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Abstract Models for isotropic materials based on the equivalent stress concept
are discussed. At first, so-called classical models which are useful in the case of
absolutely brittle or ideal ductile materials are presented. Tests for basic stress states
are suggested. At second, standard models describing the intermediate range between
the absolutely brittle and ideal-ductile behavior are introduced. Any criterion is
expressed by various mathematical equations formulated, for example, in terms of
invariants. At the same time the criteria can be visualized which simplifies the applica-
tion. At third, in the main part pressure-insensitive, pressure-sensitive and combined
models are separated. Fitting methods based on mathematical, physical and geometri-
cal criteria are necessary. Finally, three examples (gray cast iron, poly(oxymethylene)
(POM) and poly(vinyl chloride) (PVC) hard foam) demonstrates the application of
different approaches in modeling certain limit behavior. Two appendices are nec-
essary for a better understanding of this chapter: in Chap. 2 applied invariants are
briefly introduced and a table of discussed in this chapter criteria with references is
given.
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1 Need of Criteria

The strength theory assumes that the mechanical loading states can be characterized,
for example, by stresses [62]. It is known that the stresses in each point of the material
or structure are presented by the stress tensor σσσ [5]. For comparison purposes of
various stress states the stress tensor cannot be applied that means a scalar quantity
should be used. Let us introduce the following expression for such quantity

σEQ = σeq(σσσ)+ f (∇σσσ) R, R ≥ 0. (1)

∇ is the nabla operator, f denotes an arbitrary scalar-valued function and R is a
structural parameter, which can be associated with the grain size in gray iron, with
the cell size of a hard foam, with the particle size in nanomaterials, etc. This parameter
represents the influence of the stress distribution expressed by the stress gradient ∇σσσ .
The parameter R is positive-definit and bounded by the minimal dimension of the
structural component, e. g. the plate or sheet thickness, cf. [214]. Equation (1) can
be extended by introducing higher order stress gradients, however the application is
limited. The additional material parameters should be estimated experimentally, but
tests for their estimation are unknown.

Ignoring the microstructure influence Eq. (1) can be simplified

σEQ = σeq(σσσ). (2)

This implies that the stress state in each point can be described through the stresses
at this point only [71]. This formulation has multiple limitations and must be applied
with care if the calculation of stresses is performed for parts with significant stress
gradients:

• stress concentration areas,
• load application areas,
• sharp corners, etc.

Nevertheless, the concept of the equivalent stress (2) is widely applicable. This
concept allows to compare multi-axial stress states with material parameters, e. g.
the tensile yield or failure stress σ+

σeq = σ+. (3)

Strength hypotheses and yield criteria for isotropic materials can be formulated
using principal stresses

Φ(σI, σII, σIII, σeq) = 0, (4)

or other invariants, e. g. axiatoric-deviatoric invariants

Φ(I1, I ′
2, I ′

3, σeq) = 0, (5)
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or cylindrical invariants (Novozhilov’s invariants)

Φ(I1, I ′
2, θ, σeq) = 0. (6)

The invariants are named in accordance to [234] and detailed presented in Appen-
dix 15. The three formulations (4), (5) and (6) are equivalent. Note that in the case
of incompressible material behavior it can be shown that the first invariant I1 has no
influence on Φ

Φ(I ′
2, I ′

3, σeq) = 0, Φ(I ′
2, θ, σeq) = 0. (7)

The remaining invariants are named deviatoric invariants.
The equivalent stress concept (2) allows to formulate the material response under

multi-axial loading in a compact form using only few parameters. Such formulations
are used in

• elasticity theory (elastic potential) [8, 9, 130, 212],
• plasticity theory (plastic potential, yield criterion) [8, 139, 163, 234],
• creep theory (creep potential) [8, 125],
• strength of materials (strength hypothesis or criterion) [8, 35, 91, 157, 220, 229],
• low cyclic fatigue [8, 126] and
• phase transformation conditions [158, 165].

Phenomenological yield and failure criteria are widely discussed in the literature.
Some reviews are given in [8, 16, 45, 71, 74, 157, 174, 204, 221, 228, 229, 234]
among others.

2 Classical Strength Theories

The dimensioning of structural members is usually carried out under the assumption,
that materials behave either brittle or ductile. The following hypotheses (sometimes
named theories), which correspond to one of the two assumptions, are often used for
strength or yield evaluation [65, 74, 132, 174].

The three classical models (normal stress hypothesis, Tresca, von Mises), which
are presented as usual in textbooks on strength of materials and implemented in com-
mercial finite element codes as a standard tool, and the model of Schmidt-Ishlinsky
represent particular cases of material behavior and are sometimes unable to describe
the behavior of materials properly. Because of their simplicity they are used in the
engineering practice. For applied problems the computations can be performed using
these models, if no information on the particular material properties is available. The
normal stress hypothesis (Fig. 1) describes the “absolutely brittle” material behav-
ior, the models of Tresca, von Mises and Schmidt-Ishlinsky—the “ideal ductile”
behavior.
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Fig. 1 Models for incompressible “ideal ductile” material behavior (von Mises, Tresca and
Schmidt-Ishlinsky) and the normal stress hypothesis (NSH) for “absolutely brittle” material behav-
ior in the plane σI−σII, σIII = 0 (after [93])

2.1 Normal Stress Hypothesis

The normal stress hypothesis (Clapeyron, Galilei, Leibniz, Lamé, Maxwell, Navier,
Rankine), Fig. 2, i. e. the maximum tensile stress is responsible for the failure
[75, 94, 166, 175], can be expressed as it as follows

σeq = max(σI, σII, σIII). (8)

Another formulation is

(σI − σeq) (σII − σeq) (σIII − σeq) = 0. (9)

Equation (9) is a cubic equation with respect to σeq. With the help of a parameter
identification this equation can be transformed into a third order polynomial of I 3

1 ,
I 2
1 σeq, I1 σ

2
eq, σ 3

eq, I ′
2 σeq and I ′

3. It can be obtained using the model [178]

3 I ′
2 σeq + c3 I ′

3

1 + 2 c3/33 = σ 3
eq, (10)
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σ I
σIII

σ II

hydrostatic
axis

VON MISES

normalstresshypothesis

Fig. 2 Normal stress hypothesis (8) and cylinder of von Mises (16) in the principal stress space
(σI, σII, σIII)

and the substitution [103, 178]

σeq → σeq − γ1 I1

1 − γ1
(11)

with the parameter values

c3 = 32

2
, γ1 = 1

3
(12)

for the better analysis, unified visualization techniques and systematization.

2.2 Tresca Hypothesis

The shear stress hypothesis (Coulomb, Guest, Mohr, Saint Venant, Tresca), i. e. the
maximum difference of the principal stresses is relevant for the failure [48, 163,
209], can be written as follows (Fig. 1)

τmax = 1

2
max(|σI − σII|, |σII − σIII|, |σIII − σI|). (13)

The equivalent stress can be expressed in this case as

σeq = 2 τmax. (14)
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In analogy to Eq. (9) one can write

(σeq − |σI − σII|) (σeq − |σII − σIII|) (σeq − |σIII − σI|) = 0.

This hypothesis (often called Tresca hypothesis) can be also expressed by the devi-
atoric invariants [163, 171]

(
I ′
2 − σ 2

eq

)2 (
22 I ′

2 − σ 2
eq

)
− 33 I ′ 2

3 = 0. (15)

2.3 Huber-von Mises-Hencky Hypothesis

The distortion energy hypothesis (Huber, von Mises, Hencky),1 Fig. 2, has different
interpretations among them that the failure occurs if a critical amount of accumulated
distortion energy is achieved [85, 91, 139, 194, 234]

σ 2
eq = 1

2

[
(σI − σII)

2 + (σII − σIII)
2 + (σIII − σI)

2
]

= 3 I ′
2. (16)

This hypothesis is often called von Mises hypothesis.

2.4 Schmidt-Ishlinsky Hypothesis

The criterion of the maximum deviatoric stress (Burzyński, Schmidt, Ishlinsky, Hill,
Haythornthwaite), i. e. the failure occurs if a critical value of deviatoric components
of the stress tensor is achieved [35, 84, 87, 92, 182] (Fig. 1)

max

[∣∣σI − 1

3
I1
∣∣, ∣∣σII − 1

3
I1
∣∣, ∣∣σIII − 1

3
I1
∣∣
]

= 2

3
σeq (17)

or in analogy to Eq. (9)

[
σeq−

∣∣∣∣σI− 1

2
(σII + σIII)

∣∣∣∣
][
σeq−

∣∣∣∣σII− 1

2
(σIII + σI)

∣∣∣∣
][
σeq−

∣∣∣∣σIII− 1

2
(σI + σII)

∣∣∣∣
]

= 0.

(18)
This model can be expressed with the deviatoric invariants [11, 222, 224, 225]

[
33

23 I ′
3 + 32

22 I ′
2 σeq − σ 3

eq

] [
33

23 I ′
3 − 32

22 I ′
2 σeq + σ 3

eq

]
= 0. (19)

The naming Schmidt-Ishlinsky hypothesis has become established.

1 This criterion was also formulated 1865 in a letter of Maxwell to Lord Kelvin [204].



Phenomenological Yield and Failure Criteria 55

σ+

σBZ

σBZ = bZ σ+

σAZ

σAZ = ahyd
+ σ+

σAZ

σD = d σ+

σBD

σBD = bD σ+

σAD

σAD = ahyd σ+

σAD

τ

τ =
1

3
kσ+

σIZ/ 2

σIZ =
2

3
iZ σ+

σUD/ 2

σUD =
2

3
uD σ+

Z BZ AZ

D BD AD

K UDIZ

Fig. 3 Nine basic tests. The stresses, values and labels of loading are given in Table 1

3 Basic Stress States

All criteria can be visualized as a limit surface Φ. Nine tests (Fig. 3) are chosen for
the analysis and comparison of the surfaces Φ:

• two loadings corresponding to one-dimensional stress states (tension, compres-
sion),

• five loadings corresponding to plane stress states (torsion, two balanced plane
states, two thin-walled tube specimens with closed ends under inner and outer
pressure) and

• two loadings corresponding to hydrostatic (3D balanced) tension and compression.

The relevant stresses are listed in Table 1. All these loading cases have approved
verbal formulations and can be considered as basic tests.2

2 Note that in material testing another definition of basic tests is given [32].
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These nine tests are sufficient for the comparison of the most important features of
surfaces. Their selection is however not unambiguous and can be expanded according
to the available equipment, expected phenomena and requested precision, see e. g.
loading cases labeled by Q and H (Table 1 and Sect. 9.2). Further considerations for
the choice of loadings are discussed in [8, 36, 37].

The values (Table 1) relating the respective stresses to σ+ are introduced in order
to obtain

k = d = iZ = uD = bZ = bD = 1 and ahyd
− , ahyd

+ → ∞ (20)

for the von Mises hypotheses (16).
For the models of incompressible material behavior the values on the angle θ = 0,

π
6 and π

3 are computed to [16, 103, 234]

bD = 1, k = iZ = uD and d = bZ. (21)

For the classical models (Sect. 2) it follows [113]

bZ = 1, bD = d. (22)

The models for incompressible behavior can be compared in the d−k-diagram
(Fig. 4) [104, 105, 110]. In this diagram the models of Haythornthwaite and Sayir II
(Sect. 9.1) limit the convex shapes of the surface Φ in the π -plane [33]. For the
models of compressible material behavior (Sect. 10) the 1

d −k-diagram, which allows

to represent the properties d → ∞, k = √
3 of the normal stress hypothesis among

others, is recommended (Fig. 5) [122, 156, 157]. In this diagram the areas of validity
of all criterions and various ideas of generalization can be visualized.

The measurements σ+, σ− and τ∗ for some materials are presented in [18, 41, 124,
157, 229]. Examples of experimental data for some polymers are given in Table 2.

The data are taken from various sources and they are related to different manu-
facturers. They can be used as first estimates only. Note that the experiments were
performed for specimens with different geometries and using different techniques.
The relations d and k of the materials can be represented in Figs. 4 and 5 together
with the models in order to simplify the choice of the suitable model [104].

4 Inelastic Poisson’s Ratio

In the linear theory of elasticity the Poisson’s ratio is defined as the negative ratio of
the strain εII = εIII in the direction orthogonal to the applied load and the strain εI
in the tension direction [20, 89]:

νel = −εII

εI
= −εIII

εI
, νel ∈

]
−1,

1

2

[
. (23)
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Fig. 4 Diagram d−k for convex models of incompressible material behavior compared with the
hypothesis of von Mises [110]. Certain cross sections in the π -plane are visualized in order to
achieve a better understanding:
a. k = 1/

√
3, d = 1/2 b. k = 2/

√
3, d = 2

c. k = 3 (2 − √
3), d = √

3/2 d. k = 1, d = (1 + √
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√
3, d = 1(Schmidt − Ishlinsky)

i. k = 1, d = √
3/2 m. k = 1, d = 1(von Mises)

If the elastic law is formulated on the base of the potential Φ, one can write

νel = −
(
∂ Φ

∂ σII

/
∂ Φ

∂ σI

) ∣∣∣∣
σII=σIII=0

= −
(
∂ Φ

∂ σIII

/
∂ Φ

∂ σI

) ∣∣∣∣
σII=σIII=0

. (24)

The classical theory of elasticity [20, 64, 205] makes no difference between Poisson’s
ratio at tension and compression

νel+ = νel−. (25)

The Poisson’s ratio for yield criteria in the isotropic case can be computed in a
similar way as relations of the strain or strain rates

νin = −
(
∂ Φ

∂ σII

/
∂ Φ

∂ σI

) ∣∣∣∣
σII=σIII=0

= −
(
∂ Φ

∂ σIII

/
∂ Φ

∂ σI

) ∣∣∣∣
σII=σIII=0

(26)

using the flow rule [126, 167, 234]

ε̇i j = λ̇
∂ Φ

∂ σi j
, λ̇ > 0 (27)
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P ISARENKO-LEBEDEV

Fig. 5 1/d versus k for the classical models (Sect. 2) and for the Unified Strength Theory of Yu
(Sect. 10.2) as a function of d ≥ 1 and b ∈ [0, 1]:
d ≥ 1, k ∈

[
1,

√
3
]
—Pisarenko-Lebedev model (48),

d = 1, k ∈ [(2/3)1/6 , (3/2)1/6]—model of Drucker I (Sect. 9.2),

d = 1, k ∈
[√

3/2, 2/
√

3
]
—Unified Yield Criterion of Yu with b ∈ [0, 1] (Sect. 9.2),

d → ∞, k = √
3—normal stress hypothesis (Sect. 2.1).

SI—model of Schmidt-Ishlinsky (Sect. 2.4), SD—model of Sdobirev with d = 2, k = 3 − √
3 ≈

1.27 (Sect. 6.3), UYC—Unified Yield Criterion (Sect. 9.2), SST—Single-Shear-Theory of Yu
(model of Mohr-Coulomb), Sect. 10.2, TST—Twin-Shear-Theory of Yu. The cross-sections in
the π -plane on I1 = σeq are provided for better understanding [104, 105, 115]

for ε̇II and ε̇I. Further definitions of νin are given in [109]. There is a difference
between the inelastic Poisson’s ratios at tension νin+ with σI = σ+ and compression
νin− with σI = −d σ+, d ≥ 0.

The convexity condition (necessary condition) for the meridian with the angle
θ = 0 and the associated point Z (tension) yields [105]

νin+ ∈
]

− 1,
1

2

]
. (28)
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VON MISES

σI

σ II

σIII

hydrostatic axis

DRUCKER -PRAGER

family of cylindrical surfaces

Fig. 6 Cone of Drucker-Prager with the family of cylindric surfaces and cylinder of von Mises in
the principal stress space (the cone is cut in order to achieve better visualization)

For the surfaces that do not cross the hydrostatic axis in the compression region
(ahyd

− → ∞), it follows [103, 181]

νin− ≥ 1

2
. (29)

For those surfaces (e. g. Drucker-Prager, Mohr-Coulomb, Pisarenko-Lebedev) a non-
associated flow rule with

νin− = 1

2
(30)

is often used [103]. The model of Drucker-Prager can be used as an example (Fig. 6).
In this figure for each stress state in the region I1 ≤ 0 a cylindrical surface is defined.
This results in a “family” of rings, which define the incompressible behavior for each
stress state in the compression region.

For closed surfaces in the principal stress space will be assumed [105, 216]

νin− ∈
]

− 1,
1

2

]
. (31)

The restriction can be clarified in the
(√

3 I ′
2, I1

)
-plane (Sect. 8.2): the maximum

of a meridian lies in the region

I1

σ+
∈ [−d, 1].

Using (26) the inclination of the tangent line at the points Z (tension) and D (com-
pression) of the surfaceΦ in the principal stress space with respect to the hydrostatic
axis can be characterized:
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• from the inclination ψ = 0 (tangent line parallel to the hydrostatic axis) follows
νin = 1/2 (Fig. 2, model of von Mises) and

• the inclination ψ = π/2 (tangent line is orthogonal to the hydrostatic axis) yields
νin = −1.

The Poisson’s ratio νin+ = 0 (Fig. 2, normal stress hypothesis (8)) yields3 the incli-
nation angle with

tanψ = √
2

[
3

2 (1 + νin+ )
− 1

]
(32)

to ψ = arctan
(√

2/2
)

≈ 35.26◦ in the principal stress space (Fig. 7).

This geometrical interpretation of (26) can be used for description of the limit sur-
faceΦ. It completes the relations (Table 1) for the analytical comparison of different
surfaces by fitting of measurements.

The following estimates are available for evaluation of the quality of the model:

• For ductile materials the experience-based inequality

ψ

2/
3

3/
31/

3

0

σII

σI

σ III

hydrostatic
axis ξ1

Z
ϒ

AZ

Fig. 7 Principal stress space (σI, σII, σIII): inclination of the tangent line ψ ≈ 35.26◦ at the point
Z (tension) of the surface Φ correlates with the Poisson’s ratio at tension νin+ = 0, Υ—intersection
of the surface Φ with the surface (ξ1, 0, σII) or meridian with θ = 0 of the surface Φ

3 Here the substitution I ′
3 = 2

√
3

32 (I ′
2)

3/2 is used, which corresponds to the meridian with the angle
θ = 0 (Sect. 8.2). The point Z (tension) belongs to this meridian (Table 1).
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νin+ ∈
[
νel+,

1

2

]
(33)

can be used in order to check the quality of fitting to the measured data.
• The term ”slight compressibility”, see [140], can estimated by [110]

νin+ ∈
[

0.48,
1

2

]
. (34)

This range is recommended for yield criteria.
• For “very ductile” behavior [126] it can be required additionally

νin+ → 1

2
, (35)

and one gets the desired parameters of the yield criterion in the fitting (Sect. 12).
• For brittle material behavior the following constraints can be formally written

down
νin+ ∈] − 1, ν+el], (36)

cf. the maximum strain hypothesis (Sect. 6.1) for the upper bound and the strain
hypotheses with σeq = I1 for the lower bound.

