The interpretation for 〈̊σs

−i〉ϕ is
similar.
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Let S = (N, V,A, t,Σi,6i, s) be an Egss. The tuple of (V,R≤i , Rσ̊, Rσ̊−i , R�,
Rσ̊s , Rσ̊s

−i
) is defined as the frame FS for LS, where for each player i, strategy

profile σ, nodes v, v′, the accessibility relations are given as follows.

vR≤iv
′ iff v′ 6i v

vRσ̊v
′ iff v′ = O|v(σ|v)

vRσ̊−iv
′ iff v′ ∈ O|v(σ−i|v)

vR�v′ iff v′ ∈ st(v)(v)
vRσ̊sv′ iff v′ = O7v(σ7v)
vRσ̊s

−i
v′ iff v′ ∈ O7v(σ−i7v)

A model M for LS is a pair (F, π) where F is a frame for L and π a function
assigning to each proposition p in P a subset of V , i.e., π : P → 2V . The
interpretation for LS formulas in model M are defined as follows:

M, v |= p iff v ∈ π(p).
M, v |= ¬ϕ iff not M, v |= ϕ.
M, v |= ϕ ∧ ψ iff M, v |= ϕ and M, v |= ψ.
M, v |= 〈≤i〉ϕ iff M,u |= ϕ for some u ∈V with vR≤iu.
M, v |= 〈̊σ〉ϕ iff M,u |= ϕ for some u ∈V with vRσ̊u.
M, v |= 〈̊σ−i〉ϕ iff M,u |= ϕ for some u ∈V with vRσ̊−iu.
M, v |= 〈�〉ϕ iff M,u |= ϕ for some u ∈V with vR�u.
M, v |= 〈̊σs〉ϕ iff M,u |= ϕ for some u ∈V with vRσ̊su.
M, v |= 〈̊σs

−i〉ϕ iff M,u |= ϕ for some u ∈V with vRσ̊s
−i
u.

The validities of a formula ϕ in models and frames are the same as the stan-
dard definitions (Blackburn et al., 2001).

3.2 Axiom System

First, we have the following standard axioms.
(A0) Taut, any classical tautology.
(A1) K axiom for all modalities [≤i], [̊σ], [̊σ−i], [�], [̊σs], [̊σs

−i].
Table 1 lists the other axioms of LS. The first column (N) is the name of the

axiom. The second column denotes the modalities that each axiom is applied to.
The third column shows the formula schema. The fourth column describes the
property of the corresponding accessibility relation R.

K is used in all variants of the standard modal logic. T and 4 determine
the preference of players to be reflexive and transitive. The sight of a player is
reflexive. D ensures that a node reachable by a strategy profile σ from a node v
is determined. I says that every outcome of strategy σ is included in the sets of
outcomes by letting i free, and the other players following σ. M guarantees the
final outcome vertices to be terminated. Y shows the visibility of all the nodes
that can be reached from the current node v in sight-filtrated game S7v. D and
I are the same as that for [̊σ] and [̊σ−i].

The inference rules for LS are Modus Ponens (MP) and Necessitation (Nec).

Theorem 1. (Soundness and Completeness Theorem) Logic of Extensive
Games with Short sight LS is sound and complete w.r.t. all LS-models.
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Table 1. Valid principles of LS

N Modality Schema Property

T
[≤i] [≤i]ϕ→ ϕ

reflexivity
[�] [�]ϕ→ ϕ

4 [≤i] [≤i]ϕ→ [≤i][≤i]ϕ transtivity

D
[̊σ] [̊σ]ϕ↔ 〈̊σ〉ϕ

determinism
[̊σs] [.]ϕ↔ 〈.〉ϕ

I
([̊σ], [̊σ−i]) [̊σ−i]ϕ→ [̊σ]ϕ

inclusiveness
([̊σs], [̊σs

−i]) [̊σ−i]ϕ→ [̊σ]ϕ

M
[̊σ] [̊σ]([̊σ′]ϕ↔ ϕ)

terminating
[̊σ−i] [̊σ−i]([̊σ

′
−i]ϕ↔ ϕ)

Y
([�], [̊σs]) [�]ϕ→ [̊σs]ϕ

visibility
([�], [̊σs

−i]) [�]ϕ→ [̊σs
−i]ϕ

Due to the length limit, we omit the proof here.
In the future, we would like to look into the model checking problem, espe-

cially, comparing the complexity of the problem in the standard game model
and that in games with short sight.
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In the 1992 paper [1] Bikchandani et al. show how it may be rational for Bayesian
agents in a sequential decision making scenario to ignore their private information and
conform to the choices made by previous agents. If this occurs, an agent ignoring her
private information is said to be in a cascade.

To illustrate, consider the following example: a set of agents must decide which of
two restaurants to choose, one lying on the left side of the street, one on the right, with
one being the better – L or R. Initially, agents have no information about which; each
agent i has prior probabilities Pri(L) = Pri(R). Every agent has two choices: either to
go to the restaurant on the left, li, or to go the one on the right, ri. All agents prefer to
go to the better restaurant, and are punished for making the wrong choice, specified by
pay-offs ui(li,L) = ui(ri,R) = v1 > 0 and ui(li,R) = ui(ri,L) = v2 < 0 with v1 + v2 = 0.

Before choosing, every agent receives a private signal indicating that either the
restaurant on the left (Li) or the one on the right (Ri) is the better one. The signals
are assumed to be equally informative and positively correlated with the true state, in
the sense that Pr(Li|L) =Pr(Ri|R) = q> .5 and Pr(Li|R) =Pr(Ri|L) = 1−q. Given this
setup, rational agents will follow their private signal, the majority choosing the better
restaurant.

If agents are assumed to choose sequentially and observe the choice of those choos-
ing before them, a cascade may result, possibly leading the majority to pick the worse
option. The argument for this [1] rests on higher-ordering reasoning not represented in
the Bayesian framework, and goes as follows. Given either L1 or R1, agent 1 will choose
as her signal indicates, hereby revealing her signal to all subsequent agents. Agent 2
therefore as two pieces of information: his own signal together with that deduced from
the choice of 1. If 2 receives the same signal as 1, he will make the same choice; given
two opposing signal, assume he will invoke a self-biased tie-breaking rule, and go by his
own signal. In both cases, 2’s choice will also reveal his private signal to all subsequent
agents. Assume that 1 and 2 received signals L1,L2. Then no matter which signal 3 re-
ceives, she will choose l3: agent 3 will have three pieces of information, either L1,L2,L3

or L1,L2,R3. In either case, when conditionalizing on these, the posterior probability of
L being the true state will be higher than that of R. So 3 will choose l3, and thereby be in
a cascade. Further, agent 4 will also be in a cascade: as 3 chooses l3 no matter what, her
choice does not reveal her private signal, why also 4 has three pieces of information,
either L1,L2,L4 or L1,L2,R4. 4 is thus in the same epistemic situation as 3, and will
choose l4. As 4 is in a cascade, his choice will not reveal his private signal, and the
situation thus repeats for all subsequent agents.

Notice that cascades may not be truth conducive: there is a Pr(L1|R) ·Pr(L2|R) risk
that all agents will choose the wrong restaurant – e.g., if signals are correct with prob-
ability 2

3 , all agents choose wrong with probability 1
9 .

D. Grossi, O. Roy, and H. Huang (Eds.): LORI 2013, LNCS 8196, pp. 337–341, 2013.
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Aim and Methodology. We construct a formal model that completely represents the
reasoning made by agents in the sequential setup, for any input string of private signals.
The type of model constructed is a dynamic epistemic logic variant of a state machine,
in lack of terms called a system. A system operates by having for each state (Kripke
model) some set of transition rules which as a function of the current state pick the
next update to be invoked, hereby specifying the ensuing state. It is initiated from some
initial state and terminates when an end condition is met.

