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Luiz. A. B. da Cunda and Guillermo J. Creus

Abstract In this chapter the formulation for damage known as Gurson model is
presented. The original formulation, set in a micro-mechanical context, and different
adjustments of phenomenological nature are described. The range of the parameters
of the model and their influence on the representation are described. The main com-
putational details for the implementation of the model by means of the finite element
method are presented and examples of application are given.

1 Introduction

Fracture Mechanics that uses global fracture parameters, such as J integral or Crack
Tip Opening Displacement (CTOD) [34], only in special situations represents the
behavior of ductile solids. In polycrystalline metals, ductile fracture is controlled by
nucleation, growth and coalescence of microvoids and a local approach provides a
clearer picture.

Voids can nucleate from large inclusions and second phase particles, by particle
fracture or interfacial decohesion [47]. Once a void has been nucleated, it will grow
under plastic deformation and hydrostatic stress. Eventually the voids will connect
and ductile fracture by void coalescence will take place.

Thus, four stages, as indicated in Fig. 1 are observed: homogenous deformation
with void nucleation and growth, localized deformation and void coalescence.
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(a) (b)

(c) (d)

Fig. 1 Stages in the development of damage: a nucleation, b growth, c coalescence and d fracture

The best known micro-mechanical model for void related damage and fracture is
due to Gurson [25, 26] and includes a plastic damage yield condition that depends
on a damage parameter (porosity) and a growth law for this damage variable. The
original Gurson model has been subjected to many analysis, criticisms and improve-
ments, some of which are reviewed in the present work. The original model assumes
a homogenous deformation field and thus is not able to describe interaction effects,
void shape changes and the non-homogeneous transformations that lead to coales-
cence and rupture. Some important modifications are due to Tvergaard [76, 79]
who introduced adjustment parameters and to Chu and Needleman [10] who pro-
posed improved nucleation laws for porosity. For this reason the model is sometimes
referred to as GTN (for Gurson, Tvergaard, Needleman). Other modifications will
be described in Sect. 4. Many of them maintain the same basic variables and general
form of the equations and have only a phenomenological (i.e. no micromechanical)
base. Application of the Gurson model to practical problems is only possible in a
computational context. So, diverse studies have been devoted to the numerical imple-
mentation (usually through finite element techniques) of the model. Details of some
procedures and application examples are given in Sects. 5 and 6.
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2 Gurson Damage Model

2.1 Yield Criterion

This theory—originally presented by Gurson [25, 26] in a PhD dissertation super-
vised by J. R. Rice—proposed yield criteria and flow rules for porous materials, focus-
ing the effect of void nucleation and growth, as observed in ductile fracture. Figure 2
(from Gurson [26]), defines macroscopic and microscopic stresses and strains and
the spherical model of a unit cell. The isotropic damage variable (in the framework
of continuum damage mechanics [32, 33]) is the volumetric void fraction or porosity
f = Vv/V , with Vv being the volume of voids in a representative small volume V .
The volumetric void fraction f is assumed as defined at each point of the continuum.

The macroscopic yield criterion was approximated with an upper bound approach
[28]. Aggregates of cells representing voids in a ductile matrix were employed, with
the matrix material idealized as rigid-perfectly plastic obeying von Mises yield crite-
rion. Using a distribution of macroscopic flow fields and working with a dissipation
integral, upper bounds for the macroscopic stress fields required for yield were deter-
mined. Their locus in the stress space determines the yield surface. It was shown that
normality of plastic flow holds for this yield surface. The expression proposed by
Gurson is
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Fig. 2 Void-matrix aggregate, with random void shapes and orientations, evidencing macroscopic
and microscopic tensor quantities, and also the unit cell model studied by Gurson [26]
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where �eq is the macroscopic von Mises equivalent stress, �′ is the deviator of the
macroscopic stress, �m is the mean macroscopic stress or pressure, �0 is the yield
stress of the matrix undamaged material and f is the porosity. For f = 0 Gurson’s
model reduces to the von Mises criterion.

A prior model, the Drucker-Prager theory [18], had already proposed a yield
criterion dependent on hydrostatic stress in the general form (the macroscopic stress
being now indicated with σ )

Φ = σeq − aσm − b = 0. (2)

Gurson seminal contribution resides in the establishment of a microstructural relation
for the effect of the hydrostatic stress p on the yield function through the consideration
of a porosity variable f .

In the original Gurson model (Eq. 1), the softening of the material with the increase
of void volume fraction is a continuous process, and a complete loss of load carrying
capacity would occur only when the void has grown to the ultimate value f = 1.
Tvergaard [76, 79] compared the bifurcation predictions based on the Gurson model
and his own numerical studies for material containing periodic distribution of voids
and suggested a modification of the Gurson model. In the most usual notation

Φ = σeq

σy
+

√
2α1f cosh α2

3�m

2σy
− 1 − α2

1 f 2 = 0 (3)

or
Φ = σeq − �σy = 0, (4)

with

� =
√

1 − 2α1f cosh

(
α2

3�m

2σy

)
+ α2

1 f 2. (5)

The substitution of � by σ is coherent with the fact that the original micromechanical
model has been altered to include phenomenological parameters.

