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Abstract Cellular metals, e.g., made by solidification of molten metal foam, have
interesting mechanical properties, among them high specific strength and stiffness
coupled with inflammability and good damping properties. This makes them interest-
ing for engineering applications which require the prediction of the onset of yielding
under multi-axial stress states and the development of plastic strains over a strain
range that may extend into the regime of full compaction of the foam micro-structure,
as it is the case in applications for crash protection. This chapter investigates the
micro-mechanical deformation mechanisms which govern the elasto-plastic behav-
ior of cellular metals on the macro-mechanical level, where the cellular structure can
be treated as a homogeneous material if the difference between the cell size and the
component size is large enough. If this is the case suitable constitutive models can
be applied for predicting the onset of macroscopic yielding, the evolution of plastic
strains and the hardening behavior. Thus, a review of the most important mater-
ial models proposed for simulating the effective elasto-plastic behavior of isotropic
cellular metals is presented. This behavior is characterized by a distinct pressure
sensitivity, which sets apart the behavior of cellular metals from the one of solid
metals as described by classical (e.g., von Mises) theory of plasticity.
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1 Introduction

Cellular metals are a class of materials which is characterized by a foam or sponge-
like structure on a length-scale that is typically much smaller than the one of the
component. Since the individual cells are much smaller than the typical objects con-
taining cellular metals the mechanical behavior of the cellular structure can generally
be described in a homogenized manner, and the present chapter tries to give some
insight into the available methods and challenges.

Most cellular materials fall into one of the two following categories:

• open-cell foams (sponges),
• closed-cell foams.

The cells, which are either closed or open according to this classification, are typically
filled with air, which is a compressible medium. If the metallic structure is treated
as a ‘material’ in the homogenized sense, this fact gives rise to the marked pressure-
sensitivity of cellular metals in the plastic range.

The strength of the materials is primarily determined by the mechanical behavior
of the metallic structure, especially in the quasi-static range, where the gas can escape
from within the cells through missing or ruptured cell walls. In the case of closed-cell
foams the metallic structure consists of a network of struts which meet in vertices and
are connected by cell walls in a manner that is very similar to that of liquid foams.
This is not surprising, because metallic foams are typically produced by cooling
down and solidifying a liquid foam made from molten metal.

In the case of open-cell foams, the metallic skeleton does not form closed cells,
because the cell walls are missing, either because they broke during the solidification
process or because they where removed by subsequent manufacturing processes.

Interesting structures can be obtained by coating a polymer precursor foam with
a metallic layer and subsequently removing the precursor structure. This leaves the
struts hollow and, in the ideal case, separates two gas filled cavities, namely the one
inside and the one between the struts.

No matter how the cellular metals are produced or which topology they exhibit,
their effective mechanical response is rooted in the deformation of the cellular struc-
ture itself. To take this fact into account, we investigate deformation mechanisms in
cellular metals in Sect. 3.

Transferring theoretical results from the structural level, which is characterized
by cells with a size range of tenths of millimeters up to several millimeters, to
the component level, which is typically much larger, is a process commonly called
homogenization. It is one way of obtaining insight into the mechanical behavior of
cellular metals under multi-axial loads. The preferred method, however, is to perform
appropriate experiments, which go beyond classical uniaxial compression tests and
take multiaxial loading conditions into account. These experiments require expensive
equipment and special care owing to the fact that applying hydrostatic pressure by a
fluid is difficult because the fluid has to be kept from penetrating into the structure.
Nevertheless, corresponding experiments have been performed in the past and the
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interpretation of their results has lead to the formulation of constitutive laws for the
effective mechanical behavior of cellular metals on the macro-mechanical level.

Section 4 reviews the most important contributions in the field of constitutive
modeling of cellular metals. The focus is on works which were tailored to metallic
foams, which reduces the number of candidate material models to a handful, and
allows for a detailed look into their formulation and derivation. Preceding this main
body of this study is a brief introduction to the basics of constitutive modeling for
elasto-plastic materials, which will be given in the following Sect. 2.

2 Constitutive Modeling: Basics

2.1 Introduction

Before it is possible to deal with the particular phenomena characterizing the elasto-
plastic behavior of cellular metals, it is necessary to acquaint oneself with the basics
of continuum mechanics of solid materials and the foundations of the theory of
plasticity. This section is intended to provide the reader with the knowledge and the
mathematical tools necessary for understanding the formulation of the constitutive
models for cellular metals which will be presented in later sections.

First, the mathematical notation used in this chapter will be introduced in Sect. 2.2.
Next, the concept of stress will be recapitulated in Sect. 2.3. The description of
deformation processes in terms of appropriate strain measures will be reviewed in
Sect. 2.4. Finally, Sect. 2.5 describes the elements of the theory of plasticity, which
provides the foundation for most of the constitutive laws for cellular metals.

2.2 Mathematical Notation

The most important mathematical terms and operations necessary for performing the
derivations presented in this chapter will be briefly summarized in the following. The
intention is to familiarize the reader with the mathematical notation used throughout
this chapter.

The location of a point in space is described by a vector x from the origin of the
reference system to the point. In order to do actual numerical calculations, the vector
has to be related to a coordinate system 1-2-3 for obtaining its coordinates x1, x2,
and x3. Only Cartesian coordinate systems are considered here.

The scalar product of two vectors a and b gives a scalar c, which is the product
of the length of vector a with the length of the projection of vector b onto vector a,
and vice versa:
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c = a • b c = ai bi . . . =
3∑

i=1

ai bi, (1)

where the use of Einstein’s summation notation is indicated by the sum sign. The
length l of a vector v can be calculated as l = √

v • v.
In the framework of tensor algebra a vector is equivalent to a first order tensor

x. Such a first order tensor x can be transformed into a new first order tensor y by
applying a second order tensor A to it. By writing y = A x in tensorial notation, we
imply the fact that A represents a linear transformation of x into y. The coordinates
of the second order tensor A with respect to an orthonormal coordinate system are
indicated as [A]ij or as Aij, respectively. The coordinates yi of the transformed tensor
y are a linear combination of the coordinates xj of the original tensor x, where each
original coordinate is weighted by the coordinate Aij of the tensor A. Using both
tensor notation and index notation, we obtain

y = A x yi = Aijxj . . . =
3∑

j=1

Aijxj. (2)

A special second order tensor is the unit tensor I which has the coordinates [I]ij = δij,
where δij is the Kronecker Delta function which returns one for i = j and zero for
i �= j. Applying the unit tensor to a second order tensor A leaves the latter tensor
unchanged: IA = A.

A second order tensor C can be constructed from vectors a and b using the tensor,
or dyadic product:

C = a ⊗ b Cij = ai bj (3)

The resulting tensor C, applied to a vector x, returns as the result the first vector a,
scaled by the product of the length of the second vector b times the length of the
projection of the vector x onto the second vector b, (a ⊗ b)x = a(b • x).

A second-order tensor C which represents a transformation B followed by a
transformation A can be constructed as follows:

C = AB Cij = AikBkj . . . =
3∑

k=1

AikBkj (4)

A fourth order tensor C represents a linear transformation which is applied to a
second order tensor A for obtaining a new second order tensor B. We express this
operation in tensor notation and index notation:

B = CA Bij = CijklAkl . . . =
3∑

k=1

3∑

l=1

CijklAkl (5)
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The coordinates of the fourth order tensor C are represented as either [C]ijkl or Cijkl.
Summing over two indices as in Eq. (5) is called double contraction. The double

contraction of a second order tensor A and another second order tensor B gives a
scalar c. This operation is written as follows:

c = A:B c = AijBij . . . =
3∑

i=1

3∑

j=1

AijBij (6)

The trace tr (A) of a second order tensor A is defined as the sum of the coordinates
Aii (i = 1 . . . 3) on the main diagonal (in matrix notation), or the double contraction
with the second order tensor of unity I:

tr (A) =
3∑

i=1

Aii = A:I (7)

The derivative of a scalar-valued function

g(σσσ) = g(σ11, σ22, σ33, σ12, σ21, σ23, σ32, σ13, σ31)

of a second-order tensor σσσ with respect to (the coordinates of) the tensor σσσ gives the
gradient of g at σσσ , which is itself a second order tensor:

[
∂g

∂σσσ

]

ij
= ∂g

∂σij
(8)

If the function g(σσσ) is homogeneous of degree n in σσσ , i.e.,

g(ασσσ) = αn g(σσσ) (9)

then Euler’s theorem on homogeneous functions can be applied to obtain the rela-
tionship

1

g
σσσ : ∂g

∂σσσ
= n

σij

g

∂g

∂σij
= n (10)

which can be useful for manipulating expressions related to plastic flow rules (as
introduced in Sect. 2.5).

2.3 The Stress State

In this section, expressions and relationships from continuum mechanics, which are
necessary for the mathematical description of the mechanical behavior of materials,
are introduced.
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The local stress conditions in a body are described by a symmetric second-order
tensor σσσ = [σij] called the stress tensor. The 3/D stress tensor has nine coordinates
σij, i ∈ [1, 3], j ∈ [1, 3], six of which are independent owing to the symmetry of the
tensor, i.e., σji = σij.

Coordinates with identical indices i = j relate to normal loading with respect to
the reference coordinate system, whereas coordinates with differing indices i �= j
indicate shear loading.

The actual values of the coordinates of the stress tensor depend on the chosen
reference coordinate system. However, three scalar properties I1, I2, and I3, can be
defined which are invariant with respect to a rotation of the reference system, These
invariants are given by:

I1 = σkk = σ11 + σ22 + σ33 (11)

I2 = 1

2

(
σiiσkk − σijσij

)
(12)

I3 = detσσσ (13)

It is possible to find a reference frame 1-2-3 for which all non-diagonal coordinates of
the stress tensor, i.e., the shear stresses, vanish. The coordinates σii along the diagonal
of the stress tensor expressed in this specific reference system are then called the
principal stresses, σ1 = σ11, σ2 = σ22, and σ3 = σ33. They are the eigenvalues of
the stress tensor and can be found by solving the characteristic equation

det(σσσ − σiI) = −σ 3
i + I1 σ

2
i − I2 σi + I3 = 0. (14)

For the investigation of the mechanical behavior of pressure sensitive materials, it is
necessary to define the pressure p, which is a function of the normal stresses only:

p = −1

3
(σ11 + σ22 + σ33) = −σm (15)

Also defined in Eq. (15) is the mean stress σm, which has the negative value of the
pressure, σm = −p. Note the relationship σm = 1

3 I1 between the mean stress and
the first invariant I1 of the stress tensor, compare Eq. (11).

The contribution of the hydrostatic pressure to the stress tensor can be isolated as

σσσHydro = −p I = σm I (16)

Correspondingly, the deviatoric part s of the stress tensor can be obtained by sub-
tracting the hydrostatic part from the stress tensor,

s = σσσ − σσσHydro . . . = σσσ − σm I = σσσ + p I (17)
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For the deviatoric stress tensor s three invariants J1, J2, and J3 can be defined. The
first invariant J1 is zero by definition, because the deviatoric stress tensor contains
no contribution from hydrostatic pressure. The second invariant J2 is given by

J2 = 1

2
s:s = 1

2
sijsij

It plays an important role in metal plasticity, since it can be used to express the von
Mises equivalent stress σe in the following form:

σe = √
3 J2 . . . =

√
3

2
s:s. (18)

For some materials, in particular metals, which are not sensitive to pressure with
regard to yielding, the von Mises equivalent stress is an appropriate scalar measure
for assessing the stress state in the material with respect to plastic yielding. For
uniaxial tension and compression, the von Mises stress is equal to the applied stress.
It is sometimes useful to re-write the von Mises stress in terms of principal stresses:

σe =
√

1

2

[
(σ1 − σ2)

2 + (σ2 − σ3)
2 + (σ3 − σ1)

2] (19)

At this point, some partial derivatives of scalar-valued functions of the stress tensor
with respect to the stress tensor coordinates, recall Eq. (8), are presented in Table 1.

