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Abstract In the case of several rigid plastic models, the equivalent strain rate
(quadratic invariant of the strain rate tensor) approaches infinity in the vicinity of
maximum friction surfaces. The strain rate intensity factor is the coefficient of the
leading singular term in a series expansion of the equivalent strain rate in the vicinity
of such surfaces. This coefficient controls the magnitude of the equivalent strain rate
in a narrow material layer near maximum friction surfaces. On the other hand, the
equivalent strain rate is involved in many conventional equations describing the evo-
lution of parameters characterizing material properties. Experimental data show that
a narrow layer in which material properties are quite different from those in the bulk
often appears in the vicinity of surfaces with high friction in metal forming processes.
This experimental fact is in qualitative agreement with the aforementioned evolution
equations involving the equivalent strain rate. However, when the maximum friction
law is adopted, direct use of such equations is impossible since the equivalent strain
rate in singular. A possible way to overcome this difficulty is to develop a new type
of evolution equations involving the strain rate intensity factor instead of the equiv-
alent strain rate. This approach is somewhat similar to the conventional approach
in the mechanics of cracks when fracture criteria from the strength of materials are
replaced with criteria based on the stress intensity factor in the vicinity of crack tips.
The development of the new approach requires a special experimental program to
establish relations between the magnitude of the strain rate intensity factor and the
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evolution of material properties in a narrow material layer near surfaces with high
friction as well as a theoretical method to deal with singular solutions for rigid plastic
solids. Since no numerical method has been yet developed to determine the strain
rate intensity factor, the present chapter focuses on analytical and semi-analytical
solutions from which the dependence of the strain rate intensity factor on process
and material parameters are found. In particular, the effect of pressure-dependency
of the yield criterion on the strain rate intensity factor is emphasized using the double
shearing model.

1 Introduction

In the case of rigid perfectly plastic solids, the maximum friction surfaces are defined
by the condition that the friction stress at sliding is equal to the shear yield stress of
the material [1]. In the case of planar flow, this definition is equivalent to the statement
that the maximum friction surface coincides with a characteristic or an envelope of
characteristics. The latter definition is naturally generalized on the double shearing
model [2]. A distinguished feature of maximum friction surfaces is that the second
invariant of the strain rate tensor (this quantity is also called the equivalent strain rate)
approaches infinity in the vicinity of such surfaces for several rigid plastic models
[1–5]. This theoretical feature of the solutions can be related to the formation of a
layer of intensive plastic deformation in the vicinity of frictional interfaces in real
metal forming processes [6–8], though no specific theory is available. Therefore,
it is of interest to understand the effect of material and process parameters on the
magnitude of the strain rate intensity factor. The traditional finite element method
cannot be used to find the strain rate intensity factor because it is the coefficient of
a singular term. The extended finite element method [9] is in general applicable in
this case but no specific code has been developed yet. Therefore, semi-analytical
solutions available in the literature are used in the present chapter to reveal the effect
of pressure-dependency of the yield criterion on the strain rate intensity factor. The
solutions for pressure-independent material are based on Tresca’s yield criterion and
its associated flow rule. The solutions for pressure-dependent material are based on
the double-shearing model [10].

2 Strain Rate Intensity Factor

The strain rate intensity factor has been previously introduced for several rigid plastic
models. Most of solutions in which the strain rate intensity factor appears are available
for the classical phenomenological theory of plasticity and the double shearing model.
The former is a model of pressure-independent plasticity. A great account on this
model is given in [11]. The double shearing model is a model of pressure-dependent
plasticity based on the Mohr-Coulomb yield criterion. This model is described in
detail in [10].
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The constitutive equations of the rigid perfectly plastic pressure-independent
model are a yield criterion and its associated flow rule. By assumption, the yield
criterion is independent of the first invariant of the stress tensor (or the hydrostatic
stress). Therefore, it can be represented by a locus in two-dimensional space, where
the second and third invariants of the stress tensor are taken as Cartesian coordi-
nates. The second invariant of the stress tensor is also called the equivalent stress,σeq .
A number of yield criteria independent of the hydrostatic stress (pressure-independent
yield criteria) have been proposed in the literature, though it is commonly accepted
that the criteria due to von Mises and Tresca are most representative of initial yielding
in isotropic, metallic materials [12]. The monograph [11] mainly deals with the von
Mises criterion. It is worthy of note that the formulation of plane strain problems
in dimensionless form is independent of the yield criterion chosen. In other words,
any plane strain solution for the von Mises criterion is the solution for any other
pressure-independent criterion. The model based on Tresca’s yield criterion under
conditions of axial symmetry is described in detail in [13, 14].

The constitutive equations of the double shearing model are the Mohr-Coulomb
yield criterion, the equation of incompressibility and the equation that connects
stresses and velocities. Extensions of this theory to include plastic volume change
are also available in the literature (see, for example, [15]) but they are not considered
in the present chapter. At a specific set of parameters, the double shearing model
reduces to the model of classical pressure-independent plasticity based on Tresca’s
yield criterion. Since the objective of the present chapter is to demonstrate the effect
of pressure-dependency of the yield criterion on the strain rate intensity factor, the
Tresca’s yield criterion will be used to determine the strain rate intensity factor in
axisymmetric problems for pressure-independent materials.

The strain rate intensity factor has been defined in [1] as the coefficient of the
leading singular term in a series expansion of the equivalent strain rate in the vicinity
of maximum friction surfaces. This work has been restricted to the classical pressure-
independent model. The term maximum friction surface is used to indicate that the
maximum friction law is adopted on that surface. The original formulation of the
maximum friction law for pressure-independent material is

τ f = τs (1)

at sliding. Here τ f is the friction stress and τs is the shear yield stress. It is worthy to
note that τs is constant for perfectly plastic materials. It is known from the general
theory (see, for example, [14]) that the equations of plane strain and axisymmetric
deformation are hyperbolic (in the latter case, Tresca’s yield criterion should be
adopted). Moreover, the characteristics for the stresses and the velocities coincide
and, therefore, there are only two distinct characteristic directions at a point. The
shear stress along the characteristic is equal to τs . Thus the boundary condition (1) is
equivalent to the statement that the friction surface coincides with a characteristic or
an envelope of characteristics. Let φ be the angle between the major principal stress
σ1 and the tangent to the friction surface, measured from the tangent anti-clockwise.
In the case of the model of pressure-independent plasticity the characteristics are
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(a) (b)

(c)

Fig. 1 Orientation of the characteristic directions relative to the tangent to friction surfaces.
a arbitrary friction surface. b maximum friction surface with φ > 0. c maximum friction surface
with φ < 0

inclined to the direction of σ1 at ±π/4. However, for later convenience it is assumed
here that this angle is ±γ. It is evident that the original case is obtained at γ = π/4.
The characteristic directions at a generic point, M , on an arbitrary friction surface
are illustrated in Fig. 1a. If the maximum friction law is valid on this surface then the
orientation of the characteristics becomes such as shown in Fig. 1b, c. It is evident
that φ = γ in Fig. 1b and φ = −γ in Fig. 1c. Therefore, since γ = π/4 in the case
under consideration, the boundary condition (1) is equivalent to

φ = ±π

4
(2)

at sliding.
The equations of the double sharing model are also hyperbolic [10]. Therefore,

the maximum friction law in the form of Eq. (2) can be extended to this model with no
difficulty. In particular, it has been shown in [10] that in the case of plane strain and
axisymmetric deformation γ = π/4 + ϕ/2 (Fig. 1). Here ϕ is the angle of internal
friction, a material constant. Eq. (2) transforms to

φ = ±
(π

4
+ ϕ

2

)
(3)

at sliding. The strain rate intensity factor for this model has been introduced in [2].
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When the maximum friction law is adopted, two qualitatively different options are
possible. A natural way to distinguish these options is to use the maximum friction
law in the form of Eqs. (2) and (3). Either of these equations is valid if the maximum
friction surface coincides with (i) a characteristic or (ii) an envelope of characteristics.
Option (i) imposes severe restrictions on the velocity field. In particular, the rate of
extension along the friction surface is zero in the case of plane strain deformation
of pressure-independent material. Therefore, in most cases Option (ii) occurs and it
will be assumed throughout this chapter.

In order to precisely define the strain rate intensity factor, it is necessary to intro-
duce the equivalent strain rate. The standard definition for this quantity involves the
equivalent stress and the rate of plastic work [11]. In this chapter, however, the equiv-
alent strain rate is understood as a pure kinematic quantity (the quadratic invariant
of the strain rate tensor) defined by

ξeq =
√

2

3
ξi jξi j , (4)

where ξi j are the components of the strain rate tensor. This definition coincides with
the standard definition for the von Mises yield criterion combined with its associated
flow rule. The equivalent strain rate approaches infinity in the vicinity of maximum
friction surfaces. In particular,

ξeq = D√
s

+ o

(
1√
s

)
as s → 0, (5)

where s is the normal distance to the friction surface and D is the strain rate inten-
sity factor. Under various assumptions concerning the pressure-independent yield
criterion and modes of deformation, this result has been obtained in [1, 16–20].
For materials obeying the double shearing model the asymptotic expansion (5) for
plane strain and axisymmetric flow has been found in [2, 21], respectively. Particular
solutions show that (5) is also satisfied for other rigid plastic models [3–5, 22–25].
Reviews of solutions for the strain rate intensity factor are given in [26, 27].

It is always possible to choose such a coordinate system that the normal strain
rates are bounded and one of the shear strain rates approaches infinity in the vicinity
of maximum friction surfaces. Denote this shear strain rate by ξτ . Then, it follows
from (4) and (5) that

|ξτ | =
√

3

2

D√
s

+ o

(
1√
s

)
as s → 0. (6)

In order to provide some insights into distinguished features of the maximum
friction law and material models leading to (5), this asymptotic expansion is below
derived for plane strain deformation of pressure-independent materials.

It is convenient to introduce a Cartesian coordinate system (x, y, z) whose z-axis
is orthogonal to planes of flow. Let σxx , σyy and σxy be the components of the stress
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tensor in this coordinate system. Then, any pressure-independent yield criterion can
be written in the form (

σxx − σyy
)2 + 4σ2

xy = 4τ2
s . (7)

The flow rule associated with this yield criterion is

ξxx = λ
(
σxx − σyy

)
, ξyy = λ

(
σyy − σxx

)
, ξxy = 2λσxy (8)

where ξxx , ξyy and ξxy are the components of the strain rate tensor in the Cartesian
coordinates and λ ≥ 0. Eliminating λ in (8) gives

ξxx + ξyy = 0,
ξxy

ξxx − ξyy
= σxy

σxx − σyy
. (9)

The first equation of this system is the equation of incompressibility. The strain rate
components are expressed through the velocity components, ux and uy , as

ξxx = ∂ux

∂x
, ξyy = ∂uy

∂y
, ξxy = 1

2

(
∂uy

∂x
+ ∂ux

∂y

)
. (10)

Substituting (10) into (9) yields

∂ux

∂x
+ ∂uy

∂y
= 0,

(
∂ux

∂y
+ ∂uy

∂x

) (
σxx − σyy

) = 2

(
∂ux

∂x
− ∂uy

∂y

)
σxy . (11)

The constitutive equations should be supplemented with the equilibrium equations

∂σxx

∂x
+ ∂σxy

∂y
= 0,

∂σxy

∂x
+ ∂σyy

∂y
= 0. (12)

The system of five Eqs. (7), (11) and (12) in the five unknowns σxx , σyy , σxy , ux , uy ,
is the basis for the calculation of the distribution of stress and velocity in the plastic
region. It is known that this system is hyperbolic [11]. The characteristic directions
make an angle of π/4 with the major principal stress direction. Let ψ be the angle
between the major principal stress σ1 and the x-axis, measured from the axis anti-
clockwise. Then, the orientation of the characteristic curves relative to the x-axis is
(Fig. 2)

φ1 = ψ − π

4
, φ2 = ψ + π

4
. (13)

Letω be a tool surface (curve in planes of flow) where the condition (2) is satisfied,
and consider Eqs. (7), (11) and (12) at an arbitrary point, M , on that surface. The
tool is regarded as fixed. The Cartesian coordinate system is taken to be situated
at M with the y-axis directed along the normal to ω, away from the rigid tool and
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Fig. 2 Orientation of the major principal stress and characteristic directions relative to the x-axis

towards the plastic material (Fig. 3). Since the condition (2) is equivalent to (1), in
this coordinate system

∣∣σxy
∣∣ = τs (14)

at M . Therefore, it follows from (7) that

σxx = σyy (15)

at M . Using (11)1 Eq. (11)2 can be rewritten as

(
∂ux

∂y
+ ∂uy

∂x

) (
σxx − σyy

) = 4
∂ux

∂x
σxy . (16)

Substituting (14) and (15) into (16) shows that it is necessary to examine the cases

∂ux

∂x
= 0 at y = 0 (17)

and ∣∣∣∣
∂ux

∂y
+ ∂uy

∂x

∣∣∣∣→ ∞ as y → 0. (18)

It follows from (17) and the orientation of the x-axis (Fig. 3) that the rate of exten-
sion along the friction surface is zero. Since M is an arbitrary point on the friction
surface, this means that a characteristic curve coincides with the friction surface.
Such solutions have been excluded from consideration. Therefore, it is necessary to
assume that Eq. (18) is valid. In order to determine the asymptotic behaviour of the
velocity field in the vicinity of the friction surface, some additional assumptions are
necessary. In particular,
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Fig. 3 Orientation of the local
coordinate system at M

(i) Velocity components are bounded at M ,
(ii) In-surface derivatives of the velocity components are bounded at M ,

(iii) Solution can be represented by a power series in the vicinity of M .

With no loss of generality, it is possible to choose the direction of the x-axis such
that ξxy > 0 at M . In particular, its direction should coincide with the direction of
the velocity vector, u, of a material particle located at M at a given instant (Fig. 3).
In Fig. 3, n is the outer normal to the plastic material and τ f is the friction stress
applied to this material. Then, using assumptions (ii) and (iii) Eq. (18) transforms to

∂ux

∂y
= u1 y−α + o

(
y−α) as y → 0, (19)

where u1 may depend on x and u1 > 0. Integrating (19) yields

ux = u0 + u1

(1 − α)
y1−α + o

(
y1−α) as y → 0, (20)

where u0 may depend on x and u0 > 0. It follows from assumption (i) and (20) that

α < 1. (21)

On the other hand, (18) is satisfied if and only if α > 0 in (19). Combining this
inequality and (21) leads to

0 < α < 1. (22)

Using (20) Eq. (11)1 can be transformed to

du0

dx
+ y1−α

(1 − α)

du1

dx
+ ∂uy

∂y
+ o

(
y1−α) = 0 as y → 0. (23)

Integrating with the boundary condition uy = 0 for y = 0 (at point M) and taking
into account (22) gives

uy = −du0

dx
y + o (y) as y → 0. (24)
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Using (10), (20) and (24) the non-zero strain rate components can be represented as

ξxx = −ξyy = du0

dx
+ o (1) , ξxy = u1

2
y−α + o

(
y−α) as y → 0. (25)

It is worthy to note here that, by assumption, ξxx �= 0 (or du0
/

dx �= 0) and u1 �= 0
at M . Since ξxy > 0 by the choice of the coordinate system, it follows from (8)3 that
σxy > 0 as well. Therefore, using assumption (iii) the distribution of stresses in the
vicinity of the friction surface can be represented as

σxx = σ(0)
xx + σ(1)

xx yγ11 + o
(
yγ11
)
,

σyy = σ(0)
yy + σ(1)

yy yγ22 + o
(
yγ22
)
, (26)

σxy = σ(0)
xy + σ(1)

xy yγ12 + o
(
yγ12
)

as y → 0. Here σ(0)
xx , σ(1)

xx , σ(0)
yy , σ(1)

yy , σ(0)
xy , and σ(1)

xy can depend on x . Equations (14)
and (15) demand

σ(0)
xx = σ(0)

yy and σ(0)
xy = τs (27)

at x = 0 (at point M). Substituting (19), (24) and (26) into (16) and using (27) yields

u1 y−α (σ(1)
xx yγ11 − σ(1)

yy yγ22
)

= 4
du0

dx
τs (28)

to leading order. Since the right hand side of this equation is O (1) as y → 0, it is
necessary to examine the cases

γ11 − α = 0 (29)

and
γ22 − α = 0. (30)

Substituting (26) into (12) gives

dσ(0)
xx

dx
+ dσ(1)

xx

dx
yγ11 + σ(1)

xy γ12 yγ12−1 = 0, (31)

dσ(0)
xy

dx
+ dσ(1)

xy

dx
yγ12 + σ(1)

yy γ22 yγ22−1 = 0

to leading order. Combining (30) and (31)2 yields α = 1 or γ12 = α−1. The former
contradicts (22). The latter combined with (22) leads to γ12 < 0. According to (26)
this inequality results in

∣∣σxy
∣∣→ ∞ as y → 0. Therefore, it is necessary to assume

that (29) is valid. Then, substituting (26) into (7) and using (27) yields

y2α
[
σ(1)

xx − σ(1)
yy y(γ22−1)

]2 + 4
[
τs + σ(1)

xy yγ12
]2 = 4τ2

s (32)
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as y → 0. Using straight multiplication, Eq. (32) is simplified to

y2α
[
σ(1)

xx

]2 + 8τsσ
(1)
xy yγ12 = 0 as y → 0. (33)

It follows from this equation that

2α = γ12. (34)

Substituting (29) and (34) into (31)1 shows that 2α − 1 = α or 2α − 1 = 0. The
former gives α = 1 and therefore contradicts (22). The latter results in

α = 1

2
. (35)

The asymptotic expansion (5) immediately follows from (4), (25) and (35).

3 Plane Strain Solutions for Pressure-Independent Material

3.1 Basic Equations

Section 3 is concerned with plane strain solutions for pressure-independent materials.
In this section, two coordinate systems will be used, namely a Cartesian coordinate
system (x, y, z) and a cylindrical coordinate system (r, θ, z). All the solutions
considered are independent of z. The constitutive equations in the Cartesian coor-
dinate system are (7) and (9). The orientation of the characteristic curves relative
to the x-axis is given by (13). The strain rate components ξzz , ξxz and ξyz as well
as the stress components σxz and σyz vanish. The non-zero strain rate components
are expressed through the velocity components according to (10). The equilibrium
equations are given by (12). The transformation equations for stress components in
xy-planes are (Fig. 2)

σxx = σ1 + σ2

2
+ τs cos 2ψ, σyy = σ1 + σ2

2
− τs cos 2ψ, σxy = τs sin 2ψ. (36)

It has been taken into account here that Eq. (7) in terms of the principal stresses σ1
and σ2 becomes

σ1 − σ2 = 2τs . (37)

Let σrr , σθθ, σzz , σr z , σzθ and σrθ be the components of the stress tensor in
the cylindrical coordinate system. The components σr z and σzθ vanish. The yield
criterion (7) transforms to
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(σrr − σθθ)
2 + 4σ2

rθ = 4τ2
s . (38)

Let ξrr , ξθθ, ξzz , ξr z , ξzθ and ξrθ be the components of the strain rate tensor in the
cylindrical coordinate system. The components ξzz , ξr z and ξzθ vanish. Equation (9)
become

ξrr + ξθθ = 0,
ξrθ

ξrr − ξθθ
= σrθ

σrr − σθθ
. (39)

Equation (13) is valid but ψ is to be understood as the angle between the major
principal stress σ1 and the r-axis, measured from the axis anti-clockwise (Fig. 4).
Thus the orientation of the characteristic directions relative to the r-axis is

φ1 = ψ − π

4
, φ2 = ψ + π

4
. (40)

The non-zero components of the strain rate tensor are

ξrr = ∂ur

∂r
, ξθθ = 1

r

(
∂uθ
∂θ

+ ur

)
, ξrθ = 1

2

(
∂uθ
∂r

− uθ
r

+ 1

r

∂ur

∂θ

)
, (41)

where ur and uθ are the radial and circumferential velocities, respectively. The equi-
librium equations are

∂σrr

∂r
+ 1

r

∂σrθ

∂r
+ σrr − σθθ

r
= 0,

∂σrθ

∂r
+ 1

r

∂σθθ

∂θ
+ 2σrθ

r
= 0. (42)

The transformation equations for stress components in rθ-planes are (Fig. 4)

σrr = σ1 + σ2

2
+ τs cos 2ψ, σθθ = σ1 + σ2

2
− τs cos 2ψ, σrθ = τs sin 2ψ. (43)

Here Eq. (37) has been taken into account.

