
Ingo J. Timm
Matthias Thimm (Eds.)

 123

LN
AI

 8
07

7

36th Annual German Conference on AI
Koblenz, Germany, September 2013
Proceedings

KI 2013: Advances in
Artificial Intelligence

Lecture Notes in Artificial Intelligence 8077

Subseries of Lecture Notes in Computer Science

LNAI Series Editors

Randy Goebel
University of Alberta, Edmonton, Canada

Yuzuru Tanaka
Hokkaido University, Sapporo, Japan

Wolfgang Wahlster
DFKI and Saarland University, Saarbrücken, Germany

LNAI Founding Series Editor

Joerg Siekmann
DFKI and Saarland University, Saarbrücken, Germany

Ingo J. Timm Matthias Thimm (Eds.)

KI 2013: Advances in
Artificial Intelligence

36th Annual German Conference on AI
Koblenz, Germany, September 16-20, 2013
Proceedings

13

Volume Editors

Ingo J. Timm
University of Trier
Business Informatics I
54286 Trier, Germany
E-mail: ingo.timm@uni-trier.de

Matthias Thimm
University of Koblenz
Institute for Web Science and Technologies
56070 Koblenz, Germany
E-mail: thimm@uni-koblenz.de

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-40941-7 e-ISBN 978-3-642-40942-4
DOI 10.1007/978-3-642-40942-4
Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2013947742

CR Subject Classification (1998): I.2.4, I.2.6, I.2.10-11, H.3.3-4, I.6.3, H.5.2-3, H.5.5,
F.4.1, F.1.1

LNCS Sublibrary: SL 7 – Artificial Intelligence

© Springer-Verlag Berlin Heidelberg 2013
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in its current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

This volume contains the conference proceedings of the 36th Annual German
Conference on Artificial Intelligence (KI 2013) held September 16-20, 2013, at
University of Koblenz, Germany. Initiated by the German Workshop on AI
(GWAI) in 1975, the annual German Conference on Artificial Intelligence is
the premier forum for German research in artificial intelligence, and attracts
numerous international guests, too. The conference traditionally brings together
academic and industrial researchers from all areas of AI. The conference is or-
ganized by the Special Interest Group on Artificial Intelligence of the German
Informatics Society (Fachbereich Künstliche Intelligenz der Gesellschaft für In-
formatik e.V.). Next to KI 2013, five co-located conferences took place, includ-
ing the 43rd annual German conference on informatics (Informatik2013) and the
11th MATES 2013 (German Conference on Multi-Agent System Technologies),
which is jointly held with the 4th JAWS (Joint Agent Workshops in Synergy).
Together, this makes a perfect basis for interesting discussions and information
exchange within the AI community and to the other communities.

Over the years, artificial intelligence has become a major field in computer
science in Germany, involving numerous successful projects and applications.
Its applications and methods have influenced many domains and research ar-
eas, like business informatics, logistics, eHumanities, finance, cognitive sciences,
and medicine. These applications become feasible on the basis of sophisticated
theoretical and methodological efforts and successes in the German AI commu-
nity. Thus, the theme of KI 2013 is “From Research to Innovation and Practical
Applications”.

The review process was very selective. Out of 70 contributions submitted
this year, the international Program Committee accepted 24 as full papers and
8 conditionally as short (poster) papers leading to an acceptance ratio of 46%.
Each submission received at least three reviews and the members of the Program
Committee invested considerable effort in the discussion of the submissions. The
contributions cover a range of topics from agents, robotics, cognitive sciences,
machine learning, swarm intelligence, planning, knowledge modeling, reasoning,
and ontologies.

Together with MATES 2013, we were pleased to host four prominent invited
speakers in the agent and AI community: “The Headaches of a Negotiation Sup-
port Agent” by Catholjin M. Jonker from TU Delft, “AI – Research and the
Future of Automobiles” by Raúl Rojas from the Free University Berlin, and
“Autonomous Systems Inspired by Biology” by Gerhard Weiss from Maastricht
University.

VI Preface

In the first two days of the conference, five workshops with many additional
presentations took place:

– Gabriele Kern-Isberner and Christoph Beierle organized the 4th Workshop
on Dynamics of Knowledge and Belief

– Dirk Reichardt organized the 7th Workshop on Emotion and Computing –
Current Research and Future Impact

– Joachim Baumeister and Grzegrz J. Nalepa organized the InternationalWork-
shop on Knowledge Engineering and Software Engineering

– Stefan Edelkamp, Bernd Schattenberg and Jürgen Sauer organized the 27th
Workshop on “Planen, Scheduling und Konfigurieren, Entwerfen”

– Marco Ragni, Michael Raschke and Frieder Stolzenburg organized the Work-
shop on Visual and Spatial Cognition

Additionally, together with the Informatik 2013, a doctoral mentoring pro-
gram was offered at the beginning of the conference.

We would like to thank the authors and reviewers for their excellent work.
Furthermore, we would like to thank Björn Pelzer, Ralf Schepers, Fabian Lorig,
Ruth Ehrenstein, and Sarah Piller for their support in the organization of KI
2013. As chairs of the special interest group on AI (GI Fachbereich Künstliche
Intelligenz), Antonio Krüger and Stefan Wölfl provided invaluable support in
organizing KI 2013 – thank you. Last but not least, we thank the members of
the KI 2013 Organizing Committee:

– Stefan Kirn
(Industry Chair, University of Hohenheim)

– Andreas D. Lattner
(Doctorial Consortium Chair, Goethe University Frankfurt)

– Jürgen Sauer
(Tutorial Chair, University of Oldenburg)

– Ute Schmid
(Workshop Chair, University of Bamberg)

July 2013 Ingo J. Timm
Matthias Thimm

Organization

General Chair

Ingo J. Timm University of Trier, Germany

Local Chair

Matthias Thimm University of Koblenz-Landau, Germany

Workshop Chair

Ute Schmid University of Bamberg, Germany

Tutorial Chair

Jürgen Sauer University of Oldenburg, Germany

Industry Chair

Stefan Kirn University of Hohenheim, Germany

Doctoral Consortium Chair

Andreas D. Lattner Goethe University Frankfurt, Germany

Program Committee

Klaus-Dieter Althoff German Research Center for Artificial
Intelligence (DFKI), Germany

Tamim Asfour Karlsruhe Institute of Technology (KIT),
Germany

Franz Baader TU Dresden, Germany
Joscha Bach Klayo AG, Berlin, Germany
Sven Behnke University of Bonn, Germany
Ralph Bergmann University of Trier, Germany
Philipp Cimiano University of Bielefeld, Germany
Eliseo Clementini University of L’Aquila, Italy
Cristobal Curio Max Planck Institute for Biological

Cybernetics, Germany

VIII Organization

Kerstin Dautenhahn University of Hertfordshire, UK
Frank Dylla University of Bremen, Germany
Stefan Funke University of Stuttgart, Germany
Johannes Fürnkranz TU Darmstadt, Germany
Christopher W Geib University of Edinburgh, UK
Birte Glimm University of Ulm, Germany
Björn Gottfried TZI, University of Bremen, Germany
Martin Günther University of Osnabrück, Germany
Jens-Steffen Gutmann Evolution Robotics / iRobot, USA
Malte Helmert University of Basel, Switzerland
Otthein Herzog TZI, University of Bremen, Germany
Gabriele Kern-Isberner TU Dortmund, Germany
Stefan Kirn University of Hohenheim, Germany
Thomas Kirste University of Rostock, Germany
Alexander Kleiner Linköping University, Sweden
Roman Kontchakov Birkbeck College, UK
Oliver Kramer University of Oldenburg, Germany
Ralf Krestel Universtiy of California, Irvine, USA
Torsten Kroeger Stanford University, USA
Kai-Uwe Kuehnberger University of Osnabrück, Germany
Bogdan Kwolek AGH University of Science and Technology,

Poland
Gerhard Lakemeyer RWTH Aachen University, Germany
Andreas Lattner Goethe University Frankfurt, Germany
Volker Lohweg inIT - Institute Industrial IT, Germany
Benedikt Löwe Universiteit van Amsterdam, The Netherlands
Robert Mattmüller University of Freiburg, Germany
Ralf Möller TU Hamburg-Harburg, Germany
Marco Ragni University of Freiburg, Germany
Jochen Renz Australian National University, Australia
Benjamin Satzger Microsoft, USA
Jürgen Sauer University of Oldenburg, Germany
Bernd Schattenberg University of Ulm, Germany
Malte Schilling CITEC Bielefeld, Germany
Ute Schmid University of Bamberg, Germany
Lutz Schröder Friedrich-Alexander-Universität

Erlangen-Nürnberg, Germany
René Schumann HES-SO, Switzerland
Jan-Georg Smaus Université de Toulouse, France
Daniel Sonntag German Research Center for Artificial

Intelligence (DFKI), Germany
Luciano Spinello University of Freiburg, Germany
Steffen Staab University of Koblenz-Landau, Germany
Heiner Stuckenschmidt University of Mannheim, Germany
Matthias Thimm University of Koblenz-Landau, Germany
Ingo J. Timm University of Trier, Germany

Organization IX

Johanna Völker University of Mannheim, Germany
Toby Walsh NICTA and UNSW, Australia
Thomas Wiemann University of Osnabrück, Germany
Stefan Wölfl University of Freiburg, Germany
Diedrich Wolter University of Bremen, Germany

Additional Reviewers

Holger Andreas
Timothy Cerexhe
Daniel Fleischhacker
Johannes Knopp

Denis Ponomaryov
Marvin Schiller
Christoph Schwering

Invited Talks

Autonomous Systems Inspired by Biology

Gerhard Weiss

Department of Knowledge Engineering
Maastricht University, 6211 LK Maastricht, The Netherlands

gerhard.weiss@maastrichtuniversity.nl

Abstract. We can currently see the rapid formation of an exciting mul-
tidisciplinary field focusing on the application of biological principles
and mechanisms to develop autonomous systems – software agents and
robots – that act highly flexible and robust in the face of environmen-
tal contingency and uncertainty. In this talk I will give an overview of
various aspects of this field. The state of the art will be illustrated with
divers examples of bio-inspired approaches to system adaptivity, func-
tional and structural optimization, collective and swarm behavior, lo-
comotion, sensor-motor control, and (co)evolution. A focus will be on
representative work on biologically inspired autonomous systems done at
the Swarmlab of Maastricht University, including recent research moti-
vated by the behavior of social insects such as bees and ants.

About the Speaker

Gerhard Weiss is full professor of artificial intelligence and computer science and
Head of the Department of Knowledge Engineering (DKE), Faculty of Human-
ities and Sciences, Maastricht University. Before joining Maastricht University
in 2009, he was the Scientific Director of Software Competence Center Hagen-
berg GmbH, Austria, and Assistant Professor at the Department of Computer
Science of Technical University Munich, Germany. He received his PhD (Dr. rer.
nat.) in computer science from Technical University Munich and his Habilitation
degree from Johannes-Kepler University Linz, Austria. His main interests are
in the foundations and in practical applications of artificial intelligence, multi-
agent technology, and autonomous and cooperative systems. He is editorial board
member of several journals related to his research fields, and he has been in the
program and steering committees of various international conferences and work-
shops. He was a Board member of the International Foundation for Autonomous
Agents and Multi-agent Systems (IFAAMAS) and of two European networks of
excellence (Agentlink and Exystence). Professor Weiss has served as a reviewer
for several national, European and international research funding organizations
and has been engaged as a scientific consultant and advisor for industry. See also
http://www.weiss-gerhard.info.

AI – Research and the Future of Automobiles

Raúl Rojas

Department of Mathematics and Computer Science
Free University of Berlin, 14195 Berlin, Germany

Raul.Rojas@fu-berlin.de

Abstract. In this talk I will reflect on the development of autonomous
cars during the last ten years, and also on the open research problems
for the next decade. As we will see, accurate sensing is not a problem
for mobile robots. Laser scanners and video cameras provide more than
enough data for the purposes of safe navigation. However, making sense
of this data is still a hard problem in some situations in real traffic.
Humans are good at recognizing and predicting intentions and behavior –
computers are still bad at this task. I will show videos of our experiments
in the field driving in three countries and will speculate about the possible
avenues of research for making robotic cars a reality.

About the Speaker

Raúl Rojas has been a full professor of Artificial Intelligence and Robotics since
1997 at Freie Universität Berlin. He received his PhD and venia legendi (ha-
bilitation) at this university. He studied mathematics and physics, as well as
economics, in Mexico City. After the habilitation, he was appointed visiting
professor in Viena and later professor of Artificial Intelligence at Martin-Luther-
University Halle (1994-1997). Raúl Rojas’ initial research was dedicated to the
design and the construction of Prolog computers for Artificial Intelligence at
GMD-FIRST. Today, he is working on a broad field of pattern recognition top-
ics with special focus on neural networks and developing robots for various ap-
plications. With the FU-Fighters he won the world championship in RoboCup
in 2004 and 2005. From 2006 on, he and his team have been developing au-
tonomous vehicles, which were certified for city traffic in 2011. For his research
on computer vision, Raúl Rojas received the Technology Transfer Award from
the Technologiestiftung Berlin (Foundation for Innovation and Technology). He
was appointed a member of the Mexican Academy of Sciences in 2011.

The Headaches of a Negotiation Support Agent

Catholijn M. Jonker

Department of Intelligent Systems
Delft University of Technology, 2628 CD Delft, The Netherlands

C.M.Jonker@tudelft.nl

Abstract. Negotiation is a complex process as it poses challenges to the
negotiator on both the emotional plane as well as on the computational
plane. Human negotiators are known to leave money on the table, have
trouble getting a clear view of their own preferences and those of their
negotiation partner, and sometimes find it difficult to deal with their
own emotions and those of their negotiation partner. In this talk I will
briefly outline the Pocket Negotiator project and it’s prototype. I will
show some solutions developed during the project and will discuss some
of the open challenges. In terms of research fields, I combine Artificial
Intelligence, Affective Computing, and Human Computer Interaction.

To find out more about the Pocket Negotiator project, please visit
http://mmi.tudelft.nl/negotiation/index.php/Pocket_Negotiator

To try out the prototype, please use Chrome or FireFox to visit
http://ii.tudelft.nl:8080/PocketNegotiator/index.jsp

About the Speaker

Catholijn Jonker (1967) is full professor of Man-Machine Interaction at the Fac-
ulty of Electrical Engineering, Mathematics and Computer Science of the Delft
University of Technology. She studied computer science, and did her PhD studies
at Utrecht University. After a post-doc position in Bern, Switzerland, she became
assistant (later associate) professor at the Department of Artificial Intelligence
of the Vrije Universiteit Amsterdam. From September 2004 until September
2006 she was a full professor of Artificial Intelligence / Cognitive Science at the
Nijmegen Institute of Cognition and Information of the Radboud University Ni-
jmegen. She chaired De Jonge Akademie (Young Academy) of the KNAW (The
Royal Netherlands Society of Arts and Sciences) in 2005 and 2006, and she was
a member of the same organization from 2005 to 2010. She is a board member
of the National Network Female Professors (LNVH) in The Netherlands. Her
publications address cognitive processes and concepts such as trust, negotiation,
teamwork and the dynamics of individual agents and organizations. In Delft she
works with an interdisciplinary team to create synergy between humans and
technology by understanding, shaping and using fundamentals of intelligence
and interaction. End 2007 her NWO-STW VICI project “Pocket Negotiator”
was awarded. In this project she develops intelligent decision support systems
for negotiation. See also http://ii.tudelft.nl/~catholijn.

Table of Contents

Using State-Based Planning Heuristics for Partial-Order Causal-Link
Planning . 1

Pascal Bercher, Thomas Geier, and Susanne Biundo

Workflow Clustering Using Semantic Similarity Measures 13
Ralph Bergmann, Gilbert Müller, and Daniel Wittkowsky

Empathy and Its Modulation in a Virtual Human . 25
Hana Boukricha, Ipke Wachsmuth, Maria Nella Carminati, and
Pia Knoeferle

Cognitive Workload of Humans Using Artificial Intelligence Systems:
Towards Objective Measurement Applying Eye-Tracking Technology . . . 37

Ricardo Buettner

Computing Role-Depth Bounded Generalizations in the Description
Logic ELOR . 49

Andreas Ecke, Rafael Peñaloza, and Anni-Yasmin Turhan

Parallel Variable Elimination on CNF Formulas . 61
Kilian Gebhardt and Norbert Manthey

Agent-Based Multimodal Transport Planning in Dynamic
Environments . 74

Christoph Greulich, Stefan Edelkamp, and Max Gath

On GPU-Based Nearest Neighbor Queries for Large-Scale Photometric
Catalogs in Astronomy . 86

Justin Heinermann, Oliver Kramer, Kai Lars Polsterer, and
Fabian Gieseke

On Mutation Rate Tuning and Control for the (1+1)-EA 98
Oliver Kramer

Variable Neighborhood Search for Continuous Monitoring Problem
with Inter-Depot Routes . 106

Vera Mersheeva and Gerhard Friedrich

Advances in Accessing Big Data with Expressive Ontologies 118
Ralf Möller, Christian Neuenstadt, Özgür L. Özçep, and
Sebastian Wandelt

XVIII Table of Contents

Estimating the Driver’s Workload: Using Smartphone Data to Adapt
In-Vehicle Information Systems . 130

Christina Ohm and Bernd Ludwig

Pattern-Database Heuristics for Partially Observable Nondeterministic
Planning . 140

Manuela Ortlieb and Robert Mattmüller

Automated Theorem Proving with Web Services . 152
Björn Pelzer

Local SVM Constraint Surrogate Models for Self-adaptive Evolution
Strategies . 164

Jendrik Poloczek and Oliver Kramer

Changes of Relational Probabilistic Belief States and Their
Computation under Optimum Entropy Semantics . 176

Nico Potyka, Christoph Beierle, and Gabriele Kern-Isberner

Translating Single-Player GDL into PDDL . 188
Thorsten Rauber, Peter Kissmann, and Jörg Hoffmann

Comparison of Sensor-Feedback Prediction Methods for Robust
Behavior Execution . 200

Christian Rauch, Elmar Berghöfer, Tim Köhler, and Frank Kirchner

Ingredients and Recipe for a Robust Mobile Speech-Enabled Cooking
Assistant for German . 212

Ulrich Schäfer, Frederik Arnold, Simon Ostermann, and
Saskia Reifers

A Philosophical Foundation for Ontology Alignments –
The Structuralistic Approach . 224

Christian Schäufler, Clemens Beckstein, and Stefan Artmann

Contraction Hierarchies on Grid Graphs . 236
Sabine Storandt

Mastering Left and Right – Different Approaches to a Problem That Is
Not Straight Forward . 248

André van Delden and Till Mossakowski

Move Prediction in Go – Modelling Feature Interactions Using Latent
Factors . 260

Martin Wistuba and Lars Schmidt-Thieme

Algorithmic Debugging for Intelligent Tutoring: How to Use Multiple
Models and Improve Diagnosis . 272

Claus Zinn

Table of Contents XIX

Combining Conditional Random Fields and Background Knowledge
for Improved Cyber Security . 284

Carsten Elfers, Stefan Edelkamp, and Hartmut Messerschmidt

Adapting a Virtual Agent’s Conversational Behavior by Social
Strategies . 288

Nikita Mattar and Ipke Wachsmuth

Encoding HTN Heuristics in PDDL Planning Instances 292
Christoph Mies and Joachim Hertzberg

Towards Benchmarking Cyber-Physical Systems in Factory Automation
Scenarios . 296

Tim Niemueller, Daniel Ewert, Sebastian Reuter, Ulrich Karras,
Alexander Ferrein, Sabina Jeschke, and Gerhard Lakemeyer

Syntactic Similarity for Ranking Database Answers Obtained
by Anti-Instantiation . 300

Lena Wiese

Towards the Intelligent Home: Using Reinforcement-Learning
for Optimal Heating Control . 304

Alexander Zenger, Jochen Schmidt, and Michael Krödel

A Prolog-Based Tutor for Multi-column Subtraction with Multiple
Algorithms Support . 308

Claus Zinn

Author Index . 313

Using State-Based Planning Heuristics

for Partial-Order Causal-Link Planning

Pascal Bercher, Thomas Geier, and Susanne Biundo

Institute of Artificial Intelligence,
Ulm University, D-89069 Ulm, Germany

firstName.lastName@uni-ulm.de

Abstract. We present a technique which allows partial-order causal-
link (POCL) planning systems to use heuristics known from state-based
planning to guide their search.

The technique encodes a given partially ordered partial plan as a new
classical planning problem that yields the same set of solutions reach-
able from the given partial plan. As heuristic estimate of the given partial
plan a state-based heuristic can be used estimating the goal distance of
the initial state in the encoded problem. This technique also provides
the first admissible heuristics for POCL planning, simply by using ad-
missible heuristics from state-based planning. To show the potential of
our technique, we conducted experiments where we compared two of the
currently strongest heuristics from state-based planning with two of the
currently best-informed heuristics from POCL planning.

1 Introduction

In most of today’s classical planning approaches, problems are solved by informed
(heuristic) progression search in the space of states. One reason for the success of
this approach is the availability of highly informed heuristics performing a goal-
distance estimate for a given state. In contrast, search nodes in plan-based search
correspond to partially ordered partial plans; thus, the heuristics known from
state-based planning are not directly applicable to plan-based search techniques.

One of the most important representatives of plan-based search is partial-order
causal-link (POCL) planning [13,17]. POCL planning benefits from its least-
commitment principle enforcing decisions during planning only if necessary. For
instance, POCL planning can be done lifted thereby avoiding premature variable
bindings. POCL planning has greater flexibility at plan execution time [14] and
eases the integration for handling resource or temporal constraints and durative
actions [20,3]. Its knowledge-rich plans furthermore enable the generation of
formally sound plan explanations [19].

However, developing well-informed heuristics for POCL planning is a chal-
lenging task [21]; thus, heuristics are still rare. To address this shortcoming, we
propose a technique which allows to use heuristics already known from state-
based search in POCL planning, rather than developing new heuristics.

I.J. Timm and M. Thimm (Eds.): KI 2013, LNAI 8077, pp. 1–12, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

2 P. Bercher, T. Geier, and S. Biundo

This technique works by transforming a current search node, i.e., a partially
ordered partial plan, into a new planning problem, into which the given partial
plan is completely encoded, s.t. solutions for the new problem correspond to so-
lutions reachable from the encoded search node. Then, we evaluate the heuristic
estimate of the transformed problem’s initial state using any heuristic known
from state-based search, and use it as heuristic estimate of the search node. As
it turns out, not every state-based heuristic works with our technique, but we
obtained promising empirical results for some of them.

The remainder of the paper is structured as follows: the next section is devoted
to the problem formalization. Section 3 introduces the proposed transformation.
In Section 4, we discuss several issues and questions arising when using the
technique in practice. In Section 5, we evaluate our approach by comparing our
POCL planning system using four different heuristics: two of them are the cur-
rently best-informed heuristics known for POCL planning, whereas the other two
use state-of-the-art heuristics known from state-based planning in combination
with our problem encoding. Finally, Section 6 concludes the paper.

2 POCL Planning

A planning domain is a tuple D = 〈V ,A〉, where V is a finite set of boolean
state variables, S = 2V is the set of states, and A is a finite set of actions, each
having the form (pre, add , del), where pre, add , del ⊆ V. An action is applicable
in a state s ∈ S if its precondition pre holds in s, i.e., pre ⊆ s. Its application
generates the state (s \ del) ∪ add . The applicability and application of action
sequences is defined as usual. A planning problem in STRIPS notation [5] is a
tuple π = 〈D, sinit , g〉 with sinit ∈ S being the initial state and g ⊆ V being
the goal description. A solution to π is an applicable action sequence starting in
sinit and generating a state s ⊇ g that satisfies the goal condition.

POCL planning is a technique that solves planning problems via search in the
space of partial plans. A partial plan is a tuple (PS ,≺, CL). PS is a set of plan
steps, each being a pair l:a with an action a ∈ A and a unique label l ∈ L with
L being an infinite set of label symbols to differentiate multiple occurrences of
the same action within a partial plan. The set ≺ ⊂ L × L represents ordering
constraints and induces a strict partial order on the plan steps in PS . CL is a
set of causal links. A causal link (l, v, l′) ∈ L× V × L testifies that the precon-
dition v ∈ V of the plan step with label l′ (called the consumer) is provided by
the action with label l (called the producer). That is, if l:(pre, add , del) ∈ PS ,
l′:(pre ′, add ′, del ′) ∈ PS , and (l, v, l′) ∈ CL, then v ∈ add and v ∈ pre ′. Further-
more, we demand l≺ l′ if (l, v, l′) ∈ CL.

Now, π can be represented as a POCL planning problem 〈D, Pinit 〉, where
Pinit := ({l0:a0, l∞:a∞}, {(l0, l∞)}, ∅) is the initial partial plan. The actions a0
and a∞ encode the initial state and goal description: a0 has no precondition and
sinit as add effect and a∞ has g as precondition and no effects. A solution to
such a problem is a partial plan P with no flaws. Flaws represent plan elements
violating solution criteria. An open precondition flaw is a tuple (v, l) ∈ V × L

Using State-Based Planning Heuristics for POCL Planning 3

specifying that the precondition v of the plan step with label l is not yet protected
by a causal link. A causal threat flaw is a tuple (l, (l′, v, l′′)) ∈ L×CL specifying
that the plan step l:(pre, add , del) with v ∈ del may be ordered between the
plan steps with label l′ and l′′. We say, the plan step with label l threatens the
causal link (l′, v, l′′), since it might undo its protected condition v.

If a partial plan P has no flaws, every linearization of its plan steps respect-
ing its ordering constraints is a solution to the planning problem in STRIPS
notation. Hence, P is called a solution to the corresponding POCL problem.

POCL planning can be regarded as a refinement procedure [12], since it refines
the initial partial plan Pinit step-wise until a solution is generated. The algorithm
works as follows [22]. First, a most-promising partial plan P is selected based on
heuristics estimating the goal-distance or quality of P . Given such a partial plan
P , a flaw selection function selects one of its flaws and resolves it. For that end, all
modifications are applied, which are all possibilities to resolve the given flaw. A
causal threat flaw (l, (l′, v, l′′)) ∈ FCausalThreat can only be resolved by promotion
or demotion. These modifications promote the plan step with label l before the
one with label l′, and demote it behind the one with label l′′, respectively. An
open precondition flaw (v, l) ∈ FOpenPrecondition can only be resolved by inserting
a causal link (l′, v, l) which protects the open precondition v. This can be done
either by using a plan step already present in the current partial plan, or by a new
action from A. The two-stage procedure of selecting a partial plan, calculating
its flaws, and selecting and resolving a flaw is repeated until a partial plan P
without flaws is generated. Hence, P is a solution to the POCL planning problem
and returned.

3 Using State-Based Heuristics for POCL Planning

We encode a partially ordered partial plan into a new STRIPS planning problem.
A similar encoding was already proposed by Ramı́rez and Geffner [18]. However,
their encoding was used in the context of plan recognition for compiling obser-
vations away and it does not feature a partial order, causal links, nor did they
state formal properties.

Given a planning problem in STRIPS notation π = 〈〈V ,A〉, sinit , g〉 and a par-
tial plan P = (PS ,≺, CL), let encplan(P, π) = 〈〈V ′,A′〉, s′init , g′〉 be the encoding
of P and π with:

V ′ := V ∪ {l−, l+ | l:a ∈ PS , l /∈ {l0, l∞}}
A′ := A ∪ {encplanStep(l:a,≺) | l:a ∈ PS , l /∈ {l0, l∞}}, with

encplanStep(l:(pre, add , del),≺)
:= (pre ∪ {l−} ∪ {l′+ | l′≺ l, l′ �= l0}, add ∪ {l+}, del ∪ {l−}),

s′init := sinit ∪ {l− | l:a ∈ PS , l /∈ {l0, l∞}}
g′ := g ∪ {l+ | l:a ∈ PS , l /∈ {l0, l∞}}

The resulting problem subsumes the original one and extends it in the follow-
ing way: all plan steps in P become additional actions in A′ (we do not encode

4 P. Bercher, T. Geier, and S. Biundo

the artificial start and end actions, since their purpose is already reflected by
the initial state and goal description). For each plan step l:a, we introduce two
indicator variables l− and l+ that encode that l:a has not or has been executed.
Initially, none of the actions representing the encoding of these plan steps are
marked as executed and the (additional) goal is to execute all of them. Further-
more, these actions use the indicator variables to ensure that they can only be
executed in an order consistent with the partial order of the partial plan.

Although the encoding can be done in linear time [1], the effort for evaluating
heuristics might increase as search progresses, since the resulting problem is of
larger size than the original one. We will discuss this issue in the next section.

For the sake of simplicity, the formally specified function encplan ignores causal
links. Since causal links induce additional constraints on a partial plan (cf. Sec-
tion 2), compiling them away, too, captures even more information. The com-
pilation can be done as follows: let (l1, v, l2) be a causal link, l1:a1 and l2:a2
the two corresponding plan steps, and a′1 and a′2 their encodings within A′. We
need to ensure that no action with v as delete effect can be inserted between
a′1 and a′2. To that end, we introduce a counter variable count(v) which counts
how many causal links with the protected condition v are “currently active”.1 To
update that counter correctly, any (encoded) action producing a causal link with
condition v has the precondition count(v) = i and the effect count(v) = i + 1.
Analogously, any (encoded) action consuming such a causal link has the precon-
dition count(v) = i and the effect count(v) = i − 1. Then, any (encoded and
non-encoded) action having v in its delete list has the precondition count(v) = 0.
Note that the original planning problem does not need to be changed for every
partial plan, although we need to add the precondition count(v) = 0 to each
action for which there is a causal link (l1, v, l2) in the current partial plan. We
can process the domain only once by adding the precondition count(v) = 0 to
any action for any state variable v in advance. Concerning the overall runtime
for compiling away causal links, assume a′ being a (compiled) action consuming
n and providing m causal links. Then, |CL|(n+m) actions must be created to
provide all possible combinations of the count variables, where CL is the set of
causal links of the partial plan to be encoded. The compilation is therefore expo-
nential in the maximal number of preconditions and effects of all actions. Hence,
assuming the planning domain is given in advance, our compilation is polyno-
mial. In practice, it is also polynomial if the domain is not given in advance,
because the maximal number of preconditions and effects is usually bounded by
a small constant and does not grow with the domain description.

Before we can state the central property of the transformed problem, we
need some further definitions. Let P = (PS ,≺, CL) be a partial plan. Then,
ref (P) := {〈PS ′,≺′, CL′〉 | PS ′ ⊇ PS ,≺′ ⊇ ≺, CL′ ⊇ CL} is called the set of all
refinements of P , i.e., the set of all partial plans which can be derived from P

1 For the sake of simplicity, we use functions to describe the counter. Since these
functions are simple increment and decrement operations, converting them into the
STRIPS formalism is possible in linear time w.r.t. their maximum value which is
bound by the number of causal links in the given partial plan.

Using State-Based Planning Heuristics for POCL Planning 5

by adding plan elements. Let sol(π) be the set of all solution plans of π. We call
sol(π, P) := sol(π) ∩ ref (P) the set of all solutions of π refining P .

Now, we define mappings to transform partial plans derived from the planning
problem encplan(P, π) to partial plans from the original planning problem π.2

The functions decplanStep(l:(pre, add , del),V) := l:(pre ∩ V , add ∩ V , del ∩ V) and
decplan(〈PS ,≺, CL〉, π) := 〈{decplanStep(l:a,V) | l:a ∈ PS},≺, {(l, v, l′) ∈ CL | v ∈
V}〉 are called the decoding of a plan step and a partial plan, respectively. Thus,
given a partial plan P ′ from the planning problem encplan(P, π), decplan(P

′, π)
eliminates the additional variables and causal links used by the encoding.

The following proposition states that every solution of the original planning
problem, which is also a refinement of the given partial plan, does also exist
as a solution for the encoded problem and, furthermore, the converse holds as
well: every solution of the encoded problem can be decoded into a solution of
the original one, which is a refinement of the given partial plan, too. Thus, the
set of solutions of the transformed planning problem is identical to the set of
solutions of the original problem, reachable from the current partial plan.

Proposition 1 Let π be a planning problem and P a partial plan. It holds:

• if there is a partial plan Psol , s.t. Psol ∈ sol(π, P), then there exists a partial
plan P ′

sol with P ′
sol ∈ sol(encplan(P, π)) and decplan(P

′
sol , π) = Psol

• if there is a partial plan P ′
sol , s.t. P

′
sol ∈ sol(encplan(P, π)), then decplan(P

′
sol , π)

∈ sol(π, P)

Assuming the plan quality is based on action costs, we can use that proposition
to find a heuristic function h(π, P) that estimates the goal distance in π from
the partial plan P by transforming π and P into the planning problem π′ =
encplan(P, π) and setting h(π, P) := max{hsb(π

′, s′init)− cost(P), 0}, where hsb is
any heuristic that takes a state as input. We need to subtract the action costs
of P , since a heuristic estimate for P excludes the actions already present in
P , whereas a heuristic estimate for s′init should detect the necessity of inserting
them and hence includes their cost as well. Taking the maximum of that value
and zero is done in case the heuristic is overly positive and returns an estimated
cost value lower than those of the actions already present in P .

Since, due to Proposition 1, the set of solutions of π is isomorphic to the
solutions of π′, even regarding action costs, using an admissible heuristic hsb

consequently makes h(π, P) admissible, too. This is an interesting property of our
approach, since there are no admissible POCL heuristics known to the literature.

Example. Let π = 〈〈V ,A〉, sinit , g〉 be a planning problem with V := {a, b, c},
A := {({b}, {a}, {b}), ({a}, {c}, {a})}, sinit := {a, b}, and g := {a, c}. Let P be
a partial plan which was obtained by a POCL algorithm as depicted below:

l2:A1 l1:A2b
¬b
a

a
¬a
c

a

b

a
c

2 For the sake of simplicity, our decoding assumes that no causal links were compiled
away. Decoding the encoded causal links is straight-forward.

6 P. Bercher, T. Geier, and S. Biundo

The arrows indicate causal links and A1 and A2 the actions of A. P has only
one open precondition: (a, l∞), which encodes the last remaining goal condition.

The transformed problem, without compiling away causal links, is given by
encplan(P, π) = 〈〈V ′,A′〉, s′init , g′〉 with:

V ′ := {a, b, c, l1+, l1−, l2+, l2−}
A′ := {({b}, {a}, {b}}), // A1

({b, l2−}, {a, l2+}, {b, l2−}), // enc(l2:A1)

({a}, {c}, {a}), // A2

({a, l1−, l2+}, {c, l1+}, {a, l1−})} // enc(l1:A2)

s′init := {a, b, l1−, l2−}
g′ := {a, c, l1+, l2+}

A heuristic estimate based on the transformed problem may incorporate the
negative effects of l2:A1 and l1:A2 and has thus the potential to discover the
partial plan/state to be invalid and thus prune the search space.

4 Discussion

Relaxation. Not every state-based heuristic is suited for our proposed approach.
In order to determine how informed a chosen heuristic function is when used
with our technique, one has to investigate the effect of the (heuristic-dependent)
relaxation on the actions in Anew := A′ \A. The actions in Anew (together with
the additional goals) encode the planning progress so far, just like the current
state does in state-based planning. Thus, relaxing them can have a strong impact
on the resulting heuristic values. For instance, in our experiments, we noticed
that the FF heuristic [10] always obtains the same estimates for the encoded
problems of all search nodes making the heuristic blind.

Preprocessing. Some heuristics, like merge and shrink abstraction (M&S) [4,9],
perform a preprocessing step before the actual search and make up for it when
retrieving each single heuristic value. Since we obtain a new planning problem
for each single partial plan, a naive approach using this kind of heuristics would
also perform that preprocessing in every search node, which is obviously not
beneficial (and no pre-processing). Thus, given a specific heuristic, one has to
investigate whether certain preprocessing steps can be done only once and then
updated per partial plan if necessary.

Runtime. Although the transformation itself can be done efficiently, the time
of evaluating heuristics might increase with the size of the encoded problem.
At first glance, this might seem a strange property, since one would expect the
heuristic calculation time either to remain constant (as for abstraction heuristics
[4,9]) or to decrease (as for the add or FF heuristics [6,10]), as a partial plan
comes closer to a solution. However, since partial plans are complex structures

Using State-Based Planning Heuristics for POCL Planning 7

and many interesting decision problems involving them are NP hard w.r.t. their
size [15], it is not surprising that evaluating heuristic estimates becomes more
expensive as partial plans grow in size.

Ground Planning. The presentation of the proposed transformation in the pa-
per assumes a ground problem representation. However, the approach also works
for lifted planning without alterations to the encoding function. In lifted plan-
ning [22], the given partial plan is only partially ground, i.e., some action param-
eters are bound to constants, and the remaining ones are either unconstrained,
codesignated or non-codesignated. Using the same encoding process but ignor-
ing these designation constraints already works as described, since the initial
state of the resulting encoded planning problem is still ground and evaluating
its heuristic estimate is thus possible without alterations. Encoding the designa-
tion constraints is also possible, but ignoring them is just a problem relaxation
as is ignoring causal links.

5 Evaluation

We implemented the described encoding without compiling away causal links in
our POCL planning system. We compare the performance of planning using the
encoding with two state-of-the-art state-based heuristics against the currently
best-informed POCL heuristics. We also show results for a state-based planner.

The used POCL planner is implemented in Java R©. As search strategy, we use
weighted A* with weight 2. That is, a partial plan p with minimal f value is
selected, given by f(p) := g(p) + 2 ∗ h(p) with g(p) being the cost of p and h(p)
being its heuristic estimate. In cases where several partial plans have the same f
value, we break ties by selecting a partial plan with higher cost; remaining ties
are broken by the LIFO strategy thereby preferring the newest partial plan.
As flaw selection function, we use a sequence of two flaw selection strategies.
The first strategy prefers newest flaws (where all flaws detected in the same
plan are regarded equally new). On a tie, we then use the Least Cost Flaw
Repair strategy [11], which selects a flaw for which there are the least number
of modifications, thereby minimizing the branching factor. Remaining ties are
broken by chance. We configured our system to plan ground, because our current
implementation only supports a ground problem encoding.

As POCL heuristics, we selected the two currently best-informed heuristics:
the Relax Heuristic [16] and the Additive Heuristic for POCL planning [22]. They
are adaptations of the FF heuristic [10] and the add heuristic [6], respectively.
Both heuristics identify the open preconditions of the current partial plan and
estimate the action costs to achieve them based on delete relaxation using a
planning graph [2]. These heuristics are implemented natively in our system.3

3 Our implementation of the Relax Heuristic takes into account all action costs in
a relaxed plan, whereas the original version assumes cost 0 for all actions already
present. We used our variant for the experiments, since it solved more problems than
the original version.

8 P. Bercher, T. Geier, and S. Biundo

As state-based heuristics, we chose the LM-Cut heuristic [8], which is a
landmark-based heuristic and an admissible approximation to h+, and the Merge
and Shrink (M&S) heuristic [4,9], which is an abstraction-based heuristic.

To evaluate heuristics from state-based planning, we chose to use an existing
implementation. When planning using state-based heuristics, the POCL planner
creates a domain and problem PDDL file for each search node encoding the
corresponding partial plan, but ignoring causal links. We then use a modified
version of the Fast Downward planning system [7] that exits after calculating
the heuristic value for the initial state. While this approach saved us much
implementation work, the obtained results are to be interpreted with care, since
the process of calling another planning system in each search node is rather
time-consuming: while the average runtime of the Add and Relax heuristics is
at most 4 ms per search node over all evaluated problems, the LM-Cut heuristic
has a mean runtime of 958 ms and a median of 225 ms. For the M&S heuristic4,
the mean is 7,500 ms and the median 542 ms. The very high runtimes of M&S
are contributed to the fact that it performs a preprocessing step for every search
node. Of course, in a native implementation of that heuristic in combination with
our problem encoding, one would have to investigate whether an incremental
preprocessing is possible as discussed in the last section.

Thus, the results using the state-based configurations are bound to be dom-
inated by all others in terms of solved instances and runtime. Therefore, we
focus our evaluation on the quality of the heuristics measured by the size of the
produced search space in case a solution was found.

We evaluate on the non-temporal STRIPS problems taken from the Inter-
national Planning Competitions (IPC) 1 to 5. Domains from the IPC 6 and 7
use action costs, which our system does not support. Missing domains from the
IPC 1 to 5 use language features that cannot be handled either by our planner
or by Fast Downward. From each domain we chose a number of instances con-
secutively, beginning with the smallest ones. The used domains and problems
are given in Table 1; furthermore, the table contains the number of solved in-
stances per domain by any of the four configurations. We also included results
for the state-based planner Fast Downward. This planner, which is implemented
in C++, clearly dominates our Java based POCL planner. For one problem,
Fast Downward with M&S created 737 million nodes while our POCL planner
created at most 2.9 million nodes, both for Add and Relax heuristic. Despite
this discrepancy, the performance of the POCL planner using the Add heuristic
surpasses Fast Downward using M&S in some domains.

The POCL planner was given 15 minutes of CPU time and 2GB of memory
for each problem. For the configurations using the encoding, the call to Fast
Downward also counts towards the time limit (including time spent generating
the additional PDDL files), but not towards the memory limit. For the compar-
ison with Fast Downward, we used a 15 minute wall time limit and no memory
limit. All experiments were run on a 12 core Intel Xeon R© with 2.4GHz.

4 We chose f -preserving abstractions and 1500 abstract states. We chose a rather low
number of abstract states to speed up the calculation time.

Using State-Based Planning Heuristics for POCL Planning 9

0

100

200

300

1 100
Time [s]

(a) Solved instances over CPU time.

0

100

200

300

1e+02 1e+04 1e+06
Created Search Nodes

(b) Solved instances over created nodes.

0

50

100

150

200

10 100 1000 10000
Created Search Nodes

PBAdd PBRelax PBLM−Cut PBM&S

(c) Enlarged view of 1b; solved instances over created nodes.

Fig. 1. These plots show the number of solved instances on their y-axis, while the x-axis
shows either CPU time or the number of created nodes. The configurations PBAdd and
PBRelax stand for POCL planning using the Add or the Relax heuristic, respectively.
PBLM-Cut and PBM&S denote POCL planning using the LM-Cut and the Merge and
Shrink heuristic.

10 P. Bercher, T. Geier, and S. Biundo

Table 1. This table gives the number of used problems per domain (n) and the number
of solved instances per configuration and domain. The first configurations use our plan-
based configurations and the right-most columns are the results of the state-based Fast
Downward planner. All problems in the same block belong to the same IPC, from 1 to
5. A bold entry specifies the most number of solved instances among all configurations
of the POCL planning system.

Domain n PBAdd PBRelax PBLM-Cut PBM&S SBLM-Cut SBM&S

grid 5 0 0 0 0 2 2
gripper 20 14 20 1 1 20 8
logistics 20 16 15 6 0 16 1
movie 30 30 30 30 30 30 30
mystery 20 8 10 5 5 13 13
mystery-prime 20 3 4 2 1 12 12

blocks 21 2 3 3 5 21 21
logistics 28 28 28 27 5 28 15
miconic 100 100 53 65 29 100 68

depot 22 2 2 1 1 11 7
driverlog 20 7 9 3 3 15 12
freecell 20 0 0 0 0 6 6
rover 20 20 19 9 5 18 8
zeno-travel 20 4 4 3 5 16 13

airport 20 18 15 6 5 20 18
pipesworld-noTankage 20 8 5 1 1 18 19
pipesworld-Tankage 20 1 1 1 1 11 14
satellite 20 18 18 4 3 15 7

pipesworld 20 1 1 1 1 11 14
rover 20 0 0 0 0 18 8
storage 20 7 9 5 5 17 15
tpp 20 9 8 5 5 9 7

total 526 296 254 178 111 427 318

Figure 1a shows the number of solved instances over the used CPU time. As
we can observe the transformation-based heuristics are severely dominated by
the natively implemented POCL heuristics, as we expected. Figures 1b and 1c
show the size of the explored search space over the number of solved instances.
This means that configurations with higher curves solve more problems using
the same number of visited nodes. We can observe that both transformation-
based heuristics act more informed than the existing POCL heuristics in the
beginning. The transformation-based heuristic using LM-Cut remains above the
best existing POCL heuristic (Add) for the complete range of problems it could
solve. When using M&S the performance deteriorates for the more complex
problems, which we attribute to the small number of abstract states. In fact, a
reasonable number of abstract states should be chosen domain dependently [9]. It
is also the case that many runs experienced time outs after having explored only
a small number of nodes. This means that the true curves of the transformation-
based heuristics are expected to lie higher than depicted.

Using State-Based Planning Heuristics for POCL Planning 11

In summary, we can state that the experiments offer a promising perspective
on the usefulness of the proposed transformation-based heuristics. In particular
the LM-Cut heuristic proved to act more informed than the currently best known
POCL heuristic, in addition to being the first known admissible one. Since the
calculation of LM-Cut does not rely on preprocessing, like the Merge and Shrink
heuristic does, we are optimistic that a native implementation of LM-Cut for
POCL planning will offer a significant performance boost for POCL planning.

6 Conclusion

We presented a technique which allows planners performing search in the space
of plans to use standard classical planning heuristics known from state-based
planning. This technique is based on a transformation which encodes a given
partial plan by means of an altered planning problem, s.t. evaluating the goal
distance for the given partial plan corresponds to evaluating the goal distance
for the initial state of the new planning problem.

We evaluated our approach by running our POCL planning system with two of
the currently best-informed heuristics for POCL planning and two state-of-the-
art-heuristics from state-based planning based on the proposed transformation.
Whereas the first two heuristics are natively implemented in our system, the
latter two are obtained by running Fast Downward in each search node and
extracting its heuristic estimate for the initial state. The empirical data shows
that our encoding works well with the evaluated state-based heuristics. In fact,
one of these heuristics is even more informed than the best evaluated POCL
heuristic, as it creates smaller search spaces in order to find solutions.

In future work we want to implement the encoding of causal links and eval-
uate our technique using a native implementation of the (state-based) LM-cut
heuristic. Furthermore, we want to investigate whether the LM-cut heuristic can
be directly transferred to the POCL setting without the compilation.

Acknowledgements. This work is done within the Transregional Collaborative
Research Centre SFB/ TRR 62 “Companion-Technology for Cognitive Technical
Systems” funded by the German Research Foundation (DFG).

References

1. Bercher, P., Biundo, S.: Encoding partial plans for heuristic search. In: Proceed-
ings of the 4th Workshop on Knowledge Engineering for Planning and Scheduling
(KEPS 2013), pp. 11–15 (2013)

2. Blum, A.L., Furst, M.L.: Fast planning through planning graph analysis. Artificial
Intelligence 90, 281–300 (1997)

3. Coles, A., Coles, A., Fox, M., Long, D.: Forward-chaining partial-order planning.
In: Proceedings of the 20th International Conference on Automated Planning and
Scheduling (ICAPS 2010), pp. 42–49. AAAI Press (2010)

12 P. Bercher, T. Geier, and S. Biundo

4. Dräger, K., Finkbeiner, B., Podelski, A.: Directed model checking with distance-
preserving abstractions. In: Valmari, A. (ed.) SPIN 2006. LNCS, vol. 3925, pp.
19–34. Springer, Heidelberg (2006)

5. Fikes, R.E., Nilsson, N.J.: STRIPS: A new approach to the application of theorem
proving to problem solving. Artificial Intelligence 2, 189–208 (1971)

6. Haslum, P., Geffner, H.: Admissible heuristics for optimal planning. In: Proceedings
of the 5th International Conference on Artificial Intelligence Planning Systems
(AIPS 2000), pp. 140–149. AAAI Press (2000)

7. Helmert, M.: The fast downward planning system. Journal of Artificial Intelligence
Research (JAIR) 26, 191–246 (2006)

8. Helmert, M., Domshlak, C.: Landmarks, critical paths and abstractions: Whats
the difference anyway? In: Proceedings of the 19th International Conference on
Automated Planning and Scheduling (ICAPS 2009), vol. 9, pp. 162–169 (2009)

9. Helmert, M., Haslum, P., Hoffmann, J.: Flexible abstraction heuristics for opti-
mal sequential planning. In: Proceedings of the 17th International Conference on
Automated Planning and Scheduling (ICAPS 2007), pp. 176–183 (2007)

10. Hoffmann, J., Nebel, B.: The FF planning system: Fast plan generation through
heuristic search. Journal of Artificial Intelligence Research (JAIR) 14, 253–302
(2001)

11. Joslin, D., Pollack, M.E.: Least-cost flaw repair: A plan refinement strategy for
partial-order planning. In: Proceedings of the 12th National Conference on Artifi-
cial Intelligence (AAAI 1994), pp. 1004–1009. AAAI Press (1994)

12. Kambhampati, S.: Refinement planning as a unifying framework for plan synthesis.
AI Magazine 18(2), 67–98 (1997)

13. McAllester, D., Rosenblitt, D.: Systematic nonlinear planning. In: Proceedings of
the Ninth National Conference on Artificial Intelligence (AAAI 1991), pp. 634–639.
AAAI Press (1991)

14. Muise, C., McIlraith, S.A., Beck, J.C.: Monitoring the execution of partial-order
plans via regression. In: Proceedings of the 22nd International Joint Conference on
Artificial Intelligence (IJCAI 2011), pp. 1975–1982. AAAI Press (2011)

15. Nebel, B., Bäckström, C.: On the computational complexity of temporal projection,
planning, and plan validation. Artificial Intelligence 66(1), 125–160 (1994)

16. Nguyen, X., Kambhampati, S.: Reviving partial order planning. In: Proceedings
of the 17th International Joint Conference on Artificial Intelligence (IJCAI 2001),
pp. 459–466. Morgan Kaufmann (2001)

17. Penberthy, J.S., Weld, D.S.: UCPOP: A sound, complete, partial order planner for
ADL. In: Proceedings of the third International Conference on Knowledge Repre-
sentation and Reasoning, pp. 103–114. Morgan Kaufmann (1992)

18. Ramı́rez, M., Geffner, H.: Plan recognition as planning. In: Boutilier, C. (ed.)
Proceedings of the 21st International Joint Conference on Artificial Intelligence
(IJCAI 2009), pp. 1778–1783. AAAI Press (July 2009)

19. Seegebarth, B., Müller, F., Schattenberg, B., Biundo, S.: Making hybrid plans more
clear to human users – a formal approach for generating sound explanations. In:
Proceedings of the 22nd International Conference on Automated Planning and
Scheduling (ICAPS 2012), pp. 225–233. AAAI Press (June 2012)

20. Vidal, V., Geffner, H.: Branching and pruning: An optimal temporal POCL planner
based on constraint programming. Artificial Intelligence 170(3), 298–335 (2006)

21. Weld, D.S.: Systematic nonlinear planning: A commentary. AI Magazine 32(1),
101–103 (2011)

22. Younes, H.L.S., Simmons, R.G.: VHPOP: Versatile heuristic partial order planner.
Journal of Artificial Intelligence Research (JAIR) 20, 405–430 (2003)

Workflow Clustering Using

Semantic Similarity Measures

Ralph Bergmann, Gilbert Müller, and Daniel Wittkowsky

University of Trier, Business Information Systems II
D-54286 Trier, Germany
bergmann@uni-trier.de

www.wi2.uni-trier.de

Abstract. The problem of clustering workflows is a relatively new re-
search area of increasing importance as the number and size of workflow
repositories is getting larger. It can be useful as a method to analyze the
workflow assets accumulated in a repository in order to get an overview of
its content and to ease navigation. In this paper, we investigate workflow
clustering by adapting two traditional clustering algorithms (k-medoid
and AGNES) for workflow clustering. Clustering is guided by a seman-
tic similarity measure for workflows, originally developed in the context
of case-based reasoning. Further, a case study is presented that evalu-
ates the two algorithms on a repository containing cooking workflows
automatically extracted from an Internet source.

1 Introduction

Cluster analysis is an established method that allows discovering the structure
in collections of data by exploring similarities between data points. The goal of
cluster analysis is to group data objects in such a way that data objects within
a cluster are similar while data objects of different clusters are dissimilar to one
another [6]. Cluster analysis has already been applied to different types of data,
such as relational data, textual data, and even multi-media data.

In this paper, we address the problem of clustering workflows, which is a
relatively new area of increasing importance [7,8,13,5]. Traditionally, workflows
are “the automation of a business process, in whole or part, during which docu-
ments, information or tasks are passed from one participant to another for action,
according to a set of procedural rules” [16]. Recently, more and more reposito-
ries are constructed by companies and organizations to capture their procedural
knowledge as a starting point for reuse and optimization. For example, the my-
Experiment1 virtual research environment enables the publication, search, and
reuse of scientific workflows providing a repository of more than 2000 workflows.
Recent efforts on workflow sharing supported by new standards for workflow
representation will likely lead to repositories of larger scale. Further, research

1 www.myexperiment.org

I.J. Timm and M. Thimm (Eds.): KI 2013, LNAI 8077, pp. 13–24, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

14 R. Bergmann, G. Müller, and D. Wittkowsky

on methods for automatic workflow extraction from text [12] enables obtain-
ing workflow repositories from how-to descriptions on the Internet. Also process
mining [1,10,14] can infer process models (which are similar to workflows) by
analyzing event logs, thus producing a large number of processes.

Clustering of workflows will likely become relevant as the size of workflow
repositories increases. It can be useful to analyze the workflow assets accumu-
lated in a repository in order to get an overview of its content and to ease
navigation [7,8,13]. Identifying clusters of similar workflows could highlight the
opportunity to unify similar workflows [5], thus reducing the number of work-
flows that must be supported in a company. Further, clustering might be used
as an index structure for a workflow repository that can help to speed-up work-
flow retrieval [4]. Please note that workflow clustering [7,8,13,5] is significantly
different from process mining [14,1,10] as process mining analyzes execution log
data while workflow clustering analyzes the workflows themselves.

In this paper, we investigate workflow clustering by applying selected tradi-
tional clustering algorithms (in particular k-medoid and AGNES) to the cluster-
ing of workflows. The core of the application to workflows is the availability of
an appropriate similarity measure for workflows, which replaces the traditional
distance measure for n-dimensional data points. We propose to use a semantic
similarity measure for workflows which we have developed and evaluated in our
previous research as part of a similarity-based retrieval method [4]. This simi-
larity measure can be configured according to a particular domain, based on an
ontology of tasks and data items.

The next section presents our previous work on workflow representation and
semantic workflow similarity. Then, section 3 describes our approach to work-
flow clustering before section 4 presents a case study investigating the proposed
cluster algorithms to analyze a repository of 1729 cooking workflows. This paper
ends with a conclusion and a description of potential future work.

2 Workflow Representation and Semantic Similarity

We now briefly describe our previous work on semantic workflow similarity [4],
which is a cornerstone of the proposed clustering algorithms. We illustrate our
approach by an example form the domain of cooking recipes. In this domain
a cooking recipe is represented as a workflow describing the instructions for
cooking a particular dish [12].

2.1 Representation of Semantic Workflows

Broadly speaking, workflows consist of a set of activities (also called tasks) com-
bined with control-flow structures like sequences, parallel (AND split/join) or
alternative (XOR split/join) branches, and loops. Tasks and control-flow struc-
tures form the control-flow. In addition, tasks exchange certain products, which
can be of physical matter (such as ingredients for cooking tasks) or information.
Tasks, products, and relationships between the two of them form the data flow.

Workflow Clustering Using Semantic Similarity Measures 15

Today, graph representations for workflows are widely used. In this paper we
build upon the workflow representation using semantically labeled graphs [4],
which is now briefly summarized. We represent a workflow as a directed graph
W = (N,E, S, T) where N is a set of nodes and E ⊆ N × N is a set of edges.
Nodes and edges are annotated by a type from a set Ω and a semantic descrip-
tion from a set Σ. Type and semantic description are computed by the two
mapping functions T : N ∪ E → Ω and S : N ∪ E → Σ, respectively. The set
Ω consists of the types: workflow node, data node, task node, control-flow node,
control-flow edge, part-of edge and data-flow edge. Each workflow W has exactly
one workflow node. The task nodes and data nodes represent tasks and data
items, respectively. The control-flow nodes stand for control-flow elements. The
data-flow edge is used to describe the linking of the data items consumed and
produced by the tasks. The control-flow edge is used to represent the control
flow of the workflow, i.e., it links tasks with successor tasks or control-flow ele-
ments. The part-of edge represents a relation between the workflow node and all
other nodes. Σ is a semantic meta data language that is used for the semantic
annotation of nodes and edges. In our work we treat the semantic descriptions in
an object-oriented fashion to allow the application of well-established similarity
measures from case-based reasoning [2,3]. Figure 1 shows a simple fragment of
a workflow graph from the cooking domain with the different kinds of nodes
and edges. For some nodes semantic descriptions are sketched, specifying in-
gredients used (data nodes) and tasks performed (cooking steps). The semantic
descriptions are based on a domain specific ontology of data items and tasks.

n2

n3

n4

n6

Data node

…

n5 n7

Task node

n8

n1

Workflow node

n4: ingredient: onion
n4: status: chopped

n6: ingredient: Mushrooms
n6: status: sliced

Control flow edgeData flow edge

n7: task: addn5: task: saute
n5: duration: 5 min.

n8: task: simmer
n8: duration: until tender

Part-of edge

Fig. 1. A sample workflow graph

16 R. Bergmann, G. Müller, and D. Wittkowsky

2.2 Semantic Similarity

The described graph representation of workflows enables modeling related se-
mantic similarity measures which are well inline with experts assessment of
workflow similarity [4]. The similarity measure for workflows allows comparing
two complete workflows. Motivated by its use for similarity-based retrieval, one
workflow is considered a query workflow Wq = (Nq, Eq, Sq, Tq) and the second
workflow is considered a case workflow Wc = (Nc, Ec, Sc, Tc) from a repository.
The similarity measure assesses how well the query workflow is covered by the
case workflow. In particular, the similarity should be 1 if the query workflow is
exactly included in the case workflow as a subgraph. Consequently, the proposed
similarity measure is not symmetrical.

Our framework for modeling workflow similarity is based on a local similarity
measure for semantic descriptions simΣ : Σ2 → [0, 1] based on which node and
edge similarity measures simN : Nq ×Nc → [0, 1] and simE : Eq × Ec → [0, 1]
can be easily defined. For example, the node similarity is defined as follows:

simN(nq, nc) =

{
simΣ(Sq(nq), Sc(nc)) if Tq(nq) = Tc(nc)
0 otherwise

Nodes with different types (e.g. a task node compared with a data node) are
considered dissimilar; their similarity is always zero. The similarity of nodes of
equal type is defined by the similarity of the semantic descriptions. In particular
the taxonomical structure of the data and task ontology (ingredients and cooking
steps ontology in the cooking recipe domain) is employed to derive a similarity
value that reflects the closeness in the ontology as well as additional parameters
such as the quantity of an ingredient used in a recipe. Due to the space limitations
of this paper, we refer to [4] for more details and examples of how such local
similarity measures look like.

The similarity sim(Wq,Wc) is computed by means of a legal mapping m :
Nq∪Eq → Nc∪Ec, which is a type-preserving, partial, injective mapping function
of the nodes and edges of the query workflow to those of the case workflow. For
each query node or edge x mapped by m, the similarity to the respective case
node or edge m(x) is computed through simN(x,m(x)) and simE(x,m(x)),
respectively. The overall workflow similarity with respect to the mapping m,
named simm(Wq,Wc) is computed by an aggregation function (e.g. a weighted
average) combining the previously computed similarity values.

Finally, the overall workflow similarity sim(Wq,Wc) is determined by the best
possible mapping of that kind, i.e.,

sim(Wq,Wc) = max{simm(Wq,Wc) | legal mapm}.

As a consequence of this definition, the computation of the similarity requires the
systematic construction of such mappings m. While the similarity computation
by exhaustive search guarantees to find the optimal match, it is computationally
not feasible. Hence, we developed a memory-bounded A* search algorithm with
an appropriate admissible heuristic to keep similarity computation feasible [4].

Workflow Clustering Using Semantic Similarity Measures 17

3 Workflow Clustering

We now describe our approach for using the described semantic similarity mea-
sure for clustering workflows. The goal of cluster analysis is to group data objects
in such a way that data objects within a cluster are similar while data objects of
different clusters are dissimilar. The following types of clustering algorithm can
be distinguished: Partitioning-based methods structure the objects into k clus-
ters based on centroids or representatives (algorithms k-means and k-medoid)
while hierarchical methods build a tree of clusters in a top-down (e.g. algorithm
DIANA) or bottom-up fashion (e.g. algorithm AGNES). Density-based methods
(e.g. algorithm DBSCAN) identify regions with a high density separated by less
dense regions to define clusters. Conceptual clustering methods (e.g. algorithms
UNIMEM or COBWEB) do not only identify clusters, moreover they identify
characteristic descriptions (a concept) for each cluster. As these methods handle
the task of clustering differently, they also have different properties with regard
to performance, calculation costs and requirements. For this reason there is no
clear recommendation for a specific clustering method in general [6]. This leads
to the problem of selecting a suitable method for a specific clustering scenario.
Additionally, some methods need specific input parameters, e.g. the number of
clusters k.

3.1 Selection of Clustering Method

To make use of the proposed semantic similarity measure, we selected clustering
techniques that are capable of dealing with similarities. We decided to exam-
ine two clustering methods of different type. Hence, we selected AGNES as a
hierarchical algorithm and k-medoid as a partitioning-based algorithm. Both al-
gorithms are based on a distance/similarity computation between the data items.
As both algorithms are well known [6], we now describe them only briefly.

k-medoid is a partitioning-based clustering method that separates the objects
into a given number of k clusters. First, it randomly chooses k data objects,
so-called medoids. The remaining data objects are then assigned to the closest
medoid using a distance function d(x, y) that assesses the distance of two data
points. Then the total quality of the clustering is calculated. Traditionally, the
quality of the clustering is calculated by summing the absolute value of the dis-
tance between the medoid and the data points belonging to the cluster. This
initial clustering is iteratively improved. Therefore, for each medoid m and each
non-medoid data point o a swap operation of m and o is performed and the re-
sulting cluster quality is computed. The clustering representing the best possible
is retained and the algorithm continues with the next swapping phase until the
total quality of configuration does not improve anymore.

AGNES is an agglomerative hierarchical clustering method that starts with
creating one cluster for each individual data point. Then the existing clusters

18 R. Bergmann, G. Müller, and D. Wittkowsky

are aggregated in a bottom-up fashion until a complete binary cluster tree is
constructed. This aggregation process is performed iteratively. In each iteration
a pair of clusters is selected and a new cluster is constructed by merging the
data points of the two clusters. The two original clusters are linked as sub-
clusters to the new cluster. The selection of the pair of clusters to be merged
in each iteration is determined by the closeness of the clusters. Therefore, the
set of unlinked clusters is searched for the closest pair of clusters. To assess the
closeness of two clusters, several variants are established, called linkage criteria.
They assess cluster closeness based on a measure of distance d(x, y) of two data
points. Single linkage defines cluster closeness as the minimum distance between
the points of the two clusters, complete linkage uses the maximum distance,
while average linkage computes the average distance.

3.2 Integrating Semantic Workflow Similarity

To apply k-medoid and AGNES for clustering workflows is quite straight forward.
We assume that the given repository of workflows is represented as a set of
workflow graphs as defined in section 2.1. This set is then clustered using the
selected clustering algorithm. Hence, instead of n-dimensional data points the
graphs are used. Further, the definition of distance d(W1,W2) of two data points
(here workflows) is replaced by the semantic similarity measure by d(W1,W2) =
1 − sim(W1,W2). However, a difficulty with this approach arises because the
distance functions used in the clustering algorithms are assumed to be symmetric
(d(x, y) = d(y, x)) while the semantic similarity measure as defined in section
2.2 is asymmetric as it distinguishes a query from a case workflow. To address
this problem, several approaches can be taken.

Modification of the Semantic Similarity Measure. The definition of the
mapping function m and the aggregation function could be modified such that a
bidirectional mapping is enforced. In addition, the local similarity measure simΣ

must be restricted to symmetric measures only. While this approach is feasible
in principle, it has the significant disadvantage that for applications that require
both, retrieval and clustering, two different similarity measures must be modeled,
which leads to additional effort.

Modification of the Clustering Algorithms. The clustering algorithms can
be slightly modified in order to deal with the asymmetric nature of the similarity.
As k-medoid always compares a medoid with a non-medoid data point, this com-
parison is already asymmetric. We can apply the semantic similarity measure
such that the medoid becomes the query workflow and the data point becomes
the case workflow. For AGNES the distance is used to compute the cluster close-
ness according to the selected linkage criterion. To achieve a symmetric definition
of cluster closeness based on the asymmetric semantic similarity measure, the
linkage computation can me modified such that for each two workflows W1 and
W2 the two similarity values sim(W1,W2) and sim(W2,W1) are considered.

Workflow Clustering Using Semantic Similarity Measures 19

Symmetrization of the Similarity Measure. Instead of modifying the se-
mantic similarity computation or the clustering algorithm, the similarity measure
itself can be symmetrized by aggregating the two similarity values sim(W1,W2)
and sim(W2,W1) into a single value by a symmetric aggregation function α.
Thus, the distance between two workflows W1 and W2 is computed as follows:
d(W1,W2) = 1− α(sim(W1,W2), sim(W2,W1)). For α we consider three differ-
ent options, namely: min, max, and average. Which option is selected has an
impact on the similarity/distance. For example, consider two recipe workflows
with a high similarity value in either direction. Thus, these recipes are very sim-
ilar and contain almost the same cooking steps and ingredients, i.e. one may be
used as a replacement of the other. Independent of the choice of α, the symmetric
similarity value is high as well. However, if one recipe workflow is contained in
the other recipe workflow (e.g. a bolognese sauce recipe in a recipe for spaghetti
bolognese) the situation is different as one of the two similarity values is high
while the other is low. Now, the overall symmetric similarity assessment differs
strongly depending on α.

3.3 Performance Considerations

As the distance/similarity computation is quite frequently called within both
clustering algorithms, the computational complexity of the semantic similarity
measure involving the search algorithm for the optimal map m is a problem.
We address this problem by caching, i.e., we perform the similarity computa-
tion in a pre-processing step before the clustering algorithm is started. Thus, a
similarity matrix is pre-computed that stores the similarity value of each pair
of workflows from the repository. As the individual similarity computations are
independent from one another, they can be easily parallelized, taking advantage
of multi-core CPUs. Additionally, we improved the performance of the cluster-
ing algorithms themselves. We focused on some of the computationally intensive
calculation steps such as the estimating of the best swap operation in k-medoid
and parallelized them as well.

4 Case Study: Clustering Cooking Workflows

The aim of this case study was to achieve a first evaluation of the proposed clus-
tering approach on a specific workflow repository. Therefore, the approach was
implemented, a repository was created, and a semantic similarity measure was
defined. Then, the two proposed algorithms were tested using various variations
of their parameters on the workflow repository. We aim at assessing whether
the clustering algorithms are helpful to get an insight into the workflow data.
As literature emphasizes both the importance and the difficulty of evaluation of
clusterings [15], we focus on two purposive evaluations. In an internal evaluation
we want to find out, how well the clustering results fulfill the usual requirements
of homogeneity and heterogeneity. This evaluation is internal as it is based on
indices derived from the clustering results themselves. An external evaluation

20 R. Bergmann, G. Müller, and D. Wittkowsky

is also performed to examine how well the clustering resembles a given human
classification. In combination these evaluations should provide a better under-
standing of the clustering methods and the structure of the specific workflow
repository.

4.1 Implementation and Repository Creation

We implemented the described clustering algorithms within the CAKE frame-
work2 [3] that already includes a process-oriented case-based reasoning com-
ponent for similarity-based retrieval of workflows. The already implemented
algorithms for similarity computation are used for clustering. For the domain
of cooking recipes, a cooking ontology containing 208 ingredients and 225 cook-
ing preparation steps was developed manually. A specific similarity measure for
workflow similarity was defined according to the described framework. This in-
cludes the definition of local similarity measures simΣ as well as the definition
of a weighting scheme. According to common practice in case-based reason-
ing, this similarity measure has been optimized manually for the retrieval of
recipe workflows. We created a workflow repository containing 1729 workflows
(on the average, 11 nodes per workflow) by automated workflow extraction [12].
The workflows have been extracted from allrecipes.com by applying a frame-
based approach for information extraction using the SUNDANCE parser [11].
Each cooking workflow was automatically annotated by an appropriate seman-
tic description formed by the ontology concepts. The quality of the resulting
semantic workflows was ensured by manual postprocessing.

4.2 Internal Evaluation

For k-medoid clustering the number of clusters k is of high importance. Although
it is not that essential for AGNES, it might be also useful to limit the number of
clusters. Either the number of clusters can be used as a stopping criterion or an
extract of a hierarchical clustering tree can be chosen [6]. In the following exper-
iments we performed clustering with different values for the number of clusters k
ranging from 2 to 100. Due to the fact that the results of k-medoid depend on the
initial random selection of medoids, we repeated each run of k-medoid 5 times
and selected the best clustering result. We applied the symmetrization approach
for the similarity measure using all three variants: min, max, and average and
in addition the asymmetric variant of each algorithm. For AGNES we also varied
the linkage approach to test all three variants.

For each clustering we determined three internal measures, namely cohesion,
separation, and the silhouette coefficient. The cohesion of a single cluster is
equivalent to the average similarity of all pairs of objects of the cluster. The
total cluster cohesion measure is the weighted average of the cohesion of the
individual clusters. The cohesion values range from 0 to 1, while a high value
indicates highly homogenous clusters. The separation of two clusters is defined

2 cake.wi2.uni-trier.de

allrecipes.com

Workflow Clustering Using Semantic Similarity Measures 21

as the average of all distances (1 - similarity) between all pairs of elements from
both clusters. The total cluster separation measure, which ranges from 0 to 1,
is the weighted average of the separation of all pairs of clusters. The silhouette
coefficient [9] combines the idea of cohesion and separation into a single value
ranging from -1 to 1.

Table 1. Cluster Results for k-Medoid

Min Symmetr. Mean Symmetr. Max Symmetr. Asymm. k-Medoid

Optimal k 2 2 3 2

Silhouette 0.16 0.15 0.07 0.06
Cohesion 0.22 0.29 0.36 0.28
Separation 0.82 0.75 0.67 0.74

Table 1 shows the results for the different variants of k-medoid. For each
algorithm the results for the number of clusters k is shown which leads to the
highest value of the silhouette coefficient. The best silhouette coefficients vary
from 0.06 to 0.16, typically suggesting solutions with 2 - 3 clusters. While the
silhouette coefficient enables evaluating how well a clustering result fulfills the
goals of heterogeneity and homogeneity, it can be stated that even the best
clustering results of these combinations don’t reveal a strong cluster structure
in the workflow repository. According to Kaufmann and Rousseeuw [9] a strong
structure leads to silhouette values between 0.75 to 1. This interpretation is
supported by cohesion and separation values. The clusters found by k-medoid
are quite heterogenous due to high separation values ranging from 0.67 to 0.82
but not very homogenous as the cohesion values ranges from 0.22 to 0.36 only.

Table 2 shows the results for AGNES for each combination of algorithm and
linkage (SL=single linkage, AL=average linkage, CL=complete linkage). For each
combination the results for the number of clusters k is shown which leads to the
highest value of the silhouette coefficient. The best silhouette coefficients vary
from 0.05 to 0.22, which is in line with the results from k-medoid confirming that
there is no strong structure in the workflow repository. Examining the other
measures also confirms this interpretation. Cohesion varies from 0.20 to 0.39,
hence homogeneity is very limited. Separation varies from 0.69 to 0.86 which
means that there is quite a heterogeneity between different clusters.

Table 2. Cluster Results for AGNES

Algorithm Min Symmetr. Mean Symmetr. Max Symmetr. Asymm. AGNES
Linkage SL AL CL SL AL CL SL AL CL SL AL CL

optimal k 2 3 2 4 23 2 2 9 2 3 2 2

Silhouette 0.21 0.22 0.16 0.11 0.16 0.05 0.09 0.16 0.06 0.05 0.18 0.13
Cohesion 0.23 0.20 0.20 0.29 0.35 0.27 0.35 0.39 0.34 0.29 0.27 0.27
Separation 0.82 0.86 0.86 0.73 0.75 0.76 0.68 0.69 0.70 0.74 0.77 0.76

22 R. Bergmann, G. Müller, and D. Wittkowsky

4.3 External Evaluation

The goal of the external evaluation was to evaluate whether the clustering meth-
ods produce clusters of recipe workflows similar to the structure in a cookbook,
i.e., a classification into salads, soups, etc. Because this classification information
is not available in the current repository and because of the lack of structure
identified in the internal evaluation, we decided to manually select and classify
a small subset of recipe workflows. We defined 5 classes, namely salads, soups,
cake, bread and pork and selected 25 recipes for each class. Then we applied the
clustering methods for the selected workflows only. Due to space limitations we
just present the results of k-medoid using the mean symmetrization approach,
however the results for AGNES are quite comparable.

Table 3. Clustering results (3 classes)

Classification

Cake Salad Soup

Cluster
1 20 0 0
2 5 21 0
3 0 4 25

Table 4. Clustering results (5 classes)

Classification
Cake Salad Soup Bread Pork

Cluster

1 15 0 0 3 0
2 2 14 1 1 7
3 0 8 14 0 8
4 8 2 0 21 3
5 0 1 10 0 7

Table 4 shows the results of clustering 75 workflows belonging to the classes
cake, salad, and soup. The results show that the found classification of the clus-
tering algorithm matches well with the external classification. No soup recipe was
classified wrong, while approx. 80% of the salad and cake recipes were classified
correctly, leading to an overall classification accuracy of 88%. Table 3 shows
the results of clustering all 125 workflows. It turns out that the classification
structure is less well present. For example, the soup recipes, which were well
classified in table 4, are nearly equally divided among two clusters. The pork
recipes are spread among 4 clusters. The overall classification accuracy drops
down to 56.8%.

To examine the clustering result more deeply we decided to determine the
cohesion of each of the five classes and to compare them with the cohesion of
the found five clusters (see table 5). Overall the cohesion of the classification is
only 0.34 and is thus not very high. The class of soup and pork recipes have
the lowest cohesion, which explains that they are not well clustered as shown
in table 3. The overall cohesion that results from the clustering is even slightly
higher than the cohesion of the manual classification of the recipes.

Finally, it can be concluded that clustering algorithms using the semantic
similarity won’t classify all recipes as one would expect in a cookbook. This
is because the semantic similarity measure is based on the workflow structure
and thus includes the preparation of the dishes. Contrary to this, the cookbook
classification aims at the purpose or outcome of the recipes. However, two recipes

Workflow Clustering Using Semantic Similarity Measures 23

Table 5. Cohesion of classification and clusters

Classification Clustering
Cake Salad Soup Bread Pork Average 1 2 3 4 5 Average

0.40 0.30 0.34 0.37 0.30 0.34 0.47 0.32 0.31 0.35 0.33 0.35

with different purpose could be prepared quite similarly (e.g. diced beef and beef
salad). On the other hand, two recipes with the same purpose could be prepared
quite differently (e.g. a tomato salad and a beef salad).

5 Conclusions, Related and Future Work

Workflow clustering is a new research topic, which is particularly important when
the size and the availability of workflow repositories is further increasing. We
have explored how the k-medoid and the AGNES algorithms can be adapted for
workflow clustering based on a semantic similarity measure. Unlike previous work
on workflow and process clustering [7,8,13,5] our approach enables to configure
the semantic similarity measure in relation to a domain ontology of data and task
items. Thereby it allows controlling the cluster algorithm such that the workflows
are clustered according to the intended meaning of similarity. Thus, our approach
is generic and can be applied to various domains by adapting the ontologies
and similarity measures. As we have already applied our similarity measure
to scientific workflows [4], we believe that our method could be considered an
alternative to the work proposed by Silva et al. [13] specifically for this domain.

We have systematically applied the algorithms to analyze an automatically
extracted set of cooking workflows, which is a workflow domain that has not
yet been investigated by previous work on workflow clustering. The analysis
revealed that there is only little cluster structure in the examined workflows,
i.e., that the kind of preparation of the recipes varies a lot from recipe to recipe.
The application of the algorithms to the analysis of a reduced set of workflows
that have been manually classified according to five classes was only able to
partially discover the given classification. However, it also discloses the fact that
traditional classifications of recipes in a cookbook don’t always resemble with
the similarity of the preparation workflows.

Future work will include applying the presented methods on different data sets
in different domains, e.g. for scientific workflows. The myExperiment platform
could provide a good source of workflows for this purpose [13]. Further, we
will investigate whether the cluster methods can be applied to derive an index
structure for the repository that can be exploited to improve the performance of
similarity-based workflow retrieval. Further, we aim at extending our approach
to density-based clustering as proposed by Ekanayake et al. [5].

Acknowledgements. This work was funded by the German Research Founda-
tion (DFG), project number BE 1373/3-1.

24 R. Bergmann, G. Müller, and D. Wittkowsky

References

1. Van der Aalst, W.M.: Process mining. Springer, Heidelberg (2011)
2. Bergmann, R.: Experience Management. LNCS (LNAI), vol. 2432. Springer, Hei-

delberg (2002)
3. Bergmann, R., Freßmann, A., Maximini, K., Maximini, R., Sauer, T.: Case-based

support for collaborative business. In: Roth-Berghofer, T.R., Göker, M.H., Güvenir,
H.A. (eds.) ECCBR 2006. LNCS (LNAI), vol. 4106, pp. 519–533. Springer, Heidel-
berg (2006)

4. Bergmann, R., Gil, Y.: Similarity assessment and efficient retrieval of semantic
workfows. Information Systems Journal (2012),
http://www.wi2.uni-trier.de/publications/2012_BergmannGilISJ.pdf

5. Ekanayake, C.C., Dumas, M., Garćıa-Bañuelos, L., La Rosa, M., ter Hofstede,
A.H.M.: Approximate clone detection in repositories of business process models.
In: Barros, A., Gal, A., Kindler, E. (eds.) BPM 2012. LNCS, vol. 7481, pp. 302–318.
Springer, Heidelberg (2012)

6. Han, J., Kamber, M.: Data Mining: Concepts and Techniques. Morgan Kaufmann
(2006)

7. Jung, J.Y., Bae, J.: Workflow clustering method based on process similarity. In:
Gavrilova, M.L., Gervasi, O., Kumar, V., Tan, C.J.K., Taniar, D., Laganá, A.,
Mun, Y., Choo, H. (eds.) ICCSA 2006. LNCS, vol. 3981, pp. 379–389. Springer,
Heidelberg (2006)

8. Jung, J.Y., Bae, J., Liu, L.: Hierarchical clustering of business process models.
International Journal of Innovative Computing, Information and Control 6(12 A)
(2009)

9. Kaufman, L., Rousseeuw, P.J.: Finding Groups in Data - An Introduction to Clus-
ter Analysis. John Wiley, New York (1990)

10. Montani, S., Leonardi, G.: Retrieval and clustering for business process monitoring:
Results and improvements. In: Agudo, B.D., Watson, I. (eds.) ICCBR 2012. LNCS,
vol. 7466, pp. 269–283. Springer, Heidelberg (2012)

11. Riloff, E., Phillips, W.: An introduction to the sundance and autolog systems. Tech.
rep., School of Computing, University of Utah. (2004)

12. Schumacher, P., Minor, M., Walter, K., Bergmann, R.: Extraction of procedural
knowledge from the web. In: WWW 2012 Workshop Proceedings. ACM (2012)

13. Silva, V., Chirigati, F., Maia, K., Ogasawara, E., de Oliveira, D., Braganholo, V.,
Murta, L., Mattoso, M.: Similarity-based workflow clustering. Journal of Compu-
tational Interdisciplinary Sciences 2(1), 23–35 (2011)

14. Song, M., Günther, C.W., van der Aalst, W.M.P.: Trace clustering in process min-
ing. In: Ardagna, D., Mecella, M., Yang, J. (eds.) BPM 2008 Workshops. LNBIP,
vol. 17, pp. 109–120. Springer, Heidelberg (2009)

15. Tan, P.N., Steinbach, M., Kumar, V.: Introduction to Data Mining. Addison-
Wesley (2005)

16. Workflow Management Coalition: Workflow management coalition glossary & ter-
minology (1999),
http://www.wfmc.org/standars/docs/TC-1011_term_glossary_v3.pdf

(last access on May 23, 2007)

http://www.wi2.uni-trier.de/publications/2012_BergmannGilISJ.pdf
http://www.wfmc.org/standars/docs/TC-1011_term_glossary_v3.pdf

Empathy and Its Modulation in a Virtual Human

Hana Boukricha1, Ipke Wachsmuth1, Maria Nella Carminati2, and Pia Knoeferle2

1 A.I. Group, Faculty of Technology, Bielefeld University, 33594 Bielefeld, Germany
{hboukric,ipke}@techfak.uni-bielefeld.de

2 Cognitive Interaction Technology (CITEC), Bielefeld University, Morgenbreede 39,
Gebäudeteil H1, 33615 Bielefeld, Germany

mcarmina@techfak.uni-bielefeld.de, knoeferl@cit-ec.uni-bielefeld.de

Abstract. Endowing artificial agents with the ability to empathize is believed
to enhance their social behavior and to make them more likable, trustworthy, and
caring. Neuropsychological findings substantiate that empathy occurs to different
degrees depending on several factors including, among others, a person’s mood,
personality, and social relationships with others. Although there is increasing in-
terest in endowing artificial agents with affect, personality, and the ability to build
social relationships, little attention has been devoted to the role of such factors in
influencing their empathic behavior. In this paper, we present a computational
model of empathy which allows a virtual human to exhibit different degrees of
empathy. The presented model is based on psychological models of empathy and
is applied and evaluated in the context of a conversational agent scenario.

1 Introduction

Research on empathic artificial agents corroborates the role of empathy in improving
artificial agents’ social behavior. For instance, it has been shown that empathic vir-
tual humans can reduce stress levels during job interview tasks [17] and that empathic
agents are perceived as more likable, trustworthy, and caring [7]. Furthermore, it has
been found that empathic virtual humans can evoke empathy in children and can thus
teach them to deal with bullying situations [16] and that a virtual human’s empathic
behavior also contributes to its ability to build and sustain long-term socio-emotional
relationships with human partners [3]. However, it has been shown that in a competi-
tive card game scenario, empathic emotions can increase arousal and induce stress in
an interaction partner [1]. In line with neuropsychological findings [8] that humans em-
pathize with each other to different degrees depending on their mood, personality, and
social relationships with others, the modulation of a virtual human’s empathic behavior
through such factors would allow for a more adequate empathic behavior in the agent
across different interaction scenarios. Although there is increasing interest in endowing
artificial agents with affect, personality, and the ability to build social relationships, the
role of such factors in influencing their empathic behavior has received little attention.

In this paper, we present a computational model of empathy which allows a virtual
human to exhibit different degrees of empathy. Our model is shaped by psychological
models of empathy and is based on three processing steps that are central to empathy
[4]: First, the Empathy Mechanism by which an empathic emotion is produced. Sec-
ond, the Empathy Modulation by which the empathic emotion is modulated. Third, the

I.J. Timm and M. Thimm (Eds.): KI 2013, LNAI 8077, pp. 25–36, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

26 H. Boukricha et al.

Expression of Empathy by which the virtual human’s multimodal behavior is triggered
through the modulated empathic emotion. The presented empathy model is applied and
evaluated in the context of a conversational agent scenario involving the virtual humans
MAX [12] and EMMA [6] and a human interaction partner. Within this scenario, our
model is realized for EMMA and allows her to empathize with MAX’s emotions during
his interaction with the human partner.

The paper is structured as follows: In Section 2, we outline related work on existing
empathic artificial agents. In Section 3, we present our approach to model empathy for a
virtual human. In Section 4, we present the application scenario of the model as well as
the results of an empirical evaluation of the empathic behavior generated by the model.
Finally, in Section 5, we summarize the key contribution of our research.

2 Related Work

In previous research, much effort has gone in endowing virtual humans with the abil-
ity to empathize. McQuiggan et al. [13] propose an inductive framework for modeling
parallel and reactive empathy. They called their framework CARE (Companion As-
sisted Reactive Empathizer) and based it on learning empirically informed models of
empathy during human-agent social interactions. In a learning phase, users’ situation
data, such as their actions and intentions, users’ affective states, bio-potential signals,
and other characteristics such as their age and gender are gathered while they interact
with virtual characters. The virtual characters respond to the user’s situation with either
parallel or reactive empathy. During interaction with the characters, users are able to
evaluate their empathic responses using a 4 point Likert scale. Naive Bayes classifiers,
decision trees, and support vector machines are used to learn models of empathy from
’good examples’. The induced models of empathy are used at runtime in a test phase to
drive virtual characters’ empathic responses. The evaluation of the characters’ empathic
behavior according to collected training and test data shows that the induced empathy
models produce appropriate empathic behaviors.

Based on an empirical and theoretical approach, Ochs et al. [14] propose a compu-
tational model of empathic emotions. They analyzed human-machine dialog situations
to identify the characteristics of dialog situations that may elicit users’ emotions dur-
ing human-machine interaction. The results of this empirical analysis were combined
with a theoretical model of emotions to provide a model of empathic emotions. Once
the user’s potential emotion is determined, the agent’s empathic emotion from the same
type is triggered toward the user. They define a degree of empathy as a value that affects
the base intensity of the empathic emotion depending on both the liking relationship be-
tween the user and the agent and the degree to which a user deserves or doesn’t deserve
his immediate situation (cf. [15]). The empathic behavior of the agent is empirically
evaluated based on three conditions, a non-emotional condition, an empathic condition,
and a non-congruent emotional condition where the agent expresses emotions that are
opposite in their values of valence to the empathic emotions. The results show that the
agent is perceived more positively in the empathic version and more negatively in the
non-congruent emotional version.

Rodrigues et al. [18] propose a generic computational model of empathy. Their
model is integrated into an existing affective agent architecture [9] and comprises an

Empathy and Its Modulation in a Virtual Human 27

empathic appraisal component and an empathic response component. A perceived event
by an agent that evokes an emotional cue in another agent is input to the empathic ap-
praisal component together with the emotional cue. The emotional cue is input to an
emotion recognition module and the event is input to a self-projection appraisal mod-
ule. The outputs of both modules are combined to determine an empathic emotion as
the output of the empathic appraisal. The empathic emotion is modulated by several
factors (cf. [8]). Similarity is defined as the degree of congruence of the emotions pro-
vided by the self-projection appraisal and emotion recognition modules. Affective link
is defined as the value of liking between the agents. The higher the average value of
similarity and affective link, the higher the value of intensity of the empathic emotion.
Mood is defined as the empathizing agent’s mood which then affects the intensity of the
empathic emotion as it affects that of other emotions (cf. [9]). Personality refers to the
empathizing agent’s resistance to feel particular emotions. Regarding the empathic re-
sponse component, the empathic emotion generated by the empathic appraisal triggers a
situation-appropriate action. The authors designed a small scenario with four synthetic
characters to evaluate their model based on two conditions, an empathy condition and
a no-empathy condition. The results show that the perceived values of empathy and af-
fective link are significantly higher in the empathy condition and are thus in line with
the theoretical assumptions underlying the model.

While significant advances have been made in modeling empathy for virtual humans,
the modulation of the empathic emotion and the calculation of a degree of empathy have
received little attention. Accordingly, we consider the modulation of an empathic emo-
tion and the calculation of different degrees of empathy as a crucial aspect in further
enhancing an artificial agent’s social behavior. While in [18] and [14] only the intensity
of an empathic emotion is modulated, we also modulate its related emotion category in
our model. In this regard, we follow Hoffman’s claim [11] that an empathic response
need not be a close match to the affect experienced by the other, but can be any emo-
tional reaction compatible with the other’s situation. Furthermore, in previous research,
evaluations have been based on either two conditions, non-empathic vs. empathic (e.g.,
[18]) or on three conditions, non-empathic/emotional, empathic, and non-congruent
empathic/emotional (e.g., [14] and [1]). In contrast, we evaluated our model based on
three different conditions that distinguished three different degrees of empathy, neutral,
medium, and maximum empathy, thus allowing for a more fine-grained evaluation of
the model and its underlying parameters.

3 A Computational Model of Empathy

The virtual humans MAX [12] and EMMA [6] have a cognitive architecture composed
of an emotion simulation module [2] and a Belief-Desire-Intention (BDI) module [12].
The emotion simulation module comprises of a dynamics/mood component for the cal-
culation of the course of emotions and moods over time and their mutual interaction,
and of a Pleasure, Arousal, Dominance (PAD) space in which emotion categories are
located and their intensity values can be calculated. The emotion simulation module
outputs values of pleasure, arousal, and one of two possible values of dominance (dom-
inant vs. submissive) as well as intensity values of emotion categories. Our computa-
tional model of empathy is integrated within the emotion simulation module. In the

28 H. Boukricha et al.

following, we briefly introduce the three processing steps underlying our model (cf.
Section 1); (more details on parts of the model and on its theoretical foundation are
available in previous work [4]).

3.1 Empathy Mechanism

In line with the Facial Action Coding System (FACS) [10], 44 Action Units (AUs) have
been implemented for the virtual human EMMA’s face. In an empirical study, a total of
3517 randomly generated facial expressions of EMMA were rated by 353 participants
with Pleasure, Arousal, and Dominance (PAD) values. Based on these ratings, three
dimensional regression planes of AUs’ intensity values and PAD values were obtained
and show the meaning of each AU in PAD space. By combining all planes of all AUs, a
repertoire of facial expressions arranged in PAD space was reconstructed. Accordingly,
based on her own AUs and their intensity functions (regression planes) in PAD space,
EMMA maps a perceived facial expression to AUs with corresponding intensity values
and subsequently infers its related emotional state as a PAD value. The inferred PAD
value is represented by an additional reference point in EMMA’s PAD emotion space.
Its related emotion category and corresponding value of intensity can thus be inferred.

After detecting a fast and salient change in the other’s emotional state which indi-
cates the occurrence of an emotional event, an empathic emotion is elicited. That is, with
respect to a predetermined short time interval T , the difference between inferred PAD
values corresponding to the time-stamps tk−1 and tk, with tk− tk−1 <= T , is calculated
as |PADtk −PADtk−1 |. If this exceeds a saliency threshold T H1 or if |PADtk | exceeds a
saliency threshold T H2, then the emotional state PADtk and its related emotion category
represent the empathic emotion. The threshold values can be interpreted as representing
the virtual human’s responsiveness to the other’s situation (for more details on the em-
pirical study and the Empathy Mechanism see [6] and [4]). Once an empathic emotion
is elicited, the following processing step Empathy Modulation is triggered.

3.2 Empathy Modulation

The modulation of the empathic emotion is realized within PAD space of the virtual
human’s emotion simulation module. At each point in time an empathic emotion is
elicited, the following equation is applied:

empEmot,mod = ownEmot+

(empEmot − ownEmot) · (
n

∑
i=1

pi,t ·wi)/(
n

∑
i=1

wi)
(1)

The value empEmot,mod represents the modulated empathic emotion. The value
ownEmot represents the virtual human’s own emotional state as the modulation fac-
tor mood. The value empEmot represents the non-modulated empathic emotion result-
ing from Empathy Mechanism. The values pi,t represent modulation factors that can

Empathy and Its Modulation in a Virtual Human 29

have values ranging in [0,1]. The values wi represent assigned values of weights for
the modulation factors pi,t which also range in [0,1]. Such modulation factors are, e.g,
liking and familiarity which can be represented by values ranging in [0,1] from neither
like nor dislike to maximum like and from non-familiar to most-familiar (cf. [15]). Note
that, currently, negative values of pi,t are not considered in our model.

We define the degree of empathy as the degree of similarity between the modulated
empathic emotion and the non-modulated one. Thus, the degree of empathy is repre-
sented by the distance between empEmot,mod and empEmot within PAD space (Fig. 1,
left). That is, the closer empEmot,mod to empEmot , the higher the degree of empathy.
The less close empEmot,mod to empEmot , the lower the degree of empathy.

Following [18], the more similar the virtual human’s emotional state to the empathic
emotion, the more sensitive the virtual human to the empathic emotion. The less similar
its emotional state to the empathic emotion, the more resistant the virtual human to the
empathic emotion. That is, the closer the virtual human’s own emotional state ownEmot

to the empathic emotion empEmot the higher the resulting degree of empathy. The
less close the virtual human’s own emotional state ownEmot to the empathic emotion
empEmot the lower the resulting degree of empathy. Regarding the modulation factors
pi,t , the higher their value of weighted mean, the closer the modulated empathic emotion
empEmot,mod to the non-modulated empathic emotion empEmot and the higher the
degree of empathy. The lower their value of weighted mean, the less close the modulated
empathic emotion empEmot,mod to the non-modulated empathic emotion empEmot and
the lower the degree of empathy.

According to Hoffman [11], an empathic response to the other’s emotion should be
more appropriate to the other’s situation than to one’s own and need not be a close
match to the affect experienced by the other, but can be any emotional reaction compat-
ible with the other’s situation. Further, according to the thesis of the dimensional theory
[19], emotions are related to one another in a systematic manner and their relation-
ships can be represented in a dimensional model. Accordingly, the modulated empathic
emotion empEmot,mod is facilitated only if it lies in an immediate neighborhood to the
non-modulated empathic emotion empEmot . Hence, for each emotion category located
within PAD space of the emotion simulation module, we defined a so called empathy fa-
cilitation region as a box surrounding the emotion category. For example, Fig. 3 shows
the PA space of positive dominance of the emotion simulation module with the defined
empathy facilitation region for the emotion category annoyed. As depicted in Fig. 3
(middle), the modulated empathic emotion empEmot,mod has as related emotion cate-
gory concentrated (neutral emotional state) and the non-modulated empathic emotion
empEmot has as related emotion category annoyed. Accordingly, once the modulated
empathic emotion empEmot,mod enters the empathy facilitation region defined for an-
noyed, it is facilitated or otherwise it is inhibited (e.g., Fig. 3, left). Within the empathy
facilitation region, the modulated empathic emotion empEmot,mod represents an em-
pathic response that is compatible with the other’s situation (cf. [11]). Thus, the virtual
human is allowed to react with an emotion from a different emotion category (but com-
patible) with the other’s emotion.

As mentioned earlier in this section, the degree of empathy is represented by the
distance between empEmot,mod and empEmot within PAD space. Hence, once the

30 H. Boukricha et al.

modulated empathic emotion empEmot,mod enters the empathy facilitation region, the
degree of empathy is calculated and increases toward the non-modulated empathic emo-
tion empEmot . Outside the empathy facilitation region, the degree of empathy is equal
to 0 (Fig. 1, right). Within the empathy facilitation region, the degree of empathy is
calculated by the following equation for each instance at time t a modulated empathic
emotion empEmot,mod is facilitated:

degEmpt = (1−‖empEmot,mod− empEmot

maxDistBox
‖)2 (2)

The value degEmpt represents the calculated degree of empathy and ranges within
[0,1]. The value maxDistBox represents the possible maximum distance between the
values empEmot,mod and empEmot within the empathy facilitation region (Fig. 1, right).
Note that the distances ‖empEmot,mod− empEmot‖ and maxDistBox are weighted dis-
tances in PAD space. That is, we defined values of weights for each dimension within
PAD space. A polynomial function is chosen in order to get smooth values of the calcu-
lated degree of empathy. According to the dimensional theory [19], the pleasure dimen-
sion is the most agreed upon dimension, the arousal dimension is the second agreed
upon dimension and the dominance dimension is the third and least agreed upon di-
mension. Thus, regarding the defined values of weight for each dimension within PAD
space, we assigned a higher weight value to the pleasure dimension, a lower value to
the arousal dimension, and a very low value to the dominance dimension.

Fig. 1. The PA space of positive dominance of the emotion simulation module [2]. Left:
empEmot,mod as lying on the straight line spanned by ownEmot and empEmot (cf. (1)). Right:
The empathy facilitation region defined for angry and the degree of empathy within PAD space.

As long as no further empathic emotion is elicited, the modulated empathic emotion
represented within the virtual human’s emotion module decays over time (cf. [2]). The
decay function of the modulated empathic emotion is influenced by the degree of em-
pathy, that is, the higher the calculated value of the degree of empathy, the slower the
decay. The lower the value the faster the modulated empathic emotion decays. Once
the modulated empathic emotion is facilitated, the next processing step Expression of
Empathy is triggered.

Empathy and Its Modulation in a Virtual Human 31

3.3 Expression of Empathy

The modulated empathic emotion triggers EMMA’s multimodal behavior as her expres-
sion of empathy. That is, EMMA’s facial expression [6] and speech prosody [20] are
modulated by the PAD value of her empathic emotion. The triggering of other modali-
ties such as verbal utterances depends on the scenario’s context.

4 Application and Evaluation

The empathy model is applied and evaluated in a conversational agent scenario where
the virtual humans MAX and EMMA can engage in a multimodal small talk dialog
with a human partner using speech, gestures, and facial behaviors [4] (Fig. 2, a). In
this scenario, the emotions of both agents can be triggered positively or negatively by
the human partner through, e.g., compliments or politically incorrect verbal utterances.
During interaction, EMMA directs her attention to the speaking agent. When attend-
ing to MAX, EMMA’s empathy process is triggered in response to MAX’s facial ex-
pression of emotion. At each point in time, EMMA maps perceived values of MAX’s
facial muscles to her AUs and infers their related PAD value as MAX’s perceived emo-
tional state. Once an empathic emotion is elicited (cf. Section 3.1), it is modulated
by EMMA’s mood and her predefined values of liking and familiarity with MAX thus
resulting in different degrees of empathy of EMMA with MAX (cf. Section 3.2). To
investigate how the empathic behavior produced by our model is perceived by human
participants, we conducted an empirical evaluation [5] of the model to test the follow-
ing hypotheses, H1: EMMA’s expression of empathy is perceivable by the participants,
H2: EMMA’s expressed degree of empathy is perceivable by the participants, H3: the
human participants acknowledge different values of relationship between EMMA and
MAX according to EMMA’s expressed degree of empathy.

Measure

Questionnaire item

Scale

Expression of empathy

“In the last frame of the video,
EMMA’s face shows: ”

“In the last frame of the video,
EMMA’s speech prosody is: ”

-3 = very negative mood
+3 = very positive mood

-3 = very negative
+3 = very positive

Degree of empathy

“In this video, EMMA is: ”

-3 = very cold to MAX
+3 = feeling with MAX

Values of relationship

“In this video, EMMA has: ”

-3 = very negative relationship
to MAX
+3 = very strong relationship to
MAX

Example Dialog 1

Example Dialog 2

HP: Hallo EMMA, ich finde dich hübsch
(Hello EMMA, you look pretty)

HP: Hallo EMMA, ich finde dich klug
(Hello EMMA, you are clever)

E: Hallo Lisa, das ist lieb von dir
(Hello Lisa, you are nice)

E: Hallo Lisa, das ist großartig von dir
(Hello Lisa, you are great)

HP: Hei MAX, du bist mir zu hässlich
(Hey MAX, you look ugly)

(Hey MAX, you seem to be stupid)

M: Nun Lisa, du bist fies
(So Lisa, you are nasty)

M: Nun Lisa, du bist unhöflich
(So Lisa, you are rude)

E: Du bist aber unmöglich zu MAX
(You are obnoxious to MAX)

E: Du bist aber fies zu MAX
(You are nasty to MAX)

c)

b)

a)

Fig. 2. a) MAX and EMMA displayed on two panels in the conversational agent scenario. b)
Two example dialogs between Human Partner (HP), EMMA (E), and MAX (M). c) Schematic
overview of the questionnaire. We used a 7-point Likert scale ranging from −3 to +3.

32 H. Boukricha et al.

4.1 Design and Procedure

We designed 24 dialog interactions between EMMA, MAX, and a human partner (Lisa)
(Fig. 2, b). At the beginning of each dialog interaction, the virtual humans are in a neu-
tral emotional state. In each dialog interaction, Lisa begins by greeting EMMA and
then praising her. Consequently, EMMA’s positive emotional state happy is triggered.
Simultaneously, EMMA greets Lisa and thanks her for being kind. Then Lisa greets
MAX but proceeds to insult him. Thus, MAX’s negative emotional state angry is trig-
gered. Simultaneously, MAX responds with a negative verbal utterance such as ”Lisa,
you are horrible!”. Meanwhile, EMMA empathizes with MAX to different degrees de-
pending on her mood and her defined relationship to MAX. Note that MAX’s facial
expression of anger is interpreted by EMMA as showing the emotional state annoyed
(cf. Section 3.1). Accordingly, the elicited empathic emotion empEmot has as related
emotion category annoyed (Fig. 3).

Each dialog interaction appeared in three conditions. To create the conditions we
manipulated (within-subjects) the value of EMMA’s and MAX’s relationship, and ac-
cordingly EMMA’s degree of empathy with MAX. EMMA was in the same positive
mood because she was always first complimented by Lisa (this kept the modulation
factor mood constant in all three conditions). We created the three conditions by ma-
nipulating the factor liking:

1. In a first condition (neutral liking condition, Fig. 3, left), EMMA’s value of liking
toward MAX is set to 0. This inhibits EMMA’s modulated empathic emotion and
her degree of empathy equals 0. Thus, EMMA continues in the positive emotional
state happy triggered by Lisa’s praise.

2. In a second condition (medium liking condition, Fig. 3, middle), EMMA’s value of
liking toward MAX is set to 0.5. This facilitates her modulated empathic emotion
which has as its related emotion category concentrated. EMMA’s degree of em-
pathy equals 0.25, and she expresses the modulated empathic emotion. EMMA’s
values of degree of empathy and liking are higher than in the first condition.

3. In a third condition (maximum liking condition, Fig. 3, right), EMMA’s value of
liking toward MAX is set to 1. As a result, her modulated empathic emotion equals
the non-modulated one (with the related emotion category annoyed). EMMA in
this case expresses the non-modulated empathic emotion and her value of degree
of empathy equals 1. EMMA’s values of liking and degree of empathy are higher
than in the other two conditions.

