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Preface

Pressure-Sensitive Materials are widely used in modern engineering applications.
As usual they are lightweight structures and have analogs in nature (for example
bones). But there are a lot of other application fields. This monograph is devoted to
the modeling and simulation of pressure-sensitive materials since the standard
methods and equations are partly not applicable. For problems of manufacturing of
such materials we refer to the special literature.

The monograph summarizes new trends and established methods in the field of
pressure-sensitive materials. It contains six chapters prepared by different research
groups. ‘‘Basic Equations of Continuum Mechanics’’ gives an overview on the
general continuum mechanics in which the modeling of pressure-sensitive
materials is embedded. In addition, some examples of special constitutive equa-
tions for incompressible and compressible materials are presented. These examples
are mostly related to rubber-like materials. ‘‘Phenomenological Yield and
Failure Criteria’’ presents classical and improved criteria of limit states of mate-
rials. The classical criteria are applicable only in the cases of ideal ductile or
absolutely brittle materials. Various possibilities to develop improved criteria are
described. Finally, three examples (gray cast iron, polyoxymethylene (POM), and
polyvinyl chloride (PVC) hard foam) demonstrate the application of different
approaches in modeling certain limit behavior. ‘‘Plasticity of Cellular
Metals (Foams)’’ presents cellular metals, e.g., made by solidification of molten
metal foam, which have interesting mechanical properties, among them high
specific strength and stiffness coupled with inflammability and good damping
properties. The analysis of such materials is not a trivial problem, especially
beyond the elastic range, since the micro-mechanical behavior has a great influ-
ence on the macroscopic properties. ‘‘Transmission Conditions for Thin
Elasto-Plastic Pressure-Dependent Interphases’’ is devoted to the behavior of
thin soft elasto-plastic interphases. The case of pressure-independent (von Mises)
as well as pressure-dependent yield condition is theoretically treated and finite
element calculations are presented. ‘‘Effect of Pressure-Dependency of the
Yield Criterion on the Strain Rate Intensity Factor’’ presents several rigid
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plastic models, for which the equivalent strain rate (quadratic invariant of the
strain rate tensor) approaches infinity in the vicinity of maximum friction surfaces.
In this case special methods in the analysis are necessary. ‘‘Mechanical
Response of Porous Materials: the Gurson Model’’ is devoted to a special model
applicable for pressure-sensitive materials under the influence of damage effects:
the Gurson model. Some theoretical and numerical aspects are discussed.

Magdeburg, Skudai Holm Altenbach
August 2013 Andreas Öchsner
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Basic Equations of Continuum Mechanics

Holm Altenbach and Victor A. Eremeyev

Abstract The modeling of the behavior of pressure-sensitive materials is embedded
in the general continuum mechanics. The basic equations of continuum mechanics
can be split into the material-independent and the material-dependent equations.
The starting point is the introduction of the kinematics based on pure mathemati-
cal considerations. In addition, the velocities and the accelerations of the relevant
kinematical variables are presented. The next section is devoted to the introduction
of the action on the continuum and the inner reaction. Starting with such proper-
ties like forces and stresses finally the static equilibrium is stated. The last part of
the material-independent equations is the introduction of the balances. Limiting our
discussions by thermo-mechanical actions only, the balance of mass, momentum,
moment of momentum, energy and entropy are deduced. The specific properties and
features of the pressure-sensitive materials are presented in the next sections. Within
this chapter the general ideas of material modeling (deductive approach) are given.
Finally, some examples of special constitutive equations for incompressible and com-
pressible materials are presented. These examples are mostly related to rubber-like
materials.
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2 H. Altenbach and V. A. Eremeyev

1 Kinematics and Deformations

1.1 Lagrangian and Eulerian Description

A body B is an assemblage of material points, which is bounded by boundary points
that means the surface of B. Material bodies are introduced in continuum mechanics
with the help of the method of sections. By this method the body B can be separated
from the surrounding. The introduction of the surface and the body is arbitrary, which
is helpful for the formulation of the balance equations (see Sect. 3).

The movement of material bodies can be presented by the motion of their material
points which should be identified. If the material points are related to points in the
Euclidean space E

3 and if one point 0 is fixed in this space, then the position of
the material points is determined by the position vector x(t) at arbitrary time t . To
distinguish the material points of the body B each of them gets a label: at the time
t = t0 the material point is characterized by the position vector x(t0) ≡ X. t0 is
the natural initial state, which changes should be computed. In many cases it holds
t0 = 0.

In the Cartesian coordinate system with the origin 0 and the basis vectors eeei

(i = 1, 2, 3) the movement of the material point X can be presented as follows

x = xieeei , X = Xieeei , x(X, t0) = x0 ≡ X,

x = x(X, t)− trajectory of X, (1)

X = X(x, t)− point X, which is in the moment t located at x

In Fig. 1 the trajectory of X is shown. If the Jacobi determinant is not equal to 0

det

(
∂xi

∂X j

)
≡

∣∣∣∣ ∂xi

∂X j

∣∣∣∣ �= 0, (2)

the following unique and invertible relation exists

0

X

xP( t0 )

P(t)

0

x1, X1

x2, X2

x3, X3

P(Xi)

P(xi)

X

x

(a) (b)

Fig. 1 Trajectory of a material point: a position vectors, b Cartesian coordinates
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x(X, t) ⇐⇒ X(x, t) (3)

Now we can introduce the configuration (sometimes called placement).

Definition 1.1 (Configuration) The configuration of a body is defined if we have
for any time t an invertible unique mapping for the material points X with x. For the
initial t = t0 one has the reference configuration, for the actual time t one has the
actual configuration.

The placement of the body is defined by its configuration. The motion is presented
as follows.

Definition 1.2 (Motion) The motion is given by the changes of the configurations
x = x(X, t) (t is a parameter).

For further discussions let us introduce two approaches for the description of
continuum mechanics problems.

Definition 1.3 (Lagrangian or material description) The changes of properties
prescribed to the material point will be given with respect to X. In this case the
properties are functions of X and t .

Definition 1.4 (Eulerian or spatial description) The changes of properties pre-
scribed to the material point properties will be given with respect to x. In this case
the properties are functions of x and t .

1.2 Time Derivatives and Nabla Operator

The properties prescribed to an arbitrary material point can be given in the material
or spatial description. For the scalar function ϕ presenting a property one gets with
respect to Eq. (3)

ϕ = ϕ(X, t) = ϕ(X1, X2, X3, t) material description,
ϕ = ϕ[X(x, t), t] = ϕ(x, t) = ϕ(x1, x2, x3, t) spatial description.

Similar formulations can be introduced for tensorial functions of arbitrary order. In
dependence of the assumed presentation of the function ϕ two time derivatives can
be defined: the spatial one and the material one. The spatial derivative is given as

∂ϕ(x, t)

∂t
= ∂ϕ(x, t)

∂t

∣∣∣∣
x fixed

The material derivative is

∂ϕ(X, t)

∂t
= ∂ϕ(X, t)

∂t

∣∣∣∣
X fixed
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Below the material derivative is denoted by

dϕ

dt

For the material velocity and acceleration the following definitions hold true.

Definition 1.5 (Material derivatives) The material derivative of the position vector
x(X, t) results in the velocity vector v(X, t), the derivative of v(X, t) in the acceler-
ation vector b(X, t)

v(X, t) = d

dt
x(X, t) = ẋ(X, t), b(X, t) = v̇(X, t) = ẍ(X, t) (4)

The spatial descriptions of v and b one gets, if X will be substituted by x

v = v[X(x, t), t] = v(x, t), b = b[X(x, t), t] = b(x, t) (5)

Using the nabla operator the material derivative can be introduced

dϕ

dt
= ∂ϕ

∂t

∣∣∣∣
x fixed

+ v · ∇∇∇ϕ|x fixed = ∂ϕ

∂t

∣∣∣∣
x fixed

+ v · ∇xϕ (6)

1.3 Strains and Deformation Gradient

Let us discuss the transform of line, surface and volume elements from the reference
to the actual configuration. The introduction of the deformation gradient (gradient
of the position vector) F can be helpful in this case.

Definition 1.6 (Deformation gradient) If the deformation of a body can be with
the help of the equation of motion

x = x(X, t)

transferred from the reference to the actual configuration, the following equation
presents the material deformation gradient

F = [∇Xx(X, t)]T (7)

F transform a material line element dX of the reference configuration into a material
line element dx of the actual configuration, i.e.

F · dX = dx
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With the help of the deformation gradient one can express the relations for the
transform of a surface or volume element from the reference to the actual configura-
tion. The surface element dA0 in the reference configuration has the size dX1dX2.
Considering the orientation of the surface element one can write

dA0 = dX1 × dX2

The transform into the actual configuration of dA0 results in the element dA

dA = dx1 × dx2 = (F · dx1)× (F · dx2)

With respect to

(F · dX1)× (F · dX2) = (det F)(FT)−1 · (dX1 × dX2)

finally one obtains
dA = (det F)(F−1)T · dA0 (8)

The volume element in the reference configuration is defined as

dV0 = |(dX1 × dX2) · dX3|,

and in the actual configuration as

dV = |[(F · dX1)× (F · dX2)] · (F · dX3)|

After some manipulations one obtains

dV = |det F|dV0 (9)

It holds true det F �= 0 for all t if the continuity w.r.t. t can be assumed. In addition,
for t = t0 we obtain det F = 1.

1.4 Velocities, Velocity Gradients

The velocity v(X, t) of a material point X is defined by

v(X, t) = d

dt
x(X, t) ≡ ẋ(X, t) = ∂

∂t
x(X, t)

Since
x(X, t) ⇐⇒ X(x, t)
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in the spatial description of v can be presented as

v[X(x, t), t] = v(x, t)

For the acceleration we get

b = v̇ = ∂2

∂t2 x(X, t) = ẍ(X, t)

For the velocity in the Eulerian description we have

v(x, t) = v(x, t) = dx
dt

and for the acceleration

b = b(x, t) = dv
dt

Let us introduce the gradient of the velocities L.

Definition 1.7 (Velocity gradient tensor) The spatial velocity gradient tensor L of
a given velocity field v = v(x, t) is defined by

L(x, t) = [∇xv(x, t)]T (10)

With the help of L the time derivatives of the material line, surface and volume
elements can be computed in the actual configuration

(dx)· = L · dx, (11)

(dA)· = [(∇x · v)III − LT] · dA, (12)

(dV )· = (∇x · v)dV (13)

III is the second-order unit tensor.

1.5 Strains and Strain Measures

The deformation gradient F is related to the whole motion that means it contains
the rigid body motions. The strains can be obtained if we can find expression which
are free from the rigid body motions. In this situation the theorem on the polar
decomposition can be helpful.

Theorem 1.1 (Polar decomposition) Any non-singular second-order tensor T with
det T �= 0 can be represented in a unique manner by a decomposition into the positive
definite symmetric tensors U or V and orthogonal tensor R
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T = R · U = V · R

R · U is named the right V · R the left polar decomposition.

The deformation gradient tensor F is always non-singular (det F �= 0). So we get

F = R · U = V · R (14)

The polar decomposition of F yields the following deformation tensors

U = (
FT · F

)1/2
right stretch tensor,

V = (
F · FT

)1/2
left stretch tensor,

C = U2 = (
FT · F

)
right Cauchy-Green tensor,

B = V2 = (
F · FT

)
left Cauchy-Green tensor

(15)

For application purposes, for example the formulation of constitutive equations,
it is better to introduce a strain measure resulting in the reference configuration for
pure rigid body motions the value zero instead of one. One possibility is the Green-
Lagrange strain tensor

G(X, t) = 1

2
[C(X, t)− I] = 1

2
(FT · F − I) = 1

2

(
U2 − I

)
(16)

In many continuum mechanics problems one needs the volume strain as a char-
acteristic property.

Definition 1.8 (Volume strain) If we divide the difference of the material volume
elements dV and dV0 in the actual and the reference configurations by dV0 we get
the volume strain εV

εV = dV − dV0

dV0
(17)

With dV = (det F)dV0 yields

dV − dV0

dV0
= (det F − 1)dV0

dV0
= det F − 1

and

εV = det F − 1 =
√

det (FT · F)− 1 = √
det C − 1 = √

det (2G + I)− 1 (18)

Definition 1.9 (Volume conservation) Volume conservation (isochoric motion) is
related to the constraint

εV ≡ 0

With Eq. (18) it follows det F = 1.
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The starting point for the analysis of the strain rates is the spatial rate tensor
L(x, t). The following equation is valid

L(x, t) = [∇xv(x, t)]T = Ḟ · F−1

L is a second-order tensor, which can be split additively into symmetric and anti-
symmetric tensors

L = 1

2

(
L + LT

)
+ 1

2

(
L − LT

)

= 1

2

[
(∇xv)T + ∇xv

]
+ 1

2

[
(∇xv)T − ∇xv

]
= D + W

Definition 1.10 (Strain rate tensor) The symmetric part of L

D = 1

2

(
L + LT

)

is the strain rate tensor.

Definition 1.11 (Vorticity tensor) The antisymmetric part of L

W = 1

2

(
L − LT

)

is the vorticity tensor.

1.6 Displacements, Displacement Gradient, Linearizations

Let us express the kinematical variables by the displacement vector and the displace-
ment gradient tensor

• displacement vector in the reference configuration

u(X, t) = x(X, t)− X,

• displacement vector in the actual configuration

u(x, t) = x − X(x, t),

• displacement gradient tensor

P0(X) =⇒ P(x) : x = X + u(X, t),
Q0(X + dX) =⇒ Q(x + dx) : x + dx = X + dX + u(X + dX, t)

(19)
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From Eq. (19) one gets

dx = dX + u(X + dX, t)− u(X, t)

and finally
dx = dX + (∇Xu)T · dX = (I + J) · dX (20)

Definition 1.12 (Displacement gradient tensor) The material displacement gradi-
ent tensor is defined as

[∇Xu(X, t)]T ≡ J

The spatial displacement gradient tensor is defined as

[∇xu(x, t)]T ≡ K

With

u(X, t) = x(X, t)− X =⇒ (∇Xu)T = (∇Xx)T − I, J = F − I,

u(x, t) = x − X(x, t) =⇒ (∇xu)T = I − (∇xX)T, K = I − F−1,

all kinematical tensors can be expressed by u and J or K, for example

F = I + J, F−1 = I − K,

C = (I + J)T · (I + J) = I + J + JT + JT · J,

C−1 = (I − K) · (I − K)T = I − K − KT + K · KT,

B = (I + J) · (I + J)T = I + J + JT + J · JT,

B−1 = (I − K)T · (I − K) = I − K − KT + KT · K,

G = 1

2
(C − I) = 1

2
(J + JT + J · JT),

A = 1

2
(I − B−1) = 1

2
(K + KT − KT · K)

It is easy to show that G and A are nonlinear

G = 1

2

[
(∇Xu)T + (∇Xu)+ (∇Xu) · (∇Xu)T

]
= Gi j ei e j ,

A = 1

2

[
(∇xu)T + (∇xu)− (∇xu) · (∇xu)T

]
= Ai j ei e j

Obviously, G and A contain quadratic terms w.r.t. u. This is the so-called geometrical
nonlinearity. It is easy to deduce the consistent geometrical linear relations (see, for
example, [1]).
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2 Stress State

2.1 Classification of External Actions

The actions on a body can by classified as volume or surface actions. The following
actions are known: pure mechanical, thermal, electromagnetic, etc. Here we focus
our attention on mechanical actions, which can split into forces and moments as
known from general mechanics (part statics). Then we can introduce:

• mass or volume forces and moments and
• surface forces and moments.

In general, the actions are continuously defined in the volume or on the surface
functions. They are introduced as models since they cannot be observed directly
(only the response of the actions can be measured). It is easy to show that line and
concentrated single actions are limit cases of the volume and surface actions. These
limit cases are the result of the different order of the three spatial dimensions or of
the two dimensions of the surface.

Any material body is characterized by a continuous mass density distributionρ(x).
The mass or volume actions are also continuous functions applied to any material
point of the body. Examples of volume forces are the gravitational force, the force
of inertia and the Coriolis force among others. The sources of these forces are out of
the body, that means they are external volume forces. By analogy one can introduce
sources for volume moments.

Volume forces are related to volume or mass. By kV the volume force density and
by km ≡ k the mass force density are denoted (in what is following k is used instead
of km). It holds

ρ(x, t)k(x, t) = kV (21)

with the mass force density k(x, t), the volume force density kV(x, t) and the mass
density ρ(x, t). Examples of the volume force density are the weight, the centrifugal
force or in general the potential forces:

• the weight
ρk = −ρgeee3,

where g is the gravity acceleration, eee3 is the basis vector in the opposite direction
to the gravity acceleration.

• the centrifugal force
ρk = −ρωωω × (ωωω × x),

where ωωω is the angular velocity
• general potential force

ρk = −ρ∇xΠ
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The force potential Π in the case of weight or centrifugal force can be expressed
as

Π = e3 · xg or Π = −1

2
|ωωω × x|2

In the case of volume moments the analogous equation is valid

ρ(x, t)lm(x, t) = ρ(x, t)l(x, t) = lV (22)

with lm(x, t) as the mass moment density and lV(x, t) as the volume moment density.

External surface loads are acting on surfaces. Such loads are named contact loads.
The surface can be the surface of a material body with a volume A(V ), but also
common interfaces between the parts of the body or between two different bodies.
External surface loads are existing also between solids and fluids, for example, the
hydrostatic pressure of the fluid on a solid surrounded by the fluid. The surface
loads can be split again in surface forces and surface moments. The surface forces
are related to the surface and result in the stress vector t, the surface moments by
analogy result in moment stress vectors μμμ. The following limits can be introduced
[2, 3]

t = lim�A→0

�f
�A

, μμμ = lim�A→0

�m
�A

, (23)

where �f and �m are the resulting force and moment vectors acting on the surface
�A. Note that �A is oriented that means �A = n�A. The vectors depend on the
position on the surface and the orientation of the surface (dA = ndA)

t = t(x,n, t), μμμ = μμμ(x,n, t) (24)

One gets by integration of the external volume and surface forces the resulting exter-
nal force f R acting on the body

f R =
∫
V

ρk dV +
∫
A

t dA (25)

The resulting external moment can be introduced in the same manner

mR
0 =

∫
V

ρ(l + x × k) dV +
∫
A

(μμμ+ x × t) dA (26)

In the classical mechanics the moment vectors are ignored and we get the following
expression

mR
0 =

∫
V

ρ(x × k) dV +
∫
A

(x × t) dA (27)
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2.2 Cauchy’s Stress Vector and Tensor

As the result of the external action on the body one obtains stresses in the body. Let
us introduce the Euler-Cauchy stress principle.

Definition 1.13 (Euler-Cauchy stress principle) The external forces result in a
vector field of stress vectors t(x,n, t) acting on a surface A with the normal n(x, t).
In the case that the surface is the body surface the stress vectors are resulting from
the surface forces and named traction.

The stresses in the body can be defined using the method of sections (Fig. 2).
From the Statics follows that we have some actions in the body (Fig. 3). df is the
resulting force vector and dm is the resulting moment vector on the surface element
dA, n is the unit normal vector on the surface. With respect to Eq. (23) one gets the
stress and the couple stress vector

t(x,n, t) = df
dA
, μμμ(x,n, t) = dm

dA

Ignoring the inner moments, we get the classical continuum (Fig. 4). In this case we
have no surface moments andμμμ ≡ 000 is valid. For polar continua that is whenμμμ �= 000
we refer to [4–8].

Fig. 2 Method of sections
(arbitrary section in body
under external loadings)

V

A

Fig. 3 Actions in the body
(polar continuum)

dA

d f
dm

dm
d f
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Fig. 4 Actions in the body
(classical continuum)

dA

d f

d f

Note 1.1 As a measure of the inner force in point P of the body we introduce the
stress vector

t(x,n, t) = df
dA

In general, t depends on the position, time and orientation of the surface. In each
point of the body t(n) = −t(−n) holds (Cauchy’s lemma).

Definition 1.14 (Stress state) All possible stress vectors in a material point P define
the stress state in this point.

From material’s testing we know two definitions for the stresses.

Definition 1.15 (Engineering stresses) The acting force is related to the surface in
the reference configuration.

Definition 1.16 (True stresses) The acting force is related to the surface in the
actual configuration.

In continuum mechanics we have more possibilities since we can define the force
vector in both configurations, the surface orientation in two configurations and in
addition we can introduce intermediate configurations.

Definition 1.17 (Cauchy’s stress vector) The Cauchy stress vector is called true
stress vector. The actual force is related to the actual section.

The stress tensor follows as

t(x,n, t) = n · T(x, t)

with the Cauchy stress vector t(x,n, t), the normal n and the Cauchy stress tensor
T(x, t).
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2.3 Equilibrium Equations, Equations of Motion

For the body under surface forces tdA and volume forces ρkdV , which is in an
equilibrium state, the following equations considering Eqs. (25) and (27) hold

∫
V

ρk dV +
∫
A

t dA = 000,
∫
V

(x × ρk) dV +
∫
A

(x × t) dA = 000 (28)

With
t = n · T

and applying the divergence theorem it follows

∫
A

t dA =
∫
A

n · T dA =
∫
V

∇x · T dV (29)

and ∫
V

(ρk + ∇x · T) dV = 000 (30)

This is the integral equilibrium. If the volume is arbitrary and all fields are smooth
the local equilibrium can be expressed as

∇x · T + ρk = 000 (31)

Adding the inertial force −ẍdM = −ẍρdV in the sense of the Newton/d’Alembert
principle, one obtains

∫
V

ρk dV +
∫
A

T dA −
∫
V

ẍρ dV = 000

or ∫
V

(ρk + ∇x · T − ρẍ) dV = 000, (32)

The local equation of motion holds

ρẍ = ∇x · T + ρk (33)

The second equation of (28) results in the symmetry of the stress tensor (T = TT).
The stress tensor T can be split in a spherical and a deviatoric part
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T = 1

3
T ······ II +

(
T − 1

3
T ······ II

)
= 1

3
(trT)I +

[
T − 1

3
(trT)I

]
= TK + TD

2.4 Stress Vectors and Tensors After Piola-Kirchhoff

Up to now the stress vector and the stress tensor are presented in the Eulerian coor-
dinates. The Cauchy tensor of true stresses is defined by the actual force vector
and the actual oriented surface element. In many applications it is better to use the
Lagrangian description and as the minimum to relate the volume and surface elements
to the reference configuration. The transforms (8) and (9) are valid.

Definition 1.18 (First Piola-Kirchhoff stress tensor) If we relate the actual force
vector df to the oriented surface element dA0 = n0dA0 in the reference configuration
we get the following stress vector

I t = df
dA0

The respective tensor I P, which describes the stress state in a material point of the
reference configuration is named first Piola-Kirchhoff or Lagrangian stress tensor.

With

t = df
dA
, I t = df

dA0

one obtains

tdA =I tdA0 = df , t =I t · (detF)−1FT, I t = t · det F
(

F−1
)T

(34)

I P is in general a non-symmetric tensor. With

dA0 = (det F)−1FT · dA

one gets the relations between the Cauchy and the first Piola-Kirchhoff stress tensors

t = n · T, I t = n0 ·I P, (35)

T = (det F)−1F ·I P, I P = (det F)F−1 · T (36)

Assuming the force and the moment equilibrium in the reference configuration, we
get the equations of motion in Lagrangian coordinates
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∫
A0

n0 ·I P dA0 +
∫
V0

ρ0k dV0 −
∫
V0

ẍρ0 dV0 = 000, (37)

∫
A0

[
x × (n0 ·I P)

]
dA0 +

∫
V0

(x × ρ0k) dV0 = 000, (38)

ẍρ0 = ∇X ·I P + ρk, I P · FT = F ·I PT (39)

From the last equation results that I P is a non-symmetrical tensor.

The non-symmetric stress tensor I P is not convenient for the formulation of
the constitutive equations. I P should be modified in such a manner that we get a
symmetric tensor again for the reference configuration. Let us introduce a “fictitious
force vector”

df 0 = F−1 · df (40)

Since
df 0 = I I PT · dA0 (41)

the stress tensor I I P can be introduced.

Definition 1.19 (Second Piola-Kirchhoff stress tensor) If we relate the force vec-
tor df 0 = F−1 ·df to the oriented surface element dA0 of the reference configuration,
one gets the pseudo stress vector I I t with the respective pseudo stress tensor

I I P = I P ·
(

F−1
)T

This is the second Piola-Kirchhoff stress tensor. df = T ·dA is the analogous relation
in the actual configuration to df 0 = I I P · dA0 in the reference configuration. I IP is
a symmetric tensor since

I I P = (detF)F−1 · T · F−T

3 Balance Equations

3.1 General Formulation of Balance Equations

Here we present a brief description of the balance equations. They are mate-
rial independent. We focus our attention to smooth fields. For further discus-
sions and extensions we recommend the special literature, for example, [1, 9–12].
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The problems of two- and one-dimensional or generalized continua are presented in
[13–19] among others.

The task of continuum mechanics is the estimation the density ρ = ρ(X, t),
motion x = x(X, t) and, if thermodynamics is taken into account, the temperature
ϑ = ϑ(X, t) for all material points X as a function of the time t . It can be shown
that the material independent statements can be given by balance equations.

Definition 1.20 (Balance equation) Balance equations are empirical judgements
basic in the continuum mechanics, which express the relationships between the vari-
ables describing the state of the continuum and the external loadings on the body.

The general structure of a balance equation can be given as follows. Ψ (x, t) and
Ψ0(X, t) are distributions of a scalar mechanical variable w.r.t. the volume elements
dV and dV0 in the actual and the reference configuration. The integration over the
volume results in an additive (extensive) variable Y (t)

Y (t) =
∫
V

Ψ (x, t) dV =
∫
V0

Ψ0(X, t) dV0 (42)

With dV = (det F)dV0 holds Ψ0(X, t) = (det F)Ψ (x, t). The material time deriv-
ative of Y (t) is the rate of changes of the state of the system expressed by Ψ (x, t).
This rate is balanced with the action of the surrounding on the body. In the actual
configuration we have

d

dt
Y (t) = d

dt

∫
V

Ψ (x, t) dV =
∫
A

Φ(x, t) dA +
∫
V

Ξ(x, t) dV (43)

and in the reference configuration

d

dt
Y (t) = d

dt

∫
V0

Ψ0(X, t) dV0 =
∫
A0

Φ0(X, t) dA0 +
∫
V0

Ξ0(X, t) dV0 (44)

Φ and Φ0 are the external fluxes through the surface in both configurations, Ξ and
Ξ0 are the source (production) terms in the volume. Such balance equation for scalar
fields can be extended to vectorial and tensorial fields.

Remark 1.1 Φ in the actual configuration is a function of x and t , but also of the
orientation of the surface element dA = n(x, t)dA (with other words dependence of
the normal n). This statement is valid for arbitrary tensor fields (n)Φ =(n) Φ(x,n, t)
of order n ≥ 0. For the reference configuration we get (n)Φ0 =(n)Φ0(X,n0, t) and
dA0 = n0(X, t)dA0.

Remark 1.2 For the n−or n0 dependency of the surface functions Φ or Φ0 the
Cauchy’s lemma is valid
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(n)Φ(x,n, t) = n ·(n+1)Φ̃(x, t), (n)Φ0(X,n0, t) = n0 ·(n+1)Φ̃0(X, t), (45)

Remark 1.3 For the fluxes the third Newton’s law (actio = reactio) is valid. Two
fluxes acting on the surface in a common material point and characterized by the
normals n and −n or n0 and −n0 have the same value, but opposite sign

Φ(n) = −Φ(−n), Φ0(n0) = −Φ0(−n0) (46)

The balance equations stating the equilibrium between the changes of the state of
the body and the fluxes on the surface and the production in the volume have in the
actual configuration the following structure

d

dt

∫
V

(n)Ψ (x, t) dV =
∫
A

n(x, t) ·(n+1) Φ(x, t) dA +
∫
V

(n)Ξ(x, t) dV (47)

In the reference configuration one has

d

dt

∫
V0

(n)Ψ 0(X, t) dV0 ≡ ∂

∂t

∫
V0

(n)Ψ 0(X, t) dV0 (48)

=
∫
A0

n0(X, t) ·(n+1) Φ0(X, t) dA0 +
∫
V0

(n)Ξ0(X, t) dV0

(n)Ψ and (n)Ψ 0 or (n)Ξ and (n)Ξ0 are tensorial fields of the order n (n ≥ 0), (n+1)Φ

and (n+1)Φ0 are tensorial fields of order (n + 1).
Using the following transforms

n = det F
dA0

dA

(
F−1

)T · n0 ⇐⇒ n0 = (det F)−1 dA

dA0
FT · n,

dA = det F
(

F−1
)T · dA0 ⇐⇒ dA0 = (det F)−1FT · dA, (49)

dV = det FdV0 ⇐⇒ dV0 = (det F)−1dV

we get for example from

Φ0 · dA0 = Φ · dA = Φ · det F
(

F−1
)T · dA0 (50)

the relationship between Φ0 and Φ

Φ0 = (det F)Φ ·
(

F−1
)T
, Φ0 = Φ0(X,n0, t), Φ = Φ(x,n, t) (51)

and from Ξ0dV0 = ΞdV = Ξ(det F)dV0 the relationship between Ξ0 and Ξ



Basic Equations of Continuum Mechanics 19

Ξ0 = (det F)Ξ , Ξ0 = Ξ0(X, t), Ξ = Ξ(x, t) (52)

Sometimes it is more useful to apply the mass integrals. Using the same variables
for the distribution functions Ψ and Ξ i the global mechanical balance equation in
the actual configuration can be written

d

dt

∫
m

Ψ (x, t) dm ≡ d

dt

∫
V

Ψ (x, t)ρ dV =
∫
A

n · Φ(x, t) dA +
∫
V

Ξ(x, t)ρ dV

(53)
In Eq. (53) Ψ (x, t),Ξ(x, t) are tensorial fields of the same order n (n ≥ 0), Φ(x, t)
is a tensorial field of the order (n + 1), n(x, t) is the outer normal on A, m(x, t) is
the mass as a continues function of the volume.

If the continuity in the sense of the divergence theorem is fulfilled for Ψ after
application of the theorem to Eq. (53) one gets

d

dt

∫
V

Ψ (x, t)ρ dV =
∫
V

∇x · Φ(x, t) dV +
∫
V

Ξ(x, t)ρ dV (54)

and with dV → 0 the local formulation of the general balance equation

ρ
d

dt
[Ψ (x, t)] = ∇x · Φ(x, t)+ Ξ(x, t)ρ (55)

If we transform the equations into the reference configuration one gets

∂

∂t

∫
V0

Ψ 0(X, t)ρ0 dV0 =
∫
A0

n0 · Φ0(X, t) dA0 +
∫
V0

Ξ0(X, t)ρ0 dV0

=
∫
V0

[∇X · Φ0(X, t)+ Ξ0(X, t)ρ0] dV0

or locally

ρ0
∂

∂t
[Ψ 0(X, t)] = ∇X · Φ0(X, t)+ Ξ(X, t)ρ0 (56)

3.2 Mass Balance and Mass Conservation

The mass is one of the main characteristics of a material body. The mass of the body
can be estimated as the volume integral over the density field



20 H. Altenbach and V. A. Eremeyev

m =
∫
V

ρ(x, t) dV =
∫
V0

ρ0(X) dV0 (57)

This equation contains the global law of mass conservation.

Definition 1.21 (Mass conservation) If we have no mass exchange through the
surface and no mass production in the volume the mass of the body is always constant
that means independent of the time.

ρdV and ρ0dV0 are the mass of a material point before and after the deformation. If
they are the same one gets ρ det F = ρ0 and finally

ρ0

ρ
= det F,

The mass conservation is valid locally.

Theorem 1.2 (Law of mass conservation) The mass dm = ρ(x, t)dV of a material
volume dV is always constant

dm = ρ(x, t)dV = ρ0(X)dV0 = const

The law of mass conservation is equivalent to the continuity of the mass distribution
for the continuum with continuous placement of the material points.

Applying the general balance Eq. (53) with Ψ → 1 (scalar), Φ = 0 (no mass
exchange through the surface A) and Ξ → 0 (no mass production in the volume)
follows

dm

dt
= d

dt

∫
V

ρ(x, t) dV = ∂

∂t

∫
V0

ρ0(X) dV0 = 0 (58)

or locally
d

dt
(dm) = d

dt
(ρdV ) = ∂

∂t
(ρ0dV0) = 0 (59)

The global law of mass conservation in the Eulerian formulation can be given as

d

dt

∫
V

ρ(x, t) dV =
∫
V

[ρ̇(x, t)+ ρ(x, t)∇x · v] dV

=
∫
V

{
∂

∂t
ρ(x, t)+ ∇x · [ρ(x, t)v]

}
dV (60)

The local conservation law is

d

dt
ρ(x, t)+ ρ(x, t)∇x · v(x, t) = ∂

∂t
ρ(x, t)+ ∇x · [ρ(x, t)v] = 0 (61)
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The equation
dρ

dt
+ ρ∇x · v = 0 (62)

is the continuity equation, which can be given also as

∂ρ

∂t
+ ∇x · (ρv) = 0 (63)

From this equation can be made the following conclusions. If ρdV = ρ0dV0 one
gets

dρ0

dt
= 1

dV0
(ρdV )· = 1

dV0

[
ρ̇dV + ρ(dV )·

] = 1

dV0
[ρ̇ + ρ∇x · v] dV = 0

Forρ0 = ρ det F we can compute (ρ det F)· = 0. ρ̇ = 0 results in div v = ∇x ·v = 0.
In Eq. (61) the volume integral over ∇x · (ρv) can be transformed into a surface
integral. The global mass balance is in this case

∫
V

∂ρ

∂t
dV +

∫
A

n · (ρv) dA = 0 (64)

3.2.1 Balance of Momentum

The momentum vector p of the body is defined by

p(x, t) =
∫
m

v(x, t) dm =
∫
V

v(x, t)ρ(x, t) dV (65)

The global balance of momentum is named first Euler-Cauchy law of motion and
can be related to the second Newton’s axiom specified for continua.

Theorem 1.3 (Balance of momentum) The rate of changes of the momentum p(x, t)
during the deformation of the body is equal to the sum of all on the acting surface
and volume forces.

The balance of momentum in the Eulerian description is

d

dt

∫
V

v(x, t)ρ(x, t) dV =
∫
A

t(x,n, t) dA +
∫
V

k(x, t)ρ(x, t) dV (66)

Equation (66) follows from the general balance Eq. (53) with Ψ = v,Φ = T and
Ξ = k
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d

dt

∫
V

vρ dV =
∫
A

n · T dA +
∫
V

kρ dV (67)

In the reference configuration we have

∂

∂t

∫
V0

v(X, t)ρ0(X) dV0 =
∫
A0

I t(X,n0, t) dA0+
∫
V0

k(X, t)ρ0(X) dV0, (68)

and with
I t = n0 · I P

one gets

∂

∂t

∫
V0

v(X, t)ρ0(X) dV0 =
∫
A0

n0(X) ·I P(X, t) dA0 +
∫
V0

k(X, t)ρ0(X) dV0 (69)

Applying the divergence theorem to Eqs. (67) and (69) we get

d

Dt

∫
V

v(x, t)ρ(x, t) dV =
∫
V

[
∇x · T(x, t)+ k(x, t)ρ(x, t)

]
dV , (70)

∂

∂t

∫
V0

v(X, t)ρ0(X) dV0 =
∫
V0

[∇X ·I P(X, t)+ k(X, t)ρ0(X)] dV0 (71)

The local formulations are

∇x · T(x, t)+ ρ(x, t)k(x, t) = ρ(x, t)
Dv(x, t)

Dt
, (72)

∇X ·I P(X, t)+ ρ0(X)k(X, t) = ρ0(X)
∂v(X, t)

∂t
(73)

3.3 Balance of Moment of Momentum

Let us introduce the global vector of the moment of momentum

lO(x, t) =
∫
V

x × ρ(x, t)v(x, t) dV (74)

The respective balance equations result in the second Euler-Cauchy equation of
motion.
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Theorem 1.4 (Balance of moment of momentum) The rate of changes of the
moment of momentum of a body lO(x, t) w.r.t. to the arbitrary point O is equal to
the moments of all on the body acting surface and volume forces.

The Eulerian balance of the moment of momentum is given by

d

dt

∫
V

[x × ρ(x, t)v(x, t)] dV =
∫
V

[x × ρ(x, t)k(x, t)] dV +
∫
A

[x × t(x,n, t)] dA

(75)
With t = n · T and x × n · T = −n · T × x one gets

d

dt

∫
V

x × ρv dV = −
∫
A

n · T × x dA +
∫
V

x × ρk dV (76)

Equation (76) results from the general balance Eq. (53), if Ψ = (x×v), Φ = −(T×x)
and Ξ = (x × k). After some algebra it can be shown that for classical continua
the balance of moment of momentum results in the symmetry condition for the
Cauchy stress tensor. It can be shown that we have for the first and second Piola-
Kirchhoff tensors different conclusions. The symmetry for the first Piola-Kirchhoff
tensor cannot be established since we obtain

I P · FT = F · I PT

3.4 Balance of Energy

Now we are prescribing two properties in each material point: the density ρ and the
temperature θ . Both are non-negative (ρ ≥ 0, θ ≥ 0). The foundation of any ther-
momechanical analysis is given by the first and the second law of thermodynamics.
The first law is the balance of energy, the second one of entropy.

Within the framework of continuum thermodynamics we have to introduce at first
suitable variables for the description of the macroscopic properties of the continuum.
Let us assume macroscopic measurable, independent of each other parameters, which
describe the state of the continuum in a unique manner. These parameters are named
state variables. We have to distinguish extensive (additive) and intensive variables.
The additive variables are proportional to the amount of continuum, expressed for
example by the mass. The inner energy of the system is a typical extensive state
variable. It depends only on the kinematical variables and the temperature: U =U
(kinematic variables, θ). If we divide a homogeneous system with the mass m into
n homogeneous subsystems with the masses mi the following statement is valid
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Ui =
(mi

m

)
U , i = 1, . . . , n,

n∑
i=1

Ui = U ,

n∑
i=1

mi = m (77)

Intensive variables are independent of the amount of the continuum. If we divide now
the system which is in an equilibrium state, into n subsystems, than the intensive
state variable in each subsystem has the same value. Examples are the density and
temperature.

Let us introduce the following limitations for the further developments:

• The continuum is assumed to be homogeneous that means in each material point
we have the same properties.

• We assume that there is no mass exchange with the surrounding. The mass con-
servation is valid.

• We are assuming only mechanical and thermal actions.

Let us introduce the first law of thermodynamics.

Definition 1.22 (Thermomechanical balance of energy) The rate of changes of
the total energy W within the volume is equal to the sum of the rate of the external
heat supply Q and the power of all external forces Pa

d

dt
W = Pa + Q (78)

The total energy W consists of the inner energy U and the kinetic energy K

W = U + K (79)

The kinetic energy is given as

K = 1

2

∫
V

v · vρ dV

The inner energy is an additive function of the mass

U =
∫
m

u dm =
∫
V

ρu dV

with u as the inner energy density. The power of the external forces Pa is based on
the introduced volume and surface forces

Pa =
∫
A

t · v dA +
∫
V

k · vρ dV (80)
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The rate of heat supply consists of two parts: contribution of the heat sources r in
the volume and the heat flux through A

Q =
∫
V

ρr dV −
∫
A

n · h dA (81)

h is the heat flux vector.
Now we have instead of Eq. (78)

U̇ + ˙K = Pa + Q (82)

or

d

dt

∫
V

(
u + 1

2
v · v

)
ρ dV =

∫
A

t · v dA +
∫
V

k · vρ dV −
∫
A

n · h dA +
∫
V

rρ dV

(83)
Taking into account t = n · T the first law of thermodynamics can be obtained from
the general balance Eq. (53) with

Ψ → u + 1

2
v · v, Φ = T · v − h, Ξ → k · v + r

In the reference configuration one gets

∂

∂t

∫
V0

(
u + 1

2
v · v

)
ρ0 dV0 =

∫
A0

I t · v dA0 +
∫
V0

k · vρ0 dV0

−
∫
A0

n0 · h0 dA0 +
∫
V0

rρ0 dV0 (84)

With respect to Eq. (34) for the relationship between t and I t we have the relationship
between h and h0

h0 = (det F)F−1 · h, h = (det F)−1F · h0 (85)

With
d

dt

(
1

2
v · v

)
= 1

2
v̇ · v + 1

2
v · v̇ = v̇ · v,

∫
A

n · (T · v − h) dA =
∫
V

[∇x · (T · v)− ∇x · h] dV

∇x · (T · v) = (∇x · T) · v + T ······ (∇xv)T = (∇x · T) · v + T ······ D
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from Eq. (83) it follows

∫
V

(
du

dt
+ v̇ · v

)
ρ dV =

∫
V

(T ······ D − ∇x · h + ρr) dV

+
∫
V

[(∇x · T) · v + ρk · v] dV (86)

The underlined terms are the balance of momentum and we can simplify Eq. (86)

∫
V

(ρu̇ − T ······ D + ∇x · h − ρr) dV = 0 (87)

The local form holds
ρu̇ = T ······ D − ∇x · h + ρr (88)

The balance of energy in the reference configuration is

∫
V0

ρ0
∂u

∂t
dV0 =

∫
V0

(I I P ······ Ġ − ∇X · h0 + ρ0r) dV0 (89)

or in the local form

ρ0
∂u

∂t
= I I P ······ Ġ − ∇X · h0 + ρ0r (90)

In Eq. (90) the conjugated pair (I I P, Ġ) can be substituted by (I P, Ḟ).

3.5 Balance of Entropy

One of the possible formulations of the second law of thermodynamics is the
following.

Theorem 1.5 (Balance of entropy) The rate of changes of the entropy S within the
volume is not less than the rate of the external entropy supply.

The entropy is an additive function that means

S =
∫
m

s dm =
∫
V

ρs dV (91)

with s as the inner entropy density. Now the second law of thermodynamics can be
stated in the global form
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d

dt

∫
V

ρs dV ≥
∫
V

r

θ
ρ dV −

∫
A

n · h
θ

dA (92)

For all real processes (92) is an inequality (>) or with other words real processes are
always irreversible.

With the transform
∫
A

n · h
θ

dA =
∫
V

∇x ·
(

h
θ

)
dV =

∫
V

(∇x · h
θ

− h · ∇xθ

θ2

)
dV , (93)

we get the local formulation

ρθ ṡ ≥ ρr − ∇x · h + 1

θ
h · ∇xθ (94)

or
ρθ ṡ − (ρr − ∇x · h)− h · ∇x ln θ ≥ 0 (95)

The term in brackets can be substituted by Eq. (88)

ρθ ṡ + T ······ D − ρu̇ − h · ∇x ln θ ≥ 0 (96)

and with
ρθ ṡ = ρ(θs)· − ρsθ̇

it follows

ρ
d

dt
(θs − u)− ρs

dθ

dt
+ T ······ D − h · ∇x ln θ ≥ 0 (97)

The term
(u − θs) = f (98)

is the Helmholtz free energy.

All entropy balances can be presented in the reference configuration, for example
the global balance

∂

∂t

∫
V0

ρ0s dV0 ≥
∫
V0

r

θ
ρ0 dV0 −

∫
A0

n0 · h0

θ
dA0

or the local one

ρ0θ
∂s

∂t
≥ (ρ0r − ∇X · h0)+ 1

θ
h0 · ∇Xθ



28 H. Altenbach and V. A. Eremeyev

4 Constitutive Modeling

Equations describing the specific behavior of the continua are named constitutive,
physical or state equations. Let us introduce according to [20] the following defini-
tion.

Definition 1.23 (Constitutive equations) Constitutive equations link all phenom-
enological variables describing the macroscopic behavior of the continuum.

Among such variables are: stresses, strains, temperature, heat flux, etc.

The number of necessary constitutive equations depends on the problem. In the
case of thermomechanical problems we have the following balance equations: mass
(1 scalar equation), momentum (1 vectorial equation or for three-dimensional prob-
lems 3 scalar equations), moment of momentum (1 vectorial or 3 scalar equations),
energy (1 scalar equation) and entropy (1 scalar inequality). Since the entropy
inequality yields only in the determination of the process direction we have only
8 scalar equations to estimate 19 variables: density ρ (1 scalar variable), displace-
ments u or velocities v (1 vector or its 3 coordinates), stress tensor T (1 second-order
tensor or 9 coordinates, inner energy u (1 variable), entropy s (1 variable), temper-
ature θ (1 variable) and heat flux h (1 vector or 3 variables). In this case we have
to add 11 constitutive equations otherwise the the system of governing equations is
underestimated and we cannot solve problems.

Before we start the formulation of constitutive equations let us introduce some
restrictions and definitions. We limit ourselves by the consideration of classical con-
tinua. Other continua are discussed in the literature, for example, micropolar continua
are presented in [4]. In addition, we assume that we have only simple materials of
first order [21].

Definition 1.24 (Simple material of first order) A simple material of first order
defined by constitutive equations which contains only local variables, for example
the local strain tensor and the locale heat flux vector with the local stress tensor and
the local temperature gradient. All conclusions are made for the same material point
and its differential surrounding of first order.

Since the constitutive equations present the individual response of the material uni-
versal constitutive equations cannot be established [22]. That means we are dis-
cussing always special cases. The constitutive equations can be formulated using the
top-down approach, the bottom-up approach or rheological models. Here we present
only the top-down approach that we start with some mathematical and physical state-
ments. At first we assume that the balances are valid. The mathematical structure
of the constitutive equations can be established with the axioms of the theory of
materials.

Let us start with ordering the variables which are included in the set of constitutive
equations. We assume that all variables depend on the position (x or X) and the
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time t . The material behavior can be presented by functional relationships between
the constitutive variables and the constitutive parameters. For example, within the
framework of thermomechanics the temperature θ is a constitutive parameter and the
heat flux vector h is a constitutive variable. The choice of the constitutive parameters
and the constitutive variables is arbitrary.

If we want to describe the processes realized in the material points of the contin-
uum history of changes of the constitutive parameters should be given.

Definition 1.25 (Process) The time changes of the constitutive parameters in the
material points is named process.

Definition 1.26 (Constitutive variable) The behavior of the continuum in each
material point can be presented by a set of constitutive variables. They can be time
operators of the processes in the points.

The respective functional relationships are the constitutive equations. Below we
discuss only constitutive equations for solids. With respect to the second axiom of
rheology [23, 24] all real bodies show solid and fluid properties. So we consider that
the solid behavior is dominant.

Definition 1.27 (Solid) The acting on the body loads results in the stress deviator
to non-zero elements that means it resists to the changes of the shape of the body.

In this sense we distinguish time-independent and time-dependent material behavior
[1]. Elastic and plastic materials belong to the first group, viscoelastic and viscoplastic
materials—to the second one.

4.1 Basics of Material Theory

Let us discuss some basic tools in material modeling based on the top-down approach.
As usual one should focus on the attention to the following three questions [1]:

• formulation of constitutive equations,
• consideration of symmetries of the material behavior and
• consideration of kinematic constraints.

The last one is important w.r.t. models for compressible and incompressible materials.

The systematical deduction of constitutive equations can be realized with the help
of some principal axioms (constitutive principles). The main axioms are:

• causality,
• determinism,
• equipresence,
• materielle objectivity,
• locale action,
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• memory and
• physical consistency.

A detailed discussion of the physical meaning and the mathematical consequences
for the aforementioned axiom is given in [25].

4.2 General Constitutive Equations of Thermo-Mechanical
Materials

The thermodynamical state of the continuum is defined by the motion x = x(X, t)
and the temperature θ = θ(X, t) of the material points X at the instant time t . x
and θ are independent variables. As dependent variables (constitutive variables) we
postulate the stress tensor, the heat flux vector, the free energy and the entropy.

For general models of the material behavior we should assume that the actual state
not only depends on the actual loading, but also from the loading history t0 < τ ≤ t .
In addition, the behavior of the given material point X also depends on the behavior
of all other points of the body X̃. If we assume for the functions x(X̃, τ ) and θ(X̃, τ )
the continuity w.r.t. X̃ and τ , we can represent the behavior by Taylor series for the
points X by powers of (X̃ − X) and for the time τ by powers (τ − t). Applying
the axiom of local action and memory axiom (in special situations fading memory
the power series for x(X̃, τ ) and θ(X̃, τ ) can be limited by the first derivative with
respect to X̃ and τ , respectively. The constitutive variables depend in this case on
X and θ , but also from ∇Xx, ∇Xθ and θ̇ . Other models take into account second
gradients (see [26–29] among others).

Assuming the axiom of material objectivity there is no explicit dependency of x
or ẋ since only the strains or the strain rates and not the rigid body motions define the
material behavior. For many real materials the gradients ∇Xx and ∇Xθ are influenced
by the loading history. Taking into account the first derivatives only in this case ∇Xẋ
and ∇X θ̇ act as constitutive variables.

The constitutive equations of a simple thermomechanical material take the form

P(X, t) = P
{
X, θ(X, t), θ̇ (X, t),∇Xθ(X, t),∇X θ̇ (X, t),Γ (X, t)

}
,

h0(X, t) = h0
{
X, θ(X, t), θ̇ (X, t),∇Xθ(X, t),∇X θ̇ (X, t),Γ (X, t)

}
,

f (X, t) = f
{
X, θ(X, t), θ̇ (X, t),∇Xθ(X, t),∇X θ̇ (X, t),Γ (X, t)

}
,

s(X, t) = s
{
X, θ(X, t), θ̇ (X, t),∇Xθ(X, t),∇X θ̇ (X, t),Γ (X, t)

} (99)

The set Γ includes all mechanical variables ∇Xx(X, t),∇Xẋ(X, t) characterizing
the deformation. The stress tensor P can be the first or the second Piola-Kirchhoff
tensor. The explicit dependency of the constitutive equations on X is equivalent to
the statement that in each point of the body one can have different kinds of material
behavior otherwise the body is homogeneous. In general the constitutive equations
are functionals (operators). This is shown by the symbol {. . .}. If the prehistory has
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no influence on the actual material behavior, the constitutive equations are functions
and the symbol (. . .) is used.

The axiom of physical consistency axiom allows a further specification of Eq. (99).
In the case of simple thermoviscoelastic materials (the time dependency is related to
the initial state, but not to the prehistory) the elastic strains and the strain rates can be
expressed by C, Ċ. If an independent relation to parameters ρ, ρ̇ cannot be assumed,
these parameters can be ignored and we have for simple thermoviscoelastic solids
(no influence of the prehistory)

P(X, t) = P
{
X, θ, θ̇ ,∇Xθ,∇X θ̇ ,C, Ċ

}
,

h0(X, t) = h
{
X, θ, θ̇ ,∇Xθ,∇X θ̇ ,C, Ċ

}
,

f (X, t) = f
{
X, θ, θ̇ ,∇Xθ,∇X θ̇ ,C, Ċ

}
,

s(X, t) = s
{
X, θ, θ̇ ,∇Xθ,∇X θ̇ ,C, Ċ

} (100)

For pure thermoelastische solids the time derivatives can be ignored

P(X, t) = P {X, θ,∇Xθ,C} ,
h0(X, t) = h {X, θ,∇Xθ,C} ,
f (X, t) = f {X, θ,∇Xθ,C} ,
s(X, t) = s {X, θ,∇Xθ,C}

(101)

4.3 Elastic Simple Material

As a first example let us discuss the ideal-elastic material behavior. In this case we
have constitutive equations which are functions. In the pure mechanical case one
has to present a relation between the stress and the strain tensors. Considering the
material objectivity in this relation the following equations are valid

I I P(X, t) = f (C,X, t) or I I P(X, t) = g(G,X, t)

Here the assumption of simple material is included since only the gradient of x(X, t)
(deformation gradient tensor F(X, t)) is taken into account.

The specific elementary work in the reference configuration is the starting point
for the further discussions. The constitutive Eq. (101) have a very simple form

I P(X, t) = I P(F),

and the variation of the elementary work Wi gives

δWi = 1

ρ0

I P ······ δFT
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The work depends on the strains at current time t . This work is stored as the strain
energy of the body

δWi = δU = 1

ρ0

I P ······ δF

with u = u(F) as the specific strain energy density function. This function should
not be influenced by rigid motions of the body (material objectivity axiom). From
this it follows for arbitrary rotations Q

u(F) = u(Q · F) = u

(√
(Q · F)T · (Q · F)

)
= u

(√
FT · F

)
= u(U) (102)

With U2 = C and G = 1

2
(C − I) we have u(U) = û(C) or u(U) = ǔ(G). From

δu(F) = ∂u(F)
∂F

······ δFT =
[
∂u(F)
∂F

]
······ δF = [

u(F),F
]T ······ δF

one gets
1

ρ0

I P =
[
∂u(F)
∂F

]
=

[
∂ û(C)
∂F

]
(103)

or after some manipulations

I P = 2ρ0F · ∂ û(C)
∂C

(104)

With respect to the transform rules

T = (det F)−1 I P · FT, I I P = F−1 ·I P

we can formulate the constitutive equation for the Cauchy stress tensor T and the
second Piola-Kirchhoff stress tensor I I P

T = 2ρF · ∂ û

∂C
· FT,

I I P = 2ρ0
∂ û(C)
∂C

= f (C) or I I P = 2ρ0
∂ ǔ(G)
∂G

= g(G)

This is the general constitutive equation in the non-linear elasticity assuming large
deformations and isothermal behavior. If we have special cases of anisotropy than
further simplifications are possible. In the simplest case (isotropy) the energy density
function u = u(C) depends only on the invariants of the tensor C

u = û(C) = û[I1(C), I2(C), I3(C)]
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At first we consider the chain rule

∂ û(C)
∂C

= ∂ û

∂ I1

∂ I1

∂C
+ ∂ û

∂ I2

∂ I2

∂C
+ ∂ û

∂ I3

∂ I3

∂C

With

I1(C) = tr C,

I2(C) = 1

2

[
I 2
1 (C)− I1(C2)

]
,

I3(C) = 1

3

[
I1(C3)+ 3I1(C)I2(C)− I 3

1 (C)
]

one gets

∂ I1

∂C
= I,

∂ I2

∂C
= I1I − C,

∂ I3

∂C
= C2 + I I2(C)+ I1(C)[I1(C)I − C] − I 2

1 (C)C

and

û,C =
(
∂ û

∂ I1
+ I1

∂ û

∂ I2
+ I2

∂ û

∂ I3

)
I −

(
∂ û

∂ I2
+ I1

∂ û

∂ I3

)
C + ∂ û

∂ I3
C2

= φ0I + φ1C + φ2C2,

Here φi = φi (I1, I2, I3). Finally we obtain

I P = 2ρ0F · (φ0I + φ1C + φ2C2)

For an arbitrary isotropic tensor function f (A) one gets in the case of orthogonal
tensors Q

Q · f (A) · QT = f (Q · A · QT)

and the following representation

f (A) = φ0I + φ1A + φ2A2

Then for the isotropic elastic body we can write the constitutive equation

I I P = ψ0I + ψ1G + ψ2G2,

where ψi is now a function of the invariants of G.
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Introducing kinematic restrictions another special case can be deduced. For
example, for the incompressibility (isochoric motions) the following equations are
valid

det F = 1 det C = 1 or
√

det(2G − I)− 1 = 0,

The kinematic constraint can be expressed as follows

λ(C) = det C − 1 = 0

That means I3(C) = 1 and instead of û = û(I1, I2, I3) we have û = û(I1, I2) or

∂ û

∂ I3
= 0

With the help of the method of Lagrangian multipliers one gets the constitutive
equation

I P = 2ρ0F ·
[(

∂ û

∂ I1
+ I1

∂ û

∂ I2

)
I − ∂ û

∂ I2
C

]
− pF−1,

where p is an a priori unknown function (called hydrostatic pressure), which can be
estimated from the equilibrium/motion equation.

4.4 Models with Internal Variables

Dissipative effects can be modeled with the help of different concepts and we have
various possibilities to formulate the constitutive equations. One possibility is the
introduction of viscose stresses depending on the strain rates. Another possibility is
given using the fading memory principle. Here we apply a third approach: at first
some inner variables are postulated, which have an influence on the free energy.
In addition, for the inner variable we need evolution equations. Examples of inner
variables are creep strains, plastic strains or damage variables.

The starting point are the balances and the constitutive equations for homogeneous
materials. The last one depends now additionally on Υ i (X, t) (i = 1, . . . , n)—the
inner variables. The inner variables are tensor-valued variables of different order. For
example, in the case of isotropic damage a scalar is used, for isotropic hardening—
scalar, kinematic hardening-second-order tensor or anisotropic damage-fourth-order
tensor. The evolution equations can be postulated in the following form

DΥ i

Dt
= Y i (θ,∇xθ, g,Υ 1, . . . ,Υ n) (105)

Finally, dissipative materials can be presented by the following set of constitutive
and evolution equations
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I P(X, t) = I P (θ,∇xθ, g,Υ i ),

h0(X, t) = h0 (θ,∇xθ, g,Υ i ),

f (X, t) = f (θ,∇xθ, g,Υ i ),

s(X, t) = s (θ,∇xθ, g,Υ i ),

Υ̇ i (X, t) = Y i (θ,∇xθ, g,Υ 1, . . . , Υ n)

(106)

They should be completed by initial conditions

Υ i (X, t0) = Υ 0
i (X) (107)

The problems of the formulation of constitutive equations incorporating inner
variables and large deformations are widely discussed in the literature, see [30]
among others. Assuming geometrical linearity it will be much more simpler. Now
we present the strains by ε (Cauchy or small strain tensor) and the stresses by σ .
It is not necessary to distinguish two configurations. In addition, we assume that in
analogy to Sect. 4.3 the heat flux vector is given by the anisotropic Fourier’s law.
For the other constitutive equations we suggest the independence of the temperature
gradient. Finally we have the constitutive and evolution Eq. (106)

σ = σ (θ, ε,Υ i ),

h = −κ · ∇∇∇θ,
f = f (θ, ε,Υ i ),

s = s(θ, ε,Υ i ),

Υ̇ i = Y i (θ,∇Xθ, ε,Υ i )

(108)

The analysis will be performed as shown in Sect. 4.3. The staring point is the free
energy f . Note that the strains consist of an elastic and an inelastic part

ε = εel + εinel = εel + εpl (109)

with εel as thermoelastic strains, εinel as inelastic strains and εpl as plastic strains.
For the free energy w.r.t. Eq. (109) we can assume

f = f (θ, ε, εel, εpl,Υ i ) (110)

The total strainsε, the elastic strainsεel and the plastic strainsεpl are connected by one
equation. Following [31] the form of the free energy considering the decomposition
of the total strains can be obtained

f = f (θ, ε − εpl,Υ i ) = f (θ, εel,Υ i )

The derivative of the free energy is

ḟ = ∂ f

∂εel ······ ε̇el + ∂ f

∂θ
θ̇ + ∂ f

∂Υ i
� Υ̇ i
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and finally we get the following dissipative inequality

(
σ − ρ

∂ f

∂εel

)
······ ε̇el +σ ······ ε̇pl −ρ

(
s + ∂ f

∂θ

)
θ̇ −ρ ∂ f

∂Υ i
� Υ̇ i + 1

θ
(κκκ ·∇∇∇θ) ·∇∇∇θ ≥ 0

(111)
� is the scalar product of tensors of an arbitrary order. The underlined terms in the
inequality (111) are discussed in Sect. 4.3. If the thermoelastic strains are indepen-
dent, for the stresses can be assumed

σ = ρ
∂ f

∂εel (112)

This yields

s = −∂ f

∂θ
(113)

Equations (112) and (113) describe the thermoelastic state of the materials. This state
is free from dissipation. From the dissipative inequality follows

σ ······ ε̇pl − ρ
∂ f

∂Υ i
� Υ̇ i + 1

θ
(κκκ · ∇∇∇θ) · ∇∇∇θ ≥ 0 (114)

The first two terms describe the mechanical dissipation, the last one—the thermal.

Let us assume the existence of a scalar dissipation potential and the thermal and
mechanical dissipation can be decoupled. We suggest that the dissipation potential
must be convex. For the mechanical dissipation we obtain

χ = χ(ε̇pl, Υ̇ i )

If we can assume an associated law (normality rule)

σ = ∂χ

∂ ε̇pl

and

Λi = ∂χ

∂Υ̇ i

Λi are the associated to the inner variables functions.

5 Governing Equations of Mechanics of Hyperelastic Materials

A material is named hyperelastic, if an elastic potential u exists and u is a scalar func-
tion of the strain tensor. This energy is preserved as the result of the loading process. If
we have only elastic behavior (we ignore, for example, viscoelastic behavior, creep
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or damage) this energy is reservable. In addition in the further developments we
ignore the influence of the temperature. For rubber-like materials the elastic strains
are sometimes more than 1,000 %. Limiting ourselves by the isotropy assumption,
the nonlinear elasticity theory should be applied.

Note that in the case of finite strains we must distinguish the reference and the
actual configurations. That means the constitutive equations can be presented in
both configurations. Below we present all equations and variables in the reference
configuration (Lagrangian description).

The starting point for the kinematics are the considerations of Sect. 1. The
deformable body is a part of the three-dimensional space. The position of the material
points in the reference configuration is given by the radius-vector XXX , in the actual
configuration by the radius-vector xxx . The displacement vector can be presented by
uuu = xxx − XXX . The deformation gradient FFF is defined by Eq. (7). In the nonlinear elas-
ticity the right Cauchy-Green tensor CCC (15) can be used as strain measure and the
respective strain tensor GGG is the Green-Lagrange tensor (16).

In the case of rubber-like materials the incompressibility assumption often is
applied. The physical meaning of this assumption is that the volumetric strains can
be neglected in comparison with the strains responsible for the shape changes. The
incompressibility condition is equivalent to the following equation

J ≡ det FFF = 1. (115)

Let us introduce the following invariants

I1 = tr CCC, I2 = 1

2

[
tr 2CCC − tr CCC2

]
, I3 = det CCC = J 2. (116)

For incompressible materials we get I3 = 1. The invariants Ik can be expressed with
the help of the eigen-values λ2

i of the Cauchy-Green strain measure CCC

I1 = λ2
1 + λ2

2 + λ2
3, I2 = λ2

1λ
2
2 + λ2

2λ
2
3 + λ2

1λ
2
3, I3 = λ2

1λ
2
2λ

2
3. (117)

In linear elasticity the split of the strain tensor into spherical and deviatoric parts is
used. The first one is responsible for the volumetric strains, the second one—for the
deviatoric (isochoric) strains, which have no relations to the changes of the volume.
In non-linear elasticity if we have finite strains the isochoric strains can be presented
by the normalized strain gradient F̄FF = J−1/3FFF , which results in det F̄FF = 1. In
addition, one can introduce the normalized Cauchy-Green strain measure

C̄CC = F̄FF
T · F̄FF . (118)

and instead of the invariants I1, I2, I3-the normalized invariants of F̄FF

Ī1 = J−1/3 I1, Ī2 = J−2/3 I2, J. (119)
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The invariants (119) are used in formulation of constitutive equations for weak com-
pressible materials. They can be expressed by the eigen-values λ̄2

i of the strain mea-
sure of C̄CC

Ī1 = λ̄2
1 + λ̄2

2 + λ̄2
3, I2 = λ̄2

1λ̄
2
2 + λ̄2

2λ̄
2
3 + λ̄2

1λ̄
2
3. (120)

The constitutive equations of a non-linear elastic body can be introduced with the
help of the specific strain energy (related to the volume in the reference configuration)
W as a function of the Cauchy-Green strain measure or tensor

u = u(CCC) = u(GGG) (121)

For finite strains the CCC is more used than GGG. In the case of isotropic materials W is
a function of the invariants of CCC and we have the representation by Ik or λk

u = u(I1, I2, I3) = u(λ1, λ2, λ3) = u( Ī1, Ī2, J ) (122)

Introducing u the stress tensors can be computed as

• the Piola stress tensor

PPP = 2FFF · ∂u

∂CCC
, (123)

• or the Cauchy stress tensor (tensor of true stresses)

TTT = 2J−1FFF · ∂u

∂CCC
· FFFT. (124)

In the case of incompressible materials the stress tensors can be estimated from the
strain energy only for terms which are related to isochoric strains. That means the
following expressions are valid for

• the Piola stress tensor

PPP = −pFFF−1 + 2FFF · ∂u

∂CCC
, (125)

• for the Cauchy stress tensor

TTT = −pIII + 2FFF · ∂u

∂CCC
· FFFT. (126)

Here III is the unit tensor and p is a unknown function. The physical meaning of the
last one is similar to the pressure in an incompressible fluid. From the point of view
of mathematics this is a Lagrangian multiplier related to Eq. (115).

Taking into account the equation for the derivatives of the invariants Ik

∂ I1

∂CCC
= III ,

∂ I2

∂CCC
= III I1 − CCC,

∂ I3

∂CCC
= I3CCC−1, (127)
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we get
∂u

∂CCC
= (u, 1 + I1u, 2)III − u, 2CCC + I3u, 3CCC−1, u, k ≡ ∂u

∂ Ik
(128)

Finally, for the isotropic incompressible material the Cauchy stress tensor (124) can
be expressed by

TTT = 2J−1
[
(u, 1 + I1u, 2)BBB − u, 2BBB2 + I3u, 3III

]
, (129)

where BBB = FFFT · FFF is the left Cauchy-Green tensor or Finger strain measure (15).

It can be shown [32] that the principal stresses σk (eigen-values of the Cauchy
stress tensor TTT ) for isotropic materials can be estimated by derivatives of u w.r.t. λk

σk = J−1λk
∂u

∂λk
. (130)

Note that sometimes the principal forces tk are applied. They are related to σk by the
following equation

tk = J

λk
σk (131)

and we get a very simple relation between tk and u

tk = ∂u

∂λk
(132)

The physical meaning of σk and tk are as follows. Let us introduce a infinitesimal
cube in the volume, which is oriented in such a manner that the normals to surfaces
have the same direction as the eigen-vectors of TTT (principal axes). Than σk are forces
related to the surfaces in the actual configuration and tk are forces related to surfaces
in the reference configuration. In the case of finite strains both quantities can differ
significantly. In the case of isotropic incompressible materials the Cauchy stress
tensor (126) can be computed as

TTT = −pIII + 2(u, 1 + I1u, 2)BBB − 2u, 2BBB2, (133)

the principal stresses σk and principal forces tk as

σk = −p + λk
∂u

∂λk
, tk = − p

λk
+ ∂u

∂λk
. (134)
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6 Constitutive Equations of Incompressible Materials

The incompressibility assumption is often used in modeling of highly elastic materi-
als. The strain should be a function of the first and the second invariant of the strain
measure CCC

u = u(I1, I2). (135)

6.1 Polynomial Approximation

This model suggested in [33] is based on the Taylor series expansion of the strain
energy u in the neighborhood of the undeformed state

u =
M∑

m=0

N∑
n=0

Cmn(I1 − 3)m(I2 − 3)n (136)

Cmn are material parameters with C00 = 0.

6.2 Treloar (Neo-Hookean) Material

The Treloar material [34] is an example of Eq. (136). This model is based on the
Gaussian kinetic theory for rubber-like materials. The following constitutive equation
is suggested

u = C1(I1 − 3), C1 > 0. (137)

The model is very simple and some vulcanized rubbers with organic fillers can be
presented at moderate strains.

6.3 Mooney Material

The model of the Mooney material [35] can be deduced from (136) if one preserves
only the linear term

u = C1(I1 − 3)+ C2(I2 − 3), C1 > 0, C2 ≥ 0. (138)

It is easy to show that the Treloar model is a special case of the Mooney material.
Equation (138) allows to describe the behavior of some natural and vulcanized rub-
bers in a wide range. But in the case of strains higher 400–500 % the description is
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dissatisfying. Together with the Ogden material the Mooney material is mostly used
in applications. Some generalizations of Eq. (138) are known.

6.4 Rivlin-Saunders Material

Rivlin and Saunders [36] generalized the Mooney material

u = C1(I1 − 3)+ F(I2 − 3), (139)

where F(I2 − 3) is an arbitrary function, which should be estimated for the given
material. As usual for F(I2 −3) are proposed polynomial approximations, for exam-
ple, Klosner and Segal introduced a cubic polynomial for (I2 − 3)

u = C1(I1 − 3)+ C2(I2 − 3)+ C3(I2 − 3)2 + C4(I2 − 3)3. (140)

6.5 Biderman Model

Biderman [37] suggested the following function for the strain energy for gray rubber

u = C1(I1 − 3)+ B1(I1 − 3)2 + B2(I1 − 3)3 + C2(I2 − 3). (141)

6.6 Non-Polynomial Approximation

Not in all notations for u the function F(I2 − 3) in (139) is included as a polynomial
of (I2 − 3). For example, in [38] an exponential-hyperbolic constitutive equation is
suggested

u = C

[∫
ek1(I1−3)2 dI1 + k2 ln

I2

3

]
. (142)

Alexander introduced [39]

u = C1(I1 − 3)+ C2(I2 − 3)+ C3 ln
I2 − 3 + k

k
(143)

and

u = C1

∫
ek1(I1−3)2 dI1 + C2(I2 − 3)+ C3 ln

I2 − 3 + k2

k2
(144)
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with C , C1, C2, C3, k, k1, k2 as material parameters. Equation (143) is equivalent to
the Rivlin-Saunders Eq. (139) and (144) summarizes elements of (139) and (142).
The last one describes the behavior of natural rubber. The last example is the strain
function proposed by Hutchinson, Becker and Landel [40]

u = C1(I1 − 3)+ B1(I1 − 3)2 + B2(1 − ek1(I2−3))+ B3(1 − ek2(I2−3)). (145)

describing the behavior of silicon rubber in one-and two-axial tests.

6.7 Incompressible Ogden Material

Ogden [41] suggested a constitutive equation for the strain energy u, based on λ1,
λ2, λ3

u = 2μ

α
(λα1 + λα2 + λα3 − 3) = 2μ

α

[
tr CCCα/2 − 3

]
. (146)

The generalization of this two-parameter model (146)

u =
N∑

n=1

2μn

αn
(λ
αn
1 + λ

αn
2 + λ

αn
3 − 3) =

N∑
n=1

2μn

αn
(tr CCCαn/2 − 3). (147)

is also called Ogden material. Similar to the polynomial approximation (136) model
(147) contains enough material parameters for the fitting of experimental data. At
the same time it is difficult to perform the large number of tests.

6.8 Chernykh-Shubina Material

Independent from the Ogden material model the two-parameter model of Chernykh
and Shubina [42, 43] was created

u = μ
[
(1 + β)(λ1 + λ2 + λ3 − 3)+ (1 − β)(λ−1

1 + λ−1
2 + λ−1

3 − 3)
]

= μ
[
(1 + β)(tr CCC1/2 − 3)+ (1 − β)(tr CCC−1/2 − 3)

]
.

(148)

6.9 Bartenev-Khazanovich Material

In the mechanics of polymers the one-parameter model of Bartenev-Khazanovich
[44], which is a special case of the Ogden material or the Chernykh-Shubina model,
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is established

u = 2μ(λ1 + λ2 + λ3 − 3) = 2μ(tr CCC−1/2 − 3). (149)

In the literature the constitutive Eq. (149) is sometimes named Varga material [45].

7 Constitutive Equations of Compressible Materials

The incompressibility condition is often assumed in modeling of rubber-like materi-
als. In some cases this approximation is not acceptable. For example, the deformation
problem of high-elastic damping material between two rigid plates can be solved
only if the weak compressibility of the material is taken into account. In the litera-
ture such models for weak compressible materials are introduced which are based on
the aforementioned constitutive equations for incompressible materials adding terms
accounting the changes of the specific volume of the material. In addition, there are
models for compressible materials based on experimental data and not using the
hypothesis on weak compressibility.

7.1 Compressible Neo-Hookean Material

This model for weak compressible materials is a generalization of the Treloar
material. The constitutive equation has the form

u = C1( Ī1 − 3)+ 1

d
(J − 1)2, (150)

where d is a material parameter characterizing the compressibility. In the case of
small strains the modulus of compressibility k for the material (150) is related to d
by the equation k = 2/d. For incompressible materials d = 0 is valid and the last
term in (150) is the penalty, presenting the contribution of the volumetric strains to
the strain energy.