The informational cascades system (IC) constructed captures the following four el-
ements of each agent’s turn: i) earlier agents’ actions are observed from which ii) their
private signals (beliefs) are deduced and combined with iii) the private signal (belief)
of the current agent after which iv) the chosen action is executed, observed by all.
IC diverges from the model of [1] in a number of aspects: it is not probabilistic, but

qualitative; related, information aggregation is not done by Bayesian conditionalization,
but by the aggregation of perceived beliefs; a finite set of agents is used; and no pay-off
structure nor rationality is assumed, agency instead captured by transition rules.

An advantage of IC over the model from [1] is that IC fully specifies the intended
scenario formally: all steps are defined for any string of private signals and all higher-
order reasoning is represented. IC is thus a complete model for informational cascades.

In the present, only the system IC and results are presented, together with novel
machinery required to define a system. A detailed walk-through of a cascading run with
arguments for modeling choices, the presupposed definitions and references may be
found in [2], the extended version of the present abstract.

Transition Rules and Systems

Before commencing with definitions, let us fix notation for presupposed machinery.
Assume a finite set of agents A = {1,2, ...,n}, atoms P ∈ Φ , a set PropΦ given by
ϕ ::= P |ϕ |¬ϕ |ϕ ∧ψ |Biϕ |Kiϕ and definitions of pointed epistemic plausibility mod-
els (EPMs) (S,s0) = (S,≤i,‖·‖ ,s0)i∈A, propositions ‖ϕ‖S ⊆ S over EPMs for ϕ ∈
PropΦ , pointed action plausibility models with postconditions (APMs) (E,σ0) = (Σ ,,i

, pre, post,σ0)i∈A, doxastic programs Γ ⊆ Σ over APMs, action priority update prod-
uct S⊗E (an anti-lexicographic belief revision operation on EPMs and APMs), and
dynamic modalities [Γ ] with associated propositions ‖[Γ ]ϕ‖S.

Transition Rules. A transition rule T is an expression ϕ 
 [X ]ψ where ϕ ,ψ ∈PropΦ .
Transition rules are prescriptive and read “if ϕ , then the next update must be such that
after it, ψ”.

Solutions. A set of transition rules dictates the choice for the next APM by finding the
transition rule(s)’s solution. A solution to T = ϕ 
 [X ]ψ over pointed EPM (S,s) is a
doxastic program Γ such that S,s |=ϕ→ [Γ ]ψ . Γ is a solution to the set T= {T1, ...,Tn}
with Tk = ϕk 
 [X ]ψk over (S,s) if S,s |=∧n

1(ϕk → [Γk]ψk), i.e. if Γ is a solution to all
Ti over (S,s) simultaneously.1 Finally, a set of doxastic programs G is a solution to T
over S iff for every t of S, there is a Γ ∈G such that Γ is a solution to T over (S, t).

1 Note the analogy with numerical equations; for both 2+x = 5 and {2+x = 5,4+x = 7}, x= 3
is the (unique) solution.
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Next APM Choice. If G is a solution to T over S, then given any state from S, the
transition rules in T will specify one (or more) programs from G as the next APM
choice, denoted next(S)T,G, subscripts omitted. A deterministic choice will be made if
G is selected suitably, i.e. if it contains a unique Γ for each s. In the ensuing, solution
spaces will be chosen thusly.

System. A system is a tuple S = 〈S0,T,G,end〉 where S0 is an EPM, called the initial
state, T is a set of sets T(S) each a set of transition rules (those of EPM S),2 G is a
set of sets G(T(S)), each a set of doxastic programs (the solution space for T(S)), and
end ∈ PropΦ is called the end condition.

A system provides for each EPM from some chosen set, a set of transition rules
with associated solution space, and is run using next APM choice. The first next APM
choice is made when the actual state of S0 is specified. A system runs until either the
end condition is met, or until it constructs an EPM for which no transition rules are
specified or no solution is available. Care must be taken to avoid the latter possibilities.

An Informational Cascades System Based on Aggregated Beliefs

Atoms. Let Φ consist of two “types” of atomic doxastic propositions; {L} with ¬L =:
R, representing respectively that the restaurant on the left or the one on the right is
better, and {αiL,αiR}i∈A with αiL∩αiR = /0, representing i’s restaurant choice.3 αiR
is not short for ¬αiL as i may not yet have made any choice.

Aggregated Beliefs. To accumulate information, a notion of perceived aggregated
beliefs is used. Introduce an operator Ai|G, representing the beliefs of agent i when
aggregating information from her beliefs about the beliefs of agents from group G. Ai|G
is defined using simple majority ‘voting’ with a self-bias tie-breaking rule:

S,s |= Ai|Gϕ iff α + |{ j ∈ G : S,s |= BiB jϕ}|> β + |{ j ∈ G : S,s |= BiB j¬ϕ}|

with tie-breaking parameters α,β given by α = ½ if s ∈ (Biϕ)S, else α = 0, and β = ½
if s ∈ (Bi¬ϕ)S, else β = 0. This definition leaves agent i’s aggregated beliefs undeter-
mined iff both i is agnostic whether ϕ and there is no strict majority on the matter.

Overview of IC. As mentioned, each agent’s turn consists of four steps. In IC defined
below, these consist of: i) EPM Si, the initial state of i’s turn, ii) APM Ii−1, invoking the
interpretation of agent i−1’s executed action, supplying i with information about i−1’s
beliefs, iii) APM Pi, the private signal of i, forming her private beliefs about L/R, and
iv) either li or ri, the action i finally executes. The initial state of i+ 1 is then given by
Si+1 :=((Si⊗ Ii−1)⊗Pi)⊗ next((Si⊗ Ii−1)⊗Pi), with next((Si⊗ Ii−1)⊗Pi) ∈ {li,ri}.

Three sets of transition rules are used to run the system: the first is a singleton, always
invoking interpretation of the previous agent’s action. The second is also a singleton,
invoking a private signal specified by a vector defined together with the system. Third,
a set of two rules which specify the choice of the agent as a function of her aggregated
beliefs, hereby specifying the used agent type.

2 It is assumed that model names matter: though S = S⊗Γ , we allow that T(S) 	= T(S⊗Γ ).
3 αiL and αiR are post-factual action descriptions, not the actions themselves, as these are cap-

tured using APMs, see point 3. in the definition of the system IC below.
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The System IC. Define the system IC = 〈S1,T,G,end〉 as follows: let the initial state
be S1 (Fig. 1) and set end := αmL∨αmR with m = max(A). That is, the system initiates
with all agents uninformed about whether L or R, and terminates when the last agent
has chosen at which restaurant to dine.

L R

s0 t0A

Fig. 1. The EPM S1 representing the initial uncertainty
about the better restaurant. All agents know one restaurant
is better, but does neither know nor believe which one. La-
bels L and R indicate truth of the atom, e.g. s0 ∈ ‖L‖S1

. For
all P ∈ {αiL,αiR}i∈A, ‖P‖S1

= /0 as no agent has chosen.

Set Sn+1 := (((Sn⊗ In−1))⊗Pn)⊗ next(((Sn⊗ In−1))⊗Pn), and give T and G by

1. T(Sn) = {In−1 =�
 [X ]�}with G({In−1}) = {In−1}, where In−1 is the one state
interpretation APM with preconditions

pre(in−1) := αn−1L→ An−1|AL ∧ αn−1R→ An−1|AR

with special case I0 having pre(i0) = post(i0) =�.

2. T(Sn⊗ In−1) = {Pn = �
 [X ]�} with G({Pn}) = {(Pn,xn)}, where Pn is the
private signal APM (Fig. 2) indexed for n, with xn the actual state as given by a private
signal vector P = (x1,x2, ...,xm) with xk ∈ {σL,σR}, determining whether n receives a
signal that L (σL) or that R (σR).

〈L ;�〉 〈R ;�〉σL τL

i

〈L ;�〉 〈R ;�〉
σR τR

i

A\{i}
Fig. 2. APM Pi: i receives private signal while oth-
ers remain uninformed about which. State labels
〈ϕ;ψ〉 specify pre- and postconditions. Transitive
and reflexive arrows are not drawn.