Table 1 Some useful derivatives of quantities related to the description of yield surfaces for
pressure-sensitive materials with respect to the coordinates σij of the stress tensor σσσ

Tensor notation of derivative Selected terms in index notation

∂(s:s)
∂σσσ

= 2s

∂(sij sij)

∂σ11
= 2

(
σ11 − σ11 + σ22 + σ33

3

) = 2s11

∂(sij sij)

∂σ12
= 2σ12 = 2s12

∂σe
∂σσσ

= 3
2

s
σe

∂σe
∂σ11

= 1
2σe

[2σ11 − σ22 − σ33] = 3s11
2σe

∂σe
∂σ12

= 3σ12
2σe

∂
(
σe

2)

∂σσσ
= 3s

∂
(
σe

2
)

∂σ11
= 2σ11 − σ22 − σ33 = 3s11

∂
(
σe

2)

∂σ12
= 3σ12 = 3s12

∂σm
∂σσσ

= 1
3 I ∂σm

∂σ11
= 1

3

∂
(
σm

2)

∂σσσ
= 2

3σm I
∂
(
σm

2)

∂σ11
= 2

9 [σ11 + σ22 + σ33]

∂p
∂σσσ

= − 1
3 I ∂p

∂σ11
= − 1

3

∂
(
p2
)

∂σσσ
= − 2

3 p I
∂
(
p2
)

∂σ11
= 2

9 [σ11 + σ22 + σ33]

Left column: tensor notation, right column: selected terms in index notation
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Materials, for which the mechanical response is independent of any material
direction, are called isotropic materials. Since the choice of the reference coordinate
system for the description of the constitutive behavior of these materials is not pre-
determined by any geometrical feature that introduces a direction dependency (such
as fibers in a fiber-reinforced composite material) it is possible to describe the material
behavior in terms of tensor invariants, and, in particular, in terms of the three principal
stresses.

The yield surface, which plays a major role in any plasticity model (compare
Sect. 4), is often depicted in the three-dimensional space that is described by inter-
preting the three principal stresses σ1, σ2, and σ3 as coordinates in an orthonormal
reference system. In this principal stress space, the following interesting entities can
be identified:

Hydrostatic axis: The space diagonal in the principal stress space, describing stress
states that are purely hydrostatic and do not contain any deviatoric
component, i.e., σe = 0.

Deviatoric plane: Any plane perpendicular to the hydrostatic axis, i.e., all stress
states with the same mean stress σm = const.

π -plane: The deviatoric plane which contains the origin σ1 = σ2 = σ3 = 0
of the principal stress coordinate system, and, therefore, all stress
states with vanishing mean stress, σm = 0.

Meridian: A plane which contains the hydrostatic axis.

Most of the constitutive laws for the description of the effective mechanical behavior
of isotropic cellular metals can be formulated in terms of the mean stress σm and
the von Mises equivalent stress σe. Surfaces in the principal stress space, which are
defined implicitly by F(σm, σe) = 0 show rotational symmetry about the hydrostatic
axis.

If this rotational symmetry cannot be assumed, a third parameter in addition to
σm and σe has to be considered. This third parameter is often chosen to be an angle
θ measured in the π -plane, namely between the projection of the σ1-axis on the
π -plane and a vector from the origin of the principal stress space to the projection
of the stress state onto the π -plane along the direction of the hydrostatic axis. By
this geometrical definition, the angle θ , which is often called the Lode angle, can
assume values between 0 and 60◦, provided that the principal stresses are sorted as
σ1 ≥ σ2 ≥ σ3. The Lode angle can be calculated from

cos 3θ = 3
√

3

2

J3√
(J2)3

(20)

Note the dependency of this quantity on the third invariant J3 of the stress deviator
tensor. For purely hydrostatic stress states, θ becomes undefined, because inserting
J2 = 0 in Eq. (20) would cause a division by zero. The Lode angle describes the
relationship between the principal stresses.
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2.4 Deformation and Strain

Application of loads to solid bodies leads to a deformation of these bodies. The
quantities and methods available for the description of this deformation are the topics
of this section.

We investigate a process, which moves and deforms a body from an undeformed
reference configuration to a deformed configuration. Points X in the undeformed
configuration are mapped onto points in the deformed configuration by the function
ϕ, giving x = ϕ(X, t) at any given time t.

Correspondingly, a line element dX in the undeformed configuration is trans-
formed into a line element in the actual configuration dx according to dx = F dX,
where F is a second order tensor called the deformation gradient, and is defined as

F = ∂ϕ

∂X
Fij = ∂ϕi

∂Xj
(21)

The deformation gradient F contains all the necessary information for describing
the deformation process at a given material point. In particular, it contains infor-
mation about the actual deformation of the material and any super-imposed rigid
body rotation. To separate these two contributions, a polar decomposition of F into
an orthogonal rotation tensor R (with properties det(R) = 1, RT = R−1) and a
symmetric tensor U, which is called the right (or material) stretch tensor, can be
performed:

F = RU (22)

This decomposition means that the shape and/or volume of a volume element dV is
first changed according to U and the volume element is then rotated by R into the
final configuration dv. The three eigenvalues λi of U are called the principal stretches.
The length of a line element dLi in the undeformed configuration, which points into
the direction of the i-th eigenvector Ni of U is stretched by the deformation process
to a new length dli, which can be calculated using

λi = dli
dLi

(23)

To actually calculate the right stretch tensor U, we first introduce the right Cauchy-
Green tensor C:

C = FTF = UT RTR︸︷︷︸
I

U = UTU (24)

This tensor has the eigenvalues 
i and the eigenvectors Ni, and can be represented
using the spectral decomposition theorem:
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C =
3∑

i=1


iNi ⊗ Ni (25)

We can now build the right stretch tensor U in a similar manner noting that it has the
same eigenvectors as C and its eigenvalues λi are the square root of the eigenvalues

i of C, i.e., λi = √


i:

U =
3∑

i=1

λiNi ⊗ Ni (26)

The principal stretches already give a lot of information about the deformation
process, but they do not lend themselves naturally to the description of the strain
in the material, because they assume a value of one for the undeformed state (for
which, in the absence of residual stresses, the stresses are zero).

Therefore, appropriate strain measures have to be defined. For large deforma-
tions, logarithmic strain measures are often used. The logarithmic strain tensor in
the reference configuration is defined as

εεε =
3∑

i=1

ln(λi)Ni ⊗ Ni (27)

For homogenous uniaxial deformations, the axial logarithmic strain can be found as
ε
(ln)
axial = ln(l/l0) = ln(λaxial). It is zero for the undeformed state.

It is often useful to split the strain tensor into a part which describes the change
of shape of a volume element and a part which describes the change of its volume.

Let us look at a cube-shaped volume element dV which is oriented along the
eigenvectors Ni. The undeformed edge length is given by dL, and the undeformed
volume by dV = dL3. If the volume element is transformed into the deformed
configuration by the right stretch tensor U, its edges remain orthogonal (because
they where parallel to the eigenvectors of U) but their length is now dl1, dl2, and
dl3, respectively. The volume in the deformed configuration is, thus, dv = dl1dl2dl3.
Relating the deformed volume dv to the undeformed volume dV , we can now define
the logarithmic volumetric strain εvol:

εvol = ln
dv

dV
= ln

dl1dl2dl3
dL3 = ln(λ1λ2λ3) = ln(λ1)+ ln(λ2)+ ln(λ3)

= ε
(ln)
1 + ε

(ln)
2 + ε

(ln)
3 (28)

This shows the convenient property that the logarithmic volumetric strain is equal to
the trace of the logarithmic strain tensor εεε.

The part of the strain tensor, which changes the volume of a volume element can
now be isolated as: εεεvol = 1

3εvolI. The remaining, deviatoric part e of strain tensor
can be found by subtracting this tensor from the full strain tensor:
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e = εεε − εεεvol = εεε − 1

3
εvolI (29)

Since the deviatoric strain tensor does not impose any volume change, its trace is
equal to zero.

Similar to the von Mises equivalent stress σe, an equivalent or effective strain εe
can be defined from the deviatoric part of the strain tensor:

εe =
√

2

3
e:e (30)

This definition implies two properties: (a) for a volume-preserving uniform extension
process, the effective strain is equal to the axial strain, and (b) the effective strain is
work conjugate to the von Mises equivalent stress σe.

In addition, the rate ε̇vol of the logarithmic volumetric strain is work conjugate to
the mean stress σm. Finally, an expression for the rate Ẇ of the internal mechanical
work done by the stresses can be obtained exclusively in terms of effective properties:

Ẇ = σeε̇e + σm ε̇vol (31)

2.5 Formal Introduction to Elasto-Plasticity

In this section, the common framework of the constitutive modeling of elastic-plastic
materials will be reviewed.

A solid body under global loading experiences local stress fields in parts or all of
its volume. These stresses lead to deformations, which can be expressed by strain
tensors on the material point level. The local deformation state is described by a
strain tensor εεε.

The strain state is related to the stress state by constitutive laws, which express
the strain tensor εεε in terms of the stress tensor σσσ , the temperature T (if necessary),
and internal variables Si:

εεε = f (σσσ ,T , Si) (32)

The internal variables Si describe the internal state of the material. Accumulated
plastic strains, e.g., are important internal variables for plasticity. The description
of the evolution of the material state throughout the deformation process requires
evolution equations for the internal variables:

dSi

dt
= gi(σσσ ,T , Si) (33)

The coupled system of Eqs. (32) and (33) has to be solved in order to obtain the
deformation history of the material.
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We now consider materials which deform inelastically, i.e., which are able to
undergo irreversible, plastic deformations. These material often do not show yielding
from the onset, but rather require a certain yield stress state to be exceeded before
plastic deformation sets in. If the stress state is not critical with respect to plastic
yielding, the material deforms elastically.

Classical plasticity theory (see e.g. [26]) describes this behavior by defining a
surface in stress space the interior of which contains all stress states for which the
deformation mechanism remains purely elastic. This surface is called yield surface.
The yield surface is defined implicitly by the relationship

F(σσσ , Si,T) = 0 (34)

where F is called the yield function. The interior of the yield surface contains all
material states for which F < 0.

As soon as stress states reach the yield surface, and, consequently, the yield
criterion F(σσσ , Si) = 0 is fulfilled, the material starts accumulating plastic strains
εεεpl at a rate, which is defined by the plastic flow rule (given here in incremental
form):

dεεεpl = dεεεpl(σσσ , dσσσ , Si,T). (35)

The flow rule is often defined using the gradient of a flow potential G(σσσ , Si,T):

dεεε(pl)
ij = dλ

∂G

∂σij
(36)

Herein, dλ is the increment of the plastic flow multiplier λ, which can be determined
using the fact that the stress state always fulfills the yield condition (34) during plastic
loading. By definition, the stress state always remains on the yield surface as long as
the material point deforms plastically.

The size, the location and the shape of the yield surface, however, can change
according to the applied constitutive theory. The evolution of the yield surface is
described by the evolution laws for the relevant internal variables Si, e.g., by appro-
priate hardening laws.

For many constitutive laws, the flow potential G is chosen to be identical to the
yield function, G ≡ F. The corresponding flow rules are called associated flow rules.

In a general deformation process involving plastic deformation, contributions
from elastic deformation mechanisms and plastic yielding are superimposed. If the
elastic deformations remain small compared to the overall deformations, an additive
split of the strain tensor εεε into an elastic part εεεel and a plastic part εεεpl is appropriate:

εεε = εεεel + εεεpl (37)
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3 Deformation Mechanisms and Yielding in Cellular Metals

3.1 Onset of Failure

While cellular metals can be treated as homogeneous materials for most applications
because of the size difference between their metallic structure and the size of cor-
responding components, their mechanical behavior is still governed by deformation
mechanisms in the metallic structure itself.

For open-cell metallic foams, the bending and buckling of the struts is the dom-
inating deformation mechanism. Usually, the struts of open-cell foams have two
distinct geometrical properties:

• their cross-sections have the shapes of triangles with concave sides, which is a
result of surface tension and drainage processes acting on the foam structure as
long as it is in a molten state. The characteristic shape of these struts is called a
Plateau border. Figure 1 shows the struts enclosing a single open cell.

• The cross-sectional area of the struts is smallest around their middle and increases
towards the vertices. This means that the vertices are considerably stiffer than the
struts and, consequently, rather rotate and move than deform.

Fig. 1 Rendering of the Plateau border network forming the structure of an open-cell foam. Adapted
from [2]
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Fig. 2 Local bending deformation of a strut in an open-cell metal foam (image courtesy of Institute
of Materials Science and Testing, Vienna University of Technology)

Fig. 3 Buckling of an open-cell structure with hollow struts under hydrostatic pressure

Struts in open-cell materials experience normal loads, bending moments, and tor-
sional loads depending on the macromechanical loading conditions, their orientation
and their connection to the surrounding framework of struts.

Figure 2 shows a typical deformation mode of a strut in an open-cell metallic
foam. The deformation pattern can be the result of bending by transverse forces or
moments, or elasto-plastic buckling. It is obvious that the deformation affects mainly
the thin middle section of the struts whereas the thick vertices perform rigid body
movements.