7.2 Mooney-Rivlin Material

The polynomial approximation (136) can be generalized for the case of materials
with small compressibility, for example elastomers. The generalization is given as
additional terms depending on J in the strain energy
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u =
M∑

m=0

N∑
n=0

Cmn( Ī1 − 3)m( Ī2 − 3)n +
N∑

n=1

1

dn
(J − 1)2n . (151)

The special case of (151) is the two-parameter Mooney-Rivlin material

u = C10( Ī1 − 3)+ C01( Ī2 − 3)+ 1

d
(J − 1)2. (152)

In FE codes polynomial approximations are implemented, which contain a big
amount of material parameters, for example the three-parameter Mooney-Rivlin
material

u = C10( Ī1 − 3)+ C01( Ī2 − 3)+ C11( Ī1 − 3)( Ī2 − 3)+ 1

d
(J − 1)2, (153)

the five-parameter Mooney-Rivlin material

u = C10( Ī1 − 3)+ C01( Ī2 − 3)+ C20( Ī1 − 3)2

+C02( Ī2 − 3)2 + C11( Ī1 − 3)( Ī2 − 3)+ 1
d (J − 1)2,

(154)

or the nine-parameter Mooney-Rivlin material

u = C10( Ī1 − 3)+ C01( Ī2 − 3)+ C20( Ī1 − 3)2 + C02( Ī2 − 3)2

+C11( Ī1 − 3)( Ī2 − 3)+ C30( Ī1 − 3)3 + C21( Ī1 − 3)2( Ī2 − 3)

+C12( Ī1 − 3)( Ī2 − 3)2 + C03( Ī2 − 3)3 + 1

d
(J − 1)2

(155)

7.3 Compressible Ogden Material

Model (147) can be used for materials with small incompressibility

u =
N∑

n=1

2μn

αn
(λ̄
αn
1 + λ̄

αn
2 + λ̄

αn
3 − 3)+

N∑
n=1

1

dn
(J − 1)2n (156)

7.4 Arruda-Boyce Material

The potential in this case takes the form [46]
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u = μ

[
1

2
( Ī1 − 3)+ 1

20λ2
L

( Ī 2
1 − 9)+ 11

1050λ4
L

( Ī 3
1 − 279)

+ 19

7000λ6
L

( Ī 4
1 − 81)+ 519

673750λ8
L

( Ī 5
1 − 243)

]
+ 1

d

(
J 2 − 1

2
− ln J

)

(157)
Here μ, λL , d are the material parameters. With λL → ∞ we get again the
Neo-Hookean material.

7.5 Gent Material

For this material the following potential holds

u = − E Im

6
log

(
1 − Ī1 − 3

Im

)
(158)

Here E , Im are material parameters.

7.6 Blatz-Ko Material

This model was suggested by Blatz and Ko [47] for the case of modeling of several
rubbers (porous materials—foams—made of polyurethane (PU)). The potential has
the form

u = 1

2
μβ

[
I1 + 1

α
(I −α

3 − 1)− 3

]
1

2
μ(1 − β)

[
I2 I −1

3 + 1

α
(I α3 − 1)− 3

]
,

α = λ

2μ
(159)

This model contains 3 parameters: μ, α and β. In FE codes a simpler potential is
implemented (159)

u = 1

2
μ

[
I2

I3
+ 2

√
I3 − 5

]
(160)

7.7 Other Material Models

In the literature there are given references to other compressible non-linear elas-
tic materials (Seth, Signorini [48], Murnaghan [49], harmonic (semi-linear), etc.)
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[32, 49]. The material parameters for these models are known. Applications of these
models are related, for example to acoustics.
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Abstract Models for isotropic materials based on the equivalent stress concept
are discussed. At first, so-called classical models which are useful in the case of
absolutely brittle or ideal ductile materials are presented. Tests for basic stress states
are suggested. At second, standard models describing the intermediate range between
the absolutely brittle and ideal-ductile behavior are introduced. Any criterion is
expressed by various mathematical equations formulated, for example, in terms of
invariants. At the same time the criteria can be visualized which simplifies the applica-
tion. At third, in the main part pressure-insensitive, pressure-sensitive and combined
models are separated. Fitting methods based on mathematical, physical and geometri-
cal criteria are necessary. Finally, three examples (gray cast iron, poly(oxymethylene)
(POM) and poly(vinyl chloride) (PVC) hard foam) demonstrates the application of
different approaches in modeling certain limit behavior. Two appendices are nec-
essary for a better understanding of this chapter: in Chap. 2 applied invariants are
briefly introduced and a table of discussed in this chapter criteria with references is
given.
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1 Need of Criteria

The strength theory assumes that the mechanical loading states can be characterized,
for example, by stresses [62]. It is known that the stresses in each point of the material
or structure are presented by the stress tensor σσσ [5]. For comparison purposes of
various stress states the stress tensor cannot be applied that means a scalar quantity
should be used. Let us introduce the following expression for such quantity

σEQ = σeq(σσσ)+ f (∇σσσ) R, R ≥ 0. (1)

∇ is the nabla operator, f denotes an arbitrary scalar-valued function and R is a
structural parameter, which can be associated with the grain size in gray iron, with
the cell size of a hard foam, with the particle size in nanomaterials, etc. This parameter
represents the influence of the stress distribution expressed by the stress gradient ∇σσσ .
The parameter R is positive-definit and bounded by the minimal dimension of the
structural component, e. g. the plate or sheet thickness, cf. [214]. Equation (1) can
be extended by introducing higher order stress gradients, however the application is
limited. The additional material parameters should be estimated experimentally, but
tests for their estimation are unknown.

Ignoring the microstructure influence Eq. (1) can be simplified

σEQ = σeq(σσσ). (2)

This implies that the stress state in each point can be described through the stresses
at this point only [71]. This formulation has multiple limitations and must be applied
with care if the calculation of stresses is performed for parts with significant stress
gradients:

• stress concentration areas,
• load application areas,
• sharp corners, etc.

Nevertheless, the concept of the equivalent stress (2) is widely applicable. This
concept allows to compare multi-axial stress states with material parameters, e. g.
the tensile yield or failure stress σ+

σeq = σ+. (3)

Strength hypotheses and yield criteria for isotropic materials can be formulated
using principal stresses

Φ(σI, σII, σIII, σeq) = 0, (4)

or other invariants, e. g. axiatoric-deviatoric invariants

Φ(I1, I ′
2, I ′

3, σeq) = 0, (5)
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or cylindrical invariants (Novozhilov’s invariants)

Φ(I1, I ′
2, θ, σeq) = 0. (6)

The invariants are named in accordance to [234] and detailed presented in Appen-
dix 15. The three formulations (4), (5) and (6) are equivalent. Note that in the case
of incompressible material behavior it can be shown that the first invariant I1 has no
influence on Φ

Φ(I ′
2, I ′

3, σeq) = 0, Φ(I ′
2, θ, σeq) = 0. (7)

The remaining invariants are named deviatoric invariants.
The equivalent stress concept (2) allows to formulate the material response under

multi-axial loading in a compact form using only few parameters. Such formulations
are used in

• elasticity theory (elastic potential) [8, 9, 130, 212],
• plasticity theory (plastic potential, yield criterion) [8, 139, 163, 234],
• creep theory (creep potential) [8, 125],
• strength of materials (strength hypothesis or criterion) [8, 35, 91, 157, 220, 229],
• low cyclic fatigue [8, 126] and
• phase transformation conditions [158, 165].

Phenomenological yield and failure criteria are widely discussed in the literature.
Some reviews are given in [8, 16, 45, 71, 74, 157, 174, 204, 221, 228, 229, 234]
among others.

2 Classical Strength Theories

The dimensioning of structural members is usually carried out under the assumption,
that materials behave either brittle or ductile. The following hypotheses (sometimes
named theories), which correspond to one of the two assumptions, are often used for
strength or yield evaluation [65, 74, 132, 174].

The three classical models (normal stress hypothesis, Tresca, von Mises), which
are presented as usual in textbooks on strength of materials and implemented in com-
mercial finite element codes as a standard tool, and the model of Schmidt-Ishlinsky
represent particular cases of material behavior and are sometimes unable to describe
the behavior of materials properly. Because of their simplicity they are used in the
engineering practice. For applied problems the computations can be performed using
these models, if no information on the particular material properties is available. The
normal stress hypothesis (Fig. 1) describes the “absolutely brittle” material behav-
ior, the models of Tresca, von Mises and Schmidt-Ishlinsky—the “ideal ductile”
behavior.
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σI
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σII/ σ+

VON MISES

TRESCA
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1

1
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-1

-2

-2
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Fig. 1 Models for incompressible “ideal ductile” material behavior (von Mises, Tresca and
Schmidt-Ishlinsky) and the normal stress hypothesis (NSH) for “absolutely brittle” material behav-
ior in the plane σI−σII, σIII = 0 (after [93])

2.1 Normal Stress Hypothesis

The normal stress hypothesis (Clapeyron, Galilei, Leibniz, Lamé, Maxwell, Navier,
Rankine), Fig. 2, i. e. the maximum tensile stress is responsible for the failure
[75, 94, 166, 175], can be expressed as it as follows

σeq = max(σI, σII, σIII). (8)

Another formulation is

(σI − σeq) (σII − σeq) (σIII − σeq) = 0. (9)

Equation (9) is a cubic equation with respect to σeq. With the help of a parameter
identification this equation can be transformed into a third order polynomial of I 3

1 ,
I 2
1 σeq, I1 σ

2
eq, σ 3

eq, I ′
2 σeq and I ′

3. It can be obtained using the model [178]

3 I ′
2 σeq + c3 I ′

3

1 + 2 c3/33 = σ 3
eq, (10)
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σ I
σIII

σ II

hydrostatic
axis

VON MISES

normalstresshypothesis

Fig. 2 Normal stress hypothesis (8) and cylinder of von Mises (16) in the principal stress space
(σI, σII, σIII)

and the substitution [103, 178]

σeq → σeq − γ1 I1

1 − γ1
(11)

with the parameter values

c3 = 32

2
, γ1 = 1

3
(12)

for the better analysis, unified visualization techniques and systematization.

2.2 Tresca Hypothesis

The shear stress hypothesis (Coulomb, Guest, Mohr, Saint Venant, Tresca), i. e. the
maximum difference of the principal stresses is relevant for the failure [48, 163,
209], can be written as follows (Fig. 1)

τmax = 1

2
max(|σI − σII|, |σII − σIII|, |σIII − σI|). (13)

The equivalent stress can be expressed in this case as

σeq = 2 τmax. (14)
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In analogy to Eq. (9) one can write

(σeq − |σI − σII|) (σeq − |σII − σIII|) (σeq − |σIII − σI|) = 0.

This hypothesis (often called Tresca hypothesis) can be also expressed by the devi-
atoric invariants [163, 171]

(
I ′
2 − σ 2

eq

)2 (
22 I ′

2 − σ 2
eq

)
− 33 I ′ 2

3 = 0. (15)

2.3 Huber-von Mises-Hencky Hypothesis

The distortion energy hypothesis (Huber, von Mises, Hencky),1 Fig. 2, has different
interpretations among them that the failure occurs if a critical amount of accumulated
distortion energy is achieved [85, 91, 139, 194, 234]

σ 2
eq = 1

2

[
(σI − σII)

2 + (σII − σIII)
2 + (σIII − σI)

2
]

= 3 I ′
2. (16)

This hypothesis is often called von Mises hypothesis.

2.4 Schmidt-Ishlinsky Hypothesis

The criterion of the maximum deviatoric stress (Burzyński, Schmidt, Ishlinsky, Hill,
Haythornthwaite), i. e. the failure occurs if a critical value of deviatoric components
of the stress tensor is achieved [35, 84, 87, 92, 182] (Fig. 1)

max

[∣∣σI − 1

3
I1
∣∣, ∣∣σII − 1

3
I1
∣∣, ∣∣σIII − 1

3
I1
∣∣] = 2

3
σeq (17)

or in analogy to Eq. (9)

[
σeq−

∣∣∣∣σI− 1

2
(σII + σIII)

∣∣∣∣
][
σeq−

∣∣∣∣σII− 1

2
(σIII + σI)

∣∣∣∣
][
σeq−

∣∣∣∣σIII− 1

2
(σI + σII)

∣∣∣∣
]

= 0.

(18)
This model can be expressed with the deviatoric invariants [11, 222, 224, 225]

[
33

23 I ′
3 + 32

22 I ′
2 σeq − σ 3

eq

] [
33

23 I ′
3 − 32

22 I ′
2 σeq + σ 3

eq

]
= 0. (19)

The naming Schmidt-Ishlinsky hypothesis has become established.

1 This criterion was also formulated 1865 in a letter of Maxwell to Lord Kelvin [204].
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σ+

σBZ

σBZ = bZ σ+

σAZ

σAZ = ahyd
+ σ+

σAZ

σD = d σ+

σBD

σBD = bD σ+

σAD

σAD = ahyd σ+

σAD

τ

τ =
1

3
kσ+

σIZ/ 2

σIZ =
2

3
iZ σ+

σUD/ 2

σUD =
2

3
uD σ+

Z BZ AZ

D BD AD

K UDIZ

Fig. 3 Nine basic tests. The stresses, values and labels of loading are given in Table 1

3 Basic Stress States

All criteria can be visualized as a limit surface Φ. Nine tests (Fig. 3) are chosen for
the analysis and comparison of the surfaces Φ:

• two loadings corresponding to one-dimensional stress states (tension, compres-
sion),

• five loadings corresponding to plane stress states (torsion, two balanced plane
states, two thin-walled tube specimens with closed ends under inner and outer
pressure) and

• two loadings corresponding to hydrostatic (3D balanced) tension and compression.

The relevant stresses are listed in Table 1. All these loading cases have approved
verbal formulations and can be considered as basic tests.2

2 Note that in material testing another definition of basic tests is given [32].
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These nine tests are sufficient for the comparison of the most important features of
surfaces. Their selection is however not unambiguous and can be expanded according
to the available equipment, expected phenomena and requested precision, see e. g.
loading cases labeled by Q and H (Table 1 and Sect. 9.2). Further considerations for
the choice of loadings are discussed in [8, 36, 37].

The values (Table 1) relating the respective stresses to σ+ are introduced in order
to obtain

k = d = iZ = uD = bZ = bD = 1 and ahyd
− , ahyd

+ → ∞ (20)

for the von Mises hypotheses (16).
For the models of incompressible material behavior the values on the angle θ = 0,

π
6 and π

3 are computed to [16, 103, 234]

bD = 1, k = iZ = uD and d = bZ. (21)

For the classical models (Sect. 2) it follows [113]

bZ = 1, bD = d. (22)

The models for incompressible behavior can be compared in the d−k-diagram
(Fig. 4) [104, 105, 110]. In this diagram the models of Haythornthwaite and Sayir II
(Sect. 9.1) limit the convex shapes of the surface Φ in the π -plane [33]. For the
models of compressible material behavior (Sect. 10) the 1

d −k-diagram, which allows

to represent the properties d → ∞, k = √
3 of the normal stress hypothesis among

others, is recommended (Fig. 5) [122, 156, 157]. In this diagram the areas of validity
of all criterions and various ideas of generalization can be visualized.

The measurements σ+, σ− and τ∗ for some materials are presented in [18, 41, 124,
157, 229]. Examples of experimental data for some polymers are given in Table 2.

The data are taken from various sources and they are related to different manu-
facturers. They can be used as first estimates only. Note that the experiments were
performed for specimens with different geometries and using different techniques.
The relations d and k of the materials can be represented in Figs. 4 and 5 together
with the models in order to simplify the choice of the suitable model [104].

4 Inelastic Poisson’s Ratio

In the linear theory of elasticity the Poisson’s ratio is defined as the negative ratio of
the strain εII = εIII in the direction orthogonal to the applied load and the strain εI
in the tension direction [20, 89]:

νel = −εII

εI
= −εIII

εI
, νel ∈

]
−1,

1

2

[
. (23)
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HAYTHORNTHWAITE II

k

d
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0.6

0.6 0.8

0.8

1.2

1.2 1.4 1.6 1.8 2

Fig. 4 Diagram d−k for convex models of incompressible material behavior compared with the
hypothesis of von Mises [110]. Certain cross sections in the π -plane are visualized in order to
achieve a better understanding:
a. k = 1/

√
3, d = 1/2 b. k = 2/

√
3, d = 2

c. k = 3 (2 − √
3), d = √

3/2 d. k = 1, d = (1 + √
3)/2

e. k = √
3/2, d = 3/4 f. k = 2/

√
3, d = 4/3

g. k = √
3/2, d = 1(Tresca) h. k = 2/

√
3, d = 1(Schmidt − Ishlinsky)

i. k = 1, d = √
3/2 m. k = 1, d = 1(von Mises)

If the elastic law is formulated on the base of the potential Φ, one can write

νel = −
(
∂ Φ

∂ σII

/
∂ Φ

∂ σI

) ∣∣∣∣
σII=σIII=0

= −
(
∂ Φ

∂ σIII

/
∂ Φ

∂ σI

) ∣∣∣∣
σII=σIII=0

. (24)

The classical theory of elasticity [20, 64, 205] makes no difference between Poisson’s
ratio at tension and compression

νel+ = νel−. (25)

The Poisson’s ratio for yield criteria in the isotropic case can be computed in a
similar way as relations of the strain or strain rates

νin = −
(
∂ Φ

∂ σII

/
∂ Φ

∂ σI

) ∣∣∣∣
σII=σIII=0

= −
(
∂ Φ

∂ σIII

/
∂ Φ

∂ σI

) ∣∣∣∣
σII=σIII=0

(26)

using the flow rule [126, 167, 234]

ε̇i j = λ̇
∂ Φ

∂ σi j
, λ̇ > 0 (27)
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Fig. 5 1/d versus k for the classical models (Sect. 2) and for the Unified Strength Theory of Yu
(Sect. 10.2) as a function of d ≥ 1 and b ∈ [0, 1]:
d ≥ 1, k ∈

[
1,

√
3
]
—Pisarenko-Lebedev model (48),

d = 1, k ∈ [(2/3)1/6 , (3/2)1/6]—model of Drucker I (Sect. 9.2),

d = 1, k ∈
[√

3/2, 2/
√

3
]
—Unified Yield Criterion of Yu with b ∈ [0, 1] (Sect. 9.2),

d → ∞, k = √
3—normal stress hypothesis (Sect. 2.1).

SI—model of Schmidt-Ishlinsky (Sect. 2.4), SD—model of Sdobirev with d = 2, k = 3 − √
3 ≈

1.27 (Sect. 6.3), UYC—Unified Yield Criterion (Sect. 9.2), SST—Single-Shear-Theory of Yu
(model of Mohr-Coulomb), Sect. 10.2, TST—Twin-Shear-Theory of Yu. The cross-sections in
the π -plane on I1 = σeq are provided for better understanding [104, 105, 115]

for ε̇II and ε̇I. Further definitions of νin are given in [109]. There is a difference
between the inelastic Poisson’s ratios at tension νin+ with σI = σ+ and compression
νin− with σI = −d σ+, d ≥ 0.

The convexity condition (necessary condition) for the meridian with the angle
θ = 0 and the associated point Z (tension) yields [105]

νin+ ∈
]

− 1,
1

2

]
. (28)
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VON MISES

σI

σ II

σIII

hydrostatic axis

DRUCKER -PRAGER

family of cylindrical surfaces

Fig. 6 Cone of Drucker-Prager with the family of cylindric surfaces and cylinder of von Mises in
the principal stress space (the cone is cut in order to achieve better visualization)

For the surfaces that do not cross the hydrostatic axis in the compression region
(ahyd

− → ∞), it follows [103, 181]

νin− ≥ 1

2
. (29)

For those surfaces (e. g. Drucker-Prager, Mohr-Coulomb, Pisarenko-Lebedev) a non-
associated flow rule with

νin− = 1

2
(30)

is often used [103]. The model of Drucker-Prager can be used as an example (Fig. 6).
In this figure for each stress state in the region I1 ≤ 0 a cylindrical surface is defined.
This results in a “family” of rings, which define the incompressible behavior for each
stress state in the compression region.

For closed surfaces in the principal stress space will be assumed [105, 216]

νin− ∈
]

− 1,
1

2

]
. (31)

The restriction can be clarified in the
(√

3 I ′
2, I1

)
-plane (Sect. 8.2): the maximum

of a meridian lies in the region

I1

σ+
∈ [−d, 1].

Using (26) the inclination of the tangent line at the points Z (tension) and D (com-
pression) of the surfaceΦ in the principal stress space with respect to the hydrostatic
axis can be characterized:
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• from the inclination ψ = 0 (tangent line parallel to the hydrostatic axis) follows
νin = 1/2 (Fig. 2, model of von Mises) and

• the inclination ψ = π/2 (tangent line is orthogonal to the hydrostatic axis) yields
νin = −1.

The Poisson’s ratio νin+ = 0 (Fig. 2, normal stress hypothesis (8)) yields3 the incli-
nation angle with

tanψ = √
2

[
3

2 (1 + νin+ )
− 1

]
(32)

to ψ = arctan
(√

2/2
)

≈ 35.26◦ in the principal stress space (Fig. 7).

This geometrical interpretation of (26) can be used for description of the limit sur-
faceΦ. It completes the relations (Table 1) for the analytical comparison of different
surfaces by fitting of measurements.

The following estimates are available for evaluation of the quality of the model:

• For ductile materials the experience-based inequality

ψ

2/
3

3/
31/

3

0

σII

σI

σ III

hydrostatic
axis ξ1

Z
ϒ

AZ

Fig. 7 Principal stress space (σI, σII, σIII): inclination of the tangent line ψ ≈ 35.26◦ at the point
Z (tension) of the surface Φ correlates with the Poisson’s ratio at tension νin+ = 0, Υ—intersection
of the surface Φ with the surface (ξ1, 0, σII) or meridian with θ = 0 of the surface Φ

3 Here the substitution I ′
3 = 2

√
3

32 (I ′
2)

3/2 is used, which corresponds to the meridian with the angle
θ = 0 (Sect. 8.2). The point Z (tension) belongs to this meridian (Table 1).
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νin+ ∈
[
νel+,

1

2

]
(33)

can be used in order to check the quality of fitting to the measured data.
• The term ”slight compressibility”, see [140], can estimated by [110]

νin+ ∈
[

0.48,
1

2

]
. (34)

This range is recommended for yield criteria.
• For “very ductile” behavior [126] it can be required additionally

νin+ → 1

2
, (35)

and one gets the desired parameters of the yield criterion in the fitting (Sect. 12).
• For brittle material behavior the following constraints can be formally written

down
νin+ ∈] − 1, ν+el], (36)

cf. the maximum strain hypothesis (Sect. 6.1) for the upper bound and the strain
hypotheses with σeq = I1 for the lower bound.

• For “absolutely” brittle material behavior failure occurs without plastic deforma-
tions in the cross sectional area of the tensile bar [206, 208]. In this case it can be
assumed from the normal stress hypothesis (Sect. 2)

νin+ ≈ 0. (37)

5 Ratios for a Torsion Bar

In addition to value k, one can define other values relating to torsion using the yield
condition (27). By analogy to the Poisson’s ratio the elongation/contraction ratio for
a torsion bar or tubes can be established, cf. [8]:

χ = ∂ Φ

∂ σ11

/
∂ Φ

∂ σ12
(38)

with σ12 = k σeq/
√

3 and σ11 = σ22 = σ33 = σ13 = σ23 = 0. With the
help of this ratio the Poynting-effect and the Poynting-Swift-effect [160–162, 200]
can be described (Figs. 8 and 9). These effects are discussed in the literature, see
[3, 8, 16, 27, 29, 69, 81, 168, 206, 215] among others. The material behavior of the
von Mises-type results in χ = 0. In the case of the application of the normal stress
hypothesis (Sect. 2) one gets χ = 1/2 [6, 110].
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Fig. 8 Change of the geometry of a tube clamped on the right side at torsion

d
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D
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u
u

r
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11
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Fig. 9 Change of the geometry of a tube at torsion. D and d—outer diameter of the tube before
and after loading, S and s—wall thickness before and after loading, u(r)—distribution law for the
displacements in the direction 1
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2
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2

, ν in
− → ∞

τ12
τ21

Fig. 10 Change of the geometry and the shape of a cube with the size 1 × 1 × 1 under stress action
τ12 for four settings of the Sayir I model (Table 3)

Furthermore, the volume strain caused by torsion (volume dilatation, see Kelvin-
effect [8, 16]) can be computed as follows:

εVτ =
(
∂ Φ

∂ σ11
+ ∂ Φ

∂ σ22
+ ∂ Φ

∂ σ33

)/
∂ Φ

∂ σ12
. (39)

In addition, a transverse contraction ratio can be obtained [110]:

νin
τ = − ∂ Φ

∂ σ33

/
∂ Φ

∂ σ11
. (40)

By this way one gets more information about the material behavior from the torsion
test. Some special cases are analyzed in Fig. 10 and Table 3 on the base of model of
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Table 3 Effects computed at torsion considering the model of Sayir I (10) with the linear substi-
tution (11)

Cross section in the π -plane (Fig. 4) a m b

c3 ∈
[
−32,

32

2

]
−32 0

32

2

γ1 ∈ [0, 1[ 0
1

3
νin+ = 1

2
(1 − 3 γ1)

1

2
0

Classical model – von Mises – NSH

k = 1

1 − γ1

√
1 + 2

33 c3
1√
3

1
2√
3

√
3

d
1

2
1 2 ∞

χ = √
3

√
1 + 2

33 c3
c3 (1 − γ1)+ 2 · 32 γ1

2 · 33 (1 − γ1)
−1

6
0

1

6

1

2

νin
τ = 2

c3 (1 − γ1)− 32 γ1

c3 (1 − γ1)+ 2 · 32 γ1
2

0

0
2 0

εVτ = √
3

γ1

1 − γ1

√
1 + 2

33 c3 0 1

The von Mises hypothesis describes the torsion of the tubular specimen without elongation χ = 0.
The hypotheses for incompressible material behavior (von Mises and Sayir I with c3 = −32 und
c3 = 32/2) reflect no volume change. The hypotheses of von Mises and of normal stress do not
result in changes of the wall thickness ∂ Φ/∂ σ33 = 0, cf. the Mohr-Coulomb hypothesis [73, 79]
and Pisarenko-Lebedev hypothesis [157].

Sayir I (10). It is obvious that the influence of I1 and I ′
3 cannot be separated by these

measurements.
For rotational-symmetric models with ahyd

− → ∞ one obtains χ ≥ 0. For vari-
ous materials the cross-sections of the surface Φ in the π -plane result in the part
g – b – h of the d−k-diagram (Fig. 4, d ≥ 1) yielding χ > 0. From this it
follows that the length and the diameter increase at torsion is more realistic, cf.
[25, 168, 206]. This effect is significantly influenced by:

• defects in the material,
• material anisotropy,
• loading-induced anisotropy,
• technological characteristics,
• deviation of the specimen shape from the ideal geometry,
• non-coaxial fixation of the specimen in the testing machine,
• temperature changing during the test, etc.

This is the reason for different suggestions to describe such behavior in the literature.
The ratios χ , εVτ and νin

τ are properties of the model.
If the torsion test is carried out with ε11 = 0 (strain is constrained), the axial force

can be computed using the flow rule [172]. The sign of this force gives clues about
the shape of the surface Φ.
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6 Standard Criteria

The standard models (strain hypothesis, model of Mohr-Coulomb, model of
Pisarenko-Lebedev and model of Burzyński-Yagn [157, 194, 234]) are frequently
used models for first approximations of measurements: they are easy to handle, can be
used to describe different material types (brittle-ductile range) and their parameters
can be obtained using simple tests.

6.1 Strain Criterion

Strain model (strain hypothesis) is obtained assuming Hooke’s law [20, 64, 205]

σI − νin+ (σII + σIII)− σeq = 0. (41)

The other two equations are obtained by cyclic permutation of indices. The model
(10) together with the substitution (11) and the parameter values

c3 = 32

2
, γ1 = 1

3

(
1 − 2 νin+

)
. (42)

gives rise to the representation in invariants.
The Poisson’s ratio for the strain hypothesis follows, cf. [88, 201]

νin− = 1

2
(d − 1) , νin+ = 1

d
. (43)

Further values are

d ≥ 2, k =
√

3

1 + νin+
, ahyd

+ = 1

1 − 2 νin+
. (44)

This model contains

• the normal stress hypothesis with νin+ = 0 (Sect. 2),
• the maximum strain hypothesis4 (Mariotte [134], Navier [146], St. Venant [175],

Poncelet [159], Grashof [77], Resal [170] or Bach [15]) with νel+ = νin+ .

The limit cases are the following surfaces Φ

• triangular prism in the principal stress space with νin− = νin+ = 1/2, [8, 31, 66, 97,
174, 177, 192] and

• plane through point Z orthogonal to hydrostatic axis with νin+ = −1 [97, 102].

4 This hypothesis is analyzed in [38, 65, 94, 220, 221]. It does not reflect the experimental results
[22, 50, 78, 157, 213] and is used in combinations of various hypotheses (Sect. 11).
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6.2 Mohr-Coulomb Criterion

The model is introduced on the basis of geometrical considerations
[76, 127, 141–143]. It arises as equations, which are obtained by permutation of
indices in

[
σI − 1

d
σII − σeq

] [
σI − 1

d
σIII − σeq

] [
σII − 1

d
σIII − σeq

]
= 0. (45)

The formulation in invariants is given in Sect. 10.2. The model leads to values

νin− = d

2
, νin+ = 1

2 d
, d ≥ 1, (46)

and [129]

k = √
3

d

d + 1
, ahyd

+ = d

d − 1
. (47)

This model yields (Fig. 5, SST)

• with d → ∞ to the normal stress hypothesis and
• with d = 1 to the model of Tresca.

The relation d ≥ 2 is recommended if computations involving so called fatigue limits
should be performed [30].

6.3 Pisarenko-Lebedev Criterion

The model is presented by

(1−ξ)
√

1

2

[
(σI − σII)2 + (σII − σIII)2 + (σIII − σI)2

]+ξ max[σI, σII, σIII] = σeq

(48)
with ξ ∈ [0, 1] [82, 120, 121, 156, 157]. This is a linear combination of the equiva-
lent stresses after the normal stress hypothesis (ξ = 1) and the von Mises hypothesis
(ξ = 0). The relations compute to [123]

d = 1

1 − ξ
, k = 3

3 +
(
−3 + √

3
)
ξ
, ahyd

+ = 1

ξ
, (49)

and the Poisson’s ratio

νin+ = 1 − ξ

2
, νin− = 1

2
+ ξ

1 − ξ
. (50)
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The model of Sdobirev [191] follows with ξ = 1/2. The relations are d = 2,
k = 3 − √

3 ≈ 1.27, ahyd
+ = 2, νin+ = 1/4 and νin− = 3/2 (Fig. 5). The average

values of the parameter ξ for some materials are given in [124].

6.4 Burzyński-Yagn Criterion

The rotationally symmetric model evolves the energy consideration and is a function
of two parameters [16, 36, 37, 220]

3 I ′
2 = σeq − γ1 I1

1 − γ1

σeq − γ2 I1

1 − γ2
. (51)

The values k and d compute to

d = 1

1 − γ1 − γ2
, k2 = 1

(1 − γ1)(1 − γ2)
. (52)

The position of the hydrostatic nodes one gets from

(
1 − 3 γ1 ahyd

+
) (

1 − 3 γ2 ahyd
)

= 0. (53)

The Poisson’s ratios at tension and compression are obtained using

νin+ = −1 + 2 (γ1 + γ2)− 3 γ1 γ2

−2 + γ1 + γ2
, (54)

and

νin− = − −1 + γ 2
1 + γ 2

2 − γ1 γ2

(−2 + γ1 + γ2) (−1 + γ1 + γ2)
. (55)

The model (51) represents the general equation of a second order surface of revolution
about the hydrostatic axis in the principal stress space. In dependence of the parameter
values γ1 and γ2 one gets:

• cone of Drucker-Prager [56], Mirolyubov [138] (Fig. 6) with equal parameters
γ1 = γ2 ∈ [0, 1];

• paraboloid of Balandin [17], Burzyński-Torre [35–37, 207, 235] (Fig. 11) with
γ1 ∈ [0, 1], γ2 = 0;

• ellipsoid of Beltrami (strain energy hypothesis) [21], see Fig. 12, assuming γ1
= − γ2 ∈ [0, 1] or with equal Poisson’s ratios νin− = νin+ ∈] − 1, 1/2];

• ellipsoid of Schleicher [179, 180] with γ1 ∈ [0, 1], γ2 ∈ [−∞, 0]. The restriction
(31) yields νin− ∈] − 1, 1/2] , νin+ ∈[ − 1, 1/2];

• hyperboloid of Burzyński-Yagn [39, 221] with γ1 ∈ [0, 1] and γ2 ∈ [0, γ1];
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VON MISES

σ I

σ II

σ III
hydrostatic axis

BALANDIN

BURZYŃSKI -TORRE

Fig. 11 Paraboloid of Balandin, Burzyński-Torre and the cylinder of von Mises in the principal
stress space (the cylinder is cut for better understanding) [103]

VON MISES
σ I

σ II

σ III

hydrostatic axis

BELTRAMI

AD

AZ

Fig. 12 Ellipsoid of Beltrami and cylinder of von Mises in the principal stress space (the cylinder
is cut for better understanding) [103]

• hyperboloid of one sheet with complex conjugateγ1 andγ2 which is not convex (see
Sect. 10.1); this model is used as partial surface in combined models (Sect. 11.2.1).

The models differ by the symmetry type in the π -plane (Fig. 4) and by the power
of stresses n. The rotationally symmetric model (51) has the stress power n = 2. The
strain hypothesis and the model of Pisarenko-Lebedev has the stress power n = 3
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and the model of Mohr-Coulomb—n = 6. The last three models have a trigonal
symmetry in the in the π -plane.

The models can be characterized by the shape of the meridian line. The strain
hypothesis, the hypothesis of Mohr-Coulomb, the model of Pisarenko-Lebedev, the
models of von Mises and of Drucker-Prager have a straight line as the meridian.
The model (51) has additional to the straight line curvilinear meridians: parabola,
hyperbola and ellipse.

The cross-sections of models (41) and (51) in the π -plane are unchangable. The
form in the π -plane and the inclination of the meridian line of the models of Mohr-
Coulomb and Pisarenko-Lebedev are controlled by a single parameter. This limits
the capabilities of the models to be fitted to measured data.

There are no theoretical or experimental evidence known to support the application
of models with a straight line as the meridian line. Models with further shapes of the
meridian lines and independent from the shapes in the π -plane (Fig. 4) are required.

7 Mathematical Formulations

In the case of phenomenological models some mathematical framework is often
applied for the formulation. The aim is to establish some general equation which
includes classical models as special cases. The following three formulation ideas are
known:

7.1 Criterion of Altenbach-Zolochevsky I

The criterion [7, 8]

σeq =
√

3 I ′
2 (λ1 sin ϕ + λ2 cosϕ + λ3)+ I1 (λ4 + λ5 sin ϕ + λ6 cosϕ) (56)

is a combination of the first invariant of the stress tensor, the second invariant of
the stress deviator and the stress angle.5 Various special cases can be deduced by
different settings of λi (Table 4). It should be mentioned that the systematization of
models can be based on the number of these parameters.

In the formulation of this model the following relations between the principal
stresses σI, σII, σIII and the invariants (Appendix 15) [42, 43, 147, 149, 211, 233]
are used:

5 In the original papers the following definition of the stress angle is used

sin 3ϕ = −3
√

3

2

I ′
3(sss)

I ′
2(sss)

3/2 , |ϕ| ≤ π

6
.
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σI = 1

3

[
2
√

3 I ′
2 sin

(
ϕ + 2π

3

)
+ I1

]
,

σII = 1

3

[
2
√

3 I ′
2 sin(ϕ)+ I1

]
,

σIII = 1

3

[
2
√

3 I ′
2 sin

(
ϕ + 4π

3

)
+ I1

]
,

(57)

and σI ≥ σII ≥ σIII is assumed.
This model includes not only the standard models (Sect. 6). The following models

can be obtained:

• criterion of Sandel [176]

σeq = σI + 1

2

(
1 − 1

d

)
σII − 1

d
σIII, (58)

• convex combination of von Mises and Tresca models after Edelman-Drucker,
Koval’chuk [57, 117]

χ

√
3 I ′

2 + (1 − χ) (σI − σIII) = σeq, χ ∈ [0, 1], (59)

• criterion of Paul [154]

a1 σI + a2 σII + a3 σIII = σeq, (60)

• criterion of Birger [30]

a1 σI + a2 σII + a3 σIII + a4

√
3 I ′

2 = σeq. (61)

A disadvantage of this model is the number of parameters, which should be identified
by six independent tests.

7.2 Model in Terms of the Integrity Basis

This model results from the invariants I1,
(
I ′
2

)1/2 and I ′
3, cf. [23, 24, 51, 188]. The

basic idea is the formulation of scalar valued functions of a given order:

S1 = a1 I1 + b1
(
I ′
2

)1/2
,

S2 = a2 I 2
1 + b2 I ′

2,

S3 = a3 I 3
1 + b3

(
I ′
2

)3/2 + c3 I3 + d3 I1 I2 + e3 I 2
1

(
I ′
2

)1/2
,

· · ·
(62)
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The sum of the Si with the same power n yields

(S1)
n + (S2)

n/2 + (S3)
n/3 + . . . = σ n

eq. (63)

The choice of integer exponents n/ i is recommended for the terms Si . In [103] the
following exponents are suggested

n = 1, 2, 3, 6, 9 and 12. (64)

The model of Altenbach-Zolochevsky II follows with n = 1 for S1, S2 and S3
[2, 8, 103]. The parameters of the model are related to the scaling (3). The advantage
of this model is that the equivalent stress σeq can be expressed explicitly.

Another modification one gets if the weight σ n−i
eq for Si is introduced

σ n−1
eq S1 + σ n−2

eq S2 + σ n−3
eq S3 + . . .+ σeq Sn−1 + Sn = σ n

eq. (65)

By this way we get the same power of the stresses in each term [103]. The exponent
n > 1 and the terms in (65) can be selected in such a manner that an analytical
solution is possible with respect to σeq. Equation (51) is an example of a quadratic
equation, models which are given cubic, bi-cubic and tri-quadratic equations are

S1 σ
2
eq + S2 σeq + S3 = σ 3

eq, (66)

S2 σ
4
eq + S4 σ

2
eq + S6 = σ 6

eq, (67)

S3 σ
3
eq + S6 = σ 6

eq. (68)

More examples are presented in [103]. Disadvantages of this approach can be sum-
marized as follows:

• increasing number of parameters,
• difficult convexity limits for the parameters and
• missing geometrical interpretation of the parameters.

7.3 Models Based on the Stress Deviator

The functions of the invariants of the stress deviator can be defined as follows

S′
2 = b2 I ′

2,

S′
3 = b3

(
I ′
2

)3/2 + c3 I3,

S′
4 = b4

(
I ′
2

)2 + f4
(
I ′
2

)1/2
I3,

· · ·
(69)
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The sum of S′
i with the same power results in

(
S′

2

)n/2 + (S′
3

)n/3 + (S′
4

)n/4 + . . . = σ n
eq (70)

and
σ n−2

eq S′
2 + σ n−3

eq S′
3 + . . .+ σeq S′

n−1 + S′
n = σ n

eq, (71)

cf. Eqs. (63) and (65). Another possibility is [106]

σ n−2 m2
eq

(
S′

2

)m2 + σ n−3 m3
eq

(
S′

3

)m3 + . . .+ σeq
(
S′

n−1

)+ (S′
n

) = σ n
eq. (72)

The formulations (70), (71) and (72) yield in the models of incompressible mate-
rial behavior (Sect. 9): Sayir I, Drucker I, Dodd-Naruse, TQM, BCM, Spitzig, Iyer,
Freudenthal [16, 68, 90] and Maitra [131, 226].

Multiplicative combinations of various S′
i are possible, for example,

(
S′

2

)(n− j)/2
S′

j = σ n
eq. (73)

This equation results in the geometrical-mechanical model (Sect. 9.1.6).
The formulation of the models with the deviatoric basis (69) should be preferred

since they are simpler in comparison with models on the basis of Eq. (62). The
compressible generalization can be performed using the substitution presented in
Sect. 10.1. In the case of rational functions of I ′

3 (functions of I ′
3 with integer power)

one gets convex shapes in the π -plane.

8 Visualization Methods

Several possibilities of the visualization of the limit surface Φ are presented in the
literature. In this section main approaches are briefly discussed and examples are
given.

8.1 Spatial Representation of the Limit Surface

Strength hypotheses and flow criteria can be represented in the principal stress space
(σI, σII, σIII) [43, 219, 234], which is also known as the Haigh-Westergaard space
[80, 218]. By means of an orthogonal transform the decomposition of the stress tensor
in the hydrostatic and deviatoric components can be carried out. For this purpose the
coordinates (ξ1, ξ2, ξ3) are introduced (Fig. 13), which are related to the coordinates
(σI, σII, σIII) as follows [23, 123, 186, 187, 210]:
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Fig. 13 Principal stress space (σI, σII, σIII), coordinates (ξ1, ξ2, ξ3) and (ξ1, ρ, θ)

⎛
⎝σI
σII
σIII

⎞
⎠ =

⎛
⎜⎜⎜⎜⎜⎝

1√
3

1√
2

− 1√
6

1√
3

0
2√
6

1√
3

− 1√
2

− 1√
6

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎝ ξ1
ξ2
ξ3

⎞
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In these coordinates

ξ1 = 1√
3
(σI + σII + σIII) = 1√

3
I1 (75)

is the hydrostatic axis (σI = σII = σIII). The axis

ξ3 = 1√
6
(−σI + 2 σII − σIII) (76)

lies in the plane ξ1 − σII. The axis

ξ2 = 1√
2
(σI − σIII) (77)

constitutes together with the axes ξ1 and ξ3 an orthogonal coordinate system (Fig. 13).
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The surface Φ can be formulated in cylindrical coordinates or the Haigh-Wester-
gaard coordinates (ξ1, ρ, θ) [234]. The value of the radius ρ is computed to
[23, 43]

ρ =
√

2 I ′
2 =

√
ξ2

2 + ξ2
3 (78)

and represents a function of the second invariant of the stress deviator. The angle θ
is given by Eq. (224).

The representation of the surface Φ in the principal stress space (σI, σII, σIII) is
widely used because of its simplicity and clearness. For the analysis of the surface
properties the Haigh-Westergaard space with the coordinates (ξ1, ξ2, ξ3) is better.
Such a surface can be characterized by two projections:

• the meridian cross section (ξ1, ξ3) and
• the planes with the cuts ξ1 = const. (π -plane with the coordinates (ξ2, ξ3)).

8.2 Burzyński-Plane

Instead of the meridian cross section (ξ1, ξ3) the Burzyński-plane is often used. The
Burzyński-plane is introduced for the rotationally symmetric models [35, 39]

Φ
(
I1, I ′

2, σeq
) = 0. (79)

For these models the surface is represented by a line in the upper half-plane in the
diagram (ξ1, ρ) (Fig. 14, model of von Mises).

The whole surfaceΦ is obtained by the rotation of this line about the axis ξ1 [234].

For a better clearness the coordinates
(

I1,

√
3 I ′

2

)
are used [103]. This scaling is due

to the relation
I 2
1 = 3 I ′

2 (80)

at tension and compression. It simplifies the comparison of the presented models
with the model of von Mises (16) and leads to a geometrical interpretation of the
relations (Table 1). Other scalings are used in [86, 95, 101, 133, 155, 174, 181, 194,
231, 234]. A normalization of axes with respect to the tensile stress

⎛
⎝ I1

σ+
,

√
3 I ′

2

σ+

⎞
⎠

can be applied in order to compare the shape of the surfaces for different materials
[105, 113].

The surfaceΦ (5) or (6) can be presented in the Burzyński-plane by the meridians
defined using the stress angle [136, 145, 155]
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2
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Fig. 14 Normal stress hypothesis (NSH) and the model of von Mises in the Burzyński-plane [105].
The inclination of the tangent line at the point Z (tension) of the surface Φ is ψ = arctan 1/2 ≈
27.56◦, cf. (Fig. 7)

• θ = 0 ⇒ I ′
3 = 2

√
3

32 (I ′
2)

3/2,

• θ = π

6
⇒ I ′

3 = 0,

• θ = π

3
⇒ I ′

3 = −2
√

3

32 (I ′
2)

3/2.

These meridians for the normal stress hypothesis (8) are shown in Fig. 14.
The three meridians are enough to display the most important properties (Table 1).

The line of the plane stress state, which results from

σI σII σIII = 0, (81)

is obtained in this diagram using the substitution [103]

I ′
3 = 1

3
I1 I ′

2 − 1

33 I 3
1 . (82)

This line contains the points BD, UD, D, K , Z , IZ and BZ (Figs. 15 and 16) and
it is convex for axisymmetric models only, e. g. the model of Burzyński-Yagn (51),
Fig. 17.

The introduced representation allows to show all the measurements on their
respective meridians. Different extrapolations of the measurements to the point AZ
(hydrostatic tension) with the relation
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ahyd
+ >

1

3
or νin+ ∈

[
− 1,

1

2

]

can be easily evaluated.

8.3 π-Plane

The cross-section of the surface Φ with the cut ξ1 = const. (Fig. 13) is denoted as
the π -plane [12, 43, 167, 234]. For incompressible material behavior these cross-
sections do not depend on the coordinate ξ1. For a compressible material it is impor-
tant to consider the cross-sections, which contain certain points of the plane stress
state for the most important loading cases, e. g.:

• point Z (tension): ξ1 = 1√
3
σeq,

• point K (torsion): ξ1 = 0 and

• point D (compression): ξ1 = − 1√
3

d σeq.

The line of the plane stress state defined, for instance, by the condition σIII = 0 can
be projected onto the π -plane. The projection is given by the equality, see (74),

ξ1 = 1√
2
(
√

3 ξ2 + ξ3), (83)

which must be substituted into the equation of the surface Φ.
In the most general case the surface Φ has a trigonal symmetry in the π -plane

(Fig. 4). If only even powers of the third invariant of deviators are present, then the
model has a hexagonal symmetry (e. g. models of Tresca and Schmidt-Ishlinsky,
Fig. 4). The absence of the third invariant leads to a rotationally symmetric surface,
e. g. Eq. (51) [105].

9 Pressure-Insensitive Criteria

In this section the most important models with the property

νin+ = νin− = 1

2
(84)

are discussed. These models are of the form

Φ(I ′
2, I ′

3, σeq) = 0 (85)
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Fig. 15 Model of Tresca in the Burzyński-plane [103]
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Fig. 16 Model of Schmidt-Ishlinsky in the Burzyński-plane
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c
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K
Z BZ

AZ
b

I1

σ+1/ γ1

IZ
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1

4− 4

30
45

26, 6

Fig. 17 Quadratic rotationally symmetric models (51) with the hydrostatic node AZ (γ1 = 1/3)
in the Burzyński-plane [105]: a cone of Drucker-Prager: γ2 = 1/3, νin− = 2, νin+ = 0, d = 3,
k = 3/2; b hyperboloid of Burzyński-Yagn: γ2 = 1/4, νin− = 1.54, νin+ = 0.06, d = 2.4, k = 1.41;
c paraboloid of Balandin: γ2 = 0, νin− = 0.8, νin+ = 0.2, d = 3/2, k = 1.22

or
Φ(I ′

2, θ, σeq) = 0, (86)

and hence are cylindric or prismatic surfaces aligned along the hydrostatic axis. They
do not restrict the hydrostatic stresses. These models can only be used in the region
I1 ≤ 0 in combined models (Sect. 11), cf. [139].
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VON MISES

c3 = 32/ 2
SAYIR I

SAYIR I

σI

σIII hydrostatic axis

c3 = − 32

σII

meridian with θ = 0

meridian with θ = π/ 3

Fig. 18 Triangular prisms of Sayir I (87) with the limit convexity values of the parameter c3 ∈[−32, 32/2
]

and the cylinder of von Mises (16) in the principal stress space [103]

9.1 Yield Surfaces with Trigonal Symmetry

Theoretical considerations allow conclusions about the symmetry of the yield surface
Φ in the π -plane only. This surface shows trigonal, hexagonal or rotational symme-
try. No suggestions can be made based on microstructure. The material behavior
is described by neglecting the real structure with its microscopic defects and inho-
mogeneity. The effects of material behavior could be captured correctly only in
average [8].

9.1.1 Model of Sayir I

The cylinder of Sayir I [178] is defined as follows

σeq 3 I ′
2 + c3 I ′

3

1 + 2 c3/33 = σ 3
eq, c3 ∈

[
−32,

32

2

]
. (87)

The model has the structure of the reduced cubic equation with respect to σeq. For
c3 = 0 the cylinder of von Mises arises (Fig. 18). The relations k and d compute to

k2 = 1 + 2

33 c3, d = 33 + 2 c3 −√3 (32 − 2 c3) (33 + 2 c3)

22 c3
(88)

and shown in Fig. 4.
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9.1.2 Model of Sayir II

The hexagonal prism of Sayir II [178] is defined by

σI − 1

1 + b1
(b1 σII + σIII)− σeq = 0, b1 ∈

[
−1

2
, 1

]
. (89)

Further equations result from the cyclic permutations of indices. The model is for-
mulated in the deviatoric invariants

ΦSAY = α41 σ
4
eq I ′

2 + α31 σ
3
eq I ′

3 + α21 σ
2
eq (I

′
2)

2

+ α11 σeq I ′
2 I ′

3 + β21 (I
′
2)

3 + β31 (I
′
3)

2 − σ 6
eq (90)

with

α41 = 2 · 3 (1 + b1 + b2
1)

(1 + b1)2
, α31 = 33 b1

(1 + b1)2
,

α21 = −32 (1 + b1 + b2
1)

2

(1 + b1)4
, α11 = −34 b1

1 + b1 + b2
1

(1 + b1)4
,

β21 = (−1 + b1)
2 (2 + b1)

2 (1 + 2b1)
2

(1 + b1)6
, β31 = −33 (1 + b1 + b2

1)
3

(1 + b1)6
.

(91)

For b1 = 0 the model of Tresca (15) arises (Figs. 1, 15). With b1 = −1/2 and b1 = 1
the model corresponds to the limit convexity cases of the model of Sayir I (87).

The relations are

k = √
3

1 + b1

2 + b1
, d = 1 + b1. (92)

The model is representing the lower bound of the convexity region in the d−k-
diagram (Fig. 4). For the model of Sayir II the point, which has the shortest distance
to the point M(1, 1) can be obtained from the equation

(d − 1)2 + (k − 1)2 → min., (93)

which results in b1 ≈ 0.0471, d ≈ 1.05 and k ≈ 0.89.

9.1.3 Model of Haythornthwaite

The model of Haythornthwaite [40, 83, 107] consists of two overlapping triangles
in the π -plane described with the model (87) with c3 = −32 and c3 = 32/2
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[
(2 d σeq) 3 I ′

2 + (−32) I ′
3

1 + 2 (−32)/33 − (2 d σeq)
3

][
σeq 3 I ′

2 + (32/2) I ′
3

1 + 2 (32/2)/33 − σ 3
eq

]
= 0.

(94)
It is separated in two regions in the d−k diagram (Fig. 4)

Haythornthwaite I : k = 2√
3

for d ∈ [1, 2], (95)

Haythornthwaite I I : k = 2d√
3

for d ∈
[

1

2
, 1

]
. (96)

The model is representing the upper bound of the convexity region of the d−k-
diagram. The boundaries, where d = 1/2 and d = 2, correspond to the limit
convexity cases of the models of Sayir I and Sayir II. For d = 1 the model of
Schmidt-Ishlinsky (18) arises (Figs. 1, 16). The point, which has the shortest dis-
tance to the point M(1, 1) (Fig. 4), can be obtained from Eq. (93). This results in
d = (3 + 2

√
3)/7 ≈ 0.9234 and k ≈ 1.07.

9.1.4 Convex π -Plane Model

The model of Haythornthwaite (94)

ΦHAY = 36

26

1

d3 (I
′
3)

2 − 35

25

d − 1

d3 I ′
2 I ′

3 σeq − 34

24

1

d2 (I
′
2)

2 σ 2
eq (97)

− 33

23

1 − d3

d3 I ′
3 σ

3
eq + 32

22

1 + d2

d2 I ′
2 σ

4
eq − σ 6

eq

and the model of Sayir II (90) with the parameters

α41 = 6
(d − 1)2 + d

d2 , α31 = 33 d − 1

d2 ,

α21 = −32

(
(d − 1)2 + d

)2
d4 , α11 = −34 (d − 1)

(
(d − 1)2 + d

)
d4 ,

β21 = (1 − 2 d)2 (d − 2)2 (1 + d)2

d6 , β31 = −33

(
(d − 1)2 + d

)3
d6

(98)

are functions of d ∈ [1/2, 2]. With the linear combination [33]

Φ6 = ξ ΦHAY + (1 − ξ)ΦSAY, ξ ∈ [0, 1] (99)

one obtains the model with the power of stress n = 6 in each term. The resulting
model describes with two parameters (d, ξ) all points in the d−k-diagram (Fig. 4)
with a convex form in the π -plane. A drawback is that an explicit solution of (99)
with respect to σeq is not possible.
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The model contains as special cases:

• the model of hexagonal symmetry in the π -plane with d = 1 (bicubic model,
Sect. 9.2),

• the value k = 1 of the model of von Mises results with d = 1 in the parameter
ξ = 26

7·13 ≈ 0.7033 and

• the approximation of the model of Sayir I (87) with ξ = 26

7·13 and ξ ∈ [0, 1].

9.1.5 Radcig Model

The Radcig model6 consists of two overlapping hexagonal prisms of Sayir II (89)
[105, 115]. It is deduced from the Unified Yield Criterion of Yu (Sect. 9.2.1). The
defining equations are:

⎧⎪⎨
⎪⎩
σI − 1

1 + b1
(b1 σII + σIII)− σeq = 0,

σI − 1

1 + b2
(b2 σII + σIII)+ η σeq = 0.

(100)

Further equations are obtained by cyclic permutations of indices. The cross-section
of this model in the π -plane is a dodecagon (twelve-sided figure). The parameters
are bounded as follows

b1 ∈
[
−1

2
, 1

]
, b2 ∈

[
−1

2
, 1

]
, η ∈

[
1

1 + b2
, 2

]
. (101)

The model (100) can be formulated in invariants of the deviator [105]:

(
α41 σ

4
eq I ′

2 + α31 σ
3
eq I ′

3 + α21σ
2
eq (I

′
2)

2

+α11σeq I ′
2 I ′

3 + β21 (I ′
2)

3 + β31 (I ′
3)

2 − σ 6
eq

)×[
α42 (η σeq)

4 I ′
2 − α32 (η σeq)

3 I ′
3 + α22 (η σeq)

2 (I ′
2)

2

−α12 (η σeq) I ′
2 I ′

3 + β22 (I ′
2)

3 + β32 (I ′
3)

2 − (η σeq)
6
] = 0.

(102)

This allows a representation of the model in the Burzyński-plane. The first part
corresponds to the model of Sayir II (90) with parameters which are given by (91).
The parameters of the second part are computed using the substitution b2 by b1. The
Radcig model contains the following models:

• the model of Sayir II with b1 ∈ [−1/2, 1], η = 2 and for arbitrary b2 ∈ [−1/2, 1]
or b1 = η − 1, b2 = (1 − η)/η and η ∈ [1/2, 2] with the relations (92),

• the model of Haythornthwaite with b1 = 1, b2 = 1 and η ∈ [1/2, 2] with relations
(95) and (96),

6 This model is dedicated to Jurij Antonovič Radcig (1900–1976), who was a professor at the Kazan
State University of Technology (KAI), Kazan, Russia.
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• the continuous approximation of the model of Sayir I with η ∈ [1/2, 2] and

b1 = (1 − √
3) η2 + 1

2

(
5
√

3 − 3
)
η − √

3,

b2 = (2 − √
3) η2 +

(
5

2

√
3 − 6

)
η +

(
7

2
− √

3

)
.

(103)

• the UYC of Yu with η = 1 and b = b1 = b2 ∈ [0, 1] (Sect. 9.2) with

k = √
3

1 + b1

2 + b1
, d = 1. (104)

Further discussion of the Radcig-model can be found in the Sect. 10.2.

9.1.6 Geometrical-Mechanical Model

This model is a function of the stress angle θ (224) [6, 33, 107]

(3 I
′
2)

n
2

1 + c3 cos 3θ + c6 cos2 3θ

1 + c3 + c6
= σ n

eq. (105)

The main idea is to include the influence of the odd and the even functions of I ′
3

separately and to give a geometrical meaning to the parameters with respect to the
mechanical properties. Computation of the equivalent stress σeq can be performed
directly.

The two parameters c3 and c6 determine the geometry of the model in theπ -plane.
With c3 = 0 a model with hexagonal symmetry is obtained: there is no difference
between tension and compression (d = 1). With c3 = c6 = 0 one gets the model of
von Mises.

The values d and k compute to

dn = 1 + c3 + c6

1 − c3 + c6
, kn = 1 + c3 + c6. (106)

This leads to the two inequalities

1 − c3 + c6 > 0, 1 + c3 + c6 ≥ 0. (107)

The recommended values for the exponent are n = 2, 3 and 6. The exponent n = 2 is
suitable, if the modeling with rational compressible substitution (Sect. 10.1) involves
energy considerations [212]. The values n = 2 and 3 allow to solve the equation given
by (105) with respect to σeq analytically even if the rational compressible substitution
(Sect. 10.1) is introduced. The convexity region of the geometrical-mechanical model
(105) in the parameter space c3−c6 is shown in Figs. 19 and 20).
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Fig. 19 Convexity region of the geometrical-mechanical model (105) with n = 2: with
θ some curves are marked, which build the boundary of the convexity region, Coordinates
at the points P0(0, −1/9), P1(−0.1, −0.1086), P2(−0.2, −0.1011), P3(−0.3, −0.0886),
P4(−0.3560, −0.05), P5(−0.3478, −0.02717), P6(0, 1/23)
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Fig. 20 Convexity region of the geometrical-mechanical model (105) with n = 6 (the cross-sections
in the π -plane are shown for clarity)

With the exponent n = 6 a model is obtained, which has the largest convexity
region in the d−k-diagram (Figs. 4 and 21).
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Fig. 21 Convexity condition of the geometrical-mechanical model (105) in the d−k-diagram
together with the boundaries of the convexity region as presented in Fig. 4

9.1.7 Triquadratic Model

The triquadratic model is formulated as follows [103, 105, 107]

33 I ′3
2 + c3 σ

3
eq I ′

3 + c6 I ′2
3

1 + 2

33 c3 + 22

36 c6

= σ 6
eq. (108)

It allows analytical estimation of the equivalent stress. This model with the power
n = 6 contains the hexagonal symmetry model with c3 = 0 (model of Drucker I,
Sect. 9.2) and with c6 = 0 one gets

c3 ∈
[
−33

22 ,
33

2

]
. (109)

The relations are

k6 = 1 + 2

33 c3 + 22

36 c6, d3 = k6

1 + 22

36 c6

. (110)

The idea for this model is similar to the model (105). Comparing with (105) we
conclude that the triquadratic model (TQM) is more difficult to use. It should be
noted that the parameters c3, c6 have no mechanical or geometrical meaning.
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Fig. 22 Continuous surfaces with hexagonal symmetry and the model of von Mises (16) in the
π -plane, incompressible material behavior, d = 1 [135]. On the right hand side an enlarged cross-
section with θ ∈ [0, π/3] is presented [33]
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Fig. 23 Non-convex models for incompressible material behavior with d = 1 in the π -plane: left
hand side model of triangular symmetry, right hand side model of hexagonal symmetry [96]. The
rotationally symmetric model of von Mises is presented for comparison

9.2 Yield Surfaces with Hexagonal Symmetry

The models for incompressible material behavior with hexagonal symmetry have
the properties d = 1 and h = q (Table 1, Figs. 22 and 23). Such models are often
used for the description of yield of ideal ductile materials in the theory of plasticity.
Numerous problems are treated in the engineering practice using these criteria. These
models are of the form

Φ(I ′
2, (I

′
3)

2, σeq) = 0, Φ(I ′
2, cos2 2θ, σeq) = 0

The meridians with θ = 0 and π/3 coincide in the Burzyński-plane (Figs. 15 and
16). Such models can be represented in the h−k-diagram (Fig. 24) and compared
with von Mises model with h = k = 1.



90 H. Altenbach et al.

b = 1/ 2

DRUCKER I

DODD -NARUSE
η = 2/ √3

TRESCA

SCHMIDT -ISHLINSKY

UYC

M

η =
1

3 (2 − 3)
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Fig. 24 h − k-diagram: models of hexagonal symmetry for incompressible material behavior:
M—model of von Mises (16) with h = k = 1; UYC—yield criterion of Yu (111); BCM—bicubic
model (113); Eq. (122)—model based on the stress angel with n = 6; MAC—multiplicative ansatz
criterion, special points—s. [116]

9.2.1 Unified Yield Criterion of Yu

The criterion of Yu [222, 229] with the parameter b ∈ [0, 1] can be expressed

⎧⎪⎪⎨
⎪⎪⎩
σI − 1

1 + b
(b σII + σIII)− σeq = 0,

σI − 1

1 + b
(b σII + σIII)+ σeq = 0,

(111)

and using Eq. (102) formulated in terms of the invariants of the deviator [105]

ΦUYC = (α41 σ
4
eq I ′

2 + α21 σ
2
eq I ′2

2 + β21 I ′3
2 + β31 I ′2

3 − σ 6
eq)

2

− (α31 σ
3
eq I ′

3 + α11 σeq I ′
2 I ′

3)
2 (112)

with the coefficients (91). In Table 5 some settings for special cases are presented.
The yield criterion of Yu defines the left convexity bound of the models with

hexagonal symmetry in the h − k-diagram (Fig. 24, UYC).



Phenomenological Yield and Failure Criteria 91

Table 5 Settings of UYC (111) and the respective relations k and h (Fig. 24)

Model b k h Fig.

Tresca 0

√
3

2
≈ 0.8660 0.8966 1, 15, 22

–
1

2 + √
2 ≈ 0.2929

0.9767 0.9545 –

Sokolovskya 1

2

(√
3 − 1

)
≈ 0.3660 1 0.9659 22

– 0.4095 1.0132 0.9723 –
–

√
2 − 1 ≈ 0.4142

√
6 (

√
2 − 1) ≈ 1.0146 0.9729 –

–
1

2
3

√
3

5
≈ 1.0392 0.9845 22,33

– 0.6286 1.0731 1 –

Schmidt-Ishlinsky 1
2√
3

≈ 1.1547 1.0353 1, 16, 22

aThe model is named after Sokolovsky following Pisarenko-Lebedev [157] “…it was attempted to
introduce some intermediate criteria by replacing the hexagonal prism of Coulomb with a dode-
cagonal prism [195] (inscribed in the von Mises-cylinder) …”. Further references to this models
are [28, 222, 223, 226].

9.2.2 Bicubic Model

This model is obtained as a linear combination of the models of Tresca (15) and
Schmidt-Ishlinsky (19) [33, 103]

(1 − ξ)

[(
I ′
2 − σ 2

eq

)2 (
22 I ′

2 − σ 2
eq

)
− 33 I ′ 2

3

]

+ξ
[

33

23 I ′
3 + 32

22 I ′
2 σeq − σ 3

eq

] [
33

23 I ′
3 − 32

22 I ′
2 σeq + σ 3

eq

]
= 0.

(113)

This model also results from (99) with d = 1.
The bicubic model divides the h−k-diagram into two areas. The models of Tresca

and Schmidt-Ishlinsky are obtained with ξ = 0 and ξ = 1. The value k = 1 results
in ξ = 26/(7 · 13) ≈ 0.7033. This model is continuously differentiable (excluding
the borders of ξ ) and allows an explicit solution for σeq. For this reason, the BCM
is appropriate for practical use. The parameters k and h are obtained from bicubic
equations

24 · 33 + 23 · 33 k2 (ξ − 22)+ 26 k6 (ξ − 1)− 33 k4 (7 ξ − 24) = 0, (114)

25 · 33 + 2 · 33 h4 (24 − 7 ξ)+ 24 · 33 h2 (ξ − 22)+ h6 (37 ξ − 26) = 0 (115)

as the lowest positive solutions. The analytical solution of (114) and (115) is complex
and hence omitted.
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Table 6 Settings of MAC (116) and the respective relations k and h (Fig. 24)

Model η k h Fig.

Tresca 1

√
3

2
≈ 0.8660 0.8966 1, 15, 22

–
1√

3 (2 − √
3)

≈ 1.1154

√
2 + √

3

2
≈ 0.9659 1 –

– 1.1344 0.9824 1.0170 –

Ishlinsky-Ivleva 2√
3

≈ 1.1547 1 1.0353 22

–
3

14

(
4 + √

2
)

≈ 1.1602 1.0048 1.0353 –

– 2 − 1√
2

≈ 1.2929 1.1197 1.0353 –

Schmidt-Ishlinsky
4

3

2√
3

≈ 1.1547 1.0353 1, 16, 22

aThe regular dodecagon in the π -plane is named after Ishlinsky-Ivlev [33, 105, 115], s. also [93,
98–100, 128, 193, 227].

9.2.3 Multiplicative Ansatz Criterion

Multiplicative combination of the models of Tresca (15) and Schmidt-Ishlinsky (19)
[116] lies on the right boundary of the convexity region of the models of hexagonal
symmetry (Fig. 24, MAC) [93, 98, 99, 193]. It is obtained as follows [105]

ΦMAC =
[(

I ′
2 − (η σeq)

2
)2 (

22 I ′
2 − (η σeq)

2
)

− 33 I ′ 2
3

]

×
[

33

23 I ′
3 + 32

22 I ′
2 σeq − σ 3

eq

] [
33

23 I ′
3 − 32

22 I ′
2 σeq + σ 3

eq

]
. (116)

The value η lies in the interval η ∈ [1, 4/3]. The parameters k and h compute to

k =
√

3

2
η, h =

⎧⎪⎪⎨
⎪⎪⎩
η

√
3 (2 − √

3), η ∈
[

1,
2√
3

]
,

√
4 (2 − √

3), η ∈
[

2√
3
,

4

3

]
.

(117)

The models of Tresca and Schmidt-Ishlinsky are obtained with η = 1 and η = 4/3.
With η = 2√

3
one gets the regular dodecagon in the π -plane (Table 6).

For UYC and MAC the points, which have the shortest distance to the point
M(1, 1) (Fig. 24, model of von Mises), can be obtained from the equation

(h − 1)2 + (k − 1)2 → min. (118)
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Using these points the model of von Mises can be approximated with the dodecagons
of UYC with b = 0.4095 and the dodecagons of multiplicative ansatz criterion
(MAC) with η = 1.1344.

9.2.4 Universal Model with Hexagonal Symmetry

The parameter b ∈ [0, 1] of the UYC (111) can be replaced by the parameter

k ∈
[√

3/2, 2/
√

3
]

b =
√

3 − 2 k

k − √
3
. (119)

The parameter η ∈ [1, 4/3] in MAC (116) can be replaced by k ∈
[√

3/2, 2/
√

3
]

with (117)

η = 2√
3

k. (120)

With the linear (convex) combination of the two latter models [116]

Φ12 = ξ ΦMAC + (1 − ξ)ΦUYC, ξ ∈ [0, 1] (121)

the model with the power of stress n = 12 is obtained, cf. Eq. (99). It covers all the
convex forms in the h−k-diagram with two parameters (k, ξ). The values k = 1 and
ξ = 0.3901 result in h = 1, which corresponds to the model of von Mises (Fig. 24).

With ξ = 0.3901 and k ∈
[√

3/2, 2/
√

3
]

one gets the approximation of BCM (113).

With k = 1 and ξ ∈ [0, 1] one obtains a model, which links the regular dodecagon
of Sokolovsky and Ishlinsky-Ivlev: h ∈ [0.9659, 1.0353]. The major disadvantage
is, that the model (121) is not analytically solvable with respect to σeq.

9.2.5 Model Based on the Stress Angle

Cosine ansatz to the power 2 and 4 is introduced in [33]

(3 I
′
2)

n/2 1 + c6 cos2 3θ + c12 cos4 3θ

1 + c6 + c12
= σ n

eq, n = 1, 2 . . . (122)

with

kn = 1 + c6 + c12, hn = 22 1 + c6 + c12

22 + 2 c6 + c12
. (123)

This model contains the following criteria:

• Drucker I [54, 154, 199] with n = 6, c6 ∈ [−1/3, 1/2], c12 = 0 and
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c6

c12

(1/2,0)(-1/3,0)

(0,1/5)

(0,-0.2671)

DRUCKER I

c 6
=

−
1 3

c6 =
1
2

(1 − 5c12)

θ =
π
12

0.2

0.2 0.4 0.6 0.8

-0.2

-0.2

-0.4

-0.4

Fig. 25 Convexity region of the model (122) with n = 6 in the parameter space (c6, c12). The
constraints at θ = 0 with c6 = (1 − 5 c12)/2, θ = π/12 and θ = π/6 with c6 = −1/3 are shown
for clarity

• Dodd-Naruse [53, 229] with n = 12, c6 = 0, c12 ∈
[

2
33

(
2

√
11 − 13

)
, 1

2

]
.

The boundaries of the parameters of the model (122) with n = 6, which result from
the convexity conditions [33], are shown in Fig. 25.

10 Pressure-Sensitive Criteria

The behavior of real materials can be presented by the models (5) and (6). The first
invariant of the stress tensor should be included in the pressure-insensitive criteria
(Sect. 9) in such a way that the shape in the π -plane will be preserved.

10.1 Compressible Generalization

A compressible generalization of the models of incompressible material behavior
(Sect. 9) is obtained by substitution [115]

σeq → j+l+m

√(
σeq − γ1 I1

1 − γ1

) j (σeq − γ2 I1

1 − γ2

)l

σ m
eq . (124)
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The parameters γ1 and γ2 determine the position of the hydrostatic nodes AZ and AD
on the hydrostatic axis (Figs. 2, 12). The powers j , l and m are chosen to be integer
and positive. They are restricted by the following experience-based relation:

j + l + m ≤ 6. (125)

For materials, which do not fail under hydrostatic pressure (brass, plumb, steel),
the surfaces Φ has a single hydrostatic node AZ (ahyd

+ > 1/3, ahyd
− → ∞), e. g.:

• in order to obtain straight meridians the substitution with l = m = 0 is

σeq → σeq − γ1 I1

1 − γ1
, + + +γ1 ∈ [0, 1[, (126)

• for parabolic models it follows l = 0 and
• for hyperbolic meridians γ2 ∈ ]0, γ1[; the second node does not belong to the

relevant region of the surface and has no physical meaning, cf. [220]; due to this
fact the hyperbolic surfaces are not recommended for applications.

For materials, which fail under hydrostatic compression (hard foams, ceramics,
sintered and granular materials, etc.) the additional hydrostatic node AD is needed.
The parameters in (124) are then bounded as follows

γ1 ∈ ]0, 1[, γ2 < 0. (127)

For instance the closed surface with the substitution

σeq → 3

√
σeq − γ1 I1

1 − γ1

(
σeq − γ2 I1

1 − γ2

)2

(128)

and the shape b of the cross-section in the π -plane (Fig. 4) can be considered. The
properties of the surface with γ1 = 1/3, γ2 = −1/3 are shown in Figs. 27, 28 and 26.

The closed surfaces with j = l possess a symmetry plane orthogonal to the
hydrostatic axis

I1

σ+
= 1

2

(
1

γ1
+ 1

γ2

)
. (129)

The ellipsoid of Schleicher (Sect. 6) with this property is widely applied in model-
ing [114].

There is no method known, which allows to choose the powers in (124) analyti-
cally. Rational substitution, e. g. such transform where the root in (124) spared, is a
simple possibility. For example a quadratic substitution

σ 2
eq → σeq − γ1 I1

1 − γ1

σeq − γ2 I1

1 − γ2
, γ1 ∈ [0, 1[ (130)
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σI/ σ+

σII

σ+

AZ

AD

Z

D

K

BD

BZ
IZ

UD

1

1

-1

-1

-2

-2

plane stress state with σIII = 0

σIII = σI

σIII = σII

σI = − σII

σI = σII

Fig. 26 Model of Sayir I (87) with c3 = 32/2 and the substitution (128) with γ1 = 1/3, γ2 =
−1/3 in the σI−σII-plane (s. Burzyński-plane (Fig. 27) and π -plane (Fig. 28)). The meridians with
σIII = σII and σIII = σI are shown for clarity (spatial image)

can be applied for the model of von Mises (16), see rotationally symmetric model (51),
and the models of hexagonal symmetry (Sect. 9.2) for fitting the available measured
data.

The nonconvex surfaces in the meridian section are obtained with (124), if among
the parameters γi there are two complex conjugated values. Figure 29 represents, as
an example, a hyperboloid [63]. Such surfaces can be used as parts of combined
models (Sect. 11.2).