Fig. 4 Orientation of the
major principal stress and
characteristic directions
relative to the r -axis

x

y

0

1

characteristic
direction

characteristic
direction

- 1

2

r
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3.2 Compression of a Plastic Layer Between Parallel Plates

Consider compression of a wide plastic layer between two parallel plates. An approx-
imate solution of this problem, known as Prandtl’s problem, can be found in any
monograph on plasticity theory (see, for example, [11]). The thickness of the layer
is 2H and its width is 2L . By assumption, H/L � 1. It is possible to choose the
Cartesian coordinate system such that its axes x and y coincide with the axes of
symmetry of the layer (Fig. 5). Therefore, it is sufficient to find the solution in the
domain 0 ≤ x ≤ L and 0 ≤ y ≤ H . The maximum friction law is valid at y = H .
The velocity boundary conditions are

uy = 0 (44)

at y = 0,
uy = −V (45)

at y = H and
ux = 0 (46)

at x = 0. Here V is the speed of the plate. The stress boundary conditions, in addition
to the friction law, are

σxy = 0 (47)

at y = 0, x = 0 and x = L and
σxx = 0 (48)

at x = L . The solution given in [11] ignores the boundary condition (47) at x = 0
and x = L . The boundary conditions (46) and (48) are replaced with the following
integral conditions

H∫

0

ux |x=0dy = 0 (49)

Fig. 5 Illustration of the
boundary value problem
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and
H∫

0

σxx |x=Ldy = 0, (50)

respectively. Under the assumptions formulated, the velocity field satisfying Eq. (9)
as well as the boundary conditions (44) and (45) is given by [11]

ux = V
x

H
+ 2V

[
1 −

( y

H

)2
]1/2

+ U, uy = −V
y

H
, (51)

where U is a constant of integration. Its value can be determined from the boundary
condition (49). However, it has no effect on the strain rate intensity factor and,
therefore, is not found here. It has been shown in [11] that the stress field used to
determine the value of the right hand side of (9)2 satisfies Eqs. (7) and (12) as well
as the boundary conditions (1) at y = H , (47) at y = 0 and (50). Using (10) the
components of the strain rate tensor are determined from (51). Then, the equivalent
strain rate is found from (4) as

ξeq = 2√
3

V√
H2 − y2

. (52)

In the case under consideration s = H − y. Therefore, Eq. (52) can be represented
in the form

ξeq =
√

2

3

V√
s
√

H
+ o

(
1√
s

)
as s → 0. (53)

Comparing (5) and (53) gives

D =
√

2

3

V√
H

. (54)

3.3 Flow of Plastic Material Through an Infinite Wedge-Shaped
Channel

This is also one of the classical problems of plasticity. Its solution used in this section
has been given in [11]. The process is illustrated in Fig. 6. Material flows to the line
of intersection of two plates. The plates are inclined to each other at an angle 2α. The
axis θ = 0 of the cylindrical coordinate system coincides with the axis of symmetry
of the flow. Therefore, it is sufficient to find the solution in the domain 0 ≤ θ ≤ α.
The maximum friction law is supposed at θ = α. The velocity boundary conditions
are
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Fig. 6 Illustration of the boundary value problem

uθ = 0 (55)

at θ = 0 and θ = α. The stress boundary condition, in addition to the friction law, is

σrθ = 0 (56)

at θ = 0. The velocity field satisfying Eq. (39) as well as the boundary conditions
(55) are

ur = − B

r (c − 2 cos 2ψ)
, uθ = 0, (57)

where B is proportional to the material flux, c can be determined numerically using
the maximum friction law and the boundary condition (56), and ψ is related to θ by
the following equation

cos 2ψ

(
dψ

dθ
+ 1

)
= c

2
(58)

whose solution is

θ = −ψ + c arctan

[(
c + 2

c − 2

)1/2

tanψ

](
c2 − 4

)−1/2
. (59)

It has been shown in [11] that the stress field used to determine the value of the
right hand side of (39)2 satisfies Eqs. (38) and (42).
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The maximum friction surface is determined by the equation θ = α. Therefore,
φ1 = 0 or φ2 = 0 in (40). In order to choose between these two options, it is
necessary to take into account that σrθ > 0 at θ = α (Fig. 6). Then, it is evident from
(43) that 0 < ψ < π/2 at θ = α. The equation φ2 = 0 contradicts this inequality.
Therefore, φ1 = 0 and ψ = π/4 at θ = α. The equation for c is obtained from (59)
at θ = α and ψ = π/4. The resulting equation has been solved numerically and its
solution is illustrated in Fig. 7. Using (41) the components of the strain rate tensor
are determined from (57). Then, the equivalent strain rate is found from (4) as

ξeq = 2√
3

B

r2 (c − 2 cos 2ψ) cos 2ψ
. (60)

Expanding the right hand side of this expression in a series near ψ = π/4 and
using (59) give

ξeq =
√

2B√
3r2c

√
c (α− θ)1/2

+ o
[
(α− θ)−1/2

]
as θ → α. (61)

Comparing (5) and (61) it is possible to conclude that the strain rate intensity
factor is

D =
√

2

3

B

(rc)3/2 . (62)

Let Q be the material flux per unit length. Then,

Q = −2

α∫

0

urrdθ. (63)

Substituting (57) into (63) and replacing integration with respect to θwith integration
with respect to ψ by means of (58) result in

Fig. 7 Variation of c with α



268 S. Alexandrov et al.

Fig. 8 Variation of the
dimensionless strain rate
intensity factor with α

B = Q

4

⎡
⎣
π/4∫

0

cos 2ψ

(c − 2 cos 2ψ)2 dψ

⎤
⎦

−1

. (64)

Eliminating B in (62) by means of (64) shows that the strain rate intensity factor is
a linear function of Q. In order to reveal the effect of α on the strain rate intensity
factor, it is convenient to introduce its dimensionless representation by

d = Dr3/2

Q
. (65)

It follows from (62), (64) and (65) that

d = 1

2
√

6c3/2

⎡
⎣
π/4∫

0

cos 2ψ

(c − 2 cos 2ψ)2 dψ

⎤
⎦

−1

. (66)

Since the dependence of c on α has been found (Fig. 7), the variation of d with α is
immediately determined from (66). This dependence is illustrated in Fig. 8.

3.4 Compression of a Plastic Layer Between Cylindrical Surfaces

The boundary value problem is illustrated in Fig. 9. Its solution has been given in [28].
The outer surface of radius R2 is rigid and motionless whereas the inner surface of
current radius R1 expands. The rate of this expansion is Ṙ1. The solution is restricted
to instantaneous flow. It is natural to use the cylindrical coordinate system shown in
Fig. 9. The flow is symmetric with respect to the axis θ = 0. It is therefore sufficient
to obtain the solution in the region 0 ≤ θ ≤ θ0 where θ0 is the orientation of the
edge of the layer. The velocity boundary conditions are
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Fig. 9 Illustration of the
boundary value problem

ur = 0 at r = R2, (67)

ur = Ṙ1 at r = R1 (68)

and
uθ = 0 at θ = 0. (69)

The stress boundary conditions, in addition to the maximum friction law, are

σrθ = 0 at θ = 0 and θ = θ0, (70)

and
σθθ = 0 at θ = θ0. (71)

It is evident that the problem under consideration can be viewed as a generalization
of the Prandtl’s problem (Sect. 3.2). Therefore, the same assumptions are made. In
particular, end effects are neglected such that the solution is not valid in the vicinity
of θ = 0 and θ = θ0. Accordingly, the boundary conditions (70) are ignored, and
the boundary conditions (69) and (71) should be replaced with integral conditions.
On the other hand, the boundary conditions at r = R1 and r = R2 are exactly
satisfied. These boundary conditions include (67), (68) and the maximum friction
law at r = R1 and r = R2. Since the maximum friction law acts on both contact
surfaces, two strain rate intensity factors are obtained. The velocity field satisfying
Eqs. (39) as well as the boundary conditions (67) and (68) are [28]

ur

Ṙ1
= Ur (r) ,

uθ
Ṙ1

= −
(

r
dUr

dr
+ Ur

)
θ + Uθ (r) , (72)

where Ur (r) and Uθ (r) are functions of r given by



270 S. Alexandrov et al.

Ur = R1
(
r2 − R2

2

)

r
(
R2

1 − R2
2

) ,

Uθ =
√

2R2[
R2

2 + R2
1 + (R2

2 − R2
1

)
sin 2ψ

]1/2 ×

×

⎧⎪⎨
⎪⎩

u0 +
ψ∫

π/4

[
R2

2 + 3R2
1 + (R2

2 − R2
1

)
sin 2γ

]
sin 2γ[

R2
2 + R2

1 + (R2
2 − R2

1

)
sin 2γ

] dγ

⎫⎪⎬
⎪⎭

,

where γ is a dummy variable of integration and ψ is related to r by the following
equation

sin 2ψ = 2R2
1 R2

2(
R2

2 − R2
1

)
r2

−
(
R2

2 + R2
1

)
(
R2

2 − R2
1

) . (73)

It has been shown in [28] that the stress field used to determine the value of the right
hand side of (39)2 satisfies Eqs. (38) and (42) as well as the boundary condition
(1) at r = R1 and r = R2. Using (41) the components of the strain rate tensor are
determined from (72) and (73) as

ξrr = −ξθθ = Ṙ1 R1
(
r2 + R2

2

)
(
R2

1 − R2
2

)
r2

, ξrθ = Ṙ1 R1
(
R2

2 + r2
)

(
R2

1 − R2
2

)
r2

tan2ψ.

Then, the equivalent strain rate is found from (4) as

ξeq = 2Ṙ1 R1
(
R2

2 + r2
)

√
3
(
R2

2 − R2
1

)
r2 cos 2ψ

. (74)

It has been assumed here that −π/4 ≤ ψ ≤ π/4. It follows from (73) that ψ = π/4
at r = R1 and ψ = −π/4 at r = R2. Eliminating in (74) the value of r by means of
(73) and expanding the right hand side of (74) in a series in the vicinity of ψ = π/4
(or r = R1) and ψ = −π/4 (or r = R2) gives

ξeq = Ṙ1
(
R2

2 + R2
1

)
√

3R1
(
R2

2 − R2
1

)
(π/4 − ψ)

+ o

[(π
4

− ψ
)−1
]

as ψ → π

4

ξeq = 2Ṙ1 R1√
3
(
R2

2 − R2
1

)
(ψ + π/4)

+ o

[(
ψ + π

4

)−1
]

as ψ → −π

4
.

(75)

On the other hand, Eq. (73) in the vicinity of the maximum friction surfaces is rep-
resented in the form
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π
4 − ψ =

√
2R2

√
r − R1√

R1
(
R2

2 − R2
1

) + o
(√

r − R1

)
as r → R1,

π
4 + ψ =

√
2R1

√
R2 − r√

R2
(
R2

2 − R2
1

) + o
(√

R2 − r
)

as r → R2.

(76)

Substituting (76) into (75) leads to

ξeq = Ṙ1
(
R2

2 + R2
1

)
√

6R2

√
R1
(
R2

2 − R2
1

)√
r − R1

+ o

(
1√

r − R1

)
, as r → R1

ξeq =
√

2

3

Ṙ1
√

R2√
R2

2 − R2
1

√
R2 − r

+ o

[
1√

R2 − r

]
as r → R2.

(77)

Comparing (5) and (77) it is possible to find that the strain rate intensity factors are

D1 = Ṙ1
(
1 + R2

1/R2
2

)
√

6
√

R1

√
1 − R2

1/R2
2

, D2 = 2Ṙ1√
6
√

R2

√
1 − R2

1

/
R2

2

. (78)

Here D1 corresponds to the maximum friction surface r = R1 and D2 to the maxi-
mum friction surface r = R2. It is convenient to represent the final result in the form
of the ratio D1/D2 because it is non-dimensional. It follows from (78) that

Δ = D1

D2
= 1 + R2

1/R2
2

2 (R1/R2)
1/2 .

The variation of Δ with R1/R2 is depicted in Fig. 10. It is seen from this figure
that Δ > 1 in the region R1/R2 < rcr and Δ < 1 in the region R1/R2 > rcr
where rcr ≈ 0.3. Using the hypothesis that the strain rate intensity factor controls
the formation of the layer of intensive plastic deformation in the vicinity of friction

Fig. 10 Variation of Δ with
the ratio of the radii
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surfaces [8], it is possible to conclude from these inequalities that the thickness of
this layer is larger near the friction surface r = R1 if R1/R2 < rcr, and it is larger
near the friction surface r = R2 if R1/R2 > rcr.

3.5 Compression of a Plastic Layer Between Rotating Plates I

The boundary value problem is illustrated in Fig. 11. Two semi-infinite rough plates
hinged together at their ends and inclined to each other at an angle 2α rotate towards
each other with angular velocity of magnitude ω about an axis O through the hinge.
The cylindrical coordinate system is taken with θ = 0 taken as the perpendicular
bisector of the angle 2α. Since θ = 0 is an axis of symmetry for the flow, it is
sufficient to find the solution in the region θ ≥ 0. By definition, ω is taken to be
positive for the clockwise rotation of the upper plate. The maximum friction law is
assumed at θ = α. The solution of this problem has been proposed in [29]. In fact, that
solution was given for tension of the layer and, moreover, a velocity discontinuity
surface appeared instead of the maximum friction surface in the problem under
consideration. However, since the model is pressure-independent, these distinctions
have no effect on the velocity field other than the sense of the velocity components.
Qualitative behavior of the solution depends on the value of α. In particular, the
solution exhibits sticking at the plates together with a rigid zone in the region adjacent
to the plates for α > π/4. In this case the velocity field is not singular and, therefore,
the solution is not of interest for the purpose of the present chapter. The sliding
regime of friction accompanied by a singular velocity field occurs for α < π/4. The
special case α = π/4 will be treated separately.

The velocity boundary conditions are

uθ = 0 at θ = 0 (79)

and

Fig. 11 Illustration of the
boundary value problem
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uθ = −ωr at θ = α. (80)

It is also assumed that there is no material flux through O . The stress boundary
condition, in addition to the maximum friction law, is

σrθ = 0 at θ = 0. (81)

The velocity field found in [29] is

ur = −ωr

2
(c − 2 cos 2ψ) , uθ = ωr sin 2ψ, (82)

where c is constant and ψ is related to θ by the following equation

dψ

dθ
= (c − 2 cos 2ψ)

2 cos 2ψ
. (83)

The constraints imposed on the flow demand ur > 0 and σrr ≥ σθθ. A consequence
of the former inequality is σrθ < 0 at θ = α. It follows from this inequality, the
inequality σrr ≥ σθθ and Eq. (43) that

− π

4
≤ ψ ≤ 0. (84)

Since the friction surface is determined by the equation θ = α, the maximum friction
law demands φ1 = 0 or φ2 = 0 in (40). Using (84) it is possible to conclude that
φ2 = 0 and, therefore, ψ = −π/4 for θ = α. The solution of Eq. (83) satisfying this
condition is

θ = α+ 2

ψ∫

−π/4

cos 2γdγ

(c − 2 cos 2γ)
, (85)

where γ is a dummy variable of integration. Substituting the condition ψ = −π/4
at θ = α into (82) also shows that the boundary condition (80) is satisfied. It follows
from (43), (81) and (84) thatψ = 0 at θ = 0. Therefore, the equation for c is obtained
from (85) in the form

α = −2

0∫

−π/4

cos 2γdγ

(c − 2 cos 2γ)
. (86)

Substituting the condition ψ = 0 at θ = 0 into (82) also shows that the boundary
condition (79) is satisfied. The variation of c with α found from (86) is depicted in
Fig. 12. Expanding the right hand site of (83) in a series in the vicinity of ψ = −π/4
gives
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Fig. 12 Variation of c with α

[
4

c

(
ψ + π

4

)
+ o

(
ψ + π

4

)]
dψ = dθ as ψ → −π

4
.

Integrating with the use of the boundary condition ψ = −π/4 for θ = α results in

ψ + π

4
=

√−c (α− θ)√
2

+ o
(√

α− θ
)

as θ → α. (87)

It is worthy to note here that c ≤ 0 (Fig. 12). The strain rate components are found
from (41), (82) and (83) as

ξrr = −ξθθ = −ω

2
(c − 2 cos 2ψ) , ξrθ = ω

2
tan 2ψ (c − 2 cos 2ψ) .

Then, it follows from (4) that

ξeq = ω√
3

(2 cos 2ψ − c)

cos 2ψ
. (88)

It has been taken into account there that c ≤ 0 (Fig. 12) and cos 2ψ ≥ 0 accord-
ing to (84). Using (87), Eq. (88) in the vicinity of the maximum friction surface is
represented as

ξeq = ω
√−c√

6
√
α− θ

+ o

[
1√
α− θ

]
as θ → α. (89)

Comparing (5) and (89) leads to the strain rate intensity factor in the form

D = ω

√−cr

6
. (90)

It follows from the solution that c vanishes at α = π/4. Then, it is evident from
(90) that the strain rate intensity factor vanishes at α = π/4. Therefore, the solution
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Fig. 13 Variation of the
dimensionless strain rate
intensity factor with α

is singular for 0 < α < π/4 and is not singular at α = π/4. The variation of
the dimensionless strain rate intensity factor defined by d = D/

(
ω
√

r
)

with α is
illustrated in Fig. 13.

3.6 Compression of a Plastic Layer Between Rotating Plates II

The statement of the boundary value problem solved in the previous section is now
slightly modified assuming that ur < 0. This change in the direction of the radial
velocity leads to the corresponding change in the direction of the friction stress
(Fig. 14). The boundary conditions (79), (80) and (81) are valid. The maximum
friction law is supposed at θ = α. As before, it is sufficient to find the solution in the
region θ ≥ 0. The stress boundary conditions coincide with those in Sect. 3.3. Since
ψ is solely determined from the stress equations, Eq. (58) is valid in the case under
consideration. The velocity field is sought in the form

Fig. 14 Illustration of the
boundary value problem
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ur = ωr

2

dg (ψ)

dθ
+ ω

G (ψ)

r
, uθ = −ωrg (ψ) , (91)

where g (ψ) and G (ψ) are arbitrary functions of ψ. It is possible to verify by inspec-
tion that the velocity field (91) automatically satisfies the incompressibility Eq. (39)1.
The inequality ur < 0 demands σrθ > 0 at θ = α. Therefore, it follows from
(43) that π/2 ≥ ψ ≥ 0. The constraints imposed on the flow demand σrr > σθθ.
A consequence of this inequality and (43) is π/4 ≥ ψ ≥ −π/4. Finally,

π

4
≥ ψ ≥ 0. (92)

Since the friction surface is determined by the equation θ = α, the maximum friction
law demands φ1 = 0 or φ2 = 0 in (40). Using (92) it is possible to conclude that
φ1 = 0 and, therefore, ψ = π/4 for θ = α. The same boundary condition was
used in Sect. 3.3. Therefore, the solution (59) of Eq. (58) is valid in the case under
consideration. The variation of c with α is depicted in Fig. 7.