EMMA’s facial expression and speech prosody expressed her degree of empathy.
By contrast, the verbal utterance was identical in the three conditions. After MAX’s
response to Lisa, EMMA responded always with a negative verbal utterance (e.g., ”You
are nasty to MAX!”, Fig. 2, b). Other behaviors of the virtual humans such as breathing,
eye blinking, and conversational gestures were deactivated in all three conditions.

A total of 72 videos of the 24 dialog interactions in the three conditions were recorded.
We constructed three experimental lists following a Latin Square design such that each
dialog appeared in each list in only one condition. A total of 30 participants took part
in the experiment, with each list assigned to 10 participants. The 24 videos contained
in a list were presented in a random order to each corresponding participant. To test

Empathy and Its Modulation in a Virtual Human 33

Fig. 3. The empathy facilitation region defined for annoyed represented as a box surrounding the
emotion category. Left: neutral, middle: medium, right: maximum liking condition.

our three hypotheses, each participant was asked to complete a questionnaire after each
presented video (Fig. 2, c).

4.2 Results

For the analyses of the data, we calculated the mean rating by condition for each of
the four questionnaire items for participants and items (i.e. videos) separately. Next,
we performed omnibus repeated measures one-way ANOVAs using participants and
items as random effects. The results of the omnibus ANOVAs show a significant effect
of condition for all four questionnaire items. To assess how the conditions differ from
each other, we next performed a series of planned pairwise comparisons.

Expression of Empathy. The mean values show that EMMA’s facial expression was
rated as showing a positive mood in the neutral liking condition (M = 0.883), as show-
ing a slightly negative mood in the medium liking condition (M = −0.438), and as
showing a more negative mood in the maximum liking condition (M = −1.554) (Fig.
4). Regarding her speech prosody, the mean values show that it was rated as slightly
positive in the neutral liking condition (M = 0.521), as slightly negative in the medium
liking condition (M = −0.550), and as more negative in the maximum liking condi-
tion (M = −1.592) (Fig. 4). The pairwise comparisons show that the three conditions
were rated as significantly different from each other for facial expression (p < .001)
and speech prosody (p < .001).

Degree of Empathy. The mean values show that EMMA was rated as slightly feeling
with MAX in the neutral liking condition (M = 0.458) and as progressively more feel-
ing with MAX in the medium liking condition (M = 0.992) and the maximum liking
condition (M = 1.608) respectively (Fig. 4). The pairwise comparisons show that the
three conditions were rated as significantly different from each other (p < .001).

Values of Relationship. The mean values show that EMMA’s value of relationship
to MAX was rated as slightly positive in the neutral liking condition (M = 0.325),

34 H. Boukricha et al.

and as progressively more positive in the medium liking condition (M = 0.888) and the
maximum liking condition (M= 1.442) respectively (Fig. 4). The pairwise comparisons
show that the three conditions were rated as significantly different from each other
(p < .001).

neutLike

medLike

maxLike

Facial Expression

neutLike

medLike

maxLike

Speech Prosody

neutLike

medLike

maxLike

Empathy

neutLike

medLike

maxLike

Values of Relationship

Fig. 4. Mean values and their standard errors for facial expression, speech prosody, degree of
empathy, and values of relationship.

4.3 Discussion

The results show that EMMA’s expression of empathy (facial expression and speech
prosody) was appropriately recognized as positive in the neutral liking condition, and
as progressively more negative in the medium and maximum liking conditions respec-
tively. This confirms our first hypothesis H1, that EMMA’s expression of empathy is
perceivable by the participants, and suggests the appropriate modeling of her facial ex-
pressions and speech prosody.

The results show that EMMA’s expressed degree of empathy with MAX was rated as
significantly higher in the maximum liking condition than in the other two conditions,
and as significantly higher in the medium liking condition than in the neutral liking con-
dition. Hence, the results confirm our second hypothesis H2, that EMMA’s expressed
degree of empathy is perceivable by the participants. These results corroborate the the-
oretical assumption of our model that empathy occurs in a graded manner. The results
confirmed moreover that both EMMA’s facial expression and her speech prosody re-
liably indicate the three different empathy degrees. This corroborates our approach of
modeling empathy not just as a binary function (emphatic vs. not emphatic) but rather
in a graded manner that differentiates degrees of empathy.

Descriptively, Fig. 4 shows that the more EMMA’s facial expression and speech
prosody were rated as negative, the more EMMA was rated as empathic. That is, the
more EMMA’s expression of empathy was similar to MAX’s expression of emotion,

Empathy and Its Modulation in a Virtual Human 35

the more EMMA was perceived as empathic. This is in line with our definition of the
degree of empathy as the degree of similarity between one’s empathic emotion and
the other’s perceived emotion. That is, the more similar one’s empathic emotion to the
other’s perceived emotion, the higher the degree of empathy.

Our analyses of the data showed that EMMA’s different relationship values with
MAX were perceived as such by the participants. The virtual humans’ relationship was
rated significantly higher in the maximum liking condition compared with the other two
conditions, and also significantly higher in the medium than in the neutral liking con-
dition. Overall, these results confirm hypothesis H3, which was that participants can
perceive these subtle relationship differences that manifest through EMMA’s speech
prosody and facial expression. Descriptively, Fig. 4 shows that the higher they rated
EMMA’s expressed degree of empathy, the higher they rated EMMA’s value of rela-
tionship to MAX. This is in line with our definition of the impact of relationship mod-
ulation factors in our model, e.g., liking or familiarity. That is, the higher the values of
such modulation factors, the higher the similarity between the empathic emotion and
the other’s perceived emotion, the higher the degree of empathy. These findings further
substantiate the theoretical assumption underlying our proposed model that empathy
is modulated by several modulation factors such as the relationship between the em-
pathizer and the observed other. Again, the results also show that both EMMA’s facial
expression and her speech prosody reliably indicate her different values of relationship
to MAX thus providing further support for their appropriate modeling.

5 Conclusion

In this paper, we presented a computational model of empathy by which a virtual hu-
man can exhibit different degrees of empathy, an aspect that received little attention
in previous research. In our model, regions of immediate neighborhood for each emo-
tion category located in PAD space were defined. Accordingly, we defined the degree
of empathy as the degree of similarity between a modulated empathic emotion and a
non-modulated one within these defined regions. Hence, we exploited the assumed re-
lationships between emotions in PAD space [19]. Note that the choice of the values
of parameters in our model is a matter of design and evaluation. The findings of the
empirical evaluation show that the virtual human EMMA is perceived as capable of
exhibiting different degrees of empathy and values of relationship with MAX and thus
warrants the conclusion that our model enhances a virtual human’s social behavior.

Acknowledgments. This research is kindly supported by the Deutsche Forschungsge-
meinschaft (DFG) in the Collaborative Research Center 673.

References

1. Becker, C., Prendinger, H., Ishizuka, M., Wachsmuth, I.: Evaluating affective feedback of
the 3D agent Max in a competitive cards game. In: Tao, J., Tan, T., Picard, R.W. (eds.) ACII
2005. LNCS, vol. 3784, pp. 466–473. Springer, Heidelberg (2005)

36 H. Boukricha et al.

2. Becker-Asano, C., Wachsmuth, I.: Affective computing with primary and secondary emo-
tions in a virtual human. Autonomous Agents and Multi-Agent Systems 20(1), 32–49 (2010)

3. Bickmore, T., Picard, R.: Establishing and maintaining long-term human-computer relation-
ships. ACM Transactions on Computer-Human Interaction (TOCHI) 12(2), 293–327 (2005)

4. Boukricha, H., Wachsmuth, I.: Empathy-based emotional alignment for a virtual human: A
three-step approach. Künstl Intell. 25(3), 195–204 (2011)

5. Boukricha, H., Wachsmuth, I., Carminati, M., Knoeferle, P.: A computational model of
empathy: Empirical evaluation. In: Affective Computing and Intelligent Interaction (ACII
2013), Geneva, Switzerland (in press, 2013)

6. Boukricha, H., Wachsmuth, I., Hofstätter, A., Grammer, K.: Pleasure-arousal-dominance
driven facial expression simulation. In: 3rd International Conference on Affective Computing
and Intelligent Interaction (ACII), Amsterdam, Netherlands, pp. 119–125. IEEE (2009)

7. Brave, S., Nass, C., Hutchinson, K.: Computers that care: investigating the effects of orienta-
tion of emotion exhibited by an embodied computer agent. International Journal of Human-
Computer Studies 62, 162–178 (2005)

8. de Vignemont, F., Singer, T.: The empathic brain: how, when and why? Trends in Cognitive
Sciences 10(10), 435–441 (2006)

9. Dias, J., Paiva, A.C.R.: Feeling and reasoning: A computational model for emotional char-
acters. In: Bento, C., Cardoso, A., Dias, G. (eds.) EPIA 2005. LNCS (LNAI), vol. 3808, pp.
127–140. Springer, Heidelberg (2005)

10. Ekman, P., Friesen, W.V., Hager, J.C.: Facial Action Coding System: Investigator’s Guide.
Research Nexus, a subsidiary of Network Information Research Corporation, Salt Lake City
UT, USA (2002)

11. Hoffman, M.L.: Empathy and Moral Development. Cambridge University Press (2000)
12. Lessmann, N., Kopp, S., Wachsmuth, I.: Situated interaction with a virtual human - percep-

tion, action, and cognition. In: Rickheit, G., Wachsmuth, I. (eds.) Situated Communication,
pp. 287–323. Mouton de Gruyter, Berlin (2006)

13. McQuiggan, S., Robison, J., Phillips, R., Lester, J.: Modeling parallel and reactive empathy
in virtual agents: An inductive approach. In: Padgham, L., Parkes, D.C., Mueller, J., Parsons,
S. (eds.) Proc. of 7th Int. Conf. on Autonomous Agents and Multiagent Systems (AAMAS
2008), Estoril, Portugal, pp. 167–174 (2008)

14. Ochs, M., Sadek, D., Pelachaud, C.: A formal model of emotions for an empathic rational
dialog agent. Autonomous Agents and Multi-Agent Systems 24(3), 410–440 (2012)

15. Ortony, A., Clore, G., Collins, A.: The Cognitive Structure of Emotions. Cambridge Univer-
sity Press (1988)

16. Paiva, A., Dias, J., Sobral, D., Aylett, R., Woods, S., Hall, L., Zoll, C.: Learning by feel-
ing: Evoking empathy with synthetic characters. Applied Artificial Intelligence 19, 235–266
(2005)

17. Prendinger, H., Ishizuka, M.: The empathic companion: A character-based interface that
adresses users’ affective states. Applied Artificial Intelligence 19, 267–285 (2005)

18. Rodrigues, S.H., Mascarenhas, S., Dias, J., Paiva, A.: I can feel it too!: Emergent empathic
reactions between synthetic characters. In: 3rd International Conference on Affective Com-
puting and Intelligent Interaction (ACII), Amsterdam, Netherland. IEEE (2009)

19. Russell, J., Mehrabian, A.: Evidence for a three-factor theory of emotions. Journal of Re-
search in Personality 11(3), 273–294 (1977)

20. Schröder, M., Trouvain, J.: The German text-to-speech system MARY: A tool for research,
development and teaching. International Journal of Speech Technology 6(4), 365–377 (2003)

Cognitive Workload of Humans Using Artificial

Intelligence Systems: Towards Objective
Measurement Applying Eye-Tracking Technology

Ricardo Buettner

FOM University of Applied Sciences
Institute of Management & Information Systems

Hopfenstraße 4, 80335 Munich, Germany
ricardo.buettner@fom.de

Abstract. Replying to corresponding research calls I experimentally in-
vestigate whether a higher level of artificial intelligence support leads to
a lower user cognitive workload. Applying eye-tracking technology I show
how the user’s cognitive workload can be measure more objectively by
capturing eye movements and pupillary responses. Within a laboratory
environment which adequately reflects a realistic working situation, the
probands use two distinct systems with similar user interfaces but very
different levels of artificial intelligence support. Recording and analyz-
ing objective eye-tracking data (i.e. pupillary diameter mean, pupillary
diameter deviation, number of gaze fixations and eye saccade speed of
both left and right eyes) – all indicating cognitive workload – I found
significant systematic cognitive workload differences between both test
systems. My results indicated that a higher AI-support leads to lower
user cognitive workload.

Keywords: artificial intelligence support, cognitive workload, pupillary
diameter, eye movements, eye saccades, eye-tracking, argumentation-
based negotiation, argumentation-generation.

1 Introduction

Towards programming the “global brain” [1] and realizing real collective intelli-
gence [2], the vision of flexibly connecting billions of computational agents and
humans is constantly recurring (e.g. [3]). Behind this vision lies the assumption
that artificial intelligence (AI) supports humans in solving tasks and distributing
the human/cognitive workload across the “global brain” [1–7] (fig. 1). It is human
nature to “off-load cognitive work onto the environment” [7, p. 628, claim 3].1

However, information systems (IS) scholars have traditionally investigated a
user’s cognitive workload and its derivatives2 primarily based on

1 Because of the limits of human’s information-processing abilities (e.g., limits to the
attention and working memory of the human brain), we tend to exploit the environ-
ment in order to reduce cognitive workload [7].

2 Such as concentration, mental strain, mental stress, e.g. [8].

I.J. Timm and M. Thimm (Eds.): KI 2013, LNAI 8077, pp. 37–48, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

38 R. Buettner

user-perceived/non-objective measures (e.g. MISQ: [9], JMIS: [10], DSS: [11], ISR
[12]) or even discussed the need for user workload measurements without any
measurement proposal (MISQ: [13]). Nevertheless, more and more IS scholars
call for objective measurement techniques of user’s cognitive workload and its
derivatives (e.g. [14]) and a small group of IS researchers currently fosters the
conducting of objective psychophysiological measures in IS research and recently
formulated corresponding research calls (i.e. [15–17]).

Internet

Cognitive
Workload

Artificial Intelligence
Support (Level)

Task
(Demands)

Computational
Workload

Individual, Organizational, and
Computational ResourcesTask Results

Fig. 1. Distributing human cognitive workload across the “global brain”

Replying to these research calls I show in this paper how the user’s cognitive
workload can be measured more objectively by capturing eye movements and
pupillary responses via eye-tracking technology. Within a laboratory environ-
ment which adequately reflects a realistic working situation the probands had to
use two distinct systems with similar user interfaces but very different levels of
artificial intelligence support. In more detail I prototyped a test scenario derived
from a typical real business environment in which extra-occupational MBA and
bachelor students having professional working experience had to apply for jobs.
The one system offers a chat function where the applicants had to situatively
generate appropriate arguments on their own without any AI-support. The other
system presented a set of AI-/system-generated arguments from which the users
only had to select an appropriate argument. Recording and analyzing objective
eye-tracking data (i.e. pupillary diameter mean, pupillary diameter deviation,
number of gaze fixations and eye saccade speed of both left and right eyes) – all
indicating cognitive workload – I found significant systematic cognitive workload
differences between both systems.

Using this work I aim to contribute solutions to the current methodologi-
cal problem of the objective measurement of user’s cognitive workload when
running AI systems (cf. [1, 3–6, 18–20]). In addition to these methodological
contributions my results strongly emphasize the meaningfulness of the

Cognitive Workload of Humans Using AI Systems 39

development of argumentation-based negotiation models using intelligent soft-
ware agents (e.g. [21, 22]) from a human workload perspective.

The paper is organized as follows: After this introduction I firstly present in
section 2 the state of the art concerning pupillary responses and eye movements
as cognitive workload indicators in human psychophysiology and IS research.
In section 3 I define the objectively measurable cognitive workload indicators,
determine the hypotheses, and describe the test systems, the laboratory setting,
as well as the sampling strategy. Next, in section 4 I present the objectively
measured cognitive workload indicators and the results on the hypotheses evalu-
ation. Results are then discussed in section 5. Finally, I discuss the contributions
and limitations of my results and indicate future work in section 6.

2 Related Work

Despite the high level of interest in cognitive workload, there is still no universally
accepted definition of this mental construct [8]. However, it is clear that cognitive
workload results from mental processes when performing tasks – depending on
the users’s capabilities and the task demands, e.g. [23–25]. The corresponding
user’s cognitive workload measurement techniques can be roughly separated into
two categories [8]: subjective self-assessment and rating scales (e.g. NASA TLX),
and objective psychophysiological measures (e.g. pupillary responses). In the
following two sections I concentrate on eye-related psychophysiological measures
indicating cognitive workload and measurable by eye-tracking technology.

2.1 Pupillary Responses and Eye Movements as Cognitive
Workload Indicators in Human Psychophysiology Research

The initial work on the relationship between cognitive workload and pupillary re-
sponses stems from Hess and Polt [24] and was published in 1964 in the Science
journal. Hess and Polt [24] measured the cognitive workload of 5 probands by
capturing the task-evoked pupillary diameter, but only based on simple multipli-
cation tasks. Kahneman and Beatty [25] showed that the rate of the task-evoked
pupillary diameter changes strongly in relation to task difficulty. Bradshaw [26]
found the post-solution drop of the task-evoked pupillary diameter after finish-
ing the task. Simpson [27] found that a subsequent indication of task completion
causes a higher pupillary dilation during the preceding cognitive task. Based
on testing 17 students, Kahneman, Beatty and Pollack [28] showed the stability
of the correlation between cognitive workload and pupillary diameter for much
more complex tasks (listening, calculating, talking) under different conditions.
Following the fundamental investigations of Kahneman and colleagues [25, 28],
the amount of user cognitive workload clearly corresponds with the pupillary
dilation, e.g. [23, 26, 29].

Besides the diameter of the pupillary, some data from eye movements also in-
dicate the user’s cognitive workload level: Eye saccades are the rapid eye move-
ments between points of fixation and often used for cognitive analysis [30, 31].

40 R. Buettner

Information can only be perceived during fixations and not 75msec before sac-
cades starting, during saccades, and 50msec after saccades. Since long fixa-
tions (>500 msec) indicate a deeper cognitive processing, cognitive workload is
clearly positively correlated with the frequency of long fixations but negatively
correlated with the saccade speed, e.g. [30, 32–34].

In general most of the psychophysiological work was based on pupillary-
photographing technology, thus limited to measurements of well-seperated rudi-
mental/basic tasks. But, IS usage is regularly very dynamic. However, very
recently Wierda et al. [35] showed how eye-tracking technology can be used
for high-temporal-resolution tracking of cognitive workload.

2.2 Pupillary Responses and Eye Movements as Cognitive
Workload Indicators in IS Research

IS scholars have traditionally investigated user’s cognitive workload and its
derivatives [8] primarily based on user-perceived/non-objective measures (e.g.
[9–12]) or even discussed the need for user workload measurements without
any measurement proposal (e.g. [13]).3 In the seldom case of using objective
psychophysiological measures, IS research has mainly applied pupillary-based
techniques indicating cognitive workload within the human-computer interaction
domain, especially for adaption and personalization purposes (essential publica-
tions: [15, 37–43]).

When focusing on “AI-specific” work (in a very broad sense) in more detail,
it can be summarized that determining the user’s cognitive workload is often
mentioned as a fundamental problem in human-machine systems (e.g. [18, 20]).
The discourse on measuring the machine intelligence of human-machine coop-
erative systems (e.g. [6]) showed the need to quantify the cognitive workload of
machine users and postulated the need for research on workload measures based
on objective parameters such as behavioral signals, eye scanning movements,
or physiological variables. Also the discussions about metrics for human-robot
interaction emphasized the need for research into a more objective cognitive
workload measurement technique (e.g. “At this point in time, there is a need
to identify non-intrusive measures of workload...” [19, p. 38]). Accordingly a lot
of trials and rudimentary/simple approaches on measuring the user’s cognitive
workload when using AI systems exist. For example, Pomplun and Sunkara [44]
used the pupillary dilation as a cognitive workload indicator within a simple
visual experiment asking users to find numbers in ascending order and read
them out loud. Longo [45] sketched a very rudimentary framework for cognitive
workload assessment using information technology. Cegarra and Chevalier [46]
experimentally evaluated the cognitive workload of users solving a Sudoku puzzle

3 Other IS-relevant disciplines show the same situation concerning user-perceived/non-
objective cognitive workload measures. For example, Loft et al. [36] summarizes the
state of the art concerning 22 existing models which predict cognitive workload in
air traffic control. It is remarkable that all of 22 developed models were based on
subjective workload ratings.

Cognitive Workload of Humans Using AI Systems 41

by capturing pupil diameter data from eye-tracking. Xu et al. [47] experimen-
tally studied pupillary responses indicating cognitive workload when performing
arithmetic tasks given by a computer under luminance changes.

However, it is noticeable that the “AI-specific” work on objective measuring
the user’s cognitive workload is very rudimentary (games, simple/trivial (arith-
metic) tasks, non-evaluated frameworks, etc.). There is a research gap concerning
empirical work on objective measuring the user’s cognitive workload in labora-
tory experiments adequately reflecting realistic working/business situations. In
line with this identified research gap more and more IS scholars call for ob-
jective measurement techniques of user’s cognitive workload and its derivatives
(e.g. [14]) and a small group of IS researchers currently fosters the conducting of
objective psychophysiological measures in IS research and recently formulated
corresponding research calls (i.e. [15–17]).

3 Methodology

I contribute to the AI-support – cognitive workload debate by investigating
the research question RQ: Does higher AI-support lead to lower user cognitive
workload? Since I aim to analyse the effect of different AI-support on the user’s
cognitive workload using objective workload indicatory from eye-tracking data,
I choose an analysis-framework ensuring both a stable and repeatable test pro-
cedure as well as a test which adequately reflects a realistic working/business
situation. That is why I analysed two systems A and B assisting users on job-
interviews in a laboratory experiment with different AI-support. System A has
a lower AI-support than system B. I used the following four cognitive workload
indicators all captured from eye-tracking data:

1. the pupillary diameter mean (PDμ): the tonic dilation measured by the
time series mean of the pupillary diameter (e.g. [24, 28, 29, 48]),

2. the pupillary diameter standard deviation (PDσ): the phaseal/dyna-
mic aspect of pupillary dilation and reduction measured by the standard
deviation (e.g. [23, 25]),

3. the number of gaze fixation (GF): the time-normalized number of gaze
fixations > 500ms (e.g. [30, 32–34]),

4. the saccade speed (SS): the speed of saccades (e.g. [30, 32]).

Based on a consequent hypothesizing of each separate cognitive workload
indicator I formulated four hypotheses. Since the pupillary diameter mean (PDμ)
as the tonic dilation is positively correlated with cognitive workload (e.g. [24,28,
29,48]), participants using the system A (which offers a lower AI-support) should
show significant higher PDμ values. Thus I hypothesize (H1): The pupillary
diameter mean is significantly higher when using system A compared to system
B (PDA

μ > PDB
μ).

In addition, the phaseal/dynamic aspect of pupillary dilation and reduction
measured by the pupillary diameter standard deviation (PDσ) also clearly in-
dicates the cognitive workload level (e.g. [23, 25]). Thus I hypothesize (H2):

42 R. Buettner

The pupillary diameter standard deviation is significantly higher when using
system A compared to system B (PDA

σ > PDB
σ).

Since long fixations (>500 msec) indicate a deeper cognitive processing, cog-
nitive workload is clearly positive correlated with the frequency of long fixations
but negative correlated with the saccade speed, e.g. [30,32–34]. Thus I hypothe-
size (H3): The number of gaze fixations is significantly higher when using system
A compared to system B (GFA > GFB). and (H4): The speed of eye saccades is
significantly lower when using system A compared to system B (SSA < SSB).

3.1 Description of Prototyped Systems with Different AI-support

To test my hypotheses, I prototyped two distinct e-recruiting systems A and
B supporting online job-interviews before job-negotiation and -contracting. The
systems offer a very different level of AI-support during the job-interview process.
Since prior negotiation research identified argumentation-based models as very
promising (e.g. [21, 22, 49]), I differentiated the AI-support level of the systems
A and B by the automation-level of the argument-generation (user-generated
versus system-generated) [50, 51]. That is why system A offers a chat function
where the applicants can situatively generate appropriate arguments on their
own without any AI-support (fig. 2). Therewith, in test system A, applicants
were able to talk to the employer via an informal chat [52].

Fig. 2. System A offers a chat function where the applicants can situatively generate
appropriate arguments on their own without any AI-support

In contrast to the low AI-support of system A, system B presents a set of
AI-/system-generated arguments from which the users only had to select an
appropriate argument (fig. 3, cf. [53]).

Cognitive Workload of Humans Using AI Systems 43

Fig. 3. System B presents a set of AI-/system-generated arguments from which the
users only had to select an appropriate argument

To ensure a good level of functionality and usability, both prototypes were
iteratively improved based on in-depth interview results from pre-test users.
Since the pupillary response is primarily influenced by the luminance (e.g. [48]),
the systems A and B have a very similar user interface (fig. 2 and fig. 3).

3.2 Laboratory Setting and Sampling Strategy

For this research, eye-tracking was performed using the binocular double Eye-
gaze EdgeTM System eye-tracker paired with a 19” LCD monitor (86 dpi) set
at a resolution of 1280x1024, whereby the eye-tracker samples the position of
participants’ eyes and pupillary responses at the rate of 60Hz for each eye sepa-
rately, cf. [54]. The eye-tracker was installed under the monitor and tracked the
participant’s eyes during the entire test cycle. As both the pupillary response in
general [48] as well as the task-evoked response in particular [55] were primarily
influenced by luminance, the lighting conditions were kept strictly constant.

Participants were recruited from a pool of extra-occupational MBA and bach-
elor students. All of them had professional working experience, making them
suited to employment negotiations. To ensure that all participants understood
the scenario and both systems, they were given introductions to the system and
the computer interface. In a laboratory setting without any forms of disturbance,
participants were asked to use both test systems A and B. During the exper-
iment each participant had three job interviews on each system. A whole test
cycle took about 20 to 30 minutes per participant resulting in 180,000 gaze data
from eye-tracking.

44 R. Buettner

4 Results

Table 1 presents the objectively measured cognitive workload indicators on sys-
tem A and system B and the results of the evaluation of the four hypotheses.

Table 1. Results and hypotheses evaluation by test of significance (t-test, one-sided);
System A offers a lower AI-support than system B

Hypo- Cognitive workload System Hypotheses
thesis indicators (scale unit) A B evaluation (t-test)

H1 : pupillary diameter mean
(PDμ, mm)

left eye 3.219 3.032 p < 0.01
PDA

μ > PDB
μ right eye 3.325 3.107 p < 0.01

H2 : pupillary diameter devia-
tion (PDσ, mm)

left eye 0.223 0.144 p < 0.01
PDA

σ > PDB
σ right eye 0.271 0.136 p < 0.05

H3 : no. of gaze fixations
> 500ms (GF , per sec)

0.557 0.159 p < 0.01
GFA > GFB

H4 : saccade speed
(SS, m/sec)

0.547 0.783 p < 0.01
SSA < SSB

5 Discussion

As shown in table 1, all four hypotheses were confirmed. It is surprising that
all objectively measured cognitive workload indicators from pupillary responses
and eye movement clearly showed a lower cognitive workload level of users on
system B which offers a higher AI-support. Thus my results indicated that a
higher AI-support actually leads to lower user cognitive workload (cf. research
question RQ). In addition, my results strongly emphasize the meaningfulness
of the development of argumentation-based negotiation models using intelligent
software agents (e.g. [21,22]) from a human workload perspective. That is inter-
esting because from user acceptance perspectives, users tend to prefer informal
chat systems within negotiation processes. Furthermore, my results seems to be
contrary to the IS-acceptance findings concerning the user-preference for infor-
mal chat systems within negotiation processes (e.g. [56, 57]) – indicating a need
for future research on the user workload – user acceptance relationship.

6 Conclusion

Replying to corresponding research calls, in this paper I showed how the user’s
cognitive workload can be measured more objectively by capturing eye move-
ments and pupillary responses via eye-tracking technology. Within a laboratory
environment adequately reflecting a realistic working situation the probands had
to use two distinct systems with similar user interfaces but very different levels
of artificial intelligence support. In more detail, I prototyped a test scenario de-
rived from a typical real business environment in which extra-occupational MBA

Cognitive Workload of Humans Using AI Systems 45

and bachelor students having professional working experience had to apply for
jobs. The first system offered a chat function where the applicants had to situa-
tively generate appropriate arguments on their own without any AI-support. The
second system presented a set of AI-/system-generated arguments from which
the users only had to select an appropriate argument. Recording and analyzing
objective eye-tracking data (i.e. pupillary diameter mean, pupillary diameter de-
viation, number of gaze fixations and eye saccade speed of both left and right
eyes) – all indicating cognitive workload – I found significant systematic cog-
nitive workload differences between both systems. My results indicated that a
higher AI-support leads to lower user cognitive workload. Through my results
I contribute to the current methodological problem of objective measurement
of a user’s cognitive workload when running AI systems (cf. [1, 3–6, 18–20]).
In addition to these methodological contributions my results strongly empha-
size the meaningfulness of the development of argumentation-based negotiation
models using intelligent software agents (e.g. [21, 22]) from a human workload
perspective.

6.1 Limitations

My main limitation is rooted in the use of only four probands due to high
laboratory costs for each test person. However, as shown in table 1 these four
probands were sufficient for confirming all four hypotheses at a good significance
level. Taking a look on the samples of other neuroscience/psychophysiological
studies published in leading journals (such as [24]: Science, n=5; [25]: Science,
n=5) or IS conferences (such as [58]: ICIS, n=6) four probands are an adequate
amount. Furthermore, as indicated in section 1 I aimed to compare systems that
had different levels of “AI-support”. The definition of the notion of “AI-support”
and consequently the measurement possibilities of this notion are not clear in
AI-research. The use of the notion here in my work is worth discussing further,
though it can said at least that I analyzed the cognitive workload when using “IT-
enhanced decision support systems” with different levels of support. In addition,
the systems have only been tested in a controlled laboratory experiment and not
in the real-world. Hence, there are limitations concerning the generalization of
the results based on the laboratory method.

6.2 Future Work

In order to deepen our understanding of the AI-support – cognitive workload
debate future work should: (a) systematically extend the experiments on other
AI-systems in order to re-test the hypotheses, (b) distinguish between “posi-
tive” workload (stimulating cognitive abilities) and “negative” workload induc-
ing stress [9], (c) broaden the objective measurements from eye-tracking data
to other physiological signals such as electroencephalogram, or electrodermal-
activity, and (d) compare the objective measured cognitive workload indicators

46 R. Buettner

with perceived indicators. In addition, as discussed in section 5, my results
indicated a need for future research on the user workload – user acceptance
relationship.

Acknowledgments. I would like to thank the three anonymous reviewers who
have provided helpful comments on the refinement of the paper. This research
is partly funded by the German Federal Ministry of Education and Research
(BMBF) under contracts 17103X10 and 03FH055PX2.

References

1. Bernstein, A., Klein, M., Malone, T.W.: Programming the Global Brain.
CACM 55(5), 41–43 (2012)

2. Malone, T.W., Laubacher, R., Dellarocas, C.: The Collective Intelligence Genome.
MIT Sloan Management Review 51(3), 21–31 (2010)

3. Davis, J., Lin, H.: Web 3.0 and Crowdservicing. In: AMCIS 2011 Proc. (2011)
4. Davis, R., Smith, R.G.: Negotiation as a Metaphor for Distributed Problem Solv-

ing. AI 20(1), 63–109 (1983)
5. Carneiro, D., Novais, P., Andrade, F., Zeleznikow, J., Neves, J.: Online dispute

resolution: an artificial intelligence perspective. Artif. Intell. Rev. (2012) (in Press)
6. Park, H.J., Kim, B.K., Lim, K.Y.: Measuring the machine intelligence quotient

(MIQ) of human-machine cooperative systems. IEEE TSMC, Part A 31(2), 89–96
(2001)

7. Wilson, M.: Six views of embodied cognition. Psychonomic Bulletin & Review 9(4),
625–636 (2002)

8. Cain, B.: A Review of the Mental Workload Literature. Report, NATO (2007)
9. Ayyagari, R., Grover, V., Purvis, R.: Technostress: Technological Antecedents and

Implications. MISQ 35(4), 831–858 (2011)
10. Tarafdar, M., Tu, Q., Ragu-Nathan, T.S.: Impact of Technostress on End-User

Satisfaction and Performance. JMIS 27(3), 303–334 (2010)
11. Gupta, A., Li, H., Sharda, R.: Should I send this message? Understanding the

impact of interruptions, social hierarchy and perceived task complexity on user
performance and perceived workload. DSS 55(1), 135–145 (2013)

12. Ragu-Nathan, T.S., Tarafdar, M., Ragu-Nathan, B.S., Tu, Q.: The Consequences
of Technostress for End Users in Organizations: Conceptual Development and Em-
pirical Validation. ISR 19(4), 417–433 (2008)

13. Wastell, D.G.: Learning Dysfunctions in Information Systems Development: Over-
coming the Social Defenses With Transitional Objects. MISQ 23(4), 581–600 (1999)

14. Sun, Y., Lim, K.H., Peng, J.Z.: Solving the Distinctiveness - Blindness Debate: A
Unified Model for Understanding Banner Processing. JAIS 14(2), 49–71 (2013)

15. Ren, P., Barreto, A., Gao, Y., Adjouadi, M.: Affective Assessment by Digital Pro-
cessing of the Pupil Diameter. IEEE TAC 4(1), 2–14 (2013)

16. Dimoka, A.: What Does the Brain Tell Us About Trust and Distrust? Evidence
from a Functional Neuroimaging Study. MISQ 34(2), 373–396 (2010)

17. Dimoka, A., Pavlou, P.A., Davis, F.D.: NeuroIS: The Potential of Cognitive Neu-
roscience for Information Systems Research. ISR 22(4), 687–702 (2011)

18. Stassen, H.G., Johannsen, G., Moray, N.: Internal representation, internal model,
human performance model and mental workload. Automatica 26(4), 811–820 (1990)

Cognitive Workload of Humans Using AI Systems 47

19. Steinfeld, A., Fong, T., Kaber, D., Lewis, M., Scholtz, J., Schultz, A., Goodrich,
M.: Common Metrics for Human-Robot Interaction. In: HRI 2006 Proc., pp. 33–40
(2006)

20. Johannsen, G., Levis, A.H., Stassen, H.G.: Theoretical Problems in Man-machine
Systems and Their Experimental Validation. Automatica 30(2), 217–231 (1992)

21. Lopes, F., Wooldridge, M., Novais, A.Q.: Negotiation among autonomous computa-
tional agents: principles, analysis and challenges. Artif. Intell. Rev. 29(1), 1–44 (2008)

22. Amgoud, L., Vesic, S.: A formal analysis of the role of argumentation in negotiation
dialogues. J. Logic Comput. 22(5), 957–978 (2012)

23. Beatty, J.: Task-evoked pupillary responses, processing load, and the structure of
processing resources. Psychol. Bull. 91(2), 276–292 (1982)

24. Hess, E.H., Polt, J.M.: Pupil Size in Relation to Mental Activity during Simple
Problem-Solving. Science 143(3611), 1190–1192 (1964)

25. Kahneman, D., Beatty, J.: Pupil Diameter and Load on Memory. Science 154(3756),
1583–1585 (1966)

26. Bradshaw, J.: Pupil Size as a Measure of Arousal during Information Processing.
Nature 216(5114), 515–516 (1967)

27. Simpson, H.M.: Effects of a Task-Relevant Response on Pupil Size. Psychophysi-
ology 6(2), 115–121 (1969)

28. Kahneman, D., Beatty, J., Pollack, I.: Perceptual Deficit during a Mental Task.
Science 157(3785), 218–219 (1967)

29. Beatty, J., Wagoner, B.L.: Pupillometric signs of brain activation vary with level
of cognitive processing. Science 199(4334), 1216–1218 (1978)

30. Rayner, K.: Eye movements in reading and information processing: 20 years of
research. Psychol. Bull. 124(3), 372–422 (1998)

31. Leigh, R.J., Kennard, C.: Using saccades as a research tool in the clinical neuro-
sciences. Brain 127(3), 460–477 (2004)

32. Van Orden, K.F., Limbert, W., Makeig, S., Jung, T.P.: Eye Activity Correlates
of Workload during a Visuospatial Memory Task. Hum. Factors 43(1), 111–121
(2001)

33. Just, M., Carpenter, P.: Eye fixations and cognitive processes. Cognit. Psy-
chol. 8(4), 441–480 (1976)

34. Just, M.A., Carpenter, P.A.: A theory of reading: From eye fixations to compre-
hension. Psychol. Rev. 87(4), 329–354 (1980)

35. Wierda, S.M., van Rijn, H., Taatgen, N.A., Martens, S.: Pupil dilation deconvolu-
tion reveals the dynamics of attention at high temporal resolution. PNAS 109(22),
8456–8460 (2012)

36. Loft, S., Sanderson, P., Neal, A., Mooij, M.: Modeling and Predicting Mental Work-
load in En Route Air Traffic Control: Critical Review and Broader Implications.
Hum. Factors 49(3), 376–399 (2007)

37. Bailey, B.P., Iqbal, S.T.: Understanding Changes in Mental Workload during Ex-
ecution of Goal-Directed Tasks and Its Application for Interruption Management.
ACM TOCHI 14(4), 21:1–21:28 (2008)

38. Baltaci, S., Gokcay, D.: Negative Sentiment in Scenarios Elicit Pupil Dilation Re-
sponse: An Auditory Study. In: ICMI 2012 Proc., pp. 529–532 (2012)

39. Iqbal, S.T., Adamczyk, P.D., Zheng, X.S., Bailey, B.P.: Towards an Index of Op-
portunity: Understanding Changes in Mental Workload during Task Execution. In:
CHI 2005 Proc., pp. 311–320 (2005)

40. Wang, W., Li, Z., Wang, Y., Chen, F.: Indexing cognitive workload based on pupil-
lary response under luminance and emotional changes. In: IUI 2013 Proc., pp.
247–256 (2013)

48 R. Buettner

41. Bee, N., Prendinger, H., Nakasone, A., André, E., Ishizuka, M.: AutoSelect: What
You Want Is What You Get: Real-Time Processing of Visual Attention and Affect.
In: André, E., Dybkjær, L., Minker, W., Neumann, H., Weber, M. (eds.) PIT 2006.
LNCS (LNAI), vol. 4021, pp. 40–52. Springer, Heidelberg (2006)

42. Ren, P., Barreto, A., Gao, Y., Adjouadi, M.: Affective Assessment of Computer
Users Based on Processing the Pupil Diameter Signal. In: 2011 IEEE Eng. Med.
Biol. Soc. Proc., pp. 2594–2597 (2011)

43. Zhai, J., Barreto, A.: Stress Detection in Computer Users Based on Digital Signal
Processing of Noninvasive Physiological Variables. In: IEEE EMBS 2006 Proc., pp.
1355–1358 (2006)

44. Pomplun, M., Sunkara, S.: Pupil Dilation as an Indicator of Cognitive Workload
in Human-Computer Interaction. In: HCII 2003 Proc., pp. 542–546 (2003)

45. Longo, L.: Human-Computer Interaction and Human Mental Workload: Assessing
Cognitive Engagement in the World Wide Web. In: Campos, P., Graham, N., Jorge,
J., Nunes, N., Palanque, P., Winckler, M. (eds.) INTERACT 2011, Part IV. LNCS,
vol. 6949, pp. 402–405. Springer, Heidelberg (2011)

46. Cegarra, J., Chevalier, A.: The use of Tholos software for combining measures of
mental workload: Toward theoretical and methodological improvements. Behav.
Res. Methods 40(4), 988–1000 (2008)

47. Xu, J., Wang, Y., Chen, F., Choi, E.: Pupillary Response Based Cognitive Work-
load Measurement under Luminance Changes. In: Campos, P., Graham, N., Jorge,
J., Nunes, N., Palanque, P., Winckler, M. (eds.) INTERACT 2011, Part II. LNCS,
vol. 6947, pp. 178–185. Springer, Heidelberg (2011)

48. Steinhauer, S.R., Siegle, G.J., Condray, R., Pless, M.: Sympathetic and parasym-
pathetic innervation of pupillary dilation during sustained processing. Int. J. Psy-
chophysiol. 52(1), 77–86 (2004)

49. McBurney, P., Eijk, R.M.V., Parsons, S., Amgoud, L.: A Dialogue Game Protocol
for Agent Purchase Negotiations. JAAMAS 7(3), 235–273 (2003)

50. Buettner, R.: The State of the Art in Automated Negotiation Models of the Be-
havior and Information Perspective. ITSSA 1(4), 351–356 (2006)

51. Buettner, R.: A Classification Structure for Automated Negotiations. In:
IEEE/WIC/ACM WI-IAT 2006 Proc., pp. 523–530 (2006)

52. Buettner, R., Landes, J.: Web Service-based Applications for Electronic Labor
Markets: A Multi-dimensional Price VCG Auction with Individual Utilities. In:
ICIW 2012 Proc., pp. 168–177 (2012)

53. Landes, J., Buettner, R.: Argumentation–Based Negotiation? Negotiation–Based
Argumentation! In: Huemer, C., Lops, P. (eds.) EC-Web 2012. LNBIP, vol. 123,
pp. 149–162. Springer, Heidelberg (2012)

54. Eckhardt, A., Maier, C., Buettner, R.: The Influence of Pressure to Perform and
Experience on Changing Perceptions and User Performance: A Multi-Method Ex-
perimental Analysis. In: ICIS 2012 Proc. (2012)

55. Steinhauer, S.R., Condray, R., Kasparek, A.: Cognitive modulation of midbrain
function: task-induced reduction of the pupillary light reflex. Int. J. Psychophys-
iol. 39(1), 21–30 (2000)

56. Gettinger, J., Koeszegi, S.T., Schoop, M.: Shall we dance? - The effect of informa-
tion presentations on negotiation processes and outcomes. DSS 53, 161–174 (2012)

57. Schoop, M., Köhne, F., Staskiewicz, D.: An Integrated Decision and Communi-
cation Perspective on Electronic Negotiation Support Systems - Challenges and
Solutions. Journal of Decision Systems 13(4), 375–398 (2004)

58. Dimoka, A., Davis, F.D.: Where Does TAM Reside in the Brain? The Neural Mech-
anisms Underlying Technology Adoption. In: ICIS 2008 Proc., Paper 169 (2008)

Computing Role-Depth Bounded
Generalizations in the Description Logic ELOR

Andreas Ecke1,�, Rafael Peñaloza1,2,��, and Anni-Yasmin Turhan1,���

1 Institute for Theoretical Computer Science,
Technische Universität Dresden

2 Center for Advancing Electronics Dresden
{ecke,penaloza,turhan}@tcs.inf.tu-dresden.de

Abstract. Description Logics (DLs) are a family of knowledge repre-
sentation formalisms, that provides the theoretical basis for the standard
web ontology language OWL. Generalization services like the least com-
mon subsumer (lcs) and the most specific concept (msc) are the basis of
several ontology design methods, and form the core of similarity mea-
sures. For the DL ELOR, which covers most of the OWL 2 EL profile,
the lcs and msc need not exist in general, but they always exist if re-
stricted to a given role-depth. We present algorithms that compute these
role-depth bounded generalizations. Our method is easy to implement,
as it is based on the polynomial-time completion algorithm for ELOR.

1 Introduction

Description logics (DLs) are knowledge representation formalisms with formal
and well-understood semantics [4]. They supply the foundation for the web on-
tology language OWL 2 standardized by the W3C [22]. Since then, DLs became
more widely used for the representation of knowledge from several domains.

Each DL offers a set of concept constructors by which complex concepts can be
built. These concepts describe categories from the application domain at hand. A
DL knowledge base consists of two parts: the TBox captures the terminological
knowledge about categories and relations, and the ABox captures the assertional
knowledge, i.e., individual facts, from the application domain. Prominent infer-
ences are subsumption, which determines subconcept relationships and instance
checking, which tests for a given individual and a concept whether the individual
belongs to the concept.

The lightweight DL EL offers limited expressivity but allows for polynomial
time reasoning [3]. These good computational properties are maintained by
several extensions of EL—most prominently by EL++, the DL underlying the
OWL 2 EL profile [16], which allows for the use of nominals, i.e., singleton con-
cepts, when building complex concept descriptions. The reasoning algorithms

� Supported by DFG Graduiertenkolleg 1763 (QuantLA).
�� Partially supported by DFG within the Cluster of Excellence ‘cfAED’

��� Partially supported by the German Research Foundation (DFG) in the Collabo-
rative Research Center 912 “Highly Adaptive Energy-Efficient Computing”.

I.J. Timm and M. Thimm (Eds.): KI 2013, LNAI 8077, pp. 49–60, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

50 A. Ecke, R. Peñaloza, and A.-Y. Turhan

for (fragments of) EL++ have been implemented in highly optimized reasoner
systems such as jCEL [15] and ELK [11]. It is worth pointing out that the initial
reasoning algorithm for extending EL by nominals [3] turned out to be incom-
plete, but a complete method has been recently devised in [12].

In this paper we describe methods for computing generalizations in the EL-
family by the help of the standard reasoning algorithms. We consider the fol-
lowing two inferences: The least common subsumer (lcs), which computes for a
given set of concepts a new concept that subsumes the input concepts and is
the least one w.r.t. subsumption; and the most specific concept which provides
a concept which has a given individual as an instance and is the least one w.r.t.
subsumption. Both inferences have been employed for several applications. Most
prominently the lcs and the msc can be employed in the ‘bottom-up approach’ for
generating TBoxes [5], where modellers can generate a new concept from picking
a set of ABox individuals that instantiate the desired concept and then gener-
alizing this set into a single concept automatically—first by applying the msc
to each of the selected individuals and then generalizing the obtained concepts
by applying the lcs. Other applications of the lcs and the msc include similarity
measures [8,6,14], which are the core of ontology matching algorithms and more
(see [7,17,9]). In particular for large bio-medical ontologies the lcs can be used
effectively to support construction and maintenance. Many of these bio-medical
ontologies, notably SNOMED CT [20] and the FMA Ontology [19], are written
in the EL-family of lightweight DLs.

It is known that for concepts captured by a general TBox or even just a cyclic
TBox, the lcs does not need to exist [1], since cycles cannot be captured in an EL-
concept. Therefore, an approximation of the lcs has been introduced in [17], that
limits the maximal nesting of quantifiers of the resulting concept descriptions.
These so-called role-depth bounded lcs (k-lcs), can be computed for EL and for EL
extended by role inclusions using completion sets produced by the subsumption
algorithm [17,10]. In this paper, we describe a subsumption algorithm for the
DL ELOR—building on the one for ELO (EL extended by nominals) from [12].
Our algorithm is given in terms of the completion algorithm in order to extend
the methods for the k-lcs to ELOR.

Recently, necessary and sufficient conditions for the existence of the lcs w.r.t.
general EL-TBoxes [23] and ELR-TBoxes [21] have been devised. By the use of
these conditions the bound k for which the role-depth bounded lcs and the exact
lcs coincide can be determined, if the lcs exists; i.e., if such k is finite.

Similarly to the lcs, the msc does not need to exist, if the ABox contains
cycles [13]. To obtain an approximative solution, the role-depth of the resulting
concept can be limited as suggested in [13]. A computation algorithm for the
role-depth bounded msc has been proposed for EL in [18]. If nominals are allowed,
the computation of the msc is trivial, since the msc of an individual a is simply
the nominal that contains a (i.e., {a}). Thus, we consider the computation of
the role-depth bounded msc in EL w.r.t. an ELOR knowledge base.

In this paper we introduce the basic notions of DL and the reasoning ser-
vices considered in the next section. In Section 3 we give a completion-based

Computing Role-Depth Bounded Generalizations DL ELOR 51

Table 1. Concept constructors, TBox axioms and ABox assertions for ELOR

Syntax Semantics

concept name A (A ∈ NC) AI ⊆ ΔI

top concept � ΔI

nominal {a} (a ∈ NI) {a}I = {aI}
conjunction C � D (C � D)I = CI ∩ DI

existential restriction ∃r.C (r ∈ NR) (∃r.C)I = {d ∈ ΔI | ∃e.(d, e) ∈ rI ∧ e ∈ CI}

GCI C 	 D CI ⊆ DI

RIA r1 ◦ · · · ◦ rn 	 s rI
1 ◦ · · · ◦ rI

n ⊆ sI

Concept assertion C(a) aI ∈ CI

Role assertion r(a, b) (aI , bI) ∈ rI

classification algorithm for ELOR, which serves as a basis for the computation
algorithms of the role-depth bounded lcs and msc presented subsequently. The
paper ends with conclusions and future work.1

2 Preliminaries

ELOR-concepts are built from mutually disjoint sets NC of concept names, NR

of role names and NI of individual names using the syntax rule:

C, D ::= � | A | {a} | C � D | ∃r.C,

where A ∈ NC , r ∈ NR and a ∈ NI . The individuals appearing in concepts are
also called nominals. The sub-logic of ELOR that does not allow for individuals
in concepts is called ELR.

As usual, the semantics of ELOR-concepts is defined through interpretations.
An interpretation I = (ΔI , ·I) consists of an interpretation domain ΔI and an
interpretation function ·I that maps concept names A to subsets AI ⊆ ΔI and
role names to binary relations on the domain ΔI . This function is extended to
complex concepts as shown in the upper part of Table 1.

Concepts can be used to model notions from the application domain in the
TBox. Given two concepts C and D, a general concept inclusion axiom (GCI)
is of the form C � D. We use C ≡ D as an abbreviation for C � D and D � C.
Given the roles r1, . . . , rn and s, a role inclusion axiom (RIA) is an expression
of the form r1 ◦ · · · ◦ rn � s. An ELOR-TBox is a finite set of GCIs and RIAs.
An interpretation is a model for a TBox T if it satisfies all GCIs and RIAs in
T , as shown in the middle part of Table 1. An EL-TBox is an ELR-TBox (i.e.,
without the nominal constructor) that does not contain any RIAs.

Knowledge about individual facts of the application domain can be captured
by assertions. Let a, b ∈ NI , r ∈ NR and C a concept, then C(a) is a concept

1 Because of space constraints, some proofs are deferred to an appendix to be found
at http://lat.inf.tu-dresden.de/research/papers.html .

http://lat.inf.tu-dresden.de/research/papers.html

52 A. Ecke, R. Peñaloza, and A.-Y. Turhan

assertion and r(a, b) a role assertion. An ABox A is a finite set of (concept or
role) assertions. An interpretation is a model of an ABox A if it satisfies all
concept and role assertions in A, as shown in the lower part of Table 1.

A knowledge base (KB) K = (T , A) consists of a TBox T and an ABox A. An
interpretation is a model of K = (T , A) if it is a model of both T and A. With
Sig(T) we denote the signature of a TBox T , i.e. the set of all concept names,
role names, and individual names that appear in T . By Sig(A) and Sig(K) we
denote the analogous notions for ABoxes and KBs, respectively.

Important reasoning tasks considered for DLs are subsumption and instance
checking. A concept C is subsumed by a concept D w.r.t. a TBox T (denoted
C �T D) if CI ⊆ DI holds in all models I of T . A concept C is equivalent
to a concept D w.r.t. a TBox T (denoted C ≡T D) if C �T D and D �T C
hold. The reasoning service classification of a TBox T computes all subsumption
relationships between the named concepts occurring in T . A reasoning service
dealing with a whole KB is instance checking. An individual a is an instance
of a given concept C w.r.t. K (denoted K |= C(a)) if aI ∈ CI holds in all
models I of K. ABox realization computes, for every concept name in K, the
set of individuals from the ABox that belong to that concept. These reasoning
problems can all be decided for ELOR, and hence also in EL, in polynomial
time [3].

There are two central inferences discussed in this paper that compute general-
izations. The first is called the least common subsumer (lcs); it computes, for two
given concepts, a (possibly complex) concept that subsumes both input concepts
and that is the least concept with this property w.r.t. subsumption. The second
is called the most specific concept (msc), which computes for a given individual a
the least concept w.r.t. subsumption that has a as an instance w.r.t. K.

The lcs does not need to exist if computed w.r.t. general EL-TBoxes, i.e.,
TBoxes that use complex concepts in the left-hand sides of GCIs, or even just
cyclic TBoxes [2]. The reason is that the resulting concept cannot capture cycles.
Thus, we follow here the idea from [17] and compute only approximations of the
lcs and of the msc by limiting the nesting of quantifiers of the resulting concept.

The role depth (rd(C)) of a concept C denotes the maximal nesting depth of
the existential quantifier in C. Sometimes it is convenient to write the resulting
concept in a different DL than the one the inputs concepts are written in. Thus
we distinguish a ‘source DL’ Ls and a ‘target DL’ Lt. With these notions at
hand, we can define the first generalization inference.

Definition 1 (lcs, role-depth bounded lcs). The least common subsumer
of two Ls-concepts C1, C2 w.r.t. an Ls-TBox T (written: lcsT (C1, C2)) is the
Lt-concept description D s.t.:

1. C1 �T D and C2 �T D, and
2. for all Lt-concepts E, C1 �T E and C2 �T E implies D �T E.

Let k ∈ IN. If the concept D has a role-depth up to k and Condition 2 holds
for all such E with role-depth up to k, then D is the role-depth bounded lcs
(k-lcsT (C1, C2)) of C1 and C2 w.r.t. T and k.

Computing Role-Depth Bounded Generalizations DL ELOR 53

The role-depth bounded lcs is unique up to equivalence, thus we speak of the
k-lcs. In contrast, common subsumers need not be unique. Note that for target
DLs that offer disjunction, the lcs is always trivial: lcs(C1, C2) = C1
 C2. Thus
target DLs without disjunction may yield more informative lcs.

Similarly to the lcs, the msc does not need to exist if computed w.r.t. cyclic
ABoxes. Again we compute here approximations of the msc by limiting the role-
depth of the resulting concept as suggested in [13].
Definition 2. Let K = (T , A) be a KB written in Ls and a be an individual
from A. An Lt-concept description C is the most specific concept of a w.r.t. K
(written mscK(a)) if it satisfies:
1. K |= C(a), and
2. for all Lt-concepts D, K |= D(a) implies C �T D.

If the concept C has a role-depth up to k and Condition 2 holds for all such D
with role-depth up to k, then C is the role depth bounded msc of a w.r.t. K and
k (k-mscK(a)).
The msc and the k-msc are unique up to equivalence in EL and ELOR. In
ELOR the msc is trivial, since mscK(a) = {a}. Thus we consider in this paper a
more interesting case, where the target DL Lt for the resulting concept is a less
expressive one without nominals, namely EL or ELR.

3 Computing the k-lcs in ELOR
The algorithms to compute the role-depth bounded lcs are based on completion-
based classification algorithms for the corresponding DL. For the DL ELOR,
a consequence-based algorithm for classification of TBoxes was presented in
[12], building upon the completion algorithm developed in [3]. The completion
algorithm presented next adapts the ideas of the complete algorithm.

3.1 Completion Algorithm for ELOR-TBoxes

The completion algorithms work on normalized TBoxes. We define for ELOR
the set of basic concepts for a TBox T :

BCT = (Sig(T) ∩ (NC ∪ NI)) ∪ {�}.

Let T be an ELOR-TBox and A, A1, A2, B ∈ BCT ; then T is in normal form if
– each GCI in T is of the form: A � B, A1 � A2 � B, A � ∃r.B, or ∃r.A � B.
– each RIA in T is of the form: r � s or r1 ◦ r2 � s.

Every ELOR-TBox can be transformed into normal form in linear time by apply-
ing a set of normalization rules given in [3]. These normalization rules essentially
introduce new named concepts for complex concepts used in GCIs or new roles
used in complex RIAs.

Before describing the completion algorithm in detail, we introduce the reach-
ability relation �R, which plays a fundamental role in the correct treatment of
nominals in TBox classification algorithms [3,12].

54 A. Ecke, R. Peñaloza, and A.-Y. Turhan

Definition 3 (�R). Let T be an ELOR-TBox in normal form, G ∈ NC a
concept name, and D ∈ BCT . G�RD iff there exist roles r1, . . . , rn ∈ NR and
basic concepts A0, . . . , An, B0, . . . , Bn ∈ BCT , n ≥ 0 such that Ai �T Bi for all
0 ≤ i ≤ n, Bi−1 � ∃ri.Ai ∈ T for all 1 ≤ i ≤ n, A0 is either G or a nominal,
and Bn = D.

Informally, the concept name D is reachable from G if there is a chain of exis-
tential restrictions starting from G or a nominal and ending in D. This implies
that, for G�RD, if the interpretation of G is not empty, then the interpreta-
tion of D cannot be empty either. This in turn causes additional subsumption
relationships to hold. Note that, if D is reachable from a nominal, then G�RD
holds for all concept names G, since the interpretation of D can never be empty.

The basic idea of completion algorithms in general is to generate canonical
models of the TBox. To this end, the elements of the interpretation domain are
represented by named concepts or nominals from the normalized TBox. These el-
ements are then related via roles according to the existential restrictions derived
for the TBox. More precisely, let T be a normalized TBox, G ∈ Sig(T)∩NC ∪{�}
and A ∈ BCT , we introduce a completion set SG(A). We store all basic concepts
that subsume a basic concept A in the completion set SA(A) and all basic
concepts B for which ∃r.B subsumes A in the completion set SA(A, r). These
completion sets are then extended using a set of rules. However, the algorithm
needs to keep track also of completion sets of the form SG(A) and SG(A, r) for
every G ∈ (Sig(T) ∩ NC) ∪ {�}, since the non-emptiness of an interpretation of
a concept G may imply additional subsumption relationships for A. The com-
pletion set SG(A) therefore stores all basic concepts that subsume A under the
assumption that G is not empty. Similarly, SG(A, r) stores all concepts B for
which ∃r.B subsumes A under the same assumption.

For every G ∈ (Sig(T) ∩ NC) ∪ {�}, every basic concept A and every role
name r, the completion sets are initialized as SG(A) = {A, �} and SG(A, r) = ∅.
These sets are then extended by applying the completion rules shown in Figure 1
(adapted from [12]) exhaustively.

To compute the reachability relation �R used in rule OR7, the algorithm
can use Definition 3 with all previously derived subsumption relationships; that
is, Ai � Bi if it finds Bi ∈ SAi(Ai). Thus the computation of �R and the
application of the completion rules need to be carried out simultaneously.

It can be shown that the algorithm terminates in polynomial time, and is
sound and complete for classifying the TBox T . In particular, when no rules are
applicable anymore the completion sets have the following properties.

Proposition 1. Let T be an ELOR-TBox in normal form, C, D ∈ BCT , r ∈
Sig(T) ∩ NR, and G = C if C ∈ NC and G = � otherwise. Then, the following
properties hold:

C �T D iff D ∈ SG(C), and
C �T ∃r.D iff there exists E ∈ BCT such that E ∈ SG(C, r) and D ∈ SG(E).

We now show how to use these completion sets for computing the role-depth
bounded lcs for ELOR-concept w.r.t. a general ELOR-TBox.

Computing Role-Depth Bounded Generalizations DL ELOR 55

OR1 If A1 ∈ SG(A), A1 	 B ∈ T and B �∈ SG(A),
then SG(A) := SG(A) ∪ {B}

OR2 If A1, A2 ∈ SG(A), A1 � A2 	 B ∈ T and B �∈ SG(A),
then SG(A) := SG(A) ∪ {B}

OR3 If A1 ∈ SG(A), A1 	 ∃r.B ∈ T and B �∈ SG(A, r),
then SG(A, r) := SG(A, r) ∪ {B}

OR4 If B ∈ SG(A, r), B1 ∈ SG(B), ∃r.B1 	 C ∈ T and C �∈ SG(A),
then SG(A) := SG(A) ∪ {C}

OR5 If B ∈ SG(A, r), r 	 s ∈ T and B /∈ SG(A, s),
then SG(A, s) := SG(A, s) ∪ {B}

OR6 If B ∈ SG(A, r1), C ∈ SG(B, r2), r1 ◦ r2 	 s ∈ T and C /∈ SG(A, s),
then SG(A, s) := SG(A, s) ∪ {C}

OR7 If {a} ∈ SG(A1) ∩ SG(A2), G�RA2, and A2 /∈ SG(A1),
then SG(A1) := SG(A1) ∪ {A2}

Fig. 1. Completion rules for ELOR

3.2 Computing the Role-Depth Bounded ELOR-lcs

In order to compute the role-depth bounded lcs of two ELOR-concepts C and
D, we extend the methods from [17] for EL-concepts and from [10] for ELR-
concepts, where we compute the cross-product of the tree unravelings of the
canonical model represented by the completion sets for C and D up to the role-
depth k. Clearly, in the presence of nominals, the right completion sets need
to be chosen that preserve the non-emptiness of the interpretation of concepts
derived by the reachability relation �R.

An algorithm that computes the role-depth bounded ELOR-lcs using comple-
tion sets is shown in Figure 2. In the first step, the algorithm introduces two new
concept names A and B as abbreviations for the (possibly complex) input con-
cepts C and D, and the augmented TBox is normalized. The completion sets are
then initialized and the completion rules from Figure 1 are applied exhaustively,
yielding the saturated completion sets ST . In the recursive procedure k-lcs-r for
concepts A and B, we first obtain all the basic concepts that subsume both A
and B from the sets SA(A) and SB(B). For every role name r, the algorithm
then recursively computes the (k−1)-lcs of the concepts A′ and B′ in the sub-
sumer sets SA(A, r) and SB(B, r), i.e., for which A �T ∃r.A′ and B �T ∃r.B′.
These concepts are conjoined as existential restrictions to the k-lcs concept.

The algorithm only introduces concept and role names that occur in the orig-
inal TBox T . Therefore those names introduced by the normalization are not
used in the concept for the k-lcs and an extra denormalization step as in [17,10]
is not necessary.

Notice that for every pair (A′, B′) of r-successors of A and B it holds that
A�RA′ and B�RB′. Intuitively, we are assuming that the interpretation of
both A and B is non-empty. This in turn causes the interpretation of ∃r.A′

56 A. Ecke, R. Peñaloza, and A.-Y. Turhan

Procedure k-lcs(C, D, T , k)
Input: C, D: ELOR-concepts; T : ELOR-TBox; k ∈ IN
Output: role-depth bounded ELOR-lcs of C, D w.r.t. T and k

1: T ′ := normalize(T ∪ {A ≡ C, B ≡ D})
2: ST := apply-completion-rules(T ′)
3: return k-lcs-r(A, B, ST , k, A, B, Sig(T))

Procedure k-lcs-r(X, Y, ST , k, A, B, Sig(T))
Input: A, B: concept names, X, Y : basic concepts with A�RX, B�RY ; k ∈ IN;

ST : set of saturated completion sets; Sig(T): signature of T
Output: role-depth bounded ELOR-lcs of X, Y w.r.t. T and k

1: common-names := SA(X) ∩ SB(Y) ∩ BCT
2: if k = 0 then
3: return

�

P ∈common-names

P

4: else
5: return

�

P ∈common-names

P �
�

r∈Sig(T)∩NR

(�

E∈SA(X,r),

F ∈SB(Y,r)

∃r.k-lcs-r
(
E, F, ST , k−1, A, B, Sig(T)

))

Fig. 2. Computation algorithm for role-depth bounded ELOR-lcs

and ∃r.B′ to be not empty, either. Thus, it suffices to consider the completion
sets SA and SB, without the need to additionally compute SA′ and SB′ , or
the completion sets SC for any other basic concept C encountered during the
recursive computation of the k-lcs. This allows for a goal-oriented optimization
in cases where there is no need to classify the full TBox.

3.3 Computing the Role-Depth Bounded msc w.r.t. ELOR-KBs

We now turn our attention to the other generalization inference: the computa-
tion of the most specific concept representing a given individual. Recall that,
since ELOR allows the use of nominals, computing the (exact) ELOR-msc for
a given individual is a trivial task: the most specific ELOR-concept describing
an individual a ∈ NI is simply the nominal {a}. However, it may be of interest
to compute the msc w.r.t. a less expressive target DL. Next, we describe how to
compute the depth-bounded EL-msc of an individual w.r.t. an ELOR-KB.

As we have defined them, KBs consist of two parts: the TBox, which represents
the conceptual knowledge of the domain, and the ABox, which states information
about individuals. In the presence of nominals, this division between concepts
and individuals is blurred. In fact, it is easy to see that ABox assertions can be
simulated using GCIs as described by the following proposition.

Computing Role-Depth Bounded Generalizations DL ELOR 57

Procedure k-msc (a, K, k)
Input: a: individual from K; K =(T ,A) an ELOR-KB; k ∈ IN
Output: role-depth bounded EL-msc of a w.r.t. K and k.
1: T ′ := T ∪ absorb-ABox(K)
2: T ′′ := normalize(T ′)
3: SK := apply-completion-rules(T ′′)
4: return traversal-concept ({a}, SK, k, Sig(K))

Procedure traversal-concept (A, SK, k, Sig(K))
Input: A: basic concept from T ′; SK: set of completion sets; k ∈ IN;

Sig(K): signature of original KB K
Output: role-depth bounded traversal concept w.r.t. K and k.
1: if k = 0 then
2: return

�
B∈S�(A)∩(BCT \NI) B

3: else
4: return

�

B∈S�(A)∩(BCT \NI)
B �

�
r∈Sig(K)∩NR

�

B∈S�(A,r)
∃r.traversal-concept (B, SK, k−1, Sig(K))

Fig. 3. Computation algorithm for the role-depth bounded EL-msc w.r.t. ELOR-KBs

Lemma 1. An interpretation I satisfies the concept assertion C(a) iff it satis-
fies the GCI {a} � C. It satisfies the role assertion r(a, b) iff it satisfies the GCI
{a} � ∃r.{b}.

Using this result, we can ‘absorb’ the ABox into the TBox and restrict our
attention to reasoning w.r.t. TBoxes only, without losing generality. Figure 3
describes the algorithm for computing the EL-k-msc w.r.t. an ELOR-KB.

As before, correctness of this algorithm is a consequence of the invariants
described by Proposition 1. The set S�({a}) contains all the basic concepts that
subsume the nominal {a}; that is, all concepts whose interpretation must contain
the individual aI . Likewise, S�({a}, r) contains all the existential restrictions
subsuming {a}. Thus, a recursive conjunction of all these subsumers provides
the most specific representation of the individual a.

Since the target language is EL, no nominals may be included in the output.
However, the recursion includes also the EL-msc of the removed nominals, hence
indeed providing the most specific EL representation of the input individual.
As in the computation of the lcs presented above, the only completion sets
relevant for computing the msc are those of the form S�(A) and S�(A, r). Once
again, this means that it is possible to implement a goal-oriented approach that
computes only these sets, as needed, when building the msc for a given individual.

In this section we have shown how to compute generalization inferences with
a bounded role-depth w.r.t. KBs written in the DL ELOR, which extends EL
by allowing nominals and complex role inclusion axioms. With the exception of

58 A. Ecke, R. Peñaloza, and A.-Y. Turhan

data-types and disjointness axioms, this covers the full expressivity of the OWL
2 EL profile of the standard ontology language OWL 2. Given its status as W3C
standard, it is likely that more and bigger ontologies built using this profile, thus
the generalization inferences investigated in this paper and their computation
algorithms will become useful to more ontology engineers. In fact, there already
exist ontologies that use nominals in their representation. For example, the FMA
ontology [19] is written in ELOR and currently contains already 85 nominals.

4 Conclusions

We have studied reasoning services for computing generalizations in extensions
of the light-weight description logic EL by nominals and role inclusions, which
yields the DL ELOR. One of the characterizing features of EL and its extension
ELOR is that they allow for polynomial time standard reasoning reasoning—
such as subsumption. Efficient reasoning becomes expedient when dealing with
huge knowledge bases such as, for instance, the biomedical ontologies SNOMED
and the Gene Ontology. Additionally, ELOR covers a large part of the OWL 2
EL profile. Given its status as a W3C recommendation, it is likely that the usage
of the EL-family of DLs becomes more widespread in the future.

Especially for the huge ontologies written in extensions of EL, tools that aid
the user with the construction and maintenance of the knowledge base become
necessary. As previous work has shown, the generalization inferences lcs and msc
can be effectively used for such tasks. Besides this application, the generaliza-
tions can be used as a basis for other inferences, like the construction of semantic
similarity measures and information retrieval procedures. The algorithms pre-
sented in this paper are a basis for employing these services for ELOR-knowledge
bases.

The contributions of this paper are manyfold. First, we have given a com-
pletion algorithm for ELOR-knowledge bases, inspired by a consequence-based
classification algorithm for EL with nominals [12]. This completion algorithm is
then employed to extend the algorithms for computing approximations of the
lcs and of the msc for the DL ELOR. In general, the lcs and msc do not need
to exist, even for EL, thus we approximate them by limiting the role-depth of
the resulting concept description, up to a maximal bound to be specified by the
user.

We extended here the computation algorithm of the k-lcs to the DL ELOR,
using the new completion algorithm, by allowing nominals as part of the re-
sulting concept. Since the k-msc is trivial in ELOR due to nominals, we give a
computation algorithm for the k-msc for the target language EL, which works
w.r.t. the axioms and assertions of ELOR-KBs. Using these algorithms, the gen-
eralization inferences can be used for a set of ontologies built for the OWL 2
EL profile. Both algorithms have the property that, if the exact lcs or msc exist,
then our algorithms compute the exact solution for a sufficiently large role-depth
bound k. Such a k can be computed using the necessary and sufficient conditions
for the existence of the lcs and msc given for for EL in [23] and for ELR in [21].

Computing Role-Depth Bounded Generalizations DL ELOR 59

As future work we intend to study methods of finding these generalizations in
further extensions of EL. Initial steps in this direction have been made by con-
sidering EL with subjective probability constructors [18]. In a different direction,
we also intend to implement a system that can compute the lcs and the msc, by
modifying and improving existing completion-based reasoners.

References
1. Baader, F.: Least common subsumers and most specific concepts in a description

logic with existential restrictions and terminological cycles. In: Gottlob, G., Walsh,
T. (eds.) Proc. of the 18th Int. Joint Conf. on Artificial Intelligence (IJCAI 2003),
pp. 325–330. Morgan Kaufmann (2003)

2. Baader, F.: Terminological cycles in a description logic with existential restrictions.
In: Gottlob, G., Walsh, T. (eds.) Proc. of the 18th Int. Joint Conf. on Artificial
Intelligence (IJCAI 2003), pp. 319–324. Morgan Kaufmann (2003)

3. Baader, F., Brandt, S., Lutz, C.: Pushing the EL envelope. In: Proc. of the 19th
Int. Joint Conf. on Artificial Intelligence (IJCAI 2005), Edinburgh, UK. Morgan-
Kaufmann Publishers (2005)

4. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P. (eds.):
The Description Logic Handbook: Theory, Implementation, and Applications.
Cambridge University Press (2003)

5. Baader, F., Küsters, R., Molitor, R.: Computing least common subsumers in de-
scription logics with existential restrictions. In: Dean, T. (ed.) Proc. of the 16th
Int. Joint Conf. on Artificial Intelligence (IJCAI 1999), Stockholm, Sweden, pp.
96–101. Morgan Kaufmann, Los Altos (1999)

6. Borgida, A., Walsh, T., Hirsh, H.: Towards measuring similarity in description log-
ics. In: Proc. of the 2005 Description Logic Workshop (DL 2005). CEUR Workshop
Proceedings, vol. 147 (2005)

7. Brandt, S., Turhan, A.-Y.: Using non-standard inferences in description logics —
what does it buy me? In: Görz, G., Haarslev, V., Lutz, C., Möller, R. (eds.)
Proc. of the 2001 Applications of Description Logic Workshop (ADL 2001), Vi-
enna, Austria. CEUR Workshop, vol. (44). RWTH Aachen (September 2001),
http://CEUR-WS.org/Vol-44/

8. d’Amato, C., Fanizzi, N., Esposito, F.: A semantic similarity measure for expressive
description logics. In: Proc. of Convegno Italiano di Logica Computazionale (CILC
2005) (2005)

9. Ecke, A., Peñaloza, R., Turhan, A.-Y.: Towards instance query answering for con-
cepts relaxed by similarity measures. In: Workshop on Weighted Logics for AI (in
conjunction with IJCAI 2013), Beijing, China (to appear, 2013)

10. Ecke, A., Turhan, A.-Y.: Role-depth bounded least common subsumers for EL+ and
ELI. In: Kazakov, Y., Lembo, D., Wolter, F. (eds.) Proc. of the 2012 Description
Logic Workshop (DL 2012). CEUR Workshop Proceedings, vol. 846. CEUR-WS.org
(2012)

11. Kazakov, Y., Krötzsch, M., Simanč́ık, F.: ELK reasoner: Architecture and evalua-
tion. In: Horrocks, I., Yatskevich, M., Jimenez-Ruiz, E. (eds.) Proceedings of the
OWL Reasoner Evaluation Workshop (ORE 2012). CEUR Workshop Proceedings,
vol. 858. CEUR-WS.org (2012)

http://CEUR-WS.org/Vol-44/

60 A. Ecke, R. Peñaloza, and A.-Y. Turhan

12. Kazakov, Y., Krötzsch, M., Simanč́ık, F.: Practical reasoning with nominals in the
EL family of description logics. In: Brewka, G., Eiter, T., McIlraith, S.A. (eds.)
Proc. of the 12th Int. Conf. on the Principles of Knowledge Representation and
Reasoning (KR 2012), pp. 264–274. AAAI Press (2012)

13. Küsters, R., Molitor, R.: Approximating most specifc concepts in description logics
with existential restrictions. In: Baader, F., Brewka, G., Eiter, T. (eds.) KI 2001.
LNCS (LNAI), vol. 2174, pp. 33–47. Springer, Heidelberg (2001)

14. Lehmann, K., Turhan, A.-Y.: A framework for semantic-based similarity measures
for ELH-concepts. In: del Cerro, L.F., Herzig, A., Mengin, J. (eds.) JELIA 2012.
LNCS, vol. 7519, pp. 307–319. Springer, Heidelberg (2012)

15. Mendez, J.: jCel: A modular rule-based reasoner. In: Proc. of the 1st Int. Workshop
on OWL Reasoner Evaluation (ORE 2012). CEUR, vol. 858 (2012)

16. Motik, B., Cuenca Grau, B., Horrocks, I., Wu, Z., Fokoue, A., Lutz, C.: OWL 2
web ontology language profiles. W3C Recommendation (October 27, 2009),
http://www.w3.org/TR/2009/REC-owl2-profiles-20091027/

17. Peñaloza, R., Turhan, A.-Y.: A practical approach for computing generalization
inferences in EL. In: Antoniou, G., Grobelnik, M., Simperl, E., Parsia, B., Plex-
ousakis, D., De Leenheer, P., Pan, J. (eds.) ESWC 2011, Part I. LNCS, vol. 6643,
pp. 410–423. Springer, Heidelberg (2011)

18. Peñaloza, R., Turhan, A.-Y.: Instance-based non-standard inferences in EL with
subjective probabilities. In: Bobillo, F., Costa, P.C.G., d’Amato, C., Fanizzi, N.,
Laskey, K.B., Laskey, K.J., Lukasiewicz, T., Nickles, M., Pool, M. (eds.) URSW
2008-2010/UniDL 2010. LNCS, vol. 7123, pp. 80–98. Springer, Heidelberg (2013)

19. Rosse, C., Mejino, J.L.V.: A reference ontology for biomedical informatics: the
foundational model of anatomy. Journal of Biomedical Informatics 36, 478–500
(2003)

20. Spackman, K.: Managing clinical terminology hierarchies using algorithmic calcu-
lation of subsumption: Experience with SNOMED-RT. Journal of the American
Medical Informatics Assoc. (2000) (Fall Symposium Special Issue)

21. Turhan, A.-Y., Zarrieß, B.: Computing the lcs w.r.t. general EL+ TBoxes. In:
Proceedings of the 26th International Workshop on Description Logics (DL 2013),
Ulm, Germany, CEUR Workshop Proceedings. CEUR-WS.org. (to appear, July
2013)

22. W3C OWL Working Group. OWL 2 web ontology language document overview.
W3C Recommendation (October 27, 2009),
http://www.w3.org/TR/2009/REC-owl2-overview-20091027/.

23. Zarrieß, B., Turhan, A.-Y.: Most specific generalizations w.r.t. general EL-TBoxes.
In: Proceedings of the 23rd International Joint Conference on Artificial Intelligence
(IJCAI 2013), Beijing, China. AAAI Press (to appear, 2013)

http://www.w3.org/TR/2009/REC-owl2-profiles-20091027/
http://www.w3.org/TR/2009/REC-owl2-overview-20091027/

Parallel Variable Elimination on CNF Formulas

Kilian Gebhardt and Norbert Manthey

Knowledge Representation and Reasoning Group
Technische Universität Dresden

Abstract. Formula simplification is important for the performance of SAT
solvers. However, when applied until completion, powerful preprocessing tech-
niques like variable elimination can be very time consuming. Therefore, these
techniques are usually used with a resource limit. Although there has been much
research on parallel SAT solving, no attention has been given to parallel prepro-
cessing. In this paper we show how the preprocessing techniques subsumption,
clause strengthening and variable elimination can be parallelized. For this task
either a high-level variable-graph formula partitioning or a fine-grained locking
schema can be used. By choosing the latter and enforcing clauses to be ordered,
we obtain powerful parallel simplification algorithms. Especially for long pre-
processing times, parallelization is beneficial, and helps MINISAT to solve 11 %
more instances of recent competition benchmarks.

1 Introduction

Since the development of the Conflict Driven Clause Learning(CDCL) algorithm [1],
hard problems from applications like model checking, routing or scheduling can be
solved [2,3,4]. Sequential SAT solvers have been equipped with efficient data struc-
tures resulting in a high efficiency [5,6,7], but more importantly have been extended
with advanced heuristics that drive their search [5,8,9]. Furthermore, formula simplifi-
cation has been added, which enables these tools to either solve previously unsolvable
instances or to solve problems faster.

Recently, the extraction of minimal unsatisfiable subformulas has been enhanced
with formula simplification, resulting in an improved performance [10]. Another demon-
stration of the utility of preprocessing is the application of preprocessing to incremen-
tal SAT solving, which is used for example for bounded model checking [11]. Already
these examples show that SAT preprocessing is crucial for the overall solving tool chain.
Preprocessing techniques are usually polynomially bounded. Still, their execution can
be very resource consuming, and therefore these techniques usually ship with a cut off
(e.g. [12]). In practice, SAT solvers use simplifications usually before search, and ap-
ply a cut off. The alternative is to use these techniques also during search – known as
inprocessing – and to restrict their execution time even more. In contrast to limiting pre-
processing, running simplifications until fix point might have positive effects on solving
difficult problems. Since the run time of the overall tool chain should be optimal, cut
offs seem to be a reasonable compromise. By exploiting the omnipresent multicore ar-
chitecture, it should be possible to speed up CNF simplifications.

In this paper, we present a parallelization of the widely used techniques variable
elimination, (clause) strengthening and subsumption. There are two important goals
that we reach with this approach: the overall run time when running these techniques

I.J. Timm and M. Thimm (Eds.): KI 2013, LNAI 8077, pp. 61–73, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

62 K. Gebhardt and N. Manthey

until completion is reduced, and with parallel formula simplifications we enable parallel
SAT solvers to become more scalable. The presented parallelization uses workers that
execute a fine grained low-level parallelization based on critical sections. All clauses
and variables that are necessary for the next step of the algorithm are reserved exclu-
sively for the current worker. The approach scales with the size of the formula. This is an
advantage compared to the alternative high-level parallelization approach: partitioning
the formula and then process each partition without locking, because each worker has
exclusive access to its partition. We implemented the modified algorithms into the pre-
processor COPROCESSOR [13]. To reduce the overall overhead of the approach, we add
the invariant that all variables in a clause of the formula have to be sorted. Based on this
invariant, a deadlock-free implementation is guaranteed. Our experimental evaluation
reveals that the run time of the parallel algorithm improves with the number of avail-
able resources for all the presented techniques. The overall performance of MINISAT

2.2 is improved with the parallel preprocessor: 11% more instances of a benchmark
combined from recent SAT competitions can be solved.

The paper is structured as follows: first, we briefly introduce the notions which we
use throughout the paper in Section 2. Afterwards, we present the sequential algorithms
of the chosen preprocessing techniques in Section 3. Then, we discuss in Section 4 how
these techniques can be parallelized with locks, and provide an experimental evaluation
in Section 5. Finally, we conclude and give an outlook on future work in Section 6.

2 Preliminaries

2.1 Notions and Basic Concepts

We assume a fixed setV of Boolean variables, or briefly just variables or atoms. A literal
is a variablex (positive literal) or a negated variablex (negative literal). We overload the
overbar notation: The complement l of a positive (negative, resp.) literal l is the negative
(positive, resp.) literal with the same variable as l. A clause is a finite set of literals, a
formula (short for formula in conjunctive normal form) is a finite set of clauses.

An interpretation is a mapping from the set V of all Boolean variables to the set
{�,⊥} of truth values. In the following, we assume the reader to be familiar with
propositional logic, and how propositional formulas are evaluated under interpretations.
More details can be found in [14].

A clause that contains exactly one literal is called a unit clause. A clause that contains
a literal and its complement is called a tautology. A clause C subsumes a clause D if and
only if C ⊆ D. The set of all atoms occurring in a formula F (in positive or negative
literals) is denoted by atoms(F). We define a total order ≤ on atoms(F). The function
atom maps each literal to the corresponding variable. If F is a formula and l is a literal,
then the formula consisting of all clauses in F that contain l is denoted by F l. If x is
a Boolean variable and C = {x} ∪ C′ as well as D = {x} ∨ D′ are clauses, then the
clause C′ ∪ D′ is called the resolvent of C and D upon x. For two formulas F,G and
variable x, the set of all resolvents of a clause in F with a clause in G upon x is denoted
by F ⊗x G.

The SAT problem is to answer whether a given formula F is satisfiable. Since [15],
SAT is known to beNP-complete. There are two ways to solve SAT: using local search
algorithms [16], or by using structured search [14].

Parallel Variable Elimination on CNF Formulas 63

2.2 Concepts of Parallel Algorithms

Let T1 denote the run time needed by a sequential algorithm to solve a given problem,
and Tn the run time a parallel algorithm with n computing resources needs. Then, we
calculate the speedup S = T1

Tn
. A speedup is called linear, if S = n. If T1 < Tn, we

say the parallel algorithm slows down.
In the following we refer to workers to talk about parts of the algorithm being ex-

ecuted in parallel. When showing that the implementation of a parallel algorithm is
deadlock free, the Coffman Conditions [17] can be used. They state that in a concurrent
environment deadlocks arise only, if the following four conditions are met simultane-
ously: only a single worker can execute a part of the algorithm at a time (mutual ex-
clusion condition), resources are not acquired atomically (lock a resource, wait for the
next one), locks cannot be preempted (return lock, if overall locking procedure fails),
and resources can be locked in a circular manner (circular wait condition). As long as it
is ensured that at each step of the algorithm at least one of the above four conditions is
violated, the algorithm cannot get stuck in a deadlock.

3 SAT Preprocessing

Simplifying the formula before giving it to the SAT solver is a crucial part of the
solving chain. Several techniques, such as bounded variable elimination [18], blocked
clause elimination [19], equivalent literal elimination [20], probing [21] or automated
re-encoding by using extended resolution [12,22], have been proposed as formula sim-
plifications.

Successful SAT solvers either use simplifications only before search in an incom-
plete way, or utilize these techniques also during search – known as inprocessing – and
spend even less time per simplification. This treatment points exactly to the weakness of
simplification techniques: applying them until completion can take more time then solv-
ing the initial formula. Therefore, inprocessing seems a appealing idea to follow. Here
we do not want to discuss when preprocessing and inprocessing can be exchanged, but
focus on another point in parallel SAT solving: powerful parallel SAT solvers as PENE-
LOPE use the sequential preprocessor SATELITE [18], which has been developed in
2005. Although PENELOPE can utilize up to 32 computing units, during preprocessing
only a single core is used. By parallelizing the preprocessor, the efficiency of any par-
allel SAT solver could be improved – however to the best of the authors’ knowledge,
there exists no publicly available work on parallel formula simplification. After intro-
ducing the most widely used simplification techniques, we address their parallelization
in Section 41.

Unit Propagation (UP) applies a (partial) interpretation to the formula. The partial in-
terpretation is represented as the set of all unit clauses in the formula. The pseudo code
of the algorithm is presented in Fig. 1. The propagation queue Q is initialized with the
set of literals of the unit clauses of the formula F (line 1). For each literal l in the prop-
agation queue Q (line 2), all clauses containing l are removed, except the unit clause

1 We do not discuss the effectiveness of the chosen techniques here. The effectiveness of sim-
plification techniques has been compared in [23], showing that BVE is the most powerful
technique.

64 K. Gebhardt and N. Manthey

UnitPropagation (CNF formula F)
1 Q = {l | C ∈ F, |C| = 1, l ∈ C}
2 for l ∈ Q do
3 Q := Q \ {l}
4 F := (F \ F l) ∪ {l}
5 for C ∈ F l do
6 C := C \ {l}
7 if |C| = 1 then Q = Q ∪ C

Subsumption (CNF formulas F ,G)
1 for C ∈ G do
2 l = argminl∈C |F l|
3 for D ∈ F l do
4 if C ⊆ D ∧ C �= D
5 then F = F \ {D}

Strengthening (CNF formulas F , G)
1 Q = G
2 for C ∈ Q do
3 Q := Q \ {C}
4 l = argminl∈C |F l ∪ F l|
5 for D ∈ F l ∪ F l do
6 if (C ⊗D) ⊆ D then
7 D := (C ⊗D)
8 Q := Q ∪ {D}

SubSimp (CNF formulas F ,G)
1 Subsumption(F ,G)
2 Strengthening(F ,G)
3 H := {C | C ∈ F, changed}
4 Subsumption(F ,H)

Fig. 1. Pseudo code the simplification algorithms Unit Propagation, Subsumption and
Strengthening

itself (line 4), and all occurrences of l are removed (line 5–6). To compute the transi-
tive closure, newly created clauses are added to the propagation queue again (line 7).
The application of UP preserves equivalence of the formula F . Since new unit clauses
can be derived, performing unit propagation might touch all clauses of the formula,
independently of the initial Q.

Subsumption (SUB) removes redundant clauses from the formula. A clause D ∈ F is
subsumed, if it is a superset of another clause C ∈ F , because in this case any model
of C is also a model of D. The implementation is also given in Fig. 1, and provides the
formulaF to be reduced and the set of candidatesG ⊆ F , which are used for the check.
To perform all checks, the method would be called with Subsumption(F ,F). For each
clause of the set of candidates G, the algorithm performs the redundancy check (line
1). Since the presented algorithm is confluent, its result is independent of the execution
order. Therefore, the workload is minimized by choosing the minimally occurring literal
l (line 2) to determine which clauses have to be removed. To subsume a clause, l has to
be part of both C and D. If a clause D can be subsumed, it is removed (line 5), without
deleting the clause itself(line 4).

(Clause) Strengthening (STR), also called self-subsuming resolution, removes a literal
l from a clause D ∈ F , if there exists another clause C ∈ F , so that there exists a
resolvent C ′ = C ⊗D, and C′ subsumes the clause D. Instead of removing D and
adding the resolvent C ⊗D, the implementation usually removes the literal l from D,
which has been removed due to resolution. Strengthening is not confluent. The pseudo
code of the algorithm is given in Fig. 1. Similar to subsumption, a candidate set of
clauses G is given. Since a strengthened clause should be re-tested, a working clause
set Q is introduced and initialized with all candidates (line 1). For each clause C it
is checked, whether it can strengthen other clauses, again with the most cost efficient
literal l (line 4). The clause C can strengthen only clauses D that either also contain l
or that contain l. In all cases, the following precondition has to be fulfilled: ∃l′ ∈ C :

Parallel Variable Elimination on CNF Formulas 65

VariableElimination (CNF formula F)
1 Q = atoms(F)
2 do
3 SubSimp(F ,F) // remove all redundant clauses
4 for v ∈ Q do // use heuristic for order
5 Q := Q \ {v}
6 S := F v ⊗ F v // create all resolvents, could consider gates
7 if |S| ≤ |F v|+ |F v | then // check heuristic
8 F := F \ (F v ∪ F v)
9 F := F ∪ S
10 SubSimp(F ,S) // check redundancy based on new clauses
11 update(Q) // add variables of modified clauses
12 while changed // repeat, if changes have been performed

Fig. 2. Pseudo code of variable elimination

(C \ {l′}) ⊂ D. Thus all candidate clauses D ∈ F l ∪ F l are checked (line 5). If a
clause D can be reduced (lines 6–7), this clause is added to the working queue Q again
(line 8). If G is a subset of F , the execution of the algorithm might still visit all clauses
of F , because reduced clauses are revisited.

SubSimp is a combination of subsumption and strengthening. Instead of performing
both subsumption and strengthening in one routine, we split the two into separate rou-
tines. The routine also supports working with candidates G. After calling strengthening,
the reduced clauses are new candidates to subsume other clauses of the formula, and
thus a new set H is generated (line 3), and subsumption is executed again (line 4). Note,
it is not necessary to re-check the clauses in G.

(Bounded) Variable Elimination (BVE) [18] eliminates a variable vby pairwise resolving
all clauses C ∈ F l and D ∈ F l. Then, the original clauses are replaced by the set of
resolvents: F := (F ∪ (F v ⊗v F v)) \ (F v ∪F v). The implementation of the algorithm
(pseudo code presented in Fig. 2) is based on a variable queue Q, which is initialized
with all atoms of the formulaF (line 1). The whole algorithm is usually repeated until it
reaches a fix point (lines 2, 12). After removing all redundant clauses (line 3), variable
elimination is tested for each variable vof the queueQ, where the selection order depends
on a heuristic (line 4). Here, we select a variable that occurs least frequent in the current
formula. Next, the set of resolvents S is generated (line 6). This process can take into
account that v is defined as output of a gate (see [18] for details). If the set of resolvents
S is smaller than the set F v ∪ F v (line 7), the substitution of these sets if performed
(lines 8–9). Furthermore, it is checked whether the new clauses can be used to remove
redundant clauses (line 10). After all variables of Q have been checked, all variables of
the current formula that occur in any clause that has been changed or removed by the
steps above becomes candidate for further eliminations. Therefore, these variables are
reinserted into the queue Q (line 11), and the algorithm is repeated (line 12).

In preparation of the parallel execution, note that the outcome of two variable elimi-
nations with different variable orderings (line 4) can be different. Since the new clauses
are created by resolution, eliminating variable v1 might change the formula, so that
eliminating v2 is not possible any more (due to the limiting heuristics), although the

66 K. Gebhardt and N. Manthey

latter elimination would have been possible for the original formula. Furthermore, since
strengthening is also called during the algorithm execution, this gives another
diversification.

4 Parallel Preprocessing

A survey on parallel SAT solving can be found in [24,25]. Although there has been
much research on parallel search, there is no work on parallel preprocessing publicly
available. This comes as a surprise, because preprocessing techniques are much more
likely to be apt for parallelization, since their complexity class usually is P . We picked
the most widely used preprocessing techniques, that are present in the modern prepro-
cessors SATELITE [18] and COPROCESSOR [13], and present a way to parallelize them.
After discussing the alternative approach based on formula partitioning, we present par-
allel versions of the preprocessing algorithms presented above for current multi-core
architectures. As an abstraction let W = {W1, . . . ,Wn} be a set of workers, that will
execute specified algorithms with individual arguments, private and shared resources.

Variable Graph Partitioning can be used to divide the formula in pairwise disjoint sets
on which the workers can perform simplifications without additional synchronization.
It seems to be desirable to find the partition with the fewest connections between the
subgraphs, because the border variables cannot be processed by any worker. On the
other hand, BVE and strengthening are not confluent and a partition heavily effects
which of the sequential simplification steps can actually be performed. This property
makes it difficult to predict the utility of a partition in advance. Finally, as already
the minimum graph bisection is NP-hard [26], it is unexpected to obtain an efficient
parallelization with graph partitioning, in which all parts of the algorithm are executed
in parallel. Therefore, the authors preferred a locking-based parallelization approach.

Locking-Based Parallel Preprocessing tries to overcome the shortcomings of Variable
Graph Partitioning by creating only temporary partitions. With regard to the simpli-
fication technique, exclusive access rights to a subformula Fi are granted to a worker
Wi. After a simplification step has been performed, Wi returns its privileges. Exclusive
access rights are ensured with the help of locks.

Subsumption has no critical sections, since the only manipulation of F is the removal
of clauses (line 5). If a worker Wi tests whether C subsumes other clauses, and C is
removed by Wj , further subsumption checks with C will not lead to wrong results, due
to transitivity of ⊆. Fl is changed only, if another worker removed a clause containing
l, which will even reduce the workload for Wi. Therefore, Subsumption can be paral-
lelized by dividing F in subsets Fi, such that F =

⋃n
i=1 Fi. Then each worker Wi

executes Subsumption(F, Fi).

Strengthening requires each worker Wi to have exclusive access rights to the clauses C
and D while performing the strengthening test and overwriting D when indicated (Fig.
1, lines 6, 7). The authors favored a locking approach that introduces a lock for each
v ∈ atoms(F) which is shared among all workers. If Wi holds a lock on an atom v,
it has exclusive access to all clauses whose smallest literal is v or v. The total order ≤
on atoms(F) is exploited to avoid deadlocks: After Wi locked v it may request locks

Parallel Variable Elimination on CNF Formulas 67

ParallelVariableElimination (CNF formula F , Q ⊆ atoms(F))
1 while Q �= ∅ do
2 QS := ∅ // reset SubSimp queue
3 atomic v := v′ ∈ Q, Q := Q \ {v′} // get variable from Q
4 lock v, readlock CDB // freeze neighbors
5 N = ∅
6 for C ∈ Fv ∪ Fv do // calculate neighbors
7 lock C, N := N ∪ atoms({C}), unlock C
8 ts := current time stamp // time stamp for neighborhood
9 unlock CDB, unlock v

10 lock all v′ ∈ N , readlock CDB
11 if time stamp(v) > ts then // check correctness of neighbors
12 unlock all v′ ∈ N , unlock CDB
13 goto 4
14 cold := |F v|+ |F v| // simulate elimination
15 cnew := |F v ⊗ F v|
16 size :=

∑
C∈Fv⊗Fv

|C| // total size of resolvents
17 unlock CDB

18 if cnew ≤ cold then
19 atomic reserveMemory(size, cnew , CDB) // reserve memory for resolvents
20 readlock CDB
21 S := F v ⊗ F v

22 F := (F ∪ S) \ (F v ∪ F v)
23 QS := S // add resolvents to SubSimp queue
24 unlock CDB
25 atomic inc current time stamp // increment time stamp
26 for v′ ∈ N do // set time stamp to all neighbors
27 time stamp(v′) := current time stamp
28 unlock all v′ ∈ N

29 for C ∈ QS do // SubSimp
30 lock v = minl∈C atom(l), lock CDB, C
31 if v �= minl∈C atom(l) then // if smallest atom of C changed
32 unlock C, CDB, v, goto 30 // renew locks
33 l = argminl∈C |F l ∪ F l|
34 for D ∈ (F l ∪ F l) \ {C} do
35 if preemptableLock D = success then // abort, if minl∈D atom(l) > v
36 if C ⊆ D then F := F \ {D}
37 else if C ⊗D ⊆ D then
38 D := C ⊗D, Q := Q ∪ {D}
39 unlock D
40 unlock C, unlock CDB, unlock v

Fig. 3. Pseudo code of parallel variable elimination, with phases neighbor calculation (l. 4–9),
elimination simulation (l. 10–17), elimination (l. 18–28) , SubSimp (l. 29–40)

only on smaller atoms. Since C ⊗D ⊆ D =⇒ minl∈C atom(l) ≥ minl∈D atom(l),
the smallest atom v′ of D needs to be locked only if it is smaller than v. We discuss a
slightly modified parallel strengthening algorithm, that exploits the same idea, during
the presentation of the parallel BVE.

68 K. Gebhardt and N. Manthey

Variable Elimination requires a more complex locking scheme: An elimination of v
requires a worker to have exclusive access to the set of clauses F v ∪ F v while the
steps in lines 6–9 of the sequential algorithm are performed (Fig. 2). We will use the
stronger condition of exclusive access to all clauses that consist of neighbor-variables
(or neighbors) of v, i.e. atoms(F v ∪ F v). A further difficulty is the creation of new
clauses: In current SAT solvers a multiple reader - single writer synchronization to the
clause database (CDB) is necessary. Finally, SubSimp shall be executed in parallel to
BVE.

To meet all requirements three kinds of locks are used: variable locks, a RW-lock
for the CDB and a lock per clause. A worker Wi may access clauses only, if the clause
storage was readlocked, and writes clauses only in previously reserved memory.Wi has
exclusive access to a clause C (with the semantics that consistent reading and writing is
guaranteed), if Wi locked all atoms of C or if Wi locked at least one of the atoms of C
and the clause lock corresponding to C. Obviously, if all modifications of the formula
result from exclusive read and write operations, these conditions will lead to a correct
concurrent algorithm.

To circumvent deadlocks, variables are always locked orderly, afterwards the clause
storage is locked and finally at most two clause locks are acquired, where the second
clause lock must be preemptable. Hence, the third (non-preemptable locks) or fourth
(circular-wait) Coffman condition are violated respectively.

The pseudo code for the parallel BVE algorithm is given in Fig. 3 and it consists only
of the inner for-loop of the sequential BVE algorithm, which is given in Fig. 1(lines 4–
10). The call to a parallel SubSimp (Fig. 1 lines 3) is executed before the outlined
algorithm. All workers share a variable queue Q and request atoms v to process (line
3). Afterwards v is locked, to prevent other workers to change v’s neighborhood, and
the CDB is readlocked (line 6) for clause access. All neighbors are determined (lines
6–7), which requires to lock each clause for consistent reading, and the current time
stamp is requested successively (line 8), to cheaply check whether the neighborhood of
some variable has been altered since previous locking. After unlocking v and the CDB
(line 9), to keep the locking order, all v′ ∈ N are locked and the CDB is readlocked
again (line 10). If another worker modified the formula in the meantime such that F v ∪
F v changed (line 11), the variable locks have to be renewed (lines 12–13). Otherwise
the underlying data for the utility of the elimination is computed as usual: number of
clauses before resolution (line 14), number of clauses after after resolution (line 15) and
additionally the total size of the resolvents (line 16). After the CDB lock was released
(line 17), it is decided whether an elimination should be performed (line 18). If this is
the case, a space reservation in CDB for the resolvents is created (line 19). In this period
a memory relocation of the CDB is possible, which makes a CDB writelock necessary.
While the CDB is readlocked (line 20–24) the usual clause elimination is performed and
all resolvents are added to the SubSimp queue (lines 21–23). Afterwards the global time
stamp is incremented (line 25) and assigned to all neighboring variables(lines 26–27),
since their neighborhood could have been extended as a consequence of the elimination.
Finally all variable locks are released (line 28) and the SubSimp phase begins: The
smallest atom v of C is determined and locked (which indeed requires an enclosing
CDB lock), followed by locking the CDB and C (line 30). If v is not the smallest atom

Parallel Variable Elimination on CNF Formulas 69

of C any more (C was changed in the meantime), this step is repeated (lines 31–32).
Then all candidate clauses are locked with preemptableLock (line 35), which verifies
that the smallest atom ofD is still less or equal to v while waiting for the lock. Then tests
for subsumption (line 36) and strengthening (line 37) are performed and strengthened
clauses are added to the SubSimp queue (line 38). Notice that a worker has exclusive
access to D only, if D contains the atom v, but this is a necessary condition for C ⊆ D
or C ⊗ D ⊆ D. In contrast to the sequential SubSimp, we joined the single loops for
SUB and STR to reduce the locking overhead.

Implementation. The above algorithms are implemented as part of the COPROCESSOR

project [13]. Clauses are represented as a vector of literals and a header, that, amongst
others, contains the size information and a delete flag. The literals of a clause are always
ordered, which makes the determination of the smallest atom of a clause efficient and is
also profitable for subsumption and resolution computations. Variable and clause locks
are implemented as spin locks based on an atomic compare-and-exchange operation.
Hence, kernel level switches can be avoided and the required amount of locks can be
supplied.

5 Evaluation

In this section we want to point out that exploiting parallel resources is beneficial for
instances for which sequential preprocessing consumes a lot of time. Therefore, we
created a benchmark of 880 instances, by merging the application benchmarks from
the SAT competition 2009, the SAT Challenge 2012, and the instances which have not
been selected for the SAT Challenge 2012, but which have not been selected due to
being too hard. We implemented the parallel preprocessing methods into the prepro-
cessor COPROCESSOR, which already provides the sequential routines [13] and uses
step limits for each technique. To see these limits, we disabled the step limit, and ran
each technique until completion2. The timeout for the preprocessor and the solver in

0.1

1

10

100

1000

0.1 1 10 100 1000

S
u

b
s
u

m
p

ti
o

n
-8

Subsumption-seq

instance
identity
factor 4

0.1

1

10

100

1000

0.1 1 10 100 1000

S
u

b
S

im
p

-8

SubSimp-seq

instance
identity
factor 4

Fig. 4. Comparing the run time of sequential subsumption (left) and SubSimp (right) on the y-axis
with their parallel version, which utilizes eight cores

2 COPROCESSOR as well as the list of instances used during preprocessing are available at
http://tools.computational-logic.org.

http://tools.computational-logic.org

70 K. Gebhardt and N. Manthey

combination is set to 3600 seconds. After preprocessing, we run the sequential SAT
solver MINISAT 2.2.

For the experiment we use a AMD Opteron 6274 with 2.2 GHz. This CPU provides
16 cores. Every two consecutive cores share a L2 cache of 2 MB , and the first and
second 8 cores share a L3 cache of 16 MB. Before presenting the empirical evaluation,
we point the reader to an artefact in the results, which seems to stem from the provided
architecture: if up to eight cores are used, communication among the cores can be done
via the shared L3 cache. However, note that once more cores are used, there is no
L3 cache among all the cores. Therefore, the overall performance might drop due to
communication overhead.