• For “absolutely” brittle material behavior failure occurs without plastic deforma-
tions in the cross sectional area of the tensile bar [206, 208]. In this case it can be
assumed from the normal stress hypothesis (Sect. 2)

νin+ ≈ 0. (37)

5 Ratios for a Torsion Bar

In addition to value k, one can define other values relating to torsion using the yield
condition (27). By analogy to the Poisson’s ratio the elongation/contraction ratio for
a torsion bar or tubes can be established, cf. [8]:

χ = ∂ Φ

∂ σ11

/
∂ Φ

∂ σ12
(38)

with σ12 = k σeq/
√

3 and σ11 = σ22 = σ33 = σ13 = σ23 = 0. With the
help of this ratio the Poynting-effect and the Poynting-Swift-effect [160–162, 200]
can be described (Figs. 8 and 9). These effects are discussed in the literature, see
[3, 8, 16, 27, 29, 69, 81, 168, 206, 215] among others. The material behavior of the
von Mises-type results in χ = 0. In the case of the application of the normal stress
hypothesis (Sect. 2) one gets χ = 1/2 [6, 110].
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Fig. 8 Change of the geometry of a tube clamped on the right side at torsion

d

dD

D

s sS S

u
u

r

L

11

χ < 0 χ > 0

Fig. 9 Change of the geometry of a tube at torsion. D and d—outer diameter of the tube before
and after loading, S and s—wall thickness before and after loading, u(r)—distribution law for the
displacements in the direction 1
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1
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2
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2

, ν in
− → ∞

τ12
τ21

Fig. 10 Change of the geometry and the shape of a cube with the size 1 × 1 × 1 under stress action
τ12 for four settings of the Sayir I model (Table 3)

Furthermore, the volume strain caused by torsion (volume dilatation, see Kelvin-
effect [8, 16]) can be computed as follows:

εVτ =
(
∂ Φ

∂ σ11
+ ∂ Φ

∂ σ22
+ ∂ Φ

∂ σ33

)/
∂ Φ

∂ σ12
. (39)

In addition, a transverse contraction ratio can be obtained [110]:

νin
τ = − ∂ Φ

∂ σ33

/
∂ Φ

∂ σ11
. (40)

By this way one gets more information about the material behavior from the torsion
test. Some special cases are analyzed in Fig. 10 and Table 3 on the base of model of
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Table 3 Effects computed at torsion considering the model of Sayir I (10) with the linear substi-
tution (11)

Cross section in the π -plane (Fig. 4) a m b

c3 ∈
[
−32,

32

2

]
−32 0

32

2

γ1 ∈ [0, 1[ 0
1

3
νin+ = 1

2
(1 − 3 γ1)

1

2
0

Classical model – von Mises – NSH

k = 1

1 − γ1

√
1 + 2

33 c3
1√
3

1
2√
3

√
3

d
1

2
1 2 ∞

χ = √
3

√
1 + 2

33 c3
c3 (1 − γ1)+ 2 · 32 γ1

2 · 33 (1 − γ1)
−1

6
0

1

6

1

2

νin
τ = 2

c3 (1 − γ1)− 32 γ1

c3 (1 − γ1)+ 2 · 32 γ1
2

0

0
2 0

εVτ = √
3

γ1

1 − γ1

√
1 + 2

33 c3 0 1

The von Mises hypothesis describes the torsion of the tubular specimen without elongation χ = 0.
The hypotheses for incompressible material behavior (von Mises and Sayir I with c3 = −32 und
c3 = 32/2) reflect no volume change. The hypotheses of von Mises and of normal stress do not
result in changes of the wall thickness ∂ Φ/∂ σ33 = 0, cf. the Mohr-Coulomb hypothesis [73, 79]
and Pisarenko-Lebedev hypothesis [157].

Sayir I (10). It is obvious that the influence of I1 and I ′
3 cannot be separated by these

measurements.
For rotational-symmetric models with ahyd

− → ∞ one obtains χ ≥ 0. For vari-
ous materials the cross-sections of the surface Φ in the π -plane result in the part
g – b – h of the d−k-diagram (Fig. 4, d ≥ 1) yielding χ > 0. From this it
follows that the length and the diameter increase at torsion is more realistic, cf.
[25, 168, 206]. This effect is significantly influenced by:

• defects in the material,
• material anisotropy,
• loading-induced anisotropy,
• technological characteristics,
• deviation of the specimen shape from the ideal geometry,
• non-coaxial fixation of the specimen in the testing machine,
• temperature changing during the test, etc.

This is the reason for different suggestions to describe such behavior in the literature.
The ratios χ , εVτ and νin

τ are properties of the model.
If the torsion test is carried out with ε11 = 0 (strain is constrained), the axial force

can be computed using the flow rule [172]. The sign of this force gives clues about
the shape of the surface Φ.
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6 Standard Criteria

The standard models (strain hypothesis, model of Mohr-Coulomb, model of
Pisarenko-Lebedev and model of Burzyński-Yagn [157, 194, 234]) are frequently
used models for first approximations of measurements: they are easy to handle, can be
used to describe different material types (brittle-ductile range) and their parameters
can be obtained using simple tests.

6.1 Strain Criterion

Strain model (strain hypothesis) is obtained assuming Hooke’s law [20, 64, 205]

σI − νin+ (σII + σIII)− σeq = 0. (41)

The other two equations are obtained by cyclic permutation of indices. The model
(10) together with the substitution (11) and the parameter values

c3 = 32

2
, γ1 = 1

3

(
1 − 2 νin+

)
. (42)

gives rise to the representation in invariants.
The Poisson’s ratio for the strain hypothesis follows, cf. [88, 201]

νin− = 1

2
(d − 1) , νin+ = 1

d
. (43)

Further values are

d ≥ 2, k =
√

3

1 + νin+
, ahyd

+ = 1

1 − 2 νin+
. (44)

This model contains

• the normal stress hypothesis with νin+ = 0 (Sect. 2),
• the maximum strain hypothesis4 (Mariotte [134], Navier [146], St. Venant [175],

Poncelet [159], Grashof [77], Resal [170] or Bach [15]) with νel+ = νin+ .

The limit cases are the following surfaces Φ

• triangular prism in the principal stress space with νin− = νin+ = 1/2, [8, 31, 66, 97,
174, 177, 192] and

• plane through point Z orthogonal to hydrostatic axis with νin+ = −1 [97, 102].

4 This hypothesis is analyzed in [38, 65, 94, 220, 221]. It does not reflect the experimental results
[22, 50, 78, 157, 213] and is used in combinations of various hypotheses (Sect. 11).
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6.2 Mohr-Coulomb Criterion

The model is introduced on the basis of geometrical considerations
[76, 127, 141–143]. It arises as equations, which are obtained by permutation of
indices in

[
σI − 1

d
σII − σeq

] [
σI − 1

d
σIII − σeq

] [
σII − 1

d
σIII − σeq

]
= 0. (45)

The formulation in invariants is given in Sect. 10.2. The model leads to values

νin− = d

2
, νin+ = 1

2 d
, d ≥ 1, (46)

and [129]

k = √
3

d

d + 1
, ahyd

+ = d

d − 1
. (47)

This model yields (Fig. 5, SST)

• with d → ∞ to the normal stress hypothesis and
• with d = 1 to the model of Tresca.

The relation d ≥ 2 is recommended if computations involving so called fatigue limits
should be performed [30].

6.3 Pisarenko-Lebedev Criterion

The model is presented by

(1−ξ)
√

1

2

[
(σI − σII)2 + (σII − σIII)2 + (σIII − σI)2

]+ξ max[σI, σII, σIII] = σeq

(48)
with ξ ∈ [0, 1] [82, 120, 121, 156, 157]. This is a linear combination of the equiva-
lent stresses after the normal stress hypothesis (ξ = 1) and the von Mises hypothesis
(ξ = 0). The relations compute to [123]

d = 1

1 − ξ
, k = 3

3 +
(
−3 + √

3
)
ξ
, ahyd

+ = 1

ξ
, (49)

and the Poisson’s ratio

νin+ = 1 − ξ

2
, νin− = 1

2
+ ξ

1 − ξ
. (50)
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The model of Sdobirev [191] follows with ξ = 1/2. The relations are d = 2,
k = 3 − √

3 ≈ 1.27, ahyd
+ = 2, νin+ = 1/4 and νin− = 3/2 (Fig. 5). The average

values of the parameter ξ for some materials are given in [124].

6.4 Burzyński-Yagn Criterion

The rotationally symmetric model evolves the energy consideration and is a function
of two parameters [16, 36, 37, 220]

3 I ′
2 = σeq − γ1 I1

1 − γ1

σeq − γ2 I1

1 − γ2
. (51)

The values k and d compute to

d = 1

1 − γ1 − γ2
, k2 = 1

(1 − γ1)(1 − γ2)
. (52)

The position of the hydrostatic nodes one gets from

(
1 − 3 γ1 ahyd

+
) (

1 − 3 γ2 ahyd
)

= 0. (53)

The Poisson’s ratios at tension and compression are obtained using

νin+ = −1 + 2 (γ1 + γ2)− 3 γ1 γ2

−2 + γ1 + γ2
, (54)

and

νin− = − −1 + γ 2
1 + γ 2

2 − γ1 γ2

(−2 + γ1 + γ2) (−1 + γ1 + γ2)
. (55)

The model (51) represents the general equation of a second order surface of revolution
about the hydrostatic axis in the principal stress space. In dependence of the parameter
values γ1 and γ2 one gets:

• cone of Drucker-Prager [56], Mirolyubov [138] (Fig. 6) with equal parameters
γ1 = γ2 ∈ [0, 1];

• paraboloid of Balandin [17], Burzyński-Torre [35–37, 207, 235] (Fig. 11) with
γ1 ∈ [0, 1], γ2 = 0;

• ellipsoid of Beltrami (strain energy hypothesis) [21], see Fig. 12, assuming γ1
= − γ2 ∈ [0, 1] or with equal Poisson’s ratios νin− = νin+ ∈] − 1, 1/2];

• ellipsoid of Schleicher [179, 180] with γ1 ∈ [0, 1], γ2 ∈ [−∞, 0]. The restriction
(31) yields νin− ∈] − 1, 1/2] , νin+ ∈[ − 1, 1/2];

• hyperboloid of Burzyński-Yagn [39, 221] with γ1 ∈ [0, 1] and γ2 ∈ [0, γ1];
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VON MISES

σ I

σ II

σ III
hydrostatic axis

BALANDIN

BURZYŃSKI -TORRE

Fig. 11 Paraboloid of Balandin, Burzyński-Torre and the cylinder of von Mises in the principal
stress space (the cylinder is cut for better understanding) [103]

VON MISES
σ I

σ II

σ III

hydrostatic axis

BELTRAMI

AD

AZ

Fig. 12 Ellipsoid of Beltrami and cylinder of von Mises in the principal stress space (the cylinder
is cut for better understanding) [103]

• hyperboloid of one sheet with complex conjugateγ1 andγ2 which is not convex (see
Sect. 10.1); this model is used as partial surface in combined models (Sect. 11.2.1).

The models differ by the symmetry type in the π -plane (Fig. 4) and by the power
of stresses n. The rotationally symmetric model (51) has the stress power n = 2. The
strain hypothesis and the model of Pisarenko-Lebedev has the stress power n = 3
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and the model of Mohr-Coulomb—n = 6. The last three models have a trigonal
symmetry in the in the π -plane.

The models can be characterized by the shape of the meridian line. The strain
hypothesis, the hypothesis of Mohr-Coulomb, the model of Pisarenko-Lebedev, the
models of von Mises and of Drucker-Prager have a straight line as the meridian.
The model (51) has additional to the straight line curvilinear meridians: parabola,
hyperbola and ellipse.

The cross-sections of models (41) and (51) in the π -plane are unchangable. The
form in the π -plane and the inclination of the meridian line of the models of Mohr-
Coulomb and Pisarenko-Lebedev are controlled by a single parameter. This limits
the capabilities of the models to be fitted to measured data.

There are no theoretical or experimental evidence known to support the application
of models with a straight line as the meridian line. Models with further shapes of the
meridian lines and independent from the shapes in the π -plane (Fig. 4) are required.

7 Mathematical Formulations

In the case of phenomenological models some mathematical framework is often
applied for the formulation. The aim is to establish some general equation which
includes classical models as special cases. The following three formulation ideas are
known:

7.1 Criterion of Altenbach-Zolochevsky I

The criterion [7, 8]

σeq =
√

3 I ′
2 (λ1 sin ϕ + λ2 cosϕ + λ3)+ I1 (λ4 + λ5 sin ϕ + λ6 cosϕ) (56)

is a combination of the first invariant of the stress tensor, the second invariant of
the stress deviator and the stress angle.5 Various special cases can be deduced by
different settings of λi (Table 4). It should be mentioned that the systematization of
models can be based on the number of these parameters.

In the formulation of this model the following relations between the principal
stresses σI, σII, σIII and the invariants (Appendix 15) [42, 43, 147, 149, 211, 233]
are used:

5 In the original papers the following definition of the stress angle is used

sin 3ϕ = −3
√

3

2

I ′
3(sss)

I ′
2(sss)

3/2 , |ϕ| ≤ π

6
.
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σI = 1

3

[
2
√

3 I ′
2 sin

(
ϕ + 2π

3

)
+ I1

]
,

σII = 1

3

[
2
√

3 I ′
2 sin(ϕ)+ I1

]
,

σIII = 1

3

[
2
√

3 I ′
2 sin

(
ϕ + 4π

3

)
+ I1

]
,

(57)

and σI ≥ σII ≥ σIII is assumed.
This model includes not only the standard models (Sect. 6). The following models

can be obtained:

• criterion of Sandel [176]

σeq = σI + 1

2

(
1 − 1

d

)
σII − 1

d
σIII, (58)

• convex combination of von Mises and Tresca models after Edelman-Drucker,
Koval’chuk [57, 117]

χ

√
3 I ′

2 + (1 − χ) (σI − σIII) = σeq, χ ∈ [0, 1], (59)

• criterion of Paul [154]

a1 σI + a2 σII + a3 σIII = σeq, (60)

• criterion of Birger [30]

a1 σI + a2 σII + a3 σIII + a4

√
3 I ′

2 = σeq. (61)

A disadvantage of this model is the number of parameters, which should be identified
by six independent tests.

7.2 Model in Terms of the Integrity Basis

This model results from the invariants I1,
(
I ′
2

)1/2 and I ′
3, cf. [23, 24, 51, 188]. The

basic idea is the formulation of scalar valued functions of a given order:

S1 = a1 I1 + b1
(
I ′
2

)1/2
,

S2 = a2 I 2
1 + b2 I ′

2,

S3 = a3 I 3
1 + b3

(
I ′
2

)3/2 + c3 I3 + d3 I1 I2 + e3 I 2
1

(
I ′
2

)1/2
,

· · ·
(62)
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The sum of the Si with the same power n yields

(S1)
n + (S2)

n/2 + (S3)
n/3 + . . . = σ n

eq. (63)

The choice of integer exponents n/ i is recommended for the terms Si . In [103] the
following exponents are suggested

n = 1, 2, 3, 6, 9 and 12. (64)

The model of Altenbach-Zolochevsky II follows with n = 1 for S1, S2 and S3
[2, 8, 103]. The parameters of the model are related to the scaling (3). The advantage
of this model is that the equivalent stress σeq can be expressed explicitly.

Another modification one gets if the weight σ n−i
eq for Si is introduced

σ n−1
eq S1 + σ n−2

eq S2 + σ n−3
eq S3 + . . .+ σeq Sn−1 + Sn = σ n

eq. (65)

By this way we get the same power of the stresses in each term [103]. The exponent
n > 1 and the terms in (65) can be selected in such a manner that an analytical
solution is possible with respect to σeq. Equation (51) is an example of a quadratic
equation, models which are given cubic, bi-cubic and tri-quadratic equations are

S1 σ
2
eq + S2 σeq + S3 = σ 3

eq, (66)

S2 σ
4
eq + S4 σ

2
eq + S6 = σ 6

eq, (67)

S3 σ
3
eq + S6 = σ 6

eq. (68)

More examples are presented in [103]. Disadvantages of this approach can be sum-
marized as follows:

• increasing number of parameters,
• difficult convexity limits for the parameters and
• missing geometrical interpretation of the parameters.

7.3 Models Based on the Stress Deviator

The functions of the invariants of the stress deviator can be defined as follows

S′
2 = b2 I ′

2,

S′
3 = b3

(
I ′
2

)3/2 + c3 I3,

S′
4 = b4

(
I ′
2

)2 + f4
(
I ′
2

)1/2
I3,

· · ·
(69)
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The sum of S′
i with the same power results in

(
S′

2

)n/2 + (S′
3

)n/3 + (S′
4

)n/4 + . . . = σ n
eq (70)

and
σ n−2

eq S′
2 + σ n−3

eq S′
3 + . . .+ σeq S′

n−1 + S′
n = σ n

eq, (71)

cf. Eqs. (63) and (65). Another possibility is [106]

σ n−2 m2
eq

(
S′

2

)m2 + σ n−3 m3
eq

(
S′

3

)m3 + . . .+ σeq
(
S′

n−1

)+ (S′
n

) = σ n
eq. (72)

The formulations (70), (71) and (72) yield in the models of incompressible mate-
rial behavior (Sect. 9): Sayir I, Drucker I, Dodd-Naruse, TQM, BCM, Spitzig, Iyer,
Freudenthal [16, 68, 90] and Maitra [131, 226].

Multiplicative combinations of various S′
i are possible, for example,

(
S′

2

)(n− j)/2
S′

j = σ n
eq. (73)

This equation results in the geometrical-mechanical model (Sect. 9.1.6).
The formulation of the models with the deviatoric basis (69) should be preferred

since they are simpler in comparison with models on the basis of Eq. (62). The
compressible generalization can be performed using the substitution presented in
Sect. 10.1. In the case of rational functions of I ′

3 (functions of I ′
3 with integer power)

one gets convex shapes in the π -plane.

8 Visualization Methods

Several possibilities of the visualization of the limit surface Φ are presented in the
literature. In this section main approaches are briefly discussed and examples are
given.