Substituting (91) into (41) yields

ξrr = −ξθθ = ω

2

dg

dψ

dψ

dθ
− ωG

r2 ,

ξrθ = ω

4

d2g

dθ2 + ω

2r2

dG

dψ

dψ

dθ
= ω

4

[
d2g

dψ2

(
dψ

dθ

)2

+ dg

dψ

d2ψ

dθ2

]
+ ω

2r2

dG

dψ

dψ

dθ
.

Eliminating here dψ/dθ and d2ψ/dθ
2

by means of (58) gives

ξrr = − ξθθ = ω

4

(c − 2 cos 2ψ)

cos 2ψ

dg

dψ
− ωG

r2 ,

ξrθ = ω (c − 2 cos 2ψ)

16 cos2 2ψ

[
(c − 2 cos 2ψ)

d2g

dψ2 + 2c tan 2ψ
dg

dψ

]

+ ω

4r2

(c − 2 cos 2ψ)

cos 2ψ

dG

dψ
. (93)

Substituting (93) into (39)2 and eliminating stress components by means of (43)
result in

(c − 2 cos 2ψ)2

16 cos2 2ψ

(
d2g

dψ2 + 2 tan 2ψ
dg

dψ

)
+
[

(c − 2 cos 2ψ)

4 cos 2ψ

dG

dψ
+ G tan 2ψ

]
1

r2 = 0.

This equation may have a solution if and only if

cos 2ψ
d2g

dψ2 + 2 sin 2ψ
dg

dψ
= 0, (c − 2 cos 2ψ)

dG

dψ
+ 4G sin 2ψ = 0. (94)
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Using (91) and taking into account that ψ = 0 at θ = 0 and ψ = π/4 at θ = α the
boundary conditions (79) and (80) are transformed to

g = 0 (95)

at ψ = 0 and
g = 1 (96)

at ψ = π/4, respectively. The solution to (94)1 satisfying these boundary conditions
is

g = sin 2ψ. (97)

The general solution to (94)2 is

G = G0

c − 2 cos 2ψ
, (98)

where G0 is a constant of integration. In order to find its value, a boundary condition
in integral form similar to (49) should be prescribed. For example,

α∫

0

ur |r=R dθ = 0, (99)

where the value of R should be prescribed. Using (91) and taking into account (95)
and (96) the condition (99) is written in the form

1 + 2

R2

α∫

0

Gdθ = 0.

Replacing here integration with respect to θ with integration with respect to ψ by
means of (58) and using (98) yields

G0 = − R2

4

⎡
⎣
π/4∫

0

cos 2ψ

(c − 2 cos 2ψ)2 dψ

⎤
⎦

−1

. (100)

It follows from (93), (97) and (98) that

ξrr = −ξθθ = ω

2
(c − 2 cos 2ψ) − ωG0

r2 (c − 2 cos 2ψ)
,

ξrθ = ω

2 cos 2ψ

[
(c − 2 cos 2ψ) sin 2ψ − 2G0

r2

sin 2ψ

(c − 2 cos 2ψ)

]
.

(101)
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It is evident that the normal strain rates are bounded and |ξrθ| → ∞ as ψ → π/4.
Therefore, Eq. (6) in which ξτ is replaced with ξrθ is valid. Using (101) the shear
strain rate in the vicinity of the friction surface is represented as

ξrθ = ωc

4 (π/4 − ψ)

[
1 − 2G0

r2c2

]
+ o

(
1

π/4 − ψ

)
as ψ → π

4
. (102)

Equation (58) transforms to

dθ

dψ
= 4

c

(π
4

− ψ
)

+ o
(π

4
− ψ

)
as ψ → π

4
.

Integrating with the boundary condition θ = α at ψ = π/4 gives

α− θ = 2

c

(π
4

− ψ
)2 + o

[(π
4

− ψ
)2
]

as ψ → π

4
. (103)

Replacing π/4 − ψ in (102) with α− θ by means of (103) results in

ξrθ = ω
√

2c

4
√
α− θ

(
1 − 2G0

r2c2

)
+ o

(
1√
α− θ

)
as θ → α. (104)

It is seen from Fig. 7 that c > 2 and from Eq. (100) that G0 < 0. Therefore, ξrθ > 0.
Then, combining (6) and (104) gives

D = ω
√

c
√

r√
6

(
1 − 2G0

r2c2

)
. (105)

Since the dependence of c on α is known (Fig. 7), it follows from (100) that the
dimensionless strain rate intensity factor defined by d = D/

(
ω
√

r
)

depends on α
and the ratio r/R. Its variation with r/R at several values of α is depicted in Fig. 15
(curve 1 corresponds to α = π/36, curve 2 to α = π/18, curve 3 to α = π/12, curve
4 to α = π/9, and curve 5 to α = π/6). In the solution for compression of a plastic
layer between parallel plates (see Sect. 3.2) a rigid zone appears at the center of the
layer [11]. The length of this zone at the friction surface is of order of the thickness
of the layer. By analogy to this solution it is reasonable to assume that there is a rigid
zone near the cross-section r = R and that its length at the friction surface is equal
to Rα. The solution found is not valid in the rigid zone. Therefore, the right ends of
the curves in Fig. 15 are determined by the equation r/R = 1 − α. The dependence
of d on α at several values of r/R is illustrated in Fig. 16 (curve 1 corresponds to
r/R = 0.4, curve 2 to r/R = 0.3, curve 3 to r/R = 0.25, and curve 4 to r/R = 0.2).
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Fig. 15 Variation of the dimensionless strain rate intensity factor with r/R at several α- values

Fig. 16 Variation of the dimensionless strain rate intensity factor with α at several r/R- values

3.7 Simultaneous Shearing and Expansion of a Hollow Cylinder

The boundary value problem considered in this section consists of a planar defor-
mation comprising the simultaneous shearing and expansion of a hollow cylinder
(Fig. 17). The internal and external radii of the cylinder are denoted by a and b,
respectively. It is convenient to use the cylindrical coordinates whose z-axis coin-
cides the axis of the cylinder. In this coordinate system, the internal surface of the
cylinder is determined by the equation r = a and the external surface by the equation
r = b. The deformation of the cylinder is caused by an expanding and rotating rod
inserted into its hole. The radius of the rod is a and the rate of its expansion is ȧ. The
angular velocity of the rod is ω and its direction is shown in Fig. 17. The external
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Fig. 17 Illustration of the
boundary value problem

radius of the cylinder is fixed against rotation. Therefore, the velocity boundary
conditions are

ur = ȧ (106)

for r = a and
uθ = 0 (107)

for r = b. One of the stress boundary conditions is σrr = −pa < 0 for r = a. pa is
given, but its value has no effect of the strain rate intensity factor. The final boundary
condition is the maximum friction law at r = a. In general, two different regimes
may be identified at this boundary, sticking and sliding. However, the velocity field is
singular if and only if the regime of sliding occurs. Therefore, the solution considered
in this section is restricted to this regime. The general solution is provided in [30].
The direction of ω requires σrθ > 0. On the other hand, it is evident that σrr < σθθ.
Therefore, it follows from (43) that

π

4
≤ ψ <

π

2
. (108)

The maximum friction surface is orthogonal to the r-axis. Therefore, the maximum
friction law demands φ1 = π/2 or φ2 = π/2 at r = a. Comparing (40) and (108)
gives

ψ = π

4
(109)

for r = a.
The solution satisfying Eqs. (38), (39) and (42) as well as the boundary conditions

formulated has been given in [30]. The regime of sliding when (109) is valid requires

ωa > ȧ

√
1 − a4

b4 .
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The velocity field in the case of sliding is

ur = ȧa

r
, uθ = − ȧr

a

⎛
⎝
√

1 − a4

b4 −
√

1 − a4

r4

⎞
⎠ . (110)

Substituting (110) into (41) leads to

ξrr = −ξθθ = − ȧa

r2 , ξrθ = ȧa3

r4

(
1 − a4

r4

)−1/2

.

Then, the equivalent strain rate follows from (4) as

ξeq = 2√
3

ȧa√
r4 − a4

.

Expanding the right hand side of this equation is a series in the vicinity of the surface
r = a gives

ξeq = ȧ√
3
√

a
√

r − a
+ o

(
1√

r − a

)
as r → a. (111)

It follows from (5) and (111) that the strain rate intensity factor is

D = ȧ√
3
√

a
. (112)

4 Axisymmetric Solutions for Pressure-Independent Material

4.1 Basic Equations

Section 4 is concerned with axisymmetric solutions for pressure-independent mater-
ial. In this section, two coordinate systems will be used, namely a cylindrical coordi-
nate system (r, θ, z) and a spherical coordinate system (r, θ, ϑ). The solutions in the
cylindrical coordinate system are independent of θ and the solutions in the spherical
coordinate system are independent of ϑ. Let σ1, σ2 and σ3 be the principal stresses.
Then, Tresca’s yield criterion adopted in this section can be written in the form

|σ1 − σ2| ≤ 2τs, |σ2 − σ3| ≤ 2τs, |σ3 − σ1| ≤ 2τs . (113)

This yield criterion is represented by a regular hexagonal prism in a three-dimensional
space where the principal stresses are taken as Cartesian coordinates. The cross-
section of this prism by the plane σ1 + σ2 + σ3 = 0 is shown in Fig. 18. It is seen
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Fig. 18 Tresca’s yield locus

from this figure that the yield surface is singular. Therefore, various plastic regimes
can in general arise. However, of particular interest are those corresponding to edges
of the yield surface (corners in Fig. 18). The circumferential stress is one of the
principal stresses. It is possible to assume that σ3 is the circumferential stress. It is
also possible to assume, with no loss of generality, that σ1 ≥ σ2. The case σ1 = σ2
is not considered here. Therefore, σ1 > σ2 and Eqs. (113) reduce to

σ1 − σ2 = 2τs, σ1 − σ3 = 2τs (114)

or
σ1 − σ2 = 2τs, σ3 − σ2 = 2τs . (115)

Equations (114) correspond to point A and Eq. (115) to point B (Fig. 18).
Let σrr , σθθ, σzz , σr z , σzθ and σrθ be the components of the stress tensor, and ξrr ,

ξθθ , ξzz , ξr z , ξzθ and ξrθ be the components of the strain rate tensor in the cylindrical
coordinate system. In the case under consideration, ξrθ = ξzθ = 0, σrθ = σzθ = 0
and the circumferential velocity uθ = 0. The non-zero strain rate components are
expressed through the velocity components, ur and uz , as

ξrr = ∂ur

∂r
, ξθθ = ur

r
, ξzz = ∂uz

∂z
, ξr z = 1

2

(
∂ur

∂z
+ ∂uz

∂r

)
. (116)

The equilibrium equations are

∂σrr

∂r
+ ∂σr z

∂z
+ σrr − σθθ

r
= 0,

∂σr z

∂r
+ ∂σzz

∂z
+ σr z

r
= 0. (117)

Taking into account (114) or (115) the transformation equations for stress components
in rz-planes are represented as

σrr = 1

2
(σ1 + σ2) + τs cos 2ψ, σzz = 1

2
(σ1 + σ2) − τs cos 2ψ, (118)

σr z = τs sin 2ψ,
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Fig. 19 Orientation of the
major principal stress and
characteristic directions
relative to the r -axis of cylin-
drical coordinates

where ψ is the orientation of the principal stress σ1 relative to the r -axis (Fig. 19).
These equations show that σrr + σzz = σ1 + σ2. Then, it follows from Eqs. (114)
and (115) that

σ3 = σθθ = 1

2
(σrr + σzz) + ετs, (119)

where ε can take the values ±1. It is evident that ε = −1 corresponds to point A and
ε = +1 to point B (Fig. 18).

The flow rule associated with the yield criterion (114) or (115) leads to the equa-
tion of incompressibility and the isotropy condition. Using (116) the equation of
incompressibility ξrr + ξθθ + ξzz = 0 is transformed to

∂ur

∂r
+ ur

r
+ ∂uz

∂z
= 0. (120)

The isotropy condition is

σr z

(σrr − σzz)
= ξr z

(ξrr − ξzz)
.

Substituting (118) into this equation gives

2ξr z

(ξrr − ξzz)
= tan 2ψ. (121)

The conditions that an element of the material shall be in a state of stress corre-
sponding to points A and B (Fig. 18) are that the associated velocity field satisfies
the inequalities

εur ≥ 0, (ξrr − ξzz)
2 + 4ξ2

r z ≥ u2
r

r2 . (122)

It is known (see, for example, [14]) that the characteristic directions make angles
±π/4 with the direction of the principal stress σ1. Therefore (Fig. 19),
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φ1 = ψ − π

4
, φ2 = ψ + π

4
(123)

where φ1 and φ2 are the angles between the characteristic directions and the r -axis.
Let σrr , σθθ, σϑϑ, σrϑ, σϑθ and σrθ be the components of the stress tensor, and ξrr ,

ξθθ, ξϑϑ, ξrϑ, ξϑθ and ξrθ be the components of the strain rate tensor in the spherical
coordinate system. In the case under consideration, ξrϑ = ξϑθ = 0, σrϑ = σϑθ = 0
and the circumferential velocity uϑ = 0. The non-zero strain rate components are
expressed through the velocity components, ur and uθ, as

ξrr = ∂ur

∂r
, ξθθ = 1

r

(
∂uθ
∂θ

+ ur

)
,

ξϑϑ = 1

r sin θ
(ur sin θ + uθ cos θ) , ξrθ = 1

2

(
∂uθ
∂r

− uθ
r

+ 1

r

∂ur

∂θ

)
. (124)

The equilibrium equations are

∂σrr

∂r
+ 1

r

∂σrθ

∂θ
+ (2σrr − σθθ − σϑϑ + σrθ cot θ)

r
= 0, (125)

∂σrθ

∂r
+ 1

r

∂σθθ

∂θ
+ (σθθ − σϑϑ) cot θ + 3σrθ

r
= 0.

Taking into account (114) or (115) the transformation equations for stress components
in rθ-planes are represented as

σrr = 1

2
(σ1 + σ2) + τs cos 2ψ, σθθ = 1

2
(σ1 + σ2) − τs cos 2ψ, (126)

σrθ = τs sin 2ψ,

where ψ is the orientation of the principal stress σ1 relative to the r -axis (Fig. 20).
These equations show that σrr + σθθ = σ1 + σ2. Then, it follows from Eqs. (114)
and (115) that

σ3 = σϑϑ = 1

2
(σrr + σθθ) + ετs . (127)

As before, ε = −1 corresponds to point A and ε = +1 to point B (Fig. 18).
Using (124) the equation of incompressibility, ξrr + ξθθ + ξϑϑ = 0, is transformed

to
∂ur

∂r
+ 1

r

(
∂uθ
∂θ

+ ur

)
+ 1

r sin θ
(ur sin θ + uθ cos θ) = 0. (128)

Using (126) the isotropy condition, σrθ(ξrr − ξθθ) = (σrr − σθθ)ξrθ, is written as

2ξrθ

(ξrr − ξθθ)
= tan 2ψ. (129)
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Fig. 20 Orientation of the major stress and characteristic directions relative to the r -axis of spherical
coordinates

The inequalities (122) in the spherical coordinate system become

ε (ur sin θ + uθ cos θ) ≥ 0, (ξrr − ξθθ)
2 + 4ξ2

rθ ≥ (ur sin θ + uθ cos θ)2

r2 sin2 θ
. (130)

Since the characteristic directions make angles ±π/4 with the direction of the
principal stress σ1, it is seen from Fig. 20 that

φ1 = ψ − π

4
, φ2 = ψ + π

4
, (131)

where φ1 and φ2 are the angles between the characteristic directions and the r -axis.

4.2 Compression of a Hollow Cylinder on a Rigid Fibre

The boundary value problem is illustrated in Fig. 21. An axisymmetric hollow cylin-
der of internal radius a and external radius b is subject to compression by pressure p
uniformly distributed over its outer surface. The length of the cylinder is 2L . A rigid
fibre of radius a is inserted into the hole of the cylinder. The cylindrical coordinate
system is chosen such that the plane z = 0 coincides with the plane of symmetry
of the cylinder. Then, it is sufficient to find the solution in the domain 0 ≤ z ≤ L .
Symmetry demands

uz = 0 (132)

and
σr z = 0 (133)
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Fig. 21 Illustration of the
boundary value problem

0

r

z

a

b

ff

2Lp p

for z = 0. Since the fibre is rigid,
ur = 0 (134)

for r = a. The rate of contraction of the external radius of the cylinder is denoted
by U . Then,

ur = −U (135)

for r = b. The surface z = L is traction free. Therefore,

σr z = 0 (136)

and
σzz = 0 (137)

for z = L . By assumption, the surface r = b is free of shear stress. Then,

σr z = 0 (138)

for r = b. The final boundary condition is the maximum friction law at r = a. The
direction of the friction stress is shown in Fig. 21. Therefore, the maximum friction
law becomes

σr z = τs (139)

for r = a. The boundary value problem defined is an axisymmetric analogue to the
problem considered in Sect. 3.2. Its approximate solution proposed in [31] ignores
the boundary conditions (133) and (136). The boundary conditions (132) and (137)
are replaced with the following integral conditions
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b∫

a

uz |z=0 rdr = 0 (140)

and
b∫

a

σzz|z=L rdr = 0, (141)

respectively. Thus the solution is not valid in the vicinity of z = 0 and z = L .
The velocity field proposed in [31] is

ur

U
= −b

(
r2 − a2

)

r
(
b2 − a2

) , (142)

uz

U
= b(

b2 − a2
)
⎡
⎣2z +

∫ (
3r2 + a2

)
f (r)

r2
√

1 − f (r)2
dr

⎤
⎦+ K , f (r) = a

(
b2 − r2

)

r
(
b2 − a2

) .

Here K is the constant of integration. Its value can be found by means of the boundary
condition (140). However, it is not necessary for determining the strain rate intensity
factor. It is possible to verify by inspection that the velocity field (142) satisfies the
equation of incompressibility (120). It has been shown in [31] that the velocity field
also satisfies the inequalities (122) if ε = −1. Then, the associated state of stress
must correspond to point A (Fig. 18). Such a stress field satisfying Eqs. (114), (117),
(119) and (121) as well as the boundary conditions (138), (139) and (141) has been
found in [31]. Substituting (142) into (116) yields

ξrr = −Ub
(
r2 + a2

)

r2
(
b2 − a2

) , ξθθ = −Ub
(
r2 − a2

)

r2
(
b2 − a2

) , ξzz = 2Ub(
b2 − a2

) , (143)

ξr z = Ub
(
3r2 + a2

)
f (r)

2
(
b2 − a2

)
r2
√

1 − f (r)2
.

