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Abstract The modeling of the behavior of pressure-sensitive materials is embedded
in the general continuum mechanics. The basic equations of continuum mechanics
can be split into the material-independent and the material-dependent equations.
The starting point is the introduction of the kinematics based on pure mathemati-
cal considerations. In addition, the velocities and the accelerations of the relevant
kinematical variables are presented. The next section is devoted to the introduction
of the action on the continuum and the inner reaction. Starting with such proper-
ties like forces and stresses finally the static equilibrium is stated. The last part of
the material-independent equations is the introduction of the balances. Limiting our
discussions by thermo-mechanical actions only, the balance of mass, momentum,
moment of momentum, energy and entropy are deduced. The specific properties and
features of the pressure-sensitive materials are presented in the next sections. Within
this chapter the general ideas of material modeling (deductive approach) are given.
Finally, some examples of special constitutive equations for incompressible and com-
pressible materials are presented. These examples are mostly related to rubber-like
materials.
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1 Kinematics and Deformations

1.1 Lagrangian and Eulerian Description

A body B is an assemblage of material points, which is bounded by boundary points
that means the surface of B. Material bodies are introduced in continuum mechanics
with the help of the method of sections. By this method the body B can be separated
from the surrounding. The introduction of the surface and the body is arbitrary, which
is helpful for the formulation of the balance equations (see Sect. 3).

The movement of material bodies can be presented by the motion of their material
points which should be identified. If the material points are related to points in the
Euclidean space E

3 and if one point 0 is fixed in this space, then the position of
the material points is determined by the position vector x(t) at arbitrary time t . To
distinguish the material points of the body B each of them gets a label: at the time
t = t0 the material point is characterized by the position vector x(t0) ≡ X. t0 is
the natural initial state, which changes should be computed. In many cases it holds
t0 = 0.

In the Cartesian coordinate system with the origin 0 and the basis vectors eeei

(i = 1, 2, 3) the movement of the material point X can be presented as follows

x = xieeei , X = Xieeei , x(X, t0) = x0 ≡ X,

x = x(X, t)− trajectory of X, (1)

X = X(x, t)− point X, which is in the moment t located at x

In Fig. 1 the trajectory of X is shown. If the Jacobi determinant is not equal to 0

det

(
∂xi

∂X j

)
≡

∣∣∣∣ ∂xi

∂X j

∣∣∣∣ �= 0, (2)

the following unique and invertible relation exists

0

X

xP( t0 )

P(t)

0

x1, X1

x2, X2

x3, X3

P(Xi)

P(xi)

X

x

(a) (b)

Fig. 1 Trajectory of a material point: a position vectors, b Cartesian coordinates
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x(X, t) ⇐⇒ X(x, t) (3)

Now we can introduce the configuration (sometimes called placement).

Definition 1.1 (Configuration) The configuration of a body is defined if we have
for any time t an invertible unique mapping for the material points X with x. For the
initial t = t0 one has the reference configuration, for the actual time t one has the
actual configuration.

The placement of the body is defined by its configuration. The motion is presented
as follows.

Definition 1.2 (Motion) The motion is given by the changes of the configurations
x = x(X, t) (t is a parameter).

For further discussions let us introduce two approaches for the description of
continuum mechanics problems.

Definition 1.3 (Lagrangian or material description) The changes of properties
prescribed to the material point will be given with respect to X. In this case the
properties are functions of X and t .

Definition 1.4 (Eulerian or spatial description) The changes of properties pre-
scribed to the material point properties will be given with respect to x. In this case
the properties are functions of x and t .

1.2 Time Derivatives and Nabla Operator

The properties prescribed to an arbitrary material point can be given in the material
or spatial description. For the scalar function ϕ presenting a property one gets with
respect to Eq. (3)

ϕ = ϕ(X, t) = ϕ(X1, X2, X3, t) material description,
ϕ = ϕ[X(x, t), t] = ϕ(x, t) = ϕ(x1, x2, x3, t) spatial description.

Similar formulations can be introduced for tensorial functions of arbitrary order. In
dependence of the assumed presentation of the function ϕ two time derivatives can
be defined: the spatial one and the material one. The spatial derivative is given as

∂ϕ(x, t)

∂t
= ∂ϕ(x, t)

∂t

∣∣∣∣
x fixed

The material derivative is

∂ϕ(X, t)

∂t
= ∂ϕ(X, t)

∂t

∣∣∣∣
X fixed
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Below the material derivative is denoted by

dϕ

dt

For the material velocity and acceleration the following definitions hold true.

Definition 1.5 (Material derivatives) The material derivative of the position vector
x(X, t) results in the velocity vector v(X, t), the derivative of v(X, t) in the acceler-
ation vector b(X, t)

v(X, t) = d

dt
x(X, t) = ẋ(X, t), b(X, t) = v̇(X, t) = ẍ(X, t) (4)

The spatial descriptions of v and b one gets, if X will be substituted by x

v = v[X(x, t), t] = v(x, t), b = b[X(x, t), t] = b(x, t) (5)

Using the nabla operator the material derivative can be introduced

dϕ

dt
= ∂ϕ

∂t

∣∣∣∣
x fixed

+ v · ∇∇∇ϕ|x fixed = ∂ϕ

∂t

∣∣∣∣
x fixed

+ v · ∇xϕ (6)

1.3 Strains and Deformation Gradient

Let us discuss the transform of line, surface and volume elements from the reference
to the actual configuration. The introduction of the deformation gradient (gradient
of the position vector) F can be helpful in this case.

Definition 1.6 (Deformation gradient) If the deformation of a body can be with
the help of the equation of motion

x = x(X, t)

transferred from the reference to the actual configuration, the following equation
presents the material deformation gradient

F = [∇Xx(X, t)]T (7)

F transform a material line element dX of the reference configuration into a material
line element dx of the actual configuration, i.e.

F · dX = dx
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With the help of the deformation gradient one can express the relations for the
transform of a surface or volume element from the reference to the actual configura-
tion. The surface element dA0 in the reference configuration has the size dX1dX2.
Considering the orientation of the surface element one can write

dA0 = dX1 × dX2

The transform into the actual configuration of dA0 results in the element dA

dA = dx1 × dx2 = (F · dx1)× (F · dx2)

With respect to

(F · dX1)× (F · dX2) = (det F)(FT)−1 · (dX1 × dX2)

finally one obtains
dA = (det F)(F−1)T · dA0 (8)

The volume element in the reference configuration is defined as

dV0 = |(dX1 × dX2) · dX3|,

and in the actual configuration as

dV = |[(F · dX1)× (F · dX2)] · (F · dX3)|

After some manipulations one obtains

dV = |det F|dV0 (9)

It holds true det F �= 0 for all t if the continuity w.r.t. t can be assumed. In addition,
for t = t0 we obtain det F = 1.

1.4 Velocities, Velocity Gradients

The velocity v(X, t) of a material point X is defined by

v(X, t) = d

dt
x(X, t) ≡ ẋ(X, t) = ∂

∂t
x(X, t)

Since
x(X, t) ⇐⇒ X(x, t)
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in the spatial description of v can be presented as

v[X(x, t), t] = v(x, t)

For the acceleration we get

b = v̇ = ∂2

∂t2 x(X, t) = ẍ(X, t)

For the velocity in the Eulerian description we have

v(x, t) = v(x, t) = dx
dt

and for the acceleration

b = b(x, t) = dv
dt

Let us introduce the gradient of the velocities L.

Definition 1.7 (Velocity gradient tensor) The spatial velocity gradient tensor L of
a given velocity field v = v(x, t) is defined by

L(x, t) = [∇xv(x, t)]T (10)

With the help of L the time derivatives of the material line, surface and volume
elements can be computed in the actual configuration

(dx)· = L · dx, (11)

(dA)· = [(∇x · v)III − LT] · dA, (12)

(dV )· = (∇x · v)dV (13)

III is the second-order unit tensor.

1.5 Strains and Strain Measures

The deformation gradient F is related to the whole motion that means it contains
the rigid body motions. The strains can be obtained if we can find expression which
are free from the rigid body motions. In this situation the theorem on the polar
decomposition can be helpful.

Theorem 1.1 (Polar decomposition) Any non-singular second-order tensor T with
det T �= 0 can be represented in a unique manner by a decomposition into the positive
definite symmetric tensors U or V and orthogonal tensor R
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T = R · U = V · R

R · U is named the right V · R the left polar decomposition.

The deformation gradient tensor F is always non-singular (det F �= 0). So we get

F = R · U = V · R (14)

The polar decomposition of F yields the following deformation tensors

U = (
FT · F

)1/2
right stretch tensor,

V = (
F · FT

)1/2
left stretch tensor,

C = U2 = (
FT · F

)
right Cauchy-Green tensor,

B = V2 = (
F · FT

)
left Cauchy-Green tensor

(15)

For application purposes, for example the formulation of constitutive equations,
it is better to introduce a strain measure resulting in the reference configuration for
pure rigid body motions the value zero instead of one. One possibility is the Green-
Lagrange strain tensor

G(X, t) = 1

2
[C(X, t)− I] = 1

2
(FT · F − I) = 1

2

(
U2 − I

)
(16)

In many continuum mechanics problems one needs the volume strain as a char-
acteristic property.