5.1 Analyzing the Simplification Time

First, we compare the more basic techniques subsumption and strengthening. Each par-
allel version pays a small overhead for initializing the work for all threads. Therefore,
for very small execution times, the overhead of the parallel implementation is compara-
bly high. The run times of the sequential algorithm (x-axis) and the parallel algorithm
(y-axis) are compared in Fig. 4. For subsumption, a lock free implementation is used,
so that there is almost no slowdown for the parallel algorithm. Note, that for large se-
quential run times the speedup of the parallel algorithm increases, and for large times a
speedup of up to an order of magnitude has been measured. Note in addition, that the
parallel algorithm is confluent, and thus the resulting CNF formula is equivalent to the
input formula.

For SubSimp the picture is not that clear. Still, the speedup of the parallel algorithm
increases with the runtime the sequential algorithm needs. For eight workers, there ex-
ists formulas with a superior speedup. However, there are also formulas that show a
slowdown. This effect can be explained with properties of the algorithm: as discussed
in section 3, strengthening is not confluent, and therefore the parallel as well as the
sequential algorithm might be able to perform more reductions, depending on the exe-
cution order. This effect can result in an increased run time. All in all, the results still
show that by parallelizing the algorithm, and improvement can be achieved.

Finally, we compare the effect on variable elimination: when using more cores,
the average simplification time can be decreased. Especially for long runs of variable

Table 1. The table gives the average simplification time and the number of satisfiable and unsatis-
fiable solved instances per preprocessing technique. The average simplification time is calculated
for all instances of the benchmark, including unsolved instances.

Subsumption SubSimp BVE

Cores seq 1 8 16 seq 1 4 8 16 seq Rseq 1 4 8 R8 16

TSimp 1.8 2.5 0.5 1.8 7.7 8.7 5.6 4.0 3.7 19.8 18.2 27.6 20.4 19.6 16.8 28.8
SAT 240 240 268 263 246 254 262 264 263 255 270 249 270 264 269 262

UNSAT 229 227 259 261 222 245 257 259 256 252 283 257 295 287 284 286
Total 469 467 527 524 468 499 519 523 519 507 553 506 565 551 553 548

Parallel Variable Elimination on CNF Formulas 71

elimination, we can see a clear improvement. The following numbers are calculated
when using eight cores: For formulas where the sequential algorithm uses more than
10 seconds, the average speedup is 1.55. When moving this limit further and consider-
ing only instances that require at least 50 seconds for variable elimination, the speedup
increases to 1.88, and when moving to 100 seconds, the speedup stays 1.88.

5.2 Analyzing the Simplification Quality

Next, we want to argue that the quality of the resulting formula does not decrease when
a parallel algorithm (especially strengthening and BVE) is used. We measure the quality
with the number of solved satisfiable and unsatisfiable instances, when using MINISAT

2.2 after running parallel preprocessing. Table 1 provides this data for all three pre-
processing techniques. The sequential implementation is given in the columns seq. For
subsumption, the number of solved instances increases with the number of cores, until
16 cores are used, where this number decreases again. Especially the average simplifi-
cation time drops again, where small instances use more run time. However, the number
of solved instances increases, underlining that especially long preprocessing runs ben-
efit. When measuring the quality of parallel preprocessing with respect to the number
of solved instances, using parallel procedures clearly results in a performance improve-
ment – when using eight cores, 527 instead of 469 instances can be solved.

For SubSimp, the data is similar, but now the average simplification time decreases
continuously. With respect to the number of solved instances, the algorithm also benefits
from parallelization: 523 instead of 468 instances are solved, when eight cores are used.

Finally, we also performed experiments with parallel variable elimination. Note that
due to locking neighboring variables, this method ships with more overhead than the
previous algorithms. Still, by increasing the number of available resources, the run time
of the simplification method can be decreased. Similarly to SubSimp, the result of BVE
is non-deterministic for the parallel algorithm. Furthermore, for long running instances,
improvement due to the parallelization increases. From this improvement on long run-
ning instances, also the number of solved instances increases. When following the usual
heuristic to process variables within the algorithm, it can be seen that the parallel algo-
rithm slows down, because it waits for locking neighboring variables. After changing
the process order (in R configurations), the average simplification run time drops signif-
icantly, surprisingly also for the sequential algorithm. Again, this effect may be caused
by the algorithms not being confluent.

Exact numbers are given in Table 1. The sequential algorithm can solve 507 in-
stances from the benchmark, and requires 19.8 seconds in average to simplify an in-
stance. When calculating the overhead of the parallelization by using one core with the
parallel algorithm, the average simplification time increases by 8 seconds. Only when
eight cores are used, the speedup of the parallel execution can cope with this overhead.
However, the algorithm still waits for neighboring variables, because similar variables
are scheduled after each other, thus blocking working threads. Therefore, a random-
ized variable order has been used in the R configurations. Since the parallel simplifica-
tion improves long running instances most (see above), the number of solved instances
within the timeout increases. When eight cores are used, 551 instances can be solved.
When using the randomized order, another two instances are solved. Surprisingly, using

72 K. Gebhardt and N. Manthey

four cores results in the even higher number of 565 solved instances. This effect can be
due to less blocking and due to the indeterministic result of the parallel simplification
algorithm.

All in all, the provided experimental evaluation shows that the parallel version im-
proves the state of the art, not only by improving the run time that is required to simplify
a formula, but also by improving the performance when being combined with a sequen-
tial solver. When using the simplifier in a real world scenario, a heuristic needs to be
applied to determine when to use the sequential and when to use the parallel imple-
mentation, since for small run times the overhead of the parallel algorithm cannot be
neglected.

6 Conclusion

In this paper we have shown how the widely used CNF simplification techniques sub-
sumption, strengthening and variable elimination can be parallelized. We chose a fine
grained lock based approach and introduced global locks, locks per variable and per
clause, and forced clauses to be sorted. For this setup we can show that the paralleliza-
tion is deadlock free by ensuring that at least one of the Coffman Conditions is violated.
After implementing the parallel algorithms into the preprocessor COPROCESSOR, we
evaluated the performance of the algorithms when being executed until completion. Es-
pecially on formulas where the sequential algorithm requires much run time, using the
parallel algorithm results in a speedup of the simplification. For confluent subsumption,
the execution time can be reduced by a factor up to 3.6, where the same resulting for-
mula is obtained. Parallelizing strengthening and variable elimination usually results in
a different formula, since these algorithms are not confluent. Still, for large sequential
run times (more than 100 seconds), an average speedup of 2.3 for combining strength-
ening with subsumption, and a speedup of 1.88 for variable elimination can be obtained.

Acknowledgements. The authors would like to thank Mate Soos for fruitful discus-
sions on the efficient implementation of subsumption and self-subsuming resolution.

References

1. Marques-Silva, J.P., Sakallah, K.A.: Grasp – a new search algorithm for satisfiability. In:
Proc. 1996 IEEE/ACM International Conference on Computer-Aided Design, ICCAD 1996,
pp. 220–227 (1996)

2. Biere, A., Cimatti, A., Clarke, E.M., Fujita, M., Zhu, Y.: Symbolic model checking using
SAT procedures instead of BDDs. In: Proc. 36th Annual ACM/IEEE Design Automation
Conference, DAC 1999, pp. 317–320. ACM, New York (1999)

3. Aloul, F.A., Ramani, A., Markov, I.L., Sakallah, K.A.: Solving difficult SAT instances in the
presence of symmetry. In: DAC 2002, pp. 731–736 (2002)

4. Großmann, P., Hölldobler, S., Manthey, N., Nachtigall, K., Opitz, J., Steinke, P.: Solving
periodic event scheduling problems with SAT. In: Jiang, H., Ding, W., Ali, M., Wu, X. (eds.)
IEA/AIE 2012. LNCS, vol. 7345, pp. 166–175. Springer, Heidelberg (2012)

5. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: engineering an
efficient SAT solver. In: Proc. 38th Annual Design Automation Conference, DAC 2001, pp.
530–535 (2001)

Parallel Variable Elimination on CNF Formulas 73

6. Ryan, L.O.: Efficient algorithms for clause learning SAT solvers. Master’s thesis, Simon
Fraser University, Canada (2004)

7. Hölldobler, S., Manthey, N., Saptawijaya, A.: Improving resource-unaware SAT solvers. In:
Fermüller, C.G., Voronkov, A. (eds.) LPAR-17. LNCS, vol. 6397, pp. 519–534. Springer,
Heidelberg (2010)

8. Audemard, G., Simon, L.: Predicting learnt clauses quality in modern SAT solvers. In: Proc.
21st Int. Joint Conf. on Artifical Intelligence, IJCAI 2009, pp. 399–404 (2009)

9. Huang, J.: The effect of restarts on the efficiency of clause learning. In: Proc. 20th Interna-
tional Joint Conference on Artifical Intelligence, IJCAI 2007, pp. 2318–2323 (2007)

10. Belov, A., Järvisalo, M., Marques-Silva, J.: Formula preprocessing in mus extraction. In:
Piterman, N., Smolka, S.A. (eds.) TACAS 2013 (ETAPS 2013). LNCS, vol. 7795, pp. 108–
123. Springer, Heidelberg (2013)

11. Nadel, A., Ryvchin, V., Strichman, O.: Preprocessing in incremental sat. In: Cimatti, A.,
Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 256–269. Springer, Heidelberg (2012)

12. Manthey, N., Heule, M.J.H., Biere, A.: Automated reencoding of boolean formulas. In: Biere,
A., Nahir, A., Vos, T. (eds.) HVC 2012. LNCS, vol. 7857, pp. 102–117. Springer, Heidelberg
(2013)

13. Manthey, N.: Coprocessor 2.0: a flexible CNF simplifier. In: Cimatti, A., Sebastiani, R. (eds.)
SAT 2012. LNCS, vol. 7317, pp. 436–441. Springer, Heidelberg (2012)

14. Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability. Frontiers
in Artificial Intelligence and Applications, vol. 185. IOS Press (2009)

15. Cook, S.A.: The complexity of theorem-proving procedures. In: Proc. 3rd Annual ACM
Symposium on Theory of Computing, pp. 151–158 (1971)

16. Hoos, H., Stützle, T.: Stochastic Local Search. Morgan Kaufmann / Elsevier, San Francisco
(2005)

17. Coffman, E.G., Elphick, M., Shoshani, A.: System deadlocks. ACM Comput. Surv. 3(2),
67–78 (1971)

18. Eén, N., Biere, A.: Effective preprocessing in SAT through variable and clause elimination.
In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 61–75. Springer, Heidelberg
(2005)

19. Järvisalo, M., Biere, A., Heule, M.: Blocked clause elimination. In: Esparza, J., Majumdar,
R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 129–144. Springer, Heidelberg (2010)

20. Van Gelder, A.: Toward leaner binary-clause reasoning in a satisfiability solver. Annals of
Mathematics and Artificial Intelligence 43(1-4), 239–253 (2005)

21. Lynce, I., Marques-Silva, J.: Probing-Based Preprocessing Techniques for Propositional Sat-
isfiability. In: Proc. 15th IEEE International Conference on Tools with Artificial Intelligence,
ICTAI 2003, pp. 105–110 (2003)

22. Tseitin, G.S.: On the complexity of derivations in propositional calculus. In: Slisenko, A.O.
(ed.) Studies in Constructive Mathematics and Mathematical Logic, pp. 115–125. Consul-
tants Bureau, New York (1970)

23. Balint, A., Manthey, N.: Boosting the Performance of SLS and CDCL Solvers by Preproces-
sor Tuning. In: Pragmatics of SAT (POS 2013) (2013)

24. Hölldobler, S., Manthey, N., Nguyen, V., Stecklina, J., Steinke, P.: A short overview on mod-
ern parallel SAT-solvers. In: Wasito, I., Hasibuan, Z., Suhartanto, H. (eds.) Proc. of the Inter-
national Conference on Advanced Computer Science and Information Systems, pp. 201–206
(2001) ISBN 978-979-1421-11-9

25. Martins, R., Manquinho, V., Lynce, I.: An overview of parallel SAT solving. Con-
straints 17(3), 304–347 (2012)

26. Garey, M.R., Johnson, D.S., Stockmeyer, L.: Some simplified NP-complete problems. In:
Proc. Sixth Annual ACM Symposium on Theory of Computing, STOC 1974, pp. 47–63
(1974)

Agent-Based Multimodal Transport Planning

in Dynamic Environments

Christoph Greulich1, Stefan Edelkamp2, and Max Gath2

1 International Graduate School for Dynamics in Logistics
2 Institute for Artificial Intelligence
University of Bremen, Germany

{greulich,edelkamp,mgath}@tzi.de

Abstract. The development and maintenance of traffic concepts in ur-
ban districts is expensive and leads to high investments for altering
transport infrastructures or for the acquisition of new resources. We
present an agent-based approach for modeling, simulation, evaluation,
and optimization of public transport systems by introducing a dynamic
microscopic model. Actors of varying stakeholders are represented by
intelligent agents. While describing the inter-agent communication and
their individual behaviors, the focus is on the implementation of infor-
mation systems for traveler agents as well as on the matching between
open source geographic information systems, and standardized transport
schedules provided by the Association of German Transport Companies.
The performance, efficiency, and limitations of the system are evaluated
within the public transport infrastructure of Bremen. We discuss the
effects of passengers’ behaviors to the entire transport network and in-
vestigate the system’s flexibility as well as consequences of incidents in
travel plans.

1 Introduction

Public transport networks (PTN) were introduced to urban regions in the 19th
century [6] and underwent radical changes throughout history. The development
of combustion engines and the discovery of electricity had huge influence on the
means of public transport. Optimization of such PTNs grew into a diversified re-
search area which ranges from developing optimization processes [14] to analysis
of passenger behavior [2, 4, 7].

Applying new traffic concepts or changes to a given PTN or the infrastruc-
ture of an urban region can be very expensive. Several authors approach the
evaluation of those changes by agent-based simulation of PTNs [8,10,11]. A cru-
cial part of the simulation-based approach is multimodal route planning which
considers various means of public and individual transportation. Unfortunately,
multimodal route planning using public transportation (e.g., buses, trams, met-
ros) and individual transportation (e.g., cars, bikes, or foot) requires an accurate
linkage of the street map to the one for public transportation. Therefore, pre-
vious approaches have been limited to a specific area, such as Belfort [11] or
Bangalore [8].

I.J. Timm and M. Thimm (Eds.): KI 2013, LNAI 8077, pp. 74–85, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Agent-Based Multimodal Transport Planning in Dynamic Environments 75

Even though publicly available and community-edited maps often contain in-
formation on stops and travel routes for public transportation, in multimodal
route planning most frequently the resources of the two are diverse, especially if
exact time scheduling constraints are involved. Timetables for public transporta-
tion units are, e.g., extracted from public transport company (PTC) databases
and geo-located to the maps.

While this problem is conceptually easy, real-word challenges for the map-
ping include varying wordings of stops, and missing or reduced line information,
where an line is a sequence of stops. Moreover, given geo-coordinates may not
distinguish between multiple locations of stops for diverse travel directions at
crossings. To resolve various namings for the geo-location and matching problem,
we applied a generalization of the Needleman-Wunsch [13] algorithm for com-
puting the alignment of genome strings. The layered algorithm is implemented
in a database query language. Similarity matrices are extracted from a low-level
approximate string matching, while the top-level alignment compares every two
different lines passing a certain stop.

Inferred timetables are additionally fed into a public transport information
system providing route information for individual passenger agents. They take
the information as a guideline to plan their travel. The information system
supports several implementations for shortest route queries.

The bijection between public transport and street map data combined with
time-tabling information on travel and waiting times of mobile vehicles enables
realistic travel simulation. Since the considered scenario provides a natural map-
ping of traffic stakeholder to software agents, we apply our multiagent-based
simulation framework PlaSMA for evaluation. This enables fine-grained model-
ing of individual traffic participants on real-world transport infrastructures.

2 Simulation Model

To reach their individual goals, the agent-based simulation model contains three
types of agents that interact with each other as well as with the environment. The
transport infrastructure of the simulation environment is modeled as a directed
graph. Nodes represent traffic junctions, dead ends, or stops of the PTN, while
edges represent different types of ways, e.g., roads, motorways, and trails.

The PublicTransportCompany-Agent (PTC-Agent) receives a timetable upon
creation. This timetable contains all departures and arrivals of every line of its
fleet. According to the given timetable, the PTC-Agent creates Vehicle-Agents
having a specific timetable for the journey from the first to the last stop of the
line. In addition, the PTC-Agent provides a public transport information system
for answering transport requests of potential passengers. To reduce communi-
cation, transportation contracts will be concluded between Traveler-Agents and
PTC-Agents directly. Upon creation, the Vehicle-Agent drives its tour accord-
ing to the timetable. Traveler-Agents are loaded or unloaded at stops, depending
on their destination and their contract status. Finally, the Traveler-Agent tries
to determine the most satisfying traveling option between its current position

76 C. Greulich, S. Edelkamp, and M. Gath

and its destination. The goal of the Traveler-Agent is to find the route with
the earliest arrival time. If the distance between the origin and destination is
above a predefined threshold, the Traveler-Agent avoids walking and acquires
alternatives from the PTC-Agent. It reacts to problems (e.g., missed connec-
tions or inadmissible delays) by replanning which implies acquiring new alter-
native routes to reach the destination. The simulation model has already been
introduced in [8].

3 Matching Data Sets

Since the simulation model is independent from the environment, the infrastruc-
ture and the simulated PTN can be exchanged easily. The underlying PlaSMA
simulation platform1 supports the import of OpenStreetMap2 (OSM) datasets.
These datasets contain PTN-related information, such as the public transport
lines as well as the positions and names of their stops. Due to the fact that
data is added to OSM manually, it is not guaranteed that the geographic in-
formation system is complete and accurate. Therefore, recent changes to the
infrastructure or the PTN may not been transfered and stops or lines may be
missing or tagged with wrong coordinates. Unfortunately, OSM does not provide
information about the timetable of each line.

On the other hand, data sets of PTCs essentially consist of timetables. The
Association of German Transport Companies (VDV) introduced standardized
data models for the storage of PTN-related information [16]. The standard allows
but not necessarily requires the storage of geographical information for each stop.
Therefore, the operating data of a PTC does not provide enough information
to map the stops’ IDs to their geographical position which is necessary for an
accurate simulation model.

Consequently, the mapping of street map data and the PTCs own timetable
data is an essential problem as illustrated in Fig. 1. Names and identifiers of
various stops and lines in each data set may vary significantly. Even if stops
have the same names stops may form a stop area and, therefore, share the same
name, e.g., two stops on opposite sides of the street. As a result, a name-to-name
matching approach is not applicable. A solution is to distinguish the stops of a
stop area by identifying their associated lines.

The similarity of two lines is given by the similarity of their stops and their
respective indices alike. Finding pairs of two lines (one from each data set) allows
to determine pairs of stops. Thus, each stop position in the street map can be
mapped to the stop identifier in the PTC’s data set.

3.1 The Needleman-Wunsch Algorithm

The Needleman-Wunsch algorithm [13] has originally been designed to align two
nucleotide or peptide sequences but is commonly used to solve string alignment

1 http://plasma.informatik.uni-bremen.de
2 http://www.openstreetmap.org

http://plasma.informatik.uni-bremen.de
http://www.openstreetmap.org

Agent-Based Multimodal Transport Planning in Dynamic Environments 77

Fig. 1. Linkage of PTN information from two different data sets

problems. A similarity value S(x, y) specificies the similarity score of x and y,
where x, y ∈ Σ and Σ is the given alphabet.

The Needleman-Wunsch-algorithm computes a matrix M with a size of (|A|+
1) × (|B| + 1) where A and B are two strings over Σ. The matrix contains a
column for each element of a string A = a1 . . . an and a row j for each element
of a string B = b1 . . . bn. Additionally, the first row and column is reserved
for multiples of the gap penalty p. Although the algorithm relies on matrix
recurrences it can be solved in time O(nm) by dynamic programming [9]. For
Mi,0 = p · i, i ∈ {1, . . . , n} and M0,j = p · j, j ∈ {1, . . . ,m} we have

Mi,j = max

⎛
⎝Mi−1,j−1 + S(ai, bj),

Mi,j−1 + p,
Mi+1,j + p

⎞
⎠ , i, j ∈ {1, . . . , n} × {1, . . . ,m}

3.2 Stop and Line Matching

We apply the above algorithm to the given matching problem. Let I be a set of
lines and E ,F ⊂ I. In order to align two lines E ∈ E and F ∈ F of two different
data sets E and F , the similarity matrix S is substituted by the function s(e, f),
which determines the similarity between two stops e ∈ E and f ∈ F by the
comparison of their names. For solving the corresponding alignment problem
to compute s(e, f), we apply the trigram matching algorithm which counts the
number of trigrams (sequences of 3 consecutive characters) that are included in
both stop names to determine similarity [15].

Additionally, geographical information is taken into account, e.g., the distance
between e and f . The value of the gap penalty p a threshold and depends on the

78 C. Greulich, S. Edelkamp, and M. Gath

implementation of the similarity function. The penalty score for creating a gap
must be greater than the similarity score of two stops with an unlikely match.

For each line of the PTC data set, we determine the most similar line from the
OSM data set. The resulting Needleman-Wunsch matrix of the best matching
pair is saved. After the investigation of all line pairs, pairs of stops are computed
by applying a backtracking algorithm to the Needleman-Wunsch-matrices of
the line pairs. As a result, the node IDs of stops from the OSM data set are
linked to the equivalent stop in the PTC’s data set. Algorithms 1.1 to 1.3 show
implementations of the necessary functions in pseudo code.

function FindMatchingLines(E ,F)
R ← ∅
for each E ∈ E do

P.Line ← E
Similarity ← 0
for each F ∈ F do

M ← createNeedlemanWunschMatrix(E,F)
if M|E|,|F | > Similarity then

P.BestMatch ← F
P.BestMatrix ← M
Similarity ← M|E|,|F |

R ← R ∪ {P}
return R

Algorithm 1.1. Determining best matching lines of two data sets E and F

function createNeedlemanWunschMatrix(E, F)
M is a matrix with the size of (|E|+ 1)× (|F |+ 1)
p is the penalty for skipping an element
for i = 0 to |E| do

Mi,0 = i · p
for j = 0 to |F | do

M0,j = j · p
for i = 1 to |E| do

for j = 1 to |F | do

Mi,j ← max

⎛
⎝
Mi−1,j−1+ s(ei, fj) ,

Mi−1,j + p,
Mi,j−1 + p

⎞
⎠

return M

Algorithm 1.2. The Needleman-Wunsch Algorithm

Agent-Based Multimodal Transport Planning in Dynamic Environments 79

function createStopPairs(E, F , M)
p is the penalty for skipping an element
i ← |E|
j ← |F |
while i > 0 or j > 0 do

if Mi,j = Mi−1,j−1+ s(ei, fj) then
memorizePair(ei, fj)
i ← i− 1
j ← j − 1

else if Mi,j = Mi−1,j + p then
i ← i− 1

else if Mi,j = Mi,j−1 + p then
j ← j − 1

Algorithm 1.3. Backtracking for the Needleman-Wunsch Algorithm

4 Public Transport Information Systems

In order to satisfy transport requests of customers and to determine the route
with the earliest arrival time, we implemented a public transport information
system solving the Earliest-Arrival-Problem (EAP) [12] with stop-specific trans-
fer times. In addition, the route which minimizes the number of transfers should
be preferred if several routes arrive at the same time. Moreover, undesired lines
have to be excluded. Next, we present three different approaches for solving the
EAP. The search algorithms extend the well-known Dijkstra algorithm [5].

4.1 Time-Expanded Graph

We extend the time-expanded graph (TEG) approach [12]. Let S denote the set
of stop areas and L denote the set of lines. A time-expanded graph includes a
set of nodes N and a set of edges E. Each node (l, s) ∈ (L × S) represents the
arrival or departure of an line l ∈ L at a stop area s ∈ S. Edges connecting
nodes represent transport routes of vehicles between stops as well as transfers
of passengers at a certain stop area. The weights of edges determine the travel
time. As a result, a shortest-path search is applied to satisfy a certain transport
request from a start node to a goal node. To fulfill the requirements for passenger
transport, the search is altered: edges which are served by undesired lines are
excluded and edges that require passenger transfers are only considered if the
current line does not reach the stop area within the same time. Consequently,
these conditions ensure that routes with more transfers are avoided if the arriving
time is equal to a route with less transfers.

4.2 Time-Dependent Graph

Within a time-dependent graph (TDG) [12] each stop area is represented by
only one node. Two nodes are linked by exactly one edge if there is at least one

80 C. Greulich, S. Edelkamp, and M. Gath

function findShortestPath(nsource, nsink , t0, I , X)
M ← {nsource}
setTimeDistance(nsource, t0)
setSubEdge(nsource, null)
while M �= ∅ do

u ← getNodeWithMinDistance(M)
M ← M\{u}
if u = nsink then

return createPath(u)

eu ← getSubEdge(u)
for all E ∈ getEdges(u) do

v ← sink(E)
for all e ∈ E do

ddeparture ← departure(e) - getTimeDistance(u)
if ((I = ∅ ∨ line(e) ∈ I)∧ line(e) /∈ X)∧

((eu = null ∧arrival(e)< getTimeDistance(v)) ∨
(eu �= null ∧arrival(e)< getTimeDistance(v) ∧

line(eu) �= line(e) ∧
ddeparture ≥ getTransferTime(u)) ∨

(eu �= null ∧arrival(e)≤ getTimeDistance(v) ∧
line(eu) = line(e))) then

if v = nsource then
setSubEdge(sink(E), null)

else
setSubEdge(sink(E), e)

setTimeDistance(sink(E), d)
M ← M ∪ {sink(E)}

return new empty path

Algorithm 1.4. Implementation of the Shortest-Path Algorithm on a TDG

direct connection between each other. As a result, the search space is decreased
significantly in contrast to a TEG. However, each edge contains several sub-
edges with specific arrival and departure times as well as a dedicated line. The
shortest-path search has to be adapted to the sub-edge graph structure. The
pseudo code is shown in Algorithm 1.4.

Input parameters next to the start and goal node include the start time t0,
a set of allowed lines I, and a set of lines X which should be avoided. If I is
an empty set, all lines which are not in X are considered. The shortest path
search for a TDG considers only predecessor edges instead of predecessor nodes.
The functions setSubEdge(A, e) and getSubEdge(A) save and return the
best sub-edge e to the node A. The algorithm chooses the node with the short-
est distance and iterates over all outgoing edges including their sub-edges. The
procedure arrival(e) determines the estimated arrival time at the node that
is reachable by e. In addition, the distance between nodes is computed by the
travel time from node A to node B. In order to prefer routes with the earliest
time of arrival, conditions for choosing the best edge are imposed.

Agent-Based Multimodal Transport Planning in Dynamic Environments 81

4.3 Reduced Time-Expanded Graph

In a time-dependent graph (TDG), the graph is reduced and only the shortest-
route with the earliest departure time from one node to another is considered.
However, this may result in undesirable transfers between lines. Thus, we reduce
the number of edges of the TEG without cutting relevant solutions. Let (v, u)
denote an edge from node v ∈ N to node u ∈ N , si ∈ S the stop at node i ∈ N ,
and ti the time of arrival or departure. While the classic TEG contains all edges
(v, u) with sv = su ∧ tv ≤ tu, the reduced TEG includes only the edge (v, u)
representing the next departure per line lu ∈ L at stop u:

sv = su ∧ tv = tu ∧ (¬∃u′ : u′ �= u ∧ sv = su′ ∧ tv ≤ tu′ ∧ tu′ < tu ∧ lu′ = lu).

5 Evaluation

The BSAG3, the local PTC of Bremen (Germany), provided a set of operating
data which meets the VDV-standard. The monday schedule of the PTC data set
contains 116 lines. Lines may have a set of variants, e.g., for the opposite direc-
tion or for shorter/alternative routes. A lot of these variants are not accessible
for passengers but merely for service maintenance and can be ignored for the
purpose of simulation. Additionally, each line variation may have not one but
several timetables depending on the current time of day. This results in 560 line
timetables. More than 1,990 stops are served by these lines.

The PTC data set is matched against an OSM data set which contains 76 line
variants and a variety of 768 stops. The OSM data set does not usually contain
more than two variants of the same line (one for each direction). Unfortunately,
several information in the OSM is outdated due to recent changes to infras-
tructure and PTN. Hence, the OSM data set contains stops that are not served
anymore by any line in the PTC data set. Additionally, not all PTN information
could be exported from the OSM data set. Several lines and stops are not tagged
correctly or by an outdated tagging standard that is neither compatible with the
new one, nor with the applied importer software.

However, 65 line variations from OSM could be successfully linked to lines
from the PTC data set and 549 stops could be linked to their respective node
ID. Hence, 314 of 560 line timetables can be simulated without any manual
modeling. The compressed infrastructure itself is represented by a graph with
26,121 nodes and 59,950 edges.

Based on this data, a series of experiments was run to determine the capa-
bility and limitations of the simulation model and its implementation. In each
experiment, we simulated a PTN with a 24 hours monday schedule. The start
and destination locations of each traveler are chosen randomly. Therefore, the
simulation results do not reflect real world utilization yet. In future work, varying
population density and areas which are frequently visited have to be taken into
account. All experiments are computed on a dedicated machine with 8 dual-core
AMD processors and 64 GB of RAM.

3 http://www.bsag.de

http://www.bsag.de

82 C. Greulich, S. Edelkamp, and M. Gath

5.1 Ressource Limitations and Scalability

According to real world data, about 281,000 passengers are transported per day
by the BSAG [1]. Therefore, nearly 2,000 passengers have to be created every
ten minutes in order to approximate real world statistics. However, no more
than about 7,000 active agents can be handled by the given machine due to a
lack of memory. Another experiment with 200 passengers every ten minutes was
aborted due to the same memory issues after about 90% of the simulation was
already completed. Hence, a simulation of 100 passengers every ten minutes is
manageable which corresponds to a scale of 1:20.

In the experiments, varying distributions (e.g. due to rush hours) have not
been taken into account. It has to be considered that peak values may be much
greater if a more accurate distribution is applied. Therefore, memory usage has
to be reduced significantly. This may be achieved by reducing the number of
agents without reducing the number of passengers.

5.2 Comparison of Information Systems

Both computing time and quality of results vary between the three different
graph types due to the diverse size and complexity. Creating a complete TEG
for the PTN timetable took 106.5 seconds. Furthermore, a reduced TEG was
created within 10.8 seconds. The creation of a TDG took about 0.1 seconds.

The TDG always proved itself to be the fastest variant. The results of five
randomly chosen transport requests are shown in Table 1. To generate more
representative numbers, experiments on a scale of 1:100 have been run with each
graph type. However, the TEG-experiment was aborted manually after about 36
hours and a simulation progress of less than 40%. In comparison, finishing the
experiment took 14.3 hours with the reduced TEG and only 0.5 hours with the
TDG. Each one of the 2,863 transport requests has been solved in 17.2 seconds
with the reduced TEG and in 0.006 seconds with the TDG on average.

Table 1. Computing time of randomly chosen transport requests

Request (time 08:00) TEG red. TEG TDG

Kriegerdenkmal → Hasenb. Jachthafen 146.184s 2.995s 0.076s
Hasenb. Jachthafen → Sebaldsbrück 243.908s 6.553s 0.105s
Groepelingen → Polizeipraesidium 182.154s 4.126s 0.088s
Waller Friedhof → Ricarda-Huch-Strasse 124.414s 2.307s 0.079s
Roland-Center → Julius-Brecht-Allee 62.868s 0.641s 0.064s

Average 151.905s 3.324s 0.082s

Even though the recuded TEG variant is significantly faster than the complete
TEG, both variants produce identical results. Unfortunately, the solution qual-
ity varies between the TEG variants and the TDG. All variants solve the EAP
correctly by computing a shortest path with the ideal arrival time. However, the

Agent-Based Multimodal Transport Planning in Dynamic Environments 83

0

100

200

300

400

500

600

700

800

900

4 1 24 3 10 2 63 6 62 22 26 21 27 33 37 34 8 25 28 5

N
um

be
r o

f P
as

se
ng

er
s p

er
 D

ay

Most frequently used bus/tram lines (by ID)

(0/20) (6/20) (10/20) (20/20)Distribution of replanning ability:

0

100

200

300

400

500

600

700

800

900

4 1 24 3 10 2 63 6 62 22 26 21 27 33 37 34 8 25 28 5

N
um

be
r o

f P
as

se
ng

er
s p

er
 D

ay

Most frequently used bus/tram lines (by ID)

(0/20) (6/20) (10/20) (20/20)Distribution of replanning ability:

Fig. 2. Line utilization with diverse distribution of replanning ability

TDG is not capable of minimizing the number of transfers while searching for
a shortest path. Consequently, passengers would not choose all of the computed
routes based on a TDG because they contain unnecessary transfers a real pas-
senger would try to avoid. From this point of view, the reduced TEG variant is
the best choice for a simulation of passenger behavior, even though it is not the
fastest variant.

5.3 Application: Effects of Passengers’ Behaviors to the PTN

In 2013, 40% of Germans already own a smartphone [3]. Hence, two out of five
Germans are able to revise their current traveling plans in case of unexpected
disruptions by looking up alternative options. As a result, passengers can switch
lines more often in case of delays and disruptions. This affects the utilization
of the failed line and other lines alike. The goal of public transport providers

Fig. 3. Screenshot of the running simulation software

84 C. Greulich, S. Edelkamp, and M. Gath

is to anticipate the passengers’ behaviors in predictable situations (e.g., road
construction or public demonstrations) as well as in unexpected situations (e.g.,
in case of a fire or in natural disasters) to adapt timetables and schedules ap-
propriately. The model enables strategy and scenario analysis.

Several performance indicators, such as the utilization of each line or depar-
tures and arrivals at each stop are measured by the simulation system. The share
of replanning agents and the probability of line failure are given by simulation
parameters. As an example, we set up a series of experiments with a high failure
possibility of 33% for every vehicle and a diverse distribution of replanning abil-
ity (0%, 30%, 50%, 100%). Fig. 2 shows the utilization of the BSAG’s frequently
used lines according to that experiment. Though the chosen scenario setup is
rather generic, it is also possible to simulate specific situations where a only cer-
tain lines fail. Therefore, the PTC can predict passenger behavior by applying
the simulation model to a specific problem. Fig. 3 shows the running simulation
software.

6 Conclusion and Outlook

In this paper we presented an adaptation of the Needleman-Wunsch Algorithm in
order to match line information from VDV-compliant data sets to excerpts from
the OSM. The approach allows the simulation model to be applied to any com-
patible combination of PTN and infrastructure. Furthermore, real world data
sets of the PTN of Bremen (Germany) were used as an example to determine
bottlenecks of a microscopic simulation of PTNs. One bottleneck is the available
RAM due to the large number of more than 6,000 concurrently active agents.
Another bottleneck is the graph-based approach to intermodal routing. We pin-
pointed by comparison that EAPs could be solved by complete TEG, reduced
TEG, and TDG alike. However, while TDG is a lot faster than both TEG vari-
ants, results of the TDG are not always likely to resemble the routes a human
would choose. On the other hand, the complete TEG is too slow to be applied
to a simulation on larger PTN. The reduced variant of the TEG provides an
acceptable tradeoff between calculation time and the quality of results.

In order to handle a more fine-grained scale of the simulation and larger PTNs,
we are interested in increasing the efficiency of the information system (e.g.,
by adapting a recently developed K-shortest-paths search for TDGs [17] or by
grouping passengers which have similar or identical interests and, therefore, can
be represented by one single agent). Further research will additionally focus on
the integration of traffic simulation within our framework as well as on modeling
and simulation of unexpected changes to the infrastructure.

Acknowledgement. The presented research was partially funded by the Ger-
man Research Foundation (DFG) within the Collaborative Research Centre 637
Autonomous Cooperating Logistic Processes (SFB 637) and the project Au-
tonomous Courier and Express Services (HE 989/14-1) at the University of
Bremen, Germany. We thank the BSAG for providing real-world timetable data.

Agent-Based Multimodal Transport Planning in Dynamic Environments 85

References

1. Bremer Straßenbahn AG: Blickpunkte. Geschäftsbericht 2011 (2012)
2. Buehler, R.: Determinants of transport mode choice: a comparison of Germany

and the USA. Journal of Transport Geography 19(4), 644–657 (2011)
3. Bundesverband Informationswirtschaft, Telekommunikation und neue Medien e.V.

(BITKOM): Auch Ältere steigen auf Smartphones um. 40 Prozent aller Deutschen
haben ein Smartphone (2013)

4. Collins, C.M., Chambers, S.M.: Psychological and situational influences on
commuter-transport-mode choice. Env. and Beh. 37(5), 640–661 (2005)

5. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische
Mathematik 1, 269–271 (1959)

6. Divall, C., Schmucki, B.: Introduction: Technology (sub)urban development and
the social construction of urban transport. In: Suburbanizing The Masses. Public
Transport and Urban Development in Historical Perspective. Ashgate (2003)

7. de Donnea, F.: Consumer behaviour, transport mode choice and value of time:
Some micro-economic models. Regional and Urban Economics 1(4), 55–382 (1972)

8. Greulich, C., Edelkamp, S., Gath, M., Warden, T., Humann, M., Herzog, O.,
Sitharam, T.: Enhanced shortest path computation for multiagent-based inter-
modal transport planning in dynamic environments. In: ICAART (2), pp. 324–329
(2013)

9. Gusfield, D.: Algorithms on Strings, Trees and Sequences. Cambridge University
Press (1997)

10. Klügl, F., Rindsfüser, G.: Agent-based route (and mode) choice simulation in real-
world networks. In: WI-IAT, vol. 2, pp. 22–29 (2011)

11. Meignan, D., Simonin, O., Koukam, A.: Multiagent approach for simulation and
evaluation of urban bus networks. In: AAMAS, pp. 50–56 (2006)

12. Müller-Hannemann, M., Schulz, F., Wagner, D., Zaroliagis, C.: Timetable informa-
tion: Models and algorithms. In: Geraets, F., Kroon, L.G., Schoebel, A., Wagner,
D., Zaroliagis, C.D. (eds.) Railway Optimization 2004. LNCS, vol. 4359, pp. 67–90.
Springer, Heidelberg (2007)

13. Needleman, S.B., Wunsch, C.D.: A general method applicable to the search for
similarities in the amino acid sequence of two proteins. Journal of Molecular Biol-
ogy 48(3), 443–453 (1970)

14. van Nes, R., Hamerslag, R., Immers, B.H.: Design of public transport networks.
Transportation Research Record 1202, 74–83 (1988)

15. Tardelli, A.O., Anção, M.S., Packer, A.L., Sigulem, D.: An implementation of the
trigram phrase matching method for text similarity problems. In: Bos, L., Laxmi-
narayan, S., Marsh, A. (eds.) Medical and Care Compunetics 1, 1st edn., vol. 103.
IOS Press (2004)

16. Verband Deutscher Verkehrsunternehmen: ÖPNV-Datenmodell 5.0.
“Schnittstellen-Initiative”. VDV Standardschnittstelle. Liniennetz/Fahrplan.
Version: 1.4 (2008)

17. Yang, Y., Wang, S., Hu, X., Li, J., Xu, B.: A modified k-shortest paths algorithm for
solving the earliest arrival problem on the time-dependent model of transportation
systems. In: International MultiConference of Engineers and Computer Scientists,
pp. 1562–1567 (2012)

On GPU-Based Nearest Neighbor Queries

for Large-Scale Photometric Catalogs
in Astronomy

Justin Heinermann1, Oliver Kramer1, Kai Lars Polsterer2, and Fabian Gieseke3

1 Department of Computing Science
University of Oldenburg, 26111 Oldenburg, Germany

{justin.philipp.heinermann,oliver.kramer}@uni-oldenburg.de
2 Faculty of Physics and Astronomy

Ruhr-University Bochum, 44801 Bochum, Germany
polsterer@astro.rub.de

3 Department of Computer Science
University of Copenhagen, 2100 Copenhagen, Denmark

fabian.gieseke@diku.dk

Abstract. Nowadays astronomical catalogs contain patterns of hun-
dreds of millions of objects with data volumes in the terabyte range.
Upcoming projects will gather such patterns for several billions of objects
with peta- and exabytes of data. From a machine learning point of view,
these settings often yield unsupervised, semi-supervised, or fully super-
vised tasks, with large training and huge test sets. Recent studies have
demonstrated the effectiveness of prototype-based learning schemes such
as simple nearest neighbor models. However, although being among the
most computationally efficient methods for such settings (if implemented
via spatial data structures), applying these models on all remaining pat-
terns in a given catalog can easily take hours or even days. In this work,
we investigate the practical effectiveness of GPU-based approaches to ac-
celerate such nearest neighbor queries in this context. Our experiments
indicate that carefully tuned implementations of spatial search structures
for such multi-core devices can significantly reduce the practical runtime.
This renders the resulting frameworks an important algorithmic tool for
current and upcoming data analyses in astronomy.

1 Motivation

Modern astronomical surveys such as the Sloan Digital Sky Survey (SDSS) [16]
gather terabytes of data. Upcoming projects like the Large Synoptic Sky Tele-
scope (LSST) [8] will produce such data volumes per night and the anticipated
overall catalogs will encompass data in the peta- and exabyte range. Naturally,
such big data scenarios render a manual data analysis impossible and machine
learning techniques have already been identified as “increasingly essential in the
era of data-intensive astronomy” [4]. Among the most popular types of data are
photometric patterns [16], which stem from grayscale images taken at different

I.J. Timm and M. Thimm (Eds.): KI 2013, LNAI 8077, pp. 86–97, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

On GPU-Based Nearest Neighbor Queries in Astronomy 87

(a) Photometric Data

0
5
10
15
20
25
30
35
40

3000 4000 5000 6000 7000 8000 9000

F
lu
x
(1

0
−
1
7
e
rg

c
m

2
s
Å

)

Wavelength (Å)

u

g

r i

z

(b) Spectroscopic Data

Fig. 1. The telescope of the SDSS [16] gathers both photometric and spectroscopic
data. Photometric data are given in terms of grayscale images, which are extracted
via five filters covering different wavelength ranges (called the u, g, r, i, and z bands).
Such data can be composed to (single) RGB images, see Figure (a). For a small subset
of the detected objects (white squares), detailed follow-up observations are made in
terms of spectra, see Figure (b).

wavelength ranges. One group of these photometric features are the so-called
magnitudes, which depict logarithmic measures of the brightness. From a ma-
chine learning point of view, these features usually lead to low-dimensional fea-
ture spaces (e.g., R4 or R5). For a small subset of objects, detailed information
in terms of spectra is given, see Figure 1. One of the main challenges in astron-
omy is to detect new and rare objects in the set of photometric objects that to
do not yet have an associated spectrum. Hence, one aims at selecting valuable,
yet unlabeled objects for spectroscopic follow-up observations, based on training
sets that consist of photometric patterns with associated spectra.

1.1 Big Training and Huge Test Data

Given the data in the current data release of the SDSS (DR9) [16], for instance,
requires building the corresponding models on training sets containing up to
2.3 million objects. Further, the resulting models have to be (recurrently) ap-
plied on the massive amount of remaining photometric objects in the catalog
(about one billion astronomical objects). Recent studies [14] have shown that
prototype-based learning frameworks like nearest neighbor regression models
depict excellent learning frameworks, often out-competing other sophisticated
schemes like support vector machines or neural networks [7].

A crucial ingredient of such nearest neighbor models is to take as many as
possible of the available training patterns into account to obtain accurate local
estimates of the conditional probabilities. While well-known spatial data struc-
tures such as k-d trees [2] can be used to reduce the runtime needed per pattern
to O(log n) in practice, the implicit constants hidden in the big-O-notation can
still render the processing of large test sets very time-consuming. For instance,

88 J. Heinermann et al.

applying a nearest neighbor model that is based on two million training patterns
on a test set of size one billion can take days on a standard desktop machine.1

1.2 Contribution: Speedy Testing

In contrast to the particular application of such models, a simple scan over
the test data can usually be performed in minutes only (due to the data being
stored consecutively on disk). In this work, we aim at investigating the potential
of graphics processing units (GPUs) to accelerate the testing phase of nearest
neighbor models in this context. For this sake, we consider several implemen-
tations of the classical k-d tree data structure [2] on GPUs and show how to
shorten the influence of undesired side-effects that can occur when making use
of such multi-core devices. The final nearest neighbor implementation reduces
the runtime needed per test instance by an order of magnitude and, thus, demon-
strates the potential of GPUs for the data analysis of large-scale photometric
catalogs in astronomy.

2 Background

We start by providing the background related to GPUs and nearest neighbor
queries that will be of relevance for the remainder of this work.

2.1 Graphics Processing Units

GPUs have become powerful parallel processing devices that can also be used
for general purpose computations. Typical examples, in which GPUs usually
outperform CPUs, are image processing tasks or numerical computations like
matrix multiplication. In addition, developing code for GPUs has become much
easier since the hardware manufacturers offer toolkits such as nVidia CUDA and
AMD Stream, which provide high-level programming interfaces. Furthermore,
with programming languages like OpenCL, there exists hardware- and platform-
independent interfaces that are available for parallel computations using many-
and multi-core processors [10].

To develop efficient code for GPUs, one needs profound knowledge about
the architecture of the computing device at hand. Due to a lack of space, we
only introduce the basic principles that are needed for the remainder of this
work: GPUs, designed as highly parallel processors, consist of a large number of
cores (e.g., 384 cores on the nVidia Geforce GTX 650). Whereas CPUs exhibit

1 In the worst case, all leaves of a k-d tree need to be visited for a given query. However,
for low-dimensional feature spaces, a small number of leaves need to be checked in
practice, and this leads to the desired logarithmic runtime behavior. It is worth
pointing out, however, that the logarithmic runtime of such nearest neighbor models
needed per test query already depicts a very efficient way to process large test sets.
Other schemes like support vector models or neural networks (with a reasonable
amount of neurons) do not exhibit a better runtime behavior in practice.

On GPU-Based Nearest Neighbor Queries in Astronomy 89

complex control logic functions and large caches and are optimized with respect
to the efficiency of sequential programs, the GPU cores are designed for “simple”
tasks. The differences to CPUs include, for instance, the chip-design (of ALUs)
and a higher memory-bandwidth [9]. A GPU-based program consists of a host
program that runs on the CPU and a kernel program (or kernel for short).
The latter one is distributed to the cores of the GPU and run as threads, also
called kernel instances. The kernel programs are mostly based on the single
instruction multiple data-paradigm (SIMD), which means that all threads are
executing exactly the same instruction in one clock cycle, but are allowed to
access and process different pieces of data that are available in the memory of
the GPU.2 In addition, several restrictions are given when developing code for
GPUs (e.g., recursion is prohibited). Similar to standard memory hierarchies of
the host systems, a GPU exhibits a hierarchical memory layout with different
access times per memory type [10,12].

2.2 Nearest Neighbor Queries Revisited

A popular data mining technique are nearest neighbor models [7], which can be
used for various supervised learning tasks like classification or regression.3 For
supervised learning problems, one is usually given a labeled training set of the
form T = {(x1, y1), . . . , (xn, yn)} ⊂ Rd×R, and predictions for a query object x
are made by averaging the label information of the k nearest neighbors (kNN),
i.e., via

f(x) =
∑

xi∈Nk(x)

yi, (1)

where Nk denotes the set of indices for the k nearest neighbors in T . Thus, a
direct implementation of such a model given a test set S takes O(|S||T |d) time,
which can very time-consuming even given moderate-sized sets of patterns.

Due to its importance, the problem of finding nearest neighbors has gained
a lot of attention over the last decades: One of the most prominent ways to
accelerate such computations are spatial search structures like k-d trees [2] or
cover trees [3]. Another acceleration strategy is locality-sensitive hashing [1,15],
which aims at computing (1 + ε)-approximations (with high probability). The
latter type of schemes mostly address learning tasks in high-dimensional feature
spaces (for which the former spatial search structures usually do not yield any
speed-up anymore). Due to a lack of space, we refer to the literature for an
overview [1,15].

Several GPU-based schemes have been proposed for accelerating nearest neigh-
bor queries. In most cases, such approaches aim at providing a decent speed-up
for medium-sized data sets, but fail for large data sets. As an example, consider
the implementation proposed by Bustos et al. [5], which resorts to sophisticated
texture-image-techniques. An approach related to what is proposed in this work

2 More precisely, all threads of a work-group, which contains, e.g., 16 or 32 threads.
3 As pointed out by Hastie et al. [7], such a model “is often successful where each class
has many possible prototypes, and the decision boundary is very irregular”.

90 J. Heinermann et al.

Table 1. Runtime comparison of a brute-force approach for nearest neighbor queries
on a GPU (bfgpu) and on a CPU (bfcpu) as well as a k-d tree-enhanced version (kdcpu)
on a CPU using k = 10. The patterns for both the training and the test set of size |T |
and |S|, respectively, stem from a four-dimensional feature space, see Section 4.

|T | |S| bfgpu bfcpu kdcpu

50,000 50,000 0.751 347.625 0.882
500,000 500,000 68.864 - 13.586

is the k-d tree-traversal framework given by Nakasato [11], which is used to
compute the forces between particles. An interesting approach is proposed by
Garcia et al. [6]: Since matrix multiplications can be performed efficiently on
GPUs, they resort to corresponding (adapted) implementations to perform the
nearest neighbor search. The disadvantage of these schemes is that they cannot
be applied in the context of very large data sets as well due to their general
quadratic running time behavior and memory usage.

3 Accelerating the Testing Phase via GPUs

In the following, we will show how to accelerate nearest neighbor queries by
means of GPUs and k-d trees for the case of massive photometric catalogs. As
mentioned above, programming such parallel devices in an efficient way can
be very challenging. For the sake of demonstration, we provide details related
to a simple brute-force approach, followed by an efficient implementation of a
corresponding k-d tree approach. While the latter one already yields significant
speed-ups for the task at hand, we additionally demonstrate how to improve its
performance by a carefully selected layout of the underlying tree structure.

3.1 Brute-Force: Fast for Small Reference Sets

A direct implementation that makes use of GPUs is based on either distributing
the test queries to the different compute units or on distributing the computation
of the nearest neighbors in the training set for a single query. Thus, every test
instance is assigned to a thread that searches for the k nearest neighbors in
the given training set. Due to its simple conceptual layout, this approach can
be implemented extremely efficient on GPUs, as described by several authors
(see Section 2.1). As an example, consider the runtime results in Table 1: For
a medium-sized data set (top row), the brute-force scheme executed on a GPU
(bfgpu) outperforms its counterpart on the CPU (bfcpu) by far, and is even
faster than a well-tuned implementation that resorts to k-d trees (kdcpu) on
CPUs. However, this approach is not suited for the task at hand due to its
quadratic running time behavior (bottom row) and becomes inferior to spatial
loop-up strategies on CPUs. Thus, a desirable goal is the implementation of such
spatial search structures on GPUs, and that is addressed in the next sections.

On GPU-Based Nearest Neighbor Queries in Astronomy 91

3.2 Spatial Lookup on GPUs: Parallel Processing of k-d trees

A k-d tree is a well-known data structure to accelerate geometric problems in-
cluding nearest neighbor computations. In the following, we will describe both
the construction and layout of such a tree as well as the traversal on a GPU for
obtaining the nearest neighbors in parallel.

Construction Phase. A standard k-d tree is a balanced binary tree defined as
follows: The root of the tree T corresponds to all points and its two children
correspond to (almost) equal-sized subsets. Splitting the points into such subsets
is performed in a level-wise manner, starting from the root (level i = 0). For each
node v at level i, one resorts to the median in dimension i mod d to partition the
points of v into two subsets. The recursion stops as soon as a node v corresponds
to a singleton or as soon as a user-defined recursion level is reached. Since it takes
linear time to find a median, the construction of such a tree can be performed
in O(n logn) time for n patterns in Rd [2].

Memory Layout. In literature, several ways of representing such a data structure
can be found [2]. One way, which will be considered in the following, is to store
the median in each node v (thus consuming O(n) additional space in total).
Further, such a tree can be represented in a pointerless manner (necessary for a
GPU-based implementation): Here, the root is stored at index 0 and the children
of a node v with index i are stored at 2i+1 (left child) and at 2i+2 (right child).
Since the median is used to split points into subsets, the tree has a maximum
height of h = �logn�. Note that one can stop the recursion phase as soon as
a certain depth is reached (e.g. i = 10). In this case, a leaf corresponds to a
d-dimensional box and all points that are contained in this box.

For the nearest neighbor queries described below, we additionally sort the
points in-place per dimension i mod d while building the tree. This permits
an efficient access to the points that are stored consecutively in memory for
each leaf. Both, the array containing the median values as well as the reordered
(training) points, can be transferred from host system to the memory of the
GPU prior to the parallel nearest neighbor search, which is described next.

Parallel Nearest Neighbor Queries. Given an appropriately built k-d tree, one
can find the nearest neighbor for a given test query q ∈ Rd as follows: In the first
phase, the tree is traversed from top to bottom. For each level i and internal
node v with median m, one uses the distance d = qi − mi between q and
the corresponding splitting hyperplane to navigate to one of the children of v. If
d ≤ 0, the left child is processed in the next step, otherwise the right one. As soon
as a leaf is reached, one computes the distances between q and all points that are
stored in the leaf. In the second phase, one traverses the tree from bottom to top.
For each internal node v, one checks if the distance to the splitting hyperplane
is less than the distance to the best nearest neighbor candidate found so far.
If this is the case, then one recurses to the child that has not yet been visited.
Otherwise, one goes up to the parent of the current node. As soon as the root
has been reached (and both children have been processed), the recursive calls
stop. The generalization to finding the k nearest neighbors is straightforward.

92 J. Heinermann et al.

Instead of using the nearest point as intermediate candidate solution, one resorts
to the current k-th neighbor of q, see Bentley [2] for further details.

To efficiently process a large number of test queries in parallel, one can sim-
ply assign a thread to each query instance. Further, for computing the nearest
neighbors in a leaf of the tree, one can resort to a simple GPU-based brute-force
approach, see above.

3.3 Faster Processing of Parallel Queries

Compared to the effect of using k-d trees in a program on the CPU, the perfor-
mance gain reached by the approach presented in the previous section is not as
high as expected when considering O(log n) time complexity per query (i.e., a
direct parallel execution of such nearest neighbor queries does yield an optimal
performance gain). Possible reasons are (a) flow divergence and (b) non-optimal
memory access. The former issue is due to the SIMD architecture of a GPU,
which enforces all kernel instances of a workgroup to perform the same instruc-
tions simultaneously.4 The latter one describes various side-effects that can occur
when the kernel instances access shared memory resources such as local or global
memory (e.g., bank conflicts). Accessing the global memory can take many more
block cycles compared to size-limited on-chip registers. We address these difficul-
ties by proposing the following modifications to optimize the parallel processing
of k-d trees on GPUs:

1. Using private memory for test patterns: The standard way to transfer input
parameters to the kernel instances is to make use of the global memory
(which depicts the largest part of the overall memory, but is also the slowest
one). We analyzed the impact of using registers for the test instances. Each
entry is unique to one kernel instance, because one thread processes the
k-d tree for one test instance. Thus, every time the distance between the
test instance and some training instance is computed, only the private array
is accessed.

2. Using private memory for the nearest neighbors: During the execution of
each kernel instance, a list of the k nearest neighbors found so far has to be
updated. In case a training pattern in a leaf is closer to the corresponding test
instance than one of the points stored in this list, it has to be inserted, which
can result in up to k read- and write-operations. Further, the current k-th
nearest neighbor candidate is accessed multiple times during the traversal of
the top of the k-d tree (for finding the next leaf that needs to be checked).
Hence, to optimize the recurrent access to this list, we store the best k nearest
neighbor candidates in private memory as well.

3. Utilizing vector data types and operations: GPUs provide optimized oper-
ations for vector data types. As described below, we focus on a particular
four-dimensional feature space that is often used in astronomy. Thus, to
store both the training T and test set S, we make use of float4-arrays. This

4 For instance, the processing of an if - and the corresponding else-branch can take as
long as the sequential processing of both branches.

On GPU-Based Nearest Neighbor Queries in Astronomy 93

renders the application of the built-in function distance possible to compute
the Euclidean distances.5

As we will demonstrate in the next section, the above modifications can yield a
significant speed-up compared to a direct (parallel) implementation on GPUs.

4 Experimental Evaluation

In this section, we describe the experimental setup and provide practical runtime
evaluations for the different implementations.

4.1 Experimental Setup

We will first analyze the performance gain achieved by the particular optimiza-
tions described in Section 3. Afterwards, we will give an overall comparison of the
practical performances of the different nearest neighbor implementations. For all
performance measurements, a desktop machine with specifications given below
was used (using only one of the cores of the host system). For the CPU-based
implementation, we resort to the k-d tree-kNN-implementation of the sklearn-
package (which is based on Fortran) [13].

Implementation. The overall framework is implemented in OpenCL. This ensures
a broad applicability on a variety of systems (even not restricted to GPUs only).
Further, we make use of PyOpenCL to provide a simple yet effective access to
the implementation. The experiments are conducted on a standard PC running
Ubuntu 12.10 with an Intel Quad Core CPU 3.10 GHz, 8GB RAM, and a Nvidia
GeForce GTX 650 with 2GB RAM.

Astronomical Data. We resort to the data provided by the SDSS, see Section 1.
In particular, we consider a special type of features that are extracted from the
image data, the so-called PSF magnitudes, which are used for various tasks in
the field of astronomy including the one of detecting distant quasars [14].6 A
well-known set of induced features in astronomy is based on using the so-called
colors u − g, g − r, r − i, i − z that stem from the (PSF) magnitudes given for
each of the five bands. This feature space can be used, for instance, for the task
of estimating the redshift of quasars, see Polsterer et al. [14] for details. For the
experimental evaluation conducted in this work, we will therefore explicitly focus
on such patterns in R4. In all scenarios considered, the test sets are restricted to
less than two million objects. The more general case (with hundreds of millions
of objects) can be simply considering chunks of test patterns.7

5 Note that there exists an even faster function (fast distance) which returns an ap-
proximation; however, we used the standard function (distance) to keep the needed
numerical precision.

6 A quasar is the core of a distant galaxy with an active nucleus. Quasars, especially
those with a high redshift, can help understanding the evolution of the universe.

7 Since these patterns are stored consecutively on hard disk, one can efficiently transfer
the data from disk to main memory (reading two million test patterns into main
memory took less than half a second on our test system, and is thus negligible
compared to the application of the overall model).

94 J. Heinermann et al.

Table 2. Performance comparison for k-d tree kNN search on the GPU using global
vs. private memory for the test instances (|S|) given four-dimensional patterns and
k = 10 neighbors. The number of training patterns is 200, 000.

|S| 10,000 20,000 50,000 100,000 200,000 500,000 1,000,000

global 0.063 0.130 0.306 0.605 1.170 2.951 5.743
private 0.052 0.107 0.253 0.499 0.974 2.438 4.709

Performance Measures. We will only report the time needed for the testing
phase, i.e., the runtimes needed for the construction of the appropriate k-d trees
will not be reported. Note that, for the application at hand, one only needs to
build the tree once at during the training phase, and it can be re-used for the
nearest neighbor queries of millions or billions of test queries. In addition, the
runtime is very small also (less than a second for all the experiments considered).

4.2 Fine-Tuning

As pointed out in Section 3, a k-d tree-based implementation of the nearest
neighbor search on GPUs can be tuned with different optimization approaches
in order to obtain a better practical performance. In the following, we compare
the runtime improvements achieve via the different modifications proposed.

Using Private Memory for Test Patterns. The first optimization we analyze
is the usage of private memory for the test instance processed by a particular
thread. The influence of this rather simple modification indicates that it pays
off to use registers instead of the given global memory structures, see Table 2.
For 1, 000, 000 test instances, a speed-up of 18% was achieved.

Using Private Memory for the Nearest Neighbors. In Section 3, we proposed to
use registers instead of global memory for the list of neighbors. This modification
gives a large speed-up, especially if the number k of nearest neighbors is large.
The performance results are shown in Figure 2 (a): For the case of k = 50
nearest neighbors, |S| = 1, 000, 000 test instances, and a training set size of
|T | = 200, 000, only half of the time is needed given the optimized version.

Utilizing Vector Data Types and Operations. A large amount of work in astron-
omy is conducted in the four-dimensional feature space described above. We can
make use of the high-performance operations available for vector data types in
OpenCL. The performance comparison given in Figure 2 (b) shows that one can
achieve a significant speed-up of more than 30% by simply resorting to these
vector data types and operations.

4.3 Runtime Performances

In the remainder of this section, we compare four different nearest neighbor
approaches:

On GPU-Based Nearest Neighbor Queries in Astronomy 95

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

 0 5 10 15 20 25 30 35 40 45 50

Pr
oc

es
si

ng
 T

im
e

(s
)

Number of Neighbors

kdgpu using private mem for neighbors list
kdgpu using global mem for neighbors list

(a)

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 0 250000 500000 750000 1e+06

Pr
oc

es
si

ng
 T

im
e

(s
)

Number of Test Patterns

optimized kd gpu implementation
kd gpu implementation

(b)

Fig. 2. Experimental results for (a) the usage of private memory for test instances with
200, 000 training and 1, 000, 000 test patterns. The plot shows the processing time for
varying numbers of k. In Figure (b), the usage of vector data types and operations is
depicted with 200, 000 training patterns, k = 10, and 4-dimensional patterns. The plot
shows the processing time for varying test set sizes.

– knn-brute-gpu: brute-force approach on the GPU
– knn-kd-cpu: k-d tree-based search on the CPU
– knn-kd-gpu: standard k-d tree approach on the GPU
– knn-kd-fast-gpu: k-d tree approach on the GPU with additional modifications

As shown in Figure 3, the runtime of the brute-force version is only good for
relatively small training data sets. In case the size of both the training and test
set is increased, such a brute-force implementation (naturally) gets too slow. For
larger data sets, the CPU version based on k-d tree yields better results: Given
1, 000, 000 patterns in both the training and test set, the brute-force implementa-
tion takes about 274 seconds, whereas the k-d tree-based CPU implementation
only takes about 33 seconds. That said, the fulfillment of our main motiva-
tion has to be analyzed: Can we map this performance improvement to GPUs?
Figure 3 (a) shows that the direct k-d tree implementation already provides a
large performance gain. For 1, 000, 000 patterns used as training and test data, it
takes only less than 7 seconds. However, the additional modifications proposed

 0

 10

 20

 30

 40

 50

 60

 0 250000 500000 750000 1e+06

Pr
oc

es
si

ng
 T

im
e

(s
)

Number of Training Patterns

knn-kd-gpu-fast
knn-kd-gpu
knn-kd-cpu

knn-brute-gpu

(a) Variable |T |

 0

 10

 20

 30

 40

 50

 60

 0 250000 500000 750000 1e+06

Pr
oc

es
si

ng
 T

im
e

(s
)

Number of Tesa Pt aaerns

 knn-kd-gpu-ft sa
knn-kd-gpu
knn-kd-cpu

 knn-bruae-gpu

(b) Variable |S|

Fig. 3. Runtime comparison for k = 10 and four-dimensional patterns: (a) Processing
time for variable training set size |T | and test set size |S| = 1, 000, 000. (b) Processing
time for variable test set size and training set size of |T | = 200, 000.

96 J. Heinermann et al.

in Section 3 can even reduce the needed runtime to about 3.6 seconds (thus, a
speed-up of about ten is achieved compared to the corresponding CPU version).
Figure 3 (b) also shows that the amount of test data has a much lower impact
on our k-d tree implementation, which is especially useful for the mentioned
application in astronomy with petabytes of upcoming data.

5 Conclusions

In this work, we derived an effective implementation for nearest neighbor queries
given huge test and large training sets. Such settings are often given in the field
of astronomy, where one is nowadays faced with the semi-automated analysis
of billions of objects. We employ data structures on GPUs and take advan-
tage of the vast of amount of computational power provided by such devices.
The result is a well-tuned framework for nearest neighbor queries. The appli-
cability is demonstrated on current large-scale learning tasks in the field of
astronomy.

The proposed framework makes use of standard devices given in current ma-
chines, but can naturally also be applied in the context of large-scale GPU sys-
tems. In the future, the amount of astronomical data will increase dramatically,
and the corresponding systems will have to resort to cluster systems to store
and process the data. However, a significant amount of research will always be
conducted using single workstation machines, which means there is a need for
efficient implementations of such specific tasks.

Acknowledgements. This work was partly supported by grants of the Ger-
man Academic Exchange Service (DAAD). The data used for the experimental
evaluation are based the Sloan Digital Sky Survey (SDSS).8

8 Funding for the SDSS and SDSS-II has been provided by the Alfred P. Sloan Foun-
dation, the Participating Institutions, the National Science Foundation, the U.S.
Department of Energy, the National Aeronautics and Space Administration, the
Japanese Monbukagakusho, the Max Planck Society, and the Higher Education
Funding Council for England. The SDSS Web Site is http://www.sdss.org/. The
SDSS is managed by the Astrophysical Research Consortium for the Participating
Institutions. The Participating Institutions are the American Museum of Natural
History, Astrophysical Institute Potsdam, University of Basel, University of Cam-
bridge, Case Western Reserve University, University of Chicago, Drexel University,
Fermilab, the Institute for Advanced Study, the Japan Participation Group, Johns
Hopkins University, the Joint Institute for Nuclear Astrophysics, the Kavli Institute
for Particle Astrophysics and Cosmology, the Korean Scientist Group, the Chinese
Academy of Sciences (LAMOST), Los Alamos National Laboratory, the Max-Planck-
Institute for Astronomy (MPIA), the Max-Planck-Institute for Astrophysics (MPA),
New Mexico State University, Ohio State University, University of Pittsburgh, Uni-
versity of Portsmouth, Princeton University, the United States Naval Observatory,
and the University of Washington.

http://www.sdss.org/

On GPU-Based Nearest Neighbor Queries in Astronomy 97

References

1. Andoni, A., Indyk, P.: Near-optimal hashing algorithms for approximate nearest
neighbor in high dimensions. Communications of the ACM 51(1), 117–122 (2008)

2. Bentley, J.L.: Multidimensional binary search trees used for associative searching.
Communications of the ACM 18(9), 509–517 (1975)

3. Beygelzimer, A., Kakade, S., Langford, J.: Cover trees for nearest neighbor. In:
Proceedings of the 23 International Conference on Machine Learning, pp. 97–104.
ACM (2006)

4. Borne, K.: Scientific data mining in astronomy, arXiv:0911.0505v1 (2009)
5. Bustos, B., Deussen, O., Hiller, S., Keim, D.: A graphics hardware accelerated

algorithm for nearest neighbor search. In: Alexandrov, V.N., van Albada, G.D.,
Sloot, P.M.A., Dongarra, J. (eds.) ICCS 2006, Part IV. LNCS, vol. 3994, pp. 196–
199. Springer, Heidelberg (2006)

6. Garcia, V., Debreuve, E., Barlaud, M.: Fast k nearest neighbor search using GPU.
In: CVPR Workshop on Computer Vision on GPU, Anchorage, Alaska, USA (June
2008)

7. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning, 2nd
edn. Springer (2009)

8. Ivezic, Z., Tyson, J.A., Acosta, E., Allsman, R., andere: Lsst: from science drivers
to reference design and anticipated data products (2011)

9. Kirk, D.B., Wen-mei, H.: Programming Massively Parallel Processors: A Hands-on
Approach, 1st edn. Morgan Kaufmann Publishers Inc., San Francisco (2010)

10. Munshi, A., Gaster, B., Mattson, T.: OpenCL Programming Guide. OpenGL Se-
ries. Addison-Wesley (2011)

11. Nakasato, N.: Implementation of a parallel tree method on a gpu. CoRR,
abs/1112.4539 (2011)

12. nVidia Corporation. Opencl TM best practices guide (2009),
http://www.nvidia.com/content/cudazone/CUDABrowser/downloads/

papers/NVIDIA OpenCL BestPracticesGuide.pdf

13. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine
Learning in Python. Journal of Machine Learning Research 12, 2825–2830 (2011)

14. Polsterer, K.L., Zinn, P., Gieseke, F.: Finding new high-redshift quasars by ask-
ing the neighbours. Monthly Notices of the Royal Astronomical Society (MN-
RAS) 428(1), 226–235 (2013)

15. Shakhnarovich, G., Darrell, T., Indyk, P.: Nearest-Neighbor Methods in Learn-
ing and Vision: Theory and Practice (Neural Information Processing). MIT Press
(2006)

16. York, D.G., et al.: The sloan digital sky survey: Technical summary. The Astro-
nomical Journal 120(3), 1579–1587

http://www.nvidia.com/content/cudazone/CUDABrowser/downloads/papers/NVIDIA_OpenCL_BestPracticesGuide.pdf
http://www.nvidia.com/content/cudazone/CUDABrowser/downloads/papers/NVIDIA_OpenCL_BestPracticesGuide.pdf

On Mutation Rate Tuning and Control

for the (1+1)-EA

Oliver Kramer

Computational Intelligence Group
Department of Computing Science

University of Oldenburg

Abstract. The significant effect of parameter settings on the success of
the evolutionary optimization has led to a long history of research on
parameter control, e.g., on mutation rates. However, few studies com-
pare different tuning and control strategies under the same experimen-
tal condition. Objective of this paper is to give a comprehensive and
fundamental comparison of tuning and control techniques of mutation
rates employing the same algorithmic setting on a simple unimodal prob-
lem. After an analysis of various mutation rates for a (1+1)-EA on
OneMax, we compare meta-evolution to Rechenberg’s 1/5th rule and
self-adaptation.

1 Introduction

Parameter control is an essential aspect of successful evolutionary search. Var-
ious parameter control and tuning methods have been proposed in the history
of evolutionary computation, cf. Figure 1 for a short taxonomy. The importance
of parameter control has become famous for mutation rates. Mutation is a main
source of evolutionary changes. According to Beyer and Schwefel [1], a mutation
operator is supposed to fulfill three conditions. First, from each point in the solu-
tion space each other point must be reachable. Second, in unconstrained solution
spaces a bias is disadvantageous, because the direction to the optimum is un-
known, and third, the mutation strength should be adjustable, in order to adapt
exploration and exploitation to local solution space conditions. Mutation rates
control the magnitude of random changes of solutions. At the beginning of the
history of evolutionary computation, researchers argued about proper settings.
De Jong’s [6] recommendation was the mutation strength σ = 0.001, Schaffer et
al. [9] recommended the setting 0.005 ≤ σ ≤ 0.01, and Grefenstette [5] σ = 0.01.
Mühlenbein [8] suggested to set the mutation probability to σ = 1/N depending
on the length N of the representation. But early, the idea appeared to control
the mutation rate during the optimization run, as the optimal rate might change
during the optimization process, and different rates are reasonable for different
problems. Objective of this paper is to compare the parameter tuning and con-
trol techniques of a simple evolutionary algorithm (EA) on a simple function, i.e.
OneMax, to allow insights into the interplay of mutation rates and parameter

I.J. Timm and M. Thimm (Eds.): KI 2013, LNAI 8077, pp. 98–105, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

On Mutation Rate Tuning and Control for the (1+1)-EA 99

Taxonomy of parameter setting

parameter setting

control

self-adaptative

adaptive

deterministic

tuning

by hand meta-evolution

Fig. 1. Taxonomy of parameter setting of this work oriented to Eiben et al. [3] and
complemented on the parameter tuning branch (cf. Kramer [7])

control mechanisms.OneMax is a maximization problem defined on {0, 1}N → N
that counts the number of ones in bit string x

OneMax (x) =

N∑
i=1

xi. (1)

The optimal solution is x∗ = (1, . . . , 1)T with fitness f(x) = N .
This paper is structured as follows. Section 2 repeats the (1+1)-EA and a

known runtime result on OneMax. In Section 3, we study mutation rates of the
(1+1)-EA on OneMax. In Section 4, we tune the mutation rate of the (1+1)-
EA with a (μ+ λ)-ES, an approach known as meta-evolution. In Section 5, we
employ Rechenberg’s 1/5th rule to control the mutation rates, while we analyze
self-adaptive mutation rates in Section 6. Conclusions are drawn in Section 7.

2 The (1+1)-EA

Evolutionary optimization is a class of black box optimization algorithms that
mimics the biological process of optimization known as evolution. Evolution-
ary algorithms are based on evolutionary operators that model problem-specific
processes in natural evolution, of which the most important are (1) crossover,
(2) mutation, and (3) selection. Basis of most evolutionary methods is a set of
candidate solutions. Crossover combines the most promising characteristics of
two or more solutions. Mutation adds random changes, while carefully balanc-
ing exploration and exploitation. Selection chooses the most promising candi-
date solutions in an iterative kind of way, alternately with recombination and
mutation. Evolutionary algorithms have developed to strong optimization algo-
rithms for difficult continuous optimization problems. The long line of research
on evolutionary computation was motivated by the goal of applying evolution-
ary algorithms to a wide range of problems. Applying evolutionary algorithms

100 O. Kramer

Algorithm 1.1. Standard (1 + 1)-EA

1: choose x ∈ {0, 1}N uniform at random
2: repeat
3: produce x′ by flipping each bit of x with probability 1/N
4: replace x with x′ if f(x′) ≤ f(x)
5: until termination condition

is comparatively easy, if the modeling of the problem is conducted carefully and
appropriate representations and parameters are chosen.

The (1 + 1)-EA works on bit string representations x = (x1, . . . , xN)T ∈
{0, 1}N with only one individual, which is changed with bit-flip mutation. Bit-
flip mutation means that each bit xi of bit-string x is flipped with probability σ =
1/N . No recombination is employed, as no population is used. Furthermore, the
selection operator can be reduced to a simple selection of the better one of two
solutions. The pseudocode can be found in Algorithm 1.1. The number of fitness
function calls of a (1+1)-EA complies with the number of generations.

For the (1+1)-EA, a runtime analysis on the simple OneMax problem demon-
strates its properties. The runtime analysis is based on the method of fitness-
based partitions, and shows that the (1 + 1)-EA’s runtime is upper bounded
by O(N logN) on OneMax [2]. In the remainder of this work, we will experi-
mentally analyze and compare a selection of important parameter control and
tuning techniques.

3 A Study on Mutation Rates

The question comes up, if our experiments can confirm the theoretical result,
i.e., if the mutation rate 1/N leads to N logN generations in average. For this
sake, we test the (1+1)-EA with various mutation rates on OneMax with vari-
ous problem sizes. This extensive analysis is similar to tuning by hand, which is
probably the most frequent parameter tuning method. Figure 2 shows the anal-
ysis with problem sizes N = 10, 20 and 30. The results show that the optimal

.00 0.10 0.20 0.30 0.40 σ

ge
ne

ra
tio

ns

101

10
2

10
3 OneMax

(a) (1+1)-EA, N=10

.00 0.10 0.20 0.30 0.40 σ

ge
ne

ra
tio

ns

101

10
2

10
3 OneMax

(b) (1+1)-EA, N=20

.00 0.10 0.20 0.30 0.40 σ

ge
ne

ra
tio

ns

101

10
2

10
3 OneMax

(c) (1+1)-EA, N=30

Fig. 2. Analysis of mutation strength σ for (1 + 1)-EA on OneMax for three problem
sizes

On Mutation Rate Tuning and Control for the (1+1)-EA 101

mutation rate is close to 1/N , which leads to the runtime of O(N logN). Our
experiments confirm this result with the exception of a multiplicative constant,
i.e., the runtime is about two times higher than N logN . In the the following
section, we employ evolutionary computation to search for optimal mutation
rates, an approach called meta-evolution.

4 Meta-evolution

Meta-evolution is a parameter tuning method that employs evolutionary com-
putation to tune evolutionary parameters. The search for optimal parameters
is treated as optimization problem. We employ a (μ + λ)-ES, i.e., an evolution
strategy (ES) for continuous optimization [1], to tune the mutation rate of an
inner (1+1)-EA. The (μ+λ)-ES employs arithmetic recombination and isotropic
Gaussian mutation x′ = x+N (0, σ) with a decreasing σ depending on genera-
tion t. Algorithm 1.2 shows the pseudocode of the meta-evolutionary approach.

Algorithm 1.2. Meta-(1 + 1)-EA

1: initialize mutation rates σ1, . . . , σμ ∈ P , τ
2: repeat
3: for i = 1 to λ do
4: select ρ parents from P
5: create σi by recombination
6: decrease τ
7: mutate σi = σi + τ · N (0, 1)
8: run (1+1)-EA with σi

9: add σi to P ′

10: end for
11: select μ parents from P ′ → P
12: until termination condition

In our experimental analysis, we employ a (10 + 100)-ES optimizing the mu-
tation rate of the underlying (1+1)-EA that solves problem OneMax for various
problem sizes N . The ES starts with an initial mutation rate of τ = 0.2. In each
generation, τ is decreased deterministically by multiplication, i.e., τ = τ · 0.95.
The inner (1+1)-EA employs the evolved mutation rate σ of the upper ES and is
run 25 times with this setting. The average number of generations until the opti-
mum of OneMax is found employing the corresponding σ is the fitness f(σ). The
ES terminates after 50 generations, i.e., 50 ·100 = 5000 runs of the (1+1)-EA are
conducted. Table 1 shows the experimental results of the meta-evolutionary ap-
proach. The table shows the average number t of generations until the optimum
has been found by the (1+1)-EA in the last generation of the ES, the evolved
mutation rate σ∗ and the number of generations, the ES needed to find σ∗. The
achieved speed of convergence by the inner (1+1)-EA, e.g., 170.6 generations for
N = 30 is a fast result.

102 O. Kramer

Table 1. Experimental results of meta-evolutionary approach of a (10+100)-EA tuning
the mutation rates of a (1+1)-EA on OneMax

N t σ∗ gen.

5 8.80 0.252987 37
10 31.84 0.134133 14
20 90.92 0.071522 42
30 170.60 0.055581 41

5 Rechenberg’s 1/5th Rule

The idea of Rechenberg’s 1/5th rule is to increase the mutation rate, if the success
probability is larger than 1/5th, and to decrease it, if the success probability
is smaller. The success probability can be measured w.r.t. a fix number G of
generations. If the number of successful generations of a (1+1)-EA, i.e., the
offspring employs a better fitness than the parent, is g, then g/G is the success
rate. If g/G > 1/5, σ is increased by σ = σ · τ with τ > 1, otherwise, it is
decreased by σ = σ/τ . Algorithm 1.3 shows the pseudocode of the (1+1)-EA
with Rechenberg’s 1/5th rule.

Algorithm 1.3. (1 + 1)-EA with Rechenberg’s 1/5th rule

1: choose x ∈ {0, 1}N uniform at random
2: repeat
3: for i = 1 to G do
4: produce x′ by flipping each bit of x with probability σ
5: replace x with x′ if f(x′) ≤ f(x) and set g+ = 1
6: end for
7: if g/G > 1/5 then
8: σ = σ · τ
9: else
10: σ = σ/τ
11: end if
12: until termination condition

Figure 3 shows the corresponding experimental results for various values for
τ and N = 10, 20 and 30. The results show that Rechenberg’s rule is able to
automatically tune the mutation rate and reach almost as good results as the
runs with tuned settings. We can observe that smaller settings for τ , i.e., set-
tings close to 1.0 achieve better results than larger settings in all cases. Further
experiments have shown that settings over τ > 10.0 lead to very long runtimes
(larger than 105 generations). In such cases, σ cannot be fine-tuned to allow a
fast approximation to the optimum.

On Mutation Rate Tuning and Control for the (1+1)-EA 103

.0 1.5 2.0 2.5 3.0 3.5τ

g
en

er
at

io
n

s
OneMax

101

102

1

(a) Rechenberg, N=5

.0 1.5 2.0 2.5 3.0 3.5τ

g
en

er
at

io
n

s

OneMax

101

102

1

(b) Rechenberg, N=10

1.0 1.5 2.0 2.5 3.0 3.5τ

g
en

er
at

io
n

s

OneMax

102

103

(c) Rechenberg, N=20

Fig. 3. Experimental results of parameter control with Rechenberg’s 1/5th rule

6 Self-adaptation

Self-adaptation is an automatic evolutionary mutation rate control. It was orig-
inally introduced by Rechenberg and Schwefel [10] for ES, later independently
in the United States by Fogel [4] for evolutionary programming. The most suc-
cessful self-adaptively controlled parameters are mutation parameters. This is a
consequence of the direct influence of the mutation operator on the exploration
behavior of the optimization algorithm: Large mutation strengths cause large
changes of solutions, decreasing mutation strengths allow an approximation of
the optimum, in particular in continuous solution spaces.

The mutation rate σ is added to each individual x and is at the same time sub-
ject to recombination, mutation and selection. For a (1+1)-EA, self-adaptation
means that the mutation rate σ is mutated with log-normal mutation

σ′ = σ · eτN (0,1) (2)

with a control parameter τ . Afterwards, the mutation operator is applied. Ap-
propriate mutation rates are inherited and employed in the following generation.
The log-normal mutation allows an evolutionary search in the space of strategy
parameters. It allows the mutation rates to scale in a logarithmic kind of way
from values close to zero to infinity. Algorithm 1.4 shows the pseudocode of the
SA-(1+1)-EA with σ-self-adaptation.

Algorithm 1.4. SA-(1 + 1)-EA

1: choose x ∈ {0, 1}N uniform at random
2: choose σ ∈ {0, 1} at random
3: repeat
4: produce σ′ = σ · eτN (0,1)

5: produce x′ by flipping each bit of x with probability σ′

6: replace x with x′ and σ with σ′, if f(x′) ≤ f(x)
7: until termination condition

104 O. Kramer

Figure 4 shows typical developments1 of fitness f(x) and mutation rate σ of
the SA-(1+1)-EA on N = 10, 50 and 100 for τ = 0.1. Due to the plus selection
scheme, the fitness is decreasing step by step. The results show that the mutation
rate σ is adapting during the search. In particular, in the last phase of the search
forN = 100, σ is fast adapting to the search conditions and accelerates the search
significantly.

gen.

fit
ne

ss
 /

m
ut

at
io

n
ra

te

OneMax

0 10 20 30 4010-2

101

10-1

100

f(x)
σ

(a) SA, N=10

gen.

fit
ne

ss
 /

m
ut

at
io

n
ra

te

OneMax

0 50 100 150 25010-2

10 1

10-1

10 0

10 2

200

f(x)
σ

(b) SA, N=50

gen.

fit
ne

ss
 /

m
ut

at
io

n
ra

te

OneMax

0 2000 400010-3

10 1

10-1

10 0

10 2

10-2 f(x)
σ

(c) SA, N=100

Fig. 4. SA-(1+1)-EA on OneMax with N = 10, 50 and 100

Table 2 shows the experimental results of the SA-(1+1)-EA with various set-
tings for τ on OneMax with problem sizes N = 10, 20, 30, 50, and 100. The
results show that the control parameter, i.e., the mutation rate τ of the muta-
tion rate σ, has a significant impact on the success of the SA-(1+1)-EA. Both
other setting, i.e., τ = 0.01 and τ = 1.0 lead to worse results. In particular on
the large problem instance with N = 100, both settings fail and lead to long
optimization runs.

Table 2. Number of generations the SA-(1+1)-EA needs to reach the optimum

N 10 20 30 50 100

τ = 0.01 48.3± 29.03 162.0 ± 83.1 359.0 ± 175.0 2.4e3± 552.8 > 105

τ = 0.1 46.1± 36.3 142.9 ± 47.1 274.0 ± 97.4 1.0e3± 770.7 3.6e3 ± 3.3e3
τ = 1.0 2.7e3± 4.9e3 5.0e3± 1.2e4 8.9e3± 9.5e3 1.9e4± 1.4e4 > 105

7 Conclusions

The success of evolutionary algorithms depends on the choice of appropriate
parameter settings, in particular mutation rates. Although a lot of studies are
known in literature, only few compare different parameter control techniques
employing the same algorithmic settings on the same problems. But only such a
comparison allows insights into the underlying mechanisms and common prin-
ciples. The analysis has shown that optimally tuned mutation rates can auto-
matically been found with meta-evolution. The effort spent into the search is

1 Employing a logarithmic scale.

On Mutation Rate Tuning and Control for the (1+1)-EA 105

comparatively high, but the final result is competitive or better than the con-
trol techniques. But more flexible and still powerful is the adaptive mutation
rate control with Rechenberg’s rule. Self-adaptation turns out to be the most
flexible control technique with its automatic mutation rate control. Although
self-adaptation depends on the control parameter τ , it is quite robust w.r.t. the
problem size. It became famous in ES for continuous optimization and also has
shown the best results in our parameter control study. As future work, we plan
to extend our analysis to further EA variants, parameter control techniques, and
problem types.

References

1. Beyer, H.-G., Schwefel, H.-P.: Evolution strategies - A comprehensive introduction.
Natural Computing 1, 3–52 (2002)

2. Droste, S., Jansen, T., Wegener, I.: On the analysis of the (1+1) evolutionary
algorithm. Theoretical Computer Science 276(1-2), 51–81 (2002)

3. Eiben, A.E., Hinterding, R., Michalewicz, Z.: Parameter control in evolutionary
algorithms. IEEE Transactions on Evolutionary Computation 3(2), 124–141 (1999)

4. Fogel, D.B., Fogel, L.J., Atma, J.W.: Meta-evolutionary programming. In: Proceed-
ings of 25th Asilomar Conference on Signals, Systems & Computers, pp. 540–545
(1991)

5. Grefenstette, J.: Optimization of control parameters for genetic algorithms. IEEE
Trans. Syst. Man Cybern. 16(1), 122–128 (1986)

6. Jong, K.A.D.: An analysis of the behavior of a class of genetic adaptive systems.
PhD thesis, University of Michigan (1975)

7. Kramer, O.: Self-Adaptive Heuristics for Evolutionary Computation. Springer,
Berlin (2008)

8. Mhlenbein, H.: How genetic algorithms really work: Mutation and hill-climbing.
In: Proceedings of the 2nd Conference on Parallel Problem Solving from Nature
(PPSN), pp. 15–26 (1992)

9. Schaffer, J.D., Caruana, R., Eshelman, L.J., Das, R.: A study of control parameters
affecting online performance of genetic algorithms for function optimization. In:
Proceedings of the 3rd International Conference on Genetic Algorithms (ICGA),
pp. 51–60 (1989)

10. Schwefel, H.-P.: Adaptive Mechanismen in der biologischen Evolution und ihr Ein-
fluss auf die Evolutionsgeschwindigkeit. Interner Bericht Bionik, TU Berlin (1974)

Variable Neighborhood Search

for Continuous Monitoring Problem
with Inter-Depot Routes

Vera Mersheeva and Gerhard Friedrich

Alpen-Adria Universität,
Universitätsstraße 65–67, 9020 Klagenfurt, Austria

{vera.mersheeva,gerhard.friedrich}@uni-klu.ac.at

Abstract. In this paper we provide methods for the Continuous Moni-
toring Problem with Inter-Depot routes (CMPID). It arises when a num-
ber of agents or vehicles have to persistently survey a set of locations.
Each agent has limited energy storage (e.g., fuel tank or battery capacity)
and can renew this resource at any available base station. Various real-
world scenarios could be modeled with this formulation. In this paper
we consider the application of this problem to disaster response man-
agement, where wide area surveillance is performed by unmanned aerial
vehicles. We propose a new method based on the Insertion Heuristic and
the metaheuristic Variable Neighborhood Search. The proposed algo-
rithm computes solutions for large real-life scenarios in a few seconds and
iteratively improves them. Solutions obtained on small instances (where
the optimum could be computed) are on average 2.6% far from optimum.
Furthermore, the proposed algorithm outperforms existing methods for
the Continuous Monitoring Problem (CMP) in both solution quality (in
3 times) and computational time (more than 400 times faster).

Keywords: Continuous Monitoring Problem, UAV route planning,
Inter-depot routes, Variable Neighborhood Search, Heuristics.

1 Introduction

In this paper we consider a variant of the Continuous Monitoring Problem
(CMP) [1] with Inter-Depot routes (CMPID). A set of vehicles has to peri-
odically visit a set of locations. The major goal is to find a plan where a fleet
visits locations uniformly and as often as possible. This means that the number
of revisits should be maximized and the time between revisits should be equally
distributed, i.e., long time intervals between revisits should be avoided. Vehicles
are constrained by their energy storage (later referred to as capacity). In CMP
each vehicle can renew its capacity at a predefined base station, whereas CMPID
allows vehicles to refuel at any station.

In this paper we consider the exploration of a disaster scene (e.g., earthquake
or train accident) using a fleet of unmanned aerial vehicles (UAVs) equipped
with cameras. Micro-UAVs have limited flight height and they cannot carry

I.J. Timm and M. Thimm (Eds.): KI 2013, LNAI 8077, pp. 106–117, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

VNS for Continuous Monitoring Problem with Inter-Depot Routes 107

wide-angle lens cameras due to their weight. As a result, a single picture of the
whole area cannot be taken in one shot. The way to resolve this problem is to
split the overall area into rectangles. UAVs take a picture of each rectangle1 and
transmit this data to the ground station, where received pictures are stitched
together into an overview image of high resolution. Obviously, the main intention
of the aerial exploration is to always have the most up-to-date information for
every rectangle. Therefore, the UAVs have to visit picture points as often as
possible but avoiding long time spans between revisits.

Due to the additional constraints of the CMPID (e.g., capacity limitation,
inter-depot routes), existing methods cannot be directly applied to it. We de-
veloped a metaheuristic based on the Variable Neighborhood Search algorithm
(VNS) [2] that has proven its efficiency for the Vehicle Routing Problem. It itera-
tively improves the initial solution constructed by a modification of the Insertion
Heuristic (IH) [3]. Later we will refer to our modification of IH as IDIH (Inter-
Depot Insertion Heuristic). The proposed method returns near-optimal solutions
(at most 8.5% far from optimum for cases where an optimum is computable).
It also outperforms existing CMP methods [1] both in computational time (on
average 481 times faster) and solution quality (on average in 3 times better).
The method provides a feasible solution within seconds (e.g., in 10 seconds for
a scenario with 800 points). Furthermore, in 10 minutes the method improves
initial solution on 3–30% even for the large real-life scenarios.

The remainder of the paper is organized as follows. Section 2 gives a formal
definition of the CMPID. In Section 3 we discuss the related problems and exist-
ing methods. Section 4 describes the proposed method in detail. An evaluation
of the algorithm parameters as well as its performance is reported in Section 5.
Finally, in Section 6 conclusions and directions for future work are discussed.

2 Problem Description

The base stations and target points2 are given as a complete, undirected graph
G = {Wb ∪Wp, E}, where E is a set of edges, Wb = {1, ..., n} is a set of sta-
tions and Wp = {(n+ 1), ..., (n+m)} is a set of target points. The number of
points and a number of stations are equal to n and m, respectively. The distance
between way points i, j is depicted as a non-negative cost di,j . Every vehicle
v ∈ V is of a certain type, which is characterized by its speed and energy storage
capacity. Each station i ∈ Wb has a limited amount of energy sources of each
type for renewal (e.g., number of batteries or amount of fuel).

Each vehicle v ∈ V starts its route from the given initial position lv. This
initial position is either a base station or a target point. For instance, in our
application the UAVs provide the first overview image of an area (with any
existing method), so that the rescue team can start their mission. The last
point visited by a drone is its initial position for the monitoring task that starts
afterwards. This monitoring task is modeled as CMPID.

1 We refer to locations where pictures are taken as picture points or target points.
2 Later base stations and target points are referred to as way points.

108 V. Mersheeva and G. Friedrich

The mission starts at time zero and ends at time mt. A mission is a set
of routes for the whole fleet (one route for each vehicle), where a route is a
sequence of way points. Every target has a time point when it was last visited
before monitoring starts. This time point is measured from the beginning of the
mission and is equal to zero if the target was not visited yet.

A set of routes is a feasible solution of the CMPID if it does not violate the
following constraints:

1. The last target visit has to be before the end of the mission.
2. A vehicle can renew its capacity only at a base station with the available

resources of a corresponding type.
3. At every base station a fleet cannot use more energy sources than available.
4. The fuel tank cannot be empty at any point of the route except the stations.

The goal function is expressed as a penalty function that has to be mini-
mized [1]. Assume, each target point i ∈ Wp has a certain number of visits
nvis(i) at the time points Ti = {ti,1, ti,2, ..., ti,nvis(i)}. Then the goal function
for the solution x is as follows:

f(x) =
∑
i∈Wp

⎡
⎣nvis(i)−1∑

y=1

(ti,y+1 − ti,y)
2
+
(
mT − ti,nvis(i)

)2⎤⎦ . (1)

The growth of this function is polynomial if any point stays unvisited. The first
summand leads to more equal visit frequencies. The second summand distributes
visits equally over the total mission time.

3 Related Work

In this section we describe related problems, point out their differences from
CMPID and state existing approaches.

CMP [1] is a generalization of the CMPID where each drone has to renew its
capacity only in a particular station. Mersheeva and Friedrich [1] proposed two
algorithms to compute initial routes, a modified Clarke and Wright algorithm
(CW) and a Queue-based IH (QIH), and a VNS-based metaheuristic to improve
them. Later we will refer to these methods as “CW+VNS” and “QIH+VNS”.
The main differences between our approach and QIH+VNS are explained in
Section 4. Our algorithm is compared with these approaches in Section 5.3.

The problem considered in this paper is also similar to the Periodic Vehicle
Routing Problem with Intermediate Facilities (PVRP-IF) [4]. The planning is
done for a set of time units (e.g., days) where each customer has a predefined
list of possible schedules of visits (e.g., either on Tuesday and Wednesday or on
Monday and Friday). Vehicles can renew their capacity at intermediate facilities.
In contrast to CMPID, those intermediate facilities have no energy source limit,
and vehicles return to the base station at the end of each day. The goal of PVRP-
IF is to minimize the total travel time. Angelelli and Speranza [4] solved this
problem by a combination of IH and Tabu Search algorithm (TS).

VNS for Continuous Monitoring Problem with Inter-Depot Routes 109

Crevier et al. [5] introduced a multi-depot VRP with Inter-Depot Routes
(VRPID). It can be seen as a VRP-IF where depots play the role of intermediate
facilities. Crevier et al. applied the TS heuristic to solve the problem.

A waste collection problem is a special case of PVRP-IF. The objective is to
collect the waste from the customers and deliver it to intermediate facilities. Be-
fore arriving at the base station each vehicle has to visit an intermediate facility
and empty its storage. Nuortio et al. [6] propose a Guided Variable Neighborhood
Thresholding algorithm for a real-life scenario. Kim et al. [7] solves a general case
with an enhanced IH and Simulated Annealing (SA). Later this algorithm was
outperformed by the methods proposed by Benjamin and Beasley [8]. They con-
struct the routes with an IH and then improve them by either TS or VNS, or
their combination. Hemmelmayr et al. [9] proposes a hybrid method based on
a combination of VNS and an exact method. It performs well on scenarios for
both PVRP-IF and VRPID.

Persistent visitation is a variation of the PVRP-IF where vehicles refill their
fuel tanks at intermediate facilities and every customer visit has a predefined
deadline. The goal is to minimize the amount of purchased fuel. Las Fargeas et
al. [10] report results using only a single vehicle. They propose a three-step ap-
proach: first they compute every solution that satisfies all of the constraints; then
they calculate the minimum possible amount of fuel for each solution. Finally,
considering the results of the first two steps, they choose the best solution.

In the Patrolling Task [11] ground robots continuously follow routes where
every target is visited exactly once. The goal is to minimize the time lag between
two target visits. The main difference from the CMPID is the lack of capacity
constraint. There are two main strategies for this problem. The first approach is
to construct a circular path which robots will follow [12,13]. The second strategy
is to split the area into subareas and assign a robot to each of them [14,15]. In
the case of a static environment the first strategy is more efficient.

Oberlin et al. [16] deal with Heterogeneous, Multiple Depot, Multiple UAV
Routing Problem where a fleet of drones visits every target exactly once. The al-
gorithm proposed by Oberlin et al. transforms this problem into the Asymmetric
TSP. Later this problem is solved with the Lin-Kernighan-Helsgaun heuristic.
The obtained solution is transformed into a solution for the original problem.

There are two critical differences between CMPID and all of the previously
stated problems except CMP. They have different goal functions and each one
has a fixed number of visits. The goal of the CMPID is to maximize a number
of visits while keeping visit frequency as even as possible. The related problems,
on the other hand, minimize either total traveling time or exploitation cost. In
these problems the number of visits at every customer is known beforehand.

4 Solution Method

Variable Neighborhood Search [2] is a framework for improvement heuristics. A
general structure of VNS is presented in Algorithm 1. This method starts from
the initial solution. At every iteration it applies one of the chosen neighborhood

110 V. Mersheeva and G. Friedrich

operatorsNk = {n1, n2, ..., nkmax} to an incumbent solution (shaking step, line 4)
and performs a local search, line 5. At the end of the iteration a decision is made
to either accept the obtained solution or not (acceptance phase, line 6). This
procedure repeats until a stopping condition is met. Stopping conditions can be
a predetermined number of iterations or computational time.

Algorithm 1. Variable Neighborhood Search

input : initial solution x, a set of neighborhood operators Nk

output: improved solution x

1 repeat
2 k ← 1
3 repeat
4 x′ ← Shake(x, k);
5 x′′ ← LocalSearch(x′);
6 if f(x′′) < f(x) then
7 x ← x′′; k ← 1;
8 else
9 k ← k + 1;

10 until k = kmax;

11 until stopping condition is met ;

Initial Solution. In order to provide an initial solution for the CMPID, a new
algorithm, IDIH, was developed. As the work of Mersheeva and Friedrich [1],
our insertion heuristic is based on the standard IH [3] for the TSP. In each step,
the IH chooses a point and a position along the salesman’s route with the lowest
value of evaluation function and inserts this point at the selected position.

Mersheeva and Friedrich propose to use a queue Q = {q1, q2, ..., qm} of points.
It is constructed by ordering the target points by their last visit time in increasing
order. At every iteration the QIH selects a vehicle v with the minimum value of
the following evaluation function:

g1(v) = α1 · d(v, q1) · scale+ α2 · t(v, q1) ,

where d(v, q1) is a distance between the first queue point q1 and the last point
in the route of vehicle v. Time when vehicle v can arrive at the point q1 is
denoted as t(v, q1). Coefficients α1 and α2 = 1 − α1 indicate how each of the
correspondent parameters influences the final choice. Coefficient scale assures
that mentioned distance and arrival time have the same order of magnitude.

Point q1 is added to the end of the route of the selected vehicle v. In CMP a
vehicle can renew its capacity only in a particular station assigned to it. Thus,
if refueling is required, such station, assigned to the vehicle v, is inserted first.
Finally point q1 is moved to the end of the queue. If a point q1 cannot be added
to any of the routes, it is removed from the queue. The insertion process stops
when the queue is empty, i.e., there is no point that can be inserted.

VNS for Continuous Monitoring Problem with Inter-Depot Routes 111

In order to increase efficiency, the method proposed in this paper selects both
a point p and a vehicle v with the minimum value of the following formula:

g2(p, v) = α1 ∗ d(v, p) + α2 ∗ τp + α3 ∗ t(v, p) . (2)

In Equation (2), variable τp is the time of the last visit of point p. It leads to a
more equal distribution of the visits over all points. Coefficients α1, α2 and α3 =
1−(α1+α2) have the same function as in the method above. The scale coefficient
did not improve solution quality and, therefore, it was eliminated. Choosing both
a point and a vehicle allows exploring a wider solution neighborhood.

Algorithm 2 summarizes the whole work flow of IDIH. First of all, for every
vehicle v a route is created by adding the given initial location lv as the first
element (line 2). Then the main loop in lines 3–19 inserts new points to the
solution one at a time. It terminates when no point/vehicle is selected (line 15).

Algorithm 2. Inter-Depot Insertion Heuristic

input : a scenario for CMPID
output: a set of routes R = {rv : v ∈ V }

1 for v ∈ V do
2 add lv to rv;
3 repeat
4 pbest ← null; vbest ← null; gmin ← ∞; binter ← null;
5 for p ∈ Wp do
6 for v ∈ V do
7 if NeedBatteryChange(v,p) then
8 b ← ChooseStation(v,p);
9 if b �= null AND g2(p, v) < gmin then

10 pbest ← p; vbest ← v; gmin ← g2(p, v); binter ← b;

11 else
12 if g2(p, v) < gmin then
13 pbest ← p; vbest ← v; gmin ← g2(p, v); binter ← null;

14 if pbest = null then
15 return R;
16 if binter �= null then
17 add binter to route rvbest ;
18 add pbest to route rvbest ;

19 until true;

The main loop starts by setting initial values to the variables (line 4): a point
pbest and a vehicle vbest (that will be inserted), their value gmin of the evaluation
function (2) and intermediate base station binter where vehicle vbest will renew
its capacity if it is required (otherwise, binter is equal to null).

A point-vehicle pair is selected if there is enough energy and their value of
function (2) is lower than gmin. Function NeedBatteryChange(v,p) checks if ve-
hicle v should change its battery in order to reach point p. This is necessary

112 V. Mersheeva and G. Friedrich

if v cannot reach p with the current battery or v can reach p but capacity is
not sufficient to return to a base station. If the battery has to be changed then
the most suitable station is chosen by the function ChooseStation(v,p) (Algo-
rithm 3). In this way algorithm ensures that each drone has enough capacity
to reach a station for refueling during the mission. If no base station was se-
lected, i.e., ChooseStation(v,p) returns null, then this point-vehicle pair is not
considered as a candidate for insertion.