Since f (a) = 1, it is evident that the normal strain rates are bounded and ξr z → ∞
as r → a. Therefore, Eq. (6) in which ξτ is replaced with ξr z is valid. Eliminating
the function f (r) in (143) by means of (142) the shear strain rate in the vicinity of
the maximum friction surface r = a is represented as

ξr z =
√

2Ub
√

a√
b4 − a4

√
r − a

+ o

(
1√

r − a

)
as r → a. (144)

Combining (6) and (144) gives
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Fig. 22 Variation of the
dimensionless strain rate
intensity factor with the ratio
a/b

D = 2
√

2Ub
√

a√
3
√

b4 − a4
. (145)

It is convenient to introduce the dimensionless strain rate intensity factor by

d = D
√

b/U.

Then, it follows from (145) that

d = 2
√

2a√
3b

(
1 − b4

a4

)−1/2

. (146)

The variation of d with a/b is shown in Fig. 22.

4.3 Flow of Plastic Material Through an Converging Conical
Channel

Consider a converging conical channel (total angle 2α) through which plastic material
is being forced (Fig. 23). The material flows to the virtual apex O . The origin of the
spherical coordinate system is taken at O and the surface of the channel is determined
by the equation θ = α. The maximum friction law is supposed at θ = α. The direction
of friction stresses τ f is dictated by the direction of flow (Fig. 23). The solution used
in this section has been proposed in [32]. The velocity boundary conditions are

uθ = 0 (147)

at θ = 0 and θ = α. The stress boundary condition, in addition to the maximum
friction law, is

σrθ = 0 (148)
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Fig. 23 Illustration of the
boundary value problem

rf

O

f

at θ = 0. It is assumed in [32] that uθ = 0 everywhere. Then, the boundary conditions
(147) are automatically satisfied. In the case of Tresca’s yield criterion the radial
velocity is given by [32]

ur = − B

r2 exp

⎡
⎣−3

θ∫

α

t√
1 − t2

dγ

⎤
⎦ , (149)

where B is proportional to the material flux, t is a function of θ and γ is a dummy
variable of integration. The function t (θ) is determined by the following equation

dt

dθ
+ t cot θ + 3

√
1 − t2 = c, (150)

where c is a constant of integration. The physical meaning of the function t (θ) is
that σrθ = τs t (θ). Therefore, it follows from (148) and the maximum friction law
(1) that

t = 0 (151)

at θ = 0 and
t = 1 (152)

at θ = α. It is convenient to introduce the following substitution

t = cosμ. (153)
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Then, Eq. (150) transforms to

− sin μ
dμ

dθ
+ cosμ cot θ + 3 sin μ = c (154)

and the boundary conditions (151) and (152) to

μ = π

2
at θ = 0 (155)

and
μ = 0 at θ = α, (156)

respectively. It is seen from (155) that the second term in (154) reduces to the expres-
sion 0 · ∞ at θ = 0. Assume that

μ = π

2
+ a1θ + o (θ) as θ → 0. (157)

Substituting (157) into (154) it is possible to express a1 in terms of c. Then, (157)
becomes

μ = π

2
+ (3 − c)

2
θ + o (θ) as θ → 0. (158)

Since the coefficient of the derivative in (154) vanishes at θ = α, it is convenient to
rewrite this equation as

dθ

dμ
= sinμ

3 sin μ+ cosμ cot θ − c
. (159)

Using (158) the function θ (μ) is represented as

θ = 2

(c − 3)

(π
2

− μ
)

+ o
(π

2
− μ
)

as μ → π

2
. (160)

It follows from this equation that

θa = 2δa

(c − 3)
(161)

to leading order. Here δa = π/2 − μa << 1. Using the boundary condition θ = θa

for μ = μa at some value of c Eq. (159) can be solved numerically in the range
0 ≤ μ ≤ μa . Then, an iterative procedure should be adopted to find the value of
c satisfying the boundary condition (156). The variation of c with α is depicted in
Fig. 24. It has been shown in [32] that there exists a distribution of the normal stresses
associated with the velocity field considered and the solution of Eq. (159) found. The
state of stresses corresponds to point A of the yield surface (Fig. 18) and satisfies the
equilibrium Eq. (125).
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Fig. 24 Variation of c with α

Using (153) Eq. (149) transforms to

ur = − B

r2 exp

⎡
⎣−3

θ∫

α

cot μdγ

⎤
⎦ . (162)

The components of the strain rate tensor are determined from (124). It is evident that
the normal strain rates are bounded and ξrθ → ∞ as θ → α. Therefore, Eq. (6) in
which ξτ is replaced with ξrθ is valid. Using (124) and (162) the shear strain rate in
the vicinity of the maximum friction surface θ = α is represented as

ξrθ = U

r3μ
−1 + o

(
μ−1
)

as μ → 0, (163)

where

U = 3B

2
exp

⎛
⎝3

α∫

0

cot μdθ

⎞
⎠ . (164)

Equation (159) in the vicinity of the friction surface θ = α can be written as

dθ

dμ
= μ

cot α− c
as θ → α.

Integrating with the boundary condition (156) yields

μ = √
c − cot α

√
α− θ + o

(√
α− θ

)
as θ → α. (165)

Substituting (165) into (163) gives

ξrθ = U

r3
√

c − cot α
√
α− θ

+ o

(
1√
α− θ

)
as θ → α. (166)
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Comparing (6) and (166) shows that

D = 2√
3

U√
c − cot α

r−5/2. (167)

The material flux is defined by

Q = −2π

α∫

0

urr2 sin θdθ. (168)

Substituting (162) into (168) gives

Q = 2πB

α∫

0

exp

⎡
⎣−3

θ∫

α

cot μdγ

⎤
⎦ sin θdθ. (169)

It is convenient to introduce the dimensionless strain rate intensity factor as

d = Dr5/2

Q
. (170)

Then, it follows from (164), (167), (169), and (170) that

d =
√

3

2π
√

c − cot α
exp

⎛
⎝3

α∫

0

cot μdθ

⎞
⎠
⎧⎨
⎩

α∫

0

exp

⎡
⎣3

α∫

θ

cot μdγ

⎤
⎦ sin θdθ

⎫⎬
⎭

−1

.

(171)
Using the solution of Eq. (159) along with the value of c found (Fig. 24) the integrals
involved in this equation can be evaluated. As a result, the variation of d with α is
obtained. This variation is illustrated in Fig. 25.

4.4 Radial Flow Between Two Conical Surfaces

Consider radial flow between two conical surfaces shown in Fig. 26. The material
flows to the virtual apex O . The origin of the spherical coordinate system is taken at
O and the surfaces of the channel are determined by the equations θ = θ0 and θ = θ1.
The maximum friction law is supposed at both θ = θ0 and θ = θ1. The direction of
friction stresses τ f is dictated by the direction of flow (Fig. 26). A solution to this
problem for the von Mises yield criterion has been proposed in [33]. It was based on
the general solution given in [32] where the solution for the Tresca yield criterion
considered in the previous section was also proposed. The latter will be adopted in
the present section to describe radial flow between two conical surfaces.
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Fig. 25 Variation of the
dimensionless strain rate
intensity factor with α

Fig. 26 Illustration of the
boundary value problem

The velocity boundary conditions are

uθ = 0 at θ = θ0 and θ = θ1. (172)

Therefore, the assumption that uθ = 0 everywhere adopted in the previous section
is applicable in the case under consideration. Then, the radial velocity is given by
(149). Using (153) this equation is transformed to (162). Equations (154) and (159)
are valid. However, the boundary conditions (155) and (156) are replaced with

μ = π at θ = θ0 (173)

and
μ = 0 at θ = θ1. (174)
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Fig. 27 Variation of c with
Δθ

θ

Solving Eq. (159) along with the boundary conditions (173) and (174) numerically
gives the dependence of c on θ0 and θ1. The variation of c with Δθ = θ1 − θ0 at
several values of θ0 in the range π/36 ≤ θ0 ≤ π/4 is depicted in Fig. 27. It is seen
from this figure that the value of c is practically independent of θ0 and θ1 separately
(no difference between the curves is visible in the figure). Equation (162) is replaced
with

ur = − B

r2 exp

⎡
⎢⎣−3

θ∫

θ0

cot μdγ

⎤
⎥⎦ . (175)

The components of the strain rate tensor are determined from (124). It is evident
that the normal strain rates are bounded and |ξrθ| → ∞ as θ → θ0 and θ → θ1.
Therefore, Eq. (6) in which ξτ is replaced with ξrθ is valid. Using (124) and (175) the
shear strain rate in the vicinity of the maximum friction surfaces θ = θ1 and θ = θ0
is represented as

ξrθ = U

r3μ
−1 + o

(
μ−1
)

as μ → 0 (176)

and

ξrθ = − 3B

2r3 (π − μ)−1 + o
[
(π − μ)−1

]
as μ → π, (177)

respectively. Here

U = 3B

2
exp

⎛
⎜⎝−3

θ1∫

θ0

cot μdθ

⎞
⎟⎠ . (178)

Using (173) and (174) Eq. (154) in the vicinity of points μ = 0 and μ = π can be
represented as

dμ

dθ
= cot θ0 + c

μ− π
+ o

[
(μ− π)−1

]
as μ → π (179)
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and
dμ

dθ
= cot θ1 − c

μ
+ o

(
1

μ

)
as μ → 0. (180)

Integrating (179) and (180) with the use of the boundary conditions (173) and (174)
yields

π − μ = √2 (cot θ0 + c)
√
θ − θ0 + o

(√
θ − θ0

)
as θ → θ0 (181)

and
μ = √2 (c − cot θ1)

√
θ1 − θ + o

(√
θ1 − θ

)
as θ → θ1. (182)

Substituting (181) into (177) and (182) into (176) gives

ξrθ = − 3B

2r3
√

2 (cot θ0 + c)
√
θ − θ0

+ o

(
1√
θ − θ0

)
as θ → θ0 (183)

and

ξrθ = U

r3
√

2 (c − cot θ1)
√
θ1 − θ

+ o

(
1√
θ1 − θ

)
as θ → θ1, (184)

respectively. Comparing (6) with (183) and (184) gives

Din =
√

3√
2

B√
cot θ0 + c

r−5/2 (185)

and

Dex =
√

2√
3

U√
c − cot θ1

r−5/2. (186)

Here Din is the strain rate intensity factor related to the inner friction surface θ = θ0
and Dex is the strain rate intensity factor related to the outer friction surface θ = θ1.

The material flux is defined by

Q = −2π

θ1∫

θ0

urr2 sin θdθ. (187)
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Substituting (175) into (187) gives

Q = 2πB

θ1∫

θ0

exp

⎡
⎢⎣−3

θ∫

θ0

cot μdγ

⎤
⎥⎦ sin θdθ. (188)

As before, it is convenient to introduce the dimensionless strain rate intensity factor
by Eq. (170). Then, it follows from (170), (178), (185), (186), and (188) that

din =
√

6

4π
√

cot θ0 + c

⎧
⎪⎨
⎪⎩

θ1∫

θ0

exp

⎡
⎢⎣−3

θ∫

θ0

cot μdγ

⎤
⎥⎦ sin θdθ

⎫
⎪⎬
⎪⎭

−1

(189)

and

dex =
√

6

4π
√

c − cot θ1
exp

⎛
⎜⎝−3

θ1∫

θ0

cot μdθ

⎞
⎟⎠

⎧⎪⎨
⎪⎩

θ1∫

θ0

exp

⎡
⎢⎣−3

θ∫

θ0

cot μdγ

⎤
⎥⎦ sin θdθ

⎫⎪⎬
⎪⎭

−1

.

(190)
Using (159) the integrals involved in these equations are represented as

θ1∫

θ0

cot μdθ = −
π∫

0

cosμ

(3 sin μ+ cosμ cot θ − c)
dμ,

θ1∫

θ0

exp

⎡
⎢⎣−3

θ∫

θ0

cot μdγ

⎤
⎥⎦ sin θdθ

= −
π∫

0

exp

⎡
⎣3

π∫

μ

cos γ

(3 sin γ + cos γ cot θ − c)
dγ

⎤
⎦ sin θ sin μ

(3 sin μ+ cosμ cot θ − c)
dμ.

Using the solution of Eq. (159) along with the value of c found (Fig. 27) these integrals
can be evaluated. As a result, the variation of din and dex with θ0 and θ1 is obtained. As
before, it is convenient to use the parameters θ0 andΔθ instead of θ0 and θ1. Figures 28
and 29 illustrate the dependence of din and dex on Δθ at several values of θ0. It is also
of great interest to understand the variation of the ratio dr = dex/din = Dex/Din

with process parameters. Its dependence on Δθ at several values of θ0 is illustrated
in Fig. 30. In Figs. 28, 29 and 30, curve 1 corresponds to θ0 = π/36, curve 2 to
θ0 = π/18, curve 3 to θ0 = π/9, curve 4 to θ0 = π/6, and curve 5 to θ0 = π/4.
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Fig. 28 Variation of the dimensionless strain rate intensity factor din with Δθ at several θ0-values

Fig. 29 Variation of the dimensionless strain rate intensity factor dex with Δθ at several θ0-values

Fig. 30 Variation of the ratio of the strain rate intensity factors with Δθ at several θ0-values



298 S. Alexandrov et al.

5 Plane Strain Solutions for the Double-Shearing Model

5.1 Basic Equations

Section 5 is concerned with plane strain solutions for the double-shearing model.
In this section, two coordinate systems will be used, namely a Cartesian coordinate
system (x, y, z) and a cylindrical coordinate system (r, θ, z). All the solutions con-
sidered are independent of z. The principal stress coinciding with the stress σzz is
denoted by σ3. The constitutive equations in terms of stress and strain rate have been
given in [10, 34]. In particular, the Coulomb-Mohr yield criterion is

q − p sinϕ = k cosϕ (191)

where k is the cohesion and

p = −σ1 + σ2

2
, q = σ1 − σ2

2
> 0. (192)

Using the transformation equations for stress components in xy-planes and (192) the
stress components in the Cartesian coordinates are expressed as (Fig. 2)

σxx = −p + q cos 2ψ, σyy = −p − q cos 2ψ, σxy = q sin 2ψ. (193)

It follows from these equations that

p = −σxx + σyy

2
, q = 1

2

√(
σxx − σyy

)2 + 4σ2
xy . (194)

It is seen from this equation that the yield criterion (191) reduces to the pressure-
independent yield criterion (7) atϕ = 0 assuming that τs = k. The velocity equations
are

ξxx +ξyy = 0, 2ξxy cos 2ψ− (ξxx − ξyy
)

sin 2ψ+2 sinϕ
(
ωxy + ψ̇

) = 0, (195)

where ωxy is the component of spin relative to the Cartesian coordinates. By defini-
tion,

ωxy = 1

2

(
∂ux

∂y
− ∂uy

∂x

)
, ψ̇ = ∂ψ

∂t
+ ux

∂ψ

∂x
+ uy

∂ψ

∂y
, (196)

where ∂ψ/∂t is the derivative of ψ at a point which is fixed relative to the Cartesian
coordinates. Equation (195)1 coincides with (9)1. Using (193) to eliminate ψ Eq.
(195)2 is reduced to (9)2 at ϕ = 0. Substituting (10) and (196)1 into (195) yields
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∂ux

∂x
+ ∂uy

∂y
= 0,

(cos 2ψ + sinϕ)
∂ux

∂y
+ (cos 2ψ − sinϕ)

∂uy

∂x
(197)

−
(
∂ux

∂x
− ∂uy

∂y

)
sin 2ψ + 2 sinϕψ̇ = 0.

The constitutive equations should be supplemented with the equilibrium Eq. (12).
It is known that the resulting system is hyperbolic [34]. The stress and velocity
characteristics coincide. The orientation of the characteristic curves relative to the
x-axis is

φ1 = ψ − π

4
− ϕ

2
, φ2 = ψ + π

4
+ ϕ

2
. (198)

Figure 2 can serve as a geometric interpretation of these relations if π/4 is replaced
with π/4 + ϕ/2.

Similar equations are valid in the cylindrical coordinates. In particular,

σrr = −p + q cos 2ψ, σθθ = −p − q cos 2ψ, σrθ = q sin 2ψ, (199)

where

p = −σrr + σθθ

2
, q = 1

2

√
(σrr − σθθ)

2 + 4σ2
rθ. (200)

As before, ψ is now understood as the orientation of the stress σ1 relative to the
r -axis (Fig. 4). The velocity equations are

ξrr + ξθθ = 0, 2ξrθ cos 2ψ − (ξrr − ξθθ) sin 2ψ + 2 sinϕ
(
ωrθ + ψ̇

) = 0, (201)

where

ωrθ = 1

2

(
∂ur

r∂θ
− ∂uθ

∂r
− uθ

r

)
, ψ̇ = ∂ψ

∂t
+ ur

∂ψ

∂r
+ uθ

r

∂ψ

∂θ
. (202)

Substituting (41) and (202)1 into (201) yields

r
∂ur

∂r
+ ∂uθ

∂θ
+ ur = 0,

(cos 2ψ − sinϕ)
∂uθ
∂r

+
(
∂ur

r∂θ
− uθ

r

)
(cos 2ψ + sinϕ) (203)

−
(
∂ur

∂r
− ∂uθ

r∂θ
− ur

r

)
sin 2ψ + 2 sinϕψ̇ = 0.

The constitutive equations should be supplemented with the equilibrium Eq. (42).
The orientation of the characteristic curves relative to the r -axis is given by the
following equations similar to (198)
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φ1 = ψ − π

4
− ϕ

2
, φ2 = ψ + π

4
+ ϕ

2
. (204)

Figure 4 can serve as a geometric interpretation of these relations if π/4 is replaced
with π/4 + ϕ/2.

5.2 Compression of a Plastic Layer Between Parallel Plates

This boundary value problem has been formulated and solved for pressure-indepen-
dent material in Sect. 3.2 (see Fig. 5). An extension of this solution to the double
shearing model has been proposed in [35]. In particular, the velocity field is given by

ux

V
= x

H
− cos 2ψ

A
+ U,

uy

V
= − y

H
, (205)

where U and A are constants of integration and ψ is related to y by the following
equation

(sin φ+ cos 2ψ)
dψ

dy
= A

H
. (206)

The value of U is not essential for determining the strain rate intensity factor. It is
evident that the distribution of uy in (205) satisfies the boundary conditions (44) and
(45). The maximum friction surface is determined by the equation y = H . Therefore,
φ1 = 0 or φ2 = 0 at y = H in (198). The direction of the friction stress (Fig. 5)
dictates that σxy < 0 at y = H . Therefore, it follows from (193) that −π/2 < ψ < 0
at y = H . Equation φ1 = 0 contradicts this inequality. Therefore, φ2 = 0 and

ψ = ψw = −π

4
− ϕ

2
(207)

at y = H . On the other hand, it is reasonable to assume that σxx > σyy at y = 0.
Then, taking into account the boundary condition (47) at y = 0 and (193) it is
possible to conclude that

ψ = 0 (208)

at y = 0. Integrating (206) with the use of the boundary condition (207) results in

2A
( y

H
− 1
)

= 2 sinϕ
(
ψ + π

4
+ ϕ

2

)
+ sin 2ψ + cosϕ. (209)

Substituting the boundary condition (208) into this solution determines A as

A = − sinϕ
(π

4
+ ϕ

2

)
− cosϕ

2
. (210)
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Eliminating A in (206) by means of (210) it is possible to represent the resulting
equation in the vicinity of the friction surface as

dψ

dy
= − tanϕ (π + 2ϕ) + 2

8H (ψ − ψw)
+ o

[
(ψ − ψw)−1

]
as ψ → ψw. (211)

Integrating with the use of the boundary condition ψ = ψw at y = H yields

(ψ − ψw)2 = [tanϕ (π + 2ϕ) + 2]

4H
(H − y) + o (H − y) as y → H. (212)

Substituting (205) into (10) and using (206) give

ξxx = V

H
, ξyy = − V

H
, ξxy = V

H

sin 2ψ

(sinϕ+ cos 2ψ)
. (213)

Substituting (213) into (4) and expanding in a series in the vicinity of ψ = ψw yield

ξeq = 2√
3

V

H

√
1 + sin2 2ψ

(sinϕ+ cos 2ψ)2

= V√
3H (ψ − ψw)

+ o
[
(ψ − ψw)−1

]
as ψ → ψw.