Definition 1.8 (Volume strain) If we divide the difference of the material volume
elements dV and dV0 in the actual and the reference configurations by dV0 we get
the volume strain εV

εV = dV − dV0

dV0
(17)

With dV = (det F)dV0 yields

dV − dV0

dV0
= (det F − 1)dV0

dV0
= det F − 1

and

εV = det F − 1 =
√

det (FT · F)− 1 = √
det C − 1 = √

det (2G + I)− 1 (18)

Definition 1.9 (Volume conservation) Volume conservation (isochoric motion) is
related to the constraint

εV ≡ 0

With Eq. (18) it follows det F = 1.
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The starting point for the analysis of the strain rates is the spatial rate tensor
L(x, t). The following equation is valid

L(x, t) = [∇xv(x, t)]T = Ḟ · F−1

L is a second-order tensor, which can be split additively into symmetric and anti-
symmetric tensors

L = 1

2

(
L + LT

)
+ 1

2

(
L − LT

)

= 1

2

[
(∇xv)T + ∇xv

]
+ 1

2

[
(∇xv)T − ∇xv

]
= D + W

Definition 1.10 (Strain rate tensor) The symmetric part of L

D = 1

2

(
L + LT

)

is the strain rate tensor.

Definition 1.11 (Vorticity tensor) The antisymmetric part of L

W = 1

2

(
L − LT

)

is the vorticity tensor.

1.6 Displacements, Displacement Gradient, Linearizations

Let us express the kinematical variables by the displacement vector and the displace-
ment gradient tensor

• displacement vector in the reference configuration

u(X, t) = x(X, t)− X,

• displacement vector in the actual configuration

u(x, t) = x − X(x, t),

• displacement gradient tensor

P0(X) =⇒ P(x) : x = X + u(X, t),
Q0(X + dX) =⇒ Q(x + dx) : x + dx = X + dX + u(X + dX, t)

(19)
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From Eq. (19) one gets

dx = dX + u(X + dX, t)− u(X, t)

and finally
dx = dX + (∇Xu)T · dX = (I + J) · dX (20)

Definition 1.12 (Displacement gradient tensor) The material displacement gradi-
ent tensor is defined as

[∇Xu(X, t)]T ≡ J

The spatial displacement gradient tensor is defined as

[∇xu(x, t)]T ≡ K

With

u(X, t) = x(X, t)− X =⇒ (∇Xu)T = (∇Xx)T − I, J = F − I,

u(x, t) = x − X(x, t) =⇒ (∇xu)T = I − (∇xX)T, K = I − F−1,

all kinematical tensors can be expressed by u and J or K, for example

F = I + J, F−1 = I − K,

C = (I + J)T · (I + J) = I + J + JT + JT · J,

C−1 = (I − K) · (I − K)T = I − K − KT + K · KT,

B = (I + J) · (I + J)T = I + J + JT + J · JT,

B−1 = (I − K)T · (I − K) = I − K − KT + KT · K,

G = 1

2
(C − I) = 1

2
(J + JT + J · JT),

A = 1

2
(I − B−1) = 1

2
(K + KT − KT · K)

It is easy to show that G and A are nonlinear

G = 1

2

[
(∇Xu)T + (∇Xu)+ (∇Xu) · (∇Xu)T

]
= Gi j ei e j ,

A = 1

2

[
(∇xu)T + (∇xu)− (∇xu) · (∇xu)T

]
= Ai j ei e j

Obviously, G and A contain quadratic terms w.r.t. u. This is the so-called geometrical
nonlinearity. It is easy to deduce the consistent geometrical linear relations (see, for
example, [1]).
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2 Stress State

2.1 Classification of External Actions

The actions on a body can by classified as volume or surface actions. The following
actions are known: pure mechanical, thermal, electromagnetic, etc. Here we focus
our attention on mechanical actions, which can split into forces and moments as
known from general mechanics (part statics). Then we can introduce:

• mass or volume forces and moments and
• surface forces and moments.

In general, the actions are continuously defined in the volume or on the surface
functions. They are introduced as models since they cannot be observed directly
(only the response of the actions can be measured). It is easy to show that line and
concentrated single actions are limit cases of the volume and surface actions. These
limit cases are the result of the different order of the three spatial dimensions or of
the two dimensions of the surface.

Any material body is characterized by a continuous mass density distributionρ(x).
The mass or volume actions are also continuous functions applied to any material
point of the body. Examples of volume forces are the gravitational force, the force
of inertia and the Coriolis force among others. The sources of these forces are out of
the body, that means they are external volume forces. By analogy one can introduce
sources for volume moments.

Volume forces are related to volume or mass. By kV the volume force density and
by km ≡ k the mass force density are denoted (in what is following k is used instead
of km). It holds

ρ(x, t)k(x, t) = kV (21)

with the mass force density k(x, t), the volume force density kV(x, t) and the mass
density ρ(x, t). Examples of the volume force density are the weight, the centrifugal
force or in general the potential forces:

• the weight
ρk = −ρgeee3,

where g is the gravity acceleration, eee3 is the basis vector in the opposite direction
to the gravity acceleration.

• the centrifugal force
ρk = −ρωωω × (ωωω × x),

where ωωω is the angular velocity
• general potential force

ρk = −ρ∇xΠ
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The force potential Π in the case of weight or centrifugal force can be expressed
as

Π = e3 · xg or Π = −1

2
|ωωω × x|2

In the case of volume moments the analogous equation is valid

ρ(x, t)lm(x, t) = ρ(x, t)l(x, t) = lV (22)

with lm(x, t) as the mass moment density and lV(x, t) as the volume moment density.

External surface loads are acting on surfaces. Such loads are named contact loads.
The surface can be the surface of a material body with a volume A(V ), but also
common interfaces between the parts of the body or between two different bodies.
External surface loads are existing also between solids and fluids, for example, the
hydrostatic pressure of the fluid on a solid surrounded by the fluid. The surface
loads can be split again in surface forces and surface moments. The surface forces
are related to the surface and result in the stress vector t, the surface moments by
analogy result in moment stress vectors μμμ. The following limits can be introduced
[2, 3]

t = lim�A→0

�f
�A

, μμμ = lim�A→0

�m
�A

, (23)

where �f and �m are the resulting force and moment vectors acting on the surface
�A. Note that �A is oriented that means �A = n�A. The vectors depend on the
position on the surface and the orientation of the surface (dA = ndA)

t = t(x,n, t), μμμ = μμμ(x,n, t) (24)

One gets by integration of the external volume and surface forces the resulting exter-
nal force f R acting on the body

f R =
∫
V

ρk dV +
∫
A

t dA (25)

The resulting external moment can be introduced in the same manner

mR
0 =

∫
V

ρ(l + x × k) dV +
∫
A

(μμμ+ x × t) dA (26)

In the classical mechanics the moment vectors are ignored and we get the following
expression

mR
0 =

∫
V

ρ(x × k) dV +
∫
A

(x × t) dA (27)
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2.2 Cauchy’s Stress Vector and Tensor

As the result of the external action on the body one obtains stresses in the body. Let
us introduce the Euler-Cauchy stress principle.

Definition 1.13 (Euler-Cauchy stress principle) The external forces result in a
vector field of stress vectors t(x,n, t) acting on a surface A with the normal n(x, t).
In the case that the surface is the body surface the stress vectors are resulting from
the surface forces and named traction.

The stresses in the body can be defined using the method of sections (Fig. 2).
From the Statics follows that we have some actions in the body (Fig. 3). df is the
resulting force vector and dm is the resulting moment vector on the surface element
dA, n is the unit normal vector on the surface. With respect to Eq. (23) one gets the
stress and the couple stress vector

t(x,n, t) = df
dA
, μμμ(x,n, t) = dm

dA

Ignoring the inner moments, we get the classical continuum (Fig. 4). In this case we
have no surface moments andμμμ ≡ 000 is valid. For polar continua that is whenμμμ �= 000
we refer to [4–8].

Fig. 2 Method of sections
(arbitrary section in body
under external loadings)

V

A

Fig. 3 Actions in the body
(polar continuum)

dA

d f
dm

dm
d f
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Fig. 4 Actions in the body
(classical continuum)

dA

d f

d f

Note 1.1 As a measure of the inner force in point P of the body we introduce the
stress vector

t(x,n, t) = df
dA

In general, t depends on the position, time and orientation of the surface. In each
point of the body t(n) = −t(−n) holds (Cauchy’s lemma).

Definition 1.14 (Stress state) All possible stress vectors in a material point P define
the stress state in this point.

From material’s testing we know two definitions for the stresses.

Definition 1.15 (Engineering stresses) The acting force is related to the surface in
the reference configuration.

Definition 1.16 (True stresses) The acting force is related to the surface in the
actual configuration.

In continuum mechanics we have more possibilities since we can define the force
vector in both configurations, the surface orientation in two configurations and in
addition we can introduce intermediate configurations.

Definition 1.17 (Cauchy’s stress vector) The Cauchy stress vector is called true
stress vector. The actual force is related to the actual section.