8.1 Spatial Representation of the Limit Surface

Strength hypotheses and flow criteria can be represented in the principal stress space
(σI, σII, σIII) [43, 219, 234], which is also known as the Haigh-Westergaard space
[80, 218]. By means of an orthogonal transform the decomposition of the stress tensor
in the hydrostatic and deviatoric components can be carried out. For this purpose the
coordinates (ξ1, ξ2, ξ3) are introduced (Fig. 13), which are related to the coordinates
(σI, σII, σIII) as follows [23, 123, 186, 187, 210]:
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π-plane

ρ

θ

I1/
3

0

σII

σI

σIII

ξ1

ξ2

ξ3

Fig. 13 Principal stress space (σI, σII, σIII), coordinates (ξ1, ξ2, ξ3) and (ξ1, ρ, θ)
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⎞
⎟⎟⎟⎟⎟⎠
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⎝
ξ1
ξ2
ξ3

⎞
⎠ . (74)

In these coordinates

ξ1 = 1√
3
(σI + σII + σIII) = 1√

3
I1 (75)

is the hydrostatic axis (σI = σII = σIII). The axis

ξ3 = 1√
6
(−σI + 2 σII − σIII) (76)

lies in the plane ξ1 − σII. The axis

ξ2 = 1√
2
(σI − σIII) (77)

constitutes together with the axes ξ1 and ξ3 an orthogonal coordinate system (Fig. 13).
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The surface Φ can be formulated in cylindrical coordinates or the Haigh-Wester-
gaard coordinates (ξ1, ρ, θ) [234]. The value of the radius ρ is computed to
[23, 43]

ρ =
√

2 I ′
2 =

√
ξ2

2 + ξ2
3 (78)

and represents a function of the second invariant of the stress deviator. The angle θ
is given by Eq. (224).

The representation of the surface Φ in the principal stress space (σI, σII, σIII) is
widely used because of its simplicity and clearness. For the analysis of the surface
properties the Haigh-Westergaard space with the coordinates (ξ1, ξ2, ξ3) is better.
Such a surface can be characterized by two projections:

• the meridian cross section (ξ1, ξ3) and
• the planes with the cuts ξ1 = const. (π -plane with the coordinates (ξ2, ξ3)).

8.2 Burzyński-Plane

Instead of the meridian cross section (ξ1, ξ3) the Burzyński-plane is often used. The
Burzyński-plane is introduced for the rotationally symmetric models [35, 39]

Φ
(
I1, I ′

2, σeq
) = 0. (79)

For these models the surface is represented by a line in the upper half-plane in the
diagram (ξ1, ρ) (Fig. 14, model of von Mises).

The whole surfaceΦ is obtained by the rotation of this line about the axis ξ1 [234].

For a better clearness the coordinates
(

I1,

√
3 I ′

2

)
are used [103]. This scaling is due

to the relation
I 2
1 = 3 I ′

2 (80)

at tension and compression. It simplifies the comparison of the presented models
with the model of von Mises (16) and leads to a geometrical interpretation of the
relations (Table 1). Other scalings are used in [86, 95, 101, 133, 155, 174, 181, 194,
231, 234]. A normalization of axes with respect to the tensile stress

⎛
⎝ I1

σ+
,

√
3 I ′

2

σ+

⎞
⎠

can be applied in order to compare the shape of the surfaces for different materials
[105, 113].

The surfaceΦ (5) or (6) can be presented in the Burzyński-plane by the meridians
defined using the stress angle [136, 145, 155]
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Fig. 14 Normal stress hypothesis (NSH) and the model of von Mises in the Burzyński-plane [105].
The inclination of the tangent line at the point Z (tension) of the surface Φ is ψ = arctan 1/2 ≈
27.56◦, cf. (Fig. 7)

• θ = 0 ⇒ I ′
3 = 2

√
3

32 (I ′
2)

3/2,

• θ = π

6
⇒ I ′

3 = 0,

• θ = π

3
⇒ I ′

3 = −2
√

3

32 (I ′
2)

3/2.

These meridians for the normal stress hypothesis (8) are shown in Fig. 14.
The three meridians are enough to display the most important properties (Table 1).

The line of the plane stress state, which results from

σI σII σIII = 0, (81)

is obtained in this diagram using the substitution [103]

I ′
3 = 1

3
I1 I ′

2 − 1

33 I 3
1 . (82)

This line contains the points BD, UD, D, K , Z , IZ and BZ (Figs. 15 and 16) and
it is convex for axisymmetric models only, e. g. the model of Burzyński-Yagn (51),
Fig. 17.

The introduced representation allows to show all the measurements on their
respective meridians. Different extrapolations of the measurements to the point AZ
(hydrostatic tension) with the relation



80 H. Altenbach et al.

ahyd
+ >

1

3
or νin+ ∈

[
− 1,

1

2

]

can be easily evaluated.

8.3 π-Plane

The cross-section of the surface Φ with the cut ξ1 = const. (Fig. 13) is denoted as
the π -plane [12, 43, 167, 234]. For incompressible material behavior these cross-
sections do not depend on the coordinate ξ1. For a compressible material it is impor-
tant to consider the cross-sections, which contain certain points of the plane stress
state for the most important loading cases, e. g.:

• point Z (tension): ξ1 = 1√
3
σeq,

• point K (torsion): ξ1 = 0 and

• point D (compression): ξ1 = − 1√
3

d σeq.

The line of the plane stress state defined, for instance, by the condition σIII = 0 can
be projected onto the π -plane. The projection is given by the equality, see (74),

ξ1 = 1√
2
(
√

3 ξ2 + ξ3), (83)

which must be substituted into the equation of the surface Φ.
In the most general case the surface Φ has a trigonal symmetry in the π -plane

(Fig. 4). If only even powers of the third invariant of deviators are present, then the
model has a hexagonal symmetry (e. g. models of Tresca and Schmidt-Ishlinsky,
Fig. 4). The absence of the third invariant leads to a rotationally symmetric surface,
e. g. Eq. (51) [105].

9 Pressure-Insensitive Criteria

In this section the most important models with the property

νin+ = νin− = 1

2
(84)

are discussed. These models are of the form

Φ(I ′
2, I ′

3, σeq) = 0 (85)



Phenomenological Yield and Failure Criteria 81

I1

σ+

3 I2

σ+ ZD

K

BD BZ

IZUD

θ = 0

θ = 30

θ = 60

1 2 3

1.0

-1-2-3-4

line of the plane stress state

Fig. 15 Model of Tresca in the Burzyński-plane [103]
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Fig. 16 Model of Schmidt-Ishlinsky in the Burzyński-plane
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Fig. 17 Quadratic rotationally symmetric models (51) with the hydrostatic node AZ (γ1 = 1/3)
in the Burzyński-plane [105]: a cone of Drucker-Prager: γ2 = 1/3, νin− = 2, νin+ = 0, d = 3,
k = 3/2; b hyperboloid of Burzyński-Yagn: γ2 = 1/4, νin− = 1.54, νin+ = 0.06, d = 2.4, k = 1.41;
c paraboloid of Balandin: γ2 = 0, νin− = 0.8, νin+ = 0.2, d = 3/2, k = 1.22

or
Φ(I ′

2, θ, σeq) = 0, (86)

and hence are cylindric or prismatic surfaces aligned along the hydrostatic axis. They
do not restrict the hydrostatic stresses. These models can only be used in the region
I1 ≤ 0 in combined models (Sect. 11), cf. [139].
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VON MISES

c3 = 32/ 2
SAYIR I

SAYIR I

σI

σIII hydrostatic axis

c3 = − 32

σII

meridian with θ = 0

meridian with θ = π/ 3

Fig. 18 Triangular prisms of Sayir I (87) with the limit convexity values of the parameter c3 ∈[−32, 32/2
]

and the cylinder of von Mises (16) in the principal stress space [103]

9.1 Yield Surfaces with Trigonal Symmetry

Theoretical considerations allow conclusions about the symmetry of the yield surface
Φ in the π -plane only. This surface shows trigonal, hexagonal or rotational symme-
try. No suggestions can be made based on microstructure. The material behavior
is described by neglecting the real structure with its microscopic defects and inho-
mogeneity. The effects of material behavior could be captured correctly only in
average [8].

9.1.1 Model of Sayir I

The cylinder of Sayir I [178] is defined as follows

σeq 3 I ′
2 + c3 I ′

3

1 + 2 c3/33 = σ 3
eq, c3 ∈

[
−32,

32

2

]
. (87)

The model has the structure of the reduced cubic equation with respect to σeq. For
c3 = 0 the cylinder of von Mises arises (Fig. 18). The relations k and d compute to

k2 = 1 + 2

33 c3, d = 33 + 2 c3 −√3 (32 − 2 c3) (33 + 2 c3)

22 c3
(88)

and shown in Fig. 4.
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9.1.2 Model of Sayir II

The hexagonal prism of Sayir II [178] is defined by

σI − 1

1 + b1
(b1 σII + σIII)− σeq = 0, b1 ∈

[
−1

2
, 1

]
. (89)

Further equations result from the cyclic permutations of indices. The model is for-
mulated in the deviatoric invariants

ΦSAY = α41 σ
4
eq I ′

2 + α31 σ
3
eq I ′

3 + α21 σ
2
eq (I

′
2)

2

+ α11 σeq I ′
2 I ′

3 + β21 (I
′
2)

3 + β31 (I
′
3)

2 − σ 6
eq (90)

with

α41 = 2 · 3 (1 + b1 + b2
1)

(1 + b1)2
, α31 = 33 b1

(1 + b1)2
,

α21 = −32 (1 + b1 + b2
1)

2

(1 + b1)4
, α11 = −34 b1

1 + b1 + b2
1

(1 + b1)4
,

β21 = (−1 + b1)
2 (2 + b1)

2 (1 + 2b1)
2

(1 + b1)6
, β31 = −33 (1 + b1 + b2

1)
3

(1 + b1)6
.

(91)

For b1 = 0 the model of Tresca (15) arises (Figs. 1, 15). With b1 = −1/2 and b1 = 1
the model corresponds to the limit convexity cases of the model of Sayir I (87).

The relations are

k = √
3

1 + b1

2 + b1
, d = 1 + b1. (92)

The model is representing the lower bound of the convexity region in the d−k-
diagram (Fig. 4). For the model of Sayir II the point, which has the shortest distance
to the point M(1, 1) can be obtained from the equation

(d − 1)2 + (k − 1)2 → min., (93)

which results in b1 ≈ 0.0471, d ≈ 1.05 and k ≈ 0.89.

9.1.3 Model of Haythornthwaite

The model of Haythornthwaite [40, 83, 107] consists of two overlapping triangles
in the π -plane described with the model (87) with c3 = −32 and c3 = 32/2
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[
(2 d σeq) 3 I ′

2 + (−32) I ′
3

1 + 2 (−32)/33 − (2 d σeq)
3

][
σeq 3 I ′

2 + (32/2) I ′
3

1 + 2 (32/2)/33 − σ 3
eq

]
= 0.

(94)
It is separated in two regions in the d−k diagram (Fig. 4)

Haythornthwaite I : k = 2√
3

for d ∈ [1, 2], (95)

Haythornthwaite I I : k = 2d√
3

for d ∈
[

1

2
, 1

]
. (96)

The model is representing the upper bound of the convexity region of the d−k-
diagram. The boundaries, where d = 1/2 and d = 2, correspond to the limit
convexity cases of the models of Sayir I and Sayir II. For d = 1 the model of
Schmidt-Ishlinsky (18) arises (Figs. 1, 16). The point, which has the shortest dis-
tance to the point M(1, 1) (Fig. 4), can be obtained from Eq. (93). This results in
d = (3 + 2

√
3)/7 ≈ 0.9234 and k ≈ 1.07.

9.1.4 Convex π -Plane Model

The model of Haythornthwaite (94)

ΦHAY = 36

26

1

d3 (I
′
3)

2 − 35

25

d − 1

d3 I ′
2 I ′

3 σeq − 34

24

1

d2 (I
′
2)

2 σ 2
eq (97)

− 33

23

1 − d3

d3 I ′
3 σ

3
eq + 32

22

1 + d2

d2 I ′
2 σ

4
eq − σ 6

eq

and the model of Sayir II (90) with the parameters

α41 = 6
(d − 1)2 + d

d2 , α31 = 33 d − 1

d2 ,

α21 = −32

(
(d − 1)2 + d

)2
d4 , α11 = −34 (d − 1)

(
(d − 1)2 + d

)

d4 ,

β21 = (1 − 2 d)2 (d − 2)2 (1 + d)2

d6 , β31 = −33

(
(d − 1)2 + d

)3
d6

(98)

are functions of d ∈ [1/2, 2]. With the linear combination [33]

Φ6 = ξ ΦHAY + (1 − ξ)ΦSAY, ξ ∈ [0, 1] (99)

one obtains the model with the power of stress n = 6 in each term. The resulting
model describes with two parameters (d, ξ) all points in the d−k-diagram (Fig. 4)
with a convex form in the π -plane. A drawback is that an explicit solution of (99)
with respect to σeq is not possible.
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The model contains as special cases:

• the model of hexagonal symmetry in the π -plane with d = 1 (bicubic model,
Sect. 9.2),

• the value k = 1 of the model of von Mises results with d = 1 in the parameter
ξ = 26

7·13 ≈ 0.7033 and

• the approximation of the model of Sayir I (87) with ξ = 26

7·13 and ξ ∈ [0, 1].

9.1.5 Radcig Model

The Radcig model6 consists of two overlapping hexagonal prisms of Sayir II (89)
[105, 115]. It is deduced from the Unified Yield Criterion of Yu (Sect. 9.2.1). The
defining equations are:

⎧
⎪⎨
⎪⎩
σI − 1

1 + b1
(b1 σII + σIII)− σeq = 0,

σI − 1

1 + b2
(b2 σII + σIII)+ η σeq = 0.

(100)

Further equations are obtained by cyclic permutations of indices. The cross-section
of this model in the π -plane is a dodecagon (twelve-sided figure). The parameters
are bounded as follows

b1 ∈
[
−1

2
, 1

]
, b2 ∈

[
−1

2
, 1

]
, η ∈

[
1

1 + b2
, 2

]
. (101)

The model (100) can be formulated in invariants of the deviator [105]:

(
α41 σ

4
eq I ′

2 + α31 σ
3
eq I ′

3 + α21σ
2
eq (I

′
2)

2

+α11σeq I ′
2 I ′

3 + β21 (I ′
2)

3 + β31 (I ′
3)

2 − σ 6
eq

)×[
α42 (η σeq)

4 I ′
2 − α32 (η σeq)

3 I ′
3 + α22 (η σeq)

2 (I ′
2)

2

−α12 (η σeq) I ′
2 I ′

3 + β22 (I ′
2)

3 + β32 (I ′
3)

2 − (η σeq)
6
] = 0.

(102)

This allows a representation of the model in the Burzyński-plane. The first part
corresponds to the model of Sayir II (90) with parameters which are given by (91).
The parameters of the second part are computed using the substitution b2 by b1. The
Radcig model contains the following models:

• the model of Sayir II with b1 ∈ [−1/2, 1], η = 2 and for arbitrary b2 ∈ [−1/2, 1]
or b1 = η − 1, b2 = (1 − η)/η and η ∈ [1/2, 2] with the relations (92),

• the model of Haythornthwaite with b1 = 1, b2 = 1 and η ∈ [1/2, 2] with relations
(95) and (96),

6 This model is dedicated to Jurij Antonovič Radcig (1900–1976), who was a professor at the Kazan
State University of Technology (KAI), Kazan, Russia.
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• the continuous approximation of the model of Sayir I with η ∈ [1/2, 2] and

b1 = (1 − √
3) η2 + 1

2

(
5
√

3 − 3
)
η − √

3,

b2 = (2 − √
3) η2 +

(
5

2

√
3 − 6

)
η +

(
7

2
− √

3

)
.

(103)

• the UYC of Yu with η = 1 and b = b1 = b2 ∈ [0, 1] (Sect. 9.2) with

k = √
3

1 + b1

2 + b1
, d = 1. (104)

Further discussion of the Radcig-model can be found in the Sect. 10.2.

9.1.6 Geometrical-Mechanical Model

This model is a function of the stress angle θ (224) [6, 33, 107]

(3 I
′
2)

n
2

1 + c3 cos 3θ + c6 cos2 3θ

1 + c3 + c6
= σ n

eq. (105)

The main idea is to include the influence of the odd and the even functions of I ′
3

separately and to give a geometrical meaning to the parameters with respect to the
mechanical properties. Computation of the equivalent stress σeq can be performed
directly.

The two parameters c3 and c6 determine the geometry of the model in theπ -plane.
With c3 = 0 a model with hexagonal symmetry is obtained: there is no difference
between tension and compression (d = 1). With c3 = c6 = 0 one gets the model of
von Mises.