Subjecting regular cellular model structures to macroscopic hydrostatic pressure
loading may cause struts to experience compressive stresses which can lead to buck-
ling. This buckling can be global in nature, as is shown in Fig. 3 for a periodic unit cell
model of an open-cell structure with hollow struts. In this simulation the periodicity
of the buckling mode is tied to the geometrical periodicity of the unit cell. Simu-
lation methods, which can capture buckling modes with wavelengths far exceeding
the dimensions of the constituting unit cell model, deserve to be mentioned in this
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Fig. 4 Cell wall buckling in a unit cell model of a regular tetrakaidecahedral cell structure under
macroscopic uniaxial tension

context [19, 20, 25, 32]. Even if the initial buckling mechanism was an elastic one,
stress redistribution due to the excentric loading of the struts in the post-buckling
regime can quickly lead to plastic yielding in the outer zones of the struts.

For closed-cell foams the presence of cell walls adds the additional mechanisms
of bending and stretching of the cell walls. In the direction of compressive principal
stresses, the cell walls may buckle, and they may rupture if the local stresses exceed
the strength of the walls.

A tetrakaidecahedral unit cell model of a closed-cell foam can be used to illustrate
an interesting phenomenon in connection with elastic buckling of cell walls, compare
Fig. 4. Here, elastic buckling can be observed on the cell wall level even though the
macroscopic loading state is one of uniaxial tension. The reason for this is the fact
that the hexagonal faces, which are oblique to the loading direction, experience
in-plane shear loading rather than pure tensile loading, causing shear buckling as
soon as the critical stress is exceeded.

Micro-mechanical unit cell models can also be exploited to demonstrate the initial
stages of deformation in a closed-cell foam under uniaxial compressive loading.
Figure 5 shows a uniaxial compressive stress versus compressive strain diagram for a
periodic tetradecahedral unit cell model. A straight line at the beginning of the stress-
strain curve represents the regime of linear elastic deformation. It is not completely
clear, if such a distinct linear regime exists in a real cellular metal owing to the fact
that such a material usually contains many imperfections and inhomogeneities that
can trigger plastic yielding under even the slightest macroscopic load.

As the macroscopic load is increased, the stresses inside the cellular structure rise
and, inevitably, reach the yield stress of the solid material in the first critical spots.
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Fig. 5 Compressive stress versus strain diagram for the uniaxial compression of a regular, peri-
odic tetrakaidecahedral cellular structure. The two small contour plots on the right side show the
distributions of the von Mises equivalent stress at the onset of local yielding (bottom) and close to
the limit stress (top) (from [9])

These spots are indicated by an arrow in Fig. 5, and they mark the influence regions
of stress concentrations in the vicinity of the vertices of the model structure. After the
initiation of yielding the stress-strain-curve starts to deviate visibly from the tangent
in the origin of the stress versus strain curve. Elastic unloading beyond the onset
of micro-yielding can be simulated for obtaining the residual plastic strains in the
structure as is also shown in Fig. 5.

Because the detection of micro yielding as defined by the determination of the
onset of yielding in any integration point or finite element node in the simulation
model may be mesh-dependent or predict yielding at stresses much lower than the
macroscopic yield stress, it can prove advantageous to define yielding based on the
magnitude of the macroscopic plastic strain which remains after the structure has
been unloaded, similar to the definition of the offset yield point for metals without a
distinct elastic limit stress.

As the compressive load increases, larger and larger sections of the cell walls
start to deform plastically. Finally, as the plastic deformation bands in the cell walls
connect across the individual cells, the limit load of the unit cell model is nearly
reached and the compressive stress-strain-curve shows a nearly horizontal plateau.

Even though a fairly simple finite element unit cell model was used for obtaining
Fig. 5, it can nevertheless illustrate the sequence of events leading to plastic failure
of cellular metals.

In solid metals the application of hydrostatic pressure does not cause plastic
yielding, at least not within the confines of classic metal plasticity theory. In cellular
metals, however, applying hydrostatic pressure on the macroscopic level will lead to
local stress states in the cellular structure which are—depending on the symmetry
and regularity of the structure—predominantly uniaxial and compressive. Thus, they
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Fig. 6 Yield surface of a regular closed-cell foam predicted by a periodic Weaire-Phelan unit cell
model. The dark cap at the end of the ellipsoidal in the regime of positive hydrostatic pressure
values indicates stress states, for which yielding may be preceded by elastic buckling (from [10])

can and will cause plastic yielding, because the macroscopic hydrostatic load does
not lead to hydrostatic stress states on the micromechanical level.

By loading a sample made of cellular metal along different paths in stress space,
stress states for which the macromechanical behavior becomes inelastic can be deter-
mined and connected to form a yield surface in the stress space. This can be done
experimentally or by means of numerical models.

Figure 6 shows a yield surface in principal stress space that was predicted for
a periodic finite element unit cell model of a Weaire-Phelan structure, which is a
good generic model for closed-cell foams. In accordance with the statements above,
the yield surface intersects the hydrostatic axis at the points corresponding to the
hydrostatic tensile and compressive yield stresses. The shape of the yield surface is
the one of an ellipsoid which is elongated along the hydrostatic axis.

From a numerical point of view, Fig. 6 contains additional information in the form
of the darkened cap at the end of the yield surface which corresponds to almost purely
hydrostatic compression. In those dark areas on the yield surface the system matrix
has negative eigenvalues, which means that elastic buckling precedes or prematurely
initiates plastic yielding.

Figure 6 shows an ellipsoidal yield surface which is visibly elongated along the
axis of hydrostatic stress states. This can be attributed to the fact that the stress states
induced in the cell walls are mainly membrane-like for hydrostatic loads on the one
hand and characterized by high bending stresses close to the vertices for uniaxial
loads, on the other hand, which initiates yielding at deviatoric macroscopic stresses
that are lower than the hydrostatic macroscopic yield stresses.



170 T. Daxner

Fig. 7 Yield surfaces predicted for a regular (left) and an irregular (right) tetrakaidecahedral unit
cell model of closed-cell foam, respectively [8]

Fig. 8 Projection of the yield surfaces predicted for two periodic unit cell models of closed-cell
foam into a diagram of von Mises equivalent stress σe versus mean stress σm (left). Cross-section
of the yield surfaces by a deviatoric plane (right, from [10])

For real cellular metals, the difference between length and diameter of the ellipsoid
is not expected to be so pronounced, as is illustrated in Fig. 7, which presents the yield
surface of a regular tetrakaidecahedral finite element unit cell model (left) and the
yield surface of a unit cell model with the same topology, but randomly perturbed
vertex positions (right). The geometrically imperfect, and therefore more realistic
model, shows a smaller yield surface with a much lower ratio between the length
and the diameter of the ellipsoidal, which is closer to the experimental evidence.
The reason behind this are the bending moments which are induced by excentrical
loading of the microstuctural members in the case of the irregular unit cell model
even for predominantly hydrostatic macroscopic pressure.

A common method of visualizing yield surfaces of cellular metals is the projection
of points on the yield surface onto a diagram of von Mises equivalent stress σe versus
mean stress σm. Figure 8 (left) displays the points on the yield surface in Fig. 6 in the
corresponding form. In this diagram, the yield surface collapses into a point cloud
which can be fitted by an elliptical curve in a first approximation.
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Fig. 9 A sample of a foam specimen in the unloaded state and at 30 and 60 % compressive nominal
strain, respectively (left). Generic stress versus strain curves for different apparent aluminum foam
densities are shown on the right (after [21])

The fact that the points do not sit on a single curve indicates that the yield surface
does not have a circular cross-section in any deviatoric plane, σm = const. Figure 8
(right) shows such a cross section. Consequently, for an exact description of the yield
surface, the von Mises equivalent stress σe and the mean stress σm are not sufficient
and an additional measure such as the third invariant J3 of the deviatoric stress tensor
or the Lode angle (20) has to be supplied. Experimental evidence for an influence of
the third invariant J3 on the yield surface shape has been provided by [5, 6, 12].

3.2 Progressive Collapse and Densification

The plateau region of the uniaxial compressive stress-strain relationship is charac-
terized by the successive collapse of layers of cells, starting from the weakest cell
layer and spreading either into neighboring regions or other weak layers in differ-
ent sections of the specimen. This process is indicated by the extent of the hatched
regions in Fig. 9 (left) which mark the collapsed regions at two stages of compression
of a particular sample of metallic foam. Generally, some amount of hardening can be
expected, because the collapsed layers show high resistance to further compression
and the remaining uncollapsed regions are stronger than the collapsed ones in their
initial state. In addition, the metallic bulk material itself typically experiences strain
hardening.

Increasing the load leaves only stiff and strong cells undamaged. In combination
with the collapsed cells, which are nearly incompressible in relation to the undamaged
ones, this means that the slope of the uniaxial compressive stress-strain relationship
is getting steeper and steeper.
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Finally, with the application of sufficiently high compressive stresses, all cells
along the loading path are expected to collapse. This stage of uniaxial compression
is called densification, because it is characterized by most of the void volume being
squeezed out of the cellular structure and the mechanisms of the bending and stretch-
ing of cell struts and walls being replaced by the transfer of compressive forces along
bridges of solid bulk material formed by the structural members of collapsed cells
which are in contact with each other.

The following approximation of the nominal compressive densification strain εD
as a linear function of the relative density ρrel = ρ∗/ρS, where ρ∗ is the apparent
density of the cellular material and ρS is the density of the bulk material, is suggested
in [17]:

εD = 1 − 1.4
ρ∗

ρS
(38)

The effective uniaxial compressive response of a cellular metal depends on

1. the relative density of the cellular metal,
2. the topology and the homogeneity of the cell structure,
3. the hardening behavior and the ductility of the bulk material.

The influence of the relative density on the effective uniaxial compressive stress-strain
behavior was captured in the comprehensive study [21] including a large number of
quasi-static compressive tests on Al99.5 foam specimens of varying density.

To express the dependency of the compressive stress-strain response of this par-
ticular material on its relative density, an analytical relationship between the nominal
stress σ and the nominal strain ε proposed by Shim [31] was fitted to the experimen-
tally obtained stress-strain curves. Below a collapse stress σ0, and a corresponding
collapse strain ε0, respectively, the uniaxial compressive stress σ is assumed to be a
linear function of the compressive strain ε. The plateau region and the densification
regime are described by the superposition of a linear and an exponential function of
the compressive strain, which are parameterized by shape parameters a, b, ε0 and n
according to the second line of the following equation:

σ(ε) = σ0

⎧
⎪⎪⎨

⎪⎪⎩

ε
ε0

: ε ≤ ε0

exp
(

a(ε − ε0)
(a − ε)n

)
− b(ε − ε0) : ε0 < ε < a

(39)

Gradinger [21] derived the following relationships between the curve parameters
and the apparent density ρ of the investigated material, which has to be inserted in[
g/cm3

]
:
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a(ρ) = −0.37004ρ + 1.0000

b(ρ) = 6.6964ρ2 − 10.2790ρ + 2.3053

ε0(ρ) = −0.0459ρ2 + 0.0563ρ − 0.0055 (40)

n(ρ) = −1.3633ρ2 + 1.2243ρ + 0.3321

σ0(ρ) = 12.3430 × ρ1.8807 [MPa]

The corresponding uniaxial compressive stress-strain curves are shown in Fig. 9,
right. It is evident that the collapse of low density Al99.5 foam progressed along a
long plateau regime of nearly constant compressive stress up to a nominal densifica-
tion strain of nearly 90 %. In contrast, densification occurred between 60 and 70 %
nominal compressive strains for aluminum foams of higher apparent density and the
hardening modulus of these foams was considerably higher.

4 Constitutive Modeling of Cellular Metals

4.1 Introduction

Cellular materials have a complicated micro-structure which generally cannot be
described in its entirety by testing and visualization methods. Nevertheless, the effec-
tive mechanical behavior of the cellular material is a consequence of the interaction
of the deformation mechanisms of the countless structural members on the cellular
level. Since it is not feasible to model the micro-structure, the mechanical response of
the cellular metals has to be described in a macroscopic, averaged-out sense within
the framework of the theory of plasticity. This approach requires that the overall
dimensions of the structures made of foam are at least one or two orders of magni-
tude larger than the typical size of typical individual foam cells.