The stress tensor follows as

t(x,n, t) = n · T(x, t)

with the Cauchy stress vector t(x,n, t), the normal n and the Cauchy stress tensor
T(x, t).
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2.3 Equilibrium Equations, Equations of Motion

For the body under surface forces tdA and volume forces ρkdV , which is in an
equilibrium state, the following equations considering Eqs. (25) and (27) hold

∫
V

ρk dV +
∫
A

t dA = 000,
∫
V

(x × ρk) dV +
∫
A

(x × t) dA = 000 (28)

With
t = n · T

and applying the divergence theorem it follows

∫
A

t dA =
∫
A

n · T dA =
∫
V

∇x · T dV (29)

and ∫
V

(ρk + ∇x · T) dV = 000 (30)

This is the integral equilibrium. If the volume is arbitrary and all fields are smooth
the local equilibrium can be expressed as

∇x · T + ρk = 000 (31)

Adding the inertial force −ẍdM = −ẍρdV in the sense of the Newton/d’Alembert
principle, one obtains

∫
V

ρk dV +
∫
A

T dA −
∫
V

ẍρ dV = 000

or ∫
V

(ρk + ∇x · T − ρẍ) dV = 000, (32)

The local equation of motion holds

ρẍ = ∇x · T + ρk (33)

The second equation of (28) results in the symmetry of the stress tensor (T = TT).
The stress tensor T can be split in a spherical and a deviatoric part
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T = 1

3
T ······ II +

(
T − 1

3
T ······ II

)
= 1

3
(trT)I +

[
T − 1

3
(trT)I

]
= TK + TD

2.4 Stress Vectors and Tensors After Piola-Kirchhoff

Up to now the stress vector and the stress tensor are presented in the Eulerian coor-
dinates. The Cauchy tensor of true stresses is defined by the actual force vector
and the actual oriented surface element. In many applications it is better to use the
Lagrangian description and as the minimum to relate the volume and surface elements
to the reference configuration. The transforms (8) and (9) are valid.

Definition 1.18 (First Piola-Kirchhoff stress tensor) If we relate the actual force
vector df to the oriented surface element dA0 = n0dA0 in the reference configuration
we get the following stress vector

I t = df
dA0

The respective tensor I P, which describes the stress state in a material point of the
reference configuration is named first Piola-Kirchhoff or Lagrangian stress tensor.

With

t = df
dA
, I t = df

dA0

one obtains

tdA =I tdA0 = df , t =I t · (detF)−1FT, I t = t · det F
(

F−1
)T

(34)

I P is in general a non-symmetric tensor. With

dA0 = (det F)−1FT · dA

one gets the relations between the Cauchy and the first Piola-Kirchhoff stress tensors

t = n · T, I t = n0 ·I P, (35)

T = (det F)−1F ·I P, I P = (det F)F−1 · T (36)

Assuming the force and the moment equilibrium in the reference configuration, we
get the equations of motion in Lagrangian coordinates
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∫
A0

n0 ·I P dA0 +
∫
V0

ρ0k dV0 −
∫
V0

ẍρ0 dV0 = 000, (37)

∫
A0

[
x × (n0 ·I P)

]
dA0 +

∫
V0

(x × ρ0k) dV0 = 000, (38)

ẍρ0 = ∇X ·I P + ρk, I P · FT = F ·I PT (39)

From the last equation results that I P is a non-symmetrical tensor.

The non-symmetric stress tensor I P is not convenient for the formulation of
the constitutive equations. I P should be modified in such a manner that we get a
symmetric tensor again for the reference configuration. Let us introduce a “fictitious
force vector”

df 0 = F−1 · df (40)

Since
df 0 = I I PT · dA0 (41)

the stress tensor I I P can be introduced.

Definition 1.19 (Second Piola-Kirchhoff stress tensor) If we relate the force vec-
tor df 0 = F−1 ·df to the oriented surface element dA0 of the reference configuration,
one gets the pseudo stress vector I I t with the respective pseudo stress tensor

I I P = I P ·
(

F−1
)T

This is the second Piola-Kirchhoff stress tensor. df = T ·dA is the analogous relation
in the actual configuration to df 0 = I I P · dA0 in the reference configuration. I IP is
a symmetric tensor since

I I P = (detF)F−1 · T · F−T

3 Balance Equations

3.1 General Formulation of Balance Equations

Here we present a brief description of the balance equations. They are mate-
rial independent. We focus our attention to smooth fields. For further discus-
sions and extensions we recommend the special literature, for example, [1, 9–12].
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The problems of two- and one-dimensional or generalized continua are presented in
[13–19] among others.

The task of continuum mechanics is the estimation the density ρ = ρ(X, t),
motion x = x(X, t) and, if thermodynamics is taken into account, the temperature
ϑ = ϑ(X, t) for all material points X as a function of the time t . It can be shown
that the material independent statements can be given by balance equations.

Definition 1.20 (Balance equation) Balance equations are empirical judgements
basic in the continuum mechanics, which express the relationships between the vari-
ables describing the state of the continuum and the external loadings on the body.

The general structure of a balance equation can be given as follows. Ψ (x, t) and
Ψ0(X, t) are distributions of a scalar mechanical variable w.r.t. the volume elements
dV and dV0 in the actual and the reference configuration. The integration over the
volume results in an additive (extensive) variable Y (t)

Y (t) =
∫
V

Ψ (x, t) dV =
∫
V0

Ψ0(X, t) dV0 (42)

With dV = (det F)dV0 holds Ψ0(X, t) = (det F)Ψ (x, t). The material time deriv-
ative of Y (t) is the rate of changes of the state of the system expressed by Ψ (x, t).
This rate is balanced with the action of the surrounding on the body. In the actual
configuration we have

d

dt
Y (t) = d

dt

∫
V

Ψ (x, t) dV =
∫
A

Φ(x, t) dA +
∫
V

Ξ(x, t) dV (43)

and in the reference configuration

d

dt
Y (t) = d

dt

∫
V0

Ψ0(X, t) dV0 =
∫
A0

Φ0(X, t) dA0 +
∫
V0

Ξ0(X, t) dV0 (44)

Φ and Φ0 are the external fluxes through the surface in both configurations, Ξ and
Ξ0 are the source (production) terms in the volume. Such balance equation for scalar
fields can be extended to vectorial and tensorial fields.

Remark 1.1 Φ in the actual configuration is a function of x and t , but also of the
orientation of the surface element dA = n(x, t)dA (with other words dependence of
the normal n). This statement is valid for arbitrary tensor fields (n)Φ =(n) Φ(x,n, t)
of order n ≥ 0. For the reference configuration we get (n)Φ0 =(n)Φ0(X,n0, t) and
dA0 = n0(X, t)dA0.

Remark 1.2 For the n−or n0 dependency of the surface functions Φ or Φ0 the
Cauchy’s lemma is valid
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(n)Φ(x,n, t) = n ·(n+1)Φ̃(x, t), (n)Φ0(X,n0, t) = n0 ·(n+1)Φ̃0(X, t), (45)

Remark 1.3 For the fluxes the third Newton’s law (actio = reactio) is valid. Two
fluxes acting on the surface in a common material point and characterized by the
normals n and −n or n0 and −n0 have the same value, but opposite sign

Φ(n) = −Φ(−n), Φ0(n0) = −Φ0(−n0) (46)

The balance equations stating the equilibrium between the changes of the state of
the body and the fluxes on the surface and the production in the volume have in the
actual configuration the following structure

d

dt

∫
V

(n)Ψ (x, t) dV =
∫
A

n(x, t) ·(n+1) Φ(x, t) dA +
∫
V

(n)Ξ(x, t) dV (47)

In the reference configuration one has

d

dt

∫
V0

(n)Ψ 0(X, t) dV0 ≡ ∂

∂t

∫
V0

(n)Ψ 0(X, t) dV0 (48)

=
∫
A0

n0(X, t) ·(n+1) Φ0(X, t) dA0 +
∫
V0

(n)Ξ0(X, t) dV0

(n)Ψ and (n)Ψ 0 or (n)Ξ and (n)Ξ0 are tensorial fields of the order n (n ≥ 0), (n+1)Φ

and (n+1)Φ0 are tensorial fields of order (n + 1).
Using the following transforms

n = det F
dA0

dA

(
F−1

)T · n0 ⇐⇒ n0 = (det F)−1 dA

dA0
FT · n,

dA = det F
(

F−1
)T · dA0 ⇐⇒ dA0 = (det F)−1FT · dA, (49)

dV = det FdV0 ⇐⇒ dV0 = (det F)−1dV

we get for example from

Φ0 · dA0 = Φ · dA = Φ · det F
(

F−1
)T · dA0 (50)

the relationship between Φ0 and Φ

Φ0 = (det F)Φ ·
(

F−1
)T
, Φ0 = Φ0(X,n0, t), Φ = Φ(x,n, t) (51)

and from Ξ0dV0 = ΞdV = Ξ(det F)dV0 the relationship between Ξ0 and Ξ
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Ξ0 = (det F)Ξ , Ξ0 = Ξ0(X, t), Ξ = Ξ(x, t) (52)

Sometimes it is more useful to apply the mass integrals. Using the same variables
for the distribution functions Ψ and Ξ i the global mechanical balance equation in
the actual configuration can be written

d

dt

∫
m

Ψ (x, t) dm ≡ d

dt

∫
V

Ψ (x, t)ρ dV =
∫
A

n · Φ(x, t) dA +
∫
V

Ξ(x, t)ρ dV

(53)
In Eq. (53) Ψ (x, t),Ξ(x, t) are tensorial fields of the same order n (n ≥ 0), Φ(x, t)
is a tensorial field of the order (n + 1), n(x, t) is the outer normal on A, m(x, t) is
the mass as a continues function of the volume.