3. T(((Sn⊗ In−1))⊗ (Pn,xn)) = {AL,AR} (Fig. 3) with G({AL,AR}) = {ln,rn}, the
singleton doxastic programs over the APM in Fig. 3, all indexed for n.

Aggregator rules:
AL = Ai|GL 
 [X ]αiL
AR = Ai|GR 
 [X ]αiR
—————————–

〈�;αiL〉 〈�;αiR〉
li ri

A A

Fig. 3. Aggregator transition rules specifying an
agent type who bases decisions on aggregated be-
liefs, and the APM Ai over which the two possible
actions for agent i is given; i may choose to go to
either the restaurant on the left (li) or the one on the
right (ri).

Given the cumbersome definition of IC, it is worth verifying that the system in fact
runs appropriately. By induction it may be shown that for every agent i≤m, the system
will produce state Si+1 satisfying αiL∨αiR, yielding the following proposition.

Proposition 1. The system IC runs until end := αmL∨αmR is satisfied at Sm+1, irre-
spectively of which initial state or which signal vector P is used for input.



Aggregated Beliefs and Informational Cascades 341

In a Cascade. With IC defined, it is possible to precisely define the notion of being in
a cascade: agent i is in a cascade iff

i) next((Si⊗ Ii−1))⊗ (Pi,xi)) = li for both xi ∈ {σL,σR}, or
ii) next((Si⊗ Ii−1))⊗ (Pi,xi)) = ri for both xi ∈ {σL,σR}.

The definition captures that i acts in accordance with an established majority, irrespec-
tive of her own signal.4

The following lemma captures a crucial property regarding the higher-order reason-
ing occurring in cascades, namely that the choice of an agent in a cascade provides no
information about their private beliefs (hence neither about their private signal).

Lemma 1. Sn+1⊗ In |= Bn+1BnL∨Bn+1BnR iff n is not in a cascade.

To state the main result, notation for the agents in cascade who ignored which sig-
nals is handy. Let Pi be the private signals for agents j < i, i.e. the initial segment of
P of length i− 1. Let CLi = { j < i : j is in cascade and x j = σL} and CRi = { j < i :
j is in cascade and x j = σR}. We may then state the main result.

Theorem 1. Agent i is in cascade iff two more agents have received private signal of
one type than have received signals of the other type, not counting signals of agents in
a cascade. Precisely: i is in cascade of type i) iff

|{σL ∈ Pi}|− |CLi| ≥ (|{σR ∈ Pi}|− |CRi|)+ 2,

and agent i is in cascade of type ii) iff

(|{σL ∈ Pi}|− |CLi|)+ 2≤ |{σR ∈ Pi}|− |CRi|.

The theorem provides necessary and sufficient conditions on the private signal string
for an agent to be in a cascade. The sufficient conditions are identical to those from
[1], see p. 1005-06, here shown for a model which explicitly represents all higher-order
reasoning and agent decision making.

Corollary 1. Cascades in IC are irreversible: if i is in a cascade of type i) resp. type
ii), then for all k > i, k will be in a cascade of type i) resp. type ii).

The corollary captures the quintessential effect of cascades, namely that they propagate
through the remaining group.

These results show that the system IC functions as the informal reasoning supposed
in [1]. For proofs, further conclusions, discussion, venues for future research and rele-
vant references, the reader is referred to [2].
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ILLC, University of Amsterdam

Abstract. According to the principle of minimal change, an agent should
not change her belief state more than is strictly required to accomodate
new information. We propose a novel approach to the issue by consider-
ing a notion of optimality of belief revision policies that is sensitive to
the target of revision.

1 Introduction

The concept of minimal change is crucial for many theories of belief change (cf.,
eg., [12], [11], [9]). The thesis usually associated with the concept is that in order
to revise with a proposition P , one should transform one’s belief state in such
a way as to ensure that one afterwards believes P , but in doing, so should keep
the “difference” to the original belief state as small as possible. This idea can
be motivated by appeal to two principles, the principle of conservatism, and
the principle of informational economy : one is justified to keep prior doxastic
commitments one is not forced to give up (priniple of conservatism, cf. [12])); but
dropping commitments one is justified to keep is a disproportionate response,
overly costly at the least (principle of informational economy, cf., e.g., [5]). Hence
it is rational to maintain all commitments one is not forced to give up (principle
of minimal change). Granting this, however, one needs to ask: minimal for what
purpose? Boutilier called his favourite belief revision method “natural revision,”
because it seemed to him to appropriately formalize a notion of minimal change,
or “conservatism” of belief change.1 Darwiche and Pearl, on the other hand,
have criticized Boutilier’s method, arguing, essentially, that it produces beliefs
that are not “robust” enough under further revisions (cf. [10], [6]).

This type of dissent leads me to propose, in this abstract, a formalization
of the problem of minimal change that is sensitive to the target of revision: if
truth in the most plausible states of some given order is the target, Boutilier’s
policy should indeed count as “optimal”. If, on the other hand, the belief state
resulting from revision is required to satisfy additional constraints (as Darwiche
and Pearl argued), other policies need to be taken into account so as tomeet those
constraints. To implement this idea, I make use of the framework for modeling
dynamic doxastic attitudes developed in recent joint work ([3], [4]), a framework
which essentially generalizes the usual notion of a “belief revision policy” to bring
a much wider class of belief change operators into view, and study systematically
their properties.

1 Cf. [7]. In this abstract, “natural revision” will be called minimal upgrade.
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2 Background

This section introduces, very briefly, the fundamental notions we use.2

Fix a finite non-empty set W , called the set of all (possible) worlds. A propo-
sition is a subset of W , i.e., a set of possible worlds. A plausibility order is a
pair S = (S,≤), where S ⊆ W is a finite set of possible worlds, and ≤ ⊆ S × S
is a total preorder on S, i.e., a transitive and connected (and thus reflexive)
relation.3 The fact that w ≤ v indicates that world w is at least as plausible as
world v (from the perspective of our (implicit) agent). The best P -worlds (or
most plausible P -worlds) in a plausibility order S, denoted with bestS P , are
given by the proposition bestS P := {w ∈ P ∩ S | ∀v ∈ P : w ≤ v}. The best
worlds (or most plausible worlds) in S are given by bestS := bestS S. Note that
bestS = ∅ iff S = ∅.

A doxastic proposition P is a function P : S %−→ P(S) that assigns a proposi-
tion P(S) ⊆ S to each plausibility order S. We call P(S) the proposition denoted
by P in S. A (doxastic) propositional attitude is an indexed family of doxastic
propositions A := {AP}P⊆W , indexed by arbitrary propositions P ⊆ W , satis-
fying ASP = AS(P ∩ S). This requirement expresses, essentially, that whether
AP is satisfied in S should not depend on P -worlds that are not part of S.
A propositional attitude is introspective iff for any order S and proposition P ,
ASP ∈ {S,∅}. We write S |= AP iff ASP = S.

Examples of propositional attitudes include: (irrevocable) knowledge K, de-
fined by S |= KP iff S ⊆ P ; (simple) belief B, defined by S |= BP iff bestS ⊆
P ; strong belief Sb, defined by S |= SbP iff S |= BP and ∀x, y ∈ S : if x ∈
P, y 	∈ P , then x < y.

A (doxastic) upgrade u is a function u : S %−→ Su that takes a given plausi-
bility order S = (S,≤) to a plausibility order Su := (Su,≤u), satisfying Su ⊆ S.

Examples of upgrades include: the update !P , mapping, for each proposition
P , each plausibility order S to the conditionalization of the order on P ; the
lexicographic upgrade ⇑P , making all P -worlds strictly better than all non-P -
worlds, while keeping the order within each zone the same (cf. [13]); the positive
lexicographic upgrade ⇑+P , defined exactly as lexicographic upgrade ⇑ P , except
that, for any proposition P and order S such that P ∩ S = ∅, the result of
applying ⇑+P to S is the empty plausibility order; the minimal upgrade ˆP ,
making the best P -worlds the best worlds overall, keeping the order otherwise
the same (cf. [8]); the positive minimal upgrade ˆ+P defined exactly as minimal
upgrade ˆP , except that, for any proposition P and order S such that P ∩S = ∅,
the result of applying ˆ+P to S is the empty plausibility order.

