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Abstract. The development and maintenance of traffic concepts in ur-
ban districts is expensive and leads to high investments for altering
transport infrastructures or for the acquisition of new resources. We
present an agent-based approach for modeling, simulation, evaluation,
and optimization of public transport systems by introducing a dynamic
microscopic model. Actors of varying stakeholders are represented by
intelligent agents. While describing the inter-agent communication and
their individual behaviors, the focus is on the implementation of infor-
mation systems for traveler agents as well as on the matching between
open source geographic information systems, and standardized transport
schedules provided by the Association of German Transport Companies.
The performance, efficiency, and limitations of the system are evaluated
within the public transport infrastructure of Bremen. We discuss the
effects of passengers’ behaviors to the entire transport network and in-
vestigate the system’s flexibility as well as consequences of incidents in
travel plans.

1 Introduction

Public transport networks (PTN) were introduced to urban regions in the 19th
century [6] and underwent radical changes throughout history. The development
of combustion engines and the discovery of electricity had huge influence on the
means of public transport. Optimization of such PTNs grew into a diversified re-
search area which ranges from developing optimization processes [14] to analysis
of passenger behavior [2, 4, 7].

Applying new traffic concepts or changes to a given PTN or the infrastruc-
ture of an urban region can be very expensive. Several authors approach the
evaluation of those changes by agent-based simulation of PTNs [8,10,11]. A cru-
cial part of the simulation-based approach is multimodal route planning which
considers various means of public and individual transportation. Unfortunately,
multimodal route planning using public transportation (e.g., buses, trams, met-
ros) and individual transportation (e.g., cars, bikes, or foot) requires an accurate
linkage of the street map to the one for public transportation. Therefore, pre-
vious approaches have been limited to a specific area, such as Belfort [11] or
Bangalore [8].
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Even though publicly available and community-edited maps often contain in-
formation on stops and travel routes for public transportation, in multimodal
route planning most frequently the resources of the two are diverse, especially if
exact time scheduling constraints are involved. Timetables for public transporta-
tion units are, e.g., extracted from public transport company (PTC) databases
and geo-located to the maps.

While this problem is conceptually easy, real-word challenges for the map-
ping include varying wordings of stops, and missing or reduced line information,
where an line is a sequence of stops. Moreover, given geo-coordinates may not
distinguish between multiple locations of stops for diverse travel directions at
crossings. To resolve various namings for the geo-location and matching problem,
we applied a generalization of the Needleman-Wunsch [13] algorithm for com-
puting the alignment of genome strings. The layered algorithm is implemented
in a database query language. Similarity matrices are extracted from a low-level
approximate string matching, while the top-level alignment compares every two
different lines passing a certain stop.

Inferred timetables are additionally fed into a public transport information
system providing route information for individual passenger agents. They take
the information as a guideline to plan their travel. The information system
supports several implementations for shortest route queries.

The bijection between public transport and street map data combined with
time-tabling information on travel and waiting times of mobile vehicles enables
realistic travel simulation. Since the considered scenario provides a natural map-
ping of traffic stakeholder to software agents, we apply our multiagent-based
simulation framework PlaSMA for evaluation. This enables fine-grained model-
ing of individual traffic participants on real-world transport infrastructures.

2 Simulation Model

To reach their individual goals, the agent-based simulation model contains three
types of agents that interact with each other as well as with the environment. The
transport infrastructure of the simulation environment is modeled as a directed
graph. Nodes represent traffic junctions, dead ends, or stops of the PTN, while
edges represent different types of ways, e.g., roads, motorways, and trails.

The PublicTransportCompany-Agent (PTC-Agent) receives a timetable upon
creation. This timetable contains all departures and arrivals of every line of its
fleet. According to the given timetable, the PTC-Agent creates Vehicle-Agents
having a specific timetable for the journey from the first to the last stop of the
line. In addition, the PTC-Agent provides a public transport information system
for answering transport requests of potential passengers. To reduce communi-
cation, transportation contracts will be concluded between Traveler-Agents and
PTC-Agents directly. Upon creation, the Vehicle-Agent drives its tour accord-
ing to the timetable. Traveler-Agents are loaded or unloaded at stops, depending
on their destination and their contract status. Finally, the Traveler-Agent tries
to determine the most satisfying traveling option between its current position
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and its destination. The goal of the Traveler-Agent is to find the route with
the earliest arrival time. If the distance between the origin and destination is
above a predefined threshold, the Traveler-Agent avoids walking and acquires
alternatives from the PTC-Agent. It reacts to problems (e.g., missed connec-
tions or inadmissible delays) by replanning which implies acquiring new alter-
native routes to reach the destination. The simulation model has already been
introduced in [8].