The values d and k compute to

dn = 1 + c3 + c6

1 − c3 + c6
, kn = 1 + c3 + c6. (106)

This leads to the two inequalities

1 − c3 + c6 > 0, 1 + c3 + c6 ≥ 0. (107)

The recommended values for the exponent are n = 2, 3 and 6. The exponent n = 2 is
suitable, if the modeling with rational compressible substitution (Sect. 10.1) involves
energy considerations [212]. The values n = 2 and 3 allow to solve the equation given
by (105) with respect to σeq analytically even if the rational compressible substitution
(Sect. 10.1) is introduced. The convexity region of the geometrical-mechanical model
(105) in the parameter space c3−c6 is shown in Figs. 19 and 20).
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Fig. 19 Convexity region of the geometrical-mechanical model (105) with n = 2: with
θ some curves are marked, which build the boundary of the convexity region, Coordinates
at the points P0(0, −1/9), P1(−0.1, −0.1086), P2(−0.2, −0.1011), P3(−0.3, −0.0886),
P4(−0.3560, −0.05), P5(−0.3478, −0.02717), P6(0, 1/23)
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Fig. 20 Convexity region of the geometrical-mechanical model (105) with n = 6 (the cross-sections
in the π -plane are shown for clarity)

With the exponent n = 6 a model is obtained, which has the largest convexity
region in the d−k-diagram (Figs. 4 and 21).
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Fig. 21 Convexity condition of the geometrical-mechanical model (105) in the d−k-diagram
together with the boundaries of the convexity region as presented in Fig. 4

9.1.7 Triquadratic Model

The triquadratic model is formulated as follows [103, 105, 107]

33 I ′3
2 + c3 σ

3
eq I ′

3 + c6 I ′2
3

1 + 2

33 c3 + 22

36 c6

= σ 6
eq. (108)

It allows analytical estimation of the equivalent stress. This model with the power
n = 6 contains the hexagonal symmetry model with c3 = 0 (model of Drucker I,
Sect. 9.2) and with c6 = 0 one gets

c3 ∈
[
−33

22 ,
33

2

]
. (109)

The relations are

k6 = 1 + 2

33 c3 + 22

36 c6, d3 = k6

1 + 22

36 c6

. (110)

The idea for this model is similar to the model (105). Comparing with (105) we
conclude that the triquadratic model (TQM) is more difficult to use. It should be
noted that the parameters c3, c6 have no mechanical or geometrical meaning.
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TRESCA

SCHMIDT -ISHLINSKY

UYC, k = 3 3/ 5

ISHLINSKY -IVLEV

π
6

π
6

π
12

VON MISES

UYC, k = 1

σIσI

σII σ III

Fig. 22 Continuous surfaces with hexagonal symmetry and the model of von Mises (16) in the
π -plane, incompressible material behavior, d = 1 [135]. On the right hand side an enlarged cross-
section with θ ∈ [0, π/3] is presented [33]
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30 4545
6060 Z
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KK
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Q

Q

Fig. 23 Non-convex models for incompressible material behavior with d = 1 in the π -plane: left
hand side model of triangular symmetry, right hand side model of hexagonal symmetry [96]. The
rotationally symmetric model of von Mises is presented for comparison

9.2 Yield Surfaces with Hexagonal Symmetry

The models for incompressible material behavior with hexagonal symmetry have
the properties d = 1 and h = q (Table 1, Figs. 22 and 23). Such models are often
used for the description of yield of ideal ductile materials in the theory of plasticity.
Numerous problems are treated in the engineering practice using these criteria. These
models are of the form

Φ(I ′
2, (I

′
3)

2, σeq) = 0, Φ(I ′
2, cos2 2θ, σeq) = 0

The meridians with θ = 0 and π/3 coincide in the Burzyński-plane (Figs. 15 and
16). Such models can be represented in the h−k-diagram (Fig. 24) and compared
with von Mises model with h = k = 1.
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b = 1/ 2

DRUCKER I

DODD -NARUSE
η = 2/ √3

TRESCA

SCHMIDT -ISHLINSKY

UYC

M

η =
1

3 (2 − 3)
≈ 1.1154

b =( 3 − 1)/ 2

b = − 2 + 3 + 3 (2 − 3)

b ≈ 0.4095

b = 2 − 1

b = 1/ (2 + 2)

η = 2 −
1

√2

η ≈ 1.1602

η =
2
33

4 + 5 2 + 3 3 + √6

BCM

k

h

Eq.(2.122)

0.90

0.90

0.95

0.95
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1.15

MAC

Fig. 24 h − k-diagram: models of hexagonal symmetry for incompressible material behavior:
M—model of von Mises (16) with h = k = 1; UYC—yield criterion of Yu (111); BCM—bicubic
model (113); Eq. (122)—model based on the stress angel with n = 6; MAC—multiplicative ansatz
criterion, special points—s. [116]

9.2.1 Unified Yield Criterion of Yu

The criterion of Yu [222, 229] with the parameter b ∈ [0, 1] can be expressed

⎧⎪⎪⎨
⎪⎪⎩

σI − 1

1 + b
(b σII + σIII)− σeq = 0,

σI − 1

1 + b
(b σII + σIII)+ σeq = 0,

(111)

and using Eq. (102) formulated in terms of the invariants of the deviator [105]

ΦUYC = (α41 σ
4
eq I ′

2 + α21 σ
2
eq I ′2

2 + β21 I ′3
2 + β31 I ′2

3 − σ 6
eq)

2

− (α31 σ
3
eq I ′

3 + α11 σeq I ′
2 I ′

3)
2 (112)

with the coefficients (91). In Table 5 some settings for special cases are presented.
The yield criterion of Yu defines the left convexity bound of the models with

hexagonal symmetry in the h − k-diagram (Fig. 24, UYC).
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Table 5 Settings of UYC (111) and the respective relations k and h (Fig. 24)

Model b k h Fig.

Tresca 0

√
3

2
≈ 0.8660 0.8966 1, 15, 22

–
1

2 + √
2 ≈ 0.2929

0.9767 0.9545 –

Sokolovskya 1

2

(√
3 − 1

)
≈ 0.3660 1 0.9659 22

– 0.4095 1.0132 0.9723 –
–

√
2 − 1 ≈ 0.4142

√
6 (

√
2 − 1) ≈ 1.0146 0.9729 –

–
1

2
3

√
3

5
≈ 1.0392 0.9845 22,33

– 0.6286 1.0731 1 –

Schmidt-Ishlinsky 1
2√
3

≈ 1.1547 1.0353 1, 16, 22

aThe model is named after Sokolovsky following Pisarenko-Lebedev [157] “…it was attempted to
introduce some intermediate criteria by replacing the hexagonal prism of Coulomb with a dode-
cagonal prism [195] (inscribed in the von Mises-cylinder) …”. Further references to this models
are [28, 222, 223, 226].

9.2.2 Bicubic Model

This model is obtained as a linear combination of the models of Tresca (15) and
Schmidt-Ishlinsky (19) [33, 103]

(1 − ξ)

[(
I ′
2 − σ 2

eq

)2 (
22 I ′

2 − σ 2
eq

)
− 33 I ′ 2

3

]

+ξ
[

33

23 I ′
3 + 32

22 I ′
2 σeq − σ 3

eq

] [
33

23 I ′
3 − 32

22 I ′
2 σeq + σ 3

eq

]
= 0.

(113)

This model also results from (99) with d = 1.
The bicubic model divides the h−k-diagram into two areas. The models of Tresca

and Schmidt-Ishlinsky are obtained with ξ = 0 and ξ = 1. The value k = 1 results
in ξ = 26/(7 · 13) ≈ 0.7033. This model is continuously differentiable (excluding
the borders of ξ ) and allows an explicit solution for σeq. For this reason, the BCM
is appropriate for practical use. The parameters k and h are obtained from bicubic
equations

24 · 33 + 23 · 33 k2 (ξ − 22)+ 26 k6 (ξ − 1)− 33 k4 (7 ξ − 24) = 0, (114)

25 · 33 + 2 · 33 h4 (24 − 7 ξ)+ 24 · 33 h2 (ξ − 22)+ h6 (37 ξ − 26) = 0 (115)

as the lowest positive solutions. The analytical solution of (114) and (115) is complex
and hence omitted.
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Table 6 Settings of MAC (116) and the respective relations k and h (Fig. 24)

Model η k h Fig.

Tresca 1

√
3

2
≈ 0.8660 0.8966 1, 15, 22

–
1√

3 (2 − √
3)

≈ 1.1154

√
2 + √

3

2
≈ 0.9659 1 –

– 1.1344 0.9824 1.0170 –

Ishlinsky-Ivleva 2√
3

≈ 1.1547 1 1.0353 22

–
3

14

(
4 + √

2
)

≈ 1.1602 1.0048 1.0353 –

– 2 − 1√
2

≈ 1.2929 1.1197 1.0353 –

Schmidt-Ishlinsky
4

3

2√
3

≈ 1.1547 1.0353 1, 16, 22

aThe regular dodecagon in the π -plane is named after Ishlinsky-Ivlev [33, 105, 115], s. also [93,
98–100, 128, 193, 227].

9.2.3 Multiplicative Ansatz Criterion

Multiplicative combination of the models of Tresca (15) and Schmidt-Ishlinsky (19)
[116] lies on the right boundary of the convexity region of the models of hexagonal
symmetry (Fig. 24, MAC) [93, 98, 99, 193]. It is obtained as follows [105]

ΦMAC =
[(

I ′
2 − (η σeq)

2
)2 (

22 I ′
2 − (η σeq)

2
)

− 33 I ′ 2
3

]

×
[

33

23 I ′
3 + 32

22 I ′
2 σeq − σ 3

eq

] [
33

23 I ′
3 − 32

22 I ′
2 σeq + σ 3

eq

]
. (116)

The value η lies in the interval η ∈ [1, 4/3]. The parameters k and h compute to

k =
√

3

2
η, h =

⎧
⎪⎪⎨
⎪⎪⎩

η

√
3 (2 − √

3), η ∈
[

1,
2√
3

]
,

√
4 (2 − √

3), η ∈
[

2√
3
,

4

3

]
.

(117)

The models of Tresca and Schmidt-Ishlinsky are obtained with η = 1 and η = 4/3.
With η = 2√

3
one gets the regular dodecagon in the π -plane (Table 6).

For UYC and MAC the points, which have the shortest distance to the point
M(1, 1) (Fig. 24, model of von Mises), can be obtained from the equation

(h − 1)2 + (k − 1)2 → min. (118)
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Using these points the model of von Mises can be approximated with the dodecagons
of UYC with b = 0.4095 and the dodecagons of multiplicative ansatz criterion
(MAC) with η = 1.1344.

9.2.4 Universal Model with Hexagonal Symmetry

The parameter b ∈ [0, 1] of the UYC (111) can be replaced by the parameter

k ∈
[√

3/2, 2/
√

3
]

b =
√

3 − 2 k

k − √
3
. (119)

The parameter η ∈ [1, 4/3] in MAC (116) can be replaced by k ∈
[√

3/2, 2/
√

3
]

with (117)

η = 2√
3

k. (120)

With the linear (convex) combination of the two latter models [116]

Φ12 = ξ ΦMAC + (1 − ξ)ΦUYC, ξ ∈ [0, 1] (121)

the model with the power of stress n = 12 is obtained, cf. Eq. (99). It covers all the
convex forms in the h−k-diagram with two parameters (k, ξ). The values k = 1 and
ξ = 0.3901 result in h = 1, which corresponds to the model of von Mises (Fig. 24).

With ξ = 0.3901 and k ∈
[√

3/2, 2/
√

3
]

one gets the approximation of BCM (113).

With k = 1 and ξ ∈ [0, 1] one obtains a model, which links the regular dodecagon
of Sokolovsky and Ishlinsky-Ivlev: h ∈ [0.9659, 1.0353]. The major disadvantage
is, that the model (121) is not analytically solvable with respect to σeq.

9.2.5 Model Based on the Stress Angle

Cosine ansatz to the power 2 and 4 is introduced in [33]

(3 I
′
2)

n/2 1 + c6 cos2 3θ + c12 cos4 3θ

1 + c6 + c12
= σ n

eq, n = 1, 2 . . . (122)

with

kn = 1 + c6 + c12, hn = 22 1 + c6 + c12

22 + 2 c6 + c12
. (123)

This model contains the following criteria:

• Drucker I [54, 154, 199] with n = 6, c6 ∈ [−1/3, 1/2], c12 = 0 and
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Fig. 25 Convexity region of the model (122) with n = 6 in the parameter space (c6, c12). The
constraints at θ = 0 with c6 = (1 − 5 c12)/2, θ = π/12 and θ = π/6 with c6 = −1/3 are shown
for clarity

• Dodd-Naruse [53, 229] with n = 12, c6 = 0, c12 ∈
[

2
33

(
2

√
11 − 13

)
, 1

2

]
.

The boundaries of the parameters of the model (122) with n = 6, which result from
the convexity conditions [33], are shown in Fig. 25.

10 Pressure-Sensitive Criteria

The behavior of real materials can be presented by the models (5) and (6). The first
invariant of the stress tensor should be included in the pressure-insensitive criteria
(Sect. 9) in such a way that the shape in the π -plane will be preserved.

10.1 Compressible Generalization

A compressible generalization of the models of incompressible material behavior
(Sect. 9) is obtained by substitution [115]

σeq → j+l+m

√(
σeq − γ1 I1

1 − γ1

) j (σeq − γ2 I1

1 − γ2

)l

σ m
eq . (124)
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The parameters γ1 and γ2 determine the position of the hydrostatic nodes AZ and AD
on the hydrostatic axis (Figs. 2, 12). The powers j , l and m are chosen to be integer
and positive. They are restricted by the following experience-based relation:

j + l + m ≤ 6. (125)

For materials, which do not fail under hydrostatic pressure (brass, plumb, steel),
the surfaces Φ has a single hydrostatic node AZ (ahyd

+ > 1/3, ahyd
− → ∞), e. g.:

• in order to obtain straight meridians the substitution with l = m = 0 is

σeq → σeq − γ1 I1

1 − γ1
, + + +γ1 ∈ [0, 1[, (126)

• for parabolic models it follows l = 0 and
• for hyperbolic meridians γ2 ∈ ]0, γ1[; the second node does not belong to the

relevant region of the surface and has no physical meaning, cf. [220]; due to this
fact the hyperbolic surfaces are not recommended for applications.

For materials, which fail under hydrostatic compression (hard foams, ceramics,
sintered and granular materials, etc.) the additional hydrostatic node AD is needed.
The parameters in (124) are then bounded as follows

γ1 ∈ ]0, 1[, γ2 < 0. (127)

For instance the closed surface with the substitution

σeq → 3

√
σeq − γ1 I1

1 − γ1

(
σeq − γ2 I1

1 − γ2

)2

(128)

and the shape b of the cross-section in the π -plane (Fig. 4) can be considered. The
properties of the surface with γ1 = 1/3, γ2 = −1/3 are shown in Figs. 27, 28 and 26.

The closed surfaces with j = l possess a symmetry plane orthogonal to the
hydrostatic axis

I1

σ+
= 1

2

(
1

γ1
+ 1

γ2

)
. (129)

The ellipsoid of Schleicher (Sect. 6) with this property is widely applied in model-
ing [114].

There is no method known, which allows to choose the powers in (124) analyti-
cally. Rational substitution, e. g. such transform where the root in (124) spared, is a
simple possibility. For example a quadratic substitution

σ 2
eq → σeq − γ1 I1

1 − γ1

σeq − γ2 I1

1 − γ2
, γ1 ∈ [0, 1[ (130)
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plane stress state with σIII = 0

σIII = σI

σIII = σII

σI = − σII
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Fig. 26 Model of Sayir I (87) with c3 = 32/2 and the substitution (128) with γ1 = 1/3, γ2 =
−1/3 in the σI−σII-plane (s. Burzyński-plane (Fig. 27) and π -plane (Fig. 28)). The meridians with
σIII = σII and σIII = σI are shown for clarity (spatial image)

can be applied for the model of von Mises (16), see rotationally symmetric model (51),
and the models of hexagonal symmetry (Sect. 9.2) for fitting the available measured
data.

The nonconvex surfaces in the meridian section are obtained with (124), if among
the parameters γi there are two complex conjugated values. Figure 29 represents, as
an example, a hyperboloid [63]. Such surfaces can be used as parts of combined
models (Sect. 11.2).

10.2 Unified Strength Theory of Yu

The Unified Strength Theory (UST) is built up from two six-edge pyramids in the
principal stress space [105, 228, 229]

⎧⎪⎪⎨
⎪⎪⎩

σI − 1

d (1 + b)
(b σII + σIII)− σeq = 0,

1

d
σI − 1

1 + b
(b σII + σIII)+ σeq = 0.

(131)
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Fig. 27 Model of Sayir I (87) with c3 = 32/2 and the substitution (128) with γ1 = 1/3, γ2 = −1/3
in the Burzyński-plane. Properties: d = 1.41, k = 1.09, iZ = 1.09, uD = 0.81, bZ = 1.35,
bD = 0.70, ahyd

+ = 1, ahyd
− = 1, νin+ = 1/2, νin− = −0.05. The reference values for the hydrostatic

nodes AZ and AD are: NSH—upper bound due to the normal stress hypothesis ahyd
+ = 1, (41), TT—

lower bound for the point AD with respect to the normal stress hypothesis as trigonal trapezohedron,
ahyd
− = d, TD—lower bound for the point AD with respect to the normal stress hypothesis as

triangular dipyramid, ahyd
− = 2 d/3

The faces of the first pyramid are obtained from the first equation with the cyclic
permutations of indices. The faces of the second one are obtained in the same manner
from the second equation.

The model (131) describes the compressible material behavior with the properties
(22) using two parameters d ≥ 1 and b ∈ [0, 1]. The value d corresponds to the
relation d (Table 1)

d = |σ−|
σ+

, (132)

which simplifies the application of the model.
The analysis of the UST leads to the following special cases (Figs. 5 and 30):

• b = 1 results in the Twin-Shear Theory (TST) of Yu,
• with

b =
√

3 − 1

2
(133)

follows a continuous analogy of the model of Pisarenko-Lebedev (48),
• with b = 0 the model of Mohr-Coulomb (Single-Shear Theory of Yu), Eq. (45),

is obtained,
• with d → ∞, b ∈ [0, 1] absolutely brittle materials can be described (normal

stress hypothesis), Eq. (8),
• the Unified Yield Criterion (111) results from the UST with d = 1 and b ∈ [0, 1].
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Fig. 28 Cross-sections I1 = σ+, I1 = 0, I1 = −d σ+ and the line of the plane stress state of the
model of Sayir I (87) with c3 = 32/2 and the substitution (128) with γ1 = 1/3, γ2 = −1/3 in the
π -plane, see Fig. 27
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Fig. 29 Model of von Mises and the hyperboloid of one sheet (51) with γ1 = −γ2 = 1/
√

3 i in
the Burzyński-plane with the properties: d = 1, k = √

3/2, iZ = uD = √
3, νin+ = νin− = 1

The hydrostatic tensile stress computes to

ahyd
+ = 1

1 − 1

d

= 1

1 − 2 νin+
. (134)
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normal stress hypothesis

Twin-Shear-Theory of YU

d = 3, b = 1, ν in
+ = 1/ 6

σII
σI

σIII

ξ1

ξ2

ξ3
hydrostatic axis

AZ

Fig. 30 Twin-Shear Theory (d = 3, b = 1, νin+ = 1/6) and the normal stress hypothesis (d → ∞,
b = 0 . . . 1, νin+ = 0) in the principal stress space. The point AZ of the normal stress hypothesis is
shown for better understanding

The surfaceΦ of the UST is open in the hydrostatic compression direction (I1 < 0):

ahyd
− → ∞. (135)

The relation k equals to

k = √
3

1 + b

1 + b + 1

d

= √
3

1 + b

1 + b + 2 νin+
. (136)

For iZ and uD it follows

iZ =
√

3 (1 + b)

2 − b (1/d − 2)
, uD =

√
3 (1 + b)

(2 + b) 1/d
. (137)

The relations bZ and bD are given by (22). The Poisson’s ratios at tension and comp-
ression are

νin+ = 1

2 d
, νin− = d

2
. (138)
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Fig. 31 UST with d = 3 and b = 1 with the properties k = 6
√

3/7, iZ = 6
√

3/11, uD = 2
√

3,
bD = 3, bZ = 1, ahyd

+ = 3/2, νin+ = 1/6, νin− = 3/2 and the model of von Mises in the Burzyński-

plane, cf. [105]. NSH—reference value ahyd
+ = 1 from the normal stress hypothesis

The invariant representation of the UST (131) is given in [105, 115]. It results from
the Radcig model (102) by the linear transform (126) and the parameters

γ1 = 1 − 1/d

3
, η = 2 + 1/d

1 + 2/d
, (139)

b1 = 1 + b − 1/d + 2 b/d

1 + b + 2/d − b/d
, b2 = 3(1 − b)

b (1 − 1/d)− 2 − 1/d
+ 1. (140)

The meridians with θ = 0, π/6 and π/3 of the UST are represented in the
Burzyński-plane by straight lines through the point AZ(3 ahyd

+ , 0) and the points
Z (1, 1), K (0, k) and D (−d, d), respectively. The Twin Stress Theory (TST) with
the parameter values d = 3 and b = 1 is shown in Figs. 30, 31 and 32.