If the continuity in the sense of the divergence theorem is fulfilled for Ψ after
application of the theorem to Eq. (53) one gets

d

dt

∫
V

Ψ (x, t)ρ dV =
∫
V

∇x · Φ(x, t) dV +
∫
V

Ξ(x, t)ρ dV (54)

and with dV → 0 the local formulation of the general balance equation

ρ
d

dt
[Ψ (x, t)] = ∇x · Φ(x, t)+ Ξ(x, t)ρ (55)

If we transform the equations into the reference configuration one gets

∂

∂t

∫
V0

Ψ 0(X, t)ρ0 dV0 =
∫
A0

n0 · Φ0(X, t) dA0 +
∫
V0

Ξ0(X, t)ρ0 dV0

=
∫
V0

[∇X · Φ0(X, t)+ Ξ0(X, t)ρ0] dV0

or locally

ρ0
∂

∂t
[Ψ 0(X, t)] = ∇X · Φ0(X, t)+ Ξ(X, t)ρ0 (56)

3.2 Mass Balance and Mass Conservation

The mass is one of the main characteristics of a material body. The mass of the body
can be estimated as the volume integral over the density field
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m =
∫
V

ρ(x, t) dV =
∫
V0

ρ0(X) dV0 (57)

This equation contains the global law of mass conservation.

Definition 1.21 (Mass conservation) If we have no mass exchange through the
surface and no mass production in the volume the mass of the body is always constant
that means independent of the time.

ρdV and ρ0dV0 are the mass of a material point before and after the deformation. If
they are the same one gets ρ det F = ρ0 and finally

ρ0

ρ
= det F,

The mass conservation is valid locally.

Theorem 1.2 (Law of mass conservation) The mass dm = ρ(x, t)dV of a material
volume dV is always constant

dm = ρ(x, t)dV = ρ0(X)dV0 = const

The law of mass conservation is equivalent to the continuity of the mass distribution
for the continuum with continuous placement of the material points.

Applying the general balance Eq. (53) with Ψ → 1 (scalar), Φ = 0 (no mass
exchange through the surface A) and Ξ → 0 (no mass production in the volume)
follows

dm

dt
= d

dt

∫
V

ρ(x, t) dV = ∂

∂t

∫
V0

ρ0(X) dV0 = 0 (58)

or locally
d

dt
(dm) = d

dt
(ρdV ) = ∂

∂t
(ρ0dV0) = 0 (59)

The global law of mass conservation in the Eulerian formulation can be given as

d

dt

∫
V

ρ(x, t) dV =
∫
V

[ρ̇(x, t)+ ρ(x, t)∇x · v] dV

=
∫
V

{
∂

∂t
ρ(x, t)+ ∇x · [ρ(x, t)v]

}
dV (60)

The local conservation law is

d

dt
ρ(x, t)+ ρ(x, t)∇x · v(x, t) = ∂

∂t
ρ(x, t)+ ∇x · [ρ(x, t)v] = 0 (61)
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The equation
dρ

dt
+ ρ∇x · v = 0 (62)

is the continuity equation, which can be given also as

∂ρ

∂t
+ ∇x · (ρv) = 0 (63)

From this equation can be made the following conclusions. If ρdV = ρ0dV0 one
gets

dρ0

dt
= 1

dV0
(ρdV )· = 1

dV0

[
ρ̇dV + ρ(dV )·

] = 1

dV0
[ρ̇ + ρ∇x · v] dV = 0

Forρ0 = ρ det F we can compute (ρ det F)· = 0. ρ̇ = 0 results in div v = ∇x ·v = 0.
In Eq. (61) the volume integral over ∇x · (ρv) can be transformed into a surface
integral. The global mass balance is in this case

∫
V

∂ρ

∂t
dV +

∫
A

n · (ρv) dA = 0 (64)

3.2.1 Balance of Momentum

The momentum vector p of the body is defined by

p(x, t) =
∫
m

v(x, t) dm =
∫
V

v(x, t)ρ(x, t) dV (65)

The global balance of momentum is named first Euler-Cauchy law of motion and
can be related to the second Newton’s axiom specified for continua.

Theorem 1.3 (Balance of momentum) The rate of changes of the momentum p(x, t)
during the deformation of the body is equal to the sum of all on the acting surface
and volume forces.

The balance of momentum in the Eulerian description is

d

dt

∫
V

v(x, t)ρ(x, t) dV =
∫
A

t(x,n, t) dA +
∫
V

k(x, t)ρ(x, t) dV (66)

Equation (66) follows from the general balance Eq. (53) with Ψ = v,Φ = T and
Ξ = k
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d

dt

∫
V

vρ dV =
∫
A

n · T dA +
∫
V

kρ dV (67)

In the reference configuration we have

∂

∂t

∫
V0

v(X, t)ρ0(X) dV0 =
∫
A0

I t(X,n0, t) dA0+
∫
V0

k(X, t)ρ0(X) dV0, (68)

and with
I t = n0 · I P

one gets

∂

∂t

∫
V0

v(X, t)ρ0(X) dV0 =
∫
A0

n0(X) ·I P(X, t) dA0 +
∫
V0

k(X, t)ρ0(X) dV0 (69)

Applying the divergence theorem to Eqs. (67) and (69) we get

d

Dt

∫
V

v(x, t)ρ(x, t) dV =
∫
V

[
∇x · T(x, t)+ k(x, t)ρ(x, t)

]
dV , (70)

∂

∂t

∫
V0

v(X, t)ρ0(X) dV0 =
∫
V0

[∇X ·I P(X, t)+ k(X, t)ρ0(X)] dV0 (71)

The local formulations are

∇x · T(x, t)+ ρ(x, t)k(x, t) = ρ(x, t)
Dv(x, t)

Dt
, (72)

∇X ·I P(X, t)+ ρ0(X)k(X, t) = ρ0(X)
∂v(X, t)

∂t
(73)

3.3 Balance of Moment of Momentum

Let us introduce the global vector of the moment of momentum

lO(x, t) =
∫
V

x × ρ(x, t)v(x, t) dV (74)

The respective balance equations result in the second Euler-Cauchy equation of
motion.
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Theorem 1.4 (Balance of moment of momentum) The rate of changes of the
moment of momentum of a body lO(x, t) w.r.t. to the arbitrary point O is equal to
the moments of all on the body acting surface and volume forces.

The Eulerian balance of the moment of momentum is given by

d

dt

∫
V

[x × ρ(x, t)v(x, t)] dV =
∫
V

[x × ρ(x, t)k(x, t)] dV +
∫
A

[x × t(x,n, t)] dA

(75)
With t = n · T and x × n · T = −n · T × x one gets

d

dt

∫
V

x × ρv dV = −
∫
A

n · T × x dA +
∫
V

x × ρk dV (76)

Equation (76) results from the general balance Eq. (53), if Ψ = (x×v), Φ = −(T×x)
and Ξ = (x × k). After some algebra it can be shown that for classical continua
the balance of moment of momentum results in the symmetry condition for the
Cauchy stress tensor. It can be shown that we have for the first and second Piola-
Kirchhoff tensors different conclusions. The symmetry for the first Piola-Kirchhoff
tensor cannot be established since we obtain

I P · FT = F · I PT

3.4 Balance of Energy

Now we are prescribing two properties in each material point: the density ρ and the
temperature θ . Both are non-negative (ρ ≥ 0, θ ≥ 0). The foundation of any ther-
momechanical analysis is given by the first and the second law of thermodynamics.
The first law is the balance of energy, the second one of entropy.

Within the framework of continuum thermodynamics we have to introduce at first
suitable variables for the description of the macroscopic properties of the continuum.
Let us assume macroscopic measurable, independent of each other parameters, which
describe the state of the continuum in a unique manner. These parameters are named
state variables. We have to distinguish extensive (additive) and intensive variables.
The additive variables are proportional to the amount of continuum, expressed for
example by the mass. The inner energy of the system is a typical extensive state
variable. It depends only on the kinematical variables and the temperature: U =U
(kinematic variables, θ). If we divide a homogeneous system with the mass m into
n homogeneous subsystems with the masses mi the following statement is valid
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Ui =
(mi

m

)
U , i = 1, . . . , n,

n∑
i=1

Ui = U ,

n∑
i=1

mi = m (77)

Intensive variables are independent of the amount of the continuum. If we divide now
the system which is in an equilibrium state, into n subsystems, than the intensive
state variable in each subsystem has the same value. Examples are the density and
temperature.

Let us introduce the following limitations for the further developments:

• The continuum is assumed to be homogeneous that means in each material point
we have the same properties.

• We assume that there is no mass exchange with the surrounding. The mass con-
servation is valid.

• We are assuming only mechanical and thermal actions.

Let us introduce the first law of thermodynamics.