In Fig. 3, yield surfaces for different levels of void content are shown, in a plot of
normalized macroscopic deviatory stress versus normalized pressure. It can be seen
that the elastic domain depends on the hydrostatic pressure. When the volumetric
void fraction f decreases, the influence of pressure also decreases, leading to a larger
elastic domain. For f = 0, the model reduces to the von Mises criterion, which is
independent of the hydrostatic pressure.

The parameter α1 in Eq. (3) is a coefficient multiplying the porosity f , to be
adjusted by comparing numerical simulations of RVE aggregates and the predictions
of the model. Since the element studied by Gurson was a single hollow sphere and
thus disregarded interaction among voids, this coefficient introduces somehow the
interaction effect. The parameter α2 in Eq. (3) can be understood as a calibrating
coefficient acting on the pressure.
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Fig. 3 Gurson yield surface for a porous material, showing the influence of pressure and volumetric
void fraction

The parameter α1 is the inverse of the value fU, being fU the volumetric void
fraction that corresponds to rupture in the absence of hydrostatic pressure. From
�(p = 0, σy, f ) = 0, results fU = 1/α1.

Rupture occurs at a porosity level fU in the absence of pressure. If pressure is
present, rupture takes place at a porosity value lower than fU. The combinations of
pressure and porosity that lead to rupture are given by

� = 2

3α2
arccosh

1 + α2
1 f 2

2α1f
− p

σy
= 0. (6)

Figure 4 shows plots corresponding to Eq. (6) for α2 = 1.0 and α2 = 0.7. Even
with this modification, the void volume fraction at which the Gurson model will lose
load carrying capacity is still unrealistically large. Both experimental observations
[9] and results of cell model analysis by Koplik and Needleman [37] show that the
volume fraction of voids at which void coalescence starts is usually less than 15 %.

Flow rule: As shown by Gurson [26] the plastic strain rate tensor Dp
ij obeys the

normality rule

Dp
ij = λ̇

∂Φ

∂σij
. (7)
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Fig. 4 Combinations of pressure and porosity values that correspond to loss of strength (� = 0)

The equivalent plastic strain rate is defined as

ε̇p =
√

2

3
Dp

ijD
p
ij. (8)

As in classical plasticity, the relation giving the plastic strain rates as a function of
the stress rates is obtained using the consistency condition Φ̇ = 0 .

2.2 Evolution Law for the Porosity

In a plastic damage theory it is necessary to have, in addition to the yield criterion and
the flow rule, an evolution law for damage (porosity, in this case). The mechanism
of damage evolution considered in the original Gurson model was growth. Growth
occurs when the voids (pre-existent or nucleated) change their size according to the
volume change in the continuum and is controlled by mass conservation through the
expression

ḟg = (1 − f )Dp
ii, (9)

which determines that voids increase or decrease their volume according to the
volume variation in the continuum.

In the GTN version, two additional mechanisms are included: nucleation and
coalescence. Nucleation occurs mainly due to material defects, in the presence
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of tension. Coalescence is related to the fast rupture process that occurs after the
volumetric void fraction reaches a limit, usually indicated by fC. Coalescence is the
union of neighbor voids due to the rupture of a ligament among them (see Fig. 1).

The equations that govern damage evolution are modeled in a simplified form as
follows. First, it is assumed that the total void growth rate is given by

ḟ =
{

ḟn + ḟg f ≤ fC,

ḟc f > fC,
(10)

where ḟn is the void nucleation rate, ḟg is the void growth rate and ḟc is the void coales-
cence rate. Thus, as long as f is smaller than a characteristic value fC, only nucleation
and growth develop. Above fC, only coalescence takes place. The nucleation rate is
proportional to the rate of the equivalent plastic strain

ḟn = A(εp)ε̇p. (11)

For A(εp) Chu and Needleman [10] proposed the statistical distribution

A(εp) = fN

sN
√

2π
exp

[
−1

2

(
εp − εN

sN

)2
]

, (12)

where fN is the proposed final nucleation void volumetric fraction, εN is the mean
plastic strain value for nucleation and sN is the standard deviation for the distribution
(see Fig. 5).

Sometimes it is assumed that nucleation does not take place when the material
is in compression. The compression state is indicated by a negative pressure p, and
thus A(εp) = 0 if p < 0.