A dynamic (doxastic) attitude τ is a family of upgrades {τP}P⊆W , satisfying

– C1: τP · τP = τP .
– C2: SτP = Sτ(P∩S).
– C3: If P = ∅ or P = W , then τP = ∅ or τP = id .

2 For motivation and explanations, the reader is refered to [2], [3].
3 A preorder S on W is total iff for any two worlds w, v ∈W : either w ≤ v or v ≤ w.



344 B. Rodenhäuser

For motivation of these requirements, we refer the reader to [3]. Examples of
dynamic attitudes include: infallible trust !, mapping each proposition P to the
update !P ; (positive) strong trust ⇑(+), mapping each proposition P to the (pos-
itive) lexicographic upgrade ⇑(+)P ; (positive) minimal trust ˆ(+), mapping each
proposition P to the (positive) minimal upgrade ˆ(+)P .

Intuitively, an upgrade τP is redundant, or uninformative, in an order S if the
order remains unchanged when applying τP , i.e., if SτP = S. Now “redundancy
of τ” can itself be seen as a propositional attitude, that we will denote by τ .

Formally, the fixed point τ of a dynamic attitude τ is the propositional at-
titude given by S |= τP iff SτP = S. Observe that fixed points of dynamic
attitudes are in general introspective. Fixed points capture the target of a given
dynamic attitude τ , i.e., the propositional attitude realized by τ . Jumping ahead,
this notion will allow us to study our main question: whether a given dynamic
attitude (representing a belief revision policy) realizes its target in a minimal
way.

As shown in [[3]], our examples of dynamic attitudes and our examples of
propositional attitudes match along the notion of a fixed point:

– The fixed point of ! is K.
– The fixed point of ⇑ is K¬ ∨ Sb.4

– The fixed point of ⇑+ is Sb.
– The fixed point of ˆ is K¬ ∨B.
– The fixed point of ˆ+ is B.

Notice that ⇑+ and ˆ+, rather than ⇑ and ˆ, characterize the propositional
attitudes K and B. In view of this observation, we focus on the former pair of
dynamic attitudes.

3 Similarity, Optimality and Canonicity

Similarity. Given any two plausibility orders S and S ′, we can compare the two
by the extent to which they agree on the relative plausibility of given pairs of
worlds. Formally, S and S ′ agree on (w, v) ∈ W 2 iff (w, v) ∈ S iff (w, v) ∈ S ′.
We denote by agree(S,S ′) (the agreement set of S and S ′) the set of pairs (w, v)
such that S and S ′ agree on (w, v).

For any order S, the weak similarity order ,S is then defined in terms of
inclusion of agreement sets. For any plausibility orders S ′,S ′′:

S ′ ,S S ′′ iff S′, S′′ ⊆ S and agree(S,S ′′) ⊆ agree(S,S ′).

If S ′ ,S S ′′, then we say that S ′ is at least as similiar (or close) to S as S ′′.
The weak similarity order ,S is defined as usual.

4 Given introspective propositional attitudes A and A′, we define the propositional
attitude A ∨A′ by means of S |= (A ∨A′)P iff S |= AP or S |= A′P ; and we define
A¬ by means of S |= A¬P iff S |= A(¬P ).
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Optimality. Let τ be a dynamic attitude. We say that τ is optimal iff there is
no order S, proposition P and dynamic attitude σ such that

σ = τ and SσP ≺S SτP .

An attitude τ is thus optimal if it creates its fixed point τ in a minimal way:
for no given order S and proposition P does there exist an attitude σ with the
same fixed point τ such that SσP is closer to S than SτP .

Given a propositional attitude A, we say that τ is optimal for A if τ is optimal
and τ = A. This notion gives us a general measure of minimal change relative
to the target of revision: the optimality of τ is evaluated taking into account the
fixed point τ of τ .

Not all dynamic attitudes are optimal for their fixed point. As an example,
we mention ?K (“test for irrevocable knowledge”) defined by

S?KP :=

{
S S |= KP,

∅ S 	|= KP.

It is easy to see that ?K is not optimal for its fixed point K (hint: compare it
to infallible trust !). On the other hand, one can show the following:

Proposition 1. For a propositional attitude A, the following are equivalent:

1. A is introspective.
2. There exists a dynamic attitude τ that is optimal for A.

The main examples of dynamic attitudes we consider here are all optimal:

Proposition 2.

1. Infallible trust ! is optimal for irrevocable knowledge K.
2. Positive strong trust ⇑+ is optimal for strong belief Sb.
3. Minimal positive trust ˆ+ is optimal for simple belief B.

Each of these dynamic attitudes thus provides a solution to the minimal change
problem (relative, in each case, to the target of revision). These operations have
been at the center of interest in recent research in Dynamic Epistemic Logic.
Our result justifies formally the claim that this was not an arbitrary choice.

Canonicity. Every now and then, a dynamic attitude τ is uniquely optimal in
the sense that τ is the only optimal dynamic attitude whose fixed point is τ . If
this is the case, we will call τ “canonical”. Formally, for a given dynamic attitude
τ , we say that τ is canonical if τ is optimal and for any attitude σ: if σ = τ and
σ is optimal, then σ = τ . Given a propositional attitude A, τ is canonical for A
if τ is canonical and τ = A.

Proposition 3.

1. Infallible trust ! is canonical for K.
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2. Strong positive trust ⇑+ is canonical for Sb.
3. Positive minimal trust ˆ+ is not canonical for B.

The argument for the third item relies on the observation that, starting from
an order S in which P is not believed but bestS P contains more than one world,
it is sufficient to promote some best P -world, making it best overall: making all
P -worlds best overall is not necessary. For this reason, there are policies devi-
ating from positive minimal trust that are also optimal for belief. So ˆ+ is not
canonical. Notice that it follows that no dynamic attitude is canonical for simple
belief. Our formalization of minimal change thus does not give rise to a unique
solution of the minimal change problem for simple belief. Assuming our formal-
ization, such a unique solution simply does not exist. What is the significance of
this observation? One reaction is to be satisfied with the earlier result that ˆ+ is
optimal. However, another promising route is to study what tweaks to our formal
notions allow a canonicity result after all. Furthermore, a question of obvious
interest is to study necessary and sufficient criteria for canonicity in our setting,
i.e., characterize the attitudes that are canonical according to our definitions!
These avenues are explored in the full version of the paper.
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Abstract. This paper presents logics for reasoning about sound enough evidence
and its relation to evidence and knowledge. The logic of sound enough evidence
is based on van Benthem and Pacuit’s evidence logic and Holliday’s formaliz-
ation of Nozick’s tracking theory. And the newly defined knowledge based on
sound enough evidence does not imply the evidence-based belief but respects the
epistemic closure. The related philosophical issues are also discussed.

1 Introduction

Example 1 (The Witness of The Murder). One day a man was murdered in a room. The
detective Sherlock took charge of this case. Later a man came to him and said that
he had witnessed the whole murder and recognized the murderer (Killer) because the
window of that room was opposite to that of his own room and at that time he was
looking out of the window

Scenario 1 without any instruments;
Scenario 2 with a telescope

and happened to see the murder. With the help of polygraph, Sherlock was certain about
the honesty of the witness. But he still could not make the judgement that the murderer
was definitely the man identified by the witness. (To be continued)

The explanation for Sherlock’s caution is simple: He can only be sure that the witness
has the evidence to make him believe that Killer is the murderer but can not be sure
whether the evidence the witness has is sound enough to make him know that Killer is
the murderer. In the above explanation, three notions, “evidence”, “belief” and “know-
ledge”, play a crucial role. To understand it better, a further analysis of the relation
between these concepts is needed. Furthermore, we would like to answer the following
question: How does Sherlock make sure that the witness’s evidence is sound enough?