10.2 Unified Strength Theory of Yu

The Unified Strength Theory (UST) is built up from two six-edge pyramids in the
principal stress space [105, 228, 229]

⎧⎪⎪⎨
⎪⎪⎩
σI − 1

d (1 + b)
(b σII + σIII)− σeq = 0,

1

d
σI − 1

1 + b
(b σII + σIII)+ σeq = 0.

(131)
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-1 I1

σ+

3 I2

σ+

AZAD

Z

D

K

BD

BZ
IZ

UD

θ = 0

θ = 30

θ = 60plane stress state (2.82)

1 2 3-2-4

0.5

1.0

1.5

2.0

NSH

TT TD

− d− 2d− 3d

Fig. 27 Model of Sayir I (87) with c3 = 32/2 and the substitution (128) with γ1 = 1/3, γ2 = −1/3
in the Burzyński-plane. Properties: d = 1.41, k = 1.09, iZ = 1.09, uD = 0.81, bZ = 1.35,
bD = 0.70, ahyd

+ = 1, ahyd
− = 1, νin+ = 1/2, νin− = −0.05. The reference values for the hydrostatic

nodes AZ and AD are: NSH—upper bound due to the normal stress hypothesis ahyd
+ = 1, (41), TT—

lower bound for the point AD with respect to the normal stress hypothesis as trigonal trapezohedron,
ahyd
− = d, TD—lower bound for the point AD with respect to the normal stress hypothesis as

triangular dipyramid, ahyd
− = 2 d/3

The faces of the first pyramid are obtained from the first equation with the cyclic
permutations of indices. The faces of the second one are obtained in the same manner
from the second equation.

The model (131) describes the compressible material behavior with the properties
(22) using two parameters d ≥ 1 and b ∈ [0, 1]. The value d corresponds to the
relation d (Table 1)

d = |σ−|
σ+

, (132)

which simplifies the application of the model.
The analysis of the UST leads to the following special cases (Figs. 5 and 30):

• b = 1 results in the Twin-Shear Theory (TST) of Yu,
• with

b =
√

3 − 1

2
(133)

follows a continuous analogy of the model of Pisarenko-Lebedev (48),
• with b = 0 the model of Mohr-Coulomb (Single-Shear Theory of Yu), Eq. (45),

is obtained,
• with d → ∞, b ∈ [0, 1] absolutely brittle materials can be described (normal

stress hypothesis), Eq. (8),
• the Unified Yield Criterion (111) results from the UST with d = 1 and b ∈ [0, 1].
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Z

Z

D

K

K

BZ

AZ

BD

UD

UD

IZ

ξ2

ξ3 σII/ σ+

σIII/ σ+ σI/ σ+

1

1

-1

-1

-2

-2

I1 = σ+

I1 = − d σ+

I1 = 0

ξ1 =
1

√2
ξ3 − √3ξ2

Fig. 28 Cross-sections I1 = σ+, I1 = 0, I1 = −d σ+ and the line of the plane stress state of the
model of Sayir I (87) with c3 = 32/2 and the substitution (128) with γ1 = 1/3, γ2 = −1/3 in the
π -plane, see Fig. 27

I1

σ

3 I2

σ+

+

ZD

K

IZUD

VON MISES

2-2-4

0.5

1.0

1.5

2.0

Fig. 29 Model of von Mises and the hyperboloid of one sheet (51) with γ1 = −γ2 = 1/
√

3 i in
the Burzyński-plane with the properties: d = 1, k = √

3/2, iZ = uD = √
3, νin+ = νin− = 1

The hydrostatic tensile stress computes to

ahyd
+ = 1

1 − 1

d

= 1

1 − 2 νin+
. (134)
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normal stress hypothesis

Twin-Shear-Theory of YU

d = 3, b = 1, ν in
+ = 1/ 6

σII
σI

σIII

ξ1

ξ2

ξ3
hydrostatic axis

AZ

Fig. 30 Twin-Shear Theory (d = 3, b = 1, νin+ = 1/6) and the normal stress hypothesis (d → ∞,
b = 0 . . . 1, νin+ = 0) in the principal stress space. The point AZ of the normal stress hypothesis is
shown for better understanding

The surfaceΦ of the UST is open in the hydrostatic compression direction (I1 < 0):

ahyd
− → ∞. (135)

The relation k equals to

k = √
3

1 + b

1 + b + 1

d

= √
3

1 + b

1 + b + 2 νin+
. (136)

For iZ and uD it follows

iZ =
√

3 (1 + b)

2 − b (1/d − 2)
, uD =

√
3 (1 + b)

(2 + b) 1/d
. (137)

The relations bZ and bD are given by (22). The Poisson’s ratios at tension and comp-
ression are

νin+ = 1

2 d
, νin− = d

2
. (138)
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I1

σ+

3 I2

σ+

AZ

Z

D

K

BD

BZ

IZ

UD

θ = 0

θ = 30

θ = 60

VON MISES

line of the plane stress state

0

1

2

2

3

4

4-2-4-6

NSH

− d− 2d

Fig. 31 UST with d = 3 and b = 1 with the properties k = 6
√

3/7, iZ = 6
√

3/11, uD = 2
√

3,
bD = 3, bZ = 1, ahyd

+ = 3/2, νin+ = 1/6, νin− = 3/2 and the model of von Mises in the Burzyński-

plane, cf. [105]. NSH—reference value ahyd
+ = 1 from the normal stress hypothesis

The invariant representation of the UST (131) is given in [105, 115]. It results from
the Radcig model (102) by the linear transform (126) and the parameters

γ1 = 1 − 1/d

3
, η = 2 + 1/d

1 + 2/d
, (139)

b1 = 1 + b − 1/d + 2 b/d

1 + b + 2/d − b/d
, b2 = 3(1 − b)

b (1 − 1/d)− 2 − 1/d
+ 1. (140)

The meridians with θ = 0, π/6 and π/3 of the UST are represented in the
Burzyński-plane by straight lines through the point AZ(3 ahyd

+ , 0) and the points
Z (1, 1), K (0, k) and D (−d, d), respectively. The Twin Stress Theory (TST) with
the parameter values d = 3 and b = 1 is shown in Figs. 30, 31 and 32.

10.3 Models for Applications

Because of their simplicity and versatility the following models can be recommended
for various classes of isotropic materials.

10.3.1 Unified Strength Theory of Yu

The UST (131) is well-accepted and often used in computations and theoretical inves-
tigations. The linear relations of the model result in low computational complexity.
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-3
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Z

Z
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D
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K

BZ
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BD

UD

ξ2

ξ3 σII/ σ+

σIII /σ+ σI /σ+

line of the plane stress state with ξ1 =
1

√2
ξ3 − √3ξ2

I1 = − d σ+

I1 = 0

I1 = σ+

Fig. 32 UST with d = 3 and b = 1: cross-sections I1 = σ+, I1 = 0, I1 = −d σ+ and the line
of the plane stress state in the π -plane, see principal stress space (Fig. 30) and Burzyński-plane
(Fig. 31)

The model is restricted to materials with ahyd
− → ∞ (the hydrostatic compression is

unbounded). The straight lines of the meridians of this model simplify the description
of the material behavior, however they have no theoretical foundation. The model can
be modified near the hydrostatic tension (Sect. 11.1) in order to reduce the relation
ahyd
+ [229].

The UYC (UST with d = 1) cannot describe the SD-effect (no strength differential
effect) and the Poynting-Swift-effect for incompressible material [105]. Because the
intersections of the planes (131) with each other lie outside of the closed region,
where the model is valid (Fig. 33), the approximation of the measurements using
different optimization criteria (Sect. 12) becomes difficult.

If the UST is used as a plastic potential these intersections lead to singularities in
the strain field.

10.3.2 Rotationally Symmetric Models

Depending on the number of experiments, the quality of the measurements and
the required modeling precision, the function Φ can be simplified, if the influence
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1

1

ξ3

ξ2

P

h1

h2

a

b

σIII

σ+

Fig. 33 UYC with b = 1/2 in the π -plane. P—measurement (schematic); h1, h2—normals to

some planes of the model: a σeq = 1

1 + b
(σII + b σIII)− σI, b σeq = σII − 1

1 + b
(σI + b σIII). The

model of von Mises is presented for comparison

of the third deviatoric invariant is neglected. These models contains the quadratic
rotationally symmetric model (51), Figs. 11, 12 and 34.

Using the substitution (124) the rotationally symmetric model of the form

(3I
′
2)

3 =
(
σeq − γ1 I1

1 − γ1

) j (σeq − γ2 I1

1 − γ2

)l

σm
eq, γ1 ∈ [0, 1[ (141)

with
j + l + m = 6 (142)

can be introduced. The following combination of the parameters γi for materials
with ahyd

− → ∞ can be used

• for a cone with γ1 = γ2, m = 0 and
• for a paraboloid with l = 0, m = 1 . . . 5.

For closed criteria, which restrict in addition to the hydrostatic tension the hydro-
static compression, the following values of parameters γi should be considered

• γ2 < 0, m = 0 . . . 3, j �= l (Fig. 35) or
• γ2 < 0, m = 0, 2, 4, j = l a surface similar to the ellipsoid of Schleicher (Fig. 34)

with the symmetry plane orthogonal to the hydrostatic axis with (129).
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D
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IZVON MISES

26.6 45
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2-2-4
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Fig. 34 Model of Schleicher (51) with the Poisson’s ratio νin+ = 1
10 , [103]: top in the principal stress

space σI, σII, σIII (for clarity the surfaces I, II and III are cut ξII ≥ 0) bottom in the Burzyński-plane

I νin− = −1

2
, γ1 = 1

15
(−9 + 2

√
78), γ2 = 1

15
(−9 − 2

√
78), d = 0.45, k = 0.92; II νin− = 1

10
,

γ1 = γ2 = 2√
15

, d = 1, k = 1.17 (ellipsoid of Beltrami); III νin− = 1

2
, γ1 = 1

15
(2 + √

26),

γ2 = 1

15
(2 − √

26), d = 1.36, k = 1.25

This model yields more possibilities for approximations in comparison to (51).
If an analytical solution of the equation with respect to σeq is required, the model

(3I
′
2)

3/2 =
(
σeq − γ1 I1

1 − γ1

) j (σeq − γ2 I1

1 − γ2

)l

σm
eq, γ1 ∈ [0, 1[ (143)

with
j + l + m = 3 (144)
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Fig. 35 Rotationally symmetric model (141) with γ1 = 1/3, γ2 = −1/3 or ahyd
+ = 1, ahyd

− = 1 I.
j = 4, l = 2, d = 1.25, k = 1.19, bZ = 0.82, bD = 1.10, νin+ = 1

5 , νin− = 0.44; II. j = 2, l = 4,
d = 0.83, k = 0.94, bZ = 0.94, bD = 0.70, νin+ = 1

2 , νin− = 0.27 in the principal stress space and
in the Burzyński-plane

can be used too. The number of the possible meridian shapes is lower in comparison
with (141).

10.3.3 Geometrical-Mechanical Model

The model

3 I ′
2

1 + c3 cos 3θ + c6 cos2 3θ

1 + c3 + c6
= σeq − γ1 I1

1 − γ1

σeq − γ2 I1

1 − γ2
(145)
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is a generalization of the rotationally symmetric model (51). The equivalent stress
σeq can be computed analytically. The model can be used for describing of the multi-
modular theory of elasticity.7

The relations compute to

d2 1 − c3 + c6

1 + c3 + c6
= (1 + d γ1) (1 + d γ2)

(1 − γ1) (1 − γ2)
, (146)

k2 = 1 + c3 + c6

(1 − γ1) (1 − γ2)
. (147)

The Poisson’s ratio at tension νin+ is the same as in (54). The Poisson’s ratio at
compression νin− is not provided because of its complexity.

The model

(3I ′
2)

3/2 1 + c3 cos 3θ + c6 cos2 3θ

1 + c3 + c6
=
(
σeq − γ1 I1

1 − γ1

)3−l−m (σeq − γ2 I1

1 − γ2

)l

σm
eq

(148)
with the substitution (124) and the adjustment (144) allows the analytical computa-
tion of the equivalent stress σeq. The number of possible shapes of the meridian line
is however still not sufficient for a fitting of measurements. The relations compute to

d3 1 − c3 + c6

1 + c3 + c6
=
[

1 + d γ1

1 − γ1

]3−l−m [1 + d γ2

1 − γ2

]l

, (149)

k3 = 1 + c3 + c6

(1 − γ1)3−l−m (1 − γ2)l
. (150)

As strength hypothesis it can be recommended to use the geometrical-mechanical
model (105) with the substitution (124) and the adjustment (142)

(3I ′
2)

3 1 + c3 cos 3θ + c6 cos2 3θ

1 + c3 + c6
=
(
σeq − γ1 I1

1 − γ1

)6−l−m (σeq − γ2 I1

1 − γ2

)l

σm
eq.

(151)
This model has a large region of convex forms in the π -plane and various settings
for the meridian. The relations are obtained analogous to (149) and (150)

d6 1 − c3 + c6

1 + c3 + c6
=
[

1 + d γ1

1 − γ1

]6−l−m [1 + d γ2

1 − γ2

]l

, (152)

k6 = 1 + c3 + c6

(1 − γ1)6−l−m (1 − γ2)l
. (153)

7 Theory of elasticity with different Young’s moduli E+ �= E− and elastic Posisson’s ratios νel+ �= νel−
at tension and compression [9, 212]
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The models (145), (148) and (151) describe incompressible material behavior
with γ1 = γ2 = 0 and for c3 = c6 = 0 become rotationally symmetric model
(141). With c3 = 0 one obtains the models of hexagonal symmetry. The convexity
conditions in the parameter space c3−c6 must be taken into account for these models.

10.3.4 Convex π -Plane Model

The model (99) with the substitution (124) and the adjustment (142) can be used
for analysis in certain special situations. For instance, in order to check if the given
measurements can be described by a convex model. The number of measurements
must be sufficient in order to obtain reasonable approximations. This model contains
applying the linear substitution (126) the pyramids of Sayir II [178] and due to
Haythornthwaite. The model of Drucker II [55] and due to Schmidt-Ishlinsky are
special cases of these models. This model incorporate various conditions, e.g. ξ = 0,
bZ = 1, ahyd

+ = 1, to obtain special theories.

11 Combined Criteria

The mechanical behavior of modern materials can seldom be represented by a sin-
gle surface Φ [157]. The extrapolated behavior at a hydrostatic tension (point AZ)
is in this case frequently overestimated. It occurs also that the Poisson’s ratio at
compression can admit incorrect values with νin− > 1/2 for yield criteria (Sect. 4).

For a reliable description of the measured data a number of combined models
is proposed: the standard hypotheses (strain hypothesis (41), Mohr-Coulomb model
(45) and Burzyński-Yagn model (51)) are combined in a different manner. Further
reasons for the development of the combined models are:

• a small number of well-recognized models (Sect. 2, 6),
• simple interpretation of the measurements, which for instance can be separated

in the regions of the brittle and of the ductile failure based on the hydrostatic
stress with e. g. I1 < σ+ and I1 ≥ σ+. In this case the surfaces with hexagonal
symmetry in the π -plane are often used for ductile material behavior (Tresca and
Schmidt-Ishlinsky models) and the surfaces with the trigonal symmetry (Fig. 4,
cross section b) for the brittle one (normal stress hypothesis),

• taking into account the incompressibility νin− = 1/2 for loadings with I1 < 0,
• the restriction of the hydrostatic stresses with, e. g., a+ hyd ∈[ 1/3, 1

]
(Fig. 7),

• decrease of the power of the stresses in each part of the combined surface Φ
to n ≤ 6, which simplifies the analysis of the measurements and results in an
increased computational stability.

Combined models containing a “cap” (cut-off), which bounds the hydrostatic
stress at the point AZ, and a “body”. Models for incompressible material behavior
(e. g. Schmidt-Ishlinsky, von Mises or Tresca) are usually chosen as the “body” in
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VON MISES

σI

σII

σIII

hydrostatic axis

C1-Transition

Fig. 36 Combined model with a C1-transition in the cross-section I1 = 0 built up from the model
with the cross-section a in theπ -plane (Fig. 4) in the principal stress space. The cylinder of von Mises
is shown for comparison

the compression region (I1 < 0). The influence of the first invariant in the model Φ
changes with the transition from the “body” to the “cap” [107].

In order to reduce the number of possible combinations of surfaces additional
plausibility conditions [105] are introduced

• the C0-transition (continuous, not differentiable transition) follows for polyhedral
surfaces (Sect. 11.1),

• for combinations of continuously differentiable surfaces it is a natural requirement
the C1-transition (Sect. 11.2),

• for combinations of surfaces, which have the same shape in the π -plane and are
continuous, the C1-transition in the meridian sections is recommended (Fig. 36).

The above mentioned conditions prohibit for instance the use of the model of
Pelczyński [155, 234], which is built up from the normal stress hypothesis (8) and
the model of von Mises (Figs. 2 and 37), some modifications, see [43, 45, 55, 173,
197, 217, 232]. The complicated shapes of the lines, resulting from the combination
of the two surfaces, have no physical meaning.

11.1 Criteria with C0-Transition

These models are built up from the Unified Strength Theory of Yu (Sect. 10.2) and
the strain hypothesis (41). The normal stress hypothesis (8) is usually used as cut-off
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VON MISES

σI

σII

σIII

hydrostatic axisSH

Fig. 37 “Pencil” of Pelczyński in the principal stress space with a C0-transition between the surface
of the strain hypothesis (SH), (41) and the cylinder of von Mises [107], cf. [234]

NSH

σI

σII

σIII

hydrostatic axis

MOHR -COULOMB

AZ

Fig. 38 Combined model with a C0-transition in the principal stress space (model of Mohr-
Coulomb with d = 3, νin+ = 1/6 and the normal stress hypothesis νin+ = 0 as a cut-off) [107]

(Figs. 30 and 38) instead of the strain hypothesis in order to reduce the number of
parameters in the model [49, 70, 153, 154, 229].

The inclination of the meridian line of the angle θ = 0 of the combined model,
defined by the Poisson’s ratio νin+ , has a jump at the point Z (Figs. 39 and 40)
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Fig. 39 Pyramid of the UST (131) with b = 0, d = 3, k = 1.30, bZ = 1,iZ = 0.87, ahyd
+ = 3/2,

νin+ = 1/6, νin− = 3/2 in the Burzyński-plane with the normal stress hypothesis as cut-off, iZ = 0.87,

ahyd
+ = 1, νin+ = 0 (Fig. 38)
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Fig. 40 Pyramid of the UST (131) with b = 1, d = 3, k = 1.48, bZ = 1,iZ = 0.94, ahyd
+ = 3

2 ,
νin+ = 1

6 , νin− = 3
2 in the Burzyński-plane with the normal stress hypothesis as cut-off, iZ = 0.87,

ahyd
+ = 1, νin+ = 0 (Fig. 30), cf. [105]

νin+ =
{

0, I1 > σ+, NSH as cut-off;
0 . . .

1

2
, I1 ≤ σ+, UST of Yuas body.

(154)

It is possible to combine two surfaces of UST with different parameter sets (d, b)
under the constraint

νcut-off+ ∈
[
0, νbody

+
]

(155)
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VON MISES

σI

σII

σIII

hydrostatic axis

HUBER

Fig. 41 Model of Huber with the C1-transition in the cross section I1 = 0 and the cylinder of
von Mises in the principal stress space [107]

However, the resulting surface is too complex for applications. The existing infor-
mation on the material behavior, which allow to deduce two different parameter
sets (d, b) of the UST, can be as usual better taken into account with the help of
C1-criteria.

11.2 Criteria with C1-Transition

Combined surfaces with C1-transitions have the following advantages:

• unique computation of the strain rates for the yield surface Φ with the flow rule,
e. g. with (27) and

• lower number of parameters compared to C0-criteria.

11.2.1 Model of Huber

The first combined hypothesis was proposed in 1904 by Huber [36, 37, 67, 91, 103,
118]. The model consists of the ellipsoid of Beltrami (Sect. 6.4) and of a cylinder
with the transition at the cross-section I1 = 0 (Figs. 41 and 42)

3 I ′
2 =

⎧⎪⎨
⎪⎩
σeq − γ1 I1

1 − γ1

σeq + γ1 I1

1 + γ1
, I1 > 0, cap;

σeq

1 − γ1

σeq

1 + γ1
, I1 ≤ 0, body.

(156)
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Fig. 42 Models fitted to the measured data for polyoxymethylene (POM) Hostaform C13031,
Ticona GmbH, Sulzbach in the Burzyński-plane [113]: I model of Huber (156) with k = 1.25,
(d = 1.25, νin+ = −0.04, νin− = 1/2, 3 ahyd

+ = 1.67), II modified model of Huber (163) with

d = 1.34, (k = 1.24, νin+ = 0, 20, νin− = 12, 3 ahyd
+ = 2.18)

The transition between the surfaces in the cross-section I1 = 0 is continuously
differentiable. The model has the property k = d ≥ 1. The parameter γ1 ∈ [0, 1[
results from the relation (52)

k2 = 1

(1 − γ1)(1 + γ1)
. (157)

The Poisson’s ratio at tension can be computed using (54) as follows

νin+ = 3

2 k2 − 1. (158)

Further values are

bZ = 1√
2
(
1 − νin+

) , ahyd
+ = 1√

3
(
1 − 2 νin+

) . (159)

The model is simple and represents the “classical view” with respect to the inelastic
material behavior, cf. [140]:

• compressible properties for I1 > 0 with ν+ in ∈]− 1, 1/2
]

and
• incompressible properties for I1 < 0, νin− = 1/2.

The model can be used as a yield surface with the empirical restriction (34), which
leads to the relation d = k ∈ [1, 1.007]. The latter condition is rather restrictive,
which makes the fitting of the model to the measurements harder. However, the model
should be preferred to the von Mises-model (16), since one obtains safer results in
the region I1 > σ+ with bZ ∈ [0.98, 1] and ahyd

+ ≥ 2.89 in regions, where the
information on these loading cases are missing.

The model of Huber (156) can be extended (Fig. 43).
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The new model reflects the observation, that “the hydrostatic pressure improves
the material strength” [118]. This model consists of the ellipsoid of Beltrami with
γ1 ∈ [0, 1[ for I1 > 0 and of the hyperboloid (Sect. 10.1) for I1 ≤ 0:

3 I ′
2 =

⎧⎪⎨
⎪⎩
σeq − γ1 I1

1 − γ1

σeq + γ1 I1

1 + γ1
, I1 > 0, ellipsoid of Beltrami;

σeq − γ0 I1 i

1 − γ1

σeq + γ0 I1 i

1 + γ1
, I1 ≤ 0, hyperboloid of one sheet.

(160)

The transition at the cross-section I1 = 0 is continuously differentiable. The values
compute to

νin+ = 1

2

(
1 − 3 γ 2

1

)
, νin− = 1

2
+ 3 γ 2

0

2
(
1 − γ 2

0 − γ 2
1

) , (161)

k2 = 1

(1 − γ1) (1 + γ1)
, d = 1√

1 − γ 2
0 − γ 2

1

, ahyd
+ = 1

3 γ1
. (162)

With γ0 = 0 the model of Huber (156) is obtained. The value γ0 �= 0 results in a
non-convex model, cf. [144, 221, 231]. With the setting γ0 = γ1 the model of Kuhn
[118] is obtained. A model built up of two ellipsoids with the transition at the point
K results for purely complex γ0. The tangent line at the point K is parallel to the
hydrostatic axis, cf. [212].

I1/ σ+

3I2

σ+

VON MISESZ

D

K

AD d AZ

γ0 = γ1

γ0 = γ1/ 2

γ0 = 0.3 i

1

1

2

2

3-1-2-3-4

Fig. 43 Model of Kuhn with the C1-transition at I1 = 0 [107]: γ1 = 1/
√

3, νin+ = 0, k = √
3/2,

ahyd
+ = 1/

√
3 with; γ0 = γ1 (d = √

3, νin− = 2), modification with γ0 = γ1/2 (d = 2
√

3/7,

νin− = 5/7), combination of two ellipsoids with γ0 = 0.3 i (d = 1.1496, νin− = 0.32, ahyd
− = −10/9)
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11.2.2 Modification of the Model of Huber

An analogous approach results in the modified model of Huber (Fig. 42) for the
materials with the relation d ≥ k ≥ 1 and incompressibility in the region I1 ≤ −d σ+
[103, 107, 113]

3 I ′
2 =

⎧⎪⎨
⎪⎩
σeq − γ1 I1

1 − γ1

σeq − γ2 I1

1 − γ2
, I1 > −d σ+, ellipsoid;

σeq

1 − γ1

σeq

1 − γ2
, I1 ≤ −d σ+, cylinder.

(163)

In contrast to the model of Huber (156) the C1-transition between two surfaces at the
cross-section I1 = −d σ+ is defined by the point D (compression). The model can
be better fitted to the measurements, that belong to the region I1 ∈ [−d σ+, σ+

]
, it

means in the region D − K − Z .
Further we obtain with (52)

k =
√

2 d√
1 + d

or d = 2 k√
23 + k2 − k

(164)

based on the relation

d + 1

γ1
= −

(
d + 1

γ2

)
. (165)

This relation sets the symmetry plane of the ellipsoid in the cross-section with
I1 = − d σ+, see (129). There are three equations: for d and k and the con-
straint νin− . The parameters of the model γ1 ∈ [0, 1[ and γ2 < 0 are unknown and
should be determined. There are two solutions

⎧⎪⎪⎨
⎪⎪⎩
νin− = − −1 + γ 2

1 + γ 2
2 − γ1 γ2

(−2 + γ1 + γ2) (−1 + γ1 + γ2)
,

d = 1

1 − γ1 − γ2

(166)

and ⎧⎪⎪⎨
⎪⎪⎩
νin− = − −1 + γ 2

1 + γ 2
2 − γ1 γ2

(−2 + γ1 + γ2) (−1 + γ1 + γ2)
,

k2 = 1

(1 − γ1) (1 − γ2)
,

(167)

which should be compared. The conservative solution will be chosen. The solution
of the above equations with νin− = 1/2 defined through (165) leads to



114 H. Altenbach et al.

⎧⎪⎨
⎪⎩
γ1 = 1

2 d

(
d − 1 +

√
d2 − 1

)
,

γ2 = 1

2 d

(
d − 1 −

√
d2 − 1

) (168)

or
⎧⎪⎪⎨
⎪⎪⎩
γ1 = 1

4 k

(
3 k −

√
23 + k2 + √

2

√
k (k +

√
23 + k2)− 4

)
,

γ2 = 1

4 k

(
3 k −

√
23 + k2 − √

2

√
k (k +

√
23 + k2)− 4

)
,

(169)

respectively.
The setting d = k = 1, which yields γ1 = γ2 = 0, results in the model of

von Mises. With d = 3
(√

17 − 1
)
/8 ≈ 1.17 or k =

√(
9
√

17 − 27
)
/8 ≈ 1.12

the value γ1 = 1/3 is obtained. This corresponds to the value ahyd
+ = 1 of the normal

stress hypotheses. The Poisson’s ratio at tension is computed as follows:

νin+ = 3

2 d
− 1 = 3

√
8 + k2

4 k
− 7

4
. (170)

For this model the yield condition should be restricted by (34). This results in restric-
tions for the parameters d ∈ [1, 1.014] and k ∈ [1, 1.010]. With

ahyd
+ = 2

3

d

d − 1 + √
d2 − 1

(171)

one gets ahyd
+ ≥ 3.79. This model is more suitable than the model of von Mises (16),

which results in underpredictions in the region I1 > σ+.
The model can be applied instead of the paraboloid of Balandin (51). In this

case incompressible yielding at compression can be obtained without the use of a
non-associated flow rule (Sect. 4).

11.2.3 Combined Geometrical-Mechanical Model

A combined model can be built up based on the geometrical-mechanical model (105)
with the transition at the cross-section I1 = 0 (Fig. 44)

(3 I ′
2)

3 1 + c3 cos 3θ + c6 cos2 3θ

1 + c3 + c6
=

⎧⎪⎪⎨
⎪⎪⎩

(
σeq − γ1 I1

1 − γ1

σeq + γ1 I1

1 + γ1

)3

, I1 > 0;
(

σeq

1 − γ1

σeq

1 + γ1

)3

, I1 ≤ 0.

(172)
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Fig. 44 Combined geometric mechanical model (172) for the polyoxymethylene (POM) Hosta-
form C13031, Ticona GmbH, Sulzbach, fitting starts from the values d = 1.34, k = 1.25 in the
Burzyński-plane [113]: k = 1.20, bZ = 0.999, bD = 1.06, νin+ = 1/3, νin− = 1/2, ahyd

+ = 1,
c3 = 0.7885, c6 = 0.3029, γ1 = 1/3

Since the necessary information on the material behavior under the hydrostatic ten-
sion (point AZ) is almost always missing, the response under the hydrostatic tension
can be defined by setting γ1 = 1/3, which is based on the normal stress hypothesis
(Sect. 2.1). It leads to the Poisson’s ratio at tension with

νin+ = 1

2

(
1 − 3 γ 2

1

)
(173)

to νin+ = 1/3. This setting can be corrected in dependence on the Poisson’s ratio νin+ .
For νin+ = 0.48 one gets γ1 = 1/5

√
3 ≈ 0.1155.

The values c3 and c6 can be computed from relations d and k, if the convexity
restrictions (Fig. 20) are taken into account. These values result from the equations

k6 = 1 + c3 + c6

(1 − γ 2
1 )

3
, d6 = 1 + c3 + c6

1 − c3 + c6

1

(1 − γ1)3 (1 + γ1)3
. (174)

The model (172) can be recommended for many applications (Fig. 44).
A similar model with the C1-transition at the cross-section I1 = −d σ+, cf. the

modified model of Huber (163), can be formulated (Fig. 45).
The parameters c3, c6 and γ2 of the model result from the formulas for d, k and

νin− = 1/2. The last condition leads to the geometric relation (165)

1

γ2
= −

(
2 d + 1

γ1

)
. (175)

This model has additional fitting possibilities in comparison to (172). Whether the
model can be preferred over the model (172) it can be determined if further measure-
ments, for instance at the points BZ or BD, are available. If only three measurements
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Fig. 45 Combined geometrical-mechanical model with the transition at I1 = −d σeq for the
polyoxymethylene (POM) Hostaform C13031, Ticona GmbH, Sulzbach, with the values d = 1.34,
k = 1.25 in the Burzyński-plane: c3 = 0.4743, c6 = 0.3642,γ2 = −0.1761, bZ = 0.92, bD = 1.19,
νin+ = 0.28, νin− = 1/2, ahyd

+ = 1. The lines from Fig. 44 are shown for comparison [113]

at tension, compression and torsion (Z , K and D) exist, the application of the model
with C1-transition at I1 = −dσ+ is not meaningful.

12 Fitting

The objective function for fitting of the model to the measurements can be formulated
in many ways, which lead to different results. The following three kinds of objective
functions

• mathematical,
• physical and
• geometrical

can be considered [111, 114].
The mathematical objective functions are derived in a purely formal way, so that

the fast convergence of the optimization routine can be achieved. Physical objective
functions are based on a measurable value, which can be “related to mechanics”.
These conditions usually lead to complex implementations and slow computations.
Geometrical criteria are based on the properties of the surface Φ.

12.1 Mathematical Criteria

This kind of objective functions will be presented using the geometrical-mechanical
model (151) with the restriction (142) and the powers j = 4, l = 2, m = 0. The
function Φ is rewritten in the form
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Ω = (3 I
′
2)

3 1 + c3 cos 3θ + c6 cos2 3θ

1 + c3 + c6
−
(
σeq − γ1 I1

1 − γ1

)4 (σeq − γ2 I1

1 − γ2

)2

,

(176)
so that the surface is given by the equation Ω = 0.

The n measurements are given e. g. in the principal stress space σ i
I , σ

i
II, σ

i
III,

i = 1 . . . n. The objective functions can be formulated as follows

f = 1

n − 1

n∑
i=1

∣∣∣Ω(c3, c6, γ1, γ2, σ
i
I , σ

i
II, σ

i
III)

∣∣∣m1
(177)

with m1 = 1, 2 or

f∞ = max
i=1...n

∣∣∣Ω(c3, c6, γ1, γ2, σ
i
I , σ

i
II, σ

i
III)

∣∣∣ . (178)

Other exponents m1 can be used, however they do not lead to any significantly
different results. In order to compare various fitting results the following value is
considered

fm1 = ( f )1/m1 . (179)

The optimization problem is formulated as

minimize f (c3, c6, γ1, γ2) (180)

for the chosen meridian shape through j , l and m. The solution is obtained in the
form of the parameters of the models c3, c6, γ1 and γ2. Using these parameters
the measurements σ i

I , σ
i
II, σ

i
III, i = 1 . . . n are approximated. This optimization

problem contains the constraints for the parameters of meridians γ1, γ2, parameters
of the cross-section c3, c6 and for the Poisson’s ratios νin+ , νin− (Sect. 4).

The function Ω (176) can be modified, so that additional solutions of the opti-
mization for comparisons become possible, e. g.:

[
(3 I

′
2)

3 1 + c3 cos 3θ + c6 cos2 3θ

1 + c3 + c6

]l1

−
[(

σeq − γ1 I1

1 − γ1

)4 (σeq − γ2 I1

1 − γ2

)2
]l1

= 0

(181)
with the integer exponent l1 ≥ 1.

The formulation (176) is derived with σ+ = σeq. If there are “enough” measure-
ments the equivalent stressσeq can also be seen as a parameter subject to optimization.
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Fig. 46 Cone of Drucker-Prager (51) in the principal stress state (left) and in the π -plane (right).
Comparison of the four physical optimization criteria

12.2 Physical Criteria

For a limit surface, which is defined implicitly in the form (5) or (6) and available
measurements it is required to estimate the quality of fitting. Four physical crite-
ria for estimation of the optimization quality are discussed (Fig. 46). In order to
apply the criteria the measurements must be transformed into a principal stress state
(σ i

I , σ
i
II, σ

i
III) for i = 1 . . . n. The four criteria can hardly be used in order to obtain

the parameters of a model because of the high computational complexity. However,
they can be used for comparison of different optimization results.

The criteria can be formulated as follows:

1. The regression quality in the principal stress space is evaluated, that is for each
measurement the distance from the limit surface in the principal stress space
(σI, σII, σIII) is computed and then averaged over all measurements. Formally
that means, we start with a set of measurements (σ i

I , σ
i
II, σ

i
III) and solve for each

measurement the optimization problem

min (σI − σ i
I )

2 + (σII − σ i
II)

2 + (σIII − σ i
III)

2

subject to Φ(σI, σII, σIII) = 0.
(182)

The solution is obtained using a Lagrange multiplier. For example the function

F(σI, σII, σIII, λ) = (σI −σ i
I )

2 +(σII −σ i
II)

2 +(σIII −σ i
III)

2 −λΦ(σI, σII, σIII)

(183)
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is defined and the stationary points are obtained from the equation

∇F = 0. (184)

Generally this equation has more than one solution, however a single point
(zi

I, zi
II, zi

III) of minimal distance on the limit surface is to be determined. Since
the number of solutions is small, the correct one can be chosen by trial-and-error.
Finally, the value of the objective function f3D computes to

f3D := 1

n − 1

n∑
i=1

√
(σ i

I − zi
I)

2 + (σ i
II − zi

II)
2 + (σ i

III − zi
III)

2. (185)

2. The minimal distance can be computed not in the principal stress space but for a
plane stress state. For example we putσIII = 0 and hence simplify the optimization
problem (182)

min (σ i
I − σI)

2 + (σ i
II − σII)

2

subject to Φ(σI, σII, 0) = 0.
(186)

A further computation is performed in analogy to the previous case. For each
point (σ i

I , σ
i
II, 0) the point of minimal distance (zi

I, zi
II, 0) on the curve

Φ(σI, σII, 0) = 0 (187)

is determined and the value of the objective function f2D is estimated as follows

f2D := 1

n − 1

n∑
i=1

√
(σ i

I − zi
I)

2 + (σ i
II − zi

II)
2. (188)

3. If the model is based on the equivalent stress concept, that is

Φ(σI, σII, σIII, σeq) = 0, (189)

whereas σeq = σ+, a simple estimation for the quality of fitting can be proposed.
The equivalent stress σeq is considered as a parameter as fitting is performed. The
fitted equivalent stress is denoted by σ ∗

eq. In order to estimate the quality of fitting

for each point (σ i
I , σ

i
II, σ

i
III), i = 1 . . . n the value σeq = σ i

eq is computed so,
that the point lies on the surface

Φ(σI, σII, σIII, σ
i
eq) = 0, (190)

i. e. the equation
Φ(σ i

I , σ
i
II, σ

i
III, σ

i
eq) = 0 (191)
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must be solved for each i = 1 . . . n with respect to σ i
eq. The estimated value feq

computes to

feq := 1

n − 1

n∑
i=1

∣∣∣∣∣
σ i

eq − σ ∗
eq

σ ∗
eq

∣∣∣∣∣. (192)

4. The distance between the experimental point and the surface of model is measured
along the line connecting the point with the origin. The sum of all the distances
normalized by n − 1 computes to the value fray.

The criterion 1 is ubiquitous and can be used for an arbitrary set of measurements
and an arbitrary surface. Often the measurements belong to a plane stress state,
in this case the criterion 2 is of stronger physical relevance. Since it is a plausible
assumption, that a measurement corresponding to a plane stress state is approximated
by a point of the model, which also belong to a plane stress state. The criterion 3
is only suitable for the models based on the equivalent stress concept (2). It can be
used too, if for instance torsion τ∗ or compression σ− are taken as the equivalent
stress. An advantage of the criterion 4 is that it has a “mechanical background”: Each
measurement (e. g. torsion) is compared to the corresponding point on the surface
(point K for torsion). It is clear that it can be easily applied and leads to relatively
fast convergence of the optimization routine.

12.3 Geometrical Criteria

The principle of the conservative modeling can be stated as follows: among all
best possible solutions the one is preferred, which represents the most conservative
assumption about the material behavior [103]. Geometrical criteria allow to compare
different optimal solutions. These criteria are listed below [108]:

• linear criteria:

– the shortest length of the line in the meridian section of the closed surface Φ
with the plane ξ2 = 0 (Fig. 13, coordinates (ξ1, ξ2, ξ3), Figs. 34 and 35),

– the minimal length of the line of the plane stress state,
– the distance between the hydrostatic nodes AZ and AD for foams, ceramics, etc.,

minimize
(
χ ahyd

− + (1 − χ) ahyd
+
)
, χ ∈ [0, 1] (193)

and for materials with ahyd
− → ∞

minimize
(

ahyd
+
)
, (194)

– relation k: minimize (k),
– relation d: minimize (d),
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• square criteria:

– the minimal area of the closed surface Φ in the principal stress space,
– minimal area of the closed surface Φ in the meridian cross-section with the

plane ξ2 = 0,
– minimal area circumscribed by the line of the plane stress state,

• cubic criteria, for instance the minimal volume circumscribed by the closed surface
Φ in the principal stress space.

These criteria can be chosen in dependence on the measurements and the require-
ments imposed upon the model. A comparison of the criteria can be performed in the
Pareto-diagram [44, 61, 152, 196]. The geometrical criteria allow to select a single
point from the Pareto-solutions [114].

13 Applications

In order to illustrate the application of the models and fitting of the parameter, some
measurements from the literature are analyzed. The stages of the analysis are visual-
ized. The experimental data are normalized with respect to σ+ for better comparison
of the surfaces Φ.

13.1 Measurements of Coffin for Gray Cast Iron

29 measurements for the plane stress state for gray cast iron8 are shown in Coffin-
Schenectady [47] and approximated as follows:

• region Tension-Tension
σeq = σI, σeq = σII (195)

with σeq = 33 × 103 psi.
• region Tension-Compression

(κ σeq + σ0)
2 = (k σI + σ0)

2 − σII (k σI + σ0)+ σ 2
II,

(κ σeq + σ0)
2 = (k σII + σ0)

2 − σI (k σII + σ0)+ σ 2
I

(196)

with κ = 3 and σ0 = 30 psi.
• region Compression-Compression

√
1

2

[
(σI − σII)2 + σ 2

I + σ 2
II

]+ 1

3
μ (σI + σII) = ϑ (197)

8 3.08 % total C, 2.04 % Si, 0.56 % Mn, 0.112 % S, 0.33 % P
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with μ = 0.51 and ϑ = 88 × 103 psi.

The measurements were digitalized from the diagram σI − σII [47] . The agreement
with the approximation presented in the paper results for κ = 2.9050, μ = 0.5307
and ϑ = 89.0202 × 103 psi and is to be ascribed to the precision of the digitalization
and the rounding error. The computation of stresses leads to σBD = 137.76×103 psi,
σUD = 148.20 × 103 psi, σ− = 108.15 · 103 psi, τ∗ = 27.49 × 103 psi and
σAZ = 33 · 103 psi.

For further evaluations the measurements are normalized with respect to
σ+ = 33 × 103 psi (Table 7). The relations of the evaluations are summarized
in Table 8. The relations aZ and bD result from the extrapolations. The smallest value

bD = 103.35

33
= 3.13 (198)

is obtained from the results of the test 11 with the convexity requirement

σI − (−69.4)

(−137.3)− (−69.4)
= σII − (−137.3)

(−69.4)− (−137.3)
(199)

for σI = σII. If the classical material behavior (22) with bD = d is assumed, the
estimate

bD ∈ [3, 3.29] (200)

is obtained from the measurements at axial compression.
The value bZ can be estimated

bZ = 28.52

33
. . .

30.22

33
= 0.86 . . . 0.92. (201)

The lower bound for aZ is defined using the stress value σBZ = 30.22 × 103 psi and
the convexity condition

2σBZ < 3σAZ. (202)

It follows

ahyd
+ >

2

3
· 30.22

33
= 0.61. (203)

13.1.1 Strain Hypothesis

In the first quadrant of the σI−σII-diagramm (region Tension-Tension, Fig. 47) the
strain hypothesis (41) can be used instead of the normal stress hypothesis (8) in
order to estimate relations in this region. For fitting of parameters and computation
of the relations iZ, bZ and aZ the model is used in the form (10) with (42). The
Poisson’s ratio computes to νin+ ∈ [−0.0870, −0.0521] which is equivalent to γ1 ∈
[0.3681, 0.3913]. Relations iZ, bZ and aZ are specified in Table 8.
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Table 7 Measurements by Coffin-Schenectady and their normalized values with respect to σ+ =
33 · 103 psi, the axiatoric-deviatoric invariants and the stress angle, plane stress state σIII = 0

Test σI σII σI σII I1 I ′
2 I ′

3 cos 3θ θ

number 103 [psi] 103 [psi] [-] [-] [-] [-] [-] [-] [grad]

7 −77.60 −151.45 −2.35 −4.59 −6.94 5.2667 0.199442 0.0429 29. 2
11 −69.40 −137.30 −2.10 −4.16 −6.26 4.3278 0.065570 0.0189 29.6
12 −30.00 −116.95 −0.91 −3.54 −4.45 3.3881 −1.758632 −0.7327 45.7
23 −24.45 −120.52 −0.74 −3.65 −4.39 3.7268 −2.317541 −08369 48.9

0 −108.67 0 −3.29 −3.29 3.6147 −2.645169 −1 60
0 −101.78 0 −3.08 −3.08 3.1709 −2.173324 −1 60

46 0 −98.90 0 −3.00 −3.00 2.9939 −1.993946 −1 60
19 17.03 −67.68 0.52 −2.05 −1.53 1.8434 −0.809151 −0.8399 49.0

23.28 −52.79 0.71 −1.60 −0.89 1.3948 −0.389280 −0.6140 42.6
18 25.35 −50.85 0.77 −1.54 −0.77 1.3827 −0.339070 −0.5418 40.9

23.67 −47.65 0.72 −1.44 −0.73 1.2117 −0.279228 −0.5439 41.0
32.60 −32.51 0.99 −0.99 0 0.9733 0.000814 0.0022 30

17 27.60 −27.47 0.84 −0.83 0 0.6962 0.000914 0.0041 29.9
26.49 −26.49 0.80 −0.80 0 0.6442 −0.000002 0 30
28.36 −14.52 0.86 −0.44 0.42 0.4368 0.058351 0.5251 19.4

9 30.25 −13.38 0.92 −0.41 0.51 0.4587 0.073234 0.6125 17.4
30.58 0 0.93 0 0.93 0.2862 0.058921 1 0

6 32.55 0 0.99 0 0.99 0.3243 0.071085 1 0
29.47 13.67 0.89 0.41 1.31 0.1997 0.004307 0.1254 27.6
29.68 15.21 0.90 0.46 1.36 0.2023 −0.001518 −0.0434 30.8
35.18 17.62 1.07 0.53 1.60 0.2841 −0.000188 −0.0032 30.1
28.64 28.52 0.87 0.86 1.73 0.2501 −0.048125 −0.9999 59.8
29.59 29.80 0.90 0.90 1.80 0.2699 −0.053974 −0.9998 59.7

4 30.22 30.22 0.92 0.92 1.83 0.2795 −0.056886 −1 60
15.90 31.57 0.48 0.96 1.44 0.2288 −0.000551 −0.0131 30.3
16.32 32.91 0.49 1 1.49 0.2487 0.000710 0.0149 29.7
0 30.66 0 0.93 0.93 0.2877 0.059381 1 0
0 33.28 0 1.01 1.01 0.3390 0.075957 1 0

1 0 34.18 0 1.04 1.04 0.3576 0.082308 1 0

The measurement number and the respective values for σI, σII are shown in Figs. 6, 7 and 8 in [47]
The values for the measurement 23 with σI = −42.900×103 psi, σII = −104, 000×103 psi (Fig. 8
in [47]) are different from the digitalized values, which are used for evaluation

13.1.2 Burzyński-Yagn Model

The measurements can be described using the rotationally symmetric model (51).
The best approximation is obtained with the hyperboloid (Table 9).

The position of the measurements in the Burzynski-plane suggests that a rotation-
ally symmetric model is not suitable in this case. The material behavior in the region
Tension-Tension is underestimated and overestimated near the point BD (Table 8).
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Table 8 Relations for the evaluations of the measurements by Coffin-Schenectady,
σ+ = 33 × 103 psi with different models

Approximation bD uD d k iZ bZ ahyd
+ νin+ νin−

Coffin 4.17 3.89 3.38 1.44 0.87 1 1 ≥ 0 –
SH in the region
TT

– – – – 0.84 0.95 0.91 −0.05 –

SH in the region
TT

– – – – 0.82 0.92 0.85 −0.09 –

Eq. (51), hyper-
boloid

4.39 3.91 2.79 1.66 0.73 0.66 0.53 −0.20 1.24

Eq. (51), cone 7.15 4.61 2.34 1.40 0.83 0.78 1.62 0.07 1.51
Eq. (51),
paraboloid

4.29 3.88 2.82 1.68 0.73 0.66 0.52 −0.21 1.21

UST by Yu, b =
0.35 with cut-
off

3.05 3.03 3.05 1.39 0.87 1 1 0…0.16 1.53

UST by Yu, b =
1 with cut-off

3.05 3.52 3.05 1.49 0.87 1 1 0…0.16 1.53

Bigoni-
Piccolroaz
GMM
(for Bigoni),
l = 3, m = 1

3.58 3.71 3.04 1.50 0.88 0.89 0.92 0.09 1.51

GMM, straight
line l = m = 0

3.48 3.85 2.92 1.49 0.92 0.94 1.40 0.14 1.54

GMM, parabola
l = 0, m = 1

3.48 3.84 2.94 1.53 0.90 0.90 1.10 0.10 1.47

CPM: straight
line l = m = 0

3.31 3.82 2.50 1.50 0.94 0.91 1.43 0.15 1.37

CPM: straight
line l = m = 0

3.34 3.82 3.00 1.50 0.93 0.97 1.43 0.15 1.55

CPM: parabola
l = 0, m = 1

3.41 3.80 3.00 1.53 0.90 0.91 1.11 0.10 1.48

13.1.3 Unified Strength Theory of Yu

The values bD (198) and d are similar. It follows that UST (Sect. 10.2) with the
relationship bD = d can be used. In [230] Yu puts d = 3.05, in order to describe
the Tension-Compression region. In the Tension-Tension region the normal stress
hypothesis is used as a cut-off (Sect. 11.1) [228, 229]. In Table 8 the relations for
the parameters b = 0.35 und b = 1 are presented. In the third quadrant of the
σI−σII-diagramm (Compression-Compression region) the UST is not sufficient.
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Table 9 Parameters of the models for the approximation of the measurements by Coffin-
Schenectady, σ+ = 33 × 103 psi

Model Eq. Meridian f2 γ1 γ2 c3 c6

straight line 1.1935 0.2867 – –
Burzyński-Yagn (51) hyperbola 0.7763 0.6345 0.0073 – –

parabola 0.7800 0.6451 0 – –
GMM, l = m = 0 straight line 53.7926 0.2376 0.8671 0.2832
GMM, l = 0, m = 1 (152) parabola 62.6810 0.3033 0 0.8161 0.2960
(for Bigoni), l = 3, m = 1 hyperbola 84.6122 0.3617 0.2721 0.6969 0.0805

Values of the objective function f2 (179) are to be compared for respective models only
(for Bigoni)—approximation by Bigoni-Piccolroaz reformulated using GMM

13.1.4 Geometrical-Mechanical Model

The best approximation for GMM (151) is obtained with a straight meridian (Figs. 47,
48, 49, 50). The value bD = 3.48 lies outside of the bounds given by (200).

These approximations with GMM can be compared to the approach by Bigoni-
Piccolroaz [26] with seven parameters (Table 8). This approximation can be obtained
using GMM with l = 3, m = 1 (Table 9).

The experimental results with σI = σII/4 cannot be represented by GMM. A pre-
cise approximation is however possible using the continuously differentiable GMM
(Sect. 11.2.3) . The switching occurs in the plane I1 = −d σ+ with d = 3 . . . 3.29.

13.1.5 Convex π -Plane Model

The results of fitting using GMM (105) with n = 6 can be also represented by
CPM (99). The parameter γ1 of the linear substitution (126) is the same (Table 9):
γ1 = 0.2376. With the parameters c3 = 0.8672 and c6 = 0.2832 the relations (106)
are computed to

dinc = 6

√
1 + c3 + c6

1 − c3 + c6
, kinc = 6

√
1 + c3 + c6. (204)

The parameter dinc = 1.3149 corresponds to the same parameter of CPM and with
dinc = 1.3149, kinc = 1.1361 the bridge-parameter ξ = 0.8766 is computed. These
values can be used as a starting point for optimization:

f2 = 7.6597 : dinc = 1.3149, ξ = 0.8766, γ1 = 0.2376. (205)

The optimization results

f2 = 6.0831 : dinc = 1.2122, ξ = 1, γ1 = 0.2325 (206)
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Fig. 47 Plane stress state σIII = 0: geometrical-mechanical model (σ+ = 33 × 103 psi, γ1 = γ2 =
0.2375, c3 = 0.8672, c6 = 0.2832, l = m = 0) with the values bD = 3.48, d = 2.92, k = 1.49 for
gray cast iron (Table 8). The models of von Mises and the approximations of Coffin-Schenectady
and Bigoni-Piccolroaz (between the points BD and D) are shown for comparison

lead to the pyramid due to Haythornthwaite, which follows from the prism of
Haythornthwaite (94) with the substitution (126) [107]. This approximation (Fig. 48,
Model 1) underestimates the value at compression, it yields d = 2.50.

Additionally, it can be required, that the curve of the plane stress state contains the
point D with the coordinates σI = 0, σII = −98.90/33 (relation d = 3), it follows
(Fig. 48, Model 2)

f2 = 8.1939 : dinc = 1.3522, ξ = 0.9662, γ1 = 0.2335. (207)
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Fig. 48 Plane stress state σIII = 0: CPM (σ+ = 33 × 103 psi) for gray cast iron (Table 8): 1 CPM
with l = m = 0, f2 = 6.0831: dinc = 1.2122, ξ = 1, γ1 = 0.2325, 2 CPM with l = m = 0 and
d ≥ 3, f2 = 8.1939: dinc = 1.3522, ξ = 0.9662, γ1 = 0.2335, 3 CPM with l = 0, m = 1 and
d ≥ 3, f2 = 8.8342: dinc = 1.3028, ξ = 0.8868, γ1 = 0.3003. The GMM (Fig. 47) is shown for
comparison

Similar approximation (Fig. 48, Model 3) is obtained with the paraboloid l = 0,
m = 1 using the substitution (124) and the restriction d ≥ 3

f2 = 8.8342 : dinc = 1.3028, ξ = 0.8868, γ1 = 0.3003. (208)

The models with a straight meridian fitted with the parameters (206), (207) should
be preferred here because of their simplicity. The setting (208) with the parabolic
meridian l = 0, m = 1 yields a lower value aZ = 1.11. For further approximations
see [1, 14, 34, 202].
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Fig. 49 Geometric-mechanical model (σ+ = 33 · 103 psi, γ1 = γ2 = 0.2375, c3 = 0.8672,
c6 = 0.2832, l = m = 0) with the values bD = 3.48, d = 2.92, k = 1.49 for gray cast iron
(Table 8) in the Burzyński-plane. The models of von Mises is shown for comparison, s. (Fig. 47)

13.2 Measurements by Pae for Poly(oxymethylene) (POM)

The measurements for POM, du Pont Delrin 500, ρ =1.425 g/cm3 are provided in
[151]. The following inaccuracies were found out after the analysis of the measure-
ments from [151]:

• Molar mass and crystallinity were not specified;
• Table 1, hydrostatic pressure, (psi)×10−3;
• Table 1, average experimental yield stresses, the meausrement 10.5 is shifted from

the column “Shear” in to the column “Tension”;
• Figure 3 (a), hydrostatic axis, the factor 1/

√
3 for the first invariant I1 was not taken

into account as the measurements were represented in the principal stress space:
p = 7.3 kbar, I1 = 3 · 7.3 · 14503.8 = 317.63 × 103 psi. From the normalization
with respect to σ+ it follows I1

σ+ = 317.63×103

10.6·103 = 29.97 [−]. The hydrostatic node

AZ should lie at 29.97/
√

3 = 17.3 [−], (or with 7.25·103

0.0230
1

10.6×103
1√
3

= 17.2 [−],

cf. Eq. (3) with I ′
2 = 0 and Table III in [151]). The difference results from the

rounding error;
• Figures 3 (a) and (b), representation of the model in the π -plane, additionally to

the cross-sections I1 = const. of the models of von Mises and Tresca a model with
trigonal symmetry is shown, which is however not defined;

• The units in the Table III, [151] are not provided.

These measurements are visualized in the Burzyński-plane and approximated with
a quadratic rotationally symmetric model (51), Fig. 51.

It can be seen in Fig. 51 that the points on the meridian θ = π/3 are separated
from the points on the meridians with θ = 0 and θ = π/6. So the trigonal symmetry
of the surface can be assumed. The application of the geometrical-mechanical model
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Fig. 50 Measurements by Coffin-Schenectady [47] in the π -plane approximated with the
geometrical-mechanical model (151), s. Fig. 49, d = 2.92; line of the plane stress state with σI = 0.
The cross-sections orthogonal to the hydrostatic axis with I1 = const. through the points Z , K and
D are shown

(151) with the compressible substitution (146) can be recommended in this case.
A possible approximation is shown in the Burzyński-plane (Fig. 52), in the plane
σI − σII (Fig. 53) and in the π -plane (Fig. 54). Further applications to POM can be
found in [113].

13.3 Measurements of Cristensen for PVC Hard Foam

Closed-cell PVC (polyvinyl chloride) foam Divinycell H 200 (DIAB International
AB, Schweden) with the density ρ = 200 kg/m3 was tested in the region D−K−Z
(compression-torsion-tension) [46]. 25 measurements presented in the diagram σ11-
τ12 in [46] were digitalized (Fig. 55). The stresses at tension σ+ corresponds to
the data provided by the manufacturer [52] and indirectly to the measurements by
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Fig. 51 Approximation of the measurements by Pae for POM in the Burzyński-plane with the
quadratic rotationally symmetric model (51) with σ+ = 10.6×103 psi and σeq as a parameter: cone
of Drucker-Prager (Mirolyubov): γ1 = γ2 = 0.0403, σeq = 1.12; d = 1.09, k = 1.04, νin+ = 0.44,
νin− = 0.57, paraboloid of Balandin: γ1 = 0.1277, γ2 = 0, σeq = 1.01; d = 1.14, k = 1.07,
νin+ = 0.40, νin− = 0.60, hyperboloid of Burzyński-Yagn: γ1 = 0.089, γ2 = 0.0107, σeq = 1.07;
d = 1.11, k = 1.05, νin+ = 0.42, νin− = 0.58. The diagram is divided in two regions I1 ∈ [−10, 8]
and I1 ∈ [−31, −10] for clarity
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Fig. 52 POM-measurements by Pae in the Burzyński-plane approximated using the geometrical-
mechanical model (151) with the parameters γ1 = 0.0869, γ2 = 0, j = 4, l = 2, m = 0,
c3 = −0.2717, c6 = 0.4314 and σeq = 1: d = 11.2

10.6 = 1.06, k = √
3 6.67

10.6 = 1.09, νin+ = 0.41,
νin− = 0.63. The region I1 ∈ [−2.5, 2] is shown for clarity

Gdoutos for the PVC-foam H 250 [72]. The stresses at compression σ− are signifi-
cantly lower compared to the data in [52, 72]. The value for torsion is also lower than
the manufacturer’s data and the measurements by Deshpande-Fleck and Gdoutos.

In order to present the models in the diagram σ11–τ12 (Fig. 55) the invariants
(Appendix 15) were reduced with σ22 = σ33 = τ13 = τ23 = 0 as follows

I1 = σ11, I ′
2 = 1

3
(σ 2

11 + 3 τ 2
12), I ′

3 = 2

33 σ
3
11 + 1

3
σ11 τ

2
12. (209)
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Fig. 53 Plane stress state σIII = 0: geometrical-mechanical model for POM with the values
d = 1.06, k = 1.09 (Fig. 52). The models of von Mises and Schmidt-Ishlinsky are shown
for comparison

The restriction of the hydrostatic tension was set by Christensen according to the
normal stress hypothesis (ahyd

+ = 1, γ1 = 1/3) in order to obtain a closed limit
surface in the tension region for the approximation with the paraboloid (open in the
region I1 > 0).

The combined model (paraboloid bounded by the normal stress hypothesis) pre-
sented by Christensen has singularities. A similar approximation can be obtained
with the hyperboloid and the cone (51), Figs. 55 and 56. Further measurements can
be described using the ellipsoid of Schleicher (51). These approximations are shown
in the Burzyński-plane (Fig. 57), however they are not optimal:
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Fig. 54 Cross-sections I1 = σ+, I1 = 0 and I1 = −d σ+ of the geometrical-mechanical model
for POM with the values d = 1.06, k = 1.09 in the π -plane; see Figs. 52, 53 (for clarity only one
section of the plane stress state with σI = 0 is shown)
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Fig. 55 Measurements by Christensen [46] in the diagram σ11−τ12 with the normalization by
σ+ = 7.12 MPa and the models: cylinder of von Mises, Eq. (16); cone of Drucker-Prager, Eq. (51):
γ1 = γ2 = −0.5325, νin+ = 1.30, νin− = 0.11, d = 0.48, k = 0.65; GMM Eq. (151), j = 2, l = 4,
m = 0 with c3 = −1.0585, c6 = 0.2354, γ1 = 0.4219, γ2 = −0.5747, νin+ = 1/2, νin+ = −0.24,
d = 0.49, k = 0.66

• The cone, the paraboloid and the hyperboloid are in this case open in the direction
I1 > 0. The hydrostatic tension is not constrained, however such constraint is
required.



Phenomenological Yield and Failure Criteria 133

σI

σ+

σII

σ+

cone

GMM

VON MISES

I1 = 0

AZ

AD

Z

D

K

BD

BZ

1

1

2

2

-1

-1

Fig. 56 Measurements by Christensen [46] in the diagram σI−σII, σIII = 0 with the normalization
by σ+ = 7.12 MPa with the models from Fig. 55. The points AZ and AD of the GMM are shown
for clarity

• The ellipsoid of Schleicher is fitted under the constraint νin+ ≤ 1/2. The quality of
this approximation is not sufficient, the material strength in the region D−K−Z
is overestimated.

• All the approximations with the rotationally symmetric models can not describe
the typical �-form of the curve of the plane stress state in the Burzyński-plane for
the materials with d < 1 (cf. Figs. 58, 59 and 62).

In Figs. 57, 58 and 59 on the left and on the right hand side the constraints for the
hydrostatic stresses at tension and compression are shown. These constraints result
from the normal stress hypothesis and lead to a bounded region on the hydrostatic
axis for approximation of hard foams.

13.3.1 Geometrical-Mechanical Model

In the first step the optimization f2 →min is performed for the geometric-mechanical
model (151), (Fig. 58). Here the constraints are applied:

• γ1 = 1/3 from the normal stress hypothesis and
• νin+ ≤ 1/2 as plausibility condition.

The line of the plane stress state approximates the measurements with a good quality,
however the resulting extrapolation in the region I1 > σ+ is unconvincing:
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Fig. 57 Measurements by Christensen [46] in the Burzyński-plane approximated with the quadratic
rotationally symmetric model (51), σ+ = 6.94: ellipsoid of Schleicher with the constraints νin+ ≤
1/2: γ1 = −1.6389, γ2 = 0.3831: νin+ = 1/2, νin− = −0.34, d = 0.44, k = 0.78, bZ = 0.88,
bD = 0.27; hyperboloid: γ1 = −0.9001, γ2 = −0.1473: νin+ = 1.14, νin− = 0.05, d = 0.49,
k = 0.68, bZ = 1.64, bD = 0.37; cone of Drucker-Prager: γ1 = γ2 = −0.4956: νin+ = 1.24,
νin− = 0.13, d = 0.50, k = 0.67, bZ = 1.98, bD = 0.40; NSH: Restriction from the normal stress
hypothesis γ1 = 1/3; TT: Restriction from the normal stress hypothesis as trigonal trapezohedron
3 ahyd

− = 3 d
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Fig. 58 Measurements by Christensen [46] in the Burzyński-plane approximated with the
geometrical-mechanical model (151), j = 1, l = 1, m = 4 with f2 →min, ( f2 = 0.321):
c3 = −1.0950, c6 = 0.2263, γ1 = 1/3, γ2 = −1, γ3 == 0, σ+ = 7.04: νin+ = 1/2, νin− = 0.29,
d = 0.53, k = 0.68, bZ = 0.62, bD = 0.49; the optimization constraints γ = 1/3 and νin+ ≤ 1/2

• the surface Φ has a symmetry plane I1 = σ+ and
• there are no measurements available in the region I1 > σ+, which confirm the

setting γ1 = 1/3.

In Figs. 59, 60 and 61 a further approximation with the GMM (151) and setting for
the meridian j = 2, l = 4, m = 0 is presented. This representation shows that the
restriction obtained from the normal stress hypothesis − 1

γ2
> 3 d does not hold in

this case. A further approximation can be obtained with the GMM (151), j = 1,
l = 5, m = 0, γ1 ∈ [0, 1[, γ2 < 0 (Fig. 62). The point AD is shifted to the left.
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Fig. 59 Measurements by Christensen [46] in the Burzyński-plane approximated with the
geometrical-mechanical model (151), j = 2, l = 4, m = 0, f2 →min, ( f2 = 0.229):
c3 = −1.0585, c6 = 0.2354, γ1 = 0.4219, γ2 = −0.5747, γ3 = 0, σ+ = 7.12: νin+ = 1/2,
νin− = −0.24, d = 0.49, k = 0.66, bZ = 0.64, bD = 0.53; the optimization constraints d ≥ 0.49
and νin+ ≤ 1/2
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Fig. 60 Measurements by Christensen [46] in the π -plane approximated with the geometrical-
mechanical model (151), see Fig. 59. The cross-sections orthogonal to the hydrostatic axis with
I1 = const. through the points Z , K and D are shown

Both approximations with the constraints d ≥ 0.49 and νin+ ≤ 1/2 lead to similar
results for the points BZ and BD. A comparison of the Figs. 57, 58, 59 and 62
shows the differences of the approximations. For a more precise description of the
plane stress state the loading points BD and BZ are necessary. The respective testing
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Fig. 61 Geometric-mechanical model (151) with the parameters from Fig. 59 and the model of
von Mises in the principal stress space (σI, σII, σIII), (the surfaces are cut for clarity; with θ = 0◦
and θ = 60◦ the meridians are labeled)

procedures for hard foams are described in [112]. The value at the point BZ reduces
the interval a+ hyd ∈] 1

3 , 1
]

to a+ hyd ∈] 2
3 bZ, 1

]
because of the convexity condition.

The optimization constraint νin+ ≤ 1/2 allows to obtain plausible approximations
as in Figs. 57, 58, 59 and 62 with νin+ = 1/2. In order to justify this constraint the
test BZ is required as well.

13.3.2 Linear Geometrical Criterion

A further criterion based on a simple approach (Sect. 12.3) can be applied in order
to compare the available approximations, e. g. the geometric criterion (193) with the
equally weighted nodesχ = 1/2. For the approximation in Fig. 62 it can be obtained:

1

2

(
1

γ1
− 1

γ2

)
= 1

2

(
1

0.6050
− 1

0.4415

)
= 1.96. (210)
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Fig. 62 Measurements by Christensen [46] in the Burzyński-plane approximated with the
geometrical-mechanical model (151), j = 1, l = 5, m = 0, f2 →min, ( f2 = 0.226):
c3 = −1.0380, c6 = 0.2405, γ1 = 0.6050, γ2 = −0.4415, σ+ = 7.22: νin+ = 1/2, νin− = 0.26,
d = 0.49, k = 0.66, bZ = 0.65, bD = 0.54; the optimization constraints d ≥ 0.49 and νin+ ≤ 1/2

The criterion leads to the values 2 and 2.06 for Figs. 58 and 59, respectively. It follows,
that the approximation (Fig. 62) is to be preferred according to the criterion (210).
The same result is obtained for χ = 0.

13.3.3 Combined Geometrical-Mechanical Criterion

The position of the hydrostatic nodes AD and AZ can be adjusted, if the combined
models (Sect. 11.2) are used and so a more conservative solution can be obtained.
For this approximation of the measurements by Christensen a C1-combination of
two surfaces can be used. The surfaces are connected in the cross-section I1 = σ+,
so that νin+ = 1/2 holds. The second surface in the region I1 > σ+ with the same
values of the parameters c3, c6 is continuously differentiable coupled with the first
one.

The parameter γ1 ∈ [1/3, 1 [ of the right surface in the Burzyński-plane can be
fitted according to the assumption regarding the position of the point AZ, for instance
based on the normal stress hypothesis (ahyd

+ = 1):

• γ1 = 1

3
, γ2 = −1, j = 1, l = 1, m = 4, cf. Fig. 58;

• γ1 = 1

3
, γ2 = −1

3
, j = 2, l = 4, m = 0, cf. Fig. 59;

• γ1 = 1

3
, γ2 = −1

9
, j = 1, l = 5, m = 0, cf. Fig. 62, etc.

These approximations result in similar values of bZ. Contrary to ahyd
+ = 1 a more

conservative value, for instance with ahyd
+ = 1/2 and νin+ = 1/2 can be obtained. It

follows then γ1 = 2/3 (Fig. 63).
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Fig. 63 Measurements by Christensen [46] in the Burzyński-plane approximated with the combined
geometrical-mechanical model (151) with j = l = 1, m = 4, c3 = −1.0950, c6 = 0.2263: Region
I1 ≤ σeq: γ1 = 1/3, γ2 = −1, νin+ = 1/2, νin− = 0.29, d = 0.53, k = 0.68, bD = 0.49 (Fig. 58),
Region I1 > σ+: γ1 = 2/3, γ2 = 2, νin+ = 1/2, bZ = 0.60

14 Summary and Outlook

The modeling of the deformation and limit behavior of real materials is influenced by
many phenomena. In the case of traditional materials and applications the number
of influence factors taken into account is reduced. The corresponding models are
simple and easy manageable. As usual they are based on a small number of material
parameters. The experimental identification of the parameters and verification of the
models is often simple. In many situations one needs only one basic test [8].

For high tech materials or applications with increasing safety requirements it is
necessary to take into account non-classical effects since they have a significant
influence on the deformation and limit behavior. Such phenomena are the different
behavior at tension and compression—strength differential effect (SD-effect), the
influence of the hydrostatic pressure, the Poynting-Swift-effect, the Kelvin-effect,
etc. [8, 16, 229]. In contrast to the classical material behavior, which can be described
by tensorial linear equations only, non-classical behavior partly should be presented
by tensorial non-linear equations. The effects related to these equations are sometimes
named second order effects [169]. They can be observed for elastic, plastic, creep
behavior and in fluid mechanics [8, 169]. Therefore in this chapter several models
allowing the description of complex material behavior are presented.

The models discussed in this chapter are limited by the assumption of isotropic
material behavior. Further investigation should be directed on extension of these mod-
els to the case of anisotropic materials. In addition, the application of the suggested
models to coated materials is not clear.

The concept of the equivalent stress is a simple and traditional engineering way to
solve problems related to the strength prediction or material behavior modeling. The
formulation and investigation of limit criteria will be in the focus of the scientific
community in the future. The reason ist that one has new materials and particular
application field [4].
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The development of the concept of the equivalent stress is considered in conjunc-
tion with:

• materials science,
• thermo-dynamics,
• morphology, and
• advanced measurement programs.

This results in verification of new effects that result from the model, in the precise
description of the failure with the consideration of the physical processes, taken into
account the phase transitions for the definition of the limits of the parameters.

15 Invariants

Assuming isotropic material behavior the invariants of the stress tensor play an
important role in the formulation of the equivalent stress expression. Here we define
several sets of invariants mostly used in practical situations [8, 234].

15.1 Principal Invariants

Let us postulate that the stress state is defined by the stress tensor σσσ . This tensor
is a symmetric second rank tensor. The principal invariants are the solution of the
eigenvalue problem

(σσσ − λIII ) · nnn = 000. (211)

III is the unit second rank tensor, nnn denotes the eigendirections and λ the eigenvalues
of the problem. In our case the eigenvalues are named principal values or principal
stresses. For the stress tensor it can be shown that the principal stresses are real-
valued. Three different cases should be distinguished:

• three different solutions,
• one single and one double solution, and
• one triple solution

The necessary conditions for the solution of the problem (211) results in

nnn = 000 or |σσσ − λIII | = det(σσσ − λIII ) = 0. (212)

The first Eq. (212) is a trivial solution. The second equation (212) is of greater impor-
tance since the principal stresses can be computed with help of this condition. The
solution can be obtained from

λ3 − I1(σσσ)λ
2 + I2(σσσ)λ− I3(σσσ) = 0, (213)
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where Ii (σσσ), (i = 1, 2, 3) are the invariants of the stress tensor

I1(σσσ) = III ······ σσσ ,
I2(σσσ) = 1

2

[
I 2
1 (σσσ)− I1

(
σσσ 2
)]
,

I3(σσσ) = |σσσ | = detσσσ = 1

3

[
I1

(
σσσ 3
)

+ 3I1(σσσ)I2(σσσ)− I 3
1 (σσσ)

]
.

(214)

The solutions of Eq. (213) are named principal invariants or principal stresses λi ,

i = 1, 2, 3. The following relations are valid after ordering the λi -values

σI ≥ σII ≥ σIII. (215)

If the principal stresses are distinguished that means

σI �= σII �= σIII, (216)

the following spectral decomposition holds

σσσ = σInnnInnnI + σIInnnIInnnII + σIIInnnIIInnnIII, (217)

wherennnI,nnnII,nnnIII are the eigendirections (principal directions), which can be obtained
from the solution of

(σσσ − σi III ) · nnni = 000, nnni · nnn j = δi j . (218)

δi j is the Kronecker symbol. The last equation in (218) is the orthogonality condition
for the principal directions.

15.2 Irreducible Invariants

The stress tensor has three irreducible invariants:

• the linear invariant J1(σσσ) = I1(σσσ) = III ······ σσσ ,
• the quadratic invariant J2(σσσ) = σσσ ······ σσσ ,
• the cubic invariant J3(σσσ) = (σσσ ··· σσσ) ······ σσσ .

The following representation is also possible

• the linear invariant J1(σσσ) = I1(σσσ) = III ······ σσσ ,
• the quadratic invariant J2(σσσ) = 1

2σσσ ······ σσσ ,
• the cubic invariant J3(σσσ) = 1

3 (σσσ ··· σσσ) ······ σσσ .
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15.3 Axiatoric-Deviatoric Invariants

The axiatoric-deviatoric invariants are based on the principal invariants of the stress
deviator, which can be computed from the eigenvalue problem for the deviator

sss = σσσ − 1

3
σσσ ······ III = σσσ − 1

3
I1(σσσ)III (219)

Principal deviatoric stresses follow from

|sss − λIII | = det(sss − λIII ) = 0 (220)

or
λ3 − I1(sss)λ

2 + I2(sss)λ− I3(sss) = 0, (221)

which can be simplified with respect to I1(sss) = 0

λ3 + I2(sss)λ− I3(sss) = 0.