Coalescence is governed [78] by the relation

ḟc = fU − fC
Δε

ε̇p, (13)

where Δε is a material parameter that controls how fast the coalescence happens. An
alternative way of taking coalescence into account [80] is to replace the volumetric
void fraction f in the Gurson yield surface (3) by a corrected volumetric void fraction
f ∗ given by

f ∗ =
⎧⎨
⎩

f f < fC,

fC + 1.0 − fC
fF − fC

(f − fC) f > fC,
(14)

with fF being the rupture volumetric void fraction. In this case, only nucleation and
growth are considered in Eq. (10). Nucleation and coalescence are irreversible. Thus,
it seems natural to model them (Eqs. (11) and (13)) as governed by equivalent plastic
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Fig. 5 Evolution of porosity in the nucleation stage considering εN = 0.2 and two different sN
values. As a consequence of the combinations of εN and sN adopted, nucleation is almost complete
in both cases

strain. The growth mechanism is reversible, so it is modeled (Eq. (9)) as volume
change dependent.

In Fig. 6, the evolution of porosity is shown. The occurrence of the three stages
of porosity evolution can be observed: initially, a relative fast nucleation, according
to the standard deviation sN imposed, placed around equivalent plastic strain 0.1;
afterwards, a growth stage until an equivalent plastic strain around 0.5, 0.7 or 0.9
is reached. And finally, the coalescence stage, in which the porosity level changes
abruptly, according to the parameter employed. The start of the coalescence stage is
defined based on porosity, according to Eq. (13).

2.3 Elastic Constants for the Damaged Material

The presence of embedded voids in a metallic matrix alters also the elastic behavior.
Mori and Tanaka [49] relations are usually adopted

K = 4K0G0(1 − f )

4G0 + 3K0f
, G = G0(1 − f )

1 + 6K0 + 12G0

9K0 + 8G0
f
, (15)
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Fig. 6 Evolution of porosity for a tensioned material obeying Gurson model. The three mechanisms
of voids evolution: nucleation, growth and coalescence can be identified. It is observed that the
parameter Δε is the equivalent plastic strain increment from the beginning of coalescence until the
final rupture of the material

with K0 and G0 being the undamaged values of compressibility and shear modulus,
respectively. There are other proposals to include the effect of porosity on elastic
constants [31, 45, 59], leading to similar results for low porosities. Figure 7 shows
the dependence of damaged Young’s modulus E on the porosity, evaluated from
Eqs. (15) and from [45]. E0 is the undamaged Young’s modulus.

2.4 Assessment of Gurson Model

The Gurson model has been assessed using numerical micromechanical techniques.
Trillat and Pastor [75] use the static and kinematic methods of limit analysis to check
both for the 2D and 3D Gurson expressions. For spherical cavities Gurson criterion
seems to be a good analytical expression; in the case of cylindrical cavities Gurson
expression seems too restrictive. The 2D formulation is also analyzed in [20], where
a modification of the Gurson yield function is proposed.
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Fig. 7 Dependence of Young’s modulus on the void volumetric fraction as introduced by Mackenzie
[45] and Mori and Tanaka [49] equations

3 Influence of the Parameter Values on the Behavior
of the Damage Model

The material parameters in the Gurson model can be classified as:

(a) constitutive parameters, related to the Gurson yield surface (α1, α2);
(b) initial parameters, associated to the origin of the porosity, whether present in the

virgin material (f0) or nucleated by plastic straining (fN, sN and εN);
(c) critical parameters, related to the interaction between neighbor voids, describing

the coalescence stage and the final rupture of the material.

The constitutive parameters α1 and α2 act as multipliers on the volumetric void frac-
tion and on the pressure respectively, introducing the possibility of adjusting the the
Gurson yield surface with available experimental or numerical data. To larger values
of α1 and α2 correspond a smaller elastic domain. Figure 8 shows the dependence of
the Gurson yield surface on the α2 parameter.

The second group of parameters is related to the origin of the voids. An initial
porosity f0 can be employed in two situations: when the material has actually an
initial porosity or when voids are developed from inclusions that break or debond
from the matrix at a very low strain level. Otherwise, the strain governed nucleation
relation proposed by Chu and Needleman [10], described by Eqs. (11) and (12), is
used.
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Fig. 8 Dependence of Gurson yield surface on α2 parameter presented for α2 = 0.7 and α2 = 1.0

The value adopted for fN determines the proposed level of nucleated voids. The
parameter εN corresponds to the mean equivalent plastic strain for which nucleation
is developed. The nucleation standard deviation sN controls the localization of nucle-
ation around εN. Figures 5 and 9 shows two nucleation processes with different εN:
to the smaller value (Fig. 9) corresponds an earlier nucleation. In both the figures,
plots with different sN are presented: to smaller values of sN corresponds a faster
nucleation, with the nucleation localized around the mean equivalent plastic strain
nucleation εN.

