
Estimating the Driver’s Workload

Using Smartphone Data to Adapt In-Vehicle
Information Systems

Christina Ohm and Bernd Ludwig

Chair of Information Science, Universität Regensburg, 93040 Regensburg, Germany
{christina.ohm,bernd.ludwig}@ur.de

Abstract. The use of in-vehicle information systems has increased in
the past years. These systems assist the user but can as well cause ad-
ditional cognitive load. The study presented in this paper was carried
out to enable workload estimation in order to adapt information and
entertainment systems so that an optimal driver performance and user
experience is ensured. For this purpose smartphone sensor data, situa-
tional factors and basic user characteristics are taken into account. The
study revealed that the driving situation, the gender of the user and the
frequency of driving significantly influence the user’s workload. Using
only this information and smartphone sensor data the current workload
of the driver can be estimated with 86% accuracy.

Keywords: Driver’s Workload, Workload Estimation, In-Vehicle Infor-
mation Systems.

1 Motivation

Currently, many in-vehicle information systems provide assistance and enter-
tainment to the driver but still can be a source of distraction and cognitive load
since they require an input action or at least the attention of the user. For this
reason it is necessary to determine the driver’s mental state in order to prevent
dangerous situations and optimize her driving performance. The primary driv-
ing task itself is cognitive demanding since the motorist has to develop different
levels of skills [20]:

– Control level skills: handling of the car
– Maneuvering level skills: reaction behavior to the traffic situation and other

road users
– Strategic level skills: planning the trip and defining goals

In addition to these basic activities, the operator has to fulfill secondary tasks
which are not directly related to the actual transportation goal but are required
to ensure safety. This could be e.g. turning on the windscreen wiper or the
upper beam head-lights. Using in-vehicle information systems belongs to the
tertiary driving task as they are mainly used for information, communication
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or entertainment purposes [3]. Thus, driving is a particularly difficult situation
for human computer interaction because the operator is supposed to master
primary and secondary tasks before she can actually pay attention to any kind
of in-vehicle information system. If the user’s current workload is not optimal, she
should not be bothered with even more output of an assistance or entertainment
system.

In this paper a study is presented that examines which factors significantly in-
fluence the driver’s workload. Furthermore, the aim was to estimate the workload
using sensor data collected by a smartphone. In addition, basic characteristics
of the driver are taken into account. Being able to forecast the mental load of
the user in a specific situation can be used to adapt a system’s output to facil-
itate an optimal driving performance and therefore enhance the driver’s safety.
In contrast to existing approaches [8, 19, 32] the concept of using just a smart-
phone does not depend on sensor data of the car. Consequently, this technique
provides a low-cost and simple possibility to integrate the prediction into smart-
phone services which could be for instance phone calls that can be blocked for a
short period of time if the workload is high at the moment. This is also the in-
tent of other systems which try to predict workload [8, 19]. The following section
describes the concept of workload generally as well as in the context of driving.
Afterwards measurement and estimation methods are depicted. Subsequently,
we present our workload self-assessment tool, the study design and our results.
Finally, we draw conclusions considering the implications of our findings.

2 Workload

Basically workload can be defined as a ”demand placed upon humans” [29].
However, this task-oriented definition does not mind all aspects of the con-
cept. Especially user-centered features such as her cognitive abilities or knowl-
edge base are not minded. This is taken into account by different definitions
[4, 7, 12, 15, 16, 29], and can be summed up as follows: An operator has to
fulfill a task under given situational circumstances which demands information-
processing capabilities. Therefore, the task causes cognitive load. Workload is the
required capability to accomplish the task satisfactorily and achieve a certain
level of performance. Meanwhile, the operator has a subjective experience which
results from situational factors, the requirements of the task and the user’s char-
acteristics [24]. The latter includes criteria like her cognitive, sensory or motor
skills, knowledge base, behavior, personality, age, sex etc. [14, 29]. Considering
the context of driving this may also include driving experience [10]. [28] identifies
several important factors that influence the driver’s workload which are the age
of the driver, the driving context (e.g. driving on a rural road) or the traveling
daytime.