Algorithm 3. ChooseStation(v,p)

1 bbest ← null; dmin ← ∞;
2 for b ∈ Wb do
3 if dv,b + db,p < dmin AND b has battery for v AND v can reach b then
4 dmin ← dv,b + db,p; bbest ← b;

5 return bbest;

Shaking Step. In this step a solution is modified by an operator in order to
choose another solution in the neighborhood. We introduce a new operator (re-
place) and we deploy three previously used operators: the insert operator [1]
and the move and cross-exchange operators [17]. The move(x, η) operator relo-
cates a sequence of η points from one route to another. The cross-exchange(x,η)
operator exchanges two sequences of η points between two different routes. The
insert(x,η) operator adds η new points, each at some position in a chosen route.
Finally, the replace(x,η) operator substitutes η routed points with new points.
All sequences, points and routes are selected randomly. These operators are ap-
plied in the following order: insert(x,η), replace(x,η), move(x,η), exchange(x,η)
with η = 1. The selection of both order and value of η is discussed in Section 5.1.

Local Search. Reduced Variable Neighborhood Search (RVNS) is a variation
of VNS without local search [18]. Our approach is based on RVNS, as for the
CMPID the local search requires large computational effort, especially in real-life
instances.

Acceptance Phase. Lines 6–9 of Algorithm 1 show an example of the accep-
tance check as well as the resultant change of the neighborhood operator. It is
called the first-accept strategy, as it allows only those solutions that improve a
value of the goal function (1).

5 Computational Results

This section reports results of both tuning and evaluation of the proposed
method. For one, we conduct a test to select coefficients α1, α2 and α3 for IDIH,
the order of the neighborhood operators and their parameter η. Afterwards, the
algorithm is compared with the optimum on small scenarios and with the state-
of-the-art methods on large instances. Finally, we check the scalability of the

VNS for Continuous Monitoring Problem with Inter-Depot Routes 113

proposed algorithm, i.e., how its performance changes with increasing scenario
size. All tests were performed on Intel Core i7 2.67 GHz system with 4GB RAM.

We have used two sets of benchmarks: large (48 real-life and 60 random)
scenarios and 10 small scenarios where optimum can be obtained [19].

Picture points of large scenarios were generated in the following way. For
real-life scenarios we calculate a rectangular terrain which will be covered in one
shot. This is derived from the required image resolution and flight altitude. The
area of this terrain and the minimum image overlap needed for stitching allow us
to place the picture points. They are allocated evenly over the target area except
no-fly zones – obstacles (e.g., high buildings or trees). In random scenarios (x, y)
coordinates are chosen randomly within one of the following intervals: [−300, 300]
for 200–300 points, [−400, 400] for 301–600 points and [−500, 500] for 601–800
points. Real-life scenarios contain 46–441 picture points. In random instances
number of points ranges from 200 to 800.

For every large scenario three or six base stations are placed randomly within
intervals given for coordinates. Every benchmark has a set of four, seven or
eight drones and a number of batteries sufficient to provide three or six overview
images. Vehicles and their batteries are assigned to stations either randomly or
as equally as possible. To provide the first overview image to the rescuers, we
construct routes that cover the whole area once. The last point in a drone’s
route is its initial location for the monitoring task, i.e., input for the proposed
algorithm. Finally, the speed of vehicles and their maximum travel time are set
to 2.5m/s and 1200 s, respectively, based on the specification of the micro-UAVs.

The “life 441p 3st 4dr 6ov R” test case is a real-life benchmark that contains
441 target points, three base stations, four randomly assigned drones, and its
area of interest can be covered six times.

Currently the optimum cannot be computed for our real-life scenarios due
to their size and problem complexity. Hence, we have generated ten smaller
benchmarks with six picture points, two base stations and two drones. In total
there are five batteries which are sufficient to visit each point at least 2–3 times.
Coordinates of the points and the base stations were chosen randomly in the
domain [0,12]. Vehicles and batteries are located at the randomly chosen base
stations. Optimal solutions for these scenarios were computed by a Gecode solver,
where MiniZinc was used as a constraint programming language.

5.1 Tuning the Method

First of all, we have chosen the best combination of IDIH coefficients, α1, α2 and
α3 = 1 − α1 − α2. All possible combinations of this coefficients within interval
[0,1] with the step 0.25 were evaluated on large scenarios. Table 1 shows the best
performing coefficients for the corresponding benchmark type. The best values
of the coefficients showed dependency on both resource allocation (random or
equal) and target points allocation (random or equal). However, they do not
dependent on a number of targets, i.e., scenario size.

A good order of neighborhood operators increases efficiency of a metaheuris-
tic [18]. To choose the best neighborhood structure, we evaluated all possible

114 V. Mersheeva and G. Friedrich

Table 1. Best performing values of IDIH coefficients

Resource allocation random equal

Points allocation equal rand equal rand

α1 0.25 0.5 0.25 0
α2 0.5 0.25 0.25 0.75

sequences with η ∈ {1, 2, 3} on large scenarios with a random resource alloca-
tion. To evaluate the average performance of the metaheuristic, we run the VNS
10 times with 105 iterations for every scenario and operator sequence. Moreover,
results are not biased by a construction heuristic, as IDIH is deterministic.

Different orders of operators do not affect performance of the metaheuristic.
Hence, we ordered operators by the number of times they have been used. Thus,
the order insert-replace-move-exchange was selected. On the contrary, parameter
η had effect on the performance. Move or exchange of more than one point
leads to an unfeasible solution which violates the constraint of limited capacity.
Therefore, η = 1 obtained the best results and outperformed η = 2 on 8.59%
on average. We do not report the full numeric results in this paper, due to the
space limitations. All obtained computational results are available online [19].

5.2 Comparison with Optimum

For this evaluation we have used a set of 10 small instances. Results of this evalua-
tion are presented in Table 2. The quality of the achieved solutions was measured
according to the following formula: deviation = (f(x′)−f(x))∗100/f(x) , where
x′ is a solution obtained by the heuristic, x is an optimal solution, function f
represents the goal function (1).

Table 2. Comparison of the proposed method with optimum

Instance 1 2 3 4 5 6 7 8 9 10 Average

Optimal cost 69867 75250 5706 7826 6238 7044 7342 75317 75539 73351

Deviation IDIH 7.08 2.64 12.48 5.75 2.85 4.86 8.50 5.65 3.39 2.72 5.59
from the IDIH 2.87 0.73 0.91 4.60 2.85 1.79 8.50 0.39 2.06 1.06 2.58
optimum +VNS

5.3 Comparison with State of the Art

We compare our approach with the methods of Mersheeva and Friedrich [1]
using the large scenarios. Each metaheuristic was running for 104 iterations 10
times for each scenario. Performance of the heuristics are compared by both
solution quality and computational time (Fig. 1). Instances 1–54 have random
resource allocation. Instances 1–24, 55–78 are real-life scenarios. Due to the
new neighborhood structure, the proposed method outperformed CW+VNS and
QIH+VNS on average in 4.2 and 3.04 times, respectively. The absence of local

VNS for Continuous Monitoring Problem with Inter-Depot Routes 115

search results in a better computational time, i.e., on average in 245.41 times
and 481.28 times better than time of CW+VNS and QIH+VNS, respectively.
If the metaheuristic of [1] is applied without local search, it requires the same
running time as the proposed method. However, its results are not reported here,
since the solution quality is lower than the one of the original method.

0.00
200.00
400.00
600.00
800.00

1000.00
1200.00
1400.00

1 5 9 13

17

21

25

29

33

37

41

45

49

53

57

61

65

69

73

77

81

85

89

93

97

10
1

10
5

D
ev

ia
tio

n
fr

om
 th

e
be

st

 so
lu

tio
n

co
st

, %

Instances QIH+VNS CW+VNS IDIH+VNS

0

2000

4000

6000

8000

1 5 9 13

17

21

25

29

33

37

41

45

49

53

57

61

65

69

73

77

81

85

89

93

97

10
1

10
5 C
om

pu
ta

tio
na

l t
im

e,

se
co

nd
s

Instances QIH+VNS CW+VNS IDIH+VNS

Fig. 1. Comparison of the proposed method “IDIH+VNS” with the CMP approaches

5.4 Scalability Evaluation

The final evaluation was conducted to check the scalability of the proposed
improvement step, i.e., how well it performs on different scenario sizes. For this

0 200 400 600 800

5

10

15

20

25

30

Number of pointsD
ev

ia
tio

n
fr

om
 th

e
in

iti
al

 c
os

t,%
(e

qu
al

 r
es

ou
rc

e
al

lo
ca

tio
n)

0 200 400 600 800

5

10

15

20

25

Number of pointsD
ev

ia
tio

n
fr

om
 th

e
in

iti
al

 c
os

t,%
(r

an
do

m
 r

es
ou

rc
e

al
lo

ca
tio

n)

Fig. 2. Improvements of the solution quality after 10 minutes. Gray markers: real-world
scenarios; black markers: scenarios with randomly placed picture points

116 V. Mersheeva and G. Friedrich

the large scenarios were used. Firstly, IDIH computes an initial solution and its
value of the goal function for a scenario. Then we ran the improvement algorithm
10 times, for 10 minutes each. The obtained improvement, i.e., deviation of the
cost from the initial value, is averaged over these 10 runs. The left and the right
charts of Fig. 2 report results for the scenarios with equal and random resource
allocation respectively. Our metaheuristic provides improvements to the initial
solution regardless of scenario size. Hence, the method obtains a good solution
for the scenario of common size in a short time. Thus, it is useful for the team
of first responders.

6 Conclusion

This paper focuses on a new extension of the Continuous Monitoring Problem –
CMP with inter-depot routes. A real-world application to aerial surveillance of
disaster sites shows the importance of this problem.

We proposed an algorithm based on the Insertion Heuristic and Variable
Neighborhood Search. Our approach provides near-optimal results for the in-
stances with known optimum (at most 8.5% and on average 2.58% far from
optimum). Feasible solutions for the large real-world scenarios are found within
seconds that allows quick plan adaptation to some scenario changes. However,
the method is not designed for a highly dynamic or unknown environment, and
online algorithm should be used instead. Initial solutions for tested scenarios
were improved on 3–30% in only 10 minutes. The presented methods outper-
form existing approaches for the CMP in 3 times in solution quality and in 481
times in computational time. The evaluation shows that introducing inter-depot
routes increases efficiency, i.e., vehicles visit more target points at a more uni-
form frequency. In our application this leads to more recent information updates
which are important for situations where a small missed change can be critical.

Future work will focus on improving the heuristics, estimating the method-
ology performance for the environmental changes and introducing priorities for
the picture points, i.e., points with higher priority are visited more often.

Acknowledgments. This work has been supported by the ERDF, KWF, and
BABEG under grant KWF-20214/24272/36084 (SINUS). It has been performed
in the research cluster Lakeside Labs. We would like to thank Sergey Alatartsev
and John NA Brown for their valuable contribution.

References

1. Mersheeva, V., Friedrich, G.: Routing for continuous monitoring by multiple micro
UAVs in disaster scenarios. In: European Conference on AI, pp. 588–593 (2012)

2. Mladenovic, N., Hansen, P.: Variable neighborhood search. Computers & Opera-
tions Research 24(11), 1097–1100 (1997)

3. Solomon, M.M.: Algorithms for the vehicle routing and scheduling problems with
time window constraints. Operations Research 35(2), 254–265 (1987)

VNS for Continuous Monitoring Problem with Inter-Depot Routes 117

4. Angelelli, E., Speranza, M.G.: The periodic vehicle routing problem with interme-
diate facilities. European Journal of OR 137(2), 233–247 (2002)

5. Crevier, B., Cordeau, J.F., Laporte, G.: The multi-depot vehicle routing problem
with inter-depot routes. European Journal of OR 176(2), 756–773 (2007)

6. Nuortio, T., Kytöjoki, J., Niska, H., Bräysy, O.: Improved route planning and
scheduling of waste collection and transport. Expert Systems with Applica-
tions 30(2), 223–232 (2006)

7. Kim, B., Kim, S., Sahoo, S.: Waste collection vehicle routing problem with time
windows. Computers & Operations Research 33(12), 3624–3642 (2006)

8. Benjamin, A., Beasley, J.: Metaheuristics for the waste collection vehicle routing
problem with time windows, driver rest period and multiple disposal facilities.
Computers & Operations Research 37(12), 2270–2280 (2010)

9. Hemmelmayr, V., Doerner, K.F., Hartl, R.F., Rath, S.: A heuristic solution method
for node routing based solid waste collection problems. Journal of Heuristics 19(2),
129–156 (2013)

10. Las Fargeas, J., Hyun, B., Kabamba, P., Girard, A.: Persistent visitation with fuel
constraints. In: Meeting of the EURO Working Group on Transportation, vol. 54,
pp. 1037–1046 (2012)

11. Machado, A., Ramalho, G., Zucker, J.-D., Drogoul, A.: Multi-agent patrolling: an
empirical analysis of alternative architectures. In: Sichman, J.S., Bousquet, F.,
Davidsson, P. (eds.) MABS 2002. LNCS (LNAI), vol. 2581, pp. 155–170. Springer,
Heidelberg (2003)

12. Elmaliach, Y., Agmon, N., Kaminka, G.: Multi-robot area patrol under frequency
constraints. Annals of Mathematics and AI 57(3), 293–320 (2009)

13. Elor, Y., Bruckstein, A.: Autonomous multi-agent cycle based patrolling. In:
Dorigo, M., Birattari, M., Di Caro, G.A., Doursat, R., Engelbrecht, A.P., Flo-
reano, D., Gambardella, L.M., Groß, R., Şahin, E., Sayama, H., Stützle, T. (eds.)
ANTS 2010. LNCS, vol. 6234, pp. 119–130. Springer, Heidelberg (2010)

14. Smith, S.L., Rus, D.: Multi-robot monitoring in dynamic environments with guar-
anteed currency of observations. In: IEEE Conference on Decision and Control, pp.
514–521 (2010)

15. Portugal, D., Rocha, R.: MSP algorithm: multi-robot patrolling based on territory
allocation using balanced graph partitioning. In: Proceedings of the 2010 ACM
Symposium on Applied Computing, pp. 1271–1276. ACM (2010)

16. Oberlin, P., Rathinam, S., Darbha, S.: Today’s travelling salesman problem. IEEE
Robotics & Automation Magazine 17(4), 70–77 (2010)

17. Paraskevopoulos, D., Repoussis, P., Tarantilis, C., Ioannou, G., Prastacos, G.: A
reactive variable neighborhood tabu search for the heterogeneous fleet vehicle rout-
ing problem with time windows. Journal of Heuristics 14, 425–455 (2008)

18. Hansen, P., Mladenović, N., Moreno Pérez, J.: Variable neighbourhood search:
methods and applications. Annals of Operations Research 175(1), 367–407 (2010)

19. Mersheeva, V., Friedrich, G.: Benchmarks for the CMPID and the test results
(2013), http://uav.lakeside-labs.com/test-data/

http://uav.lakeside-labs.com/test-data/

Advances in Accessing Big Data

with Expressive Ontologies

Ralf Möller1, Christian Neuenstadt1,
Özgür L. Özçep1, and Sebastian Wandelt2

1 Hamburg University of Technology, 21073 Hamburg, Germany
2 Humboldt-Universität zu Berlin, 10099 Berlin, Germany

Abstract. Ontology-based query answering has to be supported w.r.t.
secondary memory and very expressive ontologies to meet practical re-
quirements in some applications. Recently, advances for the expressive
DL SHI have been made in the dissertation of S. Wandelt for concept-
based instance retrieval on Big Data descriptions stored in secondary
memory. In this paper we extend this approach by investigating
optimization algorithms for answering grounded conjunctive queries.1

1 Introduction

Triplestores, originally designed to store Big Data in RDF format on secondary
memory with SPARQL as a query language, are currently more and more used in
settings where query answering (QA) w.r.t. ontologies is beneficial. However, rea-
soning w.r.t. ontologies in secondary memory is provided for weakly expressive
languages only (e.g., RDFS), if at all, and in some cases, query answering algo-
rithms are known to be incomplete. For weakly expressive DL languages, such
as DL-Lite, good results for sound and complete query answering w.r.t. large
(virtual) Aboxes have already been achieved with OBDA based query rewriting
techniques and schema specific mapping rules [1]. However, for expressive, more
powerful DLs such as ALC and beyond only first steps have been made. Solving
the problem of Accessing Big Data with Expressive Ontologies (ABDEO) is an
important research goal.

A strategy to solve the ABDEO problem is to “summarize” Big Aboxes by
melting individuals such that Aboxes fit into main memory [2]. In some situ-
ations inconsistencies occur, and summarization individuals must be “refined”
(or unfolded) at query answering time in order to guarantee soundness and com-
pleteness, a rather expensive operation [3]. Other approaches make use of Abox
modularization techniques and try to extract independent modules such that
query answering is sound and complete. A first investigation of Abox modular-
ization for answering instance queries w.r.t. the DL SHIF is presented in [5].

1 This work has been partially supported by the European Commission as part of the
FP7 project Optique (http://www.optique-project.eu/).

I.J. Timm and M. Thimm (Eds.): KI 2013, LNAI 8077, pp. 118–129, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://www.optique-project.eu/

Accessing Big Data with Expressive Ontologies 119

However, modularization with iterative instance checks over all individuals and
modules of an Abox is not sufficient to ensure fast performance [5].2

The ABDEO approach presented here is based on a modularization approach
developed by Wandelt [15,12,14] for really large Aboxes containing data descrip-
tions for > 1000 universities in terms of LUBM scale measures [6], i.e., datasets in
the range of billions of triples. Modules (islands) derived by Wandelt’s techniques
are usually small in practical applications and can be loaded into main memory
such that a standard tableau prover can be used for instance checks. Iteration
over all individuals gives sound and complete answers, in principle. Compared
to [5], Wandelt (i) proposed extended modularization rules, (ii) implemented in-
cremental ways of computing Abox modularizations, and (iii) investigated new
ways to optimize sound and complete concept-based query answering (instance
queries) with tableau-based reasoning systems for the logic SHI. In particular,
“similarities” between modules are detected such that a single instance query on
a representative data structure (a so-called one-step node) yields multiple results
at a time, and thus, instance checks are saved (the approach is reminiscent of but
different from [3], see below or cf. [12] for details). Due to modularization rules,
one-step node query answering is sound [12] and in many (well-defined) cases
complete for eliminating candidates for a successive iterative instance check-
ing process. In addition, to eliminate candidates, Wandelt and colleagues also
investigate complete approximation techniques (see [15] for details).

In this paper we extend Wandelt’s modularization based approach for query
answering by investigating optimization techniques for answering grounded con-
junctive queries w.r.t.SHI ontologies. Grounded conjunctive queries are more
expressive from a user’s point of view than instance queries. We argue that
grounded conjunctive queries substantially narrow down the set of instance
checking candidates if selective role atoms mentioned in queries are exploited for
generating candidates for concept atoms, such that approximation techniques
(to, e.g., DL-Lite) are not required in many cases. We demonstrate our findings
using the LUBM benchmark as done, e.g., in [9] and [6]. As an additional exten-
sion to Wandelt’s work, which uses specific storage layouts for storing Abox data
descriptions and internal information in SQL databases, we investigate ontology-
based access to existing data stores, namely triplestores, while providing query
answering w.r.t. expressive ontologies.

2 Preliminaries

We assume the reader is familiar with description logic languages, ontologies
(knowledge bases), inference problems, and optimized tableau-based reasoning
algorithms (see, e.g., [11,7]). For the reader’s convenience we define conjunctive
queries in general, and grounded conjunctive queries in particular (adapted from
[10]). In the following we use AtCon,Con, and Rol for the sets of atomic

2 Note that Abox modularization is different from Tbox modularization, as for instance
investigated in [4].

120 R. Möller et al.

concept descriptions, concept descriptions, and role descriptions, respectively, in
the ontology.

A conjunctive query (CQ) is a first-order query q of the form ∃u.ψ(u,v)
where ψ is a conjunction of concept atoms A(t) and role atoms R(t, t′), with
A and R being concept and role names, respectively. The parameters t, t′ are
variables from u or v or constants (individual names). The variables in u are
the existentially quantified variables of q and v are the free variables, also called
distinguished variables or answer variables of q. The query q is called a k-ary
query iff |v| = k. In a grounded conjunctive query (GCQ), u is empty. We only
consider grounded conjunctive queries in this paper. We define an operator skel
that can be applied to a CQ to compute a new CQ in which all concept atoms
are dropped.

The query answering problem is defined w.r.t. an ontology O = (T ,R,A).
Let Inds(A) denote the individuals in A. For I an interpretation, q = ψ(v)
a k-ary grounded conjunctive query, and a1, . . . , ak ∈ Inds(A), we write I |=
q[a1, . . . , ak] if I satisfies q (i.e., all atoms of q) with variables vi replaced by
ai, 1 ≤ i ≤ k. A certain answer for a k-ary conjunctive query q and a ontology
O is a tuple (a1, . . . , ak) such that I |= q[a1, . . . , ak] for each model I of O.
We use cert(q,O) to denote the set of all certain answers for q and O. This
defines the query answering problem. Given a SHI ontology O and a GCQ q,
compute cert(q,O). It should be noted that “tree-shaped” conjunctive queries
can be transformed into grounded conjunctive queries, possibly with additional
axioms in the Tbox [8]. The restriction to grounded conjunctive queries is not
too severe in many practical applications.

Grounded conjunctive query answering can be implemented in a naive way
by computing the certain answers for each atom and doing a join afterwards.
Certain answers for concept atoms can be computed by iterating over Inds(A)
with separate instance checks for each individual. Rather than performing an
instance check on the whole Abox, which is too large to fit in main memory in
many application scenarios, the goal is to do an instance check on a module such
that results are sound and complete. More formally, given an input individual
a, the proposal is to compute a set of Abox assertions Aisl (a subset of the
source Abox A), such that for all atomic (!) concept descriptions A, we have
〈T,R,A〉 � A(a) iff 〈T,R,Aisl〉 � A(a).

3 Speeding Up Instance Retrieval

In order to define subsets of an Abox relevant for reasoning over an individual
a, we define an operation which splits up role assertions in such a way that we
can apply graph component-based modularization techniques over the outcome
of the split.

Definition 1 (Abox Split). Given

– a role description R,
– two distinct named individuals a and b,

Accessing Big Data with Expressive Ontologies 121

– two distinct fresh individuals c and d, and,
– an Abox A,

an Abox split is a function ↓R(a,b)
c,d : SA → SA, defined as follows (SA is the

set of Aboxes and A ∈ SA):

– If R(a, b) ∈ A and {c, d} � Ind(A), then

↓R(a,b)
c,d (A) =A \ {R(a, b)} ∪ {R(a, d), R(c, b)}∪

{C(c) | C(a) ∈ A}∪
{C(d) | C(b) ∈ A}

– Else

↓R(a,b)
c,d (A) = A.

In the following we assume that the Tbox is transformed into a normal form
such that all axioms are “internalized” (i.e., on the lefthand side of a GCI there
is only � mentioned. For a formal definition of the normal form of a Tbox, see
[12]. Here we use an example to illustrate the idea.

Example 1 (Example for an Extended ∀-info Structure). Let

TEx1 = {Chair � ∀headOf.Department,

∃memberOf.� � Person,

GraduateStudent � Student},
REx1 = {headOf � memberOf},

then the TBox in normal form is

TEx1norm = {� � ¬Chair � ∀headOf.Department,

� � ∀memberOf.⊥ � Person,

� � ¬GraduateStudent � Student}

and the extended ∀-info structure for TEx1norm and REx1 is:

extinfo∀
T,R(R) =

⎧⎪⎨
⎪⎩
{Department,⊥} if R = headOf,

{⊥} if R = memberOf,

∅ otherwise.

Definition 2 (Extended ∀-info Structure). Given a TBox T in normal form
and an Rbox R, an extended ∀-info structure for T and R is a function
extinfo∀

T,R : Rol → ℘(Con), such that we have C ∈ extinfo∀
T,R(R) if and only

if there exists a role R2 ∈ Rol, such that R � R � R2 and ∀R2.C ∈ clos (T),
where clos (T) denotes the set of all concept descriptions mentioned in T.

122 R. Möller et al.

Now we are ready to define a data structure that allows us to check which
concept descriptions are (worst-case) “propagated” over role assertions in SHI-
ontologies. If nothing is “propagated” that is not already stated in corresponding
Abox assertions, a role assertion is called splittable. This is formalized in the
following definition.

Definition 3 (SHI-splittability of Role Assertions). GivenaSHI-ontology
O = 〈T,R,A〉 and a role assertion R(a, b), we say that R(a, b) is SHI-splittable
with respect to O iff

1. there exists no transitive role R2 with respect to R, such that R � R � R2,
2. for each C ∈ extinfo∀

T,R(R)

– C = ⊥ or
– there is a C2(b) ∈ A and T � C2 � C or
– there is a C2(b) ∈ A and T � C C2 � ⊥

and
3. for each C ∈ extinfo∀

T,R(R−)

– C = ⊥ or
– there is a C2(a) ∈ A and T � C2 � C or
– there is a C2(a) ∈ A and T � C C2 � ⊥.

So far, we have introduced approaches to modularization of the assertional
part of an ontology. In the following, we use these modularization techniques to
define structures for efficient reasoning over ontologies.

We formally define a subset of assertions, called an individual island, which is
worst-case necessary, i.e. possibly contains more assertions than really necessary
for sound and complete instance checking. Informally speaking, we take the graph
view of an Abox and, starting from a given individual, follow all role assertions
in the graph until we reach a SHI-splittable role assertion. We show that this
strategy is sufficient for entailment of atomic concepts. The formal foundations
for these subsets of assertions have been set up before, where we show that, under
some conditions, role assertions can be broken up while preserving soundness and
completeness of instance checking algorithms. First, in Definition 4, we formally
define an individual island candidate with an arbitrary subset of the original
Abox. The concrete computation of the subset is then further defined below.

Definition 4 (Individual Island Candidate).
Given an ontology O = 〈T,R,A〉 and a named individual a ∈ Ind(A), an indi-
vidual island candidate, is a tuple ISLa = 〈T,R,Aisl, a〉, such that Aisl ⊆ A.
Given an individual island candidate ISLa = 〈T,R,Aisl , a〉 and an interpreta-
tion I, we say that I is a model of ISLa , denoted I � ISLa , if I � 〈T,R,Aisl〉.
Given an individual island candidate ISLa = 〈T,R,Aisl , a〉, we say that ISLa

entails a concept assertion C(a), denoted 〈T,R,Aisl, a〉 � C(a), if for all inter-
pretations I, we have I � ISLa =⇒ I � C(a). We say that ISLa entails a role
assertion R(a1, a2), denoted 〈T,R,Aisl, a〉 � R(a1, a2), if for all interpretations
I, we have I � ISLa =⇒ I � R(a1, a2).

Accessing Big Data with Expressive Ontologies 123

Please note that entailment of concept and role assertions can be directly
reformulated as a decision problem over ontologies, i.e., we have 〈T,R,Aisl, a〉 �
C(a) ⇐⇒ 〈T,R,Aisl〉 � C(a). In order to evaluate the quality of an individual
island candidate, we define soundness and completeness criteria for individual
island candidates.

Definition 5 (Soundness and Completeness for Island Candidates).
Given an ontology O = 〈T,R,A〉 and an individual island candidate ISLa =
〈T,R,Aisl, a〉, we say that ISLa is sound for instance checking in ontology
O if for all atomic concept descriptions C ∈ AtCon, ISLa � C(a) =⇒
〈T,R,A〉 � C(a). ISLa is complete for instance checking in ontology O if for all
atomic concept descriptions C ∈ AtCon, 〈T,R,A〉 � C(a) =⇒ ISLa � C(a).

We say that ISLa is sound for relation checking in ontology O if for all role
descriptions R ∈ Rol and all individuals a2 ∈ Inds(A)

– ISLa � R(a, a2) =⇒ 〈T,R,A〉 � R(a, a2) and

– ISLa � R(a2, a) =⇒ 〈T,R,A〉 � R(a2, a).

ISLa is complete for relation checking in ontology O if for all role descriptions
R ∈ Rol and all individuals a2 ∈ Inds(A)

– 〈T,R,A〉 � R(a, a2) =⇒ ISLa � R(a, a2) and

– 〈T,R,A〉 � R(a2, a) =⇒ ISLa � R(a2, a).

We say that ISLa is sound for reasoning in ontology O if ISLa is sound for
instance and relation checking in O. We say that ISLa is complete for reasoning
in O if ISLa is complete for instance and relation checking in O.

Definition 6 (Individual Island).
Given an individual island candidate ISLa = 〈T,R,Aisl , a〉 for an ontology
O = 〈T,R,A〉, ISLa is called individual island for O if ISLa is sound and
complete for reasoning in O.

An individual island candidate becomes an individual island if it can be used
for sound and complete reasoning. It is easy to see that each individual island
candidate is sound for reasoning since it contains a subset of the original Abox
assertions.

In Fig. 1, we define an algorithm which computes an individual island starting
from a given named individual a. The set agenda manages the individuals which
have to be visited. The set seen collects already visited individuals. Individuals
are visited if they are connected by a chain of SHI-unsplittable role assertions to
a. We add the role assertions of all visited individuals and all concept assertions
for visited individuals and their direct neighbors.

Theorem 1 shows that the computed set of assertions is indeed sufficient for
complete reasoning.

Theorem 1 (Island Computation yields Individual Islands for
Ontologies). Given an ontology O = 〈T,R,A〉 and an individual a ∈ Inds(A),
the algorithm in Fig. 1 computes an individual island ISLa = 〈T,R,Aisl , a〉
for a.

124 R. Möller et al.

Input: Ontology O = 〈T,R,A〉, individual a ∈ Inds(A)
Output: Individual island ISLa = 〈T,R,Aisl, a〉
Algorithm:

Let agenda = {a}
Let seen = ∅
Let Aisl = ∅
While agenda �= ∅ do

Remove a1 from agenda
Add a1 to seen
Let Aisl = Aisl ∪ {C(a1) | C(a1) ∈ A}
For each R(a1, a2) ∈ A

Aisl = Aisl ∪ {R(a1, a2) ∈ A}
If R(a1, a2) ∈ A is SHI-splittable with respect to O then

Aisl = Aisl ∪ {C(a2) | C(a2) ∈ A}
else agenda = agenda ∪ ({a2} \ seen)

For each R(a2, a1) ∈ A
Aisl = Aisl ∪ {R(a2, a1) ∈ A}
If R(a2, a1) ∈ A is SHI-splittable with respect to O then

Aisl = Aisl ∪ {C(a2) | C(a2) ∈ A}
else agenda = agenda ∪ ({a2} \ seen)

Fig. 1. Schematic algorithm for computing an individual island

The proof is given in [12].
For each individual there is an associated individual island, and Abox consis-

tency can be checked by considering each island in turn (islands can be loaded
into main memory on the fly). Individual islands can be used for sound and com-
plete instance checks, and iterating over all individuals gives a sound and com-
plete (albeit still inefficient) instance retrieval procedure for very large Aboxes.

Definition 7 (Pseudo Node Successor). Given an Abox A, a pseudo node
successor of an individual a ∈ Inds(A) is a pair pnsa,A = 〈rs, cs〉, such that
there is an a2 ∈ Ind(A) with

1. ∀R ∈ rs.(R(a, a2) ∈ A ∨R−(a2, a) ∈ A),
2. ∀C ∈ cs.C(a2) ∈ A, and
3. rs and cs are maximal.

Definition 8 (One-Step Node).
Given O = 〈T,R,A〉 and an individual a ∈ Inds(A), the one-step node of a
for A, denoted osna,A , is a tuple osna,A = 〈rootconset, reflset,pnsset〉, such
that rootconset = {C|C(a) ∈ A}, reflset = {R|R(a, a) ∈ A ∨R−(a, a) ∈ A},
and pnsset is the set of all pseudo node successors of individual a.

It should be obvious that for realistic datasets, multiple individuals in an
Abox will be mapped to a single one-step node data structure. We associate the
corresponding individuals with their one-step node. In addition, it is clear that
one-step nodes can be mapped back to Aboxes. The obvious mapping function is

Accessing Big Data with Expressive Ontologies 125

called Abox. If Abox(osna,A) |= C(a) for a query concept C (a named concept),
all associated individuals of osna,A are instances of C. It is also clear that not
every one-step node is complete for determining whether a is not an instance of
C. This is the case only if one-step nodes “coincide” with the islands derived
for the associated individuals (splittable one-step nodes). Wandelt found that
for LUBM in many cases islands are very small, and one-step nodes are indeed
complete in the sense that if Abox(osna,A) �|= C(a) then A �|= C(a) (for details
see [12]). In the following we assume that for instance retrieval, it is possible to
specify a subset of Abox individuals as a set of possible candidates. If the set of
candidates is small, with some candidates possibly eliminated by one-step nodes,
then iterative instance checks give us a feasible instance retrieval algorithm in
practice.

4 Answering Grounded Conjunctive Queries

In this section we will shortly describe an implementation of the introduced
techniques with a triplestore database. As other groups we use the Lehigh Uni-
versity Benchmark or LUBM [6] for evaluating algorithms and data structures.
This benchmark is an ontology system designed to test large ontologies with
respect to OWL applications. With the LUBM generator, the user can generate
n universities each consisting of a random number of departments and indi-
viduals. As the number of individuals and the number of assertions increases
nearly linear with the number of universities, LUBM is an instrument to test
the performance for query answering machines, especially for grounded con-
junctive queries in a scalable Abox environment. If a system cannot handle
LUBM with, say, a billion triples, it cannot deal with more complex scenar-
ios occurring in future applications, either. The code we used in this paper for
evaluating the optimization techiques is written in Java and can be downloaded
at http://www.sts.tu-harburg.de/people/c.neuenstadt/. We store data in
the triplestore AllegroGraph, which provides access to role instances (triples)
w.r.t. RDFS plus transitive roles, i.e., role hierarchies and transitive roles are
handled by AllegroGraph. Alternatively one could use materialization or query
expansion in the OBDA style for role hierarchies. SPARQL is used as a query lan-
guage for specifying queries to be executed on a particular triplestore database.

4.1 Setting Up an AllegroGraph Triplestore

AllegroGraph is run as a server program. In our setting, data is loaded directly
into the server, whereas islands as well as one-step nodes are computed by a
remote program run on a client computer (we cannot extend the server pro-
gram easily). In a first step the whole data system has to be set up before we
can start query answering. During the setup process, the communication between

http://www.sts.tu-harburg.de/people/c.neuenstadt/

126 R. Möller et al.

client and server system consists basically of sending SPARQL queries for data
access required in the algorithm shown in Fig. 1 as well as sending AllegroGraph
statements for adding additional triples (or changing existing ones) for storing
islands and one-step nodes. Islands are indicated using the subgraph components
of AllegroGraph triples (actually, quintuples).

The “similarity” of one-step nodes is deifned using hashvalues with a sufficient
bitlength. We first compute a set from each island, compute a hashvalue for it,
and store it together with the specific island in the triplestore. Identical hash
values allow one to refer to “similar” one-step nodes (with additional checks
applied to the collision list as usual for hashing).

Given the concept description C from the query and the named individual a
from the tuple, we load the specific one-step node for a from the database and
determine whether osna entails C(a). Depending on the outcome, three states
are possible:

– Osna entails C(a), then a is actually an instance of C.
– Osna entails ¬C(a) or does not entail C(a) and is splittable, then a is

actually not an instance of C.
– Osna is not splittable, then the client has to load and check the entire island

associated with a to find out whether a actually is an instance of C.

Candidates for concept atoms are determined in our experiments by first doing
a retrieval for a query q by executing skel(q) (see above for a definition). Bindings
for variables in skel(q) define the candidates for retrieval with concept atoms.
By eliminating all skeleton query result tuples that include individuals which
do not belong to corresponding concept assertions used in the query, finally all
remaining tuples are correct answers to the original conjunctive query.

Wandelt has already investigated the efficiency of Abox modularization tech-
niques for an SQL database server. Here, instead, we work directly on an exist-
ing AllegroGraph triplesotore, convert the large ontology step by step into small
chunks and compare the generated modules with the local modularization of Se-
bastian Wandelt on the SQL server [12]. The processing time for one university
is about 5000 seconds on AllegroGraph server, where it is like one minute for
Wandelt’s approach. The modularization of one university takes nearly 200,000
queries. The decrease in performance is based on the huge number of SPARQL
mini queries between server and the remote modularization client in the pro-
totype implementation. Thus, only 5 universities are investigated for query an-
swering experiments.

4.2 Evaluating Conjunctive Queries

For evaluating grounded conjunctive queries, LUBM provides 14 predefined test
queries, which check several database criteria. We run the tests with an ontol-
ogy, which uses the description logic language SHI. LUBM queries differ in
the amount of input, selectivity and reasoning behaviour for example by relying

Accessing Big Data with Expressive Ontologies 127

Fig. 2. Runtimes for all queries (in seconds)

Fig. 3. Comparison between skeleton
query and naive approach (numbers
for runtimes in seconds)

on inverse roles, role hierarchy, or transitivity inferences.3 Selectivity basically
means that the grounded conjunctive queries being considered have role atoms
with large result sets to be reduced by atom queries, which we call less selective
(proportion of the instances involved in the skeleton are high compared to those
that actually satisfy the query criteria), or automatically excludes a lot of indi-
viduals, what we call a highly selective query. Rather than doing a join on the
result sets of all atoms in a grounded conjunctive query, role atoms define can-
didates for concept atoms. Thus for selective queries, candidate sets for concept
atoms are smaller. This reduces the number of instance checks that remain if,
e.g., one-step node optimizations are not applicable (see above).

The result indicates that the less selective a query is w.r.t. role atoms, the
more instance checks we need afterwards, and the more time consuming retrieval
is (see Figure 2). Nevertheless, most of the LUBM queries are handled fast,
even with the simple implementation for concept atoms with repetitive instance
checks. Performance for Query 8 will be increased with an implementation of

3 In the LUBM dataset, explict assertions about subrelations of degreeFrom are made
(e.g., doctoralDegreeFrom). The relation degreeFrom is declared as an inverse to
hasAlumnus. Thus, although, e.g., Query 13 contains a reference to University0
(asking for fillers of hasAlumnus), adding new universities with degreeFrom tuples
with University0 on the righthand side causes the cardinality of the set of fillers for
hasAlumnus w.r.t. University0 to increase, i.e., having a constant in the query does
not mean the result set to be independent of the number of universities.

128 R. Möller et al.

full one-step node retrieval (with multiple individuals returned at a time, see
above). Queries 6 and 14 contain only concept atoms and are not tested here.

To demonstrate that our skeleton query candidate generator is able to signif-
icantly improve the results for queries with even low selectivity, we compare the
approach of skeleton queries with the naive approach without skeleton queries in
Figure 3. One can directly see the huge performance gain of the skeleton query
even for less selective queries. We avoid lots of instance checks and can therefore
decrease the answering time by orders of magnitude in many cases.

5 Conclusion

In this work we extended the Abox modularization strategies of Wandelt and
colleagues to the efficient use of grounded conjunctive queries on triplestore
servers. Results obtained with the techniques discussed in this paper are sound
and complete. Note that query engines investigated in [6] are incomplete.

Our prototype needs linear time to add information to the triplestore in a
setup phase. Therefore we were not able to run queries on billions of triples. We
conclude that island computation needs to be built into the triplestore software
iteself and cannot be done from a remote client.

In the average case, the size of the individual island (with respect to the num-
ber of assertion in its Abox) is considerably smaller than the original Abox. In
our experiments the size is usually orders of magnitudes smaller. Please note that
these modularization techniques allow traditional description logic reasoning sys-
tems to deal with ontologies which they cannot handle without modularizations
(because the data or the computed model abstraction does not fit into main
memory).

In addition, the evaluation of the prototype showed how grounded conjuctive
queries on triplestore servers w.r.t. expressive ontologies (SHI) can be imple-
mented using only a small size of main memory. The main strategy is to use a
skeleton query and try to keep the necessary amount of instance checks in the
second step as small as possible. If the number of results for less selective skele-
ton queries gets larger, the number of instance checks increases rapidly. In some
cases it would obviously have been better to reduce the set of possible tuples by
considering concept atoms first. This observation has also been made in [9] and,
much earlier, in [16] where more elaborate query plan generation techniques are
investigated, albeit for main memory systems.

We would like to emphasize that the proposed optimizations can be used for
parallel reasoning over ontologies [13]. This will be further investigated in future
work such that ABDEO will become possible for practically relevant datasets
and ontologies that are more demanding than LUBM.

References

1. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Poggi, A., Rodriguez-
Muro, M., Rosati, R.: Ontologies and databases: The DL-Lite approach. In: Rea-
soning Web. Semantic Technologies for Information Systems, pp. 255–356 (2009)

Accessing Big Data with Expressive Ontologies 129

2. Dolby, J., Fokoue, A., Kalyanpur, A., Kershenbaum, A., Schonberg, E., Srinivas,
K., Ma, L.: Scalable semantic retrieval through summarization and refinement. In:
Proceedings of the National Conference on Artificial Intelligence, p. 299. AAAI
Press, MIT Press, Cambridge, Menlo Park (1999, 2007)

3. Dolby, J., Fokoue, A., Kalyanpur, A., Schonberg, E., Srinivas, K.: Scalable highly
expressive reasoner (SHER). J. Web Sem. 7(4), 357–361 (2009)

4. Grau, B.C., Parsia, B., Sirin, E., Kalyanpur, A.: Modularity and web ontologies.
In: Proc. KR 2006 (2006)

5. Guo, Y., Heflin, J.: A scalable approach for partitioning owl knowledge bases. In:
Proc. of the 2nd International Workshop on Scalable Semantic Web Knowledge
Base Systems, SSWS 2006 (2006)

6. Guo, Y., Pan, Z., Heflin, J.: LUBM: A benchmark for OWL knowledge base sys-
tems. Web Semantics: Science, Services and Agents on the World Wide Web 3(2),
158–182 (2005)

7. Haarslev, V., Möller, R.: On the scalability of description logic instance retrieval.
Journal of Automated Reasoning 41(2), 99–142 (2008)

8. Horrocks, I., Tessaris, S.: A conjunctive query language for description logic
ABoxes. In: Proc. of the 17th Nat. Conf. on Artificial Intelligence (AAAI 2000),
pp. 399–404 (2000)

9. Kollia, I., Glimm, B., Horrocks, I.: SPARQL query answering over OWL ontolo-
gies. In: Antoniou, G., Grobelnik, M., Simperl, E., Parsia, B., Plexousakis, D., De
Leenheer, P., Pan, J. (eds.) ESWC 2011, Part I. LNCS, vol. 6643, pp. 382–396.
Springer, Heidelberg (2011)

10. Lutz, C., Toman, D., Wolter, F.: Conjunctive query answering in the description
logic EL using a relational database system. In: Boutilier, C. (ed.) IJCAI, pp.
2070–2075 (2009)

11. Möller, R., Haarslev, V.: Tableaux-based reasoning. In: Staab, S., Studer, R. (eds.)
Handbook of Ontologies, pp. 509–528. Springer (2009)

12. Wandelt, S.: Efficient instance retrieval over semi-expressive ontologies. PhD thesis,
Hamburg University of Technology (2011)

13. Wandelt, S., Moeller, R.: Distributed island-based query answering for expressive
ontologies. In: Bellavista, P., Chang, R.-S., Chao, H.-C., Lin, S.-F., Sloot, P.M.A.
(eds.) GPC 2010. LNCS, vol. 6104, pp. 461–470. Springer, Heidelberg (2010)

14. Wandelt, S., Möller, R.: Towards Abox modularization of semi-expressive descrip-
tion logics. Journal of Applied Ontology 7(2), 133–167 (2012)

15. Wandelt, S., Möller, R., Wessel, M.: Towards scalable instance retrieval over on-
tologies. Journal of Software and Informatics (2010)

16. Wessel, M.: Flexible und konfigurierbare Software-Architekturen fr dateninten-
sive ontologiebasierte Informationssysteme. PhD thesis, Technische Universität
Hamburg-Harburg, Hamburg, Germany (2009) ISBN 978-3-8325-2312-1

Estimating the Driver’s Workload

Using Smartphone Data to Adapt In-Vehicle
Information Systems

Christina Ohm and Bernd Ludwig

Chair of Information Science, Universität Regensburg, 93040 Regensburg, Germany
{christina.ohm,bernd.ludwig}@ur.de

Abstract. The use of in-vehicle information systems has increased in
the past years. These systems assist the user but can as well cause ad-
ditional cognitive load. The study presented in this paper was carried
out to enable workload estimation in order to adapt information and
entertainment systems so that an optimal driver performance and user
experience is ensured. For this purpose smartphone sensor data, situa-
tional factors and basic user characteristics are taken into account. The
study revealed that the driving situation, the gender of the user and the
frequency of driving significantly influence the user’s workload. Using
only this information and smartphone sensor data the current workload
of the driver can be estimated with 86% accuracy.

Keywords: Driver’s Workload, Workload Estimation, In-Vehicle Infor-
mation Systems.

1 Motivation

Currently, many in-vehicle information systems provide assistance and enter-
tainment to the driver but still can be a source of distraction and cognitive load
since they require an input action or at least the attention of the user. For this
reason it is necessary to determine the driver’s mental state in order to prevent
dangerous situations and optimize her driving performance. The primary driv-
ing task itself is cognitive demanding since the motorist has to develop different
levels of skills [20]:

– Control level skills: handling of the car
– Maneuvering level skills: reaction behavior to the traffic situation and other

road users
– Strategic level skills: planning the trip and defining goals

In addition to these basic activities, the operator has to fulfill secondary tasks
which are not directly related to the actual transportation goal but are required
to ensure safety. This could be e.g. turning on the windscreen wiper or the
upper beam head-lights. Using in-vehicle information systems belongs to the
tertiary driving task as they are mainly used for information, communication

I.J. Timm and M. Thimm (Eds.): KI 2013, LNAI 8077, pp. 130–139, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Estimating the Driver’s Workload 131

or entertainment purposes [3]. Thus, driving is a particularly difficult situation
for human computer interaction because the operator is supposed to master
primary and secondary tasks before she can actually pay attention to any kind
of in-vehicle information system. If the user’s current workload is not optimal, she
should not be bothered with even more output of an assistance or entertainment
system.

In this paper a study is presented that examines which factors significantly in-
fluence the driver’s workload. Furthermore, the aim was to estimate the workload
using sensor data collected by a smartphone. In addition, basic characteristics
of the driver are taken into account. Being able to forecast the mental load of
the user in a specific situation can be used to adapt a system’s output to facil-
itate an optimal driving performance and therefore enhance the driver’s safety.
In contrast to existing approaches [8, 19, 32] the concept of using just a smart-
phone does not depend on sensor data of the car. Consequently, this technique
provides a low-cost and simple possibility to integrate the prediction into smart-
phone services which could be for instance phone calls that can be blocked for a
short period of time if the workload is high at the moment. This is also the in-
tent of other systems which try to predict workload [8, 19]. The following section
describes the concept of workload generally as well as in the context of driving.
Afterwards measurement and estimation methods are depicted. Subsequently,
we present our workload self-assessment tool, the study design and our results.
Finally, we draw conclusions considering the implications of our findings.

2 Workload

Basically workload can be defined as a ”demand placed upon humans” [29].
However, this task-oriented definition does not mind all aspects of the con-
cept. Especially user-centered features such as her cognitive abilities or knowl-
edge base are not minded. This is taken into account by different definitions
[4, 7, 12, 15, 16, 29], and can be summed up as follows: An operator has to
fulfill a task under given situational circumstances which demands information-
processing capabilities. Therefore, the task causes cognitive load. Workload is the
required capability to accomplish the task satisfactorily and achieve a certain
level of performance. Meanwhile, the operator has a subjective experience which
results from situational factors, the requirements of the task and the user’s char-
acteristics [24]. The latter includes criteria like her cognitive, sensory or motor
skills, knowledge base, behavior, personality, age, sex etc. [14, 29]. Considering
the context of driving this may also include driving experience [10]. [28] identifies
several important factors that influence the driver’s workload which are the age
of the driver, the driving context (e.g. driving on a rural road) or the traveling
daytime.

In the context of driving [21] distinguish three states which derive from the
relation of the situational demands and the driver’s condition. If the requirements
of the task exceed the skills of the user, she has to endure an Overload experience
which is a suboptimal cognitive state and can lead to loss of control or at least the

132 C. Ohm and B. Ludwig

feeling to do so. Contrary to this is the Underload state, which can be understood
as a feeling of boredom or distraction. In this case the situational demands do
not challenge the driver because she has sufficient skills. Thus, if the factors are
in balance, the driver achieves optimal performance. This approach to classify
driver experience is quite similar to the flow theory discussed in [6]. [9] develops
a Task-Capability Interface Model which also examines the connection of the
task demands and the capability of the driver. The task demands include the
traffic situation, the behavior of other road users or the actual traveling speed.
If the skills of the driver exceed the demands, the user is in a state of control. If
this is not the case, most of all situations result in a lucky escape because other
road users react to an error of the operator. Otherwise, a collision impends which
indicates the importance of knowing the current driver state.

A more detailed categorization can be found in [29]. Once again, in this model
workload is the consequence of the relation of the driver’s performance and the
task demands. The author distinguishes six different states which include one
state where the workload is high and the performance is low because the driving
demands are not challenging. Moreover, three states can be grouped as situations
where the driver is in control but either is at the edge to Under- or Overload. In
the remaining two states the driver has an experience of high workload or even
loss of control as the task demands are received as too high. Both Under- and
Overload can lead to cognitive load which affects the health of the user and his
ability to drive safely and therefore has to be avoided.

3 Workload Measurement and Estimation

At first cognitive load has to be measured in order to enable an estimation and
consequently avoid a suboptimal workload level. This can be achieved using a
diverse range of available tools. It is possible to measure the operator’s phys-
iological state using for instance an electroencephalogram to determine cere-
bral activity or an electrocardiogram to measure myocardial contraction. An
overview of physiological measurements is given in [29]. However, data collected
with biosensors is considered to be arguable, since it is sometimes ambiguous and
hard to analyze for someone who is not an expert in medicine. Moreover, external
factors, which do not indicate workload, can influence the measurement [5].

Another possibility is to use tools that relay on user self-reports which can be
one- or multidimensional. An example for an one-dimensional measurement is the
Rating Scale Mental Effort (RSME) [33]. The test person is asked to indicate on
a 0 to 150 cm line how much effort it took to fulfill the task. Several statements
like ”rather much effort” are located along the scale, which are supposed to
clarify the level of current effort.

One of the most established multidimensional method in this context is the
NASA-Task Load Index (TLX) [4] which takes different sources of workload into
account. These are in particular mental, physical and temporal demand as well as
the subjectively experienced performance, effort and frustration level of the user.
The test person has to rate these dimensions pairwise referring to their impact on

Estimating the Driver’s Workload 133

the task’s workload which leads to overall 15 comparisons. Subsequently, a weight
is calculated for every dimension. Afterwards, every dimension is additionally
rated on a 0 to 20 scale. The Overall Workload Index (OWI) is calculated as
follows with wi as the weight and xi as the rate multiplied by 5 [14]:

OWI =
1

15

6∑
i=1

wixi

An overview of other multidimensional scales is for example given in [4]. In
order to adapt in-vehicle information systems to the current workload of the
driver, her state has not only to be measured but also estimated. Different ap-
proaches use car sensor data like the steering wheel angle or acceleration gauging
to forecast the operator’s load [8, 31, 32].[32] additionally use eye tracking tech-
niques and reach up to a 65% correct driver-independent workload estimation
with test data collected in a simulator. [8] take biosensors like the heart rate and
environmental factors like traffic density into account.

4 Study

The overall goal of the study is to adapt in-vehicle information systems to the
current workload of the driver. At first, several hypotheses were tested for validity
in order to identify situational factors and user characteristics which significantly
influence the driver’s workload. [11, 13] show that every driving situation acquires
diverse driving skills, so that it can be assumed that the level of workload differs
according to this factor. Furthermore, [25] claim that women experience higher
workload levels than men while driving. Accordingly, the following hypotheses
were proposed:

– H1: The workload during the driving situations ”freeway”, ”rural road” and
”city” differs.

– H2: Women and men experience different workload while driving.

Since the test persons do not differ significantly in driving style (see Sec-
tion 4.1), which is an important influencing factor on workload according to
[30], other user characteristics were taken into account. [1, 30] distinguish young
drivers (<25 years) from older ones and identify that these persons are likely to
experience higher workload levels. This leads to the third hypothesis:

– H3: The workload level differs considering the user’s age.

[21] assume that persons who drive regularly usually experience lower work-
load levels so that the following hypothesis is as well tested for validity:

– H4: The workload level differs considering the user’s driving frequency.

Additionally, smartphone sensor data was collected to estimate the driver’s
workload.

134 C. Ohm and B. Ludwig

4.1 Participants and Test Route

Eight female and twelve male students participated in the study. A detailed
overview of the user characteristics is showed in Table 1.

Table 1. Overview of user characteristics separated by gender and driving frequency
(DF)

Age Driving Experience (in years)
Mean Standard deviation Range Mean Standard deviation Range

Total 24.9 2.1 21-28 6.9 2.4 1-10
Females 24.3 2.3 21-28 5.9 3.0 1-10
Males 25.3 1.9 22-28 7.5 1.8 5-10
DF ”often” 25.7 2.3 21-28 7.8 2.2 5-10
DF ”rarely” 24.0 1.4 22-26 5.3 2.5 1-8

All in all, the entire test group consisted of young and rather inexperienced
but no complete novice drivers. Their driving style was additionally assessed
by means of the Multidimensional Driving Style Inventory [26]. Most of the
participants named to have a patient or careful driving style so that the test
group can be considered as homogeneous concerning this factor.

None of the participants drove with the test car before. The test route con-
sisted of three sections. After a familiarization with the test automobile (6.3 km)
users drove on a rural road for 6.3 km. Afterwards they drove on a freeway sec-
tion for 12 km and finally in the city of Regensburg (4.9 km). It took about 15
minutes to complete one section of the test route. None in-vehicle information
systems were used as the main aim was to detect cognitive load of the primary
and secondary driving task to adapt the output of assistance and entertain-
ment systems. Moreover, there are several studies which prove that in-vehicle
information systems and especially the usage of cell phones cause cognitive load
[16–18, 22, 23, 27].

4.2 Measurements

The subjective workload level after accomplishing every route section was mea-
sured using a smartphone-based representation of the NASA-TLX (Fig.1). The
form was filled in while parking. In addition, a self-assessment tool was imple-
mented which enables users to rate their current workload during the driving
process (Fig.1). The tool is based on the RSME. The Underload state adapted
from [29] was added and the scale was simplified due to space limitations of
the smartphone screen. Several potential designs could be used to visualize the
workload levels. Four prototypes with different layouts were evaluated in a us-
ability test with 10 participants. They were instructed that the application was
intended to be used while driving. Qualitative as well as quantitative data was
collected to determine the best design. Participants were observed by the test

Estimating the Driver’s Workload 135

supervisor and asked to ”think aloud”. In addition they filled in the System
Usability Scale (SUS) [2]. Most of the test persons agreed in one best design.
This was also shown using a single factor variance analysis with repeated mea-
surement adjusted according to Bonferroni for the SUS (p < 0.05). This re-
sulted in the design showed in Fig.1. Colors and a scale are used to visualize
the workload level and the whole screen can be clicked. During the actual test,
participants were asked to indicate their current workload level every time it
had changed. The smartphone was adjusted to the front screen so that only one
short look and click was enough to indicate the workload level.

Fig. 1. Screenshots of the Android application which was used to rate the participants’
workload while driving (left) and representation of the NASA-TLX (middle and right).

In addition to this, smartphone sensor data was collected to estimate the user’s
workload with data mining approaches. The lateral and longitudinal acceleration
as well as the current speed is detected ten times per second, whereas the current
workload level is assigned to this data. In a pre-test highly significant correlations
with the equivalent car sensor data were measured (r > 0.85; p = 0.000). In
addition, the lateral acceleration correlates highly significantly with the angle
of lock (r = 0.95; p = 0.000). The sensor data described above is considered to
have a significant influence on driver workload [8, 32]. Moreover, user data like
gender and frequency of driving was assessed.

4.3 Results

H1 could be confirmed considering the OWI for the different driving situa-
tions ”rural road”, ”city” and ”freeway” using a single factor variance analysis
with repeated measurement. Since no sphericity could be assumed (p < 0.1),
Greenhouse-Geisser results were consulted (F = 6.178; p = 0.009). Conducting
a Bonferroni post-hoc test, more detailed findings could be gained: The OWI is

136 C. Ohm and B. Ludwig

significantly higher for ”freeway” (p = 0.039) and ”city” (p = 0.013) compared
to the ”rural road” situation.

After confirming normality using a Kolmogorov-Smirnov-Test (p < 0.05) and
analyzing the histograms H2-H4 were tested.

H2 could be confirmed using a T-test (T = 2.314; p = 0.024). Generally
women experience slightly higher workload levels than men so that gender can
be considered as an influencing factor on workload.

Age significantly correlates with driving experience in years (r = 0.913; p
= 0.000), so that older test persons had higher experience levels. However, no
significant difference could be detected for this factor.

No significant correlation between ”gender” and ”driving frequency” could be
confirmed using Fisher’s exact test.

The OWI of participants who named to drive rarely is significantly higher
than of those who at least drive once a week (T = 2.173; p = 0.037) so that H4

could be confirmed.
According to these findings, the driving situation, gender and driving fre-

quency were taken into account for the estimation of workload in addition to
the smartphone sensor data. On the one hand workload was categorized in the
three states ”Underload”, ”Optimal” and ”Overload”. On the other hand the
workload levels were as well classified similar to [29] except the level of extreme
Overload which results in five different states.

Table 2. Estimation accuracy in % for different classifications of workload

Decision Sequential Minimal AdaBoost Naive Neural
Tree (C4.5) Optimization (SMO) Bayes Network

Three states 85.70 63.3 62.30 63.92 70.51

Five states 72.92 46.27 46.13 46.13 54.81

Different classification algorithms were taken into account using an 80/20 split
of the sample data (Table 2). The results show that the decision tree performs
significantly better than the other techniques (p < 0.05).

The study revealed that the current cognitive load can be estimated with an
accuracy about 86% using a decision tree. Operator-specific forecasts reach up
to 96% correct predictions. If only sensor data is used, the estimation shows up
to 76% accuracy. Moreover, the ROC-values of the decision tree method exceed
0.9 so that a good diagnostic accurateness can be assumed.

For a more detailed classification of the current workload level the estimation
accuracy decreases to 73% with a ROC-value of 0.749.

5 Conclusion

All in all, there are many factors which influence the driver’s workload since
the driving situation and the characteristics of the user are very multifaceted.

Estimating the Driver’s Workload 137

However, the study presented in this paper shows that it is possible to estimate
the driver’s workload with very simple methods. Even if only smartphone-based
data is used, cognitive load can be calculated with 76% accuracy. Moreover, if
user data is taken into account, the prediction accuracy increases to 86%. Con-
sequently, it would be very advantageous to shortly collect user characteristics,
i.e. gender, driving frequency and age. In this study the latter could not be ex-
amined due to the rather homogeneous age of the participants. This should be
a topic of future research.

Another improvement could be achieved through detecting the current driving
situation like weather conditions or road type using e.g. data of the navigation
system or the car sensors. Furthermore, taking into account whether in-vehicle
information systems are used in the specific driving situation could improve the
detection of the current workload level since several studies show that using
this systems increases the cognitive load of the user (see above). User-dependent
predictions can reach up to 96% accuracy so that a system which uses driver
feedback to improve the estimation could minimize estimation errors.

The study also showed that it is important to determine the driver’s workload
several times per second since even if the OWI of some participants was rather
low nearly everyone experienced very high or low workload for a short period of
time while actually driving. Yet, it is just these moments which require workload
detection to avoid dangerous situations.

Knowing the driver state can improve the user experience and safety if in-
vehicle information systems are involved. As mentioned at the beginning phone
calls or an output of a navigation system can be blocked for instance. If the work-
load level is too low music could be recommended to the user. Other application
areas will surely follow.

References

1. Biermann, A., Eick, E.M., Brünken, R., Debus, G., Leutner, D.: Development and
first evaluation of a prediction model for risk of offences and accident involvement
among young drivers. Driver Behaviour and Training 2, 169–178 (2005)

2. Brooke, J.: SUS - A quick and dirty usability scale. Redhatch Consulting, United
Kingdom (2011)

3. Bubb, H.: Fahrerassistenz primär ein beitrag zum komfort oder für die sicherheit?
VDI-Berichte, pp. 25–44 (2003)

4. Cain, B.: A review of the mental workload literature. Tech. rep., DTIC Document
(2007)

5. Cherri, C., Nodari, E., Toffetti, A.: Review of existing tools and methods. Tech.
rep., AIDE Deliverable D2.1.1 (2004)

6. Csikszentmihalyi, M.: FLOW. Das Geheimnis des Glücks. Klett-Cotta, Stuttgart
(2008)

7. Eggemeier, F., Wilson, G., Kramer, A., Damos, D.: Workload assessment in multi-
task environments. In: Damos, D. (ed.) Multiple Task Performance, pp. 207–216.
Taylor & Francis, London (1991)

8. Ford,
https://media.ford.com/content/fordmedia/fna/us/en/news/2012/06/27/

ford-research-developing-intelligent-system-to-help-drivers-mana.html

https://media.ford.com/content/fordmedia/fna/us/en/news/2012/06/27/ford-research-developing-intelligent-system-to-help-drivers-mana.html
https://media.ford.com/content/fordmedia/fna/us/en/news/2012/06/27/ford-research-developing-intelligent-system-to-help-drivers-mana.html

138 C. Ohm and B. Ludwig

9. Fuller, R.: The task-capability interface model of the driving process. Recherche-
Transports-Sécurité 66, 47–57 (2000)

10. Fuller, R.: Towards a general theory of driver behaviour. Accident Analysis &
Prevention 37(3), 461–472 (2005)

11. Gaczek, D.: Entwurf und Regelung eines Verbrauchsassistenten. GRIN Verlag
(2009)

12. Gopher, D., Donchin, E.: Workload - an examination of the concept. In: Boff, K.,
Kaufman, L., Thomas, J. (eds.) Handbook of Perception and Human Performance.
Cognitive Processes and Performance, vol. 2, pp. . 41:1–41:49. Wiley, New York
(1986)

13. Hale, A., Stoop, J., Hommels, J.: Human error models as predictors of accident
scenarios for designers in road transport systems. Ergonomics 33(10-11), 1377–1387
(1990)

14. Hart, S.G., Staveland, L.E.: Development of nasa-tlx (task load index): Results of
empirical and theoretical research. Human Mental Workload 1(3), 139–183 (1988)

15. Jex, H.R.: Measuring mental workload: Problems, progress, and promises. Ad-
vances in Psychology 52, 5–39 (1988)

16. Lysaght, R.J., Hill, S.G., Dick, A., Plamondon, B.D., Linton, P.M.: Operator work-
load: Comprehensive review and evaluation of operator workload methodologies.
Tech. rep., DTIC Document (1989)

17. Ma, R., Kaber, D.B.: Situation awareness and workload in driving while using
adaptive cruise control and a cell phone. International Journal of Industrial Er-
gonomics 35(10), 939–953 (2005)

18. Matthews, R., Legg, S., Charlton, S.: The effect of cell phone type on drivers
subjective workload during concurrent driving and conversing. Accident Analysis
& Prevention 35(4), 451–457 (2003)

19. Mayser, C., Ebersbach, D., Dietze, M., Lippold, C.: Fahrerassistenzsysteme zur
unterstützung der längsregelung im ungebundenen verkehr. In: Conference Aktive
Sicherheit durch Fahrerassistenz (2004)

20. Michon, J.A.: A critical view of driver behavior models: what do we know, what
should we do? Springer (1986)

21. Oron-Gilad, T., Ronen, A., Shinar, D.: Alertness maintaining tasks (amts) while
driving. Accident Analysis & Prevention 40(3), 851–860 (2008)

22. Pauzié, A.: Evaluating driver mental workload using the driving activity load index
(dali). In: Proc. of European Conference on Human Interface Design for Intelligent
Transport Systems, pp. 67–77 (2008)

23. Pauzié, A., Manzano, J.: Evaluation of driver mental workload facing new in-vehicle
information and communication technology. In: Proceedings of the 20th Enhanced
Safety of Vehicles Conference (ESV20), Lyon, France, vol. 10 (2007)

24. Recarte, M.A., Nunes, L.M.: Mental workload while driving: Effects on visual
search, discrimination, and decision making. Journal of Experimental Psychology
Applied 9(2), 119–133 (2003)

25. Schweitzer, J., Green, P.: Task acceptability and workload of driving city streets,
rural roads, and expressways: Ratings from video clips (2007)

26. Taubman-Ben-Ari, O., Mikulincer, M., Gillath, O.: The multidimensional driv-
ing style inventory scale construct and validation. Accident Analysis & Preven-
tion 36(3), 323–332 (2004)

27. Tsimhoni, O., Green, P.: Visual demand of driving and the execution of display-
intensive in-vehicle tasks. In: Proceedings of the Human Factors and Ergonomics
Society Annual Meeting, vol. 45, pp. 1586–1590. SAGE Publications (2001)

Estimating the Driver’s Workload 139

28. Verwey, W.B.: On-line driver workload estimation. effects of road situation and
age on secondary task measures. Ergonomics 43(2), 187–209 (2000)

29. deWaard, D.: The measurement of drivers’ mental workload. Groningen University,
Traffic Research Center (1996)

30. Wundersitz, L., Burns, N.: Identifying young driver subtypes: relationship to risky
driving and crash involvement. Driver Behaviour And Training 2, 155 (2005)

31. Zeitlin, L.R.: Micromodel for objective estimation of driver mental workload from
task data. Transportation Research Record: Journal of the Transportation Re-
search Board 1631(1), 28–34 (1998)

32. Zhang, Y., Owechko, Y., Zhang, J.: Learning-based driver workload estimation. In:
Prokhorov, D. (ed.) Computational Intelligence in Automotive Applications. SCI,
vol. 132, pp. 1–17. Springer, Heidelberg (2008)

33. Zijstra, C., Doorn, R.V.: The construction of a scale to measure perceived ef-
fort. Tech. rep., Department of Philosophy and Social Sciences, Delft University of
Technology (1985)

Pattern-Database Heuristics for Partially

Observable Nondeterministic Planning

Manuela Ortlieb and Robert Mattmüller

Research Group Foundations of AI, University of Freiburg, Germany
{ortlieb,mattmuel}@informatik.uni-freiburg.de

Abstract. Heuristic search is the dominant approach to classical plan-
ning. However, many realistic problems violate classical assumptions such
as determinism of action outcomes or full observability. In this paper, we
investigate how – and how successfully – a particular classical technique,
namely informed search using an abstraction heuristic, can be transferred
to nondeterministic planning under partial observability. Specifically, we
explore pattern-database heuristics with automatically generated pat-
terns in the context of informed progression search for strong cyclic
planning under partial observability. To that end, we discuss projections
and how belief states can be heuristically assessed either directly or by
going back to the contained world states, and empirically evaluate the
resulting heuristics internally and compared to a delete-relaxation and
a blind approach. From our experiments we can conclude that in terms
of guidance, it is preferable to represent both nondeterminism and par-
tial observability in the abstraction (instead of relaxing them), and that
the resulting abstraction heuristics significantly outperform both blind
search and a delete-relaxation approach where nondeterminism and par-
tial observability are also relaxed.

Keywords: AI planning, nondeterministic planning, partial observabil-
ity, heuristic search, pattern databases.

1 Introduction

Classical planning is a well-understood problem that has been successfully ap-
proached over the past decades. Both for satisficing and for optimal planning,
there are algorithms in the recent literature that scale well beyond simple toy
problems [18,11]. Although lately the focus of research in classical planning has
shifted towards algorithmic enhancements and pruning techniques orthogonal
to planning heuristics, accurate domain-independent heuristics were the main
driving factor in the progress of classical planning for many years. However, not
all planning tasks fit into the framework of classical planning. Often, action out-
comes are nondeterministic and the environment is only partially observable. We
would still like to capitalize on the advances made in classical planning when
solving such problems. In previous work [1,2,16], we already handled nondeter-
minism, but only full observability. As part of our efforts to get closer to real-
world problems with the approach developed before, in this work, we consider

I.J. Timm and M. Thimm (Eds.): KI 2013, LNAI 8077, pp. 140–151, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Pattern-Database Heuristics 141

the problem of finding so called strong cyclic plans [6] for partially observable
nondeterministic planning tasks, i.e., policies that are guaranteed to never lead
into states where they are undefined, and always maintain the possibility to
reach a goal state. There exist various approaches to finding strong cyclic plans
(for fully observable problems, but in principle adaptable to partially observable
problems), including a symbolic nested fixpoint algorithm [6,13], repeated invo-
cations of a classical planner in the all-outcomes determinization of the given
nondeterministic planning task until no unsolved leaf nodes remain in the gen-
erated subgraph of the transition system [14,8], and (informed) forward search
in the nondeterministic transition system induced by the planning task guided
by an appropriate heuristic function [4,16]. In this paper, we study the latter
approach, more specifically, LAO* search [9]. Whereas a similar study has been
performed by Bryce et al. [4] before, that study only considers delete-relaxation
heuristics to guide the search. Here, we want to complement that study with
an investigation of domain-independent abstraction heuristics, more specifically,
pattern-database (PDB) heuristics [7]. When Bryce et al. [4] studied relaxation
heuristics, they investigated how to evaluate a belief state by either (a) sampling
world states from that belief state, evaluating them using a relaxation heuristic
assuming full observability, and aggregating the estimates across samples, or (b)
directly evaluating the belief state by extending the relaxed planning graph from
the fully observable setting to a so-called labeled uncertainty graph (LUG) for
the partially observable setting. In this work, we perform a similar comparison
between a sampling-based approach and a more direct evaluation of belief states
for pattern-database heuristics. Our main research question is whether there is
a significant difference in how well approaches (a) and (b) perform empirically,
and if so, which performs better.

2 Preliminaries

2.1 Nondeterministic Planning under Partial Observability

We formalize nondeterministic planning tasks under partial observability using
a finite-domain representation for the state variables and separate causative and
sensing actions, extending our previous formalization for fully observable nonde-
terministic planning tasks [16]. A partially observable nondeterministic planning
task is a tuple Π = 〈V , s0, s�,O〉 consisting of the following components: V is
a finite set of state variables v, each with a finite domain Dv and an extended
domain D+

v = Dv " {⊥}, where ⊥ denotes the undefined or don’t-care value.
A partial state is a function s with s(v) ∈ D+

v for all v ∈ V . We say that s is
defined for v ∈ V if s(v) �= ⊥. A state is a partial state s such that its scope
scope(s) = {v ∈ V | s(v) �= ⊥} is V . The set of all states s over V is denoted as
S, and the set of all belief states B over V is denoted as B = 2S . Depending on
the context, a partial state sp can be interpreted either as a condition, which is
satisfied in a state s iff s agrees with sp on all variables for which sp is defined,
or as an update on a state s, resulting in a new state s′ that agrees with sp on
all variables for which sp is defined, and with s on all other variables. The initial

142 M. Ortlieb and R. Mattmüller

state s0 of a problem is a partial state (i.e., a compact encoding of a compactly
encodable belief state), and the goal description s� is a partial state. A state s
is a goal state iff s� is satisfied in s, and a belief state B is a goal belief state
iff each state s ∈ B is a goal state. O is a finite set of actions partitioned into
causative actions Oc and sensing actions Os. Causative actions are of the form
ac = 〈Pre,Eff 〉, where the precondition Pre is a partial state, and the effect
Eff is a finite set of partial states eff , the nondeterministic outcomes of a. The
application of a nondeterministic outcome eff to a state s is the state app(eff , s)
that results from updating s with eff . The application of an effect Eff to s is the
set of states app(Eff , s) = {app(eff , s) | eff ∈ Eff } that might be reached by ap-
plying a nondeterministic outcome from Eff to s. Sensing actions are of the form
as = 〈Pre,Obs〉, where the precondition Pre is a partial state, and the observed
variables Obs are a subset of V . An action is applicable in a state s iff its precon-
dition is satisfied in s, and it is applicable in a belief state B if it is applicable in
all s ∈ B. Actions are applied in belief states and result in sets of belief states.
The application of an action in a belief state B is undefined if the action is in-
applicable in B. Otherwise, the application of a causative action ac = 〈Pre,Eff 〉
to B is the singleton set app(ac, B) = {{app(eff , s) | eff ∈ Eff , s ∈ B}}, and
the application of a sensing action as = 〈Pre,Obs〉 to B is the set of nonempty
belief states that result from splitting B according to possible observations, i.e.,
app(as, B) = {{s ∈ B | s′ ⊆ s} | s′ partial state with scope(s′) = Obs} \ {∅}. All
actions have unit cost. Partially observable nondeterministic planning tasks as
defined above induce nondeterministic transition systems where the nodes are
the (reachable) belief states and where there is an arc from a belief state B to a
belief stateB′ labeled with an action a iff a is applicable in B and B′ ∈ app(a,B).
Given a partially observable nondeterministic planning task, we seek a strong
cyclic plan solving the task, i.e., a partial mapping π from belief states to ap-
plicable actions such that for all belief states B reachable from the initial belief
state B0 = {s ∈ S | s satisfies s0} following π, B is either a goal belief state, or
π is defined for B and at least one goal belief state is reachable from B following
π. Later, we will occasionally simplify a partially observable problem by assum-
ing full observability. In that case, the induced transition system will be defined
slightly differently: First, all nodes will be world states instead of belief states,
second, sensing actions will be ignored (since sensing occurs implicitly), and
third, applying a causative action ac = 〈Pre,Eff 〉 to a node representing a state
s will no longer lead to a unique successor node, but rather to one successor node
for each successor state in {app(eff , s) | eff ∈ Eff } (i.e., AND nodes in the tran-
sition system are caused by nondeterministic actions instead of splitting of belief
states). Also, we will sometimes simplify partially observable nondeterministic
problems by determinizing them. In that case, we replace each causative action
ac = 〈Pre,Eff 〉, Eff = {eff 1, . . . , eff n}, by n causative actions aic = 〈Pre, {eff i}〉
for i = 1, . . . , n. Together with a unique initial state, this essentially leads to a
classical planning problem.

Pattern-Database Heuristics 143

2.2 Pattern-Database Heuristics

In classical planning, pattern-database heuristics work by projecting the plan-
ning task to a set of variables P ⊆ V , the pattern, solving the resulting simplified
planning task optimally, storing the optimal goal distances of all abstract states
in a pattern database, and eventually using these abstract distances as heuris-
tic values during search [7]. In addition, one often uses more than one pattern
and maximizes over non-additive patterns and adds heuristic values from prov-
ably additive patterns. The most accurate admissible heuristic obtainable from
a set of patterns is the so-called canonical heuristic function [10], which we will
also use in this work. Formally, the projection of a partially observable non-
deterministic planning task Π = 〈V , s0, s�,O〉 to a pattern P ⊆ V is defined
component- and element-wise: Π |P = 〈P, s0|P , s�|P ,O|P 〉, where s|P (v) = s(v)
for all v ∈ scope(s) ∩ P , and s|P (v) = ⊥, otherwise; where O|P = {a|P | a ∈ O},
ac|P = 〈Pre|P , {eff |P | eff ∈ Eff }〉 for each causative action ac = 〈Pre,Eff 〉,
and as|P = 〈Pre|P ,Obs ∩ P 〉 for each sensing action as = 〈Pre,Obs〉. To ensure
that projections preserve action applications and goal states, we require that for
each pattern P to which we project, all variables in P are either observable by
some sensing action, or do not occur in any precondition or goal condition, or
their value is known initially and never becomes uncertain through any action
application.

3 Simplifying a Partially Observable Nondeterministic
Planning Task

The only problem simplification that occurs in pattern-database heuristics for
classical planning is the projection to the pattern. Our partially observable non-
deterministic problems differ from classical problems in two respects: nonde-
terministic actions and partial observability. Our main research question is to
investigate the best way how to deal with these two aspects when computing
pattern databases. Both nondeterminism and partial observability can easily be
retained in the abstraction: If an action a leads from state s to one of two different
states s′1 and s′2 in the original problem, and s′1 and s′2 can still be distinguished
in the abstraction under consideration, then a will still be nondeterministic in
the abstract problem, leading from the abstraction of s to either the abstrac-
tion of s′1 or the abstraction of s′2. Similarly, if two states s1 and s2 cannot be
distinguished in the original problem and belong to some common belief state
B, their abstract versions cannot be distinguished in the abstract problem and
the abstraction of B will contain the abstractions of s1 and of s2. Thus, besides
abstracting to a pattern, we have four possibilities how to further simplify the
abstract problem, namely all combinations of determinizing or not determinizing
the problem and assuming or not assuming full observability in the abstraction.
The resulting abstract problem will fall into one of the four categories in the
following table:

144 M. Ortlieb and R. Mattmüller

determinization
yes no

observability
full

(A) FO-Det
Pspace-complete [5]

(B) FO-NDet
Exptime-complete [15]

partial
(C) PO-Det
Expspace-complete [19]

(D) PO-NDet
2-Exptime-complete [19]

This suggests that the abstract problem will be easier to solve the more sources
of complexity (partial observability, nondeterminism) we abstract away. On the
other hand, we expect better-informed heuristics and better guidance the fewer
of these sources we abstract away:

(A) Full observability, determinization (FO-Det): This leads to a classical ab-
stract problem that we can solve with classical regression search as it is
usually done when computing PDB heuristics for classical problems. In-
formation about nondeterministic outcomes belonging to the same original
nondeterministic action is lost. Therefore, we implicitly minimize over pos-
sible action outcomes and thus underestimate true worst case or expected
case costs. The resulting optimistic goal distances are stored in PDBs for
all patterns in the pattern collection under consideration. During LAO*
search, when PDB values are retrieved, since the PDBs contain (projected)
world states as keys, we cannot directly look up a heuristic value for the
(projection of the) belief state B we want to evaluate. Rather, we have to
consider the (projections of the) world states s contained in B individually.
This poses two challenges: The practical challenge lies in the fact that B
can contain exponentially many world states in the number of state vari-
ables, which leads to prohibitively many PDB lookups for a single heuristic
evaluation of a belief state. We resolve this by experimenting with different
numbers of world state samples from B (sampling 1, 5, 10, 15, or all states).
The conceptual challenge is the question how to aggregate heuristic values
for individual states s ∈ B. Summing costs corresponds to assuming that
all s ∈ B have to be solved independently without positive interactions of
the individual plans for each, whereas maximizing corresponds to assuming
maximal positive interaction, where an optimal plan for the most expen-
sive state s ∈ B happens to solve all other states in B along the way. We
experimented with both possible aggregation rules.

(B) Full observability, no determinization (FO-NDet): In this case, we end up
with an AND/OR graph (a nondeterministic transition system) in the ab-
straction with splitting over causative action outcomes instead of over sens-
ing action outcomes. This leads to the question of which cost measure to
use in the abstract transition system. If we used weak (optimistic) goal
distances, this would be the same as the FO-Det case above. We cannot
use strong (pessimistic) goal distances, since this would assign cost values
of ∞ to belief states that actually admit a strong cyclic solution. Instead,
we perform value iteration on the resulting abstract AND/OR graph to la-
bel the abstract states with expected costs, i.e., expected numbers of steps

Pattern-Database Heuristics 145

to the nearest goal state. Lacking information about probabilities of dif-
ferent action outcomes, we assign them uniform probabilities. Moreover,
the remarks about sampling of world states from the belief state under
consideration from the FO-Det case still apply.

(C) Partial observability, determinization (PO-Det): In this case, the only un-
certainty in any reachable belief state comes from initial state uncertainty.
We end up with an AND/OR graph with splitting over sensing action out-
comes. If the initial state happens to be unique (fully observable), PO-Det
amounts to FO-Det, and the complexity reduces from Expspace-complete
to Pspace-complete.

(D) Partial observability, no determinization (PO-NDet): In this case, states
in the abstract transition system – and therefore the keys in the PDBs
– are still belief states (not world states). As in the other cases where
AND nodes in the abstract transition systems are involved, we have to
choose an aggregation rule for interior nodes (optimistic, pessimistic, or
expected costs). Again, we use expected costs under the assumption that
each successor of an AND node has the same weight. We leave the idea of
weighing successor nodes (belief states) by cardinality for future work.

In the experiments below we compare three of these four approaches among
each other and to (a) a delete-relaxation approach with additional determiniza-
tion and assumption of full observability and (b) the blind heuristic.

4 Implementation Details

We implemented a tool in Java that computes strong cyclic plans for partially
observable nondeterministic planning tasks using LAO* search [9] guided by FO-
Det, FO-NDet and PO-NDet PDB heuristics.1 In all cases, we use the canonical
heuristic function induced by a pattern collection computed using Haslum et
al.’s local search in the space of pattern collections [10]. In the case where we
preserve partial observability in the abstraction (PO-NDet), we consider two
different ways of computing a pattern collection: the one where we also assume
partial observability during pattern search, and the one where we avoid searching
for a suitable pattern collection in the belief space by assuming full observability
during pattern search. After that local search terminates, we use the resulting
pattern collection to create pattern databases under partial observability. Within
LAO*, we use a nonstandard expansion strategy in the case when there is no
unexpanded non-goal leaf node in the most promising partial solution graph:
We alternate between expanding an unexpanded non-goal leaf node with min-
imal h value outside the most promising partial solution graph and expanding

1 We disregard PO-Det for the following reasons: (a) The additional simplification
over PO-NDet appears minor and in PO-Det we would still have to deal with an
AND/OR graph (instead of simply an OR graph) in the abstraction, and (b) two
of the three benchmarks domains we consider (Fr and Blocks, see below) have
fully observable initial states, i.e., in these benchmarks PO-Det and FO-Det would
collapse anyway.

146 M. Ortlieb and R. Mattmüller

an unexpanded non-goal leaf node outside the most promising partial solution
graph which was created earliest among all such nodes. Moreover, our LAO* im-
plementation uses maximization and discounting to aggregate cost estimates at
interior nodes. Belief states and transitions between them are represented sym-
bolically using Binary Decision Diagrams (BDDs) [3]. Sampling of world states
from belief states represented as BDDs is done uniformly with replacement.

5 Experiments

We ran our planner on a compute server equipped with AMD Opteron 2.3 GHz
CPUs. For each single planner run, we imposed a 4GB memory limit and a 30
minute time limit on the JRE. The time for the search for a pattern collection was
limited to 10 minutes. When that limit was reached, the best pattern collection
found so far was used. If the pattern collection search terminated in less than
10 minutes, the main LAO* search was allowed to use up the remainder of the
original 30 minutes.

5.1 Benchmark Domains

We adapted the FirstResponders (Fr) and Blocksworld (Blocks) do-
mains from the fully observable nondeterministic track of the International Plan-
ning Competition 2008 by requiring active sensing for certain state variables:

– Fr: The task is to plan a rescue operation where fires have to be extinguished
and victims have to be treated on-scene or at a hospital. We required active
sensing for victims’ health statuses and for whether fires are still burning or
already extinguished.

– Blocks: Unlike in the classical Blocks domain, where towers of blocks
have to be reconfigured using deterministic block movement actions, in our
formalization there are actions that can fail, like transferring a block from
one tower to another. We require active sensing for block positions.

In addition, we experimented with a variant of the Canadian Traveler Problem:

– Ctp: The Canadian Traveler Problem [17] is originally a probabilistic plan-
ning problem which we transformed into a partially observable nondetermin-
istic one. It consists of a road map where an agent has to travel from a start
to a goal location. In the original formalism, each road is passable with a
specific probability and driving roads has different costs. In our transforma-
tion, driving a road has unit costs and there are roads which are definitively
passable, definitively not passable or for which it is unknown if they are pass-
able. Sensing actions are used to determine if an incident road is passable or
not.

Pattern-Database Heuristics 147

5.2 Belief State Sampling

When we assume full observability in the abstractions, in order to evaluate a
belief state B during LAO* search, we need to sample world states from B,
evaluate them individually, and aggregate the resulting heuristic values into a
heuristic value for B. Before comparing FO-Det, FO-NDet, and PO-NDet, we
first want to find suitable parameters for the numbers of belief state samples (we
experimented with 1, 5, 10, 15, all) and aggregation methods (we experimented
with maximizing and adding) used in FO-Det and FO-NDet. The results are
summarized in Table 1. For all sampling methods except for “all”, sampling is
with replacements. Sampling “all” considers each state from B exactly once. In
this experiment, for each problem instance, we use the same pattern collection
for all configurations of sample numbers and aggregation methods to improve
comparability of the results. Therefore, preprocessing times (pattern collection
computation times) are the same for all configurations and hence omitted from
the table. In the Fr domain with summation, coverage and guidance tend to
increase with the number of samples with the exception of sampling all states.
With summation, it is not a good idea to sum over all world states, because
this introduces an unjustified bias of the search towards low-cardinality belief
states. With maximization, we get mixed guidance, time and coverage results
for different numbers of samples, with a small advantage of maximizing over all
world states. Overall, in Fr FO-NDet has a higher coverage than FO-Det. In
the Blocks domain, it turns out that it is often cheaper to sample all world
states (without replacement) than to use a fixed number of samples (with re-
placement), since the cardinalities of the encountered belief states are very small
(typically less than 10). When sampling is used, guidance and search time tend
to improve with the number of samples. That means that time spent for sampling
is compensated by better guidance, and in terms of coverage, FO-Det slightly
outperforms FO-NDet. Overall, in Blocks FO-Det tends to outperform FO-
NDet. In the Ctp domain, it was not possible to enumerate all world states of
the belief states encountered during search because of their exponential cardinal-
ity. There is no significant difference between FO-Det and FO-NDet or between
maximizing and summing in the Ctp domain. In conclusion, except for a few
Blocks instances, coverage is slightly higher with FO-NDet than with FO-Det,
and in both cases, the sweet spot of the sample number seems to be around 10
or 15. Summing over samples appears a bit more promising than maximizing
over them.

5.3 Pattern Selection

When we assume partial observability in the abstraction, we are faced with dif-
ferent ways of performing the search for suitable pattern collections. In Table 2,
we report on an experiment for the PO-NDet case with the following three con-
figurations: In configuration “steps 0”, we perform no pattern collection search
at all, but rather use a collection of singleton patterns with one pattern for each
goal variable. In configuration “pop mip0.5”, we assume partial observability also

148 M. Ortlieb and R. Mattmüller

Table 1. Coverage (cov) and guidance (number of node expansions, exp) and search
times (time, in seconds) on commonly solved problems 30 (FO-Det) and 28 (FO-Ndet)
in Fr, 10 in Blocks, 26 in Ctp) for different numbers of samples (1, 5, 10, 15, all)
and different aggregation methods (maximizing and adding)

Domain FO-Det FO-NDet
max sum max sum

n cov exp time cov exp time cov exp time cov exp time

Fr 1 42 13835 995 41 13835 1357 40 11084 1125 40 11084 1077
(75 tasks) 5 54 6161 291 58 3644 156 58 6599 855 60 4868 206

10 56 12194 755 62 2716 162 55 11097 494 64 3338 117
15 51 11267 579 62 4481 320 56 11420 631 65 4998 341
all 54 11085 395 32 27048 1900 59 9810 309 31 12751 665

Blocks 1 12 3573 24 12 3573 46 14 4024 49 14 4024 76
(30 tasks) 5 14 2766 50 12 2214 34 13 2647 52 13 3261 89

10 13 2509 34 14 1863 37 12 1699 25 12 3532 77
15 14 1922 31 14 1796 33 12 1271 25 13 2495 60
all 13 2392 22 14 1618 16 14 2731 61 12 3007 49

Ctp 1 26 751 28 26 751 31 26 728 29 26 728 32
(46 tasks) 5 26 494 76 26 460 79 26 507 74 26 488 86

10 26 560 154 26 428 143 26 561 147 26 391 121
15 26 518 196 26 401 195 26 523 202 26 408 198
all 0 — — 0 — — 0 — — 0 — —

during pattern collection search and use a minimal improvement threshold [10]
of 0.5 (i.e., we only perform a local search step in the pattern collection search if
the fraction of samples for which the canonical heuristic value is improved is at
least 0.5). Similarly, in configuration “fop mip0.5”, we assume full observability
during pattern collection search and use a minimal improvement threshold of
0.5 as well. From the data in Table 2, we conclude that it is typically preferable
to search for better pattern collections than the trivial singleton pattern collec-
tions, and that assuming full observability during that search tends to improve
total time because the preprocessing time is significantly decreased, whereas as-
suming partial observability generates better patterns at a higher preprocessing
cost, but leads to faster (better informed) LAO* search.

5.4 Internal Comparison of FO-Det, FO-NDet, and PO-NDet

To determine the overall best PDB configuration, we compare the best configu-
rations of FO-Det, FO-NDet, and PO-NDet side by side in Table 3. For FO-Det
and FO-NDet, we use the configurations with summation over 15 belief state
samples, and for all three configurations, we use a minimal improvement thresh-
old of 0.5. We observe that the additional informedness of PO-NDet over the
more simplistic FO-Det and FO-NDet configurations translates into fewer node
expansions as well as lower search and overall times. Although there is no sig-
nificant resulting increase in coverage, altogether PO-NDet appears dominant.

Pattern-Database Heuristics 149

Table 2. Coverage (cov) and guidance (number of node expansions, exp), search times
(stm, in seconds), and total times (ttm, in seconds, including pattern collection search)
on commonly solved problems (39 in Fr, 11 in Blocks, 23 in Ctp) for different con-
figurations of the pattern collection search for PO-NDet

PO-NDet
Domain steps 0 pop mip0.5 fop mip0.5

cov exp stm ttm cov exp stm ttm cov exp stm ttm

Fr 40 25278 3079 3111 70 5887 218 1058 73 5819 262 588
Blocks 13 6560 630 644 12 5343 423 673 12 6902 779 866
Ctp 26 526 9 15 23 461 4 862 26 480 5 314

OVERALL 79 32364 3718 3770 105 11691 645 2593 111 13201 1046 1768

Table 3. Coverage (cov) and guidance (number of node expansions, exp), search times
(stm, in seconds), and total times (ttm, in seconds, including pattern collection search)
on commonly solved problems (69 in Fr, 10 in Blocks, 26 in Ctp) for LAO* search
with best FO-Det, FO-NDet, and PO-NDet configuration

Domain FO-Det sum15 mip0.5 FO-NDet sum15 mip0.5 PO-NDet fop mip0.5
cov exp stm ttm cov exp stm ttm cov exp stm ttm

Fr 70 40159 9330 10320 72 28938 9140 11327 73 26414 3851 6095
Blocks 14 1796 33 85 13 2558 59 113 12 1670 19 78
Ctp 26 607 281 849 26 607 270 1004 26 630 7 923

OVERALL 110 42562 9644 11254 111 32103 9469 12444 111 28714 3877 7096

5.5 Comparison to Delete Relaxation and Baseline

In order to assess how well our best PDB configuration (PO-NDet fop mip0.5)
does in comparison to an established technique (FF heuristic [12] under as-
sumption of full observability and determinization) and a trivial baseline (blind
heuristic), we provide a direct comparison in Table 4. We can conclude that
PDBs outperform FF and blind heuristic in the Fr and Ctp domains in terms
of coverage, guidance and runtime, whereas they perform slightly worse than FF
in the Blocks domain. A comparison to a cleverer delete-relaxation approach
like LUGs [4] that could shift the picture in favor of delete relaxation again, is
left for future work. We remark that we do not expect a completely reversed
picture with LUGs, since the PDB approach that is most comparable to the
FF approach under full observability and with determinization, namely FO-Det,
still leads to a higher coverage than FF (110 vs. 78 solved problems).

150 M. Ortlieb and R. Mattmüller

Table 4. Coverage (cov) and guidance (number of node expansions, exp), search times
(stm, in seconds), and total times (ttm, in seconds, including pattern collection search)
on commonly solved problems (16 in Fr, 6 in Blocks, 13 in Ctp) for LAO* search with
blind heuristic, FF heuristic under assumption of full observability and determinization,
and the best PDB configuration

Domain blind FF PO-NDet fop mip0.5
cov exp stm=ttm cov exp stm=ttm cov exp stm ttm

Fr 16 18716 1337 47 4381 239 73 662 12 95
Blocks 6 15937 488 15 241 20 12 276 2 37
Ctp 13 36124 2128 16 13714 735 26 152 1 88

OVERALL 35 70777 3954 78 18336 993 111 1090 16 219

6 Conclusion and Future Work

We have demonstrated that abstraction heuristics can successfully guide LAO*
search for strong cyclic plans for partially observable nondeterministic planning
problems towards goal belief states, and that the guidance is at least compet-
itive with the guidance provided by a delete-relaxation heuristic. We argued
experimentally that preserving partial observability and nondeterminism in the
abstraction leads to more informative heuristics at the cost of more expensive
preprocessing. From a global perspective, the better accuracy of such heuristics
pays off with better overall planner performance.

Future work includes a comparison of our results to those of Bryce et al. [4]
that also takes their labeled uncertainty graph (LUG) into account as an efficient
data structure for the direct evaluation of belief states within a delete-relaxation
approach. Moreover, we plan to investigate more realistic benchmark problems
arising from robotic applications.

Acknowledgments. This work was partly supported by the German Research
Foundation (DFG) as part of the Transregional Collaborative Research Cen-
ter “Automatic Verification and Analysis of Complex Systems” (SFB/TR 14
AVACS, see http://www.avacs.org).

References

1. Bercher, P., Mattmüller, R.: A planning graph heuristic for forward-chaining ad-
versarial planning. In: Proceedings of the 18th European Conference on Artificial
Intelligence (ECAI 2008), pp. 921–922 (2008)

2. Bercher, P., Mattmüller, R.: Solving non-deterministic planning problems with
pattern database heuristics. In: Mertsching, B., Hund, M., Aziz, Z. (eds.) KI 2009.
LNCS (LNAI), vol. 5803, pp. 57–64. Springer, Heidelberg (2009)

3. Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE
Transactions on Computers 35(8), 677–691 (1986)

Pattern-Database Heuristics 151

4. Bryce, D., Kambhampati, S., Smith, D.E.: Planning graph heuristics for belief
space search. Journal of Artificial Intelligence Research 26, 35–99 (2006)

5. Bylander, T.: The computational complexity of propositional strips planning. Ar-
tificial Intelligence 69(1-2), 165–204 (1994)

6. Cimatti, A., Pistore, M., Roveri, M., Traverso, P.: Weak, strong, and strong cyclic
planning via symbolic model checking. Artificial Intelligence 147(1-2), 35–84 (2003)

7. Culberson, J.C., Schaeffer, J.: Searching with pattern databases. In: McCalla, G.I.
(ed.) Canadian AI 1996. LNCS, vol. 1081, pp. 402–416. Springer, Heidelberg (1996)

8. Fu, J., Ng, V., Bastani, F.B., Yen, I.L.: Simple and fast strong cyclic planning for
fully-observable nondeterministic planning problems. In: Proc. 22nd International
Joint Conference on Artificial Intelligence (IJCAI 2011), pp. 1949–1954 (2011)

9. Hansen, E.A., Zilberstein, S.: LAO*: A heuristic search algorithm that finds solu-
tions with loops. Artificial Intelligence 129(1-2), 35–62 (2001)

10. Haslum, P., Botea, A., Helmert, M., Bonet, B., Koenig, S.: Domain-independent
construction of pattern database heuristics for cost-optimal planning. In: Proc.
22nd AAAI Conference on Artificial Intelligence (AAAI 2007), pp. 1007–1012
(2007)

11. Helmert, M., Röger, G., Seipp, J., Karpas, E., Hoffmann, J., Keyder, E., Nissim,
R., Richter, S., Westphal, M.: Fast downward stone soup (planner abstract). In:
Seventh International Planning Competition (IPC 2011), Deterministic Part, pp.
38–45 (2011)

12. Hoffmann, J., Nebel, B.: The FF planning system: Fast plan generation through
heuristic search. Journal of Artificial Intelligence Research 14, 253–302 (2001)

13. Kissmann, P., Edelkamp, S.: Solving fully-observable non-deterministic planning
problems via translation into a general game. In: Mertsching, B., Hund, M., Aziz,
Z. (eds.) KI 2009. LNCS (LNAI), vol. 5803, pp. 1–8. Springer, Heidelberg (2009)

14. Kuter, U., Nau, D.S., Reisner, E., Goldman, R.P.: Using classical planners to solve
nondeterministic planning problems. In: Proc. 18th International Conference on
Automated Planning and Scheduling (ICAPS 2008), pp. 190–197 (2008)

15. Littman, M.L.: Probabilistic propositional planning: Representations and complex-
ity. In: Proc. 14th National Conference on Artificial Intelligence (AAAI 1997), pp.
748–754. MIT Press (1997)

16. Mattmüller, R., Ortlieb, M., Helmert, M., Bercher, P.: Pattern database heuris-
tics for fully observable nondeterministic planning. In: Proc. 20th International
Conference on Automated Planning and Scheduling (ICAPS 2010), pp. 105–112
(2010)

17. Papadimitriou, C.H., Yannakakis, M.: Shortest paths without a map. Theoretical
Computer Science 84, 127–150 (1991)

18. Richter, S., Westphal, M., Helmert, M.: Lama 2008 and 2011 (planner abstract).
In: Seventh International Planning Competition (IPC 2011), Deterministic Part,
pp. 50–54 (2011)

19. Rintanen, J.: Complexity of planning with partial observability. In: Proc. 14th
International Conference on Automated Planning and Scheduling (ICAPS 2004),
pp. 345–354 (2004)

Automated Theorem Proving with Web Services

Björn Pelzer

Universität Koblenz-Landau, Institut für Informatik, 56070 Koblenz, Germany
bpelzer@uni-koblenz.de

Abstract. Automated theorem provers (ATP) usually operate on finite input
where all relevant axioms and conjectures are known at the start of the proof
attempt. However, when a prover is embedded in a real-world knowledge rep-
resentation application, it may have to draw upon data that is not immediately
available in a local file, for example by accessing databases and online sources
such as web services. This leads both to technical problems such as latency times
as well as to formal problems regarding soundness and completeness. We have
integrated external data sources into our ATP system E-KRHyper and in its un-
derlying hyper tableaux calculus. In this paper we describe the modifications and
discuss problems and solutions pertaining to the integration. We also present an
application of this integration for the purpose of abductive query relaxation.

1 Introduction

Automated theorem provers (ATP) usually operate on clearly defined logic problems,
where axioms and conjectures are known from the start and no new data can enter dur-
ing the derivation process. Given their roots as mathematical tools this is sufficient for
many applications of ATP, but when a prover is employed within the context of knowl-
edge representation, the ability to obtain and utilize more data during the derivation
may become useful. Here the formal ontologies and datasets can be too extensive for a
prover to handle in the conventional manner. Instead it is preferable to have the prover
identify what data it needs during the reasoning and retrieve it from appropriate sources.
Examples can be found in question answering (QA), where a prover can be used for the
deduction of answers. An all-encompassing knowledge base (KB) would be too large
to allow effective reasoning. This is particularly so since modern ATP usually work
saturation-based, deriving all consequences from all axioms - yet obviously most ax-
ioms in such a KB are irrelevant for any given question. Also, much information is
temporary in nature, such as timetables, currency exchange rates or weather forecasts,
and attempting to incorporate it in a massive static KB appears futile. Instead such data
should remain at its original sources, for example web services, to be requisitioned only
when required. An obstacle is the slow communication with web services, which could
cause delays in the reasoning. This can be mitigated by decoupling the communication
from the reasoning process and inserting the received data asynchronously.

This necessitates modifications both to the prover and its underlying calculus. We
will describe such adaptations within the context of our German language QA sys-
tem LogAnswer1 [6,7,8], where we employ our theorem prover E-KRHyper2 [12] as

1 http://www.loganswer.de
2 http://www.uni-koblenz.de/˜bpelzer/ekrhyper

I.J. Timm and M. Thimm (Eds.): KI 2013, LNAI 8077, pp. 152–163, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://www.loganswer.de
http://www.uni-koblenz.de/~bpelzer/ekrhyper

Automated Theorem Proving with Web Services 153

a reasoning component. E-KRHyper (Knowledge Representation Hyper Tableaux with
Equality) is an ATP and a model generation system for first-order logic (FOL) with
equality. It is an implementation of the hyper tableaux calculus [2] and its extension
with a superposition-based [1] handling of equality, the E-hyper tableaux calculus [3].

We elaborate on our motivations and describe our modifications, including how we
deal with communication delays. We also examine the issues of soundness and com-
pleteness, the latter being problematic due to complications inherent to any attempt at
incorporating external knowledge sources. Finally we describe a special application of
the new features for the purpose of abductive query relaxation.

We assume a basic understanding of FOL. While the paper introduces its concepts
within the context of hyper tableaux, the content is largely independent of any particular
FOL calculus or readily adapted if necessary.

2 Motivation and Related Work

QA systems traditionally derive their answers from a static KB derived from a document
collection [9]. Even when a QA system employs the reasoning of ATP, this kind of
architecture precludes answering questions which do not have permanent answers, like:

Q1: “What is the weather in Stockholm today?”
Q2: “How much is e2.99 in US-Dollars?”
Q3: “When does the next train to the CeBIT leave?”

Answering Q1 requires access to weather data by time and location. Q2 needs current
currency exchange rates and arithmetics. Answering Q3 needs not only time tables, but
also the location of the CeBIT trade fair and the current location of the user. Such infor-
mation cannot be found in a static knowledge base, and the ability to handle questions
of this type would greatly broaden the scope and thereby the appeal of a QA system.

The QA context and the slow access to web services are the reasons why we want
to connect them directly into the reasoning of the ATP system, rather than handling
them separately in some preprocessing stage. While in QA it is common to first use
heuristics and information retrieval methods to narrow down the full KB to some hope-
fully answer-relevant fragments, analogous pre-emptive web service requests before the
reasoning are unfeasible due to the inability to clearly identify which requests are ac-
tually relevant. For example, in the case of question Q1 it does not make much sense
to send requests for data on words like “weather” and “Stockholm” to all connected
web services before the actual relation between these words is known. The multitude of
pre-emptive requests would take much time to process and result in irrelevant data, like
weather information about cities other than Stockholm and Stockholm-related informa-
tion outside the domain of weather. Instead we wish to access the slow web services
as rarely as possible, and hence the requests should be very specific in such manner
that the result will close a clearly identified and proof-relevant gap in the knowledge.
This is best done in the ATP, where the relations between the words and concepts of the
question are available during the derivation.