Here the second and the third invariants are equal to

I2(sss) = −1

2
J2

(
σσσ 2
)
, I3(sss) = |sss| = det sss = 1

3
J3

(
sss3
)
. (222)

For a better distinguishing incompressible and compressible material behavior the
second, the third deviatoric and the axiatoric invariant will be used

I1(σσσ) = σσσ ······ III . (223)

15.4 Cylindrical Invariants

There are other sets of invariants, for example, Novozhilov’s invariants [148], which
are defined as it follows

• the axiatoric invariant (223)

• the second invariant of the stress deviator (222)

I2(sss) = −1

2
J2 (sss) ,

• and the stress angle
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Table 10 Main criteria

Abbrev. Name Reference Section Equation BP 3D π

Classical Strength Theories

NSH Normal Stress Hypothesis (Rankine) [166, 175] 2.1 8 14 2
Tresca [209] 2.2 13 15 22
von Mises [85, 91, 139] 2.3 16 14 2 22

SI Schmidt-Ishlinsky [92, 182] 2.4 17 15 22
Standard Models (Pressure-Sensitive Criteria)

SH Strain Hypothesis [8, 174] 6.1 41
MSH Maximum Strain Hypothesis [134] 6.1
MC Mohr-Coulomb [141] 6.2 45
PL Pisarenko-Lebedev [121] 6.3 48 38
SD Sdobirev [191] 6.3

Burzyński-Yagn [36, 220] 6.4 51 17
Drucker-Prager, Mirolyubov [56, 138] 6.4 17 6
Balandin, Burzyński-Torre [17, 36, 207] 6.4 17 11
Beltrami [21] 6.4 17 12
Schleicher [179] 6.4 34

Mathematical Formulations (Pressure-Sensitive Criteria)

Altenbach-Zolochevsky I [7] 7.1 56
Altenbach-Zolochevsky II [8] 7.2 63

Pressure-Insensitive Criteria with Trigonal Symmetry

Sayir I [178] 9.1.1 87 18
Sayir II [178] 9.1.2 89
Haythornthwaite [83] 9.1.3 94

CPM Convex π-plane model [33] 9.1.4 99
Radcig model [105] 9.1.5 100

GMM Geometrical-Mechanical Model [107] 9.1.6 105
TQM Triquadratic model [103] 9.1.7 108
Pressure-Insensitive Criteria with Hexagonal Symmetry

UYC Unified Yield Criterion of Yu [222, 229] 9.2.1 111 22
Sokolovsky [157] 9.2.1

BCM Bicubic model [103] 9.2.2 113
MAC Multiplicative Ansatz Criterion [116] 9.2.3 116

Ishlinsky-Ivlev [93, 98] 9.2.3
Universal model with hexagonal symmetry [116] 9.2.4 121
Model based on the stress angle [33] 9.2.5 122
Dodd-Naruse [53] 9.2.5
Drucker I [54] 9.2.5

Pyramidal Criteria (Pressure-Sensitive Criteria)

UST Unified Strength Theory of Yu [228] 10.2 131
SST Single-Shear-Theory of Yu [228] 10.2
TST Twin-Shear-Theory of Yu [228] 10.2 30

Drucker II [55] 10.3.4
Haythornthwaite [107] 10.3.4

Combined Criteria

Pelczyński [155] 11 37
Huber [36, 91] 11.2.1 156 42 41
Kuhn [118] 11.2.1 160 43
Modification of the model of Huber [103] 11.2.2 163 42
Combined Geometrical-Mechanical Model [103] 11.2.3 172 44



Phenomenological Yield and Failure Criteria 143

cos 3θ = 3
√

3

2

det sss

(I ′
2(sss))

3/2 , θ ∈
[
0,
π

3

]
, (224)

see [43, 150, 234] among others.

16 Criteria of this Chapter 2

In Table 10 many of the discussed in this chapter criteria are summarized. The table
is organized as it follows:

• In the first column (Abbrev.) some abbreviations are presented.
• The main name of the criteria is presented in column 2.
• The third column indicates the main reference(s).
• Column 4 presents the section, where the given criterion is discussed.
• In the column 5 the relevant equation is presented.
• In the last three columns are given the references to the figures (in the Burzyński-

plane (BP), in the principal stress space (3D) and in the π -plane (π )).
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praca odkształcenia jako miara wytężenia materyału). Czasopismo Techniczne 22, 34–40,
49–50, 61–62, 80–81 (1904)

92. Ishlinsky, A.Y.: Hypothesis of strength of shape change (in Russ.: Gipoteza prochnosti
formoizmenenija). Uchebnye Zapiski Moskovskogo Universiteta, Mekhanika 46, 104–114
(1940)

93. Ishlinsky, A.Y., Ivlev, D.D.: Mathematical Theory of Plasticity (in Russ.: Matematicheskaja
teorija plastichnosti). Fizmatlit, Moscow (2003)

94. Ismar, H., Mahrenholtz, O.: Über Beanspruchungshypothesen für metallische Werkstoffe.
Konstruktion 34, 305–310 (1982)

95. Issler, L., Ruoß, H., Häfele, P.: Festigkeitslehre - Grundlagen. Springer, Berlin (2006)
96. Ivlev, D.D.: On the development of a theory of ideal plasticity. J. Appl. Math. Mech. 22(6),

1221–1230 (1958)



Phenomenological Yield and Failure Criteria 147

97. Ivlev, D.D.: The theory of fracture of solids. J. Appl. Math. Mech. 23(3), 884–895 (1959)
98. Ivlev, D.D.: On extremal properties of the yield criteria (in Russ.: Ob ekstremal’nych svojst-

vach uslovij plastichnosti). J. Appl. Math. Mech. 5, 1439–1446 (1960)
99. Ivlev, D.D.: Theory of Ideal Plasticity (in Russ.: Teorija idealnoj plastichnosti). Nauka,

Moscow (1966)
100. Ivlev, D.D.: Theory of Limit State and Ideal Plasticity (in Russ.: Teorija predel’nogo sosto-

janija i ideal’noj plastichnosti). Voronezhskij Gosudarstvennyj Universitet, Voronezh (2005)
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interesting mechanical properties, among them high specific strength and stiffness
coupled with inflammability and good damping properties. This makes them interest-
ing for engineering applications which require the prediction of the onset of yielding
under multi-axial stress states and the development of plastic strains over a strain
range that may extend into the regime of full compaction of the foam micro-structure,
as it is the case in applications for crash protection. This chapter investigates the
micro-mechanical deformation mechanisms which govern the elasto-plastic behav-
ior of cellular metals on the macro-mechanical level, where the cellular structure can
be treated as a homogeneous material if the difference between the cell size and the
component size is large enough. If this is the case suitable constitutive models can
be applied for predicting the onset of macroscopic yielding, the evolution of plastic
strains and the hardening behavior. Thus, a review of the most important mater-
ial models proposed for simulating the effective elasto-plastic behavior of isotropic
cellular metals is presented. This behavior is characterized by a distinct pressure
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1 Introduction

Cellular metals are a class of materials which is characterized by a foam or sponge-
like structure on a length-scale that is typically much smaller than the one of the
component. Since the individual cells are much smaller than the typical objects con-
taining cellular metals the mechanical behavior of the cellular structure can generally
be described in a homogenized manner, and the present chapter tries to give some
insight into the available methods and challenges.

Most cellular materials fall into one of the two following categories:

• open-cell foams (sponges),
• closed-cell foams.

The cells, which are either closed or open according to this classification, are typically
filled with air, which is a compressible medium. If the metallic structure is treated
as a ‘material’ in the homogenized sense, this fact gives rise to the marked pressure-
sensitivity of cellular metals in the plastic range.

The strength of the materials is primarily determined by the mechanical behavior
of the metallic structure, especially in the quasi-static range, where the gas can escape
from within the cells through missing or ruptured cell walls. In the case of closed-cell
foams the metallic structure consists of a network of struts which meet in vertices and
are connected by cell walls in a manner that is very similar to that of liquid foams.
This is not surprising, because metallic foams are typically produced by cooling
down and solidifying a liquid foam made from molten metal.

In the case of open-cell foams, the metallic skeleton does not form closed cells,
because the cell walls are missing, either because they broke during the solidification
process or because they where removed by subsequent manufacturing processes.

Interesting structures can be obtained by coating a polymer precursor foam with
a metallic layer and subsequently removing the precursor structure. This leaves the
struts hollow and, in the ideal case, separates two gas filled cavities, namely the one
inside and the one between the struts.

No matter how the cellular metals are produced or which topology they exhibit,
their effective mechanical response is rooted in the deformation of the cellular struc-
ture itself. To take this fact into account, we investigate deformation mechanisms in
cellular metals in Sect. 3.

Transferring theoretical results from the structural level, which is characterized
by cells with a size range of tenths of millimeters up to several millimeters, to
the component level, which is typically much larger, is a process commonly called
homogenization. It is one way of obtaining insight into the mechanical behavior of
cellular metals under multi-axial loads. The preferred method, however, is to perform
appropriate experiments, which go beyond classical uniaxial compression tests and
take multiaxial loading conditions into account. These experiments require expensive
equipment and special care owing to the fact that applying hydrostatic pressure by a
fluid is difficult because the fluid has to be kept from penetrating into the structure.
Nevertheless, corresponding experiments have been performed in the past and the
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interpretation of their results has lead to the formulation of constitutive laws for the
effective mechanical behavior of cellular metals on the macro-mechanical level.

Section 4 reviews the most important contributions in the field of constitutive
modeling of cellular metals. The focus is on works which were tailored to metallic
foams, which reduces the number of candidate material models to a handful, and
allows for a detailed look into their formulation and derivation. Preceding this main
body of this study is a brief introduction to the basics of constitutive modeling for
elasto-plastic materials, which will be given in the following Sect. 2.

2 Constitutive Modeling: Basics

2.1 Introduction

Before it is possible to deal with the particular phenomena characterizing the elasto-
plastic behavior of cellular metals, it is necessary to acquaint oneself with the basics
of continuum mechanics of solid materials and the foundations of the theory of
plasticity. This section is intended to provide the reader with the knowledge and the
mathematical tools necessary for understanding the formulation of the constitutive
models for cellular metals which will be presented in later sections.

First, the mathematical notation used in this chapter will be introduced in Sect. 2.2.
Next, the concept of stress will be recapitulated in Sect. 2.3. The description of
deformation processes in terms of appropriate strain measures will be reviewed in
Sect. 2.4. Finally, Sect. 2.5 describes the elements of the theory of plasticity, which
provides the foundation for most of the constitutive laws for cellular metals.

2.2 Mathematical Notation

The most important mathematical terms and operations necessary for performing the
derivations presented in this chapter will be briefly summarized in the following. The
intention is to familiarize the reader with the mathematical notation used throughout
this chapter.

The location of a point in space is described by a vector x from the origin of the
reference system to the point. In order to do actual numerical calculations, the vector
has to be related to a coordinate system 1-2-3 for obtaining its coordinates x1, x2,
and x3. Only Cartesian coordinate systems are considered here.

The scalar product of two vectors a and b gives a scalar c, which is the product
of the length of vector a with the length of the projection of vector b onto vector a,
and vice versa:
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c = a • b c = ai bi . . . =
3∑

i=1

ai bi, (1)

where the use of Einstein’s summation notation is indicated by the sum sign. The
length l of a vector v can be calculated as l = √

v • v.
In the framework of tensor algebra a vector is equivalent to a first order tensor

x. Such a first order tensor x can be transformed into a new first order tensor y by
applying a second order tensor A to it. By writing y = A x in tensorial notation, we
imply the fact that A represents a linear transformation of x into y. The coordinates
of the second order tensor A with respect to an orthonormal coordinate system are
indicated as [A]ij or as Aij, respectively. The coordinates yi of the transformed tensor
y are a linear combination of the coordinates xj of the original tensor x, where each
original coordinate is weighted by the coordinate Aij of the tensor A. Using both
tensor notation and index notation, we obtain

y = A x yi = Aijxj . . . =
3∑

j=1

Aijxj. (2)

A special second order tensor is the unit tensor I which has the coordinates [I]ij = δij,
where δij is the Kronecker Delta function which returns one for i = j and zero for
i �= j. Applying the unit tensor to a second order tensor A leaves the latter tensor
unchanged: IA = A.

A second order tensor C can be constructed from vectors a and b using the tensor,
or dyadic product:

C = a ⊗ b Cij = ai bj (3)

The resulting tensor C, applied to a vector x, returns as the result the first vector a,
scaled by the product of the length of the second vector b times the length of the
projection of the vector x onto the second vector b, (a ⊗ b)x = a(b • x).

A second-order tensor C which represents a transformation B followed by a
transformation A can be constructed as follows:

C = AB Cij = AikBkj . . . =
3∑

k=1

AikBkj (4)

A fourth order tensor C represents a linear transformation which is applied to a
second order tensor A for obtaining a new second order tensor B. We express this
operation in tensor notation and index notation:

B = CA Bij = CijklAkl . . . =
3∑

k=1

3∑
l=1

CijklAkl (5)
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The coordinates of the fourth order tensor C are represented as either [C]ijkl or Cijkl.
Summing over two indices as in Eq. (5) is called double contraction. The double

contraction of a second order tensor A and another second order tensor B gives a
scalar c. This operation is written as follows:

c = A:B c = AijBij . . . =
3∑

i=1

3∑
j=1

AijBij (6)

The trace tr (A) of a second order tensor A is defined as the sum of the coordinates
Aii (i = 1 . . . 3) on the main diagonal (in matrix notation), or the double contraction
with the second order tensor of unity I:

tr (A) =
3∑

i=1

Aii = A:I (7)

The derivative of a scalar-valued function

g(σσσ) = g(σ11, σ22, σ33, σ12, σ21, σ23, σ32, σ13, σ31)

of a second-order tensor σσσ with respect to (the coordinates of) the tensor σσσ gives the
gradient of g at σσσ , which is itself a second order tensor:

[
∂g

∂σσσ

]
ij

= ∂g

∂σij
(8)

If the function g(σσσ) is homogeneous of degree n in σσσ , i.e.,

g(ασσσ) = αn g(σσσ) (9)

then Euler’s theorem on homogeneous functions can be applied to obtain the rela-
tionship

1

g
σσσ : ∂g

∂σσσ
= n

σij

g

∂g

∂σij
= n (10)

which can be useful for manipulating expressions related to plastic flow rules (as
introduced in Sect. 2.5).

2.3 The Stress State

In this section, expressions and relationships from continuum mechanics, which are
necessary for the mathematical description of the mechanical behavior of materials,
are introduced.
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The local stress conditions in a body are described by a symmetric second-order
tensor σσσ = [σij] called the stress tensor. The 3/D stress tensor has nine coordinates
σij, i ∈ [1, 3], j ∈ [1, 3], six of which are independent owing to the symmetry of the
tensor, i.e., σji = σij.

Coordinates with identical indices i = j relate to normal loading with respect to
the reference coordinate system, whereas coordinates with differing indices i �= j
indicate shear loading.

The actual values of the coordinates of the stress tensor depend on the chosen
reference coordinate system. However, three scalar properties I1, I2, and I3, can be
defined which are invariant with respect to a rotation of the reference system, These
invariants are given by:

I1 = σkk = σ11 + σ22 + σ33 (11)

I2 = 1

2

(
σiiσkk − σijσij

)
(12)

I3 = detσσσ (13)

It is possible to find a reference frame 1-2-3 for which all non-diagonal coordinates of
the stress tensor, i.e., the shear stresses, vanish. The coordinates σii along the diagonal
of the stress tensor expressed in this specific reference system are then called the
principal stresses, σ1 = σ11, σ2 = σ22, and σ3 = σ33. They are the eigenvalues of
the stress tensor and can be found by solving the characteristic equation

det(σσσ − σiI) = −σ 3
i + I1 σ

2
i − I2 σi + I3 = 0. (14)

For the investigation of the mechanical behavior of pressure sensitive materials, it is
necessary to define the pressure p, which is a function of the normal stresses only:

p = −1

3
(σ11 + σ22 + σ33) = −σm (15)

Also defined in Eq. (15) is the mean stress σm, which has the negative value of the
pressure, σm = −p. Note the relationship σm = 1

3 I1 between the mean stress and
the first invariant I1 of the stress tensor, compare Eq. (11).

The contribution of the hydrostatic pressure to the stress tensor can be isolated as

σσσHydro = −p I = σm I (16)

Correspondingly, the deviatoric part s of the stress tensor can be obtained by sub-
tracting the hydrostatic part from the stress tensor,

s = σσσ − σσσHydro . . . = σσσ − σm I = σσσ + p I (17)
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For the deviatoric stress tensor s three invariants J1, J2, and J3 can be defined. The
first invariant J1 is zero by definition, because the deviatoric stress tensor contains
no contribution from hydrostatic pressure. The second invariant J2 is given by

J2 = 1

2
s:s = 1

2
sijsij

It plays an important role in metal plasticity, since it can be used to express the von
Mises equivalent stress σe in the following form:

σe = √
3 J2 . . . =

√
3

2
s:s. (18)

For some materials, in particular metals, which are not sensitive to pressure with
regard to yielding, the von Mises equivalent stress is an appropriate scalar measure
for assessing the stress state in the material with respect to plastic yielding. For
uniaxial tension and compression, the von Mises stress is equal to the applied stress.
It is sometimes useful to re-write the von Mises stress in terms of principal stresses:

σe =
√

1

2

[
(σ1 − σ2)

2 + (σ2 − σ3)
2 + (σ3 − σ1)

2] (19)

At this point, some partial derivatives of scalar-valued functions of the stress tensor
with respect to the stress tensor coordinates, recall Eq. (8), are presented in Table 1.

Table 1 Some useful derivatives of quantities related to the description of yield surfaces for
pressure-sensitive materials with respect to the coordinates σij of the stress tensor σσσ

Tensor notation of derivative Selected terms in index notation

∂(s:s)
∂σσσ

= 2s

∂(sij sij)

∂σ11
= 2

(
σ11 − σ11 + σ22 + σ33

3

) = 2s11

∂(sij sij)

∂σ12
= 2σ12 = 2s12

∂σe
∂σσσ

= 3
2

s
σe

∂σe
∂σ11

= 1
2σe

[2σ11 − σ22 − σ33] = 3s11
2σe

∂σe
∂σ12

= 3σ12
2σe

∂
(
σe

2)
∂σσσ

= 3s

∂
(
σe

2
)

∂σ11
= 2σ11 − σ22 − σ33 = 3s11

∂
(
σe

2)
∂σ12

= 3σ12 = 3s12
∂σm
∂σσσ

= 1
3 I ∂σm

∂σ11
= 1

3

∂
(
σm

2)
∂σσσ

= 2
3σm I

∂
(
σm

2)
∂σ11

= 2
9 [σ11 + σ22 + σ33]

∂p
∂σσσ

= − 1
3 I ∂p

∂σ11
= − 1

3

∂
(
p2
)

∂σσσ
= − 2

3 p I
∂
(
p2
)

∂σ11
= 2

9 [σ11 + σ22 + σ33]

Left column: tensor notation, right column: selected terms in index notation
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Materials, for which the mechanical response is independent of any material
direction, are called isotropic materials. Since the choice of the reference coordinate
system for the description of the constitutive behavior of these materials is not pre-
determined by any geometrical feature that introduces a direction dependency (such
as fibers in a fiber-reinforced composite material) it is possible to describe the material
behavior in terms of tensor invariants, and, in particular, in terms of the three principal
stresses.

The yield surface, which plays a major role in any plasticity model (compare
Sect. 4), is often depicted in the three-dimensional space that is described by inter-
preting the three principal stresses σ1, σ2, and σ3 as coordinates in an orthonormal
reference system. In this principal stress space, the following interesting entities can
be identified:

Hydrostatic axis: The space diagonal in the principal stress space, describing stress
states that are purely hydrostatic and do not contain any deviatoric
component, i.e., σe = 0.

Deviatoric plane: Any plane perpendicular to the hydrostatic axis, i.e., all stress
states with the same mean stress σm = const.

π -plane: The deviatoric plane which contains the origin σ1 = σ2 = σ3 = 0
of the principal stress coordinate system, and, therefore, all stress
states with vanishing mean stress, σm = 0.

Meridian: A plane which contains the hydrostatic axis.

Most of the constitutive laws for the description of the effective mechanical behavior
of isotropic cellular metals can be formulated in terms of the mean stress σm and
the von Mises equivalent stress σe. Surfaces in the principal stress space, which are
defined implicitly by F(σm, σe) = 0 show rotational symmetry about the hydrostatic
axis.

If this rotational symmetry cannot be assumed, a third parameter in addition to
σm and σe has to be considered. This third parameter is often chosen to be an angle
θ measured in the π -plane, namely between the projection of the σ1-axis on the
π -plane and a vector from the origin of the principal stress space to the projection
of the stress state onto the π -plane along the direction of the hydrostatic axis. By
this geometrical definition, the angle θ , which is often called the Lode angle, can
assume values between 0 and 60◦, provided that the principal stresses are sorted as
σ1 ≥ σ2 ≥ σ3. The Lode angle can be calculated from

cos 3θ = 3
√

3

2

J3√
(J2)3

(20)

Note the dependency of this quantity on the third invariant J3 of the stress deviator
tensor. For purely hydrostatic stress states, θ becomes undefined, because inserting
J2 = 0 in Eq. (20) would cause a division by zero. The Lode angle describes the
relationship between the principal stresses.
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2.4 Deformation and Strain

Application of loads to solid bodies leads to a deformation of these bodies. The
quantities and methods available for the description of this deformation are the topics
of this section.

We investigate a process, which moves and deforms a body from an undeformed
reference configuration to a deformed configuration. Points X in the undeformed
configuration are mapped onto points in the deformed configuration by the function
ϕ, giving x = ϕ(X, t) at any given time t.

Correspondingly, a line element dX in the undeformed configuration is trans-
formed into a line element in the actual configuration dx according to dx = F dX,
where F is a second order tensor called the deformation gradient, and is defined as

F = ∂ϕ

∂X
Fij = ∂ϕi

∂Xj
(21)

The deformation gradient F contains all the necessary information for describing
the deformation process at a given material point. In particular, it contains infor-
mation about the actual deformation of the material and any super-imposed rigid
body rotation. To separate these two contributions, a polar decomposition of F into
an orthogonal rotation tensor R (with properties det(R) = 1, RT = R−1) and a
symmetric tensor U, which is called the right (or material) stretch tensor, can be
performed:

F = RU (22)

This decomposition means that the shape and/or volume of a volume element dV is
first changed according to U and the volume element is then rotated by R into the
final configuration dv. The three eigenvalues λi of U are called the principal stretches.
The length of a line element dLi in the undeformed configuration, which points into
the direction of the i-th eigenvector Ni of U is stretched by the deformation process
to a new length dli, which can be calculated using

λi = dli
dLi

(23)

To actually calculate the right stretch tensor U, we first introduce the right Cauchy-
Green tensor C:

C = FTF = UT RTR︸︷︷︸
I

U = UTU (24)

This tensor has the eigenvalues 
i and the eigenvectors Ni, and can be represented
using the spectral decomposition theorem:



162 T. Daxner

C =
3∑

i=1


iNi ⊗ Ni (25)

We can now build the right stretch tensor U in a similar manner noting that it has the
same eigenvectors as C and its eigenvalues λi are the square root of the eigenvalues

i of C, i.e., λi = √


i:

U =
3∑

i=1

λiNi ⊗ Ni (26)

The principal stretches already give a lot of information about the deformation
process, but they do not lend themselves naturally to the description of the strain
in the material, because they assume a value of one for the undeformed state (for
which, in the absence of residual stresses, the stresses are zero).

Therefore, appropriate strain measures have to be defined. For large deforma-
tions, logarithmic strain measures are often used. The logarithmic strain tensor in
the reference configuration is defined as

εεε =
3∑

i=1

ln(λi)Ni ⊗ Ni (27)

For homogenous uniaxial deformations, the axial logarithmic strain can be found as
ε
(ln)
axial = ln(l/l0) = ln(λaxial). It is zero for the undeformed state.

It is often useful to split the strain tensor into a part which describes the change
of shape of a volume element and a part which describes the change of its volume.

Let us look at a cube-shaped volume element dV which is oriented along the
eigenvectors Ni. The undeformed edge length is given by dL, and the undeformed
volume by dV = dL3. If the volume element is transformed into the deformed
configuration by the right stretch tensor U, its edges remain orthogonal (because
they where parallel to the eigenvectors of U) but their length is now dl1, dl2, and
dl3, respectively. The volume in the deformed configuration is, thus, dv = dl1dl2dl3.
Relating the deformed volume dv to the undeformed volume dV , we can now define
the logarithmic volumetric strain εvol:

εvol = ln
dv

dV
= ln

dl1dl2dl3
dL3 = ln(λ1λ2λ3) = ln(λ1)+ ln(λ2)+ ln(λ3)

= ε
(ln)
1 + ε

(ln)
2 + ε

(ln)
3 (28)

This shows the convenient property that the logarithmic volumetric strain is equal to
the trace of the logarithmic strain tensor εεε.

The part of the strain tensor, which changes the volume of a volume element can
now be isolated as: εεεvol = 1

3εvolI. The remaining, deviatoric part e of strain tensor
can be found by subtracting this tensor from the full strain tensor:
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e = εεε − εεεvol = εεε − 1

3
εvolI (29)

Since the deviatoric strain tensor does not impose any volume change, its trace is
equal to zero.

Similar to the von Mises equivalent stress σe, an equivalent or effective strain εe
can be defined from the deviatoric part of the strain tensor:

εe =
√

2

3
e:e (30)

This definition implies two properties: (a) for a volume-preserving uniform extension
process, the effective strain is equal to the axial strain, and (b) the effective strain is
work conjugate to the von Mises equivalent stress σe.

In addition, the rate ε̇vol of the logarithmic volumetric strain is work conjugate to
the mean stress σm. Finally, an expression for the rate Ẇ of the internal mechanical
work done by the stresses can be obtained exclusively in terms of effective properties:

Ẇ = σeε̇e + σm ε̇vol (31)

2.5 Formal Introduction to Elasto-Plasticity

In this section, the common framework of the constitutive modeling of elastic-plastic
materials will be reviewed.

A solid body under global loading experiences local stress fields in parts or all of
its volume. These stresses lead to deformations, which can be expressed by strain
tensors on the material point level. The local deformation state is described by a
strain tensor εεε.

The strain state is related to the stress state by constitutive laws, which express
the strain tensor εεε in terms of the stress tensor σσσ , the temperature T (if necessary),
and internal variables Si:

εεε = f (σσσ ,T , Si) (32)

The internal variables Si describe the internal state of the material. Accumulated
plastic strains, e.g., are important internal variables for plasticity. The description
of the evolution of the material state throughout the deformation process requires
evolution equations for the internal variables:

dSi

dt
= gi(σσσ ,T , Si) (33)

The coupled system of Eqs. (32) and (33) has to be solved in order to obtain the
deformation history of the material.
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We now consider materials which deform inelastically, i.e., which are able to
undergo irreversible, plastic deformations. These material often do not show yielding
from the onset, but rather require a certain yield stress state to be exceeded before
plastic deformation sets in. If the stress state is not critical with respect to plastic
yielding, the material deforms elastically.

Classical plasticity theory (see e.g. [26]) describes this behavior by defining a
surface in stress space the interior of which contains all stress states for which the
deformation mechanism remains purely elastic. This surface is called yield surface.
The yield surface is defined implicitly by the relationship

F(σσσ , Si,T) = 0 (34)

where F is called the yield function. The interior of the yield surface contains all
material states for which F < 0.

As soon as stress states reach the yield surface, and, consequently, the yield
criterion F(σσσ , Si) = 0 is fulfilled, the material starts accumulating plastic strains
εεεpl at a rate, which is defined by the plastic flow rule (given here in incremental
form):

dεεεpl = dεεεpl(σσσ , dσσσ , Si,T). (35)

The flow rule is often defined using the gradient of a flow potential G(σσσ , Si,T):

dεεε(pl)
ij = dλ

∂G

∂σij
(36)

Herein, dλ is the increment of the plastic flow multiplier λ, which can be determined
using the fact that the stress state always fulfills the yield condition (34) during plastic
loading. By definition, the stress state always remains on the yield surface as long as
the material point deforms plastically.

The size, the location and the shape of the yield surface, however, can change
according to the applied constitutive theory. The evolution of the yield surface is
described by the evolution laws for the relevant internal variables Si, e.g., by appro-
priate hardening laws.

For many constitutive laws, the flow potential G is chosen to be identical to the
yield function, G ≡ F. The corresponding flow rules are called associated flow rules.

In a general deformation process involving plastic deformation, contributions
from elastic deformation mechanisms and plastic yielding are superimposed. If the
elastic deformations remain small compared to the overall deformations, an additive
split of the strain tensor εεε into an elastic part εεεel and a plastic part εεεpl is appropriate:

εεε = εεεel + εεεpl (37)
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3 Deformation Mechanisms and Yielding in Cellular Metals

3.1 Onset of Failure

While cellular metals can be treated as homogeneous materials for most applications
because of the size difference between their metallic structure and the size of cor-
responding components, their mechanical behavior is still governed by deformation
mechanisms in the metallic structure itself.

For open-cell metallic foams, the bending and buckling of the struts is the dom-
inating deformation mechanism. Usually, the struts of open-cell foams have two
distinct geometrical properties:

• their cross-sections have the shapes of triangles with concave sides, which is a
result of surface tension and drainage processes acting on the foam structure as
long as it is in a molten state. The characteristic shape of these struts is called a
Plateau border. Figure 1 shows the struts enclosing a single open cell.

• The cross-sectional area of the struts is smallest around their middle and increases
towards the vertices. This means that the vertices are considerably stiffer than the
struts and, consequently, rather rotate and move than deform.

Fig. 1 Rendering of the Plateau border network forming the structure of an open-cell foam. Adapted
from [2]
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Fig. 2 Local bending deformation of a strut in an open-cell metal foam (image courtesy of Institute
of Materials Science and Testing, Vienna University of Technology)

Fig. 3 Buckling of an open-cell structure with hollow struts under hydrostatic pressure

Struts in open-cell materials experience normal loads, bending moments, and tor-
sional loads depending on the macromechanical loading conditions, their orientation
and their connection to the surrounding framework of struts.

Figure 2 shows a typical deformation mode of a strut in an open-cell metallic
foam. The deformation pattern can be the result of bending by transverse forces or
moments, or elasto-plastic buckling. It is obvious that the deformation affects mainly
the thin middle section of the struts whereas the thick vertices perform rigid body
movements.

Subjecting regular cellular model structures to macroscopic hydrostatic pressure
loading may cause struts to experience compressive stresses which can lead to buck-
ling. This buckling can be global in nature, as is shown in Fig. 3 for a periodic unit cell
model of an open-cell structure with hollow struts. In this simulation the periodicity
of the buckling mode is tied to the geometrical periodicity of the unit cell. Simu-
lation methods, which can capture buckling modes with wavelengths far exceeding
the dimensions of the constituting unit cell model, deserve to be mentioned in this
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Fig. 4 Cell wall buckling in a unit cell model of a regular tetrakaidecahedral cell structure under
macroscopic uniaxial tension

context [19, 20, 25, 32]. Even if the initial buckling mechanism was an elastic one,
stress redistribution due to the excentric loading of the struts in the post-buckling
regime can quickly lead to plastic yielding in the outer zones of the struts.

For closed-cell foams the presence of cell walls adds the additional mechanisms
of bending and stretching of the cell walls. In the direction of compressive principal
stresses, the cell walls may buckle, and they may rupture if the local stresses exceed
the strength of the walls.

A tetrakaidecahedral unit cell model of a closed-cell foam can be used to illustrate
an interesting phenomenon in connection with elastic buckling of cell walls, compare
Fig. 4. Here, elastic buckling can be observed on the cell wall level even though the
macroscopic loading state is one of uniaxial tension. The reason for this is the fact
that the hexagonal faces, which are oblique to the loading direction, experience
in-plane shear loading rather than pure tensile loading, causing shear buckling as
soon as the critical stress is exceeded.

Micro-mechanical unit cell models can also be exploited to demonstrate the initial
stages of deformation in a closed-cell foam under uniaxial compressive loading.
Figure 5 shows a uniaxial compressive stress versus compressive strain diagram for a
periodic tetradecahedral unit cell model. A straight line at the beginning of the stress-
strain curve represents the regime of linear elastic deformation. It is not completely
clear, if such a distinct linear regime exists in a real cellular metal owing to the fact
that such a material usually contains many imperfections and inhomogeneities that
can trigger plastic yielding under even the slightest macroscopic load.

As the macroscopic load is increased, the stresses inside the cellular structure rise
and, inevitably, reach the yield stress of the solid material in the first critical spots.
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Fig. 5 Compressive stress versus strain diagram for the uniaxial compression of a regular, peri-
odic tetrakaidecahedral cellular structure. The two small contour plots on the right side show the
distributions of the von Mises equivalent stress at the onset of local yielding (bottom) and close to
the limit stress (top) (from [9])

These spots are indicated by an arrow in Fig. 5, and they mark the influence regions
of stress concentrations in the vicinity of the vertices of the model structure. After the
initiation of yielding the stress-strain-curve starts to deviate visibly from the tangent
in the origin of the stress versus strain curve. Elastic unloading beyond the onset
of micro-yielding can be simulated for obtaining the residual plastic strains in the
structure as is also shown in Fig. 5.

Because the detection of micro yielding as defined by the determination of the
onset of yielding in any integration point or finite element node in the simulation
model may be mesh-dependent or predict yielding at stresses much lower than the
macroscopic yield stress, it can prove advantageous to define yielding based on the
magnitude of the macroscopic plastic strain which remains after the structure has
been unloaded, similar to the definition of the offset yield point for metals without a
distinct elastic limit stress.

As the compressive load increases, larger and larger sections of the cell walls
start to deform plastically. Finally, as the plastic deformation bands in the cell walls
connect across the individual cells, the limit load of the unit cell model is nearly
reached and the compressive stress-strain-curve shows a nearly horizontal plateau.

Even though a fairly simple finite element unit cell model was used for obtaining
Fig. 5, it can nevertheless illustrate the sequence of events leading to plastic failure
of cellular metals.

In solid metals the application of hydrostatic pressure does not cause plastic
yielding, at least not within the confines of classic metal plasticity theory. In cellular
metals, however, applying hydrostatic pressure on the macroscopic level will lead to
local stress states in the cellular structure which are—depending on the symmetry
and regularity of the structure—predominantly uniaxial and compressive. Thus, they
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Fig. 6 Yield surface of a regular closed-cell foam predicted by a periodic Weaire-Phelan unit cell
model. The dark cap at the end of the ellipsoidal in the regime of positive hydrostatic pressure
values indicates stress states, for which yielding may be preceded by elastic buckling (from [10])

can and will cause plastic yielding, because the macroscopic hydrostatic load does
not lead to hydrostatic stress states on the micromechanical level.

By loading a sample made of cellular metal along different paths in stress space,
stress states for which the macromechanical behavior becomes inelastic can be deter-
mined and connected to form a yield surface in the stress space. This can be done
experimentally or by means of numerical models.

Figure 6 shows a yield surface in principal stress space that was predicted for
a periodic finite element unit cell model of a Weaire-Phelan structure, which is a
good generic model for closed-cell foams. In accordance with the statements above,
the yield surface intersects the hydrostatic axis at the points corresponding to the
hydrostatic tensile and compressive yield stresses. The shape of the yield surface is
the one of an ellipsoid which is elongated along the hydrostatic axis.

From a numerical point of view, Fig. 6 contains additional information in the form
of the darkened cap at the end of the yield surface which corresponds to almost purely
hydrostatic compression. In those dark areas on the yield surface the system matrix
has negative eigenvalues, which means that elastic buckling precedes or prematurely
initiates plastic yielding.

Figure 6 shows an ellipsoidal yield surface which is visibly elongated along the
axis of hydrostatic stress states. This can be attributed to the fact that the stress states
induced in the cell walls are mainly membrane-like for hydrostatic loads on the one
hand and characterized by high bending stresses close to the vertices for uniaxial
loads, on the other hand, which initiates yielding at deviatoric macroscopic stresses
that are lower than the hydrostatic macroscopic yield stresses.
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Fig. 7 Yield surfaces predicted for a regular (left) and an irregular (right) tetrakaidecahedral unit
cell model of closed-cell foam, respectively [8]

Fig. 8 Projection of the yield surfaces predicted for two periodic unit cell models of closed-cell
foam into a diagram of von Mises equivalent stress σe versus mean stress σm (left). Cross-section
of the yield surfaces by a deviatoric plane (right, from [10])

For real cellular metals, the difference between length and diameter of the ellipsoid
is not expected to be so pronounced, as is illustrated in Fig. 7, which presents the yield
surface of a regular tetrakaidecahedral finite element unit cell model (left) and the
yield surface of a unit cell model with the same topology, but randomly perturbed
vertex positions (right). The geometrically imperfect, and therefore more realistic
model, shows a smaller yield surface with a much lower ratio between the length
and the diameter of the ellipsoidal, which is closer to the experimental evidence.
The reason behind this are the bending moments which are induced by excentrical
loading of the microstuctural members in the case of the irregular unit cell model
even for predominantly hydrostatic macroscopic pressure.

A common method of visualizing yield surfaces of cellular metals is the projection
of points on the yield surface onto a diagram of von Mises equivalent stress σe versus
mean stress σm. Figure 8 (left) displays the points on the yield surface in Fig. 6 in the
corresponding form. In this diagram, the yield surface collapses into a point cloud
which can be fitted by an elliptical curve in a first approximation.
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Fig. 9 A sample of a foam specimen in the unloaded state and at 30 and 60 % compressive nominal
strain, respectively (left). Generic stress versus strain curves for different apparent aluminum foam
densities are shown on the right (after [21])

The fact that the points do not sit on a single curve indicates that the yield surface
does not have a circular cross-section in any deviatoric plane, σm = const. Figure 8
(right) shows such a cross section. Consequently, for an exact description of the yield
surface, the von Mises equivalent stress σe and the mean stress σm are not sufficient
and an additional measure such as the third invariant J3 of the deviatoric stress tensor
or the Lode angle (20) has to be supplied. Experimental evidence for an influence of
the third invariant J3 on the yield surface shape has been provided by [5, 6, 12].

3.2 Progressive Collapse and Densification

The plateau region of the uniaxial compressive stress-strain relationship is charac-
terized by the successive collapse of layers of cells, starting from the weakest cell
layer and spreading either into neighboring regions or other weak layers in differ-
ent sections of the specimen. This process is indicated by the extent of the hatched
regions in Fig. 9 (left) which mark the collapsed regions at two stages of compression
of a particular sample of metallic foam. Generally, some amount of hardening can be
expected, because the collapsed layers show high resistance to further compression
and the remaining uncollapsed regions are stronger than the collapsed ones in their
initial state. In addition, the metallic bulk material itself typically experiences strain
hardening.

Increasing the load leaves only stiff and strong cells undamaged. In combination
with the collapsed cells, which are nearly incompressible in relation to the undamaged
ones, this means that the slope of the uniaxial compressive stress-strain relationship
is getting steeper and steeper.
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Finally, with the application of sufficiently high compressive stresses, all cells
along the loading path are expected to collapse. This stage of uniaxial compression
is called densification, because it is characterized by most of the void volume being
squeezed out of the cellular structure and the mechanisms of the bending and stretch-
ing of cell struts and walls being replaced by the transfer of compressive forces along
bridges of solid bulk material formed by the structural members of collapsed cells
which are in contact with each other.

The following approximation of the nominal compressive densification strain εD
as a linear function of the relative density ρrel = ρ∗/ρS, where ρ∗ is the apparent
density of the cellular material and ρS is the density of the bulk material, is suggested
in [17]:

εD = 1 − 1.4
ρ∗

ρS
(38)

The effective uniaxial compressive response of a cellular metal depends on

1. the relative density of the cellular metal,
2. the topology and the homogeneity of the cell structure,
3. the hardening behavior and the ductility of the bulk material.

The influence of the relative density on the effective uniaxial compressive stress-strain
behavior was captured in the comprehensive study [21] including a large number of
quasi-static compressive tests on Al99.5 foam specimens of varying density.

To express the dependency of the compressive stress-strain response of this par-
ticular material on its relative density, an analytical relationship between the nominal
stress σ and the nominal strain ε proposed by Shim [31] was fitted to the experimen-
tally obtained stress-strain curves. Below a collapse stress σ0, and a corresponding
collapse strain ε0, respectively, the uniaxial compressive stress σ is assumed to be a
linear function of the compressive strain ε. The plateau region and the densification
regime are described by the superposition of a linear and an exponential function of
the compressive strain, which are parameterized by shape parameters a, b, ε0 and n
according to the second line of the following equation:

σ(ε) = σ0

⎧⎪⎪⎨
⎪⎪⎩

ε
ε0

: ε ≤ ε0

exp
(

a(ε − ε0)
(a − ε)n

)
− b(ε − ε0) : ε0 < ε < a

(39)

Gradinger [21] derived the following relationships between the curve parameters
and the apparent density ρ of the investigated material, which has to be inserted in[
g/cm3

]
:
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a(ρ) = −0.37004ρ + 1.0000

b(ρ) = 6.6964ρ2 − 10.2790ρ + 2.3053

ε0(ρ) = −0.0459ρ2 + 0.0563ρ − 0.0055 (40)

n(ρ) = −1.3633ρ2 + 1.2243ρ + 0.3321

σ0(ρ) = 12.3430 × ρ1.8807 [MPa]

The corresponding uniaxial compressive stress-strain curves are shown in Fig. 9,
right. It is evident that the collapse of low density Al99.5 foam progressed along a
long plateau regime of nearly constant compressive stress up to a nominal densifica-
tion strain of nearly 90 %. In contrast, densification occurred between 60 and 70 %
nominal compressive strains for aluminum foams of higher apparent density and the
hardening modulus of these foams was considerably higher.

4 Constitutive Modeling of Cellular Metals

4.1 Introduction

Cellular materials have a complicated micro-structure which generally cannot be
described in its entirety by testing and visualization methods. Nevertheless, the effec-
tive mechanical behavior of the cellular material is a consequence of the interaction
of the deformation mechanisms of the countless structural members on the cellular
level. Since it is not feasible to model the micro-structure, the mechanical response of
the cellular metals has to be described in a macroscopic, averaged-out sense within
the framework of the theory of plasticity. This approach requires that the overall
dimensions of the structures made of foam are at least one or two orders of magni-
tude larger than the typical size of typical individual foam cells.

Constitutive laws for cellular metals have to primarily account for the fact that
these materials can yield under purely hydrostatic stress states, and, consequently,
can acquire volumetric plastic deformations when being loaded beyond the yield
limit. This is clearly in contrast with the assumption of classical theory of plasticity
for solid metals, that hydrostatic stresses — however high — will not cause plastic
deformations, and that plastic flow does not result in changes of the volume.

Consequently, new constitutive laws had to be developed for cellular metals, and
these constitutive theories will be the subject of this section. An early overview of
constitutive laws for the simulation of metallic foams was compiled by Hanssen
et al. [23, 24]. They compare constitutive formulations proposed by Schreyer
et al. [28], Ehlers et al. [14, 15], Deshpande and Fleck [11], Miller [27], as well
as one implemented in the finite element software Abaqus [7] and then proceed to
validate constitutive formulations implemented in the finite element code LS-DYNA
[22]. A general review of yield criteria for cellular materials was given in [1].
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It contains a classification of several yield criteria according to their dependency
(linear or quadratic) on the homogenized mean stress and on the homogenized von
Mises equivalent stress. The subject of yielding of anisotropic cellular materials is
also treated in considerable detail in this paper. Finally, a very comprehensive review
of yield criteria and constitutive models for cellular metals is available in [30].

In the following sections, the most important constitutive models for cellular
metals will be presented. This review is restricted to isotropic material behavior,
because no complete constitutive model for anisotropic cellular metals was available.
With the exception of the GAZT yield criterion (see Sect. 4.3), the derivation of
which was found to be interesting with regard to transferring micro-mechanical
considerations to the macro-mechanical level, only complete constitutive models
including a plastic flow rule are considered.

The yield criteria Fi(σe, p) = 0 for the presented constitutive models all contain
a term quadratic in the hydrostatic pressure p (= −σm). They can be distinguished
further into models for which the von Mises stress σe enters F in linear form [18, 27],

F1(σe, p) = σe

a1
+ p2

b1
− 1 (41)

or in quadratic form, with the yield surface being either symmetric about the origin
when plotted in the (σe, p) plane [4, 11],

F2(σe, p) = σ 2
e

a2
+ p2

b2
− 1 (42)

or with a center that is offset along the p axis [7, 33],

F3(σe, p) = σ 2
e

a3
+ (p − p0)

2

b3
− 1 (43)

The yield functions for the constitutive models cited above will be presented in
detail in Sects. 4.3 to 4.8. In addition, a more complex yield function which takes
into account the third invariant J3 of the stress deviator tensor [16] will be described
in Sect. 4.9.

The constitutive models for cellular metals differ not only in terms of the formu-
lation of their yield function F, but also in terms of their flow potential G. Several
models assume associated plastic flow, i.e., G = F. Others define a non-associated
flow potential, in most cases to allow for an independent calibration of the plastic
Poisson’s ratio. Lastly, the models differ in terms of the definition of the harden-
ing variable(s) and the corresponding evolution laws. For more details the reader is
referred to Sects. 4.4–4.9.

The treatment of the elastic part of the deformation of cellular metals is essentially
the same across the constitutive theories presented here. Therefore, the following
separate section is dedicated to this subject.
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4.2 Linear Elastic Behavior

For the undeformed material, the strain tensor vanishes per definition, i.e., εij = 0.
Loading the material will induce stresses and strains. If the stress level is small, the
deformation may remain purely elastic. Assuming small elastic deformations, the
tensor of elastic strains εεεel can be related to the stress tensorσσσ by a linear relationship
of the form

σσσ = Eεεεel, or σij = Eijklεεεkl (44)

which is called Hooke’s Law. It involves the fourth-order tensor of elasticity E.
For the special case of an isotropic material, only two material parameters λ andμ

called the Lamé parameters are necessary for the definition of the tensor of elasticity
Eijkl:

Eijkl = λ δijδkl + μ
(
δikδjl + δilδjk

)
, (45)

The Lamé coefficients λ and μ can be related to the Young’s modulus E and the
Poisson’s ratio ν of the material:

λ = Eν

(1 + ν)(1 − 2ν)
, μ = E

2(1 + ν)
(46)

The Young’s modulus E relates a uniaxial stress σ to the resulting strain ε in tension
direction in a uniaxial tension test: σ = Eε.

While the theoretical description of elasto-plastic materials assumes the existence
of an elastic deformation regime, it is very difficult to actually observe purely elas-
tic behavior in experiments on cellular metals, especially under compression. The
reason is that plastic deformations on the micro-level may appear at very low over-
all load levels, e.g., at the sample-test machine interface or around microstructural
imperfections, even though these stresses are well below the limit or plateau stress of
the materials. It is, therefore, often difficult to define a Young’s modulus for cellular
metals. In order to arrive at a well defined value for E, the unloading modulus is
sometimes used, which is typically higher than the apparent modulus at the onset of
loading.

The Poisson’s ratio ν of an isotropic material is used in the relationship between
the longitudinal stress σ11 and the transverse strains ε22 = ε33 = −νσ11/E in a
uniaxial tension test. Because of the typically rough surfaces of cellular materials, it
is very hard to measure the Poisson’s ratio experimentally.

Another important elastic quantity is the shear modulus G, which relates the shear
stress τ to the shear angle γ by τ = Gγ in a shear test, and is defined as:

G = E

2(1 + ν)
(47)

Finally, the bulk modulus K couples the mean stress σm to the volumetric strain εvol
according to σm = Kεvol and is given by
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K = E

3(1 − 2ν)
(48)

Hooke’s law can be written in a very compact and useful form, when the deviatoric
and the volumetric parts of the elastic strain tensor are inserted separately:

σσσ = 2Ge(el) + Kε(el)
vol I (49)

which implies for the deviatoric part s of the stress tensor that

s = 2Ge(el) (50)

The elastic strain energy density W for an isotropic, linear elastic material can be
specified in terms of the stress and strain tensors by:

W = 1

2
σσσ :εεε(el) = 1

2
[s + σmI] :

[
e(el) + 1

3
ε
(el)
vol I

]
= 1

2

(
s:e(el) + σmε

(el)
vol

)
(51)

The last step in this equation uses the identity I:I = 3, as well as the fact that the
double contraction of the deviatoric part of a second-order tensor and the second
order tensor of unity gives zero, i.e., s:I = I:s = 0, and e(el):I = I:e(el) = 0, because
tr (s) = 0 and tr

(
e(el)

) = 0, respectively, compare Eq. (7). The last term in Eq. (51)
indicates that σm and εvol are energetically conjugate. Using Eq. (50) it can be shown
that

1

2
s:e(el) = 1

2
σeε

(el)
e (52)

which shows that σe and εe are also energetically conjugate.
Since the stress tensor σσσ and the strain tensor εεε are directly related by Hooke’s

law, expressions for the strain energy density W can be derived which depend either
only on the stress or only on the strain measures:

W = 1

2Ē

(
σ 2

e + β2σ 2
m

)
(53)

and

W = Ē

2

([
ε(el)

e

]2 + 1

β2

[
ε
(el)
vol

]2
)

(54)

where two alternative elastic material parameters Ē and β are used:

Ē = 3E

2(1 + ν)
β2 = 9(1 − 2ν)

2(1 + ν)
(55)

Observing this, Chen and Lu [4] introduced a definition of a characteristic stress σ̄ ,
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σ̄ 2 = σ 2
e + β2σ 2

m (56)

and a characteristic strain ε̄,

ε̄2 = [εe]2 + 1

β2 [εvol]
2 (57)

and used them in their definition of a constitutive model for metallic foam, see
Sect. 4.6. Using (50) it can be shown that

W = 1

2
σ̄ ε̄,

i.e., that σ̄ and ε̄ are energetically conjugate, and that the relationship σ̄ = Ēε̄ holds.

4.3 The Gibson-Ashby-Zhang-Triantafillou (GAZT) Model

An interesting early contribution to the description of the effective mechanical behav-
ior of cellular materials has been made in [18]. Therein, a definition of a macroscopic
limit surface is derived using exclusively generic micromechanical considerations
and dimensional analysis.

First, a simple cubic unit cell is proposed, in which straight struts meet in vertices
and corners at rectangular angles. The model struts have a length of l and a square
cross-section with a side length of t. The relative density ρrel, which is the quotient
ρrel = ρ∗/ρS of the effective, homogenized density ρ∗ and the density of the solid
material ρS, can be expressed considering that the volume of a unit cell is V∗ = l3

and the volume of the solid phase is VS = C1lt2, with C1 being a constant of
proportionality which is related to the total length of all struts in the unit cell. With
ρ∗ = ρSVS/V∗ the following relationship between the unit cell dimensions and the
relative density is obtained:

ρrel = VS

V∗ = C1

(
t

l

)2

(58)

Next, the plastic limit load under uniaxial macroscopic loading along the principal
directions will be investigated. The macroscopic stress σ ∗ causes forces F in the cell
struts, which are proportional to the application area, F = C2σ

∗l2, with C2 being
the corresponding constant of proportionality. The maximum bending moment in the
struts is proportional to Fl. The plastic limit moment Mpl of a strut with a square cross-
section is given by Mpl = σyst3/4, with σys being the yield stress of the material,
which is assumed to behave ideally plastic for this investigation. Once the bending
moments M reach the plastic limit moment Mpl, plastic hinges start to form, and the
cellular structure collapses. The corresponding uniaxial limit stress σ ∗

pl can be found
by solving M(σ ∗

pl)l = Mpl for σ ∗
pl:
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σ ∗
pl = C3

t3

l3 σys = C3 ρrel
3/2 σys (59)

Gibson et al. propose a value of C3 = 0.3 for fitting this relationship to experimental
data for the uniaxial plateau stress of foams.

Next, Gibson et al. recall that regular hexagonal 2D honeycomb structures under
bi-axial loading (σ1 = σ2) do not experience bending moments in their cell walls.
Instead, only normal section forces act in cell wall direction in these honeycombs.
They investigate collapse of a 3D cellular material under hydrostatic loading by
extending this finding to the tri-axial case, claiming that a hydrostatic macroscopic
stress state will lead to purely axial compression or tension in the cell struts or walls.
Ironically, this assumption is not true for their model microstructure, because it
disregards the fact that any kind of normal loading on the unit cell produces bending
moments in the struts perpendicular to the loading direction. These bending moments
cannot be compensated by loads in the other principal directions.

Disregarding the bending stresses completely, axial stresses σax can be obtained
for the struts of the unit cell under a macroscopic mean stress σm. The total volume VS
of solid material in the unit cell is given by VS = l3ρrel. This volume is now divided
by three for obtaining an approximation of the volume of the group of struts that run
into each of the three principal directions. The sum of the cross-sectional areas of
these struts is given by A = (VS/3)/l. For hydrostatic stress states, the macroscopic
mean stress σm is acting on each face of the unit cube, resulting in a total normal
traction force of Fm = σml2. Combining all of the above, the axial stress σax for
hydrostatic loading can be calculated as

σax = Fm

A
= σml2

(l3ρrel/3)/l
= 3σm

ρrel
(60)

Plastic collapse under hydrostatic loading occurs when σax = σys.
If the hydrostatic part of any macroscopic stress tensor is assumed to produce

only normal stresses in the struts (or the cell walls) then the deviatoric stresses are
expected to produce bending moments. Consequently, Gibson et al. describe the
relationship between the von Mises stress σe and the average bending moment M in
the struts as

M ∝ l3σe = l3

√
1

2

[
(σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2

]
(61)

The factor l3 is based on the fact that traction forces F ∝ σ ∗l2 and bending moments
M ∝ Fl.

For pure bending, the plastic limit moment of a strut is given by Mpl = σyst3/4.
Superimposing an axial stress σax on the strut reduces the limit moment, as can
be seen from the following expression for Mpl which can be found after some
re-arrangement:
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Fig. 10 Sketch of the GAZT
yield surface as defined in
Eq. (64) and [18]

Mpl ∝ σys t3

[
1 −

(
σax

σys

)2
]

(62)

If the plastic limit moment, which is reduced by the axial stress due to the macroscopic
hydrostatic stress according to Eq. (62), is equal to the bending moment induced by
the macroscopic deviatoric stress, then the foam will collapse. The corresponding
limit condition is found by inserting (60) into (62), considering that t3/l3 = ρrel

3/2

and some rearranging:

σe

σys
= ±γ ρrel

3/2

[
1 −

[
3σ ∗

m

σysρrel

]2
]

(63)

The constant γ is a new constant of proportionality, which can be approximated as
γ ≈ 0.3 for relevant relative densities (ρrel < 0.3). The final form of the GAZT
limit criterion for the plastic collapse of cellular materials under multiaxial loads is
obtained by solving (59) for σys using a factor of C3 = 0.3 and inserting the result
into (63) with γ = 0.3:

± σe

σ ∗
pl

+ 0.81ρrel

(
σ ∗

m

σ ∗
pl

)2

= 1 (64)

The dependence on the von Mises stress σe is linear for this criterion, while the mean
stress σm is squared. Figure 10 shows a generic plot of the yield surface defined
by Eq. (64). The parameters p(0)c and p(0)t show the compressive and tensile hydro-
static pressures for initial yielding, respectively. Gibson et al. [18] provide similar
derivations for failure criteria pertaining to brittle crushing in compression, fracture
in tension and elastic buckling. They note, that the corresponding failure surfaces
can intersect the failure surface (64) for plastic collapse, and limit the load-carrying
capacity of the material further. They also suggest a possible extension of the theory
to model failure in anisotropic foams.
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4.4 The Miller Model

Miller [27] proposed a constitutive model for cellular materials which is specifically
designed for being fitted to the following experimental test results:
(a) the compressive and the tensile yield stresses under uniaxial loading conditions,
(b) the uniaxial, compressive stress-strain response, and (c) the degree of lateral
expansion in a uniaxial compression test.

The corresponding yield function FMiller is an extension of the Drucker-Prager
yield function (commonly used for modeling soil) by a term which is a multiple of
the square of the hydrostatic pressure p. By adding this term, the plastic Poisson’s
ratio νpl can be varied independently of the uniaxial compressive and tensile yield
stresses, something, which is not possible with the Drucker-Prager material model.
The shape and the size of the yield surface are controlled by three parameters d, γ ,
and α, as can be seen from the definition of the yield function

FMiller = σe − d︸ ︷︷ ︸
v. Mises

−γ p

︸ ︷︷ ︸
Drucker−Prager

+α
d

p2 (65)

Braces in Eq. (65) indicate, which parts of Miller’s yield function represent the sim-
pler von Mises yield function for classical metal plasticity and the Drucker-Prager
yield function, respectively. Figure 11 shows a sketch of the projection of the Miller
yield surface FMiller = 0 onto the von Mises stress versus mean stress plane.

Associated plastic flow is assumed and the increment dε(pl)
ij of the plastic strain

tensor is, therefore, normal to the instantaneous yield surface during active yielding:

dε(pl)
ij = dλ

∂FMiller

∂σij
(66)

The definition of the yield function (65) implies, that the yield stresses under
uniaxial tension and uniaxial compression differ. Denoting the compressive yield

Fig. 11 Sketch of initial
and hardened yield surfaces
as predicted by the model
proposed by Miller [27]
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stress asσc leads to the definition of the invariantsσe = σc and p = σc/3, respectively,
for uniaxial compression. Inserting these into (65) gives a quadratic equation for σc,
with the solution1

σc = 2d

1 − γ /3 +√
(1 − γ /3)2 + 4α/9

, (67)

which expresses the compressive uniaxial yield stress σc as a function of the yield
surface shape parameters. For uniaxial tension, considering that σe = σt and p =
−σt/3 leads to a similar expression for the uniaxial tensile yield stress:

σt = 2d

1 + γ /3 +√
(1 + γ /3)2 + 4α/9

(68)

The ratio β between the compressive uniaxial yield stress σc and the tensile uniaxial
yield stress σt follows as

β = σc

σt
= 1 + γ /3 +√

(1 + γ /3)2 + 4α/9

1 − γ /3 +√
(1 − γ /3)2 + 4α/9

(69)

Since the ratio β can be determined from comparatively simple uniaxial compression
and tension tests, it will later be useful for the calibration of the shape parameters of
the yield function FMiller.

The next constituent of Miller’s material model is the description of the hard-
ening behavior. Miller intends to separate the contribution of hardening of the cell
wall material from the hardening which arises from the collapse of cells and the
subsequent contact of cell walls. The latter effect is assumed to be a function of the
logarithmic volumetric strain εvol, which relates the volume �ν of an infinitesimal
volume element in the deformed configuration to the initial volume�V of the same
volume element in the undeformed configuration:

εvol = ln
�ν

�V
(70)

The stress response of the material in a uniaxial compression test is then described
by the uniaxial compressive yield stress σc, which is defined as the product of a stress
function σ̄c(ε̄pl), and the dimensionless function v(εvol), which depends only on the
volumetric strain and is intended to describe the influence of densification:

σc = σ̄c(ε̄pl) v(εvol) (71)

1 For obtaining this original form given in [27], this general relationship is helpful: a − b =
(a+b)(a−b)
(a+b) = a2−b2

a+b .
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In [27], v(εvol) assumes the value of unity for volumetric strains greater than a
volumetric densification strain ε(D)vol (< 0). If the volumetric strain falls below the
corresponding densification strain, then v(εvol) grows rapidly to values much larger
than one to model the increase of the stress levels caused by the loss of compliance
due to contact of the cell struts or walls.

The function σ̄c(ε̄pl) depends on the equivalent plastic strain ε̄pl and represents the
initial mechanical response of the material and the plateau region of the stress-strain
relationship. The equivalent plastic strain ε̄pl controls the expansion of the yield
surface, because it enters Eqs. (71) and (67), respectively, to give the yield function
parameter d. The functions σ̄c(ε̄pl) and v(εvol) have to be chosen such that they fit
the results of uniaxial compression tests.

To link the expansion of the yield surface under general stress states to the data
obtained for the uniaxial case, the concept of accumulated plastic work is used.
Herein, the increment of the plastic work given by the product of the increment of
the equivalent plastic strain dε̄pl and the instantaneous yield stress σc, which would
correspond to the accumulated plastic strain in a uniaxial compression test, is set
equal to the actual increment of the plastic work in the volume element:

σc dε̄pl = σij dε(pl)
ij (72)

For the uniaxial compression test it follows that dε̄pl = dε(pl)
11 , which is consistent

with this definition.
The last item necessary for the calibration of Miller’s constitutive theory is the

plastic Poisson’s ratio νpl, defined for a uniaxial compression test as the negative
ratio of the plastic strains ε(pl)

22 in transverse direction and the plastic strains ε(pl)
11 in

loading direction:

νpl = −ε(pl)
22

ε
(pl)
11

= ε
(pl)
22

ε̄pl
(73)

The right part of Eq. (73) follows from the fact that only σ11 = −σc �= 0 in the
compression test, and, therefore, the definition Eq. (72) of the equivalent plastic
strain simplifies to σcε̄pl = σ11ε

(pl)
11 , leading to ε(pl)

11 = −ε̄pl.

The increment of the plastic strain dε(pl)
22 transverse to the loading direction 1 can

be found by specializing the flow rule Eq. (66):

dε(pl)
22 = dλ

∂FMiller

∂σ22
(74)

The increment of the plastic multiplier dλ can be obtained by adapting the implicit
definition (72) of the equivalent plastic strain increment dε̄pl to the conditions of

uniaxial compression, where only σ11 �= 0 and, therefore, only dε(pl)
11 contributes to

the increment of plastic work:
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σc dε̄pl = σ11 dε(pl)
11 = σ11dλ

∂FMiller

∂σ11
(75)

Finally, the total plastic strain ε(pl)
22 in the transverse direction can be derived from

ε
(pl)
22 =

∫ ε̄pl

0

σc dε̄pl

σ11
∂FMiller
∂σ11

∂FMiller

∂σ22
(76)

For the derivation of the sub-expressions in Eq. (76), partial derivatives of the indi-
vidual terms of the Miller yield function FMiller are given below:

∂σe

∂σ11
= 1

2σe
[2σ11 − σ22 − σ33] (77)

∂p

∂σ11
= −1

3
(78)

∂
(
p2
)

∂σ11
= 2

9
(σ11 + σ22 + σ33) (79)

An auxiliary term

d0 = 1

2

(
1 − γ /3 +

√
(1 − γ /3)2 + 4α/9

)
(80)

is now introduced to stay compatible with Miller. Note, that σc = d/d0, compare
Eq. (67). Inserting Eqs. (77) to (80) into the sub-expressions of Eq. (76) and consid-
ering, that for uniaxial compression σ11 = −σc, σ22 = σ33 = 0, and σe = σc gives
the intermediate results

σ11
∂FMiller

∂σ11
= σc(ε̄pl, εvol)

(
1 − γ

3
− 2α

9d0

)
(81)

∂FMiller

∂σ22
= 1

2
+ γ

3
− 2α

9d0
(82)

and, finally, an expression for the plastic Poisson’s ratio νpl can be obtained as a
function of the yield surface shape parameters:

νpl = 1/2 + γ /3 − 2α/9d0

1 − γ /3 + 2α/9d0
(83)

The purpose of this operation is to relate the yield surface shape parameters γ and α
to the physically more meaningful ratio β between the compressive and the tensile
uniaxial yield stresses, Eq. (69), and the plastic Poisson’s ratio νpl:
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γ = 6β2 − 12β + 6 + 9(β2 − 1)/(1 + νpl)

2(β + 1)2
(84)

α = 45 + 24γ − 4γ 2 + 4νpl(2 + νpl)(−9 + 6γ − γ 2)

16(1 + νpl)2
(85)

Miller implemented the constitutive law for metallic foams described above as
a user-defined material subroutine (UMAT) in the commercial finite element code
Abaqus. Details of the implementation are not given in [27]. It is important to note
that β and νpl, and, consequently, α and γ are assumed to remain constant during
plastic flow for the sake of simplicity. This assumption may not be valid for very large
strains. Miller simulated compressive loading of a double notched specimen in plain
strain, a Brinell hardness test, and an indentation of foam cores with aluminum face
sheets investigating different model materials with varying yield surface parameters.
In particular, he examined the influence of the plastic Poisson’s ratio νpl.

A considerable part of the discussion in [27] is devoted to the comparison of the
proposed material model to the GAZT model, which can be derived as a special
case from the present model by choosing γ = 0, α = 0.81ρrel, and d = σ ∗

pl.
Miller chose a relative density of ρrel = 0.08 and obtained a plastic Poisson’s ratio
νpl = 0.479 by means of Eq. (83). Since this value is close to the limit value of
νpl = 0.5 for plastic incompressibiliy, he concludes that the GAZT material is nearly
incompressible in uniaxial compression. This conclusion, however, is only valid
under the assumption that the GAZT yield function is coupled with an associative
flow rule. This assumption is not supported by the original paper [18] where no
mention of the application of an associative flow rule is made.

4.5 The Deshpande-Fleck Foam Models

4.5.1 Introduction

Deshpande and Fleck [11] published data obtained by experiments, which subjected
specimens of open and closed-cell metallic foams to axisymmetric compressive stress
states, were presented. Based on the experimental findings, two constitutive models
were developed, which will be presented in the following sections. The simpler
of the two models, the so-called self-similar yield surface model, has influenced
the simulation of components made from or containing metallic foams considerably,
because it was implemented early in commercial finite element codes such as Abaqus.

The experimental work is equally impressive, because it comprises a method
of probing the initial yield surfaces of metallic foams as well as determining the
evolution of the yield surfaces under uniaxial and compressive loading. The hard-
ening behavior under uniaxial compression and hydrostatic compression was also
investigated. During the uniaxial compression tests, the diameter of the cylindrical
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specimens was measured in order to derive the plastic Poisson’s ratio, altogether giv-
ing a reasonably complete picture of the behavior of the investigated metallic foams
under multi-axial loading.

4.5.2 The Self-Similar Yield Surface Model

From their multi-axial compression experiments [11] Deshpande and Fleck con-
cluded, that the investigated foams showed essentially isotropic mechanical behav-
ior, and that the yield surfaces, which they probed with axisymmetric compressive
stress states ranging from unixaxial compression to hydrostatic compression, could
be approximated well by a yield function FDF,

FDF ≡ σ̂ − Y = 0, (86)

where σ̂ is a suitably defined equivalent stress and Y stands for the uniaxial yield
strength. Since isotropic material behavior was considered, the equivalent stress σ̂
was defined in terms of the von Mises stress σe and the mean stress σm:

σ̂ =
√

1

1 + (α/3)2
(
σ 2

e + α2σ 2
m

)
(87)

This definition corresponds to an elliptical shape in a von Mises stress versus mean
stress diagram, see Fig. 12. The aspect ratio of this ellipse is controlled by the shape
parameter α. The limiting case of α = 0 corresponds to the von Mises yield criterion,
since σ̂ becomes equal to σe for this case. Deshpande and Fleck report α values
between 1.35 and 2.08 for the foams they investigated.

An associated flow rule was assumed, giving a direction of plastic flow ε̇(pl), which
is normal to the yield surface:

Fig. 12 Sketch of initial and hardened yield surfaces as predicted by the self-similar model proposed
by Deshpande and Fleck in [11]
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ε̇(pl) = λ̇
∂FDF

∂σσσ
= λ̇

∂σ̂

∂σσσ
(88)

The plastic Poisson’s ratio, which is defined as the negative ratio of the transverse
logarithmic strain rate ε̇(pl)

tt to the axial logarithmic strain rate ε̇(pl)
xx in a uniaxial

compression (or tension) test, can be calculated directly from the flow rule (88), with
the help of Table 1 and noting that only σxx �= 0:

νpl ≡ − ε̇
(pl)
tt

ε̇
(pl)
xx

= − (∂FDF/∂σtt)

(∂FDF/∂σxx)
= (1/2)− (α/3)2

1 + (α/3)2
(89)

Next, an equivalent strain rate ˙̂ε is introduced, which is the plastic work rate conjugate
to the equivalent stress σ̂ :

σ̂ ˙̂ε = σij ε̇
(pl)
ij (90)

Inserting the flow rule (88) into (90) and solving for ˙̂ε reveals that the rate of this
equivalent strain is, in fact, equivalent to the rate of the plastic multiplier λ̇ in the
flow rule (88):

˙̂ε = σij

σ̂

∂σ̂

∂σij︸ ︷︷ ︸
=1

λ̇ = λ̇ (91)

In (91), the application of Euler’s theorem (10), which is justified by the fact that σ̂
is homogeneous of degree one in σij, is indicated. Inserting (91) into the plastic flow
rule (88) gives

ε̇(pl) = ˙̂ε ∂FDF

∂σσσ
= ˙̂ε ∂σ̂

∂σσσ
. (92)

In order to establish a connection between the equivalent plastic strain and the uniaxial
yield stress Y , the consistency condition ḞDF = 0 is written using the Jaumann stress
rate σ̆ij:

ḞDF = ∂FDF

∂σij
σ̆ij + ∂FDF

∂Y
Ẏ = 0 (93)

which can be simplified noting that ∂FDF/∂Y = −1:

Ẏ = ∂FDF

∂σij
σ̆ij (94)

The hardening modulus H is defined as the ratio of the rate of the equivalent stress
to the rate of the equivalent strain:

H ≡
˙̂σ
˙̂ε (95)
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By differentiating FDF with respect to time, the identity ˙̂σ = Ẏ is obtained, which
is inserted into Eq. (95) along with the expression for Ẏ from (94) to obtain the
relationship

˙̂ε =
˙̂σ
H

= Ẏ

H
= 1

H

∂FDF

∂σij
σ̆ij (96)

Finally, the flow rule (92) is rewritten using (96) to obtain the form of Eq. (4) in [11]:

ε̇
(pl)
ij = 1

H

∂FDF

∂σkl
σ̆kl︸ ︷︷ ︸

λ̇=˙̂ε

∂FDF

∂σij
(97)

Going back to the flow rule (92) and writing out the gradient of the equivalent stress
∂σ̂ /∂σσσ gives:

ε̇εε(pl) = 1

2
[
1 + (α/3)2

] ˙̂ε
σ̂

(
3s + 2

3
α2σm I

)
(98)

The stress deviator s does not contribute to the volumetric plastic strain rate ε̇m,
because tr (s) = 0. Thus, the volumetric plastic strain rate ε̇m becomes:

ε̇m = tr
(
ε̇(pl)) = α2

1 + (α/3)2
˙̂ε σm

σ̂
(99)

using tr (I) = 3. Inserting (98) into the definition (30) for the effective strain, the
effective strain rate can be obtained in the following form:

ε̇e = 1

1 + (α/3)2
˙̂ε σe

σ̂
(100)

The equivalent plastic strain rate ˙̂ε can now be formulated in terms of the volumetric
and the effective plastic strain rates by expressing σm in terms of ε̇m and ˙̂ε using
Eq. (99) and by expressing σe in terms of ε̇e and ˙̂ε based on Eq. (100), followed
by inserting the corresponding terms into the definition of the equivalent stress,
Eq. (87). Solving the resulting equation for the equivalent strain rate ˙̂ε gives the
following expression:

˙̂ε2 =
[

1 +
(α

3

)2
](
ε̇2

e + 1

α2 ε̇
2
m

)
, (101)

which is useful for calculating the equivalent plastic strain rate ˙̂ε when ε̇e and ε̇m
are known, e.g., from multiaxial experiments. In particular, the equivalent strain
rate ˙̂ε enters the definition H ≡ ˙̂σ/ ˙̂ε of the hardening modulus H, as introduced in
Eq. (95). The hardening modulus provides the connection between the rate form of the
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material law and the experimentally obtained stress-versus-strain data. Specifically,
it is required for evaluating the flow rule (97).

Deshpande and Fleck proposed an expression for H which contained a maximum
of information from their multi-axial tests. They chose H to depend on the current
equivalent strain ε̂ on the one hand and on the direction of the stress path on the other
hand. The latter was described by η ≡ |σm/σe| or the ratio σe/σ̂ .