10.3 Models for Applications

Because of their simplicity and versatility the following models can be recommended
for various classes of isotropic materials.

10.3.1 Unified Strength Theory of Yu

The UST (131) is well-accepted and often used in computations and theoretical inves-
tigations. The linear relations of the model result in low computational complexity.
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Fig. 32 UST with d = 3 and b = 1: cross-sections I1 = σ+, I1 = 0, I1 = −d σ+ and the line
of the plane stress state in the π -plane, see principal stress space (Fig. 30) and Burzyński-plane
(Fig. 31)

The model is restricted to materials with ahyd
− → ∞ (the hydrostatic compression is

unbounded). The straight lines of the meridians of this model simplify the description
of the material behavior, however they have no theoretical foundation. The model can
be modified near the hydrostatic tension (Sect. 11.1) in order to reduce the relation
ahyd
+ [229].

The UYC (UST with d = 1) cannot describe the SD-effect (no strength differential
effect) and the Poynting-Swift-effect for incompressible material [105]. Because the
intersections of the planes (131) with each other lie outside of the closed region,
where the model is valid (Fig. 33), the approximation of the measurements using
different optimization criteria (Sect. 12) becomes difficult.

If the UST is used as a plastic potential these intersections lead to singularities in
the strain field.

10.3.2 Rotationally Symmetric Models

Depending on the number of experiments, the quality of the measurements and
the required modeling precision, the function Φ can be simplified, if the influence



102 H. Altenbach et al.

1

1

ξ3

ξ2

P

h1

h2

a

b
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σ+

Fig. 33 UYC with b = 1/2 in the π -plane. P—measurement (schematic); h1, h2—normals to

some planes of the model: a σeq = 1

1 + b
(σII + b σIII)− σI, b σeq = σII − 1

1 + b
(σI + b σIII). The

model of von Mises is presented for comparison

of the third deviatoric invariant is neglected. These models contains the quadratic
rotationally symmetric model (51), Figs. 11, 12 and 34.

Using the substitution (124) the rotationally symmetric model of the form

(3I
′
2)

3 =
(
σeq − γ1 I1

1 − γ1

) j (σeq − γ2 I1

1 − γ2

)l

σm
eq, γ1 ∈ [0, 1[ (141)

with
j + l + m = 6 (142)

can be introduced. The following combination of the parameters γi for materials
with ahyd

− → ∞ can be used

• for a cone with γ1 = γ2, m = 0 and
• for a paraboloid with l = 0, m = 1 . . . 5.

For closed criteria, which restrict in addition to the hydrostatic tension the hydro-
static compression, the following values of parameters γi should be considered

• γ2 < 0, m = 0 . . . 3, j �= l (Fig. 35) or
• γ2 < 0, m = 0, 2, 4, j = l a surface similar to the ellipsoid of Schleicher (Fig. 34)

with the symmetry plane orthogonal to the hydrostatic axis with (129).
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ξI

ξII

ξIII

σIII

σI

σII

I1

σ+

3 I2

σ+

AZAD

Z

D
KBD

BZ

IZVON MISES

26.6 45

II

III

I

2-2-4

0.5

1

1.5

Fig. 34 Model of Schleicher (51) with the Poisson’s ratio νin+ = 1
10 , [103]: top in the principal stress

space σI, σII, σIII (for clarity the surfaces I, II and III are cut ξII ≥ 0) bottom in the Burzyński-plane

I νin− = −1

2
, γ1 = 1

15
(−9 + 2

√
78), γ2 = 1

15
(−9 − 2

√
78), d = 0.45, k = 0.92; II νin− = 1

10
,

γ1 = γ2 = 2√
15

, d = 1, k = 1.17 (ellipsoid of Beltrami); III νin− = 1

2
, γ1 = 1

15
(2 + √

26),

γ2 = 1

15
(2 − √

26), d = 1.36, k = 1.25

This model yields more possibilities for approximations in comparison to (51).
If an analytical solution of the equation with respect to σeq is required, the model

(3I
′
2)

3/2 =
(
σeq − γ1 I1

1 − γ1

) j (σeq − γ2 I1

1 − γ2

)l

σm
eq, γ1 ∈ [0, 1[ (143)

with
j + l + m = 3 (144)
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I II

ξI

ξII

ξIII

σIII

σI

σII

hydrostatic axis

I1

σ+

3 I2

σ+

AZAD

Z

D KBD

BZ

VON MISES

II

I

1

1 2 3-1-2-3

0.5

1.5

Fig. 35 Rotationally symmetric model (141) with γ1 = 1/3, γ2 = −1/3 or ahyd
+ = 1, ahyd

− = 1 I.
j = 4, l = 2, d = 1.25, k = 1.19, bZ = 0.82, bD = 1.10, νin+ = 1

5 , νin− = 0.44; II. j = 2, l = 4,
d = 0.83, k = 0.94, bZ = 0.94, bD = 0.70, νin+ = 1

2 , νin− = 0.27 in the principal stress space and
in the Burzyński-plane

can be used too. The number of the possible meridian shapes is lower in comparison
with (141).

10.3.3 Geometrical-Mechanical Model

The model

3 I ′
2

1 + c3 cos 3θ + c6 cos2 3θ

1 + c3 + c6
= σeq − γ1 I1

1 − γ1

σeq − γ2 I1

1 − γ2
(145)
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is a generalization of the rotationally symmetric model (51). The equivalent stress
σeq can be computed analytically. The model can be used for describing of the multi-
modular theory of elasticity.7

The relations compute to

d2 1 − c3 + c6

1 + c3 + c6
= (1 + d γ1) (1 + d γ2)

(1 − γ1) (1 − γ2)
, (146)

k2 = 1 + c3 + c6

(1 − γ1) (1 − γ2)
. (147)

The Poisson’s ratio at tension νin+ is the same as in (54). The Poisson’s ratio at
compression νin− is not provided because of its complexity.

The model

(3I ′
2)

3/2 1 + c3 cos 3θ + c6 cos2 3θ

1 + c3 + c6
=
(
σeq − γ1 I1

1 − γ1

)3−l−m (σeq − γ2 I1

1 − γ2

)l

σm
eq

(148)
with the substitution (124) and the adjustment (144) allows the analytical computa-
tion of the equivalent stress σeq. The number of possible shapes of the meridian line
is however still not sufficient for a fitting of measurements. The relations compute to

d3 1 − c3 + c6

1 + c3 + c6
=
[

1 + d γ1

1 − γ1

]3−l−m [1 + d γ2

1 − γ2

]l

, (149)

k3 = 1 + c3 + c6

(1 − γ1)3−l−m (1 − γ2)l
. (150)

As strength hypothesis it can be recommended to use the geometrical-mechanical
model (105) with the substitution (124) and the adjustment (142)

(3I ′
2)

3 1 + c3 cos 3θ + c6 cos2 3θ

1 + c3 + c6
=
(
σeq − γ1 I1

1 − γ1

)6−l−m (σeq − γ2 I1

1 − γ2

)l

σm
eq.

(151)
This model has a large region of convex forms in the π -plane and various settings
for the meridian. The relations are obtained analogous to (149) and (150)

d6 1 − c3 + c6

1 + c3 + c6
=
[

1 + d γ1

1 − γ1

]6−l−m [1 + d γ2

1 − γ2

]l

, (152)

k6 = 1 + c3 + c6

(1 − γ1)6−l−m (1 − γ2)l
. (153)

7 Theory of elasticity with different Young’s moduli E+ �= E− and elastic Posisson’s ratios νel+ �= νel−
at tension and compression [9, 212]
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The models (145), (148) and (151) describe incompressible material behavior
with γ1 = γ2 = 0 and for c3 = c6 = 0 become rotationally symmetric model
(141). With c3 = 0 one obtains the models of hexagonal symmetry. The convexity
conditions in the parameter space c3−c6 must be taken into account for these models.

10.3.4 Convex π -Plane Model

The model (99) with the substitution (124) and the adjustment (142) can be used
for analysis in certain special situations. For instance, in order to check if the given
measurements can be described by a convex model. The number of measurements
must be sufficient in order to obtain reasonable approximations. This model contains
applying the linear substitution (126) the pyramids of Sayir II [178] and due to
Haythornthwaite. The model of Drucker II [55] and due to Schmidt-Ishlinsky are
special cases of these models. This model incorporate various conditions, e.g. ξ = 0,
bZ = 1, ahyd

+ = 1, to obtain special theories.

11 Combined Criteria

The mechanical behavior of modern materials can seldom be represented by a sin-
gle surface Φ [157]. The extrapolated behavior at a hydrostatic tension (point AZ)
is in this case frequently overestimated. It occurs also that the Poisson’s ratio at
compression can admit incorrect values with νin− > 1/2 for yield criteria (Sect. 4).

For a reliable description of the measured data a number of combined models
is proposed: the standard hypotheses (strain hypothesis (41), Mohr-Coulomb model
(45) and Burzyński-Yagn model (51)) are combined in a different manner. Further
reasons for the development of the combined models are:

• a small number of well-recognized models (Sect. 2, 6),
• simple interpretation of the measurements, which for instance can be separated

in the regions of the brittle and of the ductile failure based on the hydrostatic
stress with e. g. I1 < σ+ and I1 ≥ σ+. In this case the surfaces with hexagonal
symmetry in the π -plane are often used for ductile material behavior (Tresca and
Schmidt-Ishlinsky models) and the surfaces with the trigonal symmetry (Fig. 4,
cross section b) for the brittle one (normal stress hypothesis),

• taking into account the incompressibility νin− = 1/2 for loadings with I1 < 0,
• the restriction of the hydrostatic stresses with, e. g., a+ hyd ∈[ 1/3, 1

]
(Fig. 7),

• decrease of the power of the stresses in each part of the combined surface Φ
to n ≤ 6, which simplifies the analysis of the measurements and results in an
increased computational stability.

Combined models containing a “cap” (cut-off), which bounds the hydrostatic
stress at the point AZ, and a “body”. Models for incompressible material behavior
(e. g. Schmidt-Ishlinsky, von Mises or Tresca) are usually chosen as the “body” in
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VON MISES

σI

σII

σIII

hydrostatic axis

C1-Transition

Fig. 36 Combined model with a C1-transition in the cross-section I1 = 0 built up from the model
with the cross-section a in theπ -plane (Fig. 4) in the principal stress space. The cylinder of von Mises
is shown for comparison

the compression region (I1 < 0). The influence of the first invariant in the model Φ
changes with the transition from the “body” to the “cap” [107].

In order to reduce the number of possible combinations of surfaces additional
plausibility conditions [105] are introduced

• the C0-transition (continuous, not differentiable transition) follows for polyhedral
surfaces (Sect. 11.1),

• for combinations of continuously differentiable surfaces it is a natural requirement
the C1-transition (Sect. 11.2),

• for combinations of surfaces, which have the same shape in the π -plane and are
continuous, the C1-transition in the meridian sections is recommended (Fig. 36).

The above mentioned conditions prohibit for instance the use of the model of
Pelczyński [155, 234], which is built up from the normal stress hypothesis (8) and
the model of von Mises (Figs. 2 and 37), some modifications, see [43, 45, 55, 173,
197, 217, 232]. The complicated shapes of the lines, resulting from the combination
of the two surfaces, have no physical meaning.

11.1 Criteria with C0-Transition

These models are built up from the Unified Strength Theory of Yu (Sect. 10.2) and
the strain hypothesis (41). The normal stress hypothesis (8) is usually used as cut-off
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VON MISES

σI

σII

σIII

hydrostatic axisSH

Fig. 37 “Pencil” of Pelczyński in the principal stress space with a C0-transition between the surface
of the strain hypothesis (SH), (41) and the cylinder of von Mises [107], cf. [234]

NSH

σI

σII

σIII

hydrostatic axis

MOHR -COULOMB

AZ

Fig. 38 Combined model with a C0-transition in the principal stress space (model of Mohr-
Coulomb with d = 3, νin+ = 1/6 and the normal stress hypothesis νin+ = 0 as a cut-off) [107]

(Figs. 30 and 38) instead of the strain hypothesis in order to reduce the number of
parameters in the model [49, 70, 153, 154, 229].

The inclination of the meridian line of the angle θ = 0 of the combined model,
defined by the Poisson’s ratio νin+ , has a jump at the point Z (Figs. 39 and 40)
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Fig. 39 Pyramid of the UST (131) with b = 0, d = 3, k = 1.30, bZ = 1,iZ = 0.87, ahyd
+ = 3/2,

νin+ = 1/6, νin− = 3/2 in the Burzyński-plane with the normal stress hypothesis as cut-off, iZ = 0.87,

ahyd
+ = 1, νin+ = 0 (Fig. 38)
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Fig. 40 Pyramid of the UST (131) with b = 1, d = 3, k = 1.48, bZ = 1,iZ = 0.94, ahyd
+ = 3

2 ,
νin+ = 1

6 , νin− = 3
2 in the Burzyński-plane with the normal stress hypothesis as cut-off, iZ = 0.87,

ahyd
+ = 1, νin+ = 0 (Fig. 30), cf. [105]

νin+ =
{

0, I1 > σ+, NSH as cut-off;
0 . . .

1

2
, I1 ≤ σ+, UST of Yuas body.

(154)

It is possible to combine two surfaces of UST with different parameter sets (d, b)
under the constraint

νcut-off+ ∈
[
0, νbody

+
]

(155)
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VON MISES

σI

σII

σIII

hydrostatic axis

HUBER

Fig. 41 Model of Huber with the C1-transition in the cross section I1 = 0 and the cylinder of
von Mises in the principal stress space [107]

However, the resulting surface is too complex for applications. The existing infor-
mation on the material behavior, which allow to deduce two different parameter
sets (d, b) of the UST, can be as usual better taken into account with the help of
C1-criteria.

11.2 Criteria with C1-Transition

Combined surfaces with C1-transitions have the following advantages:

• unique computation of the strain rates for the yield surface Φ with the flow rule,
e. g. with (27) and

• lower number of parameters compared to C0-criteria.

11.2.1 Model of Huber

The first combined hypothesis was proposed in 1904 by Huber [36, 37, 67, 91, 103,
118]. The model consists of the ellipsoid of Beltrami (Sect. 6.4) and of a cylinder
with the transition at the cross-section I1 = 0 (Figs. 41 and 42)

3 I ′
2 =

⎧⎪⎨
⎪⎩

σeq − γ1 I1

1 − γ1

σeq + γ1 I1

1 + γ1
, I1 > 0, cap;

σeq

1 − γ1

σeq

1 + γ1
, I1 ≤ 0, body.

(156)
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I1
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3 I2
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BZIZ

UD

AZProperties of C13031
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Fig. 42 Models fitted to the measured data for polyoxymethylene (POM) Hostaform C13031,
Ticona GmbH, Sulzbach in the Burzyński-plane [113]: I model of Huber (156) with k = 1.25,
(d = 1.25, νin+ = −0.04, νin− = 1/2, 3 ahyd

+ = 1.67), II modified model of Huber (163) with

d = 1.34, (k = 1.24, νin+ = 0, 20, νin− = 12, 3 ahyd
+ = 2.18)

The transition between the surfaces in the cross-section I1 = 0 is continuously
differentiable. The model has the property k = d ≥ 1. The parameter γ1 ∈ [0, 1[
results from the relation (52)

k2 = 1

(1 − γ1)(1 + γ1)
. (157)

The Poisson’s ratio at tension can be computed using (54) as follows

νin+ = 3

2 k2 − 1. (158)

Further values are

bZ = 1√
2
(
1 − νin+

) , ahyd
+ = 1√

3
(
1 − 2 νin+

) . (159)

The model is simple and represents the “classical view” with respect to the inelastic
material behavior, cf. [140]:

• compressible properties for I1 > 0 with ν+ in ∈]− 1, 1/2
]

and
• incompressible properties for I1 < 0, νin− = 1/2.

The model can be used as a yield surface with the empirical restriction (34), which
leads to the relation d = k ∈ [1, 1.007]. The latter condition is rather restrictive,
which makes the fitting of the model to the measurements harder. However, the model
should be preferred to the von Mises-model (16), since one obtains safer results in
the region I1 > σ+ with bZ ∈ [0.98, 1] and ahyd

+ ≥ 2.89 in regions, where the
information on these loading cases are missing.

The model of Huber (156) can be extended (Fig. 43).
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The new model reflects the observation, that “the hydrostatic pressure improves
the material strength” [118]. This model consists of the ellipsoid of Beltrami with
γ1 ∈ [0, 1[ for I1 > 0 and of the hyperboloid (Sect. 10.1) for I1 ≤ 0:

3 I ′
2 =

⎧⎪⎨
⎪⎩

σeq − γ1 I1

1 − γ1

σeq + γ1 I1

1 + γ1
, I1 > 0, ellipsoid of Beltrami;

σeq − γ0 I1 i

1 − γ1

σeq + γ0 I1 i

1 + γ1
, I1 ≤ 0, hyperboloid of one sheet.

(160)

The transition at the cross-section I1 = 0 is continuously differentiable. The values
compute to

νin+ = 1

2

(
1 − 3 γ 2

1

)
, νin− = 1

2
+ 3 γ 2

0

2
(
1 − γ 2

0 − γ 2
1

) , (161)

k2 = 1

(1 − γ1) (1 + γ1)
, d = 1√

1 − γ 2
0 − γ 2

1

, ahyd
+ = 1

3 γ1
. (162)

With γ0 = 0 the model of Huber (156) is obtained. The value γ0 �= 0 results in a
non-convex model, cf. [144, 221, 231]. With the setting γ0 = γ1 the model of Kuhn
[118] is obtained. A model built up of two ellipsoids with the transition at the point
K results for purely complex γ0. The tangent line at the point K is parallel to the
hydrostatic axis, cf. [212].