Definition 1.22 (Thermomechanical balance of energy) The rate of changes of
the total energy W within the volume is equal to the sum of the rate of the external
heat supply Q and the power of all external forces Pa

d

dt
W = Pa + Q (78)

The total energy W consists of the inner energy U and the kinetic energy K

W = U + K (79)

The kinetic energy is given as

K = 1

2

∫
V

v · vρ dV

The inner energy is an additive function of the mass

U =
∫
m

u dm =
∫
V

ρu dV

with u as the inner energy density. The power of the external forces Pa is based on
the introduced volume and surface forces

Pa =
∫
A

t · v dA +
∫
V

k · vρ dV (80)
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The rate of heat supply consists of two parts: contribution of the heat sources r in
the volume and the heat flux through A

Q =
∫
V

ρr dV −
∫
A

n · h dA (81)

h is the heat flux vector.
Now we have instead of Eq. (78)

U̇ + ˙K = Pa + Q (82)

or

d

dt

∫
V

(
u + 1

2
v · v

)
ρ dV =

∫
A

t · v dA +
∫
V

k · vρ dV −
∫
A

n · h dA +
∫
V

rρ dV

(83)
Taking into account t = n · T the first law of thermodynamics can be obtained from
the general balance Eq. (53) with

Ψ → u + 1

2
v · v, Φ = T · v − h, Ξ → k · v + r

In the reference configuration one gets

∂

∂t

∫
V0

(
u + 1

2
v · v

)
ρ0 dV0 =

∫
A0

I t · v dA0 +
∫
V0

k · vρ0 dV0

−
∫
A0

n0 · h0 dA0 +
∫
V0

rρ0 dV0 (84)

With respect to Eq. (34) for the relationship between t and I t we have the relationship
between h and h0

h0 = (det F)F−1 · h, h = (det F)−1F · h0 (85)

With
d

dt

(
1

2
v · v

)
= 1

2
v̇ · v + 1

2
v · v̇ = v̇ · v,

∫
A

n · (T · v − h) dA =
∫
V

[∇x · (T · v)− ∇x · h] dV

∇x · (T · v) = (∇x · T) · v + T ······ (∇xv)T = (∇x · T) · v + T ······ D
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from Eq. (83) it follows

∫
V

(
du

dt
+ v̇ · v

)
ρ dV =

∫
V

(T ······ D − ∇x · h + ρr) dV

+
∫
V

[(∇x · T) · v + ρk · v] dV (86)

The underlined terms are the balance of momentum and we can simplify Eq. (86)

∫
V

(ρu̇ − T ······ D + ∇x · h − ρr) dV = 0 (87)

The local form holds
ρu̇ = T ······ D − ∇x · h + ρr (88)

The balance of energy in the reference configuration is

∫
V0

ρ0
∂u

∂t
dV0 =

∫
V0

(I I P ······ Ġ − ∇X · h0 + ρ0r) dV0 (89)

or in the local form

ρ0
∂u

∂t
= I I P ······ Ġ − ∇X · h0 + ρ0r (90)

In Eq. (90) the conjugated pair (I I P, Ġ) can be substituted by (I P, Ḟ).

3.5 Balance of Entropy

One of the possible formulations of the second law of thermodynamics is the
following.

Theorem 1.5 (Balance of entropy) The rate of changes of the entropy S within the
volume is not less than the rate of the external entropy supply.

The entropy is an additive function that means

S =
∫
m

s dm =
∫
V

ρs dV (91)

with s as the inner entropy density. Now the second law of thermodynamics can be
stated in the global form



Basic Equations of Continuum Mechanics 27

d

dt

∫
V

ρs dV ≥
∫
V

r

θ
ρ dV −

∫
A

n · h
θ

dA (92)

For all real processes (92) is an inequality (>) or with other words real processes are
always irreversible.

With the transform
∫
A

n · h
θ

dA =
∫
V

∇x ·
(

h
θ

)
dV =

∫
V

(∇x · h
θ

− h · ∇xθ

θ2

)
dV , (93)

we get the local formulation

ρθ ṡ ≥ ρr − ∇x · h + 1

θ
h · ∇xθ (94)

or
ρθ ṡ − (ρr − ∇x · h)− h · ∇x ln θ ≥ 0 (95)

The term in brackets can be substituted by Eq. (88)

ρθ ṡ + T ······ D − ρu̇ − h · ∇x ln θ ≥ 0 (96)

and with
ρθ ṡ = ρ(θs)· − ρsθ̇

it follows

ρ
d

dt
(θs − u)− ρs

dθ

dt
+ T ······ D − h · ∇x ln θ ≥ 0 (97)

The term
(u − θs) = f (98)

is the Helmholtz free energy.

All entropy balances can be presented in the reference configuration, for example
the global balance

∂

∂t

∫
V0

ρ0s dV0 ≥
∫
V0

r

θ
ρ0 dV0 −

∫
A0

n0 · h0

θ
dA0

or the local one

ρ0θ
∂s

∂t
≥ (ρ0r − ∇X · h0)+ 1

θ
h0 · ∇Xθ
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4 Constitutive Modeling

Equations describing the specific behavior of the continua are named constitutive,
physical or state equations. Let us introduce according to [20] the following defini-
tion.

Definition 1.23 (Constitutive equations) Constitutive equations link all phenom-
enological variables describing the macroscopic behavior of the continuum.

Among such variables are: stresses, strains, temperature, heat flux, etc.

The number of necessary constitutive equations depends on the problem. In the
case of thermomechanical problems we have the following balance equations: mass
(1 scalar equation), momentum (1 vectorial equation or for three-dimensional prob-
lems 3 scalar equations), moment of momentum (1 vectorial or 3 scalar equations),
energy (1 scalar equation) and entropy (1 scalar inequality). Since the entropy
inequality yields only in the determination of the process direction we have only
8 scalar equations to estimate 19 variables: density ρ (1 scalar variable), displace-
ments u or velocities v (1 vector or its 3 coordinates), stress tensor T (1 second-order
tensor or 9 coordinates, inner energy u (1 variable), entropy s (1 variable), temper-
ature θ (1 variable) and heat flux h (1 vector or 3 variables). In this case we have
to add 11 constitutive equations otherwise the the system of governing equations is
underestimated and we cannot solve problems.

Before we start the formulation of constitutive equations let us introduce some
restrictions and definitions. We limit ourselves by the consideration of classical con-
tinua. Other continua are discussed in the literature, for example, micropolar continua
are presented in [4]. In addition, we assume that we have only simple materials of
first order [21].

Definition 1.24 (Simple material of first order) A simple material of first order
defined by constitutive equations which contains only local variables, for example
the local strain tensor and the locale heat flux vector with the local stress tensor and
the local temperature gradient. All conclusions are made for the same material point
and its differential surrounding of first order.

Since the constitutive equations present the individual response of the material uni-
versal constitutive equations cannot be established [22]. That means we are dis-
cussing always special cases. The constitutive equations can be formulated using the
top-down approach, the bottom-up approach or rheological models. Here we present
only the top-down approach that we start with some mathematical and physical state-
ments. At first we assume that the balances are valid. The mathematical structure
of the constitutive equations can be established with the axioms of the theory of
materials.

Let us start with ordering the variables which are included in the set of constitutive
equations. We assume that all variables depend on the position (x or X) and the
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time t . The material behavior can be presented by functional relationships between
the constitutive variables and the constitutive parameters. For example, within the
framework of thermomechanics the temperature θ is a constitutive parameter and the
heat flux vector h is a constitutive variable. The choice of the constitutive parameters
and the constitutive variables is arbitrary.

If we want to describe the processes realized in the material points of the contin-
uum history of changes of the constitutive parameters should be given.

Definition 1.25 (Process) The time changes of the constitutive parameters in the
material points is named process.

Definition 1.26 (Constitutive variable) The behavior of the continuum in each
material point can be presented by a set of constitutive variables. They can be time
operators of the processes in the points.

The respective functional relationships are the constitutive equations. Below we
discuss only constitutive equations for solids. With respect to the second axiom of
rheology [23, 24] all real bodies show solid and fluid properties. So we consider that
the solid behavior is dominant.

Definition 1.27 (Solid) The acting on the body loads results in the stress deviator
to non-zero elements that means it resists to the changes of the shape of the body.

In this sense we distinguish time-independent and time-dependent material behavior
[1]. Elastic and plastic materials belong to the first group, viscoelastic and viscoplastic
materials—to the second one.

4.1 Basics of Material Theory

Let us discuss some basic tools in material modeling based on the top-down approach.
As usual one should focus on the attention to the following three questions [1]:

• formulation of constitutive equations,
• consideration of symmetries of the material behavior and
• consideration of kinematic constraints.

The last one is important w.r.t. models for compressible and incompressible materials.

The systematical deduction of constitutive equations can be realized with the help
of some principal axioms (constitutive principles). The main axioms are:

• causality,
• determinism,
• equipresence,
• materielle objectivity,
• locale action,
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• memory and
• physical consistency.

A detailed discussion of the physical meaning and the mathematical consequences
for the aforementioned axiom is given in [25].

4.2 General Constitutive Equations of Thermo-Mechanical
Materials

The thermodynamical state of the continuum is defined by the motion x = x(X, t)
and the temperature θ = θ(X, t) of the material points X at the instant time t . x
and θ are independent variables. As dependent variables (constitutive variables) we
postulate the stress tensor, the heat flux vector, the free energy and the entropy.

For general models of the material behavior we should assume that the actual state
not only depends on the actual loading, but also from the loading history t0 < τ ≤ t .
In addition, the behavior of the given material point X also depends on the behavior
of all other points of the body X̃. If we assume for the functions x(X̃, τ ) and θ(X̃, τ )
the continuity w.r.t. X̃ and τ , we can represent the behavior by Taylor series for the
points X by powers of (X̃ − X) and for the time τ by powers (τ − t). Applying
the axiom of local action and memory axiom (in special situations fading memory
the power series for x(X̃, τ ) and θ(X̃, τ ) can be limited by the first derivative with
respect to X̃ and τ , respectively. The constitutive variables depend in this case on
X and θ , but also from ∇Xx, ∇Xθ and θ̇ . Other models take into account second
gradients (see [26–29] among others).