In this paper we will follow the analysis of the relationship between evidence and
belief in [4], in which evidence structure was introduced to standard doxastic models
and a dynamic logic of evidence-based belief was proposed. We attempt to analyse
the relationship between evidence and knowledge and propose a new way of defining
knowledge based on evidence.

Then the main issue comes down to the problem how to find the right evidences
which underlie an agent’s knowledge. The observation is EK ⊆ EB, where EB and EK

represent the set of propositions directly supported by the agent’s evidences from which

D. Grossi, O. Roy, and H. Huang (Eds.): LORI 2013, LNCS 8196, pp. 347–351, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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she can derive her belief and knowledge respectively. In other words, while the propos-
itions in EB are only the propositions we have evidence for, the propositions in EK are
the propositions we have sound enough evidence for. The definition of knowledge in
[1] suggests that the relation between EB and EK should be EK = ET ⊆ EB, where ET

denotes the set of true propositions in EB. Different from [1], however, we claim that
the relation should be EK ⊆ ET ⊆ EB, for which we will argue philosophically and
technically in this paper. Therefore it is pivotal to find a mechanism which can pick the
propositions in EK from the propositions in EB to define knowledge.

This paper presents a way in which EK can be picked out from EB, inspired by Hol-
liday’s [2] formalization of Nozick’s [3] tracking theory, and then defines knowledge
based on evidences.

2 Logic of Evidence-based Knowledge(EKL)

We first continue the story in Example 1
To make clear whether the witness knows that the Killer is the murderer(we assume that
in fact the Killer is the murderer), Sherlock took another suspect Keller who was also
the acquaintance of the witness to the room where the murder happened and stimulated
the crime scene including the time, position of the murderer, light and so on. And he
asked Keller to stand at the position of murderer and the witness to stand in front of his
window to identify who the guy at the position of murderer was

Scenario 1 without any instruments;
Scenario 2 with a telescope.

At last, the witness

Scenario 1 did not recognize who he was;
Scenario 2 recognized who he was.

Therefore Sherlock

Scenario 1 still could not conclude that Killer is the murderer;
Scenario 2 could conclude that the Killer is the murderer.

This section develops a logic of evidence-based knowledge, which can be used to
explain the difference between the two scenarios in the examples.

2.1 Language of EKL

Definition 1 (Language of EKL). Let At be a set of atomic sentence symbols, the lan-
guage LEK is defined by

ϕ0 := p | ¬ϕ0 | ϕ0 ∧ ϕ0 | �ϕ0

ϕ := ϕ0 | ¬ϕ | ϕ ∧ ϕ | KEϕ0 | ϕ	 ϕ

where p ∈ At. Additional connectives are defined as usual.
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The intended reading of �ϕ is “the agent has evidence that implies ϕ(the agent has
“evidence for” ϕ).	 is the operator for counterfactual conditionals and ϕ	 ψ can
be read as “If it were the case that ϕ, then it would be the case that ψ”.The new operator
KE is for “evidence-based knowledge” and KEϕ can be read “the agent knows ϕ based
on her sound enough evidence”

In this logic, “sound evidence for” is a derived operator, defined as an abbreviation
by putting �Kϕ := ϕ ∧ (¬ϕ	 �¬ϕ) ∧ (ϕ	 (�ϕ ∧ ¬�¬ϕ)). The interpretation of
�Kϕ is that the agent has sound enough evidence for ϕ, while �ϕ says that the agent has
evidence for ϕ. For simplicity in this version of EKL and some philosophical reason1,
evidence for counterfactual conditionals is not taken into consideration. It is for this
reason that only ϕ0 formulas can appear inside “evidence for” operator. And we write
the language without operator	 as L0.

2.2 Counterfactual Evidence Model

The definition of knowledge in [2] can be seen as a selection from one’s belief: what
kind of belief can be qualified as knowledge? And this selection is a counterfactual
test of the agent’s epistemic state to check whether the agent’s epistemic state meets the
requirement of knowledge. Recall our question at the beginning: what kind of evidences
for the agent’s belief can be qualified as evidences for the agent’s knowledge? Then it
is natural to think that this counterfactual test can be used again, not of the agent’s
epistemic state, but of the agent’s evidential state.

To capture such test, it is necessary to introduce the relation � into the evidence
model in [4], by which the relevance or realisticity 2 between different possible worlds
can be compared in the new model:

Definition 2 (Counterfactual evidence (CE) models). A counterfactual evidence
model is a tupleM of the form 〈W, E,�,V〉 where

1. W is a non-empty set;
2. E ⊆ W × ℘(W) is an evidence relation
3. � assigns to each w ∈ W a binary relation �w on some Ww ⊆ W:

(a) �w is reflexive and transitive;
(b) for all v ∈ Ww,w �w v;

4. V assigns to each p ∈ At a set V(p) ⊆ W.

Besides, we also assume that �w is total and well-founded for the more perspicuous
truth definitions. And Two constraints are imposed on the evidence sets:

– For each w ∈ W, ∅ � E(w) (evidence per se is never contradictory);
– For each w ∈ W,W ∈ E(w) (agents know their space).

Truth of formulas in LE is defined as follows:

1 The counterfactual conditionals, relating to the relevance ordering of the possible worlds,
seems totally different from the fact which can be known by us through empirical sense (evid-
ence) and inference.

2 cf. §2.2 of [2] for the theory of relevant alternatives
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Definition 3 (Truth conditions). Given a modelM = 〈W, E,�〉 and state w ∈ W, truth
of a formula ϕ ∈ LE is defined inductively as follows:

– M,w |= p iff w ∈ V(p) (p ∈ At)
– M,w |= ¬ϕ iffM,w � ϕ
– M,w |= ϕ ∧ ψ iffM,w |= ϕ andM,w |= ψ
– M,w |= ϕ	 ψ iff ∀v ∈ Min�w (�ϕ�) :M,w |= ψ
– M,w |= �ϕ iff there is an X ∈ E(w) and for all v ∈ X,M, v |= ϕ and ϕ ∈ L0

–

M,w |= �Kϕ iff ∃X ⊆ �ϕ� : X ∈ E(w) & ∀Y ⊆ �ϕ� : Y � E(w), and
∀v ∈ Min�w (�ϕ�)(∃X ⊆ �ϕ� : X ∈ E(v)), and
∀v ∈ Min�w (�ϕ�)(∃X ⊆ �ϕ� : X ∈ E(v) & ∀Y ⊆ �ϕ� : Y � E(v))
ϕ ∈ L0

– M,w |= KEϕ iff {ψ | M,w |= �Kψ} |= ϕ
where �ϕ� = {v ∈ W | M, v |= ϕ} and �ϕ� = {v ∈ W | v � �ϕ�} and Min�w (S ) = {v ∈
S ∩Ww | there is no u ∈ S such that u <w v}.
To avoid some obvious counterexamples, we revise Nozick’s tracking theory: the agent
has sound enough evidence for ϕ if and if only in the actual state where ϕ is true,
she has evidence for ϕ and has no evidence for ¬ϕ, at the same time, she would have
evidence for ¬ϕ in the most relevant counterfactual states, and would have evidence for
ϕ and accept no evidence for ¬ϕ in the most relevant possible states where ϕ was the
case. We can also call such evidential state truth-tracking evidential state.Collecting all
the propositions supported directly in the truth-tracking evidential state, we form our
knowledge based on them (EK) by inference and reasoning.

Now with the fact that �Kϕ → KEϕ is valid it can be explained why Sherlock made
different judgements in different scenarios. The difference between the two scenarios
can be shown in the CE models M1 and M2 (see Figure 2.2 and Figure 2.3) where
Killer is the murderer (i) in world w, Keller is the murderer (e) in world v, Killer and
Keller are both the murderer (i ∧ e) in world u and Killer and Keller are neither the
murderer in world t: It is easy to verify thatM2,w |= �Ki butM1,w |= ¬�Ki. It follows
immediately that Sherlock knows that Killer is the murderer in Scenario 2 but not in
Scenario 1.