I1/ σ+

3I2

σ+

VON MISESZ

D

K

AD d AZ

γ0 = γ1

γ0 = γ1/ 2

γ0 = 0.3 i

1

1

2

2

3-1-2-3-4

Fig. 43 Model of Kuhn with the C1-transition at I1 = 0 [107]: γ1 = 1/
√

3, νin+ = 0, k = √
3/2,

ahyd
+ = 1/

√
3 with; γ0 = γ1 (d = √

3, νin− = 2), modification with γ0 = γ1/2 (d = 2
√

3/7,

νin− = 5/7), combination of two ellipsoids with γ0 = 0.3 i (d = 1.1496, νin− = 0.32, ahyd
− = −10/9)
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11.2.2 Modification of the Model of Huber

An analogous approach results in the modified model of Huber (Fig. 42) for the
materials with the relation d ≥ k ≥ 1 and incompressibility in the region I1 ≤ −d σ+
[103, 107, 113]

3 I ′
2 =

⎧⎪⎨
⎪⎩

σeq − γ1 I1

1 − γ1

σeq − γ2 I1

1 − γ2
, I1 > −d σ+, ellipsoid;

σeq

1 − γ1

σeq

1 − γ2
, I1 ≤ −d σ+, cylinder.

(163)

In contrast to the model of Huber (156) the C1-transition between two surfaces at the
cross-section I1 = −d σ+ is defined by the point D (compression). The model can
be better fitted to the measurements, that belong to the region I1 ∈ [−d σ+, σ+

]
, it

means in the region D − K − Z .
Further we obtain with (52)

k =
√

2 d√
1 + d

or d = 2 k√
23 + k2 − k

(164)

based on the relation

d + 1

γ1
= −

(
d + 1

γ2

)
. (165)

This relation sets the symmetry plane of the ellipsoid in the cross-section with
I1 = − d σ+, see (129). There are three equations: for d and k and the con-
straint νin− . The parameters of the model γ1 ∈ [0, 1[ and γ2 < 0 are unknown and
should be determined. There are two solutions

⎧⎪⎪⎨
⎪⎪⎩

νin− = − −1 + γ 2
1 + γ 2

2 − γ1 γ2

(−2 + γ1 + γ2) (−1 + γ1 + γ2)
,

d = 1

1 − γ1 − γ2

(166)

and ⎧⎪⎪⎨
⎪⎪⎩

νin− = − −1 + γ 2
1 + γ 2

2 − γ1 γ2

(−2 + γ1 + γ2) (−1 + γ1 + γ2)
,

k2 = 1

(1 − γ1) (1 − γ2)
,

(167)

which should be compared. The conservative solution will be chosen. The solution
of the above equations with νin− = 1/2 defined through (165) leads to
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⎧
⎪⎨
⎪⎩
γ1 = 1

2 d

(
d − 1 +

√
d2 − 1

)
,

γ2 = 1

2 d

(
d − 1 −

√
d2 − 1

) (168)

or
⎧
⎪⎪⎨
⎪⎪⎩

γ1 = 1

4 k

(
3 k −

√
23 + k2 + √

2

√
k (k +

√
23 + k2)− 4

)
,

γ2 = 1

4 k

(
3 k −

√
23 + k2 − √

2

√
k (k +

√
23 + k2)− 4

)
,

(169)

respectively.
The setting d = k = 1, which yields γ1 = γ2 = 0, results in the model of

von Mises. With d = 3
(√

17 − 1
)
/8 ≈ 1.17 or k =

√(
9
√

17 − 27
)
/8 ≈ 1.12

the value γ1 = 1/3 is obtained. This corresponds to the value ahyd
+ = 1 of the normal

stress hypotheses. The Poisson’s ratio at tension is computed as follows:

νin+ = 3

2 d
− 1 = 3

√
8 + k2

4 k
− 7

4
. (170)

For this model the yield condition should be restricted by (34). This results in restric-
tions for the parameters d ∈ [1, 1.014] and k ∈ [1, 1.010]. With

ahyd
+ = 2

3

d

d − 1 + √
d2 − 1

(171)

one gets ahyd
+ ≥ 3.79. This model is more suitable than the model of von Mises (16),

which results in underpredictions in the region I1 > σ+.
The model can be applied instead of the paraboloid of Balandin (51). In this

case incompressible yielding at compression can be obtained without the use of a
non-associated flow rule (Sect. 4).

11.2.3 Combined Geometrical-Mechanical Model

A combined model can be built up based on the geometrical-mechanical model (105)
with the transition at the cross-section I1 = 0 (Fig. 44)

(3 I ′
2)

3 1 + c3 cos 3θ + c6 cos2 3θ

1 + c3 + c6
=

⎧⎪⎪⎨
⎪⎪⎩

(
σeq − γ1 I1

1 − γ1

σeq + γ1 I1

1 + γ1

)3

, I1 > 0;
(

σeq

1 − γ1

σeq

1 + γ1

)3

, I1 ≤ 0.

(172)
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Fig. 44 Combined geometric mechanical model (172) for the polyoxymethylene (POM) Hosta-
form C13031, Ticona GmbH, Sulzbach, fitting starts from the values d = 1.34, k = 1.25 in the
Burzyński-plane [113]: k = 1.20, bZ = 0.999, bD = 1.06, νin+ = 1/3, νin− = 1/2, ahyd

+ = 1,
c3 = 0.7885, c6 = 0.3029, γ1 = 1/3

Since the necessary information on the material behavior under the hydrostatic ten-
sion (point AZ) is almost always missing, the response under the hydrostatic tension
can be defined by setting γ1 = 1/3, which is based on the normal stress hypothesis
(Sect. 2.1). It leads to the Poisson’s ratio at tension with

νin+ = 1

2

(
1 − 3 γ 2

1

)
(173)

to νin+ = 1/3. This setting can be corrected in dependence on the Poisson’s ratio νin+ .
For νin+ = 0.48 one gets γ1 = 1/5

√
3 ≈ 0.1155.

The values c3 and c6 can be computed from relations d and k, if the convexity
restrictions (Fig. 20) are taken into account. These values result from the equations

k6 = 1 + c3 + c6

(1 − γ 2
1 )

3
, d6 = 1 + c3 + c6

1 − c3 + c6

1

(1 − γ1)3 (1 + γ1)3
. (174)

The model (172) can be recommended for many applications (Fig. 44).
A similar model with the C1-transition at the cross-section I1 = −d σ+, cf. the

modified model of Huber (163), can be formulated (Fig. 45).
The parameters c3, c6 and γ2 of the model result from the formulas for d, k and

νin− = 1/2. The last condition leads to the geometric relation (165)

1

γ2
= −

(
2 d + 1

γ1

)
. (175)

This model has additional fitting possibilities in comparison to (172). Whether the
model can be preferred over the model (172) it can be determined if further measure-
ments, for instance at the points BZ or BD, are available. If only three measurements
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Fig. 45 Combined geometrical-mechanical model with the transition at I1 = −d σeq for the
polyoxymethylene (POM) Hostaform C13031, Ticona GmbH, Sulzbach, with the values d = 1.34,
k = 1.25 in the Burzyński-plane: c3 = 0.4743, c6 = 0.3642,γ2 = −0.1761, bZ = 0.92, bD = 1.19,
νin+ = 0.28, νin− = 1/2, ahyd

+ = 1. The lines from Fig. 44 are shown for comparison [113]

at tension, compression and torsion (Z , K and D) exist, the application of the model
with C1-transition at I1 = −dσ+ is not meaningful.

12 Fitting

The objective function for fitting of the model to the measurements can be formulated
in many ways, which lead to different results. The following three kinds of objective
functions

• mathematical,
• physical and
• geometrical

can be considered [111, 114].
The mathematical objective functions are derived in a purely formal way, so that

the fast convergence of the optimization routine can be achieved. Physical objective
functions are based on a measurable value, which can be “related to mechanics”.
These conditions usually lead to complex implementations and slow computations.
Geometrical criteria are based on the properties of the surface Φ.

12.1 Mathematical Criteria

This kind of objective functions will be presented using the geometrical-mechanical
model (151) with the restriction (142) and the powers j = 4, l = 2, m = 0. The
function Φ is rewritten in the form
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Ω = (3 I
′
2)

3 1 + c3 cos 3θ + c6 cos2 3θ

1 + c3 + c6
−
(
σeq − γ1 I1

1 − γ1

)4 (σeq − γ2 I1

1 − γ2

)2

,

(176)
so that the surface is given by the equation Ω = 0.

The n measurements are given e. g. in the principal stress space σ i
I , σ

i
II, σ

i
III,

i = 1 . . . n. The objective functions can be formulated as follows

f = 1

n − 1

n∑
i=1

∣∣∣Ω(c3, c6, γ1, γ2, σ
i
I , σ

i
II, σ

i
III)

∣∣∣
m1

(177)

with m1 = 1, 2 or

f∞ = max
i=1...n

∣∣∣Ω(c3, c6, γ1, γ2, σ
i
I , σ

i
II, σ

i
III)

∣∣∣ . (178)

Other exponents m1 can be used, however they do not lead to any significantly
different results. In order to compare various fitting results the following value is
considered

fm1 = ( f )1/m1 . (179)

The optimization problem is formulated as

minimize f (c3, c6, γ1, γ2) (180)

for the chosen meridian shape through j , l and m. The solution is obtained in the
form of the parameters of the models c3, c6, γ1 and γ2. Using these parameters
the measurements σ i

I , σ
i
II, σ

i
III, i = 1 . . . n are approximated. This optimization

problem contains the constraints for the parameters of meridians γ1, γ2, parameters
of the cross-section c3, c6 and for the Poisson’s ratios νin+ , νin− (Sect. 4).

The function Ω (176) can be modified, so that additional solutions of the opti-
mization for comparisons become possible, e. g.:

[
(3 I

′
2)

3 1 + c3 cos 3θ + c6 cos2 3θ

1 + c3 + c6

]l1

−
[(

σeq − γ1 I1

1 − γ1

)4 (σeq − γ2 I1

1 − γ2

)2
]l1

= 0

(181)
with the integer exponent l1 ≥ 1.

The formulation (176) is derived with σ+ = σeq. If there are “enough” measure-
ments the equivalent stressσeq can also be seen as a parameter subject to optimization.
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Fig. 46 Cone of Drucker-Prager (51) in the principal stress state (left) and in the π -plane (right).
Comparison of the four physical optimization criteria

12.2 Physical Criteria

For a limit surface, which is defined implicitly in the form (5) or (6) and available
measurements it is required to estimate the quality of fitting. Four physical crite-
ria for estimation of the optimization quality are discussed (Fig. 46). In order to
apply the criteria the measurements must be transformed into a principal stress state
(σ i

I , σ
i
II, σ

i
III) for i = 1 . . . n. The four criteria can hardly be used in order to obtain

the parameters of a model because of the high computational complexity. However,
they can be used for comparison of different optimization results.

The criteria can be formulated as follows:

1. The regression quality in the principal stress space is evaluated, that is for each
measurement the distance from the limit surface in the principal stress space
(σI, σII, σIII) is computed and then averaged over all measurements. Formally
that means, we start with a set of measurements (σ i

I , σ
i
II, σ

i
III) and solve for each

measurement the optimization problem

min (σI − σ i
I )

2 + (σII − σ i
II)

2 + (σIII − σ i
III)

2

subject to Φ(σI, σII, σIII) = 0.
(182)

The solution is obtained using a Lagrange multiplier. For example the function

F(σI, σII, σIII, λ) = (σI −σ i
I )

2 +(σII −σ i
II)

2 +(σIII −σ i
III)

2 −λΦ(σI, σII, σIII)

(183)
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is defined and the stationary points are obtained from the equation

∇F = 0. (184)

Generally this equation has more than one solution, however a single point
(zi

I, zi
II, zi

III) of minimal distance on the limit surface is to be determined. Since
the number of solutions is small, the correct one can be chosen by trial-and-error.
Finally, the value of the objective function f3D computes to

f3D := 1

n − 1

n∑
i=1

√
(σ i

I − zi
I)

2 + (σ i
II − zi

II)
2 + (σ i

III − zi
III)

2. (185)

2. The minimal distance can be computed not in the principal stress space but for a
plane stress state. For example we putσIII = 0 and hence simplify the optimization
problem (182)

min (σ i
I − σI)

2 + (σ i
II − σII)

2

subject to Φ(σI, σII, 0) = 0.
(186)

A further computation is performed in analogy to the previous case. For each
point (σ i

I , σ
i
II, 0) the point of minimal distance (zi

I, zi
II, 0) on the curve

Φ(σI, σII, 0) = 0 (187)

is determined and the value of the objective function f2D is estimated as follows

f2D := 1

n − 1

n∑
i=1

√
(σ i

I − zi
I)

2 + (σ i
II − zi

II)
2. (188)

3. If the model is based on the equivalent stress concept, that is

Φ(σI, σII, σIII, σeq) = 0, (189)

whereas σeq = σ+, a simple estimation for the quality of fitting can be proposed.
The equivalent stress σeq is considered as a parameter as fitting is performed. The
fitted equivalent stress is denoted by σ ∗

eq. In order to estimate the quality of fitting

for each point (σ i
I , σ

i
II, σ

i
III), i = 1 . . . n the value σeq = σ i

eq is computed so,
that the point lies on the surface

Φ(σI, σII, σIII, σ
i
eq) = 0, (190)

i. e. the equation
Φ(σ i

I , σ
i
II, σ

i
III, σ

i
eq) = 0 (191)
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must be solved for each i = 1 . . . n with respect to σ i
eq. The estimated value feq

computes to

feq := 1

n − 1

n∑
i=1

∣∣∣∣∣
σ i

eq − σ ∗
eq

σ ∗
eq

∣∣∣∣∣. (192)

4. The distance between the experimental point and the surface of model is measured
along the line connecting the point with the origin. The sum of all the distances
normalized by n − 1 computes to the value fray.

The criterion 1 is ubiquitous and can be used for an arbitrary set of measurements
and an arbitrary surface. Often the measurements belong to a plane stress state,
in this case the criterion 2 is of stronger physical relevance. Since it is a plausible
assumption, that a measurement corresponding to a plane stress state is approximated
by a point of the model, which also belong to a plane stress state. The criterion 3
is only suitable for the models based on the equivalent stress concept (2). It can be
used too, if for instance torsion τ∗ or compression σ− are taken as the equivalent
stress. An advantage of the criterion 4 is that it has a “mechanical background”: Each
measurement (e. g. torsion) is compared to the corresponding point on the surface
(point K for torsion). It is clear that it can be easily applied and leads to relatively
fast convergence of the optimization routine.

12.3 Geometrical Criteria

The principle of the conservative modeling can be stated as follows: among all
best possible solutions the one is preferred, which represents the most conservative
assumption about the material behavior [103]. Geometrical criteria allow to compare
different optimal solutions. These criteria are listed below [108]:

• linear criteria:

– the shortest length of the line in the meridian section of the closed surface Φ
with the plane ξ2 = 0 (Fig. 13, coordinates (ξ1, ξ2, ξ3), Figs. 34 and 35),

– the minimal length of the line of the plane stress state,
– the distance between the hydrostatic nodes AZ and AD for foams, ceramics, etc.,

minimize
(
χ ahyd

− + (1 − χ) ahyd
+
)
, χ ∈ [0, 1] (193)

and for materials with ahyd
− → ∞

minimize
(

ahyd
+
)
, (194)

– relation k: minimize (k),
– relation d: minimize (d),
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• square criteria:

– the minimal area of the closed surface Φ in the principal stress space,
– minimal area of the closed surface Φ in the meridian cross-section with the

plane ξ2 = 0,
– minimal area circumscribed by the line of the plane stress state,

• cubic criteria, for instance the minimal volume circumscribed by the closed surface
Φ in the principal stress space.

These criteria can be chosen in dependence on the measurements and the require-
ments imposed upon the model. A comparison of the criteria can be performed in the
Pareto-diagram [44, 61, 152, 196]. The geometrical criteria allow to select a single
point from the Pareto-solutions [114].

13 Applications

In order to illustrate the application of the models and fitting of the parameter, some
measurements from the literature are analyzed. The stages of the analysis are visual-
ized. The experimental data are normalized with respect to σ+ for better comparison
of the surfaces Φ.

13.1 Measurements of Coffin for Gray Cast Iron

29 measurements for the plane stress state for gray cast iron8 are shown in Coffin-
Schenectady [47] and approximated as follows:

• region Tension-Tension
σeq = σI, σeq = σII (195)

with σeq = 33 × 103 psi.
• region Tension-Compression

(κ σeq + σ0)
2 = (k σI + σ0)

2 − σII (k σI + σ0)+ σ 2
II,

(κ σeq + σ0)
2 = (k σII + σ0)

2 − σI (k σII + σ0)+ σ 2
I

(196)

with κ = 3 and σ0 = 30 psi.
• region Compression-Compression

√
1

2

[
(σI − σII)2 + σ 2

I + σ 2
II

]+ 1

3
μ (σI + σII) = ϑ (197)

8 3.08 % total C, 2.04 % Si, 0.56 % Mn, 0.112 % S, 0.33 % P
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with μ = 0.51 and ϑ = 88 × 103 psi.

The measurements were digitalized from the diagram σI − σII [47] . The agreement
with the approximation presented in the paper results for κ = 2.9050, μ = 0.5307
and ϑ = 89.0202 × 103 psi and is to be ascribed to the precision of the digitalization
and the rounding error. The computation of stresses leads to σBD = 137.76×103 psi,
σUD = 148.20 × 103 psi, σ− = 108.15 · 103 psi, τ∗ = 27.49 × 103 psi and
σAZ = 33 · 103 psi.

For further evaluations the measurements are normalized with respect to
σ+ = 33 × 103 psi (Table 7). The relations of the evaluations are summarized
in Table 8. The relations aZ and bD result from the extrapolations. The smallest value

bD = 103.35

33
= 3.13 (198)

is obtained from the results of the test 11 with the convexity requirement

σI − (−69.4)

(−137.3)− (−69.4)
= σII − (−137.3)

(−69.4)− (−137.3)
(199)

for σI = σII. If the classical material behavior (22) with bD = d is assumed, the
estimate

bD ∈ [3, 3.29] (200)

is obtained from the measurements at axial compression.
The value bZ can be estimated

bZ = 28.52

33
. . .