Figure 9 shows that the proposed level fN is not reached, if sN = 0.1 is employed.
This is because the porosity evolution law in the nucleation stage ḟn is given in a
rate form that must be integrated while the material is plastically deformed. If an
inadequate relation between sN and εN is employed, a significant part of the porosity
evolution rate ḟn will take place in the “fictitious negative” part of the equivalent
plastic strain domain (Fig. 10), and not be integrated, since the equivalent plastic
strain is always positive, determining an incomplete nucleation.

To avoid this problem, a relation between sN and εN in the form εN > zsN must
be respected. So, to each value of z corresponds a different level of nucleation. To
ensure a nucleation level of at least 95 % of fN it is necessary to employ a z value
of 1.645. To obtain a nucleation level of 97 % of fN, z = 1.882 must be used and to
attain a nucleation level of 99 % of fN, z = 2.337 must be employed.

Another important choice concerns the influence of the pressure sign on the nucle-
ation of voids. One approach is to consider nucleation completely independent of
the pressure sign [71, 77]. For a material without initial porosity, this choice leads
to a Gurson yield surface which is symmetric with respect to pressure, as indicated
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Fig. 9 Evolution of porosity in the nucleation stage considering εN = 0.1 and two different sN
values, showing localized nucleation around εN if a smaller value of sN is employed. Incomplete
nucleation can be observed if an inadequate combination of εN and sN is adopted, i.e., a large sN
value with relation to the εN value
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Fig. 10 Dependence of nucleation evolution rate on equivalent plastic strain. Part of the area under
the curve is placed on the “fictitious negative” domain of the equivalent plastic strain

in Fig. 11 . On the other hand, if nucleation is associated to debonding between
inclusions and metallic matrix, this debonding will decrease whenever the region
is submitted to compression. To avoid this contradiction, some proposals consider
nucleation only for p > 0 (tension), imposing A(εp) = 0 if p < 0 [69]. For a mate-
rial initially free of voids, we will have Gurson behavior for p > 0 and von Mises
behavior for p < 0 as indicated in Fig. 11. This approach also has drawbacks. Con-
sidering a material initially compressed and plastically deformed to an equivalent
plastic strain level higher than εN, if the load reversal happens and the hydrostatic
stress state on the material changes to tension, nucleation will not take place. In the
absence of nucleated voids, there will be no void evolution and the material will
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Fig. 11 Gurson yield surface associated to a material initially voids free, under different nucleation
approaches: nucleation only in tension or pressure independent nucleation, symmetric with relation
to the pressure sign. If the material is tensioned, both approaches lead to similar results. If the
material is compressed, with nucleation only in tension, von Mises behavior is reproduced

continue obeying von Mises yield criterion even for a high level of plastic strain-
ing and positive hydrostatic tension [13]. Both nucleation approaches give the same
response to monotonic positive hydrostatic pressure.

The third class of parameters includes those related to the coalescence of voids.
Considering the coalescence rate of voids described by the Eq. (13), two material
parameters are present: fC, that indicates the initial level of voids at which coales-
cence takes place, and Δε, that indicates how fast coalescence occurs. Considering a
material submitted to uniform tension, it can be seen that the coalescence parameters
control the final branch of the load-displacement relation presented in Fig. 12: fC
controls the start of the branch and Δε controls its slope. To a small fC corresponds
a final branch that starts earlier and to a small Δε corresponds a steeper one.

4 Further Developments and New Trends for Gurson Model

The Gurson model has been modified by several authors, particularly in reference to
its parameters. There are proposals to make these parameters function of
porosity [23, 81], triaxiality [40], shape of voids [36], etc. There are proposals to
use kinematical hardening [8, 42]. A thermo mechanical coupling [84] includes the
possibility of using parameters dependent on temperature.

Thomason [74] proposes a model that incorporates Rice and Tracey [66] equa-
tions, and is able to represent both the growth and the change of void shapes. For
this model, the αi parameters proposed by Tvergaard [76, 79] would be unnecessary.
Klöecker and Tvergaard [36] also propose a modification of the Gurson model to
take into account changes in void shapes and the coalescence process. Zhang and
Niemi [88] present a mechanism of coalescence that avoids the need for determining
experimentally the critical value of the coalescence beginning fC. In this model, the
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Fig. 12 Force versus displacement relations for a tensioned material obeying Gurson behavior. It
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the final branch corresponding to rupture starts earlier or later depending on fC and with its slope
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void remains spherical during growth, and the initiation of coalescence is controlled
by the triaxiality level.

Voyiadjis and Kattan [81] propose a formulation that introduces damage through
a damage tensor. Applying this formulation to simulate Gurson model, they obtain a
yield surface with porosity dependent parameters. Wen et al. [82] propose a modifi-
cation of the Gurson model to take into account void size. They show that the yield
surface is larger for materials with very small voids. The effect becomes important
for high porosities.