{w} W

w

E

���������� E

����������
�w v

E

����������
<w u <w t

Fig. 1. CE model for Scenario 1:M1

2.3 Axiomatization of the Evidence Logic

Although the axiomatization of EKL is left as an open question, the axiom system CES
of EKL without the operator KE (sound enough evidence logic) can be given as follows:
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{w} W {v}

w

E

���������� E

����������
�w v

E

���������� E

����������
<w u <w t

Fig. 2. CE model for Scenario 2:M2

taut: all propositional tautologies
	-1 ϕ	 ϕ
	-2 ((ϕ	 ψ) ∧ (ϕ	 (ψ→ χ)))→ (ϕ	 χ)
	-3 (ϕ	 ψ)→ (((ϕ ∧ ψ)	 χ)↔ (ϕ	 χ))
	-4 ¬(ϕ	 ¬ψ)→ (((ϕ ∧ ψ	 χ)↔ (ϕ	 (ψ→ χ)))
	-5 ϕ ∧ (ϕ	 ψ)→ ψ
�- and non ⊥-evidence: �� ∧ ¬�⊥
�-monotonicity:

ϕ→ ψ

�ϕ→ �ψ
MP: Modus Ponens
LE: From ϕ↔ ψ infer (ϕ	 χ)↔ (ψ	 χ).
N©: Necessitation for© = �, ϕ	
Theorem 1. The sound enough evidence logic is sound and weakly complete for the
class of counterfactual evidence models.

3 Relationship between �,�K, B and KE

Given the truth condition of �,	 , �K and B3, we can discuss the relationship between
them like |= ϕ ∧ (¬ϕ	 �¬ϕ) ∧ (ϕ	 (�ϕ ∧ ¬�¬ϕ))↔ �Kϕ and � KEϕ→ Bϕ.

More discussion can be found in the complete version.
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Abstract. We prove that the computational problem of finding back-
ward induction outcome is PTIME-complete.

1 Introduction

Higher-order reasoning of the form ‘I believe that Ann knows that Peter thinks
. . . ’ is an attractive topic for logical analysis. The logical investigations often go
hand in hand with game theory. In this context, one of the common topics among
researchers in logic and game theory has been backward induction (henceforth,
BI), the process of reasoning backwards, from the end to determine a sequence
of optimal actions. BI is a common method for determining sub-game perfect
equilibria in the case of finite extensive-form games. BI can be understood as an
inductive algorithm defined on a game tree – an algorithm that tells us which
sequence of actions will be chosen by agents that want to maximize their own
payoffs, assuming common knowledge of rationality.

Games have been also extensively used to design experimental paradigms
aiming at studying social cognition, with a particular focus on higher-order
social cognition. Often the experimental turn-based games can be modeled as
extensive-form games and solved by applying BI. As it is hard to determine what
the reasoning strategies used by participants in such games are, formal findings
on backward induction have been used to better understand humans’ strategic
reasonings [1].

Recently, Van Benthem and Gheerbrant [2] have studied the logical defin-
ability of BI. They have observed that it can be defined in the first-order logic
extended with the least fixed-point operator as well as in a variety of other
dynamic epistemic formalisms. Obviously, from the least fixed-point definabil-
ity result it follows that BI is in PTIME [3]. But is it also hard, and therefore
complete for PTIME?

2 Preliminaries

Let us start by recalling that the reachability problem on alternating graphs is
PTIME-complete [3].
� The research was supported by Veni Grant NWO-639-021-232. The author also wish
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Definition 1. Let an alternating graph G = (V,E,A, s, t) be a directed graph
whose vertices, V , are labeled universal or existential. A ⊆ V is the set of uni-
versal vertices. E ⊆ V × V is the edge relation.

Definition 2. Let G = (V,E,A, s, t) be an alternating graph. We say that t is
reachable from s iff PG

a (s, t), where PG
a (x, y) is the smallest relation on vertices

of G satisfying:

(1) PG
a (x, x).

(2) If x is existential and PG
a (z, y) holds for some edge (x, z) then PG

a (x, y).
(3) If x is universal, there is at least one edge leaving x, and PG

a (z, y) holds
for all edges (x, z) then PG

a (x, y).

The idea here is that for t to be reachable from an existential node x there
must exist a path from x to t, while the condition for a universal node y is
stronger: t is reachable from y if and only if every path from y leads to t. One can
think about alternating reachability in terms of a competitive game, where the
player controlling existential vertices wants to get to t and the player controlling
universal vertices is trying to prevent that. For example, in the alternating graph
of Fig. 1, t is not reachable from s (i.e., there is no winning strategy for the
existential player). To see it just imagine that the first player will move from
s to v. Then the second player has only one choice leading to the dead-end. It
means, that not every move of the first player controlling the universal node s
is on the path to t.

s, A

E v, E

A A

t, A

Fig. 1. t is not reachable from s

Now, we can define the alternating reachability problem, that is a class of
alternating graphs in which t is reachable from s. One can think about that as
a decision problem: given an alternating graph G and nodes s, t check whether
t is reachable from s.

Definition 3. REACHa = {G|PG
a (s, t)}

The following computational complexity result will be crucial for us.

Theorem 1 ([4]). REACHa is PTIME-complete via first-order reductions.
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Proof. The original proof of Immerman simulates directly an alternating Turing
machine (ATM) to show that the problem is complete for ATM logarithmic
space, known to be equal to P [5].

As the proof of Theorem 1 simulates ATM computation tree it follows that:

Corollary 1. REACHa is PTIME-complete on trees.

Note, that given a game tree T and an existential node s, the problem
REACHa over T intuitively corresponds to the question: ‘Is s a winning po-
sition for the first player in the zero-sum game T , i.e., can the first player force
the game from node s towards node t against all possible counterstrategies of
the second player?’ (see [6], Problem A.11.1).

3 Backward Induction Problem

Now we are ready to define the computational decision problem corresponding to
BI for extensive form, non zero-sum games. Intuitively: can the first player force
the game from node s towards node t against all possible rational (= pay-off
maximizing) counterstrategies of the second player? The difference here is that
we consider only rational strategies as the non zero-sum games do not have to
be strictly competitive.

Definition 4. A two-player finite extensive form game T =
(V,E, V1, V2, Vend, f1, f2, s, t), where V is the set of nodes, E ⊆ V × V is
the edge relation (available moves). For i = 1, 2, Vi ⊆ V is the set of nodes
controlled by Player i, and V1 ∩ V2 = ∅. Vend is the set of end nodes. Finally,
fi : Vend −→ N assigns pay-offs for Player i.

Without loss of generality let us restrict attention to generic games:

Definition 5. A game T is generic, if for each player, distinct end nodes have
different pay-offs.

Definition 6. Let T be a two-player game. We define the backward induction
accessibility relation on T . Let PT

bi (x, y) be the smallest relation on vertices of T
such that:

(1) PT
bi (x, x).

(2) Take i = 1, 2. Assume that x ∈ Vi and PT
bi (z, y). If the following two

conditions hold, then also PT
bi (x, y) holds:

(a) E(x, z);
(b) there is no w, v such that E(x,w), PT

bi (w, v), and fi(v) > fi(y).

For example, in the tree of Fig. 3 t is not a backward induction solution for
the game starting from s. Player 2 will rather start the game by going to the
state w than v. And, t is not reachable from w.

We can again define the corresponding decision problem – whether in the
game represented by tree T and starting in node s the first player can force
the output t – as a class of game trees where s and t belong to the backward
induction accessibility relation on T ?
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s, 2

v, 1 w, 1

2 (4, 7)

t, (5, 6)

Fig. 2. t is not reachable from s

Definition 7. BI = {T |PT
bi(s, t)}

The problem BI intuitively corresponds to the question whether t is a sub-game
perfect equilibrium in game T starting at node s [7].