Constitutive laws for cellular metals have to primarily account for the fact that
these materials can yield under purely hydrostatic stress states, and, consequently,
can acquire volumetric plastic deformations when being loaded beyond the yield
limit. This is clearly in contrast with the assumption of classical theory of plasticity
for solid metals, that hydrostatic stresses — however high — will not cause plastic
deformations, and that plastic flow does not result in changes of the volume.

Consequently, new constitutive laws had to be developed for cellular metals, and
these constitutive theories will be the subject of this section. An early overview of
constitutive laws for the simulation of metallic foams was compiled by Hanssen
et al. [23, 24]. They compare constitutive formulations proposed by Schreyer
et al. [28], Ehlers et al. [14, 15], Deshpande and Fleck [11], Miller [27], as well
as one implemented in the finite element software Abaqus [7] and then proceed to
validate constitutive formulations implemented in the finite element code LS-DYNA
[22]. A general review of yield criteria for cellular materials was given in [1].
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It contains a classification of several yield criteria according to their dependency
(linear or quadratic) on the homogenized mean stress and on the homogenized von
Mises equivalent stress. The subject of yielding of anisotropic cellular materials is
also treated in considerable detail in this paper. Finally, a very comprehensive review
of yield criteria and constitutive models for cellular metals is available in [30].

In the following sections, the most important constitutive models for cellular
metals will be presented. This review is restricted to isotropic material behavior,
because no complete constitutive model for anisotropic cellular metals was available.
With the exception of the GAZT yield criterion (see Sect. 4.3), the derivation of
which was found to be interesting with regard to transferring micro-mechanical
considerations to the macro-mechanical level, only complete constitutive models
including a plastic flow rule are considered.

The yield criteria Fi(σe, p) = 0 for the presented constitutive models all contain
a term quadratic in the hydrostatic pressure p (= −σm). They can be distinguished
further into models for which the von Mises stress σe enters F in linear form [18, 27],

F1(σe, p) = σe

a1
+ p2

b1
− 1 (41)

or in quadratic form, with the yield surface being either symmetric about the origin
when plotted in the (σe, p) plane [4, 11],

F2(σe, p) = σ 2
e

a2
+ p2

b2
− 1 (42)

or with a center that is offset along the p axis [7, 33],

F3(σe, p) = σ 2
e

a3
+ (p − p0)

2

b3
− 1 (43)

The yield functions for the constitutive models cited above will be presented in
detail in Sects. 4.3 to 4.8. In addition, a more complex yield function which takes
into account the third invariant J3 of the stress deviator tensor [16] will be described
in Sect. 4.9.

The constitutive models for cellular metals differ not only in terms of the formu-
lation of their yield function F, but also in terms of their flow potential G. Several
models assume associated plastic flow, i.e., G = F. Others define a non-associated
flow potential, in most cases to allow for an independent calibration of the plastic
Poisson’s ratio. Lastly, the models differ in terms of the definition of the harden-
ing variable(s) and the corresponding evolution laws. For more details the reader is
referred to Sects. 4.4–4.9.

The treatment of the elastic part of the deformation of cellular metals is essentially
the same across the constitutive theories presented here. Therefore, the following
separate section is dedicated to this subject.
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4.2 Linear Elastic Behavior

For the undeformed material, the strain tensor vanishes per definition, i.e., εij = 0.
Loading the material will induce stresses and strains. If the stress level is small, the
deformation may remain purely elastic. Assuming small elastic deformations, the
tensor of elastic strains εεεel can be related to the stress tensorσσσ by a linear relationship
of the form

σσσ = Eεεεel, or σij = Eijklεεεkl (44)

which is called Hooke’s Law. It involves the fourth-order tensor of elasticity E.
For the special case of an isotropic material, only two material parameters λ andμ

called the Lamé parameters are necessary for the definition of the tensor of elasticity
Eijkl:

Eijkl = λ δijδkl + μ
(
δikδjl + δilδjk

)
, (45)

The Lamé coefficients λ and μ can be related to the Young’s modulus E and the
Poisson’s ratio ν of the material:

λ = Eν

(1 + ν)(1 − 2ν)
, μ = E

2(1 + ν)
(46)

The Young’s modulus E relates a uniaxial stress σ to the resulting strain ε in tension
direction in a uniaxial tension test: σ = Eε.

While the theoretical description of elasto-plastic materials assumes the existence
of an elastic deformation regime, it is very difficult to actually observe purely elas-
tic behavior in experiments on cellular metals, especially under compression. The
reason is that plastic deformations on the micro-level may appear at very low over-
all load levels, e.g., at the sample-test machine interface or around microstructural
imperfections, even though these stresses are well below the limit or plateau stress of
the materials. It is, therefore, often difficult to define a Young’s modulus for cellular
metals. In order to arrive at a well defined value for E, the unloading modulus is
sometimes used, which is typically higher than the apparent modulus at the onset of
loading.

The Poisson’s ratio ν of an isotropic material is used in the relationship between
the longitudinal stress σ11 and the transverse strains ε22 = ε33 = −νσ11/E in a
uniaxial tension test. Because of the typically rough surfaces of cellular materials, it
is very hard to measure the Poisson’s ratio experimentally.

Another important elastic quantity is the shear modulus G, which relates the shear
stress τ to the shear angle γ by τ = Gγ in a shear test, and is defined as:

G = E

2(1 + ν)
(47)

Finally, the bulk modulus K couples the mean stress σm to the volumetric strain εvol
according to σm = Kεvol and is given by
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K = E

3(1 − 2ν)
(48)

Hooke’s law can be written in a very compact and useful form, when the deviatoric
and the volumetric parts of the elastic strain tensor are inserted separately:

σσσ = 2Ge(el) + Kε(el)
vol I (49)

which implies for the deviatoric part s of the stress tensor that

s = 2Ge(el) (50)

The elastic strain energy density W for an isotropic, linear elastic material can be
specified in terms of the stress and strain tensors by:

W = 1

2
σσσ :εεε(el) = 1

2
[s + σmI] :

[
e(el) + 1

3
ε
(el)
vol I

]
= 1

2

(
s:e(el) + σmε

(el)
vol

)
(51)

The last step in this equation uses the identity I:I = 3, as well as the fact that the
double contraction of the deviatoric part of a second-order tensor and the second
order tensor of unity gives zero, i.e., s:I = I:s = 0, and e(el):I = I:e(el) = 0, because
tr (s) = 0 and tr

(
e(el)

) = 0, respectively, compare Eq. (7). The last term in Eq. (51)
indicates that σm and εvol are energetically conjugate. Using Eq. (50) it can be shown
that

1

2
s:e(el) = 1

2
σeε

(el)
e (52)

which shows that σe and εe are also energetically conjugate.
Since the stress tensor σσσ and the strain tensor εεε are directly related by Hooke’s

law, expressions for the strain energy density W can be derived which depend either
only on the stress or only on the strain measures:

W = 1

2Ē

(
σ 2

e + β2σ 2
m

)
(53)

and

W = Ē

2

([
ε(el)

e

]2 + 1

β2

[
ε
(el)
vol

]2
)

(54)

where two alternative elastic material parameters Ē and β are used:

Ē = 3E

2(1 + ν)
β2 = 9(1 − 2ν)

2(1 + ν)
(55)

Observing this, Chen and Lu [4] introduced a definition of a characteristic stress σ̄ ,
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σ̄ 2 = σ 2
e + β2σ 2

m (56)

and a characteristic strain ε̄,

ε̄2 = [εe]2 + 1

β2 [εvol]
2 (57)

and used them in their definition of a constitutive model for metallic foam, see
Sect. 4.6. Using (50) it can be shown that

W = 1

2
σ̄ ε̄,

i.e., that σ̄ and ε̄ are energetically conjugate, and that the relationship σ̄ = Ēε̄ holds.

4.3 The Gibson-Ashby-Zhang-Triantafillou (GAZT) Model

An interesting early contribution to the description of the effective mechanical behav-
ior of cellular materials has been made in [18]. Therein, a definition of a macroscopic
limit surface is derived using exclusively generic micromechanical considerations
and dimensional analysis.

First, a simple cubic unit cell is proposed, in which straight struts meet in vertices
and corners at rectangular angles. The model struts have a length of l and a square
cross-section with a side length of t. The relative density ρrel, which is the quotient
ρrel = ρ∗/ρS of the effective, homogenized density ρ∗ and the density of the solid
material ρS, can be expressed considering that the volume of a unit cell is V∗ = l3

and the volume of the solid phase is VS = C1lt2, with C1 being a constant of
proportionality which is related to the total length of all struts in the unit cell. With
ρ∗ = ρSVS/V∗ the following relationship between the unit cell dimensions and the
relative density is obtained:

ρrel = VS

V∗ = C1

(
t

l

)2

(58)

Next, the plastic limit load under uniaxial macroscopic loading along the principal
directions will be investigated. The macroscopic stress σ ∗ causes forces F in the cell
struts, which are proportional to the application area, F = C2σ

∗l2, with C2 being
the corresponding constant of proportionality. The maximum bending moment in the
struts is proportional to Fl. The plastic limit moment Mpl of a strut with a square cross-
section is given by Mpl = σyst3/4, with σys being the yield stress of the material,
which is assumed to behave ideally plastic for this investigation. Once the bending
moments M reach the plastic limit moment Mpl, plastic hinges start to form, and the
cellular structure collapses. The corresponding uniaxial limit stress σ ∗

pl can be found
by solving M(σ ∗

pl)l = Mpl for σ ∗
pl:



178 T. Daxner

σ ∗
pl = C3

t3

l3 σys = C3 ρrel
3/2 σys (59)

Gibson et al. propose a value of C3 = 0.3 for fitting this relationship to experimental
data for the uniaxial plateau stress of foams.

Next, Gibson et al. recall that regular hexagonal 2D honeycomb structures under
bi-axial loading (σ1 = σ2) do not experience bending moments in their cell walls.
Instead, only normal section forces act in cell wall direction in these honeycombs.
They investigate collapse of a 3D cellular material under hydrostatic loading by
extending this finding to the tri-axial case, claiming that a hydrostatic macroscopic
stress state will lead to purely axial compression or tension in the cell struts or walls.
Ironically, this assumption is not true for their model microstructure, because it
disregards the fact that any kind of normal loading on the unit cell produces bending
moments in the struts perpendicular to the loading direction. These bending moments
cannot be compensated by loads in the other principal directions.

Disregarding the bending stresses completely, axial stresses σax can be obtained
for the struts of the unit cell under a macroscopic mean stress σm. The total volume VS
of solid material in the unit cell is given by VS = l3ρrel. This volume is now divided
by three for obtaining an approximation of the volume of the group of struts that run
into each of the three principal directions. The sum of the cross-sectional areas of
these struts is given by A = (VS/3)/l. For hydrostatic stress states, the macroscopic
mean stress σm is acting on each face of the unit cube, resulting in a total normal
traction force of Fm = σml2. Combining all of the above, the axial stress σax for
hydrostatic loading can be calculated as

σax = Fm

A
= σml2

(l3ρrel/3)/l
= 3σm

ρrel
(60)

Plastic collapse under hydrostatic loading occurs when σax = σys.
If the hydrostatic part of any macroscopic stress tensor is assumed to produce

only normal stresses in the struts (or the cell walls) then the deviatoric stresses are
expected to produce bending moments. Consequently, Gibson et al. describe the
relationship between the von Mises stress σe and the average bending moment M in
the struts as

M ∝ l3σe = l3

√
1

2

[
(σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2

]
(61)

The factor l3 is based on the fact that traction forces F ∝ σ ∗l2 and bending moments
M ∝ Fl.