30.22

33
= 0.86 . . . 0.92. (201)

The lower bound for aZ is defined using the stress value σBZ = 30.22 × 103 psi and
the convexity condition

2σBZ < 3σAZ. (202)

It follows

ahyd
+ >

2

3
· 30.22

33
= 0.61. (203)

13.1.1 Strain Hypothesis

In the first quadrant of the σI−σII-diagramm (region Tension-Tension, Fig. 47) the
strain hypothesis (41) can be used instead of the normal stress hypothesis (8) in
order to estimate relations in this region. For fitting of parameters and computation
of the relations iZ, bZ and aZ the model is used in the form (10) with (42). The
Poisson’s ratio computes to νin+ ∈ [−0.0870, −0.0521] which is equivalent to γ1 ∈
[0.3681, 0.3913]. Relations iZ, bZ and aZ are specified in Table 8.
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Table 7 Measurements by Coffin-Schenectady and their normalized values with respect to σ+ =
33 · 103 psi, the axiatoric-deviatoric invariants and the stress angle, plane stress state σIII = 0

Test σI σII σI σII I1 I ′
2 I ′

3 cos 3θ θ

number 103 [psi] 103 [psi] [-] [-] [-] [-] [-] [-] [grad]

7 −77.60 −151.45 −2.35 −4.59 −6.94 5.2667 0.199442 0.0429 29. 2
11 −69.40 −137.30 −2.10 −4.16 −6.26 4.3278 0.065570 0.0189 29.6
12 −30.00 −116.95 −0.91 −3.54 −4.45 3.3881 −1.758632 −0.7327 45.7
23 −24.45 −120.52 −0.74 −3.65 −4.39 3.7268 −2.317541 −08369 48.9

0 −108.67 0 −3.29 −3.29 3.6147 −2.645169 −1 60
0 −101.78 0 −3.08 −3.08 3.1709 −2.173324 −1 60

46 0 −98.90 0 −3.00 −3.00 2.9939 −1.993946 −1 60
19 17.03 −67.68 0.52 −2.05 −1.53 1.8434 −0.809151 −0.8399 49.0

23.28 −52.79 0.71 −1.60 −0.89 1.3948 −0.389280 −0.6140 42.6
18 25.35 −50.85 0.77 −1.54 −0.77 1.3827 −0.339070 −0.5418 40.9

23.67 −47.65 0.72 −1.44 −0.73 1.2117 −0.279228 −0.5439 41.0
32.60 −32.51 0.99 −0.99 0 0.9733 0.000814 0.0022 30

17 27.60 −27.47 0.84 −0.83 0 0.6962 0.000914 0.0041 29.9
26.49 −26.49 0.80 −0.80 0 0.6442 −0.000002 0 30
28.36 −14.52 0.86 −0.44 0.42 0.4368 0.058351 0.5251 19.4

9 30.25 −13.38 0.92 −0.41 0.51 0.4587 0.073234 0.6125 17.4
30.58 0 0.93 0 0.93 0.2862 0.058921 1 0

6 32.55 0 0.99 0 0.99 0.3243 0.071085 1 0
29.47 13.67 0.89 0.41 1.31 0.1997 0.004307 0.1254 27.6
29.68 15.21 0.90 0.46 1.36 0.2023 −0.001518 −0.0434 30.8
35.18 17.62 1.07 0.53 1.60 0.2841 −0.000188 −0.0032 30.1
28.64 28.52 0.87 0.86 1.73 0.2501 −0.048125 −0.9999 59.8
29.59 29.80 0.90 0.90 1.80 0.2699 −0.053974 −0.9998 59.7

4 30.22 30.22 0.92 0.92 1.83 0.2795 −0.056886 −1 60
15.90 31.57 0.48 0.96 1.44 0.2288 −0.000551 −0.0131 30.3
16.32 32.91 0.49 1 1.49 0.2487 0.000710 0.0149 29.7
0 30.66 0 0.93 0.93 0.2877 0.059381 1 0
0 33.28 0 1.01 1.01 0.3390 0.075957 1 0

1 0 34.18 0 1.04 1.04 0.3576 0.082308 1 0

The measurement number and the respective values for σI, σII are shown in Figs. 6, 7 and 8 in [47]
The values for the measurement 23 with σI = −42.900×103 psi, σII = −104, 000×103 psi (Fig. 8
in [47]) are different from the digitalized values, which are used for evaluation

13.1.2 Burzyński-Yagn Model

The measurements can be described using the rotationally symmetric model (51).
The best approximation is obtained with the hyperboloid (Table 9).

The position of the measurements in the Burzynski-plane suggests that a rotation-
ally symmetric model is not suitable in this case. The material behavior in the region
Tension-Tension is underestimated and overestimated near the point BD (Table 8).
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Table 8 Relations for the evaluations of the measurements by Coffin-Schenectady,
σ+ = 33 × 103 psi with different models

Approximation bD uD d k iZ bZ ahyd
+ νin+ νin−

Coffin 4.17 3.89 3.38 1.44 0.87 1 1 ≥ 0 –
SH in the region
TT

– – – – 0.84 0.95 0.91 −0.05 –

SH in the region
TT

– – – – 0.82 0.92 0.85 −0.09 –

Eq. (51), hyper-
boloid

4.39 3.91 2.79 1.66 0.73 0.66 0.53 −0.20 1.24

Eq. (51), cone 7.15 4.61 2.34 1.40 0.83 0.78 1.62 0.07 1.51
Eq. (51),
paraboloid

4.29 3.88 2.82 1.68 0.73 0.66 0.52 −0.21 1.21

UST by Yu, b =
0.35 with cut-
off

3.05 3.03 3.05 1.39 0.87 1 1 0…0.16 1.53

UST by Yu, b =
1 with cut-off

3.05 3.52 3.05 1.49 0.87 1 1 0…0.16 1.53

Bigoni-
Piccolroaz
GMM
(for Bigoni),
l = 3, m = 1

3.58 3.71 3.04 1.50 0.88 0.89 0.92 0.09 1.51

GMM, straight
line l = m = 0

3.48 3.85 2.92 1.49 0.92 0.94 1.40 0.14 1.54

GMM, parabola
l = 0, m = 1

3.48 3.84 2.94 1.53 0.90 0.90 1.10 0.10 1.47

CPM: straight
line l = m = 0

3.31 3.82 2.50 1.50 0.94 0.91 1.43 0.15 1.37

CPM: straight
line l = m = 0

3.34 3.82 3.00 1.50 0.93 0.97 1.43 0.15 1.55

CPM: parabola
l = 0, m = 1

3.41 3.80 3.00 1.53 0.90 0.91 1.11 0.10 1.48

13.1.3 Unified Strength Theory of Yu

The values bD (198) and d are similar. It follows that UST (Sect. 10.2) with the
relationship bD = d can be used. In [230] Yu puts d = 3.05, in order to describe
the Tension-Compression region. In the Tension-Tension region the normal stress
hypothesis is used as a cut-off (Sect. 11.1) [228, 229]. In Table 8 the relations for
the parameters b = 0.35 und b = 1 are presented. In the third quadrant of the
σI−σII-diagramm (Compression-Compression region) the UST is not sufficient.



Phenomenological Yield and Failure Criteria 125

Table 9 Parameters of the models for the approximation of the measurements by Coffin-
Schenectady, σ+ = 33 × 103 psi

Model Eq. Meridian f2 γ1 γ2 c3 c6

straight line 1.1935 0.2867 – –
Burzyński-Yagn (51) hyperbola 0.7763 0.6345 0.0073 – –

parabola 0.7800 0.6451 0 – –
GMM, l = m = 0 straight line 53.7926 0.2376 0.8671 0.2832
GMM, l = 0, m = 1 (152) parabola 62.6810 0.3033 0 0.8161 0.2960
(for Bigoni), l = 3, m = 1 hyperbola 84.6122 0.3617 0.2721 0.6969 0.0805

Values of the objective function f2 (179) are to be compared for respective models only
(for Bigoni)—approximation by Bigoni-Piccolroaz reformulated using GMM

13.1.4 Geometrical-Mechanical Model

The best approximation for GMM (151) is obtained with a straight meridian (Figs. 47,
48, 49, 50). The value bD = 3.48 lies outside of the bounds given by (200).

These approximations with GMM can be compared to the approach by Bigoni-
Piccolroaz [26] with seven parameters (Table 8). This approximation can be obtained
using GMM with l = 3, m = 1 (Table 9).

The experimental results with σI = σII/4 cannot be represented by GMM. A pre-
cise approximation is however possible using the continuously differentiable GMM
(Sect. 11.2.3) . The switching occurs in the plane I1 = −d σ+ with d = 3 . . . 3.29.

13.1.5 Convex π -Plane Model

The results of fitting using GMM (105) with n = 6 can be also represented by
CPM (99). The parameter γ1 of the linear substitution (126) is the same (Table 9):
γ1 = 0.2376. With the parameters c3 = 0.8672 and c6 = 0.2832 the relations (106)
are computed to

dinc = 6

√
1 + c3 + c6

1 − c3 + c6
, kinc = 6

√
1 + c3 + c6. (204)

The parameter dinc = 1.3149 corresponds to the same parameter of CPM and with
dinc = 1.3149, kinc = 1.1361 the bridge-parameter ξ = 0.8766 is computed. These
values can be used as a starting point for optimization:

f2 = 7.6597 : dinc = 1.3149, ξ = 0.8766, γ1 = 0.2376. (205)

The optimization results

f2 = 6.0831 : dinc = 1.2122, ξ = 1, γ1 = 0.2325 (206)



126 H. Altenbach et al.

σI/ σ+

σII/ σ+

measurements

approximation (GMM)

COFFIN

BIGONI

GMM

σI = − 2σII

σI = − σII

σI = − σII/ 2

σI = − σII/ 4σI = σII/ 4σI = σII/ 2σI = σII

σI = 2σII

K

K

BD

BZ

AZ

UD

IZ

IZ

D

D

Z

Z

1

1

-1

-1

-2

-2

-3

-3

-4

-4

-5

-5

Fig. 47 Plane stress state σIII = 0: geometrical-mechanical model (σ+ = 33 × 103 psi, γ1 = γ2 =
0.2375, c3 = 0.8672, c6 = 0.2832, l = m = 0) with the values bD = 3.48, d = 2.92, k = 1.49 for
gray cast iron (Table 8). The models of von Mises and the approximations of Coffin-Schenectady
and Bigoni-Piccolroaz (between the points BD and D) are shown for comparison

lead to the pyramid due to Haythornthwaite, which follows from the prism of
Haythornthwaite (94) with the substitution (126) [107]. This approximation (Fig. 48,
Model 1) underestimates the value at compression, it yields d = 2.50.

Additionally, it can be required, that the curve of the plane stress state contains the
point D with the coordinates σI = 0, σII = −98.90/33 (relation d = 3), it follows
(Fig. 48, Model 2)

f2 = 8.1939 : dinc = 1.3522, ξ = 0.9662, γ1 = 0.2335. (207)
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Fig. 48 Plane stress state σIII = 0: CPM (σ+ = 33 × 103 psi) for gray cast iron (Table 8): 1 CPM
with l = m = 0, f2 = 6.0831: dinc = 1.2122, ξ = 1, γ1 = 0.2325, 2 CPM with l = m = 0 and
d ≥ 3, f2 = 8.1939: dinc = 1.3522, ξ = 0.9662, γ1 = 0.2335, 3 CPM with l = 0, m = 1 and
d ≥ 3, f2 = 8.8342: dinc = 1.3028, ξ = 0.8868, γ1 = 0.3003. The GMM (Fig. 47) is shown for
comparison

Similar approximation (Fig. 48, Model 3) is obtained with the paraboloid l = 0,
m = 1 using the substitution (124) and the restriction d ≥ 3

f2 = 8.8342 : dinc = 1.3028, ξ = 0.8868, γ1 = 0.3003. (208)

The models with a straight meridian fitted with the parameters (206), (207) should
be preferred here because of their simplicity. The setting (208) with the parabolic
meridian l = 0, m = 1 yields a lower value aZ = 1.11. For further approximations
see [1, 14, 34, 202].



128 H. Altenbach et al.

I1

σ+

3 I2

σ+

AZ

Z

D

K

BD

BZIZ

UD

θ = 0

θ = 30 θ = 60

VON MISES

line of the plane stress state

− d− 2bD

d

bD

1

2

2

3

4

4

-2-4-6-8

Fig. 49 Geometric-mechanical model (σ+ = 33 · 103 psi, γ1 = γ2 = 0.2375, c3 = 0.8672,
c6 = 0.2832, l = m = 0) with the values bD = 3.48, d = 2.92, k = 1.49 for gray cast iron
(Table 8) in the Burzyński-plane. The models of von Mises is shown for comparison, s. (Fig. 47)

13.2 Measurements by Pae for Poly(oxymethylene) (POM)

The measurements for POM, du Pont Delrin 500, ρ =1.425 g/cm3 are provided in
[151]. The following inaccuracies were found out after the analysis of the measure-
ments from [151]:

• Molar mass and crystallinity were not specified;
• Table 1, hydrostatic pressure, (psi)×10−3;
• Table 1, average experimental yield stresses, the meausrement 10.5 is shifted from

the column “Shear” in to the column “Tension”;
• Figure 3 (a), hydrostatic axis, the factor 1/

√
3 for the first invariant I1 was not taken

into account as the measurements were represented in the principal stress space:
p = 7.3 kbar, I1 = 3 · 7.3 · 14503.8 = 317.63 × 103 psi. From the normalization
with respect to σ+ it follows I1

σ+ = 317.63×103

10.6·103 = 29.97 [−]. The hydrostatic node

AZ should lie at 29.97/
√

3 = 17.3 [−], (or with 7.25·103

0.0230
1

10.6×103
1√
3

= 17.2 [−],

cf. Eq. (3) with I ′
2 = 0 and Table III in [151]). The difference results from the

rounding error;
• Figures 3 (a) and (b), representation of the model in the π -plane, additionally to

the cross-sections I1 = const. of the models of von Mises and Tresca a model with
trigonal symmetry is shown, which is however not defined;

• The units in the Table III, [151] are not provided.

These measurements are visualized in the Burzyński-plane and approximated with
a quadratic rotationally symmetric model (51), Fig. 51.

It can be seen in Fig. 51 that the points on the meridian θ = π/3 are separated
from the points on the meridians with θ = 0 and θ = π/6. So the trigonal symmetry
of the surface can be assumed. The application of the geometrical-mechanical model
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Fig. 50 Measurements by Coffin-Schenectady [47] in the π -plane approximated with the
geometrical-mechanical model (151), s. Fig. 49, d = 2.92; line of the plane stress state with σI = 0.
The cross-sections orthogonal to the hydrostatic axis with I1 = const. through the points Z , K and
D are shown

(151) with the compressible substitution (146) can be recommended in this case.
A possible approximation is shown in the Burzyński-plane (Fig. 52), in the plane
σI − σII (Fig. 53) and in the π -plane (Fig. 54). Further applications to POM can be
found in [113].

13.3 Measurements of Cristensen for PVC Hard Foam

Closed-cell PVC (polyvinyl chloride) foam Divinycell H 200 (DIAB International
AB, Schweden) with the density ρ = 200 kg/m3 was tested in the region D−K−Z
(compression-torsion-tension) [46]. 25 measurements presented in the diagram σ11-
τ12 in [46] were digitalized (Fig. 55). The stresses at tension σ+ corresponds to
the data provided by the manufacturer [52] and indirectly to the measurements by
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Fig. 51 Approximation of the measurements by Pae for POM in the Burzyński-plane with the
quadratic rotationally symmetric model (51) with σ+ = 10.6×103 psi and σeq as a parameter: cone
of Drucker-Prager (Mirolyubov): γ1 = γ2 = 0.0403, σeq = 1.12; d = 1.09, k = 1.04, νin+ = 0.44,
νin− = 0.57, paraboloid of Balandin: γ1 = 0.1277, γ2 = 0, σeq = 1.01; d = 1.14, k = 1.07,
νin+ = 0.40, νin− = 0.60, hyperboloid of Burzyński-Yagn: γ1 = 0.089, γ2 = 0.0107, σeq = 1.07;
d = 1.11, k = 1.05, νin+ = 0.42, νin− = 0.58. The diagram is divided in two regions I1 ∈ [−10, 8]
and I1 ∈ [−31, −10] for clarity
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Fig. 52 POM-measurements by Pae in the Burzyński-plane approximated using the geometrical-
mechanical model (151) with the parameters γ1 = 0.0869, γ2 = 0, j = 4, l = 2, m = 0,
c3 = −0.2717, c6 = 0.4314 and σeq = 1: d = 11.2

10.6 = 1.06, k = √
3 6.67

10.6 = 1.09, νin+ = 0.41,
νin− = 0.63. The region I1 ∈ [−2.5, 2] is shown for clarity

Gdoutos for the PVC-foam H 250 [72]. The stresses at compression σ− are signifi-
cantly lower compared to the data in [52, 72]. The value for torsion is also lower than
the manufacturer’s data and the measurements by Deshpande-Fleck and Gdoutos.

In order to present the models in the diagram σ11–τ12 (Fig. 55) the invariants
(Appendix 15) were reduced with σ22 = σ33 = τ13 = τ23 = 0 as follows

I1 = σ11, I ′
2 = 1

3
(σ 2

11 + 3 τ 2
12), I ′

3 = 2

33 σ
3
11 + 1

3
σ11 τ

2
12. (209)
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Fig. 53 Plane stress state σIII = 0: geometrical-mechanical model for POM with the values
d = 1.06, k = 1.09 (Fig. 52). The models of von Mises and Schmidt-Ishlinsky are shown
for comparison

The restriction of the hydrostatic tension was set by Christensen according to the
normal stress hypothesis (ahyd

+ = 1, γ1 = 1/3) in order to obtain a closed limit
surface in the tension region for the approximation with the paraboloid (open in the
region I1 > 0).

The combined model (paraboloid bounded by the normal stress hypothesis) pre-
sented by Christensen has singularities. A similar approximation can be obtained
with the hyperboloid and the cone (51), Figs. 55 and 56. Further measurements can
be described using the ellipsoid of Schleicher (51). These approximations are shown
in the Burzyński-plane (Fig. 57), however they are not optimal:
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Fig. 54 Cross-sections I1 = σ+, I1 = 0 and I1 = −d σ+ of the geometrical-mechanical model
for POM with the values d = 1.06, k = 1.09 in the π -plane; see Figs. 52, 53 (for clarity only one
section of the plane stress state with σI = 0 is shown)
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Fig. 55 Measurements by Christensen [46] in the diagram σ11−τ12 with the normalization by
σ+ = 7.12 MPa and the models: cylinder of von Mises, Eq. (16); cone of Drucker-Prager, Eq. (51):
γ1 = γ2 = −0.5325, νin+ = 1.30, νin− = 0.11, d = 0.48, k = 0.65; GMM Eq. (151), j = 2, l = 4,
m = 0 with c3 = −1.0585, c6 = 0.2354, γ1 = 0.4219, γ2 = −0.5747, νin+ = 1/2, νin+ = −0.24,
d = 0.49, k = 0.66

• The cone, the paraboloid and the hyperboloid are in this case open in the direction
I1 > 0. The hydrostatic tension is not constrained, however such constraint is
required.
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Fig. 56 Measurements by Christensen [46] in the diagram σI−σII, σIII = 0 with the normalization
by σ+ = 7.12 MPa with the models from Fig. 55. The points AZ and AD of the GMM are shown
for clarity

• The ellipsoid of Schleicher is fitted under the constraint νin+ ≤ 1/2. The quality of
this approximation is not sufficient, the material strength in the region D−K−Z
is overestimated.