The test setup for multi-axial testing consisted of a pressure cell filled with
hydraulic fluid and holding a cylindrical foam specimen which was wrapped in insu-
lating layers and further separated from the fluid by a rubber membrane. In this cell
the specimen was subjected to a hydrostatic pressure p. In addition, a compressive
force acting along the axis of the cylindrical specimen resulted in an additional axial
compressive stress σ , bringing the total axial stress to σ33 = −(p + σ). Under these
axisymmetric loading conditions, the mean stress becomes σm = − (p + σ/3), the
von Mises stress is equal to σe = |σ |, and the equivalent stress σ̂ can be calculated
easily from Eq. (87).

During the multi-axial experiments, the axial plastic strain ε(pl)
33 was measured. This

strain can be inserted in Eq. (98) along with σm and σe, which gives an expression
that can be solved for ε̂:

ε̂ = ε
(pl)
33

√[
1 + α2η2

] [
1 + (α/3)2

]
1 + α2η/3

(102)

The value for α can be found by fitting the yield surface to experimental data or by
measuring the plastic Poisson’s ratio. For several ratios η between the mean stress
and the von Mises stress, the average tangent modulus H̄ was then calculated as
H̄ = �σ̂/�ε̂, where ε̂was a suitable initial increment of the equivalent plastic strain.
This operation led to the result that the hardening modulus H can be approximated
with reasonable accuracy as a linear function of the direction of the stress path,
expressed by the ratio σe/σ̂ :

H =
[σe

σ̂
hσ +

(
1 − σe

σ̂

)
hp

]
(103)

Since the hardening behavior of cellular metals is generally nonlinear, the coefficients
hσ and hp depend on the instantaneous magnitude of the equivalent strain ε̂. For
uniaxial stress states, H becomes equal to hσ , because σ̂ = σe = |σ33|. The equivalent
strain is equal to the absolute value of the axial plastic strain, ε̂ = |ε(pl)

33 |. Finally, the
coefficient hσ = hσ (ε̂) is equal to the slope of the curve of the Cauchy stress versus
the logarithmic plastic strain in loading direction.

The second coefficient hp can be found from evaluating a hydrostatic compression
test in an analogous manner. The equivalent stress for pure hydrostatic loading by a
pressure p follows from Eq. (87) by setting σe = 0:

σ̂ (p) = α√
1 + (α/3)2

p (104)
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The rate of the equivalent strain can be found from Eq. (101) as a function of the rate
of the logarithmic plastic volumetric strain ε̇m by setting ε̇e = 0:

˙̂ε = −
√

1 + (α/3)2

α
ε̇m (105)

Finally, the coefficient hp can be obtained:

hp = −α2

1 + (α/3)2
ṗ

ε̇m
(106)

Deshpande and Fleck determined the coefficients hσ and hp from uniaxial compres-
sion and hydrostatic compression tests, respectively, for different materials. Then they
were able to approximate the evolution of the hardening modulus H for intermedi-
ate stress ratios σm/σe, and to obtain the corresponding σ̂ (ε̂) curves by integration.
These were compared to the respective curves from axisymmetric compression tests
with the same stress ratios. The agreement was very well for two different densi-
ties (8.4 and 16 % relative density, respectively) of Alporas foam, but the equivalent
stresses were overestimated for equivalent strains above 0.3 for Duocel foam with
7 % relative density. In all cases, the response under purely hydrostatic compression
and uniaxial compression could be fitted to the experimental results to the desired
accuracy as part of the calibration process.

The self-similar yield surface model does not allow for a change of the shape
of the yield surface and the yield surface remains centered in the σm − σe plane.
Differences in the hardening behavior under uniaxial loading and under hydrostatic
loading, however, can be taken into account. A simplified version of this constitutive
theory, which has strongly influenced modeling of cellular materials with commercial
finite element codes, will be presented in the following sections.

4.5.3 The Simplified Self-Similar Yield Surface Model

For simplifying the calibration of material model input data, Deshpande and Fleck
proposed a simplified version of the self-similar yield surface model, for which the
hardening response does not depend any more on the behavior under hydrostatic
pressure, but can be defined simply on the basis of the response under uniaxial
compression and some assumptions regarding the shape of the yield surface.

Specifically, the function (103) for the hardening modulus H simplifies to

H(ε̂) = hσ (ε̂) (107)

This means that the hardening modulus corresponds to the slope of the uniaxial
Cauchy stress versus logarithmic plastic strain curve. To fully define the mater-
ial behavior, a suitable yield surface ellipticity α has to be chosen in addition to
H = H(ε̂).
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In [11] it was pointed out that measured σ̂ (ε̂) curves for different stress paths
do not collapse into a single curve, as Eq. (107) would suggest. In particular, the
hardening under hydrostatic compression loading is visibly more pronounced than
the one under uniaxial compressive loading. Nevertheless, the simplified self-similar
yield surface model has been implemented in many commercial finite element codes.
One of these implementations will be described in the following.

4.5.4 The Abaqus Implementation of the Simplified Self-Similar Yield
Surface Model

The simplified self-similar yield surface model developed by Deshpande and Fleck
was originally implemented as a user material subroutine in the finite element code
Abaqus [7] by Chen [3]. The definitions of the yield function and the equivalent
stress were those of Eqs. (86) and (87) respectively.

Later, the material model became part of the standard material library of Abaqus,
with the addition of allowing for an independent calibration of the evolution of the
yield surface and the plastic Poisson’s ratio. Recall, that for the original self-similar
Deshpande/Fleck model, the plastic Poisson’s ratio νpl and the yield surface shape
parameter α are directly related by Eq. (89), owing to use of an associated flow rule.

In the Abaqus implementation, a non-associated plastic flow rule is introduced to
allow for independent calibrations of the shape of the yield surface and the plastic
Poisson’s ratio. The corresponding flow potential introduces a new parameter β:

GCF =
√
σ 2

e + β2p2 (108)

With the help of Table 1, the direction of plastic flow can be found:

∂GCF

∂σσσ
= 1

2GCF

(
3s − 2

3
β2pI

)
(109)

which is sufficient to calculate the plastic Poisson’s ratio νpl:

νpl = 1 − (2/9)β2

2 + (2/9)β2 (110)

and, in turns, the parameter β as a function of the plastic Poisson’s ratio νpl:

β = 3√
2

√
1 − 2νpl

1 + νpl
(111)

For zero plastic expansion in the transverse direction during uniaxial compression,
i.e., νpl = 0, a value of β = 3/

√
2 ≈ 2.12 follows immediately. For incompressible



Plasticity of Cellular Metals (Foams) 191

plastic flow, on the other hand, νpl = 0.5, β = 0, and GCF = σe, which corresponds
to the flow rule of classical (von Mises) plasticity.

In accordance with the simplified self-similar yield surface model proposed
by Deshpande and Fleck, the hardening of the foam under multi-axial loading is
described exclusively by relating the multi-axial strain state to the stress-strain rela-
tionship of a uniaxial compression test by means of an equivalent plastic strain ε̄(pl).

The evolution of the equivalent plastic strain ε̄(pl) is assumed to be governed by
the principle of equivalent plastic work, leading to the relationship

σc ˙̄ε(pl) = σσσ :ε̇(pl) (112)

For uniaxial tension or compression, only the axial plastic strain contributes to the
plastic work, and, consequently, the equivalent plastic strain is identical to the axial
plastic strain for these loading cases.

Owing to its simplicity and its availability via the finite element code Abaqus this
version of the simplified self-similar yield surface model has become quite popular.

4.5.5 The Differential Hardening Model

The experimental evidence collected by Deshpande and Fleck suggested that both
the sizes and the shapes of the yield surfaces of isotropic metallic foams change
during plastic loading depending on the direction of loading. In the context of their
experiments, where a hydrostatic pressure load and an axial load were superimposed,
the direction of loading was expressed by the quotient |σm/σe|.

Correspondingly, they suggested a quadratic yield function FDH of the mean stress
σm and the von Mises stress σe which separately takes into account the yield strength
S under deviatoric loading and the yield strength P under hydrostatic loading:

FDH ≡
(σe

S

)2 +
(σm

P

)2 − 1 ≤ 0 (113)

Under uniaxial loading, the yield surfaces of the metallic foams investigated in [11]
changed predominantly in size, whereas their shapes remained unaffected. Under
hydrostatic loading, on the other hand, the yield surfaces were found to become
elongated along the hydrostatic axis. Hydrostatic loading affected the deviatoric
yield strengths to varying degrees, depending on the material. For Duocel foam, the
uniaxial compressive strength remained nearly constant during hydrostatic loading.
For Alporas foam, on the other hand, hydrostatic loading consistently led to an
increase in deviatoric strength. Uniaxial loading always increased both the deviatoric
yield strength and the hydrostatic yield strength. Figure 13 schematically shows an
initial yield surface and evolved yield surfaces for two different stress paths. The
yield surfaces remain symmetric with respect to the σe axis, but their aspect ratio can
change.
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Fig. 13 Sketch of initial and hardened yield surfaces as predicted by the differential hardening
model proposed by Deshpande and Fleck [11]

A general hardening rule was thus proposed, which relates the strength values P
and S to kinematic quantities ε and γ according to the matrix equation

⎡
⎢⎢⎣

Ṗ

Ṡ

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

h11 h12

h21 h22

⎤
⎥⎥⎦

⎡
⎢⎢⎣
ε̇

γ̇

⎤
⎥⎥⎦ (114)

The element h11 of the hardening matrix relates the rate Ṗ of the hydrostatic yield
stress P to the rate ε̇ of a kinematic quantity ε, which is connected to the rate ε̇m of
the mean strain. The element h22 connects the rate of the deviatoric yield strength
Ṡ to the rate γ̇ in a similar manner. The cross-hardening terms h12 and h21 connect
the hydrostatic strength P and the deviatoric kinematic variable γ as well as the
deviatoric strength S and the volumetric straining via ε, respectively.

Deshpande and Fleck found good agreement with their experimental data for a
choice of the kinematic variables ε and γ which makes them plastic work conjugates
of P and S, respectively:

Pε̇ + Sγ̇ = σeε̇e + σm ε̇m ≡ σij ε̇
(pl)
ij (115)

From this, the following relationships between ε and the mean plastic strain εm as
well as between γ and the effective plastic strain εe can be established:

ε̇ ≡ σm

P
ε̇m (116)

γ̇ ≡ σe

S
ε̇e (117)
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In order to tie the coefficients hαβ of the hardening matrix to experimental results,
the flow rule Eq. (97) has to be adapted in a suitable manner:

εεε(pl) = 1

H

∂FDH

∂σσσ

(
∂FDH

∂σσσ
:σ̆σσ
)

= 1

H

(
3

S2 s + 2

3

σm

P2 I
)[(

3

S2 s + 2

3

σm

P2 I
)

: (ṡ + σ̇mI)
]

= 1

H

(
3

S2 s + 2

3

σm

P2 I
)[

3

S2 s:ṡ + 2

P2 σm σ̇m

]

= 1

H

(
3

S2 s + 2

3

σm

P2 I
)[

2σeσ̇e

S2 + 2σmσ̇m

P2

]
(118)

The expression in square brackets in Eq. (118) is a scalar multiplier, which can be
derived using the relationships s:I = 0 and I:I = 3. For the reformulation of the last
line of Eq. (118), the identity

σ̇e = 3

2

s:ṡ
σe

(119)

is used. Now, the plastic strain rate tensor ε̇εε(pl) is split up into a volume-changing
part (ε̇volI) and a shape-changing part ė:

(ε̇volI) = 2

3

1

HP2 σmI
[

2σeσ̇e

S2 + 2σmσ̇m

P2

]
(120)

ė = 3
1

HS2 s
[

2σeσ̇e

S2 + 2σmσ̇m

P2

]
(121)

For each part, the rate of the corresponding scalar quantity ε̇m and ε̇e (using

σe =
√

3
2 s:s), respectively, is calculated:

ε̇m = ε̇voltr(I) = 4σm

HP2

[
σeσ̇e

S2 + σmσ̇m

P2

]
(122)

ε̇e =
√

2

3
ė:ė = 4σe

HS2

[
σeσ̇e

S2 + σmσ̇m

P2

]
(123)

The hardening modulus H can be eliminated as an unknown by considering the
consistency relation as an additional equation:

ḞDH = 0 = ∂FDH

∂σσσ
:σ̆σσ + ∂FDH

∂S
Ṡ + ∂FDH

∂P
Ṗ (124)

from which follows, after some rearranging, the hardening modulus H:
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H ≡ 4σ 2
m

P3

[
h11

σ 2
m

P3 + h12
σ 2

e

S3

]
+ 4σ 2

e

S3

[
h21

σ 2
m

P3 + h22
σ 2

e

S3

]
(125)

Now, the hardening coefficients hαβ can be determined by specializing the expres-
sions (122) and (123) for the mean and the effective strain rates as well as (125) for
the hardening modulus H to conform to the loading and deformation conditions of
the various experiments. For the hydrostatic compression test, σm = −P and σe = 0
lead to h11 = σ̇m/ε̇m. At the same time, since γ̇ = 0 for hydrostatic compression
of an isotropic material, h21 can be expressed as the slope of the deviatoric yield
strength versus the plastic volumetric strain curve, h21 = Ṡ/|ε̇m|, as follows from
the second row of the hardening law (114) after setting γ̇ = 0 and applying Eq. (116).

For pure shear loading conditions, σe = S follows from the yield condition (113)
with σm = 0. If the shear loading is characterized by an applied shear stress τ , then
σe = |τ |√3. Thus, the deviatoric yield strength S is related to the shear yield stress
τyld by S = τyld

√
3. Specializing the expression (125) for the hardening modulus for

conditions of pure shear and inserting into (123) gives the coefficient h22 = σ̇e/ε̇e.
The rate ε̇e of the effective strain follows from an engineering shear strain rate γ̇12 as
ε̇e = |γ̇12|/

√
3. Finally, writing out the first row of the hardening law (114), setting

ε̇ = 0 for pure shear deformation, and applying Eq. (117) gives h12 = Ṗ/ε̇e.
Deshpande and Fleck also propose a procedure for calibrating the coefficients

hαβ from uniaxial compression tests instead of shear tests. Details can be found in
the original paper [11]. Assuming that h11 depends only on ε, they determined the
evolution of this coefficient from the hydrostatic compressive stress versus volumet-
ric compressive strain curve. They found the ratio h21/h11 to remain approximately
constant and to assume values between 0.4 and 0.55 for the investigated materi-
als. Furthermore, no significant cross-hardening between deviatoric straining γ̇ and
hydrostatic strength Ṗ was observed, i.e., h12 = 0. Finally, h22 was determined
indirectly from the uniaxial and hydrostatic compressive test results.

The differential hardening model was calibrated from unixial compression and
hydrostatic compression test results and subsequently used to predict the material
behavior for intermediate proportional loading paths. The correlation to experimen-
tal results was slightly better than in the case of the self-similar model (see [11]),
especially at higher strain levels, and in particular for a Duocel foam of 7.0% relative
density. However, the higher accuracy can perhaps not compensate for the added
complexity of this model, as Deshpande and Fleck remark themselves.

4.6 Chen and Lu Metallic Foam Material Model

Chen and Lu proposed a material model for metallic foams, which performed well
when compared to the more complicated differential hardening model by Deshpande
and Fleck (see Sect. 4.5.5). This model was a part of their phenomenological frame-
work of constitutive modeling for elasto-plastic solids [4], which is based on the
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definitions of the characteristic stress σ̄ in Eq. (56) and the characteristic strain ε̄ in
Eq. (57) as they were introduced in connection with isotropic elasticity in Sect. 4.2.

Then a ‘stress potential’ FCL is introduced, which relates multi-axial stress states
to the instantaneous total characteristic strain ε̄:

FCL = σ̄ 2 + C(ε̄)σ 2
m − Y(ε̄) = 0 (126)

No distinction between elastic and plastic strain components is made by Chen and
Lu. Therefore, all strain values mentioned in this section pertain to the total strain.
Stresses and strains are connected by an associated flow rule ε̇ij = λ̇∂FCL/∂σij the
factor λ̇ being calculated from the consistency condition ḞCL = 0.

The expressions for σ̄ and ε̄ simplify for some standard experimental settings. For
a hydrostatic test with an applied hydrostatic stress of σh resulting in a volumetric
strain of εh, one gets

σ̄ = β|σh|, ε̄ = |εh|
β
, (127)

with β as defined earlier in Eq. (55). For a strain εu caused by a uniaxial stress σu,
the characteristic stress and strain measures become

σ̄ =
√

9 + β2

3
|σu|, ε̄ = 3√

9 + β2
|εu|, (128)

and, finally, for a shear stress τ inducing a engineering shear angle γ :

σ̄ = |τ |√3, ε̄ = |γ |/√3. (129)

The functions C(ε̄) and Y(ε̄) can be determined based on the available experimental
results. For example, a characteristic stress-strain curve from a uniaxial compres-
sion test with a compressive applied stress of σ̄uc can be used in combination with
a corresponding curve obtained in a hydrostatic compression test with an applied
compressive hydrostatic stress of σ̄hc. Noting that |σm| = σ̄uc/

√
9 + β2 in uniaxial

compression and |σm| = σ̄hc/β for hydrostatic compression, the following functions
can be obtained after inserting the σ̄ and σm values for the two experiments into the
yield condition (126):

C(ε̄) = σ̄ 2
hc − σ̄ 2

uc

σ̄ 2
uc/(9 + β2)− σ̄ 2

hc/β
2

(130)

Y(ε̄) = σ̄ 2
hcσ̄

2
uc

1/(9 + β2)− 1/β2

σ̄ 2
uc/(9 + β2)− σ̄ 2

hc/β
2

(131)
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For each level of equivalent strain ε̄ the corresponding equivalent stress values σ̄uc
and σ̄hc have to be entered in Eqs. (130) and (131) in order to get meaningful functions
C(ε̄) and Y(ε̄).

Chen and Lu used these results to fit their functions C and Y to the experimental
test results of Deshpande and Fleck [11]. They found that they could predict an
intermediate stress versus strain path, which was not used in the calibration process,
with the same accuracy as the one possible with the differential hardening model of
Deshpande and Fleck [11], even though the calibration process is more simple for
their model.

The constitutive equations of Chen and Lu are intended for predicting the multi-
axial mechanical response of metallic foams in the compressive regime. Tension or
elastic unloading are treated only rudimentarily. The missing separation of elastic
and plastic strain contributions falls outside of the framework of classical plasticity
theory. Nevertheless, the form of the stress potential FCL and the definitions of the
characteristic stress σ̄ and the characteristic strain ε̄ can inspire other constitutive
approaches.

4.7 The Model by Zhang et al.

Even though it was originally developed for polymeric foam materials, the consti-
tutive model proposed by Zhang et al. [33] deserves mention, because it combines
a few interesting features which are similar to those already mentioned in previous
chapters, and may have actually been providing the motivation for them.

The yield surface is defined in terms of squares of the hydrostatic pressure p and
the von Mises equivalent stress σe and represents a half-ellipse when it is projected
onto the p-σe plane (see Fig. 14):

Fig. 14 Sketch of initial and hardened yield surfaces as predicted by the constitutive model proposed
in [33]
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FZhang =
[
p − p0

]2
a

+ σ 2
e

b
− 1 = 0 (132)

The variable p0 marks the center of the elliptical projection of the yield surface in the
p-σe plane, compare Fig. 14. The variables a and b define the size and the shape of
the yield surface, which are both allowed to change during the plastic deformation
process. The terms p0(ε

(pl)
vol ), a(ε(pl)

vol ), and b(ε(pl)
vol ) are all functions of the volumetric

plastic strain ε(pl)
vol , i.e., volumetric hardening is assumed. This has the important

consequence that the material’s response during a shear deformation is perfectly
plastic because no volumetric strain hardening occurs.

The present yield surface definition is quite similar to the one of the Abaqus
crushable foam model, compare Eq. (135) in Sect. 4.8, but offers more degrees of
freedom, because the tensile hydrostatic yield strength is unconstrained.

A non-associated flow rule equivalent to the one in the Abaqus implementation
of the Deshpande and Fleck model, see Sect. 4.5.4, is part of the Zhang et al. model.
The flow potential has the form

GZhang =
√
σ 2

e + αp2 (133)

which is almost the same as the one in Eq. (108) with the exception that the constant α
corresponds to β2 in Eq. (108). Following the derivations in Sect. 4.5.4 the parameter
α can be related to the plastic Poisson’s ratio νpl via

νpl = 9 − 2α

2(9 + α)
and α = 9(1 − 2νpl)

2(1 + νpl)
(134)

and the plastic Poisson’s ratio can thus be set independently of other material para-
meters.

Zhang et al. [33] covers additional interesting aspects of constitutive modeling
of polymeric foam materials, namely the numerical implementation of the material
model in an explicit finite element code, as well as the mathematical description of the
strain-rate sensitivity and and the temperature dependency of the material behavior.

4.8 The Abaqus Crushable Foam Model

The crushable foam model described in this section is a part of the standard material
library of the commercial Finite Element Code Abaqus [7]. It became available for
the modeling of cellular materials relatively early, at least compared to the other con-
stitutive theories presented here. The crushable foam model was originally developed
for PU foams, but an application and calibration of this model for metallic foams is
possible, see, e.g., [29]. The model has the following characteristic features:
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Fig. 15 Sketch of initial and hardened yield surfaces as predicted by the Abaqus crushable foam
model [7]. The yield stress p(0)t for tensile hydrostatic loading and the aspect ratio of the ellipse
remain constant

• a constant yield stress value −p(0)t for hydrostatic tension,
• a non-associated flow rule corresponding to a plastic Poisson’s ratio of zero, and
• hardening, which is driven by the compressive volumetric plastic strain −ε(pl)

vol .

The yield surface of the crushable foam material law is defined implicitly by

FCF(σe, p) =
√
(σe)2 + α2(p − p0)2 − B = 0 (135)

which depends on two stress invariants, namely the von Mises equivalent stressσe and
the hydrostatic pressure p (=−σm), indicating that the material behavior is assumed
to be isotropic. The yield surface can geometrically be described as a half-ellipse in
the σe versus σm plane, see Fig. 15.

The vertex of the ellipse on the axis of positive mean stress is defined by the
tensile hydrostatic yield stress p(0)t . As a characteristic feature of the crushable foam

model, the yield stress p(0)t is assumed to remain constant, even if the yield surface
expands due to hardening. Consequently, this vertex stays fixed on the σm axis. The
hydrostatic yield pressure pc bounds the yield surface on the negative σm axis. It can
evolve from an initial value p(0)c to greater values due to hardening.

The center of the yield surface corresponds to a pressure of

p0 = pc − p(0)t

2
(136)

The size of the yield surface is determined by the semi-axis length B in Eq. (135),
whereas the parameter α controls the shape. While the yield surface is allowed to
expand in the direction of positive hydrostatic pressure, the shape is defined to stay
self-similar by keeping the parameter α constant. For fitting the shape parameter α
to experimental results, two material parameters k and kt can be determined:



Plasticity of Cellular Metals (Foams) 199

k = σ
(0)
c

p(0)c

and kt = p(0)t

p(0)c

. (137)

The shape parameter (aspect ratio) α then follows as:

α = 3k√
(3kt + k)(3 − k)

(138)

The radius B can be calculated by multiplying the half-length of the yield ellipse
along the hydrostatic axis with the shape parameter α:

B = α
pc + p(0)t

2
(139)

The fact that the tensile hydrostatic yield stress −p(0)t is assumed to remain con-
stant throughout the evolution of the yield surface and, therefore, during any plastic
deformation process, takes into account that no hardening due to compaction of the
cellular structure is possible under hydrostatic tension.

In order to fit the initial yield surface to experimental data, three points on the
initial yield surface have to be determined experimentally. The following list gives
candidates for these points:

• initial compressive yield stress in uniaxial compression σ (0)c ,
• initial tensile yield stress in uniaxial tension σ (0)t ,

• initial yield stress in simple shear τ (0)y ,

• initial yield stress under hydrostatic pressure p(0)c .

Not included in this list is the initial yield stress under hydrostatic tension p(0)t ,
because it is almost impossible to determine this value experimentally. It can, nev-
ertheless, be calculated from other yield stresses, for example from σ

(0)
c , σ (0)t , and

p(0)c , which are comparatively easy to find from experiments:

p(0)t = p(0)c σ
(0)
c σ

(0)
t

3 p(0)c (σ
(0)
c − σ

(0)
t )+ σ

(0)
c σ

(0)
t

(140)

According to [7] the yield strength in hydrostatic tension p(0)t has to be expected to

be considerably lower than the inital yield strength in hydrostatic compression p(0)c ,
resulting in ratios p(0)t /p(0)c = 0.05 to 0.10.

While the shape of the yield surface remains constant, its size increases with
progressing plastic deformation. The hardening behavior is controlled by a plastic
strain measure, which, for this model, is equal to the compressive volumetric strain
−ε(pl)

vol . The hardening behavior can be extracted from the stress-versus-strain-results
of a uniaxial compression test assuming zero plastic Poisson’s ratio. In this case, the
uniaxial plastic strain is equal to the volumetric plastic strain.
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The assumption of vanishing plastic deformation transverse to any given loading
direction, expressed by νpl = 0, is, indeed, a feature of the crushable foam material
model. It is based on experimental observations, which indicate that cellular materials
do not tend to deform significantly in the lateral direction when they are tested in a
uniaxial compressive test. Preventing plastic flow normal to the loading direction is
achieved by choosing an appropriate non-associated flow rule of the form

dεεε = dε̄(pl) ∂GCF

∂σσσ
(141)

containing the increment of the equivalent plastic strain dε̄(pl), which will be inves-
tigated in more detail below, and the flow potential function GCF, which is defined
in terms of the stress tensor invariants σe and p as:

GCF =
√
(σe)2 + 9

2
p2 (142)

It can be shown that this corresponds to the equivalent tensorial form

GCF =
√

3

2
σσσ : σσσ (143)

which can be differentiated with respect to the coordinates of the stress tensor to
obtain the direction of plastic flow for the crushable foam model:

∂GCF

∂σσσ
= 3σσσ

2GCF
(144)

Equation (144) indicates a direction of plastic flow which is identical to the stress
direction for radial paths in stress space. This means, that loading in any princi-
pal direction does, per definition, not cause any plastic deformation in the other
principal directions.

Finally, the increment of the equivalent plastic strain dε̄(pl) follows from Eq. (141)
if the scalar product of both sides with the stress tensor is formed:

σσσ : dεεε(pl) = σσσ :
(

dε̄(pl) ∂GCF

∂σσσ

)
= dε̄(pl) σσσ : 3σσσ

2GCF
= dε̄(pl) GCF (145)

from which the increment of the equivalent plastic strain can be expressed as

dε̄(pl) = σσσ : dεεε(pl)

GCF
(146)

While the definition of the crushable foam yield surface, which relates the stress
tensor invariants σe and p to each other in the form of the equation of an ellipse, is not
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unusual for cellular materials, the treatment of the hydrostatic tensile yield strength
as being a constant, and the fact that radial loading does not cause any transverse
plastic deformation, are unique characteristics of the crushable foam model.

4.9 The Ehlers Model for Cellular Metals

Ehlers and Müllerschön adapted a constitutive model, which was orgininally devel-
oped for porous and granular porous media, to represent plastic yielding of metal
foam [14, 16]. The yield function

FEhlers =
√[

J2

(
1 + γ

J3

(J2)3/2

)m

+ 1

2
αI2

1 + δ2I4
1

]
+ βI1 + εεεI2

1 − κ = 0 (147)

depends on the first invariant I1 = 3σm = −3p of the stress tensor, the second
invariant J2 = 1

2 s:s = σ 2
e /3 of the stress deviator tensor s and on the third invariant

J3 = det(s) of s.
The characteristic which sets apart this material model from the others presented

so far is its dependence on the third invariant J3, which indicates a shape of the
yield surface cross-section in the deviatoric plane, which is not circular, but rather
triangular with rounded corners. The shape of the deviatoric cross-section is con-
trolled by the parameters γ and m in (147). By setting γ = 0 the influence of the
third deviatoric invariant is eliminated and the rounded triangular shape of the yield
surface cross sections in the deviatoric plane changes into a circular shape.

For this material model, a non-associated flow rule is proposed with a plastic flow
potential GEhlers, which is presented here in the form given in [13]:

GEhlers =
√[
ψ1J2 + 1

2
αI2

1 + δ2I4
1

]
+ ψ2βI1 + εI2

1 (148)

In an earlier publication [14] the parameters ψi were set to unity, ψ1 = ψ2 = 1, and
the plastic potential is fully defined by the parameters describing the yield surface.

The Ehlers model has the largest number of parameters required for defining
the shape of the initial yield surface, namely seven. For hardening along arbitrary
strain paths, these parameters may even be history-dependent. This makes mater-
ial calibration somewhat complicated, as a large number of different tests (uniaxial
compression/tension, axial-symmetric compression and biaxial loading in [16]) and
a least-square fitting process are required. For an AlSi7Mg foam with an average
apparent density of 0.3 g/cm3 (produced by Hydro Aluminium) the following para-
meters are given for the initial yield surface in [16]: α = 0.0196, β = 0.07, γ = 1.4,
δ = 0.0176 MPa−1, εεε = 0.00196 MPa−1, κ = 2.02 MPa, m = 0.61. Figure 16
shows a rendering of the yield surface in the principal stress space. By projecting the
yield surface along the direction of the hydrostatic axis, the non-circular deviatoric
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Fig. 16 Rendering of the Ehlers et al. yield surface in principal stress space using material para-
meters from [16]. The black contour lines indicate levels of constant mean stress in intervals of
1 MPa. The black disc represents the π plane and has a radius corresponding to σe = 4.5 MPa. The
grey contour lines indicate cross-sections with constant σ3

cross-sections can be made clearly visible, see Fig. 16 (right). The quality of the fit
of the yield surface(s) to the experimental yield points is illustrated in [12] where
both yield surface shapes which deviate from simple ellipsoidal shapes and triangular
cross-sections in the deviatoric plane are well documented.

5 Discussion and Conclusions

Existing material laws for metallic foams are adequate for modeling simple defor-
mation histories and predominantly radial stress paths. More complex mechanical
processes such as successive perpendicular loading will require more sophisticated
modeling techniques to account for the anisotropy caused by changing loading or
deformation directions, see Deshpande and Fleck [11] and Hanssen [24].

Perhaps the most restricting feature about the available foam models is the absence
of appropriate fracture models. Metal foams are very prone to softening and pre-
mature failure under tensile stress states, the overall behavior being governed by
progressive failure of the cell walls in this regime. Since fracture is often observed in
real-world applications of metal foams, the introduction of corresponding simulation
methods is necessary.

A correct calibration of the material parameters based on experimental data is
indispensable for the success of any finite element simulation. In most cases, a uni-
axial compressive test is the minimum requirement for this calibration. For more
sophisticated constitutive models additional data on the yield surface shape and the
hardening behavior has to be provided by the user. This requires information about
the mechanical behavior of the material under multi-axial loading conditions. Since
multi-axial experimental data is scarce the user must rely on appropriate assumptions,
which can be derived either from micro-mechanical finite element simulations or via
parameter identification techniques (that is, by minimizing the discrepancy between
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simulations and experimental results, e.g., a sphere indentation test). The more para-
meters enter any given constitutive law, the more complicated the calibration process
may become. As a consequence, comparatively simple constitutive laws such as the
simplified self-similar yield surface model, compare Sect. 4.5.3, see more frequent
application, and are often sufficient if the loading conditions are simple enough.

When cellular metals and metallic foams will see more widespread use, and safety-
relevant applications such as crash-protection will require more accurate material
models, then further advances in the constitutive modeling of cellular metals are to
be expected. This contribution hopefully provides the reader with a good starting
point for further developments.
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Abstract A thin soft elasto-plastic interphase between two different media is under
consideration. The intermediate layer is assumed to be of infinitesimal thickness
and is modeled by nonlinear transmission conditions which incorporate the elasto-
plastic material behavior of the layer. The case of pressure-independent (von Mises)
as well as pressure-dependent yield condition is theoretically treated. Finite element
analysis of a bimaterial structure with such an imperfect elasto-plastic interface (von
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1 Introduction

Thin interphases appearing in dissimilar bodies such as composite structures with
adhesively bonded materials may influence significantly the whole spectrum of struc-
tural parameters: strength, dynamics, fracture, lifetime, and so on. Recently, signifi-
cant efforts have been done to clarify various phenomena connected with the so-called
elastic imperfect interface approach. It consists of replacing the real thin interphase
between two different materials by an infinitesimal layer of zero thickness. This layer
is then modeled by special transmission conditions which incorporate information
about geometrical and mechanical properties of the thin interphase. At first, such
proposed conditions were based on phenomenological approaches and have been
sufficiently exploited (see [5, 8, 9] among others and the respective references).
Later, various imperfect transmission conditions have been evaluated by asymptotic
methods in [2, 4, 10, 18] for different types of interfaces and materials. The accu-
rate asymptotic behavior of solutions of interface crack problems at the imperfect
interface formulation have been investigated in [1, 23, 24] where it has been shown
that the behavior may be very complicated and essentially depending on the material
and geometrical properties of the imperfect interfaces. Possible error estimates and
ranges of the edge zone effects connected with utilization of the imperfect models
have been discussed in detail in [25, 26] by finite element analysis. This short review
shows that elastic imperfect interfaces have been intensively investigated in different
directions.

However, thin elasto-plastic interfaces play even a more important role in real
applications [31] and results which are obtained up to now are absolutely insufficient
and are mainly concentrated on problems of thin plastic interphases between stiff
adherends [15, 17]. It is known in the context of thin structural adhesives that the
mechanical response is nonlinear over a large range of strain [32] and that adhe-
sives are sensitive to the hydrostatic pressure [22]. Nevertheless, many finite element
simulations are restricted to pressure-independent yield conditions. This may result
from the fact that these pressure-independent yield conditions (e.g. von Mises) are
widely available in commercial codes and that only a very low number of input
parameters are required. Sophisticated yield conditions which describe the adhesive
behavior more realistically are not a priory available in commercial codes and must
be implemented by the user [11]. Even having pressure-dependent yield conditions
implemented or available in computational codes, there is still the remaining prob-
lem that in modern technology very thin adhesive layers (thin films) are used [33].
This fact makes it difficult to perform numerical calculations using the finite ele-
ment method, since the need to build a complicated mesh of fundamentally different
sized elements can lead to a loss in accuracy, unstable calculations and even loss
of convergence [12]. In such a case, the so-called imperfect interface approach and
the corresponding transmission conditions may result in new element formulations
where the entire nonlinear behavior can be represented by a single element over the
interphase thickness [30]. First attempts to incorporate plastic material behavior in
the derivation of transmission conditions were done in [27] for the plane strain case
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and the von Mises yield condition. This chapter tries to progress this work and pro-
vides the theoretical foundation for transmission conditions for pressure-dependent
interphases.

2 Transmission Conditions for Thin Soft Interphases

2.1 Problem Formulation

Here we will discuss how to evaluate transmission conditions for a thin soft elastic
inhomogeneous interphase which is situated between two other elastic materials.

Consider three different elastic materials with Hooke’s laws given by the equa-
tions:

σ
(l)
i j = 2μ(l)ε(l)i j + 3λ(l)ε(l)m δi j , x ∈ Ωl , l = 1, 2, 3. (1)

Here σ (l)i j , ε(l)i j are components of the stress and strain tensors, while μ(l) and λ(l) are
Lamé’s parameters of the respective material (l = 1, 2, 3). Here and in what follows
we will use the standard notation for the hydrostatic part of the tensors:

σm = 1

3
σkk, εm = 1

3
εkk . (2)

One can equivalently use any other pair out of the material parameters E , ν, G and K
(Young’s modulus, Poisson’s ratio, shear modulus and bulk modulus, respectively):

E = μ(3λ+ 2μ)

λ+ μ
, ν = λ

2(λ+ μ)
, G = λ, K = λ+ 2μ

3
. (3)

We assume in our analysis that the material of the interphase (l = 2) is inhomoge-
neous, thus

μ(2) = μ(2)(x), λ(2) = λ(2)(x), (4)

and the material properties depend, whatever the reason is, on the position of the
point in the interphase. For simplicity (in fact, this assumption will never be used in
the further analysis) we assume that the materials of the adherends are homogeneous.
All the elastic materials under considerations are assumed to be compressible. Thus,
0 ≤ ν(l) < 1/2(l = 1, 3) and for any x ∈ Ω2 there exists some value ν0 such that

0 ≤ ν(2)(x) ≤ ν0 < 1/2. (5)

In absence of body forces, the balance equation reads

div σ (l) = 0, x ∈ Ωl , l = 1, 2, 3, (6)
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Fig. 1 General representation of the thin soft interphase (in grey)

where σ is the stress tensor. The strain tensor components are computed in the
standard way:

εi j = 1

2

(
∂ui

∂x j
+ ∂u j

∂xi

)
, (7)

where u j ( j = 1, 2, 3) are the components of the displacements vector, u.
Substituting Eq. (7) into the Hooke’s law (1) and then into the balance equation

(6), one receives the Navier-Lamé equation:

grad
(
(λ(l) + μ(l))div

)
u(l) + (∇ · μ(l)∇)u(l) = 0, x ∈ Ωl , (8)

where the material constants can be taken outside the operators in case of the
adherends due to the assumptions (Fig. 1).

We assume that the interphase of constant thickness 2h is situated along the
(x1, x2) plane. Then, the planes x3 = ±h define the interphase boundaries. Along
the boundaries, the following perfect (ideal) transmission conditions are satisfied:

u(2) = u(1), σ (2)x3
= σ (1)x3

, x3 = h, (9)

u(2) = u(3), σ (2)x3
= σ (3)x3

, x3 = −h, (10)

where σ (l)x3 is the vector of stress acting on the interphase boundaries.
We will assume in the following that there exists a small parameter

ε � 1, (11)

in the problem under consideration. This parameter controls on the one hand the
thickness of the intermediate layer:

h = εh∗, (12)
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Fig. 2 Cross section of the
interface according to the
schematic specimen shown in
Fig. 1

and, on the other hand, defines the softness of the interphase material:

E (2)(x) = εE∗(x). (13)

Here we additionally assume that all material parameters E∗(x) and E (l), (l = 1, 3)
are of the same order of magnitude regardless of the position of the point x ∈ Ω2
inside the interphase. Note that under assumption that the Poisson’s ratio is well
separated from 1/2 (ν(2) = ν∗ < 1/2) and both Lamé’s parameters are positive and
exhibit the same asymptotic behavior:

0 < μ(2)(x) = εμ∗(x), 0 < λ(2)(x) = ελ∗(x). (14)

2.2 Evaluation of the Transmission Conditions
for Inhomogeneous Linear Interphases

To derive the transmission conditions, let us rescale the x3 independent variable
inside the interphase in the following fashion (Fig. 2)

x3 = εζ, ζ ∈ (−h∗, h∗). (15)

The Navier-Lamé equation (8) in the new independent variables x̄ = (x1, x2, ζ )will
take the following form:
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L0ū + εL1ū + ε2L2ū = 0, x̄ ∈ Ω2, (16)

where ū = ū(x̄) ≡ ū(2)(x), and the first two differential operators L j are defined as
follows

L0 = ∂

∂ζ
Ā
∂

∂ζ
, Ā =

⎛
⎝μ̄ 0 0

0 μ̄ 0
0 0 λ̄+ 2μ̄

⎞
⎠ ,

L1 =
⎛
⎜⎝

0 0 ∂
∂x1
(λ̄+ μ̄) ∂

∂ζ

0 0 ∂
∂x2
(λ̄+ μ̄) ∂

∂ζ
∂
∂ζ
(λ̄+ μ̄) ∂

∂x1

∂
∂ζ
(λ̄+ μ̄) ∂

∂x2
0

⎞
⎟⎠ ,

while L2 is of dimension 2 × 2 analog to the original 3 × 3 operator with zeros
completing its third row and third column. The Lamé’s constants λ̄ and μ̄ may vary
essentially along the x3-direction inside the interphase:

μ̄(x1, x2, ζ ) = μ∗(x1, x2, εζ ), λ̄(x1, x2, ζ ) = λ∗(x1, x2, εζ ), |ζ | < h∗. (17)

The traction operator can be written in the following manner:

σ (2)x3
= M0ū + εM1ū, ζ = ±h∗, (18)

where

M0 = Ā
∂

∂ζ
, M1 =

⎛
⎜⎝

0 0 μ̄ ∂
∂x1

0 0 μ̄ ∂
∂x2

λ̄ ∂
∂x1

λ̄ ∂
∂x2

0

⎞
⎟⎠ .

Finally, we can compute the components of the strain tensor ε̄(x̄) = ε(2)(x) as

ε̄i j = 1

2

(
∂ui

∂x j
+ ∂u j

∂xi

)
, i, j = 1, 2,

ε̄i3 = 1

2

(
1

ε

∂ui

∂ζ
+ ∂u3

∂xi

)
, i = 1, 2, ε̄33 = 1

ε

∂u3

∂ζ
. (19)

Following the standard asymptotic procedure (see for example [28]), we will search
for the solution inside the interphase in the form:

ū(x̄) = v0(x̄)+ εv1(x̄)+ ε2v2(x̄)+ · · · . (20)

We are only interested in the leading term of the solution w = v0 which, as it follows
from Eq. (16), should satisfy the equation

L0w = 0, |ζ | < h∗. (21)
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Its solution can be computed by direct integration:

Ā(x1, x2, ζ )
∂

∂ζ
w(x1, x2, ζ ) = a(x1, x2), (22)

and

w(x1, x2, ζ ) =
ζ∫

−h∗

Ā
−1(x1, x2, t)dt · a(x1, x2)+ b(x1, x2), |ζ | < h∗, (23)

where the unknown vector-functions a(x1, x2) and b(x1, x2) are immediately deter-
mined from the transmission conditions (10) under consideration of Eq. (18):

b(x1, x2) = u(3)(x1, x2), a(x1, x2) = σ (3)x3
(x1, x2).

As a result, the leading term of the solution inside the interphase (−h∗ < ζ < h∗)
takes the following form:

w(x1, x2, ζ ) =
ζ∫

−h∗

Ā
−1(x1, x2, t)dt · σ (3)x3

(x1, x2)+ u(3)(x1, x2) . (24)

Moreover, the stress vector

σ (2)x3
(x1, x2, ζ ) ≡ σ (2)x3

(x1, x2) = σ (3)x3
(x1, x2) (25)

does not depend on the independent variable ζ . Note that we still have not used the
transmission conditions along the top boundary of the interphase (ζ = h∗) which also
has to be valid. This leads us to the following two imperfect transmission conditions
which have to be satisfied:

σ (1)x3
(x1, x2) = σ (3)x3

(x1, x2), (26)

and

u(1)(x1, x2)− u(3)(x1, x2) =
h∗∫

−h∗

Ā
−1(x1, x2, t)dt · σ (3)x3

(x1, x2), (27)

or in the original coordinates

u(1)(x1, x2)− u(3)(x1, x2) =
h∫

−h

A
−1(x1, x2, x3)dx3 · σ (3)x3

(x1, x2), (28)
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where:

A
−1 =

⎛
⎝μ

−1 0 0
0 μ−1 0
0 0 (λ+ 2μ)−1

⎞
⎠ .

The leading term of the solution inside the thin interphase takes the following form
in the original variables:

u(2)(x1, x2, x3) =
x3∫

−h

A
−1(x1, x2, ξ)dξ · σ (3)x3

(x1, x2)+ u(3)(x1, x2). (29)

According to Eq. (19), we can also estimate the components of the strain tensor:

εi j = O(1), εi3 = 1

2

∂u(2)i

∂x3
+ O(1), i, j = 1, 2, ε33 = ∂u(2)3

∂x3
. (30)

Thus the leading terms (of the order O(ε−1)) are:

εi3 = σ
(1)
xi (x1, x2)

2μ(x1, x2, x3)
, i = 1, 2, ε33 = σ

(1)
x3 (x1, x2)

(λ+ 2μ)(x1, x2, x3)
, (31)

and, generally speaking, depend on the x3-variable in contrast to the stress vector.
In a particular case, when the material properties of the interphase do not depend on
the x3-variable, the leading asymptotic terms of the strain tensor are only functions
of the two remaining variables.

Summarizing, Eqs. (26) and (28) constitute the sought for transmission conditions
describing a soft imperfect interface in a dissimilar body. The conditions allow one
to solve the outer problem (for materials denoted by the subscripts (1) and (3)) while
the original thin soft inhomogeneous interphase is taken into account with the use
of the asymptotic analysis.

This analysis, however, cannot be directly used in the case of a thin soft nonlinear
interphase when the material properties depend on the solution within the interphase
itself. The next subsection is therefore devoted to adjust the analysis for such a case.

2.3 Transmission Conditions for Nonlinear Interphases

We assume now that both Lamé’s parameters inside the interphase depend on the
strain tensor, or more precisely, are functions of two invariants of the strain tensor:

μ(2) = μ(2)(J ε1 , J e
2 ), λ(2) = λ(2)(J ε1 , J e

2 ), (32)
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where the first invariant of the strain tensor is:

J ε1 = εkk, (33)

while the second invariant of the strain deviator tensor, J e
2 , is defined by

J e
2 = 1

2
ei j ei j ,

or using the components of the strain tensor:

J e
2 = 1

6

[
(ε11 − ε22)

2 + (ε22 − ε33)
2 + (ε11 − ε33)

2
]

+ ε2
12 + ε2

13 + ε2
23 . (34)

To simplify the analysis by using the result obtained in the previous subsection, we
assume that the problem has been somehow solved and the complete distribution of
the strain invariants are known a priory. As a result, we can write Eq. (32) and the
representations (14) again with unknown values of the material parameters μ∗ and
λ∗. However, such assumption may be only justified if there exists two constants μ�
and λ� so that for any possible strain invariants the following estimate holds true:

0 < μ(2)(J ε1 , J e
2 ) ≤ εμ�, 0 < λ(2)(J ε1 , J e

2 ) ≤ ελ�. (35)

Thus, these assumptions play a crucial role in our analysis and have to be always
verified when using the results of the analysis.
Assuming estimates (14) are valid, we can directly use the results of the previous

section to justify the validity of the two transmission conditions (26) and (28) by
taking into account Eq. (25) which is convenient to write in the following form:

σ (2)x3
(x1, x2) = σ (1)x3

(x1, x2) = σ (3)x3
(x1, x2), (36)

[u](x1, x2) =
h∫

−h

A
−1(x1, x2, x3)dx3 · σ (2)x3

(x1, x2). (37)

Here we use the standard notation for the jump of a function f across the interface
Γ : [ f ](x1, x2) = f (x1, x2, Γ+) − f (x1, x2, Γ−). We also can now compute the
leading terms of the strain tensor invariants (by taking into account Eqs. (30) and
(31)):

J ε1 = ∂u(2)3

∂x3
= σ33(x1, x2)

λ+ 2μ
, (38)

J e
2 = 1

3
ε2

33 + ε2
13 + ε2

23 = 1

3

(
∂u(2)3

∂x3

)2

+ 1

4

(
∂u(2)1

∂x3

)2

+ 1

4

(
∂u(2)2

∂x3

)2

, (39)
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or taking into account the solution representation (29), the expression for the leading
term of the strain components (31) is obtained as:

J e
2 = 1

3

σ 2
33(x1, x2)

(λ+ 2μ)2
+ 1

4

σ 2
13(x1, x2)

μ2 + 1

4

σ 2
23(x1, x2)

μ2 . (40)

Note that due to our assumptions, the material parameters μ and λ are unknown
functions of the coordinates (x1, x2, x3). Simultaneously, according to Eq. (32), they
are known functions of the strain invariants. Thus, Eqs. (38) and (40) allows us to
uniquely determine the invariants as functions of the space variables for each par-
ticular case. However, all the stress components σi3 of the stress vector σx3 are only
functions of the space variables x1 and x2. This immediately implies that, in the case
under consideration, the strain invariants are also functions of those two variables:

J ε1 = J ε1 (x1, x2), J e
2 = J e

2 (x1, x2). (41)

This crucial finding allows us to simplify the transmission conditions even further.
Indeed, since the invariants (and therefore the material parameters μ and λ as well
as the matrix A) are only functions of x1- and x2-variable, one can trivially compute
the integral in the transmission condition (37) to obtain:

1

2h
[u](x1, x2) = A

−1(x1, x2) · σ (2)x3
(x1, x2). (42)

Let us observe that the right-hand side of this transmission condition allows us to
compute every term in the definition of the strain invariants in Eqs. (38) and (40).
This leads to the following relationships:

J ε1 = 1

2h
[u3], (43)

J e
2 = 1

12h2 [u3]2 + 1

16h2 [u1]2 + 1

16h2 [u2]2. (44)

This allows us to formulate the nonlinear transmission conditions for a thin soft
nonlinear interphase in their final forms:

[σx3] = 0, A([u]) · [u] = 2hσx3, (45)

where the matrix-function A is explicitly defined by A([u]) ≡ A(μ(J ε1 , J e
2 ),

λ(J ε1 , J e
2 )) and the relationships (43) and (44).

Remark 1. Let us remind that the assumptions (35) have to be valid to justify the
transmission conditions (37). However, as it follows from the derivation, the estimate
can be weakened a bit to the following formulation:
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0 < μ(2)(J ε1 , J e
2 ) ≤ εμ�, 0 < (λ(2) + 2μ(2))(J ε1 , J e

2 ) ≤ εΛ�. (46)

Remark 2. However, even if the estimate (46) cannot be proven a priori, the nonlin-
ear transmission conditions (37) can be successfully used in modeling. To this end,
a posteriori verification should confirm that the estimates (46) are valid for every
point lying on the bimaterial interface.

Remark 3. The nonlinear elastic formulation (32) gives a chance to model thin soft
plastic interphase situated between stiffer materials. For this reason, the deformation
theory of plasticity can be adopted. Clearly, only a narrow range of monotonic loading
can be analyzed with such an approach. On the other hand, bearing in mind the
problem geometry (thin plastic layer) the range of possible strain-states in such a
layer is sufficiently restricted. Thus, choosing the proper deformation theory, one can
expect to avoid all numerical difficulties mentioned in the introduction and effectively
use the evaluated transmission conditions. To verify what level of possible error could
be introduced in the original model, we need to make efforts in two directions. First,
to construct an appropriate deformation theory for a given yield criterion and a given
plastic flow rule. Then, to compare the computations performed by the accurate
plastic flow modeling with this based on the developed deformation theory to check
the validity of the transmission conditions. Note that in the case of an incompressible
plastic material obeying the von Mises yield criterion such an analysis has been done
for the plane strain case in [27]. It shows for basic loading cases (tension, shear
and combination of those two) an exceptional high accuracy comparable with that
obtained for the classic elastic interphases. The only observable difference was that
the size of the edge effect zone increases. This can be easy explained not by the failure
of the asymptotic analysis in those zones but rather by the fact that the loading in
the neighborhood of the edge cannot be considered as monotonic even if it is in the
main part of the body.

Thus, in the next sections of the chapter we will discuss in detail how to construct
an appropriate deformation theory for pressure dependent materials and discuss how
the analysis can be validated and numerically verified.

3 Pressure-Dependent Deformation Theory

A deformation theory for the von Mises yield condition has been developed by many
authors (see [14, 17, 21]). The theory is generally based on the unique stress-strain
curve approach and the authors considered various types of curves (linear hardening,
ideal plastic, power laws and many others (see for example the extensive review in
the monograph by Jones [16])). In the general case, the development of a deformation
theory of plasticity which will be valid in a wider range of monotonic load is not an
easy task. To the best of the authors knowledge, this theory—in the general framework
of large deformations—has been constructed by Lubarda [20] for the Drucker-Prager
material. In Chen [6], one can find a suggestion on how to derive the theory based on
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a more generalized assumption. We believe that this has not been done yet because
of the following two reasons:

(a) The plastic flow theory has been fully developed and represents the behavior of
any plastic (visco-plastic) material much better than any deformation theory.

(b) The plastic flow theory has been effectively implemented in numerous numerical
codes. Thus, the evaluation of a generalized deformation theory is cost ineffective
or even makes no sense.

However, as we mentioned in the introduction, there are specific cases when such
work can be justified. Namely, in the case of a thin plastic interphase, where a standard
finite element approach needs a very fine mesh in the interphase to realistically
approximate nonlinearities, the approach based on asymptotic methods and the notion
of imperfect interface may bring some serious improvements in terms of time and
accuracy of the computation. With this aim in mind, we are going to discuss a variant
of the deformation theory which will be implemented in the asymptotic analysis
performed in the previous section.

3.1 Main Assumptions

The simplest deformation theory is the J s
2 deformation theory proposed by Hencky

[13, 17] and it is subjected to the following assumptions:

• The material is initially isotropic.
• The principal axes of the plastic strain tensor εp

i j are always coincident with those
of the stress tensor σi j .

• The plastic deviatoric strain tensor ep
i j is proportional to the deviatoric stress tensor

si j .
• No plastic volumetric change occurs.

In this section, we generalize this theory to the case of pressure-sensitive materials,
so that the last assumption is removed and the material is plastically compressible.

In the following, we make use of the volumetric and deviatoric decomposition of
the stress and strain tensor (see Eq. (2)) as:

σi j = σmδi j + si j , (47)

εi j = εmδi j + ei j , (48)

and the additive composition of the elastic and plastic strains

εi j = εe
i j + ε

p
i j = (

εe
m + ε

p
m
)
δi j + ee

i j + ep
i j , (49)

in order to derive the closed-form relationship. According to assumptions (2) and
(3), the plastic strain can be written as
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ε
p
i j = φ1σmδi j + φ2si j , (50)

where φ1 and φ2 are functions which represent the hardening behavior of the mate-
rial. In the case of loading it holds that φ1 	= 0 and φ2 > 0 while in the case of
unloading φ1 = φ2 = 0 prevails. Note that Eq. (50) can be derived following to
Chen’s suggestions [6].

The constitutive relation between stress and elastic strain decomposed in its vol-
umetric and deviatoric parts is given by

ee
i j = si j

2G
, (51)

εe
m = σm

3K
. (52)

The material is assumed to be elastic compressible, so that 0 ≤ ν < 1/2 and K < ∞.
Substitution of Eqs. (50) (52) into (49) leads to the strain-stress relations for

pressure-sensitive materials:

εi j =
(

1

2G
+ φ2

)
si j +

(
1

3K
+ φ1

)
σmδi j , (53)

=
(

1 + ν

E
+ φ2

)
si j +

(
1 − 2ν

E
+ φ1

)
σmδi j , (54)

where the relations (3) between G = μ, K , E and ν were used to convert the elastic
constants. To derive the stress-strain relation, we replace in Eq. (53) si j by σi j using
Eq. (47):

εi j =
(

1 + ν

E
+ φ2

)
σi j +

[
−
(

3ν

E
+ φ2

)
+ φ1

]
σmδi j . (55)

Now we use the facts from Eqs. (49), (50) and (52)

σm = 3K

1 + 3Kφ1
εm = E

1 − 2ν + φ1 E
εm , (56)

to obtain

εi j =
(

1 + ν

E
+ φ2

)
σi j −

(
3ν

E
+ φ2 − φ1

)
E

1 − 2ν + φ1 E
εmδi j , (57)
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and finally rearranged for the stress tensor and written it in form of Eq. (1) as:

σi j = E

1 + ν + φ2 E︸ ︷︷ ︸
2μ̃

εi j + E

1 + ν + φ2 E

3ν + (φ2 − φ1)E

1 − 2ν + φ1 E︸ ︷︷ ︸
3λ̃

εmδi j , (58)

where the generalized Lamé’s coefficients have been introduced:

μ̃(φ2) = E

2(1 + ν + φ2 E)
, (59)

λ̃(φ1, φ2) = 3ν + (φ2 − φ1)E

3(1 + ν + φ2 E)(1 − 2ν + φ1 E)
E, (60)

λ̃(φ1, φ2)+ 2μ̃(φ2) = 3(1 − ν)+ (φ2 + 2φ1)E

3(1 + ν + φ2 E)(1 − 2ν + φ1 E)
E . (61)

It should be noted here that these coefficients coincide in the pure elastic regime
(φ1 = φ2 = 0) with the elastic Lamé’s coefficients (3). Further relationships for
generalized elastic constants can be derived in the same manner:

Ẽ(φ1, φ2) = 3E

3 + (2φ2 + φ1)E
, (62)

ν̃(φ1, φ2) = 3ν + (φ2 − φ1)E

3 + (2φ2 + φ1)E
, (63)

K̃ (φ1) = E

3(1 − 2ν + φ1 E)
. (64)

In order that the formulated deformation theory can be considered, it has to satisfy
the ellipticity condition [3]

μ̃ > 0, K̃ > 0. (65)

Note that these conditions are equivalent to

Ẽ > 0, −1 < ν̃ < 0.5.

This is always true if φ2 > 0 and

φ1 > −1 − 2ν

E
. (66)

However, the generalized Poisson’s ratio ν̃ may, generally speaking, become neg-
ative. Although, such a material behavior is possible and recently several artificial
materials have been developed exhibiting such property (see for example [19]), we
assume that it never happens in our analysis, thus:
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φ2 − φ1 > −3ν

E
. (67)

It is easy to show that

0 < μ̃(φ2) ≤ μ, 0 < Ẽ(φ1, φ2) ≤ 3E

2(1 + ν)
. (68)

However, it is not enough to prove the second estimate from Eq. (46). If we assume
a bit stronger assumption than Eq. (66)

φ1 ≥ −γ 1 − 2ν

E
, (69)

with some γ < 1, then

0 < K̃ (φ1) ≤ K

1 − γ
, 0 < (λ̃+ 2μ̃)(φ1, φ2) ≤ Λmax . (70)

Here only the value of the constantΛmax cannot be exactly predicted without know-
ing the information on the functions φ1 and φ2. Thus, the conditions (46) are valid
under assumption (69) and the transmission conditions (37) can be used for such
materials. Note that the case γ = 0 corresponds to the assumption φ1 ≥ 0.

To define the functions φ1 and φ2, let us consider the relationships for the first
and second invariants of the strain and stress tensor, i.e.

J ε
p

1 = ε
p
kk, Jσ1 = σkk, (71)

J ep

2 = 1

2
ep

i j e
p
i j , J s

2 = 1

2
si j si j , (72)

where the proportionality relation (50) can be used to obtain:

J ε
p

1 = 3φ1σm = Jσ1 φ1 , (73)

J ep

2 = 1

2
φ2

2si j si j = φ2
2 J s

2 . (74)

Thus, the scalar functions φ1 and φ2 can be obtained in the case of a multiaxial stress
state as

φ1 = J ε
p

1

Jσ1
, φ2 =

√
J ep

2√
J s

2

. (75)

In order that these relations can be used in the analysis of the thin plastic layer pre-
sented in Sect. 2, one needs to operate the functions defined as total strain invariants.
Thus, some additional work should be done.
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First, one can directly evaluate from the nonlinear elasticity relationship (58) that
the first invariants of the stress tensor and the total strain tensor are linearly dependent:

Jσ1 = (3λ̃+ 2μ̃) J ε1 = 3K̃ J ε1 . (76)

Computing in a standard way the second invariants of the deviatoric tensors, one can
conclude that √

J s
2 = 2μ̃

√
J e

2 . (77)

This, in turns, allows us to evaluate the generalized material parameters as functions
of the invariants:

2μ̃ =
√

J s
2√

J e
2

, 3K̃ = Jσ1
J ε1
. (78)

Substituting these relations into Eqs. (59) and (64), one can define after some algebra:

φ1 = J ε1
Jσ1

− 1 − 2ν

E
, φ2 =

√
J e

2√
J s

2

− 1 + ν

E
. (79)

These relationships are more useful in the analysis than (75). This also gives the
relationships between the deviators of the plastic strain and the total strain:

J ε1 = J ε
p

1 + 1 − 2ν

E
Jσ1 ,

√
J e

2 =
√

J ep

2 + 1 + ν

E

√
J s

2 . (80)

3.2 Example: Uniaxial Stress Test

We choose this specific test as it is one of the most popular tests, widely accessible,
and it may provide at least two sets of experimental data: σx (εx ) and εy(εx ).

The specific form of the scalar functions φ1 and φ2 for the case of a uniaxial stress
state can be derived in the following way. Assuming that the direction of loading
coincides with the x-direction (σx 	= 0; εp

y = ε
p
z ), the scalar functions φ1 and φ2

become

φ1 = ε
p
x + 2εp

y

σx
, φ2 = |εp

x − ε
p
y |

σx
. (81)

Let us assume in the following an elastic-plastic material with linear hardening as
shown in Fig. 3. The flow stress σx can be expressed as (cf. Fig. 3b)

σx (ε
p
x ) = Epε

p
x + σs , (82)

whereas the transversal deformation can be expressed as (cf. Fig. 3d)
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Fig. 3 Example of constitutive behaviour in a uniaxial stress test for a linear hardening material.
a Axial stress σx as a function of the total axial strain εx ; b axial stress σx as a function of the plastic
axial strain εp

x ; c transverse contraction εy as a function of the total axial strain εx ; d transverse
contraction εy as a function of the plastic axial strain εp

x . Three cases of transverse contraction are
considered: plastically incompressible material εp

m = 0 (νep = 0.48 and νp = 0.53), null plastic
transverse contraction εp

y = 0 (νep = 0.027 and νp = 0.03) and an intermediate case (νep = 0.2
and νp = 0.22)

εy(ε
p
x ) = −νpε

p
x + εY

y = −νpε
p
x − ν

E
σs . (83)

The plastic part of εy can be derived as

ε
p
y = εy − εe

y = −νpε
p
x − ν

E
σs + ν

σx

E
= −

(
νp − ν

Ep

E

)
ε

p
x (84)

and the functions φ1 and φ2 can be obtained in dependence of the plastic strain in a
uniaxial stress state as

φ1(ε
p
x ) = (E − 2νp E + 2νEp)ε

p
x

E(Epε
p
x + σs)

, (85)

φ2(ε
p
x ) = (E + νp E − νEp)ε

p
x

E(Epε
p
x + σs)

, (86)
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Using the additive composition of the elastic and plastic strains, i.e. εx = εe
x + ε

p
x ,

one gets

ε
p
x = εx − εe

x = εx − σx

E
. (87)

The relationship between the stress σx and the total strain εx can be derived from
Fig. 3 as

σx = Ep

(
εx − σx

E

)
+ σs, (88)

so that

σx (εx ) = Eepεx + E − Eep

E
σs, (89)

where

Eep = E Ep

E + Ep . (90)

Replacing the stress σx in Eq. (87) by the relationship given in Eq. (82) results in

ε
p
x = Eεx − σs

E + Ep , (91)

and

εy(εx ) = −νepεx − ν − νep

E
σs , (92)

where

νep = νp E

E + Ep . (93)

Finally, the dependence of φ1 and φ2 on the total strain εx as

φ1(εx ) = 1

E

(
1 − 2νp + 2ν

Ep

E

)
Eεx − σs

Epεx + σs
, (94)

φ2(εx ) = 1

E

(
1 + νp − ν

Ep

E

)
Eεx − σs

Epεx + σs
. (95)

Functions φ1(εx ) and φ2(εx ) corresponding to the materials of Fig. 3 are shown in
Fig. 4. Interestingly, in case of the uniaxial stress state the ratio of the functions
φ1(εx ) and φ2(εx ) is a constant value:

φ1(εx )

φ2(εx )
= (1 − 2νp)E + 2νEp

(1 + νp)E − νEp . (96)
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Fig. 4 Functions φ1(εx ) (a) and φ2(εx ) (b) corresponding to the materials of Fig. 3

Usually E > Ep and we assume that plastic contraction is always positive. This
leads to the inequality νp E > νEp (cf. (84)) and one can conclude that for the
uniaxial stress state under consideration, the inequalities (66) and (67) are always
valid as

φ1(εx )

φ2(εx )
< min

{
1,

1 − 2νp + 2ν

1 + νp − ν

}
. (97)

Finally, it should be noted that it is impossible to conclude a priori whether the
ratio is positive, zero or negative. Only direct experimental data (or some additional
phenomenological assumptions) allows to answer this question. One of the most
popular and simplest assumption is that the plastic strain is incompressible or in
accordance with the definition of the functions φ j this ratio has to be always zero.
This case is considered in next subsection in details.

3.2.1 von Mises Material

For a material obeying the von Mises yield criterion

F(J s
2 ) =

√
J s

2 − ks , (98)

and the normality rule, the plastic strain turns out to be incompressible so that

ε
p
i j = φ2si j . (99)

The theory developed in the previous section can be specialized to the case of a von
Mises material by setting φ1 = 0 and assuming that

φ2 = φ2(J
e
2 ) , (100)

where the function itself has to be defined from experiments. The generalized elastic
constants (62) become in this case
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μ̃(φ2) = G̃(φ2) = E

2(1 + ν + φ2 E)
, (101)

Ẽ(φ2) = 3E

3 + 2φ2 E
, (102)

ν̃(φ2) = 3ν + φ2 E

3 + 2φ2 E
, (103)

K̃ = E

3(1 − 2ν)
. (104)

Note that the estimates given in Eq. (46) are valid here with γ = 0 andΛmax = λ+2μ
(see Eq. (70)). Thus, the evaluation of the transmission conditions (37) is therefore
fully justified in this case. We can also evaluate the function ks in the yield criterion.
Indeed,

ks = ks(ε
p
x ) =

√
J s

2 = σx√
3

= Epε
p
x + σs√

3
, (105)

and, in terms of the second invariant of the total deformation,

ks = ks(J
e
2 ) =

√
J s

2 = 2μ̃
√

J e
2 = E

√
J e

2

1 + ν + φ2(J e
2 )E

. (106)

Now we need to determine the unknown function φ2 = φ2(J e
2 ) from the uniaxial

stress relationships (94)–(95). Note to this end that

φ1 = 0 → νp = 1

2
+ ν

Ep

E
, (107)

φ2(εx ) = 3

2

Eεx − σs

E(Epεx + σs)
. (108)

This representation is valid however, only for a uniaxial stress state. A general form
of the scalar function φ2 for applications involving multiaxial stress states can be
derived in the following way. In the plastic regime, the generalized Poisson’s ratio ν̃
is given by

ν̃ = −εy

εx
= − εz

εx
, (109)

and the second invariant of the deviator of strain J e
2 can be expressed as

J e
2 = 1

6
[(εx − εy)

2 + (εy − εz)
2 + (εz − εx )

2] = (1 + ν̃)2

3
ε2

x , (110)

which can be rearranged to obtain
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Fig. 5 Function φ2 of Hencky’s law as a function of (a) the total axial strain εx and (b) the second
invariant of strain deviator tensor J e

2 . Material parameters are those of Fig. 3

εx =
√

3J e
2

1 + ν̃
=

√
3J e

2

1 + 3ν + φ2 E

3 + 2φ2 E

= 3 + 2φ2 E

1 + ν + φ2 E

√
J e

2

3
. (111)

Introducing the last relationship into Eq. (108), the corresponding quadratic equation
gives the dependency of the function φ2 on the second invariant of the deviator of
strain as:

φ2(J
e
2 ) = 3E

√
J e

2 − √
3(1 + ν)σs

E
(

2Ep
√

J e
2 + √

3σs

) . (112)

The evaluation of the function φ2 for a uniaxial stress-strain curve given in Fig. 3
(E = 813 MPa; ν = 0.3; σs = 50 MPa; Ep = 81.3 MPa) is shown in Fig. 5.

3.2.2 Drucker-Prager Material

For a material obeying the Drucker-Prager yield criterion,

F(Jσ1 , J s
2 ) = α Jσ1 +

√
J s

2 − ks , (113)

where α > 0 is usually assumed to be a constant while ks is a positive function of
the plastic strain:

ks = ks(ε
p) > 0. (114)

In the case of uniaxial stress test

ks(ε
p
x ) = α Jσ1 +

√
J s

2 =
(
α + 1√

3

) (
Epε

p
x + σs

)
. (115)
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Assuming the normality rule (plastic strain increment proportional to the normal of
the yield surface gives ni j = 2α

√
J s

2 δi j + si j ) and proportional loading we have
(cf. [20])

ε
p
i j = φ2

(
2α

√
J s

2 δi j + si j

)
. (116)

The theory presented in Sect. 3 can be specialized to this type of material by setting

φ1 = 6α
√

J s
2φ2

Jσ1
, (117)

φ2 = φ2 . (118)

It is important to underline here that both functions φ1 and φ2 equal to zero simulta-
neously in the elastic regime or are both different from zero in the plastic zone.

We need to represent now the functionsφ1 andφ2 depending only on the invariants
of the total strain tensor. Let us assume that we have been successful with the second
function,

φ2 = φ2(J
ε
1 , J e

2 ), (119)

then the remaining function φ1 can be computed from Eq. (117) under taking into
account Eqs. (78), (59) and (64)

φ1 = 6α

√
J s

2φ2

Jσ1
= 6αφ2

2μ̃

3K̃

√
J e

2

J ε1
= 6αφ2

1 − 2ν + φ1 E

1 + ν + φ2 E

√
J e

2

J ε1
, (120)

or

φ1 = φ1(J
ε
1 , J e

2 ) = 6α(1 − 2ν)φ2
√

J e
2

J ε1 (1 + ν)+ φ2 E
(
J ε1 − 6α

√
J e

2

) . (121)

Note that it is impossible to conclude something definitive on the sign of the ratio of
the functions φ1/φ2. Indeed, in the elastic domain (for small values of J e

2 ) φ2 = 0
and therefore φ1 = 0 too. On the other hand for φ2 > 0, one can always choose
values of the first invariant J ε1 to receive φ1 positive or negative. However, we would
like to underline here that those invariants are not independent as they are related via
the yield stress condition and the corresponding strain-stress state achieved during
the deformation. We will comment on this later in this subsection.

Using Eqs. (119) and (121), the generalized elastic constants defined in
Eqs. (59)–(64) can be rewritten in terms of the only two invariants of the total strain
tensor:

μ̃(φ2) = G̃(φ2) = E

2(1 + ν + φ2 E)
, (122)

Ẽ(φ2) = 3E

1 + ν + φ2 E

J ε1 (1 + ν + φ2 E)− 6αφ2 E
√

J e
2

J ε1 (3 + 2φ2 E)− 12αφ2 E
√

J e
2

, (123)
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ν̃(φ2) = J ε1 (3ν + φ2 E)− 6αφ2 E
√

J e
2

J ε1 (3 + 2φ2 E)− 12αφ2 E
√

J e
2

, (124)

K̃ (φ2) = J ε1 (1 + ν + φ2 E)− 6αφ2 E
√

J e
2

3J ε1 (1 − 2ν)(1 + ν + φ2 E)
E . (125)

The expressions reduce to those for the von Mises criterion when α = 0. However,
it is impossible to prove a priori the ellipticity conditions (65) as well as the upper
estimates (46) necessary to justify the transmission conditions.