For pure bending, the plastic limit moment of a strut is given by Mpl = σyst3/4.
Superimposing an axial stress σax on the strut reduces the limit moment, as can
be seen from the following expression for Mpl which can be found after some
re-arrangement:
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Fig. 10 Sketch of the GAZT
yield surface as defined in
Eq. (64) and [18]

Mpl ∝ σys t3

[
1 −

(
σax

σys

)2
]

(62)

If the plastic limit moment, which is reduced by the axial stress due to the macroscopic
hydrostatic stress according to Eq. (62), is equal to the bending moment induced by
the macroscopic deviatoric stress, then the foam will collapse. The corresponding
limit condition is found by inserting (60) into (62), considering that t3/l3 = ρrel

3/2

and some rearranging:

σe

σys
= ±γ ρrel

3/2

[
1 −

[
3σ ∗

m

σysρrel

]2
]

(63)

The constant γ is a new constant of proportionality, which can be approximated as
γ ≈ 0.3 for relevant relative densities (ρrel < 0.3). The final form of the GAZT
limit criterion for the plastic collapse of cellular materials under multiaxial loads is
obtained by solving (59) for σys using a factor of C3 = 0.3 and inserting the result
into (63) with γ = 0.3:

± σe

σ ∗
pl

+ 0.81ρrel

(
σ ∗

m

σ ∗
pl

)2

= 1 (64)

The dependence on the von Mises stress σe is linear for this criterion, while the mean
stress σm is squared. Figure 10 shows a generic plot of the yield surface defined
by Eq. (64). The parameters p(0)c and p(0)t show the compressive and tensile hydro-
static pressures for initial yielding, respectively. Gibson et al. [18] provide similar
derivations for failure criteria pertaining to brittle crushing in compression, fracture
in tension and elastic buckling. They note, that the corresponding failure surfaces
can intersect the failure surface (64) for plastic collapse, and limit the load-carrying
capacity of the material further. They also suggest a possible extension of the theory
to model failure in anisotropic foams.
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4.4 The Miller Model

Miller [27] proposed a constitutive model for cellular materials which is specifically
designed for being fitted to the following experimental test results:
(a) the compressive and the tensile yield stresses under uniaxial loading conditions,
(b) the uniaxial, compressive stress-strain response, and (c) the degree of lateral
expansion in a uniaxial compression test.

The corresponding yield function FMiller is an extension of the Drucker-Prager
yield function (commonly used for modeling soil) by a term which is a multiple of
the square of the hydrostatic pressure p. By adding this term, the plastic Poisson’s
ratio νpl can be varied independently of the uniaxial compressive and tensile yield
stresses, something, which is not possible with the Drucker-Prager material model.
The shape and the size of the yield surface are controlled by three parameters d, γ ,
and α, as can be seen from the definition of the yield function

FMiller = σe − d︸ ︷︷ ︸
v. Mises

−γ p

︸ ︷︷ ︸
Drucker−Prager

+α
d

p2 (65)

Braces in Eq. (65) indicate, which parts of Miller’s yield function represent the sim-
pler von Mises yield function for classical metal plasticity and the Drucker-Prager
yield function, respectively. Figure 11 shows a sketch of the projection of the Miller
yield surface FMiller = 0 onto the von Mises stress versus mean stress plane.

Associated plastic flow is assumed and the increment dε(pl)
ij of the plastic strain

tensor is, therefore, normal to the instantaneous yield surface during active yielding:

dε(pl)
ij = dλ

∂FMiller

∂σij
(66)

The definition of the yield function (65) implies, that the yield stresses under
uniaxial tension and uniaxial compression differ. Denoting the compressive yield

Fig. 11 Sketch of initial
and hardened yield surfaces
as predicted by the model
proposed by Miller [27]
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stress asσc leads to the definition of the invariantsσe = σc and p = σc/3, respectively,
for uniaxial compression. Inserting these into (65) gives a quadratic equation for σc,
with the solution1

σc = 2d

1 − γ /3 +√
(1 − γ /3)2 + 4α/9

, (67)

which expresses the compressive uniaxial yield stress σc as a function of the yield
surface shape parameters. For uniaxial tension, considering that σe = σt and p =
−σt/3 leads to a similar expression for the uniaxial tensile yield stress:

σt = 2d

1 + γ /3 +√
(1 + γ /3)2 + 4α/9

(68)

The ratio β between the compressive uniaxial yield stress σc and the tensile uniaxial
yield stress σt follows as

β = σc

σt
= 1 + γ /3 +√

(1 + γ /3)2 + 4α/9

1 − γ /3 +√
(1 − γ /3)2 + 4α/9

(69)

Since the ratio β can be determined from comparatively simple uniaxial compression
and tension tests, it will later be useful for the calibration of the shape parameters of
the yield function FMiller.

The next constituent of Miller’s material model is the description of the hard-
ening behavior. Miller intends to separate the contribution of hardening of the cell
wall material from the hardening which arises from the collapse of cells and the
subsequent contact of cell walls. The latter effect is assumed to be a function of the
logarithmic volumetric strain εvol, which relates the volume �ν of an infinitesimal
volume element in the deformed configuration to the initial volume�V of the same
volume element in the undeformed configuration:

εvol = ln
�ν

�V
(70)

The stress response of the material in a uniaxial compression test is then described
by the uniaxial compressive yield stress σc, which is defined as the product of a stress
function σ̄c(ε̄pl), and the dimensionless function v(εvol), which depends only on the
volumetric strain and is intended to describe the influence of densification:

σc = σ̄c(ε̄pl) v(εvol) (71)

1 For obtaining this original form given in [27], this general relationship is helpful: a − b =
(a+b)(a−b)
(a+b) = a2−b2

a+b .
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In [27], v(εvol) assumes the value of unity for volumetric strains greater than a
volumetric densification strain ε(D)vol (< 0). If the volumetric strain falls below the
corresponding densification strain, then v(εvol) grows rapidly to values much larger
than one to model the increase of the stress levels caused by the loss of compliance
due to contact of the cell struts or walls.

The function σ̄c(ε̄pl) depends on the equivalent plastic strain ε̄pl and represents the
initial mechanical response of the material and the plateau region of the stress-strain
relationship. The equivalent plastic strain ε̄pl controls the expansion of the yield
surface, because it enters Eqs. (71) and (67), respectively, to give the yield function
parameter d. The functions σ̄c(ε̄pl) and v(εvol) have to be chosen such that they fit
the results of uniaxial compression tests.

To link the expansion of the yield surface under general stress states to the data
obtained for the uniaxial case, the concept of accumulated plastic work is used.
Herein, the increment of the plastic work given by the product of the increment of
the equivalent plastic strain dε̄pl and the instantaneous yield stress σc, which would
correspond to the accumulated plastic strain in a uniaxial compression test, is set
equal to the actual increment of the plastic work in the volume element:

σc dε̄pl = σij dε(pl)
ij (72)

For the uniaxial compression test it follows that dε̄pl = dε(pl)
11 , which is consistent

with this definition.
The last item necessary for the calibration of Miller’s constitutive theory is the

plastic Poisson’s ratio νpl, defined for a uniaxial compression test as the negative
ratio of the plastic strains ε(pl)

22 in transverse direction and the plastic strains ε(pl)
11 in

loading direction:

νpl = −ε(pl)
22

ε
(pl)
11

= ε
(pl)
22

ε̄pl
(73)

The right part of Eq. (73) follows from the fact that only σ11 = −σc �= 0 in the
compression test, and, therefore, the definition Eq. (72) of the equivalent plastic
strain simplifies to σcε̄pl = σ11ε

(pl)
11 , leading to ε(pl)

11 = −ε̄pl.

The increment of the plastic strain dε(pl)
22 transverse to the loading direction 1 can

be found by specializing the flow rule Eq. (66):

dε(pl)
22 = dλ

∂FMiller

∂σ22
(74)

The increment of the plastic multiplier dλ can be obtained by adapting the implicit
definition (72) of the equivalent plastic strain increment dε̄pl to the conditions of

uniaxial compression, where only σ11 �= 0 and, therefore, only dε(pl)
11 contributes to

the increment of plastic work:
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σc dε̄pl = σ11 dε(pl)
11 = σ11dλ

∂FMiller

∂σ11
(75)

Finally, the total plastic strain ε(pl)
22 in the transverse direction can be derived from

ε
(pl)
22 =

∫ ε̄pl

0

σc dε̄pl

σ11
∂FMiller
∂σ11

∂FMiller

∂σ22
(76)

For the derivation of the sub-expressions in Eq. (76), partial derivatives of the indi-
vidual terms of the Miller yield function FMiller are given below:

∂σe

∂σ11
= 1

2σe
[2σ11 − σ22 − σ33] (77)

∂p

∂σ11
= −1

3
(78)

∂
(
p2
)

∂σ11
= 2

9
(σ11 + σ22 + σ33) (79)

An auxiliary term

d0 = 1

2

(
1 − γ /3 +

√
(1 − γ /3)2 + 4α/9

)
(80)

is now introduced to stay compatible with Miller. Note, that σc = d/d0, compare
Eq. (67). Inserting Eqs. (77) to (80) into the sub-expressions of Eq. (76) and consid-
ering, that for uniaxial compression σ11 = −σc, σ22 = σ33 = 0, and σe = σc gives
the intermediate results

σ11
∂FMiller

∂σ11
= σc(ε̄pl, εvol)

(
1 − γ

3
− 2α

9d0

)
(81)

∂FMiller

∂σ22
= 1

2
+ γ

3
− 2α

9d0
(82)

and, finally, an expression for the plastic Poisson’s ratio νpl can be obtained as a
function of the yield surface shape parameters:

νpl = 1/2 + γ /3 − 2α/9d0

1 − γ /3 + 2α/9d0
(83)

The purpose of this operation is to relate the yield surface shape parameters γ and α
to the physically more meaningful ratio β between the compressive and the tensile
uniaxial yield stresses, Eq. (69), and the plastic Poisson’s ratio νpl:
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γ = 6β2 − 12β + 6 + 9(β2 − 1)/(1 + νpl)

2(β + 1)2
(84)

α = 45 + 24γ − 4γ 2 + 4νpl(2 + νpl)(−9 + 6γ − γ 2)

16(1 + νpl)2
(85)

Miller implemented the constitutive law for metallic foams described above as
a user-defined material subroutine (UMAT) in the commercial finite element code
Abaqus. Details of the implementation are not given in [27]. It is important to note
that β and νpl, and, consequently, α and γ are assumed to remain constant during
plastic flow for the sake of simplicity. This assumption may not be valid for very large
strains. Miller simulated compressive loading of a double notched specimen in plain
strain, a Brinell hardness test, and an indentation of foam cores with aluminum face
sheets investigating different model materials with varying yield surface parameters.
In particular, he examined the influence of the plastic Poisson’s ratio νpl.

A considerable part of the discussion in [27] is devoted to the comparison of the
proposed material model to the GAZT model, which can be derived as a special
case from the present model by choosing γ = 0, α = 0.81ρrel, and d = σ ∗

pl.
Miller chose a relative density of ρrel = 0.08 and obtained a plastic Poisson’s ratio
νpl = 0.479 by means of Eq. (83). Since this value is close to the limit value of
νpl = 0.5 for plastic incompressibiliy, he concludes that the GAZT material is nearly
incompressible in uniaxial compression. This conclusion, however, is only valid
under the assumption that the GAZT yield function is coupled with an associative
flow rule. This assumption is not supported by the original paper [18] where no
mention of the application of an associative flow rule is made.

4.5 The Deshpande-Fleck Foam Models

4.5.1 Introduction

Deshpande and Fleck [11] published data obtained by experiments, which subjected
specimens of open and closed-cell metallic foams to axisymmetric compressive stress
states, were presented. Based on the experimental findings, two constitutive models
were developed, which will be presented in the following sections. The simpler
of the two models, the so-called self-similar yield surface model, has influenced
the simulation of components made from or containing metallic foams considerably,
because it was implemented early in commercial finite element codes such as Abaqus.

The experimental work is equally impressive, because it comprises a method
of probing the initial yield surfaces of metallic foams as well as determining the
evolution of the yield surfaces under uniaxial and compressive loading. The hard-
ening behavior under uniaxial compression and hydrostatic compression was also
investigated. During the uniaxial compression tests, the diameter of the cylindrical
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specimens was measured in order to derive the plastic Poisson’s ratio, altogether giv-
ing a reasonably complete picture of the behavior of the investigated metallic foams
under multi-axial loading.

4.5.2 The Self-Similar Yield Surface Model

From their multi-axial compression experiments [11] Deshpande and Fleck con-
cluded, that the investigated foams showed essentially isotropic mechanical behav-
ior, and that the yield surfaces, which they probed with axisymmetric compressive
stress states ranging from unixaxial compression to hydrostatic compression, could
be approximated well by a yield function FDF,

FDF ≡ σ̂ − Y = 0, (86)

where σ̂ is a suitably defined equivalent stress and Y stands for the uniaxial yield
strength. Since isotropic material behavior was considered, the equivalent stress σ̂
was defined in terms of the von Mises stress σe and the mean stress σm:

σ̂ =
√

1

1 + (α/3)2
(
σ 2

e + α2σ 2
m

)
(87)

This definition corresponds to an elliptical shape in a von Mises stress versus mean
stress diagram, see Fig. 12. The aspect ratio of this ellipse is controlled by the shape
parameter α. The limiting case of α = 0 corresponds to the von Mises yield criterion,
since σ̂ becomes equal to σe for this case. Deshpande and Fleck report α values
between 1.35 and 2.08 for the foams they investigated.