The Gurson model has been used in combination with Fracture Mechanics by
Kikuchi et al. [35], Needleman and Tvergaard [52], Koppenhoefer and Dodds Jr. [38]
and Skallerud and Zhang [70] employing J integral and by Aravas and McMeeking
[3] employing J integral and COD.

Subjects that deserve particular attention are situations with low triaxility and
shear stresses, the effect of hardening and the consideration of cyclic loading.

4.1 Non-Spherical Voids

The evolution of the void shape and its effect on the mechanical behavior has been
considered by Gologanu et al. [22] and Pardoen and Hutchinson [58].

Gologanu et al. [22] extended the Gurson model to prolate and oblate voids in a
plastic material. The stress potential proposed corresponds to an ellipsoidal volume
of perfectly plastic material containing a confocal ellipsoidal void,
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The parameters C, η, q, α2 depend on the current void and cell shape. Pardoen and
Hutchinson [58] use a potential function similar to Eq. (16) and add a coalescence
function that determines the initiation of the coalescence, based on the work of
Thomason [74]. Two new variables determine void shape and the relative void spac-
ing. The analysis seems to give satisfactory results for the overall cell behavior (i.e.
equivalent stress-strain curves), but a precise prediction of the shape evolution needs
the introduction of correction functions.

4.2 Shear Effects

The difficulty of the Gurson formulation to model damage under pure shear has been
tackled in a phenomenological form by Nahshon and Hutchinson [50]. An extension
of the Gurson model that incorporates damage growth under low triaxial straining in
shear-dominated states is proposed. This extension retains the isotropy of the original
Gurson model by making use of the third invariant of stress to introduce shear depen-
dence. This extension opens the possibility for computational approaches based on
the Gurson model to be extended to shear-dominated failures. This modification
assumes that the volume of voids undergoing shear may not increase, but void defor-
mation and reorientation contribute to damage and softening increase. Thus, f is no
longer directly tied to the plastic volume change. Instead, it is regarded as an effec-
tive damage parameter. The modification, while phenomenological, is nevertheless
formulated to be consistent with the mechanism of softening in shear. Specifically,
it is proposed that the growth rate expression be written as

ḟ = (1 − f )Dp
ii + Aε̇p + kωf ω0

sijD
p
ij

σy
, (17)

where sij is the deviatoric part of the stress tensor and the invariant measure ω0 =
ω(σ) is defined as

ω0 = ω(σ) = 1 −
(

27IIIs

2σ 3
y

)2

, (18)

in which IIIs is the third invariant of the deviator. In Eq. (17), the first term representing
growth of existing voids follows from plastic incompressibility, the second term
describes nucleation of new voids, while the last term, introduced by Nahshon and
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Hutchinson [50], is formulated to be consistent with the mechanism of void softening
in shear. Void nucleation is here taken to be plastic strain controlled as suggested
by Chu and Needleman [10], so that the coefficient A in Eq. (17) takes the form of
Eq. (12).

The model approximates experimental results obtained for various structural
alloys that show a marked difference between fracture strains under axisymmetric
stress and those under a pure shear stress plus a hydrostatic component or under plane
stress states. The shear contribution added to the damage growth rate in Eqs. (17)
and (18) does not affect the normality of the plastic flow rule [50].

The proposal above has been critically analyzed by Nielsen and Tvergaard [53],
which claims the modification represents damage development in shear, but also
gives a contribution to the damage development at plane strain uniaxial tension, even
though the stress triaxiality is far from zero.

4.3 Hardening

Gurson [25, 26] had already considered the case of a matrix with isotropic hardening,

writing Eq. (1) with σ0 = σ(Ē), where Ē is given by the evolution law (1− f )σ0
˙̄E =

�ijD
p
ij. Mear and Hutchinson [48] and Becker and Needleman [6], were the first to

introduce linear kinematic hardening into the Gurson yield function. In the case of
purely kinematic hardening [48], the proposed criterion is

Φ = (� − A)2
eq

σ 2
y

+ 2f cosh

(
3(� − A)m

2σy

)
− 1 − f 2 = 0, (19)

where A denotes now the back stress (center of the macroscopic elastic domain).
The extensions mentioned above are purely phenomenological. Leblond et al. [39]

derived another yield function (the extended Leblond-Perrin-Devaux—LPD model)
based on the analysis of a spherical void in a spherical volume element assuming an
incompressible isotropic and kinematic hardening matrix material:

Φ = (� − A)2
eq

�2
1

+ 2α1f cosh

(
3α2(� − A)m

2�2

)
− 1 − (α1f )2 = 0. (20)

The two variables �1 and �2 replace the isotropic flow stress in the Gurson equation.
Steglich et al. [72] carried out unit cell calculations assuming a non-linear kine-

matic hardening matrix material surrounding spherical voids. They compared the
unit cell results to predictions of the LPD model with non-linear kinematic harden-
ing and found that, in principle, the behavior under constant triaxiality, as observed
in the cell calculations, can be described with the model.
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5 Computational Details

5.1 Numerical Implementation

The Gurson damage model computational formulation is usually presented in rate
form (hypoelasticity). Thus, a numerical scheme must be adopted to integrate the
rate equations following the evolution of the internal variables (stresses, damage
and plastic strain). A time discretization procedure is adopted, associating to each
time t a specific load level. Then, the evolution of internal variables is obtained for
subsequent times t + Δt, t + 2Δt, etc. The correct integration of rate constitutive
equations has a direct implication on the precision of the solution.