Finally, one can compute the function ks from Eq. (114) taking into account
that the yield criterion is represented by the equation F(Jσ1 , J s

2 ) = 0 in the plas-
tic regime where the function F is defined in Eq. (113). Using again the invari-
ants representations (78) and the definition of the generalized elastic coefficients
(59)–(64), we have

ks = ks(J
ε
1 , J e

2 ) = α
E J ε1

1 − 2ν + φ1 E
+ E

√
J e

2

1 + ν + φ2 E
. (126)

This can be rewritten as

ks = E
√

J e
2

1 + ν + φ2 E

(
1 + 6α2 φ2

φ1

)
. (127)

Finally, this can be equivalently represented in the following form:

ks(J
ε
1 , J e

2 ) = E

1 − 2ν

(
α J ε1 + Ψ

)
, (128)

where

Ψ = 1 − 2ν − 6α2φ2 E

1 + ν + φ2 E

√
J e

2 . (129)

Note that, generally speaking,Ψ = Ψ (J ε1 , J e
2 ) as it follows from Eq. (119). Naturally,

if one assumes α = 0 formula (128) reduces to Eq. (106).
In case of the uniaxial stress test discussed in the previous subsection, Eqs. (96)

and (117) allow us to determine the unknown parameter α > 0 from the experiment

α = Jσ1
6
√

J s
2

(1 − 2νp)E + 2νEp

(1 + νp)E − νEp = 1

2
√

3

(1 − 2νp)E + 2νEp

(1 + νp)E − νEp <
1

2
√

3
. (130)

Interestingly, while a priori we could not evaluate the sign of the ratio φ1/φ2 (see
discussion after Eq. (121)), in case of the uniaxial stress test this value is definitely
positive

0 <
φ1(εx )

φ2(εx )
= 2α

√
3 < 1 . (131)
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This suggests that, at least for any stress-strain state close to the uniaxial stress, all the
constants (122)–(125) are positive and suitable for justification of the transmission
conditions. Moreover, this finding allows us to estimate the upper bound for the
experimental value of the parameter νp for the uniaxial stress test

νp ≤ 1

2
+ ν

E p

E
, (132)

where the maximal value corresponds to the von Mises criterion (incompressible plas-
tic deformation). Thus, to complete the analysis, the only unknown functionφ2 should
be defined. In general, this function depends on both strain invariants J ε1 and J e

2

φ2 = φ2(J
ε
1 , J e

2 ) . (133)

Considering the uniaxial stress state, Eq. (94) has been satisfied due to Eq. (173),
while (95) can be written in the form:

φ2(εx ) = 3

2

β

E

Eεx − σs

Epεx + σs
, (134)

where

β = 2

3

(
1 + νp − ν

Ep

E

)
. (135)

Note that β = 1 holds for the von Mises yield criterion (cf. Eq. (108)). Repeating
the same line of the reasoning as previously, we substitute

εx =
√

3J e
2

1 + ν̃
, (136)

with

ν̃(φ2) = J ε1 (3ν + φ2 E)− 6αφ2 E
√

J e
2

J ε1 (3 + 2φ2 E)− 12αφ2 E
√

J e
2

, (137)

into the Eq. (134) and solve the corresponding quadratic equation to obtain

φ2(J
ε
1 , J e

2 ) = −b + √
b2 − 4ac

2a
, (138)

where

a = 2E2(J ε1 − 6α
√

J e
2 )
(

2
√

3Ep
√

J e
2 + 3σs

)
, (139)
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Fig. 6 Functions φ1 and φ2 of Drucker-Prager’s law as functions of the two invariants of strain J ε1
and J e

2 . Material parameters are those of Fig. 3, with νp = 0.22. The red curve is the loading path
in the uniaxial stress test

b = 3E
{

6αβ
√

J e
2

(
2
√

3E
√

J e
2 − 3σs

)

+ J ε1

[
(2 + 2ν + 3β)σs + 2

√
3
(
Ep − βE

)√
J e

2

]}
, (140)

c = 9β J ε1

(
(1 + ν)σs − √

3
√

J e
2 E

)
, (141)

One can check that in case of α = 0 and β = 1, Eq. (138) is transformed into (112).
The functions φ1 and φ2 are plotted in Fig. 6 against the invariants of the total

strain, J ε1 and J e
2 . The material parameters are those of Fig. 3, with intermediate

νp = 0.22. In Fig. 6 it is also shown in red the loading path during the uniaxial stress
test.

Remark 4. The functions φ1 and φ2 obtained in this section can be used only for a
stress state close to the uniaxial stress state.

3.3 Example: Uniaxial Deformation Test

We present in this section an alternative derivation of the functions φ1 and φ2 from
the uniaxial deformation test. Assuming that the direction of deformation coincides
with the x-direction (εx 	= 0; σy = σz), the scalar functions φ1 and φ2 become

φ1 = ε
p
x + 2εp

y

σx + 2σy
, φ2 = |εp

x − ε
p
y |

σx − σy
. (142)

Let us assume a linear hardening material, as shown in Fig. 7. In the elastic regime,
the material behaviour is described by the following laws (Fig. 8)
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Fig. 7 Example of constitutive behaviour in a uniaxial deformation test for a linear hardening
material. a Axial stress σx as a function of the total axial strain εx ; b axial stress σx as a function of
the plastic axial strain εp

x ; c transverse stress σy as a function of the total axial strain εx ; d transverse
stress σy as a function of the plastic axial strain εp
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Fig. 8 Functions φ1(εx ) (a) and φ2(εx ) (b) corresponding to the material of Fig. 7

σx (εx ) = Aeεx , (143)

σy(εx ) = Beεx , (144)

where

Ae = 1 − ν

(1 + ν)(1 − 2ν)
E, (145)
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Be = ν

(1 + ν)(1 − 2ν)
E . (146)

In the plastic regime, the stress is given by

σx (εx ) = Aepεx + σx0 , (147)

σy(εx ) = Bepεx + σy0 , (148)

where

σx0 = (1 − ν)E − (1 + ν)(1 − 2ν)Aep

(1 − ν)E
σY

x , (149)

σy0 = νE − (1 + ν)(1 − 2ν)Bep

(1 − ν)E
σY

x . (150)

The axial strain εx can be written as

εx = ε
p
x + εe

x = ε
p
x + 1

E
(σx − 2νσy). (151)

A substitution of (151) into (149) and (150) gives

σx (εx ) = Apε
p
x + σY

x , (152)

σy(εx ) = Bpε
p
x + ν

1 − ν
σY

x , (153)

where

Ap = E Aep

E − Aep + 2νBep , (154)

Bp = E Bep

E − Aep + 2νBep . (155)

Inversion of (154) and (155) gives

Aep = Ap E

Ap + E − 2νBp , (156)

Bep = Bp E

Ap + E − 2νBp . (157)

Finally, the dependence of φ1 and φ2 on the total strain εx is obtained as

φ1(εx ) = εx

(Aep + 2Bep)εx + σx0 + 2σy0
− 1 − 2ν

E
, (158)
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φ2(εx ) = εx

(Aep − Bep)εx + σx0 − σy0
− 1 + ν

E
. (159)

3.3.1 von Mises Material

For a material obeying the von Mises criterion, the yield stresses in uniaxial defor-
mation test σY

x , σY
y are related to the yield stress in uniaxial stress test σs through

the relation

σY
x = 1 − ν

1 − 2ν
σs , σY

y = ν

1 − 2ν
σs . (160)

Moreover, the condition φ1 = 0 must be satisfied for the incompressibility of plastic
strain. This condition, together with Eq. (158), gives a relationship between Aep and
Bep,

Bep = E − (1 − 2ν)Aep

2(1 − 2ν)
, (161)

or, equivalently, using Eqs. (154) and (155), between Ap and Bp,

Bp = E + 2νAp

2(1 − ν)
. (162)

The fulfilment of the yield condition (98) during plastic loading implies additionally
the following relationship between Ap and Bp

Ap − Bp = Ep. (163)

Consequently, by solving Eqs. (162) and (163), it is possible to obtain relationships
between the parameters of the uniaxial deformation test, Ap, Bp, Aep, Bep, with the
parameter of the uniaxial stress test Ep. These relationships read as follows

Ap = E + 2(1 − ν)Ep

2(1 − 2ν)
, (164)

Bp = E + 2νEp

2(1 − 2ν)
, (165)

Aep = E(E + 2(1 − ν)Ep)

(1 − 2ν)(3E + 2(1 + ν)Ep)
, (166)

Bep = E(E + 2νEp)

(1 − 2ν)(3E + 2(1 + ν)Ep)
, (167)

A substitution of (166) and (167) into (159) allows us to obtain φ2 as a function of
the total axial strain εx
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φ2(εx ) = 3
Eεx − (1 + ν)σs

E(2Epεx + 3σs)
. (168)

Finally, in the uniaxial deformation test the second invariant of the deviator of strain
is given by

J e
2 = ε2

x

3
, (169)

and consequently the general relation (112) of the von Mises material is recovered.

3.3.2 Drucker-Prager Material

For a material obeying the Drucker-Prager criterion, the yield stresses in the uniaxial
deformation test σY

x , σY
y are related to the yield stress in the uniaxial stress test σs

through the relation

σY
x = (1 + √

3α)(1 − ν)σs

(1 − 2ν)+ √
3α(1 + ν)

, σY
y = (1 + √

3α)νσs

(1 − 2ν)+ √
3α(1 + ν)

. (170)

We take now the trace and devitoric part of Eq. (116),

J ε
p

1 = 6φ2α

√
J s

2 , (171)√
J ep

2 = φ2

√
J s

2 , (172)

and the ratio between the last two equations gives

α = J ε
p

1√
J ep

2

= ε
p
x + 2εp

y

2
√

3(εp
x − ε

p
y)
. (173)

Due to the lateral constraint in the uniaxial deformation test, we have

ε
p
y = −εe

y = − 1

E

(−νσx + (1 − ν)σy
) = νAp − (1 − ν)Bp

E
ε

p
x . (174)

Substituting (174) into (173), we get

α = 1

2
√

3

E + 2νAp − 2(1 − ν)Bp

E − νAp + (1 − ν)Bp . (175)

Moreover, the fulfilment of the yield criterion (113) implies
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Fig. 9 Functions φ1 and φ2 of Drucker-Prager’s law as functions of the two invariants of strain J ε1
and J e

2 . Material parameters are those of Fig. 3, with νp = 0.22. The red curve is the loading path
in the uniaxial deformation test

ks(ε
p
x ) =

[(
α + 1√

3

)
Ap +

(
2α − 1√

3

)
Bp

]
ε

p
x +

(
α

1 + ν

1 − ν
+ 1√

3

1 − 2ν

1 − ν

)
σY

x .

(176)
A comparison of (176) and (115) allows us to write

α = Ep + Bp − Ap

√
3(Ap + 2Bp − Ep)

. (177)

Finally, by solving (175) and (177), we obtain the characteristic parameters of the
uniaxial deformation test as functions of the characteristic parameters of the Drucker-
Prager material with linear hardening

Ap =
(

12α2 − 4
√

3α + 1
)

E + 2
(

3α2 + 2
√

3α + 1
)
(1 − ν)Ep

6α2(1 + ν)+ 2
√

3α(2 − ν)+ 2 − 4ν
, (178)

Bp =
(

36α3 − 9α + √
3
)

E − 2
(

18α3 + 9
√

3α2 − √
3
)
νEp

2
(√

3 − 6α
) (

3α2(1 + ν)+ √
3α(2 − ν)+ 1 − 2ν

) , (179)

Aep =
(√

3 − 6α
)

E
[
2
(

3α2 + 2
√

3α + 1
)
(1 − ν)Ep −

(
4
(√

3 − 3α
)
α − 1

)
E
]

3
(√

3 − 6α
)

E
[
6α2(1 + ν)+ 1 − 2ν

]
− 2

(
9α2

(
2α + √

3
)

− √
3
)

Ep(1 + ν)(1 − 2ν)
,

(180)

Bep =
E
[(

36α3 − 9α + √
3
)

E + 2
(√

3 − 9α2
(

2α + √
3
))
νEp

]

3
(√

3 − 6α
)

E
[
6α2(1 + ν)+ 1 − 2ν

]
− 2

(
9α2

(
2α + √

3
)

− √
3
)

Ep(1 + ν)(1 − 2ν)

(181)

A substitution of (180), (181) and (169) into (158) and (159) provides the functions
φ1 and φ2. An example is shown in Fig. 9.

Remark 5. The functions φ1 and φ2 obtained in this section can be used only for
a deformation state close to the uniaxial deformation state. Thus, in the case of the
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Druker-Prager material, the two classic tests give different functions
φ j = φ j (J ε1 , J e

2 ) ( j = 1, 2) which ideally should be used only for deformation states
close to those where the functions have been evaluated. Thus, the question remains
open whether it is possible to evaluate the functions φ j = φ j (J ε1 , J e

2 ) ( j = 1, 2)
applicable for an arbitrary strain-stress state as this was in the case for the von Mises
criterion.

3.4 Plane Stress State

The two-dimensional plane stress case shown in Fig. 10 is commonly used for the
analysis of thin, flat plates loaded in the plane of the plate (x-y plane).

Under the plane stress conditions, i.e. σz = σxz = σyz = 0 and εxz = εyz = 0,
the following component equations can be extracted from Eq. (58):

σx = 2μ̃ εx + λ̃(εx + εy + εz) , (182)

σy = 2μ̃ εy + λ̃(εx + εy + εz) , (183)

0 = 2μ̃ εz + λ̃(εx + εy + εz) , (184)

σxy = 2μ̃ εxy . (185)

From Eq. (184) we get immediately that

εz = − λ̃

2μ̃+ λ̃
· (εx + εy

)
. (186)

The last equation can be rearranged to the following form:

εz = −m · (εx + εy
)

(187)

Fig. 10 Two-dimensional problem: plane stress state
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with

m = λ̃

2μ̃+ λ̃
= 3ν + (φ2 − φ1)E

3(1 − ν)+ (2φ1 + φ2)E
. (188)

Substituting Eq. (186) into Eqs. (182), (183) and (182) to eliminate εz , yields that the
generalized nonlinear equation (58) holds also for the plane stress state (index ‘pσ ’)
in the following notation:

(σi j )pσ = 2μ̃pσ (εi j )pσ + 3λ̃pσ εmδi j , (189)

where the generalized elasto-plastic constants for the plane stress case take the form:

μ̃pσ (φ2) = μ̃(φ2) , λ̃pσ (φ1, φ2) = 2μ̃̃λ

2μ̃+ λ̃
, ν̃pσ (φ1, φ2) = λ̃

2μ̃+ 3̃λ
. (190)

The parameter m defined in Eq. (188) takes in the new notation the form:

m = m(φ1, φ2) = 1

2
· λ̃pσ (φ1, φ2)

μ̃pσ (φ2)
. (191)

Using arguments similar to those in Sect. 2, one can obtain imperfect transmission
conditions in the form of Eq. (45) with the vectors of displacements and tractions
consisting of two respective components only.

3.5 Plane Strain State

The two-dimensional plane strain case shown in Fig. 11 is commonly used for the
analysis of elongated prismatic bodies of uniform cross section subjected to uniform
loading along their longitudinal axis (z-axis) but without any component in direction
of the z-axis (e.g. pressure p1 and p2 in Fig. 11), such as in the case of tunnels, soil
slopes, and retaining walls.

Under the conditions of plane strain, the stress components σyz and σxz are zero,
and Eq. (58) can be directly reduced to the form (index ‘pε’ for plane strain)

(σi j )pε = 2μ̃pε(εi j )pε + 3λ̃pεεmδi j , (192)

where εm = 1
3 (εx + εy). By imposing the plane strain condition εz = 0, we get from

Eq. (58)
σz = λ̃(φ1, φ2) · (εx + εy) . (193)

Then using arguments similar (identical) to those in Sect. 2, one obtains (45) with
vectors of displacements and tractions consisting of two components [25]:
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Fig. 11 Two-dimensional problem: plane strain state

[σx j x3 ] = 0, Fx j ([ux1], [ux3 ]) = σx j x3, j = 1, 3. (194)

4 Validation of the Transmission Conditions: Plane Strain Case

4.1 Description of the FEM Model

In order to exemplarily investigate and validate the transmission conditions given in
Sect. 2.3, a plane strain case is chosen as a benchmark problem. For the finite element
approach, the structure shown in Fig. 1 is represented as a two-dimensional mesh in
the x1-x3 plane. The specific geometrical dimensions are L1 = 10 mm, H = 1 mm
and 2h = 0.01 mm. The thickness L2 is not directly modeled in the case of a plane
mesh and only assigned as a geometric property to all elements (L2 = 1 mm). As
a result of the assigned numerical values to the geometric dimensions, the value
ε = 2h/H = 0.01 can be considered as the small parameter.

Let us furthermore assume that the outer material layers (+h ≤ x3 ≤ +H/2 ∨
−H/2 ≤ x3 ≤ −h, see Fig. 1) are made of the same common aluminum alloy
AlCuMg1 [29] where Young’s modulus is E (1) = 72700 MPa and Poisson’s ratio
is ν(1) = 0.34 and that these outer layers remain in the pure linear-elastic range.
Two different elasto-plastic interphases are considered: a linear hardening material
model and an elastic-perfectly plastic material. The following properties were taken
in the simulations. Elastic parameters of the interphases are the same: E (2) = 813
MPa, ν(2) = 0.3. In the plastic region which is appearing after reaching the initial
yield stress of value kinit,(2)

t = 50 MPa, the constant hardening modulus E (2)p = 81.3

MPa is prescribed for the hardening material and kt = kinit,(2)
t for the ideal plasticity
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case. Furthermore, it is assumed in both hardening cases that the material of the
interphase is obeying the von Mises yield condition and the associated flow rule. Let
us underline that all commercial FEM codes are based on the more general theory of
plastic flow [7, 14, 17]. As it has been mentioned above, the results with these models
(plastic flow and deformation theories) coincide only under monotonic or nearly
monotonic loading. Because of this, only monotonic external loading is applied in
the modeling approach (Dirichlet boundary condition at the top of the sample). For
the top surface, i.e. x3 = +H/2, two loading cases are distinguished in the following
simulations: A simple tensile load case with ux1(x1, H/2) = 0, ux3(x1, H/2) = vx3

and a combined load case with ux1(x1, H/2) = vx1 , ux3(x1, H/2) = vx3 , where
the vi are prescribed displacements in the range from 0 to 0.6 % of vi/H (hardening
interphase) or to 0.4 % of vi/H (ideal plasticity interphase), applied in 100 increments
(hardening interphase) or 200 increments (ideal plasticity interphase). The reduction
of the load steps is in the case the perfect plastic law in the plastic region advisable
in order to increase the accuracy of the calculation. The bottom surface is fixed in
all directions, i.e. ux1(x1,−H/2) = 0 and ux3(x1,−H/2) = 0.

A commercial finite element code (MSC.Marc, MSC Software Corporation, Santa
Ana, CA, USA) is used for the simulation of the mechanical behavior of the bima-
terial interphase whereat the two-dimensional FE mesh is built up of four-node,
isoparametric elements with bilinear interpolation functions. This element for plane
strain applications (element type 11 in MSC.Marc) has only two degrees of freedom
at each node, i.e. a displacement in the horizontal and vertical direction. In order to
cover all possible edge effects [26] (cf. Fig. 1, left (x1 → −L1/2) and right hand
side (x1 → +L1/2) of the interphase), a strong mesh refinement is performed in
these regions, Fig. 12.

The density of the elements along the interphase varies strongly from approx.
1 × 105 elements per mm near the free edges (x1 → ±L1/2) to 200 elements per
mm in the middle of the specimen (x1 → 0). Furthermore, the mesh is generated in
such a way that it is possible to evaluate the displacements and stresses along the axes
of symmetry (x1 = 0 ∨ x3 = 0), and along all the interfaces between the interphase
elasto-plastic material and the outer material layers (x3 = +h ∨ x3 = −h), as
well as along the lines parallel (x3 = const. ∧ −h < x3 < +h) and perpendicular
(x1 = const. ∧ −h < x3 < +h) to the interfaces and lying within the interphase
layer.

4.2 Evaluation of the Mechanical Values: Displacement, Stress
and Strain

For the case of the elasto-plastic interphase with hardening under the conditions of
simple tensile loading, distributions of all displacements and stress components in
direction perpendicular to the interface through the whole sample in its middle part
(along the line x1 = 0, cf. Fig. 2) are shown in Figs. 13 and 14. Results presented in



Transmission Conditions for Thin Elasto-Plastic Pressure-Dependent Interphases 239

mesh detail:  end of interphase

Fig. 12 Two-dimensional FE mesh: strong mesh refinement in the investigated area

Figs. 13a and 14a correspond to the elastic regime while Figs. 13b and 14b are valid
for the plastic deformation. As one can see stresses within the interface are constant
whereas the displacements are linear functions which completely coincides with the
theoretical predictions.

As a result, equivalent von Mises stress and the equivalent plastic strain do
not change within the interphase in direction perpendicular to its boundaries (for
a fixed x1). Its variation along the middle line of the elasto-plastic interphase is
presented for several increments in Fig. 14.

In the case of the hardening interphase under combined loading, the same par-
ticularities can be observed with respect to distributions of the displacements and
stresses inside the thin interphase and outside the interphase within the surround-
ing materials. In Fig. 16, the results concerning the von Mises stress and equivalent
plastic strain are presented in the same way as it has been done in Fig. 15. A slightly
different behavior can be observed which shows now the influence of the additional
secondary loading in the x1-direction.

In the case of the ideal plasticity interphase under simple loading, the results con-
cerning the behavior of the solution within the interphase in direction perpendicular
to the symmetry line x3 = 0 are similar to those shown in Figs. 13 and 14 at point
x1 = 0 and hold without any conceptual change, i.e. constant stresses and linear
displacements at each increment. Distributions of the equivalent von Mises stress
and the equivalent plastic strain along the middle line of the elasto-plastic interphase
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Fig. 13 Displacement distribution along x1 = 0 (cf. Fig. 2) for an elastic and plastic stage inside
the hardening interphase (hardening interphase case; simple tensile loading)

(x3 = 0) are presented for several increments in Fig. 17. One can clearly observe the
ideal plasticity plateau starting from a total deformation of vx3/H = 0.14%.

In the case of the ideal plasticity interphase under combined loading, we restrict
ourselves to show the same results as for the simple loading case. Respective equiv-
alent von Mises stress and equivalent plastic strain curves are presented in Fig. 18.
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Fig. 14 Stress distribution along x1 = 0 (cf. Fig. 2) for an elastic and plastic stage inside the
hardening interphase (hardening interphase case; simple tensile loading)

4.3 Validation of the First and Second Transmission Condition

4.3.1 Simple Tensile Loading and Hardening Law

Due to the symmetry of the loading and the sample geometry, two of the transmis-
sion conditions (194), i.e. [σx1x3] = 0 and Fx1([ux1], [ux3 ]) = σx1x3 , are satisfied
identically because of [ux1] = 0 and σx1x3 = 0 holds in this case. The remaining two
conditions [σx1x3] = 0 and Fx3(0, [ux3 ]) = σx3 have to be verified. The first one is
the same as in the case of the pure elastic imperfect interface [25], has the same order
of accuracy as discovered in [25] and is because of this of less interest in comparison
with the second one.
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Fig. 15 Distribution of equivalent stress and strain along x3 = 0 (cf. Fig. 2) for different levels of
deformation (hardening interphase case; simple tensile loading)

In Fig. 19a, comparisons of the left- and right-hand sides of the condition
Fx3(0, [ux3 ])= σx3 are presented. The traction is drawn by the solid line while the val-
ues of the left-hand side function in (194) is depicted by circles in several points. The
visible plastic zone appears in the middle of the interface at the 30th increment with
a deformation ratio of vx3/H = 0.18%. The accuracy of the evaluated transmission
condition (194) is in the same range as it has been checked for the pure elastic inter-
face [25]. Moreover, the region where the transmission conditions are valid does not
change practically regardless the interphase material is in the elastic or plastic region,
Fig. 19b. To highlight this fact, a magnification of the same functions as in Fig. 19a
is presented in Fig. 19b. The 1% accuracy criterion has been chosen to indicate the
validity regions for the transmission conditions. The regions are of 2–3 thickness of
the interphase. It is also important to note that the plastic zones appearing near the
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free edges are very small and are invisible in the scale of Fig. 19a. The zone where
the transmission conditions are not longer valid coincides more or less with the range
of the singularity dominated domains for the elastic interface [26] and becomes to
be smaller with accumulated plastic deformation.

4.3.2 Combined Loading and Hardening Law

The question of the validity of the transmission conditions is in the case o the com-
bined hardening much more interesting than in the case of the simple loading. Now
both of them are not trivial. Moreover, a second non-zero jump [ux1] is presented in
the functions Fx1 , Fx3 appearing in the transmission conditions (194). It is interesting
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to note that the validity region is at least not smaller than in the case of the simple ten-
sile loading. To manifest this, we present Fig. 20 where the same values are depicted
as in Fig. 19. The same accuracy for the evaluated transmission conditions arises for
the second transmission condition dealing with the jump [ux1]. We skip this picture
only because it cannot be compared with the case of the simple tensile loading. One
of the crucial points to underline is the fact that the stress-strain state of the 2D
bimaterial structure under consideration is not pure monotonic due to the definition
in [17]. Thus, it would be natural to expect a more essential difference between the
numerical model based on the plastic flow theory and the analytically predicted inter-
facial conditions based on the deformation theory in comparison with the accuracy
observed for the pure elastic interface. However, as it follows from the results pre-
sented in Figs. 19 and 20, the accuracy of the transmission conditions is much better
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deformation (ideal plasticity interphase case; combined loading)

than one can even expect due to the limitation of the deformation theory. However,
this is only true for a hardening interphase law. It will be shown in the following that
the results are slightly worse in the case of perfect plasticity. It should be noted here
that the outer material layers remained in the pure elastic regime at any stage of the
applied deformation.

4.3.3 Perfect Plasticity

The verification of the transmission condition (194) in this case is presented in Fig. 12.
Still very good agreement with the theoretical results can be observed over the whole
range of the interface.
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Fig. 19 Determination of the validity of the transmission condition for an elasto-plastic interphase
(hardening interphase case; simple tensile loading)

The verification of the validity of the transmission conditions for the combined
loading can be done based in Fig. 22. A very important difference in comparison with
the hardening law can be observed in the case of the ideal plasticity law. Namely,
the region where the transmission conditions are valid is smaller than that in the case
of the hardening plastic law (compare Figs. 19b and 20b) and this region essentially
depends on the level of plastic deformation (compare Figs. 21b and 22b). To clarify
the difference, some estimates of the zone ends have been presented in Table 1 for
the hardening and the ideal plasticity law for different levels of the deformation.
However, in both cases application of combined loading provided slightly better
results for the applicability of the transmission conditions. This is an important
result. First of all because a combined external loading is more frequent in technical
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applications. On the other hand, it shows that the worse accuracy appears in simple
loading cases which researchers usually apply for testing.

5 Discussions and Conclusions

The theoretical foundation for pressure-independent and pressure dependent trans-
mission conditions for thin elasto-plastic interphases has been provided within this
chapter. The high accuracy of the approach could be confirmed exemplarily on the
example of a plane strain case under consideration of the von Mises yield condition.
The future research work will concentrate on the corresponding derivations for the
plane stress case as well as the general three-dimensional case. Finally, the numerical
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Fig. 21 Determination of the validity of the transmission condition for an elasto-plastic interphase
(ideal plasticity interphase; simple tensile loading)

investigation of transmission conditions for pressure-sensitive yield conditions must
be performed to obtain a general understanding of the involved errors. This approach
allows to significantly simplify finite element computations for composite materials
with complex geometry with thin elasto-plastic interfaces (glues, adhesives) where
multi-scaled meshing and re-meshing make the computations too costly.
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Fig. 22 Determination of the validity of the transmission condition for an elasto-plastic interphase
(ideal plasticity interphase; combined loading)

Table 1 Validity of the transmission condition in terms of δ/(2h)

Hardening Deformation 0.12 % 0.22 % 0.6 %

Simple tensile 1.81 1.93 3.45
Combined loading 1.82 1.90 3.01

Ideal Deformation 0.1 % 0.16 % 0.4 %
Simple tensile 1.78 82.35 118.6
Combined loading 1.82 1.80 94.2
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Effect of Pressure-Dependency of the Yield
Criterion on the Strain Rate Intensity Factor

Sergei Alexandrov, Elena Lyamina and Yeau-Ren Jeng

Abstract In the case of several rigid plastic models, the equivalent strain rate
(quadratic invariant of the strain rate tensor) approaches infinity in the vicinity of
maximum friction surfaces. The strain rate intensity factor is the coefficient of the
leading singular term in a series expansion of the equivalent strain rate in the vicinity
of such surfaces. This coefficient controls the magnitude of the equivalent strain rate
in a narrow material layer near maximum friction surfaces. On the other hand, the
equivalent strain rate is involved in many conventional equations describing the evo-
lution of parameters characterizing material properties. Experimental data show that
a narrow layer in which material properties are quite different from those in the bulk
often appears in the vicinity of surfaces with high friction in metal forming processes.
This experimental fact is in qualitative agreement with the aforementioned evolution
equations involving the equivalent strain rate. However, when the maximum friction
law is adopted, direct use of such equations is impossible since the equivalent strain
rate in singular. A possible way to overcome this difficulty is to develop a new type
of evolution equations involving the strain rate intensity factor instead of the equiv-
alent strain rate. This approach is somewhat similar to the conventional approach
in the mechanics of cracks when fracture criteria from the strength of materials are
replaced with criteria based on the stress intensity factor in the vicinity of crack tips.
The development of the new approach requires a special experimental program to
establish relations between the magnitude of the strain rate intensity factor and the
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evolution of material properties in a narrow material layer near surfaces with high
friction as well as a theoretical method to deal with singular solutions for rigid plastic
solids. Since no numerical method has been yet developed to determine the strain
rate intensity factor, the present chapter focuses on analytical and semi-analytical
solutions from which the dependence of the strain rate intensity factor on process
and material parameters are found. In particular, the effect of pressure-dependency
of the yield criterion on the strain rate intensity factor is emphasized using the double
shearing model.

1 Introduction

In the case of rigid perfectly plastic solids, the maximum friction surfaces are defined
by the condition that the friction stress at sliding is equal to the shear yield stress of
the material [1]. In the case of planar flow, this definition is equivalent to the statement
that the maximum friction surface coincides with a characteristic or an envelope of
characteristics. The latter definition is naturally generalized on the double shearing
model [2]. A distinguished feature of maximum friction surfaces is that the second
invariant of the strain rate tensor (this quantity is also called the equivalent strain rate)
approaches infinity in the vicinity of such surfaces for several rigid plastic models
[1–5]. This theoretical feature of the solutions can be related to the formation of a
layer of intensive plastic deformation in the vicinity of frictional interfaces in real
metal forming processes [6–8], though no specific theory is available. Therefore,
it is of interest to understand the effect of material and process parameters on the
magnitude of the strain rate intensity factor. The traditional finite element method
cannot be used to find the strain rate intensity factor because it is the coefficient of
a singular term. The extended finite element method [9] is in general applicable in
this case but no specific code has been developed yet. Therefore, semi-analytical
solutions available in the literature are used in the present chapter to reveal the effect
of pressure-dependency of the yield criterion on the strain rate intensity factor. The
solutions for pressure-independent material are based on Tresca’s yield criterion and
its associated flow rule. The solutions for pressure-dependent material are based on
the double-shearing model [10].

2 Strain Rate Intensity Factor

The strain rate intensity factor has been previously introduced for several rigid plastic
models. Most of solutions in which the strain rate intensity factor appears are available
for the classical phenomenological theory of plasticity and the double shearing model.
The former is a model of pressure-independent plasticity. A great account on this
model is given in [11]. The double shearing model is a model of pressure-dependent
plasticity based on the Mohr-Coulomb yield criterion. This model is described in
detail in [10].
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The constitutive equations of the rigid perfectly plastic pressure-independent
model are a yield criterion and its associated flow rule. By assumption, the yield
criterion is independent of the first invariant of the stress tensor (or the hydrostatic
stress). Therefore, it can be represented by a locus in two-dimensional space, where
the second and third invariants of the stress tensor are taken as Cartesian coordi-
nates. The second invariant of the stress tensor is also called the equivalent stress,σeq .
A number of yield criteria independent of the hydrostatic stress (pressure-independent
yield criteria) have been proposed in the literature, though it is commonly accepted
that the criteria due to von Mises and Tresca are most representative of initial yielding
in isotropic, metallic materials [12]. The monograph [11] mainly deals with the von
Mises criterion. It is worthy of note that the formulation of plane strain problems
in dimensionless form is independent of the yield criterion chosen. In other words,
any plane strain solution for the von Mises criterion is the solution for any other
pressure-independent criterion. The model based on Tresca’s yield criterion under
conditions of axial symmetry is described in detail in [13, 14].

The constitutive equations of the double shearing model are the Mohr-Coulomb
yield criterion, the equation of incompressibility and the equation that connects
stresses and velocities. Extensions of this theory to include plastic volume change
are also available in the literature (see, for example, [15]) but they are not considered
in the present chapter. At a specific set of parameters, the double shearing model
reduces to the model of classical pressure-independent plasticity based on Tresca’s
yield criterion. Since the objective of the present chapter is to demonstrate the effect
of pressure-dependency of the yield criterion on the strain rate intensity factor, the
Tresca’s yield criterion will be used to determine the strain rate intensity factor in
axisymmetric problems for pressure-independent materials.

The strain rate intensity factor has been defined in [1] as the coefficient of the
leading singular term in a series expansion of the equivalent strain rate in the vicinity
of maximum friction surfaces. This work has been restricted to the classical pressure-
independent model. The term maximum friction surface is used to indicate that the
maximum friction law is adopted on that surface. The original formulation of the
maximum friction law for pressure-independent material is

τ f = τs (1)

at sliding. Here τ f is the friction stress and τs is the shear yield stress. It is worthy to
note that τs is constant for perfectly plastic materials. It is known from the general
theory (see, for example, [14]) that the equations of plane strain and axisymmetric
deformation are hyperbolic (in the latter case, Tresca’s yield criterion should be
adopted). Moreover, the characteristics for the stresses and the velocities coincide
and, therefore, there are only two distinct characteristic directions at a point. The
shear stress along the characteristic is equal to τs . Thus the boundary condition (1) is
equivalent to the statement that the friction surface coincides with a characteristic or
an envelope of characteristics. Let φ be the angle between the major principal stress
σ1 and the tangent to the friction surface, measured from the tangent anti-clockwise.
In the case of the model of pressure-independent plasticity the characteristics are
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(a) (b)

(c)

Fig. 1 Orientation of the characteristic directions relative to the tangent to friction surfaces.
a arbitrary friction surface. b maximum friction surface with φ > 0. c maximum friction surface
with φ < 0

inclined to the direction of σ1 at ±π/4. However, for later convenience it is assumed
here that this angle is ±γ. It is evident that the original case is obtained at γ = π/4.
The characteristic directions at a generic point, M , on an arbitrary friction surface
are illustrated in Fig. 1a. If the maximum friction law is valid on this surface then the
orientation of the characteristics becomes such as shown in Fig. 1b, c. It is evident
that φ = γ in Fig. 1b and φ = −γ in Fig. 1c. Therefore, since γ = π/4 in the case
under consideration, the boundary condition (1) is equivalent to

φ = ±π

4
(2)

at sliding.
The equations of the double sharing model are also hyperbolic [10]. Therefore,

the maximum friction law in the form of Eq. (2) can be extended to this model with no
difficulty. In particular, it has been shown in [10] that in the case of plane strain and
axisymmetric deformation γ = π/4 + ϕ/2 (Fig. 1). Here ϕ is the angle of internal
friction, a material constant. Eq. (2) transforms to

φ = ±
(π

4
+ ϕ

2

)
(3)

at sliding. The strain rate intensity factor for this model has been introduced in [2].
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When the maximum friction law is adopted, two qualitatively different options are
possible. A natural way to distinguish these options is to use the maximum friction
law in the form of Eqs. (2) and (3). Either of these equations is valid if the maximum
friction surface coincides with (i) a characteristic or (ii) an envelope of characteristics.
Option (i) imposes severe restrictions on the velocity field. In particular, the rate of
extension along the friction surface is zero in the case of plane strain deformation
of pressure-independent material. Therefore, in most cases Option (ii) occurs and it
will be assumed throughout this chapter.

In order to precisely define the strain rate intensity factor, it is necessary to intro-
duce the equivalent strain rate. The standard definition for this quantity involves the
equivalent stress and the rate of plastic work [11]. In this chapter, however, the equiv-
alent strain rate is understood as a pure kinematic quantity (the quadratic invariant
of the strain rate tensor) defined by

ξeq =
√

2

3
ξi jξi j , (4)

where ξi j are the components of the strain rate tensor. This definition coincides with
the standard definition for the von Mises yield criterion combined with its associated
flow rule. The equivalent strain rate approaches infinity in the vicinity of maximum
friction surfaces. In particular,

ξeq = D√
s

+ o

(
1√
s

)
as s → 0, (5)

where s is the normal distance to the friction surface and D is the strain rate inten-
sity factor. Under various assumptions concerning the pressure-independent yield
criterion and modes of deformation, this result has been obtained in [1, 16–20].
For materials obeying the double shearing model the asymptotic expansion (5) for
plane strain and axisymmetric flow has been found in [2, 21], respectively. Particular
solutions show that (5) is also satisfied for other rigid plastic models [3–5, 22–25].
Reviews of solutions for the strain rate intensity factor are given in [26, 27].

It is always possible to choose such a coordinate system that the normal strain
rates are bounded and one of the shear strain rates approaches infinity in the vicinity
of maximum friction surfaces. Denote this shear strain rate by ξτ . Then, it follows
from (4) and (5) that

|ξτ | =
√

3

2

D√
s

+ o

(
1√
s

)
as s → 0. (6)

In order to provide some insights into distinguished features of the maximum
friction law and material models leading to (5), this asymptotic expansion is below
derived for plane strain deformation of pressure-independent materials.

It is convenient to introduce a Cartesian coordinate system (x, y, z) whose z-axis
is orthogonal to planes of flow. Let σxx , σyy and σxy be the components of the stress
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tensor in this coordinate system. Then, any pressure-independent yield criterion can
be written in the form (

σxx − σyy
)2 + 4σ2

xy = 4τ2
s . (7)

The flow rule associated with this yield criterion is

ξxx = λ
(
σxx − σyy

)
, ξyy = λ

(
σyy − σxx

)
, ξxy = 2λσxy (8)

where ξxx , ξyy and ξxy are the components of the strain rate tensor in the Cartesian
coordinates and λ ≥ 0. Eliminating λ in (8) gives

ξxx + ξyy = 0,
ξxy

ξxx − ξyy
= σxy

σxx − σyy
. (9)

The first equation of this system is the equation of incompressibility. The strain rate
components are expressed through the velocity components, ux and uy , as

ξxx = ∂ux

∂x
, ξyy = ∂uy

∂y
, ξxy = 1

2

(
∂uy

∂x
+ ∂ux

∂y

)
. (10)

Substituting (10) into (9) yields

∂ux

∂x
+ ∂uy

∂y
= 0,

(
∂ux

∂y
+ ∂uy

∂x

) (
σxx − σyy

) = 2

(
∂ux

∂x
− ∂uy

∂y

)
σxy . (11)

The constitutive equations should be supplemented with the equilibrium equations

∂σxx

∂x
+ ∂σxy

∂y
= 0,

∂σxy

∂x
+ ∂σyy

∂y
= 0. (12)

The system of five Eqs. (7), (11) and (12) in the five unknowns σxx , σyy , σxy , ux , uy ,
is the basis for the calculation of the distribution of stress and velocity in the plastic
region. It is known that this system is hyperbolic [11]. The characteristic directions
make an angle of π/4 with the major principal stress direction. Let ψ be the angle
between the major principal stress σ1 and the x-axis, measured from the axis anti-
clockwise. Then, the orientation of the characteristic curves relative to the x-axis is
(Fig. 2)

φ1 = ψ − π

4
, φ2 = ψ + π

4
. (13)

Letω be a tool surface (curve in planes of flow) where the condition (2) is satisfied,
and consider Eqs. (7), (11) and (12) at an arbitrary point, M , on that surface. The
tool is regarded as fixed. The Cartesian coordinate system is taken to be situated
at M with the y-axis directed along the normal to ω, away from the rigid tool and
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Fig. 2 Orientation of the major principal stress and characteristic directions relative to the x-axis

towards the plastic material (Fig. 3). Since the condition (2) is equivalent to (1), in
this coordinate system

∣∣σxy
∣∣ = τs (14)

at M . Therefore, it follows from (7) that

σxx = σyy (15)

at M . Using (11)1 Eq. (11)2 can be rewritten as

(
∂ux

∂y
+ ∂uy

∂x

) (
σxx − σyy

) = 4
∂ux

∂x
σxy . (16)

Substituting (14) and (15) into (16) shows that it is necessary to examine the cases

∂ux

∂x
= 0 at y = 0 (17)

and ∣∣∣∣∂ux

∂y
+ ∂uy

∂x

∣∣∣∣→ ∞ as y → 0. (18)

It follows from (17) and the orientation of the x-axis (Fig. 3) that the rate of exten-
sion along the friction surface is zero. Since M is an arbitrary point on the friction
surface, this means that a characteristic curve coincides with the friction surface.
Such solutions have been excluded from consideration. Therefore, it is necessary to
assume that Eq. (18) is valid. In order to determine the asymptotic behaviour of the
velocity field in the vicinity of the friction surface, some additional assumptions are
necessary. In particular,
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Fig. 3 Orientation of the local
coordinate system at M

(i) Velocity components are bounded at M ,
(ii) In-surface derivatives of the velocity components are bounded at M ,

(iii) Solution can be represented by a power series in the vicinity of M .

With no loss of generality, it is possible to choose the direction of the x-axis such
that ξxy > 0 at M . In particular, its direction should coincide with the direction of
the velocity vector, u, of a material particle located at M at a given instant (Fig. 3).
In Fig. 3, n is the outer normal to the plastic material and τ f is the friction stress
applied to this material. Then, using assumptions (ii) and (iii) Eq. (18) transforms to

∂ux

∂y
= u1 y−α + o

(
y−α) as y → 0, (19)

where u1 may depend on x and u1 > 0. Integrating (19) yields

ux = u0 + u1

(1 − α)
y1−α + o

(
y1−α) as y → 0, (20)

where u0 may depend on x and u0 > 0. It follows from assumption (i) and (20) that

α < 1. (21)

On the other hand, (18) is satisfied if and only if α > 0 in (19). Combining this
inequality and (21) leads to

0 < α < 1. (22)

Using (20) Eq. (11)1 can be transformed to

du0

dx
+ y1−α

(1 − α)

du1

dx
+ ∂uy

∂y
+ o

(
y1−α) = 0 as y → 0. (23)

Integrating with the boundary condition uy = 0 for y = 0 (at point M) and taking
into account (22) gives

uy = −du0

dx
y + o (y) as y → 0. (24)
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Using (10), (20) and (24) the non-zero strain rate components can be represented as

ξxx = −ξyy = du0

dx
+ o (1) , ξxy = u1

2
y−α + o

(
y−α) as y → 0. (25)

It is worthy to note here that, by assumption, ξxx �= 0 (or du0
/

dx �= 0) and u1 �= 0
at M . Since ξxy > 0 by the choice of the coordinate system, it follows from (8)3 that
σxy > 0 as well. Therefore, using assumption (iii) the distribution of stresses in the
vicinity of the friction surface can be represented as

σxx = σ(0)xx + σ(1)xx yγ11 + o
(
yγ11
)
,

σyy = σ(0)yy + σ(1)yy yγ22 + o
(
yγ22
)
, (26)

σxy = σ(0)xy + σ(1)xy yγ12 + o
(
yγ12
)

as y → 0. Here σ(0)xx , σ(1)xx , σ(0)yy , σ(1)yy , σ(0)xy , and σ(1)xy can depend on x . Equations (14)
and (15) demand

σ(0)xx = σ(0)yy and σ(0)xy = τs (27)

at x = 0 (at point M). Substituting (19), (24) and (26) into (16) and using (27) yields

u1 y−α (σ(1)xx yγ11 − σ(1)yy yγ22
)

= 4
du0

dx
τs (28)

to leading order. Since the right hand side of this equation is O (1) as y → 0, it is
necessary to examine the cases

γ11 − α = 0 (29)

and
γ22 − α = 0. (30)

Substituting (26) into (12) gives

dσ(0)xx

dx
+ dσ(1)xx

dx
yγ11 + σ(1)xy γ12 yγ12−1 = 0, (31)

dσ(0)xy

dx
+ dσ(1)xy

dx
yγ12 + σ(1)yy γ22 yγ22−1 = 0

to leading order. Combining (30) and (31)2 yields α = 1 or γ12 = α−1. The former
contradicts (22). The latter combined with (22) leads to γ12 < 0. According to (26)
this inequality results in

∣∣σxy
∣∣→ ∞ as y → 0. Therefore, it is necessary to assume

that (29) is valid. Then, substituting (26) into (7) and using (27) yields

y2α
[
σ(1)xx − σ(1)yy y(γ22−1)

]2 + 4
[
τs + σ(1)xy yγ12

]2 = 4τ2
s (32)
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as y → 0. Using straight multiplication, Eq. (32) is simplified to

y2α
[
σ(1)xx

]2 + 8τsσ
(1)
xy yγ12 = 0 as y → 0. (33)

It follows from this equation that

2α = γ12. (34)

Substituting (29) and (34) into (31)1 shows that 2α − 1 = α or 2α − 1 = 0. The
former gives α = 1 and therefore contradicts (22). The latter results in

α = 1

2
. (35)

The asymptotic expansion (5) immediately follows from (4), (25) and (35).

3 Plane Strain Solutions for Pressure-Independent Material

3.1 Basic Equations

Section 3 is concerned with plane strain solutions for pressure-independent materials.
In this section, two coordinate systems will be used, namely a Cartesian coordinate
system (x, y, z) and a cylindrical coordinate system (r, θ, z). All the solutions
considered are independent of z. The constitutive equations in the Cartesian coor-
dinate system are (7) and (9). The orientation of the characteristic curves relative
to the x-axis is given by (13). The strain rate components ξzz , ξxz and ξyz as well
as the stress components σxz and σyz vanish. The non-zero strain rate components
are expressed through the velocity components according to (10). The equilibrium
equations are given by (12). The transformation equations for stress components in
xy-planes are (Fig. 2)

σxx = σ1 + σ2

2
+ τs cos 2ψ, σyy = σ1 + σ2

2
− τs cos 2ψ, σxy = τs sin 2ψ. (36)

It has been taken into account here that Eq. (7) in terms of the principal stresses σ1
and σ2 becomes

σ1 − σ2 = 2τs . (37)

Let σrr , σθθ, σzz , σr z , σzθ and σrθ be the components of the stress tensor in
the cylindrical coordinate system. The components σr z and σzθ vanish. The yield
criterion (7) transforms to
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(σrr − σθθ)
2 + 4σ2

rθ = 4τ2
s . (38)

Let ξrr , ξθθ, ξzz , ξr z , ξzθ and ξrθ be the components of the strain rate tensor in the
cylindrical coordinate system. The components ξzz , ξr z and ξzθ vanish. Equation (9)
become

ξrr + ξθθ = 0,
ξrθ

ξrr − ξθθ
= σrθ

σrr − σθθ
. (39)

Equation (13) is valid but ψ is to be understood as the angle between the major
principal stress σ1 and the r-axis, measured from the axis anti-clockwise (Fig. 4).
Thus the orientation of the characteristic directions relative to the r-axis is

φ1 = ψ − π

4
, φ2 = ψ + π

4
. (40)

The non-zero components of the strain rate tensor are

ξrr = ∂ur

∂r
, ξθθ = 1

r

(
∂uθ
∂θ

+ ur

)
, ξrθ = 1

2

(
∂uθ
∂r

− uθ
r

+ 1

r

∂ur

∂θ

)
, (41)

where ur and uθ are the radial and circumferential velocities, respectively. The equi-
librium equations are

∂σrr

∂r
+ 1

r

∂σrθ

∂r
+ σrr − σθθ

r
= 0,

∂σrθ

∂r
+ 1

r

∂σθθ

∂θ
+ 2σrθ

r
= 0. (42)

The transformation equations for stress components in rθ-planes are (Fig. 4)

σrr = σ1 + σ2

2
+ τs cos 2ψ, σθθ = σ1 + σ2

2
− τs cos 2ψ, σrθ = τs sin 2ψ. (43)

Here Eq. (37) has been taken into account.

Fig. 4 Orientation of the
major principal stress and
characteristic directions
relative to the r -axis
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3.2 Compression of a Plastic Layer Between Parallel Plates

Consider compression of a wide plastic layer between two parallel plates. An approx-
imate solution of this problem, known as Prandtl’s problem, can be found in any
monograph on plasticity theory (see, for example, [11]). The thickness of the layer
is 2H and its width is 2L . By assumption, H/L � 1. It is possible to choose the
Cartesian coordinate system such that its axes x and y coincide with the axes of
symmetry of the layer (Fig. 5). Therefore, it is sufficient to find the solution in the
domain 0 ≤ x ≤ L and 0 ≤ y ≤ H . The maximum friction law is valid at y = H .
The velocity boundary conditions are

uy = 0 (44)

at y = 0,
uy = −V (45)

at y = H and
ux = 0 (46)

at x = 0. Here V is the speed of the plate. The stress boundary conditions, in addition
to the friction law, are

σxy = 0 (47)

at y = 0, x = 0 and x = L and
σxx = 0 (48)

at x = L . The solution given in [11] ignores the boundary condition (47) at x = 0
and x = L . The boundary conditions (46) and (48) are replaced with the following
integral conditions

H∫
0

ux |x=0dy = 0 (49)

Fig. 5 Illustration of the
boundary value problem
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and
H∫

0

σxx |x=Ldy = 0, (50)

respectively. Under the assumptions formulated, the velocity field satisfying Eq. (9)
as well as the boundary conditions (44) and (45) is given by [11]

ux = V
x

H
+ 2V

[
1 −

( y

H

)2
]1/2

+ U, uy = −V
y

H
, (51)

where U is a constant of integration. Its value can be determined from the boundary
condition (49). However, it has no effect on the strain rate intensity factor and,
therefore, is not found here. It has been shown in [11] that the stress field used to
determine the value of the right hand side of (9)2 satisfies Eqs. (7) and (12) as well
as the boundary conditions (1) at y = H , (47) at y = 0 and (50). Using (10) the
components of the strain rate tensor are determined from (51). Then, the equivalent
strain rate is found from (4) as

ξeq = 2√
3

V√
H2 − y2

. (52)

In the case under consideration s = H − y. Therefore, Eq. (52) can be represented
in the form

ξeq =
√

2

3

V√
s
√

H
+ o

(
1√
s

)
as s → 0. (53)

Comparing (5) and (53) gives

D =
√

2

3

V√
H
. (54)

3.3 Flow of Plastic Material Through an Infinite Wedge-Shaped
Channel

This is also one of the classical problems of plasticity. Its solution used in this section
has been given in [11]. The process is illustrated in Fig. 6. Material flows to the line
of intersection of two plates. The plates are inclined to each other at an angle 2α. The
axis θ = 0 of the cylindrical coordinate system coincides with the axis of symmetry
of the flow. Therefore, it is sufficient to find the solution in the domain 0 ≤ θ ≤ α.
The maximum friction law is supposed at θ = α. The velocity boundary conditions
are
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Fig. 6 Illustration of the boundary value problem

uθ = 0 (55)

at θ = 0 and θ = α. The stress boundary condition, in addition to the friction law, is

σrθ = 0 (56)

at θ = 0. The velocity field satisfying Eq. (39) as well as the boundary conditions
(55) are

ur = − B

r (c − 2 cos 2ψ)
, uθ = 0, (57)

where B is proportional to the material flux, c can be determined numerically using
the maximum friction law and the boundary condition (56), and ψ is related to θ by
the following equation

cos 2ψ

(
dψ

dθ
+ 1

)
= c

2
(58)

whose solution is

θ = −ψ + c arctan

[(
c + 2

c − 2

)1/2

tanψ

](
c2 − 4

)−1/2
. (59)

It has been shown in [11] that the stress field used to determine the value of the
right hand side of (39)2 satisfies Eqs. (38) and (42).
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The maximum friction surface is determined by the equation θ = α. Therefore,
φ1 = 0 or φ2 = 0 in (40). In order to choose between these two options, it is
necessary to take into account that σrθ > 0 at θ = α (Fig. 6). Then, it is evident from
(43) that 0 < ψ < π/2 at θ = α. The equation φ2 = 0 contradicts this inequality.
Therefore, φ1 = 0 and ψ = π/4 at θ = α. The equation for c is obtained from (59)
at θ = α and ψ = π/4. The resulting equation has been solved numerically and its
solution is illustrated in Fig. 7. Using (41) the components of the strain rate tensor
are determined from (57). Then, the equivalent strain rate is found from (4) as

ξeq = 2√
3

B

r2 (c − 2 cos 2ψ) cos 2ψ
. (60)

Expanding the right hand side of this expression in a series near ψ = π/4 and
using (59) give

ξeq =
√

2B√
3r2c

√
c (α− θ)1/2

+ o
[
(α− θ)−1/2

]
as θ → α. (61)

Comparing (5) and (61) it is possible to conclude that the strain rate intensity
factor is

D =
√

2

3

B

(rc)3/2
. (62)

Let Q be the material flux per unit length. Then,

Q = −2

α∫
0

urrdθ. (63)

Substituting (57) into (63) and replacing integration with respect to θwith integration
with respect to ψ by means of (58) result in

Fig. 7 Variation of c with α
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Fig. 8 Variation of the
dimensionless strain rate
intensity factor with α

B = Q

4

⎡
⎣
π/4∫
0

cos 2ψ

(c − 2 cos 2ψ)2
dψ

⎤
⎦

−1

. (64)

Eliminating B in (62) by means of (64) shows that the strain rate intensity factor is
a linear function of Q. In order to reveal the effect of α on the strain rate intensity
factor, it is convenient to introduce its dimensionless representation by

d = Dr3/2

Q
. (65)

It follows from (62), (64) and (65) that

d = 1

2
√

6c3/2

⎡
⎣
π/4∫
0

cos 2ψ

(c − 2 cos 2ψ)2
dψ

⎤
⎦

−1

. (66)

Since the dependence of c on α has been found (Fig. 7), the variation of d with α is
immediately determined from (66). This dependence is illustrated in Fig. 8.

3.4 Compression of a Plastic Layer Between Cylindrical Surfaces

The boundary value problem is illustrated in Fig. 9. Its solution has been given in [28].
The outer surface of radius R2 is rigid and motionless whereas the inner surface of
current radius R1 expands. The rate of this expansion is Ṙ1. The solution is restricted
to instantaneous flow. It is natural to use the cylindrical coordinate system shown in
Fig. 9. The flow is symmetric with respect to the axis θ = 0. It is therefore sufficient
to obtain the solution in the region 0 ≤ θ ≤ θ0 where θ0 is the orientation of the
edge of the layer. The velocity boundary conditions are
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Fig. 9 Illustration of the
boundary value problem

ur = 0 at r = R2, (67)

ur = Ṙ1 at r = R1 (68)

and
uθ = 0 at θ = 0. (69)

The stress boundary conditions, in addition to the maximum friction law, are

σrθ = 0 at θ = 0 and θ = θ0, (70)

and
σθθ = 0 at θ = θ0. (71)

It is evident that the problem under consideration can be viewed as a generalization
of the Prandtl’s problem (Sect. 3.2). Therefore, the same assumptions are made. In
particular, end effects are neglected such that the solution is not valid in the vicinity
of θ = 0 and θ = θ0. Accordingly, the boundary conditions (70) are ignored, and
the boundary conditions (69) and (71) should be replaced with integral conditions.
On the other hand, the boundary conditions at r = R1 and r = R2 are exactly
satisfied. These boundary conditions include (67), (68) and the maximum friction
law at r = R1 and r = R2. Since the maximum friction law acts on both contact
surfaces, two strain rate intensity factors are obtained. The velocity field satisfying
Eqs. (39) as well as the boundary conditions (67) and (68) are [28]

ur

Ṙ1
= Ur (r) ,

uθ
Ṙ1

= −
(

r
dUr

dr
+ Ur

)
θ + Uθ (r) , (72)

where Ur (r) and Uθ (r) are functions of r given by
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Ur = R1
(
r2 − R2

2

)
r
(
R2

1 − R2
2

) ,

Uθ =
√

2R2[
R2

2 + R2
1 + (R2

2 − R2
1

)
sin 2ψ

]1/2 ×

×

⎧⎪⎨
⎪⎩u0 +

ψ∫
π/4

[
R2

2 + 3R2
1 + (R2

2 − R2
1

)
sin 2γ

]
sin 2γ[

R2
2 + R2

1 + (R2
2 − R2

1

)
sin 2γ

] dγ

⎫⎪⎬
⎪⎭ ,

where γ is a dummy variable of integration and ψ is related to r by the following
equation

sin 2ψ = 2R2
1 R2

2(
R2

2 − R2
1

)
r2

−
(
R2

2 + R2
1

)
(
R2

2 − R2
1

) . (73)

It has been shown in [28] that the stress field used to determine the value of the right
hand side of (39)2 satisfies Eqs. (38) and (42) as well as the boundary condition
(1) at r = R1 and r = R2. Using (41) the components of the strain rate tensor are
determined from (72) and (73) as

ξrr = −ξθθ = Ṙ1 R1
(
r2 + R2

2

)
(
R2

1 − R2
2

)
r2

, ξrθ = Ṙ1 R1
(
R2

2 + r2
)

(
R2

1 − R2
2

)
r2

tan2ψ.

Then, the equivalent strain rate is found from (4) as

ξeq = 2Ṙ1 R1
(
R2

2 + r2
)

√
3
(
R2

2 − R2
1

)
r2 cos 2ψ

. (74)

It has been assumed here that −π/4 ≤ ψ ≤ π/4. It follows from (73) that ψ = π/4
at r = R1 and ψ = −π/4 at r = R2. Eliminating in (74) the value of r by means of
(73) and expanding the right hand side of (74) in a series in the vicinity of ψ = π/4
(or r = R1) and ψ = −π/4 (or r = R2) gives

ξeq = Ṙ1
(
R2

2 + R2
1

)
√

3R1
(
R2

2 − R2
1

)
(π/4 − ψ)

+ o

[(π
4

− ψ
)−1
]

as ψ → π

4

ξeq = 2Ṙ1 R1√
3
(
R2

2 − R2
1

)
(ψ + π/4)

+ o

[(
ψ + π

4

)−1
]

as ψ → −π

4
.

(75)

On the other hand, Eq. (73) in the vicinity of the maximum friction surfaces is rep-
resented in the form



Effect of Pressure-Dependency of the Yield Criterion 271

π
4 − ψ =

√
2R2

√
r − R1√

R1
(
R2

2 − R2
1

) + o
(√

r − R1

)
as r → R1,

π
4 + ψ =

√
2R1

√
R2 − r√

R2
(
R2

2 − R2
1

) + o
(√

R2 − r
)

as r → R2.

(76)

Substituting (76) into (75) leads to

ξeq = Ṙ1
(
R2

2 + R2
1

)
√

6R2

√
R1
(
R2

2 − R2
1

)√
r − R1

+ o

(
1√

r − R1

)
, as r → R1

ξeq =
√

2

3

Ṙ1
√

R2√
R2

2 − R2
1

√
R2 − r

+ o

[
1√

R2 − r

]
as r → R2.

(77)

Comparing (5) and (77) it is possible to find that the strain rate intensity factors are

D1 = Ṙ1
(
1 + R2

1/R2
2

)
√

6
√

R1

√
1 − R2

1/R2
2

, D2 = 2Ṙ1√
6
√

R2

√
1 − R2

1

/
R2

2

. (78)

Here D1 corresponds to the maximum friction surface r = R1 and D2 to the maxi-
mum friction surface r = R2. It is convenient to represent the final result in the form
of the ratio D1/D2 because it is non-dimensional. It follows from (78) that

Δ = D1

D2
= 1 + R2

1/R2
2

2 (R1/R2)
1/2 .

The variation of Δ with R1/R2 is depicted in Fig. 10. It is seen from this figure
that Δ > 1 in the region R1/R2 < rcr and Δ < 1 in the region R1/R2 > rcr
where rcr ≈ 0.3. Using the hypothesis that the strain rate intensity factor controls
the formation of the layer of intensive plastic deformation in the vicinity of friction

Fig. 10 Variation of Δ with
the ratio of the radii
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surfaces [8], it is possible to conclude from these inequalities that the thickness of
this layer is larger near the friction surface r = R1 if R1/R2 < rcr, and it is larger
near the friction surface r = R2 if R1/R2 > rcr.

3.5 Compression of a Plastic Layer Between Rotating Plates I

The boundary value problem is illustrated in Fig. 11. Two semi-infinite rough plates
hinged together at their ends and inclined to each other at an angle 2α rotate towards
each other with angular velocity of magnitude ω about an axis O through the hinge.
The cylindrical coordinate system is taken with θ = 0 taken as the perpendicular
bisector of the angle 2α. Since θ = 0 is an axis of symmetry for the flow, it is
sufficient to find the solution in the region θ ≥ 0. By definition, ω is taken to be
positive for the clockwise rotation of the upper plate. The maximum friction law is
assumed at θ = α. The solution of this problem has been proposed in [29]. In fact, that
solution was given for tension of the layer and, moreover, a velocity discontinuity
surface appeared instead of the maximum friction surface in the problem under
consideration. However, since the model is pressure-independent, these distinctions
have no effect on the velocity field other than the sense of the velocity components.
Qualitative behavior of the solution depends on the value of α. In particular, the
solution exhibits sticking at the plates together with a rigid zone in the region adjacent
to the plates for α > π/4. In this case the velocity field is not singular and, therefore,
the solution is not of interest for the purpose of the present chapter. The sliding
regime of friction accompanied by a singular velocity field occurs for α < π/4. The
special case α = π/4 will be treated separately.

The velocity boundary conditions are

uθ = 0 at θ = 0 (79)

and

Fig. 11 Illustration of the
boundary value problem
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uθ = −ωr at θ = α. (80)

It is also assumed that there is no material flux through O . The stress boundary
condition, in addition to the maximum friction law, is

σrθ = 0 at θ = 0. (81)

The velocity field found in [29] is

ur = −ωr

2
(c − 2 cos 2ψ) , uθ = ωr sin 2ψ, (82)

where c is constant and ψ is related to θ by the following equation

dψ

dθ
= (c − 2 cos 2ψ)

2 cos 2ψ
. (83)

The constraints imposed on the flow demand ur > 0 and σrr ≥ σθθ. A consequence
of the former inequality is σrθ < 0 at θ = α. It follows from this inequality, the
inequality σrr ≥ σθθ and Eq. (43) that

− π

4
≤ ψ ≤ 0. (84)

Since the friction surface is determined by the equation θ = α, the maximum friction
law demands φ1 = 0 or φ2 = 0 in (40). Using (84) it is possible to conclude that
φ2 = 0 and, therefore, ψ = −π/4 for θ = α. The solution of Eq. (83) satisfying this
condition is

θ = α+ 2

ψ∫
−π/4

cos 2γdγ

(c − 2 cos 2γ)
, (85)

where γ is a dummy variable of integration. Substituting the condition ψ = −π/4
at θ = α into (82) also shows that the boundary condition (80) is satisfied. It follows
from (43), (81) and (84) thatψ = 0 at θ = 0. Therefore, the equation for c is obtained
from (85) in the form

α = −2

0∫
−π/4

cos 2γdγ

(c − 2 cos 2γ)
. (86)

Substituting the condition ψ = 0 at θ = 0 into (82) also shows that the boundary
condition (79) is satisfied. The variation of c with α found from (86) is depicted in
Fig. 12. Expanding the right hand site of (83) in a series in the vicinity of ψ = −π/4
gives
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Fig. 12 Variation of c with α

[
4

c

(
ψ + π

4

)
+ o

(
ψ + π

4

)]
dψ = dθ as ψ → −π

4
.

Integrating with the use of the boundary condition ψ = −π/4 for θ = α results in

ψ + π

4
=

√−c (α− θ)√
2

+ o
(√

α− θ
)

as θ → α. (87)

It is worthy to note here that c ≤ 0 (Fig. 12). The strain rate components are found
from (41), (82) and (83) as

ξrr = −ξθθ = −ω

2
(c − 2 cos 2ψ) , ξrθ = ω

2
tan 2ψ (c − 2 cos 2ψ) .

Then, it follows from (4) that

ξeq = ω√
3

(2 cos 2ψ − c)

cos 2ψ
. (88)

It has been taken into account there that c ≤ 0 (Fig. 12) and cos 2ψ ≥ 0 accord-
ing to (84). Using (87), Eq. (88) in the vicinity of the maximum friction surface is
represented as

ξeq = ω
√−c√

6
√
α− θ

+ o

[
1√
α− θ

]
as θ → α. (89)

Comparing (5) and (89) leads to the strain rate intensity factor in the form

D = ω

√−cr

6
. (90)

It follows from the solution that c vanishes at α = π/4. Then, it is evident from
(90) that the strain rate intensity factor vanishes at α = π/4. Therefore, the solution
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Fig. 13 Variation of the
dimensionless strain rate
intensity factor with α

is singular for 0 < α < π/4 and is not singular at α = π/4. The variation of
the dimensionless strain rate intensity factor defined by d = D/

(
ω
√

r
)

with α is
illustrated in Fig. 13.

3.6 Compression of a Plastic Layer Between Rotating Plates II

The statement of the boundary value problem solved in the previous section is now
slightly modified assuming that ur < 0. This change in the direction of the radial
velocity leads to the corresponding change in the direction of the friction stress
(Fig. 14). The boundary conditions (79), (80) and (81) are valid. The maximum
friction law is supposed at θ = α. As before, it is sufficient to find the solution in the
region θ ≥ 0. The stress boundary conditions coincide with those in Sect. 3.3. Since
ψ is solely determined from the stress equations, Eq. (58) is valid in the case under
consideration. The velocity field is sought in the form

Fig. 14 Illustration of the
boundary value problem
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ur = ωr

2

dg (ψ)

dθ
+ ω

G (ψ)

r
, uθ = −ωrg (ψ) , (91)

where g (ψ) and G (ψ) are arbitrary functions of ψ. It is possible to verify by inspec-
tion that the velocity field (91) automatically satisfies the incompressibility Eq. (39)1.
The inequality ur < 0 demands σrθ > 0 at θ = α. Therefore, it follows from
(43) that π/2 ≥ ψ ≥ 0. The constraints imposed on the flow demand σrr > σθθ.
A consequence of this inequality and (43) is π/4 ≥ ψ ≥ −π/4. Finally,

π

4
≥ ψ ≥ 0. (92)

Since the friction surface is determined by the equation θ = α, the maximum friction
law demands φ1 = 0 or φ2 = 0 in (40). Using (92) it is possible to conclude that
φ1 = 0 and, therefore, ψ = π/4 for θ = α. The same boundary condition was
used in Sect. 3.3. Therefore, the solution (59) of Eq. (58) is valid in the case under
consideration. The variation of c with α is depicted in Fig. 7.

Substituting (91) into (41) yields

ξrr = −ξθθ = ω

2

dg

dψ

dψ

dθ
− ωG

r2 ,

ξrθ = ω

4

d2g

dθ2 + ω

2r2

dG

dψ

dψ

dθ
= ω

4

[
d2g

dψ2

(
dψ

dθ

)2

+ dg

dψ

d2ψ

dθ2

]
+ ω

2r2

dG

dψ

dψ

dθ
.

Eliminating here dψ/dθ and d2ψ/dθ
2

by means of (58) gives

ξrr = − ξθθ = ω

4

(c − 2 cos 2ψ)

cos 2ψ

dg

dψ
− ωG

r2 ,

ξrθ = ω (c − 2 cos 2ψ)

16 cos2 2ψ

[
(c − 2 cos 2ψ)

d2g

dψ2 + 2c tan 2ψ
dg

dψ

]

+ ω

4r2

(c − 2 cos 2ψ)

cos 2ψ

dG

dψ
. (93)

Substituting (93) into (39)2 and eliminating stress components by means of (43)
result in

(c − 2 cos 2ψ)2

16 cos2 2ψ

(
d2g

dψ2 + 2 tan 2ψ
dg

dψ

)
+
[
(c − 2 cos 2ψ)

4 cos 2ψ

dG

dψ
+ G tan 2ψ

]
1

r2 = 0.

This equation may have a solution if and only if

cos 2ψ
d2g

dψ2 + 2 sin 2ψ
dg

dψ
= 0, (c − 2 cos 2ψ)

dG

dψ
+ 4G sin 2ψ = 0. (94)
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Using (91) and taking into account that ψ = 0 at θ = 0 and ψ = π/4 at θ = α the
boundary conditions (79) and (80) are transformed to

g = 0 (95)

at ψ = 0 and
g = 1 (96)

at ψ = π/4, respectively. The solution to (94)1 satisfying these boundary conditions
is

g = sin 2ψ. (97)

The general solution to (94)2 is

G = G0

c − 2 cos 2ψ
, (98)

where G0 is a constant of integration. In order to find its value, a boundary condition
in integral form similar to (49) should be prescribed. For example,

α∫
0

ur |r=R dθ = 0, (99)

where the value of R should be prescribed. Using (91) and taking into account (95)
and (96) the condition (99) is written in the form

1 + 2

R2

α∫
0

Gdθ = 0.

Replacing here integration with respect to θ with integration with respect to ψ by
means of (58) and using (98) yields

G0 = − R2

4

⎡
⎣
π/4∫
0

cos 2ψ

(c − 2 cos 2ψ)2
dψ

⎤
⎦

−1

. (100)

It follows from (93), (97) and (98) that

ξrr = −ξθθ = ω

2
(c − 2 cos 2ψ)− ωG0

r2 (c − 2 cos 2ψ)
,

ξrθ = ω

2 cos 2ψ

[
(c − 2 cos 2ψ) sin 2ψ − 2G0

r2

sin 2ψ

(c − 2 cos 2ψ)

]
.

(101)
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It is evident that the normal strain rates are bounded and |ξrθ| → ∞ as ψ → π/4.
Therefore, Eq. (6) in which ξτ is replaced with ξrθ is valid. Using (101) the shear
strain rate in the vicinity of the friction surface is represented as

ξrθ = ωc

4 (π/4 − ψ)

[
1 − 2G0

r2c2

]
+ o

(
1

π/4 − ψ

)
as ψ → π

4
. (102)

Equation (58) transforms to

dθ

dψ
= 4

c

(π
4

− ψ
)

+ o
(π

4
− ψ

)
as ψ → π

4
.

Integrating with the boundary condition θ = α at ψ = π/4 gives

α− θ = 2

c

(π
4

− ψ
)2 + o

[(π
4

− ψ
)2
]

as ψ → π

4
. (103)

Replacing π/4 − ψ in (102) with α− θ by means of (103) results in

ξrθ = ω
√

2c

4
√
α− θ

(
1 − 2G0

r2c2

)
+ o

(
1√
α− θ

)
as θ → α. (104)

It is seen from Fig. 7 that c > 2 and from Eq. (100) that G0 < 0. Therefore, ξrθ > 0.
Then, combining (6) and (104) gives

D = ω
√

c
√

r√
6

(
1 − 2G0

r2c2

)
. (105)

Since the dependence of c on α is known (Fig. 7), it follows from (100) that the
dimensionless strain rate intensity factor defined by d = D/

(
ω
√

r
)

depends on α
and the ratio r/R. Its variation with r/R at several values of α is depicted in Fig. 15
(curve 1 corresponds to α = π/36, curve 2 to α = π/18, curve 3 to α = π/12, curve
4 to α = π/9, and curve 5 to α = π/6). In the solution for compression of a plastic
layer between parallel plates (see Sect. 3.2) a rigid zone appears at the center of the
layer [11]. The length of this zone at the friction surface is of order of the thickness
of the layer. By analogy to this solution it is reasonable to assume that there is a rigid
zone near the cross-section r = R and that its length at the friction surface is equal
to Rα. The solution found is not valid in the rigid zone. Therefore, the right ends of
the curves in Fig. 15 are determined by the equation r/R = 1 − α. The dependence
of d on α at several values of r/R is illustrated in Fig. 16 (curve 1 corresponds to
r/R = 0.4, curve 2 to r/R = 0.3, curve 3 to r/R = 0.25, and curve 4 to r/R = 0.2).
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Fig. 15 Variation of the dimensionless strain rate intensity factor with r/R at several α- values

Fig. 16 Variation of the dimensionless strain rate intensity factor with α at several r/R- values

3.7 Simultaneous Shearing and Expansion of a Hollow Cylinder

The boundary value problem considered in this section consists of a planar defor-
mation comprising the simultaneous shearing and expansion of a hollow cylinder
(Fig. 17). The internal and external radii of the cylinder are denoted by a and b,
respectively. It is convenient to use the cylindrical coordinates whose z-axis coin-
cides the axis of the cylinder. In this coordinate system, the internal surface of the
cylinder is determined by the equation r = a and the external surface by the equation
r = b. The deformation of the cylinder is caused by an expanding and rotating rod
inserted into its hole. The radius of the rod is a and the rate of its expansion is ȧ. The
angular velocity of the rod is ω and its direction is shown in Fig. 17. The external
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Fig. 17 Illustration of the
boundary value problem

radius of the cylinder is fixed against rotation. Therefore, the velocity boundary
conditions are

ur = ȧ (106)

for r = a and
uθ = 0 (107)

for r = b. One of the stress boundary conditions is σrr = −pa < 0 for r = a. pa is
given, but its value has no effect of the strain rate intensity factor. The final boundary
condition is the maximum friction law at r = a. In general, two different regimes
may be identified at this boundary, sticking and sliding. However, the velocity field is
singular if and only if the regime of sliding occurs. Therefore, the solution considered
in this section is restricted to this regime. The general solution is provided in [30].
The direction of ω requires σrθ > 0. On the other hand, it is evident that σrr < σθθ.
Therefore, it follows from (43) that

π

4
≤ ψ <

π

2
. (108)

The maximum friction surface is orthogonal to the r-axis. Therefore, the maximum
friction law demands φ1 = π/2 or φ2 = π/2 at r = a. Comparing (40) and (108)
gives

ψ = π

4
(109)

for r = a.
The solution satisfying Eqs. (38), (39) and (42) as well as the boundary conditions

formulated has been given in [30]. The regime of sliding when (109) is valid requires

ωa > ȧ

√
1 − a4

b4 .
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The velocity field in the case of sliding is

ur = ȧa

r
, uθ = − ȧr

a

⎛
⎝
√

1 − a4

b4 −
√

1 − a4

r4

⎞
⎠ . (110)

Substituting (110) into (41) leads to

ξrr = −ξθθ = − ȧa

r2 , ξrθ = ȧa3

r4

(
1 − a4

r4

)−1/2

.