3 Matching Data Sets

Since the simulation model is independent from the environment, the infrastruc-
ture and the simulated PTN can be exchanged easily. The underlying PlaSMA
simulation platform1 supports the import of OpenStreetMap2 (OSM) datasets.
These datasets contain PTN-related information, such as the public transport
lines as well as the positions and names of their stops. Due to the fact that
data is added to OSM manually, it is not guaranteed that the geographic in-
formation system is complete and accurate. Therefore, recent changes to the
infrastructure or the PTN may not been transfered and stops or lines may be
missing or tagged with wrong coordinates. Unfortunately, OSM does not provide
information about the timetable of each line.

On the other hand, data sets of PTCs essentially consist of timetables. The
Association of German Transport Companies (VDV) introduced standardized
data models for the storage of PTN-related information [16]. The standard allows
but not necessarily requires the storage of geographical information for each stop.
Therefore, the operating data of a PTC does not provide enough information
to map the stops’ IDs to their geographical position which is necessary for an
accurate simulation model.

Consequently, the mapping of street map data and the PTCs own timetable
data is an essential problem as illustrated in Fig. 1. Names and identifiers of
various stops and lines in each data set may vary significantly. Even if stops
have the same names stops may form a stop area and, therefore, share the same
name, e.g., two stops on opposite sides of the street. As a result, a name-to-name
matching approach is not applicable. A solution is to distinguish the stops of a
stop area by identifying their associated lines.

The similarity of two lines is given by the similarity of their stops and their
respective indices alike. Finding pairs of two lines (one from each data set) allows
to determine pairs of stops. Thus, each stop position in the street map can be
mapped to the stop identifier in the PTC’s data set.

3.1 The Needleman-Wunsch Algorithm

The Needleman-Wunsch algorithm [13] has originally been designed to align two
nucleotide or peptide sequences but is commonly used to solve string alignment

1 http://plasma.informatik.uni-bremen.de
2 http://www.openstreetmap.org

http://plasma.informatik.uni-bremen.de
http://www.openstreetmap.org
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Fig. 1. Linkage of PTN information from two different data sets

problems. A similarity value S(x, y) specificies the similarity score of x and y,
where x, y ∈ Σ and Σ is the given alphabet.

The Needleman-Wunsch-algorithm computes a matrix M with a size of (|A|+
1) × (|B| + 1) where A and B are two strings over Σ. The matrix contains a
column for each element of a string A = a1 . . . an and a row j for each element
of a string B = b1 . . . bn. Additionally, the first row and column is reserved
for multiples of the gap penalty p. Although the algorithm relies on matrix
recurrences it can be solved in time O(nm) by dynamic programming [9]. For
Mi,0 = p · i, i ∈ {1, . . . , n} and M0,j = p · j, j ∈ {1, . . . ,m} we have

Mi,j = max

⎛
⎝
Mi−1,j−1 + S(ai, bj),

Mi,j−1 + p,
Mi+1,j + p

⎞
⎠ , i, j ∈ {1, . . . , n} × {1, . . . ,m}

3.2 Stop and Line Matching

We apply the above algorithm to the given matching problem. Let I be a set of
lines and E ,F ⊂ I. In order to align two lines E ∈ E and F ∈ F of two different
data sets E and F , the similarity matrix S is substituted by the function s(e, f),
which determines the similarity between two stops e ∈ E and f ∈ F by the
comparison of their names. For solving the corresponding alignment problem
to compute s(e, f), we apply the trigram matching algorithm which counts the
number of trigrams (sequences of 3 consecutive characters) that are included in
both stop names to determine similarity [15].

Additionally, geographical information is taken into account, e.g., the distance
between e and f . The value of the gap penalty p a threshold and depends on the
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implementation of the similarity function. The penalty score for creating a gap
must be greater than the similarity score of two stops with an unlikely match.