In the context of driving [21] distinguish three states which derive from the
relation of the situational demands and the driver’s condition. If the requirements
of the task exceed the skills of the user, she has to endure an Overload experience
which is a suboptimal cognitive state and can lead to loss of control or at least the



132 C. Ohm and B. Ludwig

feeling to do so. Contrary to this is the Underload state, which can be understood
as a feeling of boredom or distraction. In this case the situational demands do
not challenge the driver because she has sufficient skills. Thus, if the factors are
in balance, the driver achieves optimal performance. This approach to classify
driver experience is quite similar to the flow theory discussed in [6]. [9] develops
a Task-Capability Interface Model which also examines the connection of the
task demands and the capability of the driver. The task demands include the
traffic situation, the behavior of other road users or the actual traveling speed.
If the skills of the driver exceed the demands, the user is in a state of control. If
this is not the case, most of all situations result in a lucky escape because other
road users react to an error of the operator. Otherwise, a collision impends which
indicates the importance of knowing the current driver state.

A more detailed categorization can be found in [29]. Once again, in this model
workload is the consequence of the relation of the driver’s performance and the
task demands. The author distinguishes six different states which include one
state where the workload is high and the performance is low because the driving
demands are not challenging. Moreover, three states can be grouped as situations
where the driver is in control but either is at the edge to Under- or Overload. In
the remaining two states the driver has an experience of high workload or even
loss of control as the task demands are received as too high. Both Under- and
Overload can lead to cognitive load which affects the health of the user and his
ability to drive safely and therefore has to be avoided.

3 Workload Measurement and Estimation

At first cognitive load has to be measured in order to enable an estimation and
consequently avoid a suboptimal workload level. This can be achieved using a
diverse range of available tools. It is possible to measure the operator’s phys-
iological state using for instance an electroencephalogram to determine cere-
bral activity or an electrocardiogram to measure myocardial contraction. An
overview of physiological measurements is given in [29]. However, data collected
with biosensors is considered to be arguable, since it is sometimes ambiguous and
hard to analyze for someone who is not an expert in medicine. Moreover, external
factors, which do not indicate workload, can influence the measurement [5].

Another possibility is to use tools that relay on user self-reports which can be
one- or multidimensional. An example for an one-dimensional measurement is the
Rating Scale Mental Effort (RSME) [33]. The test person is asked to indicate on
a 0 to 150 cm line how much effort it took to fulfill the task. Several statements
like ”rather much effort” are located along the scale, which are supposed to
clarify the level of current effort.

One of the most established multidimensional method in this context is the
NASA-Task Load Index (TLX) [4] which takes different sources of workload into
account. These are in particular mental, physical and temporal demand as well as
the subjectively experienced performance, effort and frustration level of the user.
The test person has to rate these dimensions pairwise referring to their impact on
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the task’s workload which leads to overall 15 comparisons. Subsequently, a weight
is calculated for every dimension. Afterwards, every dimension is additionally
rated on a 0 to 20 scale. The Overall Workload Index (OWI) is calculated as
follows with wi as the weight and xi as the rate multiplied by 5 [14]:

OWI =
1

15

6∑

i=1

wixi

An overview of other multidimensional scales is for example given in [4]. In
order to adapt in-vehicle information systems to the current workload of the
driver, her state has not only to be measured but also estimated. Different ap-
proaches use car sensor data like the steering wheel angle or acceleration gauging
to forecast the operator’s load [8, 31, 32].[32] additionally use eye tracking tech-
niques and reach up to a 65% correct driver-independent workload estimation
with test data collected in a simulator. [8] take biosensors like the heart rate and
environmental factors like traffic density into account.

4 Study

The overall goal of the study is to adapt in-vehicle information systems to the
current workload of the driver. At first, several hypotheses were tested for validity
in order to identify situational factors and user characteristics which significantly
influence the driver’s workload. [11, 13] show that every driving situation acquires
diverse driving skills, so that it can be assumed that the level of workload differs
according to this factor. Furthermore, [25] claim that women experience higher
workload levels than men while driving. Accordingly, the following hypotheses
were proposed:

– H1: The workload during the driving situations ”freeway”, ”rural road” and
”city” differs.