4 Complexity of BI

The definability result of Van Benthem and Gheerbrant implies that it can be
decided in polynomial time whether node t is a subgame perfect equilibrium of
the game, i.e., the result of a gameplay following a BI strategy. First of all, note
that it also follows that given an arbitrary finite extensive game with starting
node s one can find a BI solution of the game in polynomial time. Simply, it is
enough to run the polynomial decision algorithm for every node of the game. In
this section we prove that computing backward induction relation is not only in
PTIME but it is actually a PTIME-complete problem.

Theorem 2. BI is PTIME-complete via first-order reductions.

Proof. First of all, BI is in PTIME by providing FO(LFP) definition [3]. Now, it
suffices to show PTIME-hardness. For that we will reduce the REACHa problem
on trees (cf. Corollary 1) to the BI problem. We take any alternating tree T =
(V,E,A, s, t). Without loss of generality let us assume that s is existential. We
construct a two player game, T ′ = (V ′, E′, V1, V2, Vend, f1, f2, s

′, t′), where: V =
V ′, t ∈ Vend = {end nodes of V}, E = E′, V1 = V − A, V2 = A, s = s, t = t,
and for every v ∈ V ′, if v 	= t, then f1(t) > f1(v) and f2(t) < f2(v).

Now, we need to prove that T ∈ REACHa iff T ′ ∈ BI. Assume, that T ∈
REACHa. It means that whatever Player 2 does in the game T ′, Player 1 has
a strategy to force outcome t. As t gives strictly the best pay-off for Player 1,
then PT ′

bi (s, t). Hence, T ′ ∈ BI. For the other direction, assume for contradiction
that T 	∈ REACHa. This means that there is a node v 	= t such that Player 2
can guarantee the game T ′ to end in v. From the pay-off construction for T ′, v
is more attractive to Player 2 than t. Therefore, it is not the case that PT ′

bi (s, t).
Hence, T ′ 	∈ BI.

What does this tell us about the complexity of backward induction? First
of all, problems in PTIME are usually taken to be tractable [8], so relatively
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easy to solve, also for humans [9]. Furthermore, given assumptions on non-
collapse, PTIME-completeness suggests that the problem of deciding whether
a given node is a sub-game perfect equilibrium of the game is difficult to effec-
tively parallelize (it lies outside NC1) and solve in limited space (it lies outside
LOGSPACE).
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Abstract. Pan pointed out that there are three kinds of different nega-
tions: contradictory negation, opposite negation and medium negation.
He also proposed the novel fuzzy set FScom with the above three kinds
of negations, followed by one improved fuzzy set IFScom that is estab-
lished based on FScom. In this paper, a novel fuzzy propositional logic
calculus system that equipped with three kinds of negations is set up
to correspond to the FScom and IFScom. The soundness theorem and
completeness theorem of the system is proved.

1 Introduction

In the field of knowledge representation and reasoning, the negative knowledge
plays a particular and important role, which is as informative as positive knowl-
edge. In recent years, this significant but interesting topic has attracted many
researchers to investigate. Wagner and Analyti et al [1,2] considered that there
exist(at least) two kinds of negations as follows: a weak negation expressing
non-truth and a strong negation expressing explicit falsity. Kaneiwa [3] pro-
posed description logic with classical and strong negation. Ferré [4] introduced
an epistemic extension of the notion of negation in Logical Concept Analysis and
Natural Language. Pan [5] pointed out that there are three kinds of negations
in fuzzy knowledge and its negative relations, which are contradictory negation,
opposite negation and medium negation. He established a novel type of fuzzy set
called the fuzzy set with contradictory negation, opposite negation and medium
negation(FScom). Moreover, an improved fuzzy set, denoted by IFScom, was
proposed in [6] which overcomes the shortage of FScom in terms of sketching
fuzzy knowledge.

However, the fuzzy logic corresponding to fuzzy sets has only one kind of
negation cannot effectively distinguish and cope with the above-mentioned three
negations in fuzzy knowledge. Therefore, it is the necessity and natural demand
for efficiently tackling fuzzy knowledge to construct one new fuzzy logic calculus
with contradictory, opposite and medium negation(FPcom). At the same time,
we expect that this fuzzy logic system is able to provide a kind of logic tool for
fuzzy sets FScom and IFScom.
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2 Constructing Fuzzy Logic System FPcom

Definition 1. Let S be a non-empty set, every element of S is called atomic
formula, ¬, � , ∼ and ∨ are connectives respectively, ( and ) are brackets, we
stipulate that
(i) for any A ∈ S,A is one atomic fuzzy formula;
(ii) if A and B are atomic fuzzy formulas, then all of ¬A, �A, ∼ A and (A ∨B)
are fuzzy formulas;
(iii) the set of all the fuzzy formulas if and only if generated by (i) and (ii),
denoted by F (S).

In fact, F (S ) is the free algebra of type (¬, �,∼ ,∨) generated by S [7].
We call the member of F (S) medium fuzzy formula, or formula for short. Since
there exists contradictory negation¬, opposite negation � and medium negation
∼ in F (S ), F (S)is said to the fuzzy formula algebra with contradictory negation,
opposite negation and medium negation, or fuzzy formula algebra for short.

Definition 2. Let F (S) be arbitrary fuzzy formula algebra, Γ,Δ be a set of
formulae in F (S) and A, Ai, B and C be medium fuzzy formulas in F (S), where
i = 1, 2, 3, · · · , n. The following formal inferences are called inference rules of
F (S):
(∈) A1, A2 . . . , An � Ai;
(τ) If Γ � Δ � A, then Γ � A; if � A, then Γ � A;
(∨1) A � A ∨B; if Γ,A � C and Γ,B � C, then Γ,A ∨B � C (where Γ may be
an empty set);
(∨2) A ∨B � B ∨ A;
(∧) A,B � A ∧B; A ∧B � A,B;
(¬) if Γ,¬A � B,¬B, then Γ � A;
(→−) A→ B,A � B;∼ A→ B,A � B;
(→∧) A→ B,A→ C � A→ (B ∧ C);
(�∨) �(A ∨B) � �A, �B; �A, �B � �(A ∨B);
(∼∨) ∼ (A ∨ B) � (∼ A∧ ∼ B) ∨ (∼ A ∧ �B) ∨ (�A∧ ∼ B); (∼ A∧ ∼ B) ∨ (∼
A ∧ �B) ∨ (�A∧ ∼ B) �∼ (A ∨B);
(→+) If Γ,A � B and Γ,∼ A � B, then Γ � A→ B;
(∼∼) A→ A �∼∼ A; (Y ) ¬�A,¬ ∼ A � A;
(Y∼) ∼ A � ¬A,¬�A; (��) A � ��A; ��A � A.
where the formal expression“∇, ∗ � ♦” means from ∇ and ∗,♦ follows; “∇ �
∗,♦” means ∗ and ♦ follows by ∇; P → Q is defined as �P ∨ Q; P ∧ Q is the
abbreviation of the formula �(�P ∨ �Q).

The system consisting of F (S ) and the above inference rules is said to Fuzzy
Proposition logic with Contradictory negation, Opposite negation and Medium
negation, denoted by FPcom.

Definition 3. In the fuzzy propositional logic FPcom, the relation among
¬A, �Aand ∼A is as follows

¬A = �A∨ ∼A
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Like other logic calculus system, the one can obtainmany significant conclusions
through developing mathematically FPcom step by step according to the above
inference rules. Here, we only give some more significant conclusions as follows.

Proposition 1. (i) A,¬A � B; (ii) A, �A � B; (iii) A,∼ A � B; (iv) �A,∼
A � B.

Proposition 2. (i) ¬¬A � A; (ii) A � ¬¬A; (iii) If Γ,A � B,¬B, then
Γ � ¬A.
Proposition 3. (i) ¬A,¬�A �∼ A; (ii) �A �- ¬A,¬ ∼ A; (iii) A � ¬�A,¬ ∼
A,where “: �- ∗”means “: � ∗” and “∗ � :”. The symbol “�-”below means
the same.