Assuming the axiom of material objectivity there is no explicit dependency of x
or ẋ since only the strains or the strain rates and not the rigid body motions define the
material behavior. For many real materials the gradients ∇Xx and ∇Xθ are influenced
by the loading history. Taking into account the first derivatives only in this case ∇Xẋ
and ∇X θ̇ act as constitutive variables.

The constitutive equations of a simple thermomechanical material take the form

P(X, t) = P
{
X, θ(X, t), θ̇ (X, t),∇Xθ(X, t),∇X θ̇ (X, t),Γ (X, t)

}
,

h0(X, t) = h0
{
X, θ(X, t), θ̇ (X, t),∇Xθ(X, t),∇X θ̇ (X, t),Γ (X, t)

}
,

f (X, t) = f
{
X, θ(X, t), θ̇ (X, t),∇Xθ(X, t),∇X θ̇ (X, t),Γ (X, t)

}
,

s(X, t) = s
{
X, θ(X, t), θ̇ (X, t),∇Xθ(X, t),∇X θ̇ (X, t),Γ (X, t)

} (99)

The set Γ includes all mechanical variables ∇Xx(X, t),∇Xẋ(X, t) characterizing
the deformation. The stress tensor P can be the first or the second Piola-Kirchhoff
tensor. The explicit dependency of the constitutive equations on X is equivalent to
the statement that in each point of the body one can have different kinds of material
behavior otherwise the body is homogeneous. In general the constitutive equations
are functionals (operators). This is shown by the symbol {. . .}. If the prehistory has
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no influence on the actual material behavior, the constitutive equations are functions
and the symbol (. . .) is used.

The axiom of physical consistency axiom allows a further specification of Eq. (99).
In the case of simple thermoviscoelastic materials (the time dependency is related to
the initial state, but not to the prehistory) the elastic strains and the strain rates can be
expressed by C, Ċ. If an independent relation to parameters ρ, ρ̇ cannot be assumed,
these parameters can be ignored and we have for simple thermoviscoelastic solids
(no influence of the prehistory)

P(X, t) = P
{
X, θ, θ̇ ,∇Xθ,∇X θ̇ ,C, Ċ

}
,

h0(X, t) = h
{
X, θ, θ̇ ,∇Xθ,∇X θ̇ ,C, Ċ

}
,

f (X, t) = f
{
X, θ, θ̇ ,∇Xθ,∇X θ̇ ,C, Ċ

}
,

s(X, t) = s
{
X, θ, θ̇ ,∇Xθ,∇X θ̇ ,C, Ċ

} (100)

For pure thermoelastische solids the time derivatives can be ignored

P(X, t) = P {X, θ,∇Xθ,C} ,
h0(X, t) = h {X, θ,∇Xθ,C} ,
f (X, t) = f {X, θ,∇Xθ,C} ,
s(X, t) = s {X, θ,∇Xθ,C}

(101)

4.3 Elastic Simple Material

As a first example let us discuss the ideal-elastic material behavior. In this case we
have constitutive equations which are functions. In the pure mechanical case one
has to present a relation between the stress and the strain tensors. Considering the
material objectivity in this relation the following equations are valid

I I P(X, t) = f (C,X, t) or I I P(X, t) = g(G,X, t)

Here the assumption of simple material is included since only the gradient of x(X, t)
(deformation gradient tensor F(X, t)) is taken into account.

The specific elementary work in the reference configuration is the starting point
for the further discussions. The constitutive Eq. (101) have a very simple form

I P(X, t) = I P(F),

and the variation of the elementary work Wi gives

δWi = 1

ρ0

I P ······ δFT
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The work depends on the strains at current time t . This work is stored as the strain
energy of the body

δWi = δU = 1

ρ0

I P ······ δF

with u = u(F) as the specific strain energy density function. This function should
not be influenced by rigid motions of the body (material objectivity axiom). From
this it follows for arbitrary rotations Q

u(F) = u(Q · F) = u

(√
(Q · F)T · (Q · F)

)
= u

(√
FT · F

)
= u(U) (102)

With U2 = C and G = 1

2
(C − I) we have u(U) = û(C) or u(U) = ǔ(G). From

δu(F) = ∂u(F)
∂F

······ δFT =
[
∂u(F)
∂F

]
······ δF = [

u(F),F
]T ······ δF

one gets
1

ρ0

I P =
[
∂u(F)
∂F

]
=

[
∂ û(C)
∂F

]
(103)

or after some manipulations

I P = 2ρ0F · ∂ û(C)
∂C

(104)

With respect to the transform rules

T = (det F)−1 I P · FT, I I P = F−1 ·I P

we can formulate the constitutive equation for the Cauchy stress tensor T and the
second Piola-Kirchhoff stress tensor I I P

T = 2ρF · ∂ û

∂C
· FT,

I I P = 2ρ0
∂ û(C)
∂C

= f (C) or I I P = 2ρ0
∂ ǔ(G)
∂G

= g(G)

This is the general constitutive equation in the non-linear elasticity assuming large
deformations and isothermal behavior. If we have special cases of anisotropy than
further simplifications are possible. In the simplest case (isotropy) the energy density
function u = u(C) depends only on the invariants of the tensor C

u = û(C) = û[I1(C), I2(C), I3(C)]
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At first we consider the chain rule

∂ û(C)
∂C

= ∂ û

∂ I1

∂ I1

∂C
+ ∂ û

∂ I2

∂ I2

∂C
+ ∂ û

∂ I3

∂ I3

∂C

With

I1(C) = tr C,

I2(C) = 1

2

[
I 2
1 (C)− I1(C2)

]
,

I3(C) = 1

3

[
I1(C3)+ 3I1(C)I2(C)− I 3

1 (C)
]

one gets

∂ I1

∂C
= I,

∂ I2

∂C
= I1I − C,

∂ I3

∂C
= C2 + I I2(C)+ I1(C)[I1(C)I − C] − I 2

1 (C)C

and

û,C =
(
∂ û

∂ I1
+ I1

∂ û

∂ I2
+ I2

∂ û

∂ I3

)
I −

(
∂ û

∂ I2
+ I1

∂ û

∂ I3

)
C + ∂ û

∂ I3
C2

= φ0I + φ1C + φ2C2,

Here φi = φi (I1, I2, I3). Finally we obtain

I P = 2ρ0F · (φ0I + φ1C + φ2C2)

For an arbitrary isotropic tensor function f (A) one gets in the case of orthogonal
tensors Q

Q · f (A) · QT = f (Q · A · QT)

and the following representation

f (A) = φ0I + φ1A + φ2A2

Then for the isotropic elastic body we can write the constitutive equation

I I P = ψ0I + ψ1G + ψ2G2,

where ψi is now a function of the invariants of G.
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Introducing kinematic restrictions another special case can be deduced. For
example, for the incompressibility (isochoric motions) the following equations are
valid

det F = 1 det C = 1 or
√

det(2G − I)− 1 = 0,

The kinematic constraint can be expressed as follows

λ(C) = det C − 1 = 0

That means I3(C) = 1 and instead of û = û(I1, I2, I3) we have û = û(I1, I2) or

∂ û

∂ I3
= 0

With the help of the method of Lagrangian multipliers one gets the constitutive
equation

I P = 2ρ0F ·
[(

∂ û

∂ I1
+ I1

∂ û

∂ I2

)
I − ∂ û

∂ I2
C

]
− pF−1,

where p is an a priori unknown function (called hydrostatic pressure), which can be
estimated from the equilibrium/motion equation.

4.4 Models with Internal Variables

Dissipative effects can be modeled with the help of different concepts and we have
various possibilities to formulate the constitutive equations. One possibility is the
introduction of viscose stresses depending on the strain rates. Another possibility is
given using the fading memory principle. Here we apply a third approach: at first
some inner variables are postulated, which have an influence on the free energy.
In addition, for the inner variable we need evolution equations. Examples of inner
variables are creep strains, plastic strains or damage variables.