For each line of the PTC data set, we determine the most similar line from the
OSM data set. The resulting Needleman-Wunsch matrix of the best matching
pair is saved. After the investigation of all line pairs, pairs of stops are computed
by applying a backtracking algorithm to the Needleman-Wunsch-matrices of
the line pairs. As a result, the node IDs of stops from the OSM data set are
linked to the equivalent stop in the PTC’s data set. Algorithms 1.1 to 1.3 show
implementations of the necessary functions in pseudo code.

function FindMatchingLines(E ,F)
R← ∅
for each E ∈ E do

P.Line← E
Similarity ← 0
for each F ∈ F do

M ← createNeedlemanWunschMatrix(E,F )
if M|E|,|F | > Similarity then

P.BestMatch← F
P.BestMatrix←M
Similarity ←M|E|,|F |

R← R ∪ {P}
return R

Algorithm 1.1. Determining best matching lines of two data sets E and F

function createNeedlemanWunschMatrix(E, F )
M is a matrix with the size of (|E|+ 1)× (|F |+ 1)
p is the penalty for skipping an element
for i = 0 to |E| do

Mi,0 = i · p
for j = 0 to |F | do

M0,j = j · p
for i = 1 to |E| do

for j = 1 to |F | do

Mi,j ← max

⎛
⎝
Mi−1,j−1+ s(ei, fj) ,

Mi−1,j + p,
Mi,j−1 + p

⎞
⎠

return M

Algorithm 1.2. The Needleman-Wunsch Algorithm
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function createStopPairs(E, F , M)
p is the penalty for skipping an element
i← |E|
j ← |F |
while i > 0 or j > 0 do

if Mi,j = Mi−1,j−1+ s(ei, fj) then
memorizePair(ei, fj)
i← i− 1
j ← j − 1

else if Mi,j = Mi−1,j + p then
i← i− 1

else if Mi,j = Mi,j−1 + p then
j ← j − 1

Algorithm 1.3. Backtracking for the Needleman-Wunsch Algorithm

4 Public Transport Information Systems

In order to satisfy transport requests of customers and to determine the route
with the earliest arrival time, we implemented a public transport information
system solving the Earliest-Arrival-Problem (EAP) [12] with stop-specific trans-
fer times. In addition, the route which minimizes the number of transfers should
be preferred if several routes arrive at the same time. Moreover, undesired lines
have to be excluded. Next, we present three different approaches for solving the
EAP. The search algorithms extend the well-known Dijkstra algorithm [5].

4.1 Time-Expanded Graph

We extend the time-expanded graph (TEG) approach [12]. Let S denote the set
of stop areas and L denote the set of lines. A time-expanded graph includes a
set of nodes N and a set of edges E. Each node (l, s) ∈ (L × S) represents the
arrival or departure of an line l ∈ L at a stop area s ∈ S. Edges connecting
nodes represent transport routes of vehicles between stops as well as transfers
of passengers at a certain stop area. The weights of edges determine the travel
time. As a result, a shortest-path search is applied to satisfy a certain transport
request from a start node to a goal node. To fulfill the requirements for passenger
transport, the search is altered: edges which are served by undesired lines are
excluded and edges that require passenger transfers are only considered if the
current line does not reach the stop area within the same time. Consequently,
these conditions ensure that routes with more transfers are avoided if the arriving
time is equal to a route with less transfers.

4.2 Time-Dependent Graph

Within a time-dependent graph (TDG) [12] each stop area is represented by
only one node. Two nodes are linked by exactly one edge if there is at least one
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function findShortestPath(nsource, nsink , t0, I , X)
M ← {nsource}
setTimeDistance(nsource, t0)
setSubEdge(nsource, null)
while M �= ∅ do

u← getNodeWithMinDistance(M)
M ←M\{u}
if u = nsink then

return createPath(u)

eu ← getSubEdge(u)
for all E ∈ getEdges(u) do

v ← sink(E)
for all e ∈ E do

ddeparture ← departure(e) - getTimeDistance(u)
if ((I = ∅ ∨ line(e) ∈ I)∧ line(e) /∈ X)∧

((eu = null ∧arrival(e)< getTimeDistance(v)) ∨
(eu �= null ∧arrival(e)< getTimeDistance(v) ∧

line(eu) �= line(e) ∧
ddeparture ≥ getTransferTime(u)) ∨

(eu �= null ∧arrival(e)≤ getTimeDistance(v) ∧
line(eu) = line(e))) then

if v = nsource then
setSubEdge(sink(E), null)

else
setSubEdge(sink(E), e)

setTimeDistance(sink(E), d)
M ←M ∪ {sink(E)}

return new empty path

Algorithm 1.4. Implementation of the Shortest-Path Algorithm on a TDG

direct connection between each other. As a result, the search space is decreased
significantly in contrast to a TEG. However, each edge contains several sub-
edges with specific arrival and departure times as well as a dedicated line. The
shortest-path search has to be adapted to the sub-edge graph structure. The
pseudo code is shown in Algorithm 1.4.