For similar reasons we also restrict ourselves to “factoid” web services that provide
their respective data in an almost atomic form which the prover can treat as unit clauses.
Examples would be “cloudy” in response to Q1, or numeric replies like “3.74” for Q2.

154 B. Pelzer

A related system is SPASS-XDB [14,15], which combines the ATP SPASS with web
services and other external knowledge sources, but which lacks a natural language inter-
face. The publications on SPASS-XDB focus on the selection of connected services and
their possible practical usage, and less on the formal grounding of the integration or the
inherent problems of completeness. They introduce the expression of external sources
(of axioms) to refer to sources such as web services in a more abstract manner. We
adopt this expression in the sequel. While we are primarily interested in web services,
the more general notion allows us to use the same techniques both for web services
and for any other sources with comparable characteristics, like websites that are suffi-
ciently structured for automated processing, and even sources that are not web-based,
for example large local databases.

Outside of FOL we can find similarities in the DVLHEX solver [5] for answer set
programming (ASP). However, ultimately the fundamental differences between ASP
and FOL make it difficult to apply the approach of one area within the other.

3 Formal Representation of External Sources

We now provide the formal underpinning for external sources of axioms. First we as-
sume that the systems underlying such sources are accessed by requests, and each re-
quest is answered by a response. We introduce a new binary predicate symbol ext/2 that
is used to represent the relation between request and response in the form of an atom
ext(q, a), where the request term q is a term representing the request and the response
term a is a term representing the response. An external source can then be represented
as a possibly infinite set of positive ext-units which list the requests and the associ-
ated responses. The terms q and a can be formed ina way that also encodes identity
and functionality of the represented source. This allows representing multiple resources
with different access methods as one external source, for example:

ext(weather service(weather(’Stockholm’, 27-06-2012)), ’cloudy’)←
ext(weather service(temperature(’Stockholm’, 27-06-2012)), ’15 ◦C’)←
ext(currency exchange service(eur, usd, 2.99, 27-06-2012), ’$3.74’)←

We assume external sources to consist only of ground positive ext-units, as web ser-
vices typically only accept fully specified requests without variables, and we want to
avoid variable requests anyway, as we only want to access web services to fill clearly
identified gaps in the KB.

It must be stressed that this set representation is idealized, and its purpose is to make
external sources accessible within a logical calculus. In practice the full extent of the
data available from a web service is not known, as we can only send requests for specific
items. We also assume all ext-units of external sources to always be true. Where this is a
problem, a time stamp encoding as in the example above may help: The ATP can use its
internal time or some other temporal data to time stamp its requests, thereby ensuring
that only valid responses are returned. Of course time remains a problematic issue, as
external sources may gain new ext-units and lose old ones over time. For example,
the currency exchange service will not contain the exchange rates of tomorrow before
tomorrow, and it might not keep an archive of past exchange rates. This means that the

Automated Theorem Proving with Web Services 155

same request may sometimes result in a response and sometimes not. We have to accept
this, and for the formalization we simply assume any external source to be constant,
as any further attempt to account for temporal changes on the formal level is likely to
overcomplicate the calculus extension beyond its benefits.

In the sequel, when defining our extended calculus, we will summarize all ext-units
from external sources in a set Cext, and refer to this set as a single external source. Other
clauses that are immediately available to the reasoning in the conventional manner will
be regarded as belonging to a clause set C. As an external source Cext is a set of positive
ground ext-units, Cext is always satisfiable and so are all its elements. An ordinary clause
set C may be unsatisfiable or satisfiable. Even if C is satisfiable, C ∪ Cext may be unsat-
isfiable or satisfiable. Hence we call C (un)satisfiable with respect to Cext. Our extended
calculus in the upcoming section attempts to determine this notion of satisfiability for a
given clause set C and an external source Cext.

4 External Sources in Hyper Tableaux

In order to deal with external sources in the hyper tableaux calculus [2] we modify its
only inference rule, the hyper extension step. While we refer to the original publication
for the full details, the following quick summary of hyper tableaux should provide an
idea and introduce some concepts required for the detailed extension below. A hyper
tableau T for a clause set C is a tree labeled with literals. Let B be a branch in T, and
let [[B]] denote the minimal Herbrand model of the literals labeling B when each literal
is treated as a universally quantified unit clause. Let C = A ← B be a clause from
C with A being the set of positive atoms and B the negated atoms. The hyper exten-
sion step extends B with C if all its atoms B1, . . . , Bn ∈ B (treated as a universally
quantified conjunction) unify with literals from B, i.e. there is a most general substi-
tution σ such that [[B]] |= ∀(B1 ∧ . . . ∧ Bn)σ. If the atoms in A share any variables,
these are eliminated by purification, which means applying some ground substitution
π. The literals from Cσπ are attached as new leaves to B. Branches with leaves labeled
with negative literals are closed from further extension. The others are open. If T has
only closed branches then C is unsatisfiable. If an open branch cannot be extended in a
non-redundant manner, then its literals form a model for C.

The new hyper extension step with external access works mostly like the original,
except that ext-atoms from negative literals in the extending clause can also unify with
units from the external source, provided the request terms in these atoms are ground
before their respective unification. This may be because they were already ground in
the first place in the extending clause, or because their variables got instantiated during
the computation of σ. It is important to not that the new calculus is not complete (see
Sec. 5), and hence a saturated open branch is not guaranteed to represent a model.

Let C be a finite clause set and let Cext be an external source of ground ext-units.
Hyper tableaux for C with respect to Cext are inductively defined as follows:

Initialization step: A one node literal tree is a hyper tableau for C with respect to Cext.
Its single branch is labeled as open.

Hyper extension step with external access: The following conditions are required:
1. B is an open branch with the leaf node N in the hyper tableau T.

156 B. Pelzer

2. C = A ← B is a clause from C (referred to as the extending clause) with
A = {A1, . . . , Am} (m ≥ 0) and B = {B1, . . . , Bn} (n ≥ 0).

3. σ is a most general substitution such that [[B]] ∪ Cext |= ∀(B1 ∧ . . . ∧ Bn)σ;
in particular, with every Bi ∈ B associate the specific literal or unit clause Li

that forms this model, i.e. Li |= Biσ and Li ∈ [[B]] ∪ Cext.
4. Let V be the set of branch-instantiated variables, which is defined as:

(a) x ∈ V if x occurs in some Bi ∈ B with Li ∈ [[B]] such that there is a
most general substitution γ with Li |= Biγ and xγ is ground and there
is a possibly empty substitution δ such that γδ = σ (x is directly branch-
instantiated).

(b) If there is a Bi = ext(qi, ai) ∈ B with Li ∈ Cext and for every x occurring
in qi it holds that x ∈ V , then for every y occurring in ai it holds that
y ∈ V (y is indirectly branch-instantiated).

Then for every Bi = ext(qi, ai) ∈ B with Li ∈ Cext and for every variable x
occurring in qi it must hold that x ∈ V .

5. π is a purifying substitution for Cσ.
If all the above conditions hold, then the literal tree T′ is a hyper tableau for
C with respect to Cext, where T′ is obtained from T by attaching m + n child
nodesM1, . . . ,Mm, N1, . . . , Nn to Bwith respective labelsA1σπ, . . . , Amσπ and
¬B1σπ, . . . ,¬Bnσπ and labeling every new branch with positive leaf as open and
every new branch with negative leaf as closed.

A hyper tableaux derivation with external access for C with respect to Cext is a se-
quence of hyper tableaux that starts with the initialization step and where each hyper
tableau after the initial one has been derived from its predecessor by a hyper extension
step with external access. If such a derivation contains a closed hyper tableau, then C is
unsatisfiable with respect to Cext.

As an example3 consider the following clauses pertaining to the introductory ques-
tion Q3, consisting of :

Cext
1 : ext(user location service, ’Cologne’)←

Cext
2 : ext(next train finder service(’Cologne’, ’Hanover’), ’15:05’)←

C1: at(’CeBIT’, ’Hanover’)←
C2: next train to(Event, Time)←

at(Event, ToCity),
ext(user location service,FromCity),
ext(next train finder service(FromCity, ToCity), Time)

Q3: ← next train to(’CeBIT’, Time)

The clauses Cext
1 and Cext

2 form Cext while the others form C. Clause C3 is the FOL
representation of the question Q3 itself as a negated conjecture. The derivation (merged
into a single tableau due to space reasons) is shown in Fig. 1. The unit C1 has been
added as a literal to the initial branch right away in a trivial hyper extension step.
Then C2 is selected as an extending clause. The atom of its first negative literal uni-
fies with the branch literal at(’CeBIT’, ’Hanover’). This instantiates the variable Event

3 We use the Prolog convention of denoting variables by unquoted capitalized identifiers.

Automated Theorem Proving with Web Services 157

Fig. 1. Example hyper tableaux derivation

with ’CeBIT’ as well as ToCity with ’Hanover’. The second negative literal of C2,
¬ext(user location service,FromCity), has a ground request term which is used to re-
trieve ’Cologne’ from the external source, instantiating the variable FromCity.

Thus ¬ext(next train finder service(FromCity, ToCity), Time), the third negative lit-
eral of C2, can now be regarded as having a ground request term. This enables another
request to the external source which instantiates the variable Time with ’15:05’. All
negative literals of C2 have now been refuted using the common unifier σ. No purifi-
cation is required, so π remains empty, and every σ-substituted literal is added as a
new leaf, with the negative leaves closing their branches immediately. The branch for
next train to(’CeBIT’, ’15:05’) remains open, only to be closed in the next hyper exten-
sion step with C3, thereby refuting the negated conjecture. In a QA system the answer
’15:05’ could then be extracted from the proof.

We now prove the soundness of hyper tableaux with external sources.

Theorem 1 (Soundness of Hyper Tableaux with External Sources). Let C be a finite
clause set and let Cext be an external source. If the modified hyper tableaux calculus
extended by the hyper extension step with external access derives a refutation for C
with respect to Cext, then C is unsatisfiable with respect to Cext.

Proof. We first show that the hyper extension step with external access preserves satis-
fiability. Let B be an open branch in a hyper tableau T for a finite clause set C and
an external source Cext of positive ground ext-units. Let C = A ← B with A =
{A1, . . . , Am} (m ≥ 0) and B = {B1, . . . , Bn} (n ≥ 0) be a clause from C that serves
as an extending clause in a hyper extension step with external access, using a most gen-
eral unifier σ and a purifying substitution π. Assume C to be satisfiable with a model
I . [[B]] ∪ Cext consists only of positive unit clauses and is therefore satisfiable. Since

158 B. Pelzer

[[B]]∪Cext |= ∀(B1 ∧ . . .∧Bn)σ, on the converse it must hold that ¬B1σ∨ . . .∨¬Bnσ
is unsatisfiable. Thus I �|= ¬B1 ∨ . . . ∨ ¬Bn, and instead it must hold that I |= Ai for
some Ai ∈ A for I to satisfy C. Then it also holds that I |= Aiσπ, and the new branch
B ·Mi resulting from extending B by the node Mi labeled with Aiσπ is satisfiable.

The contrapositive of the above is that if a hyper extension step with external access
extends a branch B with no satisfiable branches, then B and the extending clause, the
premises of this extension, are unsatisfiable with respect to Cext, too. Let therefore T
be the closed tableau of the refutation of C with respect to Cext. From the contraposi-
tive above we conclude that if a tableau Ti of a derivation contains only branches that
are unsatisfiable , then so does the predecessor Ti−1. The closed T contains only un-
satisfiable branches. By induction on the length of the refutation we conclude that the
premises of the first hyper extension step, i.e. the first extending clause and the empty
initial branch, are unsatisfiable with respect to Cext, and so is C.

5 Incompleteness

The extended calculus is not complete and thus it cannot be used for model generation,
as it may end up with finite branches that are not closed, despite the input being unsat-
isfiable with respect to the external source. In a practical application this is unlikely to
be much of a problem, but as the original hyper tableaux calculus is complete, the loss
of completeness in the extension should be discussed. We believe completeness to be
unattainable for external sources in general, regardless of the calculus. There are two
major obstacles: Firstly, external sources typically only respond to specific requests, re-
flected in the need for ground request terms. If the exact term cannot be formed during
the derivation, then an important response may remain inaccessible. Secondly, to form
requests dynamically we must allow clauses with variables in request terms. Logically
variables are more ’powerful’ than ground terms, as a variable can subsume sets of
terms, but it cannot access external sources. Neither problem can be circumvented due
to the reality of web services, and they lead to various conflicts as shown below.

Consider the clauses Cext
1 ∈ Cext and C1 ∈ C with Cext

1 = ext(q, a) ← and C1 =←
ext(x, y). Together the two clauses are unsatisfiable, but as there is no way to ground x,
Cext

1 and the refutation remain out of reach. If we replace C1 with its C2 =← ext(q, y)
the refutation is possible, which is unfortunate given that C2 is an instance ofC1. Worse,
now consider the clause C3 = p(y) ← ext(q, y) combined with Cext

1 and C1: C3 can
access Cext

1 and derive p(a), yet the refutation from C1 and Cext
1 still fails.

The last example shows that we cannot simply disregard some web service data as
unreachable and thereby irrelevant, because clearly a is retrieved, just not wherever it
is needed. This can be mitigated by adding any successfully accessed unit from Cext to
C, thereby turning it into a normal input clause that is accessible to all inferences. E-
KRHyper offers this functionality, but it may have a negative effect on the performance
by adding many ext-units, and it is not entirely compatible with model generation, as an
ext-unit added to the input will not show up in any models derived before the addition.
It also does not solve our initial problem with C1 and Cext

1 .
An alternative approach is to transform C in a manner similar to range restriction,

by adding domain clauses which enumerate the Herbrand domain in a special dom-
predicate, and then to any clause C add a literal ¬dom(x) for each variable x occurring

Automated Theorem Proving with Web Services 159

in a request term of a negative ext-literal in C. This way request terms will always get
ground-instantiated. However, a large Herbrand universe can result in a large number
of irrelevant requests by exhaustively testing all possible request terms, which clearly
goes against our motivations described in Sec. 2. Also, symbols exclusive to Cext can
only take part in the enumeration after having been accessed once, so important request
terms may never be formed; C1 and Cext

1 still cannot be refuted.
The aforementioned greater ’power’ of variables leads to problems when trying to

eliminate redundant clauses in an effort to keep the clause set small. Demodulation and
subsumption are important tools for this, and in fact modern ATP are estimated to spend
about 90% of their time on such operations rather than the normal calculus inferences
[11]. Subsumption can allow non-ground clauses to eliminate ground clauses, which
is problematic if only the latter could have accessed an external source. For example,
together the aforementioned clauses Cext

1 , C1 and C2 are unsatisfiable with a refutation
based on Cext

1 and C2. But if C1 first subsumes its instance C2, then the refutation is pre-
vented. Forbidding subsumption just for ext-literals is no solution, as any subsumption
might remove symbols from the derivation that could have ended up in an important
request term after a few inference steps. Demodulation in calculi with equality han-
dling can have a similar effect, as it rewrites clauses with clauses that are equivalent yet
simpler according to some term ordering. Consider the clauses Cext

2 = ext(f(b), a) ←,
C4 =← ext(f(b), y) and C5 = f(x) % x←. Clearly there is a refutation between Cext

2

and C4, but most modern ATP would first use C5 to demodulate C4 into ← ext(b, y).
An analogous demodulation of Cext

2 is not possible due to its limited accessibility,
and so the one-sided simplification prevents the refutation. Similar to the subsump-
tion problem above, demodulation would have to be outright forbidden to prevent such
cases.

Clause set simplifications are so important in theorem proving that their abandon-
ment is unacceptable, even though we are clearly losing proof confluence. Generally
the problems described here appear to be inescapable consequences of the technical
reality of external sources.4 On a more positive note they may not be very likely in
practical usage, as careful construction of the clauses with ext-literals can avoid such
situations in the first place. Also, even if the access to external sources is not complete,
it nevertheless allows more proofs than having no access at all.

6 Implementation

The implementation consists of the modified E-KRHyper and an interface module be-
tween the prover and the web services. The latter enables an asynchronous delivery
of the responses to E-KRHyper, allowing the prover to reason concurrently while the
interface carries out the slow web service communication, collecting the responses in
a cache. The interface module accepts request terms from E-KRHyper over a socket.
Each such request is immediately compared against the response cache and then an-
swered synchronously5 with one of the following three reply types:

4 Indeed, we found the problems can be reproduced on SPASS-XDB, too.
5 Note that the communication between prover and interface is synchronous, but the delivery of

a web service response is asynchronous to the initial request.

160 B. Pelzer

wait: There is no response to this request in the cache yet, either because it is the first
time E-KRHyper has made this request, in which case the interface forwards it
in the proper form to the appropriate external source, or because the request has
already been made at some earlier point, but the external source has not replied yet.
Either way E-KRHyper continues its derivation with other inferences, and it will
check again later on whether a response has been received in the meantime.

failed: The interface has already concluded the external communication regarding this
particular request, but there was no successful response (the external source may
be offline or simply have no data for this request). From a FOL point of view this
is treated as Cext not containing any unit matching this request.

<response>: The interface has already concluded the external communication regard-
ing this particular request. It has received a proper response, converted it into a FOL
response term and stored it in the cache. This is now sent to E-KRHyper as a reply.
Depending on the web service it may be possible to have multiple responses to a
given request; these are then treated as individual units by the prover.

In accordance with our assumption of temporally constant external sources the cache
is maintained for the duration of the derivation, though optionally longer caching is
possible. The prover also keeps track of pending requests that are still waiting for a
response in the interface module. If an open branch cannot be extended and there are
pending requests, then depending on the configuration E-KRHyper either waits until a
response is received, or it postpones the branch and continues the derivation elsewhere.

Currently E-KRHyper and the interface can access the following external sources:
ECB Currency Exchange Rates;6 Yahoo! GeoPlanet,7, which provides geographical in-
formation about cities and countries; System Q&A TPTP,8 which is the intermediate
interface that provides data to SPASS-XDB; and the LogAnswer Ontology Browser,9

which is part of our LogAnswer project and which links ontological data from sources
such as OpenCyc [10] and DBpedia [4]. Overall the integration of web services in E-
KRHyper is still an experimental proof of concept with a limited range of sources.

7 Abductive Relaxation

When our LogAnswer QA system fails to find a perfect proof that answers a question,
it uses relaxation: Heuristics remove one literal of the FOL question representation,
thereby making the question less specific, and the proof attempt is restarted. This can be
risky. For example, asking LogAnswer the question “What is the weight of the ‘Maus’
(‘Mouse’) tank?” will result in the gram weights of various species of mice, rather than
the 188 tons of the German tank prototype from World War II [13]. Obviously “tank” is
a critical piece of information here that should not have been skipped. As an alternative
to relaxation by removal we have experimented with using the aforementioned Log-
Answer Ontology Browser as an external source for abductive relaxation, where literals

6 http://www.ecb.int/stats/eurofxref/eurofxref-daily.xml
7 http://developer.yahoo.com/geo/geoplanet
8 http://www.cs.miami.edu/˜tptp/cgi-bin/SystemQATPTP
9 http://www.loganswer.de/hop/loganswer-cyc

http://www.ecb.int/stats/eurofxref/eurofxref-daily.xml
http://developer.yahoo.com/geo/geoplanet
http://www.cs.miami.edu/~tptp/cgi-bin/SystemQATPTP
http://www.loganswer.de/hop/loganswer-cyc

Automated Theorem Proving with Web Services 161

are replaced by semantically more general literals taken from the ontology concept
hierarchy. If concept c is a subclass of concept d, then any entity of c can be deduced
to also belong to d. Abduction takes the opposite direction: An entity of d might also
belong to c. Abduction is not sound, its result is a hypothesis, an assumption. However,
we may see now how it can help in relaxing a query. Consider the question from above
together with the sentence S that was retrieved from the KB as possibly relevant:

Q: “What is the weight of the ‘Maus’ (‘Mouse’) tank?”
S: “At 188 tons the ‘Maus’ is the heaviest armoured fighting vehicle ever built.”

While S does not mention any tank, tanks are a subclass of vehicles, and given S we
could use abduction to form the hypothesis that the vehicle ‘Maus’ is a tank and then
answer the question.

Implemented in E-KRHyper is the following clause set transformation which aims
at using an external source of axioms expressing a concept hierarchy for the purpose of
query relaxation guided by abduction. Due to the inherent uncertainty of abduction, the
user should receive not only answers, but also hints as to what abductive assumptions
were made, so that the user can judge whether the answer is applicable.

Let C be a set of clauses with a negative query clause Q =← Q1, . . . , Qn with
n ≥ 0. Let Cext be an external source containing positive ground ext-units of the form
ext(subclass of(c), d) ←, which is the external source conforming representation of
the subclass relationship subclass of(c, d) between two concept identifiers c and d. We
obtain the abductive relaxation supporting clause set Car from C by adding two clauses
as follows. First, add Qar with

Qar: relaxed answer(rlx(c1, x1), . . . , rlx(cm, xm))←
Q′

1, . . . , Q
′
n,

ext(subclass of(c1), x1), . . . , ext(subclass of(cm), xm)

where c1, . . . , cm (m ≥ 0) are the occurrences of constants in Q1, . . . , Qn, and where
Q′

1, . . . , Q
′
n are obtained from Q1, . . . , Qn by replacing each ci (0 ≤ i ≤ m) with a

fresh variable xi. relaxed answer is a new predicate symbol of arity m, and rlx is a new
binary function symbol. Secondly, add a unit clause Crs expressing the trivial reflexive
subclass relationship of a concept with itself:

Crs: ext(subclass of(x), x) ←

As C ⊂ Car, any refutational proof and answer derivable for C can also be derived
for Car. The intention behind Qar is as follows. By moving the concept identifiers
c1, . . . , cm out of the original query literals Q1, . . . , Qn into the new ext-literals and
replacing their original occurrences with the response variables, it becomes possible to
request more general superclass concepts from the external source and to insert these
into the query. As only constants are treated this way, all the new ext-literals have ground
request terms, making them valid for accessing the external source. The trivial reflex-
ive subclass unit ensures that concepts do not have to be relaxed if they can already be
proven without external access. Finally, once all negative literals of Qar have been re-
futed with an overall substitution σ, information about the specific concept relaxations
can be found in the derived unit relaxed answer(rlx(c1, x1), . . . , rlx(cm, xm))σ ←. If

162 B. Pelzer

E-KRHyper does not find a refutational proof for Q within some time limit, it can return
the relaxed answer units found in the branch instead, leaving it to the main LogAnswer
system or the user to decide whether the generalizations are acceptable. An example
will illustrate the principle:

Cext
1 : ext(subclass of(tank), vehicle)←

Q: ← is a(’Maus’, tank), has weight(’Maus’, x)
C1: is a(’Maus’, vehicle)←
C2: has weight(’Maus’, ’188t’)←
Qar: relaxed answer(rlx(’Maus’, x1), rlx(tank, x2), rlx(’Maus’, x3))←

is a(x1, x2), has weight(x3, x), ext(subclass of(’Maus’), x1),
ext(subclass of(tank), x2), ext(subclass of(’Maus’), x3)

Crs: ext(subclass of(x), x) ←
The original query Q, specifically its first literal, cannot be proven in this set of

clauses. However, the relaxation query Qar can: Its first body literal atom is a(x1, x2)
unifies with C1, instantiating x1 with ’Maus’ and x2 with vehicle. The second body
literal atom has weight(x3, x) unifies with C2, instantiating x3 with ’Maus’ and x with
’188t’. While the external source contains no subclass information for ’Maus’, the first
and the third ext-atom unify with the trivial subclass unit Crs. The second ext-atom on
the other hand has been instantiated to ext(subclass of(tank), vehicle), which does not
unify with Crs. It is a valid request to the external source, though, and the response term
vehicle from Cext

1 matches the already instantiated response term in Qar, thus proving
the final body literal. We derive a positive literal or unit clause C3:

C3 : relaxed answer(rlx(’Maus’, ’Maus’), rlx(tank, vehicle), rlx(’Maus’, ’Maus’))←
This indicates that a proof is possible if we accept generalizing tank to vehicle. The

other two “generalizations” are trivial, and we ignore them. In a QA system like Log-
Answer this information could be used to answer the question “What is the weight of
the ‘Maus’ tank?” with “188t, if by ’tank’ you mean ’vehicle”’.

8 Conclusions and Future Work

External sources of axioms can enhance automated reasoning by giving ATP access to
data that is normally unavailable. This is of particular interest in the context of knowl-
edge representation applications. We have provided a formal framework for such an
integration with our modifications to the hyper tableaux calculus. The basic principles
can be applied to most FOL calculi, though. Unfortunately the limitations of external
sources also carry over, but in practice knowledge engineers should be able to avoid
many problematic situations. Regarding our implementation, at this time our integra-
tion of external sources is limited to E-KRHyper and not yet utilized within LogAn-
swer, for which the knowledge base would have to be augmented with ext-literals. As
such the implementation is a proof of concept, intended to explore the possibilities and
limitations of external sources. For the future we intend to experiment with using the
mechanisms described here to access and combine multiple large external ontologies,
evaluating whether this can serve as an alternative to heuristic axiom selection algo-
rithms. We also want to expand the use of abduction with external knowledge bases in
an effort to use ATP for a more human-like reasoning.

Automated Theorem Proving with Web Services 163

Acknowledgements. We would like to thank Markus Bender for implementing the
web service interface module described in Sec. 6.

References

1. Bachmair, L., Ganzinger, H.: Equational Reasoning in Saturation-based Theorem Proving.
In: Bibel, W., Schmidt, P.H. (eds.) Automated Deduction: A Basis for Applications. Volume
I, Foundations: Calculi and Methods. Kluwer Academic Publishers, Dordrecht (1998)

2. Baumgartner, P., Furbach, U., Niemelä, I.: Hyper Tableaux. In: Orłowska, E., Alferes, J.J.,
Moniz Pereira, L. (eds.) JELIA 1996. LNCS, vol. 1126, pp. 1–17. Springer, Heidelberg
(1996)

3. Baumgartner, P., Furbach, U., Pelzer, B.: Hyper Tableaux with Equality. In: Pfenning, F. (ed.)
CADE 2007. LNCS (LNAI), vol. 4603, pp. 492–507. Springer, Heidelberg (2007)

4. Bizer, C., Lehmann, J., Kobilarov, G., Auer, S., Becker, C., Cyganiak, R., Hellmann, S.:
DBpedia - A Crystallization Point for the Web of Data. Journal of Web Semantics 7(3),
154–165 (2009)

5. Eiter, T., Fink, M., Krennwallner, T., Redl, C.: Conflict-Driven ASP Solving with External
Sources. TPLP 12(4-5), 659–679 (2012)

6. Furbach, U., Glöckner, I., Helbig, H., Pelzer, B.: LogAnswer - A Deduction-Based Ques-
tion Answering System (System Description). In: Armando, A., Baumgartner, P., Dowek, G.
(eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 139–146. Springer, Heidelberg (2008)

7. Furbach, U., Glöckner, I., Helbig, H., Pelzer, B.: Logic-Based Question Answering. KI 24(1),
51–55 (2010)

8. Furbach, U., Glöckner, I., Pelzer, B.: An Application of Automated Reasoning in Natural
Language Question Answering. AI Communications 23(2-3), 241–265 (2010) (PAAR Spe-
cial Issue)

9. Hirschman, L., Gaizauskas, R.: Natural Language Question Answering: The View from
Here. Journal of Natural Language Engineering 7(4), 275–300 (2001)

10. Lenat, D.B.: CYC: A Large-Scale Investment in Knowledge Infrastructure. Communications
of the ACM 38(11), 33–38 (1995)

11. Nieuwenhuis, R.: Invited talk: Rewrite-based deduction and symbolic constraints. In:
Ganzinger, H. (ed.) CADE 1999. LNCS (LNAI), vol. 1632, pp. 302–313. Springer, Hei-
delberg (1999)

12. Pelzer, B., Wernhard, C.: System description: E- kRHyper. In: Pfenning, F. (ed.) CADE 2007.
LNCS (LNAI), vol. 4603, pp. 508–513. Springer, Heidelberg (2007)

13. Spielberger, W.J.: Spezial-Panzerfahrzeuge des deutschen Heeres. Motorbuch Verlag,
Stuttgart (1993)

14. Suda, M., Sutcliffe, G., Wischnewski, P., Lamotte-Schubert, M., de Melo, G.: External
Sources of Axioms in Automated Theorem Proving. In: Mertsching, B., Hund, M., Aziz,
Z. (eds.) KI 2009. LNCS (LNAI), vol. 5803, pp. 281–288. Springer, Heidelberg (2009)

15. Sutcliffe, G., Suda, M., Teyssandier, A., Dellis, N., de Melo, G.: Progress Towards Effective
Automated Reasoning with World Knowledge. In: Guesgen, H.W., Charles Murray, R. (eds.)
FLAIRS Conference. AAAI Press (2010)

Local SVM Constraint Surrogate Models

for Self-adaptive Evolution Strategies

Jendrik Poloczek and Oliver Kramer

Computational Intelligence Group
Carl von Ossietzky University
26111 Oldenburg, Germany

Abstract. In many applications of constrained continuous black box op-
timization, the evaluation of fitness and feasibility is expensive. Hence,
the objective of reducing the constraint function calls remains a chal-
lenging research topic. In the past, various surrogate models have been
proposed to solve this issue. In this paper, a local surrogate model of
feasibility for a self-adaptive evolution strategy is proposed, which is
based on support vector classification and a pre-selection surrogate model
management strategy. Negative side effects suchs as a decceleration of
evolutionary convergence or feasibility stagnation are prevented with a
control parameter. Additionally, self-adaptive mutation is extended by
a surrogate-assisted alignment to support the evolutionary convergence.
The experimental results show a significant reduction of constraint func-
tion calls and show a positive effect on the convergence.

Keywords: black box optimization, constraint handling, evolution
strategies, surrogate model, support vector classification.

1 Introduction

In many applications in the field of engineering, evolution strategies (ES) are
used to approximate the global optimum in constrained continuous black box
optimization problems [4]. This category includes problems, in which the fitness
and constraint function and their mathematical characteristics are not explicitly
given. Due to the design of ES, a relatively large amount of fitness function calls
and constraint function calls (CFC) is required. In practice, both evaluation
types are expensive, and it is desireable to reduce the amount of evaluations,
c.f. [4]. In the past, several surrogate models (SMs) have been proposed to solve
this issue for fitness and constraint evaluations. The latter is by now relatively
unexplored [6], but for practical applications worth to investigate. The objective
of this paper is to decrease the amount of required CFC for self-adaptive ES with
a local SVM constraint SM. In the first section, a brief overview of related work
is given. In Section 3, the constrained continuous optimization problem is for-
mulated, furthermore constraint handling approaches are introduced. In Section
5, a description of the proposed SM is given. Section 6 presents the description
of the testbed and a summary of important results. Last, a conclusion and an
outlook is offered. In the appendix, the chosen test problems are formulated.

I.J. Timm and M. Thimm (Eds.): KI 2013, LNAI 8077, pp. 164–175, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Local SVM Constraint Surrogate Models 165

2 Related Work

In the last decade, various approaches for fitness and constraint SMs have been
proposed to decrease the amount of fitness function calls and CFC. An overview
of the recent developments is given in [6] and [10]. As stated in [6], the compu-
tationally most efficient way for estimating fitness is the use of machine learning
models. A lot of different machine learning methodologies have been used so far:
polynomials (response surface methodologies), Krigin [6], neural networks (e.g.
multi-layer perceptrons), radial-basis function networks, Gaussian processes and
support vector machines [10]. Furthermore, different data sampling techniques
such as design of experiments, active learning and boosting have been exam-
ined [6]. Besides the actual machine learning model and sampling methodology,
the SM management is responsible for the quality of the SM. Different model
management strategies have been proposed: population-based, individual-based,
generation-based and pre-selection management. Overall, the model manage-
ment remains a challenging research topic.

3 Constrained Continuous Optimization

In literature, a constrained continuous optimization problem is given by the fol-
lowing formulation: In the N -dimensional search space X ⊆ RN the task is to
find the global optimum x∗ ∈ X , which minimizes the fitness function f(x)
with subject to inequalities gi(x) ≥ 0, i = 1, . . . , n1 and equalities hj(x) = 0, j =
1, . . . , n2. The constraints gi and hi divide the search space X into a feasible sub-
space F and an infeasible subspace I. Whenever the search space is restricted
due to additional constraints, a constraint handling methodology is required.
In [5], different approaches are discussed. Further, a list1 of references on con-
straint handling techniques for evolutionary algorithms is maintained by Coello
Coello. In this paper, we propose a surrogate-assisted constraint handling mech-
anism, which is based on the death penalty (DP) constraint handling approach.
The DP methodology discards any infeasible solution, while generating the new
offspring. The important drawback of DP is premature stagnation, because of
infeasible regions, c.f. [5]. Hence, it should only be used, when most of the search
space is feasible. In the following section, we motivate the use of the self-adaptive
death penalty step control ES (DSES), orginally proposed in [7].

4 Premature Step-Size Reduction and DSES

An original self-adaptive approach with log-normal uncorrelated mutation and
DP or penalty function suffers from premature step size reduction near the con-
straint boundary, if certain assumptions are true [7]. An examplary test problem
is the unimodal Tangent Problem (TR). The boundary of the TR problem is by
definition not orthogonal to the coordinate axis. In this case, the uncorrelated

1 http://www.cs.cinvestav.mx/~constraint, last visit on August 14, 2013.

http://www.cs.cinvestav.mx/~constraint

166 J. Poloczek and O. Kramer

TN

TP

F

I
FP

FN

(a) (b)

Fig. 1. (a) Cases of a binary classifier as SM, positive cases correspond to feasibility
and negative cases correspond to infeasibility (b) Cross validated empirical risk with
different scaling types: without any scaling (green rotated crosses), standardization
(blue points) and normalization to [0, 1] (black crosses) on problem S1

mutation fails to align to the boundary. Because of this characteristic, big step
sizes decrease and small step sizes increase the probability of success. The latter
implies that small step sizes are passed to posterior populations more often. In
the end, the inheritance of too small step sizes leads to a premature step size
reduction. The DSES uses a minimum step size modification to solve this issue.
If a new step-size is smaller than the minimum step-size ε, the new step size is
explicitly set to ε. Every � infeasible trials, the minimum step size ε is reduced
by a factor ϑ with ε′ = ε · ϑ, where 0 < ϑ < 1, to allow convergence. The self-
adaptive DSES significantly improves the EC on the TR problem [7]. Hence, it
is used as a test ES for the proposed SM.

5 Local SVC Surrogate Model

In the following, we propose a local SVC SM with a pre-selection-based model
management. First, the model management is described. Then, the underlying
SVC configuration is explained. Last, the surrogate-assisted alignment of the
self-adaptive mutation is proposed.

5.1 Model Management

The model is local in relation to the population and only already evaluated feasi-
ble and infeasible solutions are added to the training set. Algorithm 1 shows the
proposed management strategy. In generation g, a balanced training set of al-
ready evaluated solutions is trained. Solutions with a better fitness are prefered,
because these solutions lie in the direction of samples in the next generation
g + 1. The fitness of infeasible solutions is not evaluated. Therefore, a ranking
between those solutions without any further heuristic is impossible and not in-
tended. In generation g+1, a Bernoulli trial is executed. With probability β, the
SM predicts feasibility before the actual constraint evaluation. Otherwise, the

Local SVM Constraint Surrogate Models 167

Algorithm 1. Model Management

1 initialize population P ;
2 while |f(b)− f(x∗)| < ε do
3 P ′

F ,P ′
I ← ∅, ∅;

4 while |P ′
F | < λ do

5 v1,v2 ← select parents(P);
6 r ← recombine (v1,v2);
7 x ← mutate (r);
8 M ← M ∼ B(1, β);
9 if M = 1 then

10 if feasible with surrogate (x) then
11 f ← feasible (x);
12 if f then P ′

F ← P ′
F ∪ {x};

13 else P ′
I ← P ′

I ∪ {x};
14 end

15 else
16 f ← feasible (x);
17 if f then P ′

F ← P ′
F ∪ {x};

18 else P ′
I ← P ′

I ∪ {x};
19 end
20 P ← select (P ′

F);
21 train surrogate (P ,P ′

I);
22 end

23 end

solution is directly evaluated on the actual constraint function. The parameter β,
that we call influence coefficient, is introduced to prevent feasibility stagnation
due to a SM of low quality. To guarantee true feasible-predicted classifications
in the offspring, the feasible-predicted solutions are verified by the actual con-
straint function. The amount of saved CFC in one generation only depend on
the influence coefficient β and the positive predictive value of the binary clas-
sifier. The positive predictive value is the probability of true feasible-predicted
solutions in the set of true and false feasible-predicted solutions. If the positive
predictive value is higher than the probability of a feasible solution without SM,
it is more likely to save CFC in one generation. However, if it is lower than the
probability for a feasible solution without SM, we require additional CFC in one
generation. The binary classification cases are illustrated in Figure 1(a). Positive
classification corresponds to feasibility and negative classification corresponds to
infeasibility. The formulated strategy benefits from its simplicity and does not
need additional samples to train the local SM of the constraint boundary. Unfor-
tunately, the generation of offspring might stagnate assuming that the quality
of the SM is low and β is chosen too high. In the following experiments, the
DSES with this surrogate-assisted constraint handling mechanism is refered to
as DSES-SVC.

168 J. Poloczek and O. Kramer

5.2 SVC Surrogate Model

SVC, originally proposed in [13], is a machine learning methodology, which is
widely used in pattern recognition [14]. SVC belongs to the category of su-
pervised learning approaches. The objective of supervised learning is, given a
training set, to assign unknown patterns from a feature space X to an appropri-
ate label from the label space Y. In the following, the feature space equals the
search space. The label space of the original SVC is Y = {+1,−1}. We define
the label of feasible solutions as +1 and the label of infeasible solutions as −1.
This implies the pattern-label pairs {(xi, yi)} ⊂ X × {+1,−1}. The principle of
SVC in general is a linear or non-linear separation of two classes by a hyperplane
w.r.t. the maximization of a geometric margin to the nearest patterns on both
sides. The proposed SM employs a linear kernel and the soft-margin variant.
Hence, patterns lying in the geometric margin are allowed, but are penalized
with a user-defined penalization factor C in the search of an optimal hyperplane
and decision function, respectively. The optimal hyperplane is found by optimiz-
ing a quadratic-convex optimization problem. The factor C is chosen, such that
it minimizes the empirical risk of the given training set. In [3], the sequence of
possible values 2−5, 2−3, . . . , 215 is recommended. The actually used values for C
remain unknown, but a parameter study is conducted in Section 6 that analyzes
the limits of C on the chosen test problems. To avoid overfitting, the empirical
risk is based on k-fold cross validation.

5.3 DSES with Surrogate-Assisted Alignment

A further approach to reduce CFC is to accelerate the EC. An acceleration
implies a reduction of required generations and CFC, respectively. The orig-
inal DSES uses log-normal uncorrelated mutation and is, as already stated,
not able to align to certain constraint boundaries. In [8], a self-adaptive cor-
related mutation is analyzed, but it is found that self-adaption is too slow. In
the following, we propose a self-adaptive correlated mutation variant, which is
based on the local SM. Originally, the position of the mutated child is given by
c = x +X ∼ N (0, σ), where x is the recombinated position of the parents and
X is a N (0, σ)-distributed random variable. In case of the proposed SM, the
optimal hyperplane estimates the local linear constraint boundary. Therefore,
the normal vector of the hyperplane corresponds to the orientation of the linear
constraint boundary. In order to incorportate correlated mutation into the self-
adaptive process, the first axis is rotated into the direction of the normal vector.
The resulting mutated child is given by c = x +M ·X ∼ N (0, σ), where M is
a rotation matrix, which rotates the first axis into the direction of the normal
vector. The rotation matrix is updated in each generation. In the following ex-
periments, the DSES with the surrogate-assisted constraint handling mechanism
and this surrogate-assisted correlated mutation is refered to as DSES-SVC-A.

Local SVM Constraint Surrogate Models 169

(a) (b)

Fig. 2. (a) CFC per generation subject to the influence factor β: S1 (black rotated
crosses), S2 (green crosses), TR2 (blue points) and S26C (green squares). (b) Mean
CFC with DSES-SVC on all chosen test problems.

6 Experimental Analysis

In the following experimental analysis, the original DSES is compared to the
DSES-SVC and the DSES-SVC-A. At first, the test problems and the used con-
stants are formulated. Afterwards, parameter studies regarding scaling operators,
the penalization coefficient C and the influence coefficient β are conducted. Last,
we compare the amount of CFC per generation and the evolutionary convergence
in terms of fitness precision.

6.1 Test Problems and Constants

As the interdependencies between ES, the SM and our chosen test problems are
presumably complex, the following four unimodal two-dimensional test prob-
lems with linear constraints are used in the experimental analysis: the sphere
function with a constraint in the origin (S1), the sphere function with an orthog-
onal constraint in the origin (S2), the Tangent Problem (TR2) and Schwefel’s
Problem 2.6 with a constraint (S26C), see Appendix A. The DSES and its un-
derlying (λ, μ)-ES are based on various parameters. Because we want to analyze
the behaviour of the SM, its implications on the CFC per generation and the
evolutionary convergence, general ES and DSES parameters are kept constant.
The (λ, μ)-ES constants are λ = 100, μ = 15, σi = |(si−x∗

i)|/N , where the latter
is a recommendation for the initial step size and is based on the start position
s and the position of the optimum x∗, c.f. [11]. Start positions and initial step
sizes are stated in the appendix. For the self-adaptive log-normal mutation, the
recommendation of τ0, τ1 in [2] is used, i.e., τ0 = 0.5 and τ1 = 0.6 for each
problem. In [7], the [�,ϑ]-DSES algorithm is experimentally analyzed on vari-
ous test problems. The best values for � and ϑ with regard to fitness accuracy
found for the TR2 problem are � = 70 and ϑ = 0.3. The test problems, which
are examined in this work, are similiar to the TR2 problem, so these values are
treated as constants.

170 J. Poloczek and O. Kramer

(a) S1 (b) S2

(c) TR2 (d) S26C

Fig. 3. Histograms of fitness precision after 50 generations with 100 repetitions visual-
ized with kernel densitiy estimation: DSES (black dotted), DSES-SVC (green dashed)
and DSES-SVC-A (blue solid) in log10(f(b)− f(x∗)), where b is the best solution and
x∗ the optimum

6.2 Parameter Studies

Four parameter studies were conducted w.r.t. all test problems. In the following,
the DSES-SVC and the constants for ES and DSES in the previous paragraph
are used. In the experiments, the termination condition is set to a maximum
of 50 generations, because afterwards the premature step size reduction reap-
pears. To guarantee robust results, 100 runs per test problem are simulated. The
sequence of possible penalization coefficients is set to 2−5, 2−3, . . . , 215 and the
influence coefficient is chosen as β = 0.5. The balanced training set consists of
20 patterns and 5-fold cross validation is used. First, we analyzed different ap-
proaches to scale the input features of the SVC. The scaling operators no-scaling,
standardization and normalization are tested. The results are quite similiar on
all test problems. An examplary plot, which shows the cross validated predic-
tion accuracy dependend on the scaling operator and generation, is shown in
Figure 1(b). Without any scaling, the cross validated prediction accuracy drops
in the first generations due to presumptive numerical problems: As the evo-
lutionary process proceeds, the step size reduces and the differences between
solutions and input patterns, respectively, converge to small numerical values.
However, the standardization is significantly the most appropriate scaling on all

Local SVM Constraint Surrogate Models 171

Table 1. Best fitness precision in 100 simulations in log10(f(b) − f(x∗))

problem algorithm min mean maximum variance

S1 DSES -33.47 -29.67 -22.25 6.51
DSES-SVC -32.79 -29.46 -24.87 4.11
DSES-SVC-A -34.69 -28.94 -22.16 5.30

S2 DSES -34.90 -30.28 -26.43 5.17
DSES-SVC -31.55 -27.80 -24.59 3.86
DSES-SVC-A -32.96 -28.16 -22.82 4.40

TR2 DSES -5.32 -3.44 -2.01 0.58
DSES-SVC -6.41 -3.75 -2.05 1.35
DSES-SVC-A -9.19 -6.45 -3.22 1.40

S26C DSES -11.41 -9.53 -8.09 0.85
DSES-SVC -10.61 -9.39 -7.65 0.76
DSES-SVC-A -12.13 -9.34 -7.13 1.21

examined problems. In a second parameter study, we analyzed the selection of
the best penalization coefficients to limit the search space of possible coefficients.
It turns out that only values between 2−3, 2−1, . . . , 213 are chosen. In the fol-
lowing experiments, this smaller sequence is used. In the third parameter study,
we analyzed the correlation between the influence coefficient β and the CFC per
generation. Beside the question, whether a linear interdependency exists or not,
it is worth knowing, which value for β is possible with a maximal reduction of
CFC per generation and without a stagnation of feasible (predicted) solutions.
The results are shown in Figure 2(a). On the basis of this figure, a linear inter-
dependency can be assumed. Furthermore, β = 1.0 is obviously the best choice
to reduce the CFC per generation. In the simulations, no feasible (predicted)
stagnation appeared, so β = 1.0 is used in the comparison. The fourth param-
eter study examines, whether the amount of CFC per generation is constant in
mean over all generations with β = 1.0 w.r.t. all chosen test problems. In Figure
2(b), the mean CFC per generation of 100 simulations is shown. With the help
of this figure, a constant mean can be assumed. Hence, it is possible to compare
the CFC per generation.

6.3 Comparison

The comparison is based on the test problems and constants introduced in Sec-
tion 6.1. Furthermore, the results of the previous parameter studies are employed.
The scaling type of input features is set to standardization. Possible values for
C are 2−3, 2−1, . . . , 213 and the influence coefficient β is set to 1.0. The balanced
training set consists of 20 patterns and 5-fold cross validation is used. The re-
duction of CFC with the proposed SM can result in a decceleration of the EC
and a requirement of more generations for a certain fitness precision respec-
tively. Hence, the algorithms are compared depending on the amount of CFC
per generation and their EC. Both, the amount of CFC per generation and the
EC, are measured on a fixed generation limit. The generation limit is based on

172 J. Poloczek and O. Kramer

(a) S1 (b) S2

(c) TR2 (d) S26C

Fig. 4. Histograms of CFC per generation after 50 generations in 100 simulations
with according densities: DSES (black dotted), DSES-SVC (green dashed density) and
DSES-SVC-A (blue solid)

the reappearance of premature step size reduction and is set to 50 generations.
First, the EC is compared in terms of best fitness precision after 50 generations
in 100 simulations per test problem. In [7], it is stated that the fitness precision
is not normally distributed. Therefore, the Wilcoxon signed-rank test is used for
statistical hypothesis testing. The level of significance is set to α = 0.5.

The results are shown in Figure 3 and the statistical characteristics are given
in Table 1. The probability distribution of each algorithm is estimated by the
Parzen-window density estimation [9]. The bandwith is chosen according to the
Silverman rule [12]. When comparing the fitness precision of the DSES and the
DSES-SVC, the DSES-SVC presumably degrades the fitness precision of the
DSES in case of problem S1, S2 and S26C. The fitness precision of DSES-SVC
on TR2 is presumably the same as the fitness precision of the DSES. On S1, S2
and S26C the distributions are significantly different. Therefore, the DSES-SVC
significantly degrades the DSES in terms of fitness precision. Further, on TR2 the
distributions are not significantly different. Hence, there is no empirical evidence
of improvement or degradation. If the DSES is compared to the DSES-SVC-A
with the help of Figure 3, presumably the DSES-SVC-A does not improve or
degrades the fitness precision of the DSES on S1, S2 and S26C. On the con-
trary, the fitness precision on TR2 seems to be improved. When comparing the

Local SVM Constraint Surrogate Models 173

Table 2. Experimental analysis of CFC per generation in 100 simulations

problem algorithm min mean max variance

S1 DSES 100 173.36 243 402.82
DSES-SVC 100 106.57 221 164.98
DSES-SVC-A 100 116.39 635 554.53

S2 DSES 100 162.13 238 591.73
DSES-SVC 100 104.95 203 103.74
DSES-SVC-A 100 113.17 252 223.70

TR2 DSES 101 175.55 238 352.38
DSES-SVC 100 105.79 341 185.73
DSES-SVC-A 100 122.39 626 761.99

S26C DSES 103 168.91 240 354.94
DSES-SVC 100 105.15 219 117.73
DSES-SVC-A 100 114.54 277 358.74

fitness precision between DSES and DSES-SVC-A based on the Wilcoxon signed-
rank test, only the distributions on the problems S2 and TR2 are significantly
different. This implies that the DSES-SVC-A signficantly improves the fitness
precision of the DSES on TR2, but degrades the fitness precision of the DSES
on S2. The distributions on the problems S1 and S26C are not significantly dif-
ferent, hence there is no empirical evidence of improvement or degradation. The
results of the comparison regarding the fitness precision have to be considered
in the following analysis of the CFC. In the comparison regarding the CFC, the
previous experimental setup is used. The results are shown in Figure 4 and the
statistical characteristics are stated in Table 2. When comparing the amount of
CFC per generation of the DSES and the DSES-SVC in Figure 4, presumably
the DSES-SVC-A reduces the amount of CFC per generation significantly in
each problem. This assumption is empirically confirmed, because the distribu-
tions of each problem are significantly different. When comparing the DSES and
the DSES-SVC-A, the same assumption is empirically confirmend. While both
variants, i.e. DSES-SVC and DSES-SVC-A, reduce the amount of CFC per gen-
eration, only the DSES-SVC-A improves the fitness precision significantly. On
the contrary the DSES-SVC degrades the fitness precision of the DSES on most
test problems signficantly. Hence, the DSES-SVC-A is a successful modification
to fulfill the main objective to reduce the amount of CFC on all chosen test
problems.

7 Conclusion

The original objective of reducing the amount of CFC of a self-adaptive ES
is achieved with the surrogate-assisted DSES-SVC and DSES-SVC-A variants.
While the DSES-SVC degrades the fitness precision on most of the problems,
the DSES-SVC-A achieves the same fitness precision as the DSES or signficantly
improves it with surrogate-assisted alignment. Hence, it is possible to fulfill the
objective with a local pre-selection SM based on SVC. The model management

174 J. Poloczek and O. Kramer

is simple, but it needs an additional parameter β, to avoid feasibility stagnation
due to wrong predictions. Scaling of the input features is necessary to avoid
numerical problems. On the test problems, the standardization seems to be an
appropriate choice. In this paper, the introduced β is set manually. A future
research question could be, if this coefficient could be managed adaptively and
how. Furthermore, in contrast to SVC, the support vector regression could be
used to approximate continuous penalty-functions. Both approaches could be
integrated into the recently developed successful (1+1)-CMA-ES for constrained
optimization [1].

A Test Problems

In the following, the chosen constrained test problem are formulated.

A.1 Sphere Function with Constraint (S1)

minimize
x∈R2

f(x) := x2
1 + x2

2 s.t. x1 + x2 ≥ 0 (1)

s = (10.0, 10.0)T and σ = (5.0, 5.0)T (2)

A.2 Sphere Function with Constraint (S2)

minimize
x∈R2

f(x) := x2
1 + x2

2 s.t. x1 ≥ 0 (3)

s = (10.0, 10.0)T and σ = (5.0, 5.0)T (4)

A.3 Tangent Problem (TR2)

minimize
x∈R2

f(x) :=

2∑
i=1

x2
i s.t.

2∑
i=1

xi − 2 ≥ 0 (5)

s = (10.0, 10.0)T and σ = (4.5, 4.5)T (6)

A.4 Schwefel’s Problem 2.6 with Constraint (S26C)

minimize
x∈R2

f(x) := max(t1(x), t2(x)) s.t. x1 + x2 − 70 ≥ 0,

t1(x) := |x1 + 2x2 − 7|
t2(x) := |2x1 + x2 − 5|

(7)

s = (100.0, 100.0)T and σ = (34.0, 36.0)T (8)

Local SVM Constraint Surrogate Models 175

References

1. Arnold, D.V., Hansen, N.: A (1+1)-CMA-ES for constrained optimisation. In: Pro-
ceedings of the International Conference on Genetic and Evolutionary Computation
Conference, pp. 297–304. ACM (2012)

2. Beyer, H.-G., Schwefel, H.-P.: Evolution strategies - a comprehensive introduction.
Natural Computing 1(1), 3–52 (2002)

3. Chang, C.-C., Lin, C.-J.: LIBSVM: A library for support vector machines. ACM
Trans. Intell. Syst. Technol. 2(3), 27:1–27:27 (2011)

4. Chiong, R., Weise, T., Michalewicz, Z. (eds.): Variants of Evolutionary Algorithms
for Real-World Applications. Springer (2012)

5. Coello, C.A.C.: Constraint-handling techniques used with evolutionary algorithms.
In: GECCO (Companion), pp. 849–872. ACM (2012)

6. Jin, Y.: Surrogate-assisted evolutionary computation: Recent advances and future
challenges. Swarm and Evolutionary Computation 1(2), 61–70 (2011)

7. Kramer, O.: Self-Adaptive Heuristics for Evolutionary Computation. SCI, vol. 147.
Springer, Heidelberg (2008)

8. Kramer, O.: A review of constraint-handling techniques for evolution strategies.
In: Applied Computational Intelligence and Soft Computing, pp. 3:1–3:19 (2010)

9. Parzen, E.: On estimation of a probability density function and mode. The Annals
of Mathematical Statistics 33(3), 1065–1076 (1962)

10. Santana-Quintero, L.V., Montaño, A.A., Coello, C.A.C.: A review of techniques
for handling expensive functions in evolutionary multi-objective optimization.
In: Computational Intelligence in Expensive Optimization Problems. Adaptation,
Learning, and Optimization, vol. 2, pp. 29–59. Springer (2010)

11. Schwefel, H.-P.P.: Evolution and Optimum Seeking: The Sixth Generation. John
Wiley & Sons, Inc. (1993)

12. Silverman, B.W.: Density Estimation for Statistics and Data Analysis. Chapman
& Hall (1986)

13. Vapnik, V.: On structural risk minimization or overall risk in a problem of pattern
recognition. Automation and Remote Control 10, 1495–1503 (1997)

14. von Luxburg, U., Schölkopf, B.: Statistical learning theory: Models, concepts, and
results. In: Handbook for the History of Logic, vol. 10, pp. 751–706. Elsevier (2011)

Changes of Relational Probabilistic Belief States and
Their Computation under Optimum Entropy Semantics

Nico Potyka1, Christoph Beierle1, and Gabriele Kern-Isberner2

1 Dept. of Computer Science, FernUniversität in Hagen, 58084 Hagen, Germany
2 Dept. of Computer Science, TU Dortmund, 44221 Dortmund, Germany

Abstract. Coping with uncertain knowledge and changing beliefs is essential for
reasoning in dynamic environments. We generalize an approach to adjust prob-
abilistic belief states by use of the relative entropy in a propositional setting to
relational languages. As a second contribution of this paper, we present a method
to compute such belief changes by considering a dual problem and present first
application and experimental results.

1 Introduction

Agents in dynamic environments have to deal with uncertain and changing information.
Over the years different approaches have been developed to deal with both problems
[1, 9, 15, 8, 13]. Here, we will consider probabilistic conditional logics [16, 14].

Example 1. Suppose our agent has to watch some pets. Sometimes they attack each
other and our agent has to separate them. We compare animals by their size using the
binary predicate GT (greater than). Our knowledge base might contain deterministic
conditionals like (Bird(X) ∧Dog(X))[0] expressing that a pet cannot be a bird and a
dog, as well as uncertain conditionals like (Attacks(X,Y) |GT (Y,X))[0.1] express-
ing that the (subjective) probability that an animal attacks a greater one is about 10%.

A conditional semantics defines which probability distributions satisfy a probabilistic
conditional. Given a conditional knowledge base, we are interested in a best distribution
satisfying this knowledge base. An appropriate selection criterium is the principle of
maximum entropy [16]. To adapt the distribution to new knowledge, one can consider
the distribution that minimizes the relative entropy to the prior distribution [10].

Following this idea, the knowledge state of our agent consists of a knowledge base
R reflecting its explicit knowledge and a probability distribution P satisfying the con-
ditionals in R and reflecting its implicit knowledge. According to [11], we distinguish
between two belief change operations. Revision deals with new information in a static
world. That is, old explicit knowledge remains valid, even though our epistemic state
may change. For instance, in Example 1 we might learn about the pet bully that it is
a dog. Then P(Dog(bully)) should become 1 but the old explicit knowledge should
remain valid. Update deals with new information in a dynamic world. That is, not only
our implicit knowledge may change, but the new knowledge might be in conflict with
the old explicit knowledge. For example, if we observe that small pets are getting more
aggressive, e.g., due to a newly added ingredient to their food, we should increase our

I.J. Timm and M. Thimm (Eds.): KI 2013, LNAI 8077, pp. 176–187, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Changes of Relational Probabilistic Belief States 177

belief that an animal attacks a greater animal. This is in line with the distinction that is
usually made in belief change theory. However, the classical AGM-theory [1] is much
too weak to be able to handle such advanced change operations, as it can deal neither
with probabilities nor with conditionals. In [11] it is shown how both operations can be
implemented for a propositional probabilistic language by use of the relative entropy,
and in [2] a corresponding conceptual agent model providing a series of powerful belief
management operations is developed. The MECore system [5] implements these ideas
and allows the user, e.g., to define an initial knowledge base, to apply both belief change
operations, or to query the current epistemic state.

Note, however, that all approaches mentioned so far only deal with propositional
logic. Thus, they do not cover conditionals with variables as in Ex. 1. In this paper, we
generalize the belief change operations from [11] to relational languages. Our results
hold for a full class of conditional semantics and in particular for the relational ground-
ing and aggregating semantics [6, 12]. Basically, all belief change operations can be
reduced to the core functionality of minimizing relative entropy with respect to a prior
distribution. Besides providing a concept for changing relational probabilistic belief
states, the second major contribution of this paper is an alternative approach to compute
such belief changes. We consider the Wolfe dual of relative entropy minimization [7],
which yields an unconstrained convex optimization problem and solve it with L-BFGS
[18]. For entropy maximization under aggregating semantics a significant performance
gain compared to a recent iterative scaling implementation [4] is obtained.

In Sec. 2 we recall the framework of conditional probabilistic logic as far as it is
needed here. In Sec. 3 we generalize the belief change operations from [11] and illus-
trate our ideas by examples. In Sec. 4 we explain how the belief change operations can
be implemented by solving the Wolfe dual of relative entropy minimization and present
first evaluation results, and in Sec. 5 we conclude and point out future work.

2 Background: Probabilistic Conditionals and Semantics

The languages and semantics we consider in this section share a similar linear struc-
ture that allows to generalize the belief change approach from [11]. Note in particular
that our semantics are based on probability distributions over possible worlds, whereas
in the important strand of work followed in [8] all possible worlds are supposed to
be equally likely and probabilities are obtained by computing asymptotic fractions of
satisfied worlds over all possible worlds. Hence the corresponding results cannot be
transferred immediately.

Languages: To represent knowledge, we consider logical languages LΣ built up over
signatures Σ = (Const,Rel) partitioned into a finite set Const of constants and a fi-
nite set Rel of relation symbols. Relation symbols of arity zero are called proposi-
tional variables. We allow arbitrary logical connectives but no quantifiers. For ease
of notation we abbreviate conjunction by juxtaposition, fg := f ∧ g, and negation
by an overbar, f := ¬f. We can extend LΣ to a probabilistic conditional language
(LΣ |LΣ) := {(g|f)[x] | f, g ∈ LΣ , x ∈ [0, 1]} [15, 14]. Conditionals (g | �)[x] having
a tautological antecedence, are abbreviated by (g)[x]. A knowledge baseR ⊆ (LΣ |LΣ)
is a set of conditionals.

178 N. Potyka, C. Beierle, and G. Kern-Isberner

Example 2. In the following, for our running example in Example 1, we consider the
signature ({bully , sylvester , tweety}, {Bird ,Cat ,Dog,Attacks ,GT}).
Let HΣ := {p(c1, . . . , cn) | c1, . . . , cn ∈ Const, p ∈ Rel with arity n} be the set of
ground atoms over a signature Σ = (Const,Rel). A possible world over Σ is a function
ω : H → {false, true} assigning a truth value to each ground atom over Σ. Let ΩΣ

be the set of all possible worlds for Σ. A ground atom a is satisfied by ω ∈ ΩΣ ,
ω |=LΣ a, iff ω(a) = true. The definition is extended to complex formulas in LΣ in
the usual way. For a formula f ∈ LΣ let Mod(f) := {ω ∈ ΩΣ |ω |=LΣ f} be the set of
its classical models. Probabilistic semantics can be defined by considering probability
distributions over possible worlds. Let P : ΩΣ → [0, 1] be a probability distribution
assigning a degree of belief to each possible world. For a formula f ∈ LΣ we define
P(f) :=

∑
ω∈Mod(f) P(ω). PΣ denotes the set of all such probability distributions.

Standard Semantics: A conditional semantics S defines which P ∈ PΣ satisfy a
certain conditional. For an underlying propositional language usually the definition of
conditional probability is used, i.e.P |=S (g|f)[x] iff P(f) > 0 and P(gf)

P(f) = x. To avoid
strict inequalities, one can relax the definition by omitting the condition P(f) > 0 and
definining [16]:

P |=S (g|f)[x] iff P(gf) = x · P(f). (1)

We call this semantics the standard semantics. If both g and f are closed first-order
formulas, the standard semantics can be applied to first-order conditionals in just the
same way. To interpret open conditionals like (Attacks(X,Y) |GT (Y,X))[0.1] in a
quantifier-free language different semantics have been considered. Here, we consider
only grounding and aggregating semantics, as they induce linear constraints that are
beneficial from a computational point of view.

Grounding Semantics: Grounding semantics [6] interpret conditionals by interpret-
ing their ground instances. Therefore, a grounding operator gr : (LΣ |LΣ)→ 2(LΣ|LΣ)

is introduced mapping conditionals to the set of its ground instances. For instance, in
our running example, the conditional (Attacks(X,Y) |GT (Y,X))[0.1] is mapped to
ground instances like (Attacks(bully , sylvester) |GT (sylvester , bully))[0.1]. In gen-
eral, a distribution P satisfies a relational conditional (g|f)[x] under grounding seman-
tics iff P satisfies all ground instances under standard semantics, i.e., iff [6]

P(gifi) = x · P(fi) for all (gi | fi)[x] ∈ gr((g | f)[x]). (2)

Grounding a knowledge base in such a way naively can easily lead to inconsistencies.
For example, if we presuppose that most of our pets are birds (Bird(X))[0.8] and know
that tweety is a bird (Bird(tweety))[1], the ground instance (Bird(tweety))[0.8] of
the former conditional is in conflict with the latter. To deal with such inconsistencies,
conditionals can be associated with constraint formulas, so that gr maps a conditional
with constraint formula to the set of its admissible ground instances. For instance, the
constraint formula X �= tweety excludes the ground instance (Bird(tweety))[0.8] and
in this way resolves the conflict with (Bird(tweety))[1].

Aggregating Semantics: The aggregating semantics [12] can deal with conflicting
information without using constraint formulas. Instead of regarding a conditional con-
taining variables as a hard template for the probability of each ground instance, their

Changes of Relational Probabilistic Belief States 179

conditional probabilities just have to ’aggregate’ to the stated probability. More pre-
cisely, P satisfies c = (g|f)[x] under aggregating semantics iff [12]∑

(gi | fi)[x]∈gr(c)

P(gifi) = x · (
∑

(gi | fi)[x]∈gr(c)

P(fi)). (3)

(3) can be regarded as a generalization of the standard semantics in (1), where the
probabilities of single formulas have been replaced by sums of probabilities over all
ground instances of the corresponding formulas. Note that the original definition in
[12] presupposes

∑
(gi | fi)[x]∈gr(c) P(fi) > 0.

Example 3. In our running example, the conditional (Bird(X))[0.8], which abbreviates
(Bird(X) | �)[0.8], is satisfied by P under aggregating semantics iff

P(Bird(bully)) + P(Bird(sylvester)) + P(Bird(tweety)) = 0.8 · 3 · P(�).

If additionally (Bird(tweety))[1] is satisfied by P the equation becomes

P(Bird(bully)) + P(Bird(sylvester)) + 1 = 2.4,

and is still satisfiable, e.g., if P(Bird(bully)) = P(Bird(sylvester)) = 0.7.

General Framework: As the definitions in (1), (2) and (3) indicate, a conditional is
satisfied by a probability distribution under a given semantics if a certain equation over
probabilities of possible worlds is satisfied. Usually these equations can be transformed
into a normal form fc(P) = 0.

Example 4. Consider a propositional conditional c = (g|f)[x] under standard seman-
tics. Subtracting x · P(f) from both sides in equation (1) yields

0 = P(gf)− x · P(f) = P(gf)− x · (P(gf) + P(gf)) = (1− x) · P(gf)− x · P(gf)

= (1− x) · (
∑

ω∈Mod(gf)

P(ω))− x · (
∑

ω∈Mod(gf)

P(ω))

=
∑

ω∈ΩΣ

P(ω) · (1{gf}(ω) · (1− x) − 1{gf}(ω) · x), (4)

where for a formula F the indicator function 1{F}(ω) maps to 1 iff ω |=LΣ F and to
0 otherwise. Let fc(P) :=

∑
ω∈ΩΣ

P(ω) · (1{gf}(ω) · (1 − x) − 1{gf}(ω) · x) then
P |=S (g|f)[x] under standard semantics iff fc(P) = 0.

For other semantics similar transformations can be applied, see [17] for details. Whereas
standard (1) and aggregating semantics (3) induce a single constraint function for a
conditional c, for grounding semantics (2) we obtain one function for each admissible
ground instance of c. We combine these functions in a single vector of size kc. Thus
for grounding semantics kc = | gr(c)|, while for standard and aggregating semantics
kc = 1. Now let (LΣ |LΣ) be a conditional language over a signature Σ. We say a
satisfaction relation |=S⊆ PΣ×(LΣ |LΣ) defines a conditional semantics S iff for each
conditional c ∈ (LΣ |LΣ) there is a kc-dimensional constraint function fc : PΣ → Rkc

180 N. Potyka, C. Beierle, and G. Kern-Isberner

Table 1. Verifying and falsifying functions for c = (g|f)[x] ∈ (LΣ |LΣ) and ω ∈ ΩΣ

Semantics Vc(ω) Fc(ω)

Standard 1{gf}(ω) 1{gf}(ω)
Grounding (1{gifi}(ω))(gi | fi)∈gr((g | f)) (1{gifi}(ω))(gi | fi)∈gr((g | f))
Aggregating

∑
(gi | fi)∈gr((g | f)) 1{gifi}(ω)

∑
(gi | fi)∈gr((g | f)) 1{gifi}(ω)

such that for all P ∈ PΣ , c ∈ (LΣ |LΣ) it holds that P |=S c iff fc(P) = 0. By f [i] we
denote the i-th component of a multi-dimensional function f .

Inspecting (4) more thoroughly, one notices that each world contributes a linear term
to the sum. If the world verifies the conditional, i.e., ω |=LΣ gf, the term P(ω) · (1−x)
is added. If it falsifies the conditional, i.e., ω |=LΣ gf, the term P(ω) ·x is subtracted. If
the conditional is not applicable, i.e., ω |=LΣ f, the term is zero. A similar observation
can be made for grounding and aggregating semantics and is captured by the following
definition [17].

Definition 1. A conditional semantics S is called linearly structured iff for each con-
ditional c ∈ (LΣ |LΣ), there are kc-dimensional functions Vc : ΩΣ → Nkc

0 and
Fc : ΩΣ → Nkc

0 such that

fc(P) =
∑

ω∈ΩΣ

P(ω) · (Vc(ω) · (1− x)− Fc(ω) · x). (5)

Equation (5) indeed generalizes (1), (2) and (3) as such functions Vc, Fc do exist. They
are shown in Table 1. For grounding semantics Vc and Fc are vectors of length kc.
Whereas for standard and grounding semantics Vc and Fc indicate whether a world
verifies or falsifies a (ground) conditional, for aggregating semantics the number of
falsified and verified ground conditionals is counted.

For a conditional c ∈ (LΣ |LΣ) let ModS(c) := {P ∈ PΣ | fc(P) = 0} denote the
set of its probabilistic models under a given conditional semantics S. For a knowledge
base R ⊆ (LΣ |LΣ) let ModS(R) :=

⋂
c∈RModS(c) be the set of common models of

the conditionals in R.

3 Belief Changes of Relational Probabilistic Belief States

In our framework, knowledge is represented by probabilistic conditional knowledge
bases R in some language (LΣ |LΣ) interpreted by some linearly structured semantics
S. To obtain an epistemic state that satisfies R and allows to evaluate arbitrary (condi-
tional) formulas, we can select a ’best’ probability distribution in ModS(R). An appro-
priate selection criterion is the principle of maximum entropy [16], i.e., the epistemic
state induced by R is a P ∈ModS(R) that maximizes the entropy.

If new knowledge R∗ becomes available, we want to adapt our current epistemic
state P to the new knowledge. Motivated by belief change operations for logical knowl-
edge bases [1, 9] in [10, 11] several postulates for updating probabilistic epistemic

Changes of Relational Probabilistic Belief States 181

states by propositional probabilistic conditionals under standard semantics are intro-
duced and it is shown that those can be satisfied by minimizing the relative entropy
R(Q,P) =

∑
ω∈ΩΣ

Q(ω) · log Q(ω)
P(ω) . Maximizing entropy corresponds to minimizing

the relative entropy with respect to the uniform distribution, therefore this approach
generalizes the principle of maximum entropy. So, both for inductive reasoning and for
belief change, the principles of optimum entropy provide a most powerful framework
that guarantees high quality results. For a more detailed investigation with respect to
postulates and properties, and for the connection to classical belief change theory, cf.
[10, 11]. We will now generalize this idea to arbitrary linearly structured semantics,
thus covering in particular various relational languages. We consider a belief change
operator ∗S : (PΣ × 2(LΣ|LΣ))→ PΣ defined by

P ∗S R∗ : = arg min
Q∈ModS(R∗)

R(Q,P), (6)

where 0 · log(0) and 0 · log(00) are defined to be 0. If Q(ω) = 0 whenever P(ω) = 0, Q
is called absolutely continuous with respect to P , written as Q ' P . As the constraint
functions for a linearly structured semantics S are linear, ModS(R∗) is convex and
closed. This implies that (6) has a unique solution, if there is a Q ∈ ModS(R∗) such
thatQ ' P [3]. A knowledge base satisfying the latter condition is called P-consistent
[10]. In particular, if R∗ is P-consistent and Q ∗S R∗ = P∗, then P∗ ' P , i.e., zero
probabilities remain unchanged by the belief change. Note that the propositional case
considered in [10] is a special case of (6).

In [11] two belief change operations for update and revision of propositional proba-
bilistic conditional knowledge bases are introduced.

Definition 2 ([11]). A belief base is a pair (P ,R) that represents the epistemic state
P ∗S R. The revision operator ◦S is defined by (P ,R) ◦S R∗ := (P ,R ∪ R∗). The
update operator ∗S is defined by (P ,R) ∗S R∗ := (P ∗S R,R∗).

Note that, when performing revision, even though the corresponding epistemic state
P ∗S (R∪R∗) may differ from the former, the old explicit knowledgeR is still valid.
In contrast, when applying an update, both the prior epistemic state and the prior explicit
knowledge are usually changed. More precisely, the new epistemic state after revision
is P ∗S (R∪R∗), whereas the new epistemic state after update is (P ∗S R) ∗S R∗. To
keep the techniques rather simple, we presuppose that all information to be processed is
true, i.e., the involved agents are honest and do not fail in making correct observations.
So, two pieces of informationR andR∗ for revision refer to the same context and must
be consistent. One might deviate from this assumption and allow for inconsistent infor-
mation here; in this case, a merging operator has to be applied to the different pieces
of information first. Using the belief change operator ∗S as defined in (6), Definition 2
carries over to languages interpreted by linearly structured semantics immediately.

Example 5. We consider the signatureΣ from Ex. 2 and interpret conditionals using the
aggregating semantics. Our initial probability distribution is the uniform distributionP0

over ΩΣ and our initial knowledge base is R0 = {(Attacks(X,Y) |GT (Y,X))[0.1],
(GT (X,Y) |Cat(x)∧Bird (y))[0.9], (Bird(X)∧Cat(X))[0], (Bird(X)∧Dog(X))
[0], (Cat(X) ∧Dog(X))[0], (Attacks(X,X))[0], (GT (X,Y) ∧GT (Y,X))[0]}.

182 N. Potyka, C. Beierle, and G. Kern-Isberner

Table 2. Queries for different epistemic states

Query B0 = (P0,R0) B1 = B0 ◦S R1 B2 = B1 ◦S R2 B3 = B2 ∗S R3

Attacks(tweety , sylvester) 0.3806 . . . 0.1395 . . . 0.1370 . . . 0.2277 . . .
Attacks(sylvester , tweety) 0.3806 . . . 0.4830 . . . 0.8005 . . . 0.8024 . . .
Attacks(tweety , bully) 0.3806 . . . 0.3832 . . . 0.3836 . . . 0.4132 . . .

The first two conditionals state uncertain knowledge: It is unlikely that a pet attacks
a greater animal and that it is likely that a cat is greater than a bird. The remaining
conditionals express strict knowledge: A pet is either a bird, a cat or a dog. Furthermore,
pets do not attack themselves and greater-than is an asymmetric relation. Our initial
belief base is B0 = (P0,R0). The first column of Table 2 shows some probabilities
in the corresponding epistemic state P0 ∗S R0. As we do not know initially about the
species of the pets nor about their proportions, all probabilities are equal.

Now our agent learns that tweety is a bird, sylvester is a cat and bully is a dog
expressed by the new knowledge R1 = {(Bird(tweety))[1], (Cat(sylvester)))[1],
(Dog(bully)))[1]}. Revising B0 with R1 yields the belief base B1 = B0 ◦S R1 =
(P0,R0 ∪R1). The second column of Table 2 shows the changed probabilities. As we
know tweety is a bird and sylvester is a cat and we assume that birds are usually smaller
than cats, the probability that tweety attacks sylvester is decreased significantly.

When the agent finds out that cats like to attack birds, B1 is revised with R2 =
{(Attacks(X,Y) |Cat(x) ∧ Bird(y))[0.8]}. We obtain the belief base B2 = B1 ◦S
R2 = (P0,R0 ∪R1 ∪R2). The third column of Table 2 shows the new probabilities.

Later on, it turns out that small pets get more aggressive due to a newly added in-
gredient to their food. Therefore, we perform an update with the new knowledgeR3 =
{(Attacks(X,Y) |GT (Y,X))[0.2]}. The new belief base is B3 = B2 ∗SR3 = (P0 ◦S
(R0 ∪ R1 ∪ R2),R3). The fourth column of Table 2 shows the changed
probabilities.

4 Computing Belief Changes

In the last section, we explained how belief changes of relational probabilistic epistemic
states can be realized by means of the elementary belief change P ∗S R = P∗ of a
probability distribution. In this section, we will consider an unconstrained optimization
problem, whose solution corresponds to the computation of this belief change. We first
introduce a matrix notation, as it is more convenient. Using this notation we reformulate
(6) in the standard form of convex optimization problems and simplify this form by
removing worlds whose probability is enforced to be zero. Subsequently we consider
the Wolfe dual [7] that gives rise to an equivalent unconstrained optimization problem.
In particular, the special structure of the solution yields a factorization of P∗.

Primal Problem: Let d = |ΩΣ |. By assuming the possible worlds are ordered
in a fixed sequence ω1, . . . , ωd we can identify each P ∈ PΣ with a vector p =
(P(ωi))1≤i≤d ∈ Rd. In the following, we will not distinguish between probability
distributions P and the corresponding vectors p. For a linearly structured semantics S,

Changes of Relational Probabilistic Belief States 183

we can write (5) more compactly as a linear equation system fc(p) =MS(c) ·p, where
MS(c) := (V[i]

c (ωj) · (1 − x) − F[i]
c (ωj) · x)1≤i≤kc ,1≤j≤d denotes the kc × d-matrix

corresponding to the coefficients in (5). For R = {c1, . . . , cm} let

MS(R) :=

⎛
⎜⎜⎝
MS(c1)

. . .
MS(cm)

1

⎞
⎟⎟⎠

be the matrix combining all constraint functions for conditionals in R and the normal-
izing constraint assuring that all probabilities sum to 1. Let kR = 1 +

∑
c∈R kc be the

number of rows of MS(R). Then P ∈ ModS(R) iff p ≥ 0 and MS(R) · p = b,
where b is a column vector of length kR whose last component is 1 and whose remain-
ing components are 0.

Example 6. Consider the propositional signature (∅, {A,B,C}) and the correspond-
ing order (ABC,AB C,AB C,AB C,AB C,AB C,AB C,AB C) over ΩΣ . For
standard semantics and R = {(B |A)[0.9], (C |B)[0.7]}, P ∈ ModS(R) holds iff for
the corresponding vector p we have p ≥ 0 and

MS(R) · p =

⎛
⎝0 0 0 0 −0.9 −0.9 0.1 0.1
0 0 −0.7 0.3 0 0 −0.7 0.3
1 1 1 1 1 1 1 1

⎞
⎠ · p =

⎛
⎝0
0
1

⎞
⎠ , p ∈ R8.

As we saw in Section 3, to realize update and revision, we have to compute the belief
change operation P ∗S R. In matrix notation (6) becomes

arg min
q∈Rd

∑
1≤i≤d

q[i] · log q[i]

p[i]
, (7)

subject to MS(R) · q = b, q ≥ 0.

Removing Nullworlds: Suppose we want to compute P∗ = P ∗S R for a P-
consistent knowledge base R. As we know P∗ ' P , we can ignore all worlds NP :=
{ω ∈ ΩΣ | P(ω) = 0} as their probabilities are known to be 0. In particular de-
terministic conditionals c = (g|f)[x] with x ∈ {0, 1} enforce zero probabilities. Let
R= := {(g|f)[x] ∈ R |x ∈ {0, 1}} be the set of deterministic conditionals in R and let
R≈ := R \ R=. A probability distribution satisfies R= under any linearly structured
semantics, if and only if it assigns probability 0 to all worlds that falsify a deterministic
conditional (g|f)[x] ∈ R= with x = 1 or that verify one with x = 0 [17]. Let NR be
the set of worlds that in this way are determined to have probability 0.

Let Ω+
P,R = ΩΣ \ (NP ∪ NR), d+ = |Ω+

P,R| and consider a new sequence

ω1, . . . , ωd+ of the worlds in Ω+
P,R. Let M+

S (R≈) := (V[i]
c (ωj) · (1 − x) − F[i]

c (ωj) ·
x)1≤i≤kc,1≤j≤d+ be the reduced constraint matrix of length kR≈ = 1+

∑
c∈R≈ kc. Let

b+ be the reduced column vector of length kR≈ whose last component is 1 and whose

184 N. Potyka, C. Beierle, and G. Kern-Isberner

remaining components are 0. Then, instead of solving (7), we can solve

arg min
q∈Rd+

∑
1≤i≤d+

q[i] · log q[i]

p[i]
, (8)

subject to M+
S (R≈) · q = b+, q ≥ 0.

Dual Problem: To guarantee that the gradient of the relative entropy R is well-
defined at P∗ with respect to P , we presuppose that P∗ is positive on Ω+

P,R. The
open-mindedness principle [16] can be generalized to show that it is sufficient that
ModS(R) contains a single distribution that is P-consistent and positive on Ω+

P,R for
the assumption to hold. We call such a knowlede base P-regular.

By applying Lagrangian techniques and introducing a multiplier λi for each row in
M+

S (R≈) one can show [7] that the solution p∗ of the minimization problem (8) is
positive and there is a vector λ∗ of kR≈ Lagrange multipliers such that

p∗ = q(λ∗) = (p[i] exp((M+
S (R≈) · ei)T · λ∗ − 1))1≤i≤d+ , (9)

where q(λ) = (p[i] exp((M+
S (R≈) ·ei)T ·λ− 1))1≤i≤d+ and ei ∈ RkR≈ denotes the

i-th unit vector. Using this result the Wolfe dual to (8) becomes [7]

arg max
q∈Rd+ ,λ∈R

kR≈

∑
1≤i≤d+

q[i] · log q[i]

p[i]
− λT (M+

S (R≈) · q − b+), (10)

subject to q(λ) = (p[i] exp((M+
S (R≈) · ei)T · λ− 1))1≤i≤d+ (11)

By putting the constraint (11) into (10), q can be eliminated from the problem [7]. In
other words, q can be regarded as a function q(λ) of the vector λ. This yields the
following unconstrained optimization problem:

arg max
λ∈R

kR≈
−

∑
1≤i≤d+

q(λ)[i] + λTb+ (12)

Instead of maximizing, we minimize h(λ) =
∑

1≤i≤d+ q(λ)[i] − λT b+, i.e.:

arg min
λ∈R

kR≈
h(λ) (13)

The dual objective h(λ) is also convex and therefore can be solved by conjugate gradi-
ent or quasi-newton methods. The gradient is ∇h(λ) =M+

S (R≈) · q(λ)− b+ [7]. We
summarize the essence of this section in the following proposition.

Proposition 1. Let P ∈ PΣ and let R ⊆ (LΣ |LΣ) be a P-regular knowledge base
interpreted by a linearly structured semantics S. Let P∗ = P ∗S R and let λ∗ be
the solution of (13). Then P∗(ωi) = q(λ∗)[i] for 1 ≤ i ≤ d+ and P∗(ω0) = 0 for
ω0 ∈ (NP ∪ NR).

Using the convention 00 = 1, the solution factorizes as follows.

Changes of Relational Probabilistic Belief States 185

Proposition 2. LetR,P and P∗ be given as in Proposition 1. For c ∈ R≈ let λc,i, 1 ≤
i ≤ kc, denote the Lagrange multiplier corresponding to the i-th constraint function
of conditional c = (g|f)[xc]. Let λ0 denote the Lagrange multiplier corresponding to
the normalizing constraint 1T x = 1. Let Z := exp(1 − λ0) and for each conditional
c ∈ R define kc functions φc,j : ΩΣ → R such that for 1 ≤ j ≤ kc

φc,j(ω) :=

{
exp(λc,j · (V[j]

c (ω) · (1− xc)− F[j]
c (ω) · xc)) if c ∈ R≈

0V
[j]
c (ω)·(1−xc)+F[j]

c (ω)·xc if c ∈ R=

Then for all ω ∈ ΩΣ it holds

P∗(ω) =
P(ω)
Z

∏
c∈R

∏
1≤j≤kc

φc,j(ω). (14)

Proof. By putting in the definition of M+
S into (9) we obtain for 1 ≤ i ≤ d+

q(λ∗)[i] = p[i] exp(λ0 − 1 +
∑

c∈R≈

∑
1≤j≤kc

λc,j · (V[j]
c (ωi) · (1− xc)− F[j]

c (ωi) · xc))

= p[i] exp(λ0 − 1)
∏

c∈R≈

∏
1≤j≤kc

exp(λc,j · (V[j]
c (ωi) · (1− xc)− F[j]

c (ωi) · xc))

=
p[i]

Z

∏
c∈R≈

∏
1≤j≤kc

φc,j(ωi). (15)

Recall that ω ∈ NR if and only if there is a c = (g|f)[x] ∈ R= such that either x = 0
and Vc(ω) �= 0 or x = 1 and Fc(ω) �= 0. Hence there is a j ∈ {1, . . . , kc} such that
φc,j(ω) = 0. Conversely, if ω ∈ (ΩΣ \ NR), then φc,j(ω) = 00 = 1 for all c ∈ R=

and 1 ≤ j ≤ kc. Hence the product
∏

c∈R=

∏
1≤j≤kc

φc,j(ω) is 0 if ω ∈ NR and 1

if ω ∈ (ΩΣ \ NR). Hence, if ω ∈ NR, then it holds P(ω)
Z

∏
c∈R

∏
1≤j≤kc

φc,j(ω) =
P(ω)
Z

∏
c∈R≈

∏
1≤j≤kc

φc,j(ω) · 0 = 0 and also P∗(ω0) = 0 according to Prop. 1.
If ω ∈ NP , then P(ω) = 0. As P∗ ' P , it followsP∗(ω) = 0. For the factorization

we also obtain P(ω)
Z

∏
c∈R

∏
1≤j≤kc

φc,j(ω) = 0 · 1
Z

∏
c∈R

∏
1≤j≤kc

φc,j(ω) = 0.

Finally, if ω ∈ Ω+
P,R, then ω = ωi for some i, 1 ≤ i ≤ d+. The factorization yields

P(ωi)
Z

∏
c∈R

∏
1≤j≤kc

φc,j(ωi) =
P(ωi)

Z

∏
c∈R≈

∏
1≤j≤kc

φc,j(ωi) · 1 = q(λ∗)[i] ac-

cording to (15) and also P∗(ωi) = q(λ∗)[i] according to Prop. 1.
Hence P∗(ω) = P(ω)

Z

∏
c∈R

∏
1≤j≤kc

φc,j(ωi) for all ω ∈ ΩΣ .

Computing Iterative Belief Changes and Factorization: A sequence of update and
revision operations yields a sequence of belief bases (P0,R0), (P1,R1), (P2,R2), . . . ,
where for k ≥ 1 either Pk+1 = Pk ∗S Rk by update or Pk+1 = Pk by revision. If
we presuppose that Rk is Pk-regular for k ≥ 0, all corresponding epistemic states are
well-defined and can be computed according to Proposition 1.

IfP0 is any distribution that factorizes, Proposition 2 guarantees that after a sequence
of revision and update operations the distribution Pk, k ≥ 1, still factorizes. Note that

186 N. Potyka, C. Beierle, and G. Kern-Isberner

Table 3. Runtime results for aggregating semantics

Knowledge Size of Size of Size of Iterations Runtime (sec.)
base Const ΩΣ ΩΣ/≡R GIS GIS/≡R L-BFGS GIS GIS/≡R L-BFGS

Monkey 4 220 4,661 33,914 33,914 57 24,600 129 11
Synthetic 10 220 120 892 892 16 454 12 3
Flu 4 220 91 686 686 15 286 12 4

this in particular holds if we initialize our belief base with the uniform distribution
P0(ω) =

1
|ΩΣ| , as it can be regarded as a trivial factorization.

The representation by factors is beneficial from a computational point of view, be-
cause we do not have to store each probability, but can restrict to the factors φc,j . As
Table 1 indicates, the internal factors Vc and Fc depend only on a subset of ground
atoms from ΩΣ that is determined by the ground instances of the conditional c. As the
knowledge base grows, factors can be merged as it is explained in the theory of Markov
Random Fields [13]. In particular, such factorizations induce an equivalence relation
on worlds, that is referred to as conditional structure of worlds [10]. As explained in
[4] for the aggregating semantics, the conditional structure can be exploited to shrink
the number of worlds that have to be regarded in optimization problems. Transferred to
equation (12), instead of computing q(λ)[i] for all d+ worlds, it is sufficient to compute
the value for representatives of equivalence classes, as each element of this class yields
the same value.

Experiments: To evaluate the advantage of the dual problem (13), we compare run-
time results for three relational conditional test sets with |ΩΣ | = 220 = 1, 048, 576 and
no deterministic conditionals proposed for the aggregating semantics in [4]. As a base-
line we use the naive Generalized Iterative Scaling (GIS) implementation and its opti-
mized version (GIS/≡R) that exploits equivalences of worlds from [4]. To solve the un-
constrained dual problem, we apply the L-BFGS implementation of the RISO-project1.
Table 3 shows the number of constants and the corresponding number of worlds that
have to be regarded by the algorithms, the number of iterations needed to converge, and
runtime results in seconds. Whereas GIS and L-BFGS use the whole set ΩΣ , GIS/≡R
regards only the worlds in ΩΣ/≡R and therefore is significantly faster than GIS, even
though it needs the same number of iterations. The results are not fully comparable, as
GIS and L-BFGS use different termination criteria. GIS terminates when the relative
change of scaling factors goes below a threshold, whereas L-BFGS converges when the
constraints are satisfied with respect to a certain accuracy threshold. We used a termi-
nation threshold of 10−3 for both GIS implementations. Then constraints were satisfied
with an accuracy of approximately 10−4. To avoid overoptimistic results we used an
accuracy threshold of 10−6 for L-BFGS. L-BFGS performs remarkably better than GIS
and is at least three times faster than the optimized version GIS/≡R, which primarily
differs from the naive GIS implementation by significantly reduced iteration costs. As
explained before, the same optimization can be applied to L-BFGS additionally.

1 http://sourceforge.net/projects/riso/

http://sourceforge.net/projects/riso/

Changes of Relational Probabilistic Belief States 187

5 Conclusion and Future Work

By extending the belief change operations revision and update from [11] to relational
languages, we obtained a framework to deal with uncertain and changing information
in a relational domain. Transforming the corresponding computational problem into its
Wolfe dual allows to employ algorithms for unconstrained problems like L-BFGS [18].
For model computation for the relational aggregating semantics a significant perfor-
mance gain compared to recent algorithms from [4] is obtained. In future work we will
investigate to which extent the factorization in (14) can be used to apply techniques for
Markov random fields [13] to further speed up the computation.

References

[1] Alchourrón, C., Gärdenfors, P., Makinson, D.: On the logic of theory change: Partial meet
contraction and revision functions. Journal of Symbolic Logic 50(2), 510–530 (1985)

[2] Beierle, C., Kern-Isberner, G.: A conceptual agent model based on a uniform approach to
various belief operations. In: Mertsching, B., Hund, M., Aziz, Z. (eds.) KI 2009. LNCS
(LNAI), vol. 5803, pp. 273–280. Springer, Heidelberg (2009)

[3] Csiszar, I.: I-Divergence Geometry of Probability Distributions and Minimization Problems.
The Annals of Probability 3(1), 146–158 (1975)

[4] Finthammer, M., Beierle, C.: Using equivalences of worlds for aggregation semantics of
relational conditionals. In: Glimm, B., Krüger, A. (eds.) KI 2012. LNCS (LNAI), vol. 7526,
pp. 49–60. Springer, Heidelberg (2012)

[5] Finthammer, M., Beierle, C., Berger, B., Kern-Isberner, G.: Probabilistic reasoning at op-
timum entropy with the MECORE system. In: Lane, H.C., Guesgen, H.W. (eds.) Proc.
FLAIRS-2009. AAAI Press, Menlo Park (2009)

[6] Fisseler, J.: First-order probabilistic conditional logic and maximum entropy. Logic Journal
of the IGPL 20(5), 796–830 (2012)

[7] Fletcher, R.: Practical methods of optimization, 2nd edn. Wiley-Interscience, New York
(1987)

[8] Grove, A., Halpern, J., Koller, D.: Random worlds and maximum entropy. J. of Artificial
Intelligence Research 2, 33–88 (1994)

[9] Katsuno, H., Mendelzon, A.: Propositional knowledge base revision and minimal change.
Artificial Intelligence 52, 263–294 (1991)

[10] Kern-Isberner, G.: Conditionals in Nonmonotonic Reasoning and Belief Revision. LNCS
(LNAI), vol. 2087. Springer, Heidelberg (2001)

[11] Kern-Isberner, G.: Linking iterated belief change operations to nonmonotonic reasoning.
In: Proc. KR 2008, pp. 166–176. AAAI Press, Menlo Park (2008)

[12] Kern-Isberner, G., Thimm, M.: Novel semantical approaches to relational probabilistic con-
ditionals. In: Proc. KR 2010, pp. 382–391. AAAI Press, Menlo Park (2010)

[13] Koller, D., Friedman, N.: Probabilistic Graphical Models: Principles and Techniques. MIT
Press (2009)

[14] Lukasiewicz, T.: Probabilistic deduction with conditional constraints over basic events. J.
Artif. Intell. Res. 10, 380–391 (1999)

[15] Nilsson, N.J.: Probabilistic logic. Artif. Intell. 28, 71–88 (1986)
[16] Paris, J.: The uncertain reasoner’s companion – A mathematical perspective. Cambridge

University Press (1994)
[17] Potyka, N.: Towards a general framework for maximum entropy reasoning. In: Proc.

FLAIRS 2012, pp. 555–560. AAAI Press, Menlo Park (2012)
[18] Zhu, C., Byrd, R.H., Lu, P., Nocedal, J.: Algorithm 778: L-BFGS-B: Fortran subroutines

for large-scale bound-constrained optimization. ACM Trans. Math. Softw. 23(4), 550–560
(1997)

Translating Single-Player GDL into PDDL

Thorsten Rauber, Peter Kissmann, and Jörg Hoffmann

Saarland University
Saarbrücken, Germany

s9thraub@stud.uni-saarland.de,
{kissmann,hoffmann}@cs.uni-saarland.de

Abstract. In the single-agent case general game playing and action planning
are two related topics, so that one might hope to use the established planners
to improve the handling of general single-player games. However, both come
with their own description language, GDL and PDDL, respectively. In this paper
we propose a way to translate single-player games described in GDL to PDDL
planning tasks and provide an evaluation on a wide range of single-player games,
comparing the efficiency of grounding and solving the games in the translated
and in the original format.

1 Introduction

The current form of general game playing (GGP) was developed around 2005, when
the first international GGP competition was held [3]. It aims at developing game play-
ing agents that can handle and efficiently play any game that is describable using the
game description language GDL [9]. In its basic form a wide range of games can be
modeled, though there are severe restrictions, namely to deterministic games of full
information, which immediately rule out most dice and card games. In recent years
the most successful GGP agents such as CadiaPlayer [1] or Ary [11] made use of the
UCT algorithm [8], which often delivers good results in multi-player games but lacks
in single-player settings.

That is where action planning comes in. Similar to GGP, action planning aims at
developing agents that can handle any planning task that is describable by the input
language, which, since 1998, is the planning domain definition language PDDL [10].
There is a close connection between general single-player games and planning. In both
cases the agent will be confronted with problems for which it has to find a solution
(i.e., a sequence of moves or actions) leading from a specified initial state to a state
satisfying a goal condition. While in planning the solution length is often relevant, in
GGP each goal state is assigned some reward and the aim is to maximize the achieved
reward. Finding an optimal solution reduces to finding a solution that results in a state
satisfying a goal achieving the highest possible reward. As the programmer does not
know in advance the problems that the agent will be confronted with, in both settings
domain-independent approaches are required.

Even though the setting is similar, there are severe differences in the input languages.
If we want to make use of the existing efficient planners (e.g., Fast-Forward [6], Fast-
Downward [5], or LAMA [13]) to improve the handling of single-player games we need
to provide a translation from GDL to PDDL, which is the topic of this paper.

I.J. Timm and M. Thimm (Eds.): KI 2013, LNAI 8077, pp. 188–199, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Translating Single-Player GDL into PDDL 189

The remainder of this paper is structured as follows. We begin with a description
of the two input languages PDDL and GDL (Section 2), then turn to the translation
from GDL to PDDL (Section 3) and show some empirical results illustrating that the
translation works well and that planners can handle the generated input, sometimes
even outperforming the GGP agent we took as reference (Section 4). Finally, we discuss
related work and draw some conclusions (Section 5).

2 Background

2.1 Action Planning

A planning task is a tuple Π = 〈V,A, I,G〉, where V are the state variables (we do not
handle finite domains here, so we assume all variables to be binary), A is a finite set
of actions a each of which is a pair 〈prea, effa〉 of partial assignments to V with prea
being the precondition and effa the effect of action a, the initial state I is a complete
assignment to V , and the goal is a partial assignment to V .

In our translation we also make use of conditional effects, which are nested effects
with their own precondition cpre and effect ceff. The effect of a conditional effect is
only evaluated if its precondition holds in the current state. Note that nesting conditional
effects is not possible.

Derived predicates as introduced in [2] are another important feature that we will
use. The idea is to infer their truth from the truth of the state variables. So derived
predicates are computed from scratch in every state. A derived predicate is of the form
(:derived (h ?v1 ... ?vn) b1 ... bm) and can be inferred if and only
if its body b1 ... bm is true in the current state. In contrast to state variables derived
predicates can only be used in preconditions and effect conditions as well as in goal
descriptions. Hence they cannot be set in effects of actions [16].

We can define the semantics of a planning task in the following way by assuming
that effect literals are not conflicting.

Definition 1 (PDDL Semantics). The semantics of a planning task Π = 〈V,A, I,G〉
is given by the following state transition system (S0, L, u, g), with S ⊆ V being a state:

– S0 = {p | p ∈ I} (the initial state)
– L = {(a, S) | a ∈ A ∧ prea ⊆ S} (a set of pairs (a, S) where action a can be

performed in state S)
– u(a, S) = S \ {p | (not p) ∈ effa} ∪ {p | p ∈ effa}

\ {p | (when (cpre)(ceff)) ∈ effa ∧ cpre ⊆ S ∧ (not p) ∈ ceff}
∪ {p | (when (cpre)(ceff)) ∈ effa ∧ cpre ⊆ S ∧ p ∈ ceff}

(update function giving the successor state for a chosen action a in state S)
– g = {S | G ⊆ S} (the set of goal states).

Example. Figure 1 shows a PDDL example of blocksworld. It contains two actions.
The stack action (lines 5–12) takes some block ?x, which is currently on the table and
clear (i.e., no other block is stacked on top of it), and places it on top of another block

190 T. Rauber, P. Kissmann, and J. Hoffmann

?y, which must be clear as well. The unstack action (lines 13–17) removes a block from
another block if they are currently stacked and the upper one is clear. In addition there
are two derived predicates. The first one denotes that a block is clear if no block is
placed on top of it (lines 18–19), the second one denotes that a block is on the table if it
is not currently stacked on some block (lines 20–21).

1 (d e f i n e (domain b l o c k s w o r l d)
2 (: p r e d i c a t e s (c l e a r ?x)
3 (t a b l e ?x)
4 (on ?x ?y))
5 (: a c t i o n s t a c k
6 : p a r a m e t e r s (? x ?y)
7 : p r e c o n d i t i o n (and
8 (c l e a r ?x)
9 (c l e a r ?y)

10 (t a b l e ?x)
11 (n o t (= ?x ? y)))
12 : e f f e c t (on ?x ?y))
13 (: a c t i o n u n s t a c k
14 : p a r a m e t e r s (? x ?y)
15 : p r e c o n d i t i o n (and (c l e a r ?x)
16 (on ?x ?y))
17 : e f f e c t (n o t (on ?x ?y)))

18 (: d e r i v e d (c l e a r ?x)
19 (f o r a l l (? y) (n o t (on ?y ? x))))
20 (: d e r i v e d (t a b l e ?x)
21 (f o r a l l (? y) (n o t (on ?x ? y)))))
22
23 (d e f i n e (problem b l o c k s w o r l d 3)
24 (: domain b l o c k s w o r l d)
25 (: o b j e c t s A B C)
26 (: i n i t
27 (on C A))
28 (: g o a l
29 (and
30 (on A B)
31 (on B C))))

Fig. 1. PDDL example for Blocksworld

In this instance we have three blocks, A, B, and C (line 25), where initially block C
is on top of block A (lines 26–27). Following the derived predicates, blocks A and B
thus reside on the table and blocks B and C are clear. The goal is to reach a state where
block A is on top of block B and block B is on top of block C (lines 28–31).

2.2 General Game Playing

General games are modeled by use of the game description language GDL. This lan-
guage is similar to logic programs, so that a game is modeled by a set of rules. In order
to derive any meaning, some fixed keywords are used:

role(p) p is a player of the game.
init(f) f holds in the initial state.
true(f) f holds in the current state.
next(f) f holds in the successor state.
legal(p,m) Player p may perform move m.
does(p,m) Player p chooses to perform move m.
terminal Whenever terminal becomes true the game ends.
goal(p,rw) Player p achieves reward rw (an integer value in [0,100]).
distinct(x,y) x and y are semantically different.

All rules are of the form (<= h b1 . . . bn) with the meaning that head h will hold
if all literals b1, . . . , bn of the body hold. Note that in GDL all operands are given in
prefix form, and that the conjunction of the bodies’ literals is implicit. Rules with a

Translating Single-Player GDL into PDDL 191

head different from the keywords are called axioms, which in principle are very similar
to derived predicates in PDDL: Their truth value must be derived based on the current
state and with help of the other axioms.

The semantics of a general game modeled in GDL can be found in [4]. We give only
the basic definition:

Definition 2 (GDL Semantics [4]). The semantics of a valid GDL specification G of a
general game is given by the following state transition system 〈R,S0, T, L, u, g〉:

– R = {r | G + role(r)} (the players in the game)
– S0 = {p | G + init(p)} (the initial state)
– T = {S | G ∪ Strue + terminal} (the set of terminal states)
– L = {(role, a, S) | G ∪ Strue + legal(role, a)} (relation specifying legal moves)
– u(A,S) = {p | G ∪ Adoes ∪ Strue + next(p)} (state update function)
– g = {(role, rw , S) | G ∪ Strue + goal (role, rw)} (relation specifying rewards)

where Adoes describes the moves that the players have chosen and Strue describes the
state variables that are currently true in state S.

An important observation is that negation-as-failure is assumed, i.e., anything that
cannot be derived is assumed to be false. That means especially that the successor state
is fully specified by evaluating the next rules: Everything that can be derived by rules
with head nextwill be true in the successor state, everything else will be false. In other
words, in GDL the frame is modeled explicitly, while in PDDL only the state changes
are modeled and the rest is assumed to remain unchanged.