Then, the equivalent strain rate follows from (4) as

ξeq = 2√
3

ȧa√
r4 − a4

.

Expanding the right hand side of this equation is a series in the vicinity of the surface
r = a gives

ξeq = ȧ√
3
√

a
√

r − a
+ o

(
1√

r − a

)
as r → a. (111)

It follows from (5) and (111) that the strain rate intensity factor is

D = ȧ√
3
√

a
. (112)

4 Axisymmetric Solutions for Pressure-Independent Material

4.1 Basic Equations

Section 4 is concerned with axisymmetric solutions for pressure-independent mater-
ial. In this section, two coordinate systems will be used, namely a cylindrical coordi-
nate system (r, θ, z) and a spherical coordinate system (r, θ, ϑ). The solutions in the
cylindrical coordinate system are independent of θ and the solutions in the spherical
coordinate system are independent of ϑ. Let σ1, σ2 and σ3 be the principal stresses.
Then, Tresca’s yield criterion adopted in this section can be written in the form

|σ1 − σ2| ≤ 2τs, |σ2 − σ3| ≤ 2τs, |σ3 − σ1| ≤ 2τs . (113)

This yield criterion is represented by a regular hexagonal prism in a three-dimensional
space where the principal stresses are taken as Cartesian coordinates. The cross-
section of this prism by the plane σ1 + σ2 + σ3 = 0 is shown in Fig. 18. It is seen
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Fig. 18 Tresca’s yield locus

from this figure that the yield surface is singular. Therefore, various plastic regimes
can in general arise. However, of particular interest are those corresponding to edges
of the yield surface (corners in Fig. 18). The circumferential stress is one of the
principal stresses. It is possible to assume that σ3 is the circumferential stress. It is
also possible to assume, with no loss of generality, that σ1 ≥ σ2. The case σ1 = σ2
is not considered here. Therefore, σ1 > σ2 and Eqs. (113) reduce to

σ1 − σ2 = 2τs, σ1 − σ3 = 2τs (114)

or
σ1 − σ2 = 2τs, σ3 − σ2 = 2τs . (115)

Equations (114) correspond to point A and Eq. (115) to point B (Fig. 18).
Let σrr , σθθ, σzz , σr z , σzθ and σrθ be the components of the stress tensor, and ξrr ,

ξθθ , ξzz , ξr z , ξzθ and ξrθ be the components of the strain rate tensor in the cylindrical
coordinate system. In the case under consideration, ξrθ = ξzθ = 0, σrθ = σzθ = 0
and the circumferential velocity uθ = 0. The non-zero strain rate components are
expressed through the velocity components, ur and uz , as

ξrr = ∂ur

∂r
, ξθθ = ur

r
, ξzz = ∂uz

∂z
, ξr z = 1

2

(
∂ur

∂z
+ ∂uz

∂r

)
. (116)

The equilibrium equations are

∂σrr

∂r
+ ∂σr z

∂z
+ σrr − σθθ

r
= 0,

∂σr z

∂r
+ ∂σzz

∂z
+ σr z

r
= 0. (117)

Taking into account (114) or (115) the transformation equations for stress components
in rz-planes are represented as

σrr = 1

2
(σ1 + σ2)+ τs cos 2ψ, σzz = 1

2
(σ1 + σ2)− τs cos 2ψ, (118)

σr z = τs sin 2ψ,
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Fig. 19 Orientation of the
major principal stress and
characteristic directions
relative to the r -axis of cylin-
drical coordinates

where ψ is the orientation of the principal stress σ1 relative to the r -axis (Fig. 19).
These equations show that σrr + σzz = σ1 + σ2. Then, it follows from Eqs. (114)
and (115) that

σ3 = σθθ = 1

2
(σrr + σzz)+ ετs, (119)

where ε can take the values ±1. It is evident that ε = −1 corresponds to point A and
ε = +1 to point B (Fig. 18).

The flow rule associated with the yield criterion (114) or (115) leads to the equa-
tion of incompressibility and the isotropy condition. Using (116) the equation of
incompressibility ξrr + ξθθ + ξzz = 0 is transformed to

∂ur

∂r
+ ur

r
+ ∂uz

∂z
= 0. (120)

The isotropy condition is

σr z

(σrr − σzz)
= ξr z

(ξrr − ξzz)
.

Substituting (118) into this equation gives

2ξr z

(ξrr − ξzz)
= tan 2ψ. (121)

The conditions that an element of the material shall be in a state of stress corre-
sponding to points A and B (Fig. 18) are that the associated velocity field satisfies
the inequalities

εur ≥ 0, (ξrr − ξzz)
2 + 4ξ2

r z ≥ u2
r

r2 . (122)

It is known (see, for example, [14]) that the characteristic directions make angles
±π/4 with the direction of the principal stress σ1. Therefore (Fig. 19),
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φ1 = ψ − π

4
, φ2 = ψ + π

4
(123)

where φ1 and φ2 are the angles between the characteristic directions and the r -axis.
Let σrr , σθθ, σϑϑ, σrϑ, σϑθ and σrθ be the components of the stress tensor, and ξrr ,

ξθθ, ξϑϑ, ξrϑ, ξϑθ and ξrθ be the components of the strain rate tensor in the spherical
coordinate system. In the case under consideration, ξrϑ = ξϑθ = 0, σrϑ = σϑθ = 0
and the circumferential velocity uϑ = 0. The non-zero strain rate components are
expressed through the velocity components, ur and uθ, as

ξrr = ∂ur

∂r
, ξθθ = 1

r

(
∂uθ
∂θ

+ ur

)
,

ξϑϑ = 1

r sin θ
(ur sin θ + uθ cos θ) , ξrθ = 1

2

(
∂uθ
∂r

− uθ
r

+ 1

r

∂ur

∂θ

)
. (124)

The equilibrium equations are

∂σrr

∂r
+ 1

r

∂σrθ

∂θ
+ (2σrr − σθθ − σϑϑ + σrθ cot θ)

r
= 0, (125)

∂σrθ

∂r
+ 1

r

∂σθθ

∂θ
+ (σθθ − σϑϑ) cot θ + 3σrθ

r
= 0.

Taking into account (114) or (115) the transformation equations for stress components
in rθ-planes are represented as

σrr = 1

2
(σ1 + σ2)+ τs cos 2ψ, σθθ = 1

2
(σ1 + σ2)− τs cos 2ψ, (126)

σrθ = τs sin 2ψ,

where ψ is the orientation of the principal stress σ1 relative to the r -axis (Fig. 20).
These equations show that σrr + σθθ = σ1 + σ2. Then, it follows from Eqs. (114)
and (115) that

σ3 = σϑϑ = 1

2
(σrr + σθθ)+ ετs . (127)

As before, ε = −1 corresponds to point A and ε = +1 to point B (Fig. 18).
Using (124) the equation of incompressibility, ξrr + ξθθ + ξϑϑ = 0, is transformed

to
∂ur

∂r
+ 1

r

(
∂uθ
∂θ

+ ur

)
+ 1

r sin θ
(ur sin θ + uθ cos θ) = 0. (128)

Using (126) the isotropy condition, σrθ(ξrr − ξθθ) = (σrr − σθθ)ξrθ, is written as

2ξrθ

(ξrr − ξθθ)
= tan 2ψ. (129)
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Fig. 20 Orientation of the major stress and characteristic directions relative to the r -axis of spherical
coordinates

The inequalities (122) in the spherical coordinate system become

ε (ur sin θ + uθ cos θ) ≥ 0, (ξrr − ξθθ)
2 + 4ξ2

rθ ≥ (ur sin θ + uθ cos θ)2

r2 sin2 θ
. (130)

Since the characteristic directions make angles ±π/4 with the direction of the
principal stress σ1, it is seen from Fig. 20 that

φ1 = ψ − π

4
, φ2 = ψ + π

4
, (131)

where φ1 and φ2 are the angles between the characteristic directions and the r -axis.

4.2 Compression of a Hollow Cylinder on a Rigid Fibre

The boundary value problem is illustrated in Fig. 21. An axisymmetric hollow cylin-
der of internal radius a and external radius b is subject to compression by pressure p
uniformly distributed over its outer surface. The length of the cylinder is 2L . A rigid
fibre of radius a is inserted into the hole of the cylinder. The cylindrical coordinate
system is chosen such that the plane z = 0 coincides with the plane of symmetry
of the cylinder. Then, it is sufficient to find the solution in the domain 0 ≤ z ≤ L .
Symmetry demands

uz = 0 (132)

and
σr z = 0 (133)



286 S. Alexandrov et al.

Fig. 21 Illustration of the
boundary value problem

0

r

z

a

b

ff

2Lp p

for z = 0. Since the fibre is rigid,
ur = 0 (134)

for r = a. The rate of contraction of the external radius of the cylinder is denoted
by U . Then,

ur = −U (135)

for r = b. The surface z = L is traction free. Therefore,

σr z = 0 (136)

and
σzz = 0 (137)

for z = L . By assumption, the surface r = b is free of shear stress. Then,

σr z = 0 (138)

for r = b. The final boundary condition is the maximum friction law at r = a. The
direction of the friction stress is shown in Fig. 21. Therefore, the maximum friction
law becomes

σr z = τs (139)

for r = a. The boundary value problem defined is an axisymmetric analogue to the
problem considered in Sect. 3.2. Its approximate solution proposed in [31] ignores
the boundary conditions (133) and (136). The boundary conditions (132) and (137)
are replaced with the following integral conditions
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b∫
a

uz |z=0 rdr = 0 (140)

and
b∫

a

σzz|z=L rdr = 0, (141)

respectively. Thus the solution is not valid in the vicinity of z = 0 and z = L .
The velocity field proposed in [31] is

ur

U
= −b

(
r2 − a2

)
r
(
b2 − a2

) , (142)

uz

U
= b(

b2 − a2
)
⎡
⎣2z +

∫ (
3r2 + a2

)
f (r)

r2
√

1 − f (r)2
dr

⎤
⎦+ K , f (r) = a

(
b2 − r2

)
r
(
b2 − a2

) .

Here K is the constant of integration. Its value can be found by means of the boundary
condition (140). However, it is not necessary for determining the strain rate intensity
factor. It is possible to verify by inspection that the velocity field (142) satisfies the
equation of incompressibility (120). It has been shown in [31] that the velocity field
also satisfies the inequalities (122) if ε = −1. Then, the associated state of stress
must correspond to point A (Fig. 18). Such a stress field satisfying Eqs. (114), (117),
(119) and (121) as well as the boundary conditions (138), (139) and (141) has been
found in [31]. Substituting (142) into (116) yields

ξrr = −Ub
(
r2 + a2

)
r2
(
b2 − a2

) , ξθθ = −Ub
(
r2 − a2

)
r2
(
b2 − a2

) , ξzz = 2Ub(
b2 − a2

) , (143)

ξr z = Ub
(
3r2 + a2

)
f (r)

2
(
b2 − a2

)
r2
√

1 − f (r)2
.

Since f (a) = 1, it is evident that the normal strain rates are bounded and ξr z → ∞
as r → a. Therefore, Eq. (6) in which ξτ is replaced with ξr z is valid. Eliminating
the function f (r) in (143) by means of (142) the shear strain rate in the vicinity of
the maximum friction surface r = a is represented as

ξr z =
√

2Ub
√

a√
b4 − a4

√
r − a

+ o

(
1√

r − a

)
as r → a. (144)

Combining (6) and (144) gives
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Fig. 22 Variation of the
dimensionless strain rate
intensity factor with the ratio
a/b

D = 2
√

2Ub
√

a√
3
√

b4 − a4
. (145)

It is convenient to introduce the dimensionless strain rate intensity factor by

d = D
√

b/U.

Then, it follows from (145) that

d = 2
√

2a√
3b

(
1 − b4

a4

)−1/2

. (146)

The variation of d with a/b is shown in Fig. 22.

4.3 Flow of Plastic Material Through an Converging Conical
Channel

Consider a converging conical channel (total angle 2α) through which plastic material
is being forced (Fig. 23). The material flows to the virtual apex O . The origin of the
spherical coordinate system is taken at O and the surface of the channel is determined
by the equation θ = α. The maximum friction law is supposed at θ = α. The direction
of friction stresses τ f is dictated by the direction of flow (Fig. 23). The solution used
in this section has been proposed in [32]. The velocity boundary conditions are

uθ = 0 (147)

at θ = 0 and θ = α. The stress boundary condition, in addition to the maximum
friction law, is

σrθ = 0 (148)
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Fig. 23 Illustration of the
boundary value problem

rf

O

f

at θ = 0. It is assumed in [32] that uθ = 0 everywhere. Then, the boundary conditions
(147) are automatically satisfied. In the case of Tresca’s yield criterion the radial
velocity is given by [32]

ur = − B

r2 exp

⎡
⎣−3

θ∫
α

t√
1 − t2

dγ

⎤
⎦ , (149)

where B is proportional to the material flux, t is a function of θ and γ is a dummy
variable of integration. The function t (θ) is determined by the following equation

dt

dθ
+ t cot θ + 3

√
1 − t2 = c, (150)

where c is a constant of integration. The physical meaning of the function t (θ) is
that σrθ = τs t (θ). Therefore, it follows from (148) and the maximum friction law
(1) that

t = 0 (151)

at θ = 0 and
t = 1 (152)

at θ = α. It is convenient to introduce the following substitution

t = cosμ. (153)
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Then, Eq. (150) transforms to

− sin μ
dμ

dθ
+ cosμ cot θ + 3 sin μ = c (154)

and the boundary conditions (151) and (152) to

μ = π

2
at θ = 0 (155)

and
μ = 0 at θ = α, (156)

respectively. It is seen from (155) that the second term in (154) reduces to the expres-
sion 0 · ∞ at θ = 0. Assume that

μ = π

2
+ a1θ + o (θ) as θ → 0. (157)

Substituting (157) into (154) it is possible to express a1 in terms of c. Then, (157)
becomes

μ = π

2
+ (3 − c)

2
θ + o (θ) as θ → 0. (158)

Since the coefficient of the derivative in (154) vanishes at θ = α, it is convenient to
rewrite this equation as

dθ

dμ
= sinμ

3 sin μ+ cosμ cot θ − c
. (159)

Using (158) the function θ (μ) is represented as

θ = 2

(c − 3)

(π
2

− μ
)

+ o
(π

2
− μ
)

as μ → π

2
. (160)

It follows from this equation that

θa = 2δa

(c − 3)
(161)

to leading order. Here δa = π/2 − μa << 1. Using the boundary condition θ = θa

for μ = μa at some value of c Eq. (159) can be solved numerically in the range
0 ≤ μ ≤ μa . Then, an iterative procedure should be adopted to find the value of
c satisfying the boundary condition (156). The variation of c with α is depicted in
Fig. 24. It has been shown in [32] that there exists a distribution of the normal stresses
associated with the velocity field considered and the solution of Eq. (159) found. The
state of stresses corresponds to point A of the yield surface (Fig. 18) and satisfies the
equilibrium Eq. (125).
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Fig. 24 Variation of c with α

Using (153) Eq. (149) transforms to

ur = − B

r2 exp

⎡
⎣−3

θ∫
α

cot μdγ

⎤
⎦ . (162)

The components of the strain rate tensor are determined from (124). It is evident that
the normal strain rates are bounded and ξrθ → ∞ as θ → α. Therefore, Eq. (6) in
which ξτ is replaced with ξrθ is valid. Using (124) and (162) the shear strain rate in
the vicinity of the maximum friction surface θ = α is represented as

ξrθ = U

r3μ
−1 + o

(
μ−1
)

as μ → 0, (163)

where

U = 3B

2
exp

⎛
⎝3

α∫
0

cot μdθ

⎞
⎠ . (164)

Equation (159) in the vicinity of the friction surface θ = α can be written as

dθ

dμ
= μ

cot α− c
as θ → α.

Integrating with the boundary condition (156) yields

μ = √
c − cot α

√
α− θ + o

(√
α− θ

)
as θ → α. (165)

Substituting (165) into (163) gives

ξrθ = U

r3
√

c − cot α
√
α− θ

+ o

(
1√
α− θ

)
as θ → α. (166)
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Comparing (6) and (166) shows that

D = 2√
3

U√
c − cot α

r−5/2. (167)

The material flux is defined by

Q = −2π

α∫
0

urr2 sin θdθ. (168)

Substituting (162) into (168) gives

Q = 2πB

α∫
0

exp

⎡
⎣−3

θ∫
α

cot μdγ

⎤
⎦ sin θdθ. (169)

It is convenient to introduce the dimensionless strain rate intensity factor as

d = Dr5/2

Q
. (170)

Then, it follows from (164), (167), (169), and (170) that

d =
√

3

2π
√

c − cot α
exp

⎛
⎝3

α∫
0

cot μdθ

⎞
⎠
⎧⎨
⎩

α∫
0

exp

⎡
⎣3

α∫
θ

cot μdγ

⎤
⎦ sin θdθ

⎫⎬
⎭

−1

.

(171)
Using the solution of Eq. (159) along with the value of c found (Fig. 24) the integrals
involved in this equation can be evaluated. As a result, the variation of d with α is
obtained. This variation is illustrated in Fig. 25.

4.4 Radial Flow Between Two Conical Surfaces

Consider radial flow between two conical surfaces shown in Fig. 26. The material
flows to the virtual apex O . The origin of the spherical coordinate system is taken at
O and the surfaces of the channel are determined by the equations θ = θ0 and θ = θ1.
The maximum friction law is supposed at both θ = θ0 and θ = θ1. The direction of
friction stresses τ f is dictated by the direction of flow (Fig. 26). A solution to this
problem for the von Mises yield criterion has been proposed in [33]. It was based on
the general solution given in [32] where the solution for the Tresca yield criterion
considered in the previous section was also proposed. The latter will be adopted in
the present section to describe radial flow between two conical surfaces.
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Fig. 25 Variation of the
dimensionless strain rate
intensity factor with α

Fig. 26 Illustration of the
boundary value problem

The velocity boundary conditions are

uθ = 0 at θ = θ0 and θ = θ1. (172)

Therefore, the assumption that uθ = 0 everywhere adopted in the previous section
is applicable in the case under consideration. Then, the radial velocity is given by
(149). Using (153) this equation is transformed to (162). Equations (154) and (159)
are valid. However, the boundary conditions (155) and (156) are replaced with

μ = π at θ = θ0 (173)

and
μ = 0 at θ = θ1. (174)
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Fig. 27 Variation of c with
Δθ

θ

Solving Eq. (159) along with the boundary conditions (173) and (174) numerically
gives the dependence of c on θ0 and θ1. The variation of c with Δθ = θ1 − θ0 at
several values of θ0 in the range π/36 ≤ θ0 ≤ π/4 is depicted in Fig. 27. It is seen
from this figure that the value of c is practically independent of θ0 and θ1 separately
(no difference between the curves is visible in the figure). Equation (162) is replaced
with

ur = − B

r2 exp

⎡
⎢⎣−3

θ∫
θ0

cot μdγ

⎤
⎥⎦ . (175)

The components of the strain rate tensor are determined from (124). It is evident
that the normal strain rates are bounded and |ξrθ| → ∞ as θ → θ0 and θ → θ1.
Therefore, Eq. (6) in which ξτ is replaced with ξrθ is valid. Using (124) and (175) the
shear strain rate in the vicinity of the maximum friction surfaces θ = θ1 and θ = θ0
is represented as

ξrθ = U

r3μ
−1 + o

(
μ−1
)

as μ → 0 (176)

and

ξrθ = − 3B

2r3 (π − μ)−1 + o
[
(π − μ)−1

]
as μ → π, (177)

respectively. Here

U = 3B

2
exp

⎛
⎜⎝−3

θ1∫
θ0

cot μdθ

⎞
⎟⎠ . (178)

Using (173) and (174) Eq. (154) in the vicinity of points μ = 0 and μ = π can be
represented as

dμ

dθ
= cot θ0 + c

μ− π
+ o

[
(μ− π)−1

]
as μ → π (179)
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and
dμ

dθ
= cot θ1 − c

μ
+ o

(
1

μ

)
as μ → 0. (180)

Integrating (179) and (180) with the use of the boundary conditions (173) and (174)
yields

π − μ = √2 (cot θ0 + c)
√
θ − θ0 + o

(√
θ − θ0

)
as θ → θ0 (181)

and
μ = √2 (c − cot θ1)

√
θ1 − θ + o

(√
θ1 − θ

)
as θ → θ1. (182)

Substituting (181) into (177) and (182) into (176) gives

ξrθ = − 3B

2r3
√

2 (cot θ0 + c)
√
θ − θ0

+ o

(
1√
θ − θ0

)
as θ → θ0 (183)

and

ξrθ = U

r3
√

2 (c − cot θ1)
√
θ1 − θ

+ o

(
1√
θ1 − θ

)
as θ → θ1, (184)

respectively. Comparing (6) with (183) and (184) gives

Din =
√

3√
2

B√
cot θ0 + c

r−5/2 (185)

and

Dex =
√

2√
3

U√
c − cot θ1

r−5/2. (186)

Here Din is the strain rate intensity factor related to the inner friction surface θ = θ0
and Dex is the strain rate intensity factor related to the outer friction surface θ = θ1.

The material flux is defined by

Q = −2π

θ1∫
θ0

urr2 sin θdθ. (187)
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Substituting (175) into (187) gives

Q = 2πB

θ1∫
θ0

exp

⎡
⎢⎣−3

θ∫
θ0

cot μdγ

⎤
⎥⎦ sin θdθ. (188)

As before, it is convenient to introduce the dimensionless strain rate intensity factor
by Eq. (170). Then, it follows from (170), (178), (185), (186), and (188) that

din =
√

6

4π
√

cot θ0 + c

⎧⎪⎨
⎪⎩

θ1∫
θ0

exp

⎡
⎢⎣−3

θ∫
θ0

cot μdγ

⎤
⎥⎦ sin θdθ

⎫⎪⎬
⎪⎭

−1

(189)

and

dex =
√

6

4π
√

c − cot θ1
exp

⎛
⎜⎝−3

θ1∫
θ0

cot μdθ

⎞
⎟⎠
⎧⎪⎨
⎪⎩

θ1∫
θ0

exp

⎡
⎢⎣−3

θ∫
θ0

cot μdγ

⎤
⎥⎦ sin θdθ

⎫⎪⎬
⎪⎭

−1

.

(190)
Using (159) the integrals involved in these equations are represented as

θ1∫
θ0

cot μdθ = −
π∫

0

cosμ

(3 sin μ+ cosμ cot θ − c)
dμ,

θ1∫
θ0

exp

⎡
⎢⎣−3

θ∫
θ0

cot μdγ

⎤
⎥⎦ sin θdθ

= −
π∫

0

exp

⎡
⎣3

π∫
μ

cos γ

(3 sin γ + cos γ cot θ − c)
dγ

⎤
⎦ sin θ sin μ

(3 sin μ+ cosμ cot θ − c)
dμ.

Using the solution of Eq. (159) along with the value of c found (Fig. 27) these integrals
can be evaluated. As a result, the variation of din and dex with θ0 and θ1 is obtained. As
before, it is convenient to use the parameters θ0 andΔθ instead of θ0 and θ1. Figures 28
and 29 illustrate the dependence of din and dex onΔθ at several values of θ0. It is also
of great interest to understand the variation of the ratio dr = dex/din = Dex/Din

with process parameters. Its dependence on Δθ at several values of θ0 is illustrated
in Fig. 30. In Figs. 28, 29 and 30, curve 1 corresponds to θ0 = π/36, curve 2 to
θ0 = π/18, curve 3 to θ0 = π/9, curve 4 to θ0 = π/6, and curve 5 to θ0 = π/4.
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Fig. 28 Variation of the dimensionless strain rate intensity factor din withΔθ at several θ0-values

Fig. 29 Variation of the dimensionless strain rate intensity factor dex withΔθ at several θ0-values

Fig. 30 Variation of the ratio of the strain rate intensity factors with Δθ at several θ0-values
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5 Plane Strain Solutions for the Double-Shearing Model

5.1 Basic Equations

Section 5 is concerned with plane strain solutions for the double-shearing model.
In this section, two coordinate systems will be used, namely a Cartesian coordinate
system (x, y, z) and a cylindrical coordinate system (r, θ, z). All the solutions con-
sidered are independent of z. The principal stress coinciding with the stress σzz is
denoted by σ3. The constitutive equations in terms of stress and strain rate have been
given in [10, 34]. In particular, the Coulomb-Mohr yield criterion is

q − p sinϕ = k cosϕ (191)

where k is the cohesion and

p = −σ1 + σ2

2
, q = σ1 − σ2

2
> 0. (192)

Using the transformation equations for stress components in xy-planes and (192) the
stress components in the Cartesian coordinates are expressed as (Fig. 2)

σxx = −p + q cos 2ψ, σyy = −p − q cos 2ψ, σxy = q sin 2ψ. (193)

It follows from these equations that

p = −σxx + σyy

2
, q = 1

2

√(
σxx − σyy

)2 + 4σ2
xy . (194)

It is seen from this equation that the yield criterion (191) reduces to the pressure-
independent yield criterion (7) atϕ = 0 assuming that τs = k. The velocity equations
are

ξxx +ξyy = 0, 2ξxy cos 2ψ− (ξxx − ξyy
)

sin 2ψ+2 sinϕ
(
ωxy + ψ̇

) = 0, (195)

where ωxy is the component of spin relative to the Cartesian coordinates. By defini-
tion,

ωxy = 1

2

(
∂ux

∂y
− ∂uy

∂x

)
, ψ̇ = ∂ψ

∂t
+ ux

∂ψ

∂x
+ uy

∂ψ

∂y
, (196)

where ∂ψ/∂t is the derivative of ψ at a point which is fixed relative to the Cartesian
coordinates. Equation (195)1 coincides with (9)1. Using (193) to eliminate ψ Eq.
(195)2 is reduced to (9)2 at ϕ = 0. Substituting (10) and (196)1 into (195) yields
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∂ux

∂x
+ ∂uy

∂y
= 0,

(cos 2ψ + sinϕ)
∂ux

∂y
+ (cos 2ψ − sinϕ)

∂uy

∂x
(197)

−
(
∂ux

∂x
− ∂uy

∂y

)
sin 2ψ + 2 sinϕψ̇ = 0.

The constitutive equations should be supplemented with the equilibrium Eq. (12).
It is known that the resulting system is hyperbolic [34]. The stress and velocity
characteristics coincide. The orientation of the characteristic curves relative to the
x-axis is

φ1 = ψ − π

4
− ϕ

2
, φ2 = ψ + π

4
+ ϕ

2
. (198)

Figure 2 can serve as a geometric interpretation of these relations if π/4 is replaced
with π/4 + ϕ/2.

Similar equations are valid in the cylindrical coordinates. In particular,

σrr = −p + q cos 2ψ, σθθ = −p − q cos 2ψ, σrθ = q sin 2ψ, (199)

where

p = −σrr + σθθ

2
, q = 1

2

√
(σrr − σθθ)

2 + 4σ2
rθ. (200)

As before, ψ is now understood as the orientation of the stress σ1 relative to the
r -axis (Fig. 4). The velocity equations are

ξrr + ξθθ = 0, 2ξrθ cos 2ψ − (ξrr − ξθθ) sin 2ψ + 2 sinϕ
(
ωrθ + ψ̇

) = 0, (201)

where

ωrθ = 1

2

(
∂ur

r∂θ
− ∂uθ

∂r
− uθ

r

)
, ψ̇ = ∂ψ

∂t
+ ur

∂ψ

∂r
+ uθ

r

∂ψ

∂θ
. (202)

Substituting (41) and (202)1 into (201) yields

r
∂ur

∂r
+ ∂uθ

∂θ
+ ur = 0,

(cos 2ψ − sinϕ)
∂uθ
∂r

+
(
∂ur

r∂θ
− uθ

r

)
(cos 2ψ + sinϕ) (203)

−
(
∂ur

∂r
− ∂uθ

r∂θ
− ur

r

)
sin 2ψ + 2 sinϕψ̇ = 0.

The constitutive equations should be supplemented with the equilibrium Eq. (42).
The orientation of the characteristic curves relative to the r -axis is given by the
following equations similar to (198)
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φ1 = ψ − π

4
− ϕ

2
, φ2 = ψ + π

4
+ ϕ

2
. (204)

Figure 4 can serve as a geometric interpretation of these relations if π/4 is replaced
with π/4 + ϕ/2.

5.2 Compression of a Plastic Layer Between Parallel Plates

This boundary value problem has been formulated and solved for pressure-indepen-
dent material in Sect. 3.2 (see Fig. 5). An extension of this solution to the double
shearing model has been proposed in [35]. In particular, the velocity field is given by

ux

V
= x

H
− cos 2ψ

A
+ U,

uy

V
= − y

H
, (205)

where U and A are constants of integration and ψ is related to y by the following
equation

(sin φ+ cos 2ψ)
dψ

dy
= A

H
. (206)

The value of U is not essential for determining the strain rate intensity factor. It is
evident that the distribution of uy in (205) satisfies the boundary conditions (44) and
(45). The maximum friction surface is determined by the equation y = H . Therefore,
φ1 = 0 or φ2 = 0 at y = H in (198). The direction of the friction stress (Fig. 5)
dictates that σxy < 0 at y = H . Therefore, it follows from (193) that −π/2 < ψ < 0
at y = H . Equation φ1 = 0 contradicts this inequality. Therefore, φ2 = 0 and

ψ = ψw = −π

4
− ϕ

2
(207)

at y = H . On the other hand, it is reasonable to assume that σxx > σyy at y = 0.
Then, taking into account the boundary condition (47) at y = 0 and (193) it is
possible to conclude that

ψ = 0 (208)

at y = 0. Integrating (206) with the use of the boundary condition (207) results in

2A
( y

H
− 1
)

= 2 sinϕ
(
ψ + π

4
+ ϕ

2

)
+ sin 2ψ + cosϕ. (209)

Substituting the boundary condition (208) into this solution determines A as

A = − sinϕ
(π

4
+ ϕ

2

)
− cosϕ

2
. (210)
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Eliminating A in (206) by means of (210) it is possible to represent the resulting
equation in the vicinity of the friction surface as

dψ

dy
= − tanϕ (π + 2ϕ)+ 2

8H (ψ − ψw)
+ o

[
(ψ − ψw)

−1
]

as ψ → ψw. (211)

Integrating with the use of the boundary condition ψ = ψw at y = H yields

(ψ − ψw)
2 = [tanϕ (π + 2ϕ)+ 2]

4H
(H − y)+ o (H − y) as y → H. (212)

Substituting (205) into (10) and using (206) give

ξxx = V

H
, ξyy = − V

H
, ξxy = V

H

sin 2ψ

(sinϕ+ cos 2ψ)
. (213)

Substituting (213) into (4) and expanding in a series in the vicinity of ψ = ψw yield

ξeq = 2√
3

V

H

√
1 + sin2 2ψ

(sinϕ+ cos 2ψ)2

= V√
3H (ψ − ψw)

+ o
[
(ψ − ψw)

−1
]

as ψ → ψw.

(214)

Combining (212) and (214) gives

ξeq = 2V√
3H [tanϕ (π + 2ϕ)+ 2]

√
H − y

+ o

(
1√

H − y

)
as y → H. (215)

It follows from (5) and (215) that

D = 2V√
3H [tanϕ (π + 2ϕ)+ 2]

. (216)

The strain rate intensity factor given by (54) is recovered from (216) at ϕ = 0. In
order to demonstrate the effect of pressure-dependency of the yield criterion on the
strain rate intensity factor, it is convenient to introduce the dimensionless strain rate
intensity factor, d, as the ratio of the strain rate intensity factor given by (216) to the
strain rate intensity factor given by (54). As a result,

d =
√

2√
tanϕ (π + 2ϕ)+ 2

. (217)

The variation of d with ϕ is depicted in Fig. 31. It is seen from this figure that the
strain rate intensity factor decreases as the value of ϕ increases.
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Fig. 31 Variation of the
dimensionless strain rate
intensity factor with ϕ

5.3 Flow of Plastic Material Through an Infinite Wedge-Shaped
Channel

This boundary value problem has been formulated and solved for pressure-indepen-
dent material in Sect. 3.3 (see Fig. 6). An extension of this solution to the double
shearing model has been proposed in [36]. In particular, the velocity field is given by

ur = − B

r (cos 2ψ + sinϕ− c)
, uθ = 0, (218)

where B and c are constants of integration and ψ is related to θ by the following
equation

(sinϕ+ cos 2ψ)

(
dψ

dθ
+ 1

)
= c. (219)

It is evident that the distribution of uθ in (218) satisfies the boundary condition (55)
at θ = 0 and θ = α. The maximum friction surface is determined by the equation
θ = α. Therefore, φ1 = 0 or φ2 = 0 in (204). The direction of the friction stress
(Fig. 6) dictates that σrθ > 0 at θ = α. The equation φ2 = 0 contradicts this
inequality. Therefore, φ1 = 0 and

ψ = ψw = π

4
+ ϕ

2
(220)

at θ = α. On the other hand, it is reasonable to assume that σrr > σθθ at θ = 0. Then,
taking into account the boundary condition (56) and (199) it is possible to conclude
that

ψ = 0 (221)

at θ = 0. The solution to Eq. (219) satisfying the boundary condition (220) is
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θ = α−
ψw∫
ψ

(sinϕ+ cos 2γ)

(c − sinϕ− cos 2γ)
dγ. (222)

Here γ is a dummy variable of integration. Substituting the boundary condition (221)
into the solution (222) gives the following equation for c

α =
ψw∫
0

(sinϕ+ cos 2γ)

(c − sinϕ− cos 2γ)
dγ. (223)

This equation has been solved numerically. The variation of c with α for several
ϕ-values is shown in Fig. 32. The broken line corresponds to ϕ = 0 (pressure-
independent material), curve 1 to ϕ = 0.1, curve 2 to ϕ = 0.2, and curve 3 to
ϕ = 0.3. Equation (219) in the vicinity of the maximum friction surface is repre-
sented as

dψ

dθ
= c

2 cosϕ (ψw − ψ)
+ o

[
(ψw − ψ)−1

]
as ψ → ψw. (224)

Integrating with the use of the boundary condition (220) yields

ψw − ψ =
(

c

cosϕ

)1/2

(α− θ)1/2 + o
[
(α− θ)1/2

]
as θ → α. (225)

It has been taken into account here that c > 0 (Fig. 32). The shear strain rate is
determined from (41), (218) and (219) as

Fig. 32 Variation of c with α at several ϕ-values
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ξrθ = B sin 2ψ

r2 (sinϕ+ cos 2ψ) (cos 2ψ + sinϕ− c)
. (226)

It is evident that the normal strain rates are bounded and ξrθ → ∞ as ψ → ψw.
Therefore, Eq. (6) in which ξτ is replaced with ξrθ is valid. Expanding the right hand
side of (225) in a series in the vicinity of ψ = ψw gives

ξrθ = − B

2cr2 (ψw − ψ)
+ o

[
(ψw − ψ)−1

]
as ψ → ψw. (227)

Combining (225) and (227) leads to

ξrθ = − B
√

cosϕ

2c3/2r2 (α− θ)1/2
+ o

[
(α− θ)−1/2

]
as θ → α. (228)

Comparing (6) and (228) shows that

D = − B
√

cosϕ√
3 (cr)3/2

. (229)

Substituting (218) into (63) and using (219) yields

B = − Q

2

⎡
⎢⎣
ψw∫
0

(sinϕ+ cos 2ψ)

(cos 2ψ + sinϕ− c)2
dψ

⎤
⎥⎦

−1

. (230)

Since c has been found (Fig. 32), the integral here can be evaluated. Eliminating B in
(229) by means of (230) shows that the strain rate intensity factor is a linear function
of Q. In order to reveal the effect of α and ϕ on the strain rate intensity factor, it is
convenient to introduce the dimensionless strain rate intensity factor, d, as the ratio
of the strain rate intensity factor given by (229) to the strain rate intensity factor given
by (62). The variation of d with α at several ϕ-values is depicted in Fig. 33. In this
figure, curve 1 corresponds to ϕ = 0.1, curve 2 to ϕ = 0.15, curve 3 to ϕ = 0.2,
curve 4 to ϕ = 0.25, and curve 5 to ϕ = 0.3. It is seen from this figure that the
strain rate intensity factor at ϕ �= 0 is smaller than the strain rate intensity factor for
pressure-independent material in the entire range of parameters used in this study.

5.4 Compression of a Plastic Layer Between Cylindrical Surfaces

This boundary value problem has been formulated and solved for pressure-indepen-
dent material in Sect. 3.4 (see Fig. 10). An extension of this solution to the double
shearing model has been proposed in [37]. Let ψw be the value of ψ at r = R1 and
ψ f be the value of ψ at r = R2. The direction of flow in the region θ > 0 demands
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Fig. 33 Variation of the dimensionless strain rate intensity factor with α at several ϕ-values

σrθ > 0 in the vicinity of the surface r = R1 and σrθ < 0 in the vicinity of the
surface r = R2. Then, it follows from (199) that

0 < ψw <
π

2
and

π

2
< ψ f < π. (231)

The maximum friction surfaces are orthogonal to the r -axis. Therefore, φ1 = π/2
or φ2 = π/2 in (198). The condition φ1 = π/2 contradicts (231) for ψw, and the
condition φ2 = π/2 contradicts (231) for ψ f . Therefore,

ψ = ψw = π

4
− ϕ

2
for r = R1 (232)

and

ψ = ψ f = 3π

4
+ ϕ

2
for r = R2. (233)

It is seen from (232) and (233) that ψ is independent of θ at the maximum friction
surfaces. Therefore, a natural assumption to find an approximate solution is that ψ
is independent of θ. In this case substituting (199) into (42) and eliminating p by
means of (191) result in

(cos 2ψ sinϕ− 1)

sinϕ

∂ ln q

∂r
+ sin 2ψ

∂ ln q

r∂θ

− 2 sin 2ψ
dψ

dr
+ 2 cos 2ψ

r
= 0, (234)

− (cos 2ψ sinϕ+ 1)

sinϕ

∂ ln q

r∂θ
+ sin 2ψ

∂ ln q

∂r
+ 2 cos 2ψ

dψ

dr
+ 2 sin 2ψ

r
= 0.

Eliminating the derivative ∂ ln q/∂r between these two equations gives
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− cosϕ cot ϕ
∂ ln q

r∂θ
+ 2 (cos 2ψ − sinϕ)

dψ

dr
+ 2 sin 2ψ

r
= 0. (235)

Since ψ is independent of θ, the first term of this equation must be independent of θ
as well. It is possible if and only if

ln
(q

k

)
= 2c tanϕ

cosϕ
θ + Q (ψ) (236)

and

r (cos 2ψ − sin φ)
dψ

dr
= c − sin 2ψ. (237)

Here c is constant and Q (ψ) is an arbitrary function of ψ. The function Q (ψ) has
no effect on the strain rate intensity factor. Therefore, Eq. (236) is not considered in
the present chapter. The solution for the function Q (ψ) is given in [37]. Equation
(237) can be integrated in elementary functions. It is however more convenient to
represent its solution satisfying the boundary condition (232) in the form

ln
r

R1
=

ψ∫
ψw

(cos 2γ − sinϕ)

(c − sin 2γ)
dγ. (238)

Here γ is a dummy variable of integration. Substituting the boundary condition (233)
into (238) leads to the following equation for c

ln
R2

R1
=

ψ f∫
ψw

(cos 2γ − sinϕ)

(c − sin 2γ)
dγ. (239)

Numerical solution to this equation is illustrated in Fig. 34. The broken line corre-
sponds to ϕ = 0 (pressure-independent material), curve 1 to ϕ = 0.1, curve 2 to
ϕ = 0.2, and curve 3 to ϕ = 0.3.

The main assumption concerning the velocity field is that the radial velocity
is independent of θ. Since ψ is also independent of θ, the radial velocity can be
represented as

ur = Ṙ1v (ψ) , (240)

where v(ψ) is an arbitrary function of ψ. It follows from (67), (68), (232) and (233)
that the function v(ψ) must satisfy the conditions

v = 0 at ψ = ψ f (or r = R2) (241)

and
v = 1 at ψ = ψw (or r = R1). (242)
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Substituting (240) into (203)1 and taking into account that v(ψ) is independent of θ
yields

∂uθ
Ṙ1∂θ

= −d (rν)

dr
. (243)

The right hand side of this equation is independent of θ. Therefore, integrating (243)
gives

uθ
Ṙ1

= −θd (rν)

dr
+ V (ψ) , (244)

where V (ψ) is an arbitrary function of ψ.
A distinguished feature of the present solution, as compared to the solutions given

in Sects. 5.2 and 5.3, is that ψ̇ �= 0. In particular, substituting (237) and (240) into
(202)2 and taking into account that ∂ψ/∂θ = 0 and ∂ψ/∂t = Ṙ1∂ψ/∂R1 gives

ψ̇

Ṙ1
= ∂ψ

∂R1
+ v (c − sin 2ψ)

r (cos 2ψ − sinϕ)
. (245)

In order to find the derivative ∂ψ/∂R1, it is necessary to differentiate (238). Since
ψw is constant, one gets

dψ = (c − sin 2ψ)

r (cos 2ψ − sinϕ)
dr + (c − sin 2ψ)

(cos 2ψ − sinϕ)

⎡
⎢⎣ dc

d R1

ψ∫
ψw

(cos 2γ − sinϕ)

(c − sin 2γ)2
dγ − 1

R1

⎤
⎥⎦d R1.

It follows from this equation that

∂ψ

∂R1
= (c − sin 2ψ)

(cos 2ψ − sinϕ)

⎡
⎢⎣ dc

d R1

ψ∫
ψw

(cos 2γ − sinϕ)

(c − sin 2γ)2
dγ − 1

R1

⎤
⎥⎦ . (246)

In order to find the derivative dc/d R1, it is necessary to differentiate (239). Since
ψw, ψ f and R2 are constant, one gets

dc

d R1
= 1

R1

⎡
⎢⎣
ψ f∫
ψw

(cos 2γ − sinϕ)

(c − sin 2γ)2
dγ

⎤
⎥⎦

−1

. (247)

Substituting (247) into (246) gives

∂ψ

∂R1
= (c − sin 2ψ)

R1 (cos 2ψ − sinϕ)

⎡
⎢⎣
ψ f∫
ψw

(cos 2γ − sinϕ)

(c − sin 2γ)2
dγ

⎤
⎥⎦

−1⎡
⎢⎣
ψ∫

ψw

(cos 2γ − sinϕ)

(c − sin 2γ)2
dγ − 1

⎤
⎥⎦ .

(248)
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Using (240), (243) and (244) Eq. (203)2 transforms to

θ

[
−r (cos 2ψ − sinϕ)

d2 (rv)

dr2 + (cos 2ψ + sinϕ)
d (rv)

dr

]

+ r (cos 2ψ − sinϕ)
dV

dr
+ 2

[
v − d (rv)

dr

]
sin 2ψ

− (cos 2ψ + sinϕ) V + 2r ψ̇

Ṙ1
sinϕ = 0. (249)

Since ψ, ψ̇, v and V are independent of θ, this equation may have a solution if and
only if

r (cos 2ψ − sinϕ)
d2 (rv)

dr2 − (cos 2ψ + sinϕ)
d (rv)

dr
= 0

r (cos 2ψ − sinϕ)
dV

dr
− (cos 2ψ + sinϕ) V (250)

+ 2

[
v − d (rv)

dr

]
sin 2ψ + 2r ψ̇

Ṙ1
sinϕ = 0.

Introduce the following notation Y (ψ) = d (rv)/dr . Then, Eq. (244)1 transforms to

r (cos 2ψ − sinϕ)
dY

dψ

dψ

dr
− (cos 2ψ + sinϕ) Y = 0. (251)

Eliminating in this equation the derivative dψ/dr by means of (237) and integrating
yields

Y = d (rv)

dr
= Y0 exp

⎡
⎢⎣

ψ∫
ψw

(cos 2γ + sinϕ)

(c − sin 2γ)
dγ

⎤
⎥⎦ . (252)

Here Y0 is a constant of integration. Replacing integration with respect to r with
integration with respect to ψ in (252) by means of (237) and integrating with the
boundary condition (242) result in

v (ψ) = R1

r

⎛
⎜⎝Y0

ψ∫
ψw

exp

⎡
⎢⎣

η∫
ψw

(cos 2γ + sinϕ)

(c − sin 2γ)
dγ

⎤
⎥⎦ (cos 2η − sinϕ)

(c − sin 2η)

r

R1
dη + 1

⎞
⎟⎠ .

(253)
Here η is a dummy variable of integration. The value of Y0 is determined from the
solution (253) and the boundary condition (241) as
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Y0 = −

⎧⎪⎨
⎪⎩

ψ f∫
ψw

exp

⎡
⎢⎣

η∫
ψw

(cos 2γ + sinϕ)

(c − sin 2γ)
dζ

⎤
⎥⎦ (cos 2η − sinϕ)

(c − sin 2η)

r

R1
dη

⎫⎪⎬
⎪⎭

−1

. (254)

Since the value of c has been found (Fig. 34), eliminating r/R1 by means of (238) the
integrals in (253) and (254) can be evaluated numerically. Since r/R1 and d (rv)/dr
are known functions of ψ due to (238), (252), (253), and (254), it is evident that
Eq. (250)2 is a linear ordinary differential equation for V (ψ). Its general solution is

V (ψ) = 2Y (ψ)

⎡
⎢⎣

ψ∫
ψw

{
[Y (γ)− v (γ)] sin 2γ − sinϕψ̇r/Ṙ1

}
(c − sin 2γ) Y (γ)

dγ + V0

⎤
⎥⎦ . (255)

Here V0 is a constant of integration. The integral in (255) can be evaluated numeri-
cally. The value of V0 is found from the condition (69) integrated over the thickness
of the layer. Using (238), (245) and (248) the quantity ψ̇r/Ṙ1 is represented as

ψ̇r

Ṙ1
= (c − sin 2ψ)

(cos 2ψ − sinϕ)
m (ψ) ,

m (ψ) = v + exp

⎡
⎢⎣

ψ∫
ψw

(cos 2γ − sinϕ)

(c − sin 2γ)
dγ

⎤
⎥⎦ (256)

×

⎧⎪⎨
⎪⎩

⎡
⎢⎣
ψ f∫
ψw

(cos 2γ − sinϕ)

(c − sin 2γ)2
dγ

⎤
⎥⎦

−1
ψ∫

ψw

(cos 2γ − sinϕ)

(c − sin 2γ)2
dγ − 1

⎫⎪⎬
⎪⎭ .

Fig. 34 Variation of c with R1/R2 at several ϕ-values
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In order to determine the strain rate intensity factors, it is necessary to find the values
of ψ̇r Ṙ−1

1 at the maximum friction surfaces. Moreover, it follows from the boundary
conditions (241) and (242) that the right hand side of (256) reduces to the expression
0/0 at ψ = ψw and ψ = ψ f . It is evident that the derivative of the denominator
with respect to ψ is equal to a finite value at ψ = ψw and ψ = ψ f . It follows from
(237) and (253) that ∂r/∂ψ = 0 and ∂v/∂ψ = 0 at these points. Therefore, applying
l’Hospital’s rule,

ψ̇r

Ṙ1
= 0 at ψ = ψw andψ = ψ f . (257)

The shear strain rate is determined from (41) where differentiation with respect to r
is replaced with differentiation with respect to ψ by means of (237). Then,

2ξrθ = ∂uθ
r∂ψ

(c − sin 2ψ)

(cos 2ψ − sinϕ)
− uθ

r
. (258)

It has been taken into account here that ∂ur/∂θ = 0. It is now necessary to find the
derivative ∂uθ/∂ψ at ψ = ψw and ψ = ψ f . It follows from (244) and (252) that

∂uθ
U∂ψ

= −θdY

dψ
+ dV

dψ
. (259)

The derivative dY/dψ at ψ = ψw and ψ = ψ f is found from (252) as

dY

dψ

∣∣∣∣
ψ=ψw

= 2Y0 sinϕ

c − cosϕ
,

dY

dψ

∣∣∣∣
ψ=ψ f

= 2wY0 sinϕ

c + cosϕ
, (260)

w = exp

⎡
⎢⎣
ψ f∫
ψw

(cos 2γ + sinϕ)

(c − sin 2γ)
dγ

⎤
⎥⎦ .

It is seen from (255) and (260) that the derivative dV /dψ is finite at ψ = ψw and
ψ = ψ f . Therefore, it is evident from (258) that |ξrθ| → ∞ as ψ → ψw and
ψ → ψ f . The second term in (258) has no effect on this singular behaviour of the
shear strain rate since the value of uθ is finite. Therefore, expanding cos 2ψ − sinϕ
in a series in the vicinity of points ψ = ψw and ψ = ψ f Eq. (258) is represented as

ξrθ = − Ṙ1 (c − cosϕ)

4R1 cosϕ

(
dV

dψ
− θ

dY

dψ

)∣∣∣∣
ψ=ψw

(ψ − ψw)
−1

+ o
[
(ψ − ψw)

−1
]

as ψ → ψw (261)

ξrθ = − U (c + cosϕ)

4R2 cosϕ

(
dV

dψ
− θ

dY

dψ

)∣∣∣∣
ψ=ψ f

(
ψ f − ψ

)−1

+ o
[(
ψ f − ψ

)−1
]

as ψ → ψ f .
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Here Eq. (259) has been taken into account. Differentiating (255) with the use of
(241), (242), (252), (257), and (260) gives

dV

dψ

∣∣∣∣
ψ=ψw

= 2
(c−cosϕ) [2Y0V0 sinϕ+ (Y0 − 1) cosϕ] ,

dV

dψ

∣∣∣∣
ψ=ψ f

= 2Y0w

(c + cosϕ)
[2 (V0 + w1) sinϕ− cosϕ] ,

(262)

where

w1 =
ψ f∫
ψw

{
[Y (γ)− v (γ)] sin 2γ − sinϕψ̇r/Ṙ1

}
(c − sin 2γ) Y (γ)

dγ. (263)

Substituting (260) and (262) into (261) yields

ξrθ = − U

2R1 cosϕ
[2Y0V0 sinϕ+ (Y0 − 1) cosϕ− θY0 sinϕ] (ψ − ψw)

−1

+ o
[
(ψ − ψw)

−1
]

as ψ → ψw, (264)

ξrθ = − UY0w

2R2 cosϕ
[2 (V0 + w1) sinϕ− cosϕ− θ sinϕ]

(
ψ f − ψ

)−1

+ o
[(
ψ f − ψ

)−1
]

as ψ → ψ f .

Equation (237) in the vicinity of points ψ = ψw and ψ = ψ f is represented as

dψ

dr
= − (c − cosϕ)

2R1 cosϕ (ψ − ψw)
+ o

[
(ψ − ψw)

−1
]

as ψ → ψw,

dψ

dr
= − (c + cosϕ)

2R2 cosϕ
(
ψ f − ψ

) + o
[(
ψ f − ψ

)−1
]

as ψ → ψ f ,
(265)

respectively. Integrating the first of these equations with the boundary condition (232)
gives

ψ − ψw =
√

− (c − cosϕ)

R1 cosϕ

√
r − R1 + o

(√
r − R1

)
as r → R1. (266)

Integrating (265)2 with the boundary condition (233) gives

ψ f − ψ =
√

− (c + cosϕ)

R2 cosϕ

√
R2 − r + o

(√
R2 − r

)
as r → R2. (267)

Since the normal strain rates are finite as r → R1 and r → R2, Eq. (6) in which ξτ
should be replaced with ξrθ is valid. Substituting (266) into (264)1 and comparing
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to (6) show that

D1 = Ṙ1√
3R1 cosϕ

|2Y0V0 sinϕ+ (Y0 − 1) cosϕ− θY0 sinϕ|√
cosϕ− c

, (268)

where D1 is the strain rate intensity factor corresponding to the maximum friction
surface r = R1. Analogously, it follows from (265)2, (267) and (6) that the strain
rate intensity factor corresponding to the maximum friction surface r = R2 is

D2 = Ṙ1 |Y0w|√
3R2 cosϕ

|2 (V0 + w1) sinϕ− cosϕ− θ sinϕ|√− (c + cosϕ)
. (269)

The right hand sides of (268) and (269) can be evaluated using (254) and (263) .
It is of interest to introduce the ratioΔ = D1/D2. It follows from (268) and (269)

that

Δ =
√

R2

R1

|2Y0V0 sinϕ+ (Y0 − 1) cosϕ− θY0 sinϕ| √− (c + cosϕ)
|Y0w| |2 (V0 + w1) sinϕ− cosϕ− θ sinϕ| √cosϕ− c

. (270)

The variation ofΔ with R1/R2 at θ = 1 and θ = 1.5 is shown in Figs. 35 and 36,
respectively. The broken line corresponds to the solution for pressure-independent
material (see Sect. 3.4) curve 1 corresponds to ϕ = 0.1, curve 2 to ϕ = 0.15, curve
3 to ϕ = 0.2, curve 4 to ϕ = 0.25, and curve 5 to ϕ = 0.3. The dependence of
Δ on θ for several values of R1/R2 at ϕ = 0.1,ϕ = 0.2 and ϕ = 0.3 is depicted
in Figs. 37, 38 and 39, respectively. Curve 1 corresponds to R1/R2 = 0.5, curve 2
to R1/R2 = 0.7, and curve 3 to R1/R2 = 0.9. In order to illustrate the effect of
pressure-dependency of the yield criterion on the strain rate intensity factors, it is
convenient to introduce the ratios of the strain rate intensity factors given in (268) and
(269) to the respective strain rate intensity factors from the solution for the pressure-
independent model. These ratios are denoted by d1 and d2 where d1 is related to the
surface r = R1 and d2 to the surface r = R2. Since the strain rate intensity factors
for the model of pressure-independent plasticity are given in (78), the values of d1
and d2 can be found with no difficulty. It is evident from (78), (268) and (269) that
d1 and d2 are linear functions of θ. The dependence of d1 on θ at ϕ = 0.1, ϕ = 0.2
and ϕ = 0.3 is depicted in Figs. 40, 41 and 42, and the dependence of d2 on θ at
the same values of ϕ in Figs. 43, 44 and 45 (curve 1 corresponds to R1/R2 = 0.5,
curve 2 to R1/R2 = 0.7, curve 3 to R1/R2 = 0.9). The variation of d1 and d2 with
R1/R2 at θ = 1 is depicted in Figs. 46 and 47, respectively. In these figures, curve
1 corresponds to ϕ = 0.1, curve 2 to ϕ = 0.15, curve 3 to ϕ = 0.2, curve 4 to
ϕ = 0.25, and curve 5 to ϕ = 0.3. It is seen from Figs. 40, 41, 42, 43, 44, 45, 46 and
47 that d1 < 1 and d2 < 1. Thus pressure-dependency of the yield criterion leads
to a decrease in the magnitude of the strain rate intensity factor in the process under
consideration.
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Fig. 35 Variation of Δ with R1/R2 at θ = 1

Fig. 36 Variation of Δ with R1/R2 at θ = 1.5

Fig. 37 Dependence of Δ on θ at ϕ = 0.1 and several R1/R2-values
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Fig. 38 Dependence of Δ on θ at ϕ = 0.2 and several R1/R2-values

Fig. 39 Dependence of Δ on θ at ϕ = 0.3 and several R1/R2-values

5.5 Compression of a Plastic Layer Between Rotating Plates I

This boundary value problem has been formulated and solved for pressure-indepen-
dent material in Sect. 3.5 (see Fig. 11). An extension of this solution to the double
shearing model has been proposed in [38].

Let ψw be the value of ψ at the maximum friction surface θ = α. The direction
of flow (Fig. 11) dictates that σrθ < 0 near the friction surface. Therefore, it follows
from (199) that

− π

2
< ψw < 0. (271)

The maximum friction surface is parallel to the r -axis. Therefore, φ1 = 0 or φ2 = 0
in (204). The equation φ1 = 0 contradicts (271). Therefore, φ2 = 0 and
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Fig. 40 Dependence of d1 on θ at ϕ = 0.1 and several R1/R2-values

Fig. 41 Dependence of d1 on θ at ϕ = 0.2 and several R1/R2-values

Fig. 42 Dependence of d1 on θ at ϕ = 0.3 and several R1/R2-values
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Fig. 43 Dependence of d2 on θ at ϕ = 0.1 and several R1/R2-values

Fig. 44 Dependence of d2 on θ at ϕ = 0.2 and several R1/R2-values

Fig. 45 Dependence of d2 on θ at ϕ = 0.3 and several R1/R2-values
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Fig. 46 Variation of d1 with R1/R2 at θ = 1 and at several ϕ-values

Fig. 47 Variation of d2 with R1/R2 at θ = 1 and at several ϕ-values

ψ = ψw = −π

4
− ϕ

2
for θ = α. (272)

The main assumption accepted in [38] is that ψ is independent of r . Note that this
assumption is in agreement with (272). Substituting (191) and (199) into (42) gives

r
(cos 2ψ sinϕ− 1)

sinϕ

∂ ln q

∂r
+ sin 2ψ

∂ ln q

∂θ
+ 2 cos 2ψ

(
dψ

dθ
+ 1

)
= 0,

− (cos 2ψ sinϕ+ 1)

sinϕ

∂ ln q

∂θ
+ r sin 2ψ

∂ ln q

∂r
+ 2 sin 2ψ

(
dψ

dθ
+ 1

)
= 0.

(273)

Eliminating the derivative ∂ ln q/∂θ between these equations yields

r
∂ ln q

∂r
= 2 sinϕ (sinϕ+ cos 2ψ)

cos2 ϕ

(
dψ

dθ
+ 1

)
. (274)
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The right hand side of this equation is independent of r . Therefore, integrating gives

ln q = 2 sinϕ (sinϕ+ cos 2ψ)

cos2 ϕ

(
dψ

dθ
+ 1

)
ln r + Q (θ) , (275)

where Q (θ) is an arbitrary function of θ. Substituting (275) into (273)2 results in

− 2 (cos 2ψ sinϕ+ 1)

cos2 ϕ

d

dθ

[
(sinϕ+ cos 2ψ)

(
dψ

dθ
+ 1

)]
ln r (276)

− d Q

dθ

(cos 2ψ sinϕ+ 1)

sinϕ
+ 2 sin 2ψ (1 + sinϕ cos 2ψ)

cos2 ϕ

(
dψ

dθ
+ 1

)
= 0.

This equation can have a solution if and only if the coefficient of ln r vanishes.
Therefore,

(sinϕ+ cos 2ψ)

(
dψ

dθ
+ 1

)
= c, (277)

where c is constant. Substituting (277) into (276) results in

d Q

dθ
= 2c sinϕ sin 2ψ

cos2 ϕ (sinϕ+ cos 2ψ)
. (278)

Replacing here differentiation with respect to θ with differentiation with respect to
ψ by means of (277) and integrating yield

Q = c sinϕ

cos2 ϕ
ln |c − sinϕ− cos 2ψ| + Q0, (279)

where Q0 is a constant of integration. The solution to Eq. (277) satisfying the bound-
ary condition (272) is

θ = α−
ψw∫
ψ

(sinϕ+ cos 2γ)

(c − sinϕ− cos 2γ)
dγ, (280)

where γ is a dummy variable of integration. It follows from (37) and (81) that ψ = 0
at θ = 0. Using this condition the equation for c is obtained from (280) in the form

α =
ψw∫
0

(sinϕ+ cos 2γ)

(c − sinϕ− cos 2γ)
dγ. (281)

Numerical solution to this equation is illustrated in Fig. 48. The broken line corre-
sponds to pressure-independent material, curve 1 to ϕ = 0.1, curve 2 to ϕ = 0.2,
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and curve 3 to ϕ = 0.3. In the case of c = 0 Eq. (281) is immediately integrated to
give α = π/4 + ϕ/2. It is seen from Fig. 48 that c < 0 for α < π/4 + ϕ/2.

It is necessary to find the derivative dc/dα to determine the strain rate intensity
factor. Differentiating (281) gives

dc

dα
= −

⎡
⎢⎣
ψw∫
0

(sinϕ+ cos 2γ)

(c − sinϕ− cos 2γ)2
dγ

⎤
⎥⎦

−1

. (282)

At c = 0 one gets

I (ψ) =
ψ∫

0

(sin φ+ cos 2ζ)

(A − sin φ− cos 2ζ)2
dζ =

ψ∫
0

dζ

(sin φ+ cos 2ζ)

= arctanh

(
cosφ tanψ

1 + sin φ

)
1

cosφ
.

Hence lim
ψ→ψw

I (ψ) = −∞ and it follows from (282) that

dc

dα
= 0 at c = 0. (283)

The velocity field is sought in the form [38]

ur = ωr

2

∂g (ψ, α)

∂θ
, uθ = −ωrg (ψ, α) , (284)

Fig. 48 Variation of c with α at several ϕ-values
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where g (ψ, α) is an arbitrary function of ψ and α. The velocity field (284) automat-
ically satisfies the equation of incompressibility (203)1. Using (284) the boundary
conditions (79) and (80) transform to

g = 0 for θ = 0 (or ψ = 0) (285)

and
g = 1 for θ = α (or ψ = ψw). (286)

Substituting (284) into (203)2 gives

(cos 2ψ + sinϕ)
d2g

dθ2 − 2 sin 2ψ
dg

dθ
+ 4g sinϕ+ 4 sinϕ

ψ̇

ω
= 0. (287)

The derivative dψ/dθ is found from (277). Subsequent differentiation of this deriv-
ative with respect to θ gives

d2ψ

dθ2 = 2c sin 2ψ (c − sinϕ− cos 2ψ)

(sinϕ+ cos 2ψ)3
. (288)

On the other hand,

dg

dθ
= dg

dψ

dψ

dθ
,

d2g

dθ2 = d2g

dψ2

(
dψ

dθ

)2

+ dg

dψ

d2ψ

dθ2 . (289)

Replacing in (287) differentiation with respect to θ with differentiation with respect
to ψ by means of (289) and using (277) and (288) leads to

(sinϕ+ cos 2ψ)
d2g

dψ2 + 2 sin 2ψ
dg

dψ

+4 sinϕ (sinϕ+ cos 2ψ)2

(c − sinϕ− cos 2ψ)2

(
g + ψ̇

ω

)
= 0.

(290)

Since ∂ψ/∂t = −ω∂ψ/∂α, it follows from (202) and (277) that

ψ̇

ω
= − ∂ψ

∂θ0
−
(

c − sinϕ− cos 2ψ

sinϕ+ cos 2ψ

)
g. (291)

Differentiating (280) gives
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(sinϕ+ cos 2ψ)

(c − sinϕ− cos 2ψ)
dψ

+

⎧⎪⎨
⎪⎩1 + dc

dα

⎡
⎢⎣
ψw∫
ψ

(sinϕ+ cos 2γ)

(c − sinϕ− cos 2γ)2
dγ

⎤
⎥⎦
⎫⎪⎬
⎪⎭ dα− dθ = 0. (292)

Determining the derivative ∂ψ/∂α from this equation and substituting it into (291)
lead to

ψ̇

ω
=

⎧⎪⎨
⎪⎩1 − g + dc

dα

⎡
⎢⎣
ψw∫
ψ

(sinϕ+ cos 2γ)

(c − sinϕ− cos 2γ)2
dγ

⎤
⎥⎦
⎫⎪⎬
⎪⎭ (293)

× (c − sinϕ− cos 2ψ)

(sinϕ+ cos 2ψ)
.

Eliminating ψ̇/ω in (290) by means of (293) results in a linear ordinary differential
equation for g (ψ) in the form

(sinϕ+ cos 2ψ)
d2g

dψ2 + 2 sin 2ψ
dg

dψ
+ P1 (ψ) g = P0 (ψ) ,

P1 (ψ) = 4 sinϕ (sinϕ+ cos 2ψ) (2 sinϕ+ 2 cos 2ψ − c)

(c − sinϕ− cos 2ψ)2
, (294)

P0 (ψ) = − 4 sinϕ (sinϕ+ cos 2ψ)

(c − sinϕ− cos 2ψ)

⎧⎪⎨
⎪⎩

dc

dα

⎡
⎢⎣
ψw∫
ψ

(sinϕ+ cos 2γ)

(c − sinϕ− cos 2γ)2
dγ

⎤
⎥⎦+ 1

⎫⎪⎬
⎪⎭ .

Expanding the coefficients of this equation in series in the vicinity of ψ = ψw gives

sinϕ+ cos 2ψ =2 cosϕ (ψ − ψw)+ 2 sinϕ (ψ − ψw)
2

− 4

3
cosϕ (ψ − ψw)

3 + o
[
(ψ − ψw)

3
]
,

2 sin 2ψ = − 2 cosϕ− 4 sinϕ (ψ − ψw)+ 4 cosϕ (ψ − ψw)
2

+ 8

3
sinϕ (ψ − ψw)

3 + o
[
(ψ − ψw)

3
]
,

P1 (ψ) = − 4 sin 2ϕ

c
(ψ − ψw)− 8 sin2 ϕ

c
(ψ − ψw)

2 (295)

+ 8 sin 2ϕ

c

(
1

3
+ 2 cos2 ϕ

c2

)
(ψ − ψw)

3 + o
[
(ψ − ψw)

3
]
,
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P0 (ψ) = − 4 sin 2ϕ

c
(ψ − ψw)− 8 sinϕ (1 + cos 2ϕ+ c sinϕ)

c2 (ψ − ψw)
2

− 4 sin 2ϕ

3c3

[
2
(

3 − c2 + 3 cos 2ϕ+ 6c sinϕ
)

− 3 cosϕ
dc

dα

]
(ψ − ψw)

3

+ o
[
(ψ − ψw)

3
]

asψ → ψw. It is seen from (295) thatψ = ψw is a regular singular point of Eq. (294).
Using a standard procedure it is possible to find that the two linearly independent
primitive solutions of the corresponding homogeneous equation are represented as

g1 = O
[
(ψ − ψw)

2
]

as ψ → ψw (296)

and
g2 = P (ψ)+ Cg1 ln (ψ − ψw) , (297)

where P (ψ) is a function of ψ represented by a Taylor series in the vicinity of
ψ = ψw and C is an arbitrary constant. It is possible to show (see [38]) that C must
vanish and that P (ψ) does not contain the term O (ψ − ψw) as ψ → ψw. Then, it
follows from (296), (297) and the boundary condition (286) that the function g (ψ)
is approximated by

g = 1 + c2 (ψ − ψw)
2 + c3 (ψ − ψw)

3 (298)

in the vicinity of point ψ = ψw. Substituting (295) and (298) into (294) yields

c3 = 2

3
c2tanϕ− 4 sin 2ϕ

3c2 . (299)

It has been shown before that c ≤ 0 (Fig. 48). However, it follows from (295) and
(299) that the special case c = 0 should be treated separately. In order to clarify the
general structure of the solution for values of c in the vicinity of c = 0, it is necessary
to find the radial velocity at ψ = ψw (i.e. at the maximum friction surface). It follows
from (277), (284), (295), and (298) that

ur = ωr

2

cc2

cosϕ
+ o (1) as ψ → ψw. (300)

It is seen from this equation that ur atψ = ψw vanishes if c2 = 0. This means that the
regime of sticking occurs. Let αcr be the value of α corresponding to the condition
c2 = 0. Assume that

0 < αcr <
π

4
+ ϕ

2
. (301)

Then, the general structure of the solution is as follows. The found solution at sliding
is valid if α < αcr. The condition (301) ensures that c < 0 (Fig. 48). Then, since
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Fig. 49 The variation of αcr with ϕ

ur > 0, it follows from (300) that
c2 < 0. (302)

A limit case occurs at α = αcr. In this case the found solution is valid but the regime
of sticking takes place at the maximum friction surface. If α > αcr, a rigid zone
appears near the plate. This case is not important for the present chapter since the
solution is not singular. In order to show that the structure of the solution proposed
is possible, it is necessary to verify (301). To this end Eq. (294) has been solved
numerically at c2 = 0. The representation of the solution given in (298) has been
used in the range ψw ≥ ψ ≥ ψw (1 − δ) where 0 < δ << 1. The value of c3 in
this representation has been eliminated by means of (299). The solution found must
satisfy the boundary condition (285). The value of c corresponding to the limit case
is determined from this boundary condition. It is evident that this value is related to
αcr by Eq. (281) in which α should be replaced with αcr. The numerical solution is
illustrated in Fig. 49. It is seen from this figure that the inequality (301) is satisfied.
In what follows, it is assumed that α ≤ αcr.

Using (277), (284), (288) and (289) the shear strain rate is determined from (41)
as

ξrθ = ω (c − sinϕ− cos 2ψ)

4 (sinϕ+ cos 2ψ)2

[
(c − sinϕ− cos 2ψ)

d2g

dψ2 + 2c sin 2ψ

(sinϕ+ cos 2ψ)

dg

dψ

]
.

(303)
Substituting (298) into (303) and using (295) and (299) yield the representation of
the shear strain rate in the vicinity of the maximum friction surface in the form

ξrθ = − ω

4 cosϕ

[
4 sinϕ+ c

(
c2 + tan2ϕ

)]
(ψ − ψw)

+ o
[
(ψ − ψw)

−1
]

as ψ → ψw.

(304)
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In the vicinity of the maximum friction surface (277) is written as

dψ

dθ
= c

2 cosϕ (ψ − ψw)
+ o

[
(ψ − ψw)

−1
]

as ψ → ψw.

Integrating with the use of the boundary condition (272) gives

ψ − ψw =
√−c√
cosϕ

(α− θ)1/2 + o
[
(α− θ)1/2

]
as θ → α. (305)

Substituting (305) into (304) yields

|ξrθ| = ω

4
√

cosϕ

[
4 sinϕ+ c

(
c2 + tan2ϕ

)]
√−c

√
α− θ

+ o
[
(α− θ)−1/2

]
as θ → α.

(306)
Equation (6) in which ξτ should be replased with ξrθ is valid. Therefore, the strain
rate intensity factor is given by

D = ω

2
√

3
√

cosϕ

[
4 sinϕ+ c

(
c2 + tan2ϕ

)]√
r√−c
. (307)

It is convenient to introduce the dimensionless strain rate intensity factor by

d = D

ω
√

r
. (308)

The same definition for the dimensionless strain rate intensity factor has been adopted
for the pressure-independent model in Sect. 3.5 (see Fig. 12). The variation of the
dimensionless strain rate intensity factor found by means of (307) and (308) as well
as the dimensionless strain rate intensity factor for the pressure-independent model
is depicted in Fig. 50. The broken line corresponds to pressure-independent material,
curve 1 to ϕ = 0.1, curve 2 to ϕ = 0.2, and curve 3 to ϕ = 0.3. The right ends
of these curves are determined by the condition α = αcr. It is seen from this figure
that the strain rate intensity factor for pressure-independent material is larger than
the strain rate intensity factor for pressure-dependent material at smaller values of
α and smaller than the strain rate intensity factor for pressure-dependent material at
larger values of α.

5.6 Compression of a Plastic Layer Between Rotating Plates II

This boundary value problem has been formulated and solved for pressure-indepen-
dent material in Sect. 3.6 (see Fig. 14). An extension of this solution to the double
shearing model has been proposed in [39].
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Fig. 50 Variation of the dimensionless strain rate intensity factor with α at several ϕ-values

Let ψw be the value of ψ at the maximum friction surface θ = α. The direction
of flow (Fig. 14) dictates that σrθ > 0 near the friction surface. Therefore, it follows
from (199) that

0 < ψw <
π

2
. (309)

The maximum friction surface is parallel to the r -axis. Therefore, φ1 = 0 or φ2 = 0
in (204). The equation φ2 = 0 contradicts (309). Therefore, φ1 = 0 and

ψ = ψw = π

4
+ ϕ

2
for θ = α. (310)

The main assumption accepted in [39] is that ψ is independent of r . Note that this
assumption is in agreement with (310). The general solution for the stress equations
given in the previous section is valid. In particular, the dependence of ψ on θ follows
from (277) or, after integration, from (280). Then, the value of c involved in (277) is
determined from (281) whereψw should be eliminated by means of (310). Numerical
solution of this equation is illustrated in Fig. 51. The broken line corresponds to the
solution for pressure-independent material, curve 1 to ϕ = 0.1, curve 2 to ϕ = 0.2,
and curve 3 to ϕ = 0.3. It is seen from this figure that c > 0. The derivative dc/dα
is given by (282). The velocity field is sought in the form [39]

ur = ωr

2

∂g (ψ, α)

∂θ
+ ω

G (ψ, α)

r
, uθ = −ωrg (ψ, α) , (311)

where g (ψ, α) and G (ψ, α) are arbitrary functions of ψ and α. It is possible to
verify by inspection that (203)1 is automatically satisfied. Using (310) and (311) the
boundary conditions (79) and (80) are transformed to
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Fig. 51 Variation of c with α

g = 0 at θ = 0 (or ψ = 0) (312)

and
g = 1 at θ = α (or ψ = ψw), (313)

respectively. Substituting (311) into (203)2 yields

(cos 2ψ + sinϕ)
∂2g

∂θ2 − 2 sin 2ψ
∂g

∂θ
+ 4g sinϕ+ 4 sinϕ

ψ̇

ω

+ 2

r2

[
(cos 2ψ + sinϕ)

dG

dθ
+ 2G sin 2ψ

]
= 0.