An associated flow rule was assumed, giving a direction of plastic flow ε̇(pl), which
is normal to the yield surface:

Fig. 12 Sketch of initial and hardened yield surfaces as predicted by the self-similar model proposed
by Deshpande and Fleck in [11]
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ε̇(pl) = λ̇
∂FDF

∂σσσ
= λ̇

∂σ̂

∂σσσ
(88)

The plastic Poisson’s ratio, which is defined as the negative ratio of the transverse
logarithmic strain rate ε̇(pl)

tt to the axial logarithmic strain rate ε̇(pl)
xx in a uniaxial

compression (or tension) test, can be calculated directly from the flow rule (88), with
the help of Table 1 and noting that only σxx �= 0:

νpl ≡ − ε̇
(pl)
tt

ε̇
(pl)
xx

= − (∂FDF/∂σtt)

(∂FDF/∂σxx)
= (1/2)− (α/3)2

1 + (α/3)2
(89)

Next, an equivalent strain rate ˙̂ε is introduced, which is the plastic work rate conjugate
to the equivalent stress σ̂ :

σ̂ ˙̂ε = σij ε̇
(pl)
ij (90)

Inserting the flow rule (88) into (90) and solving for ˙̂ε reveals that the rate of this
equivalent strain is, in fact, equivalent to the rate of the plastic multiplier λ̇ in the
flow rule (88):

˙̂ε = σij

σ̂

∂σ̂

∂σij︸ ︷︷ ︸
=1

λ̇ = λ̇ (91)

In (91), the application of Euler’s theorem (10), which is justified by the fact that σ̂
is homogeneous of degree one in σij, is indicated. Inserting (91) into the plastic flow
rule (88) gives

ε̇(pl) = ˙̂ε ∂FDF

∂σσσ
= ˙̂ε ∂σ̂

∂σσσ
. (92)

In order to establish a connection between the equivalent plastic strain and the uniaxial
yield stress Y , the consistency condition ḞDF = 0 is written using the Jaumann stress
rate σ̆ij:

ḞDF = ∂FDF

∂σij
σ̆ij + ∂FDF

∂Y
Ẏ = 0 (93)

which can be simplified noting that ∂FDF/∂Y = −1:

Ẏ = ∂FDF

∂σij
σ̆ij (94)

The hardening modulus H is defined as the ratio of the rate of the equivalent stress
to the rate of the equivalent strain:

H ≡
˙̂σ
˙̂ε (95)
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By differentiating FDF with respect to time, the identity ˙̂σ = Ẏ is obtained, which
is inserted into Eq. (95) along with the expression for Ẏ from (94) to obtain the
relationship

˙̂ε =
˙̂σ
H

= Ẏ

H
= 1

H

∂FDF

∂σij
σ̆ij (96)

Finally, the flow rule (92) is rewritten using (96) to obtain the form of Eq. (4) in [11]:

ε̇
(pl)
ij = 1

H

∂FDF

∂σkl
σ̆kl

︸ ︷︷ ︸
λ̇=˙̂ε

∂FDF

∂σij
(97)

Going back to the flow rule (92) and writing out the gradient of the equivalent stress
∂σ̂ /∂σσσ gives:

ε̇εε(pl) = 1

2
[
1 + (α/3)2

]
˙̂ε
σ̂

(
3s + 2

3
α2σm I

)
(98)

The stress deviator s does not contribute to the volumetric plastic strain rate ε̇m,
because tr (s) = 0. Thus, the volumetric plastic strain rate ε̇m becomes:

ε̇m = tr
(
ε̇(pl)) = α2

1 + (α/3)2
˙̂ε σm

σ̂
(99)

using tr (I) = 3. Inserting (98) into the definition (30) for the effective strain, the
effective strain rate can be obtained in the following form:

ε̇e = 1

1 + (α/3)2
˙̂ε σe

σ̂
(100)

The equivalent plastic strain rate ˙̂ε can now be formulated in terms of the volumetric
and the effective plastic strain rates by expressing σm in terms of ε̇m and ˙̂ε using
Eq. (99) and by expressing σe in terms of ε̇e and ˙̂ε based on Eq. (100), followed
by inserting the corresponding terms into the definition of the equivalent stress,
Eq. (87). Solving the resulting equation for the equivalent strain rate ˙̂ε gives the
following expression:

˙̂ε2 =
[

1 +
(α

3

)2
](
ε̇2

e + 1

α2 ε̇
2
m

)
, (101)

which is useful for calculating the equivalent plastic strain rate ˙̂ε when ε̇e and ε̇m
are known, e.g., from multiaxial experiments. In particular, the equivalent strain
rate ˙̂ε enters the definition H ≡ ˙̂σ/ ˙̂ε of the hardening modulus H, as introduced in
Eq. (95). The hardening modulus provides the connection between the rate form of the
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material law and the experimentally obtained stress-versus-strain data. Specifically,
it is required for evaluating the flow rule (97).

Deshpande and Fleck proposed an expression for H which contained a maximum
of information from their multi-axial tests. They chose H to depend on the current
equivalent strain ε̂ on the one hand and on the direction of the stress path on the other
hand. The latter was described by η ≡ |σm/σe| or the ratio σe/σ̂ .

The test setup for multi-axial testing consisted of a pressure cell filled with
hydraulic fluid and holding a cylindrical foam specimen which was wrapped in insu-
lating layers and further separated from the fluid by a rubber membrane. In this cell
the specimen was subjected to a hydrostatic pressure p. In addition, a compressive
force acting along the axis of the cylindrical specimen resulted in an additional axial
compressive stress σ , bringing the total axial stress to σ33 = −(p + σ). Under these
axisymmetric loading conditions, the mean stress becomes σm = − (p + σ/3), the
von Mises stress is equal to σe = |σ |, and the equivalent stress σ̂ can be calculated
easily from Eq. (87).

During the multi-axial experiments, the axial plastic strain ε(pl)
33 was measured. This

strain can be inserted in Eq. (98) along with σm and σe, which gives an expression
that can be solved for ε̂:

ε̂ = ε
(pl)
33

√[
1 + α2η2

] [
1 + (α/3)2

]

1 + α2η/3
(102)

The value for α can be found by fitting the yield surface to experimental data or by
measuring the plastic Poisson’s ratio. For several ratios η between the mean stress
and the von Mises stress, the average tangent modulus H̄ was then calculated as
H̄ = �σ̂/�ε̂, where ε̂was a suitable initial increment of the equivalent plastic strain.
This operation led to the result that the hardening modulus H can be approximated
with reasonable accuracy as a linear function of the direction of the stress path,
expressed by the ratio σe/σ̂ :

H =
[σe

σ̂
hσ +

(
1 − σe

σ̂

)
hp

]
(103)

Since the hardening behavior of cellular metals is generally nonlinear, the coefficients
hσ and hp depend on the instantaneous magnitude of the equivalent strain ε̂. For
uniaxial stress states, H becomes equal to hσ , because σ̂ = σe = |σ33|. The equivalent
strain is equal to the absolute value of the axial plastic strain, ε̂ = |ε(pl)

33 |. Finally, the
coefficient hσ = hσ (ε̂) is equal to the slope of the curve of the Cauchy stress versus
the logarithmic plastic strain in loading direction.

The second coefficient hp can be found from evaluating a hydrostatic compression
test in an analogous manner. The equivalent stress for pure hydrostatic loading by a
pressure p follows from Eq. (87) by setting σe = 0:

σ̂ (p) = α√
1 + (α/3)2

p (104)
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The rate of the equivalent strain can be found from Eq. (101) as a function of the rate
of the logarithmic plastic volumetric strain ε̇m by setting ε̇e = 0:

˙̂ε = −
√

1 + (α/3)2

α
ε̇m (105)

Finally, the coefficient hp can be obtained:

hp = −α2

1 + (α/3)2
ṗ

ε̇m
(106)

Deshpande and Fleck determined the coefficients hσ and hp from uniaxial compres-
sion and hydrostatic compression tests, respectively, for different materials. Then they
were able to approximate the evolution of the hardening modulus H for intermedi-
ate stress ratios σm/σe, and to obtain the corresponding σ̂ (ε̂) curves by integration.
These were compared to the respective curves from axisymmetric compression tests
with the same stress ratios. The agreement was very well for two different densi-
ties (8.4 and 16 % relative density, respectively) of Alporas foam, but the equivalent
stresses were overestimated for equivalent strains above 0.3 for Duocel foam with
7 % relative density. In all cases, the response under purely hydrostatic compression
and uniaxial compression could be fitted to the experimental results to the desired
accuracy as part of the calibration process.

The self-similar yield surface model does not allow for a change of the shape
of the yield surface and the yield surface remains centered in the σm − σe plane.
Differences in the hardening behavior under uniaxial loading and under hydrostatic
loading, however, can be taken into account. A simplified version of this constitutive
theory, which has strongly influenced modeling of cellular materials with commercial
finite element codes, will be presented in the following sections.

4.5.3 The Simplified Self-Similar Yield Surface Model

For simplifying the calibration of material model input data, Deshpande and Fleck
proposed a simplified version of the self-similar yield surface model, for which the
hardening response does not depend any more on the behavior under hydrostatic
pressure, but can be defined simply on the basis of the response under uniaxial
compression and some assumptions regarding the shape of the yield surface.

Specifically, the function (103) for the hardening modulus H simplifies to

H(ε̂) = hσ (ε̂) (107)

This means that the hardening modulus corresponds to the slope of the uniaxial
Cauchy stress versus logarithmic plastic strain curve. To fully define the mater-
ial behavior, a suitable yield surface ellipticity α has to be chosen in addition to
H = H(ε̂).
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In [11] it was pointed out that measured σ̂ (ε̂) curves for different stress paths
do not collapse into a single curve, as Eq. (107) would suggest. In particular, the
hardening under hydrostatic compression loading is visibly more pronounced than
the one under uniaxial compressive loading. Nevertheless, the simplified self-similar
yield surface model has been implemented in many commercial finite element codes.
One of these implementations will be described in the following.

4.5.4 The Abaqus Implementation of the Simplified Self-Similar Yield
Surface Model

The simplified self-similar yield surface model developed by Deshpande and Fleck
was originally implemented as a user material subroutine in the finite element code
Abaqus [7] by Chen [3]. The definitions of the yield function and the equivalent
stress were those of Eqs. (86) and (87) respectively.

Later, the material model became part of the standard material library of Abaqus,
with the addition of allowing for an independent calibration of the evolution of the
yield surface and the plastic Poisson’s ratio. Recall, that for the original self-similar
Deshpande/Fleck model, the plastic Poisson’s ratio νpl and the yield surface shape
parameter α are directly related by Eq. (89), owing to use of an associated flow rule.

In the Abaqus implementation, a non-associated plastic flow rule is introduced to
allow for independent calibrations of the shape of the yield surface and the plastic
Poisson’s ratio. The corresponding flow potential introduces a new parameter β:

GCF =
√
σ 2

e + β2p2 (108)

With the help of Table 1, the direction of plastic flow can be found:

∂GCF

∂σσσ
= 1

2GCF

(
3s − 2

3
β2pI

)
(109)

which is sufficient to calculate the plastic Poisson’s ratio νpl:

νpl = 1 − (2/9)β2

2 + (2/9)β2 (110)

and, in turns, the parameter β as a function of the plastic Poisson’s ratio νpl:

β = 3√
2

√
1 − 2νpl

1 + νpl
(111)

For zero plastic expansion in the transverse direction during uniaxial compression,
i.e., νpl = 0, a value of β = 3/

√
2 ≈ 2.12 follows immediately. For incompressible
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plastic flow, on the other hand, νpl = 0.5, β = 0, and GCF = σe, which corresponds
to the flow rule of classical (von Mises) plasticity.

In accordance with the simplified self-similar yield surface model proposed
by Deshpande and Fleck, the hardening of the foam under multi-axial loading is
described exclusively by relating the multi-axial strain state to the stress-strain rela-
tionship of a uniaxial compression test by means of an equivalent plastic strain ε̄(pl).

The evolution of the equivalent plastic strain ε̄(pl) is assumed to be governed by
the principle of equivalent plastic work, leading to the relationship

σc ˙̄ε(pl) = σσσ :ε̇(pl) (112)

For uniaxial tension or compression, only the axial plastic strain contributes to the
plastic work, and, consequently, the equivalent plastic strain is identical to the axial
plastic strain for these loading cases.