Input parameters next to the start and goal node include the start time t0,
a set of allowed lines I, and a set of lines X which should be avoided. If I is
an empty set, all lines which are not in X are considered. The shortest path
search for a TDG considers only predecessor edges instead of predecessor nodes.
The functions setSubEdge(A, e) and getSubEdge(A) save and return the
best sub-edge e to the node A. The algorithm chooses the node with the short-
est distance and iterates over all outgoing edges including their sub-edges. The
procedure arrival(e) determines the estimated arrival time at the node that
is reachable by e. In addition, the distance between nodes is computed by the
travel time from node A to node B. In order to prefer routes with the earliest
time of arrival, conditions for choosing the best edge are imposed.
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4.3 Reduced Time-Expanded Graph

In a time-dependent graph (TDG), the graph is reduced and only the shortest-
route with the earliest departure time from one node to another is considered.
However, this may result in undesirable transfers between lines. Thus, we reduce
the number of edges of the TEG without cutting relevant solutions. Let (v, u)
denote an edge from node v ∈ N to node u ∈ N , si ∈ S the stop at node i ∈ N ,
and ti the time of arrival or departure. While the classic TEG contains all edges
(v, u) with sv = su ∧ tv ≤ tu, the reduced TEG includes only the edge (v, u)
representing the next departure per line lu ∈ L at stop u:

sv = su ∧ tv = tu ∧ (¬∃u′ : u′ �= u ∧ sv = su′ ∧ tv ≤ tu′ ∧ tu′ < tu ∧ lu′ = lu).

5 Evaluation

The BSAG3, the local PTC of Bremen (Germany), provided a set of operating
data which meets the VDV-standard. The monday schedule of the PTC data set
contains 116 lines. Lines may have a set of variants, e.g., for the opposite direc-
tion or for shorter/alternative routes. A lot of these variants are not accessible
for passengers but merely for service maintenance and can be ignored for the
purpose of simulation. Additionally, each line variation may have not one but
several timetables depending on the current time of day. This results in 560 line
timetables. More than 1,990 stops are served by these lines.

The PTC data set is matched against an OSM data set which contains 76 line
variants and a variety of 768 stops. The OSM data set does not usually contain
more than two variants of the same line (one for each direction). Unfortunately,
several information in the OSM is outdated due to recent changes to infras-
tructure and PTN. Hence, the OSM data set contains stops that are not served
anymore by any line in the PTC data set. Additionally, not all PTN information
could be exported from the OSM data set. Several lines and stops are not tagged
correctly or by an outdated tagging standard that is neither compatible with the
new one, nor with the applied importer software.

However, 65 line variations from OSM could be successfully linked to lines
from the PTC data set and 549 stops could be linked to their respective node
ID. Hence, 314 of 560 line timetables can be simulated without any manual
modeling. The compressed infrastructure itself is represented by a graph with
26,121 nodes and 59,950 edges.

Based on this data, a series of experiments was run to determine the capa-
bility and limitations of the simulation model and its implementation. In each
experiment, we simulated a PTN with a 24 hours monday schedule. The start
and destination locations of each traveler are chosen randomly. Therefore, the
simulation results do not reflect real world utilization yet. In future work, varying
population density and areas which are frequently visited have to be taken into
account. All experiments are computed on a dedicated machine with 8 dual-core
AMD processors and 64 GB of RAM.

3 http://www.bsag.de

http://www.bsag.de
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5.1 Ressource Limitations and Scalability

According to real world data, about 281,000 passengers are transported per day
by the BSAG [1]. Therefore, nearly 2,000 passengers have to be created every
ten minutes in order to approximate real world statistics. However, no more
than about 7,000 active agents can be handled by the given machine due to a
lack of memory. Another experiment with 200 passengers every ten minutes was
aborted due to the same memory issues after about 90% of the simulation was
already completed. Hence, a simulation of 100 passengers every ten minutes is
manageable which corresponds to a scale of 1:20.

In the experiments, varying distributions (e.g. due to rush hours) have not
been taken into account. It has to be considered that peak values may be much
greater if a more accurate distribution is applied. Therefore, memory usage has
to be reduced significantly. This may be achieved by reducing the number of
agents without reducing the number of passengers.

5.2 Comparison of Information Systems

Both computing time and quality of results vary between the three different
graph types due to the diverse size and complexity. Creating a complete TEG
for the PTN timetable took 106.5 seconds. Furthermore, a reduced TEG was
created within 10.8 seconds. The creation of a TDG took about 0.1 seconds.