– H2: Women and men experience different workload while driving.

Since the test persons do not differ significantly in driving style (see Sec-
tion 4.1), which is an important influencing factor on workload according to
[30], other user characteristics were taken into account. [1, 30] distinguish young
drivers (<25 years) from older ones and identify that these persons are likely to
experience higher workload levels. This leads to the third hypothesis:

– H3: The workload level differs considering the user’s age.

[21] assume that persons who drive regularly usually experience lower work-
load levels so that the following hypothesis is as well tested for validity:

– H4: The workload level differs considering the user’s driving frequency.

Additionally, smartphone sensor data was collected to estimate the driver’s
workload.
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4.1 Participants and Test Route

Eight female and twelve male students participated in the study. A detailed
overview of the user characteristics is showed in Table 1.

Table 1. Overview of user characteristics separated by gender and driving frequency
(DF)

Age Driving Experience (in years )
Mean Standard deviation Range Mean Standard deviation Range

Total 24.9 2.1 21-28 6.9 2.4 1-10
Females 24.3 2.3 21-28 5.9 3.0 1-10
Males 25.3 1.9 22-28 7.5 1.8 5-10
DF ”often” 25.7 2.3 21-28 7.8 2.2 5-10
DF ”rarely” 24.0 1.4 22-26 5.3 2.5 1-8

All in all, the entire test group consisted of young and rather inexperienced
but no complete novice drivers. Their driving style was additionally assessed
by means of the Multidimensional Driving Style Inventory [26]. Most of the
participants named to have a patient or careful driving style so that the test
group can be considered as homogeneous concerning this factor.

None of the participants drove with the test car before. The test route con-
sisted of three sections. After a familiarization with the test automobile (6.3 km)
users drove on a rural road for 6.3 km. Afterwards they drove on a freeway sec-
tion for 12 km and finally in the city of Regensburg (4.9 km). It took about 15
minutes to complete one section of the test route. None in-vehicle information
systems were used as the main aim was to detect cognitive load of the primary
and secondary driving task to adapt the output of assistance and entertain-
ment systems. Moreover, there are several studies which prove that in-vehicle
information systems and especially the usage of cell phones cause cognitive load
[16–18, 22, 23, 27].

4.2 Measurements

The subjective workload level after accomplishing every route section was mea-
sured using a smartphone-based representation of the NASA-TLX (Fig.1). The
form was filled in while parking. In addition, a self-assessment tool was imple-
mented which enables users to rate their current workload during the driving
process (Fig.1). The tool is based on the RSME. The Underload state adapted
from [29] was added and the scale was simplified due to space limitations of
the smartphone screen. Several potential designs could be used to visualize the
workload levels. Four prototypes with different layouts were evaluated in a us-
ability test with 10 participants. They were instructed that the application was
intended to be used while driving. Qualitative as well as quantitative data was
collected to determine the best design. Participants were observed by the test
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supervisor and asked to ”think aloud”. In addition they filled in the System
Usability Scale (SUS) [2]. Most of the test persons agreed in one best design.
This was also shown using a single factor variance analysis with repeated mea-
surement adjusted according to Bonferroni for the SUS (p < 0.05). This re-
sulted in the design showed in Fig.1. Colors and a scale are used to visualize
the workload level and the whole screen can be clicked. During the actual test,
participants were asked to indicate their current workload level every time it
had changed. The smartphone was adjusted to the front screen so that only one
short look and click was enough to indicate the workload level.

Fig. 1. Screenshots of the Android application which was used to rate the participants’
workload while driving (left) and representation of the NASA-TLX (middle and right).

In addition to this, smartphone sensor data was collected to estimate the user’s
workload with data mining approaches. The lateral and longitudinal acceleration
as well as the current speed is detected ten times per second, whereas the current
workload level is assigned to this data. In a pre-test highly significant correlations
with the equivalent car sensor data were measured (r > 0.85; p = 0.000). In
addition, the lateral acceleration correlates highly significantly with the angle
of lock (r = 0.95; p = 0.000). The sensor data described above is considered to
have a significant influence on driver workload [8, 32]. Moreover, user data like
gender and frequency of driving was assessed.