(214)

Combining (212) and (214) gives

ξeq = 2V√
3H [tanϕ (π + 2ϕ) + 2]

√
H − y

+ o

(
1√

H − y

)
as y → H. (215)

It follows from (5) and (215) that

D = 2V√
3H [tanϕ (π + 2ϕ) + 2]

. (216)

The strain rate intensity factor given by (54) is recovered from (216) at ϕ = 0. In
order to demonstrate the effect of pressure-dependency of the yield criterion on the
strain rate intensity factor, it is convenient to introduce the dimensionless strain rate
intensity factor, d, as the ratio of the strain rate intensity factor given by (216) to the
strain rate intensity factor given by (54). As a result,

d =
√

2√
tanϕ (π + 2ϕ) + 2

. (217)

The variation of d with ϕ is depicted in Fig. 31. It is seen from this figure that the
strain rate intensity factor decreases as the value of ϕ increases.
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Fig. 31 Variation of the
dimensionless strain rate
intensity factor with ϕ

5.3 Flow of Plastic Material Through an Infinite Wedge-Shaped
Channel

This boundary value problem has been formulated and solved for pressure-indepen-
dent material in Sect. 3.3 (see Fig. 6). An extension of this solution to the double
shearing model has been proposed in [36]. In particular, the velocity field is given by

ur = − B

r (cos 2ψ + sinϕ− c)
, uθ = 0, (218)

where B and c are constants of integration and ψ is related to θ by the following
equation

(sinϕ+ cos 2ψ)

(
dψ

dθ
+ 1

)
= c. (219)

It is evident that the distribution of uθ in (218) satisfies the boundary condition (55)
at θ = 0 and θ = α. The maximum friction surface is determined by the equation
θ = α. Therefore, φ1 = 0 or φ2 = 0 in (204). The direction of the friction stress
(Fig. 6) dictates that σrθ > 0 at θ = α. The equation φ2 = 0 contradicts this
inequality. Therefore, φ1 = 0 and

ψ = ψw = π

4
+ ϕ

2
(220)

at θ = α. On the other hand, it is reasonable to assume that σrr > σθθ at θ = 0. Then,
taking into account the boundary condition (56) and (199) it is possible to conclude
that

ψ = 0 (221)

at θ = 0. The solution to Eq. (219) satisfying the boundary condition (220) is
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θ = α−
ψw∫

ψ

(sinϕ+ cos 2γ)

(c − sinϕ− cos 2γ)
dγ. (222)

Here γ is a dummy variable of integration. Substituting the boundary condition (221)
into the solution (222) gives the following equation for c

α =
ψw∫

0

(sinϕ+ cos 2γ)

(c − sinϕ− cos 2γ)
dγ. (223)

This equation has been solved numerically. The variation of c with α for several
ϕ-values is shown in Fig. 32. The broken line corresponds to ϕ = 0 (pressure-
independent material), curve 1 to ϕ = 0.1, curve 2 to ϕ = 0.2, and curve 3 to
ϕ = 0.3. Equation (219) in the vicinity of the maximum friction surface is repre-
sented as

dψ

dθ
= c

2 cosϕ (ψw − ψ)
+ o

[
(ψw − ψ)−1

]
as ψ → ψw. (224)

Integrating with the use of the boundary condition (220) yields

ψw − ψ =
(

c

cosϕ

)1/2

(α− θ)1/2 + o
[
(α− θ)1/2

]
as θ → α. (225)

It has been taken into account here that c > 0 (Fig. 32). The shear strain rate is
determined from (41), (218) and (219) as

Fig. 32 Variation of c with α at several ϕ-values
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ξrθ = B sin 2ψ

r2 (sinϕ+ cos 2ψ) (cos 2ψ + sinϕ− c)
. (226)

It is evident that the normal strain rates are bounded and ξrθ → ∞ as ψ → ψw.
Therefore, Eq. (6) in which ξτ is replaced with ξrθ is valid. Expanding the right hand
side of (225) in a series in the vicinity of ψ = ψw gives

ξrθ = − B

2cr2 (ψw − ψ)
+ o

[
(ψw − ψ)−1

]
as ψ → ψw. (227)

Combining (225) and (227) leads to

ξrθ = − B
√

cosϕ

2c3/2r2 (α− θ)1/2 + o
[
(α− θ)−1/2

]
as θ → α. (228)

Comparing (6) and (228) shows that

D = − B
√

cosϕ√
3 (cr)3/2

. (229)

Substituting (218) into (63) and using (219) yields

B = − Q

2

⎡
⎢⎣
ψw∫

0

(sinϕ+ cos 2ψ)

(cos 2ψ + sinϕ− c)2 dψ

⎤
⎥⎦

−1

. (230)

Since c has been found (Fig. 32), the integral here can be evaluated. Eliminating B in
(229) by means of (230) shows that the strain rate intensity factor is a linear function
of Q. In order to reveal the effect of α and ϕ on the strain rate intensity factor, it is
convenient to introduce the dimensionless strain rate intensity factor, d, as the ratio
of the strain rate intensity factor given by (229) to the strain rate intensity factor given
by (62). The variation of d with α at several ϕ-values is depicted in Fig. 33. In this
figure, curve 1 corresponds to ϕ = 0.1, curve 2 to ϕ = 0.15, curve 3 to ϕ = 0.2,
curve 4 to ϕ = 0.25, and curve 5 to ϕ = 0.3. It is seen from this figure that the
strain rate intensity factor at ϕ �= 0 is smaller than the strain rate intensity factor for
pressure-independent material in the entire range of parameters used in this study.

5.4 Compression of a Plastic Layer Between Cylindrical Surfaces

This boundary value problem has been formulated and solved for pressure-indepen-
dent material in Sect. 3.4 (see Fig. 10). An extension of this solution to the double
shearing model has been proposed in [37]. Let ψw be the value of ψ at r = R1 and
ψ f be the value of ψ at r = R2. The direction of flow in the region θ > 0 demands
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Fig. 33 Variation of the dimensionless strain rate intensity factor with α at several ϕ-values

σrθ > 0 in the vicinity of the surface r = R1 and σrθ < 0 in the vicinity of the
surface r = R2. Then, it follows from (199) that

0 < ψw <
π

2
and

π

2
< ψ f < π. (231)

The maximum friction surfaces are orthogonal to the r -axis. Therefore, φ1 = π/2
or φ2 = π/2 in (198). The condition φ1 = π/2 contradicts (231) for ψw, and the
condition φ2 = π/2 contradicts (231) for ψ f . Therefore,

ψ = ψw = π

4
− ϕ

2
for r = R1 (232)

and

ψ = ψ f = 3π

4
+ ϕ

2
for r = R2. (233)

It is seen from (232) and (233) that ψ is independent of θ at the maximum friction
surfaces. Therefore, a natural assumption to find an approximate solution is that ψ
is independent of θ. In this case substituting (199) into (42) and eliminating p by
means of (191) result in

(cos 2ψ sinϕ− 1)

sinϕ

∂ ln q

∂r
+ sin 2ψ

∂ ln q

r∂θ

− 2 sin 2ψ
dψ

dr
+ 2 cos 2ψ

r
= 0, (234)

− (cos 2ψ sinϕ+ 1)

sinϕ

∂ ln q

r∂θ
+ sin 2ψ

∂ ln q

∂r
+ 2 cos 2ψ

dψ

dr
+ 2 sin 2ψ

r
= 0.

Eliminating the derivative ∂ ln q/∂r between these two equations gives
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− cosϕ cot ϕ
∂ ln q

r∂θ
+ 2 (cos 2ψ − sinϕ)

dψ

dr
+ 2 sin 2ψ

r
= 0. (235)

Since ψ is independent of θ, the first term of this equation must be independent of θ
as well. It is possible if and only if

ln
(q

k

)
= 2c tanϕ

cosϕ
θ + Q (ψ) (236)

and

r (cos 2ψ − sin φ)
dψ

dr
= c − sin 2ψ. (237)

Here c is constant and Q (ψ) is an arbitrary function of ψ. The function Q (ψ) has
no effect on the strain rate intensity factor. Therefore, Eq. (236) is not considered in
the present chapter. The solution for the function Q (ψ) is given in [37]. Equation
(237) can be integrated in elementary functions. It is however more convenient to
represent its solution satisfying the boundary condition (232) in the form

ln
r

R1
=

ψ∫

ψw

(cos 2γ − sinϕ)

(c − sin 2γ)
dγ. (238)

Here γ is a dummy variable of integration. Substituting the boundary condition (233)
into (238) leads to the following equation for c

ln
R2

R1
=

ψ f∫

ψw

(cos 2γ − sinϕ)

(c − sin 2γ)
dγ. (239)

Numerical solution to this equation is illustrated in Fig. 34. The broken line corre-
sponds to ϕ = 0 (pressure-independent material), curve 1 to ϕ = 0.1, curve 2 to
ϕ = 0.2, and curve 3 to ϕ = 0.3.

The main assumption concerning the velocity field is that the radial velocity
is independent of θ. Since ψ is also independent of θ, the radial velocity can be
represented as

ur = Ṙ1v (ψ) , (240)

where v(ψ) is an arbitrary function of ψ. It follows from (67), (68), (232) and (233)
that the function v(ψ) must satisfy the conditions

v = 0 at ψ = ψ f (or r = R2) (241)

and
v = 1 at ψ = ψw (or r = R1). (242)
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Substituting (240) into (203)1 and taking into account that v(ψ) is independent of θ
yields

∂uθ
Ṙ1∂θ

= −d (rν)

dr
. (243)

The right hand side of this equation is independent of θ. Therefore, integrating (243)
gives

uθ
Ṙ1

= −θd (rν)

dr
+ V (ψ) , (244)

where V (ψ) is an arbitrary function of ψ.
A distinguished feature of the present solution, as compared to the solutions given

in Sects. 5.2 and 5.3, is that ψ̇ �= 0. In particular, substituting (237) and (240) into
(202)2 and taking into account that ∂ψ/∂θ = 0 and ∂ψ/∂t = Ṙ1∂ψ/∂R1 gives

ψ̇

Ṙ1
= ∂ψ

∂R1
+ v (c − sin 2ψ)

r (cos 2ψ − sinϕ)
. (245)

In order to find the derivative ∂ψ/∂R1, it is necessary to differentiate (238). Since
ψw is constant, one gets

dψ = (c − sin 2ψ)

r (cos 2ψ − sinϕ)
dr + (c − sin 2ψ)

(cos 2ψ − sinϕ)

⎡
⎢⎣ dc

d R1

ψ∫

ψw

(cos 2γ − sinϕ)

(c − sin 2γ)2 dγ − 1

R1

⎤
⎥⎦d R1.

It follows from this equation that

∂ψ

∂R1
= (c − sin 2ψ)

(cos 2ψ − sinϕ)

⎡
⎢⎣ dc

d R1

ψ∫

ψw

(cos 2γ − sinϕ)

(c − sin 2γ)2 dγ − 1

R1

⎤
⎥⎦ . (246)

In order to find the derivative dc/d R1, it is necessary to differentiate (239). Since
ψw, ψ f and R2 are constant, one gets

dc

d R1
= 1

R1

⎡
⎢⎣
ψ f∫

ψw

(cos 2γ − sinϕ)

(c − sin 2γ)2 dγ

⎤
⎥⎦

−1

. (247)

Substituting (247) into (246) gives

∂ψ

∂R1
= (c − sin 2ψ)

R1 (cos 2ψ − sinϕ)

⎡
⎢⎣
ψ f∫

ψw

(cos 2γ − sinϕ)

(c − sin 2γ)2 dγ

⎤
⎥⎦

−1⎡
⎢⎣
ψ∫

ψw

(cos 2γ − sinϕ)

(c − sin 2γ)2 dγ − 1

⎤
⎥⎦ .

(248)
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Using (240), (243) and (244) Eq. (203)2 transforms to

θ

[
−r (cos 2ψ − sinϕ)

d2 (rv)

dr2 + (cos 2ψ + sinϕ)
d (rv)

dr

]

+ r (cos 2ψ − sinϕ)
dV

dr
+ 2

[
v − d (rv)

dr

]
sin 2ψ

− (cos 2ψ + sinϕ) V + 2r ψ̇

Ṙ1
sinϕ = 0. (249)

Since ψ, ψ̇, v and V are independent of θ, this equation may have a solution if and
only if

r (cos 2ψ − sinϕ)
d2 (rv)

dr2 − (cos 2ψ + sinϕ)
d (rv)

dr
= 0

r (cos 2ψ − sinϕ)
dV

dr
− (cos 2ψ + sinϕ) V (250)

+ 2

[
v − d (rv)

dr

]
sin 2ψ + 2r ψ̇

Ṙ1
sinϕ = 0.

Introduce the following notation Y (ψ) = d (rv)/dr . Then, Eq. (244)1 transforms to

r (cos 2ψ − sinϕ)
dY

dψ

dψ

dr
− (cos 2ψ + sinϕ) Y = 0. (251)

Eliminating in this equation the derivative dψ/dr by means of (237) and integrating
yields

Y = d (rv)

dr
= Y0 exp

⎡
⎢⎣

ψ∫

ψw

(cos 2γ + sinϕ)

(c − sin 2γ)
dγ

⎤
⎥⎦ . (252)

Here Y0 is a constant of integration. Replacing integration with respect to r with
integration with respect to ψ in (252) by means of (237) and integrating with the
boundary condition (242) result in

v (ψ) = R1

r

⎛
⎜⎝Y0

ψ∫

ψw

exp

⎡
⎢⎣

η∫

ψw

(cos 2γ + sinϕ)

(c − sin 2γ)
dγ

⎤
⎥⎦ (cos 2η − sinϕ)

(c − sin 2η)

r

R1
dη + 1

⎞
⎟⎠ .

(253)
Here η is a dummy variable of integration. The value of Y0 is determined from the
solution (253) and the boundary condition (241) as
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Y0 = −

⎧⎪⎨
⎪⎩

ψ f∫

ψw

exp

⎡
⎢⎣

η∫

ψw

(cos 2γ + sinϕ)

(c − sin 2γ)
dζ

⎤
⎥⎦ (cos 2η − sinϕ)

(c − sin 2η)

r

R1
dη

⎫⎪⎬
⎪⎭

−1

. (254)

Since the value of c has been found (Fig. 34), eliminating r/R1 by means of (238) the
integrals in (253) and (254) can be evaluated numerically. Since r/R1 and d (rv)/dr
are known functions of ψ due to (238), (252), (253), and (254), it is evident that
Eq. (250)2 is a linear ordinary differential equation for V (ψ). Its general solution is

V (ψ) = 2Y (ψ)

⎡
⎢⎣

ψ∫

ψw

{
[Y (γ) − v (γ)] sin 2γ − sinϕψ̇r/Ṙ1

}

(c − sin 2γ) Y (γ)
dγ + V0

⎤
⎥⎦ . (255)

Here V0 is a constant of integration. The integral in (255) can be evaluated numeri-
cally. The value of V0 is found from the condition (69) integrated over the thickness
of the layer. Using (238), (245) and (248) the quantity ψ̇r/Ṙ1 is represented as

ψ̇r

Ṙ1
= (c − sin 2ψ)

(cos 2ψ − sinϕ)
m (ψ) ,

m (ψ) = v + exp

⎡
⎢⎣

ψ∫

ψw

(cos 2γ − sinϕ)

(c − sin 2γ)
dγ

⎤
⎥⎦ (256)

×

⎧⎪⎨
⎪⎩

⎡
⎢⎣
ψ f∫

ψw

(cos 2γ − sinϕ)

(c − sin 2γ)2 dγ

⎤
⎥⎦

−1
ψ∫

ψw

(cos 2γ − sinϕ)

(c − sin 2γ)2 dγ − 1

⎫⎪⎬
⎪⎭

.

Fig. 34 Variation of c with R1/R2 at several ϕ-values
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In order to determine the strain rate intensity factors, it is necessary to find the values
of ψ̇r Ṙ−1

1 at the maximum friction surfaces. Moreover, it follows from the boundary
conditions (241) and (242) that the right hand side of (256) reduces to the expression
0/0 at ψ = ψw and ψ = ψ f . It is evident that the derivative of the denominator
with respect to ψ is equal to a finite value at ψ = ψw and ψ = ψ f . It follows from
(237) and (253) that ∂r/∂ψ = 0 and ∂v/∂ψ = 0 at these points. Therefore, applying
l’Hospital’s rule,

ψ̇r

Ṙ1
= 0 at ψ = ψw andψ = ψ f . (257)

The shear strain rate is determined from (41) where differentiation with respect to r
is replaced with differentiation with respect to ψ by means of (237). Then,

2ξrθ = ∂uθ
r∂ψ

(c − sin 2ψ)

(cos 2ψ − sinϕ)
− uθ

r
. (258)

It has been taken into account here that ∂ur/∂θ = 0. It is now necessary to find the
derivative ∂uθ/∂ψ at ψ = ψw and ψ = ψ f . It follows from (244) and (252) that

∂uθ
U∂ψ

= −θdY

dψ
+ dV

dψ
. (259)

The derivative dY/dψ at ψ = ψw and ψ = ψ f is found from (252) as

dY

dψ

∣∣∣∣
ψ=ψw

= 2Y0 sinϕ

c − cosϕ
,

dY

dψ

∣∣∣∣
ψ=ψ f

= 2wY0 sinϕ

c + cosϕ
, (260)

w = exp

⎡
⎢⎣
ψ f∫

ψw

(cos 2γ + sinϕ)

(c − sin 2γ)
dγ

⎤
⎥⎦ .

It is seen from (255) and (260) that the derivative dV /dψ is finite at ψ = ψw and
ψ = ψ f . Therefore, it is evident from (258) that |ξrθ| → ∞ as ψ → ψw and
ψ → ψ f . The second term in (258) has no effect on this singular behaviour of the
shear strain rate since the value of uθ is finite. Therefore, expanding cos 2ψ − sinϕ
in a series in the vicinity of points ψ = ψw and ψ = ψ f Eq. (258) is represented as

ξrθ = − Ṙ1 (c − cosϕ)

4R1 cosϕ

(
dV

dψ
− θ

dY

dψ

)∣∣∣∣
ψ=ψw

(ψ − ψw)−1

+ o
[
(ψ − ψw)−1

]
as ψ → ψw (261)

ξrθ = − U (c + cosϕ)

4R2 cosϕ

(
dV

dψ
− θ

dY

dψ

)∣∣∣∣
ψ=ψ f

(
ψ f − ψ

)−1

+ o
[(
ψ f − ψ

)−1
]

as ψ → ψ f .
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Here Eq. (259) has been taken into account. Differentiating (255) with the use of
(241), (242), (252), (257), and (260) gives

dV

dψ

∣∣∣∣
ψ=ψw

= 2
(c−cosϕ)

[2Y0V0 sinϕ+ (Y0 − 1) cosϕ] ,

dV

dψ

∣∣∣∣
ψ=ψ f

= 2Y0w

(c + cosϕ)
[2 (V0 + w1) sinϕ− cosϕ] ,

(262)

where

w1 =
ψ f∫

ψw

{
[Y (γ) − v (γ)] sin 2γ − sinϕψ̇r/Ṙ1

}

(c − sin 2γ) Y (γ)
dγ. (263)

Substituting (260) and (262) into (261) yields

ξrθ = − U

2R1 cosϕ
[2Y0V0 sinϕ+ (Y0 − 1) cosϕ− θY0 sinϕ] (ψ − ψw)−1

+ o
[
(ψ − ψw)−1

]
as ψ → ψw, (264)

ξrθ = − UY0w

2R2 cosϕ
[2 (V0 + w1) sinϕ− cosϕ− θ sinϕ]

(
ψ f − ψ

)−1

+ o
[(
ψ f − ψ

)−1
]

as ψ → ψ f .