Owing to its simplicity and its availability via the finite element code Abaqus this
version of the simplified self-similar yield surface model has become quite popular.

4.5.5 The Differential Hardening Model

The experimental evidence collected by Deshpande and Fleck suggested that both
the sizes and the shapes of the yield surfaces of isotropic metallic foams change
during plastic loading depending on the direction of loading. In the context of their
experiments, where a hydrostatic pressure load and an axial load were superimposed,
the direction of loading was expressed by the quotient |σm/σe|.

Correspondingly, they suggested a quadratic yield function FDH of the mean stress
σm and the von Mises stress σe which separately takes into account the yield strength
S under deviatoric loading and the yield strength P under hydrostatic loading:

FDH ≡
(σe

S

)2 +
(σm

P

)2 − 1 ≤ 0 (113)

Under uniaxial loading, the yield surfaces of the metallic foams investigated in [11]
changed predominantly in size, whereas their shapes remained unaffected. Under
hydrostatic loading, on the other hand, the yield surfaces were found to become
elongated along the hydrostatic axis. Hydrostatic loading affected the deviatoric
yield strengths to varying degrees, depending on the material. For Duocel foam, the
uniaxial compressive strength remained nearly constant during hydrostatic loading.
For Alporas foam, on the other hand, hydrostatic loading consistently led to an
increase in deviatoric strength. Uniaxial loading always increased both the deviatoric
yield strength and the hydrostatic yield strength. Figure 13 schematically shows an
initial yield surface and evolved yield surfaces for two different stress paths. The
yield surfaces remain symmetric with respect to the σe axis, but their aspect ratio can
change.
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Fig. 13 Sketch of initial and hardened yield surfaces as predicted by the differential hardening
model proposed by Deshpande and Fleck [11]

A general hardening rule was thus proposed, which relates the strength values P
and S to kinematic quantities ε and γ according to the matrix equation

⎡

⎢⎢⎣
Ṗ

Ṡ

⎤

⎥⎥⎦ =

⎡

⎢⎢⎣
h11 h12

h21 h22

⎤

⎥⎥⎦

⎡

⎢⎢⎣
ε̇

γ̇

⎤

⎥⎥⎦ (114)

The element h11 of the hardening matrix relates the rate Ṗ of the hydrostatic yield
stress P to the rate ε̇ of a kinematic quantity ε, which is connected to the rate ε̇m of
the mean strain. The element h22 connects the rate of the deviatoric yield strength
Ṡ to the rate γ̇ in a similar manner. The cross-hardening terms h12 and h21 connect
the hydrostatic strength P and the deviatoric kinematic variable γ as well as the
deviatoric strength S and the volumetric straining via ε, respectively.

Deshpande and Fleck found good agreement with their experimental data for a
choice of the kinematic variables ε and γ which makes them plastic work conjugates
of P and S, respectively:

Pε̇ + Sγ̇ = σeε̇e + σm ε̇m ≡ σij ε̇
(pl)
ij (115)

From this, the following relationships between ε and the mean plastic strain εm as
well as between γ and the effective plastic strain εe can be established:

ε̇ ≡ σm

P
ε̇m (116)

γ̇ ≡ σe

S
ε̇e (117)
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In order to tie the coefficients hαβ of the hardening matrix to experimental results,
the flow rule Eq. (97) has to be adapted in a suitable manner:

εεε(pl) = 1

H

∂FDH

∂σσσ

(
∂FDH

∂σσσ
:σ̆σσ
)

= 1

H

(
3

S2 s + 2

3

σm

P2 I
)[(

3

S2 s + 2

3

σm

P2 I
)

: (ṡ + σ̇mI)
]

= 1

H

(
3

S2 s + 2

3

σm

P2 I
)[

3

S2 s:ṡ + 2

P2 σm σ̇m

]

= 1

H

(
3

S2 s + 2

3

σm

P2 I
)[

2σeσ̇e

S2 + 2σmσ̇m

P2

]
(118)

The expression in square brackets in Eq. (118) is a scalar multiplier, which can be
derived using the relationships s:I = 0 and I:I = 3. For the reformulation of the last
line of Eq. (118), the identity

σ̇e = 3

2

s:ṡ
σe

(119)

is used. Now, the plastic strain rate tensor ε̇εε(pl) is split up into a volume-changing
part (ε̇volI) and a shape-changing part ė:

(ε̇volI) = 2

3

1

HP2 σmI
[

2σeσ̇e

S2 + 2σmσ̇m

P2

]
(120)

ė = 3
1

HS2 s
[

2σeσ̇e

S2 + 2σmσ̇m

P2

]
(121)

For each part, the rate of the corresponding scalar quantity ε̇m and ε̇e (using

σe =
√

3
2 s:s), respectively, is calculated:

ε̇m = ε̇voltr(I) = 4σm

HP2

[
σeσ̇e

S2 + σmσ̇m

P2

]
(122)

ε̇e =
√

2

3
ė:ė = 4σe

HS2

[
σeσ̇e

S2 + σmσ̇m

P2

]
(123)

The hardening modulus H can be eliminated as an unknown by considering the
consistency relation as an additional equation:

ḞDH = 0 = ∂FDH

∂σσσ
:σ̆σσ + ∂FDH

∂S
Ṡ + ∂FDH

∂P
Ṗ (124)

from which follows, after some rearranging, the hardening modulus H:
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H ≡ 4σ 2
m

P3

[
h11

σ 2
m

P3 + h12
σ 2

e

S3

]
+ 4σ 2

e

S3

[
h21

σ 2
m

P3 + h22
σ 2

e

S3

]
(125)

Now, the hardening coefficients hαβ can be determined by specializing the expres-
sions (122) and (123) for the mean and the effective strain rates as well as (125) for
the hardening modulus H to conform to the loading and deformation conditions of
the various experiments. For the hydrostatic compression test, σm = −P and σe = 0
lead to h11 = σ̇m/ε̇m. At the same time, since γ̇ = 0 for hydrostatic compression
of an isotropic material, h21 can be expressed as the slope of the deviatoric yield
strength versus the plastic volumetric strain curve, h21 = Ṡ/|ε̇m|, as follows from
the second row of the hardening law (114) after setting γ̇ = 0 and applying Eq. (116).

For pure shear loading conditions, σe = S follows from the yield condition (113)
with σm = 0. If the shear loading is characterized by an applied shear stress τ , then
σe = |τ |√3. Thus, the deviatoric yield strength S is related to the shear yield stress
τyld by S = τyld

√
3. Specializing the expression (125) for the hardening modulus for

conditions of pure shear and inserting into (123) gives the coefficient h22 = σ̇e/ε̇e.
The rate ε̇e of the effective strain follows from an engineering shear strain rate γ̇12 as
ε̇e = |γ̇12|/

√
3. Finally, writing out the first row of the hardening law (114), setting

ε̇ = 0 for pure shear deformation, and applying Eq. (117) gives h12 = Ṗ/ε̇e.
Deshpande and Fleck also propose a procedure for calibrating the coefficients

hαβ from uniaxial compression tests instead of shear tests. Details can be found in
the original paper [11]. Assuming that h11 depends only on ε, they determined the
evolution of this coefficient from the hydrostatic compressive stress versus volumet-
ric compressive strain curve. They found the ratio h21/h11 to remain approximately
constant and to assume values between 0.4 and 0.55 for the investigated materi-
als. Furthermore, no significant cross-hardening between deviatoric straining γ̇ and
hydrostatic strength Ṗ was observed, i.e., h12 = 0. Finally, h22 was determined
indirectly from the uniaxial and hydrostatic compressive test results.

The differential hardening model was calibrated from unixial compression and
hydrostatic compression test results and subsequently used to predict the material
behavior for intermediate proportional loading paths. The correlation to experimen-
tal results was slightly better than in the case of the self-similar model (see [11]),
especially at higher strain levels, and in particular for a Duocel foam of 7.0% relative
density. However, the higher accuracy can perhaps not compensate for the added
complexity of this model, as Deshpande and Fleck remark themselves.

4.6 Chen and Lu Metallic Foam Material Model

Chen and Lu proposed a material model for metallic foams, which performed well
when compared to the more complicated differential hardening model by Deshpande
and Fleck (see Sect. 4.5.5). This model was a part of their phenomenological frame-
work of constitutive modeling for elasto-plastic solids [4], which is based on the
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definitions of the characteristic stress σ̄ in Eq. (56) and the characteristic strain ε̄ in
Eq. (57) as they were introduced in connection with isotropic elasticity in Sect. 4.2.

Then a ‘stress potential’ FCL is introduced, which relates multi-axial stress states
to the instantaneous total characteristic strain ε̄:

FCL = σ̄ 2 + C(ε̄)σ 2
m − Y(ε̄) = 0 (126)

No distinction between elastic and plastic strain components is made by Chen and
Lu. Therefore, all strain values mentioned in this section pertain to the total strain.
Stresses and strains are connected by an associated flow rule ε̇ij = λ̇∂FCL/∂σij the
factor λ̇ being calculated from the consistency condition ḞCL = 0.

The expressions for σ̄ and ε̄ simplify for some standard experimental settings. For
a hydrostatic test with an applied hydrostatic stress of σh resulting in a volumetric
strain of εh, one gets

σ̄ = β|σh|, ε̄ = |εh|
β
, (127)

with β as defined earlier in Eq. (55). For a strain εu caused by a uniaxial stress σu,
the characteristic stress and strain measures become

σ̄ =
√

9 + β2

3
|σu|, ε̄ = 3√

9 + β2
|εu|, (128)

and, finally, for a shear stress τ inducing a engineering shear angle γ :

σ̄ = |τ |√3, ε̄ = |γ |/√3. (129)

The functions C(ε̄) and Y(ε̄) can be determined based on the available experimental
results. For example, a characteristic stress-strain curve from a uniaxial compres-
sion test with a compressive applied stress of σ̄uc can be used in combination with
a corresponding curve obtained in a hydrostatic compression test with an applied
compressive hydrostatic stress of σ̄hc. Noting that |σm| = σ̄uc/

√
9 + β2 in uniaxial

compression and |σm| = σ̄hc/β for hydrostatic compression, the following functions
can be obtained after inserting the σ̄ and σm values for the two experiments into the
yield condition (126):

C(ε̄) = σ̄ 2
hc − σ̄ 2

uc

σ̄ 2
uc/(9 + β2)− σ̄ 2

hc/β
2

(130)

Y(ε̄) = σ̄ 2
hcσ̄

2
uc

1/(9 + β2)− 1/β2

σ̄ 2
uc/(9 + β2)− σ̄ 2

hc/β
2

(131)
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For each level of equivalent strain ε̄ the corresponding equivalent stress values σ̄uc
and σ̄hc have to be entered in Eqs. (130) and (131) in order to get meaningful functions
C(ε̄) and Y(ε̄).

Chen and Lu used these results to fit their functions C and Y to the experimental
test results of Deshpande and Fleck [11]. They found that they could predict an
intermediate stress versus strain path, which was not used in the calibration process,
with the same accuracy as the one possible with the differential hardening model of
Deshpande and Fleck [11], even though the calibration process is more simple for
their model.

The constitutive equations of Chen and Lu are intended for predicting the multi-
axial mechanical response of metallic foams in the compressive regime. Tension or
elastic unloading are treated only rudimentarily. The missing separation of elastic
and plastic strain contributions falls outside of the framework of classical plasticity
theory. Nevertheless, the form of the stress potential FCL and the definitions of the
characteristic stress σ̄ and the characteristic strain ε̄ can inspire other constitutive
approaches.

4.7 The Model by Zhang et al.

Even though it was originally developed for polymeric foam materials, the consti-
tutive model proposed by Zhang et al. [33] deserves mention, because it combines
a few interesting features which are similar to those already mentioned in previous
chapters, and may have actually been providing the motivation for them.

The yield surface is defined in terms of squares of the hydrostatic pressure p and
the von Mises equivalent stress σe and represents a half-ellipse when it is projected
onto the p-σe plane (see Fig. 14):

Fig. 14 Sketch of initial and hardened yield surfaces as predicted by the constitutive model proposed
in [33]



Plasticity of Cellular Metals (Foams) 197

FZhang =
[
p − p0

]2

a
+ σ 2

e

b
− 1 = 0 (132)

The variable p0 marks the center of the elliptical projection of the yield surface in the
p-σe plane, compare Fig. 14. The variables a and b define the size and the shape of
the yield surface, which are both allowed to change during the plastic deformation
process. The terms p0(ε

(pl)
vol ), a(ε(pl)

vol ), and b(ε(pl)
vol ) are all functions of the volumetric

plastic strain ε(pl)
vol , i.e., volumetric hardening is assumed. This has the important

consequence that the material’s response during a shear deformation is perfectly
plastic because no volumetric strain hardening occurs.