Proposition 4. (i) If Γ, �A � B,¬B and Γ,∼ A � C,¬C, then Γ � A; (ii)
If Γ,A � B,¬B and Γ, �A � C,¬C, then Γ �∼ A; (iii) If Γ,A � B,¬B andΓ,∼
A � C,¬C, then Γ � �A.

Proposition 5. (i) If A � B,∼ A � ∼ B, �A � �B, then B � A,∼ B �∼
A, �B � �A; (ii) IfA �- B, �A �- �B, then∼ B �-∼ A.

Proposition 6. (i)� ¬� ∼ A; (ii) � ¬�¬A; (iii) � ∼ A � B; (iv) �¬A � B.

Proposition 7 (substitutive theorem). In fuzzy propositional calculus sys-
tem FPcom, if A �- B and �A �- �B and ∼ A �- ∼ B, thus we have
f(A) �- f(B) and �f(A) �- �f(B) and ∼ f(A) �- ∼ f(B), for arbitrary
medium fuzzy formula f(p).

Definition 4. In fuzzy propositional calculus system FPcom, if we have
f(A) �- f(B) for any medium fuzzy formula f(p), then A and B are said
to be provability-equivalent, denoted by A⇔ B.

3 λ-truth Value and λ-satisfiability of the Medium Fuzzy
Formula

Definition 5. Let S be a non-empty set. For any formula A in F (S), we
stipulate λ-evaluation vλ : F (S)→ [0, 1−λ)∪(1−λ, λ)∪(λ, 1], where λ ∈ (0.5, 1),
as follows.

1) if A is an atomic formula, vλ(A) takes a unique value in [0, 1− λ) ∪ (1−
λ, λ) ∪ (λ, 1];

2) vλ(�A) = 1− vλ(A);
3)

vλ(∼ A) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

2λ−1
1−λ vλ(A) + 1− λ when vλ(A) ∈ (0, 1− λ),
2−2λ
1−2λ(1 − λ− vλ(A)) + λ when vλ(A) ∈ (1 − λ, 1

2 ),
2−2λ
1−2λ(vλ(A)− λ) + λ when vλ(A) ∈ [ 12 , λ),

λ− 2λ−1
1−λ (vλ(A) − λ) when vλ(A) ∈ (λ, 1),

1
2 when vλ(A) = 0 or 1;

4) vλ(A ∨B) = max(vλ(A), vλ(B));
5) vλ(¬A) = vλ(�A∨ ∼ A) = max(vλ(�A), vλ(∼ A)).



360 S. Zhang

Theorem 1. Let F (S) be one fuzzy formula algebra, λ ∈ (12 , 1),A be any
formula in F (S), then we have

1) vλ(A) > λ or vλ(A) < 1− λ, if and only if 1− λ < vλ(∼ A) < λ.
2) 1− λ < vλ(A) < λ if and only if λ < vλ(∼ A) ≤ 1.

Definition 6. Let A be arbitrary medium fuzzy formula in F (S), Γ be a collec-
tion of formulae in F (S), λ ∈ (12 , 1). If vλ(A) > λ holds for every λ-evaluationvλ
for F (S), then A is said to be λ-permanent valid, denoted by |= A; If vλ(A) < λ
follows for every λ-evaluation vλ for F (S), then A is said to be λ-permanent false;
for every λ-evaluation vλ for F (S), if vλ(Γ ) > λ holds, one can get vλ(A) > λ,
thus the formal inference Γ � A is said to be λ-valid inference, written as Γ |= A.

Definition 7. Let A be arbitrary medium fuzzy formula in F (S), λ ∈ (12 , 1). If
there exists λ-evaluation vλ for F (S), such that vλ(A) > λ, we callAλ-satisfiable;
if there exists λ-evaluation vλ for F (S), such that vλ(A) < λ, we call A λ-trick.

We have some vital consequences for fuzzy logic system FPcom as follows.

Lemma 1. Let A be arbitrary medium fuzzy formula in F (S), λ ∈ (12 , 1). Then
vλ(¬A) < λ holds iff vλ(�A) < vλ(∼ A) < λ follows for every λ-evaluation vλ
for F (S).

Lemma 2. Let A be arbitrary medium fuzzy formula in F (S), λ ∈ (12 , 1). Thus,
vλ(A) > λ follows iff vλ(�A) < vλ(∼ A) < λ holds for every λ-evaluation vλ for
F (S).

From the lemmas 1 and 2, it is immediate to get the result as follows.

Theorem 2. Let A be arbitrary medium fuzzy formula in F (S), λ ∈ (12 , 1).
For every λ-evaluation vλ for F (S), then we have

(1) vλ(A) > λ iff vλ(¬A) < λ; (2) vλ(A) < λ iff vλ(¬A) > λ.

4 Soundness and Completeness of Fuzzy Logic System
FPcom

Lemma 3. Let F (S) be arbitrary fuzzy formula algebra, Γ,Δ be a collection
of formulae in F (S) and A,Ai, B, C be medium fuzzy formulas in F (S), where
i = 1, 2, 3, · · · , n. Then all of the formal inference rules Γ � A are λ-permanent
valid Γ |= A, namely,

(1) A1, A2 . . . , An |= Ai; (2) If Γ |= Δ |= A, then Γ |= A; if |= A, thenΓ |= A;
(3) A |= A ∨ B; if Γ,A |= C and Γ,B |= C, then Γ,A ∨ B |= C (where Γ may
be an empty set); (4) A ∨ B |= B ∨ A; (5) A,B |= A ∧ B; A ∧ B |= A,B; (6)
If Γ,¬A |= B,¬B, then Γ |= A; (7) A → B,A |= B;∼ A → B,A |= B; (8)
A → B,A → C |= A → (B ∧ C); (9) �(A ∨ B) |= �A, �B; �A, �B |= �(A ∨ B);
(10)∼ (A ∨ B) |= (∼ A∧ ∼ B) ∨ (∼ A ∧ �B) ∨ (�A∧ ∼ B); (∼ A∧ ∼ B) ∨ (∼
A∧�B)∨ (�A∧ ∼ B) |=∼ (A∨B); (11) If Γ,A |= B and Γ,∼ A |= B, then Γ |=
A → B; (12)A → A |=∼∼ A; (13) ¬�A,¬ ∼ A |= A; (14) ∼ A |= ¬A,¬�A;
(15) A |= ��A; ��A |= A.

Theorem 4 (Soundness of FPcom). Let F (S) be arbitrary fuzzy formula
algebra, Γ be a collection of formulae in F (S) and A be one medium fuzzy
formula in F (S). For fuzzy logic system FPcom, we have

(i) If Γ � A, then Γ |= A. (ii) If � A, then |= A.
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Lemma 4. Let A be any medium fuzzy formula in fuzzy formula algebra
F (S), λ ∈ (0.5, 1). For any λ-evaluation vλ for F (S), we can see any formula B
in F (S) is λ-permanent valid whenever � ∼ A is λ-permanent valid.

Lemma 5. Let A be any medium fuzzy formula in fuzzy formula algebra
F (S), p1, p2, · · · , pn be an enumeration of all the pairwise different atomic fuzzy
formulas in A. For every λ-evaluation vλ for F (S), λ ∈ (0.5, 1), we stipulate
(i = 1, 2, 3, · · · , n)

vλ(Ai) =

⎧⎪⎨⎪⎩
pi if vλ(pi) > λ,

�pi if vλ(pi) < 1− λ,

∼ pi if 1− λ < vλ(pi) < λ,

Then we have:
(1) If vλ(A) > λ, then A1, A2, · · · , An � A;
(2) If vλ(A) < 1− λ, then A1, A2, · · · , An � �A;
(3) If 1− λ < vλ(A) < λ, then A1, A2, · · · , An �∼ A.

Theorem 5 (Completeness of FPcom). Let Γ be a collection of formulae
in F (S) and A be one medium fuzzy formula in F (S). For every λ-evaluation vλ
for F (S), λ ∈ (0.51), we have

(1) If |= A, then � A; (2) If Γ |= A, then Γ � A.
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