Example. Figure 2 shows a GDL example for the same blocksworld instance as the
PDDL example. The initial state (lines 3–8) is extended by a step counter, which is
needed as in GGP games are supposed to terminate after a finite number of steps [9]. In
order to achieve the highest possible reward of 100, the robot must find a way to reach
a state where block a is on top of block b and block b is on top of block c (lines 56–
58). The moves for stacking (lines 10–14) and unstacking (lines 16–18) have the same
preconditions as in the PDDL example. To determine the successor state the next rules
must be evaluated. While those in lines 20–28 are responsible for the actual state update,
those in lines 30–50 model the frame. The constant axioms (lines 52–54) are needed to
model the step counter. The terminal rules (lines 64–68) indicate that the game ends
after three steps or if block a is on top of block b and block b is on top of block c.

3 Translation

The basic idea of our translation is to use derived predicates to handle most of the GDL
rules, and to perform the state update in three steps in order to translate GDL’s explicit
modeling of the frame to PDDL. First, we set the player’s action. Then we evaluate
the next rules in order to get a full description of the successor state. In this step we
remove the current state variables and store the successor state in temporary variables.
Finally we set the successor state to the temporarily stored one.

192 T. Rauber, P. Kissmann, and J. Hoffmann

1 (r o l e r o b o t)
2
3 (i n i t (c l e a r b))
4 (i n i t (c l e a r c))
5 (i n i t (on c a))
6 (i n i t (t a b l e a))
7 (i n i t (t a b l e b))
8 (i n i t (s t e p 0))
9

10 (<= (l e g a l r o b o t (s t a c k ?x ?y))
11 (t r u e (c l e a r ? x))
12 (t r u e (t a b l e ? x))
13 (t r u e (c l e a r ? y))
14 (d i s t i n c t ?x ? y))
15
16 (<= (l e g a l r o b o t (u n s t a c k ?x ?y))
17 (t r u e (c l e a r ? x))
18 (t r u e (on ?x ? y)))
19
20 (<= (n e x t (on ?x ? y))
21 (does r o b o t (s t a c k ?x ?y)))
22 (<= (n e x t (t a b l e ? x))
23 (does r o b o t (u n s t a c k ? x ?y)))
24 (<= (n e x t (c l e a r ? y))
25 (does r o b o t (u n s t a c k ? x ?y)))
26 (<= (n e x t (s t e p ?y))
27 (t r u e (s t e p ?x))
28 (s ucc ? x ?y))
29
30 (<= (n e x t (c l e a r ? x))
31 (does r o b o t (u n s t a c k ? u ?v))
32 (t r u e (c l e a r ? x)))
33 (<= (n e x t (on ?x ? y))
34 (does r o b o t (s t a c k ?u ?v))
35 (t r u e (on ?x ? y)))

36 (<= (n e x t (c l e a r ?y))
37 (does r o b o t (s t a c k ?u ?v))
38 (t r u e (c l e a r ?y))
39 (d i s t i n c t ? v ?y))
40 (<= (n e x t (on ? x ?y))
41 (does r o b o t (u n s t a c k ?u ? v))
42 (t r u e (on ? x ?y))
43 (d i s t i n c t ? u ?x))
44 (<= (n e x t (t a b l e ?x))
45 (does r o b o t (s t a c k ?u ?v))
46 (t r u e (t a b l e ?x))
47 (d i s t i n c t ? u ?x))
48 (<= (n e x t (t a b l e ?x))
49 (does r o b o t (u n s t a c k ?u ? v))
50 (t r u e (t a b l e ?x)))
51
52 (s ucc 0 1)
53 (s ucc 1 2)
54 (s ucc 2 3)
55
56 (<= (g o a l r o b o t 100)
57 (t r u e (on a b))
58 (t r u e (on b c)))
59 (<= (g o a l r o b o t 0)
60 (n o t (t r u e (on a b))))
61 (<= (g o a l r o b o t 0)
62 (n o t (t r u e (on b c))))
63
64 (<= t e r m i n a l
65 (t r u e (s t e p 3)))
66 (<= t e r m i n a l
67 (t r u e (on a b))
68 (t r u e (on b c)))

Fig. 2. GDL example for blocksworld

3.1 Basic Translation

Apart from init and goal (see Section 3.3) all GDL rules are translated as derived
predicates. Each rule of the form (<= (h ?v1 ... ?vn) b1 ... bm) is trans-
lated into a derived predicate of the form

(:derived (h ?v1 ... ?vn)
(exists (?f1 ... ?fk)

(and b1 ... bm)))

where ?f1 ... ?fk are the free variables appearing in the body.
Currently, we cannot handle functions in general. However, in order to store the cur-

rent/next state as well as the legal/chosen moves, we translate a predicate of the form
(next (p ?v1 ... ?vn)) as (next-p ?v1 ... ?vn), (true (p ?v1
... ?vn)) as (current-p ?v1 ... ?vn), (legal ?p (move ?v1 ...
?vn)) as (legal-move ?p ?v1 ... ?vn), and (does ?p (move ?v1
... ?vn)) as (does-move ?p ?v1 ... ?vn). Furthermore, (distinct
?v1 ?v2) is translated as (not (= ?v1 ?v2)). Any constants are translated with
prefix obj-, as GDL allows constants starting with numbers while PDDL does not.

Translating Single-Player GDL into PDDL 193

In case some variable ?v appears more than once in the head we must replace all
but one instance of it by new variables ?vi and add (= ?vi ?v) to the body’s con-
junction for all of the replaced variables. If there is any constant c in the head we must
replace it by a new variable ?cvar and add (= ?cvar c) to the conjunction.

Constant axioms, i.e., axiom rules with empty body, can either be placed unchanged
into the initial state description or translated into derived predicates as the other rules. If
for some axiom constant and non-constant rules are present we must opt for the latter.

3.2 State Update

For any move the player may perform we create an action as depicted in Figure 3. This
takes the same n parameters as the original GDL move. The precondition states that the
game is not yet ended, the play predicate is true, which expresses that the player can
choose a move in the current state, and that the player is allowed to actually perform
the move in the current state, i.e., that the corresponding derived legal predicate can
be evaluated to true. When applying the action we set the corresponding move and the
eval predicate to true, which brings us to perform the first of the two additional actions
that simulate the state update.

(:action move
:parameters (?v1 ... ?vn)
:precondition (and
(not (terminal))
(play)
(legal-move player ?v1 ... ?vn))

:effect (and
(does-move player ?v1 ... ?vn)
(not (play))
(eval)))

Fig. 3. Move action in the translation from GDL to PDDL

The basic idea of the eval action (cf. Figure 4, top; we need only one that takes care
of all predicates and moves) is to determine the successor state based on the current
state and the chosen move and to store it in temporary variables. It evaluates all derived
next predicates and sets the temporary variables corresponding to the satisfied ones.
In addition it removes all current state variables as well as the chosen move and
changes from eval to switch, which brings us to the second additional action.

The resume-play action is depicted in the bottom of Figure 4. It sets the new
state’s current state variables and removes the temporary ones. Then it changes back
to the play predicate so that the player’s next move can be chosen. Similar to the eval
action, we use only one resume-play action that handles all predicates.

A state update with only a single additional action would be possible as well by
creating two sets of conditional effects: One as before, setting a state variable to true

194 T. Rauber, P. Kissmann, and J. Hoffmann

(:action eval
:precondition (eval)
:effect (and
(forall (?vp1 ... ?vpn)

(when (next-p ?vp1 ... ?vpn) (temp-p ?vp1 ... ?vpn))
(forall (?vp1 ... ?vpn)

(not (current-p ?vp1 ... ?vpn)))
(forall (?vm1 ... ?vmn)

(not (does-move player ?vm1 ... ?vmn)))
(not (eval))
(switch)))

(:action resume-play
:precondition (switch)
:effect (and
(forall (?vp1 ... ?vpn)

(when
(temp-p ?vp1 ... ?vpn)
(and
(current-p ?vp1 ... ?vpn)
(not (temp-p ?vp1 ... ?vpn)))))

(not (switch))
(play)))

Fig. 4. The eval and resume-play actions

if at least one of the corresponding next predicates can be evaluated to true, the other
setting it to false if all corresponding next predicates are evaluated as false. However,
this often results in formulas in CNF, which most planners cannot handle efficiently.

3.3 Initial State, Rewards, and Termination

The initial state of the PDDL translation captures all state variables that are initially
true. Thus, each rule (init (f v1 ... vn)) in the GDL description is translated
as (current-f v1 ... vn) and added to the initial state. In addition, we must
add the predicate play.

In our current setting we are only interested in finding an optimal solution, i.e., one
that leads us to a goal state that achieves a reward of 100. Due to the GDL specification
of a well-formed game [9] the possibility to reach a goal state with reward 100 must
exist. Presuming that we have a set of goal rules:

(<= (goal ?p 100)
b11 ... b1n)

...
(<= (goal ?p 100)
bm1 ... bmn)

Translating Single-Player GDL into PDDL 195

we build up the following goal description in PDDL:

(:goal
(and

(terminal)
(or

(exists (?v1_1 ... ?v1_n) (and b11 ... b1n))
...
(exists (?vm_1 ... ?vm_n) (and bm1 ... bmn)))))

where ?vi_1 ... ?vi_n are the free variables in the body of the i-th goal rule.
The terminal predicate is necessary because we want to reach a terminal state with
reward 100; the reward of the non-terminal states is irrelevant for our purposes.

3.4 Restrictions of the Translation

As pointed out earlier, currently we can only translate functions in a very limited form,
namely the functions representing the state variables, as well as those representing
moves. Any other form of functions is not yet supported. Replacement of any of the
functions by a variable is unsupported as well. It remains future work to find efficient
ways to handle these cases.

The current form of our translation cannot handle GDL descriptions that use the
goal predicate in the body of other rules. A straight-forward fix is to translate all
goal rules into derived predicates as well.

Concerning the rewards, we are currently only translating the maximum reward 100.
By making use of plan cost minimization it is possible to also handle different re-
wards. We can define a new action reach-goal that has terminal and (goal
role rw) in the precondition (where rw corresponds to a natural number) and sets a
unique variable goal-reached to true. This new action has a cost of 100−rw, while
all other actions have a cost of 0. Then the goal description reduces to the variable
goal-reached being true. Overall, this means that if we reach a terminal state that
has reward 100 in GDL we can use the action reach-goal with cost 0 to reach the
goal in PDDL. As planners try to minimize the total cost they will thus try to reach a
terminal state that has the highest possible reward.

3.5 Correctness of the Translation

In order to prove the correctness of our translation we must define the semantical equiv-
alence of a PDDL and GDL state w.r.t. our translation.

Definition 3 (Semantical equivalence of a PDDL state and a GDL state). A PDDL
state SPDDL of a state transition system (SPDDL

0 , LPDDL, uPDDL, gPDDL) and a GDL
state SGDL of a state transition system (R,SGDL

0 , T, LGDL, uGDL, gGDL) are seman-
tically equivalent if all of the following holds:

1. ∀x : x ∈ Strue,GDL ⇔ (current-x) ∈ SPDDL

2. ∀x : x ∈ R⇔ (role obj -x) ∈ SPDDL

196 T. Rauber, P. Kissmann, and J. Hoffmann

3. ∀a : (role, a, SGDL) ∈ LGDL ⇔ ∃ a ∈ A : (a, SPDDL) ∈ LPDDL

4. SGDL ∈ T ⇔ ∃ terminal ∈ derived predicates : SPDDL + terminal
5. the axiom rule ax can be fired in SGDL ⇔ the derived predicate of ax can be

derived in SPDDL

where A is the set of actions and derived predicates is the set of derived predicates
that occur in the PDDL task.

We are allowed to use Definition 1 (PDDL Semantics) in the definition of semantical
equivalence above because the assumption of Definition 1 is fulfilled: The translation
from GDL to PDDL does not create conflicting literals in effects per definition.

Due to space restrictions we can only outline the proof ideas; a longer version can
be found in [12].

The basic idea is to prove the correctness by means of induction. First we can show
that the initial states in both settings are semantically equivalent, which is apparent due
to the translation of the initial state and the other rules in form of derived predicates.

Next we can prove that, for semantically equivalent states, the application of a move
in GDL and the three steps for the state update in PDDL result in semantically equiv-
alent states again. This follows immediately from the actions in our PDDL translation:
The move action sets the player’s chosen move, the eval action evaluates the next
predicates based on the chosen move and the current state and stores only the positive
next predicates in temporary variables while removing all instances of the current
state variables. Finally, the resume-play action sets the current state variables
according to the temporary ones.

The last thing to prove is that PDDL’s goal states secure the highest possible re-
ward of 100, which again follows immediately from the construction – we translate the
conditions of the goal rules that award 100 points as the goal condition.

4 Empirical Evaluation

In the following we present empirical results of the proposed translation and a com-
parison in terms of coverage and runtime between two planners (Fast-Forward (FF) [6]
and FastDownward (FD) [5]) and a GGP agent (the symbolic solver and explicit UCT
player in Gamer [7]) taking the original input. All tests were performed on a machine
with an Intel Core i7-2600k CPU with 3.4 GHz and 8 GB RAM. We tried to translate
55 single-player games from the ggpserver1 with our implementation of the translation.
Nine games cannot be translated by our approach due to the restrictions we posted ear-
lier in Section 3.4. For the remaining 46 games the second column of Table 1 shows
the required time of the translation. These times range between 0.15s and 0.35s, mainly
dependent on the size of the game description.

The first numbers of the third and fourth column show the preprocessing (esp.
grounding) and solving time of FF, the first numbers of columns 5 and 6 indicate the
necessary time of the translate and search process of FD (among other things the trans-
late process is responsible for grounding the input), and the last three columns detail

1 http://ggpserver.general-game-playing.de

http://ggpserver.general-game-playing.de

Translating Single-Player GDL into PDDL 197

Table 1. Empirical results of 46 GDL games. Games where we could remove the step-counter
are denoted with an asterisk (*). For FF and FD the numbers in parantheses are the times for the
games with removed step-counter. All times in seconds.

Game Trans FF pre FF FD trans FD search G. inst G. solv G. play
8puzzle(*) 0.17 – (–) 9.06 (2.33) 535.54 (0.38) 0.63 22.67 err
asteroids(*) 0.2 0.7 (0.06) 5.82 (1.76) 0.51 (0.38) 0.34 (0.53) 0.16 1.69 2.85

asteroidsparallel(*) 0.21 10.47 (1.23) – (–) 4.36 (1) 16.2 (27.85) 0.03 – err
asteroidsserial(*) 0.23 2.41 (0.31) – (–) 10.11 (5.8) – (472.92) 0.41 – –

blocks(*) 0.16 0.01 (0.01) 0.01 (0.01) 0.07 (0.08) 0 (0.02) 0.06 0.33 0.05
blocksworldparallel 0.18 – 17.57 0.24 0.31 0.77 0.06
blocksworldserial 0.18 0.04 – 0.24 0 0.1 0.57 0.06

brain teaser extended(*) 0.19 5.56 (0.1) – (–) NAI (NAI) 0.17 1.56 8.22
buttons(*) 0.17 0 (0) 0 (0.01) 0.05 (0.06) 0 (0.02) 0.05 0.3 0.05

circlesolitaire 0.16 0.02 – NAI 0.06 0.5 0.06
cube 2x2x2(*) 0.2 – (–) 798.83 (78.24) 0.1 (0.09) 0.16 – 0.8

duplicatestatesmall 0.19 0.01 – 0.96 0.2 0.06 0.46 0.05
duplicatestatemedium 0.26 0.17 – – 0.18 1.17 0.23

duplicatestatelarge 0.35 1.55 – – 0.64 6.16 1.54
firefighter 0.18 – 0.34 0 0.21 – err

frogs and toads(*) 0.24 – (–) – (–) 32.94 – –
god(*) 0.19 – (–) 67.73 (38.16) 0.38 (0.23) – 9.67
hanoi 0.16 0.73 88.26 0.46 0.24 0.14 0.67 2.83

hanoi 6 disks(*) 0.17 232.22 (0.09) – (–) NAI (NAI) 0.67 1.93 13.74
hitori 0.21 – – – 0.38

incredible(*) 0.18 – (0.64) – (–) 1.28 (1.25) 0.08 (0.11) 0.33 4.55 57.73
kitten escapes from fire 0.18 234.36 – NAI 0.5 0.8 0.09

knightmove 0.19 – NAI 1.4 – 250.93
knightstour 0.18 – – 0.24 316.2 3.07
lightsout(*) 0.18 – (–) NAI (NAI) 0.1 183.8 err

lightsout2(*) 0.16 – (0.14) – (–) NAI (NAI) 0.1 185.12 err
max knights 0.2 – NAI 69.46 – err

maze(*) 0.15 0.01 (0) – (0) 0.07 (0.07) 0 (0.02) 0.05 0.35 0.06
mimikry(*) 0.2 – (–) NAI (NAI) 11.3 4.23 12.44

oisters farm(*) 0.18 0.06 (0.01) 0.06 (0.01) 0.32 (0.15) 0 (0.03) 0.08 0.63 0.61
pancakes 0.16 – – 1.0 1.26 12.19

pancakes6 0.16 – – 0.99 1.23 32.87
pancakes88 0.17 – – – err

peg bugfixed 0.18 – – 1.63 – err
queens 0.19 – NAI – –

ruledepthlinear 0.27 – 9.05 0 0.25 0.61 0.08
ruledepthquadratic 0.34 – – – –

statespacesmall 0.15 0.02 – 0.04 0 0.06 0.48 0.08
statespacemedium 0.22 0.03 0.03 0.09 0 0.15 1.46 err

statespacelarge 0.32 0.07 0.17 0.19 0.02 0.39 0.29 err
tpeg 0.18 – – 1.77 – err

troublemaker01 0.15 0.03 – 0.02 0 0.05 0.29 0.04
troublemaker02 0.15 0.01 – 0.02 0 0.05 0.29 0.05
twisty-passages 0.18 – 46.95 0.84 50.31 3.84 13.9
walkingman(*) 0.2 – (–) 28.58 (30.23) 0.18 (0.13) 878.13 3.91 0.06
wargame01(*) 0.23 – (–) NAI (–) – 0.26

Coverage 46 21/46 (11/19) 7/46 (5/19) 24/46 (12/19) 23/46 (12/19) 40/46 31/46 31/46

(from left to right) the results of Gamer’s instantiator, solver, and Prolog-based UCT
player. The value “–” indicates that the process did not terminate within the time limit
of 900 seconds. In case of FD note that it cannot handle nested negated axioms (i.e.,
negated axioms dependent on other negated axioms) and throws an error, here denoted
by “NAI” (Negated Axioms Impossible). The settings we used for the FD search pro-
cess are: --heuristic “hff=ff()” --search “lazy greedy(hff, preferred=hff)”.

198 T. Rauber, P. Kissmann, and J. Hoffmann

For FF we can see that it can ground 21 out of the 46 translatable games and solve
only 7 of those within 900 seconds. With FD we can solve 23 games within this time
limit. In most cases FD’s translate process takes either too long (11 cases) or has trouble
with nested negated axioms (11 cases). In a single case (asteroidsserial) FD’s translate
process finishes but no solution can be found in time. Gamer is able to solve 31 games
within 900 seconds. The comparison of the runtimes between FD and Gamer delivers a
mixed result. FD is faster than Gamer in 19 games whereas Gamer is faster in 17 games,
but these include 7 games where FD throws the NAI exception. The UCT player can
also find solutions for 31 of the games. Unfortunately, it crashes with some Prolog-
related errors in ten cases. In the cases it runs fine it is able to solve four games that the
solver can not. In the other games often the player is much slower than the solver and
only in few cases clearly faster.

At first it seems surprising that, on the one hand, there are games like asteroidspar-
allel that can be solved very fast by FD while Gamer cannot find a solution within 900
seconds. On the other hand there are games like 8puzzle where the pure solving time
is clearly in favor of Gamer. One explanation for this behavior becomes apparent when
considering step-counters, which 19 of the games contain to ensure termination after
a finite number of steps. While Gamer requires games to be finite, the planners do not
mind if some paths exist where the game does not terminate. For these games we manu-
ally removed the step-counters and ran the planners again (the number in parantheses in
the table). In this case we can see that in several games the time and memory-overhead
for both grounding and solving decreases. FF can ground two additional games and
FD can solve one additional game. The biggest decrease in solving time comes with the
8puzzle, where FD’s time reduces from 536s to 0.4s, clearly below that of Gamer. How-
ever, if the step-counter is removed and we want to use the found plan in the original
game we have to somehow make sure that the plan does not exceed the allowed length.

When only looking at the grounding times we can see that Gamer nearly never is
slower than FF and FD if we consider only games where grounding takes more than
1s. The only domain that causes big problems for Gamer in contrast to FD is walking-
man. However, the instantiator of Gamer handles the GDL input directly while FD and
FF have to cope with the translated files, which bring some overhead. Thus, it is not
surprising that Gamer is much faster in grounding the games.

5 Discussion and Conclusion

So far we are not aware of any refereed publications of a translation from GDL to
PDDL. The only works we found are two students’ theses providing translations as
well. One [14] tries to find add- and delete effects, so that the state update is much
easier, as the frame effects can be removed. Also, it is able to find types for different
constants, which should speed up the grounding and reduce the memory consumption.
However, this comes at quite an overhead as the axioms containing does terms must
be rolled out so that in several cases the translator ran out of memory. Furthermore, the
generated output seems to be quite troublesome for FD; of the tested games not a single
one could be handled by that planner. The other thesis [15] tries to perform the state
update in a single step using conditional effects. Here, several things remain unclear

Translating Single-Player GDL into PDDL 199

in the description (e.g., the handling of axioms in general and especially that of does
terms appearing in the bodies of axioms) and no experimental results are presented.

We have proposed a new way to translate single-player games. From the results we
have seen that the translation works fine, with some restrictions in the use of functions.
The resulting PDDL files can be handled by state-of-the-art planners, though especially
the grounding in those planners seems to be a bottleneck, especially in games containing
a step-counter. There are several cases where a planner is faster than both, the GGP
solver and player we compared against, so that it might indeed make sense to run this
kind of translation and solve the games by means of a planner. Nevertheless, classical
GGP agents should be run in parallel as well, as we cannot predict whether the planner
or the GGP player will be more efficient. This way we can get the best of both worlds.

References

1. Björnsson, Y., Finnsson, H.: Cadiaplayer: A simulation-based general game player. IEEE
Transactions on Computational Intelligence and AI in Games 1(1), 4–15 (2009)

2. Edelkamp, S., Hoffmann, J.: PDDL2.2: The language for the classical part of the 4th in-
ternational planning competition. Tech. Rep. 195, Albert-Ludwigs-Universität, Institut für
Informatik, Freiburg, Germany (2004)

3. Genesereth, M.R., Love, N., Pell, B.: General game playing: Overview of the AAAI compe-
tition. AI Magazine 26(2), 62–72 (2005)

4. Haufe, S., Schiffel, S., Thielscher, M.: Automated verification of state sequence invariants in
general game playing. Artificial Intelligence 187, 1–30 (2012)

5. Helmert, M.: The Fast Downward planning system. Journal of Artificial Intelligence Re-
search 26, 191–246 (2006)

6. Hoffmann, J.: FF: The fast-forward planning system. The AI Magazine 22(3), 57–62 (2001)
7. Kissmann, P., Edelkamp, S.: Gamer, a general game playing agent. KI 25(1), 49–52 (2011)
8. Kocsis, L., Szepesvári, C.: Bandit based Monte-Carlo planning. In: Fürnkranz, J., Scheffer,

T., Spiliopoulou, M. (eds.) ECML 2006. LNCS (LNAI), vol. 4212, pp. 282–293. Springer,
Heidelberg (2006)

9. Love, N.C., Hinrichs, T.L., Genesereth, M.R.: General game playing: Game description lan-
guage specification. Tech. Rep. LG-2006-01, Stanford Logic Group (2008)

10. McDermott, D., et al.: The PDDL Planning Domain Definition Language. The AIPS 1998
Planning Competition Comitee (1998)

11. Méhat, J., Cazenave, T.: A parallel general game player. KI 25(1), 43–47 (2011)
12. Rauber, T.: Translating Single-Player GDL into PDDL. Bachelor’s thesis, Department of

Computer Science, Faculty of Natural Sciences and Technology I, Saarland University
(2013)

13. Richter, S., Westphal, M.: The LAMA planner: Guiding cost-based anytime planning with
landmarks. Journal of Artificial Intelligence Research 39, 127–177 (2010)

14. Rüdiger, C.: Use of existing planners to solve single-player games. Großer Beleg, Fakultät
Informatik, Technische Universität Dresden (2009)

15. Sievers, S.: Erweiterung eines Planungssystems zum Lösen von Ein-Personen-Spielen. Bach-
elor’s thesis, Arbeitsgruppe Grundlagen der künstlichen Intelligenz, Institut für Informatik,
Albert-Ludwigs Universität Freiburg (2009)

16. Thiebaux, S., Hoffmann, J., Nebel, B.: In defense of PDDL axioms. Artificial Intelli-
gence 168(1-2), 38–69 (2005)

Comparison of Sensor-Feedback Prediction

Methods for Robust Behavior Execution

Christian Rauch1, Elmar Berghöfer2, Tim Köhler2, and Frank Kirchner1,2

1 University of Bremen, Robotics Research Group
2 DFKI GmbH, Robotics Innovation Center

Robert-Hooke-Straße 5, 28359 Bremen, Germany

Abstract. Robotic applications in inaccessible environments like in
space strongly depend on detailed planning in advance as there are only
short communication windows, a high latency in communication, and as
there is often no way of recovering the system when it gets into a fault
state. Furthermore, unknown terrain requires continuous monitoring of
behavior execution by a human operator. The effort on detailed planning
and especially the delay through remote monitoring can be decreased by
supporting the autonomy of the robot by predicting and self-monitoring
behavior consequences.

Presented are three approaches for creating prediction models. The
models are used to generate expectations on sensor feedback caused by
given actions. The expected sensor feedback is compared with the actual
sensor feedback through a monitoring stage that will trigger a change of
the robot behavior in case of unexpected sensor output. Two function
fitting approaches (analytic model and generic function approximation)
and a vector quantization method are compared with each other. The
evaluation of the triggering mechanism in real scenarios will show that
the execution of emergency actions in unexpected situations is possible.

1 Introduction

A hierarchical behavior architecture was proposed earlier [8] to enable a robot
to carry out high-level plans and to supervise the behavior execution by sensor
state prediction and monitoring. By learning the correlation of actions (respec-
tively desired states) executed by the robot and the sensor feedback perceived
through the state change (thus, the motor-to-sensor relation), it is possible to
estimate future state changes that are expected when executing an action again.
Comparing predicted sensor values (i.e., expected sensor feedback resulting from
a desired action) and actual sensor feedback continuously enables the behavior
architecture to do a general fault analysis based on the prediction error or to trig-
ger an emergency reaction for that particular situation. Typical disruptions that
might occur in such situations are circumstances that were not considered while
planning, like small obstacles or unknown terrain properties. One application
could be the identification of sensor or actuator faults to trigger an appropriate
reaction (e.g., changing a motion behavior, see [16]).

I.J. Timm and M. Thimm (Eds.): KI 2013, LNAI 8077, pp. 200–211, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Comparison of Sensor-Feedback Prediction Methods 201

Presented are three methods from the categories analytic models, generic func-
tion approximation, and vector quantization, to generate prediction models for
typical situations of a robot in a lunar environment. As analytic model a PT3

element was chosen based on assumptions of the system’s characteristics and ini-
tial measurements of the correlation of action and sensor-feedback. For general
function approximation a classic Multilayer Perceptron (MLP) and a Neural Gas
(NG) approach are applied without the need to know the system’s characteris-
tics. The purpose of these methods is to model the correlation of actions given
to the robot and the expected sensor feedback. We therefore examine a so called
normal case to learn expected sensor feedback for a given action (desired state).
In the so called fault case the prediction will be evaluated on typical situations
where disruptions are present, like obstacles occurring in lunar missions.

The paper is structured as follows: In the next section different applications
of prediction in robotics and other areas are given. Afterwards, the prediction
models and learning methods are described. Sections 4 and 5 present the robotic
system, the test scenario for our experiments, and the results of the three pre-
diction methods. The paper finishes with a conclusion and an outlook.

2 Related Work

Pure time series prediction (TSP) tasks are successfully solved by Neural Net-
works (NN) [3] and Auto Regressive Integrated Moving Average (ARIMA) based
approaches [7]. For this kind of tasks, the prediction does not take into account
the causes that have an effect on these values. Prediction in robotics is applied
to fault detection by pure sensor readings. E.g., Lishuang et al. [9] applied least
square Support Vector Machines for predicting sensor values to detect sensor
faults; and Plagemann et al. [13] used Gaussian processes for collision detection.

The work of Wolpert et al. [17] suggests that there exists an inverse and a
forward model in human motion planning like for grasping or when reacting to
unexpected situations like slipping objects. Thus, both the actuator input and
the sensor feedback need to be considered when designing prediction models.
Also the work of von Holst et al. [5] gives empirical evidence of a reactive control
within biological systems by generating deviations – so called exafferences.

Behnke et al. [1] for example used actions and recent sensor data in con-
junction, to predict the next position of a robot to overcome control latency.
The robot of Bongard et al. [2] is capable of applying new motion behaviors in
case an actuator is broken by predicting the result of alternative behaviors. Fu-
jarewicz [4] showed that creating a prediction model based on physical relations
of sensor data can be used for prediction tasks for upto 1 s. Pastor et al. [12]
apply prediction of action outcomes to recognize failures and eventually react on
it. In their setup just the average and variance of the expected sensor feedback
per action is predicted.

202 C. Rauch et al.

3 Prediction Models

As implied in Section 1 the application of the prediction method depends on
whether the system that correlates the action and sensor feedback is known
or not. If action and sensor feedback are correlated by a known relation, e.g.,
by a physical process that correlates desired velocity and measured velocity of
a mass-damper system, the prediction can be modeled based on this process.
In this case, the system’s parameters (e.g., mass distribution and dimension
of the robot, engine characteristics) must be determined by experiments and
measurements or by fitting the optimal function to a data set. If the underlying
process is unknown, a generic function needs to be fitted onto the measured
sensor feedback or the probability distribution needs to be modeled, e.g. by a
vector quantization method. Besides measured sensor feedback, the data basis for
such learning can be sampled in simulation frameworks like the one presented in
[15]. In the following, different kinds of approaches will be presented to determine
the prediction model by different initial assumptions about the correlation of
actions and sensor feedback.

The PT3 element as an example of an analytic model is motivated by initial
observations of the robot in certain situations. The initial parameters of this
model are determined by a measurement and further optimized through fitting
the model onto the whole data set in the normal case. A classical Multilayer
Perceptron (MLP) is applied to the same data set to investigate if its ability of
generic function approximation leads to a model that a) performs like the PT3

element, and b) is able to approximate even closer to the real sensor feedback. As
an alternative to function fitting by the analytic model and the MLP, the vector
quantization method Neural Gas (NG) is used to represent the distribution of
the correlation. The MLP and NG use a history of n last motion commands for
predicting the sensor feedback whereas the PT3 stores its state internally.

3.1 Analytic Model (PT3)

Given the typical mobile robot setup, it is expected that the sensor response to
changes of the desired robot velocity is delayed through several elements. The
delay of each element is unknown in advance and so is the friction of the ground.
Figure 1 shows the measurement of the desired velocity and the true velocity
on ground for a translational motion. From this time elapse of the robot’s true
velocity the characteristic transient overshoot can be seen which is caused by
the robot’s control system and further delay elements. Given this measurement,
it is expected that the sensor response can be modeled by a transfer function
with the characteristic of a proportional element with n delay elements (PTn

element).
Starting from a PT2 element that is often found in mechanical systems like

mass-damper systems, we found that adding a further delay element improves
the ability to fit the data onto the transfer function. The step response of this
PT3 element is given in the frequency domain by

Comparison of Sensor-Feedback Prediction Methods 203

Fig. 1. Acceleration and deceleration step
function and response for translational
motion on planar ground

Fig. 2. Prediction of the turning speed on
planar ground with initial and optimized
parameters for the PT3 element

Xout(s) =
K

(1 + 2DT1 · s+ T 2
1 · s2) · (1 + T2 · s) · s

(1)

where D is the damping factor and T1 the time constant of the first PT2 element
and T2 is the time constant of the additional delay element. The proportional
factor of the PT3 element is set to 1 and the step function is therefore K

s with
K as the relative change. The application of the PT3 model is valid for all
cases where the effect of the input is delayed due to several elements. This is
exemplarily the case for movements on ground with friction and inertia.

To find the optimal system parameters D, T1, and T2 for Equation 1, we
apply least squares fitting with initial parameters to the whole training data set.
The optimization is applied on a data set where the robot is turning on ground
with different velocities. Figure 2 shows the predicted response of the robot for
a target velocity of 1.4 rad/s on ground alongside the step response with initial
and optimized parameters (see Section 5.1 for parameter values).

3.2 Multilayer Perceptron

The Multilayer Perceptron (MLP) is a method from the field of neural networks.
An MLP is capable of learning functional correlations between input and output
values. The flexibility of the network comes from its hidden layers. Basically an
MLP consists of an input layer, one or more hidden layers, and an output layer.

For the prediction task, the dimension of the MLP input layer is determined by
the size of the history, specifically the n last motion commands that are used to
predict the sensor feedback. The dimension of the output layer depends on the di-
mension of the sensor value that is to be predicted. As sigmoid activation function
for the hidden layer the tanh(·) is used. The output layer uses a linear activation
function. In future work we might optimize the topology of the MLP, e.g., by using

204 C. Rauch et al.

model selection methods such as Evolutionary Acquisition of Neural Topologies
(EANT, [11]) using Common Genetic Encoding (CGE) described in [6].

During the training phase of the MLP the parameters have to be optimized so
that the error function is minimal on a given training data set. To minimize the
error we used a variation of the well known gradient decent approach Backprop-
agation for the experiments in this paper, which is the so called RPROP which
is proposed by Riedmiller et al. in [14]. Once an MLP is trained on example
data like described in Section 4, it can be used to predict a time series of sensor
values of the nearby future.

3.3 Neural Gas

The Neural Gas (NG) algorithm is a vector quantization method proposed by
Martinetz et al. [10]. Like the MLP, no assumptions on the motor-sensor corre-
lation are needed. In contrast to the MLP and the PT3 method, a vector quan-
tization method like NG can cover non-gaussian distributions and ambiguities
in the motor-to-sensor relation of the training set.

In this application, the NG algorithm is used as follows: The training data is
a multi-dimensional space consisting of n input dimensions (motor commands)
and m output dimensions (sensor values to be predicted). In learning, so-called
center vectors (CV) are aligned to the training data. After learning, to generate
predictions for the sensor values, the current (and p previous) motor commands
are taken as input to search for the winning CV. The winner CV, in turn, gives
the expected sensor values for the prediction.

4 Experimental Setup

4.1 Robot Setup and Environment

For all experiments, the skid-steering robot Seekur Jr. (by Adept MobileRobots)
was used. The robot, shown in Figure 3, is equipped with an odometer and with
an inertial measurement unit (IMU) including a gyroscope.

The experiments were carried out in two different environments: on flat ground
and on a crater model, which can be seen in the background of Figure 3. The
crater model consists of a rigid basis with the ability to mount stones of the same
material. It is 9.5m in width and has a height of 4m with inclinations from 25◦

to 45◦. Optionally, it can be partly covered with fine sand comparable to the
lunar regolith.

4.2 Scenarios and Data Collection

The skid-steered robot is controlled by motion commands consisting of the
desired translational and rotational velocity. For both of these input dimensions
and for the sensor modality to be predicted, data is collected in an environ-
ment where no obstacles are present – the normal case. Based on the collected

Comparison of Sensor-Feedback Prediction Methods 205

Fig. 3. The robot Seekur Jr. equipped
with a couple of sensors

(a) Small hill, translational velocity

(b) Stone, rotational velocity

Fig. 4. Scenarios to evaluate correlation
of translational and rotational velocity

training data the sensor feedback for linear and the sensor feedback for rotational
motion is learned. This learned sensor feedback is finally used as prediction, i.e.,
as expectations on sensor feedback for that motor input. To evaluate the pre-
diction for each input dimension, two scenarios as seen in Figure 4 are created
with obstacles that might cause dangerous situations for the robot. In this so
called fault case (i.e., the disturbance of the motion by the obstacle) the dis-
crepancy between learned and actual perceived sensor feedback should trigger
an emergency action to prevent the robot from moving on.

For both input dimensions (translation, rotation) the sensor data was collected
in the normal case for three discrete velocities with 10 trials per velocity and
direction on planar ground (60 trials in total) and with two discrete velocities
with 5 trials per velocity and direction on the crater (20 trials in total). The
collected data was then separated into a training and a test set. In the following
sections the turning case is considered on a planar ground and in the crater
environment. In both environments, the IMU turning rate for the normal case
is predicted based on the given rotation velocity. In the corresponding fault case
a 80 kg weight is used on planar ground and a stone-shaped model as shown in
Figure 4(b) is used in the crater environment. In both fault cases a discrepancy
of predicted and actual sensor feedback is to be recognized.

206 C. Rauch et al.

5 Results

5.1 Configuration of Prediction Models

To evaluate the prediction models for turning, they are learned on a training set
of the normal case and tested on separate test sets of, first, the normal case and,
second, the scenarios of the fault case, both for planar ground and for the crater
environment. Alongside the prediction and the true sensor feedback, the mean
absolute error (MAE) over the last 10 prediction errors is plotted and compared
for the normal case and the fault case. The sampling time in all plots is 100ms.
The prediction and action triggering is integrated into the hierarchical behavior
architecture proposed in [8] to analyze the execution of emergency actions.

To fit the PT3 response by least square onto the training set of 120 step
responses, we used the initial parameters D = 0.12800, T1 = 0.14206, and T2 =
0.3, where D and T1 are analytically determined by the step response in time
domain and T2 is set by an initial guess. After optimization we obtained the
optimal step response with the PT3 parameters D = 0.3490451, T1 = 0.2049906,
T2 = 0.36166818 for Equation 1. The MLP used the last 15 motion commands
as input to predict the next turning rate of the gyroscope. Hence, the input layer
consists of 15 neurons and the output layer consists of one single neuron. There
is one hidden layer used with 12 neurons. The application of the NG vector
quantization to the test scenario uses 300 center vectors with 15×2 input and
one output dimension. The NG-parameters learning rate ε and neighborhood
constant λ decay during learning (see [10]). The initial values are ε = 1.0 and
λ = 150. The final values after 1,000,000 iterations are ε = 0.001 and λ = 0.01.

5.2 Normal Case

After learning the sensor feedback of the training set in the normal case for each
environment – ground and crater – separately, the prediction models are applied
to the test set in the same environment. The prediction of all three approaches
for the test set alongside the prediction error is shown in Figure 5 for planar
ground and in Figure 6 for the crater environment. In general all three methods
show similar results. For turning on planar ground (Figure 5) the rotation of
the IMU is well predicted disregarding the small errors at the rising and falling
edges when the robot is accelerating and decelerating. Turning within the crater
environment results in much noisier IMU data (Figure 6) compared to turning on
planar ground. The overshooting at rising edges caused by acceleration phases is
much better fitted when learned on planar ground than on the crater. The noisy
gyroscope values on the crater result in a higher prediction error in the normal
case especially for the PT3.

The MLP and the NG both with 15 last input samples have the ability to fit
the rising and falling edges in the crater environment much better than the PT3

(comparing Figure 5(b) and Figure 6(b)). All methods have in common that
they are not able to predict the high dynamic of the IMU gyroscope values in
the crater environment.

Comparison of Sensor-Feedback Prediction Methods 207

(a) Overview of the complete test set (b) Enlarged view of a selected trial

Fig. 5. Prediction of three different turning rates and the prediction error (MAE) on
flat ground. Spikes in the error correspond to rising and falling edges of step functions,
where the prediction does not fit to the correct motor-sensor delay. The mean absolute
errors for (a) are: MLP: 0.033703, PT3: 0.055123, NG: 0.033021.

5.3 Fault Case

In both environments an obstacle is placed to which the robot is moving against.
The prediction compared to the true gyroscope turning rate can be seen in
Figure 7(a) for turning against the 80 kg weights on ground and in Figure 7(b)
for turning on the crater against a mounted stone. At the beginning of each trial
the robot is blocked for a short period which causes higher prediction errors than
in the period after, when the blockade is dissolved. By finding a threshold that
distinguishes this blocking by an obstacle and in normal operation, an emergency
reaction is able to recover the robot from such dangerous situations.

5.4 Comparison

As one can see in Figure 5, the MLP and NG methods are capable of finding a
solution which is at least comparable to the analytic solution by using the last 15
input samples. The analytic model, once learned, is applicable without the need
for recent input samples as the state of the system is stored internally. Another
advantage of the analytic model over the MLP and the NG is the generic appli-
cation on different input values (i.e., different velocities). The modeled transfer
function of the PT3 is independent from the input velocity, whereas MLP and
NG need to be learned at least for maximum and distributed intermediate in-
put values. However, the application of the PT3 is only possible where a linear

208 C. Rauch et al.

(a) Overview of the complete test set (b) Enlarged view of a selected trial

Fig. 6. Prediction of three different turning rates and the prediction error (MAE) on
the crater. Due to noisy sensor data, the error is persistently higher while moving. The
mean absolute errors for (a) are: MLP: 0.068910, PT3: 0.080817, NG: 0.071745.

relation is to be modeled. Especially, NG can be used to model non-linear rela-
tions with non-gaussian data distributions. All three methods provide a similar
prediction performance and have the common problem to accurately predict the
values at rising and falling edges, which leads to spikes in the prediction error.
This error becomes particular obvious for higher turning rates. Comparing the
prediction error in the fault case (Figure 7), one can conclude that applying
all tested prediction methods on the crater results in a much more fluctuating
prediction error. To recognize obstacles in case of such noisy sensor data, the
obstacle needs to cause a much higher prediction error, compared to turning in
the normal case.

5.5 Implementation: Prediction, Monitoring and Triggering

To evaluate the trigger concept as proposed in the hierarchical behavior archi-
tecture, the PT3 prediction method is implemented within our framework and
connected to monitoring and a trigger. The monitoring averages over the last 5
prediction errors computed by the mean-absolute error (MAE) of the expected
and true sensor feedback. The monitor is connected to a trigger. The trigger is
configured that way, that it proposes to turn into the opposite direction when
a certain fixed threshold is exceeded. This behavior is chosen as an example of
an emergency reaction to avoid a potentially dangerous state like turning onto
the obstacle and getting stuck. The threshold value t can be chosen based on
mean μ and standard deviation σ of the error of collected data, e.g., t = μ+nσ.

Comparison of Sensor-Feedback Prediction Methods 209

(a) Turning on flat ground against 80 kg
weights

(b) Turning on crater against stone

Fig. 7. Prediction and error for predicting turning rates on flat ground and on crater
when turning against obstacles. The mean absolute errors for (a) are: MLP: 0.024518,
PT3: 0.025323, NG: 0.028150 and for (b) MLP: 0.031844, PT3: 0.031884, NG: 0.034148.

(a) Planar ground, manual blocking (b) Crater, stone

Fig. 8. Applying the predictor component to turning against obstacles. Turning against
obstacles with −0.4 rad/s and turning away with 0.2 rad/s. The triggering is visible
through the change of the desired turning rate into opposite direction. The trigger
threshold and the time it is exceeded is marked with a solid red line.

Depending on application and terrain, n or t can be constant. The error is shown
in Figure 8 for blocking the robot on flat ground (a) and crater (b).

The parameters for both predictions were learned for their corresponding
normal case. For the fault case on flat ground, the robot was blocked man-
ually while turning which led to an error exceeding the trigger threshold

210 C. Rauch et al.

(0.2, ≈ μ + 2σ). For turning on crater against a stone the same trigger set-
tings, i.e., threshold (0.2, ≈ μ+ 1σ) and emergency action (turning in opposite
direction), were chosen. In both environments the desired action (turning in op-
posite direction) was successfully proposed before the robot reached a dangerous
state.

6 Conclusion and Outlook

The work evaluated the ability of an analytic model compared to more generic
function approximations to predict sensor data time series for a given motion in-
put. Besides comparing the prediction methods, the work showed the application
of prediction for behavior execution monitoring and emergency triggering.

In general, the presented methods can be extended to input data of higher
dimension, e.g. using translational and rotational velocity concurrently. Further
experiments need to be carried out that take that and other sensor modalities
like acceleration into account. So far we also did not use past sensor feedback
as additional input to improve the prediction performance by measurement up-
dates, e.g. with a Kalman filter. This can be used additionally to the possibility
to inhibit the prediction error at the beginning of each step function, to minimize
the error spikes caused by the rising and falling edges (Section 5.4).

For the monitoring, the MAE averaged over the last 5 samples was initially
chosen as error metric. This is adequate to trigger the complementary action as
shown in the blocking on planar ground and on the crater. For higher dimensional
data (e.g. preprocessed image data), it is not clear yet if the MAE is satisfying
to identify misbehavior. To inhibit high prediction errors at acceleration and
deceleration phases and therefore to prevent wrong triggering, the application
of dynamic trigger thresholds is proposed. Besides learning the mean of the
expected sensor feedback, the expected standard deviation could be additionally
learned and used as basis for dynamic thresholds.

In addition to improving the prediction, future work will cover the question
when to use which kind of emergency action (trigger) and when to propagate
the prediction error to higher instances of the hierarchical behavior architecture.

Acknowledgment. Supported by the Federal Ministry of Economics and Tech-
nology on the basis of a decision by the German Bundestag, grant no. 50RA1113
and 50RA1114.

References

1. Behnke, S., Egorova, A., Gloye, A., Rojas, R., Simon, M.: Predicting away robot
control latency. In: Polani, D., Browning, B., Bonarini, A., Yoshida, K. (eds.)
RoboCup 2003. LNCS (LNAI), vol. 3020, pp. 712–719. Springer, Heidelberg (2004)

2. Bongard, J., Zykov, V., Lipson, H.: Resilient machines through continuous self-
modeling. Science 314(5802), 1118–1121 (2006)

3. Frank, R.J., Davey, N., Hunt, S.P.: Time series prediction and neural networks.
Journal of Intelligent and Robotic Systems 31(1-3), 91–103 (2001)

Comparison of Sensor-Feedback Prediction Methods 211

4. Fujarewicz, K.: Predictive model of sensor readings for a mobile robot. In: Proc.
of World Academy of Science, Engineering and Technology, vol. 20 (2007)

5. von Holst, E., Mittelstaedt, H.: The reafference principle. Interaction between the
central nervous system and the periphery. The behavioural physiology of animals
and man. Selected papers of Erich von Holst, Teil, Methuen, London, vol. 1, pp.
39–73 (1973)

6. Kassahun, Y., Edgington, M., Metzen, J.H., Sommer, G., Kirchner, F.: A common
genetic encoding for both direct and indirect encodings of networks. In: Proc. of
the 9th Annual Conference on Genetic and Evolutionary Computation, GECCO
2007, pp. 1029–1036. ACM, New York (2007)

7. Khashei, M., Bijari, M.: An artificial neural network (p, d, q) model for timeseries
forecasting. Expert Systems with Applications 37(1), 479–489 (2010)

8. Köhler, T., Rauch, C., Schröer, M., Berghöfer, E., Kirchner, F.: Concept of a bio-
logically inspired robust behaviour control system. In: Su, C.-Y., Rakheja, S., Liu,
H. (eds.) ICIRA 2012, Part II. LNCS, vol. 7507, pp. 486–495. Springer, Heidelberg
(2012)

9. Lishuang, X., Tao, C., Fang, D.: Sensor fault diagnosis based on least squares
support vector machine online prediction. In: 2011 IEEE Conference on Robotics,
Automation and Mechatronics (RAM), pp. 275–279 (2011)

10. Martinetz, T.M., Berkovich, S.G., Schulten, K.J.: ‘Neural-gas’ network for vector
quantization and its application to time-series prediction. IEEE Transactions on
Neural Networks 4(4), 558–569 (1993)

11. Metzen, J.H., Edgington, M., Kassahun, Y., Kirchner, F.: Performance evaluation
of EANT in the robocup keepaway benchmark. In: Sixth International Conference
on Machine Learning and Applications, ICMLA 2007, pp. 342–347 (2007)

12. Pastor, P., Kalakrishnan, M., Chitta, S., Theodorou, E., Schaal, S.: Skill learn-
ing and task outcome prediction for manipulation. In: 2011 IEEE International
Conference on Robotics and Automation (ICRA), pp. 3828–3834 (2011)

13. Plagemann, C., Fox, D., Burgard, W.: Efficient failure detection on mobile robots
using particle filters with gaussian process proposals. In: Proc. of the 20th Inter-
national Joint Conference on Artifical Intelligence, IJCAI 2007, pp. 2185–2190.
Morgan Kaufmann Publishers Inc., San Francisco (2007)

14. Riedmiller, M., Braun, H.: A direct adaptive method for faster backpropagation
learning: The RPROP algorithm. In: IEEE International Conference on Neural
Networks, pp. 586–591. IEEE Press (1993)

15. Römmerman, M., Kühn, D., Kirchner, F.: Robot design for space missions using
evolutionary computation. In: IEEE Congress on Evolutionary Computation, CEC
2009, pp. 2098–2105. IEEE (2009)

16. Spenneberg, D., McCullough, K., Kirchner, F.: Stability of walking in a multilegged
robot suffering leg loss. In: Proceedings of the 2004 IEEE International Conference
on Robotics and Automation, ICRA 2004, vol. 3, pp. 2159–2164. IEEE (2004)

17. Wolpert, D.M., Kawato, M.: Multiple paired forward and inverse models for motor
control. Neural Networks 11(78), 1317–1329 (1998)

Ingredients and Recipe for a Robust Mobile

Speech-Enabled Cooking Assistant for German

Ulrich Schäfer1, Frederik Arnold2, Simon Ostermann2, and Saskia Reifers2,�

1 German Research Center for Artificial Intelligence (DFKI), Language Technology
Lab, Campus D 3 1, D-66123 Saarbrücken, Germany

ulrich.schaefer@dfki.de
2 Saarland University, Computational Linguistics Department, D-66041 Saarbrücken,

Germany
{arnold,ostermann,reifers}@kochbot.de

Abstract. We describe the concept and implementation of Kochbot, a
cooking assistant application for smartphones and tablet devices that
robustly processes speech I/O and supports German recipes. Its main
functions are (1) helping searching in a large recipe collection, (2) read-
ing out loud the cooking instructions step-by-step, and (3) answering
questions during cooking. Our goal was to investigate and demonstrate
the use of speech assistance in a task-oriented, hands-free scenario. Fur-
thermore, we investigate rapid domain adaptation by utilizing shallow
natural language processing techniques such as part-of-speech tagging,
morphological analysis and sentence boundary detection on the domain
text corpus of 32,000 recipes. The system is fully implemented and scales
up well with respect to the number of users and recipes.

Keywords: natural language processing, speech, mobile application,
cooking assistant.

1 Introduction and Motivation

With the advent of mobile devices such as smart phones and tablets, as well
as robust, speaker-independent, cloud-based speech recognition in the last few
years, new applications become feasible and marketable that researchers and
end users a decade ago could only dream of. In this paper, we describe the com-
ponents (ingredients) and methods (the recipe) of a mobile cooking assistant
application that runs with out-of-the box hardware, assuming a speech recogni-
tion in the cloud such as the Google Speech API that comes with the Android
mobile operating system1.

Moreover, the cooking assistant application itself runs on the mobile phone
as an “app”. Only the rather large recipe collection (32,000 recipes) currently
resides on a standard PC that can serve thousands of mobile clients with recipe

� We thank Ulrike Schweitzer for permitting us to use her collection of more than
32,000 recipes at http://ulrikesrezeptesammlung.de, and our pioneer users for
testing earlier versions of the app. A beta is available at http://www.kochbot.de

1 http://dev.android.com/reference/android/speech/SpeechRecognizer.html

I.J. Timm and M. Thimm (Eds.): KI 2013, LNAI 8077, pp. 212–223, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://dev.android.com/reference/android/speech/SpeechRecognizer.html

Robust Mobile Speech-Enabled Cooking Assistant for German 213

search via Internet, given that each recipe’s text only needs a few kilobytes.
Considering the memory reserve in current mobile devices, this recipe collection
could in principle also easily be moved to the clients. In other words, the current
system already now scales up with respect to the number of users and recipes.

The main tasks of the app are (1) helping searching in a large recipe collection,
(2) reading out loud the cooking instructions step-by-step, and (3) answering ques-
tions during cooking. The purpose of our project was to investigate and demon-
strate the feasibility and use of speech assistance in a task-oriented, hands-free
scenario with state-of-art hardware. Furthermore, we investigate rapid, corpus-
based domain adaptation by utilizing shallow natural language processing (NLP)
techniques such as part-of-speech tagging, morphological analysis and sentence
boundary detection on the domain text corpus (the recipes). By pre-processing
the corpus of German recipes with these NLP tools, we can quickly access and uti-
lize domain knowledge instead of modeling everything by hand (which some of the
earlier approaches to cooking assistants did through domain ontologies).

This paper is organized as follows. In Section 2, we discuss previous and
related work. Section 3 deals with the (networked) architecture of the overall
system. Section 4 presents the offline pre-processing stages. Section 5 explains
the mobile cooking assistant app itself: the user interface and different stages
of speech interaction in search and recipe reading out mode. We conclude in
Section 6 and give an outlook to future work.

2 Previous and Related Work

Various approaches to home cooking assistants and cooking tutoring dialog sys-
tems have been described in the literature. One of the earliest studies is Home
Cooking Assistant [8]. Its author conducted a small usability study. According
to this, over 80% of the testers thought that speech recognition is beneficial
although 50% also observed that the program had difficulties in understanding
them—it certainly suffered from the limited speech recognition capabilities on
a Laptop PC in the kitchen scenario in 2001. The Cooking Navi [4] was meant
to become a multimedia assistant and cooking teacher for beginners and experi-
enced users. Instead of speech, it used video material and added speech balloons
to explain cooking instructions. Cooking Navi also found a simplified commer-
cial descendant as Nintendo “Shaberu! DS Oryōri Navi” that reads out loud 200
recipes in Japanese, and features instructional video clips, a cooking timer, in-
gredients calculator and a very simple speech recognition to turn pages. English
versions with the names “Cooking Guide: Can’t Decide What to Eat?”, “Per-
sonal Trainer: Cooking” and “Let’s Get Cooking” with 200-300 recipes each
appeared in 2008 and 2010, a few more similar sequels appeared in the US,
Japan and Europe. They all have in common editorially processed recipes, read
out loud by (famous) professionals, and only very limited interaction. However,
the commercial success of the Nintendo cooking guide series shows that there is
market potential.

More intelligent dialog-based approaches have been investigated in various
research projects. CookCoach [5] is a cooking tutoring assistant that supports

214 U. Schäfer et al.

speech interaction and read out recipes. Its authors observed the necessity to
use a domain ontology, which they developed in OntoChef [7]. OntoChef con-
tains very general concepts such as recipe classes, food, part of food, ingredient,
unit, action, compound action, task and so on. However, it does not contain an
elaborate list of ingredients and their classification. Except the fact that he uses
a local speech recognizer, the scenario we have implemented is similar to the
one described by [2] for a cooking robot. Although the study work is written in
German, its author has implemented a cooking assistant for English speech I/O.

3 Architecture

The architecture of our cooking assistant is depicted in Fig. 1. The cooking
assistant code, the app, resides on the mobile device, indicated by the Android
logo at the top of the diagram. It contains all the program logic for user interface,
speech interaction, and natural language processing to split cooking instructions
into sentences, recognized quantities and units of ingredients, etc.

The app requires access to the Internet only for two purposes: (1) recipe text
server: the recipe collection is hosted on an Apache Solr2 structured fulltext
search server at our premises. Using standard Lucene/Solr queries, it provides
fulltext search to find recipes with specific ingredients or categories such as
country; (2) speech recognition: as mentioned in the introduction, we use the
Google Speech API to perform ASR (automatic speech recognition) remotely.

Fig. 1. Architecture overview Fig. 2. Main view with recognized speech;
identified ingredients are shown in brackets

2 http://lucene.apache.org/solr/

http://lucene.apache.org/solr/

Robust Mobile Speech-Enabled Cooking Assistant for German 215

4 Offline Pre-processing

In this section, we describe how we pre-process the recipe corpus. Pre-processing
serves (1) as input for a static text analysis that e.g. computes what ingredients,
quantities, units etc. are, both globally for the complete recipe collection and
locally at runtime when a specific recipe is being cooked (Sect. 5.2), (2) as input
for filling the recipe text search index.

4.1 Recipe Markup Format

The purpose of our cooking app is to provide assistance that guides the user in
the cooking process step-by-step. Therefore, some minimal structuring of recipes
is required. We call it lightly stuctured recipe markup. Basically, it contains
the recipe title, ingredient lists, and cooking instructions, and optionally some
categories such as the country the recipe originates from, or vegetarian, for
children, etc. Finer-grained structure such as instruction steps (sentences), units
and quantities of ingredients will be ‘parsed’ by our system on the fly.

Several recipe markup languages based on XML have been proposed, for ex-
ample RecipeML3, formerly known as DESSERT, RecipeBook XML4, CookML5

and REML6. Compared to these partly very rich markup formats, our light
markup can be considered as least common denominator to which all other
markups could easily be transformed. This also means that we could incorpo-
rate other recipe resources with little effort. Of course, parsing of units and
quantities as we do it is not necessary in case markup already provides this in-
formation in separate fields. Figure 3 contains an example for the target markup
of a single recipe. We do not provide the full specification here, as its structure
is simple and shallow. The same markup is used to store recipes in the Apache
Solr server (Sect. 5.4), which returns found recipes in the same way, plus some
additional markup for query-processing related information.

4.2 Creating a Corpus with Recipe Markup

Originally, the recipes texts we used came in HTML format, structured in cat-
egories and in German. We downloaded all recipes and transformed the HTML
into our light recipe XML format using XPath, extracting the information we
needed. We then applied morphological analysis on the recipe texts in order to
normalize and abstract from morphological and spelling variants. During this
process, we discovered that many recipes in the collection contain OCR (optical
character recognition) or typographic errors. We use three layers to standardize
and refine the recipes in this offline stage.

Step 1: Regular expressions. The first step consists in removing markup and
unwanted characters using regular expressions. Furthermore, we separate the
cooking instructions from the ingredients list.

3 http://www.formatdata.com/recipeml/
4 http://www.happy-monkey.net/recipebook/
5 http://www.kalorio.de/cml/cookml.html
6 http://reml.sourceforge.net/

http://www.formatdata.com/recipeml/
http://www.happy-monkey.net/recipebook/
http://www.kalorio.de/cml/cookml.html
http://reml.sourceforge.net/

216 U. Schäfer et al.

<doc>
<field name="category ">Teigwaren</field>
<field name="subcategory">Lasagne , Canneloni und Maultaschen</field>
<field name="title">Cannelloni al forno</field>
<field name="ingredients">50 g gerä ucherter durchwachsener Speck

100 g gekochter Schinken
2 mittelgroße Zwiebeln
1 Zucchini (ca. 200 g)
1 Mö hre (ca. 150g)
200 g gemischtes Hackfleisch
125 g Mozzarella -Käse
250 g Cannelloni (dicke Nudelr ö hren zum Fü llen)
[...]

</field>
<field name="preparation">

1. Speck und Schinken wü rfeln. Zwiebeln schälen , Gemüse putzen,
waschen . Alles fein wü rfeln. Speck und Hack in 1 EL Öl anbraten .
Schinken , Gemüse und Hä lfte Zwiebeln mitd ü nsten. 3 gehackte
Tomaten , l EL Mark und Wein zufügen , wü rzen.</str>

</field>
<field name="preparation_time">1 Std 15 Min</field >
<field name="degree_of_difficulty">normal </field>
<field name="servings ">vier Portionen</field>
<field name="vegetarian">Nein</field>

</doc>

Fig. 3. Example of recipe markup as used in the Apache Solr index

Step 2: Morphology.We use the SProUT system[3] with its built-in MMORPH
[6] lemmatizer and morphological analysis tool for German to get parts of speech,
genus, etc. for every word. We extract a simplified format and suppress all ana-
lysis details not needed for our purposes. At the same time, we extract e.g. all
possible ingredients along with their number of occurrences in the corpus. We
describe in Sect. 5 how this information is used to answer questions on ingre-
dients and their quantity, and in speech recognition at multiple stages to rank
ambiguous ASR output. Moreover, we also extract recipe titles which we need
for search index preparation.

Step 3: Part-of-speech tagging. To select the most probable morphological
reading according to context, we use the trigram-based part-of-speech (PoS)
tagger TnT [1]. TnT takes care of the context and delivers a probability for each
possible PoS tag. We use it to filter the morphological variants in the MMORPH
output by choosing the PoS tag with the highest probability for each word in a
recipe which considerably reduces the number of morphological variants.

5 Online System (Cooking Assistant App)

This section describes the core of the cooking assistant app, its user interface
with different views for recipe search, step-by-step cooking and reading out mode.
We also discuss details such as its ingredients (quantity) parser and the cooking
step parser. The app needs Internet connection for speech recognition (Sect. 5.3)
and for downloading recipes. Downloading only happens once when a recipe is
viewed for the first time. There is no need for downloading again as long as a

Robust Mobile Speech-Enabled Cooking Assistant for German 217

recipe is stored as one of the last 20 viewed recipes (Letzte Rezepte) or marked
as a favorite recipe by the user (Mein Kochbuch). Apart from speech recognition
and downloading recipes, an Internet connection is not required—everything else
is processed on the mobile device.

5.1 User Interface

The UI design goal was to make an easy-to-use application which can be con-
trolled using voice commands but also through standard touch interactions. The
app consists of several views of which the most important ones will be described
in detail below.

Initial View. The first view, which appears upon startup, presents the user
with four different buttons (Fig. 2). The topmost one gives access to the last
viewed recipes (Letzte Rezepte). Mein Kochbuch is the user’s personal cookbook
where favorite recipes can be stored. Rezepte A-Z gives the user access to three
lists in columns, a list of categories, a list of countries and a list of ingredients
from which she or he can choose an item to start a search for that particular
category, country or ingredient. The button at the bottom leads to a random
recipe that changes on every reload or when shaking the device.

Menubar. Most of the views have an “Action Bar”7, a menubar on the top of
the screen (see top of Fig. 2 and 5). It shows one or more icons that give the user
quick access to important functionality. The icons are: a microphone for starting
speech recognition, a magnifying glass for opening a search field, and three dots
for opening a menu.

Search View. Starting a search, either by using the search field, voice command
or the Rezepte A-Z view, will take the user to the search view (Fig. 5). The search
view shows a list of recipes matching the given search criteria. On top of the
list is an area that can be expanded and collapsed. It shows information such a
the number of recipes found, search words, the category, or ingredients to occur
or not to occur in the recipe. Scrolling to the bottom of the list will load more
recipes if available. Choosing one of the recipes will take the user to another
view showing an overview over the recipe.

Recipe Overview. The recipe overview shows information such as general in-
formation about the recipe, a list of ingredients and a list of instructions. At
the bottom of the screen, there are two buttons. They both take the user to the
same screen, the step-by-step view.

Step-by-step View. The step-by-step view is different from the other views.
It uses the full screen and therefore does not have a menubar (Fig. 7). There
are two versions of the step-by-step view. The version accessible from the right
button is meant as a ‘silent preview’ of the step-by-step mode, it comes without
continuous speech recognition (Sect. 5.3) and the steps are not read out loud.
The other version reachable from the left button is the “real” step-by-step view,
each step is read out loud and the user can interact with the app by using swipe

7 http://developer.android.com/guide/topics/ui/actionbar.html

http://developer.android.com/guide/topics/ui/actionbar.html

218 U. Schäfer et al.

Fig. 4. Dialog for search Fig. 5. Search view

gestures or voice commands (Sect. 5.3) to go to the next or previous step, or
initiate question dialog.

5.2 Recipe Processing

Each recipe XML document (example in Fig. 3) has a number of fields, e.g.
the recipe title, a category, a subcategory and possibly a subsubcategory, a field
containing the ingredients, a field containing the instructions and some fields for
other information such as calories or preparation time.

Ingredients Parser. In order to be able to answer questions such as Wie viele
Tomaten brauche ich? ‘How many tomatoes do I need?’, the ingredients field
needs to be parsed. Normally every line contains one ingredient, consisting of an
ingredient name, an amount and a unit (example: evtl. 2-3 Teel. Öl ‘optionally 2-
3 tbs oil’). However, there are many exceptions in the actual recipes. Parsing an
ingredient line is therefore divided into different steps to recognize the (partially
optional) fields ingredient, quantity and unit.

Step Parser. For a hands-free interaction with the app while cooking, the
steps are read out loud in the step-by-step view (Sect. 5.1). To be able to do
this, sentences in the field preparation (Fig. 3) are separated. This is done by
splitting the text after each full stop, except if the full stop belongs to a word
from a list of stop words including common abbreviations. To give an example,
the preparation field from Fig. 3 is divided into 22 steps/sentences (shortened
here for space reasons):

1. Speck und Schinken würfeln

2. Zwiebeln schälen, Gemüse putzen, waschen.

Robust Mobile Speech-Enabled Cooking Assistant for German 219

Fig. 6. Command dialog in the step-by-
step view

Fig. 7. Step-by-step view

3. Alles fein würfeln.

4. Speck und Hack in 1 EL Öl anbraten.

5. Schinken, Gemüse und Hälfte Zwiebeln mitdünsten.

6. 3 gehackte Tomaten, l EL Mark und Wein zufügen, würzen.

[...]

5.3 Speech Input

To model user interaction with the cooking assistant, a JavaCC8 grammar was
developed. The grammar is divided into different parts that reflect the inter-
action stages such as searching, cooking (read out) mode, etc. (Fig. 4, 6, and
8). For speech recognition, we use the Google Speech API in the app. The API
offers two different modes. Standard speech recognition (SSR) is used to process
full sentences containing questions or commands (Fig. 4). After a speech input
pause with a configured threshold length, the input is interpreted as a complete
utterance. The second mode, continuous speech recognition (CSR), is used to
recognize user interaction in the reading out mode (Fig. 6). Here, only single
words are recognized, since there is no defined end of speech.

Standard Speech Recognition. Before starting speech recognition, the app
checks if speech input is available. Then a speech object is created and some
options are set, such as the language, the maximum number of recognized sen-
tences to be returned, and whether partial results are to be returned or not. In
the standard speech recognition mode, we do not want to receive partial results.
When recognition is started, a window opens and prompts the user for speech

8 https://javacc.java.net

https://javacc.java.net

220 U. Schäfer et al.

Fig. 8. Speech recognition workflow

input. After silence over threshold time, the window closes automatically and
the input is sent to Google ASR.

Continuous Speech Recognition. The second mode is what we call “continu-
ous speech recognition”9. It is important for a hands-free scenario in the kitchen.
To initialize CSR, the speech API is initialized in the same way as for SSR, ex-
cept that it is asked to return partial results. There is no guarantee to receive full
sentences anymore or anything useful at all because the speech recognition does
not wait for a sentence to be finished but instead just returns results when it
sees fit. Everything that is returned by the speech API is split into single words
and those are compared with a list of keywords to spot for. Once one of those
words is found, the continuous recognition is stopped and some action such as
starting the normal recognition is executed. Thus, the continuous recognition is
only used to detect single command words as shown in Fig. 6.

Finding the Most Appropriate ASR Match. This applies to the SSR mode
(Fig. 4, 8). As mentioned before, we chose the generic Google Speech API for the
speech input part of the cooking assistant since it is easy to connect with Java
code and is known to be reliable and available on all Android devices. However,
the major disadvantage of this speech recognizer is the fact that it cannot be
adapted to a specific domain or scenario. Therefore, we decided to establish
a rating system that takes into account the current activity where the speech
recognition takes place. Additionally, to make word matching more robust, we
apply two different stemmers (from Apache Solr/Lucene) concurrently. They
work corpus-independently and need only little space and working time.

The general idea is to give a score point for each word in a single match if the
activity-specific corpus contains the word. There are three different “scanners”
that correspond to three different areas that are checked: complete recipe corpus,
current recipe and grammar.

Corpus Scanner. This scanner basically uses the general ingredients corpus
that was extracted from all available recipes. It is used in all kinds of search since
we assume that users often will search for ingredients. We use a bundle of four
different corpus versions: (1) a stem corpus, extracted using SProUT with the
MMORPH stemmer, (2) a string corpus, containing the literal ingredient entries
including their morphological variants, (3) a stemmed version of the latter one,

9 The “continuous speech recognition” is based on an open source project which can
be found at https://github.com/gast-lib/gast-lib/blob/master/speech.md

https://github.com/gast-lib/gast-lib/blob/master/speech.md

Robust Mobile Speech-Enabled Cooking Assistant for German 221

stemmed using the ’Lucene’ stemmer, (4) the same again, but stemmed using
the ’Snowball’ stemmer. Moreover, to support search for particular recipes, we
also take into account the recipe titles. Thus, we additionally use a title corpus
for scoring. The score increases as the title gets longer, i.e. Spaghetti mit Erbsen-
Rahm-Soße und Parmesan ‘Spaghetti with pea-cream-sauce and Parmesan’ gets
a higher rating than just Schweinebraten ‘roast pork’.
Example: Assume we would say Ich möchte Canneloni al forno kochen ‘I want to
cook Canneloni al forno’. The corpus scanner would then start a lookup over its
corpus bundle and try to find some correspondence and the best possible score.
There are two possibilities:

– A rating of +1 for Canneloni, which is an ingredient
– A rating of +3 for Canneloni al forno, which is a recipe title

The match gets a rating of +3 here since we are looking for the best match.

Recipe Scanner. Similar to the corpus scanner, the recipe scanner checks for
ingredients in a question. However, this time, it is restricted to ingredients that
are used in the recipe locally in the step-by-step view. We do not want to take
care of ingredients occcurring only in other recipes since questions on those
ingredients are irrelevant for the current recipe. Here, the bundle contains only
three corpora: (1) the already mentioned recipe text, containing ingredients, (2)
a stemmed version of the latter one, stemmed by the ’Lucene’ stemmer, (3) the
same again, but stemmed by the ’Snowball’ stemmer.
Example: Assume we are already cooking and forgot how many zucchinis we
need. In this case, we could ask Wie viele Zucchinis brauche ich? ‘How many
zucchinis do I need?’. Afterwards, the scanner would start a look-up and find
Zucchini as a relevant ingredient and thus increase the match rating by 1. We
could also assume that the speech API had returned the potential match Wie
viel Zucker brauche ich? ‘How much sugar do I need?’, since both words Zucchini
and Zucker sound similarly in German. This match would get no point, since
Zucker ‘sugar’ is an ingredient in fact, but not a relevant one for this recipe.

Grammar Scanner. This last scanner is the most important one since it uses
the JavaCC grammar belonging to the current recognition for scoring. In a first
step, it chooses the appropriate grammar rule that should match the current
speech input. This matching of the current activity to a grammar rule is hard-
coded. When the rule is chosen, we read in the rule and solve all JavaCC tokens
that are used and mapped to “real” words. Afterwards, these words are thrown
into a bag of words and serve as corpus. This scanner is very important since it
simulates an input expectation which is not used in the speech recognition so far,
i.e. it partially solves the problem that the Google API is domain-independent.
By choosing one rule, we set a special context in which we expect the match to
take place in. Tests showed that this step has the highest influence on the general
scoring of matches. In contrast to the other scanners, we do not use a stemmer
here, since the grammar should take care of different word forms anyway.
Example: Assume that while cooking we forgot how many zucchinis we need.

222 U. Schäfer et al.

In this case, we could ask Wie viele Zucchinis brauche ich? ‘How many zucchinis
do I need?’. Afterwards, the scanner would start a look-up in the grammar
and find multiple word correspondences in the bag of words for the matching
grammar rule: The score should be +4 since the bag of words should contain
wie, viel, brauche and ich. These three scanners look at every possible match
that the ASR is returning and allocate scores to each of them. Afterwards, the
matches are sorted according to their rating. The grammar then basically tries
to parse the most appropriate match first; if this is not successful, it tries the
next one and so on (cf. loop in Fig. 8).

Marking Phrases in a Sentence. After choosing the best match from speech
input as described before, or sorting them according to their relevance, we mark
special phrases such as ingredients or recipe titles. The assumption is that these
are relevant for search or answering questions. Special markers in the JavaCC
grammar use them as pre-terminals. To mark them, we collect all possible titles,
ingredients, categories, countries and combinations of the latter that occur in the
match. We afterwards choose the most appropriate one out of all possibilities
and mark the appropriate parts of the string. Example: In Ich will etwas mit
Spaghetti und Tomaten kochen ‘I want to cook something with spaghetti and
tomatoes’, we would mark Spaghetti and Tomaten as ingredients: Ich will etwas
mit [Spaghetti]I und [Tomaten]I kochen (Fig. 2).

5.4 Recipe Text Server

All recipes are stored on an Apache Solr server. An example document is shown
in Fig. 3. The searchable fields (i.e. title, ingredients, category or country) are
stored in two versions, a stemmed one and a unchanged version. The unchanged
version is needed for sorting and searching for categories.

Recipe Search. A user search process is divided into different parts. The first
step is generating a so called search object. In subsequent user questions (or
requests), it can then be altered to fit the user’s wishes, e.g. by adding ingredients
that have to or must not be contained in the recipe. Each time the search object
changes, a new Solr query is constructed from the given information and is sent
to the Solr system.

As described earlier, the app has a view where the user can choose a category
to search for. Searching for the stemmed category would in some cases lead to a
problem. For example, a stemmed search for torten mit obst ‘tortes with fruit’
would match all categories containing one of the three words, except mit ‘with’
which is a stop word, and return not only recipes with the exact same category.
To deal with this problem, the search object can be set to search the original fields
and not the stemmed ones. Another problem that arose was that a user might
want to search for a group of ingredients such as Nudeln ‘noodles’ or Gemüse
‘vegetables’ but that a search for recipes containing the actual word Nudeln or
Gemüse would only return a small number of recipes. We therefore manually
extended the Solr server index by a manually curated synonyms list based on
the full list of ingredients and categories that was extracted initially. Now, a
search for Nudeln also returns recipes that contain only the word Spaghetti.

Robust Mobile Speech-Enabled Cooking Assistant for German 223

5.5 Speech Output

For Text-to-speech (TTS), we use the Google Text-to-speech API. For obvious
reasons, this has some limitations. It is for example not possible to modify pro-
nunciation. For domain-specific expressions such as amount range, we therefore
change the text string before passing it to Google TTS to pronounce it properly.
Out of the box pronunciation of abbreviations (Teel. ‘tbs’, min.), range con-
structs (‘1–2’) and constructs like ‘5 x 5 cm diameter’ was initially quite bad.
We improved it by adding code that replaces abbreviations using regular expres-
sions before sending them to TTS. Here, it was particularly helpful to have a
list of abbreviations with their frequencies from ingredient parsing (Sect. 5.2).

6 Summary and Outlook

We have described the components and implementation of a mobile, speech-
enabled cooking assistant for 32,000 German recipes. The system is fully im-
plemented and runs stably and fluently. Due to its design with only a lean,
well-scaling recipe text server in addition to cloud-based Google ASR, the app
can easily be installed on thousands of mobile devices. Future work would extend
the approach to utilizing linguistic parsing in both query and answer candidate
sentences to further abstract from linguistic variants. Then, more complex ques-
tion processing (example: “show me recipes where eggs are steamed with milk”)
would be possible. Furthermore, integration of sensors and devices such as bar-
code reader, electronic thermometers, kitchen scales, or stereo camera as further
ambient assistance tools could be helpful. Due to the corpus-based approach to
recognizing domain keywords, adaptation to further languages and applications
such as interactive user manuals or repair guidance systems should be easy.

References

1. Brants, T.: TnT – A statistical part-of-speech tagger. In: Proc. of 6th ANLP, Seattle,
Washington, pp. 224–231 (2000)

2. Chouambe, L.C.: Dynamische Vokabularerweiterung für ein grammatikbasiertes Di-
alogsystem durch Online-Ressourcen, Studienarbeit, University of Karlsruhe (2006)

3. Drozdzynski, W., Krieger, H.U., Piskorski, J., Schäfer, U., Xu, F.: Shallow process-
ing with unification and typed feature structures — Foundations and applications.
Künstliche Intelligenz 1, 17–23 (2004)

4. Hamada, R., Okabe, J., Ide, I.: Cooking navi: Assistant for daily cooking in kitchen.
In: Proc. of 13th ACM Int. Conf. on Multimedia, Singapore, pp. 371–374 (2005)

5. Martins, F.M., Pardal, J.P., Franqueira, L., Arez, P., Mamede, N.J.: Starting to cook
a tutoring dialogue system. In: SLT Workshop 2008, pp. 145–148. IEEE (2008)

6. Petitpierre, D., Russell, G.: MMORPH – the Multext morphology program. Tech.
rep., ISSCO, University of Geneva (1995)

7. Ribeiro, R., Batista, F., Pardal, J.P., Mamede, N.J., Pinto, H.S.: Cooking an ontol-
ogy. In: Euzenat, J., Domingue, J. (eds.) AIMSA 2006. LNCS (LNAI), vol. 4183,
pp. 213–221. Springer, Heidelberg (2006)

8. Wasinger, R.: Dialog-based user interfaces featuring a home cooking assistant, Uni-
versity of Sydney, Australia (2001) (unpublished manuscript)

A Philosophical Foundation

for Ontology Alignments
– The Structuralistic Approach

Christian Schäufler1, Clemens Beckstein1,2, and Stefan Artmann2

1 Artificial Intelligence Group, University of Jena, Germany
{christian.schaeufler,clemens.beckstein}@uni-jena.de

2 Frege Centre for Structural Sciences, University of Jena, Germany
stefan.artmann@uni-jena.de

Abstract. Together with formal ontologies, ontology alignments are
utilized to interconnect distributed information systems. Despite their
widespread use, it is not trivial to specify a formal semantics for ontol-
ogy alignments—due to the disparity of the respective domains of the
involved ontologies. There are already approaches to tackle this problem,
but each is relying on different presumptions. In this paper we propose
an interpretation of alignments in terms of theories as they are under-
stood in the philosophy of science following the structuralistic notion of
ontological reduction. We use this framework to identify an account of
the necessary presumptions of every alignment semantics. These assump-
tions are then used as a basis for the comparison of existing alignment
semantics.

1 Introduction

Modern science incorporates huge amounts of knowledge and data, managed by a
multitude of individual actors. To share knowledge between working groups and
across scientific communities, the issue of exchanging knowledge becomes crucial.
In the particular case of the semantic web, distributed information systems have
to be accessible to each other. There is a vivid community addressing automated
techniques to interconnect knowledge bases [6]. The vocabulary, the knowledge of
an information system is represented in, is specified by its ontology. As knowledge
bases represented w.r.t. different ontologies are not connected in a semantic
manner, the involved ontologies need to be matched by alignments. With an
alignment between two ontologies O and O′ of two information systems IS and
IS ′ queries of IS ′ expressed in the vocabulary of O′ can be translated to queries
to IS expressed in the vocabulary of O. Ontology alignments are widely used.
As an example, the OBO foundry [12] covers more than 50 alignments between
its biomedical ontologies.

For distributed knowledge in general, different kinds of formalisms have been
proposed (for an overview see [4]). Because of its well understood theoretical
properties and for being already the semantic foundation of description logics,

I.J. Timm and M. Thimm (Eds.): KI 2013, LNAI 8077, pp. 224–235, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

A Philosophical Foundation for Ontology Alignments 225

we focus on the model theoretical approach. The theoretical foundation for most
work in this area is distributed first order logic (DFOL), a multi-theory exten-
sion to the semantics of first order logic [7]. Nevertheless there seems to be no
canonical way of defining a formal semantics for ontology alignments. There are
already approaches defining a model theoretical semantics for alignments, but
each is relying on different presumptions.

With the concept of bridge laws, philosophy of science has also contributed
to the correct interpretation of structures bridging theories and ontologies. On
the one hand, bridge laws are used when theories describing distinct aspects of
systems are combined to more potent theories. On the other hand, bridge laws
are used to describe the relation between theories of the same domain. The most
prominent inter-theory relation is theory-reduction. Scientific structuralism is a
framework giving a set-theoretical account of the logical structure of scientific
theories and reduction [2].

In this paper we try to put knowledge representation and philosophy of science
research in one frame. We build upon [11], where the structuralistic concept
of a theory is taken to model different meaning facets of ontologies. We now
use the structuralistic framework for the interpretation of ontologies and the
structuralistic concept of theory links for interpreting ontology alignments.

For this purpose we shall proceed in three steps. 1) In Section 2 we shall first
recall the language for specifying alignments and the semantic problem. 2) In
Section 3 the structuralistic framework will be used for a formal reconstruction
of the semantics of alignments. 3) Utilizing the structuralistic framework, in
Section 4 we will compare the premises of the simple distributed semantics, the
contextualized distributed semantics and the structuralistic approach.

2 Syntax and Common Semantics of Ontology
Alignments

2.1 Syntax

In the following we assume that ontologies are formulated in a description logic
formalism as sets of axioms about ontology elements:

Definition 1. An ontology element is either a term of the ontology (e.g., class
name, property name, individual name) or a compound entity built out of other
ontology elements and constructors from the ontology language.

In an alignment, ontology elements of two ontologies are set into relation by inter-
terminological alignment axioms where the syntax of these axioms is defined by
an alignment language. A typical way to define this syntax is shown in [14]:

Definition 2. An ontology element relation R is a symbol denoting a binary
relation or predicate R̃. Given a specific alignment language, the set of usable
relation symbols is written R.

Frequently used relation symbols for alignments are�,.,≡ or ⊥, which resemble
the relation symbols used in the intra-terminological axioms of the description
logics involved.

226 C. Schäufler, C. Beckstein, and S. Artmann

Definition 3. A correspondence is a triple eR e′ where e and e′ are ontology
elements from the two ontologies in the alignment and R is the ontology element
relation that the correspondence claims to hold between e and e′.

Alignment axioms therefore are declarations of correspondences between on-
tology elements of two different ontologies. Taken together they constitute an
ontology alignment:

Definition 4. An ontology alignment A between ontologies O and O′ is a set
of correspondences coupling ontology elements belonging to O and O′.

2.2 The Semantic Problem

The central difficulty in interpreting alignments is the potential domain disparity
of the involved ontologies. Let, e.g., O and O′ be ontologies with interpretations
I and I ′ and e ≡ e′ a correspondence between two ontology elements e and e′.
Because the domains D of I and D′ of I ′ in general contain different elements,
the correspondence cannot simply be interpreted extensionally in the style of

eI = e′
I′
, where eI is the extension of e in interpretation I. (1)

Just as D and D′, the extensions eI and e′I
′
of the ontology elements e and e′

in general do not share elements (see Fig. 1).

D

O

I

D′

O′

I ′

e � e′
I I ′

eI � e′I
′

Fig. 1. A naive extensional interpretation of a correspondence

2.3 Simple Distributed Semantics

The most simple way to circumvent the problem of disparate domains is to
claim that in reality they are equal – or at least that they intersect in the
areas of interest. This non-logical assumption of a single domain can reasonably
be made in domains consisting of physical objects as represented, e.g., by online
catalogs. The commitment to the equality of domains requires the interpretation
of the alignment to be done in the context of given local interpretations which

A Philosophical Foundation for Ontology Alignments 227

indeed share one domain. As a consequence, the interpretation of the alignment
A becomes the interpretation of the alignment w.r.t. given local interpretations.

A semantics of this kind is specified in [5]. For domains of this type an inter-
pretation of alignments as attempted in equation (1) is possible:

Definition 5. Let O,O′ be two ontologies and c = eR e′ be a correspondence
between O and O′. c is satisfied by interpretations m, m′ of O and O′ iff emR̃e′m

′
.

This is written m,m′ |= c.

Then, an alignment is satisfied by a pair of models iff this pair satisfies every
correspondence of the alignment [14]:

Definition 6. A model of an alignment A between ontologies O and O′ is a
pair m, m′ of interpretations of O, O′ such that for all c ∈ A : m,m′ |= c.

2.4 Common Distributed Semantics

In cases where the domains are distinct or cannot be justified to be equal in
reality, the simple distributed semantics cannot be applied. In order to be able to
nevertheless interpret correspondences, coherence has to be established between
both domains. Two formal ways for doing that can be found in [14]:

1) In integrated distributed semantics a unified domain U and equalizing func-
tions mapping every local domain to U are specified. Alignments between on-
tology elements of O and O′ are then no longer interpreted w.r.t. D and D′ but
extensionally w.r.t. their common projection on U in the style of eqn. 1.

2) In contextualized distributed semantics a domain relation r is declared,
relating individuals from one local domain to the other. This makes the specifi-
cation of an extensional semantics in the style of eqn. 1 possible.

Definition 7. Given two domains of interpretation D and D′ , a domain rela-
tion is a mapping r : D → D′. [14]

Definition 8. A contextualized interpretation of an alignment A between two
ontologies O and O′ is a tuple 〈m,m′, r〉 where m and m′ are interpretations of
O and O′ and r is a domain relation such that r relates the domain of m to the
domain of m′.

In contrast to interpretations of alignments in simple distributed semantics (see
Def. 6) interpretations of alignments in contextualized distributed semantics ad-
ditionally contain a domain relation r. As the integrated and the contextualized
distributed semantic approaches share most of their properties [14], in this paper
we shall focus on the contextualized approach.

Definition 9. A contextualized interpretation 〈m,m′, r〉 of an alignment A is a
contextualized model iff m,m′, r |= A and m,m′ are local models of O and O′.

228 C. Schäufler, C. Beckstein, and S. Artmann

3 Structuralistic Reconstruction of Ontology Alignments

We shall now introduce a new semantics for the interpretation of ontology align-
ments inspired by the structuralistic conception of theories and inter-theoretical
connections. Scientific structuralism is a branch of philosophy of science that at-
tempts to reconstruct scientific theories by means of set-theoretical structures [2].
We start by introducing the structuralistic framework to interpret single ontolo-
gies. Utilizing this framework we then shall be able to formalize the assumptions
of the approaches we recapitulated in Section 2 as well as the structuralistic
approach. Our framework will also provide us with a formal criterion whether
two ontologies can be matched.

3.1 Structuralistic Reconstruction of Models and Interpretations

First, we generalize the concept of an interpretation of an ontology. In description
logic each interpretation of a theory consists of a domain and an interpretation
function which maps (atomic and complex) ontology elements to (in the case
of roles, pairs of) subsets of one (or sometimes more) domain(s) [1]. An inter-
pretation which satisfies all the axioms of the ontology is called a model of this
ontology.

As in structuralism, an interpretation of an ontology O in our approach need
not consist of just one unstructured domain D, but may consist of several do-
mains D1, . . . , Dn. The structuralists call the factors Di of such a domain struc-
ture (domain) terms. All models of an ontology share the same domain terms.
We may define the domain terms D1, . . . , Dn of an ontology O by a set of dis-
junct concepts that, according to the ontological axioms of O, are just below
the top concept � in the subsumption hierarchy induced by the ontology O. In
the wine ontology [13], e.g., these domains are wine, taste, color and place of
production.

3.2 Theory Elements for a Reconstruction of Ontologies

In their notion of theories, structuralists proceed from what they call the “state-
ment view” to the “non-statement view”. According to the non-statement view,
a theory cannot be explicated just by a set of axioms. It is necessary to spec-
ify the set of the models of that theory. Empirical theories actually involve
different kinds of statements – e.g., axioms that introduce properties, laws of
first and higher order, and assertions about the intended applications. Accord-
ing to the non-statement view each kind of axiom is represented by its own
set of models. The theory element T contains all sets that a theory comprises:
T = 〈Mp,M,C, L, I〉.1

The set of potential models Mp denotes the possible interpretations due to the
signature of the theory. The set of actual models M denotes those potential models

1 To exclude T -theoretical concepts of a theory T from the empirical claim of T , a set
Mpp of (non-theoretical) partial potential models can be specified. For simplicity we
omit the treatment of theoretical concepts.

A Philosophical Foundation for Ontology Alignments 229

that satisfy the actual laws of a theory. C is a set representing intra-theory laws,
also called constraints. Each element of C covers a set of potential models that are
compatible under certain restrictions.C allows to express how local applications of
a theory can be combined, forming a complex system. The local link L denotes the
set of potential models which share an inter-theoretical linkL (see next section).L
represents the local part of the bridge laws between T and other theory elements.
The set of intended applications I denotes those possible models which result from
measurements performed in the intended domain (reality).

We reconstruct an ontology O in terms of a structuralistic theory element
T (O), in short T , where T = 〈Mp,M,C, L, I〉. The model theoretic interpreta-
tions of O – as generalized in section 3.1– correspond to the potential models
Mp of T . The models of O exactly match the actual models M of T . The set of
intended applications I involves every conceivable model, the application of the
ontology O is intended for.

According to the structuralistic understanding, every model is an indepen-
dent representation of an application of a theory. Each model comprises its own
individuals with their model-specific property values. Domains Dx and Dy of
different models x and y may overlap, allowing one and the same individual to
emerge in multiple models. But from model to model, the properties of such
an individual need not have the same values. Nevertheless, the constancy of an
individual’s properties across multiple models can be explicitly claimed resulting
in a common domain with invariant properties for each individual. Formally this
can be forced by a special intra-theoretical bridge law, an identity constraint C.
C is a set of those sets of models that satisfy the desired intra-model constancy
of properties (ex(d) denotes the value of property e of individual d in model x) :

C(T) :=
{
X ⊆Mp(T) : X �= ∅ ∧

∧
x,y∈X

∧
d∈Dx∩Dy

ex(d) = ey(d)
}
[3].

3.3 Structuralistic Interpretation of Alignments

The study of types of relations between scientific theories is an important task
of philosophy of science. In scientific structuralism, bridge laws between theories
are denoted by sets of models. The conjunction T1, . . . , Tn of a tuple of theory
elements along with a theory link L ⊆Mp(T1)×. . .×Mp(Tn), i.e., a distinguished
subset of the cross product of the potential models Mp(Ti) from each theory
element, forms a so-called theory holon.

In contrast to contextualized distributed semantics, a link L in our structural-
istic semantics only satisfies the bridge laws (the alignment correspondences) and
takes no account of the intrinsic laws of the theory (the axioms of the involved
ontologies). In order to treat a link L from the viewpoint of an involved theory
element, it is necessary to project the link to its theory elements Ti resulting in
local links L(Ti):

Definition 10. Let L be an n-ary link between theory elements T1, . . . , Tn. The
local link L(Ti) of a theory element Ti = 〈Mp(Ti),M(Ti), C(Ti), L(Ti), I(Ti)〉 is
defined by:

230 C. Schäufler, C. Beckstein, and S. Artmann

L(Ti) = {mi ∈Mp(Ti) : ∀j �= i ∃mj ∈Mp(Tj) : 〈m1,m2, . . . ,mn〉 ∈ L}.

With the help of theory links, all interesting types of inter-theoretical relations
can be described by properties holding in L. Theory links that result from struc-
turalistic classifications (e.g. reduction, equivalence and theorization [10]) always
interrelate exactly two theories. In the following we will therefore only look at
binary inter-theoretical links.

Ontological Theory Reduction. The most important inter-theoretical rela-
tion is theory reduction. The aim of reduction is to substitute a weak reduced
theory by a more general reducing theory. The question whether an intended
model is a model of the reduced theory can be answered using the reducing
theory: if a potential model of the reducing theory is not an actual model of the
reducing theory then there is no corresponding potential model of the reduced
theory that is an actual model of the reduced theory. Reduction links are also
called entailment links. An example of a reduction is given in [2, p. 255], where
the theory of collision mechanics is reduced to classical particle mechanics. This
general notion of reduction is not meant to relate the properties of the involved
theories. Only ontological reductions as a special kind of reduction require the
individuals of the domains of two theories to be relatable. This relation of do-
mains usually is not specified for pairs of individuals but for entire classes by the
domains 〈D1, . . . , Dn〉 of a theory element. This choice of domains, separated
into different ontological kinds over a comprehensive aggregate domain, is a pre-
requisite for ontological reduction. In classical particle mechanics, e.g., separate
domains are particles, coordinates, and points of time. Structuralists call such
a partition of domains along with the relations the theory is built upon, the
ontology of the theory. A reduction is called ontological iff certain domains of
the reduced theory are constructible from the domains of the reducing theory in
the form of echelon sets:

Definition 11. S is called an echelon set on sets D1, . . . , Dn (the base sets of
the echelon set) iff either 1) S = Di for some i, or, 2) S1, . . . , Sk are echelon sets
on D1, . . . , Dn and S = S1× . . .×Sk, or, 3) S′ is an echelon set on D1, . . . , Dn

and S = P (S′), where P (S′) is the power set of S′.

Definition 12. Let T and T ′ be theory elements with domains 〈D1, . . . , Dn; . . .〉
and 〈D′

1, . . . D
′
m; . . .〉 respectively and let a theory link ρ be a reduction L of T

to T ′. ρ is called ontological iff there are Di which are elements (or subsets)
of an echelon set with base sets D′

1, . . . , D
′
m. In this case Di is called to be

reconstructible from the domains of T ′ [8, p. 320].

Two theories T and T ′ where at least one domain of T is reconstructible from
the domains of T ′ are called ontologically compatible [9, p. 4]. Ontological com-
patibility is a necessary precondition for ontological reduction.

Structuralistic Interpretation of Alignments. In our approach alignments
do not have a semantics per se but only w.r.t. the way they are used. The appli-
cation of an alignment in our view always assumes a specific flow of information

A Philosophical Foundation for Ontology Alignments 231

— from a foreign information system w.r.t. O to the initial inquirer with a
commitment to O′. In analogy to the distinction between reduced and reducing
theory we distinguish between the queried ontology O and querying ontology O′

involved in the application of an alignment.
A precondition of the structuralistic interpretation of alignments is a term-

by-term relation between the domains of the involved ontologies.

Definition 13. Let D1, . . . , Dn and D′
1, . . . , D

′
m be domains of ontologies O and

O′. Echelon-set relationships of the form Di ⊆ S, where S is an echelon-set on
the sets D′

1, . . . , D
′
m, or of the form D′

j ⊆ S′, where S′ is an echelon-set on the
sets D1, . . . , Dn, are then called domain inclusions of O and O′.

As an example, a simple domain inclusion holds between the domain of wine
and the domain of alcoholic drinks. An example of a more complex domain
inclusion is the one between the domain of addresses D1 of one ontology and the
domains D′

1 of streets, D′
2 of places and D′

3 of postal codes of another, because
D1 ⊆ D′

1×D′
2×D′

3. Here, elements of D1 cannot be expressed as elements of a
single set D′

i, but only as a combination of elements from D′
1, . . . , D

′
3.

With a set of domain inclusions we are able to define when two ontologies are
compatible w.r.t. an alignment.

Definition 14. Two ontologies are said to be ontologically compatible iff the
set of domain inclusions is non-empty.

Hence, ontological compatibility is exactly that property that distinguishes a
general reduction from an ontological one (cf. Def. 12).

For the interpretation of an alignment A let us now assume that we have
two ontologies O and O′ with domains D1, . . . , Dn and D′

1, . . . , D
′
m and certain

domain inclusions that hold between them (Fig. 2). Let us further assume that
O is the queried and O′ the querying ontology of the alignment.

D1 D2
. . . Dn D′

1 D′
2

. . . D′
n

O O′A

×

⊆

...

⊇

Fig. 2. Context of a structuralistic interpretation of an alignment A

Given the domain inclusions, we are able to define when two models m and m′

satisfy a correspondence eR e′. Because the domain terms D1, . . . , Dn match the
top-level primitive concepts of ontology O, the extension of an ontology element
e in O is a subset of exactly one domainDi (or a pair of domains if e is a role) and

232 C. Schäufler, C. Beckstein, and S. Artmann

e′ is a subset of exactly oneD′
j. For an interpretation of the correspondence, both

involved ontology elements have to be interpreted in the same domain. Which
one of Di and D′

j is going to be that shared domain can now be answered relative
to the roles that the involved ontologies play in the alignment process: since O′

is the querying ontology the interpretation of both e and e′ should take place
w.r.t. D′

j : Individuals of both domains are then related in the direction of the
flow of information between the involved information systems. The general idea
of substituting foreign domains by local ones is shown in Figure 3.

e R e′

Di

m

⊆−

D′
j

m′

⊆

Fig. 3. The interpretation of a correspondence eR e′

If the domain inclusion depicts a domain that covers the extensions of both
ontology elements, the interpretation of that correspondence can be done in the
simple distributed semantics w.r.t. the chosen domain.

An Example. The following example shows the difficulties one may encounter
with interpreting alignments in distributed domains. Let O and O′ be ontolo-
gies specifying meteorological concepts. In O a concept HighPressureArea may
be defined as a specific system, in O′ a concept Anticyclone may be defined as
a specific phenomenon. Let A be an alignment between O and O′, containing a
correspondence HighPressureArea ≡ Anticyclone. How can the interpretation be
achieved without a strange mix-up of categories, as required by the assumption
of a global domain as made in simple distributed semantics? The one-to-one re-
lation between individuals of the domains of O and O′ that has to be established
for contextualized distributed semantics is problematic as well: 1) An individual
can only be considered as element of a domain in the context of a conceptual-
ization. Ontologies in this sense create the individuals they are talking about.
It is therefore unreasonable to assume that different ontologies, even about the
same reality, always respect certain relationships between ‘their’ individuals. 2)
There are no individuals that can be related by a domain relation if the domains
of the respective models talk about different parts of reality. The domains of a
weather information system for Europe and an information system for the USA,
e.g., must be disjoint by their very definition.

In structuralistic semantics, 1) the domain terms of O and O′ are analyzed,
e.g. System, Phenomenon , Coordinate , Height , Time, Pressure. 2) The domain
terms of the involved ontology elements are determined, e.g. HighPressureArea
being a System and Anticyclone being Phenomenon . 3) The set of domain inclu-
sions is searched for the relation of both domains, e.g. System × Observation ⊆

A Philosophical Foundation for Ontology Alignments 233

Phenomenon . 4) Because the domain Phenomenon is more comprehensive from
the perspective of the querying information system IS ′, it is safe to interpret
the extension of Anticyclone in the local domain Phenomenon . The correspon-
dence can thus be interpreted in simple distributed semantics w.r.t. the domain
Phenomenon and w.r.t. to the specific flow of information.

4 Properties of Model Theoretic Alignment Semantics

Armed with the structuralistic explication of the semantics of alignments, we
analyze their premises in this section. We show under which practical conditions
those premises are justified.

4.1 Simple Distributed Semantics

Simple distributed semantics can only be applied if the local models of the
aligned ontologies O and O′ share a common domain. In the structuralistic
framework this is the case iff two conditions are fulfilled. 1) The potential models
Mp of T (O) and M ′

p of T (O′) each consist of exactly one domain D and D′

respectively. 2) The domain inclusions between both ontologies D ⊆ D′ and
D′ ⊆ D hold. This is a quite strong restriction that is justified only if it simplifies
the interpretation of an alignment very much.

4.2 Contextualized Distributed Semantics

In contextualized distributed semantics there is no explicit precondition on the
involved domains. Defining a domain relation r for ontologies O and O′ is a very
flexible way of correlating two ontologies. The downside of this kind of semantics
is that it depends on a specific pair of domains D and D′ (r ⊆ D × D′). All
models m of O have to share domain D, all models m′ of O′ have to share
domain D′.

Under which conditions is this assumption justified? There is a fundamen-
tal objection to this assumption: What does it mean to identify one object in
different models if its properties are variant? The structuralistic answer to this
question is: identity of objects in different models makes no sense if it is not guar-
anteed that they share at least one property. With constraints the structuralistic
framework provides an algebraic structure enforcing this requirement. Models of
matching properties are aggregated in sets c ∈ C of identity constraints. By each
c, one possible domain D of O is modeled. Structuralists have observed that a
model m can be element of different constraints c ∈ C that can nevertheless
be incommensurable. To commit to a domain D for an ontology O requires to
commit to a set c ∈ C of models. The empirical claim of a theory entails that a
c ∈ C is the set I of intended applications. Therefore, by I a domain is modeled
which satisfies all proposition of the theory. So the answer to the question, when
the presuppositions of a contextualized distributed interpretation are justified,
is: We can commit to a single empirical domain as long as there is an agreement
about the individuals of this domain, e.g., because they can be measured by a
certain method.

234 C. Schäufler, C. Beckstein, and S. Artmann

4.3 Structuralistic Semantics

In order to interpret an alignment A between two ontologies O and O′ in terms
of theory-elements T (O), T (O′) and a global link L, two presumptions have to
be met.

1) The potential models of T (O) and T (O′) are relatable by echelon-set inclu-
sions. These inclusions define L by the models fitting the alignment A w.r.t. the
domain inclusions. The components of T (O) (and T (O′), respectively) are de-
fined as follows: M are the models fitting the axioms of O (and O′, respectively),
L is the local link of L (modulo ontology O), the set of sets of models rising from
identity constraints is C and the intended applications of the ontology are I.

2) A special property between these sets holds:

I ∈ P(M) ∩ P(L) ∩ C. (2)

This property is called the claim of the theory. With the help of this structualistic
meta-property of a theory holon we can decide whether an ontology and – even
more – whether a distributed information system on the basis of O, O′ and A is
valid.

5 Conclusion

In this paper we applied the structuralistic conception of theories as a framework
for the analysis of approaches to the semantics of ontologies and ontology align-
ments. By applying the concept of ontological theory reduction to ontologies,
we furthermore gave an introduction to a novel kind of semantics of ontology
alignments.