Physical and geometrical nonlinearities must be taken into account during the
integration process. A convenient way is to consider the physical and geometrical
nonlinearities in separate levels. Therefore, the integration of constitutive equations is
organized in two stages: first, the evaluation of corotational Cauchy stresses (material
nonlinearity); and secondly, the evaluation of stresses, from the previously obtained
corotational stresses (geometrical nonlinearity). A good integration scheme must
provide incremental stability, precision and incremental objectivity.

Incremental objectivity is assured by the corotational formulation. An integration
procedure that has been widely employed is the so called split-operator scheme,
with which all strain increase is initially considered as elastic. If the yield surface is
exceeded, a plastic corrector is applied.

Ortiz and Popov [57], Runesson et al. [67], Gratacos et al. [24], Lee [41] and Zhang
[86] present studies on the stability and precision of different integration schemes.
Zhang [85] and Zhang and Niemi [87] present a generalized mid-point algorithm
that is an evolution of the algorithm presented by Aravas [2] to integrate constitutive
equations with internal variables and isotropic hardening. The algorithm determines
the change in corotational stresses and internal variables such as porosity and plastic
strain. Beginning at a time t (characterized by a subindex n), at which all the stresses
and internal variables are known, the algorithm provides the updated values at time
t + Δt (subindex n + 1). It uses a predictor-corrector strategy, partitioning volumet-
ric and deviatory plastic strains. The parameter α controls whether the integration
scheme is explicit (α = 0) or implicit (α > 0). The process is as follows:

(a) the logarithmic strain EN
ij is decomposed into the sum of an elastic part EN,e

ij and

a plastic part EN,p
ij ; such additive decomposition is adequate when an Updated

Lagrangian description (with reference and updated configurations close to
updated each other) is employed;

(b) stresses are determined from the elastic strains;
(c) the yield surface is determined using the conventional von Mises equivalent

stress q, the pressure p and the internal variables Ht ;
(d) the plastic strain rate is determined using a potential function g. In the present

case the potential function is the Gurson yield surface, that is associated to
Eq. (7);
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(e) the rate ht of the internal variables Ht is a function of the stress increment and
on the value of the internal variables.

Initially, all the strain increment is supposed as being elastic. In this case, plastic strain
and porosity remains unchanged in the time step. If the yield surface is violated, a
plastic corrector is applied. The integration algorithm can be viewed as a system of
non-linear equations to be solved.

ΔEpP + ΔEqQ = 0, (21)

Φn+1 = φ
{
pn+1, (sij)n+1, (Ht)n+1

} = 0, (22)

pn+1 = pT
n+1 + K{f }ΔEp (23)

(sij)n+1 = (sij)
T
n+1 − 3G{f }ΔEq

(sij)n+α

qn
, (24)

(ΔHt)n+1 = (ht)n+α

{
ΔEp,ΔEq, pn+α, (sij)n+α, (Ht)n+α

}
(25)

with K{f } and G{f } being the bulk modulus and shear modulus respectively, both
corrected by the porosity. ΔEp and ΔEq are related, respectively, to the volumetric
and deviatory part of the logarithmic plastic strain increment [87].

The non-linear equations system can be solved by the Newton-Raphson method,
taking as variables ΔEp andΔEq. Once obtained their values, the next step is to update
stresses and internal variables (Eqs. (23), (24) and (25)). The process is repeated until
|(Φ)n+1| ≤ 10−7.

Some additional strategies can be used to enhance the robustness of the integra-
tion scheme. Worswick and Pick [83] recommends to employ sub-incrementation,
breaking a time step into sub-steps. The number of sub-steps NSI may be chosen as
a function of elastic predictor values, determining

NSI1 = INT(ΦT
n+1/σy), (26)

NSI2 = INT(ABS(pT
n+1/σy)), (27)

and choosing
NSI = MAX(NSI1, NSI2). (28)

5.2 Mesh-Size Dependence

A subject that deserves particular attention is the influence of mesh size in finite
element analysis with the Gurson model as in all situations that involve softening.
Then the results become strongly mesh dependent, unless special procedures are
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employed. Procedures proposed include non-local models, viscoplasticity, gradient
plasticity, etc., in order to introduce a characteristic length, related not to the mesh
size but to the material structure [1, 5, 15, 16, 46, 51, 60].