The present yield surface definition is quite similar to the one of the Abaqus
crushable foam model, compare Eq. (135) in Sect. 4.8, but offers more degrees of
freedom, because the tensile hydrostatic yield strength is unconstrained.

A non-associated flow rule equivalent to the one in the Abaqus implementation
of the Deshpande and Fleck model, see Sect. 4.5.4, is part of the Zhang et al. model.
The flow potential has the form

GZhang =
√
σ 2

e + αp2 (133)

which is almost the same as the one in Eq. (108) with the exception that the constant α
corresponds to β2 in Eq. (108). Following the derivations in Sect. 4.5.4 the parameter
α can be related to the plastic Poisson’s ratio νpl via

νpl = 9 − 2α

2(9 + α)
and α = 9(1 − 2νpl)

2(1 + νpl)
(134)

and the plastic Poisson’s ratio can thus be set independently of other material para-
meters.

Zhang et al. [33] covers additional interesting aspects of constitutive modeling
of polymeric foam materials, namely the numerical implementation of the material
model in an explicit finite element code, as well as the mathematical description of the
strain-rate sensitivity and and the temperature dependency of the material behavior.

4.8 The Abaqus Crushable Foam Model

The crushable foam model described in this section is a part of the standard material
library of the commercial Finite Element Code Abaqus [7]. It became available for
the modeling of cellular materials relatively early, at least compared to the other con-
stitutive theories presented here. The crushable foam model was originally developed
for PU foams, but an application and calibration of this model for metallic foams is
possible, see, e.g., [29]. The model has the following characteristic features:
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Fig. 15 Sketch of initial and hardened yield surfaces as predicted by the Abaqus crushable foam
model [7]. The yield stress p(0)t for tensile hydrostatic loading and the aspect ratio of the ellipse
remain constant

• a constant yield stress value −p(0)t for hydrostatic tension,
• a non-associated flow rule corresponding to a plastic Poisson’s ratio of zero, and
• hardening, which is driven by the compressive volumetric plastic strain −ε(pl)

vol .

The yield surface of the crushable foam material law is defined implicitly by

FCF(σe, p) =
√
(σe)2 + α2(p − p0)2 − B = 0 (135)

which depends on two stress invariants, namely the von Mises equivalent stressσe and
the hydrostatic pressure p (=−σm), indicating that the material behavior is assumed
to be isotropic. The yield surface can geometrically be described as a half-ellipse in
the σe versus σm plane, see Fig. 15.

The vertex of the ellipse on the axis of positive mean stress is defined by the
tensile hydrostatic yield stress p(0)t . As a characteristic feature of the crushable foam

model, the yield stress p(0)t is assumed to remain constant, even if the yield surface
expands due to hardening. Consequently, this vertex stays fixed on the σm axis. The
hydrostatic yield pressure pc bounds the yield surface on the negative σm axis. It can
evolve from an initial value p(0)c to greater values due to hardening.

The center of the yield surface corresponds to a pressure of

p0 = pc − p(0)t

2
(136)

The size of the yield surface is determined by the semi-axis length B in Eq. (135),
whereas the parameter α controls the shape. While the yield surface is allowed to
expand in the direction of positive hydrostatic pressure, the shape is defined to stay
self-similar by keeping the parameter α constant. For fitting the shape parameter α
to experimental results, two material parameters k and kt can be determined:
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k = σ
(0)
c

p(0)c

and kt = p(0)t

p(0)c

. (137)

The shape parameter (aspect ratio) α then follows as:

α = 3k√
(3kt + k)(3 − k)

(138)

The radius B can be calculated by multiplying the half-length of the yield ellipse
along the hydrostatic axis with the shape parameter α:

B = α
pc + p(0)t

2
(139)

The fact that the tensile hydrostatic yield stress −p(0)t is assumed to remain con-
stant throughout the evolution of the yield surface and, therefore, during any plastic
deformation process, takes into account that no hardening due to compaction of the
cellular structure is possible under hydrostatic tension.

In order to fit the initial yield surface to experimental data, three points on the
initial yield surface have to be determined experimentally. The following list gives
candidates for these points:

• initial compressive yield stress in uniaxial compression σ (0)c ,
• initial tensile yield stress in uniaxial tension σ (0)t ,

• initial yield stress in simple shear τ (0)y ,

• initial yield stress under hydrostatic pressure p(0)c .

Not included in this list is the initial yield stress under hydrostatic tension p(0)t ,
because it is almost impossible to determine this value experimentally. It can, nev-
ertheless, be calculated from other yield stresses, for example from σ

(0)
c , σ (0)t , and

p(0)c , which are comparatively easy to find from experiments:

p(0)t = p(0)c σ
(0)
c σ

(0)
t

3 p(0)c (σ
(0)
c − σ

(0)
t )+ σ

(0)
c σ

(0)
t

(140)

According to [7] the yield strength in hydrostatic tension p(0)t has to be expected to

be considerably lower than the inital yield strength in hydrostatic compression p(0)c ,
resulting in ratios p(0)t /p(0)c = 0.05 to 0.10.

While the shape of the yield surface remains constant, its size increases with
progressing plastic deformation. The hardening behavior is controlled by a plastic
strain measure, which, for this model, is equal to the compressive volumetric strain
−ε(pl)

vol . The hardening behavior can be extracted from the stress-versus-strain-results
of a uniaxial compression test assuming zero plastic Poisson’s ratio. In this case, the
uniaxial plastic strain is equal to the volumetric plastic strain.



200 T. Daxner

The assumption of vanishing plastic deformation transverse to any given loading
direction, expressed by νpl = 0, is, indeed, a feature of the crushable foam material
model. It is based on experimental observations, which indicate that cellular materials
do not tend to deform significantly in the lateral direction when they are tested in a
uniaxial compressive test. Preventing plastic flow normal to the loading direction is
achieved by choosing an appropriate non-associated flow rule of the form

dεεε = dε̄(pl) ∂GCF

∂σσσ
(141)

containing the increment of the equivalent plastic strain dε̄(pl), which will be inves-
tigated in more detail below, and the flow potential function GCF, which is defined
in terms of the stress tensor invariants σe and p as:

GCF =
√
(σe)2 + 9

2
p2 (142)

It can be shown that this corresponds to the equivalent tensorial form

GCF =
√

3

2
σσσ : σσσ (143)

which can be differentiated with respect to the coordinates of the stress tensor to
obtain the direction of plastic flow for the crushable foam model:

∂GCF

∂σσσ
= 3σσσ

2GCF
(144)

Equation (144) indicates a direction of plastic flow which is identical to the stress
direction for radial paths in stress space. This means, that loading in any princi-
pal direction does, per definition, not cause any plastic deformation in the other
principal directions.

Finally, the increment of the equivalent plastic strain dε̄(pl) follows from Eq. (141)
if the scalar product of both sides with the stress tensor is formed:

σσσ : dεεε(pl) = σσσ :
(

dε̄(pl) ∂GCF

∂σσσ

)
= dε̄(pl) σσσ : 3σσσ

2GCF
= dε̄(pl) GCF (145)

from which the increment of the equivalent plastic strain can be expressed as

dε̄(pl) = σσσ : dεεε(pl)

GCF
(146)

While the definition of the crushable foam yield surface, which relates the stress
tensor invariants σe and p to each other in the form of the equation of an ellipse, is not



Plasticity of Cellular Metals (Foams) 201

unusual for cellular materials, the treatment of the hydrostatic tensile yield strength
as being a constant, and the fact that radial loading does not cause any transverse
plastic deformation, are unique characteristics of the crushable foam model.

4.9 The Ehlers Model for Cellular Metals

Ehlers and Müllerschön adapted a constitutive model, which was orgininally devel-
oped for porous and granular porous media, to represent plastic yielding of metal
foam [14, 16]. The yield function

FEhlers =
√[

J2

(
1 + γ

J3

(J2)3/2

)m

+ 1

2
αI2

1 + δ2I4
1

]
+ βI1 + εεεI2

1 − κ = 0 (147)

depends on the first invariant I1 = 3σm = −3p of the stress tensor, the second
invariant J2 = 1

2 s:s = σ 2
e /3 of the stress deviator tensor s and on the third invariant

J3 = det(s) of s.
The characteristic which sets apart this material model from the others presented

so far is its dependence on the third invariant J3, which indicates a shape of the
yield surface cross-section in the deviatoric plane, which is not circular, but rather
triangular with rounded corners. The shape of the deviatoric cross-section is con-
trolled by the parameters γ and m in (147). By setting γ = 0 the influence of the
third deviatoric invariant is eliminated and the rounded triangular shape of the yield
surface cross sections in the deviatoric plane changes into a circular shape.

For this material model, a non-associated flow rule is proposed with a plastic flow
potential GEhlers, which is presented here in the form given in [13]:

GEhlers =
√[
ψ1J2 + 1

2
αI2

1 + δ2I4
1

]
+ ψ2βI1 + εI2

1 (148)

In an earlier publication [14] the parameters ψi were set to unity, ψ1 = ψ2 = 1, and
the plastic potential is fully defined by the parameters describing the yield surface.

The Ehlers model has the largest number of parameters required for defining
the shape of the initial yield surface, namely seven. For hardening along arbitrary
strain paths, these parameters may even be history-dependent. This makes mater-
ial calibration somewhat complicated, as a large number of different tests (uniaxial
compression/tension, axial-symmetric compression and biaxial loading in [16]) and
a least-square fitting process are required. For an AlSi7Mg foam with an average
apparent density of 0.3 g/cm3 (produced by Hydro Aluminium) the following para-
meters are given for the initial yield surface in [16]: α = 0.0196, β = 0.07, γ = 1.4,
δ = 0.0176 MPa−1, εεε = 0.00196 MPa−1, κ = 2.02 MPa, m = 0.61. Figure 16
shows a rendering of the yield surface in the principal stress space. By projecting the
yield surface along the direction of the hydrostatic axis, the non-circular deviatoric
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Fig. 16 Rendering of the Ehlers et al. yield surface in principal stress space using material para-
meters from [16]. The black contour lines indicate levels of constant mean stress in intervals of
1 MPa. The black disc represents the π plane and has a radius corresponding to σe = 4.5 MPa. The
grey contour lines indicate cross-sections with constant σ3

cross-sections can be made clearly visible, see Fig. 16 (right). The quality of the fit
of the yield surface(s) to the experimental yield points is illustrated in [12] where
both yield surface shapes which deviate from simple ellipsoidal shapes and triangular
cross-sections in the deviatoric plane are well documented.

5 Discussion and Conclusions

Existing material laws for metallic foams are adequate for modeling simple defor-
mation histories and predominantly radial stress paths. More complex mechanical
processes such as successive perpendicular loading will require more sophisticated
modeling techniques to account for the anisotropy caused by changing loading or
deformation directions, see Deshpande and Fleck [11] and Hanssen [24].

Perhaps the most restricting feature about the available foam models is the absence
of appropriate fracture models. Metal foams are very prone to softening and pre-
mature failure under tensile stress states, the overall behavior being governed by
progressive failure of the cell walls in this regime. Since fracture is often observed in
real-world applications of metal foams, the introduction of corresponding simulation
methods is necessary.

A correct calibration of the material parameters based on experimental data is
indispensable for the success of any finite element simulation. In most cases, a uni-
axial compressive test is the minimum requirement for this calibration. For more
sophisticated constitutive models additional data on the yield surface shape and the
hardening behavior has to be provided by the user. This requires information about
the mechanical behavior of the material under multi-axial loading conditions. Since
multi-axial experimental data is scarce the user must rely on appropriate assumptions,
which can be derived either from micro-mechanical finite element simulations or via
parameter identification techniques (that is, by minimizing the discrepancy between
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simulations and experimental results, e.g., a sphere indentation test). The more para-
meters enter any given constitutive law, the more complicated the calibration process
may become. As a consequence, comparatively simple constitutive laws such as the
simplified self-similar yield surface model, compare Sect. 4.5.3, see more frequent
application, and are often sufficient if the loading conditions are simple enough.

When cellular metals and metallic foams will see more widespread use, and safety-
relevant applications such as crash-protection will require more accurate material
models, then further advances in the constitutive modeling of cellular metals are to
be expected. This contribution hopefully provides the reader with a good starting
point for further developments.
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