The starting point are the balances and the constitutive equations for homogeneous
materials. The last one depends now additionally on Υ i (X, t) (i = 1, . . . , n)—the
inner variables. The inner variables are tensor-valued variables of different order. For
example, in the case of isotropic damage a scalar is used, for isotropic hardening—
scalar, kinematic hardening-second-order tensor or anisotropic damage-fourth-order
tensor. The evolution equations can be postulated in the following form

DΥ i

Dt
= Y i (θ,∇xθ, g,Υ 1, . . . ,Υ n) (105)

Finally, dissipative materials can be presented by the following set of constitutive
and evolution equations
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I P(X, t) = I P (θ,∇xθ, g,Υ i ),

h0(X, t) = h0 (θ,∇xθ, g,Υ i ),

f (X, t) = f (θ,∇xθ, g,Υ i ),

s(X, t) = s (θ,∇xθ, g,Υ i ),

Υ̇ i (X, t) = Y i (θ,∇xθ, g,Υ 1, . . . , Υ n)

(106)

They should be completed by initial conditions

Υ i (X, t0) = Υ 0
i (X) (107)

The problems of the formulation of constitutive equations incorporating inner
variables and large deformations are widely discussed in the literature, see [30]
among others. Assuming geometrical linearity it will be much more simpler. Now
we present the strains by ε (Cauchy or small strain tensor) and the stresses by σ .
It is not necessary to distinguish two configurations. In addition, we assume that in
analogy to Sect. 4.3 the heat flux vector is given by the anisotropic Fourier’s law.
For the other constitutive equations we suggest the independence of the temperature
gradient. Finally we have the constitutive and evolution Eq. (106)

σ = σ (θ, ε,Υ i ),

h = −κ · ∇∇∇θ,
f = f (θ, ε,Υ i ),

s = s(θ, ε,Υ i ),

Υ̇ i = Y i (θ,∇Xθ, ε,Υ i )

(108)

The analysis will be performed as shown in Sect. 4.3. The staring point is the free
energy f . Note that the strains consist of an elastic and an inelastic part

ε = εel + εinel = εel + εpl (109)

with εel as thermoelastic strains, εinel as inelastic strains and εpl as plastic strains.
For the free energy w.r.t. Eq. (109) we can assume

f = f (θ, ε, εel, εpl,Υ i ) (110)

The total strainsε, the elastic strainsεel and the plastic strainsεpl are connected by one
equation. Following [31] the form of the free energy considering the decomposition
of the total strains can be obtained

f = f (θ, ε − εpl,Υ i ) = f (θ, εel,Υ i )

The derivative of the free energy is

ḟ = ∂ f

∂εel ······ ε̇el + ∂ f

∂θ
θ̇ + ∂ f

∂Υ i
� Υ̇ i
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and finally we get the following dissipative inequality

(
σ − ρ

∂ f

∂εel

)
······ ε̇el +σ ······ ε̇pl −ρ

(
s + ∂ f

∂θ

)
θ̇ −ρ ∂ f

∂Υ i
� Υ̇ i + 1

θ
(κκκ ·∇∇∇θ) ·∇∇∇θ ≥ 0

(111)
� is the scalar product of tensors of an arbitrary order. The underlined terms in the
inequality (111) are discussed in Sect. 4.3. If the thermoelastic strains are indepen-
dent, for the stresses can be assumed

σ = ρ
∂ f

∂εel (112)

This yields

s = −∂ f

∂θ
(113)

Equations (112) and (113) describe the thermoelastic state of the materials. This state
is free from dissipation. From the dissipative inequality follows

σ ······ ε̇pl − ρ
∂ f

∂Υ i
� Υ̇ i + 1

θ
(κκκ · ∇∇∇θ) · ∇∇∇θ ≥ 0 (114)

The first two terms describe the mechanical dissipation, the last one—the thermal.

Let us assume the existence of a scalar dissipation potential and the thermal and
mechanical dissipation can be decoupled. We suggest that the dissipation potential
must be convex. For the mechanical dissipation we obtain

χ = χ(ε̇pl, Υ̇ i )

If we can assume an associated law (normality rule)

σ = ∂χ

∂ ε̇pl

and

Λi = ∂χ

∂Υ̇ i

Λi are the associated to the inner variables functions.

5 Governing Equations of Mechanics of Hyperelastic Materials

A material is named hyperelastic, if an elastic potential u exists and u is a scalar func-
tion of the strain tensor. This energy is preserved as the result of the loading process. If
we have only elastic behavior (we ignore, for example, viscoelastic behavior, creep
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or damage) this energy is reservable. In addition in the further developments we
ignore the influence of the temperature. For rubber-like materials the elastic strains
are sometimes more than 1,000 %. Limiting ourselves by the isotropy assumption,
the nonlinear elasticity theory should be applied.

Note that in the case of finite strains we must distinguish the reference and the
actual configurations. That means the constitutive equations can be presented in
both configurations. Below we present all equations and variables in the reference
configuration (Lagrangian description).

The starting point for the kinematics are the considerations of Sect. 1. The
deformable body is a part of the three-dimensional space. The position of the material
points in the reference configuration is given by the radius-vector XXX , in the actual
configuration by the radius-vector xxx . The displacement vector can be presented by
uuu = xxx − XXX . The deformation gradient FFF is defined by Eq. (7). In the nonlinear elas-
ticity the right Cauchy-Green tensor CCC (15) can be used as strain measure and the
respective strain tensor GGG is the Green-Lagrange tensor (16).

In the case of rubber-like materials the incompressibility assumption often is
applied. The physical meaning of this assumption is that the volumetric strains can
be neglected in comparison with the strains responsible for the shape changes. The
incompressibility condition is equivalent to the following equation

J ≡ det FFF = 1. (115)

Let us introduce the following invariants

I1 = tr CCC, I2 = 1

2

[
tr 2CCC − tr CCC2

]
, I3 = det CCC = J 2. (116)

For incompressible materials we get I3 = 1. The invariants Ik can be expressed with
the help of the eigen-values λ2

i of the Cauchy-Green strain measure CCC

I1 = λ2
1 + λ2

2 + λ2
3, I2 = λ2

1λ
2
2 + λ2

2λ
2
3 + λ2

1λ
2
3, I3 = λ2

1λ
2
2λ

2
3. (117)

In linear elasticity the split of the strain tensor into spherical and deviatoric parts is
used. The first one is responsible for the volumetric strains, the second one—for the
deviatoric (isochoric) strains, which have no relations to the changes of the volume.
In non-linear elasticity if we have finite strains the isochoric strains can be presented
by the normalized strain gradient F̄FF = J−1/3FFF , which results in det F̄FF = 1. In
addition, one can introduce the normalized Cauchy-Green strain measure

C̄CC = F̄FF
T · F̄FF . (118)

and instead of the invariants I1, I2, I3-the normalized invariants of F̄FF

Ī1 = J−1/3 I1, Ī2 = J−2/3 I2, J. (119)
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The invariants (119) are used in formulation of constitutive equations for weak com-
pressible materials. They can be expressed by the eigen-values λ̄2

i of the strain mea-
sure of C̄CC

Ī1 = λ̄2
1 + λ̄2

2 + λ̄2
3, I2 = λ̄2

1λ̄
2
2 + λ̄2

2λ̄
2
3 + λ̄2

1λ̄
2
3. (120)

The constitutive equations of a non-linear elastic body can be introduced with the
help of the specific strain energy (related to the volume in the reference configuration)
W as a function of the Cauchy-Green strain measure or tensor

u = u(CCC) = u(GGG) (121)

For finite strains the CCC is more used than GGG. In the case of isotropic materials W is
a function of the invariants of CCC and we have the representation by Ik or λk

u = u(I1, I2, I3) = u(λ1, λ2, λ3) = u( Ī1, Ī2, J ) (122)

Introducing u the stress tensors can be computed as

• the Piola stress tensor

PPP = 2FFF · ∂u

∂CCC
, (123)

• or the Cauchy stress tensor (tensor of true stresses)

TTT = 2J−1FFF · ∂u

∂CCC
· FFFT. (124)

In the case of incompressible materials the stress tensors can be estimated from the
strain energy only for terms which are related to isochoric strains. That means the
following expressions are valid for

• the Piola stress tensor

PPP = −pFFF−1 + 2FFF · ∂u

∂CCC
, (125)

• for the Cauchy stress tensor

TTT = −pIII + 2FFF · ∂u

∂CCC
· FFFT. (126)

Here III is the unit tensor and p is a unknown function. The physical meaning of the
last one is similar to the pressure in an incompressible fluid. From the point of view
of mathematics this is a Lagrangian multiplier related to Eq. (115).

Taking into account the equation for the derivatives of the invariants Ik

∂ I1

∂CCC
= III ,

∂ I2

∂CCC
= III I1 − CCC,

∂ I3

∂CCC
= I3CCC−1, (127)
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we get
∂u

∂CCC
= (u, 1 + I1u, 2)III − u, 2CCC + I3u, 3CCC−1, u, k ≡ ∂u

∂ Ik
(128)

Finally, for the isotropic incompressible material the Cauchy stress tensor (124) can
be expressed by

TTT = 2J−1
[
(u, 1 + I1u, 2)BBB − u, 2BBB2 + I3u, 3III

]
, (129)

where BBB = FFFT · FFF is the left Cauchy-Green tensor or Finger strain measure (15).

It can be shown [32] that the principal stresses σk (eigen-values of the Cauchy
stress tensor TTT ) for isotropic materials can be estimated by derivatives of u w.r.t. λk

σk = J−1λk
∂u

∂λk
. (130)

Note that sometimes the principal forces tk are applied. They are related to σk by the
following equation

tk = J

λk
σk (131)

and we get a very simple relation between tk and u

tk = ∂u

∂λk
(132)

The physical meaning of σk and tk are as follows. Let us introduce a infinitesimal
cube in the volume, which is oriented in such a manner that the normals to surfaces
have the same direction as the eigen-vectors of TTT (principal axes). Than σk are forces
related to the surfaces in the actual configuration and tk are forces related to surfaces
in the reference configuration. In the case of finite strains both quantities can differ
significantly. In the case of isotropic incompressible materials the Cauchy stress
tensor (126) can be computed as

TTT = −pIII + 2(u, 1 + I1u, 2)BBB − 2u, 2BBB2, (133)

the principal stresses σk and principal forces tk as

σk = −p + λk
∂u

∂λk
, tk = − p

λk
+ ∂u

∂λk
. (134)
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6 Constitutive Equations of Incompressible Materials

The incompressibility assumption is often used in modeling of highly elastic materi-
als. The strain should be a function of the first and the second invariant of the strain
measure CCC

u = u(I1, I2). (135)

6.1 Polynomial Approximation

This model suggested in [33] is based on the Taylor series expansion of the strain
energy u in the neighborhood of the undeformed state

u =
M∑

m=0

N∑
n=0

Cmn(I1 − 3)m(I2 − 3)n (136)

Cmn are material parameters with C00 = 0.