Equation (237) in the vicinity of points ψ = ψw and ψ = ψ f is represented as

dψ

dr
= − (c − cosϕ)

2R1 cosϕ (ψ − ψw)
+ o

[
(ψ − ψw)−1

]
as ψ → ψw,

dψ

dr
= − (c + cosϕ)

2R2 cosϕ
(
ψ f − ψ

) + o
[(
ψ f − ψ

)−1
]

as ψ → ψ f ,
(265)

respectively. Integrating the first of these equations with the boundary condition (232)
gives

ψ − ψw =
√

− (c − cosϕ)

R1 cosϕ

√
r − R1 + o

(√
r − R1

)
as r → R1. (266)

Integrating (265)2 with the boundary condition (233) gives

ψ f − ψ =
√

− (c + cosϕ)

R2 cosϕ

√
R2 − r + o

(√
R2 − r

)
as r → R2. (267)

Since the normal strain rates are finite as r → R1 and r → R2, Eq. (6) in which ξτ
should be replaced with ξrθ is valid. Substituting (266) into (264)1 and comparing
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to (6) show that

D1 = Ṙ1√
3R1 cosϕ

|2Y0V0 sinϕ+ (Y0 − 1) cosϕ− θY0 sinϕ|√
cosϕ− c

, (268)

where D1 is the strain rate intensity factor corresponding to the maximum friction
surface r = R1. Analogously, it follows from (265)2, (267) and (6) that the strain
rate intensity factor corresponding to the maximum friction surface r = R2 is

D2 = Ṙ1 |Y0w|√
3R2 cosϕ

|2 (V0 + w1) sinϕ− cosϕ− θ sinϕ|√− (c + cosϕ)
. (269)

The right hand sides of (268) and (269) can be evaluated using (254) and (263) .
It is of interest to introduce the ratio Δ = D1/D2. It follows from (268) and (269)

that

Δ =
√

R2

R1

|2Y0V0 sinϕ+ (Y0 − 1) cosϕ− θY0 sinϕ| √− (c + cosϕ)

|Y0w| |2 (V0 + w1) sinϕ− cosϕ− θ sinϕ| √cosϕ− c
. (270)

The variation of Δ with R1/R2 at θ = 1 and θ = 1.5 is shown in Figs. 35 and 36,
respectively. The broken line corresponds to the solution for pressure-independent
material (see Sect. 3.4) curve 1 corresponds to ϕ = 0.1, curve 2 to ϕ = 0.15, curve
3 to ϕ = 0.2, curve 4 to ϕ = 0.25, and curve 5 to ϕ = 0.3. The dependence of
Δ on θ for several values of R1/R2 at ϕ = 0.1,ϕ = 0.2 and ϕ = 0.3 is depicted
in Figs. 37, 38 and 39, respectively. Curve 1 corresponds to R1/R2 = 0.5, curve 2
to R1/R2 = 0.7, and curve 3 to R1/R2 = 0.9. In order to illustrate the effect of
pressure-dependency of the yield criterion on the strain rate intensity factors, it is
convenient to introduce the ratios of the strain rate intensity factors given in (268) and
(269) to the respective strain rate intensity factors from the solution for the pressure-
independent model. These ratios are denoted by d1 and d2 where d1 is related to the
surface r = R1 and d2 to the surface r = R2. Since the strain rate intensity factors
for the model of pressure-independent plasticity are given in (78), the values of d1
and d2 can be found with no difficulty. It is evident from (78), (268) and (269) that
d1 and d2 are linear functions of θ. The dependence of d1 on θ at ϕ = 0.1, ϕ = 0.2
and ϕ = 0.3 is depicted in Figs. 40, 41 and 42, and the dependence of d2 on θ at
the same values of ϕ in Figs. 43, 44 and 45 (curve 1 corresponds to R1/R2 = 0.5,
curve 2 to R1/R2 = 0.7, curve 3 to R1/R2 = 0.9). The variation of d1 and d2 with
R1/R2 at θ = 1 is depicted in Figs. 46 and 47, respectively. In these figures, curve
1 corresponds to ϕ = 0.1, curve 2 to ϕ = 0.15, curve 3 to ϕ = 0.2, curve 4 to
ϕ = 0.25, and curve 5 to ϕ = 0.3. It is seen from Figs. 40, 41, 42, 43, 44, 45, 46 and
47 that d1 < 1 and d2 < 1. Thus pressure-dependency of the yield criterion leads
to a decrease in the magnitude of the strain rate intensity factor in the process under
consideration.
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Fig. 35 Variation of Δ with R1/R2 at θ = 1

Fig. 36 Variation of Δ with R1/R2 at θ = 1.5

Fig. 37 Dependence of Δ on θ at ϕ = 0.1 and several R1/R2-values
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Fig. 38 Dependence of Δ on θ at ϕ = 0.2 and several R1/R2-values

Fig. 39 Dependence of Δ on θ at ϕ = 0.3 and several R1/R2-values

5.5 Compression of a Plastic Layer Between Rotating Plates I

This boundary value problem has been formulated and solved for pressure-indepen-
dent material in Sect. 3.5 (see Fig. 11). An extension of this solution to the double
shearing model has been proposed in [38].

Let ψw be the value of ψ at the maximum friction surface θ = α. The direction
of flow (Fig. 11) dictates that σrθ < 0 near the friction surface. Therefore, it follows
from (199) that

− π

2
< ψw < 0. (271)

The maximum friction surface is parallel to the r -axis. Therefore, φ1 = 0 or φ2 = 0
in (204). The equation φ1 = 0 contradicts (271). Therefore, φ2 = 0 and
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Fig. 40 Dependence of d1 on θ at ϕ = 0.1 and several R1/R2-values

Fig. 41 Dependence of d1 on θ at ϕ = 0.2 and several R1/R2-values

Fig. 42 Dependence of d1 on θ at ϕ = 0.3 and several R1/R2-values
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Fig. 43 Dependence of d2 on θ at ϕ = 0.1 and several R1/R2-values

Fig. 44 Dependence of d2 on θ at ϕ = 0.2 and several R1/R2-values

Fig. 45 Dependence of d2 on θ at ϕ = 0.3 and several R1/R2-values
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Fig. 46 Variation of d1 with R1/R2 at θ = 1 and at several ϕ-values

Fig. 47 Variation of d2 with R1/R2 at θ = 1 and at several ϕ-values

ψ = ψw = −π

4
− ϕ

2
for θ = α. (272)

The main assumption accepted in [38] is that ψ is independent of r . Note that this
assumption is in agreement with (272). Substituting (191) and (199) into (42) gives

r
(cos 2ψ sinϕ− 1)

sinϕ

∂ ln q

∂r
+ sin 2ψ

∂ ln q

∂θ
+ 2 cos 2ψ

(
dψ

dθ
+ 1

)
= 0,

− (cos 2ψ sinϕ+ 1)

sinϕ

∂ ln q

∂θ
+ r sin 2ψ

∂ ln q

∂r
+ 2 sin 2ψ

(
dψ

dθ
+ 1

)
= 0.

(273)

Eliminating the derivative ∂ ln q/∂θ between these equations yields

r
∂ ln q

∂r
= 2 sinϕ (sinϕ+ cos 2ψ)

cos2 ϕ

(
dψ

dθ
+ 1

)
. (274)
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The right hand side of this equation is independent of r . Therefore, integrating gives

ln q = 2 sinϕ (sinϕ+ cos 2ψ)

cos2 ϕ

(
dψ

dθ
+ 1

)
ln r + Q (θ) , (275)

where Q (θ) is an arbitrary function of θ. Substituting (275) into (273)2 results in

− 2 (cos 2ψ sinϕ+ 1)

cos2 ϕ

d

dθ

[
(sinϕ+ cos 2ψ)

(
dψ

dθ
+ 1

)]
ln r (276)

− d Q

dθ

(cos 2ψ sinϕ+ 1)

sinϕ
+ 2 sin 2ψ (1 + sinϕ cos 2ψ)

cos2 ϕ

(
dψ

dθ
+ 1

)
= 0.

This equation can have a solution if and only if the coefficient of ln r vanishes.
Therefore,

(sinϕ+ cos 2ψ)

(
dψ

dθ
+ 1

)
= c, (277)

where c is constant. Substituting (277) into (276) results in

d Q

dθ
= 2c sinϕ sin 2ψ

cos2 ϕ (sinϕ+ cos 2ψ)
. (278)

Replacing here differentiation with respect to θ with differentiation with respect to
ψ by means of (277) and integrating yield

Q = c sinϕ

cos2 ϕ
ln |c − sinϕ− cos 2ψ| + Q0, (279)

where Q0 is a constant of integration. The solution to Eq. (277) satisfying the bound-
ary condition (272) is

θ = α−
ψw∫

ψ

(sinϕ+ cos 2γ)

(c − sinϕ− cos 2γ)
dγ, (280)

where γ is a dummy variable of integration. It follows from (37) and (81) that ψ = 0
at θ = 0. Using this condition the equation for c is obtained from (280) in the form

α =
ψw∫

0

(sinϕ+ cos 2γ)

(c − sinϕ− cos 2γ)
dγ. (281)

Numerical solution to this equation is illustrated in Fig. 48. The broken line corre-
sponds to pressure-independent material, curve 1 to ϕ = 0.1, curve 2 to ϕ = 0.2,
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and curve 3 to ϕ = 0.3. In the case of c = 0 Eq. (281) is immediately integrated to
give α = π/4 + ϕ/2. It is seen from Fig. 48 that c < 0 for α < π/4 + ϕ/2.

It is necessary to find the derivative dc/dα to determine the strain rate intensity
factor. Differentiating (281) gives

dc

dα
= −

⎡
⎢⎣
ψw∫

0

(sinϕ+ cos 2γ)

(c − sinϕ− cos 2γ)2 dγ

⎤
⎥⎦

−1

. (282)

At c = 0 one gets

I (ψ) =
ψ∫

0

(sin φ+ cos 2ζ)

(A − sin φ− cos 2ζ)2 dζ =
ψ∫

0

dζ

(sin φ+ cos 2ζ)

= arctanh

(
cosφ tanψ

1 + sin φ

)
1

cosφ
.

Hence lim
ψ→ψw

I (ψ) = −∞ and it follows from (282) that

dc

dα
= 0 at c = 0. (283)

The velocity field is sought in the form [38]

ur = ωr

2

∂g (ψ, α)

∂θ
, uθ = −ωrg (ψ, α) , (284)

Fig. 48 Variation of c with α at several ϕ-values
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where g (ψ, α) is an arbitrary function of ψ and α. The velocity field (284) automat-
ically satisfies the equation of incompressibility (203)1. Using (284) the boundary
conditions (79) and (80) transform to

g = 0 for θ = 0 (or ψ = 0) (285)

and
g = 1 for θ = α (or ψ = ψw). (286)

Substituting (284) into (203)2 gives

(cos 2ψ + sinϕ)
d2g

dθ2 − 2 sin 2ψ
dg

dθ
+ 4g sinϕ+ 4 sinϕ

ψ̇

ω
= 0. (287)

The derivative dψ/dθ is found from (277). Subsequent differentiation of this deriv-
ative with respect to θ gives

d2ψ

dθ2 = 2c sin 2ψ (c − sinϕ− cos 2ψ)

(sinϕ+ cos 2ψ)3 . (288)

On the other hand,

dg

dθ
= dg

dψ

dψ

dθ
,

d2g

dθ2 = d2g

dψ2

(
dψ

dθ

)2

+ dg

dψ

d2ψ

dθ2 . (289)

Replacing in (287) differentiation with respect to θ with differentiation with respect
to ψ by means of (289) and using (277) and (288) leads to

(sinϕ+ cos 2ψ)
d2g

dψ2 + 2 sin 2ψ
dg

dψ

+4 sinϕ (sinϕ+ cos 2ψ)2

(c − sinϕ− cos 2ψ)2

(
g + ψ̇

ω

)
= 0.

(290)

Since ∂ψ/∂t = −ω∂ψ/∂α, it follows from (202) and (277) that

ψ̇

ω
= − ∂ψ

∂θ0
−
(

c − sinϕ− cos 2ψ

sinϕ+ cos 2ψ

)
g. (291)

Differentiating (280) gives
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(sinϕ+ cos 2ψ)

(c − sinϕ− cos 2ψ)
dψ

+

⎧⎪⎨
⎪⎩

1 + dc

dα

⎡
⎢⎣
ψw∫

ψ

(sinϕ+ cos 2γ)

(c − sinϕ− cos 2γ)2 dγ

⎤
⎥⎦

⎫⎪⎬
⎪⎭

dα− dθ = 0. (292)

Determining the derivative ∂ψ/∂α from this equation and substituting it into (291)
lead to

ψ̇

ω
=

⎧
⎪⎨
⎪⎩

1 − g + dc

dα

⎡
⎢⎣
ψw∫

ψ

(sinϕ+ cos 2γ)

(c − sinϕ− cos 2γ)2 dγ

⎤
⎥⎦

⎫
⎪⎬
⎪⎭

(293)

× (c − sinϕ− cos 2ψ)

(sinϕ+ cos 2ψ)
.

Eliminating ψ̇/ω in (290) by means of (293) results in a linear ordinary differential
equation for g (ψ) in the form

(sinϕ+ cos 2ψ)
d2g

dψ2 + 2 sin 2ψ
dg

dψ
+ P1 (ψ) g = P0 (ψ) ,

P1 (ψ) = 4 sinϕ (sinϕ+ cos 2ψ) (2 sinϕ+ 2 cos 2ψ − c)

(c − sinϕ− cos 2ψ)2 , (294)

P0 (ψ) = − 4 sinϕ (sinϕ+ cos 2ψ)

(c − sinϕ− cos 2ψ)

⎧⎪⎨
⎪⎩

dc

dα

⎡
⎢⎣
ψw∫

ψ

(sinϕ+ cos 2γ)

(c − sinϕ− cos 2γ)2 dγ

⎤
⎥⎦+ 1

⎫⎪⎬
⎪⎭

.

Expanding the coefficients of this equation in series in the vicinity of ψ = ψw gives

sinϕ+ cos 2ψ =2 cosϕ (ψ − ψw) + 2 sinϕ (ψ − ψw)2

− 4

3
cosϕ (ψ − ψw)3 + o

[
(ψ − ψw)3

]
,

2 sin 2ψ = − 2 cosϕ− 4 sinϕ (ψ − ψw) + 4 cosϕ (ψ − ψw)2

+ 8

3
sinϕ (ψ − ψw)3 + o

[
(ψ − ψw)3

]
,

P1 (ψ) = − 4 sin 2ϕ

c
(ψ − ψw) − 8 sin2 ϕ

c
(ψ − ψw)2 (295)

+ 8 sin 2ϕ

c

(
1

3
+ 2 cos2 ϕ

c2

)
(ψ − ψw)3 + o

[
(ψ − ψw)3

]
,
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P0 (ψ) = − 4 sin 2ϕ

c
(ψ − ψw) − 8 sinϕ (1 + cos 2ϕ+ c sinϕ)

c2 (ψ − ψw)2

− 4 sin 2ϕ

3c3

[
2
(

3 − c2 + 3 cos 2ϕ+ 6c sinϕ
)

− 3 cosϕ
dc

dα

]
(ψ − ψw)3

+ o
[
(ψ − ψw)3

]

asψ → ψw. It is seen from (295) thatψ = ψw is a regular singular point of Eq. (294).
Using a standard procedure it is possible to find that the two linearly independent
primitive solutions of the corresponding homogeneous equation are represented as

g1 = O
[
(ψ − ψw)2

]
as ψ → ψw (296)

and
g2 = P (ψ) + Cg1 ln (ψ − ψw) , (297)

where P (ψ) is a function of ψ represented by a Taylor series in the vicinity of
ψ = ψw and C is an arbitrary constant. It is possible to show (see [38]) that C must
vanish and that P (ψ) does not contain the term O (ψ − ψw) as ψ → ψw. Then, it
follows from (296), (297) and the boundary condition (286) that the function g (ψ)

is approximated by

g = 1 + c2 (ψ − ψw)2 + c3 (ψ − ψw)3 (298)

in the vicinity of point ψ = ψw. Substituting (295) and (298) into (294) yields

c3 = 2

3
c2tanϕ− 4 sin 2ϕ

3c2 . (299)

It has been shown before that c ≤ 0 (Fig. 48). However, it follows from (295) and
(299) that the special case c = 0 should be treated separately. In order to clarify the
general structure of the solution for values of c in the vicinity of c = 0, it is necessary
to find the radial velocity at ψ = ψw (i.e. at the maximum friction surface). It follows
from (277), (284), (295), and (298) that

ur = ωr

2

cc2

cosϕ
+ o (1) as ψ → ψw. (300)

It is seen from this equation that ur atψ = ψw vanishes if c2 = 0. This means that the
regime of sticking occurs. Let αcr be the value of α corresponding to the condition
c2 = 0. Assume that

0 < αcr <
π

4
+ ϕ

2
. (301)

Then, the general structure of the solution is as follows. The found solution at sliding
is valid if α < αcr. The condition (301) ensures that c < 0 (Fig. 48). Then, since
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Fig. 49 The variation of αcr with ϕ

ur > 0, it follows from (300) that
c2 < 0. (302)

A limit case occurs at α = αcr. In this case the found solution is valid but the regime
of sticking takes place at the maximum friction surface. If α > αcr, a rigid zone
appears near the plate. This case is not important for the present chapter since the
solution is not singular. In order to show that the structure of the solution proposed
is possible, it is necessary to verify (301). To this end Eq. (294) has been solved
numerically at c2 = 0. The representation of the solution given in (298) has been
used in the range ψw ≥ ψ ≥ ψw (1 − δ) where 0 < δ << 1. The value of c3 in
this representation has been eliminated by means of (299). The solution found must
satisfy the boundary condition (285). The value of c corresponding to the limit case
is determined from this boundary condition. It is evident that this value is related to
αcr by Eq. (281) in which α should be replaced with αcr. The numerical solution is
illustrated in Fig. 49. It is seen from this figure that the inequality (301) is satisfied.
In what follows, it is assumed that α ≤ αcr.

Using (277), (284), (288) and (289) the shear strain rate is determined from (41)
as

ξrθ = ω (c − sinϕ− cos 2ψ)

4 (sinϕ+ cos 2ψ)2

[
(c − sinϕ− cos 2ψ)

d2g

dψ2 + 2c sin 2ψ

(sinϕ+ cos 2ψ)

dg

dψ

]
.