(314)

Since ψ and ψ̇ are independent of r , this equation may have a solution if and
only if

(cos 2ψ + sinϕ)
∂2g

∂θ2 − 2 sin 2ψ
∂g

∂θ
+ 4g sinϕ+ 4 sinϕ

ψ̇

ω
= 0, (315)

(cos 2ψ + sinϕ)
∂G

∂θ
+ 2G sin 2ψ = 0.

Replacing here the derivatives ∂2g/∂θ2 and ∂g/∂θ with the derivatives ∂2g/∂ψ2

and ∂g/∂ψ by means of (289) and eliminating the derivatives d2ψ/dθ2 and dψ/dθ
by means of (277) and (288) result in
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(sinϕ+ cos 2ψ)
∂2g

∂ψ2 + 2 sin 2ψ
∂g

∂ψ

+ 4 sinϕ (sinϕ+ cos 2ψ)2

(c − sinϕ− cos 2ψ)2

(
g + ψ̇

ω

)
= 0, (316)

dG

dψ
+ 2G sin 2ψ

c − sinϕ− cos 2ψ
= 0.

Integrating (316)2 gives

G = B

c − sinϕ− cos 2ψ
, (317)

where B is a constant of integration. The derivative ψ̇ is given by (293). Therefore,
Eq. (316)1 transforms to (294). However, in contrast to (295), it is now necessary to
investigate the coefficients of Eq. (294) in the vicinity of ψ = ψw = π/4 + ϕ/2.
Expanding these coefficients in series near this point yields

sinϕ+ cos 2ψ = − 2 cosϕ (ψ − ψw)+ 2 sinϕ (ψ − ψw)
2

+ 4

3
cosϕ (ψ − ψw)

3 + o
[
(ψ − ψw)

3] ,
2 sin 2ψ = 2 cosϕ− 4 sinϕ (ψ − ψw)− 4 cosϕ (ψ − ψw)

2

+ 8

3
sinϕ (ψ − ψw)

3 + o
[
(ψ − ψw)

3] ,
P1 (ψ) = 4 sin 2ϕ

c
(ψ − ψw)− 8 sin2 ϕ

c
(ψ − ψw)

2

− 8 sin 2ϕ

c

(
1

3
+ 2 cos2 ϕ

A2

)
(ψ − ψw)

3 + o
[
(ψ − ψw)

3] ,
P0 (ψ) = 4 sin 2ϕ

c
(ψ − ψw)− 8 sinϕ (1 + cos 2ϕ+ A sinϕ)

c2 (ψ − ψw)
2

+ 4 sin 2ϕ

3c3

[
2
(
3 − c2 + 3 cos 2ϕ+ 6c sinϕ

)

+ 3 cosϕ
dc

dα

]
(ψ − ψw)

3 + o
[
(ψ − ψw)

3] (318)

as ψ → ψw. It is seen from (294) and (318) that ψ = ψw is a regular singular point
of Eq. (294). Using a standard procedure it is possible to find that the solution to this
equation in the vicinity of ψ = ψw is represented by

g = 1 + c2 (ψ − ψw)
2 + c3 (ψ − ψw)

3 . (319)
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It has been taken into account here that the solution must satisfy the boundary con-
dition (313). Substituting (318) and (319) into (294) and collecting the coefficients
of (ψ − ψw)

2 give

c3 = −2

3
c2tanϕ+ 4 sin 2ϕ

3c2 . (320)

The shear strain rate is determined from (41) and (311) as

ξrθ

ω
= 1

4

∂2g

∂θ2 + 1

2r2

∂G

∂θ
. (321)

Replacing here differentiation with respect to θ with differentiation with respect to
ψ by means of (289), eliminating G by means of (317) and using (277) and (288)
result in

ξrθ = ω

4

(
c − sinϕ− cos 2ψ

sinϕ+ cos 2ψ

)
Q (r,ψ) ,

Q (r,ψ) =
(

c − sinϕ− cos 2ψ

sinϕ+ cos 2ψ

)
∂2g

∂ψ2

+ 2c sin 2ψ

(sinϕ+ cos 2ψ)2
∂g

∂ψ
− 4B sin 2ψ

r2 (c − sinϕ− cos 2ψ)2
. (322)

Substituting (319) into (322), eliminating c3 by means of (320) and expanding the
resulting expression in a series in the vicinity of ψ = ψw yield

ξrθ = −ω

2

(
B

cr2 + cc2

2 cosϕ
+ tanϕ

)
(ψw − ψ)−1 + o

[
(ψw − ψ)−1

]
(323)

as ψ → ψw.

In the vicinity of this point Eq. (277) is represented as

dψ

dθ
= c

2 cosϕ (ψw − ψ)
+ o

[
(ψw − ψ)−1

]
as ψ → ψw.

Integrating with the boundary condition (310) gives

ψw − ψ =
√

c

cosϕ

√
α− θ + o

(√
α− θ

)
as θ → α. (324)

Substituting (324) into (323) yields

|ξrθ| = − ω

2

(
B

cr2 + cc2

2 cosϕ
+ tanϕ

)√
cosϕ

c
(α− θ)−1/2 (325)

+ o
[
(α− θ)−1/2

]
as θ → α.
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Equation (6) in which ξτ should be replaced with ξrθ is valid. Therefore, the strain
rate intensity factor is determined from (325) as

D = −ω
√

r√
3

(
B

cr2 + cc2

2 cosϕ
+ tan φ

)√
cosϕ

c
. (326)

The value of c2 is found from numerical solution of Eq. (294). The variation of c2 with
α at several values of ϕ is illustrated in Fig. 52. The broken line corresponds to the
model of pressure-independent material. In this case c2 = −2 . Curve 1 corresponds
to ϕ = 0.1, curve 2 to ϕ = 0.15, curve 3 to ϕ = 0.2, curve 4 to ϕ = 0.25, and curve
5 to ϕ = 0.3.

The direction of friction stress (Fig. 14) demands ur < 0 at θ = α (or ψ = ψw).
Taking into account (311), (317) and (319) this inequality is rewritten as

ur |θ=α = − rcc2

2 cosϕ
+ B

rc
< 0.

Therefore, the solution found is valid in the range

r < rcr = 1

c

√
2B cosϕ

c2
. (327)

The values of c and c2 have been already determined (Figs. 51 and 52). In order to
find the value of B, it is necessary to formulate an additional condition in integral
form (similar to the condition (49) accepted in the classical problem considered in
Sect. 3.2). A reasonable condition is

α∫
0

ur |r=R dθ = 0. (328)

Fig. 52 Variation of c2 with α at several ϕ-values
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Here R is some prescribed radius. Substituting the radial velocity from (311) into
(328), eliminating G by means of (317) and replacing integration with respect to θ
with integration with respect to ψ by means of (277) result in

B = − R2

2

⎡
⎢⎣
ψw∫
0

(sinϕ+ cos 2ψ)

(c − sinϕ− cos 2ψ)2
dψ

⎤
⎥⎦

−1

. (329)

Eliminating B in (327) by means of (329) determines the dependence of rcr/R
on ϕ and α. The dependence of rcr/R on α at several values of ϕ is depicted in
Fig. 53. The broken line corresponds to the model of pressure-independent material,
curve 1 to ϕ = 0.1, curve 2 to ϕ = 0.15, curve 3 to ϕ = 0.2, curve 4 to ϕ = 0.25,
and curve 5 to ϕ = 0.3. Eliminating B in (326) by means of (329), it is possible to
conclude that the strain rate intensity factor depends on ϕ, α and r/R. Consider first
the dependence of D on ϕ and α assuming that r/R = μ = constant < rcr/R. It is
convenient to introduce the dimensionless strain rate intensity factor, d, as the ratio
of the strain rate intensity factor given by (326) to the strain rate intensity factor for
pressure-independent material given by (105). The variation of d with α at several
values of ϕ is shown in Fig. 54 at μ = 0.3, Fig. 55 at μ = 0.2, and Fig. 56 at μ = 0.1.
In these figures, curve 1 corresponds to ϕ = 0.1, curve 2 to ϕ = 0.15, curve 3
to ϕ = 0.2, curve 4 to ϕ = 0.25, and curve 5 to ϕ = 0.3. In order to illustrate
the variation of the strain rate intensity factor with r/R, it is necessary to take into
account that rcr/R depends on ϕ (Fig. 53). Therefore, it is more convenient in this
case to introduce the dimensionless strain rate intensity factor by

d = D/
(
ω
√

r
)
.

Fig. 53 Variation of rcr/R with α at several ϕ-values
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Fig. 54 Variation of the dimensionless strain rate intensity factor with α at several ϕ-values and
μ = 0.3

Fig. 55 Variation of the dimensionless strain rate intensity factor with α at several ϕ-values and
μ = 0.2

Note that the same definition has been adopted for the dimensionless strain
rate intensity factor depicted in Fig. 15. The variation of d with r/R in the range
0.2 ≤ r/R ≤ rcr/R is illustrated in Figs. 57, 58, 59 and 60. In Figs. 57 and 58 the
value of α is fixed (α = π/36 in Fig. 57 and α = π/6 in Fig. 58) and the curves
correspond to different values of ϕ (the broken line corresponds to the model of
pressure-independent material, curve 1 to ϕ = 0.1, curve 2 to ϕ = 0.2 and curve 3
toϕ = 0.3). In Figs. 59 and 60 the value ofϕ is fixed (ϕ = 0.1 in Fig. 59 andϕ = 0.3
in Fig. 60) and the curves correspond to different values of α (curve 1 corresponds
to α = π/36, curve 2 to α = π/18, curve 3 to α = π/12, curve 4 to α = π/9, and
curve 5 to α = π/6).
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Fig. 56 Variation of the dimensionless strain rate intensity factor with α at several ϕ-values and
μ = 0.1

Fig. 57 Variation of the dimensionless strain rate intensity factor with r/R at several ϕ-values and
α = π/36

It is seen from Figs. 54, 55, 56, 57 and 58 that the strain rate intensity factor
for pressure-dependent material is smaller than the strain rate intensity factor for
pressure-independent material.

5.7 Simultaneous Shearing and Expansion of a Hollow Cylinder

This boundary value problem has been formulated and solved for pressure-independent
material in Sect. 3.7 (see Fig. 17). An extension of this solution to the double shearing
model has been proposed in [5].
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Fig. 58 Variation of the dimensionless strain rate intensity factor with r/R at several ϕ-values and
α = π/6

Fig. 59 Variation of the dimensionless strain rate intensity factor with r/R at several α-values and
ϕ = 0.1

Let ψw be the value of ψ at the maximum friction surface r = a. The direction
of rotation of the rigid rod (Fig. 17) dictates that σrθ > 0 near the friction surface.
Therefore, it follows from (199) that

0 < ψw <
π

2
. (330)

The maximum friction surface is perpendicular to the r -axis. Therefore, φ1 = π/2 or
φ2 = π/2 in (204). The equation φ1 = π/2 contradicts (330). Therefore, φ2 = π/2
and

ψ = ψw = π

4
− ϕ

2
for r = a. (331)

The solution is independent of θ. Therefore, the equilibrium Eq. (42) become
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Fig. 60 Variation of the dimensionless strain rate intensity factor with r/R at several α-values and
ϕ = 0.3

∂σrr

∂r
+ σrr − σθθ

r
= 0,

∂σrθ

∂r
+ 2σrθ

r
= 0. (332)

The general solution to Eq. (332)2 is

σrθ

k
= C2

r2 , (333)

where C is a constant of integration. Using (191), (200) and (333) the normal stresses
are expressed as

σrr

k
= cot ϕ− C2 (1 − cos 2ψ sinϕ)

r2 sin 2ψ sinϕ
,

σθθ

k
= cot ϕ− C2 (1 + cos 2ψ sinϕ)

r2 sin 2ψ sinϕ
.

(334)

Substituting (334) into (332)1 gives the following equation for ψ

∂ψ

∂r
= − sin 2ψ

r (cos 2ψ − sinϕ)
. (335)

Integrating this equation with the boundary condition (331) results in

r

a
= cosψw tanm ψw

cosψ tanm ψ
, m = 1 − sinϕ

2
. (336)

This equation determines ψ as a function of r in implicit form. Let ψb be the value
of ψ at r = b. Then, it follows from (336) that
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b

a
= cosψw tanm ψw

cosψb tanm ψb
. (337)

This equation should be solved numerically to find the value of ψb.
Since the solution is independent of θ, the solution to the incompressibility

Eq. (302)1 satisfying the boundary condition (106) is

ur = ȧa

r
. (338)

Since ψ is independent of θ, ∂ψ/∂r is given by (335) and ∂ψ/∂t = ȧ∂ψ/∂a,
Eq. (301)2 becomes

ψ̇ = ȧ
∂ψ

∂a
− ȧa sin 2ψ

r2 (cos 2ψ − sinϕ)
. (339)

Here the radial velocity has been eliminated by means of (338). Substituting (338)
and (339) into (302)2 gives

sin 2ψ
∂uθ
∂ψ

+ (cos 2ψ + sinϕ) uθ − 2aȧ sin 2ψ

r
− 2ȧr sinϕ

∂ψ

∂a
(340)

+ 2aȧ sinϕ

r

sin 2ψ

(cos 2ψ − sinϕ)
= 0.

Since ψw is constant, it follows from (336) that

∂ψ

∂a
= sin 2ψ

a (cos 2ψ − sinϕ)
. (341)

Substituting (336) and (341) into (340) leads to

∂uθ
∂ψ

+ (cos 2ψ + sinϕ)

sin 2ψ
uθ = P (ψ) ,

P (ψ) = 2ȧ tanm ψ cosψ

cosψw tanm ψw (cos 2ψ − sinϕ)

×
(

sinϕ cosϕ tansinϕ ψ

tansinϕ ψw sin 2ψ
+ cos 2ψ − 2 sinϕ

)
. (342)

Applying l’Hospital’s rule it is possible to find that lim
ψ→ψw

P (ψ) = 2ȧ > 0. Then, it

follows from (342) that

∂uθ
∂ψ

∣∣∣∣
ψ=ψw

= 2 (ȧ − ua tanϕ) . (343)
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Here ua is the value of the circumferential velocity at r = a. Taking into account that
the solution is independent of θ and replacing differentiation with respect to r with
differentiation with respect to ψ by means of (335) the shear strain rate is determined
from (41) as

ξrθ = (ȧ − ua tanϕ)

2a (ψ − ψw)
+ o

[
(ψ − ψw)

−1
]

as ψ → ψw. (344)

Here Eq. (343) has been used to eliminate the derivative ∂uθ/∂ψ. Equation (335)
in the vicinity of r = a (or ψ = ψw) is represented as

∂ψ

∂r
= 1

2a (ψ − ψw)
+ o

[
(ψ − ψw)

−1
]

as ψ → ψw. (345)

Integrating this equation with the boundary condition (331) gives

ψ − ψw =
√

r − a√
a

+ o
(√

r − a
)

as r → a. (346)

Substituting (346) into (344) leads to

ξrθ = (ȧ − ua tanϕ)

2
√

a
√

r − a
+ o

[
(r − a)−1/2

]
as r → a. (347)

Equation (6) in which ξτ should be replaced with ξrθ is valid. Therefore, the strain
rate intensity factor is determined using (347) as

D = (ȧ − ua tanϕ)√
3a

. (348)

It is convenient to introduce the dimensionless strain rate intensity factor, d, as the
ratio of the strain rate intensity factor given by (348) to the strain rate intensity factor
given by (112). As a result,

d = 1 − ua

ȧ
tanϕ. (349)

The solution of Eq. (342) satisfying the boundary condition (107) is

uθ
ȧ

= tanm ψ

cosψw tanm+sinϕ ψw sinψ
(350)

×
ψ∫

ψb

[
sinϕ cosϕ tansinϕ γ + tansinϕ ψw sin 2γ (cos 2γ − 2 sinϕ)

]
(cos 2γ − sinϕ)

dγ.
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Fig. 61 Variation of the
dimensionless strain rate
intensity factor with α at
several ϕ-values

Here γ is a dummy variable of integration and ψb is determined from the solution of
Eq. (337). It follows from the definition for ua and (350) that

− ua

ȧ
= 2

cosϕ

ψb∫
ψw

[
sinϕ cosϕ (tan γ/tanψw)sinϕ + sin 2γ (cos 2γ − 2 sinϕ)

]
(cos 2γ − sinϕ)

dγ.

(351)
The integrand reduces to the expression 0/0 at γ = ψw. Applying l’Hospital’s rule
yields

lim
γ→ψw

{
sinϕ cosϕ (tan γcot ψw)sinϕ + sin 2γ (cos 2γ − 2 sinϕ)

(cos 2γ − sinϕ)

}
= cosϕ.

(352)
Using (352) the integral in (351) can be evaluated numerically with no difficulty.

Substituting the value of ua found into (349) gives the dimensionless strain rate
intensity factor. Its variation with the ratio a/b at several values of ϕ is depicted in
Fig. 61 (curve 1 corresponds to ϕ = 0.1, curve 2 to ϕ = 0.15, curve 3 to ϕ = 0.2,
curve 4 toϕ = 0.25, and curve 5 toϕ = 0.3). It is seen from this figure that the strain
rate intensity factor for pressure-independent material is smaller than the strain rate
intensity factor for pressure-dependent material.

6 Axisymmetric Solutions for the Double-Shearing Model

6.1 Basic Equations

Section 6 is concerned with axisymmetric solutions for the double-shearing model. In
this section, a spherical coordinate system (r, θ,ϑ) will be employed. The solutions
are independent of ϑ, the stress σϑϑ is one of the principal stresses and the velocity
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uϑ vanishes. A cross-section of the Mohr-Coulomb yield surface by a plane σϑϑ =
constant is shown in Fig. 62. In general, various regimes of flow arise depending on
the relative magnitudes of σϑϑ, σ1 and σ2. However, in what follows, regime A only
is of interest. In this regime

σ1 (1 + sinϕ) = 2k cosϕ+ σϑϑ (1 − sinϕ) , σ2 = σϑϑ. (353)

Using the transformation equations for stress components in rθ-planes the stress
components in the spherical coordinate system are expressed as (Fig. 21)

σrr = −p + q cos 2ψ, σθθ = −p − q cos 2ψ, σrθ = q sin 2ψ. (354)

Here p and q are given by (192). Using (354) the yield criterion (353) transforms to

q − p sinϕ = k cosϕ, σϑϑ = −p − q. (355)

The velocity equations have been given in [10]. Those are

ξrr + ξθθ + ξϑϑ = 0, (356)

2ξrθ cos 2ψ − (ξrr − ξθθ) sin 2ψ + sinϕ
(
ωrθ + ψ̇

) = 0.

The components of the strain rate tensor are given by (124). Equation (356)1 is
equivalent to (128). The only non-zero spin component is

ωrθ = 1

2r

(
∂ur

∂θ
− r

∂uθ
∂r

− uθ

)
. (357)

Since uϑ = 0, the derivative ψ̇ is given by

ψ̇ = ∂ψ

∂t
+ ur

∂ψ

∂r
+ uθ

r

∂ψ

∂θ
. (358)

Fig. 62 Cross-section of the
Mohr-Coulomb yield surface
by plane σϑϑ = constant
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Equation (131) is replaced with

φ1 = ψ − π

4
− ϕ

2
, φ2 = ψ + π

4
+ ϕ

2
. (359)

The equilibrium equations are given by (125).

6.2 Flow of Plastic Material Through an Converging Conical
Channel

This boundary value problem has been formulated and solved for pressure-indepen-
dent material in Sect. 4.3 (see Fig. 23). An extension of this solution to the double
shearing model has been outlined in [10].

Let ψw be the value of ψ at the maximum friction surface θ = α. The direction
of flow (Fig. 23) dictates that σrθ > 0 near the friction surface. Therefore, it follows
from (354) that

0 < ψw <
π

2
. (360)

The orientation of the maximum friction surface shows that φ1 = 0 or φ2 = 0 in
(359). The equation φ2 = 0 contradicts (360). Therefore, φ1 = 0 and

ψ = ψw = π

4
+ ϕ

2
for θ = α. (361)

The main assumptions accepted in [10] are thatψ is independent of r and uθ = 0.
Note that the former is in agreement with (361) and the latter automatically satisfies
the boundary conditions (147). Equation (128) reduces to

∂ur

∂r
+ 2

ur

r
= 0.

The general solution of this equation is

ur = −U (θ)

r2 , (362)

where U (θ) > 0 is an arbitrary function of θ. The solution for stresses is sought in
the form [40]

q = exp [ f (θ)] rn . (363)

Here f (θ) is an arbitrary function of θ and n = constant. Using (355) and (363) it
is possible to find that



340 S. Alexandrov et al.

p = exp [ f (θ)] rn

sinϕ
− k cot ϕ, (364)

σϑϑ = − exp [ f (θ)] rn
(

1

sinϕ
+ 1

)
+ k cot ϕ.

Substituting (363) and (364) into (354) gives the stresses in terms of f (θ) and r .
Substituting these stresses and σϑϑ from (364) into the equilibrium Eq. (125) results
in the following equations for ψ (θ) and f (θ)

dψ

dθ
= n cos2 ϕ− sinϕω0(ψ, θ)

2 sinϕ (sinϕ+ cos 2ψ)
, (365)

ω0 (ψ, θ) = 3 sinϕ+ 1 + cos 2ψ (3 + sinϕ)+ cot θ sin 2ψ (1 + sinϕ) ,

and
d f

dθ
= n sin 2ψ − sinϕ [cot θ (1 − cos 2ψ)+ sin 2ψ]

sinϕ+ cos 2ψ
, (366)

respectively. Using (365) Eq. (366) can be rewritten as

d f

dψ
= 2 sinϕ {n sin 2ψ − sinϕ [cot θ (1 − cos 2ψ)+ sin 2ψ]}

n cos2 ϕ− sinϕω0(ψ, θ)
. (367)

An advantage of Eq. (367) over Eq. (366) is that the denominator in (366) vanishes
at ψ = ψw. For the same reason, it is advantageous to rewrite Eq. (365) as

dθ

dψ
= 2 sinϕ (sinϕ+ cos 2ψ)

n cos2 ϕ− sinϕω0(ψ, θ)
. (368)

The process is stationary. Therefore, ∂ψ/∂t = 0. Moreover, by assumption,
uθ = 0 and ∂ψ/∂r = 0. Therefore, it follows from (358) that ψ̇ = 0. Then, using
(124) and (357) it is possible to simplify Eq. (356)2 to

(cos 2ψ + sinϕ)
∂ur

∂θ
− sin 2ψ

(
r
∂ur

∂r
− ur

)
= 0.

Substituting (362) into this equation gives

(cos 2ψ + sinϕ)
dU

dθ
+ 3U sin 2ψ = 0. (369)

The coefficient of the derivative vanishes at ψ = ψw. Therefore, using (368) it is
advantageous to rewrite (369) as

dU

dψ
= −6U sinϕ sin 2ψ

n cos2 ϕ− sinϕω0(ψ, θ)
. (370)
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In the case under consideration, the shear strain rate is determined from (124), (362)
and (369) as

ξrθ = − 1

2r3

dU

dθ
= 3U sin 2ψ

2r3 (cos 2ψ + sinϕ)
. (371)

Let Uw be the value of U at θ = α (or ψ = ψw). Then, expanding the right hand side
of (371) in a series in the vicinity of ψ = ψw yields

ξrθ = 3Uw

4r3 (ψw − ψ)
+ o

(
1

ψw − ψ

)
as ψ → ψw. (372)

Equation (368) in the vicinity of ψ = ψw (or θ = α) becomes

dθ

dψ
= 4 sinϕ (ψw − ψ)

n cosϕ− sinϕ [cosϕ+ cot α (1 + sinϕ)]

+ o (ψw − ψ) as ψ → ψw.

Integrating this equation gives

(ψw − ψ)2 = {n cosϕ− sinϕ [cosϕ+ cot α (1 + sinϕ)]}
2 sinϕ

(α− θ) (373)

to leading order. Substituting (373) into (372) gives

ξrθ = 3
√

2 sinϕUw

4r3
√

n cosϕ− sinϕ [cosϕ+ cot α (1 + sinϕ)]
√
α− θ

(374)

+ o

(
1√
α− θ

)
as θ → α.

The normal strain rates are bounded in the vicinity of the maximum friction surface
and |ξrθ| → ∞ as θ → α. Therefore, Eq. (6) in which ξτ should be replaced with
ξrθ is valid. Then, it follows from (6) and (374) that the strain rate intensity factor is

D =
√

6 sinϕUw

2r5/2
√

n cosϕ− sinϕ [cosϕ+ cot α (1 + sinϕ)]
. (375)

A difficulty with solving (367), (368) and (370) numerically is that the right hand
sides of these equations contain the expression 0 ·∞ as θ → 0 andψ → 0. Represent
the function ψ (θ) in the form

ψ (θ) = Aθ + Bθ2 + O
(
θ3
)

as θ → 0. (376)

Substituting this representation into (365) gives
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A + 2Bθ = 1

2

(
n

sinϕ
− n − 4 − 2A

)
− Bθ as θ → 0. (377)

Therefore,

A = −1 + n

4

(
1

sinϕ
− 1

)
, B = 0

and Eq. (376) becomes

ψ (θ) =
[

n

4

(
1

sinϕ
− 1

)
− 1

]
θ + O

(
θ3
)

as θ → 0. (378)

Substituting this representation into (367) and (370) yields

d f

dψ
= n

(
1

2
+ 1

1 + sinϕ

)
θ + O

(
θ3
)

as θ → 0 (379)

and
dU

dψ
= − 6U

(1 + sinϕ)
θ + O

(
θ3
)

as θ → 0, (380)

respectively. It follows from (378)-(380) that

f = f0 + n sinϕ (3 + sinϕ)

(1 + sinϕ) [n (1 − sinϕ)− 4 sinϕ]
ψ2 + o

(
ψ2
)

as ψ → 0,

ln
U

U0
= − 12 sinϕ[

n cos2 ϕ− 4 sinϕ (1 + sinϕ)
]ψ2 + o

(
ψ2
)

as ψ → 0, (381)

where f0 and U0 are constants of integration. It is seen from (375) that the function
f (θ) is not involved in the expression for the strain rate intensity factor. Therefore,
Eq. (367) is not solved here. The solution of Eq. (370) is

U = Uww (ψ) , (382)

w (ψ) = exp

⎧⎪⎨
⎪⎩−6 sinϕ

ψ∫
ψw

sin 2γ

n cos2 ϕ− sinϕω0 [γ, θ(γ)]
dγ

⎫⎪⎬
⎪⎭ .

Equation (168) should be used to determine Uw. In particular, substituting (362) and
(382) into this equation gives

Q = 2πUw

α∫
0

w (ψ) sin θdθ.
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Replacing here integration with respect to θ with integration with respect to ψ by
means of (368) yields

Uw = Q

4π sinϕ

⎡
⎢⎣
ψw∫
0

sin θ (sinϕ+ cos 2ψ)w (ψ)

n cos2 ϕ− sinϕω0 (ψ, θ)
dψ

⎤
⎥⎦

−1

. (383)

In order to make comparison with the solution for pressure-independent material
(Sect. 4.3), it is convenient to introduce the dimensionless strain rate intensity factor,
d, by (170).

Using (378) Eq. (368) can be solved numerically if a value of n is specified. An
iterative procedure should be adopted to determine the value of n using the boundary
condition (361). The variation of n withα at several values ofϕ is depicted in Fig. 63
(curve 1 corresponds to ϕ = 0.1, curve 2 to ϕ = 0.15, curve 3 to ϕ = 0.2, curve 4
to ϕ = 0.25, and curve 5 to ϕ = 0.3). Having the solution to Eq. (368) the integrals
in (382) and (383) can be evaluated. Finally, the dimensionless strain rate intensity
factor is determined from (170) and (375). The variation of d withα at several values
of ϕ is depicted in Fig. 64. The broken line corresponds to the model of pressure-
independent plasticity. It is seen that the effect of ϕ on d is not significant (the solid
curves cover the range 0.1 ≤ ϕ ≤ 0.3). It is more pronounced at smaller α-angles
(Fig. 65). In this figure, curve 1 corresponds to ϕ = 0.1, curve 2 to ϕ = 0.15,
curve 3 to ϕ = 0.2, curve 4 to ϕ = 0.25, and curve 5 to ϕ = 0.3. It is seen that the
dimensionless strain rate intensity factor increases withϕ. It is interesting to mention
that the opposite tendency occurs at larger α-angles (Fig. 66).

Fig. 63 Variation of n with α at several ϕ-values
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Fig. 64 Variation of the dimensionless strain rate intensity factor with α at several ϕ-values

Fig. 65 Variation of the dimensionless strain rate intensity factor with α at several ϕ-values (small
α-values)

6.3 Radial Flow Between Two Conical Surfaces

This boundary value problem has been formulated and solved for pressure-
independent material in Sect. 4.4 (see Fig. 26). An extension of this solution to the
double shearing model has been given in [40].

Let ψ f be the value of ψ at the maximum friction surface θ = θ0 and ψw be the
value of ψ at the maximum friction surface θ = θ1. The direction of flow (Fig. 26)
dictates that σrθ < 0 near the friction surface θ = θ0 and σrθ > 0 near the friction
surface θ = θ1. Therefore, it follows from (354) that

− π

2
< ψ f < 0 and 0 < ψw <

π

2
. (384)
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Fig. 66 Variation of the dimensionless strain rate intensity factor with α at several ϕ-values (large
α-values)

The orientation of the normal to the maximum friction surfaces shows that φ1 = 0
or φ2 = 0 in (359). Equation φ1 = 0 contradicts (384)1 and equation φ2 = 0 to
(384)2. Therefore,

ψ = ψ f = −π

4
− ϕ

2
for θ = θ0 (385)

and
ψ = ψw = π

4
+ ϕ

2
for θ = θ1. (386)

The velocity boundary conditions (172) are automatically satisfied assuming that
uθ = 0. Then, the radial velocity is given by (362). The general solution for stresses
given in the previous section is also valid. In particular, the dependence of ψ on θ
and the value of n are determined from (368) and the boundary conditions (385) and
(386). Equations (370) and (371) are also valid. Since the boundary condition (386)
coincides with (361), the strain rate intensity factor corresponding to the maximum
friction surface θ = θ1 is given by (375). Using the nomenclature of the present
section the expression for this strain rate intensity factor becomes

Dex =
√

6 sinϕUw

2r5/2
√

n cosϕ− sinϕ [cosϕ+ cot θ1 (1 + sinϕ)]
. (387)

Here Uw is the value of U at θ = θ1. Expanding the right hand side of (371) in a
series in the vicinity of ψ = ψ f (or θ = θ0) yields

ξrθ = − 3U f

4r3
(
ψ − ψ f

) + o

(
1

ψ − ψ f

)
as ψ → ψ f . (388)
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Here U f is the value of U at θ = θ0. Equation (368) in the vicinity of ψ = ψ f

becomes

dθ

dψ
= 4 sinϕ

(
ψ − ψ f

)
n cosϕ− sinϕ [cosϕ− cot θ0 (1 + sinϕ)]

+ o
(
ψ − ψ f

)
as ψ → ψ f .

(389)
Integrating this equation gives

(
ψ − ψ f

)2 = {n cosϕ− sinϕ [cosϕ− cot θ0 (1 + sinϕ)]}
2 sinϕ

(θ − θ0) (390)

to leading order. Substituting (390) into (388) yields

ξrθ = − 3
√

2 sinϕU f

4r3
√

n cosϕ− sinϕ [cosϕ− cot θ0 (1 + sinϕ)]
√
θ − θ0

(391)

+ o

(
1√
θ − θ0

)
as θ → θ0.

The normal strain rates are bounded in the vicinity of the maximum friction surface
θ = θ0 and ξrθ → ∞ as θ → θ0. Therefore, Eq. (6) in which ξτ should be replaced
with ξrθ is valid. Then, it follows from (6) and (391) that the strain rate intensity
factor corresponding to the friction surface θ = θ0 is

Din =
√

6 sinϕU f

2r5/2
√

n cosϕ− sinϕ [cosϕ− cot θ0 (1 + sinϕ)]
. (392)

The solution of Eq. (370) is given by (382). The condition (187) should be used to
determine Uw. In particular, substituting (362) and (382) into this condition results in

Q = 2πUw

θ1∫
θ0

w (ψ) sin θdθ.

Replacing here integration with respect to θ with integration with respect to ψ by
means of (368) yields

Uw

Q
= 1

4π sinϕ

⎡
⎢⎣
ψw∫
ψ f

sin θ (sinϕ+ cos 2ψ)w (ψ)

n cos2 ϕ− sinϕω0 (ψ, θ)
dψ

⎤
⎥⎦

−1

, (393)

where ω0(ψ, θ) is defined in (365). The value of U f is found from (382) as

U f = Uww
(
ψ f
)
. (394)
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In order to make comparison with the solution for pressure-independent material
(Sect. 4.4), it is convenient to introduce the dimensionless strain rate intensity factors,
dex and din , by Eq. (170). Then, using Eqs. (387), (392) and (394) yields

dex =
√

6 sinϕ

2
√

n cosϕ− sinϕ [cosϕ+ cot θ1 (1 + sinϕ)]

(
Uw

Q

)
(395)

and

din =
√

6 sinϕw
(
ψ f
)

2
√

n cosϕ− sinϕ [cosϕ− cot θ0 (1 + sinϕ)]

(
Uw

Q

)
. (396)

The ratio Uw/Q in Eqs. (395) and (396) should be eliminated by means of (393).

7 Concluding Remarks

The present chapter provides a comprehensive review of solutions for the strain rate
intensity factor for the model of classical pressure-independent plasticity and the
double-shearing model of pressure-dependent plasticity. Comparison made allows
one to estimate the effect of pressure-dependency of the yield criterion on the magni-
tude of the strain rate intensity factor. The importance of this quantity for applications
is that it controls the intensity of plastic deformation and, as a consequence, the inten-
sity of physical processes in a narrow layer near frictional interfaces. Some theories
have been already proposed to use the strain rate intensity factor in constitutive
equations [41, 42]. In certain sense, these theories are similar to some theories in
the mechanics of cracks based on the stress intensity factor [43]. Since the latter are
very successful in engineering applications, it is expected that the theories based on
the strain rate intensity factor can be successful as well.
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Mechanical Response of Porous Materials:
The Gurson Model

Luiz. A. B. da Cunda and Guillermo J. Creus

Abstract In this chapter the formulation for damage known as Gurson model is
presented. The original formulation, set in a micro-mechanical context, and different
adjustments of phenomenological nature are described. The range of the parameters
of the model and their influence on the representation are described. The main com-
putational details for the implementation of the model by means of the finite element
method are presented and examples of application are given.

1 Introduction

Fracture Mechanics that uses global fracture parameters, such as J integral or Crack
Tip Opening Displacement (CTOD) [34], only in special situations represents the
behavior of ductile solids. In polycrystalline metals, ductile fracture is controlled by
nucleation, growth and coalescence of microvoids and a local approach provides a
clearer picture.

Voids can nucleate from large inclusions and second phase particles, by particle
fracture or interfacial decohesion [47]. Once a void has been nucleated, it will grow
under plastic deformation and hydrostatic stress. Eventually the voids will connect
and ductile fracture by void coalescence will take place.

Thus, four stages, as indicated in Fig. 1 are observed: homogenous deformation
with void nucleation and growth, localized deformation and void coalescence.
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(a) (b)

(c) (d)

Fig. 1 Stages in the development of damage: a nucleation, b growth, c coalescence and d fracture

The best known micro-mechanical model for void related damage and fracture is
due to Gurson [25, 26] and includes a plastic damage yield condition that depends
on a damage parameter (porosity) and a growth law for this damage variable. The
original Gurson model has been subjected to many analysis, criticisms and improve-
ments, some of which are reviewed in the present work. The original model assumes
a homogenous deformation field and thus is not able to describe interaction effects,
void shape changes and the non-homogeneous transformations that lead to coales-
cence and rupture. Some important modifications are due to Tvergaard [76, 79]
who introduced adjustment parameters and to Chu and Needleman [10] who pro-
posed improved nucleation laws for porosity. For this reason the model is sometimes
referred to as GTN (for Gurson, Tvergaard, Needleman). Other modifications will
be described in Sect. 4. Many of them maintain the same basic variables and general
form of the equations and have only a phenomenological (i.e. no micromechanical)
base. Application of the Gurson model to practical problems is only possible in a
computational context. So, diverse studies have been devoted to the numerical imple-
mentation (usually through finite element techniques) of the model. Details of some
procedures and application examples are given in Sects. 5 and 6.
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2 Gurson Damage Model

2.1 Yield Criterion

This theory—originally presented by Gurson [25, 26] in a PhD dissertation super-
vised by J. R. Rice—proposed yield criteria and flow rules for porous materials, focus-
ing the effect of void nucleation and growth, as observed in ductile fracture. Figure 2
(from Gurson [26]), defines macroscopic and microscopic stresses and strains and
the spherical model of a unit cell. The isotropic damage variable (in the framework
of continuum damage mechanics [32, 33]) is the volumetric void fraction or porosity
f = Vv/V , with Vv being the volume of voids in a representative small volume V .
The volumetric void fraction f is assumed as defined at each point of the continuum.

The macroscopic yield criterion was approximated with an upper bound approach
[28]. Aggregates of cells representing voids in a ductile matrix were employed, with
the matrix material idealized as rigid-perfectly plastic obeying von Mises yield crite-
rion. Using a distribution of macroscopic flow fields and working with a dissipation
integral, upper bounds for the macroscopic stress fields required for yield were deter-
mined. Their locus in the stress space determines the yield surface. It was shown that
normality of plastic flow holds for this yield surface. The expression proposed by
Gurson is

Φ =�
2
eq

σ 2
0

+ 2f cosh
3�m

2σ0
− 1 − f 2 = 0

�eq =
√

3

2
�′ : �′, �m = p = 1

3
tr�, �′ = � −�m, (1)

Σ1 j, E1 j

Σ2 j, E2 j

Σ3 j, E3 j

σij , εij

a

bR

11
2

2

3

3

Spherical

Model

Unit Sphere

Principal Axis System

t

φ

Fig. 2 Void-matrix aggregate, with random void shapes and orientations, evidencing macroscopic
and microscopic tensor quantities, and also the unit cell model studied by Gurson [26]
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where �eq is the macroscopic von Mises equivalent stress, �′ is the deviator of the
macroscopic stress, �m is the mean macroscopic stress or pressure, �0 is the yield
stress of the matrix undamaged material and f is the porosity. For f = 0 Gurson’s
model reduces to the von Mises criterion.

A prior model, the Drucker-Prager theory [18], had already proposed a yield
criterion dependent on hydrostatic stress in the general form (the macroscopic stress
being now indicated with σ )

Φ = σeq − aσm − b = 0. (2)

Gurson seminal contribution resides in the establishment of a microstructural relation
for the effect of the hydrostatic stress p on the yield function through the consideration
of a porosity variable f .

In the original Gurson model (Eq. 1), the softening of the material with the increase
of void volume fraction is a continuous process, and a complete loss of load carrying
capacity would occur only when the void has grown to the ultimate value f = 1.
Tvergaard [76, 79] compared the bifurcation predictions based on the Gurson model
and his own numerical studies for material containing periodic distribution of voids
and suggested a modification of the Gurson model. In the most usual notation

Φ = σeq

σy
+

√
2α1f cosh α2

3�m

2σy
− 1 − α2

1 f 2 = 0 (3)

or
Φ = σeq −�σy = 0, (4)

with

� =
√

1 − 2α1f cosh

(
α2

3�m

2σy

)
+ α2

1 f 2. (5)

The substitution of� by σ is coherent with the fact that the original micromechanical
model has been altered to include phenomenological parameters.

In Fig. 3, yield surfaces for different levels of void content are shown, in a plot of
normalized macroscopic deviatory stress versus normalized pressure. It can be seen
that the elastic domain depends on the hydrostatic pressure. When the volumetric
void fraction f decreases, the influence of pressure also decreases, leading to a larger
elastic domain. For f = 0, the model reduces to the von Mises criterion, which is
independent of the hydrostatic pressure.

The parameter α1 in Eq. (3) is a coefficient multiplying the porosity f , to be
adjusted by comparing numerical simulations of RVE aggregates and the predictions
of the model. Since the element studied by Gurson was a single hollow sphere and
thus disregarded interaction among voids, this coefficient introduces somehow the
interaction effect. The parameter α2 in Eq. (3) can be understood as a calibrating
coefficient acting on the pressure.
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Fig. 3 Gurson yield surface for a porous material, showing the influence of pressure and volumetric
void fraction

The parameter α1 is the inverse of the value fU, being fU the volumetric void
fraction that corresponds to rupture in the absence of hydrostatic pressure. From
�(p = 0, σy, f ) = 0, results fU = 1/α1.

Rupture occurs at a porosity level fU in the absence of pressure. If pressure is
present, rupture takes place at a porosity value lower than fU. The combinations of
pressure and porosity that lead to rupture are given by

� = 2

3α2
arccosh

1 + α2
1 f 2

2α1f
− p

σy
= 0. (6)

Figure 4 shows plots corresponding to Eq. (6) for α2 = 1.0 and α2 = 0.7. Even
with this modification, the void volume fraction at which the Gurson model will lose
load carrying capacity is still unrealistically large. Both experimental observations
[9] and results of cell model analysis by Koplik and Needleman [37] show that the
volume fraction of voids at which void coalescence starts is usually less than 15 %.

Flow rule: As shown by Gurson [26] the plastic strain rate tensor Dp
ij obeys the

normality rule

Dp
ij = λ̇

∂Φ

∂σij
. (7)
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Fig. 4 Combinations of pressure and porosity values that correspond to loss of strength (� = 0)

The equivalent plastic strain rate is defined as

ε̇p =
√

2

3
Dp

ijD
p
ij. (8)

As in classical plasticity, the relation giving the plastic strain rates as a function of
the stress rates is obtained using the consistency condition Φ̇ = 0 .

2.2 Evolution Law for the Porosity

In a plastic damage theory it is necessary to have, in addition to the yield criterion and
the flow rule, an evolution law for damage (porosity, in this case). The mechanism
of damage evolution considered in the original Gurson model was growth. Growth
occurs when the voids (pre-existent or nucleated) change their size according to the
volume change in the continuum and is controlled by mass conservation through the
expression

ḟg = (1 − f )Dp
ii, (9)

which determines that voids increase or decrease their volume according to the
volume variation in the continuum.

In the GTN version, two additional mechanisms are included: nucleation and
coalescence. Nucleation occurs mainly due to material defects, in the presence
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of tension. Coalescence is related to the fast rupture process that occurs after the
volumetric void fraction reaches a limit, usually indicated by fC. Coalescence is the
union of neighbor voids due to the rupture of a ligament among them (see Fig. 1).

The equations that govern damage evolution are modeled in a simplified form as
follows. First, it is assumed that the total void growth rate is given by

ḟ =
{

ḟn + ḟg f ≤ fC,

ḟc f > fC,
(10)

where ḟn is the void nucleation rate, ḟg is the void growth rate and ḟc is the void coales-
cence rate. Thus, as long as f is smaller than a characteristic value fC, only nucleation
and growth develop. Above fC, only coalescence takes place. The nucleation rate is
proportional to the rate of the equivalent plastic strain

ḟn = A(εp)ε̇p. (11)

For A(εp) Chu and Needleman [10] proposed the statistical distribution

A(εp) = fN

sN
√

2π
exp

[
−1

2

(
εp − εN

sN

)2
]
, (12)

where fN is the proposed final nucleation void volumetric fraction, εN is the mean
plastic strain value for nucleation and sN is the standard deviation for the distribution
(see Fig. 5).

Sometimes it is assumed that nucleation does not take place when the material
is in compression. The compression state is indicated by a negative pressure p, and
thus A(εp) = 0 if p < 0.

Coalescence is governed [78] by the relation

ḟc = fU − fC
Δε

ε̇p, (13)

whereΔε is a material parameter that controls how fast the coalescence happens. An
alternative way of taking coalescence into account [80] is to replace the volumetric
void fraction f in the Gurson yield surface (3) by a corrected volumetric void fraction
f ∗ given by

f ∗ =
⎧⎨
⎩

f f < fC,

fC + 1.0 − fC
fF − fC

(f − fC) f > fC,
(14)

with fF being the rupture volumetric void fraction. In this case, only nucleation and
growth are considered in Eq. (10). Nucleation and coalescence are irreversible. Thus,
it seems natural to model them (Eqs. (11) and (13)) as governed by equivalent plastic
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Fig. 5 Evolution of porosity in the nucleation stage considering εN = 0.2 and two different sN
values. As a consequence of the combinations of εN and sN adopted, nucleation is almost complete
in both cases

strain. The growth mechanism is reversible, so it is modeled (Eq. (9)) as volume
change dependent.

In Fig. 6, the evolution of porosity is shown. The occurrence of the three stages
of porosity evolution can be observed: initially, a relative fast nucleation, according
to the standard deviation sN imposed, placed around equivalent plastic strain 0.1;
afterwards, a growth stage until an equivalent plastic strain around 0.5, 0.7 or 0.9
is reached. And finally, the coalescence stage, in which the porosity level changes
abruptly, according to the parameter employed. The start of the coalescence stage is
defined based on porosity, according to Eq. (13).

2.3 Elastic Constants for the Damaged Material

The presence of embedded voids in a metallic matrix alters also the elastic behavior.
Mori and Tanaka [49] relations are usually adopted

K = 4K0G0(1 − f )

4G0 + 3K0f
, G = G0(1 − f )

1 + 6K0 + 12G0

9K0 + 8G0
f
, (15)
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Fig. 6 Evolution of porosity for a tensioned material obeying Gurson model. The three mechanisms
of voids evolution: nucleation, growth and coalescence can be identified. It is observed that the
parameterΔε is the equivalent plastic strain increment from the beginning of coalescence until the
final rupture of the material

with K0 and G0 being the undamaged values of compressibility and shear modulus,
respectively. There are other proposals to include the effect of porosity on elastic
constants [31, 45, 59], leading to similar results for low porosities. Figure 7 shows
the dependence of damaged Young’s modulus E on the porosity, evaluated from
Eqs. (15) and from [45]. E0 is the undamaged Young’s modulus.

2.4 Assessment of Gurson Model

The Gurson model has been assessed using numerical micromechanical techniques.
Trillat and Pastor [75] use the static and kinematic methods of limit analysis to check
both for the 2D and 3D Gurson expressions. For spherical cavities Gurson criterion
seems to be a good analytical expression; in the case of cylindrical cavities Gurson
expression seems too restrictive. The 2D formulation is also analyzed in [20], where
a modification of the Gurson yield function is proposed.



358 L. A. B. da Cunda and G. J. Creus

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

E
( f

)/
E

0

f

Mori and Tanaka [49]
Mackenzie[45]

Fig. 7 Dependence of Young’s modulus on the void volumetric fraction as introduced by Mackenzie
[45] and Mori and Tanaka [49] equations

3 Influence of the Parameter Values on the Behavior
of the Damage Model

The material parameters in the Gurson model can be classified as:

(a) constitutive parameters, related to the Gurson yield surface (α1, α2);
(b) initial parameters, associated to the origin of the porosity, whether present in the

virgin material (f0) or nucleated by plastic straining (fN, sN and εN);
(c) critical parameters, related to the interaction between neighbor voids, describing

the coalescence stage and the final rupture of the material.

The constitutive parameters α1 and α2 act as multipliers on the volumetric void frac-
tion and on the pressure respectively, introducing the possibility of adjusting the the
Gurson yield surface with available experimental or numerical data. To larger values
of α1 and α2 correspond a smaller elastic domain. Figure 8 shows the dependence of
the Gurson yield surface on the α2 parameter.

The second group of parameters is related to the origin of the voids. An initial
porosity f0 can be employed in two situations: when the material has actually an
initial porosity or when voids are developed from inclusions that break or debond
from the matrix at a very low strain level. Otherwise, the strain governed nucleation
relation proposed by Chu and Needleman [10], described by Eqs. (11) and (12), is
used.
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Fig. 8 Dependence of Gurson yield surface on α2 parameter presented for α2 = 0.7 and α2 = 1.0

The value adopted for fN determines the proposed level of nucleated voids. The
parameter εN corresponds to the mean equivalent plastic strain for which nucleation
is developed. The nucleation standard deviation sN controls the localization of nucle-
ation around εN. Figures 5 and 9 shows two nucleation processes with different εN:
to the smaller value (Fig. 9) corresponds an earlier nucleation. In both the figures,
plots with different sN are presented: to smaller values of sN corresponds a faster
nucleation, with the nucleation localized around the mean equivalent plastic strain
nucleation εN.

Figure 9 shows that the proposed level fN is not reached, if sN = 0.1 is employed.
This is because the porosity evolution law in the nucleation stage ḟn is given in a
rate form that must be integrated while the material is plastically deformed. If an
inadequate relation between sN and εN is employed, a significant part of the porosity
evolution rate ḟn will take place in the “fictitious negative” part of the equivalent
plastic strain domain (Fig. 10), and not be integrated, since the equivalent plastic
strain is always positive, determining an incomplete nucleation.

To avoid this problem, a relation between sN and εN in the form εN > zsN must
be respected. So, to each value of z corresponds a different level of nucleation. To
ensure a nucleation level of at least 95 % of fN it is necessary to employ a z value
of 1.645. To obtain a nucleation level of 97 % of fN, z = 1.882 must be used and to
attain a nucleation level of 99 % of fN, z = 2.337 must be employed.

Another important choice concerns the influence of the pressure sign on the nucle-
ation of voids. One approach is to consider nucleation completely independent of
the pressure sign [71, 77]. For a material without initial porosity, this choice leads
to a Gurson yield surface which is symmetric with respect to pressure, as indicated
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Fig. 9 Evolution of porosity in the nucleation stage considering εN = 0.1 and two different sN
values, showing localized nucleation around εN if a smaller value of sN is employed. Incomplete
nucleation can be observed if an inadequate combination of εN and sN is adopted, i.e., a large sN
value with relation to the εN value
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Fig. 10 Dependence of nucleation evolution rate on equivalent plastic strain. Part of the area under
the curve is placed on the “fictitious negative” domain of the equivalent plastic strain

in Fig. 11 . On the other hand, if nucleation is associated to debonding between
inclusions and metallic matrix, this debonding will decrease whenever the region
is submitted to compression. To avoid this contradiction, some proposals consider
nucleation only for p > 0 (tension), imposing A(εp) = 0 if p < 0 [69]. For a mate-
rial initially free of voids, we will have Gurson behavior for p > 0 and von Mises
behavior for p < 0 as indicated in Fig. 11. This approach also has drawbacks. Con-
sidering a material initially compressed and plastically deformed to an equivalent
plastic strain level higher than εN, if the load reversal happens and the hydrostatic
stress state on the material changes to tension, nucleation will not take place. In the
absence of nucleated voids, there will be no void evolution and the material will
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approaches: nucleation only in tension or pressure independent nucleation, symmetric with relation
to the pressure sign. If the material is tensioned, both approaches lead to similar results. If the
material is compressed, with nucleation only in tension, von Mises behavior is reproduced

continue obeying von Mises yield criterion even for a high level of plastic strain-
ing and positive hydrostatic tension [13]. Both nucleation approaches give the same
response to monotonic positive hydrostatic pressure.

The third class of parameters includes those related to the coalescence of voids.
Considering the coalescence rate of voids described by the Eq. (13), two material
parameters are present: fC, that indicates the initial level of voids at which coales-
cence takes place, andΔε, that indicates how fast coalescence occurs. Considering a
material submitted to uniform tension, it can be seen that the coalescence parameters
control the final branch of the load-displacement relation presented in Fig. 12: fC
controls the start of the branch and Δε controls its slope. To a small fC corresponds
a final branch that starts earlier and to a small Δε corresponds a steeper one.

4 Further Developments and New Trends for Gurson Model

The Gurson model has been modified by several authors, particularly in reference to
its parameters. There are proposals to make these parameters function of
porosity [23, 81], triaxiality [40], shape of voids [36], etc. There are proposals to
use kinematical hardening [8, 42]. A thermo mechanical coupling [84] includes the
possibility of using parameters dependent on temperature.

Thomason [74] proposes a model that incorporates Rice and Tracey [66] equa-
tions, and is able to represent both the growth and the change of void shapes. For
this model, the αi parameters proposed by Tvergaard [76, 79] would be unnecessary.
Klöecker and Tvergaard [36] also propose a modification of the Gurson model to
take into account changes in void shapes and the coalescence process. Zhang and
Niemi [88] present a mechanism of coalescence that avoids the need for determining
experimentally the critical value of the coalescence beginning fC. In this model, the
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void remains spherical during growth, and the initiation of coalescence is controlled
by the triaxiality level.

Voyiadjis and Kattan [81] propose a formulation that introduces damage through
a damage tensor. Applying this formulation to simulate Gurson model, they obtain a
yield surface with porosity dependent parameters. Wen et al. [82] propose a modifi-
cation of the Gurson model to take into account void size. They show that the yield
surface is larger for materials with very small voids. The effect becomes important
for high porosities.

The Gurson model has been used in combination with Fracture Mechanics by
Kikuchi et al. [35], Needleman and Tvergaard [52], Koppenhoefer and Dodds Jr. [38]
and Skallerud and Zhang [70] employing J integral and by Aravas and McMeeking
[3] employing J integral and COD.

Subjects that deserve particular attention are situations with low triaxility and
shear stresses, the effect of hardening and the consideration of cyclic loading.

4.1 Non-Spherical Voids

The evolution of the void shape and its effect on the mechanical behavior has been
considered by Gologanu et al. [22] and Pardoen and Hutchinson [58].

Gologanu et al. [22] extended the Gurson model to prolate and oblate voids in a
plastic material. The stress potential proposed corresponds to an ellipsoidal volume
of perfectly plastic material containing a confocal ellipsoidal void,
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Φ = C

(
�eq + η�h

σ0

)2

− 2q(g + 1)(g + f ) cosh

(
κ
�h

�0

)
− q2(g + f )2 = 0, (16)

with

�h = 2α2

(
�11 +�22

2

)
+ (1 − 2α2)�33.

The parameters C, η, q, α2 depend on the current void and cell shape. Pardoen and
Hutchinson [58] use a potential function similar to Eq. (16) and add a coalescence
function that determines the initiation of the coalescence, based on the work of
Thomason [74]. Two new variables determine void shape and the relative void spac-
ing. The analysis seems to give satisfactory results for the overall cell behavior (i.e.
equivalent stress-strain curves), but a precise prediction of the shape evolution needs
the introduction of correction functions.

4.2 Shear Effects

The difficulty of the Gurson formulation to model damage under pure shear has been
tackled in a phenomenological form by Nahshon and Hutchinson [50]. An extension
of the Gurson model that incorporates damage growth under low triaxial straining in
shear-dominated states is proposed. This extension retains the isotropy of the original
Gurson model by making use of the third invariant of stress to introduce shear depen-
dence. This extension opens the possibility for computational approaches based on
the Gurson model to be extended to shear-dominated failures. This modification
assumes that the volume of voids undergoing shear may not increase, but void defor-
mation and reorientation contribute to damage and softening increase. Thus, f is no
longer directly tied to the plastic volume change. Instead, it is regarded as an effec-
tive damage parameter. The modification, while phenomenological, is nevertheless
formulated to be consistent with the mechanism of softening in shear. Specifically,
it is proposed that the growth rate expression be written as

ḟ = (1 − f )Dp
ii + Aε̇p + kωfω0

sijD
p
ij

σy
, (17)

where sij is the deviatoric part of the stress tensor and the invariant measure ω0 =
ω(σ) is defined as

ω0 = ω(σ) = 1 −
(

27IIIs

2σ 3
y

)2

, (18)

in which IIIs is the third invariant of the deviator. In Eq. (17), the first term representing
growth of existing voids follows from plastic incompressibility, the second term
describes nucleation of new voids, while the last term, introduced by Nahshon and
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Hutchinson [50], is formulated to be consistent with the mechanism of void softening
in shear. Void nucleation is here taken to be plastic strain controlled as suggested
by Chu and Needleman [10], so that the coefficient A in Eq. (17) takes the form of
Eq. (12).

The model approximates experimental results obtained for various structural
alloys that show a marked difference between fracture strains under axisymmetric
stress and those under a pure shear stress plus a hydrostatic component or under plane
stress states. The shear contribution added to the damage growth rate in Eqs. (17)
and (18) does not affect the normality of the plastic flow rule [50].

The proposal above has been critically analyzed by Nielsen and Tvergaard [53],
which claims the modification represents damage development in shear, but also
gives a contribution to the damage development at plane strain uniaxial tension, even
though the stress triaxiality is far from zero.

4.3 Hardening

Gurson [25, 26] had already considered the case of a matrix with isotropic hardening,

writing Eq. (1) with σ0 = σ(Ē), where Ē is given by the evolution law (1− f )σ0
˙̄E =

�ijD
p
ij. Mear and Hutchinson [48] and Becker and Needleman [6], were the first to

introduce linear kinematic hardening into the Gurson yield function. In the case of
purely kinematic hardening [48], the proposed criterion is

Φ = (� − A)2eq

σ 2
y

+ 2f cosh

(
3(� − A)m

2σy

)
− 1 − f 2 = 0, (19)

where A denotes now the back stress (center of the macroscopic elastic domain).
The extensions mentioned above are purely phenomenological. Leblond et al. [39]

derived another yield function (the extended Leblond-Perrin-Devaux—LPD model)
based on the analysis of a spherical void in a spherical volume element assuming an
incompressible isotropic and kinematic hardening matrix material:

Φ = (� − A)2eq

�2
1

+ 2α1f cosh

(
3α2(� − A)m

2�2

)
− 1 − (α1f )2 = 0. (20)

The two variables�1 and�2 replace the isotropic flow stress in the Gurson equation.
Steglich et al. [72] carried out unit cell calculations assuming a non-linear kine-

matic hardening matrix material surrounding spherical voids. They compared the
unit cell results to predictions of the LPD model with non-linear kinematic harden-
ing and found that, in principle, the behavior under constant triaxiality, as observed
in the cell calculations, can be described with the model.
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5 Computational Details

5.1 Numerical Implementation

The Gurson damage model computational formulation is usually presented in rate
form (hypoelasticity). Thus, a numerical scheme must be adopted to integrate the
rate equations following the evolution of the internal variables (stresses, damage
and plastic strain). A time discretization procedure is adopted, associating to each
time t a specific load level. Then, the evolution of internal variables is obtained for
subsequent times t + Δt, t + 2Δt, etc. The correct integration of rate constitutive
equations has a direct implication on the precision of the solution.

Physical and geometrical nonlinearities must be taken into account during the
integration process. A convenient way is to consider the physical and geometrical
nonlinearities in separate levels. Therefore, the integration of constitutive equations is
organized in two stages: first, the evaluation of corotational Cauchy stresses (material
nonlinearity); and secondly, the evaluation of stresses, from the previously obtained
corotational stresses (geometrical nonlinearity). A good integration scheme must
provide incremental stability, precision and incremental objectivity.

Incremental objectivity is assured by the corotational formulation. An integration
procedure that has been widely employed is the so called split-operator scheme,
with which all strain increase is initially considered as elastic. If the yield surface is
exceeded, a plastic corrector is applied.

Ortiz and Popov [57], Runesson et al. [67], Gratacos et al. [24], Lee [41] and Zhang
[86] present studies on the stability and precision of different integration schemes.
Zhang [85] and Zhang and Niemi [87] present a generalized mid-point algorithm
that is an evolution of the algorithm presented by Aravas [2] to integrate constitutive
equations with internal variables and isotropic hardening. The algorithm determines
the change in corotational stresses and internal variables such as porosity and plastic
strain. Beginning at a time t (characterized by a subindex n), at which all the stresses
and internal variables are known, the algorithm provides the updated values at time
t + Δt (subindex n + 1). It uses a predictor-corrector strategy, partitioning volumet-
ric and deviatory plastic strains. The parameter α controls whether the integration
scheme is explicit (α = 0) or implicit (α > 0). The process is as follows:

(a) the logarithmic strain EN
ij is decomposed into the sum of an elastic part EN,e

ij and

a plastic part EN,p
ij ; such additive decomposition is adequate when an Updated

Lagrangian description (with reference and updated configurations close to
updated each other) is employed;

(b) stresses are determined from the elastic strains;
(c) the yield surface is determined using the conventional von Mises equivalent

stress q, the pressure p and the internal variables Ht ;
(d) the plastic strain rate is determined using a potential function g. In the present

case the potential function is the Gurson yield surface, that is associated to
Eq. (7);
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(e) the rate ht of the internal variables Ht is a function of the stress increment and
on the value of the internal variables.

Initially, all the strain increment is supposed as being elastic. In this case, plastic strain
and porosity remains unchanged in the time step. If the yield surface is violated, a
plastic corrector is applied. The integration algorithm can be viewed as a system of
non-linear equations to be solved.

ΔEpP +ΔEqQ = 0, (21)

Φn+1 = φ
{
pn+1, (sij)n+1, (Ht)n+1

} = 0, (22)

pn+1 = pT
n+1 + K{f }ΔEp (23)

(sij)n+1 = (sij)
T
n+1 − 3G{f }ΔEq

(sij)n+α
qn

, (24)

(ΔHt)n+1 = (ht)n+α
{
ΔEp,ΔEq, pn+α, (sij)n+α, (Ht)n+α

}
(25)

with K{f } and G{f } being the bulk modulus and shear modulus respectively, both
corrected by the porosity. ΔEp and ΔEq are related, respectively, to the volumetric
and deviatory part of the logarithmic plastic strain increment [87].

The non-linear equations system can be solved by the Newton-Raphson method,
taking as variablesΔEp andΔEq. Once obtained their values, the next step is to update
stresses and internal variables (Eqs. (23), (24) and (25)). The process is repeated until
|(Φ)n+1| ≤ 10−7.

Some additional strategies can be used to enhance the robustness of the integra-
tion scheme. Worswick and Pick [83] recommends to employ sub-incrementation,
breaking a time step into sub-steps. The number of sub-steps NSI may be chosen as
a function of elastic predictor values, determining

NSI1 = INT(ΦT
n+1/σy), (26)

NSI2 = INT(ABS(pT
n+1/σy)), (27)

and choosing
NSI = MAX(NSI1,NSI2). (28)

5.2 Mesh-Size Dependence

A subject that deserves particular attention is the influence of mesh size in finite
element analysis with the Gurson model as in all situations that involve softening.
Then the results become strongly mesh dependent, unless special procedures are
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employed. Procedures proposed include non-local models, viscoplasticity, gradient
plasticity, etc., in order to introduce a characteristic length, related not to the mesh
size but to the material structure [1, 5, 15, 16, 46, 51, 60].

Non-local strategies for the Gurson model have been proposed by Leblond et al.
[39], Needleman and Tvergaard [52] and Reusch et al. [64, 65].

The use of gradient plasticity formulations considers that the yield surface depends
not only on internal variables but also on its gradients. This dependence leads to
behavior similar to the nonlocal approach. Gologanu et al. [21] and Ramaswamy and
Aravas [62, 63] have studied the application of gradient plasticity together with the
Gurson model. A viscoplastic formulation also introduces a characteristic length. In
the context of the Gurson damage, viscoplascity is used by Needleman and Tvergaard
[52] and Stainier [71].

5.3 Arbitrary Lagrangian-Eulerian Alternative

The Gurson damage model involves two major components: a yield surface that
depends on the stress state, virgin yield stress and porosity level, and a law for
the evolution of porosity, also dependent on stresses and strains. Thus, the results
obtained applying the damage model are only as good as the displacements, stresses
and strains used as input data. Modeling the problem with finite elements, the results
obtained are in strong dependence on the quality of the mesh employed. In the
presence of the finite strains allowed by ductile behavior, errors due to high mesh
distortion can be expected. In order to improve the quality of the results some action
must be taken. One possibility is to employ remeshing [11, 73]. This is a good
option, but usually expensive, because it needs continuous error monitoring to define
the exact moment to remesh, a good mesh generator and an experienced user to
control the process. Another way of minimizing the mesh distortion is to employ an
ALE formulation, in which the mesh is redefined at arbitrary steps, in an automatic
way. Both methods may be combined.

Arbitrary Lagrangian-Eulerian formulation (ALE) is a strategy initially developed
for hydro-codes [17, 30], and after extended to solid mechanics problems [4, 27, 29,
44, 68], enhancing the quality of the meshes in processes that occur with large
deformations. The main characteristic of ALE formulation is the relative movement
between finite element mesh and material points. Considering this characteristic,
Eulerian and Lagrangian formulations can be understood as particular cases of ALE
formulation.

As mesh and material displace independently, a value relating material velocity
vi and mesh velocity v̂i, the convective velocity ci, can be established as ci = vi − v̂i.
A material rate of a function gi is defined as g•

i = go
i + cjgi,j, where go

i represents
the local variation of fi and cjgi,j represent the convective effects. Considering the
balance of momentum equation in the Lagrangian form and applying equilibrium
conditions in the Lagrangian-Eulerian form results
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σij,j + ρbi = ρ
(
vo

i + cjvi,j
)
, (29)

where ρ is the specific mass and bi is the body force per unit mass. Applying the
virtual work principle to Eq. (29) results in

∫
V

δui
[
σij,j + ρbi − ρ

(
vo

i + cjvi,j
)]

dV = 0. (30)

A weak form of the equilibrium conditions can be obtained,

∫
V

ρvo
i δuidV +

∫
V

ρcjvi,jδuidV +
∫
V

δui,jσjidV =
∫
V

ρbiδuidV +δ
∫
S

tiδuidS. (31)

It is easy to see that in Eq. (31) both the mesh and material velocities are involved. In
a finite element implementation, the system of equations resulting of Eq. (31) can be
solved by means of two alternative strategies: (a) to define a system considering as
the degrees of freedom, those corresponding to the displacements of both the mesh
and the material; (b) to solve the problem in a staggered manner [7, 61]. The second
alternative considers two stages at each load increment. First, the Updated Lagrange
(UL) stage, with the mesh attached to the material, that ends after equilibrium is
obtained. Afterwards, in the Eulerian stage, the new mesh position is defined, trying
to reduce distortion, and the relevant information is transferred from the old to the
new mesh.

6 Numerical Examples

The numerical examples presented in this section were obtained employing two dif-
ferent finite element codes. The first one [69] is a well-known commercial software.
The second one, MetaFor, was developed at the University of Liège by Ponthot and
Hogge [61], to treat problems of metal forming, and was used under a courtesy
license. Both codes have an adequate treatment of geometrical non-linearity and
contact. The Gurson model using the ALE formulation and implicit time-integration
was implemented on MetaFor [12].

6.1 Indentation of a Block by a Sphere

This example analizes the punching of a block of square section by a sphere [12].
The height of the block is 100 mm and the transversal section is 140 × 140 mm. The
sphere has a radius of 50 mm, and travels 50 mm in the vertical downward direction.
Because of symmetry, a quarter of the problem is modeled. The contact between
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Fig. 13 Last configuration achieved: a UL formulation and b ALE formulation

block and sphere is considered as sliding, with normal penalty factor of 618 N/m.
The material of the block has elastic modulus E = 206 GPa, Poisson’s ratio ν = 0.3,
density ρ = 7500 kg/m3. Linear hardening is considered with σy = σ 0

y + hεp being

σ 0
y = 346.4 MPa, h = 138 MPa. For the Gurson model α1 = 1.5, α2 = 1.0,

fN = 0.04, εN = 0.5, sN = 0.1, fC = 0.15 and Δε = 0.3. Results obtained
employing MetaFor [61] are presented in Fig. 13, considering both UL and ALE
formulations.

Figure 13a shows that in the case of the UL formulation the elements in the
contact zone are highly distorted. The nodes on the contact surface are distant one
from another and the contact surface gets far from the spherical surface and closer
to a polyhedron. The simulation came to a stop at 82 % of the proposed punch
displacement with a message of negative Jacobian. With the ALE formulation, the
total proposed punch displacement was attained with a good quality mesh. Figure
14 shows the final porosity distribution obtained with pressure independent void
nucleation model [13].

6.2 Analysis of Metallic Foams

Analysis of a single sphere: the finite element analysis in this section follows that
in [55]. The sphere is modeled as an axisymmetric body with 375 linear quadrilat-
eral elements. Because of symmetry considerations only one half of the sphere is
modeled. The platen of the test machine is modeled as a rigid plane with prescribed
displacements and the contact procedure is activated.

The sphere analyzed has an external radius of 1.0 mm and wall thickness of
0.1 mm. The material constants used are: elastic modulus E = 200 GPa, initial yield
stress 200 MPa and Poisson’s ratio ν = 0.3. In the cases without damage (von Mises
yield criterion), kinematic hardening is employed, with a hardened yield stress of
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Fig. 14 Final porosity (void volumetric fraction vvf ) distribution obtained with ALE formulation
and pressure independent void nucleation model

250 MPa to a unitary plastic strain. When Gurson model is employed, hardening is
considered as isotropic with the same magnitude.

Plots of macroscopic stress (defined as the ratio between the sum of the reactions in
the compression direction and the surface of the circle corresponding to the projection
of the undeformed sphere onto a plane) versus normalized displacement (defined as
the relation between the imposed displacement to the top plane and the original
radius) are given in Fig. 15.

The plot corresponding to elasto-plastic behavior coincides with Lim et al. [43]
results. Two other plots, obtained with the consideration of damage are shown in
Fig. 15. One simulation considers 5 % of initial porosity with no void nucleation
and the other considers only 5 % void nucleation without initial porosity. In both
alternatives damage accumulates in the same region of the sphere.

Figures 16 and 17 show the distribution of porosity at the end of the compression
process, corresponding to a normalized displacement of 0.9. The damage parameter
reaches 13.4 % when initial porosity is used (Fig. 16) and 9.8 % if only nucleation is
considered (Fig. 17). These are fairly high values, but as the damage region is local-
ized, only in small changes in the load-displacement relation (Fig. 15) are observed.

Analysis of a Representative Volume Element (RVE) representing a Metallic
Hollow Sphere Structure (MHSS): In this analysis [56] two geometries are studied.
The first one, in which the space among the spheres is fully occupied by resin is
called syntactic. The second one, in which the space between adjacent spheres is
only partially occupied by the resin is called partial. The models used in the analysis
are made to fit global densities for the set resin-metal of 1.2 g/cm3 (syntactic) and
0.6 g/cm3 (partial). The metal spheres have an external radius of 1.5 mm and the
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Fig. 15 Macroscopic stress versus normalized displacement with and without damage
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Fig. 16 Final distribution of porosity starting with an initial porosity of 5 %

resin thickness between spheres is 0.36 mm. The boundary conditions employed in
both RVEs are shown in Fig. 18.

Materials constants used are E = 110 GPa, ν = 0.30, virgin yield stress σ 0
y =

300 MPa and ρ = 6.95 g/cm3 for the metal of the sphere and E = 24.6 GPa, ν =
0.34, compression yield stress σ 0

y = 113 MPa, traction yield stress σ 0
y = 61.5 MPa

and ρ = 1.13 g/cm3 for the resin. Both metal sphere and matrix were modeled
as elasto-plastic. Damage is considered only for the metallic spheres. The meshes
presented in Fig. 19-left (partial) and in Fig. 19-right (syntactic) are employed.

Figure 20 shows macroscopic stresses versus normalized displacement obtained
simulating the partial geometry behavior. Experimental results [19] are also given.
The abrupt changes in stiffness (points 1, 2 and 3 of Fig. 20) observed in the numerical
results for a single sphere, free or confined, are due to the new contact zones that
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Fig. 18 Boundary conditions adopted in partial and syntactic morphologies

Fig. 19 Meshes employed to analyze partial and syntactic morphologies

appear. This effect is not so apparent in the experimental results which correspond
to a conglomerate of spheres with random geometries and properties that smoothed
up such details.

Additional results may be found in [14, 54].
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