• All the approximations with the rotationally symmetric models can not describe
the typical �-form of the curve of the plane stress state in the Burzyński-plane for
the materials with d < 1 (cf. Figs. 58, 59 and 62).

In Figs. 57, 58 and 59 on the left and on the right hand side the constraints for the
hydrostatic stresses at tension and compression are shown. These constraints result
from the normal stress hypothesis and lead to a bounded region on the hydrostatic
axis for approximation of hard foams.

13.3.1 Geometrical-Mechanical Model

In the first step the optimization f2 →min is performed for the geometric-mechanical
model (151), (Fig. 58). Here the constraints are applied:

• γ1 = 1/3 from the normal stress hypothesis and
• νin+ ≤ 1/2 as plausibility condition.

The line of the plane stress state approximates the measurements with a good quality,
however the resulting extrapolation in the region I1 > σ+ is unconvincing:
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Fig. 57 Measurements by Christensen [46] in the Burzyński-plane approximated with the quadratic
rotationally symmetric model (51), σ+ = 6.94: ellipsoid of Schleicher with the constraints νin+ ≤
1/2: γ1 = −1.6389, γ2 = 0.3831: νin+ = 1/2, νin− = −0.34, d = 0.44, k = 0.78, bZ = 0.88,
bD = 0.27; hyperboloid: γ1 = −0.9001, γ2 = −0.1473: νin+ = 1.14, νin− = 0.05, d = 0.49,
k = 0.68, bZ = 1.64, bD = 0.37; cone of Drucker-Prager: γ1 = γ2 = −0.4956: νin+ = 1.24,
νin− = 0.13, d = 0.50, k = 0.67, bZ = 1.98, bD = 0.40; NSH: Restriction from the normal stress
hypothesis γ1 = 1/3; TT: Restriction from the normal stress hypothesis as trigonal trapezohedron
3 ahyd
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Fig. 58 Measurements by Christensen [46] in the Burzyński-plane approximated with the
geometrical-mechanical model (151), j = 1, l = 1, m = 4 with f2 →min, ( f2 = 0.321):
c3 = −1.0950, c6 = 0.2263, γ1 = 1/3, γ2 = −1, γ3 == 0, σ+ = 7.04: νin+ = 1/2, νin− = 0.29,
d = 0.53, k = 0.68, bZ = 0.62, bD = 0.49; the optimization constraints γ = 1/3 and νin+ ≤ 1/2

• the surface Φ has a symmetry plane I1 = σ+ and
• there are no measurements available in the region I1 > σ+, which confirm the

setting γ1 = 1/3.

In Figs. 59, 60 and 61 a further approximation with the GMM (151) and setting for
the meridian j = 2, l = 4, m = 0 is presented. This representation shows that the
restriction obtained from the normal stress hypothesis − 1

γ2
> 3 d does not hold in

this case. A further approximation can be obtained with the GMM (151), j = 1,
l = 5, m = 0, γ1 ∈ [0, 1[, γ2 < 0 (Fig. 62). The point AD is shifted to the left.
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Fig. 59 Measurements by Christensen [46] in the Burzyński-plane approximated with the
geometrical-mechanical model (151), j = 2, l = 4, m = 0, f2 →min, ( f2 = 0.229):
c3 = −1.0585, c6 = 0.2354, γ1 = 0.4219, γ2 = −0.5747, γ3 = 0, σ+ = 7.12: νin+ = 1/2,
νin− = −0.24, d = 0.49, k = 0.66, bZ = 0.64, bD = 0.53; the optimization constraints d ≥ 0.49
and νin+ ≤ 1/2
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Fig. 60 Measurements by Christensen [46] in the π -plane approximated with the geometrical-
mechanical model (151), see Fig. 59. The cross-sections orthogonal to the hydrostatic axis with
I1 = const. through the points Z , K and D are shown

Both approximations with the constraints d ≥ 0.49 and νin+ ≤ 1/2 lead to similar
results for the points BZ and BD. A comparison of the Figs. 57, 58, 59 and 62
shows the differences of the approximations. For a more precise description of the
plane stress state the loading points BD and BZ are necessary. The respective testing
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Fig. 61 Geometric-mechanical model (151) with the parameters from Fig. 59 and the model of
von Mises in the principal stress space (σI, σII, σIII), (the surfaces are cut for clarity; with θ = 0◦
and θ = 60◦ the meridians are labeled)

procedures for hard foams are described in [112]. The value at the point BZ reduces
the interval a+ hyd ∈] 1

3 , 1
]

to a+ hyd ∈] 2
3 bZ, 1

]
because of the convexity condition.

The optimization constraint νin+ ≤ 1/2 allows to obtain plausible approximations
as in Figs. 57, 58, 59 and 62 with νin+ = 1/2. In order to justify this constraint the
test BZ is required as well.

13.3.2 Linear Geometrical Criterion

A further criterion based on a simple approach (Sect. 12.3) can be applied in order
to compare the available approximations, e. g. the geometric criterion (193) with the
equally weighted nodesχ = 1/2. For the approximation in Fig. 62 it can be obtained:

1

2

(
1

γ1
− 1

γ2

)
= 1

2

(
1

0.6050
− 1

0.4415

)
= 1.96. (210)
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Fig. 62 Measurements by Christensen [46] in the Burzyński-plane approximated with the
geometrical-mechanical model (151), j = 1, l = 5, m = 0, f2 →min, ( f2 = 0.226):
c3 = −1.0380, c6 = 0.2405, γ1 = 0.6050, γ2 = −0.4415, σ+ = 7.22: νin+ = 1/2, νin− = 0.26,
d = 0.49, k = 0.66, bZ = 0.65, bD = 0.54; the optimization constraints d ≥ 0.49 and νin+ ≤ 1/2

The criterion leads to the values 2 and 2.06 for Figs. 58 and 59, respectively. It follows,
that the approximation (Fig. 62) is to be preferred according to the criterion (210).
The same result is obtained for χ = 0.

13.3.3 Combined Geometrical-Mechanical Criterion

The position of the hydrostatic nodes AD and AZ can be adjusted, if the combined
models (Sect. 11.2) are used and so a more conservative solution can be obtained.
For this approximation of the measurements by Christensen a C1-combination of
two surfaces can be used. The surfaces are connected in the cross-section I1 = σ+,
so that νin+ = 1/2 holds. The second surface in the region I1 > σ+ with the same
values of the parameters c3, c6 is continuously differentiable coupled with the first
one.

The parameter γ1 ∈ [1/3, 1 [ of the right surface in the Burzyński-plane can be
fitted according to the assumption regarding the position of the point AZ, for instance
based on the normal stress hypothesis (ahyd

+ = 1):

• γ1 = 1

3
, γ2 = −1, j = 1, l = 1, m = 4, cf. Fig. 58;

• γ1 = 1

3
, γ2 = −1

3
, j = 2, l = 4, m = 0, cf. Fig. 59;

• γ1 = 1

3
, γ2 = −1

9
, j = 1, l = 5, m = 0, cf. Fig. 62, etc.

These approximations result in similar values of bZ. Contrary to ahyd
+ = 1 a more

conservative value, for instance with ahyd
+ = 1/2 and νin+ = 1/2 can be obtained. It

follows then γ1 = 2/3 (Fig. 63).
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Fig. 63 Measurements by Christensen [46] in the Burzyński-plane approximated with the combined
geometrical-mechanical model (151) with j = l = 1, m = 4, c3 = −1.0950, c6 = 0.2263: Region
I1 ≤ σeq: γ1 = 1/3, γ2 = −1, νin+ = 1/2, νin− = 0.29, d = 0.53, k = 0.68, bD = 0.49 (Fig. 58),
Region I1 > σ+: γ1 = 2/3, γ2 = 2, νin+ = 1/2, bZ = 0.60

14 Summary and Outlook

The modeling of the deformation and limit behavior of real materials is influenced by
many phenomena. In the case of traditional materials and applications the number
of influence factors taken into account is reduced. The corresponding models are
simple and easy manageable. As usual they are based on a small number of material
parameters. The experimental identification of the parameters and verification of the
models is often simple. In many situations one needs only one basic test [8].

For high tech materials or applications with increasing safety requirements it is
necessary to take into account non-classical effects since they have a significant
influence on the deformation and limit behavior. Such phenomena are the different
behavior at tension and compression—strength differential effect (SD-effect), the
influence of the hydrostatic pressure, the Poynting-Swift-effect, the Kelvin-effect,
etc. [8, 16, 229]. In contrast to the classical material behavior, which can be described
by tensorial linear equations only, non-classical behavior partly should be presented
by tensorial non-linear equations. The effects related to these equations are sometimes
named second order effects [169]. They can be observed for elastic, plastic, creep
behavior and in fluid mechanics [8, 169]. Therefore in this chapter several models
allowing the description of complex material behavior are presented.

The models discussed in this chapter are limited by the assumption of isotropic
material behavior. Further investigation should be directed on extension of these mod-
els to the case of anisotropic materials. In addition, the application of the suggested
models to coated materials is not clear.

The concept of the equivalent stress is a simple and traditional engineering way to
solve problems related to the strength prediction or material behavior modeling. The
formulation and investigation of limit criteria will be in the focus of the scientific
community in the future. The reason ist that one has new materials and particular
application field [4].
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The development of the concept of the equivalent stress is considered in conjunc-
tion with:

• materials science,
• thermo-dynamics,
• morphology, and
• advanced measurement programs.

This results in verification of new effects that result from the model, in the precise
description of the failure with the consideration of the physical processes, taken into
account the phase transitions for the definition of the limits of the parameters.

15 Invariants

Assuming isotropic material behavior the invariants of the stress tensor play an
important role in the formulation of the equivalent stress expression. Here we define
several sets of invariants mostly used in practical situations [8, 234].

15.1 Principal Invariants

Let us postulate that the stress state is defined by the stress tensor σσσ . This tensor
is a symmetric second rank tensor. The principal invariants are the solution of the
eigenvalue problem

(σσσ − λIII ) · nnn = 000. (211)

III is the unit second rank tensor, nnn denotes the eigendirections and λ the eigenvalues
of the problem. In our case the eigenvalues are named principal values or principal
stresses. For the stress tensor it can be shown that the principal stresses are real-
valued. Three different cases should be distinguished:

• three different solutions,
• one single and one double solution, and
• one triple solution

The necessary conditions for the solution of the problem (211) results in

nnn = 000 or |σσσ − λIII | = det(σσσ − λIII ) = 0. (212)

The first Eq. (212) is a trivial solution. The second equation (212) is of greater impor-
tance since the principal stresses can be computed with help of this condition. The
solution can be obtained from

λ3 − I1(σσσ)λ
2 + I2(σσσ)λ− I3(σσσ) = 0, (213)
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where Ii (σσσ), (i = 1, 2, 3) are the invariants of the stress tensor

I1(σσσ) = III ······ σσσ ,
I2(σσσ) = 1

2

[
I 2
1 (σσσ)− I1

(
σσσ 2
)]
,

I3(σσσ) = |σσσ | = detσσσ = 1

3

[
I1

(
σσσ 3
)

+ 3I1(σσσ)I2(σσσ)− I 3
1 (σσσ)

]
.

(214)

The solutions of Eq. (213) are named principal invariants or principal stresses λi ,

i = 1, 2, 3. The following relations are valid after ordering the λi -values

σI ≥ σII ≥ σIII. (215)

If the principal stresses are distinguished that means

σI �= σII �= σIII, (216)

the following spectral decomposition holds

σσσ = σInnnInnnI + σIInnnIInnnII + σIIInnnIIInnnIII, (217)

wherennnI,nnnII,nnnIII are the eigendirections (principal directions), which can be obtained
from the solution of

(σσσ − σi III ) · nnni = 000, nnni · nnn j = δi j . (218)

δi j is the Kronecker symbol. The last equation in (218) is the orthogonality condition
for the principal directions.

15.2 Irreducible Invariants

The stress tensor has three irreducible invariants:

• the linear invariant J1(σσσ) = I1(σσσ) = III ······ σσσ ,
• the quadratic invariant J2(σσσ) = σσσ ······ σσσ ,
• the cubic invariant J3(σσσ) = (σσσ ··· σσσ) ······ σσσ .

The following representation is also possible

• the linear invariant J1(σσσ) = I1(σσσ) = III ······ σσσ ,
• the quadratic invariant J2(σσσ) = 1

2σσσ ······ σσσ ,
• the cubic invariant J3(σσσ) = 1

3 (σσσ ··· σσσ) ······ σσσ .
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15.3 Axiatoric-Deviatoric Invariants

The axiatoric-deviatoric invariants are based on the principal invariants of the stress
deviator, which can be computed from the eigenvalue problem for the deviator

sss = σσσ − 1

3
σσσ ······ III = σσσ − 1

3
I1(σσσ)III (219)

Principal deviatoric stresses follow from

|sss − λIII | = det(sss − λIII ) = 0 (220)

or
λ3 − I1(sss)λ

2 + I2(sss)λ− I3(sss) = 0, (221)

which can be simplified with respect to I1(sss) = 0

λ3 + I2(sss)λ− I3(sss) = 0.

Here the second and the third invariants are equal to

I2(sss) = −1

2
J2

(
σσσ 2
)
, I3(sss) = |sss| = det sss = 1

3
J3

(
sss3
)
. (222)

For a better distinguishing incompressible and compressible material behavior the
second, the third deviatoric and the axiatoric invariant will be used

I1(σσσ) = σσσ ······ III . (223)

15.4 Cylindrical Invariants

There are other sets of invariants, for example, Novozhilov’s invariants [148], which
are defined as it follows

• the axiatoric invariant (223)

• the second invariant of the stress deviator (222)

I2(sss) = −1

2
J2 (sss) ,

• and the stress angle
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Table 10 Main criteria

Abbrev. Name Reference Section Equation BP 3D π

Classical Strength Theories

NSH Normal Stress Hypothesis (Rankine) [166, 175] 2.1 8 14 2
Tresca [209] 2.2 13 15 22
von Mises [85, 91, 139] 2.3 16 14 2 22

SI Schmidt-Ishlinsky [92, 182] 2.4 17 15 22
Standard Models (Pressure-Sensitive Criteria)

SH Strain Hypothesis [8, 174] 6.1 41
MSH Maximum Strain Hypothesis [134] 6.1
MC Mohr-Coulomb [141] 6.2 45
PL Pisarenko-Lebedev [121] 6.3 48 38
SD Sdobirev [191] 6.3

Burzyński-Yagn [36, 220] 6.4 51 17
Drucker-Prager, Mirolyubov [56, 138] 6.4 17 6
Balandin, Burzyński-Torre [17, 36, 207] 6.4 17 11
Beltrami [21] 6.4 17 12
Schleicher [179] 6.4 34

Mathematical Formulations (Pressure-Sensitive Criteria)

Altenbach-Zolochevsky I [7] 7.1 56
Altenbach-Zolochevsky II [8] 7.2 63

Pressure-Insensitive Criteria with Trigonal Symmetry

Sayir I [178] 9.1.1 87 18
Sayir II [178] 9.1.2 89
Haythornthwaite [83] 9.1.3 94

CPM Convex π-plane model [33] 9.1.4 99
Radcig model [105] 9.1.5 100

GMM Geometrical-Mechanical Model [107] 9.1.6 105
TQM Triquadratic model [103] 9.1.7 108
Pressure-Insensitive Criteria with Hexagonal Symmetry

UYC Unified Yield Criterion of Yu [222, 229] 9.2.1 111 22
Sokolovsky [157] 9.2.1

BCM Bicubic model [103] 9.2.2 113
MAC Multiplicative Ansatz Criterion [116] 9.2.3 116

Ishlinsky-Ivlev [93, 98] 9.2.3
Universal model with hexagonal symmetry [116] 9.2.4 121
Model based on the stress angle [33] 9.2.5 122
Dodd-Naruse [53] 9.2.5
Drucker I [54] 9.2.5

Pyramidal Criteria (Pressure-Sensitive Criteria)

UST Unified Strength Theory of Yu [228] 10.2 131
SST Single-Shear-Theory of Yu [228] 10.2
TST Twin-Shear-Theory of Yu [228] 10.2 30

Drucker II [55] 10.3.4
Haythornthwaite [107] 10.3.4

Combined Criteria

Pelczyński [155] 11 37
Huber [36, 91] 11.2.1 156 42 41
Kuhn [118] 11.2.1 160 43
Modification of the model of Huber [103] 11.2.2 163 42
Combined Geometrical-Mechanical Model [103] 11.2.3 172 44
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cos 3θ = 3
√

3

2

det sss

(I ′
2(sss))

3/2 , θ ∈
[
0,
π

3

]
, (224)

see [43, 150, 234] among others.

16 Criteria of this Chapter 2

In Table 10 many of the discussed in this chapter criteria are summarized. The table
is organized as it follows:

• In the first column (Abbrev.) some abbreviations are presented.
• The main name of the criteria is presented in column 2.
• The third column indicates the main reference(s).
• Column 4 presents the section, where the given criterion is discussed.
• In the column 5 the relevant equation is presented.
• In the last three columns are given the references to the figures (in the Burzyński-

plane (BP), in the principal stress space (3D) and in the π -plane (π )).
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231. Zawadzki, J.: Ciśnienie zredukowane jako jeden z parametrów wytężenia (Przyrost właściwej
energii swobodnej jako miara wytężenia). Rozprawy Inzynierskie LXXIII, 358–398 (1957)

232. Ziegler, H.: Zum plastischen Potential der Bodenmechanik. Z f angew Math und Phys 20,
659–675 (1969)

233. Zienkiewicz, O., Pande, G.: Some useful forms of isotropic yield surfaces for soil and rock
mechanics. In: Gudehus, G. (ed.) Finite Elements in Geomechanics, pp. 179–198. John Wiley,
London, New York (1977)

234. Zyczkowski, M.: Combined Loadings in the Theory of Plasticity. PWN-Polish Scientific Publ,
Warszawa (1981)

235. Zyczkowski, M.: Discontinuous bifurcations in the case of the Burzyński-Torre yield condi-
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