(303)
Substituting (298) into (303) and using (295) and (299) yield the representation of
the shear strain rate in the vicinity of the maximum friction surface in the form

ξrθ = − ω

4 cosϕ

[
4 sinϕ+ c

(
c2 + tan2ϕ

)]

(ψ − ψw)
+ o

[
(ψ − ψw)−1

]
as ψ → ψw.

(304)
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In the vicinity of the maximum friction surface (277) is written as

dψ

dθ
= c

2 cosϕ (ψ − ψw)
+ o

[
(ψ − ψw)−1

]
as ψ → ψw.

Integrating with the use of the boundary condition (272) gives

ψ − ψw =
√−c√
cosϕ

(α− θ)1/2 + o
[
(α− θ)1/2

]
as θ → α. (305)

Substituting (305) into (304) yields

|ξrθ| = ω

4
√

cosϕ

[
4 sinϕ+ c

(
c2 + tan2ϕ

)]
√−c

√
α− θ

+ o
[
(α− θ)−1/2

]
as θ → α.

(306)
Equation (6) in which ξτ should be replased with ξrθ is valid. Therefore, the strain
rate intensity factor is given by

D = ω

2
√

3
√

cosϕ

[
4 sinϕ+ c

(
c2 + tan2ϕ

)]√
r√−c
. (307)

It is convenient to introduce the dimensionless strain rate intensity factor by

d = D

ω
√

r
. (308)

The same definition for the dimensionless strain rate intensity factor has been adopted
for the pressure-independent model in Sect. 3.5 (see Fig. 12). The variation of the
dimensionless strain rate intensity factor found by means of (307) and (308) as well
as the dimensionless strain rate intensity factor for the pressure-independent model
is depicted in Fig. 50. The broken line corresponds to pressure-independent material,
curve 1 to ϕ = 0.1, curve 2 to ϕ = 0.2, and curve 3 to ϕ = 0.3. The right ends
of these curves are determined by the condition α = αcr. It is seen from this figure
that the strain rate intensity factor for pressure-independent material is larger than
the strain rate intensity factor for pressure-dependent material at smaller values of
α and smaller than the strain rate intensity factor for pressure-dependent material at
larger values of α.

5.6 Compression of a Plastic Layer Between Rotating Plates II

This boundary value problem has been formulated and solved for pressure-indepen-
dent material in Sect. 3.6 (see Fig. 14). An extension of this solution to the double
shearing model has been proposed in [39].
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Fig. 50 Variation of the dimensionless strain rate intensity factor with α at several ϕ-values

Let ψw be the value of ψ at the maximum friction surface θ = α. The direction
of flow (Fig. 14) dictates that σrθ > 0 near the friction surface. Therefore, it follows
from (199) that

0 < ψw <
π

2
. (309)

The maximum friction surface is parallel to the r -axis. Therefore, φ1 = 0 or φ2 = 0
in (204). The equation φ2 = 0 contradicts (309). Therefore, φ1 = 0 and

ψ = ψw = π

4
+ ϕ

2
for θ = α. (310)

The main assumption accepted in [39] is that ψ is independent of r . Note that this
assumption is in agreement with (310). The general solution for the stress equations
given in the previous section is valid. In particular, the dependence of ψ on θ follows
from (277) or, after integration, from (280). Then, the value of c involved in (277) is
determined from (281) whereψw should be eliminated by means of (310). Numerical
solution of this equation is illustrated in Fig. 51. The broken line corresponds to the
solution for pressure-independent material, curve 1 to ϕ = 0.1, curve 2 to ϕ = 0.2,
and curve 3 to ϕ = 0.3. It is seen from this figure that c > 0. The derivative dc/dα
is given by (282). The velocity field is sought in the form [39]

ur = ωr

2

∂g (ψ, α)

∂θ
+ ω

G (ψ, α)

r
, uθ = −ωrg (ψ, α) , (311)

where g (ψ, α) and G (ψ, α) are arbitrary functions of ψ and α. It is possible to
verify by inspection that (203)1 is automatically satisfied. Using (310) and (311) the
boundary conditions (79) and (80) are transformed to
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Fig. 51 Variation of c with α

g = 0 at θ = 0 (or ψ = 0) (312)

and
g = 1 at θ = α (or ψ = ψw), (313)

respectively. Substituting (311) into (203)2 yields

(cos 2ψ + sinϕ)
∂2g

∂θ2 − 2 sin 2ψ
∂g

∂θ
+ 4g sinϕ+ 4 sinϕ

ψ̇

ω

+ 2

r2

[
(cos 2ψ + sinϕ)

dG

dθ
+ 2G sin 2ψ

]
= 0.

(314)

Since ψ and ψ̇ are independent of r , this equation may have a solution if and
only if

(cos 2ψ + sinϕ)
∂2g

∂θ2 − 2 sin 2ψ
∂g

∂θ
+ 4g sinϕ+ 4 sinϕ

ψ̇

ω
= 0, (315)

(cos 2ψ + sinϕ)
∂G

∂θ
+ 2G sin 2ψ = 0.

Replacing here the derivatives ∂2g/∂θ2 and ∂g/∂θ with the derivatives ∂2g/∂ψ2

and ∂g/∂ψ by means of (289) and eliminating the derivatives d2ψ/dθ2 and dψ/dθ
by means of (277) and (288) result in
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(sinϕ+ cos 2ψ)
∂2g

∂ψ2 + 2 sin 2ψ
∂g

∂ψ

+ 4 sinϕ (sinϕ+ cos 2ψ)2

(c − sinϕ− cos 2ψ)2

(
g + ψ̇

ω

)
= 0, (316)

dG

dψ
+ 2G sin 2ψ

c − sinϕ− cos 2ψ
= 0.

Integrating (316)2 gives

G = B

c − sinϕ− cos 2ψ
, (317)

where B is a constant of integration. The derivative ψ̇ is given by (293). Therefore,
Eq. (316)1 transforms to (294). However, in contrast to (295), it is now necessary to
investigate the coefficients of Eq. (294) in the vicinity of ψ = ψw = π/4 + ϕ/2.
Expanding these coefficients in series near this point yields

sinϕ+ cos 2ψ = − 2 cosϕ (ψ − ψw) + 2 sinϕ (ψ − ψw)2

+ 4

3
cosϕ (ψ − ψw)3 + o

[
(ψ − ψw)3] ,

2 sin 2ψ = 2 cosϕ− 4 sinϕ (ψ − ψw) − 4 cosϕ (ψ − ψw)2

+ 8

3
sinϕ (ψ − ψw)3 + o

[
(ψ − ψw)3] ,

P1 (ψ) = 4 sin 2ϕ

c
(ψ − ψw) − 8 sin2 ϕ

c
(ψ − ψw)2

− 8 sin 2ϕ

c

(
1

3
+ 2 cos2 ϕ

A2

)
(ψ − ψw)3 + o

[
(ψ − ψw)3] ,

P0 (ψ) = 4 sin 2ϕ

c
(ψ − ψw) − 8 sinϕ (1 + cos 2ϕ+ A sinϕ)

c2 (ψ − ψw)2

+ 4 sin 2ϕ

3c3

[
2
(
3 − c2 + 3 cos 2ϕ+ 6c sinϕ

)

+ 3 cosϕ
dc

dα

]
(ψ − ψw)3 + o

[
(ψ − ψw)3] (318)

as ψ → ψw. It is seen from (294) and (318) that ψ = ψw is a regular singular point
of Eq. (294). Using a standard procedure it is possible to find that the solution to this
equation in the vicinity of ψ = ψw is represented by

g = 1 + c2 (ψ − ψw)2 + c3 (ψ − ψw)3 . (319)
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It has been taken into account here that the solution must satisfy the boundary con-
dition (313). Substituting (318) and (319) into (294) and collecting the coefficients
of (ψ − ψw)2 give

c3 = −2

3
c2tanϕ+ 4 sin 2ϕ

3c2 . (320)

The shear strain rate is determined from (41) and (311) as

ξrθ

ω
= 1

4

∂2g

∂θ2 + 1

2r2

∂G

∂θ
. (321)

Replacing here differentiation with respect to θ with differentiation with respect to
ψ by means of (289), eliminating G by means of (317) and using (277) and (288)
result in

ξrθ = ω

4

(
c − sinϕ− cos 2ψ

sinϕ+ cos 2ψ

)
Q (r,ψ) ,

Q (r,ψ) =
(

c − sinϕ− cos 2ψ

sinϕ+ cos 2ψ

)
∂2g

∂ψ2

+ 2c sin 2ψ

(sinϕ+ cos 2ψ)2

∂g

∂ψ
− 4B sin 2ψ

r2 (c − sinϕ− cos 2ψ)2 . (322)

Substituting (319) into (322), eliminating c3 by means of (320) and expanding the
resulting expression in a series in the vicinity of ψ = ψw yield

ξrθ = −ω

2

(
B

cr2 + cc2

2 cosϕ
+ tanϕ

)
(ψw − ψ)−1 + o

[
(ψw − ψ)−1

]
(323)

as ψ → ψw.

In the vicinity of this point Eq. (277) is represented as

dψ

dθ
= c

2 cosϕ (ψw − ψ)
+ o

[
(ψw − ψ)−1

]
as ψ → ψw.

Integrating with the boundary condition (310) gives

ψw − ψ =
√

c

cosϕ

√
α− θ + o

(√
α− θ

)
as θ → α. (324)

Substituting (324) into (323) yields

|ξrθ| = − ω

2

(
B

cr2 + cc2

2 cosϕ
+ tanϕ

)√
cosϕ

c
(α− θ)−1/2 (325)

+ o
[
(α− θ)−1/2

]
as θ → α.
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Equation (6) in which ξτ should be replaced with ξrθ is valid. Therefore, the strain
rate intensity factor is determined from (325) as

D = −ω
√

r√
3

(
B

cr2 + cc2

2 cosϕ
+ tan φ

)√
cosϕ

c
. (326)

The value of c2 is found from numerical solution of Eq. (294). The variation of c2 with
α at several values of ϕ is illustrated in Fig. 52. The broken line corresponds to the
model of pressure-independent material. In this case c2 = −2 . Curve 1 corresponds
to ϕ = 0.1, curve 2 to ϕ = 0.15, curve 3 to ϕ = 0.2, curve 4 to ϕ = 0.25, and curve
5 to ϕ = 0.3.

The direction of friction stress (Fig. 14) demands ur < 0 at θ = α (or ψ = ψw).
Taking into account (311), (317) and (319) this inequality is rewritten as

ur |θ=α = − rcc2

2 cosϕ
+ B

rc
< 0.

Therefore, the solution found is valid in the range

r < rcr = 1

c

√
2B cosϕ

c2
. (327)

The values of c and c2 have been already determined (Figs. 51 and 52). In order to
find the value of B, it is necessary to formulate an additional condition in integral
form (similar to the condition (49) accepted in the classical problem considered in
Sect. 3.2). A reasonable condition is

α∫

0

ur |r=R dθ = 0. (328)

Fig. 52 Variation of c2 with α at several ϕ-values
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Here R is some prescribed radius. Substituting the radial velocity from (311) into
(328), eliminating G by means of (317) and replacing integration with respect to θ
with integration with respect to ψ by means of (277) result in

B = − R2

2

⎡
⎢⎣
ψw∫

0

(sinϕ+ cos 2ψ)

(c − sinϕ− cos 2ψ)2 dψ

⎤
⎥⎦

−1

. (329)

Eliminating B in (327) by means of (329) determines the dependence of rcr/R
on ϕ and α. The dependence of rcr/R on α at several values of ϕ is depicted in
Fig. 53. The broken line corresponds to the model of pressure-independent material,
curve 1 to ϕ = 0.1, curve 2 to ϕ = 0.15, curve 3 to ϕ = 0.2, curve 4 to ϕ = 0.25,
and curve 5 to ϕ = 0.3. Eliminating B in (326) by means of (329), it is possible to
conclude that the strain rate intensity factor depends on ϕ, α and r/R. Consider first
the dependence of D on ϕ and α assuming that r/R = μ = constant < rcr/R. It is
convenient to introduce the dimensionless strain rate intensity factor, d, as the ratio
of the strain rate intensity factor given by (326) to the strain rate intensity factor for
pressure-independent material given by (105). The variation of d with α at several
values of ϕ is shown in Fig. 54 at μ = 0.3, Fig. 55 at μ = 0.2, and Fig. 56 at μ = 0.1.
In these figures, curve 1 corresponds to ϕ = 0.1, curve 2 to ϕ = 0.15, curve 3
to ϕ = 0.2, curve 4 to ϕ = 0.25, and curve 5 to ϕ = 0.3. In order to illustrate
the variation of the strain rate intensity factor with r/R, it is necessary to take into
account that rcr/R depends on ϕ (Fig. 53). Therefore, it is more convenient in this
case to introduce the dimensionless strain rate intensity factor by

d = D/
(
ω
√

r
)
.

Fig. 53 Variation of rcr/R with α at several ϕ-values
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Fig. 54 Variation of the dimensionless strain rate intensity factor with α at several ϕ-values and
μ = 0.3

Fig. 55 Variation of the dimensionless strain rate intensity factor with α at several ϕ-values and
μ = 0.2

Note that the same definition has been adopted for the dimensionless strain
rate intensity factor depicted in Fig. 15. The variation of d with r/R in the range
0.2 ≤ r/R ≤ rcr/R is illustrated in Figs. 57, 58, 59 and 60. In Figs. 57 and 58 the
value of α is fixed (α = π/36 in Fig. 57 and α = π/6 in Fig. 58) and the curves
correspond to different values of ϕ (the broken line corresponds to the model of
pressure-independent material, curve 1 to ϕ = 0.1, curve 2 to ϕ = 0.2 and curve 3
toϕ = 0.3). In Figs. 59 and 60 the value ofϕ is fixed (ϕ = 0.1 in Fig. 59 andϕ = 0.3
in Fig. 60) and the curves correspond to different values of α (curve 1 corresponds
to α = π/36, curve 2 to α = π/18, curve 3 to α = π/12, curve 4 to α = π/9, and
curve 5 to α = π/6).
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Fig. 56 Variation of the dimensionless strain rate intensity factor with α at several ϕ-values and
μ = 0.1

Fig. 57 Variation of the dimensionless strain rate intensity factor with r/R at several ϕ-values and
α = π/36

It is seen from Figs. 54, 55, 56, 57 and 58 that the strain rate intensity factor
for pressure-dependent material is smaller than the strain rate intensity factor for
pressure-independent material.

5.7 Simultaneous Shearing and Expansion of a Hollow Cylinder

This boundary value problem has been formulated and solved for pressure-independent
material in Sect. 3.7 (see Fig. 17). An extension of this solution to the double shearing
model has been proposed in [5].
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Fig. 58 Variation of the dimensionless strain rate intensity factor with r/R at several ϕ-values and
α = π/6

Fig. 59 Variation of the dimensionless strain rate intensity factor with r/R at several α-values and
ϕ = 0.1

Let ψw be the value of ψ at the maximum friction surface r = a. The direction
of rotation of the rigid rod (Fig. 17) dictates that σrθ > 0 near the friction surface.
Therefore, it follows from (199) that

0 < ψw <
π

2
. (330)

The maximum friction surface is perpendicular to the r -axis. Therefore, φ1 = π/2 or
φ2 = π/2 in (204). The equation φ1 = π/2 contradicts (330). Therefore, φ2 = π/2
and

ψ = ψw = π

4
− ϕ

2
for r = a. (331)

The solution is independent of θ. Therefore, the equilibrium Eq. (42) become
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Fig. 60 Variation of the dimensionless strain rate intensity factor with r/R at several α-values and
ϕ = 0.3

∂σrr

∂r
+ σrr − σθθ

r
= 0,

∂σrθ

∂r
+ 2σrθ

r
= 0. (332)

The general solution to Eq. (332)2 is

σrθ

k
= C2

r2 , (333)

where C is a constant of integration. Using (191), (200) and (333) the normal stresses
are expressed as

σrr

k
= cot ϕ− C2 (1 − cos 2ψ sinϕ)

r2 sin 2ψ sinϕ
,

σθθ

k
= cot ϕ− C2 (1 + cos 2ψ sinϕ)

r2 sin 2ψ sinϕ
.

(334)

Substituting (334) into (332)1 gives the following equation for ψ

∂ψ

∂r
= − sin 2ψ

r (cos 2ψ − sinϕ)
. (335)

Integrating this equation with the boundary condition (331) results in

r

a
= cosψw tanm ψw

cosψ tanm ψ
, m = 1 − sinϕ

2
. (336)

This equation determines ψ as a function of r in implicit form. Let ψb be the value
of ψ at r = b. Then, it follows from (336) that
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b

a
= cosψw tanm ψw

cosψb tanm ψb
. (337)

This equation should be solved numerically to find the value of ψb.
Since the solution is independent of θ, the solution to the incompressibility

Eq. (302)1 satisfying the boundary condition (106) is

ur = ȧa

r
. (338)

Since ψ is independent of θ, ∂ψ/∂r is given by (335) and ∂ψ/∂t = ȧ∂ψ/∂a,
Eq. (301)2 becomes

ψ̇ = ȧ
∂ψ

∂a
− ȧa sin 2ψ

r2 (cos 2ψ − sinϕ)
. (339)

Here the radial velocity has been eliminated by means of (338). Substituting (338)
and (339) into (302)2 gives

sin 2ψ
∂uθ
∂ψ

+ (cos 2ψ + sinϕ) uθ − 2aȧ sin 2ψ

r
− 2ȧr sinϕ

∂ψ

∂a
(340)

+ 2aȧ sinϕ

r

sin 2ψ

(cos 2ψ − sinϕ)
= 0.

Since ψw is constant, it follows from (336) that

∂ψ

∂a
= sin 2ψ

a (cos 2ψ − sinϕ)
. (341)

Substituting (336) and (341) into (340) leads to

∂uθ
∂ψ

+ (cos 2ψ + sinϕ)

sin 2ψ
uθ = P (ψ) ,

P (ψ) = 2ȧ tanm ψ cosψ

cosψw tanm ψw (cos 2ψ − sinϕ)

×
(

sinϕ cosϕ tansinϕ ψ

tansinϕ ψw sin 2ψ
+ cos 2ψ − 2 sinϕ

)
. (342)

Applying l’Hospital’s rule it is possible to find that lim
ψ→ψw

P (ψ) = 2ȧ > 0. Then, it

follows from (342) that

∂uθ
∂ψ

∣∣∣∣
ψ=ψw

= 2 (ȧ − ua tanϕ) . (343)
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Here ua is the value of the circumferential velocity at r = a. Taking into account that
the solution is independent of θ and replacing differentiation with respect to r with
differentiation with respect to ψ by means of (335) the shear strain rate is determined
from (41) as

ξrθ = (ȧ − ua tanϕ)

2a (ψ − ψw)
+ o

[
(ψ − ψw)−1

]
as ψ → ψw. (344)

Here Eq. (343) has been used to eliminate the derivative ∂uθ/∂ψ. Equation (335)
in the vicinity of r = a (or ψ = ψw) is represented as

∂ψ

∂r
= 1

2a (ψ − ψw)
+ o

[
(ψ − ψw)−1

]
as ψ → ψw. (345)

Integrating this equation with the boundary condition (331) gives

ψ − ψw =
√

r − a√
a

+ o
(√

r − a
)

as r → a. (346)

Substituting (346) into (344) leads to

ξrθ = (ȧ − ua tanϕ)

2
√

a
√

r − a
+ o

[
(r − a)−1/2

]
as r → a. (347)

Equation (6) in which ξτ should be replaced with ξrθ is valid. Therefore, the strain
rate intensity factor is determined using (347) as

D = (ȧ − ua tanϕ)√
3a

. (348)

It is convenient to introduce the dimensionless strain rate intensity factor, d, as the
ratio of the strain rate intensity factor given by (348) to the strain rate intensity factor
given by (112). As a result,

d = 1 − ua

ȧ
tanϕ. (349)

The solution of Eq. (342) satisfying the boundary condition (107) is

uθ
ȧ

= tanm ψ

cosψw tanm+sinϕ ψw sinψ
(350)

×
ψ∫

ψb

[
sinϕ cosϕ tansinϕ γ + tansinϕ ψw sin 2γ (cos 2γ − 2 sinϕ)

]

(cos 2γ − sinϕ)
dγ.
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Fig. 61 Variation of the
dimensionless strain rate
intensity factor with α at
several ϕ-values

Here γ is a dummy variable of integration and ψb is determined from the solution of
Eq. (337). It follows from the definition for ua and (350) that

− ua

ȧ
= 2

cosϕ

ψb∫

ψw

[
sinϕ cosϕ (tan γ/tanψw)sinϕ + sin 2γ (cos 2γ − 2 sinϕ)

]

(cos 2γ − sinϕ)
dγ.