6.2 Treloar (Neo-Hookean) Material

The Treloar material [34] is an example of Eq. (136). This model is based on the
Gaussian kinetic theory for rubber-like materials. The following constitutive equation
is suggested

u = C1(I1 − 3), C1 > 0. (137)

The model is very simple and some vulcanized rubbers with organic fillers can be
presented at moderate strains.

6.3 Mooney Material

The model of the Mooney material [35] can be deduced from (136) if one preserves
only the linear term

u = C1(I1 − 3)+ C2(I2 − 3), C1 > 0, C2 ≥ 0. (138)

It is easy to show that the Treloar model is a special case of the Mooney material.
Equation (138) allows to describe the behavior of some natural and vulcanized rub-
bers in a wide range. But in the case of strains higher 400–500 % the description is
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dissatisfying. Together with the Ogden material the Mooney material is mostly used
in applications. Some generalizations of Eq. (138) are known.

6.4 Rivlin-Saunders Material

Rivlin and Saunders [36] generalized the Mooney material

u = C1(I1 − 3)+ F(I2 − 3), (139)

where F(I2 − 3) is an arbitrary function, which should be estimated for the given
material. As usual for F(I2 −3) are proposed polynomial approximations, for exam-
ple, Klosner and Segal introduced a cubic polynomial for (I2 − 3)

u = C1(I1 − 3)+ C2(I2 − 3)+ C3(I2 − 3)2 + C4(I2 − 3)3. (140)

6.5 Biderman Model

Biderman [37] suggested the following function for the strain energy for gray rubber

u = C1(I1 − 3)+ B1(I1 − 3)2 + B2(I1 − 3)3 + C2(I2 − 3). (141)

6.6 Non-Polynomial Approximation

Not in all notations for u the function F(I2 − 3) in (139) is included as a polynomial
of (I2 − 3). For example, in [38] an exponential-hyperbolic constitutive equation is
suggested

u = C

[∫
ek1(I1−3)2 dI1 + k2 ln

I2

3

]
. (142)

Alexander introduced [39]

u = C1(I1 − 3)+ C2(I2 − 3)+ C3 ln
I2 − 3 + k

k
(143)

and

u = C1

∫
ek1(I1−3)2 dI1 + C2(I2 − 3)+ C3 ln

I2 − 3 + k2

k2
(144)
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with C , C1, C2, C3, k, k1, k2 as material parameters. Equation (143) is equivalent to
the Rivlin-Saunders Eq. (139) and (144) summarizes elements of (139) and (142).
The last one describes the behavior of natural rubber. The last example is the strain
function proposed by Hutchinson, Becker and Landel [40]

u = C1(I1 − 3)+ B1(I1 − 3)2 + B2(1 − ek1(I2−3))+ B3(1 − ek2(I2−3)). (145)

describing the behavior of silicon rubber in one-and two-axial tests.

6.7 Incompressible Ogden Material

Ogden [41] suggested a constitutive equation for the strain energy u, based on λ1,
λ2, λ3

u = 2μ

α
(λα1 + λα2 + λα3 − 3) = 2μ

α

[
tr CCCα/2 − 3

]
. (146)

The generalization of this two-parameter model (146)

u =
N∑

n=1

2μn

αn
(λ
αn
1 + λ

αn
2 + λ

αn
3 − 3) =

N∑
n=1

2μn

αn
(tr CCCαn/2 − 3). (147)

is also called Ogden material. Similar to the polynomial approximation (136) model
(147) contains enough material parameters for the fitting of experimental data. At
the same time it is difficult to perform the large number of tests.

6.8 Chernykh-Shubina Material

Independent from the Ogden material model the two-parameter model of Chernykh
and Shubina [42, 43] was created

u = μ
[
(1 + β)(λ1 + λ2 + λ3 − 3)+ (1 − β)(λ−1

1 + λ−1
2 + λ−1

3 − 3)
]

= μ
[
(1 + β)(tr CCC1/2 − 3)+ (1 − β)(tr CCC−1/2 − 3)

]
.

(148)

6.9 Bartenev-Khazanovich Material

In the mechanics of polymers the one-parameter model of Bartenev-Khazanovich
[44], which is a special case of the Ogden material or the Chernykh-Shubina model,
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is established

u = 2μ(λ1 + λ2 + λ3 − 3) = 2μ(tr CCC−1/2 − 3). (149)

In the literature the constitutive Eq. (149) is sometimes named Varga material [45].

7 Constitutive Equations of Compressible Materials

The incompressibility condition is often assumed in modeling of rubber-like materi-
als. In some cases this approximation is not acceptable. For example, the deformation
problem of high-elastic damping material between two rigid plates can be solved
only if the weak compressibility of the material is taken into account. In the litera-
ture such models for weak compressible materials are introduced which are based on
the aforementioned constitutive equations for incompressible materials adding terms
accounting the changes of the specific volume of the material. In addition, there are
models for compressible materials based on experimental data and not using the
hypothesis on weak compressibility.

7.1 Compressible Neo-Hookean Material

This model for weak compressible materials is a generalization of the Treloar
material. The constitutive equation has the form

u = C1( Ī1 − 3)+ 1

d
(J − 1)2, (150)

where d is a material parameter characterizing the compressibility. In the case of
small strains the modulus of compressibility k for the material (150) is related to d
by the equation k = 2/d. For incompressible materials d = 0 is valid and the last
term in (150) is the penalty, presenting the contribution of the volumetric strains to
the strain energy.

7.2 Mooney-Rivlin Material

The polynomial approximation (136) can be generalized for the case of materials
with small compressibility, for example elastomers. The generalization is given as
additional terms depending on J in the strain energy
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u =
M∑

m=0

N∑
n=0

Cmn( Ī1 − 3)m( Ī2 − 3)n +
N∑

n=1

1

dn
(J − 1)2n . (151)

The special case of (151) is the two-parameter Mooney-Rivlin material

u = C10( Ī1 − 3)+ C01( Ī2 − 3)+ 1

d
(J − 1)2. (152)

In FE codes polynomial approximations are implemented, which contain a big
amount of material parameters, for example the three-parameter Mooney-Rivlin
material

u = C10( Ī1 − 3)+ C01( Ī2 − 3)+ C11( Ī1 − 3)( Ī2 − 3)+ 1

d
(J − 1)2, (153)

the five-parameter Mooney-Rivlin material

u = C10( Ī1 − 3)+ C01( Ī2 − 3)+ C20( Ī1 − 3)2

+C02( Ī2 − 3)2 + C11( Ī1 − 3)( Ī2 − 3)+ 1
d (J − 1)2,

(154)

or the nine-parameter Mooney-Rivlin material

u = C10( Ī1 − 3)+ C01( Ī2 − 3)+ C20( Ī1 − 3)2 + C02( Ī2 − 3)2

+C11( Ī1 − 3)( Ī2 − 3)+ C30( Ī1 − 3)3 + C21( Ī1 − 3)2( Ī2 − 3)

+C12( Ī1 − 3)( Ī2 − 3)2 + C03( Ī2 − 3)3 + 1

d
(J − 1)2

(155)

7.3 Compressible Ogden Material

Model (147) can be used for materials with small incompressibility

u =
N∑

n=1

2μn

αn
(λ̄
αn
1 + λ̄

αn
2 + λ̄

αn
3 − 3)+

N∑
n=1

1

dn
(J − 1)2n (156)

7.4 Arruda-Boyce Material

The potential in this case takes the form [46]
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u = μ

[
1

2
( Ī1 − 3)+ 1

20λ2
L

( Ī 2
1 − 9)+ 11

1050λ4
L

( Ī 3
1 − 279)

+ 19

7000λ6
L

( Ī 4
1 − 81)+ 519

673750λ8
L

( Ī 5
1 − 243)

]
+ 1

d

(
J 2 − 1

2
− ln J

)

(157)
Here μ, λL , d are the material parameters. With λL → ∞ we get again the
Neo-Hookean material.

7.5 Gent Material

For this material the following potential holds

u = − E Im

6
log

(
1 − Ī1 − 3

Im

)
(158)

Here E , Im are material parameters.

7.6 Blatz-Ko Material

This model was suggested by Blatz and Ko [47] for the case of modeling of several
rubbers (porous materials—foams—made of polyurethane (PU)). The potential has
the form

u = 1

2
μβ

[
I1 + 1

α
(I −α

3 − 1)− 3

]
1

2
μ(1 − β)

[
I2 I −1

3 + 1

α
(I α3 − 1)− 3

]
,

α = λ

2μ
(159)

This model contains 3 parameters: μ, α and β. In FE codes a simpler potential is
implemented (159)

u = 1

2
μ

[
I2

I3
+ 2

√
I3 − 5

]
(160)

7.7 Other Material Models

In the literature there are given references to other compressible non-linear elas-
tic materials (Seth, Signorini [48], Murnaghan [49], harmonic (semi-linear), etc.)
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[32, 49]. The material parameters for these models are known. Applications of these
models are related, for example to acoustics.
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