Non-local strategies for the Gurson model have been proposed by Leblond et al.
[39], Needleman and Tvergaard [52] and Reusch et al. [64, 65].

The use of gradient plasticity formulations considers that the yield surface depends
not only on internal variables but also on its gradients. This dependence leads to
behavior similar to the nonlocal approach. Gologanu et al. [21] and Ramaswamy and
Aravas [62, 63] have studied the application of gradient plasticity together with the
Gurson model. A viscoplastic formulation also introduces a characteristic length. In
the context of the Gurson damage, viscoplascity is used by Needleman and Tvergaard
[52] and Stainier [71].

5.3 Arbitrary Lagrangian-Eulerian Alternative

The Gurson damage model involves two major components: a yield surface that
depends on the stress state, virgin yield stress and porosity level, and a law for
the evolution of porosity, also dependent on stresses and strains. Thus, the results
obtained applying the damage model are only as good as the displacements, stresses
and strains used as input data. Modeling the problem with finite elements, the results
obtained are in strong dependence on the quality of the mesh employed. In the
presence of the finite strains allowed by ductile behavior, errors due to high mesh
distortion can be expected. In order to improve the quality of the results some action
must be taken. One possibility is to employ remeshing [11, 73]. This is a good
option, but usually expensive, because it needs continuous error monitoring to define
the exact moment to remesh, a good mesh generator and an experienced user to
control the process. Another way of minimizing the mesh distortion is to employ an
ALE formulation, in which the mesh is redefined at arbitrary steps, in an automatic
way. Both methods may be combined.

Arbitrary Lagrangian-Eulerian formulation (ALE) is a strategy initially developed
for hydro-codes [17, 30], and after extended to solid mechanics problems [4, 27, 29,
44, 68], enhancing the quality of the meshes in processes that occur with large
deformations. The main characteristic of ALE formulation is the relative movement
between finite element mesh and material points. Considering this characteristic,
Eulerian and Lagrangian formulations can be understood as particular cases of ALE
formulation.

As mesh and material displace independently, a value relating material velocity
vi and mesh velocity v̂i, the convective velocity ci, can be established as ci = vi − v̂i.
A material rate of a function gi is defined as g•

i = go
i + cjgi,j, where go

i represents
the local variation of fi and cjgi,j represent the convective effects. Considering the
balance of momentum equation in the Lagrangian form and applying equilibrium
conditions in the Lagrangian-Eulerian form results
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σij,j + ρbi = ρ
(
vo

i + cjvi,j
)
, (29)

where ρ is the specific mass and bi is the body force per unit mass. Applying the
virtual work principle to Eq. (29) results in

∫

V

δui
[
σij,j + ρbi − ρ

(
vo

i + cjvi,j
)]

dV = 0. (30)

A weak form of the equilibrium conditions can be obtained,

∫

V

ρvo
i δuidV +

∫

V

ρcjvi,jδuidV +
∫

V

δui,jσjidV =
∫

V

ρbiδuidV +δ

∫

S

tiδuidS. (31)

It is easy to see that in Eq. (31) both the mesh and material velocities are involved. In
a finite element implementation, the system of equations resulting of Eq. (31) can be
solved by means of two alternative strategies: (a) to define a system considering as
the degrees of freedom, those corresponding to the displacements of both the mesh
and the material; (b) to solve the problem in a staggered manner [7, 61]. The second
alternative considers two stages at each load increment. First, the Updated Lagrange
(UL) stage, with the mesh attached to the material, that ends after equilibrium is
obtained. Afterwards, in the Eulerian stage, the new mesh position is defined, trying
to reduce distortion, and the relevant information is transferred from the old to the
new mesh.

6 Numerical Examples

The numerical examples presented in this section were obtained employing two dif-
ferent finite element codes. The first one [69] is a well-known commercial software.
The second one, MetaFor, was developed at the University of Liège by Ponthot and
Hogge [61], to treat problems of metal forming, and was used under a courtesy
license. Both codes have an adequate treatment of geometrical non-linearity and
contact. The Gurson model using the ALE formulation and implicit time-integration
was implemented on MetaFor [12].

6.1 Indentation of a Block by a Sphere

This example analizes the punching of a block of square section by a sphere [12].
The height of the block is 100 mm and the transversal section is 140 × 140 mm. The
sphere has a radius of 50 mm, and travels 50 mm in the vertical downward direction.
Because of symmetry, a quarter of the problem is modeled. The contact between
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xy

z

Fig. 13 Last configuration achieved: a UL formulation and b ALE formulation

block and sphere is considered as sliding, with normal penalty factor of 618 N/m.
The material of the block has elastic modulus E = 206 GPa, Poisson’s ratio ν = 0.3,
density ρ = 7500 kg/m3. Linear hardening is considered with σy = σ 0

y + hεp being

σ 0
y = 346.4 MPa, h = 138 MPa. For the Gurson model α1 = 1.5, α2 = 1.0,

fN = 0.04, εN = 0.5, sN = 0.1, fC = 0.15 and Δε = 0.3. Results obtained
employing MetaFor [61] are presented in Fig. 13, considering both UL and ALE
formulations.