4.3 Results

H1 could be confirmed considering the OWI for the different driving situa-
tions ”rural road”, ”city” and ”freeway” using a single factor variance analysis
with repeated measurement. Since no sphericity could be assumed (p < 0.1),
Greenhouse-Geisser results were consulted (F = 6.178; p = 0.009). Conducting
a Bonferroni post-hoc test, more detailed findings could be gained: The OWI is
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significantly higher for ”freeway” (p = 0.039) and ”city” (p = 0.013) compared
to the ”rural road” situation.

After confirming normality using a Kolmogorov-Smirnov-Test (p < 0.05) and
analyzing the histograms H2-H4 were tested.

H2 could be confirmed using a T-test (T = 2.314; p = 0.024). Generally
women experience slightly higher workload levels than men so that gender can
be considered as an influencing factor on workload.

Age significantly correlates with driving experience in years (r = 0.913; p
= 0.000), so that older test persons had higher experience levels. However, no
significant difference could be detected for this factor.

No significant correlation between ”gender” and ”driving frequency” could be
confirmed using Fisher’s exact test.

The OWI of participants who named to drive rarely is significantly higher
than of those who at least drive once a week (T = 2.173; p = 0.037) so that H4

could be confirmed.
According to these findings, the driving situation, gender and driving fre-

quency were taken into account for the estimation of workload in addition to
the smartphone sensor data. On the one hand workload was categorized in the
three states ”Underload”, ”Optimal” and ”Overload”. On the other hand the
workload levels were as well classified similar to [29] except the level of extreme
Overload which results in five different states.

Table 2. Estimation accuracy in % for different classifications of workload

Decision Sequential Minimal AdaBoost Naive Neural
Tree (C4.5) Optimization (SMO) Bayes Network

Three states 85.70 63.3 62.30 63.92 70.51

Five states 72.92 46.27 46.13 46.13 54.81

Different classification algorithms were taken into account using an 80/20 split
of the sample data (Table 2). The results show that the decision tree performs
significantly better than the other techniques (p < 0.05).

The study revealed that the current cognitive load can be estimated with an
accuracy about 86% using a decision tree. Operator-specific forecasts reach up
to 96% correct predictions. If only sensor data is used, the estimation shows up
to 76% accuracy. Moreover, the ROC-values of the decision tree method exceed
0.9 so that a good diagnostic accurateness can be assumed.

For a more detailed classification of the current workload level the estimation
accuracy decreases to 73% with a ROC-value of 0.749.

5 Conclusion

All in all, there are many factors which influence the driver’s workload since
the driving situation and the characteristics of the user are very multifaceted.
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However, the study presented in this paper shows that it is possible to estimate
the driver’s workload with very simple methods. Even if only smartphone-based
data is used, cognitive load can be calculated with 76% accuracy. Moreover, if
user data is taken into account, the prediction accuracy increases to 86%. Con-
sequently, it would be very advantageous to shortly collect user characteristics,
i.e. gender, driving frequency and age. In this study the latter could not be ex-
amined due to the rather homogeneous age of the participants. This should be
a topic of future research.

Another improvement could be achieved through detecting the current driving
situation like weather conditions or road type using e.g. data of the navigation
system or the car sensors. Furthermore, taking into account whether in-vehicle
information systems are used in the specific driving situation could improve the
detection of the current workload level since several studies show that using
this systems increases the cognitive load of the user (see above). User-dependent
predictions can reach up to 96% accuracy so that a system which uses driver
feedback to improve the estimation could minimize estimation errors.

The study also showed that it is important to determine the driver’s workload
several times per second since even if the OWI of some participants was rather
low nearly everyone experienced very high or low workload for a short period of
time while actually driving. Yet, it is just these moments which require workload
detection to avoid dangerous situations.

Knowing the driver state can improve the user experience and safety if in-
vehicle information systems are involved. As mentioned at the beginning phone
calls or an output of a navigation system can be blocked for instance. If the work-
load level is too low music could be recommended to the user. Other application
areas will surely follow.
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