The TDG always proved itself to be the fastest variant. The results of five
randomly chosen transport requests are shown in Table 1. To generate more
representative numbers, experiments on a scale of 1:100 have been run with each
graph type. However, the TEG-experiment was aborted manually after about 36
hours and a simulation progress of less than 40%. In comparison, finishing the
experiment took 14.3 hours with the reduced TEG and only 0.5 hours with the
TDG. Each one of the 2,863 transport requests has been solved in 17.2 seconds
with the reduced TEG and in 0.006 seconds with the TDG on average.

Table 1. Computing time of randomly chosen transport requests

Request (time 08:00) TEG red. TEG TDG

Kriegerdenkmal → Hasenb. Jachthafen 146.184s 2.995s 0.076s
Hasenb. Jachthafen → Sebaldsbrück 243.908s 6.553s 0.105s
Groepelingen → Polizeipraesidium 182.154s 4.126s 0.088s
Waller Friedhof → Ricarda-Huch-Strasse 124.414s 2.307s 0.079s
Roland-Center → Julius-Brecht-Allee 62.868s 0.641s 0.064s

Average 151.905s 3.324s 0.082s

Even though the recuded TEG variant is significantly faster than the complete
TEG, both variants produce identical results. Unfortunately, the solution qual-
ity varies between the TEG variants and the TDG. All variants solve the EAP
correctly by computing a shortest path with the ideal arrival time. However, the
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Fig. 2. Line utilization with diverse distribution of replanning ability

TDG is not capable of minimizing the number of transfers while searching for
a shortest path. Consequently, passengers would not choose all of the computed
routes based on a TDG because they contain unnecessary transfers a real pas-
senger would try to avoid. From this point of view, the reduced TEG variant is
the best choice for a simulation of passenger behavior, even though it is not the
fastest variant.

5.3 Application: Effects of Passengers’ Behaviors to the PTN

In 2013, 40% of Germans already own a smartphone [3]. Hence, two out of five
Germans are able to revise their current traveling plans in case of unexpected
disruptions by looking up alternative options. As a result, passengers can switch
lines more often in case of delays and disruptions. This affects the utilization
of the failed line and other lines alike. The goal of public transport providers

Fig. 3. Screenshot of the running simulation software
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is to anticipate the passengers’ behaviors in predictable situations (e.g., road
construction or public demonstrations) as well as in unexpected situations (e.g.,
in case of a fire or in natural disasters) to adapt timetables and schedules ap-
propriately. The model enables strategy and scenario analysis.

Several performance indicators, such as the utilization of each line or depar-
tures and arrivals at each stop are measured by the simulation system. The share
of replanning agents and the probability of line failure are given by simulation
parameters. As an example, we set up a series of experiments with a high failure
possibility of 33% for every vehicle and a diverse distribution of replanning abil-
ity (0%, 30%, 50%, 100%). Fig. 2 shows the utilization of the BSAG’s frequently
used lines according to that experiment. Though the chosen scenario setup is
rather generic, it is also possible to simulate specific situations where a only cer-
tain lines fail. Therefore, the PTC can predict passenger behavior by applying
the simulation model to a specific problem. Fig. 3 shows the running simulation
software.

6 Conclusion and Outlook

In this paper we presented an adaptation of the Needleman-Wunsch Algorithm in
order to match line information from VDV-compliant data sets to excerpts from
the OSM. The approach allows the simulation model to be applied to any com-
patible combination of PTN and infrastructure. Furthermore, real world data
sets of the PTN of Bremen (Germany) were used as an example to determine
bottlenecks of a microscopic simulation of PTNs. One bottleneck is the available
RAM due to the large number of more than 6,000 concurrently active agents.
Another bottleneck is the graph-based approach to intermodal routing. We pin-
pointed by comparison that EAPs could be solved by complete TEG, reduced
TEG, and TDG alike. However, while TDG is a lot faster than both TEG vari-
ants, results of the TDG are not always likely to resemble the routes a human
would choose. On the other hand, the complete TEG is too slow to be applied
to a simulation on larger PTN. The reduced variant of the TEG provides an
acceptable tradeoff between calculation time and the quality of results.

In order to handle a more fine-grained scale of the simulation and larger PTNs,
we are interested in increasing the efficiency of the information system (e.g.,
by adapting a recently developed K-shortest-paths search for TDGs [17] or by
grouping passengers which have similar or identical interests and, therefore, can
be represented by one single agent). Further research will additionally focus on
the integration of traffic simulation within our framework as well as on modeling
and simulation of unexpected changes to the infrastructure.
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