Figure 13a shows that in the case of the UL formulation the elements in the
contact zone are highly distorted. The nodes on the contact surface are distant one
from another and the contact surface gets far from the spherical surface and closer
to a polyhedron. The simulation came to a stop at 82 % of the proposed punch
displacement with a message of negative Jacobian. With the ALE formulation, the
total proposed punch displacement was attained with a good quality mesh. Figure
14 shows the final porosity distribution obtained with pressure independent void
nucleation model [13].

6.2 Analysis of Metallic Foams

Analysis of a single sphere: the finite element analysis in this section follows that
in [55]. The sphere is modeled as an axisymmetric body with 375 linear quadrilat-
eral elements. Because of symmetry considerations only one half of the sphere is
modeled. The platen of the test machine is modeled as a rigid plane with prescribed
displacements and the contact procedure is activated.

The sphere analyzed has an external radius of 1.0 mm and wall thickness of
0.1 mm. The material constants used are: elastic modulus E = 200 GPa, initial yield
stress 200 MPa and Poisson’s ratio ν = 0.3. In the cases without damage (von Mises
yield criterion), kinematic hardening is employed, with a hardened yield stress of
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Fig. 14 Final porosity (void volumetric fraction vvf ) distribution obtained with ALE formulation
and pressure independent void nucleation model

250 MPa to a unitary plastic strain. When Gurson model is employed, hardening is
considered as isotropic with the same magnitude.

Plots of macroscopic stress (defined as the ratio between the sum of the reactions in
the compression direction and the surface of the circle corresponding to the projection
of the undeformed sphere onto a plane) versus normalized displacement (defined as
the relation between the imposed displacement to the top plane and the original
radius) are given in Fig. 15.

The plot corresponding to elasto-plastic behavior coincides with Lim et al. [43]
results. Two other plots, obtained with the consideration of damage are shown in
Fig. 15. One simulation considers 5 % of initial porosity with no void nucleation
and the other considers only 5 % void nucleation without initial porosity. In both
alternatives damage accumulates in the same region of the sphere.

Figures 16 and 17 show the distribution of porosity at the end of the compression
process, corresponding to a normalized displacement of 0.9. The damage parameter
reaches 13.4 % when initial porosity is used (Fig. 16) and 9.8 % if only nucleation is
considered (Fig. 17). These are fairly high values, but as the damage region is local-
ized, only in small changes in the load-displacement relation (Fig. 15) are observed.

Analysis of a Representative Volume Element (RVE) representing a Metallic
Hollow Sphere Structure (MHSS): In this analysis [56] two geometries are studied.
The first one, in which the space among the spheres is fully occupied by resin is
called syntactic. The second one, in which the space between adjacent spheres is
only partially occupied by the resin is called partial. The models used in the analysis
are made to fit global densities for the set resin-metal of 1.2 g/cm3 (syntactic) and
0.6 g/cm3 (partial). The metal spheres have an external radius of 1.5 mm and the
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Fig. 15 Macroscopic stress versus normalized displacement with and without damage
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Fig. 16 Final distribution of porosity starting with an initial porosity of 5 %

resin thickness between spheres is 0.36 mm. The boundary conditions employed in
both RVEs are shown in Fig. 18.

Materials constants used are E = 110 GPa, ν = 0.30, virgin yield stress σ 0
y =

300 MPa and ρ = 6.95 g/cm3 for the metal of the sphere and E = 24.6 GPa, ν =
0.34, compression yield stress σ 0

y = 113 MPa, traction yield stress σ 0
y = 61.5 MPa

and ρ = 1.13 g/cm3 for the resin. Both metal sphere and matrix were modeled
as elasto-plastic. Damage is considered only for the metallic spheres. The meshes
presented in Fig. 19-left (partial) and in Fig. 19-right (syntactic) are employed.

Figure 20 shows macroscopic stresses versus normalized displacement obtained
simulating the partial geometry behavior. Experimental results [19] are also given.
The abrupt changes in stiffness (points 1, 2 and 3 of Fig. 20) observed in the numerical
results for a single sphere, free or confined, are due to the new contact zones that
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Fig. 17 Final distribution of porosity starting with nucleation
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Fig. 18 Boundary conditions adopted in partial and syntactic morphologies

Fig. 19 Meshes employed to analyze partial and syntactic morphologies

appear. This effect is not so apparent in the experimental results which correspond
to a conglomerate of spheres with random geometries and properties that smoothed
up such details.

Additional results may be found in [14, 54].
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