(351)
The integrand reduces to the expression 0/0 at γ = ψw. Applying l’Hospital’s rule
yields

lim
γ→ψw

{
sinϕ cosϕ (tan γcot ψw)sinϕ + sin 2γ (cos 2γ − 2 sinϕ)

(cos 2γ − sinϕ)

}
= cosϕ.

(352)
Using (352) the integral in (351) can be evaluated numerically with no difficulty.

Substituting the value of ua found into (349) gives the dimensionless strain rate
intensity factor. Its variation with the ratio a/b at several values of ϕ is depicted in
Fig. 61 (curve 1 corresponds to ϕ = 0.1, curve 2 to ϕ = 0.15, curve 3 to ϕ = 0.2,
curve 4 toϕ = 0.25, and curve 5 toϕ = 0.3). It is seen from this figure that the strain
rate intensity factor for pressure-independent material is smaller than the strain rate
intensity factor for pressure-dependent material.

6 Axisymmetric Solutions for the Double-Shearing Model

6.1 Basic Equations

Section 6 is concerned with axisymmetric solutions for the double-shearing model. In
this section, a spherical coordinate system (r, θ,ϑ) will be employed. The solutions
are independent of ϑ, the stress σϑϑ is one of the principal stresses and the velocity
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uϑ vanishes. A cross-section of the Mohr-Coulomb yield surface by a plane σϑϑ =
constant is shown in Fig. 62. In general, various regimes of flow arise depending on
the relative magnitudes of σϑϑ, σ1 and σ2. However, in what follows, regime A only
is of interest. In this regime

σ1 (1 + sinϕ) = 2k cosϕ+ σϑϑ (1 − sinϕ) , σ2 = σϑϑ. (353)

Using the transformation equations for stress components in rθ-planes the stress
components in the spherical coordinate system are expressed as (Fig. 21)

σrr = −p + q cos 2ψ, σθθ = −p − q cos 2ψ, σrθ = q sin 2ψ. (354)

Here p and q are given by (192). Using (354) the yield criterion (353) transforms to

q − p sinϕ = k cosϕ, σϑϑ = −p − q. (355)

The velocity equations have been given in [10]. Those are

ξrr + ξθθ + ξϑϑ = 0, (356)

2ξrθ cos 2ψ − (ξrr − ξθθ) sin 2ψ + sinϕ
(
ωrθ + ψ̇

) = 0.

The components of the strain rate tensor are given by (124). Equation (356)1 is
equivalent to (128). The only non-zero spin component is

ωrθ = 1

2r

(
∂ur

∂θ
− r

∂uθ
∂r

− uθ

)
. (357)

Since uϑ = 0, the derivative ψ̇ is given by

ψ̇ = ∂ψ

∂t
+ ur

∂ψ

∂r
+ uθ

r

∂ψ

∂θ
. (358)

Fig. 62 Cross-section of the
Mohr-Coulomb yield surface
by plane σϑϑ = constant
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Equation (131) is replaced with

φ1 = ψ − π

4
− ϕ

2
, φ2 = ψ + π

4
+ ϕ

2
. (359)

The equilibrium equations are given by (125).

6.2 Flow of Plastic Material Through an Converging Conical
Channel

This boundary value problem has been formulated and solved for pressure-indepen-
dent material in Sect. 4.3 (see Fig. 23). An extension of this solution to the double
shearing model has been outlined in [10].

Let ψw be the value of ψ at the maximum friction surface θ = α. The direction
of flow (Fig. 23) dictates that σrθ > 0 near the friction surface. Therefore, it follows
from (354) that

0 < ψw <
π

2
. (360)

The orientation of the maximum friction surface shows that φ1 = 0 or φ2 = 0 in
(359). The equation φ2 = 0 contradicts (360). Therefore, φ1 = 0 and

ψ = ψw = π

4
+ ϕ

2
for θ = α. (361)

The main assumptions accepted in [10] are thatψ is independent of r and uθ = 0.
Note that the former is in agreement with (361) and the latter automatically satisfies
the boundary conditions (147). Equation (128) reduces to

∂ur

∂r
+ 2

ur

r
= 0.

The general solution of this equation is

ur = −U (θ)

r2 , (362)

where U (θ) > 0 is an arbitrary function of θ. The solution for stresses is sought in
the form [40]

q = exp [ f (θ)] rn . (363)

Here f (θ) is an arbitrary function of θ and n = constant. Using (355) and (363) it
is possible to find that
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p = exp [ f (θ)] rn

sinϕ
− k cot ϕ, (364)

σϑϑ = − exp [ f (θ)] rn
(

1

sinϕ
+ 1

)
+ k cot ϕ.

Substituting (363) and (364) into (354) gives the stresses in terms of f (θ) and r .
Substituting these stresses and σϑϑ from (364) into the equilibrium Eq. (125) results
in the following equations for ψ (θ) and f (θ)

dψ

dθ
= n cos2 ϕ− sinϕω0(ψ, θ)

2 sinϕ (sinϕ+ cos 2ψ)
, (365)

ω0 (ψ, θ) = 3 sinϕ+ 1 + cos 2ψ (3 + sinϕ) + cot θ sin 2ψ (1 + sinϕ) ,

and
d f

dθ
= n sin 2ψ − sinϕ [cot θ (1 − cos 2ψ) + sin 2ψ]

sinϕ+ cos 2ψ
, (366)

respectively. Using (365) Eq. (366) can be rewritten as

d f

dψ
= 2 sinϕ {n sin 2ψ − sinϕ [cot θ (1 − cos 2ψ) + sin 2ψ]}

n cos2 ϕ− sinϕω0(ψ, θ)
. (367)

An advantage of Eq. (367) over Eq. (366) is that the denominator in (366) vanishes
at ψ = ψw. For the same reason, it is advantageous to rewrite Eq. (365) as

dθ

dψ
= 2 sinϕ (sinϕ+ cos 2ψ)

n cos2 ϕ− sinϕω0(ψ, θ)
. (368)

The process is stationary. Therefore, ∂ψ/∂t = 0. Moreover, by assumption,
uθ = 0 and ∂ψ/∂r = 0. Therefore, it follows from (358) that ψ̇ = 0. Then, using
(124) and (357) it is possible to simplify Eq. (356)2 to

(cos 2ψ + sinϕ)
∂ur

∂θ
− sin 2ψ

(
r
∂ur

∂r
− ur

)
= 0.

Substituting (362) into this equation gives

(cos 2ψ + sinϕ)
dU

dθ
+ 3U sin 2ψ = 0. (369)

The coefficient of the derivative vanishes at ψ = ψw. Therefore, using (368) it is
advantageous to rewrite (369) as

dU

dψ
= −6U sinϕ sin 2ψ

n cos2 ϕ− sinϕω0(ψ, θ)
. (370)
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In the case under consideration, the shear strain rate is determined from (124), (362)
and (369) as

ξrθ = − 1

2r3

dU

dθ
= 3U sin 2ψ

2r3 (cos 2ψ + sinϕ)
. (371)

Let Uw be the value of U at θ = α (or ψ = ψw). Then, expanding the right hand side
of (371) in a series in the vicinity of ψ = ψw yields

ξrθ = 3Uw

4r3 (ψw − ψ)
+ o

(
1

ψw − ψ

)
as ψ → ψw. (372)

Equation (368) in the vicinity of ψ = ψw (or θ = α) becomes

dθ

dψ
= 4 sinϕ (ψw − ψ)

n cosϕ− sinϕ [cosϕ+ cot α (1 + sinϕ)]

+ o (ψw − ψ) as ψ → ψw.

Integrating this equation gives

(ψw − ψ)2 = {n cosϕ− sinϕ [cosϕ+ cot α (1 + sinϕ)]}
2 sinϕ

(α− θ) (373)

to leading order. Substituting (373) into (372) gives

ξrθ = 3
√

2 sinϕUw

4r3
√

n cosϕ− sinϕ [cosϕ+ cot α (1 + sinϕ)]
√
α− θ

(374)

+ o

(
1√
α− θ

)
as θ → α.

The normal strain rates are bounded in the vicinity of the maximum friction surface
and |ξrθ| → ∞ as θ → α. Therefore, Eq. (6) in which ξτ should be replaced with
ξrθ is valid. Then, it follows from (6) and (374) that the strain rate intensity factor is

D =
√

6 sinϕUw

2r5/2
√

n cosϕ− sinϕ [cosϕ+ cot α (1 + sinϕ)]
. (375)

A difficulty with solving (367), (368) and (370) numerically is that the right hand
sides of these equations contain the expression 0 ·∞ as θ → 0 andψ → 0. Represent
the function ψ (θ) in the form

ψ (θ) = Aθ + Bθ2 + O
(
θ3
)

as θ → 0. (376)

Substituting this representation into (365) gives
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A + 2Bθ = 1

2

(
n

sinϕ
− n − 4 − 2A

)
− Bθ as θ → 0. (377)

Therefore,

A = −1 + n

4

(
1

sinϕ
− 1

)
, B = 0

and Eq. (376) becomes

ψ (θ) =
[

n

4

(
1

sinϕ
− 1

)
− 1

]
θ + O

(
θ3
)

as θ → 0. (378)

Substituting this representation into (367) and (370) yields

d f

dψ
= n

(
1

2
+ 1

1 + sinϕ

)
θ + O

(
θ3
)

as θ → 0 (379)

and
dU

dψ
= − 6U

(1 + sinϕ)
θ + O

(
θ3
)

as θ → 0, (380)

respectively. It follows from (378)-(380) that

f = f0 + n sinϕ (3 + sinϕ)

(1 + sinϕ) [n (1 − sinϕ) − 4 sinϕ]
ψ2 + o

(
ψ2
)

as ψ → 0,

ln
U

U0
= − 12 sinϕ[

n cos2 ϕ− 4 sinϕ (1 + sinϕ)
]ψ2 + o

(
ψ2
)

as ψ → 0, (381)

where f0 and U0 are constants of integration. It is seen from (375) that the function
f (θ) is not involved in the expression for the strain rate intensity factor. Therefore,
Eq. (367) is not solved here. The solution of Eq. (370) is

U = Uww (ψ) , (382)

w (ψ) = exp

⎧⎪⎨
⎪⎩

−6 sinϕ

ψ∫

ψw

sin 2γ

n cos2 ϕ− sinϕω0 [γ, θ(γ)]
dγ

⎫⎪⎬
⎪⎭

.

Equation (168) should be used to determine Uw. In particular, substituting (362) and
(382) into this equation gives

Q = 2πUw

α∫

0

w (ψ) sin θdθ.
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Replacing here integration with respect to θ with integration with respect to ψ by
means of (368) yields

Uw = Q

4π sinϕ

⎡
⎢⎣
ψw∫

0

sin θ (sinϕ+ cos 2ψ) w (ψ)

n cos2 ϕ− sinϕω0 (ψ, θ)
dψ

⎤
⎥⎦

−1

. (383)

In order to make comparison with the solution for pressure-independent material
(Sect. 4.3), it is convenient to introduce the dimensionless strain rate intensity factor,
d, by (170).

Using (378) Eq. (368) can be solved numerically if a value of n is specified. An
iterative procedure should be adopted to determine the value of n using the boundary
condition (361). The variation of n withα at several values ofϕ is depicted in Fig. 63
(curve 1 corresponds to ϕ = 0.1, curve 2 to ϕ = 0.15, curve 3 to ϕ = 0.2, curve 4
to ϕ = 0.25, and curve 5 to ϕ = 0.3). Having the solution to Eq. (368) the integrals
in (382) and (383) can be evaluated. Finally, the dimensionless strain rate intensity
factor is determined from (170) and (375). The variation of d withα at several values
of ϕ is depicted in Fig. 64. The broken line corresponds to the model of pressure-
independent plasticity. It is seen that the effect of ϕ on d is not significant (the solid
curves cover the range 0.1 ≤ ϕ ≤ 0.3). It is more pronounced at smaller α-angles
(Fig. 65). In this figure, curve 1 corresponds to ϕ = 0.1, curve 2 to ϕ = 0.15,
curve 3 to ϕ = 0.2, curve 4 to ϕ = 0.25, and curve 5 to ϕ = 0.3. It is seen that the
dimensionless strain rate intensity factor increases withϕ. It is interesting to mention
that the opposite tendency occurs at larger α-angles (Fig. 66).

Fig. 63 Variation of n with α at several ϕ-values
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Fig. 64 Variation of the dimensionless strain rate intensity factor with α at several ϕ-values

Fig. 65 Variation of the dimensionless strain rate intensity factor with α at several ϕ-values (small
α-values)

6.3 Radial Flow Between Two Conical Surfaces

This boundary value problem has been formulated and solved for pressure-
independent material in Sect. 4.4 (see Fig. 26). An extension of this solution to the
double shearing model has been given in [40].

Let ψ f be the value of ψ at the maximum friction surface θ = θ0 and ψw be the
value of ψ at the maximum friction surface θ = θ1. The direction of flow (Fig. 26)
dictates that σrθ < 0 near the friction surface θ = θ0 and σrθ > 0 near the friction
surface θ = θ1. Therefore, it follows from (354) that

− π

2
< ψ f < 0 and 0 < ψw <

π

2
. (384)
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Fig. 66 Variation of the dimensionless strain rate intensity factor with α at several ϕ-values (large
α-values)

The orientation of the normal to the maximum friction surfaces shows that φ1 = 0
or φ2 = 0 in (359). Equation φ1 = 0 contradicts (384)1 and equation φ2 = 0 to
(384)2. Therefore,

ψ = ψ f = −π

4
− ϕ

2
for θ = θ0 (385)

and
ψ = ψw = π

4
+ ϕ

2
for θ = θ1. (386)

The velocity boundary conditions (172) are automatically satisfied assuming that
uθ = 0. Then, the radial velocity is given by (362). The general solution for stresses
given in the previous section is also valid. In particular, the dependence of ψ on θ
and the value of n are determined from (368) and the boundary conditions (385) and
(386). Equations (370) and (371) are also valid. Since the boundary condition (386)
coincides with (361), the strain rate intensity factor corresponding to the maximum
friction surface θ = θ1 is given by (375). Using the nomenclature of the present
section the expression for this strain rate intensity factor becomes

Dex =
√

6 sinϕUw

2r5/2
√

n cosϕ− sinϕ [cosϕ+ cot θ1 (1 + sinϕ)]
. (387)

Here Uw is the value of U at θ = θ1. Expanding the right hand side of (371) in a
series in the vicinity of ψ = ψ f (or θ = θ0) yields

ξrθ = − 3U f

4r3
(
ψ − ψ f

) + o

(
1

ψ − ψ f

)
as ψ → ψ f . (388)
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Here U f is the value of U at θ = θ0. Equation (368) in the vicinity of ψ = ψ f

becomes

dθ

dψ
= 4 sinϕ

(
ψ − ψ f

)

n cosϕ− sinϕ [cosϕ− cot θ0 (1 + sinϕ)]
+ o

(
ψ − ψ f

)
as ψ → ψ f .

(389)
Integrating this equation gives

(
ψ − ψ f

)2 = {n cosϕ− sinϕ [cosϕ− cot θ0 (1 + sinϕ)]}
2 sinϕ

(θ − θ0) (390)

to leading order. Substituting (390) into (388) yields

ξrθ = − 3
√

2 sinϕU f

4r3
√

n cosϕ− sinϕ [cosϕ− cot θ0 (1 + sinϕ)]
√
θ − θ0

(391)

+ o

(
1√
θ − θ0

)
as θ → θ0.

The normal strain rates are bounded in the vicinity of the maximum friction surface
θ = θ0 and ξrθ → ∞ as θ → θ0. Therefore, Eq. (6) in which ξτ should be replaced
with ξrθ is valid. Then, it follows from (6) and (391) that the strain rate intensity
factor corresponding to the friction surface θ = θ0 is

Din =
√

6 sinϕU f

2r5/2
√

n cosϕ− sinϕ [cosϕ− cot θ0 (1 + sinϕ)]
. (392)

The solution of Eq. (370) is given by (382). The condition (187) should be used to
determine Uw. In particular, substituting (362) and (382) into this condition results in

Q = 2πUw

θ1∫

θ0

w (ψ) sin θdθ.

Replacing here integration with respect to θ with integration with respect to ψ by
means of (368) yields

Uw

Q
= 1

4π sinϕ

⎡
⎢⎣
ψw∫

ψ f

sin θ (sinϕ+ cos 2ψ) w (ψ)

n cos2 ϕ− sinϕω0 (ψ, θ)
dψ

⎤
⎥⎦

−1

, (393)

where ω0(ψ, θ) is defined in (365). The value of U f is found from (382) as

U f = Uww
(
ψ f
)
. (394)
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In order to make comparison with the solution for pressure-independent material
(Sect. 4.4), it is convenient to introduce the dimensionless strain rate intensity factors,
dex and din , by Eq. (170). Then, using Eqs. (387), (392) and (394) yields

dex =
√

6 sinϕ

2
√

n cosϕ− sinϕ [cosϕ+ cot θ1 (1 + sinϕ)]

(
Uw

Q

)
(395)

and

din =
√

6 sinϕw
(
ψ f
)

2
√

n cosϕ− sinϕ [cosϕ− cot θ0 (1 + sinϕ)]

(
Uw

Q

)
. (396)

The ratio Uw/Q in Eqs. (395) and (396) should be eliminated by means of (393).

7 Concluding Remarks

The present chapter provides a comprehensive review of solutions for the strain rate
intensity factor for the model of classical pressure-independent plasticity and the
double-shearing model of pressure-dependent plasticity. Comparison made allows
one to estimate the effect of pressure-dependency of the yield criterion on the magni-
tude of the strain rate intensity factor. The importance of this quantity for applications
is that it controls the intensity of plastic deformation and, as a consequence, the inten-
sity of physical processes in a narrow layer near frictional interfaces. Some theories
have been already proposed to use the strain rate intensity factor in constitutive
equations [41, 42]. In certain sense, these theories are similar to some theories in
the mechanics of cracks based on the stress intensity factor [43]. Since the latter are
very successful in engineering applications, it is expected that the theories based on
the strain rate intensity factor can be successful as well.
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