With the help of the structuralistic framework, the presuppositions of simple
distributed semantics and contextualized distributed semantics were explicated.
Both semantics depend on distinguished and fixed domains for single or pairs
of ontologies. Structuralism shows that it is possible to define a semantics for
alignments without relying on predetermined domains. Still one has to make
assumptions, but they are weaker than in contextualized distributed semantics:
Each formal ontology has to commit to a differentiation w.r.t. certain ontological
kinds (domain terms), and at least some of the domain terms need to be relatable
by certain domain inclusion. The structuralistic perspective on ontology align-
ments is a pragmatic one in the sense that the flow of information from a queried
to a querying ontology shapes the interpretation of the alignment between both
ontologies.

Acknowledgement. This work is part of the Computer Supported Research
(CoSRe) initiative funded by Thüringer Ministerium für Bildung, Wissenschaft
und Kultur under grant 12038-514.

A Philosophical Foundation for Ontology Alignments 235

References

1. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P. (eds.):
The Description Logic Handbook: Theory, Implementation, and Applications.
Cambridge University Press, New York (2003)

2. Balzer, W., Moulines, C.U., Sneed, J.D.: An Architectonic for Science - the Struc-
turalist Program. Reidel, Dordrecht (1987)

3. Bartelborth, T.: Begründungsstrategien – ein Weg durch die analytische Erkennt-
nistheorie. Akademie Verlag, Berlin (1996)

4. Brockmans, S., Haase, P., Serafini, L., Stuckenschmidt, H.: Formal and concep-
tual comparison of ontology mapping languages. In: Mizoguchi, R., Shi, Z.-Z.,
Giunchiglia, F. (eds.) ASWC 2006. LNCS, vol. 4185, pp. 616–631. Springer, Hei-
delberg (2006)

5. Calvanese, D., De Giacomo, G., Lenzerini, M.: Description logics for information in-
tegration. In: Kakas, A.C., Sadri, F. (eds.) Computat. Logic (Kowalski Festschrift).
LNCS (LNAI), vol. 2408, pp. 41–60. Springer, Heidelberg (2002)

6. Euzenat, J., Ferrara, A., van Hage, W.R., Hollink, L., Meilicke, C., Nikolov, A.,
Ritze, D., Scharffe, F., Shvaiko, P., Stuckenschmidt, H., Šváb Zamazal, O., Trojahn,
C.: Results of the ontology alignment evaluation initiative 2011. In: Shvaiko, P., et
al. (eds.) Proceedings of the 6th International Workshop on Ontology Matching.
CEUR Workshop Proceedings, vol. 814 (2011)

7. Ghidini, C., Ghidini, C., Serafini, L., Serafini, L.: Distributed first order logics. In:
Frontiers of Combining Systems 2, Studies in Logic and Computation, pp. 121–140.
Research Studies Press (1998)

8. Moulines, C.: Ontology, reduction, emergence: A general frame. Synthese 151, 313–
323 (2006)

9. Moulines, C.U.: Ontology, reduction, and the unity of science. In: Cao, T. (ed.) The
Proceedings of the Twentieth World Congress of Philosophy, pp. 19–27. Philosophy
Documentation Center, Bowling Green (US-OH) (2001)

10. Moulines, C.U., Polanski, M.: Bridges, constraints, and links. In: Balzer, W.,
Moulines, C.U. (eds.) Structuralist Theory of Science. de Gruyter, Berlin (1996)

11. Schäufler, C., Artmann, S., Beckstein, C.: A structuralistic approach to ontologies.
In: Mertsching, B., Hund, M., Aziz, Z. (eds.) KI 2009. LNCS, vol. 5803, pp. 363–
370. Springer, Heidelberg (2009)

12. Smith, B., Ashburner, M., Rosse, C., Bard, J., Bug, W., Ceusters, W., Goldberg,
L.J., Eilbeck, K., Ireland, A., Mungall, C.J., Leontis, N., Rocca-Serra, P., Rutten-
berg, A., Sansone, S.A., Scheuermann, R.H., Shah, N., Whetzel, P.L., Lewis, S.:
The OBO foundry: coordinated evolution of ontologies to support biomedical data
integration. Nat. Biotech. 25(11), 1251–1255 (2007)

13. Smith, M.K., Welty, C., McGuinness, D.L.: Wine ontology – an example owl on-
tology (2004), http://www.w3.org/TR/2004/REC-owl-guide-20040210/wine.rdf

14. Zimmermann, A., Euzenat, J.: Three semantics for distributed systems and their
relations with alignment composition. In: Cruz, I., Decker, S., Allemang, D., Preist,
C., Schwabe, D., Mika, P., Uschold, M., Aroyo, L.M. (eds.) ISWC 2006. LNCS,
vol. 4273, pp. 16–29. Springer, Heidelberg (2006)

http://www.w3.org/TR/2004/REC-owl-guide-20040210/wine.rdf

Contraction Hierarchies on Grid Graphs

Sabine Storandt

Albert-Ludwigs-Universität Freiburg
79110 Freiburg, Germany

storandt@informatik.uni-freiburg.de

Abstract. Many speed-up techniques developed for accelerating the
computation of shortest paths in road networks, like reach or contrac-
tion hierarchies, are based on the property that some streets are ’more
important’ than others, e.g. on long routes the usage of an interstate is
almost inevitable. In grids there is no obvious hierarchy among the edges,
especially if the costs are uniform. Nevertheless we will show that con-
traction hierarchies can be applied to grid graphs as well. We will point
out interesting connections to speed-up techniques shaped for routing on
grids, like swamp hierarchies and jump points, and provide experimental
results for game maps, mazes, random grids and rooms.

1 Introduction

Efficient route planning in grid graphs is important in a wide range of appli-
cation domains, e.g. robot path planning and in-game navigation. While many
search algorithms like A* provide relatively fast solutions on the fly, it might be
worthwhile to allow some preprocessing to speed up query answering if the same
grid map is used multiple times. For road networks state-of-the-art preprocessing
techniques like contraction hierarchies [1] and transit nodes [2] enable shortest
path computation in a few milliseconds or even microseconds on graphs with mil-
lions of nodes and edges. But the structure of street graphs differs clearly from
grids: Shortest paths are almost always unique and some edges (e.g. correspond-
ing to highways and interstates) occur in significantly more optimal paths than
others. Therefore it is not obvious that such speed-up techniques carry over to
grid graphs. Nevertheless, it was shown that the idea of transit node routing can
be adapted to grid graphs [3], leading to a significantly improved performance
on video game maps. Contraction hierarchies were also tested on grid graphs [4],
but these grids had non-uniform costs and moreover the construction algorithm
for road networks was applied without any adaption. In this paper, we will show
how to modify contraction hierarchies to take care of the special structure of
grid graphs.

1.1 Contribution

We will first describe in detail how contraction hierarchies can be modified to
work on grid graphs, introducing some simple rules to speed up the preprocess-
ing phase. Moreover, we especially focus on how to be able to compute canonical

I.J. Timm and M. Thimm (Eds.): KI 2013, LNAI 8077, pp. 236–247, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Contraction Hierarchies on Grid Graphs 237

optimal paths, i.e. paths with a minimal number of direction changes which are
desirable in many applications. In our experimental evaluation, we give empirical
evidence for the small amount of auxiliary data created by constructing a con-
traction hierarchy upon a grid. We compare query answering with our approach
to the A*-baseline for several input categories, like random graphs and mazes.
Finally, we also point out connections to other speed-up techniques developed
for path planning on grids.

1.2 Related Work

Because of its significance in many applications, speed-up techniques for rout-
ing on grids are described in numerous papers. We distinguish between online
approaches, where no preprocessing is applied – like the standard A* algorithm
(and variants thereof) or jump points [5] – and offline algorithms, which allow a
preprocessing phase, like swamps [6]. Moreover, there are optimal and subopti-
mal search algorithms, with HPA* [7] being an example for the latter. Finally,
some speed-up techniques are very specific for certain instance classes (like only
for 4-connected grids [8], or preferably for game maps as described e.g. by Bj
önsson et al. [9]), while others are beneficial in several application domains. In
this paper, we describe an offline, optimal and unspecific technique to efficiently
retrieve shortest paths in grid graphs. We will come back to similarities and
compatibility with other methods towards the end of the paper.

2 Contraction Hierarchies (CH) on Grids

In this section, we want to review the standard contraction hierarchy approach [1]
and give some intuition why this method will work on grids (with uniform costs)
besides no obvious hierarchy among the edges. Subsequently, we will describe
how to use CH-search to retrieve canonical paths via an edge classifier approach.

2.1 Conventional Contraction Hierarchy

Given a (di)graph G(V,E), the basic idea behind CH is augmenting the graph
with shortcuts that allow to save a lot of edge relaxations at query time. To
that end, in a preprocessing phase nodes are sorted according to some notion
of importance. Afterwards the nodes get contracted one by one in that order
while preserving all shortest path distances in the remaining graph by inserting
additional edges (so called shortcuts). More precisely, after removing a node v
the distance between any pair of neighbours u,w of v has to stay unchanged.
Therefore an edge (u,w) with proper costs is inserted if the only shortest path
from u to w is uvw. Hence if there exists a so called witness path with lower
cost than u, v, w or with equal cost but not visiting v (typically found via a
Dijkstra run from u) the shortcut can be omitted. If the graph is undirected,
we assume for clarity of definitions that an edge is represented by its two di-
rected versions. Note, that it is not necessary to use this transformation in the
actual implementation. After all nodes have been removed, a new graph G′ is

238 S. Storandt

created by adding all shortcuts to the original graph. An edge (v, w) in G′ is
called upward if the importance l of v is smaller than that of w (l(v) < l(w))
and downward otherwise. A path is called upward/downward, if it consists of
upward/downward edges only. By construction, for every pair of vertices s, t ∈ V
it exists a shortest path in G′, which can be subdivided into an upward and a
downward path. Therefore s-t-queries can be answered bidirectionally, with the
forward run (starting at s) considering only upward edges and the backward run
(starting at t) considering exclusively downward edges. We call the respective
subgraphs containing all upward paths starting at s or all downward paths end-
ing in t respectively as G↑(s)/G↓(t) and the highest node wrt to l on an s-t-path
the peak.

To get the path in the original graph and not in G′, we have to expand
contained shortcuts back to paths. For that purpose, we store during the CH-
construction the IDs of the two skipped edges for every shortcut. A recursive
unpacking procedure allows then to retrieve the original edges.

On the first sight, the construction of a CH upon a grid seems to be a bad idea.
Consider a 4-connected grid, the contraction of a node would remove four edges;
but any two of these edges might form a shortest path, hence up to six shortcuts
must be inserted. Contracting the neighbouring nodes this effect amplifies, giving
the impression that we might end up with a quadratic number of edges in G′

(see Figure 1, left). But there are two characteristics of grids preventing this:
Optimal paths in grids with uniform costs are ambiguous, but only one optimal
solution needs to be preserved. In fact, contracting the first node in a complete
4-connected grid, only two shortcuts instead of six have to be inserted because of
ambiguity, see Figure 1 (right) for an illustration. Unfortunately, the sparser the
grid, the more the ambiguity of shortest paths subsides. But if a grid is far from
being complete, the holes introduce a certain kind of hierarchy as well because
now shortest paths tend to use their borders. Hence CH construction upon a
grid might work even if it seems counter-intuitive at the first glance.

2.2 Accelerating the CH Construction

There are actually no modifications necessary to run CH on a grid as the basic
framework at least in theory works on any graph. But we can speed up the
preprocessing using the characteristics of a grid with uniform costs.

Knowing the positions of the nodes in the grid, we do not have to start a
witness search for u, v, w if the nodes are all on a straight line and the summed

Fig. 1. Illustration of two contraction steps (removal of the red node): On the left
without considering ambiguity (or assuming non-uniform costs), on the right with
inserting only shortcuts between neighboring nodes if the shortest path via the red
node is unique

Contraction Hierarchies on Grid Graphs 239

costs of (u, v) and (v, w) comply with the interval between u and w. Also if
c(u, v) + c(v, w) equals the absolute positional difference between u and w, we
can restrict the witness search to the rectangle spanned by u and w. Moreover
we can plug-in A* or any other search algorithm to accelerate the witness search
in any case. Note, that even a suboptimal algorithm would be alright because
not detecting an existing witness might lead to the insertion of a superfluous
shortcut, but this will not compromise optimality. In fact, we could insert all
shortcuts right away and the quality of the queries would be unaffected. But
as additional shortcuts increase the graph size and therefore the runtime of the
preprocessing as well as the query answering, we aim for keeping G′ sparse.

2.3 Maintaining Canonical Paths

To save energy (especially concerning robot navigation) and to enable a natural
way of moving, we aim for an optimal path with a minimal number of turns, i.e.
a canonical path. But neither Dijkstra nor plain A* can guarantee to find such
a solution if the optimal path is ambiguous.

To gain this ability in G′ we proceed for a 4-connected grid as follows: We
assign to an edge/shortcut e = (u, v) in the graph a classifier [a(u), t, a(v)], with
a(u), a(v) implicating with which kind of an edge the path p(e) spanned by e
starts/ends. Here, we use h if it is a horizontal edge and v if it is a vertical
one. Moreover we assign the number of turns t on p(e) to e as well. So every
vertical edge in the original graph G has the classifier [v, 0, v] in the beginning,
every horizontal one [h, 0, h]. Bridging two edges via a new shortcut, the classifier
can easily be determined: Let the node skipped by the shortcut be v and the
two bridged edges e1 = (u, v) and e2 = (v, w) with classifiers [a(u), t1, a(v)]
and [a′(v), t2, a

′(w)]. If a(v) = a′(v) the shortcut (u,w) receives the classifier
[a(u), t1 + t2, a

′(w)], otherwise [a(u), t1 + t2 + 1, a′(w)]. To maintain canonical
solutions – without inserting too many shortcuts – we adapt the CH-construction
slightly: Whenever the resulting classifier for a potential shortcut reveals t = 0
or t = 1, we insert the shortcut right away (despite the possible existence of a
witness), because the spanned paths are trivially canonical (at most one turn)
and therefore optimal for sure. But as soon as t ≥ 2, we have to apply witness
search again. If a witness is found with lower cost or equal cost and fewer turns,
we omit the shortcut, otherwise we insert it. If at some point a potential shortcut
(u,w) exhibits the same costs but fewer turns than an already existing edge
(u,w), we update the respective classifier (and do not need to start a witness
search).

We will now prove by induction over the number of turns that this approach
maintains for every pair of vertices s, t ∈ V a canonical shortest path between
them in the CH. For the base clause, we first verify the claim for paths with at
most one turn.

Lemma 1. Every optimal trivially canonicals-t-path (i.e. exhibiting at most one
turn) can be reconstructed considering only G↑(s) ∪G↓(t).

Proof. If the shortest path between s and t is a straight line, the optimal path
is unique and therefore contained in G↑(s) ∪G↓(t) for sure. So let now z be the

240 S. Storandt

Fig. 2. Illustration of the proof for
Lemma 1: Blue numbers imply the con-
traction order of the nodes, original
edges are black, shortcuts are coloured
blue. The red background colour marks
an upwards path, the green colour in-
dicates a downward path, showing that
the canonical path from s to t via z is
contained in G↑(s) ∪G↓(t).

s

t

p1

p2

12

24

1619253440

30

15

208
z

w

turning point on the path as depicted in Figure 2. As s-z and t-z are unique
optimal paths, they can be given in CH-description. So let p1, p2 be the peak
nodes on those subpaths, w.l.o.g. l(p1) > l(p2) and w the lowest node on the
path p1-z with l(w) > l(p2). As w-z goes downwards and z-p2 upwards, the
shortcut (w, p2) will be considered and inserted because it represents a trivial
canonical path. Hence s-p1 is in G↑(s) and p1-w-p2-t in G↓(t).

Theorem 1. For every pair of vertices s, t ∈ V all optimal canonical shortest
paths between them are contained in G↑(s) ∪G↓(t).

Proof. Our induction hypothesis is, that for every pair of vertices s, t with an
optimal canonical path between them exhibiting ≤ k turns, the path can be
found in G↑(s) ∪ G↓(t). For k ≤ 1 we proved correctness in Lemma 1. Now, for
the induction step, let z be the last turning point on a canonical s-t-path. By
induction hypothesis the path from s to z is contained in G↑(s) ∪ G↓(z). Also
let z′ be the last turning point on the path s-z (if s-z is a straight line, set
z′ = s), p′′ the peak node on this path, and further p′ the peak node on z′-z and
p the peak node on z-t (which both must be well defined as the respective paths
are unique shortest paths). Following the argumentation in the proof of Lemma
1, the shortcut (p′, p) will be inserted for sure. If l(p′) > l(p), we are done,
because s-p′′ ∈ G↑(s) and p′′-p′-p-t ∈ G↓(t). Otherwise assume l(p′′) > l(p).
Then let w be the node on the path p′′-p with the smallest label exceeding l(p).
Hence at some point, we have to decide whether to insert the shortcut (w, p). As
there can not exist a witness with lower costs or one with equal costs and fewer
turns (otherwise the considered s-t-path would not be canonical), the (w, p) will
be inserted. Therefore s-p′′ ∈ G↑(s) and p′′-w-p-t ∈ G↓(t). If l(p′′) < l(p) the
argumentation works exactly the same, now choosing w to be the node on p′-p
with the smallest label exceeding l(p′′), resulting in s-p′′-w-p ∈ G↑(s) and p-
t ∈ G↓(t).

On the basis of Theorem 1, we now want to describe how to extract a respective
canonical path for given s, t, considering only nodes and edges in G↑(s)∪G↓(t).
We still use two Dijkstra runs, one in G↑(s) and the other one in G↓(t). The
crucial difference is now that during edge relaxation we do not only update the
tail node v of the edge if we can reduce the costs, but also if the costs stay

Contraction Hierarchies on Grid Graphs 241

the same and the number of turns can be decreased. This number can be easily
computed along, as the summed number of turns of the classifiers along the path
from s/t to v plus the number of nodes on the path at which we change from
horizontal to vertical or vice versa (with the information being contained in the
classifiers as well). But now we have to be careful, because it makes a difference
with which kind of edge (h or v) a path ends as it influences the number of turns
on superpaths. Therefore we allow now the assignment of two labels per node if
both exhibit the same costs and number of turns, but the first one corresponds
to a path ending with a vertical edge and the other one to a path with the final
edge being horizontal. After termination of the two Dijkstra computations, we
iterate over all expanded nodes in both runs and keep track of the node which
minimizes the summed costs and also the summed turns (incremented by one if
a turn occurs at this node, too). For the resulting node, we backtrack the two
subpaths and unpack them to get the final path in the original graph.

The whole argumentation carries over to 8-connected grids with uniform costs
(i.e. diagonal edges cost

√
2). Here, we introduce two new direction parameters

in the edge classifier, d1 and d2, indicating diagonal movement (from the lower
left corner to the upper right or from the lower right corner to the upper left).
Turning points are now also nodes where movement is changed from straight
to diagonal or vice versa. One could argue, that the change of direction is less
significant here, as the turning angle is now only 45◦ and not 90◦. Hence we could
also increase our turn counter by only 0.5 instead of 1 for each such direction
change. In the extraction phase the Dijkstra algorithm can now assign four
different labels to each node, but as with the edge classifiers this only results in
a constant overhead.

3 Experimental Results

Now we want to evaluate the impact of our approach on real-world and synthetic
instances1. We implemented CH-search in C++ and performed experiments on
an Intel i5-3360M CPU with 2.80GHz and 16GB RAM. We start by providing
some implementation details for the CH-construction and measure the amount
of auxiliary data created in the preprocessing phase. Upon that, we analyse
the number of expanded nodes for our approach in comparison to A*. We also
describe, how to combine CH- and A*-search and provide experimental results
for this scenario as well. Then, for several input categories, we will individually
give some intuition why CH-search accelerates the query answering. Finally, we
will draw some connections to other speed-up techniques.

3.1 Preprocessing

To construct a CH, we have to define the order in which the nodes should be
contracted. As one goal is to keep the resulting graph as sparse as possible, the
classical indicator for road networks is the so called edge-difference (ED) [1].

1 Extracted from http://movingai.com/

http://movingai.com/

242 S. Storandt

Fig. 3. Two different CH-construction schemes tested on a 40x40 grid graph with
5% randomly deleted vertices and uniform costs, exhibiting 2867 edges. The 10% of
the nodes which were contracted last are coloured red. Left: Contraction order is the
enumeration order of the nodes, resulting in a CH-graph with only 3490 edges but no
measurable speed-up. Right: Contraction order based on weighted edge-difference and
consecutively chosen independent set of nodes. The number of edges here is 6771, in a
random query in this graph the number of expanded nodes is only halve the number
of expanded nodes for plain A*.

The ED is the number of edges we have to insert when removing the node mi-
nus the number of adjacent edges. So normally the lower the ED the better.
Therefore one always contracts the node with the current lowest ED next. In
our application this could lead to an undesired effect: We might add no shortcuts
at all. Consider a complete 4-connected finite grid with uniform costs; we could
just enumerate the nodes row-by-row from left to right and use these numbers
as the importance l. Contracting the nodes in this order, a node has at most
two adjacent edges (removing nodes with less than two edges does not lead to
shortcut insertion anyway). For nodes with two edges, the path over these two is
indeed optimal, but also ambiguous at the moment of contraction, so no shortcut
has to be inserted. Of course, as an artefact of our canonical path maintenance
strategy, we would insert shortcuts here as well, but even this would be super-
fluous as also all canonical paths are preserved automatically by the contraction
order. What seems to be a nice feature at the first glance – the CH-construction
not increasing the graph size at all – is unfortunately not an advantage, be-
cause using this contraction order the search space does not diminish at all as
the subgraph of G in the spanned rectangle of source and target is completely
contained in G↑(s)∪G↓(t). So to force shortcut insertion, we have to make sure
that not always nodes at the border of the actual graph are contracted. One way
to achieve this, is to use a weighted version of the ED where removing edges
from the graph gets more rewarded. A second approach is to contract always
an independent set of nodes in the graph, which is found in a greedily manner

Contraction Hierarchies on Grid Graphs 243

considering the nodes sorted increasingly by their actual ED. As independent
nodes do not influence the shortcut insertion of each other, this approach does
not compromise optimality but induces the contraction of ’inner’ nodes as an
early stage of the CH-construction process. In Figure 3 the resulting CH-graph
for this construction scheme is compared to the one for the enumeration ap-
proach.

For the witness search we used A* with the straightforward distance estima-
tion for 4- and 8-connected grids. Of course, for certain instance classes better
heuristics are at hand, and using them might speed up the CH-construction. But
here we want to emphasize that CH can be used without prior knowledge of the
kind of input.

For road networks, the number of shortcuts in G′ equals approximately the
number of original edges, i.e. the CH doubles the graph size. In Table 1 (left)
we collected the main parameters describing the CH-construction for a 512x512
4-connected grid with uniform costs and varying percentage of randomly deleted
nodes. We observe that the augmentation factor (AF) of the CH-graph depends
strongly on the number of deleted vertices, but even for a complete grid (0%
deletion) the graph size increases only by a factor of seven, which is a tolerable
space overhead. In the right table, the CH-construction is summarized for several
input categories, all being based on 8-connected grids. here, the augmentation
factor is always below three and for mazes and rooms even below the typical
value of two for street graphs. The preprocessing time is about 10 seconds for
all inputs, corresponding to the time to answer approximately 1700 queries on
average over all instances. Hence constructing the CH-graph on the fly does
only make sense if the number of queries exceeds this bound. But for many
applications, like in-game navigation, the preprocessing time does not play a
major role as the CH-graph can simple be provided as the map itself.

3.2 Query Answering

In the augmented graphs, we applied CH-search as described in Section 2.3 be-
tween randomly chosen source-target pairs s, t ∈ V . Our baseline is the number of
expanded nodes using A* (with Manhattan-metric for 4-connected grids and the
obvious octile metric for 8-connected ones). Hence we evaluated the performance

Table 1. CH-construction: Number of original edges and edges in the CH-graph (orig-
inal + shortcuts) for several input categories. The augmentation factor (AF) describes
the ratio between those two. ’p’ in the left table described the percentage of randomly
deleted nodes in a 512x512 grid. The column ’time’ in the right table gives the prepro-
cessing time in seconds.

p # edges # CH-edges AF

0 523,264 3,590,007 6.8
10 423,229 1,387,549 3.2
25 293,081 604,939 2.0
50 130,664 137,388 1.0

input type # edges # CH-edges AF time (secs)

mazes 682,922 1,064,079 1.6 10
rooms 847,871 1,242,509 1.5 9

game maps 271,532 768,002 2.8 10
random 492,857 1,319,287 2.7 12

244 S. Storandt

of our approach as the ratio of this value and the number of expanded nodes by
CH-search (i.e. the higher the better). Moreover the CH-approach reveals the
advantage of being easily combinable with other speed-up techniques as it allows
to extract a small subgraph (G↑(s) ∪ G↓(t)) in which optimal query answering
is guaranteed. Therefore we also implemented a combination of CH-search and
A*-search. Because A* is known to work better embedded in an unidirectional
computation, we modified the approach by marking first all edges in G↓(t) and
then run CH-A*-search from s using edges in G↑(s) and marked ones. This
unidirectional variation of CH-search was used before on street graphs, e.g. for
one-to-many queries [10] or when edge costs were given as functions complicat-
ing the backward search (see e.g. Batz et al. [11]). The results for our two search
approaches are collected in Table 2, subdivided by input category. We observe
a reduction for all inputs, but the speed-up is most significant for mazes and
rooms. For these two, the number of expanded nodes by CH-A* is even below
the optimal path size on average. This means that any Dijkstra-based path find-
ing approach, which does not use a compressed path description, cannot expand
fewer nodes than our method. For game maps we observed mixed results, some
inputs responded very well (speed-up by two orders of magnitude) while the
structure of other maps led to a large set of long disjoint optimal paths which
is not beneficial for our approach. In Figure 5 positive and negative examples
are shown. We expect better improvements for game maps when the CH-search
is combined with other techniques developed for road networks, like e.g. parti-
tioning [12]. For random maps, the speed-up increases with the sparseness of the
grid as the A* baseline gets worse but our approach expands almost the same
number of nodes for varying deletion ratios. The reduction of expanded nodes
does not fully transfer into run time decrease, as we have some static overhead
introduced by marking the edges in G↓(t) and also path unpacking is included
here. Nevertheless averaged over all instances we achieve a speed-up over 50.

3.3 Connections to other Speed-Up Techniques

Pochter et al. [6] introduced the concept of swamp hierarchies with a swamp
being a set of nodes that can be excluded a priori from the search space for

Table 2. Experimental results for finding optimal paths in 8-connected grids with the
basic map size being 512x512. The speed-up describes the ratio of expanded nodes
by A* and CH-A*, the value in brackets equals the ratio of the respective runtimes.
All values are averaged of 1000 random queries (10 maps for every category with 100
queries on each).

of expanded nodes
input type avg. path size A* CH-Dijkstra CH-A* (uni) speed-up

mazes 1,240 104,949 630 499 210 (198)
rooms 282 35,739 625 275 130 (67)
game maps 196 18,477 4,614 937 20 (7)
random 234 16,121 5,158 531 30 (10)

Contraction Hierarchies on Grid Graphs 245

Fig. 4. Examples for rooms, mazes and random graphs. Nodes expanded by Dijkstra
blue, by A* green and by the CH-Dijkstra red.

given s, t. In a CH-graph also the nodes /∈ G↑(s) ∪ G↓(t) are pruned directly.
So both approaches allow for the extraction of a smaller subgraph in which
the optimal path must be contained. Nevertheless the kind of blocked nodes
differ significantly, hence a combination of both approaches promises further
improvement.

Other techniques based on map decomposition (and therefore requiring a pre-
processing phase as well) were described by Björnsson et al. [9], in particular the
dead-end heuristic and the gateway approach. In the latter, the graph is divided
into subareas with a preferably small number of connections between adjacent
ones. For these connections – the gateways – pairwise distances are precomputed.
Looking at our results for the rooms instances, we observe that door nodes are
naturally considered important in our CH-construction and direct shortcuts ex-
ist between almost any two of them. So in some way the gateway heuristic is
automatically embedded in our approach.

The idea of jump points was presented by Harabor et al. [5]. Here no pre-
processing is necessary, but sets of nodes between on the fly computed jump
points are removed from the search space. The pruning rules applied there have
similar effects as a CH-search, namely that many nodes on shortest subpaths
can be ignored – because they lie between two consecutive jump points or on
the shortest path between two nodes in the CH which are directly connected via
a shortcut. Moreover the jump points approach also computes canonical paths,
hence it appeals that CH can be seen as kind of an offline jump points approach.

246 S. Storandt

Fig. 5. CH-search on game maps, expanded nodes by Dijkstra (blue), A* (green),
CH-Dijkstra (red), bidirectional CH-A* (yellow) and unidirectional CH-A* (black).

But in contrast to their method we are not bound to uniform grid costs. Instead
any kind of costs assigned to the edges are allowed, and also directed arcs can
be taken into account.

4 Concluding Remarks

In this paper we presented modifications for the speed-up technique contraction
hierarchies to work on grid graphs. Despite being developed for road networks, we
showed that with minor changes an acceleration of shortest path queries by up to
two orders of magnitude can be achieved when applying contraction hierarchies
to instances of e.g. rooms or mazes. Moreover we developed an approach based
on edge classifiers, which allows to retrieve optimal canonical paths, using only
a constant time and space overhead.

Future work includes further reduction of the preprocessing time and eval-
uating with which other methods contraction hierarchy based search can be
combined to accelerate query answering.

References

1. Geisberger, R., Sanders, P., Schultes, D., Delling, D.: Contraction hierarchies:
Faster and simpler hierarchical routing in road networks. In: McGeoch, C.C. (ed.)
WEA 2008. LNCS, vol. 5038, pp. 319–333. Springer, Heidelberg (2008)

2. Bast, H., Funke, S., Matijevic, D., Sanders, P., Schultes, D.: In transit to constant
time shortest-path queries in road networks. In: ALENEX (2007)

3. Antsfeld, L., Harabor, D.D., Kilby, P., Walsh, T.: Transit routing on video game
maps. In: AIIDE (2012)

Contraction Hierarchies on Grid Graphs 247

4. Bauer, R., Delling, D., Sanders, P., Schieferdecker, D., Schultes, D., Wagner, D.:
Combining hierarchical and goal-directed speed-up techniques for Dijkstra’s algo-
rithm. ACM Journal of Experimental Algorithmics 15 (2010)

5. Harabor, D.D., Grastien, A.: Online graph pruning for pathfinding on grid maps.
In: AAAI (2011)

6. Pochter, N., Zohar, A., Rosenschein, J.S., Felner, A.: Search space reduction using
swamp hierarchies. In: AAAI (2010)

7. Botea, A., Müller, M., Schaeffer, J.: Near optimal hierarchical path-finding. Journal
of Game Development 1(1), 7–28 (2004)

8. Harabor, D., Botea, A.: Breaking path symmetries on 4-connected grid maps. In:
AIIDE (2010)

9. Björnsson, Y., Halldórsson, K.: Improved heuristics for optimal path-finding on
game maps. In: AIIDE, pp. 9–14 (2006)

10. Eisner, J., Funke, S., Herbst, A., Spillner, A., Storandt, S.: Algorithms for matching
and predicting trajectories. In: Proc. of the 13th Workshop on Algorithm Engineer-
ing and Experiments (ALENEX), Citeseer, pp. 84–95 (2011)

11. Batz, G.V., Delling, D., Sanders, P., Vetter, C.: Time-dependent contraction hi-
erarchies. In: Proceedings of the 11th Workshop on Algorithm Engineering and
Experiments (ALENEX 2009), pp. 97–105 (2009)

12. Delling, D., Goldberg, A.V., Pajor, T., Werneck, R.F.: Customizable route plan-
ning. In: Pardalos, P.M., Rebennack, S. (eds.) SEA 2011. LNCS, vol. 6630, pp.
376–387. Springer, Heidelberg (2011)

– Mastering Left and Right –
Different Approaches to a Problem That Is

Not Straight Forward

André van Delden1 and Till Mossakowski1,2

1 Research Center on Spatial Cognition (SFB/TR 8), University of Bremen, Germany
2 DFKI GmbH Bremen, Germany

Abstract. Reasoning over spatial descriptions involving relations that can be
described as left, right and inline has been studied extensively during the last two
decades. While the fundamental nature of these relations makes reasoning about
them applicable to a number of interesting problems, it also makes reasoning
about them computationally hard. The key question of whether a given descrip-
tion using these relations can be realized is as hard as deciding satisfiability in
the existential theory of the reals. In this paper we summarize the semi-decision
procedures proposed so far and present the results of a random benchmark illus-
trating the relative effectiveness and efficiency of these procedures.

Keywords: Left-Right Distinction, Qualitative Spatial Reasoning, Oriented Ma-
troid, Consistency, Realizability, Semi-Decision Procedure, Benchmark.

1 Introduction

When describing a spatial scene using relative directions, the relations left and right are
the most primitive, yet unavoidable, notions. These relations are contained in almost any
spatial language that is able to express relative directions. They naturally occur in indoor
and outdoor navigation as well as in architectural and mechanical layout design, and
they are almost ubiquitous in verbal human-robot interaction. Much research has been
done by different scientific communities to investigate the properties of these relations.
It turns out that the fundamental nature of these relations makes reasoning about them
computationally hard. The key question of whether a given spatial description using left
and right can be realized is as hard as deciding satisfiability in the existential theory of
the reals [15,20]. Furthermore, the prevailing reasoning technique in qualitative spatial
reasoning (QSR), deploying path consistency through a qualitative calculus, totally fails
on the so called LR calculus when only using the relations left and right [10].

TheLR calculus is a spatial calculus that is considerably simpler than most other rel-
ative directional calculi that have been proposed [17,18,11,12]. Although it is a ternary
calculus, its simplicity allows it to be embedded into many binary relative directional
calculi by describing line segments by their endpoints and by describing oriented points
as line segments of appropriate size. Its close relation to the theory of order types
[17] even makes its properties relevant to more advanced calculi like the qualitative
trajectory calculus [6].

In order to overcome the shortcomings of the path consistency algorithm regarding
the LR calculus, [9] developed a polynomial time consistency semi-decision procedure

I.J. Timm and M. Thimm (Eds.): KI 2013, LNAI 8077, pp. 248–259, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Mastering Left and Right 249

for the LR calculus based on the angles of triangles in the Euclidean plane. They refer
to this method as triangle consistency (TC). Another domain specific reasoning method
applicable to LR is the algebraic geometric approach included in the qualitative spatial
reasoning toolbox SparQ [21]. This method is often referred to as algebraic reasoning
(AR). Furthermore, there is a close connection between the LR calculus and oriented
matroid (OM) theory [2]. Most interestingly, this connection has been pointed out
very early by [17] but its use and implications for QSR have been pointed out only
recently by [20]. Oriented matroid theory is an active research area with specialized
semi-decision procedures for realizability. All of the methods mentioned above have
polynomial runtime and while some of them are able to decide consistency for small
networks, in general all of them only approximate consistency.

We present the results of a benchmark using random constraint networks of suitable
density. Since a feasible proper decision procedure for LR is not known, the results are
presented in a relative manner, illustrating the effectiveness and efficiency of the tested
procedures relative to each other. Our benchmark of these procedures not only provides
an overview of when and how to choose one of these very different reasoning proce-
dures; more importantly it serves as a general indicator for which kind of reasoning
might be more promising to yield good results for more complex relation sets.

In the following we give a short description of the LR calculus, followed by concise
descriptions of composition table based reasoning, algebraic reasoning, a triangle con-
sistency procedure and oriented matroids. Then we explain the benchmark procedure
and give a detailed analysis of the results of this benchmark applied to these procedures.

2 The LR Calculus

The LR calculus [18] is a relative orientation calculus in which three points are related,
two of which determine a vector serving as frame of reference. The third point can then
be either to the left (l) or right (r) of this vector or in front (f), in the back (b) or inside
(between the points) (i) of it. It can also coincide with the start point (s) or the end

Fig. 1. The LR
base relations

point (e) of the vector. Additionally, there are two relations which
describe that the first two points are the same but distinct from the
third one (dou) resp. that all points are the same (tri).

Qualitative calculi like this are employed for representing knowl-
edge about an infinite domain using only a finite set of relations. In
order to ensure that any constellation of domain objects is captured
by exactly one relation, the calculi are based upon so called base re-
lations which are defined such that they partition the given domain.
Indeed, the nine ternary base relations l, r, f , b, i, s, e, dou and tri

of the LR calculus partition the R2.
In the LR calculus, if for three points A, B and C the triple (A,B,C) is in the

relation l, then obviously (B,A,C) must be in the relation r. For ternary calculi there
are five different permutation operators. Qualitative reasoning concerned with solving
constraint satisfaction problems over relations of a calculus like this, borrows definitions
from the field of CSP [5].

250 A. van Delden and T. Mossakowski

Definition 1. LetR be a set of general relations over a set of n-ary base relations over
the domain D, and let V be a set of variables taking values from D.

A qualitative constraint over (R,V) is a formula R(x) with x ∈ Vn and R ∈ R.
A constraint network is a set of constraints. A constraint network is called atomic if it
relates all n-tuples of variables by a base relation or the universal relation, such that it
complies with the permutation operations. An atomic network is called a scenario if it
relates all n-tuples of variables by a base relation.

A constraint network is called consistent if a valuation of all variables exists, such
that all constraints are fulfilled.

The key problem, to decide whether a given constraint network is consistent or not,
can be very hard to solve. Infinity of the domain underlying qualitative constraint satis-
faction problems inhibits searching for an agreeable valuation of the variables.

3 The Decision Procedures

3.1 Algebraic Closure

This approach strongly influenced the way research on qualitative spatial reasoning has
been done until today. The algebraic closure algorithm is essentially the common path
consistency algorithm modified to be based on the composition operation. While for
binary relations, composition is well-known, for ternary relations, one can define both
a binary and a ternary composition operation.

Definition 2 ([22], [4]). Let R1, R2, R3 ∈ RB be a sequence of three general relations
in a ternary qualitative calculus over the domain D. Then the operation

R1 ◦R2 := { (x, y, z) ∈ D3 | ∃u ∈ D, (x, y, u) ∈ R1, (y, u, z) ∈ R2 }

is called binary composition and the operation

◦ (R1, R2, R3) := { (x, y, z) ∈ D3

| ∃u ∈ D, (x, y, u) ∈ R1, (x, u, z) ∈ R2, (u, y, z) ∈ R3 }

is called ternary composition.

With this information of permutations and compositions of spatial relations given, it
is possible to propagate local information in a constraint network through the network
in order to make implicit information explicit.

Definition 3. A constraint network over ternary relations is called algebraically closed
for binary composition if for all variables x, y, z, u and all relations R1, R2, R3 the
constraint relations

R1(x, y, u), R2(y, u, z), R3(x, y, z)

satisfy R3 ⊆ R1◦R2. To enforce algebraic closure, the operationR3 := R3∩(R1◦R2)
(as well as a similar operation for converses) is applied for all such variables until a
fixed-point is reached.

Mastering Left and Right 251

Ternary algebraic closure is defined analogously. Several polynomial time algorithms
computing this fixed-point are discussed in [7].

Enforcing algebraic closure preserves consistency, i.e., if the empty relation is ob-
tained during refinement, then the constraint network is inconsistent. The converse is
not necessarily true. The SparQ toolbox [19] implements algebraic closure for a variety
of calculi, including LR. While binary algebraic closure is often faster, the ternary
variant provides a better approximation due to less loss of information.

3.2 The Algebraic Geometric Approach

In the algebraic geometric reasoning approach integrated into the SparQ toolbox an
n-ary qualitative relation R over a domain D is modeled as the zero set of a set of
multivariate polynomials FR over real-valued variables y1, . . . , yk:

∀x1, . . . , xn ∈ D : R(x1, . . . , xn)⇔
∃y1, . . . , yk ∈ R : ∀f ∈ FR : f(y1, . . . , yk) = 0 .

Thus basic objects of the qualitative relations are expressed by means of real-valued
variables. For example, a point A positioned in the plane can be represented by a pair
(xA, yA), a circle by its center and radius and so forth. A qualitative spatial reasoning
problem can then be modeled by a set of polynomials.

The relations of the LR calculus, are modeled by conjunctions of the following
geometric primitives:

equal(A,B) ≡
(
xA

yA

)
=

(
xB

yB

)

notEqual(A,B) ≡
∥∥∥∥
(
xB − xA

yB − yA

)∥∥∥∥
2

> 0

inline(A,B,C) ≡
(
xC

yC

)
=

(
xA

yA

)
+ λ

(
xB − xA

yB − yA

)

between ≡ inline ∧ 0 < λ < 1

inFront ≡ inline ∧ 1 < λ

left(A,B,C) ≡
(
xB − xA

yB − yA

)�(
xC − xA

yC − yA

)
> 0

Using these primitives it is straight forward to describe the LR base relations. The way
how the actual reasoning is performed is relatively elaborate. It is based on Gröbner
reasoning and involves a set of polynomial transformation rules. At a first stage SparQ
searches half-randomly for a solution for the inequalities. If no solution is found in this
stage, SparQ tries to prove insatisfiability of the inequalities.

For detailed information about this and the SparQ toolbox in general we refer to [21].
This approach is often referred to as algebraic reasoning, which is not to be confused
with algebraic closure.

252 A. van Delden and T. Mossakowski

3.3 The Triangulation Approach

Any n point solution of an LR constraint network induces n · (n − 1)/2 undirected
lines connecting all the points. The connecting lines between three arbitrary points
form a (possibly degenerated) triangle. The triangulation approach of [9] uses simple
properties of the angles of these triangles, like the sum of the three angles always adding
up to π. Moreover, the relations l and r lead to positive and negative angles of the
corresponding triangles, while the other relations lead to angles 0 or π.

Any LR constraint network can thus be translated into a system of equalities and
inequalities over angles of triangles. Obviously, this system has a solution if the orig-
inal LR constraint network has one: just read off the angles from the solution in the
Euclidean plane. The converse does not necessarily hold, which means that the trian-
gulation approach can detect inconsistencies but not demonstrate consistency. Triangle
consistency can be verified in polynomial time by using an algorithm for solving sys-
tems of linear inequalities [3].

3.4 Oriented Matroids

The theory of oriented matroids is broadly connected to many mathematical areas,
such as combinatorial geometry, optimization, dimension theory and many branches
in physics [13]. Many seemingly distinct mathematical objects have a representation
in oriented matroid theory, such as point and vector configurations, pseudoline ar-
rangements, arrangements of hyperplanes, convex polytopes, directed graphs and linear
programs, which can be generalized to matroid programs [2]. In general, oriented ma-
troids provide an abstraction that makes it possible to model and analyze combinatorial
properties of geometric configurations, often qualifying the quantitative information
just enough to allow for efficient reasoning about an otherwise intractable problem.

In the context of LR constraint networks oriented matroids are best introduced in
their appearance as chirotopes.

Definition 4 (Chirotope). Let E = {1, . . . , n} and let r ∈ N with 1 ≤ r ≤ n. A
chirotope of rank r is an alternating sign map χ : Er → {−, 0,+}, not identically
zero, such that for all x1, x2, . . . , xr, y1, y2, . . . , yr ∈ E with

χ(x1, x2, . . . , xr) · χ(y1, y2, . . . , yr) �= 0

there exists an i ∈ {1, 2, . . . , r} such that

χ(yi, x2, . . . , xr) · χ(y1, y2, . . . , yi−1, x1, yi+1, . . . , yr)

= χ(x1, x2, . . . , xr) · χ(y1, y2, . . . , yr).

Interpreting the nodes of LR networks as vectors in R3 any consistent LR scenario
is necessarily an acyclic chirotope of rank 3, where acyclic means that all vectors lie
in an open half-space [20]. This alone gives a feasible semi-decision procedure for the
consistency of LR constraint networks. Furthermore an LR scenario is consistent iff
its associated acyclic chirotope is realizable. Since every rank 3 chirotope with up to 8
points is realizable [8,15], only verifing the axioms of an acyclic chirotope provides a
polynomial time decision procedure for LR constraint networks with up to 8 points.

Mastering Left and Right 253

However, there exists a distinct polynomial time semi-decision procedure for the
realizability of chirotopes of arbitrary rank based on a concept called biquadratic final
polynomials [1,14]. This procedure has been used [16] to prove some famous incidence
theorems like Pascal’s theorem and Desargues’s theorem.

If a given LR network is consistent, its relations can be understood as the signs
of the determinants of the vectors v1, . . . , vn ∈ R3 that correspond to the nodes in
the network. The determinants of the (r × r) submatrices of a (r × n)-matrix M
are not independent since most of the entries in M occur in several of them. These
dependencies are known as the Grassmann-Plücker relations. Here we are interested in
the 3-term Grassmann-Plücker relation, which states that for every set of distinct vectors
u1, . . . , ur−2, v1, . . . , v4 in an r-dimensional vector space the following equation holds.

det(u1, . . . , ur−2, v1, v2) · det(u1, . . . , ur−2, v3, v4)

− det(u1, . . . , ur−2, v1, v3) · det(u1, . . . , ur−2, v2, v4)

+ det(u1, . . . , ur−2, v1, v4) · det(u1, . . . , ur−2, v2, v3) = 0

Though the following holds for every rank, we will stick to the case of rank 3 from now
on. Writing determinants as brackets and sorting the vectors if necessary, such that all
determinants are positive, we can write this equation in the form

[u, v1, v2][u, v3, v4] + [u, v1, v4][u, v2, v3] = [u, v1, v3][u, v2, v4]

where all six brackets are positive. This equation implies the following inequalities.

[u, v1, v2][u, v3, v4] < [u, v1, v3][u, v2, v4]

[u, v1, v4][u, v2, v3] < [u, v1, v3][u, v2, v4]

Treating the brackets as symbolic variables, we can take the logarithm on both sides
and, ranging over all nodes, we obtain a linear system of inequalities,

(u, v1, v2) + (u, v3, v4) < (u, v1, v3) + (u, v2, v4)

(u, v1, v4) + (u, v2, v3) < (u, v1, v3) + (u, v2, v4),

where the tuples again are treated as variables. Using linear programming we can test
the feasibility of this system of inequalities. If it is infeasible then we obtain – as the
dual solution of the linear program – a positive integer linear combination of the left
hand sides which equals the same linear combination of the right hand sides, resulting
in the contradiction 0 < 0. This linear combination can be propagated back in order
to learn more about the nature of the inconsistency. However, if the intention is only to
prove inconsistency, then this step is not necessary.

4 The Benchmarking Procedure

We wrote a library for qualitative constraint networks in Haskell and implemented the
triangle consistency and oriented matroid procedures describe above. The inequality
systems arising in these procedures are handled using interfaces to the SMT solver

254 A. van Delden and T. Mossakowski

Yices and the linear programming solver lp solve. In order to compute the algebraic
closure we used the qualitative spatial reasoning toolbox SparQ.

Due to the huge yet generally unknown number of possible LR constraint networks
of a given size and the lack of a big database of real world constraint networks, the
only way to benchmark the given methods is by random networks. A straightforward
approach is to generate random scenarios, but this approach is only feasible for small
scenarios for which the set of relations is restricted to {l, r}, otherwise the ratio of
trivially inconsistent networks would be too high. One way to overcome this restriction,
and to allow for networks also containing the relations in {b, i, f}, is to adjust network
parameters that are independent from the calculus and methods at hand. A simple yet
interesting parameter is the network density. It is especially suited for this problem,
since it imposes as little structure on the generated networks as possible and is very
likely to have a phase transition, i.e. a small range of densities in which the transition
from mostly consistent to mostly inconsistent networks happens.

Our program takes the arguments rels, d, t, n, m, M , methods and generates n
networks for each size between m and M allowing only relations from rels and giving
each method in methods a time of t seconds to decide the consistency of a network.
Starting with the smallest size m and the initial density d it generates one random
connected atomic network at a time, collects the results of the methods and adjusts the
density of the next network according to the following rule: Let d and s be the density
and size of the latest generated network and let d′ and s′ be the density and size of the
network to be generated next. If s′ = s+1 then d′ is set to the multiple of

(
s′
3

)−1 that is
closest to d,

(
s′
3

)
being the number of possible triples of s′ nodes. If s′ = s then the new

density is calculated depending on the results collected so far: Let Δ be the difference
between the networks of size s and density d generated so far that have been shown to
be inconsistent – by any method in methods – and those that have not been detected as
inconsistent. Then the new density is set to

d′ := min

(
1, max

(
6

s(s− 1)
, d− sgn(Δ)

(
s

3

)−1
))

.

The lower bound is due to the restriction that the networks have to be connected. Al-
though not mentioned above, these bounds are also applied to the first case. We noticed
that after a few steps into the wild, the density converges very fast towards a small range.
So we indeed find the common phase transition of the combined methods regarding the
density of the networks and can be sure to generate mostly non-trivial networks.

We compared the following six methods: binary and ternary algebraic closure (BAC
and TAC), algebraic reasoning (AR), triangle consistency (TC) and the axioms for
acyclic chirotopes with and without search for a biquadratic final polynomial (denoted
by BFP and OM, resp.).

All of the tested methods can handle atomic networks directly with the exception of
the oriented matroid approach, which takes a scenario as input, so that we have to use
backtracking pruned by ensuring the axioms for acyclic chirotopes. This means that,
contrary to the other methods, the runtime of the OM procedure grows with growing

Mastering Left and Right 255

sparseness of the networks. Our results show however that this dependency is strongly
superseded by the steepness of the phase transition.

In addition to 1000 {l, r}-scenarios for each size from 5 to 8 nodes using a timeout
of 2 minutes, we compared these methods on 1000 connected atomic networks for each
size from 5 to 20 in the six different combinations of using a timeout of 3, 20 and 120
seconds and using the relations in {l, r, b, i, f} and using only the relations l and r,
using an initial density of 1

2 and adjusting it as described. The three different timeouts
represent strongly, moderately and non-time critical use cases.

4.1 Results

Since the number of isomorphism classes of all possible LR scenarios is unknown, an
absolute statistical analysis of this benchmark cannot be achieved. However, we can
compare the individual methods against each other and look at the ratio of the number
of inconsistent networks found by each individual method to the number of inconsistent
networks found by all methods together thus comparing the exactness of the methods.
Figures 2a, 3, 4, 5, 12, 13 and 14 depict this comparison for each of the seven test cases.
The respective next diagrams compare the average runtime of each method. The third
and last diagram of each test case shows for each network size the ratio of networks
detected as inconsistent to tested networks per network density.

There is evidence that our results are not purely random: The given background
knowledge of the compared methods and the fact that the graphs are highly structured
and nearly identical in the last two timescales strongly support that the results are highly
statistically significant.

The first obvious result of this benchmark is that limited time is a critical factor. The
impact of the timeout can be observed by relating the diagrams depicting the average
runtime with those depicting the percentage of inconsistent networks identified by each
method. Without a timeout all time curves would show cubic or higher growth, a decline
of this growth indicates that a method reaches the timeout more often. Naturally this
concurs with a decline of the percentage of inconsistencies found. This can especially
be observed in Fig. 4 at a size of 16 where the graph of the ternary algebraic closure
suddenly drops. In Fig. 13 the effect of the timeout can be observed by the decline of
the oriented matroid test accompanied by a rise of the graph of the triangle consistency
method. The swap of these methods that happens between the sizes 9 and 10 indicates
that, given enough time, the oriented matroid test supersedes the triangle consistency.
This is supported by the fact that using longer timeouts the swap happens at higher net-
work sizes with the low point of triangle consistency reaching ever smaller percentages
down to 60%.

However, in Figs. 2a and 2b, which depict the scenario test case, the oriented matroid
test equals triangle consistency regarding the percentage of inconsistent networks found
and with growing network size strongly supersedes it regarding runtime. Here the in-
fluence of the pruned backtracking in the oriented matroid test becomes clearly visible.
But also note that in this setting the average runtime of the algebraic reasoning method
strongly declines with growing network size. This indicates that the inconsistencies
get more and more trivial. Indeed, from a size of 5 to 8, the ratio of the number of
inconsistent networks to the number of tested networks grows as this: #5 0→ 75.8%,

256 A. van Delden and T. Mossakowski

 60

 80

 100

 4 5 6 7 8 9
BAC

 TAC
AR
TC

OM
BFP

(a) Percentage of inconsistent networks iden-
tified by each method; per network size.

 0

 5

 10

 4 5 6 7 8 9
BAC

 TAC
AR
TC

OM
BFP

(b) Average time in seconds that each method
needed; per network size.

Fig. 2. 1000 {l, r}-scenarios using a timeout of 2 minutes

#6 0→ 98.5%, #7 0→ 100%, #8 0→ 100%. Our benchmarking procedure addresses
exactly this problem, by replacing scenarios with atomic networks, i.e. by lowering the
chances of trivial inconsistencies but still allowing for complex ones.

The timeout of the 3 seconds benchmark setting is short enough so that the graphs
for runtime and thus also those for detection-percentage actually cross each other. In
Fig. 3 we observe a rapid decline of the binary algebraic closure shortly after its av-
erage runtime exceeds half the timeout, naturally accompanied by a rise of most other
methods. Due to the missing reasoning power at higher network sizes the densities of
the generated networks also rise relatively to those in the other test cases. In Fig. 6 we
can see the effect this has on the runtime of the oriented matroid test and on triangle
consistency. Note that the additional search for a biquadratic final polynomial almost
never improved on the oriented matroid test. The difference it makes is so small that the
graphs actually coincide in the diagrams.

An unexpected result of this benchmark is the reverse behaviour of algebraic closure
versus triangle consistency regarding inline relations. While [10] already showed that
any scenario only containing the relations l and r already is algebraically closed, the
triangle consistency performs very well in this case. However, when allowing for inline
relations, i.e. allowing for the relations l, r, b, i, f , the binary and ternary algebraic clo-
sure outperform the other methods by large, with triangle consistency, while being very
fast, performing unexpectedly poor.

The runtime of the algebraic geometric approach integrated in the SparQ toolbox is
so high that we decided to take it out of the comparison for network sizes bigger than
10. Interestingly, despite it reaching the timeout very often, it performs about as good as
ternary algebraic closure in the {l, r}-only test cases, while in the test case of 2 minutes
and allowing inline relations its performance is about on par with triangle consistency
but likely to decline faster for higher network sizes.

The respective third figures clearly show how our benchmark approach finds the
phase transition of the density from where the combined methods mostly found incon-
sistent networks to where they mostly found no inconsistencies. In order to improve
readability some network sizes are left out. A comparison of the three timescales shows
how algebraic closure and triangle consistency dominate the benchmark. The only big
difference in the phase transitions between the different timescales happens in the 3 sec-
onds test case, where these reasoning methods hit the timeout and thus rapidly decline
in their reasoning power for higher network sizes.

Mastering Left and Right 257

Results of the benchmark using rels = {l, r, b, i, f}

 0
 20
 40
 60
 80
100

 4 6 8 10 12 14 16 18 20

BAC
 TAC

AR
TC

OM
BFP

Fig. 3. 3s

 0
 20
 40
 60
 80
100

 4 6 8 10 12 14 16 18 20

BAC
 TAC

AR
TC

OM
BFP

Fig. 4. 20s

 0
 20
 40
 60
 80
100

 4 6 8 10 12 14 16 18 20

BAC
 TAC

AR
TC

OM
BFP

Fig. 5. 2min

Percentage of inconsistent networks identified by each method; per network size.

 0

 1

 2

 3

 4 6 8 10 12 14 16 18 20

BAC
 TAC

AR
TC

OM
BFP

Fig. 6. 3s

 0
 4
 8

 12
 16
 20

 4 6 8 10 12 14 16 18 20

BAC
 TAC

AR
TC

OM
BFP

Fig. 7. 20s

 0
 20
 40
 60
 80
100
120

 4 6 8 10 12 14 16 18 20

BAC
 TAC

AR
TC

OM
BFP

Fig. 8. 2min

Average time in seconds that each method needed; per network size.

 0
 20
 40
 60
 80
100

 0 0.1 0.2 0.3

= 6
= 7
= 8

= 9
= 10
= 12

= 14
= 17
= 20

Fig. 9. 3s

 0
 20
 40
 60
 80
100

 0 0.1 0.2 0.3

= 6
= 7
= 8

= 9
= 10
= 12

= 14
= 17
= 20

Fig. 10. 20s

 0
 20
 40
 60
 80
100

 0 0.1 0.2 0.3

= 6
= 7
= 8

= 9
= 10
= 12

= 14
= 17
= 20

Fig. 11. 2min

Ratio of networks detected as inconsistent to tested networks for each network size in
percent; per density.

5 Summary and Outlook

We implemented a way to benchmark qualitative spatial reasoning methods and used
it to compare several semi-decision procedures for the consistency of LR networks
regarding their time and decision performance in seven different settings. The results
show that, although a proper statistical analysis is impossible when deployed on the LR
calculus, the benchmarking procedure yields relevant information.

Concerning the LR calculus our results show that, depending on the set of relations,
overall algebraic closure and triangle consistency outperform the other methods in all
three timescales, while given smaller {l, r}-networks up to a size of 10 the oriented
matroid test yields better results at the cost of a relatively long runtime. The results of
the 3 seconds benchmark suggest that searching for inconsistencies in networks of sizes
bigger than 16 is impractical using the methods given today.

The benchmark library we developed is not restricted to a specific calculus and is
able to automatically detect phase transitions of the tested procedures regarding relevant

258 A. van Delden and T. Mossakowski

Results of the benchmark using rels = {l, r}

 0
 20
 40
 60
 80
100

 4 6 8 10 12 14 16 18 20

BAC
 TAC

AR
TC

OM
BFP

Fig. 12. 3s

 0
 20
 40
 60
 80
100

 4 6 8 10 12 14 16 18 20

BAC
 TAC

AR
TC

OM
BFP

Fig. 13. 20s

 0
 20
 40
 60
 80
100

 4 6 8 10 12 14 16 18 20

BAC
 TAC

AR
TC

OM
BFP

Fig. 14. 2min

Percentage of inconsistent networks identified by each method; per network size.

 0

 1

 2

 3

 4 6 8 10 12 14 16 18 20

BAC
 TAC

AR
TC

OM
BFP

Fig. 15. 3s

 0
 4
 8

 12
 16
 20

 4 6 8 10 12 14 16 18 20

BAC
 TAC

AR
TC

OM
BFP

Fig. 16. 20s

 0
 20
 40
 60
 80
100
120

 4 6 8 10 12 14 16 18 20

BAC
 TAC

AR
TC

OM
BFP

Fig. 17. 2min

Average time in seconds that each method needed; per network size.

 0
 20
 40
 60
 80
100

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

= 6
= 7
= 8

= 9
= 10
= 12

= 14
= 17
= 20

Fig. 18. 3s

 0
 20
 40
 60
 80
100

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

= 6
= 7
= 8

= 9
= 10
= 12

= 14
= 17
= 20

Fig. 19. 20s

 0
 20
 40
 60
 80
100

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

= 6
= 7
= 8

= 9
= 10
= 12

= 14
= 17
= 20

Fig. 20. 2min

Ratio of networks detected as inconsistent to tested networks for each network size in
percent; per density.

parameters, such as density, timeouts and size of relations. Future work will consist
of deploying this benchmark to momentarily arising decision procedures for oriented
point calculi.

Specific to the LR calculus it would be relevant to implement a working version of
the rubber band algorithm for pseudolines into our library. This algorithm positively
semi-decides the stretchability problem for pseudolines, which are another representa-
tion of matroids, by simulating pseudolines as rubber bands.

Acknowledgements. Work on this article has been supported by the DFG-funded
collaborative research center SFB/TR 8 Spatial Cognition as well as the DFKI GmbH
Bremen. We thank Diedrich Wolter, Jae Hee Lee and Dominik Lücke for their helpful
discussions on this topic. •

Mastering Left and Right 259

References

1. Altshuler, A., Bokowski, J., Steinberg, L.: The classification of simplicial 3-spheres with nine
vertices into polytopes and nonpolytopes. Discrete Mathematics 31(2), 115–124 (1980)

2. Björner, A.: Oriented matroids. Encyclopedia of mathematics and its applications. Cam-
bridge University Press (1999)

3. Bradley, A.R., Manna, Z.: The calculus of computation - decision procedures with applica-
tions to verification. Springer (2007)

4. Condotta, J.F., Saade, M., Ligozat, G.: A Generic Toolkit for n-ary Qualitative Temporal and
Spatial Calculi. In: TIME 2006: Proceedings of the Thirteenth International Symposium on
Temporal Representation and Reasoning, pp. 78–86. IEEE Computer Society (2006)

5. Dechter, R.: From Local to Global Consistency. Artificial Intelligence 55, 87–108 (1992)
6. Delafontaine, M., Cohn, A.G., Van de Weghe, N.: Implementing a qualitative calculus to

analyse moving point objects. Expert Systems with Applications 38(5), 5187–5196 (2011)
7. Dylla, F., Moratz, R.: Empirical complexity issues of practical qualitative spatial reasoning

about relative position. In: Proceedings of the Workshop on Spatial and Temporal Reasoning
at ECAI 2004 (2004)

8. Goodman, J.E., Pollack, R.: Proof of Grünbaum’s conjecture on the stretchability of certain ar-
rangements of pseudolines. Journal of Combinatorial Theory, Series A 29(3), 385–390 (1980)

9. Lücke, D., Mossakowski, T.: A much better polynomial time approximation of consistency in
the lr calculus. In: Proceedings of the 5th Starting AI Researchers’ Symposium, pp. 175–185.
IOS Press, Amsterdam (2010)

10. Lücke, D., Mossakowski, T., Wolter, D.: Qualitative reasoning about convex relations. In:
Freksa, C., Newcombe, N.S., Gärdenfors, P., Wölfl, S. (eds.) Spatial Cognition VI. LNCS
(LNAI), vol. 5248, pp. 426–440. Springer, Heidelberg (2008)

11. Moratz, R., Lücke, D., Mossakowski, T.: A condensed semantics for qualitative spatial rea-
soning about oriented straight line segments. Artificial Intelligence 175(16-17), 2099–2127
(2011)

12. Mossakowski, T., Moratz, R.: Qualitative reasoning about relative direction on adjustable
levels of granularity. CoRR (2010)

13. Nieto, J.A.: Chirotope concept in various scenarios of physics. Revista Mexicana de
Fisica 51, 5 (2005)

14. Richter-Gebert, J.: On the realizability problem of combinatorial geometries–decision meth-
ods. TH Darmstadt (1992)

15. Richter-Gebert, J., Ziegler, G.: Oriented Matroids, ch. 6, 2nd edn. Discrete Mathematics and
Its Applications, pp. 129–151. Chapman and Hall/CRC (2004)

16. Richter-Gebert, J.: Mechanical theorem proving in projective geometry (1993)
17. Schlieder, C.: Reasoning about ordering. In: Kuhn, W., Frank, A.U. (eds.) COSIT 1995.

LNCS, vol. 988, pp. 341–349. Springer, Heidelberg (1995)
18. Scivos, A., Nebel, B.: The Finest of its Class: The Natural, Point-Based Ternary Calculus LR

for Qualitative Spatial Reasoning. In: Freksa, C., Knauff, M., Krieg-Brückner, B., Nebel, B.,
Barkowsky, T. (eds.) Spatial Cognition IV. LNCS (LNAI), vol. 3343, pp. 283–303. Springer,
Heidelberg (2005)

19. Wallgrün, J.O., Frommberger, L., Wolter, D., Dylla, F., Freksa, C.: Qualitative Spatial Repre-
sentation and Reasoning in the SparQ-Toolbox. In: Barkowsky, T., Knauff, M., Ligozat, G.,
Montello, D.R. (eds.) Spatial Cognition 2007. LNCS (LNAI), vol. 4387, pp. 39–58. Springer,
Heidelberg (2007)

20. Wolter, D., Lee, J.: Qualitative reasoning with directional relations. Artificial Intelli-
gence 174(18), 1498–1507 (2010)

21. Wolter, D.: Analyzing qualitative spatio-temporal calculi using algebraic geometry. Spatial
Cognition & Computation 12(1), 23–52 (2011)

22. Zimmermann, K., Freksa, C.: Qualitative spatial reasoning using orientation, distance, and
path knowledge. Applied Intelligence 6(1), 49–58 (1996)

Move Prediction in Go – Modelling Feature

Interactions Using Latent Factors

Martin Wistuba and Lars Schmidt-Thieme

University of Hildesheim
Information Systems & Machine Learning Lab

{wistuba,schmidt-thieme}@ismll.de

Abstract. Move prediction systems have always been part of strong Go
programs. Recent research has revealed that taking interactions between
features into account improves the performance of move predictions. In
this paper, a factorization model is applied and a supervised learning al-
gorithm, Latent Factor Ranking (LFR), which enables to consider these
interactions, is introduced. Its superiority will be demonstrated in com-
parison to other state-of-the-art Go move predictors. LFR improves accu-
racy by 3% over current state-of-the-art Go move predictors on average
and by 5% in the middle- and endgame of a game. Depending on the
dimensionality of the shared, latent factor vector, an overall accuracy of
over 41% is achieved.

Keywords: go, move prediction, feature interaction, latent factors.

1 Introduction

Since the early days in research of Computer Go, move prediction is an essential
part of strong Go programs. With the application of Upper Confidence bounds
applied to Trees (UCT) in 2006 [1,2], which improved the strength of Go pro-
grams a lot, it became even more important. Go programs using UCT infer from
semi-random game simulations which move is a good candidate. The policies
for choosing the next move during the simulations are implied by predicting a
human expert’s move. Due to the fact that an average Go game has 250 turns
with 150 possible move choices on average, the move position evaluation does not
only need to be accurate but also fast to compute to achieve a positive impact
on the strength of the Go program.

State-of-the-art move predictors are ranking moves on the board by the use
of different features. Upfront, the strength of each feature is learned with var-
ious supervised learning algorithms. The prediction can be improved by using
additional features, but as seen in [3,4] it can also be improved by considering
the impact of feature interactions.

The contribution of this paper are fourfold.

– A supervised move ranking algorithm for Go is presented which is by now
the most accurate. Additionally, it is easy to implement and fast to compute.

I.J. Timm and M. Thimm (Eds.): KI 2013, LNAI 8077, pp. 260–271, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Move Prediction in Go 261

– The model of Factorization Machines [5] is transfered from the domain of
recommender systems to move prediction in Go.

– A new update rule for ranking with Factorization Machines is presented.
– Deeper insights into Go move features and its interactions are given and in

detail investigated.

2 Related Work

Most move predictors for Go are either using Neural Networks [6,7] or are esti-
mating ratings for moves using the Bradley Terry (BT) model or related models
[3,4,8]. Latter mentioned approaches model each move decision as a competi-
tion between players, the move chosen by the human expert player is then the
winning player and its value is updated accordingly.

Another possibility to divide the Go move predictors into two classes is how
they consider interactions between features. There are two variants, one models
the full-interaction of all features [3,9] and the others do not consider them at
all [4,6,8].

The first mentioned approach which is modelling all interactions has the ad-
vantage that more information is taken into account. The disadvantage is that
this approach does not scale because the amount of training data needed in-
creases exponentially with the number of features. The latter approach does not
have this disadvantage but therefore also has no information about the feature
interactions. In practice, approaches not considering feature interactions at all
proved to be more accurate. Stern’s [3] full-interaction model used a learning
set of 181,000 games with 4 feature groups but only predicted 34% of the moves
correctly. Using the same approach with no interaction, Wistuba et al. [4] has
shown that easily 9 feature groups can be used and, using a learning set of only
10,000 games, 37% of moves were predicted correctly. Ibidem, it was tried to
combine advantages of both approaches by using an approach without feature
interaction and adding a special feature that represented a combination of few
features. It was shown that this can improve the prediction quality significantly.

The contribution of this work is to introduce a method which cannot be sorted
into the before mentioned categories. It introduces an algorithm for the move
prediction problem of Go that is combining both advantages by presenting a
model which learns the strength of interactions between features but still scales
with the number of features.

3 Game of Go

The game of Go is one of the oldest two player board games which was probably
invented around the 4th century B.C. in China. It is played on a board with
n × n intersections (n is usually 9, 13 or 19). The players move alternately. At
each turn the player has the option to place a stone at an intersection or to
pass. Enemy stones that are surrounded by own stones will be removed from
the board. The aim of the game is to capture enemy stones and territory. The

262 M. Wistuba and L. Schmidt-Thieme

game ends after both players have passed, the winner is then the one with more
points which are calculated by the number of captured stones and the size of the
captured territory. Further informations can be found at http://gobase.org.

3.1 Technical Terms

Finally some technical terms in Go are explained to make it possible to under-
stand the features used in this work.

Ko. The ko rule is a restriction on the legal moves. Moves that change the board
state to the same state like two moves before are forbidden.

Chain. The connected string of stones of same color.
Liberty. An empty intersection next to a chain is called liberty.
Atari. A chain is in atari if there is only one liberty left, so that the opponent

can capture the chain within one move.
Capture. If you place your stone in such a way that the enemy chain has no

liberties left. This chain will be removed from the board and each stone is
called a prisoner and count as one point each.

Illegal Move. A move is illegal if it either breaks the ko rule, places a stone at
an intersection that is already occupied or it captures an own chain.

3.2 Complexity

Go is one of the last board games not being mastered by computer programs.
Actually, Go programs are still far away from beating professional players, only
playing on the level of stronger amateurs on the 19×19 boards. One of the reasons
is the high complexity of Go. The upper bound of possible board positions is
3361 ≈ 10170 and still 1.2% of these are legal [10]. Comparing Go with Chess, not
only the board size is bigger (19x19 vs. 8x8) but also the number of potential
moves. The average number of potential moves per turn in Go is about 150,
Chess has only a few dozen. Additionally, no static heuristic approximating the
minimax value of a position was found so far. That is, it is not possible to apply
depth limited alpha-beta search with reasonable results. Concluding, even from
a perspective of complexity Go is by far more difficult than Chess. A perfect
strategy for n×n Chess only requires exponential time but Go is PSPACE-hard
[11] and even subproblems a player has to deal with in every turn has proven to
be PSPACE-complete [12].

4 Move Prediction Using Feature Interactions

This section first introduces the terminology and a model which is capable to
represent interactions between features. Then, the Latent Factor Ranking algo-
rithm is presented in Section 4.3. Finally, Section 4.4 describes the features used
for the experiments.

http://gobase.org

Move Prediction in Go 263

4.1 Terminology

This work will use the terminology introduced in [4]. A single game in Go is
formalized as a tuple G := (S,A, Γ, δ) where S := Cn×n is the set of possible
states and C := {black, white, empty} is the set of colors. The set of actions

A := {1, . . . , n}2 ∪ {pass} defines all possible moves and Γ : S → P (A) is the
function determining the subset of legal moves Γ (s) in state s. δ : S × A →
S∪{∅} is the transition function specifying the follow-up state for a state-action
pair (s, a), where δ (s, a) = ∅ iff a /∈ Γ (s). In the following, a state-action pair
(s, a) will be abstracted by m features represented by x ∈ Rm. Even though x is
only the abstracted state-action pair, in the following for notational convenience
it will anyways be called state-action pair.

In this work only binary features xi ∈ {0, 1} are used and so the set of active
features in (s, a) is defined as I (x) := {i : xi = 1}.

Given a training set D of move choice examples

Dj :=
{
x(1) = x (sj , a1) , . . . , x

(|Γ (sj)|) = x
(
sj , a|Γ (sj)|

)}
,

it is assumed without loss of generality that x(1) is always the state-action pair
chosen by the expert.

4.2 Problem Description and Model

The move prediction problem in Go is defined given a state s, to predict the
action a ∈ Γ (s) that is chosen by the expert player. Due to the fact that there
might be several similar good moves and the application of move prediction
in the UCT algorithm, a ranking of the legal moves is searched such that the
expert move is ranked as high as possible. Therefore, a ranking function is sought

that minimizes
∑

Di∈D
∑rank(a1)

j=1
1
j , where rank (a1) is the ranking of the action

chosen by the human expert in the decision problem Di.
Like other contributions on the topic of move prediction in Go, this work also

is a supervised method that estimates the strength of different features based
on a set of games between strong human players. The big difference is that
additionally the strength of the interaction of two features is considered. The
model of Factorization Machines [5] is applied which is defined as

ŷ (x) := w0 +
m∑
i=1

wixi +
m∑
i=1

m∑
j=i+1

vTi vjxixj .

Because in this work only binary features are used, a notation-wise simpler model
is applied

ŷ (x) := w0 +
∑

i∈I(x)

⎛
⎝wi +

∑
j∈I(x),i�=j

θi,j

⎞
⎠ ,

with

θi,j :=
1

2
vTi vj .

264 M. Wistuba and L. Schmidt-Thieme

where wi is the influence of the feature i independent of all other occurring
features, whereas θi,j is the interaction between features i and j. The matrix
V ∈ Rm×k implies the matrix Θ ∈ Rm×m and is the reason why LFR does not
struggle with the problem of full-interaction models i.e. the lack of examples. The
dimension k ' m has to be chosen by the user. The greater k, the more potential
information can be stored in the interaction vectors vi. The k latent factors per
feature will then be shared and thus scalability problems are avoided when the
number of features increases while the number of feature values is kept low. As
shown in Figure 5(a), already for very small k LFR seems to be optimal. Thus,
k can be treated as a constant and only Θ (m) values are needed. Nevertheless,
for computational reasons, which are very important for Go playing programs
based on UCT, it makes sense to precompute the matrix Θ.

We want to continue the discussion from Section 2 and explain the counterin-
tuitive fact that no-interaction models achieve better results than full-interaction
models. Also, we want to show why the model for LFR is capable of achieving
better results.

There are various learning techniques using these models but they have the
way how state-action pairs are ranked in common. No-interaction models learn
weights wi for each feature i whereas full-interaction models learn weights wI(x).

Then, all legal state-action pairs x(j) are ranked in descendend order of its pre-
dicted strengths

∑
i∈I(x(j))wi respectively wI(x(j)). So far, it still looks like the

full-interaction model considers more information. But useful values for wI(x(j))
can only be estimated if I

(
x(j)

)
was seen at least once in the learning set. Thus,

in practice, both kind of models do not have the same features to predict a
state-action pairs strength. Normally, the no-interaction models have access to
larger shape features which are very predictive and this additional information
is worth more than the interaction.

The model of LFR is capable of using the same features as no-interaction
models but still can consider feature interactions so that in this case indeed
more information is used.

4.3 Latent Factor Ranking

The Latent Factor Ranking (LFR) is defined as follows. Each state-action pair
is labeled with

y (x) =

{
1 if x was chosen in the example

0 otherwise
.

For the estimation of vector w and matrix Θ a stochastic gradient descent with
l2 regularization is applied. The gradients are given as

δ

δφ
ŷ (x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
1 if φ = w0

1 if φ = wi and i ∈ I (x)∑
j∈I(x)\{i} vi,f if φ = vi,f and i ∈ I (x)

0 otherwise

Move Prediction in Go 265

Instead of taking every state-action pair x into account, only those pairs with
rank at least as high as the pair chosen by the expert i.e. ŷ (x) ≥ ŷ

(
x(1)

)
are

used. The idea behind this is that an implicit transitive relation between features
is achieved, and moves that are not responsible for wrong rankings do not need
to be touched.

Vector w is initialized with 0, V is initialized with values randomly drawn from
the normal distribution with mean 0 and standard deviation 0.1. Learning rate
α and regularization parameters λw and λv need to be estimated upfront as well
as the dimension k. Algorithm 1 describes LFR in detail. In the following LFR
with a specific dimension k is called LFRk. During the experiments, convergence
was assumed when the prediction accuracy did not improve within the last three
iterations.

Algorithm 1. Latent Factor Ranking

Input: Training set D with move decisions Dj =
{
x(1), x(2), . . . , x(|Γ(sj)|)

}
in state

sj where x(1) was chosen by the expert.
Output: V and w necessary to predict future moves.

w ← 0, vif ∼ N (0, 0.1)
while not converged do

for all Dj ∈ D do
for all x ∈ Dj do

if ŷ (x) ≥ ŷ
(
x(1)

)
then

Δy ← ŷ (x)− y (x)
w0 ← w0 − α ·Δy
for all i ∈ I (x) do

wi ← wi − α (Δy + λwwi)
for f = 1 to k do

vi,f ← vi,f − α
(
Δy δ

δvi,f
ŷ (x) + λvvi,f

)

4.4 Features

In Go two different kinds of features are distinguished, shape features and non-
shape features. Shape features take the shape around a specific intersection on
the board into account, non-shape features are every other kind of features in
a move situation you can imagine. How shapes are extracted, harvested and
represented is explained very well in [3].

In this work the same features are used as in [4]. That is, a feature subset of
those proposed in [8] are used in order to allow a comparison to further prediction
models. Since [4] does not define the features explicitly, this is caught up here.
Features are divided into nine groups, from each group at most one feature is
active for a given state-action pair, first mentioned features have higher priorities
within the feature group. All features are binary because the approaches LFR is
compared to cannot deal with other features types.

266 M. Wistuba and L. Schmidt-Thieme

Fig. 1. The shapes are harvested as proposed in [3]: Fourteen circle shaped, nested
templates are used which are regarded to be invariant to rotation, translation and
mirroring. The shape template of size 14 considers the full board state.

1. Pass Passing in case of the last move was 1) no pass or 2) a pass.
2. Capture Capturing an enemy chain such that 1) an own chain is no longer

in atari, 2) previous move is recaptured, 3) a connection to the previous
move is prevented or 4) any other capture.

3. Extension Stone is placed next to an enemy chain such that it is in atari.
4. Self-atari Placing a stone such that your own chain is in atari.
5. Atari Placing a stone such that enemy chain is in atari when there is 1) a

ko or 2) no ko.
6. Distance to border is one, two, three or four.
7. Distance to previous move is 2, . . . , 16,≥ 17 using distance measure

d (Δx,Δy) = |Δx|+ |Δy|+max {|Δx| , |Δy|}
8. Distance to move before previous move is 2, . . . , 16,≥ 17 using

distance measure d (Δx,Δy) = |Δx|+ |Δy|+max {|Δx| , |Δy|}
9. Shape Can be any shape that appeared at least ten times in the training set

using the templates shown in Figure 1.

5 Experiments

In the following, at first LFR is compared to other Go move prediction algorithms
and it is shown that it is significantly better for k. It will be shown that the
interactions have a positive impact especially in situations where no big shapes
are matched (shape sizes greater than 4) which finally results in the observed
lift. Finally, the features and its interactions are discussed.

For the experiments a set of 5,000 respectively 10,000 games (i.e. approxi-
mately 750,000 respectively 1,500,000 move decisions) from the KGS Go Server1

was used. These games are without a handicap and were played between strong
human amateurs i.e. both are ranked at least 6d or at least one has a rank of 7d.
As mentioned before, shapes were used if they occurred at least 10 times in the

1 http://www.gokgs.com/

http://www.gokgs.com/

Move Prediction in Go 267

training set. In this way, 48,071 respectively 94,030 shapes were harvested and
used for the learning process. Hyperparameters for LFR were estimated on a dis-
joint validation set and sought on a grid from 0 to 0.01 with step size 0.001. The
learning rate α = 0.001 was selected. For LFR1 the regularization parameters
λw = 0.001 and λv = 0 were chosen, while for LFR5 λw = 0.001 and λv = 0.002
are optimal. All experiments were made on the 10k learning set otherwise explic-
itly stated. LFR is compared to Coulom’s Minorization Maximization [8] (MM)
as well as two further algorithms introduced in [4]: These are on the one hand an
improvement of Stern’s algorithm [3] now capable to deal with arbitrary many
features, the Loopy Bayesian Ranking (LBR), and a variant of Weng’s Bayesian
Approximation Method [13] based on the Bradley Terry model adapted to the
Go move prediction problem, the Bayesian Approximation Ranking (BAR). The
experiments are made on a testing set of 1,000 games which are disjoint from
the training and validation set. The accuracy is defined as the average accuracy
of the first 12 game phases, where a game phase consists of 30 turns.

40%

50%

60%

70%

80%

90%

5 10 15 20
Expert move rank

C
um

ul
at

iv
e

ac
cu

ra
cy

LFR1 LFR5 Full.LFR1 MM LBR BAR

(a) Cumulative prediction accuracy in re-
spect to the expert move rank.

−2%

0%

2%

4%

6%

0 5 10 15 20
Expert move rank

C
um

ul
at

iv
e

ac
cu

ra
cy

LFR1 LFR5 Full.LFR1 MM LBR BAR

(b) The move prediction accuracy given by
the difference of the accuracy of an algo-
rithm and BAR. (95% conf. intervals)

Fig. 2. The cumulative prediction accuracy in respect to the expert move rank

The resulting prediction quality of the aforementioned algorithms is depicted
in Figure 2(a). Figure 2(b) shows this in detail by providing the results sub-
stracted by the results of BAR. The expert move rank is the rank assigned to
the move chosen by the expert player in the actual game. Full-LFR1 is LFR1
which considers all state-action pairs for the update. Its results justify the choice
of considering only state-action pairs x(i) where ŷ

(
x(i)
)
≥ ŷ

(
x(1)

)
because Full-

LFR performs poor for high expert move ranks. As can be seen, LFR outper-
forms the other algorithms significantly, especially for low expert move ranks.
For FPR5 this holds even up to 18. Especially the lift for very low expert move
ranks is notable.

268 M. Wistuba and L. Schmidt-Thieme

Table 1. Probability for predicting the move chosen by the expert for different learning
set sizes

Training set size MM LBR BAR LFR1 LFR5

5,000 37.00% 36.36% 34.24% 38.60% 39.96%
10,000 37.86% 37.35% 35.33% 39.78% 40.90%

Additionally, Table 1 compares the different prediction algorithms on two
different sized training sets. Again, LFR outperforms every other algorithm.
Finally, Figure 5(a) shows the predicting performance of LFR with growing k.
The accuracy increases fast but then converges. It can be assumed that for k > 10
there will be no big improvements.

The intuition of learning move strengths by considering interactions between
features was to achieve a higher prediction accuracy for cases where only smaller
shapes are matched. Smaller shapes have less information and usually are more
often matched in the later game phases. This goal is achieved by LFR as seen in
Figure 3(a). The prediction accuracy in the first game phases (each game phase
consists of 30 turns) is higher than the average accuracy due to the fact that
there are standard opening moves. These can be learned very accurately by the
shape features because most of these moves were harvested with very large shape
sizes. This is also the reason why LFR is not better than the other algorithms
because the shape features simply dominate all the others. Then, starting in
game phase 6, when smaller shapes are matched and the other features gain
more influence, the impact of the interactions becomes visible. Accuracy of LFR
is then up to more than 5% better than all other approaches.

35%

40%

45%

50%

1 2 3 4 5 6 7 8 9 10 11 12
Game phase

A
cc

ur
ac

y

LFR1 LFR5 MM LBR BAR

(a) Move prediction accuracy in dif-
ferent game phases. Each game
phases consists of 30 turns.

0%

20%

40%

60%

2 3 4 5 6 7 8 9 10 11 12 13 14
Matched shape size

A
cc

ur
ac

y

LFR1 LFR5 MM LBR BAR Percentage
of matchings

(b) Accuracy of predicting the right move de-
pending on the shape size of the right move.
The red part in the background is the percent-
age of shape sizes of the matched shapes in to-
tal. (95% conf. intervals)

Fig. 3. LFR is better in ranking moves where only small shapes are available

Move Prediction in Go 269

Figure 3(b) also supports the claim of successfully estimating the right move if
only small shapes are matched. It shows the prediction accuracy in respect of the
matched shape size of the expert move. For shape sizes 5-13 there is no significant
change in comparison to the other algorithms, for full board shapes it is even
worse. Matters are quite different for shapes sizes 3 and 4. The interactions seem
to be responsible for the significant improvement of the accuracy. More than 40%
of matched shapes for the move chosen by the expert are of sizes 3 or 4. This
is the reason for the dramatic lift of the average prediction accuracy and the
prediction accuracy in the later game phases. Additionally, considering that full
board shapes are only matched during the first game phases and probably being
part of standard opening moves, the advantage of the other algorithms for full
board shapes is even more weakened. Using opening books for Go AI and that
LFR has still a similar prediction accuracy in the first game phase (see Figure
3(a)) does not justify the preference of one of the other algorithms.

Fig. 4. On the left side are the first moves of a game played between two artificial
players using the LFR1 always choosing the move with highest ranking. By means of
comparison, the first moves of a game played between two of the ten strongest players
on the KGS Go Server are shown on the right side.

On the left side, Figure 4 shows a game of Go between two LFR1 predictors
which are always choosing the most likely action. The right side shows the first
moves of a game played between two very strong players who were ranked within
the top 10 of the Go GKS Server. At first glance, both games look very similar.
On a closer look, the first moves are indeed almost the same. However, from
move 10 on, LFR strongly prefers moves close to the moves made before and
never takes the initiative by placing a stone somewhere else as seen in the game
between the human players. The reason is simple: LFR is a move predictor
optimized for accuracy. As one can see, in most cases a move is made close

270 M. Wistuba and L. Schmidt-Thieme

to the last moves. Thus, it would be unreasonable to do these kind of moves.
Nonetheless, this is exactly the reason why a move predictor alone is not a strong
Go player. Anyways, it is very surprising how similar these games are.

36%

37%

38%

39%

40%

41%

1 2 3 4 5 6 7 8 9 10
Dimensionality (k)

A
cc

ur
ac

y

LFR MM LBR BAR

(a) Move prediction accuracy
depending on the dimension k.

2.1
2.2
2.3
2.4 3 4
5.1
5.2
6.1
62.
6.3
6.4
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10
7.11
7.12
7.13
.714
7.15
7.16
7.17
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9
8.10
8.11
8.12
8.13
8.14
8.15
8.16
8.17

2.1
2.2
2.3
2.4
3
4

5.1
5.2
6.1
6.2
6.3
6.4
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10
7.11
7.12
7.13
7.14
7.15
7.16
7.17

(b) Feature interaction heat map learned on 10,000
games with LFR1 without shapes. Each intersection
shows the influence of the interaction of two features.
Red values have the worst, green the best positive in-
fluence.

Fig. 5. Influence of the dimensionality and the feature interactions

The advantage of our model is that the received feature interaction weights
also give an insight into Go and the importance of each feature. The main idea
of combining features was that combinations of features might give more infor-
mation. For instance, a feature appearing alone might indicate a bad move, but
in interaction with another feature it might indicate a good move or vice versa.
Unfortunately, restricting only to the non-shape features, an example of this kind
of feature was not found. Nonetheless, the heat map in Figure 5(b) has exposed
some interesting facts. Unsurprisingly, feature 4 (self-atari) indicates bad moves
and feature group 2 (capture) indicates good moves. Feature groups 7 and 8
(distance to previous moves) has some kind of reinforcing effects. Feature values
of moves close to the previous moves have a stronger impact than moves further
away. So feature group 2 is a better feature for moves close to the last move.
Furthermore, feature group 4 is a worse feature for these moves. A possible ex-
planation for this observation is that a player is more aware of his actual area of
interest. Additionally, if he decides not to do a move that has a positive feature
but places stones in another part of the board, this could indicate that the move
is probably not good.

6 Conclusion

This work has introduced a model for the move prediction problem of Go which
is able to model interactions between features in an efficient way. The Latent

Move Prediction in Go 271

Factor Ranking is not only easy to implement but learning can also be done
online and hence does not have memory issues like MM. Finally, experiments
have demonstrated the move prediction quality of LFR and how it can be used
to gain insights into used features.

For future research interactions between more than two features could be of
interest as well as user-specific predictions and folding in informations gained
during a game.

References

1. Kocsis, L., Szepesvári, C.: Bandit based Monte-Carlo Planning. In: Fürnkranz, J.,
Scheffer, T., Spiliopoulou, M. (eds.) ECML 2006. LNCS (LNAI), vol. 4212, pp.
282–293. Springer, Heidelberg (2006)

2. Gelly, S., Wang, Y.: Exploration exploitation in Go: UCT for Monte-Carlo Go.
In: NIPS: Neural Information Processing Systems Conference On-line trading of
Exploration and Exploitation Workshop, Canada (December 2006)

3. Stern, D., Herbrich, R., Graepel, T.: Bayesian Pattern Ranking for Move Predic-
tion in the Game of Go. In: ICML 2006: Proceedings of the 23rd International
Conference on Machine Learning, pp. 873–880. ACM Press, New York (2006)

4. Wistuba, M., Schaefers, L., Platzner, M.: Comparison of Bayesian Move Prediction
Systems for Computer Go. In: CIG, pp. 91–99. IEEE (2012)

5. Rendle, S.: Factorization Machines. In: 2010 IEEE 10th International Conference
on Data Mining (ICDM), pp. 995–1000 (2010)

6. van der Werf, E., Uiterwijk, J.W.H.M., Postma, E.O., van den Herik, H.J.: Local
Move Prediction in Go. In: Schaeffer, J., Müller, M., Björnsson, Y. (eds.) CG 2002.
LNCS, vol. 2883, pp. 393–412. Springer, Heidelberg (2003)

7. Sutskever, I., Nair, V.: Mimicking Go Experts with Convolutional Neural Networks.
In: Kůrková, V., Neruda, R., Koutńık, J. (eds.) ICANN 2008, Part II. LNCS,
vol. 5164, pp. 101–110. Springer, Heidelberg (2008)

8. Coulom, R.: Computing Elo Ratings of Move Patterns in the Game of Go. ICGA
Journal 30(4), 198–208 (2007)

9. Araki, N., Yoshida, K., Tsuruoka, Y., Tsujii, J.: Move Prediction in Go with the
Maximum Entropy Method. In: IEEE Symposium on Computational Intelligence
and Games, CIG 2007, pp. 189–195 (2007)

10. Müller, M.: Computer Go. Artificial Intelligence 134, 145–179 (2002)
11. Lichtenstein, D., Sipser, M.: GO Is Polynomial-Space Hard. J. ACM 27(2), 393–401

(1980)
12. Crâsmaru, M., Tromp, J.: Ladders are PSPACE-Complete. In: Marsland, T., Frank,

I. (eds.) CG 2001. LNCS, vol. 2063, pp. 241–249. Springer, Heidelberg (2002)
13. Weng, R.C., Lin, C.J.: A Bayesian Approximation Method for Online Ranking.

Journal of Machine Learning Research 12, 267–300 (2011)

Algorithmic Debugging for Intelligent Tutoring:

How to Use Multiple Models and Improve
Diagnosis

Claus Zinn

Department of Computer Science, University of Konstanz
Funded by the DFG (ZI 1322/2/1)
claus.zinn@uni-konstanz.de

Abstract. Intelligent tutoring systems (ITSs) are capable to intelli-
gently diagnose learners’ problem solving behaviour only in limited and
well-defined contexts. Learners are expected to solve problems by closely
following a single prescribed problem solving strategy, usually in a fixed-
order, step by step manner. Learners failing to match expectations are
often met with incorrect diagnoses even when human teachers would
judge their actions admissible. To address the issue, we extend our pre-
vious work on cognitive diagnosis, which is based on logic programming
and meta-level techniques. Our novel use of Shapiro’s algorithmic debug-
ging now analyses learner input independently against multiple models.
Learners can now follow one of many possible algorithms to solve a given
problem, and they can expect the tutoring system to respond with im-
proved diagnostic quality, at negligible computational costs.

1 Introduction

The intelligent tutoring community aims at building computer systems that
simulate effective human tutoring. A key building block is the diagnoser that
analyses learner input for correctness with regard to the current problem solving
context. Much of the intelligent behavior of state-of-the-art tutoring systems
is due to learning interactions that highly constrain learners’ scope of action.
Usually, learners are expected to solve a given problem by executing the steps of a
single prescribed procedure. User interfaces ask learners to enter their answers in
a structured and often piece-meal fashion, and systems intervene after each and
every problem-solving step, preventing learners to pursue their own (correct or
potentially erroneous) problem-solving paths. The tight leash between tutoring
system and learners has more practical than pedagogical reasons. While human
tutors are capable of dealing with free discovery interactions and recognizing and
accommodating alternative problem-solving strategies, most machine tutors only
possess a fixed single problem solving strategy to diagnose anticipated input.

In [9], we propose a novel method to trace learners’ problem solving behaviour
using the programming technique algorithmic debugging. In [10], we interleave
our method with program transformations to perform deep cognitive analyses.
While our method has many benefits (e.g., low authoring costs, any-time feed-
back), so far, it only uses a single frame of reference. In this paper, we extend

I.J. Timm and M. Thimm (Eds.): KI 2013, LNAI 8077, pp. 272–283, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Running Algorithmic Debugging against Multiple Models 273

our previous work by comparing learner behaviour independently against mul-
tiple models. Our new contribution permits learners to exhibit a wider range of
problem solving strategies, while at the same time improving diagnostic quality,
with little additional computational cost.

The paper is structured as follows. Sect. 2 introduces the cognitive task multi-
column subtraction as tutoring domain. It presents the technique of algorithmic
debugging, and our adaptation of the method to support reasoning about learner
input. Sect. 3 is the main part of the paper, and shows how our variant of algo-
rithmic debugging can be improved to track learner behaviour across multiple
models, while at the same time improving the quality of the diagnosis. Sect. 4
discusses related work, while Sect. 5 concludes.

2 Background

2.1 Encoding Cognitive Task Models in Prolog

Cognitive task analysis (CTA) aims at giving a qualitative account of the pro-
cessing steps an individual problem solver takes to solve a given task. Our re-
search uses logic programming as vehicle for encoding cognitive task models
and for tracking and diagnosing learner behaviour. Our domain of instruction
is multi-column subtraction, a well-studied domain in the ITS community. Its
expert model(s), resulting from CTA, can be concisely encoded in Prolog. In the
Austrian method (AM), see Fig. 1, sums are processed column by column, from
right to left. The predicate subtract/2 determines the number of columns, and
calls mc subtract/3, which implements the recursion (decrementing the column
counter CC at each recursive call). The clause process column/3 gets a partial
sum, processes its right-most column and takes care of borrowing (add ten to -

minuend/3) and payback (increment/3) actions. A column is represented as a
term (M, S, R) representing minuend, subtrahend and result cell. If the sub-
trahend S is greater than the minuend M, then M is increased by 10 (borrowing)
before the difference M-S is taken. To compensate, the S in the column left to
the current one is increased by one (payback). – The introduction of the column
counter CC is not an essential part of the subtraction method, but a technical
requirement for mechanising the Oracle part of our diagnosis engine (see below).

We have also been implementing three other subtraction algorithms that re-
use code fragments from Fig. 1. The trade-first variant of the Austrian method
(TF) performs the same steps as the Austrian method, but in a different order;
first, all payback and borrowing operations are executed, then all differences
are taken. The decomposition method (DC) realizes the payback operation by
decrementing minuends rather than incrementing subtrahends. The left-to-right
method (LR) processes sums in the opposite direction; also, payback operations
are performed on result rather than minuend or subtrahend cells.

2.2 Algorithmic Debugging for Tutoring

Shapiro’s algorithmic debugging technique defines a systematic manner to iden-
tify bugs in programs [6]. In the top-down variant, the program is traversed from

274 C. Zinn

subtract(PartialSum, Sum) :- length(PartialSum, LSum),

mc_subtract(LSum, PartialSum, Sum).

mc_subtract(_, [], []).

mc_subtract(CC, Sum, NewSum) :-

process_column(CC, Sum, Sum1),

shift_left(Sum1, Sum2, ProcessedColumn), CC1 is CC - 1,

mc_subtract(CC1, Sum2, SumFinal),

append(SumFinal, [ProcessedColumn], NewSum).

process_column(CC, Sum, NewSum) :-

butlast(Sum, LastColumn), allbutlast(Sum,RestSum),

subtrahend(LastColumn, Sub), minuend(LastColumn, Min),

(Sub > Min

-> (add_ten_to_minuend(CC, LastColumn, LastColumn1),

take_difference(CC, LastColumn1, LastColumn2),

butlast(RestSum, LastColumnRestSum), allbutlast(RestSum, RestSum1),

increment(CC, LastColumnRestSum, LastColumnRestSum1),

append(RestSum1,[LastColumnRestSum1,LastColumn2],NewSum))

; (take_difference(CC, LastColumn, LastColumn1),

append(RestSum,[LastColumn1], NewSum))).

shift_left(SumList, RestSumList, Item) :-

allbutlast(SumList, RestSumList), butlast(SumList, Item).

add_ten_to_minuend(CC, (M,S,R), (M10,S, R)) :- irreducible, M10 is M+10.

increment(CC, (M,S,R), (M, S1,R)) :- irreducible, S1 is S+1.

take_difference(CC, (M,S,_R), (M, S, R1)) :- irreducible, R1 is M-S.

minuend((M,_S,_R), M). subtrahend((_M,S,_R), S).

Fig. 1. Multi-column subtraction (Austrian method)

the goal clause downwards. At each step during the traversal of the program’s
AND/OR tree, the programmer is taking the role of the oracle, and answers
whether the currently processed goal holds or not. If the oracle and the buggy
program agree on the result of a goalG, then algorithmic debugging passes to the
next goal on the goal stack. Otherwise, the goal G is inspected further. Eventu-
ally an irreducible agreement will be encountered, hence locating the program’s
clause where the buggy behaviour is originating from. In [9], we turn Shapiro’s
algorithm on its head: instead of having the oracle specifying how the assumed
incorrect program should behave, we take the expert program to take the role of
the buggy program, and the role of the oracle is filled by a student’s potentially
erroneous answers. An irreducible disagreement between program behaviour and
given answer then indicates a student’s potential misconception. In [9], we have
also described how to mechanise the Oracle by reconstructing learners’ answers
from their submitted solution. In [10], we refine the Oracle to complement
irreducible disagreements with the attributes incorrect, missing, or superflu-
ous. We then interleave algorithmic debugging with program transformation to

Running Algorithmic Debugging against Multiple Models 275

incrementally reconstruct, from the expert program, an erroneous procedure that
the learner is following, allowing deep diagnoses of learners with multiple bugs.

Example. Our algorithmic debugger, given the learner’s answer to 401− 199:

4 10 11

- 1 9 10 9

= 3 1 2

and the Austrian method (see Fig. 1), yields the following (abbreviated) dialogue:

do you agree that the following goal holds:

mc_subtract(3, [(4, 1, R1), (0, 9, R2), (1, 9, R3)],

[(4, 2, 2), (10, 10, 0), (11, 9, 2)]) |: no.

process_column(3, [(4,1,R1), (0,9,R2), (1, 9,R3)],

[(4,1,R1), (0,10,R2), (11,9,2)]) |: no.

add_ten_to_minuend(3, (1,9,R3), (11,9,R3) |: yes.

increment(2, (0, 9, R2), (0, 10, R2)) |: no.

=> irreducible disagreement: ID = increment(2, (0,9,R2), (0,10,R2))

Whenever the learner submits a solution, such a dialogue can be automat-
ically generated, and hence, the irreducible disagreement deduced. Compared
with existing methods for cognitive diagnosis, our method has a number of ad-
vantages. To locate learners’ errors, it requires only an expert model, which is an
executable Prolog program; no representation of buggy knowledge is required.
Moreover, learners are no longer limited to providing their solution in a piece-
meal fashion; algorithmic debugging easily copes with input that spans multiple,
potentially erroneous, problem-solving steps. Like many other approaches, how-
ever, our method only supported a single expert model to solve a given task; it
thus fails to recognise learners using algorithms different than the prescribed one.
The application of our variant of Shapiro’s algorithm on the Austrian method
will return irreducible disagreements (“errors”) for learners who correctly follow
one of the other three subtraction algorithms. Moreover, when learners follow one
of the other algorithms incorrectly, error diagnosis will return incorrect analyses
as they are based on the assumption of the Austrian method. Clearly, tutoring
systems shall be less prescriptive when asking learners to tackle problems.

3 Input Analysis across Models

The diagnostic engine of our tutoring system shall be able, e.g., to cope with
learners following any of the four subtraction methods, or erroneous variants
thereof. The method reported in [9] must be generalized.

276 C. Zinn

StepAustrian (AM) Trade-first (TF) Decomposition (DC) Left-to-right (LR)

1

4 0 11
- 1 9 9

=

4 0 11
- 1 9 9

=

4 0 11
- 1 9 9

=

4 0 1
- 1 9 9

= 3

2
4 0 11

- 1 91 9

=

4 0 11
- 1 91 9

=

4 10 11
- 1 9 9

=

4 10 1
- 1 9 9

= 3

3

4 0 11
- 1 91 9

= 2

4 10 11
- 1 91 9

=

4 9 10 11
- 1 9 9

=

4 10 1
- 1 9 9

= 2 3

4
4 10 11

- 1 91 9

= 2

4 10 11
- 11 91 9

=

3 4 9 10 11
- 1 9 9

=

4 10 1
- 1 9 9

= 23 1

5

4 10 11
- 11 91 9

= 2

4 10 11
- 11 91 9

= 2

3 4 9 10 11
- 1 9 9

= 2

4 10 11
- 1 9 9

= 23 1

6
4 10 11

- 11 91 9

= 0 2

4 10 11
- 11 91 9

= 0 2

3 4 9 10 11
- 1 9 9

= 0 2

4 10 11
- 1 9 9

= 23 01

7

4 10 11
- 11 91 9

= 2 0 2

4 10 11
- 11 91 9

= 2 0 2

3 4 9 10 11
- 1 9 9

= 2 0 2

4 10 11
- 1 9 9

= 23 01 2

Fig. 2. Problem Solving States in Four Algorithms for Multi-Column Subtraction

3.1 Correct Learner Behaviour

For the time being, consider learners being perfect problem solvers. They will
solve any given subtraction problem by consistently following one of the four
aforementioned subtraction algorithms. At any problem solving stage, we would
like to identify the algorithm that they are most likely following. Fig. 2 depicts
all correct states for solving the subtraction problem 401 − 199 in each of the
four algorithms. Fig. 3 illustrates the basic idea of our approach, which we will
later refine. Given some partial learner input at the root (the learner is cor-
rectly executing the trade-first variant, see boxed third step in Fig. 2), we run
algorithmic debugging on each of the four subtraction methods. As a result, we
obtain four different diagnoses. With regard to AM, the learner failed to take
the difference in the ones column; for TF, he failed to increment the subtrahend
in the hundreds column; for DC, he failed to decrement the minuend in the tens;
and for LR, he failed to take the difference in the hundreds column.

This result is unsatisfactory as we cannot derive which of the algorithms the
learner is following. For this, let us consider the number of agreements before

Running Algorithmic Debugging against Multiple Models 277

4 10 11
- 1 91 9

=
AM

������
����

����
����

TF�����
�

DC ����
�� LR

�����
����

����
����

�

4 10 11
- 1 91 9

= 2

4 10 11
- 1 1 91 9

=

4 10 911
- 1 91 9

=

4 10 11
- 1 91 9

= 3

Fig. 3. Algorithmic Debugging (AD) for Four Algorithms on Identical Input

an irreducible disagreement between program and learner behaviour is identi-
fied. While all methods disagree on their respective top goal subtract/2, there
are varying reducible disagreements that contain partial agreements. For AM,
while disagreeing with the goal process column/3 (ones column), we have two
agreements with regard to its observable actions in the subgoals add ten to

minuend/3 (ones column) and increment/3 (tens column). For TF, we have an
agreement with regard to process column/3 in the ones column, but a disagree-
ment for this clause in the tens column. However, we find an agreement with
one of its subgoals, namely add ten to minuend/3, yielding a total of two agree-
ments. For DC, while disagreeing with the goal process column/3 in the ones
column, we find two agreements, one with its subgoal add ten to minuend/3,
and one with the partial execution of the decrement operation. And for LR,
there are zero agreements before the irreducible disagreement is found. In sum-
mary, the number of agreements only indicates that the learner is most likely
not following the LR method; all other methods receive two agreements.

First Refinement. To better rank the methods, we now take into account the
size of the code pieces that are being agreed upon. For this, we count the number
of irreducible agreements before the first irreducible disagreement. Fig. 4 depicts
the relevant execution trace of AM for the task 401 − 199. All leafs that are
marked “irreducible” (see Fig. 1) have weight 1; the weights of nodes are ac-
cumulated upwards. For brevity, borrow represents add ten to minuend/3, and
payback represents increment/3.With this refinement, there is no change in the
agreement score for AM, DC and LR – as all agreements are on leafs nodes. For
TF, however, the score increases by one; our agreement on process column/3

in the ones column now contributes a value of 2 rather than 1 (as the TF imple-
mentation of this predicate has the two leaf nodes add ten to minuend/3 and
increment/3). For the given example, the refinement thus yields the intended
diagnosis; in fact, this holds for most problem solving steps given in Fig. 2.

Evaluation. Each of the four matrices in Fig. 5 shall be read as overlay to
Fig. 2. Fig. 5(a), e.g., gives the results of analysing each problem solving step
– performed in each of the four subtraction methods – in the context of AM.
Learners perfectly executing AM receive “full marks” when their actions are
evaluated against AM; when their actions are evaluated against the other three

278 C. Zinn

subtract7
�������� �������

��

process column3

�������

��			
			

			

		

subtract4
�������

�
������

�

borrow1 process column3

��������
�

���
���

���
��

��

subtract1
������� �����

�

take diff1 borrow1 process column1

��
subtract0

��
payback1 take diff1 take diff1 finished0

payback1

Fig. 4. Execution Trace for the Austrian Method on 401− 199

methods, they receive a lesser score. It shows that our first refinement weighting
yields the correct diagnoses in all cases.

AM TF DC LR

1 1 1 0
2 2 1 0
3 2 1 0
4 2 2 0
5 5 2 0
6 6 2 0
7 7 2 0
(a) Ref: AM

AM TF DC LR

1 1 1 0
2 2 1 0

2 3 2 0

3 4 2 0
5 5 2 0
6 6 2 0
7 7 2 0
(b) Ref: TF

AM TF DC LR

1 1 1 0
1 1 2 0
1 2 3 0
2 2 4 0
2 2 5 0
2 2 6 0
2 2 7 0
(c) Ref: DC

AM TF DC LR

0 0 0 1
0 0 0 2
0 0 0 3
0 0 0 4
1 1 2 5
1 1 2 6
1 1 2 7
(d) Ref: LR

Fig. 5. Evaluation Matrix (Correct Learner Behaviour)

3.2 Buggy Learner Behaviour

Learner errors are rarely random but result from correctly executing a procedure
that has been acquired incorrectly [7,8]. This makes it possible to analyse learner
input in terms of expert models or buggy deviations thereof. We distinguish prob-
lematic cases that cannot be reliably associated with expert models, standard
cases that can be associated with expert models, and complex error patterns
that can only be matched to carefully designed buggy models, see Fig. 6.

Problematic Cases. Consider Fig. 6(a), where the student always subtracted
the smaller from the larger digit. With no payback and borrowing operation ob-
served, there cannot be sufficient evidence to link learner behaviour to any of the
four algorithms. Nevertheless, algorithmic debugging returns useful diagnoses:
the irreducible disagreement indicates that the learner failed to borrow in the
ones (AM, TF, DC) or tens (LR) column. In Fig. 6(b), the learner forgets to
payback after borrowing. Since the main differentiator between the four methods
is the location of the payback operation. we cannot, in principle, differentiate
between the methods. Again, our algorithmic debugger yields the same type of
diagnosis: the learner forgot to payback, either by failing to increment the sub-
trahend in the tens column (AM, TF), or by failing to decrement the minuends in
the tens (and hundreds) column (DC), or by failing to decrement the result cell

Running Algorithmic Debugging against Multiple Models 279

4 0 1
- 1 9 9

= 3 9 8
(a) Smaller from larger digit

4 10 11
- 1 9 9

= 3 1 2
(b) Forgot to payback

4 10 11
- 11 91 9

= 2 0 3
(c) Wrong subtraction fact

34 910 11 0
- 1 9 9 9

= 2 0 2 0
(d) Zero digit confusion

1 11 12 3
- 4 91 01
= 1 7 2 2
(e) Combining LR with AM

Fig. 6. Three Groups of Frequent Errors

in the hundreds column (LR). It shows that the comparison of learner behaviour
against a set of models strengthens the credibility of the diagnosis.

Standard Cases. Erroneous behaviour that is not directly related to borrowing
and payback can be better associated with one of the four subtraction methods.
In Fig. 6(c), the learner has followed AM or TF, but got a basic subtraction fact
wrong in the ones column. In Fig. 6(d), the student has followed DC, but showed
a misconception wrt. columns where the minuend is zero (ones column); in this
case, the learner takes the result cell to be zero as well. Note that both errors
occur – with respect to AM and DC – early in the problem solving process,
and both solutions have no other errors. When we run algorithmic debugging on
Fig. 6(c), we obtain wrt. AM and TF an incorrect difference in the ones column
(2 agreements). For DC, the learner failed to decrement minuends in the tens
and hundreds (2 agreements); and for LR, there is a superfluous increment of
the subtrahend in the ones (0 agreement). With each of AM, TF and DC sharing
the same number of irreducible agreements, we cannot select one diagnosis over
the other. Running the diagnoser on Fig. 6(d), we obtain no agreement for AM,
TF, and DC (failed to borrow in the ones column), and also no agreement for
LR (superfluous decrement of minuend in the thousands). Given that Fig. 6(d)
is almost correct wrt. DC, we need to further refine our algorithm to better
recognise the method learners are following.

Second Refinement. When errors occur early in the problem solving process, our
simple algorithm for method recognition must perform poorly. Now, instead of
only counting the number of irreducible agreements before the first irreducible
disagreement, we also take into consideration irreducible agreements after the
first and any subsequent irreducible disagreements. I.e., once an irreducible dis-
agreement between expert model and learner behaviour has been identified, our
algorithmic debugger now continues to trace through and analyse the execution
tree until all agreements and disagreements have been counted, see Fig. 7.

With this refinement, we now get these (dis-)agreement scores for Fig. 6(c):
For AM and TF, we obtain 6 irreducible agreements (i.e., correct cell modifica-
tions), and 1 irreducible disagreement (erroneous difference in the ones column).
For DC, we have 4 irreducible agreements (correct borrow in the ones; initiated

280 C. Zinn

1: NumberAgreements ← 0, NumberDisagreements ← 0
2: Goal ← top-clause of subtraction routine
3: Problem ← current task to be solved, Solution ← learner input to task
4: procedure algorithmicDebugging(Goal)
5: if Goal is conjunction of goals (Goal1, Goal2) then
6: ← algorithmicDebugging(Goal1)
7: ← algorithmicDebugging(Goal2)
8: end if
9: if Goal is system predicate then
10: ← call(Goal)
11: end if
12: if Goal is not on the list of goals to be discussed with learners then
13: Body ← getClauseSubgoals(Goal)
14: ← algorithmicDebugging(Body)
15: end if
16: if Goal is on the list of goals to be discussed with learners then
17: SystemResult ← call(Goal), given Problem
18: OracleResult ← call(Goal), given Problem and Solution
19: if results agree on Goal then
20: Weight ← computeWeight(Goal)
21: NumberAgreements← NumberAgreements+Weight
22: else
23: if Goal is leaf node (or marked as irreducible) then
24: NumberDisagreements ← NumberDisagreements+ 1
25: else
26: Body ← getClauseSubgoals(Goal)
27: ← algorithmicDebugging(Body)
28: end if
29: end if
30: end if
31: end procedure
32: Score ← NumberAgreements−NumberDisagreements

Fig. 7. Pseudo-code: Top-Down traversal of model, keeping track of (dis-)agreements

payback in the tens; correct differences in the tens and hundreds), and 5 irre-
ducible disagreements (wrong difference in the ones; two superfluous increments
of the subtrahend in the tens and hundreds; incorrect minuends in the tens and
hundreds as payback is not fully carried out). For LR, we yield 4 irreducible
agreements (correct borrowing in the ones and tens and correct differences in
the tens and hundreds), and 3 irreducible disagreements (incorrect difference
in the ones, and two superfluous increments of the subtrahends in the tens and
hundreds). Combining the (dis-)agreements, we get for AM/TF the highest score
(6− 1 = 5), and hence correctly recognize that the learner followed this method.
Our scoring for Fig. 6(d) also correctly determines that the learner followed DC.

Complex Error Patterns. Some learner input is too erroneous to be associated
with any of the available expert models. Consider Fig. 6(e), where the learner
is mixing-up two expert algorithms, applying the Austrian method from left to

Running Algorithmic Debugging against Multiple Models 281

right. Running our algorithmic debugger against all four expert models will yield
the following irreducible (dis-)agreements. For AM and TF, 2− 8 = −6; for DC,
2−8 = −6; and for LR, 4−6 = −2. All diagnoses acknowledge that learners per-
formed two correct borrow operations, but missed that corresponding paybacks
were performed, albeit at wrong positions. While the LR method is identified
as the most likely candidate, the diagnoses are unsatisfactory; they are not suf-
ficiently close to the compound diagnosis “combines two algorithms”. Here, it
is advisable to complement expert with buggy models to capture such complex
erroneous behaviour. If we add the respective buggy model to the existing expert
models, a run of algorithmic debugging against the resulting five models clearly
associates the learners’ solutions in Fig. 6(e) with the buggy model.

4 Related Work

Logic Programming Techniques in Tutoring. There is only little recent research
in the ITS community that builds upon logic programming and meta-level rea-
soning techniques. In [1], Beller & Hoppe also encode expert knowledge for doing
subtraction in Prolog. To identify student error, a fail-safe meta-interpreter ex-
ecutes the Prolog code by instantiating its output parameter with the student
answer. While standard Prolog interpretation would fail on erroneous outputs,
a fail-safe meta-interpreter can recover from execution failure, and can also re-
turn an execution trace. Beller & Hoppe then formulate error patterns , which
they match against the execution trace; with each match indicating a plausible
student bug. It is unclear, however, how Beller & Hoppe deal with learner in-
put that cannot be properly diagnosed against some given model, as the chosen
model sets the stage for all possible execution traces and the patterns that can be
defined on them. Their approach would need to be extended to multiple models,
including a method to rank matches of error patterns to execution traces.

In Looi’s tutoring system [4], Prolog itself is the domain of instruction, and
diagnosing learner input is naturally defined in terms of analysing Prolog code.
Learners’ programs are debugged with the help of different LP techniques such
as the automatic derivation of mode specifications, dataflow and type analysis,
and heuristic code matching between expert and student code. Moreover, Looi
employs Shapiro’s algorithmic debugging techniques [6] in a standard way to
test student code with regard to termination, correctness and completeness. It is
interesting that Looi also mechanised the Oracle. Expert code that most likely
corresponds to given learner code is identified and executed to obtain Oracle
answers.Given the variety and quality of the expert code, Looi’s approach should
be able to track learners following multiple solution paths.

In [3], Kawai et al. also represent expert knowledge as a set of Prolog clauses;
Shapiro’s Model Inference System (MIS) [6], following an inductive logic pro-
gramming approach, is used to synthesize learners’ (potentially erroneous) pro-
cedure from expert knowledge and student answers. Once the procedure to
fully capture learner behaviour is constructed, Shapiro’s Program Diagnosis Sys-
tem, based upon standard algorithmic debugging, is used to identify students’
misconceptions, i.e., the bugs in the MIS-constructed program. The inductive

282 C. Zinn

approach helps addressing the issue that learners may follow one of many possi-
ble solution paths, given that the expert knowledge used for synthesis is carefully
designed.

Both Kawai et al. and Looi’s work use algorithmic debugging in the traditional
sense, thus requiring an erroneous procedure. By turning Shapiro’s algorithm on
its head, we are able to identify simple and common learner errors by only using
expert models. For the diagnosis of more complex error patterns, our approach
naturally admits the use of additional, buggy, models. Our taking into account
of multiple models adds to the robustness and the quality of the diagnosis, esp.
given our well-defined criteria for differentiating between models.

Model Tracing Tutors. Most intelligent tutoring systems are based on production
rule systems [2]. Here, declarative knowledge is encoded as working memory ele-
ments (WMEs) of the production system, and procedural knowledge is encoded
as IF-THEN rules. Model tracing allows the recognition of learner behaviour:
whenever the learner performs an action, the rule engine tries to find a sequence
of rules that can reproduce the learner’s action – and update the working memory
correspondingly. With the successor state identified, the system can then provide
adaptive feedback. Model tracing tutors, however, have two major drawbacks;
high authoring costs, and the need to keep learners close to the correct solution
path to tame the combinatorial explosion in the forward-reasoning rule engine.

We focus on the authoring cost.Asproduction rule systemsare forward-chaining,
goal-directnessmustbe inducedbypreconditions that checkwhethergoal-encoding
WMEs hold, or postconditions that maintain goal stacks or perform sub-goaling.
Moreover, as conditions are framed in terms of WMEs, there is little if any ab-
straction. The programmer thus has the tedious burden to give a correct and com-
plete specification of a rule’s pre- and postconditions, glueing-together declarative
and procedural knowledge. This makes rules verbose, and hence less readable and
maintainable.When each expert rule is associatedwith buggy variants, a cognitive
model ofmulti-column subtraction can grow quickly to more than fifty rules. Their
authoring becomes increasingly complicated, costly, and a process prone to error.
It is thus not surprising that there is no tutoring system based on production rules
that supports more than a single algorithm for solving a given task. This is in line
withO’Shea et al,whoargues thatmodel tracing systemshavehadonly limited suc-
cess in modelling arithmetic skills. They only “build single-level representations,
with no support for modelling multiple algorithms” [5, p. 265].

5 Conclusion

In our previous work, we presented a variant of algorithmic debugging that
compares learner action against a single expert model. We have extended our
approach to multiple models. Our refined method now continues past the first
and any subsequent irreducible disagreements until the entire execution tree of
a Prolog program has been traversed. In the process, agreements and disagree-
ments are being counted, and the code size being agreed upon taken into account.

Running Algorithmic Debugging against Multiple Models 283

These numbers are used to identify, among all available models, the algorithm
the learner is most likely following. For the domain of multi-column subtrac-
tion, we have illustrated the effectiveness of our approach. Perfect learners get
correct diagnoses at any stage of their problem solving process. Our approach
is also robust for erroneous problem solving. For this, we have distinguished
three cases. For problematic cases, where the lack of a central skill prevents any
discrimination between given expert models, our multi-model analysis yields,
nevertheless, a consistent set of irreducible disagreements that clearly indicates
the missing, central skill in question. We have also illustrated the effectiveness
of our method for standard cases where the central skills are observable, but
other errors are made. For complex error pattern, where learners exhibit central
skills, but perform them in a seemingly untimely or chaotic manner, our method
is equally applicable. By complementing expert models with buggy models, and
by subsequently analysing learner input in the context of both expert and buggy
models, we yield diagnoses of high accuracy. Our extension has three benefits.
First, the tutoring system can be less prescriptive as learners can now follow one
of many predefined algorithms to tackle a given problem. Second, the quality
of the diagnosis improves despite of the wider range of input that is taken into
account. Third, the improvement comes with little computational costs.

References

1. Beller, S., Hoppe, U.: Deductive error reconstruction and classification in a logic
programming framework. In: Brna, P., Ohlsson, S., Pain, H. (eds.) Proc. of the
World Conference on Artificial Intelligence in Education, pp. 433–440 (1993)

2. Corbett, A.T., Anderson, J.R.: Knowledge tracing: Modeling the acquisition of
proc. knowledge. User Modeling and User-Adapted Interaction 4, 253–278 (1995)

3. Kawai, K., Mizoguchi, R., Kakusho, O., Toyoda, J.: A framework for ICAI systems
based on inductive inference and logic programming. New Generation Computing 5,
115–129 (1987)

4. Looi, C.-K.: Automatic debugging of Prolog programs in a Prolog Intelligent Tu-
toring System. Instructional Science 20, 215–263 (1991)

5. O’Shea, T., Evertsz, R., Hennessy, S., Floyd, A., Fox, M., Elson-Cook, M.: Design
choices for an intelligent arithmetic tutor. In: Self, J. (ed.) Artificial Intelligence and
Human Learning: Intelligent Computer-Aided Instruction, pp. 257–275. Chapman
and Hall Computing (1988)

6. Shapiro, E.Y.: Algorithmic Program Debugging. ACM Distinguished Dissertations.
MIT Press (1983); Thesis (Ph.D.) – Yale University (1982)

7. VanLehn, K.: Mind Bugs: the origins of proc. misconceptions. MIT Press (1990)
8. Young, R.M., O’Shea, T.: Errors in children’s subtraction. Cognitive Science 5(2),

153–177 (1981)
9. Zinn, C.: Algorithmic debugging to support cognitive diagnosis in tutoring systems.

In: Bach, J., Edelkamp, S. (eds.) KI 2011. LNCS, vol. 7006, pp. 357–368. Springer,
Heidelberg (2011)

10. Zinn, C.: Program analysis and manipulation to reproduce learner’s erroneous rea-
soning. In: Albert, E. (ed.) LOPSTR 2012. LNCS, vol. 7844, pp. 228–243. Springer,
Heidelberg (2013)

Combining Conditional Random Fields and
Background Knowledge for Improved Cyber Security

Carsten Elfers1, Stefan Edelkamp2, and Hartmut Messerschmidt2

1 Neusta Software Development GmbH, 28217 Bremen, Germany
2 Universität Bremen, 28359 Bremen, Germany

Abstract. This paper shows that AI-methods can improve detection of malicious
network traffic. A novel method based on Conditional Random Fields combined
with Tolerant Pattern Matching is presented. The proposed method uses back-
ground knowledge represented in a description logic ontology, user modeled pat-
terns build on-top of this ontology and training examples from the application
domain to improve the detection accuracy of IT incidents, particularly addressing
the problem of incomplete information.

1 Introduction

The cyber criminal threat against the IT infrastructure is a well-known and steadily
growing problem for many organizations. A single product, such as a firewall, an anti-
virus program, or an Intrusion Detection System (IDS) is not capable of fulfilling the
task of recognizing complex cyber attacks [1, p.665]. Therefore, complex IT networks
are monitored by several of these products. During the years, the complexity of IT
infrastructures and, therefore, the amount of security events from these sources have in-
creased. Accordingly, the need for an efficient grouping and correlation of these events
has grown. Large organizations, e.g., car manufacturers or financial institutes, have de-
ployed Security Information and Event Management (SIEM) systems [14] to manage
and detect relations between those events to detect possible IT incidents.

Since events related to critical IT incidents are sparse in the large amount of event
data being processed by SIEM systems, sophisticated correlation approaches are needed.
In this paper, we propose a novel correlation method which is based on Conditional
Random Fields (CRF) and Tolerant Pattern Matching (TPM) for recognizing those in-
cidents. The system is able to generalize or abstract expert knowledge as well as to learn
from examples given during the application of the system (by the use of the CRF).

From the intrusion detection perspective, two incident detection methods are con-
ceivable, i.e. anomaly detection [7,10,13,16] where each deviating system behavior of
a previously trained normal behavior is suggested to be an incident, or a rule-based
method [11,15,19,8] that detects incidents by correlating the input events with previ-
ously specified patterns. SIEM systems like the market-leading product ArcSight or the
Symantec Security Information Manager typically use predefined rules to correlate the
events [14]. While some products like NitroSecurity SIEM, AlientVault Unified SIEM,
RSA enVision, or the Q1 Labs correlation (used by Enterasys, Juniper and Nortel) are
making use of integrated anomaly detection methods (such as detecting baseline devia-
tions), the final decision making is almost completely rule based.

I.J. Timm and M. Thimm (Eds.): KI 2013, LNAI 8077, pp. 284–287, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Combining Conditional Random Fields and Background Knowledge 285

Detection Layer (CRF)

Hypotheses Pool

Explanation
Layer (CRF)

Tolerant Pattern Matching
Observations

Pattern matches

Hypotheses

Most relevant
hypotheses

…

��������	
������	����
���

����������
�
������

�����������	��
��������	�����

��
��
��
���
��
	�

��
��

���������
����

�����������

����������

�
���

��
	�

��
�

��
�

�����������	����
��
��	����������	���������

������������

�����������	�����
��������	�

��������� 	�������������

Fig. 1. Dataflow in the Proposed SIEM system and Inclusion of Background Knowledge

2 Our Approach of Combining TPM and CRFs

The application of a rule-based final decision making in the mentioned products links
to the requirement of processing huge amounts of events and the problems inherent
to anomaly detection such as an increased false-positive rate and the absence of an
interpretation of the detected incident.However, the focus on rule-based methods leads
to possibly unrecognized incidents due to a lack in the rule set. Therefore, we propose to
solve this problem by combining Conditional Random Fields (CRF) [12] and Tolerant
Pattern Matching (TPM) [5].

This approach can be understood as hybrid machine learning approach. Such kind of
approaches have dominated the research for intrusion detection in the recent years [20].
They use different techniques to improve detection accuracy, such as preprocessing the
data by clustering or by generating intermediate results for classification. Fig. 1 shows
that we pre-process the data with TPM and post-process it by the exponential CRF
model. The latter part takes the matching values of the TPM as input for a statistical
interpretation of incident hypotheses. With this approach the partially matching patterns
can be combined by a CRF to determine a probability for a serious security incident.
Initially, modeled incidents can be used as a priori training data while this data can be
successively refined by “real” training data from the application domain. This offers the
possibility to easily adapt the combined approach by training which patterns are useful
for the detection of incidents and which are less significant to improve the detection
accuracy.

Beyond this, expert knowledge can still be modeled by the preprocessing of the TPM.
It uses ontological representations, logical expressions and generalizations of them in
the matchmaking process. The post-processing part takes the matching values of the
TPM as input for a statistical interpretation of incident hypotheses by the use of CRF.
We have chosen the TPM approach to fulfill the requirement of handling sparsity, to ad-
dress the problem of incomplete background knowledge, and to transfer modeled back-
ground knowledge to unknown cases. Additionally, expert knowledge must be acquired
by comprehensible concepts, like modeling logical expressions as in other SIEM sys-
tems. As CRFs cannot directly use or represent logical expressions, background knowl-
edge has to be transformed.

286 C. Elfers, S. Edelkamp, and H. Messerschmidt

Further, we propose to use two layers of CRFs, both sharing the same input fea-
tures (the patterns) but different labels. The first layer is used to determine if a serious
security incident has been occurred or not, so we use three labels for this layer to de-
scribe the threat resulting from the pattern matching values, i.e., the threat dangerous
(describing that an incident occurred), suspicious (potentially an incident) or normal
(no serious incident and most likely a false positive from the underlying sensor data).
This CRF structure is very small and therefore most efficient for detecting the inci-
dents out of huge amounts of sensor data. The artificial threat “suspicious” is used to
keep some events for long-term correlation which might result in a dangerous threat
by being combined with other events. The inference result can be presented to security
officers to decide which incidents should be revisited in detail. After a security officer
decides to investigate an incident, a second (more complex) CRF layer is used to find an
appropriate explanation for the detected incident. Therefore, a probability distribution
over all known incidents is determined. With this information, the security officer can
assess which kind of incident or at least which most likely and most similar incidents
have been detected to plan further investigations.

The modeling of incidents by experts often produces an artificial imbalance [4] be-
tween benign and malign incidents. This occurs since incidents are modeled without the
information about how frequent incidents occur. This problem is reduced by learning
from examples, but remains to be a challenge for the first deployment of the detection
engine. Imbalanced data is a serious problem for several machine learning approaches
[9] and a known intrusion detection problem [4]. We applied oversampling [2].

A widely applied training scheme for CRFs is Improved Iterative Scaling (IIS) [3].
However, one problem inherent in this algorithm is that it tends to overfit the data which
we have found to be critical for the proposed combined approach. Therefore, we suggest
to use regularization to overcome this problem. In regularization, the model parameters
themselves are considered as random variables with a specified prior distribution. Smith
et al. [18] discovered that different regularization priors “perform roughly equally well”
if they are appropriately parameterized. With IIS, regularization and oversampling we
are well-prepared to train the CRFs with examples as well as with modeled incidents.

3 Experimental Outcome

We have implemented the proposed novel method for detecting security incidents on a
SIEM level of detection by the combination of CRFs and TPM. The technical report [6]
provides detailed experiments for standard benchmarks and for sandnet data set con-
sisting of recorded malware samples and their generated Snort events. These samples
are a subset of the generated samples from the sandnet project [17]. One month (31
days) of traffic has been analyzed by a Snort IDS with the same rule set as used in the
sandnet malware analysis. The resulting dataset has been filtered by using 24 static IP
addresses to avoid that the benign dataset becomes contaminated by mobile computers
with potential malware infections. The results show, that this combination can improve
the true positive to false-positive ratio of current enterprise SIEM systems, and that it
can be realized efficiently. Furthermore, the report shows which challenges should be
considered while training the system and how they can be overcome (regularization and
oversampling).

Combining Conditional Random Fields and Background Knowledge 287

References

1. Anderson, R.J.: Security Engineering: A Guide to Building Dependable Distributed Systems,
2nd edn. Wiley Publishing, Inc. (2008)

2. Batista, G.E.A.P.A., Prati, R.C., Monard, M.C.: A study of the behavior of several methods
for balancing machine learning training data. SIGKDD Explor. 6 (2004)

3. Berger, A.: The improved iterative scaling algorithm: A gentle introduction (1997)
4. Chawla, N.V., Japkowicz, N., Kotcz, A.: Editorial: special issue on learning from imbalanced

data sets. SIGKDD Explor. Newsl. 6, 1–6 (2004)
5. Elfers, C., Edelkamp, S., Herzog, O.: Efficient tolerant pattern matching with constraint

abstractions in description logic. In: Intern. Conf. on Agents and Artificial Intelligence
(ICAART), pp. 256–261 (2012)

6. Elfers, C., Edelkamp, S., Messerschmidt, H., Sohr, K.: Advanced event correlation in security
information and event management systems. Technical Report 71, TZI, Universität Bremen
(2013)

7. Forrest, S., Perelson, A.S., Allen, L., Cherukuri, R.: Self-nonself discrimination in a com-
puter. In: Symposium on Research in Security and Privacy, pp. 202–212 (1994)

8. Gonzalez, J.M., Paxson, V., Weaver, N.: Shunting: a hardware/software architecture for flex-
ible, high-performance network intrusion prevention. In: ACM Conference on Computer and
Communications Security, pp. 139–149 (2007)

9. Gu, Q., Cai, Z., Zhu, L., Huang, B.: Data mining on imbalanced data sets. In: Intern. Conf.
on Advanced Computer Theory and Engineering, pp. 1020–1024 (December 2008)

10. Krügel, C., Toth, T., Kirda, E.: Service specific anomaly detection for network intrusion
detection. In: ACM Symposium on Applied Computing, pp. 201–208 (2002)

11. Kumar, S., Spafford, E.H.: A Software Architecture to support Misuse Intrusion Detection.
In: National Information Security Conference, pp. 194–204 (1995)

12. Lafferty, J., Zhu, X., Liu, Y.: Kernel conditional random fields: representation and clique
selection. In: Intern. Conf. on Machine Learning (2004)

13. Laskov, P., Schaefer, C., Kotenko, I.: Intrusion detection in unlabeled data with quarter-
sphere support vector machines. In: DIMVA, pp. 71–82 (2004)

14. Nicolett, M., Kavanagh, K.M.: Magic quadrant for security information and event manage-
ment. Gartner Research document G00176034 (2010)

15. Paxson, V.: Bro: A system for detecting network intruders in real-time. In: Computer Net-
works, pp. 2435–2463 (1999)

16. Rieck, K., Laskov, P.: Language models for detection of unknown attacks in network traffic.
Journal in Computer Virology 2, 243–256 (2007)

17. Rossow, C., Dietrich, C.J., Bos, H., Cavallaro, L., van Steen, M., Freiling, F.C., Pohlmann,
N.: Sandnet: Network traffic analysis of malicious software. In: Building Analysis Datasets
and Gathering Experience Returns for Security, pp. 78–88 (2011)

18. Smith, A., Osborne, M.: Regularisation techniques for conditional random fields: Parame-
terised versus parameter-free. In: Dale, R., Wong, K.-F., Su, J., Kwong, O.Y. (eds.) IJCNLP
2005. LNCS (LNAI), vol. 3651, pp. 896–907. Springer, Heidelberg (2005)

19. Sommer, R., Paxson, V.: Enhancing byte-level network intrusion detection signatures with
context. In: 10th ACM Conference on Computer and Communications Security, CCS 2003,
pp. 262–271 (2003)

20. Tsai, C.-F., Hsu, Y.-F., Lin, C.-Y., Lin, W.-Y.: Intrusion detection by machine learning: A
review. Expert Systems with Applications 36(10), 11994–12000 (2009)

Adapting a Virtual Agent’s Conversational

Behavior by Social Strategies

Nikita Mattar and Ipke Wachsmuth

Artificial Intelligence Group, Bielefeld University
Universitätsstr. 25, 33615 Bielefeld, Germany
{nmattar,ipke}@techfak.uni-bielefeld.de

Abstract. Interpersonal encounters are a complex phenomenon in hu-
man-human interaction. As social encounters with virtual agents become
more important, these agents have to cope with problems of social per-
ception, as well. To account for tasks concerned with the acquisition,
utilization, and recall of social information, we earlier proposed to equip
virtual agents with a Person Memory. In this paper we present how in-
formation available through a Person Memory enables the conversational
agent Max to tackle different interpersonal situations.

Keywords: conversational agents, intelligent virtual agents, human-
agent interaction, person memory, interpersonal encounters, social
information, person perception.

1 Introduction

In intelligent virtual agent research an important goal is to create agents that
are as believable as possible, motivated by the advancement of virtual agents
from tools to human-like partners. For instance, so called companion agents are
envisioned to interact over a long period of time with, or even beyond the life-
time of, their owners [8], [7]. Human-like memory systems, i.e., autobiographic
and episodic memories, are employed to improve believability of such agents [3],
[2]. However, these systems focus on the agent’s own experiences. As conver-
sational agents start to appear in everyday interaction scenarios, the question
arises if such egocentric memory systems are sufficient to handle requirements
that come up in social encounters. To be accepted as human-like conversational
partners, virtual agents may have to cope with various interpersonal situations.
For instance, in initial encounters altruistic behavior may seem appropriate for
a companion agent, whereas a slightly selfish behavior may be more adequate in
situations where a companion agent acts on the behalf of its owner.

In this paper we present how information of a model of Person Memory can
be exploited to adapt a virtual agent to its interlocutors according to differ-
ent social situations. In the following, social memory tasks and social memory
strategies used in the model are described. Brief sample dialogs demonstrate how
the Person Memory can be exploited to tackle social encounters by using social
strategies: an altruistic, a balanced, and a selfish strategy. The paper concludes
with an outlook on future work.

I.J. Timm and M. Thimm (Eds.): KI 2013, LNAI 8077, pp. 288–291, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Adapting a Virtual Agent’s Conversational Behavior by Social Strategies 289

2 Adapting Conversational Behavior by Social Strategies

In order to examine and grasp effects of so called human person perception – the
acquisition, utilization, and recall of social information during human interper-
sonal encounters –, we proposed to equip virtual agents with a Person Memory
[5]. To exploit information provided by the Person Memory in social situations,
Social Memory Tasks and Social Strategies are a crucial part of our model. Social
Memory Tasks define how the information is exploited. They are divided into
core and extended tasks. Core tasks handle basic actions, like storage of new, or
retrieval of existing, information. Extended tasks carry out more context based
information retrieval and manipulation on the data, like calculating probabilities
for the use of dialog sequences (“Question/Answer” vs. more complex sequences
like ”Question/Counter/Probe/Reply”, cf. [6]), or selecting a topic according to
different categories (“communication”,“immediate”, “external”, cf. [1]). Further-
more, extended tasks can be exchanged dynamically at run time. This allows to
define tasks including different information, for instance, when selecting a topic
the agent should bring up during conversation.

Social strategies are used in this model of Person Memory to activate tasks
appropriate for a situation. So far, they consist of a trigger that is sensitive to
a certain social situation and a mapping of social memory tasks to keywords
that are used to identify tasks within the Person Memory. When a strategy
is activated by a situation, its associated tasks are registered within the Per-
son Memory. The registered tasks are used subsequently when a task with an
according keyword is scheduled for execution. Algorithm 1 depicts a sample im-
plementation of a social memory task as used by a balanced social strategy. Here,
a topic for conversation is selected according to the information of the interlocu-
tor and the agent that is available in the Person Memory. An altruistic, or a
selfish, task can be obtained from the balanced task by returning the interest of
the interlocutor, or the agent, respectively.

Algorithm 1. Pseudocode for selecting a topic in a balanced strategy

function perform task

topics self = pmem→executeTask(”getTopicsFor”,”self”)
topics other = pmem→executeTask(”getTopicsFor”,”other”)

candidate self = getInterestWithMaxUtility(topics self)
candidate other = getInterestWithMaxUtility(topics other)
candidate both = getInterestWithMaxUtility(topics self ∩ topics other)

return randomlySelect(candidate self, candidate other, candidate both)
end function

This way, information contained in the Person Memory, together with strate-
gies and accompanying tasks that influence how the information is exploited,
allow for an adaptation of the agent to different social encounters.

290 N. Mattar and I. Wachsmuth

3 Sample Dialogs

The following dialog excerpts (translated to English) demonstrate how one as-
pect – choice of utterances – of the conversational style of the agent Max [4] is
adapted by the use of social strategies. While the current implementation allows
to adapt further aspects, the capabilities of the Person Memory can be demon-
strated here by adapting a single feature (yet the resulting dialogs may appear
somewhat superficial).

Altruistic Strategy

Max: Hello Paula!

Max: Do you like music? [source="other"]

Paula: Yes of course.

Max: Do you have a favorite music band? [source="other"]

Paula: I don’t really have one.

Max: Have you seen the soccer match on

television yesterday? [source="other"]

Balanced Strategy

Max: Hello Paula!

Max: Do you like music? [source="other"]

Paula: Yes of course.

Max: Looks like we have something in common! [source="both"]

Max: Did you know that my favorite music band

is Kraftwerk? [source="self"]

Paula: No, I didn’t know that.

Max: Have you seen the soccer match on

television yesterday? [source="other"]

Selfish Strategy

Max: Hello Paula!

Max: Did you know that I really love chess? [source="self"]

Paula: Yes, I think you mentioned it before.

Max: Did you listen to the latest album of

Kraftwerk yet? [source="self"]

Paula: No, I didn’t.

Max: Did you know that my favorite music band

is Kraftwerk? [source="self"]

3.1 Discussion

The possibility to change between memory tasks based on different social strate-
gies allows Max to adapt to different application scenarios. In the first case an
altruistic strategy is used, so Max focuses on the interests of its interlocutor and
avoids remarks about own interests. When using the balanced strategy, Max
selects interests of the interlocutor as well as of his own as topics for conversa-
tion. In the third example, Max completely ignores his interlocutor’s interests.

Adapting a Virtual Agent’s Conversational Behavior by Social Strategies 291

In contrast to the first case, interests of the agent are only selected as topics for
conversation when using a selfish strategy.

4 Future Work

In this paper, we demonstrated how information contained in a model of Person
Memory can be utilized to adapt a virtual agent’s behavior according to social
strategies. An evaluation of the model will be conducted when the Person Mem-
ory is ready to be deployed in a real-life application, like the museum setting the
agent Max already operates in. More aspects of conversational behavior than
touched upon in this paper will be adapted, e.g., the dialog structure and topic
categories (cf. 2). By that, we expect to obtain hints on promising combinations
that lead to more natural dialogs in different social settings.

References

1. Breuing, A., Wachsmuth, I.: Let’s Talk Topically with Artificial Agents! Providing
Agents with Humanlike Topic Awareness in Everyday Dialog Situations. In: Pro-
ceedings of the 4th International Conference on Agents and Artificial Intelligence,
ICAART 2012, pp. 62–71. SciTePress (2012)

2. Brom, C., Lukavský, J., Kadlec, R.: Episodic Memory for Human-like Agents and
Human-like Agents for Episodic Memory. International Journal of Machine Con-
sciousness 2(02), 227–244 (2010)

3. Ho, W., Dautenhahn, K.: Towards a Narrative Mind: The Creation of Coherent Life
Stories for Believable Virtual Agents. In: Prendinger, H., Lester, J.C., Ishizuka, M.
(eds.) IVA 2008. LNCS (LNAI), vol. 5208, pp. 59–72. Springer, Heidelberg (2008)

4. Kopp, S., Gesellensetter, L., Krämer, N.C., Wachsmuth, I.: A Conversational Agent
as Museum Guide – Design and Evaluation of a Real-World Application. In:
Panayiotopoulos, T., Gratch, J., Aylett, R.S., Ballin, D., Olivier, P., Rist, T. (eds.)
IVA 2005. LNCS (LNAI), vol. 3661, pp. 329–343. Springer, Heidelberg (2005)

5. Mattar, N., Wachsmuth, I.: A Person Memory for an Artificial Interaction Partner.
In: Proceedings of the KogWis 2010, pp. 69–70 (2010)

6. Mattar, N., Wachsmuth, I.: Small Talk Is More than Chit-Chat – Exploiting Struc-
tures of Casual Conversations for a Virtual Agent. In: Glimm, B., Krüger, A. (eds.)
KI 2012. LNCS, vol. 7526, pp. 119–130. Springer, Heidelberg (2012)

7. O’Hara, K.: Arius in cyberspace: Digital Companions and the limits of the person.
In: Wilks, Y. (ed.) Close Engagements with Artificial Companions: Key Social, Psy-
chological, Ethical and Design Issues, p. 68. John Benjamins Publishing Company
(2010)

8. Wilks, Y.: Artificial Companions as a new kind of interface to the future Internet.
Research Report 13, Oxford Internet Institute/University of Sheffield (2006)

Encoding HTN Heuristics in PDDL Planning
Instances

(Extended Abstract)

Christoph Mies and Joachim Hertzberg

Osnabrück University
Albrechtstraße 28, 49076 Osnabrück, Germany

{cmies,joachim.hertzberg}@uos.de

1 Contribution and Related Work

The paper sketches a transformation process that allows Hierarchical Task Net-
work (HTN) based domain-dependent planning heuristics to be encoded into
Planning Domain Definition Language (PDDL) [1] planning instances. SHOP2
[2] is chosen as a representative of the many different HTN planning approaches
in the literature, but the paper discusses modifications of the transformation ap-
plicable to other HTN based planning approaches, too. The evaluation, based on
five state-of-the art PDDL planners from the public domain, shows that incorpo-
rating HTN heuristics accelerates the planning process in terms of computation
time and improves the quality of the resulting plans.

Automated Planning is a well-known and powerful decision making technique.
Planning systems are applied to decision problems, called planning instances,
from various application areas. They exploit abstract domain independent search
heuristics for problem solving. In this paper, we encode HTN based domain-
dependent planning heuristics into PDDL planning instances.

PDDL was designed to be a standard language for planning instances. Its
motivation was to make different planning systems comparable and planning
instances re-usable to create standard benchmarks for planning systems [1]. The
maxim behind the language specification was to model “physics, not advice” [1,
p. 4]. Additionally, the language was designed to be neutral, i.e. “it doesn’t favor
any particular planning system” [1, p. 4]. These prerequisites set up barriers for
planning systems exploiting domain-dependent search heuristics. In particular,
PDDL does not fulfill the input requirements of HTN based planning approaches.
For the first International Planning Competition (IPC), McDermott noticed that
“researchers with hierarchical planners lost interest rapidly as it became clear
how great the distance was between PDDL and the kind of input their planners
expected” [1, p. 17].

The most important advantages of considering domain-dependent planning
heuristics duringplanning are these:Firstly, domain experts areusually able topro-
vide heuristics that enable fast generation of plans with high quality. Additionally,
the resulting plans usually match the expectations of the domain designer, since the
plan generation can be explained with respect to the given HTNs, i.e. the designer
can trace the task decomposition and adapt it if required.

I.J. Timm and M. Thimm (Eds.): KI 2013, LNAI 8077, pp. 292–295, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Encoding HTN Heuristics in PDDL 293

The contribution of this paper is the sketch of a translation of a planning
instance of one well-known representative of the HTN planning approaches,
SHOP2, to PDDL. As a result of the introduced transformation, we encode
the HTN based domain-dependent planning heuristics of SHOP2 planning in-
stances into PDDL planning instances, which forces the PDDL planner to follow
SHOP2’s task decomposition strategy. Thus, we close the gap between the in-
put needed for SHOP2 and PDDL’s expressiveness. Due to lack of space, we
concentrate on the management of open SHOP2 tasks in the PDDL planning
instances. This management is flexible enough to support the encoding of other
HTN based planning approaches, too.

The idea to transform a planning formalism incorporating control knowledge
to domain-independent formalisms is not new. Fritz et al [3] provide a translation
from CONGOLOG, a well-known situation calculus based planning formalism,
to PDDL 2.1 [4]. The concept of threads employed in the transformation in this
paper is inspired by their approach. In the definition of the transformation, we
focused on the generation of efficiently solvable planning instances. Since Fritz’s
transformation handles CONGOLOG, a more expressive formalism, we expect
their generated planning instances to be not as efficiently solvable as ours.

Alford et al [5] provide a transformation from the restricted HTN variant
Total-Order Simple Task Network Planning [6, ch. 11.3] to PDDL. Our intro-
duced transformation sketch can be modified to support different HTN based
planning approaches, especially this one.

Another way to incorporate HTN heuristics into planning is hybrid planning.
An exemplary approach is introduced by Schattenberg et al [7], who combine
HTN based domain-dependent heuristics with partial order causal link (POCL)
planning. They abstract the planning operators: As in most planning approaches,
an operator has a precondition as well as an effect to model when it is executable
and how the world is changed due to its execution. But in addition, it can have
partial plans as operator decomposition.

2 Transformation Sketch

Due to lack of space, we only sketch the transformation of planning instances
containing HTN definitions to PDDL instances roughly. We have chosen SHOP2
as an exemplary HTN planning formalism.

Each SHOP2 language entity is transformed to a PDDL construct. Basically,
SHOP2 tasks and task networks are encoded by PDDL predicates; operators
and methods by PDDL actions. Most importantly, the PDDL planning instance
must enforce the transformed planning system to follow the SHOP2 task decom-
position strategy, which is encoded into the PDDL planning instances.

The key concept of the transformation is the book-keeping of open tasks during
planning, i.e. tasks that have not yet been accomplished in the current world
state. We perform the marking with two types of technical objects that we insert
into the PDDL planning instance: thread and stackitem. When several tasks
have to be solved sequentially, they are bound to the same thread object. If not,
the tasks are bound to several thread objects. Each thread has its own stack,

294 C. Mies and J. Hertzberg

which ensures the correct sequential order of its tasks. PDDL requires a finite
number of objects in the domain and does not allow numerics as arguments
for actions [4, p. 68]. Thus, we have to provide enough thread and stack item
objects in the PDDL planning instance in advance. This restriction regards the
number of open tasks that can be represented in one PDDL state. The two
related approaches [3,5] face similar restrictions. Both use a finite number of
objects representing a finite counter.

Now, how many thread and stack item objects are needed in a PDDL plan-
ning instance to solve the problem? Unfortunately, the answer is not simple and
requires an analysis of the SHOP2 planning instance at hand. To determine the
required number of thread and stack item objects, we have to investigate all
possible applications of the hierarchical task networks. In terms of SHOP2, we
have to determine the possible call hierarchies of the given methods. The num-
ber of available threads in a planning instance denotes the number of open tasks
that can be solved in parallel and the number of stack items limits the number
of open tasks that can be assigned to each thread. Note that the number of
required marking objects is not proportional to the resulting plan length, since
long plans can be generated by short recursive call chains of methods.

From a logical point of view, the introduction of two object types, thread and
stack item, is not needed. The thread type would suffice, since parallel as well
as a sequential task relations can be expressed by explicit called-by relations.
The management of the thread objects is complex, since we have to ensure that
whenever a new thread is chosen by the PDDL planning system, exactly one
thread is chosen. The management of stack items is simple. It is possible to
employ a stack data structure, since “SHOP2 generates the steps of each plan in
the same order that those steps will later be executed” [2, p. 379].

To adapt the introduced transformation to other HTN planning approaches,
the marking has to be modified. For example, we consider the HTN definition
Simple Task Network (STN) [6, ch. 11.2]. The method definition is similar to
that of SHOP2, but only allows one single precondition and one decomposition.
STNs are used by Alford et al [5] (cf. Section 1) in combination with the planning
algorithm Total-Order STN Planning [6, ch. 11.3]. This algorithm also gener-
ates the plan steps in their final execution order as SHOP2 does. Additionally,
the considered task networks are totally ordered. When transforming planning
instances of this formalism, our transformation needs exactly one thread and
several stack items. Planning instances of the planning algorithm Partial-Order
STN Planning [6, ch. 11.4] can also be transformed by our approach with mini-
mal modifications.

3 Conclusion

We have sketched an approach to encode HTNs containing domain-dependent
planning heuristics in PDDL planning instances. Of the many different vari-
ants of hierarchical task networks in the literature, we have chosen SHOP2
as representative HTN based planning formalism. Encoding domain-dependent
HTNs containing planning heuristics to a PDDL is advantageous, because this

Encoding HTN Heuristics in PDDL 295

encoding can speed up the planning process, it can improve the quality of the
resulting plans and it may raise the acceptance of human domain experts.

We performed a first evaluation with five different PDDL planning systems
(PROBE, SGPLAN, LAMA-2011, CBP and CBP2) being involved1. They have
been applied to the transformed planning instances and, as comparison, to pure
PDDL instances without HTN search heuristics. Four of five PDDL systems
solve the enriched instances faster, with improved quality or even larger planning
instances when solving the transformed planning instance.

The two related approaches introduced in Section 1 [3,5] suffer from the
same restriction as our transformation does: PDDL requires that all available
(finitely many) objects are defined in the planning instance. Our transformation
is, amongst others, able to handle the HTN based planning algorithms trans-
formed by Alford et al [5]. GOLOG, the variant handled by Fritz et al [3], is
a very rich formalism. Thus, we expect our transformation to result in more
efficiently solvable PDDL planning instances.

In future work, we will apply the transformation to other domains from the lit-
erature for further experiments. Then, the cooperation of pure PDDL parts and
encoded domain-dependent heuristics within the same PDDL planning instance
is of interest. If there are no powerful HTN heuristics for parts of the application
domain, the PDDL planning system should solve these parts. Hybrid planning,
e.g. [7], exploits such a co-existence of HTN and non-HTN planning and profits
from the strengths of both formalisms.

References

1. McDermott, D.: The 1998 AI Planning Systems Competition. AI Magazine 21(2),
35–55 (2000)

2. Nau, D., Au, T.-C., Ilghami, O., Kuter, U., Murdock, W., Wu, D., Yaman, F.:
SHOP2: An HTN Planning System. JAIR 20, 379–404 (2003)

3. Fritz, C., Baier, J.A., McIlraith, S.A.: ConGolog, Sin Trans: Compiling ConGolog
into Basic Action Theories for Planning and Beyond. In: KR 2008, Sydney, Australia,
September 16-19, pp. 600–610 (2008)

4. Fox, M., Long, D.: PDDL2.1: An Extension to PDDL for Expressing Temporal
Planning Domains. JAIR 20, 51–124 (2003)

5. Alford, R., Kuter, U., Nau, D.: Translating HTNs to PDDL: A Small Amount of
Domain Knowledge Can Go a Long Way. In: IJCAI 2009, pp. 1629–1634. Morgan
Kaufmann Publishers Inc., San Francisco (2009)

6. Ghallab, M., Nau, D., Traverso, P.: Automated Planning: Theory and Praxis. Mor-
gan Kaufmann Publishers, Boston (2004)

7. Schattenberg, B., Weigl, A., Biundo, S.: Hybrid planning using flexible strategies.
In: Furbach, U. (ed.) KI 2005. LNCS (LNAI), vol. 3698, pp. 249–263. Springer,
Heidelberg (2005)

1 See http://www.inf.uos.de/kbs/htn2pddl.html for input files, domain description
and evaluation results etc.

Towards Benchmarking Cyber-Physical Systems

in Factory Automation Scenarios

Tim Niemueller1, Daniel Ewert2, Sebastian Reuter2, Ulrich Karras3,
Alexander Ferrein4, Sabina Jeschke2, and Gerhard Lakemeyer1

1 Knowledge-based Systems Group, RWTH Aachen University, Germany
{niemueller,gerhard}@kbsg.rwth-aachen.de

2 Institute Cluster IMA/ZLW & IfU, RWTH Aachen University, Germany
first.last@ima-zlw-ifu.rwth-aachen.de

3 Festo Didaktik
ulrich.karras@t-online.de

4 Electrical Engineering Department, Aachen Univ. of Appl. Sc., Germany
ferrein@fh-aachen.de

Abstract. A new trend in automation is to deploy so-called cyber-
physical systems (CPS) which combine computation with physical pro-
cesses. In future factory automation scenarios, mobile robots will play
an important role to help customizing the production process, for in-
stance, by transporting semi-products and raw materials to the machines.
Therefore it will be important to compare the performance of mobile
robots in such future logistics tasks. In this paper we sketch how the
novel RoboCup Logistics League with its automated referee and over-
head tracking system can be developed into a standard benchmark for
logistics application in factory automation scenarios.

1 Introduction

A new trend in automation is to deploy so-called cyber-physical systems (CPS)
to a larger extent. These systems combine computation with physical processes.
They include embedded computers and networks which monitor and control
the physical processes and have a wide range of applications in assisted living,
advanced automotive systems, energy conservation, environmental and critical
infrastructure control, or manufacturing [1]. In particular, mobile robots will be
deployed for transportation tasks, where they have to get semi-finished products
in place to be machined in time. In this new and emerging field, it will be very
important to evaluate and compare the performances of robots in real-world
scenarios. Hence, real-world benchmarks for logistics scenarios for CPS will be
required. In [2], Dillmann mentions three essential aspects for a robot benchmark:
(1) the robot needs to perform a real mission, (2) the benchmark is accepted
in the field, and (3) the task has a precise definition. Furthermore, features
such as repeatability, independency and unambiguity are required together with
a performance metrics to measure the outcome of the task. This implies that
ground-truth data are available in order to measure the performance objectively.

I.J. Timm and M. Thimm (Eds.): KI 2013, LNAI 8077, pp. 296–299, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Towards Benchmarking Cyber-Physical Systems 297

In this paper we show that the novel RoboCup Logistics League Sponsored By
Festo (LLSF) is well-suited for benchmarking logistics scenarios. The rest of this
paper is organized as follows. In the next section we briefly overview the Logistics
League and outline some interesting challenges of the league in Sect. 3. In Sect. 4
we show how the LLSF can become a benchmark test for logistic scenarios. Then
we conclude.

2 The Logistics League Sponsored by Festo

In this section, we introduce the Logistics League Sponsored by Festo (LLSF) as
a novel league under the roof of the RoboCup Federation. The objective of the
LLSF is the following. Teams of robots have to transport semi-finished prod-
ucts from machine to machine in order to produce some final product accord-
ing to some given production plan.
Machines can break down, products
may have inferior quality, additional
important orders come in and need
to be machined at a higher prior-
ity. For the LLSF, a team consisting
of up to three robots starts in the
game area of about 5.6m× 5.6m. A
number of semi-finished products is
represented by RFID-tagged pucks.
Each is in a particular state, from

Fig. 1. A LLSF competition during the
RoboCup 2012 in Mexico City

raw material through intermediate steps to being a final product. The state can-
not be read by the robot but must be tracked and communicated among the
robots of a team. On the playing field are machines, RFID devices with a signal
light indicating their processing status. When placed on a proper machine type,
a puck changes its state according to the machine specification. The outcome and
machine state is indicated by particular light signals. During the game a num-
ber of different semi-finished products need to be produced with ten machines
on the playing field. Orders are posted to the robots requesting particular final
products to be delivered to specific delivery gates and in specified time slots. All
teams use the same robot base, a Festo Robotino which may be equipped with
additional sensor devices and computing power, but only within certain limits.

3 Challenges in the LLSF

The LLSF poses a number of very interesting AI and robotics research ques-
tions to be addressed ranging from planning algorithms for flexible supply chain
optimization, path planning, dealing with incomplete information and noisy per-
ception to multi-robot cooperation. The robots need to be autonomous, detect
the pucks, detect and identify the light signals from the machines, know where
they are and where to deliver the final product to. Basic robotics problems such
as localization, navigation, collision avoidance, computer vision for the pucks

298 T. Niemueller et al.

and the light signals needs to be solved. Of course, all these modules have to
be integrated into an overall robust software architecture. On top of that, the
teams need to schedule their production plan. This opens the field to various
concepts from full supply chain optimization approaches to simpler job market
approaches. If the robots are able to prioritize the production of certain goods
they can maximize the points they can achieve. In order to avoid resource con-
flicts (there can only be one robot at a machine at a time), to update other
robots about the current states of machines and pucks, and to delegate (partial)
jobs of the production process, inter-robot communication is required. There is a
variety of complex scenarios that is captured by the LLSF which are important
for evaluating the performance of logistics robots. Currently, only some tasks
and command variables of the production process are taken into account. In the
future, further tasks can be defined for evaluating different objectives such as
efficient machine usage, throughput optimization, or energy efficient production.
In the next section we outline how the LLSF can be developed into a benchmark
for logistics scenarios before we conclude.

4 Developing the LLSF into a Benchmark

What features are required for the LLSF to become a benchmark for logistics
scenarios for mobile robots? Following [2], features for a benchmark are: (1) the
robot needs to perform a real mission; (2) the benchmark must be accepted in
the field; (3) the task has a precise definition; (4) repeatability, independency,
unambiguity of the test; (5) collection of ground-truth data.

The key question is what are the important aspects which a standard test
must include. An important dimension for logistics scenarios for CPS are supply
chain optimization (SCO) in an uncertain domain with failing machines and
varying product qualities. Here, not only a single-robot scenario can be tested
but also a multi-robot scenario can be benchmarked. The important aspect that
can be tested is the performance of the robot system as such, e.g., how good are
the path planning or collision avoidance capabilities of the robot while being
deployed in a real task. The tasks can vary from different command variables
such as overall output of goods or operating grade of a machine. In order to
evaluate these aspects, we make use of an (semi-)automated referee system [3]
which keeps track of the score that is achieved by the competitor and an overhead
camera tracking system [4] (which is being tested at the moment) which provides
ground-truth data of the positions of the robots and products (pucks) during the
game. Additionally, the referee box keeps track of the machine states, so that
the whole game can be reconstructed from the logged data. This allows for an
unambiguous benchmark as each (automated) decision can be retraced. As the
behavior of the machines can be programmed, each team could get the same
machine setup. This ensures repeatability of the test. Some quantitative result
of the supply chain optimization aspects such as throughput could fairly easily
be judged by the score that a team achieves during a game. Other robotics
tasks such as path planning or shortest paths metrics could be tracked with the
overhead tracking system. An overall score could be established in comparison to

Towards Benchmarking Cyber-Physical Systems 299

a reference algorithm. The standard tests we are aiming at are to test capabilities
of supply chain optimization in single- and multi-robot scenarios and integrated
robotics tasks. The former can be tested by varying the command variables of
the production process in different production scenarios, the latter can be tested
with the provided ground-truth data. This way, parameters as effective path
planning, collision avoidance and cooperative team behavior can be evaluated.

5 Conclusion

In this paper, we proposed the novel RoboCup Logistic League Sponsored by
Festo as a robot competition benchmark for the emerging research field for cyber-
physical system on the backdrop that logistic robots will become ever more
important in future production scenarios. The LLSF is an interesting scenario
for testing supply chain optimization algorithms where the production plan is
carried out by robots in a real (mock-up) assembly line, either as a single-robot or
even as a multi-robot problem. An interesting aspect is that the environment is
uncertain, machines can fail, products can have inferior quality. Another source
of uncertainty is the robot itself. The produced goods are carried around by real
robots. This requires to deal with incomplete information, address noisy sensing,
and build integrated logistic robot systems.

Besides the interesting aspects of logistics scenarios that are captured by
the LLSF, for the LLSF an automated referee system (referee box) [3] and an
overhead tracking system has been implemented. The referee box keeps track of
all important events of the game, tracking the states of the machines during the
game and points scored by a team. Together with the overhead robot tracking
system, which has been adopted from a tracking system from RoboCup’s Small-
Size League [4], the referee box is also able to track the robots’ and the products’
positions during the game. This allows for a complete log-file of the match.
With this information automated evaluations of games can be done allowing to
compare different aspects of logistics scenarios. With these systems in place the
LLSF has a high potential to develop into a standard testbed for logistics tasks.

References

1. Lee, E.: Cyber Physical Systems: Design Challenges. In: 11th IEEE International
Symposium on Object Oriented Real-Time Distributed Computing (ISORC 2008),
pp. 363–369 (2008)

2. Dillmann, R.: Benchmarks for robotics research. Technical report, EURON (2004),
http://www.cas.kth.se/euron/euron-deliverables/ka1-10-benchmarking.pdf

3. Niemueller, T., Ewert, D., Reuter, S., Ferrein, A., Jeschke, S., Lakemeyer, G.:
RoboCup Logistics League Sponsored by Festo: A Competitive Factory Automa-
tion Testbed. In: RoboCup Symposium 2013 (in press, 2013)

4. Zickler, S., Laue, T., Birbach, O., Wongphati, M., Veloso, M.: SSL-Vision:
The Shared Vision System for the RoboCup Small Size League. In: Baltes, J.,
Lagoudakis, M.G., Naruse, T., Ghidary, S.S. (eds.) RoboCup 2009. LNCS, vol. 5949,
pp. 425–436. Springer, Heidelberg (2010)

http://www.cas.kth.se/euron/euron-deliverables/ka1-10-benchmarking.pdf

Syntactic Similarity for Ranking Database

Answers Obtained by Anti-Instantiation

Lena Wiese

Institute of Computer Science
University of Göttingen, Goldschmidtstrasse 7, 37077 Göttingen, Germany

lena.wiese@uni-goettingen.de

Abstract. Flexible query answering can be implemented in an intelli-
gent database system by query generalization to obtain answers close to
a user’s intention although not answering his query exactly. In this paper,
we focus on the generalization operator “Anti-Instantiation” and inves-
tigate how syntactic similarity measures can be used to rank generalized
queries with regard to their closeness to the original query.

1 Introduction

Searching for data in a conventional database is a tedious task because a correct
and exact formulation of the query conditions matching a user’s query intention
is often difficult to achieve. This is why users need the support of intelligent and
flexible query answering mechanisms. Cooperative (or flexible) query answering
systems internally revise failing user queries and return answers to the user that
are more informative for the user than just an empty answer. In this paper, we
devise a ranking based on similarity of conjunctive queries that are generated
by a generalization procedure. With this ranking the database system has the
option to only answer the queries most similar to the original query.

In this paper we focus on flexible query answering for conjunctive queries.
Throughout this article we assume a logical language L consisting of a finite set
of predicate symbols (for example denoted Ill, Treat or P), a possibly infinite set
dom of constant symbols (for example denoted Mary or a), and an infinite set of
variables (for example denoted x or y). A query formula Q is a conjunction of
atoms with some variables X occurring freely (that is, not bound by variables);
that is, Q(X) = Li1 ∧ . . . ∧ Lin . The CoopQA system [1] applies three general-
ization operators to a conjunctive query (which – among others – can already
be found in the seminal paper of Michalski [2]). In this paper we focus only on
the Anti-Instantiation (AI) operator that replaces a constant (or a variable
occurring at least twice) in Q with a new variable y.

Example 1. As a running example, we consider a hospital information system
that stores illnesses and treatments of patients as well as their personal infor-
mation (like address and age) in the following three database tables:

I.J. Timm and M. Thimm (Eds.): KI 2013, LNAI 8077, pp. 300–303, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Syntactic Similarity for Ranking Database Answers 301

Ill PatientID Diagnoses

8457 Cough
2784 Flu
2784 Bronchitis
8765 Asthma

Treat PatientID Prescription

8457 Inhalation
2784 Inhalation
8765 Inhalation

Info PatientID Name Address

8457 Pete Main Street 5, Newtown
2784 Mary New Street 3, Newtown
8765 Lisa Main Street 20, Oldtown

The example query Q(x1, x2, x3) = Ill(x1,Flu)∧ Ill(x1,Cough)∧ Info(x1, x2, x3)
asks for all the patient IDs x1 as well as names x2 and addresses x3 of
patients that suffer from both flu and cough. This query fails with the
given database tables as there is no patient with both flu and cough.
However, the querying user might instead be interested in the patient
called Mary who is ill with both flu and bronchitis. For Q(x1, x2, x3) =
Ill(x1,Flu)∧Ill (x1,Cough)∧Info(x1, x2, x3) an example generalization with AI is
QAI(x1, x2, x3, y) = Ill (x1,Flu)∧Ill (x1, y)∧Info(x1, x2, x3). It results in an non-
empty (and hence informative) answer: Ill(2748,Flu) ∧ Ill(2748,Bronchitis) ∧
Info(2748,Mary, ‘New Street 3 ,Newtown ‘).

2 Similarity Measures

Based on feature sets of two objects a and b, similarity between these two objects
can be calculated by means of different similarity measures. That is, if A is a
feature set of a and B is the corresponding feature set of b, then A∩B is the set
of their common features, A \ B is the set of features that are only attributed
to A, and B \ A is the set of features that are only attributed to B. We obtain
the cardinalities of each set: l = |A ∩ B|, m = |A \ B|, and n = |B \ A| and
use them as input to specific similarity measures. In this paper, we focus on the
ratio model [3] (in particular, one of its special cases called Jaccard index).

Definition 1 (Tversky’s Ratio Model [3], Jaccard Index). A similarity
measure sim between two objects a and b can be represented by the ratio of
features common to both a and b and the joint features of a and b using a non-
negative scale f and two non-negative scalars α and β. The Jaccard index is a
special form of the ratio model where α = β = 1 and f is the cardinality | · |:

simjacc(a, b) =
|A ∩B|

|A ∩B|+ |A \B|+ |B \A| =
|A ∩B|
|A ∪B| =

l

l +m+ n

Ferilli et al [4] introduce a novel similarity measure that is able to also differ-
entiate formulas even if l = 0; this measure is parameterized by a non-negative
scalar α. We call this similarity measure α-similarity and let α = 0.5 by default.

Definition 2 (α-Similarity [4]). The α-similarity between two objects a and
b consists of the weighted sum (weighted by a non-negative scalar α, and adding

302 L. Wiese

1 to the numerators and 2 to the denominators) of the ratios of shared features
divided by the features of a alone and the features of b alone whenever a �= b:

simα(a, b) = α · |A ∩ B|+ 1

|B|+ 2
+(1−α) · |A ∩B|+ 1

|A|+ 2
= α · l + 1

l + n+ 2
+(1−α) · l + 1

l +m+ 2

In case a = b the similarity is 1: simα(a, a) = 1.

3 Similarity for Anti-Instantiation

We calculate the similarity between the original query Q and a query QAI∗

obtained by the AI operator. We concentrate on the following sets of features:

Predicates in the query: The predicates of Q and QAI∗
are identical:

Pred(Q) = Pred(QAI∗
) leading to similarity 1 on the predicate feature.

Constants in the query: The set of constants in QAI∗
might be reduced

compared to Q: Const(QAI∗
) ⊆ Const(Q); we have l ≤ 0, m ≤ 0 and n = 0.

Variables in the query: Because each AI step introduces a new variable,
we have Vars(Q) ⊆ Vars(QAI∗

) and hence l ≤ 0, m = 0 and n ≤ 1.
Star of a literal: For each literal Li of Q the amount of connections to
other literals is always greater or equal to the amount of connections in
QAI∗

. We borrow the definition of a star of a literal [4] that contains all
predicate symbols of other literals that share a term with the chosen literal.
We denote Terms(Li ,Q) the set of terms of literal Li in Q.

Definition 3 (Star of a literal [4])). For a literal Li in a given query Q
we define the star of Li to be a set of predicate symbols as follows

Star(Li ,Q) = {P | there is Lj ∈ Q, i �= j, such that Lj = P (t1, . . . tk) and

Terms(Lj ,Q) ∩ Terms(Li ,Q) �= ∅} ⊆ Pred(Q)

Hence, Star(Li ,Q
AI∗

) ⊆ Star(Li ,Q) and l ≤ 0, m ≤ 0 and n = 0.
Relational positions of a term: Lastly, we borrow the notion of relational
features from [4]. Such a relational feature of a term is the position of the term
inside a literal Lj = P (t1, . . . tk): If a term t appears as the h-th attribute in
literal Li (that is, th = t for 1 ≤ h ≤ k), then P.h is a relational feature of
t. Let then Rel(t, Q) denote the multiset of all relational features of a term
t in query Q. For a term t in Q some its positions might be lost in QAI∗

.
Hence, Rel(t, QAI∗

) ⊆ Rel(t, Q) and l ≤ 0, m ≤ 0 and n = 0.

Example 2. The example query Q(x1, x2, x3) = Ill(x1,Flu) ∧ Ill(x1,Cough) ∧
Info(x1, x2, x3) can be generalized (by anti-instantiating cough with a new vari-
able y) to be QAI

1 (x1, x2, x3, y) = Ill(x1,Flu) ∧ Ill (x1, y) ∧ Info(x1, x2, x3). An-
other possibility (by anti-instantiating one occurrence of x1 with a new variable
y) is the query QAI

2 (x1, x2, x3, y) = Ill(y,Flu)∧ Ill (x1,Cough)∧ Info(x1, x2, x3).
Summing all features (predicates, constants, variables, stars and relational) and
dividing by 5 gives us the overall average for each similarity measure and for each

Syntactic Similarity for Ranking Database Answers 303

formula: The first query QAI
1 (with an average Jaccard index of 0.81 and an av-

erage α-similarity of 0.84) is ranked very close to the second query QAI
2 (with

an average Jaccard index of 0.80 and an average α-similarity of 0.84) because
while more constants are lost in QAI

1 more joins are broken in QAI
2 .

Next, we analyze the effect of multiple applications of the AI operator on the
similarity values. We have the following monotonicity property: if A is a feature
set of the original Q, B is the corresponding feature set of QAI∗

, and C is the
corresponding feature set of a query QAI+

such that QAI+

can be obtained from
QAI∗

by applying more AI steps, then we have that either a) more variables

are added in QAI+

(that is, B \ A ⊆ C \ A) or b) (in case of all other feature
sets) more features lost (that is, A \ B ⊆ A \ C). If one of these inclusions is

proper, then the similarity of QAI∗
to Q is higher than the similarity of QAI+

.
More formally, for n = |B \ A| and n′ = |C \ A| as well as m = |A \ B| and
m′ = |A\C| and postulating that n < n′ or m < m′ for any feature, we have that

sim(Q,QAI∗
) > sim(Q,QAI+

). Due to this monotonicity property, queries with
more anti-instantiations are ranked lower as shown in the following example.

Example 3. We consider two steps of Anti-Instantiations on our example query
Q(x1, x2, x3) = Ill(x1Flu)∧Ill (x1,Cough)∧Info(x1, x2, x3). One such generalized
query can be QAI,AI(x1, x2, x3, y, z) = Ill(y,Flu) ∧ Ill (x1, z) ∧ Info(x1, x2, x3)
with two new variables y and z (which is a combination of the two AI steps
of QAI

1 and QAI
2). The query with two anti-instantiations is ranked below the

queries with one anti-instantiation: 0.63 for the Jaccard index and 0.73 for α-
similarity. Queries with one anti-instantiations would hence preferably answered.

4 Discussion and Conclusion

We applied two similarity measures (Jaccard index and α-similarity) to evalu-
ate the syntactic changes that are executed on conjunctive queries during anti-
instantiation and can hence support the database system to intelligently find
relevant information for a user. A comprehensive similarity framework that re-
spects all possible combinations of the operators DC, GR and AI (as introduced
and analyzed in [1]) is the topic of future work as well as a comparison to related
approaches and the consideration of semantic (term-based) similarity.

References

1. Inoue, K., Wiese, L.: Generalizing conjunctive queries for informative answers. In:
Christiansen, H., De Tré, G., Yazici, A., Zadrozny, S., Andreasen, T., Larsen, H.L.
(eds.) FQAS 2011. LNCS, vol. 7022, pp. 1–12. Springer, Heidelberg (2011)

2. Michalski, R.S.: A theory and methodology of inductive learning. Artificial Intelli-
gence 20(2), 111–161 (1983)

3. Tversky, A.: Features of similarity. Psychological Review 84(4), 327–352 (1977)
4. Ferilli, S., Basile, T.M.A., Biba, M., Mauro, N.D., Esposito, F.: A general similarity

framework for horn clause logic. Fundamenta Informaticae 90(1-2), 43–66 (2009)

Towards the Intelligent Home:
Using Reinforcement-Learning for Optimal

Heating Control

Alexander Zenger1, Jochen Schmidt1, and Michael Krödel2

1 Fakultät für Informatik, Hochschule Rosenheim, Germany
2 Fakultät für Angewandte Natur- und Geisteswissenschaften

Hochschule Rosenheim, Germany

Abstract. We propose a reinforcement learning approach to heating
control in home automation, that can acquire a set of rules enabling
an agent to heat a room to the desired temperature at a defined time
while conserving as much energy as possible. Experimental results are
presented that show the feasibility of our method.

1 Introduction

By far the most energy in homes is used on heating, one of the main reasons
being badly insulated buildings that were constructed before there was any legal
obligation to conserve energy. Using home automation technology the energy
consumption of buildings can be controlled much more efficiently than by ad-
justing heating parameters manually. Up to now, mainly model-based methods
are used for this purpose, e. g. [2] where a model of environment and building
has to be parametrized. Correct modeling is complex and requires expertise on
how buildings and rooms behave when heated. As the behavior can change over
time due to modifications (e. g., replacing carpet by solid hardwood flooring), the
model has to be adjusted accordingly each time. Therefore, adaptable machine
learning techniques that do not require model building are an interesting way
of dealing with these issues in home automation. Machine learning approaches
have been applied in home automation to some degree. For example [4] uses a
neural network to learn when inhabitants are at home in order to control resi-
dential comfort systems according to their needs. While reinforcement learning
is relatively popular in control engineering for designing low-level control units
(cf. [1]), to our knowledge, this is the first time reinforcement learning is used
in the context described in this paper. Not only is it important that the desired
temperature is reached, but also that this is achieved with low energy consump-
tion. The goal is to heat a room, which has cooled-off to a certain temperature,
to a defined temperature within a given period of time. This is a typical use-case
for office buildings, where the heating is normally ramped down over night to
conserve energy. In the morning, when employees arrive at their workplace, room
temperature should have reached a pleasant level again. Obviously, as the room
cool-off over night, the heating has to be turned on at a certain point: Done

I.J. Timm and M. Thimm (Eds.): KI 2013, LNAI 8077, pp. 304–307, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Towards the Intelligent Home 305

too early, this leads to waste of energy and increased heating costs. The optimal
moment depends on several factors, e. g., inside and outside temperatures, con-
struction materials, etc., and is different for each room. We propose a system
for automatic heating control that acquires a set of rules automatically during
normal use. A heating controller is capable of learning actively by executing
defined actions. No data collection is required beforehand.

2 Environment Model and Learning

In reinforcement learning, the agent has no a priori knowledge of the environ-
ment’s behavior. The system learns by trial and error how actions and states
are linked. The algorithm used in this paper is SARSA(λ) [5,6], which learns
state-action pairs. We reward the learning algorithm only when the final state is
reached, therefore a modified version of this method is used as described in [3],
where a history of actions and states is stored in each iteration. At the end of an
iteration the history is traversed reversely and the utility values are propagated.

After several iterations the system has learned a set of rules that would always
be used from there on, as it is the best rated one. A balance is required between
exploitation of already learned actions and exploration of new ones. We apply
the ε-greedy strategy for exploration, where the present solution is used with a
probability of 1 − ε, and a randomly selected action otherwise. At the start, ε
should be high, so that new rules can be learned quickly. It can be reduced after
some solutions have been found based on the residual error.

The system’s performance depends highly on the rewards ri that the agent
receives for its actions. We suggest to use the following reward function:

ri =

⎧⎪⎨
⎪⎩

(ri−1/α) + 0.01 ri−1 if target temperature reached and end of duration
−0.01 if target temperature not reached and end of duration
0.0 otherwise

(1)
where α is the learning rate. The “duration” is a defined maximum number of
actions that the agent can perform. The design of the reward function (1) is based
on the observations that (a) less heating cycles must result in higher rewards and
(b) when a better solution is found by the learning algorithm just once, it should
result in a positive reward that is high enough for leaving the current range of
rewards. To compute a reward for a given index, a suitable initial value r0 has
to be defined. It has to be sufficiently small, so that no overflows are generated,
but high enough so that it can be represented by the selected floating point data
type. We use a double precision type and r0 = 0.01. This allows for up to 316
iterations, while a negative reward can still be balanced even in the worst case.

For evaluation we used two main setups: One setup is a pure software solu-
tion, i. e., there is no actual heating mechanism controlled. This allows for fast
simulation of heating and cooling processes, which might take hours or even days
in a real environment. The second setup (the Model Room) consists of a physical

306 A. Zenger, J. Schmidt, and M. Krödel

small-scale room model as well as an actual heating element and sensors con-
nected to a home automation controller. Only the latter will be described here.
As heating a real room to conduct experiments would not lead to reproducible
results due to uncontrollable environment conditions, we use a small scale model
room for this purpose instead. Its behavior corresponds to the situation in a
real building and requires a pre-heating (or pre-cooling-off) period before exper-
iments are conducted to reach the desired initial room temperature. The model
room consist of a styrofoam box, which has insulation characteristics similar
to those of a real room. The outside environment is simulated by placing the
box inside a refrigerator which lets the model room cool-off over time while not
heated. Temperature sensors are mounted inside the box and the refrigerator,
respectively. A 15 watt light bulb located in the center of the box is used as the
heating element. It can be turned off and on by a controller that also collects
temperature information and is connected to a Unix server running the AI soft-
ware. We use a WAGO controller [7], which is a standard component for process
or building automation.

3 Experimental Results

To evaluate the presented system, we conducted different experiments; only one
will be described here. Each experiment consists of a number of iterations. A
single iteration corresponds to a complete run heating up the room starting at a
defined initial temperature of 8.0◦C to a target temperature of 15.0◦C. In each
iteration, the agent has a defined number of steps where actions can be taken.
The number of steps is called duration further on. The set of possible actions
consists of turning the heating element on or off. Every experiment begins with
an empty data set, which means the agent has no previous knowledge and thus
has to learn everything anew. Rewards are computed according to (1) using r0 for
initialization. The minimum heating cycles in the first iteration are initialized
using the duration value of 10 steps. To accelerate and improve the learning
process, the ε parameter is varied as follows: For the first 100 iterations we
increased ε to a value of 0.8, thus allowing the agent to explore more. Then
ε was decreased to 0.01, and the algorithm ran another 123 iterations, thereby
letting the agent exploit the recently learned data and generate a stable outcome
(100 iterations for learning, and additional 23 iterations to check the validity of
the result). Figure 1 (left) shows that the target temperature was reached in
about 50% of the cases. The process is depicted in Fig. 1 (right). It shows that
the defined temperature is immediately reached and kept after decreasing ε at
iteration 101. This is because a first solution was already found at iteration 24,
and improved at iteration 44 during the intensive exploration phase. As a result
the target temperature was reached faster and more often. Further improvement
is possible by decreasing ε right after the first time a solution was found.

The main advantage of our approach over more traditional model building
ones is that it does not require tedious manual adjustments of model param-
eters, which have to be performed anew for each room, as every one behaves

Towards the Intelligent Home 307

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

105

110

115

10 11 12 13 14 15 16 17 18 19 20 21
Endtemperature

Q
ua

nt
ity

factor(endTemp)
10
11
12
13
14
15
16
17
18
19
20
21

Epsilon=0.80 Epsilon=0.01

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

0 20 40 60 80 100 120 140 160 180 200 220
Iterations

Q
ua

nt
ity

Legend
current heating cycles
Endtemperature in degree
minimum heating cycles

Fig. 1. Left: Reached temperatures histogram. Right: Experiment process.

differently. We have presented experimental results demonstrating that the tar-
get temperature is reached and kept over time. Future work will include dynamic
adaptions of exploitation and exploration phases, as well as further experiments
in real environments, in particular normal size rooms.

References

1. Anderson, C., Hittle, D., Ketchmar, R., Young, P.: Robust reinforcement learning for
heating, ventilation, and air conditioning control of buildings. In: Si, J., Barto, A.,
Powell, W., Wunsch, D. (eds.) Learning and Approximate Dynamic Programming,
ch. 20, pp. 517–534. D., John Wiley & Sons (2004)

2. Ellis, C., Hazas, M., Scott, J.: Matchstick: A room-to-room thermal model for pre-
dicting indoor temperature from wireless sensor data. In: Proc. of IPSN 2013 (2013)

3. Krödel, M.: Autonome Optimierung des Verhaltens von Fahrzeugsteuerungen auf
der Basis von Verstärkungslernen. Ph.D. thesis, Universität Siegen, Germany (2006)

4. Mozer, M.C.: The neural network house: An environment that adapts to its in-
habitants. In: Coen, M. (ed.) Proc. of the AAAI Spring Symposium on Intelligent
Environments, pp. 110–114. AAAI Press (1998)

5. Rummery, G.A., Niranjan, M.: On-line q-learning using connectionist systems. Tech.
rep., University of Cambridge, Department of Engineering (1994)

6. Sutton, R.S., Barto, A.G. (eds.): Reinforcement Learning: An Introduction (Adap-
tive Computation and Machine Learning). The Mit Press (1998)

7. WAGO Kontakttechnik GmbH & Co. KG., http://www.wago.us

http://www.wago.us

A Prolog-Based Tutor for Multi-column

Subtraction with Multiple Algorithms Support

(Software Demonstration)

Claus Zinn

Department of Computer Science, University of Konstanz
Funded by the DFG (ZI 1322/2/1)
claus.zinn@uni-konstanz.de

Abstract. We present an intelligent tutoring system capable of analysing
learner input across multiple reference models. Its main component, the
diagnoser, is build upon logic programming techniques. It uses a novel
variant of Shapiro’s algorithmic debugging method, whose scientific as-
pect is described in our full technical contribution to KI-13 [3]. In this
poster, we show the use of the diagnoser in the overall tutoring system.

1 Introduction

Intelligent systems appear intelligent because they are designed to perform in
well-defined contexts. This also holds for intelligent tutoring systems (ITSs),
where the diagnosis of learner behaviour is best possible in domains that tend
to be highly structured, and for which problem solving strategies can be easily
represented and executed. It is clear that ITS designers must define the system’s
domain of instruction, and thus the amount of expertise that it requires. But
all too often, the designers also expect learners to solve tasks in the chosen
domain by following a single, prescribed algorithm. The actions that learners
can perform are further constrained by the design of the system’s graphical user
interface (GUI) and the design of the interaction. Often, learners are forced to
submit their solution in a piece-meal fashion, leaving little room for learners to
explore, and deviate from, the solution space on their own.

All constraints have rather practical than pedagogical reasons. They reduce
the cost of authoring, and keep manageable the computational complexity of the
diagnosis engine. In addition, if learners were allowed to exhibit multiple problem
solving strategies, then the system must be capable of identifying the strategy
learners are most likely following. With learner input being often erroneous, this
task is not trivial.

Our method for the cognitive diagnosis of input is based upon an innovative
use of Shapiro’s algorithmic debugging technique [1], whose adaptation is de-
scribed in [2]. Our technical contribution to KI-2013 describes how we extended
our method to take into account multiple reference models for the analysis of
learner input [3]. As a result, we are able to loosen the tight leash between tu-
toring system and learner. In this system demonstration paper, we describe the
practical use of our method in a prototypical intelligent tutoring system.

I.J. Timm and M. Thimm (Eds.): KI 2013, LNAI 8077, pp. 308–311, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

A Prolog-Based Subtraction Tutor 309

2 The Domain of Instruction

Our chosen domain of instruction is multi-column subtraction, an area well stud-
ied in the intelligent tutoring community. There are several algorithms.

In the Austrian method, sums are processed column by column, from right
to left. If the subtrahend S of the current column is greater than the column’s
minuend M, then M is increased by 10 (borrowing) before the difference M-S is
taken. To compensate, the S in the column left to the current one is increased
by one (payback). The trade-first variant of the Austrian method performs the
same steps than the Austrian method, but in a different order. First, all pay-
back and borrowing operations are executed, then all differences are taken. The
decomposition method realizes the payback operation by decrementing minu-
ends rather than incrementing subtrahends. The left-to-right method processes
sums in the opposite direction; also, payback operations are performed on result
rather than minuend or subtrahend cells. – All methods have been implemented
in (SWI-)Prolog, see http://www.swi-prolog.org/.

3 The Look and Feel of the Tutoring System

Figure 1 depicts the GUI of our subtraction tutor. It has four main areas.

Fig. 1. The Front-End of the Tutoring System

The problem statement area (top) allows users to define their own subtraction
problems. Unlike other systems, there are no predefined problems that learn-
ers must choose from. When the user enters two arbitrary integers and presses
“Subtract”, the problem solving area is automatically generated, with the task
to subtract the smaller from the larger number.

http://www.swi-prolog.org/

310 C. Zinn

The problem solving area (middle left) display the subtraction problem as a
matrix of four rows. Each column has a label (“ones” (O), “tens” (T), “hundreds”
(H) etc.) as well as a minuend, subtrahend, and result cell. Learners can interact
with all but the label cells, and in arbitrary order. A click on a minuend or
subtrahend cell (resp. result cell) opens a number pane with numbers ranging
from 0 to 19 (resp. 0 to 9); the learner’s selection is entered in the cell.

In the explanation area (middle right), learners receive feedback when ask-
ing for next-step help, or the diagnosis of their input. All feedback is directly
derived from our algorithmic debugger, which determines the first irreducible
disagreement between the tutor’s expert subtraction method (the best-ranked
method, which the system believes the learner is following) and observed learner
behaviour [2,3]. System feedback is verbalised using template-based natural lan-
guage generation. Feedback also involves filling or modifying cells in the sub-
traction matrix; those are marked red.

In the command area, learners can request – at any time during problem
solving – help or diagnosis, the entire solution to a given problem, or a restart.

The GUI is designed not to favour any particular subtraction method. Learn-
ers can perform actions following any of the four subtraction methods, or er-
roneous variants thereof. Moreover, learners can click on any of the interaction
elements at any time; system feedback is only given when learners request it.

4 Technical Architecture

The client-server architecture of our system follows a Model-View-Controller
(MVC) design pattern, see Fig. 2. There is, thus, a clear separation of knowledge
sources, which supports the division of labour among Prolog and GUI developers.

Fig. 2. The Technical Architecture of the Tutoring System

The model, hosted on the server, encapsulates an application’s business logic
or state. In our system, the model is entirely implemented in Prolog. It contains:
(i) four modules, each containing one algorithm for multi-column subtraction;
(ii) a domain-independent diagnosis module that encodes algorithmic debugging,

A Prolog-Based Subtraction Tutor 311

including the ranking method that identifies the strategy the learner is most
likely following [3]; (iii) four modules, each mechanising the Oracle for one of
the subtraction algorithms; and (iv) a state handler, which stores the current
subtraction task, its solution, and some other state-related information.

The view, on the client-side, represents an application’s GUI. It displays a
representation of the world state, allows users to perform actions to manipulate
the state, and displays graphical and textual feedback. It is written in HTML
and Javascript and makes use of the Dojo Toolkit http://dojotoolkit.org/.

All information flow between the model and the view is mediated by the
controller. The controller is divided in a client-side (Javascript) and a server-
side (Prolog) component. The client-side controller translates a GUI interaction
into an HTTP request that is sent to the server-side controller, which translates it
to an appropriate request to the model. When the model’s answer is received, it
is then mediated back from the server-side controller to the client-side controller,
which in turn, instructs the view to update its display accordingly.

5 Conclusion and Future Work

We have presented a subtraction tutor that loosens the tight leash between
system and learners. Our learners are free to follow one of four possible problem
solving strategies; the tutor’s GUI and interaction design restricts learners’ scope
of action as little as possible; and system feedback will only be delivered upon
request. In [3], we show that our approach increases the diagnostic capability of
the system, despite of the wider range of input that needs to be processed. The
computational costs are negligible, permitting the addition of more strategies.

In the future, we would like to adapt the GUI so that school children can
comfortably use it. For this, we will include teachers and learners to improve
the system’s usability. We also envision a system where learners can solve sub-
traction problems more naturally, and have started integrating a handwriting
recognition engine. Ideally, we want users of touch-enabled computer devices to
solve problems very close to the natural paper and pencil approach.

System Availability. The subtraction tutor is available at
http://www.inf.uni-konstanz.de/~zinn/. We have also implemented
single-model tutors for each of the subtraction methods. Feedback is highly
welcome.

References

1. Shapiro, E.Y.: Algorithmic Program Debugging. ACM Distinguished Dissertations.
MIT Press (1983); Thesis (Ph.D.) – Yale University (1982)

2. Zinn, C.: Algorithmic debugging to support cognitive diagnosis in tutoring systems.
In: Bach, J., Edelkamp, S. (eds.) KI 2011. LNCS, vol. 7006, pp. 357–368. Springer,
Heidelberg (2011)

3. Zinn, C.: Algorithmic debugging for intelligent tutoring: How to use multiple models
and improve diagnosis. In: Timm, I.J., Thimm, M. (eds.) KI 2013. LNCS (LNAI),
vol. 8077, pp. 272–283. Springer, Heidelberg (2013)

http://dojotoolkit.org/
http://www.inf.uni-konstanz.de/~zinn/

Author Index

Arnold, Frederik 212
Artmann, Stefan 224

Beckstein, Clemens 224
Beierle, Christoph 176
Bercher, Pascal 1
Berghöfer, Elmar 200
Bergmann, Ralph 13
Biundo, Susanne 1
Boukricha, Hana 25
Buettner, Ricardo 37

Carminati, Maria Nella 25

Ecke, Andreas 49
Edelkamp, Stefan 74, 284
Elfers, Carsten 284
Ewert, Daniel 296

Ferrein, Alexander 296
Friedrich, Gerhard 106

Gath, Max 74
Gebhardt, Kilian 61
Geier, Thomas 1
Gieseke, Fabian 86
Greulich, Christoph 74

Heinermann, Justin 86
Hertzberg, Joachim 292
Hoffmann, Jörg 188

Jeschke, Sabina 296

Karras, Ulrich 296
Kern-Isberner, Gabriele 176
Kirchner, Frank 200
Kissmann, Peter 188
Knoeferle, Pia 25
Köhler, Tim 200
Kramer, Oliver 86, 98, 164
Krödel, Michael 304

Lakemeyer, Gerhard 296
Ludwig, Bernd 130

Manthey, Norbert 61
Mattar, Nikita 288
Mattmüller, Robert 140
Mersheeva, Vera 106
Messerschmidt, Hartmut 284
Mies, Christoph 292
Möller, Ralf 118
Mossakowski, Till 248
Müller, Gilbert 13

Neuenstadt, Christian 118
Niemueller, Tim 296

Ohm, Christina 130
Ortlieb, Manuela 140
Ostermann, Simon 212
Özçep, Özgür L. 118

Pelzer, Björn 152
Peñaloza, Rafael 49
Poloczek, Jendrik 164
Polsterer, Kai Lars 86
Potyka, Nico 176

Rauber, Thorsten 188
Rauch, Christian 200
Reifers, Saskia 212
Reuter, Sebastian 296

Schäfer, Ulrich 212
Schäufler, Christian 224
Schmidt, Jochen 304
Schmidt-Thieme, Lars 260
Storandt, Sabine 236

Turhan, Anni-Yasmin 49

van Delden, André 248

Wachsmuth, Ipke 25, 288
Wandelt, Sebastian 118
Wiese, Lena 300
Wistuba, Martin 260
Wittkowsky, Daniel 13

Zenger, Alexander 304
Zinn, Claus 272, 308

	Preface
	Organization
	Invited Talks
	Table of Contents
	Using State-Based Planning Heuristics
for Partial-Order Causal-Link Planning
	1 Introduction
	2 POCL Planning
	3 Using State-Based Heuristics for POCL Planning
	4 Discussion
	5 Evaluation
	6 Conclusion
	References

	Workflow Clustering Using�Semantic Similarity Measures
	1 Introduction
	2 Workflow Representation and Semantic Similarity
	2.1 Representation of Semantic Workflows
	2.2 Semantic Similarity

	3 Workflow Clustering
	3.1 Selection of Clustering Method
	3.2 Integrating Semantic Workflow Similarity
	3.3 Performance Considerations

	4 Case Study: Clustering Cooking Workflows
	4.1 Implementation and Repository Creation
	4.2 Internal Evaluation
	4.3 External Evaluation

	5 Conclusions, Related and Future Work
	References

	Empathy and Its Modulation in a Virtual Human
	1 Introduction
	2 Related Work
	3 A Computational Model of Empathy
	3.1 Empathy Mechanism
	3.2 Empathy Modulation
	3.3 Expression of Empathy

	4 Application and Evaluation
	4.1 Design and Procedure
	4.2 Results
	4.3 Discussion

	5 Conclusion
	References

	Cognitive Workload of Humans Using Artificial Intelligence Systems: Towards Objective
Measurement Applying Eye-Tracking Technology
	1 Introduction
	2 Related Work
	2.1 Pupillary Responses and Eye Movements as Cognitive Workland Indicators in Human Psychophysiology Researcj

	2.2 Pupillary Responses and Eye Movements as Cognitive Workload Indicators in IS Reseach

	3 Methodology
	3.1 Description of Prototyped Systems with Different AI-support
	3.2 Laboratory Setting and Sampling Strategy

	4 Results
	5 Discussion
	6 Conclusion
	6.1 Limitations
	6.2 Future Work

	References

	Computing Role-Depth Bounded
Generalizations in the Description Logic ELOR
	1 Introduction
	2 Preliminaries
	3 Computing the k-lcs in ELOR

	3.1 Completion Algorithm for ELOR-TBoxes

	3.2 Computing the Role-Depth Bounded ELOR-lcs

	3.3 Computing the Role-Depth Bounded msc w.r.t. ELOR-KBs

	4 Conclusions
	References

	Parallel Variable Elimination on CNF Formulas
	1 Introduction
	2 Preliminaries
	2.1 Notions and Basic Concepts
	2.2 Concepts of Parallel Algorithms

	3 SAT Preprocessing
	4 Parallel Preprocessing
	5 Evaluation
	5.1 Analyzing the Simplification Time
	5.2 Analyzing the Simplification Quality

	6 Conclusion
	References

	Agent-Based Multimodal Transport Planning
in Dynamic Environments
	1 Introduction
	2 Simulation Model
	3 Matching Data Sets
	3.1 The Needleman-Wunsch Algorithm
	3.2 Stop and Line Matching

	4 Public Transport Information Systems
	4.1 Time-Expanded Graph
	4.2 Time-Dependent Graph
	4.3 Reduced Time-Expanded Graph

	5 Evaluation
	5.1 Ressource Limitations and Scalability
	5.2 Comparison of Information Systems
	5.3 Application: Effects of Passengers’ Behaviors to the PTN

	6 Conclusion and Outlook
	References

	On GPU-Based Nearest Neighbor Queries for Large-Scale Photometric Catalogs
in Astronomy
	1 Motivation
	1.1 Big Training and Huge Test Data
	1.2 Contribution: Speedy Testing

	2 Background
	2.1 Graphics Processing Units
	2.2 Nearest Neighbor Queries Revisited

	3 Accelerating the Testing Phase via GPUs
	3.1 Brute-Force: Fast for Small Reference Sets
	3.2 Spatial Lookup on GPUs: Parallel Processing of k-d trees

	3.3 Faster Processing of Parallel Queries

	4 Experimental Evaluation
	4.1 Experimental Setup
	4.2 Fine-Tuning
	4.3 Runtime Performances

	5 Conclusions
	References

	On Mutation Rate Tuning and Control
for the (1+1)-EA
	1 Introduction
	2 The (1+1)-EA
	3 A Study on Mutation Rates
	4 Meta-evolution
	5 Rechenberg’s 1/5th Rule
	6 Self-adaptation
	7 Conclusions
	References

	Variable Neighborhood Search for Continuous Monitoring Problem
with Inter-Depot Routes
	1 Introduction
	2 Problem Description
	3 Related Work
	4 Solution Method
	5 Computational Results
	5.1 Tuning the Method
	5.2 Comparison with Optimum
	5.3 Comparison with State of the Art
	5.4 Scalability Evaluation

	6 Conclusion
	References

	Advances in Accessing Big Data
with Expressive Ontologies
	1 Introduction
	2 Preliminaries
	3 Speeding Up Instance Retrieval
	4 Answering Grounded Conjunctive Queries
	4.1 Setting Up an AllegroGraph Triplestore
	4.2 Evaluating Conjunctive Queries

	5 Conclusion
	References

	Estimating the Driver’s Workload

	1 Motivation
	2 Workload
	3 Workload Measurement and Estimation
	4 Study
	4.1 Participants and Test Route
	4.2 Measurements
	4.3 Results

	5 Conclusion
	References

	Pattern-Database Heuristics for Partially
Observable Nondeterministic Planning
	1 Introduction
	2 Preliminaries
	2.1 Nondeterministic Planning under Partial Observability
	2.2 Pattern-Database Heuristics

	3 Simplifying a Partially Observable Nondeterministic Planning Task
	4 Implementation Details
	5 Experiments
	5.1 Benchmark Domains
	5.2 Belief State Sampling
	5.3 Pattern Selection
	5.4 Internal Comparison of FO-Det, FO-NDet, and PO-NDet
	5.5 Comparison to Delete Relaxation and Baseline

	6 Conclusion and Future Work
	References

	Automated Theorem Proving with Web Services
	1 Introduction
	2 Motivation and Related Work
	3 Formal Representation of External Sources
	4 External Sources in Hyper Tableaux
	5 Incompleteness
	6 Implementation
	7 Abductive Relaxation
	8 Conclusions and Future Work
	References

	Local SVM Constraint Surrogate Models
for Self-adaptive Evolution Strategies
	1 Introduction
	2 Related Work
	3 Constrained Continuous Optimization
	4 Premature Step-Size Reduction and DSES
	5 Local SVC Surrogate Model
	5.1 Model Management
	5.2 SVC Surrogate Model
	5.3 DSES with Surrogate-Assisted Alignment

	6 Experimental Analysis
	6.1 Test Problems and Constants
	6.2 Parameter Studies
	6.3 Comparison

	7 Conclusion
	References

	Changes of Relational Probabilistic Belief States and
Their Computation under Optimum Entropy Semantics
	1 Introduction
	2 Background: Probabilistic Conditionals and Semantics
	3 Belief Changes of Relational Probabilistic Belief States
	4 Computing Belief Changes
	5 Conclusion and Future Work
	References

	Translating Single-Player GDL into PDDL

	1 Introduction
	2 Background
	2.1 Action Planning
	2.2 General Game Playing

	3 Translation
	3.1 Basic Translation
	3.2 State Update
	3.3 Initial State, Rewards, and Termination
	3.4 Restrictions of the Translation
	3.5 Correctness of the Translation

	4 Empirical Evaluation
	5 Discussion and Conclusion
	References

	Comparison of Sensor-Feedback Prediction
Methods for Robust Behavior Execution
	1 Introduction
	2 Related Work
	3 PredictionModels
	3.1 Analytic Model (PT3)
	3.2 Multilayer Perceptron
	3.3 Neural Gas

	4 Experimental Setup
	4.1 Robot Setup and Environment
	4.2 Scenarios and Data Collection

	5 Results
	5.1 Configuration of Prediction Models
	5.2 Normal Case
	5.3 Fault Case
	5.4 Comparison
	5.5 Implementation: Prediction, Monitoring and Triggering

	6 Conclusion and Outlook
	References

	Ingredients and Recipe for a Robust Mobile
Speech-Enabled Cooking Assistant for German
	1 Introduction and Motivation
	2 Previous and Related Work
	3 Architecture
	4 Offline Pre-processing
	4.1 Recipe Markup Format
	4.2 Creating a Corpus with Recipe Markup

	5 Online System (Cooking Assistant App)
	5.1 User Interface
	5.2 Recipe Processing
	5.3 Speech Input
	5.4 Recipe Text Server
	5.5 Speech Output

	6 Summary and Outlook
	References

	A Philosophical Foundationfor Ontology Alignments
– The Structuralistic Approach
	1 Introduction
	2 Syntax and Common Semantics of Ontology Alignments
	2.1 Syntax
	2.2 The Semantic Problem
	2.3 Simple Distributed Semantics
	2.4 Common Distributed Semantics

	3 Structuralistic Reconstruction of Ontology Alignments
	3.1 Structuralistic Reconstruction of Models and Interpretations
	3.2 Theory Elements for a Reconstruction of Ontologies
	3.3 Structuralistic Interpretation of Alignments

	4 Properties of Model Theoretic Alignment Semantics
	4.1 Simple Distributed Semantics
	4.2 Contextualized Distributed Semantics
	4.3 Structuralistic Semantics

	5 Conclusion
	References

	Contraction Hierarchies on Grid Graphs
	1 Introduction
	1.1 Contribution
	1.2 Related Work

	2 Contraction Hierarchies (CH) on Grids
	2.1 Conventional Contraction Hierarchy
	2.2 Accelerating the CH Construction
	2.3 Maintaining Canonical Paths

	3 Experimental Results
	3.1 Preprocessing
	3.2 Query Answering
	3.3 Connections to other Speed-Up Techniques

	4 Concluding Remarks
	References

	– Mastering Left and Right – Different Approaches to a Problem That Is
Not Straight Forward
	1 Introduction
	2 TheLR Calculus
	3 The Decision Procedures
	3.1 Algebraic Closure
	3.2 The Algebraic Geometric Approach
	3.3 The Triangulation Approach
	3.4 Oriented Matroids

	4 The Benchmarking Procedure
	4.1 Results

	5 Summary and Outlook
	References

	Move Prediction in Go – Modelling Feature
Interactions Using Latent Factors
	1 Introduction
	2 Related Work
	3 GameofGo
	3.1 Technical Terms
	3.2 Complexity

	4 Move Prediction Using Feature Interactions
	4.1 Terminology
	4.2 Problem Description and Model
	4.3 Latent Factor Ranking
	4.4 Features

	5 Experiments
	6 Conclusion
	References

	Algorithmic Debugging for Intelligent Tutoring: How to Use Multiple Models and Improve
Diagnosis
	1 Introduction
	2 Background
	2.1 Encoding Cognitive Task Models in Prolog
	2.2 Algorithmic Debugging for Tutoring

	3 Input Analysis across Models
	3.1 Correct Learner Behaviour
	3.2 Buggy Learner Behaviour

	4 Related Work
	5 Conclusion
	References

	Combining Conditional Random Fields and
Background Knowledge for Improved Cyber Security
	1 Introduction
	2 Our Approach of Combining TPM and CRFs
	3 Experimental Outcome
	References

	Adapting a Virtual Agent’s Conversational
Behavior by Social Strategies
	1 Introduction
	2 Adapting Conversational Behavior by Social Strategies
	3 Sample Dialogs
	3.1 Discussion

	4 Future Work
	References

	Encoding HTN Heuristics in PDDL Planning
Instances
	1 Introduction
	2 The Logistics League Sponsored by Festo
	3 Challenges in the LLSF
	4 Developing the LLSF into a Benchmark
	5 Conclusion
	References

	Syntactic Similarity for Ranking Database
Answers Obtained by Anti-Instantiation
	1 Introduction
	2 Similarity Measures
	3 Similarity for Anti-Instantiation
	4 Discussion and Conclusion
	References

	Towards the Intelligent Home: Using Reinforcement-Learning for Optimal
Heating Control
	1 Introduction
	2 Environment Model and Learning
	3 Experimental Results
	References

	A Prolog-Based Tutor for Multi-column
Subtraction with Multiple Algorithms Support
	1 Introduction
	2 The Domain of Instruction
	3 The Look and Feel of the Tutoring System
	4 Technical Architecture
	5 Conclusion and Future Work
	References

	Author Index

