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Abstract. The problem of low-rank matrix estimation recently received
a lot of attention due to challenging applications. A lot of work has been
done on rank-penalized methods [1] and convex relaxation [2], both on
the theoretical and applied sides. However, only a few papers considered
Bayesian estimation. In this paper, we review the different type of priors
considered on matrices to favour low-rank. We also prove that the ob-
tained Bayesian estimators, under suitable assumptions, enjoys the same
optimality properties as the ones based on penalization.

Keywords: Bayesian inference, collaborative filtering, reduced-rank re-
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1 Introduction

The problem of low-rank matrix estimation recently received a lot of attention,
due to challenging high-dimensional applications provided by recommender sys-
tems, see e.g. the NetFlix challenge [3]. Depending on the application, several
different models are studied: matrix completion [2], reduced-rank regression [4],
trace regression, e.g. [5], quantum tomogaphy, e.g. [6], etc.

In all the above mentionned papers, the authors considered estimators ob-
tained by minimizing a criterion that is the sum of two terms: a measure of the
quality of data fitting, and a penalization term that is added to avoid overfitting.
This term is usually the rank of the matrix, as in [1], or, for computational rea-
sons, the nuclear norm of the matrix, as in [2] (the nuclear norm is the sum of the
absolute values of the singular values, it can be seen as a matrix equivalent of the
vectors �1 norm). However, it is to be noted that only a few papers considered
Bayesian methods: we mention [7] for a first study of reduced-rank regression in
Bayesian econometrics, and more recently [8, 9, 10] for matrix completion and
reduced-rank regression (a more exhaustive bibliography is given below).

The objective of this paper is twofold: first, in Section 2 we provide a short
survey of the priors that have been effectively used in various problems of low-
rank estimation. We focus on two models, matrix completion and reduced rank-
regression, but all the priors can be used in any model involving low-rank matrix
estimation.
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Then, in Section 3 we prove a theoretical result on the Bayesian estimator
in the context of reduced rank regression. It should be noted that for some
appropriate choice of the hyperparameters, the rate of convergence is the same
as for penalized methods, up to log terms. The theoretical study in the context
of matrix completion will be the object of a future work.

2 Model and Priors

In this section, we briefly introduce two models: reduced rank regression, 2.1,
and matrix completion, 2.2. We then review the priors used in these models, 2.3.

2.1 Reduced Rank Regression

In the matrix regression model, we observe two matrices X and Y with

Y = XB + E

where X is an �× p deterministic matrix, B is a p×m deterministic matrix and
E is an � × m random matrix with E(E) = 0. The objective is to estimate the
parameter matrix B. This model is sometimes refered as multivariate linear re-
gression, matrix regression or multitask learning. In many applications, it makes
sense to assume that the matrix B has low rank, i.e. rank(B) � min(p,m). In
this case, the model is known as reduced rank regression, and was studied as early
as [11, 12]. We refer the reader to the monograph [4] for a complete introduction.

Depending on the application the authors have in mind, additional assump-
tions on the distribution of the noise matrix E are used:

– the entries Ei,j of E are i.i.d., and the probability distribution of E1,1 is
bounded, sub-Gaussian or Gaussian N (0, σ2). In this case, note that the
likelihood of any matrix β is given by

L(β|Y, σ) ∝ exp

{
− 1

2σ2
‖Y −Xβ‖2F

}

where we let ‖M‖F denote the Frobenius norm, ‖M‖2F = Tr(MTM).
– as a generalization of the latter case, it is often assumed in econometrics

papers that the rows Ei of E are i.i.d. Nm(0, Σ) for some m ×m variance-
covariance matrix Σ.

In order to estimate B, we have to specify a prior on B and, depending on the
assumptions on E , a prior on σ or on Σ. Note however that in most theoretical
papers, it is assumed that σ is known, or can be upper bounded, as in [1]. This
assumption is clearly a limitation but it makes sense in some applications: see
e.g. [6] for quantum tomography (that can bee seen as a special case of reduced
rank regression).



Bayesian Low-Rank Matrix Estimation 311

In non-Bayesian studies, the estimator considered is usually obtained by min-
imizing the least-square criterion ‖Y −XB‖2F penalized by the rank of the ma-
trix [1] or the nuclear norm [13]. In [1], the estimator B̂ obtained by this method
is shown to satisfy, for some constant C > 0,

E(‖XB̂ −XB‖2F ) ≤ Cσ2rank(B)(rank(X) +m)

(Corollary 6 p. 1290).

2.2 Matrix Completion

In the problem of matrix completion, one observes entries Yi,j of an �×m matrix
Y = B + E for (i, j) in a given set of indices I. Here again, the noise matrix
satisfies E(E) = 0 and the objective is to recover B under the assumption that
rank(B) � min(�,m). Note that under the assumption that the Ei,j are i.i.d.
N (0, σ2), the likelihood is given by

L(β|Y, σ) ∝ exp

⎧⎨
⎩− 1

2σ2

∑
(i,j)∈I

(Yi,j − βi,j)
2

⎫⎬
⎭ .

In [2], this problem is studied without noise (i.e. E = 0), the general case is
studied among others in [14, 15, 16].

Note that recently, some authors studied the trace regression model, that in-
cludes linear regression, reduced-rank regression and matrix completion as spe-
cial cases: see [17, 18, 5, 19]. Up to our knowledge, this model has not been
considered from a Bayesian perspective until now, so we will mainly focus on
reduced regression and matrix completion in this paper. However, all the priors
defined for reduced-rank regression can also be used for the more general trace
regression setting.

2.3 Priors on (Approximately) Low-Rank Matrices

It appears that some econometrics models can actually be seen as special cases
of the reduced rank regression. Some of them were studied from a Bayesian
perspetive from the seventies, to our knowledge, it was the first Bayesian study
of a reduced rank regression:

– incomplete simultaneous equation model: [20, 21, 22, 23],
– cointegration: [24, 25, 26].

The first systematic treatment of the reduced rank model from a Bayesian per-
spective was carried out in [7]. The idea of this paper is to write the matrix
parameter B as B = MNT for two matrices M and N respectively p × k and
m × k, and to give a prior on M and N rather than on B. Note that the rank
of B is in any case smaller than k. So, to choose k � min(m, p) imposes a low
rank structure to the matrix B.
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The prior in [7] is given by

π(M,N,Σ) = π(M,N)π(Σ)

where π(M,N) is a Gaussian shrinkage on all the entries of the matrices:

π(M,N) ∝ exp

{
−τ2

2

(‖M‖2F + ‖N‖2F
)}

for some parameter τ > 0. Then, π(Σ) is an �-dimensional inverse-Wishart
distribution with d degrees of freedom and matrix parameter S, Σ−1 ∼ W�(d, S):

π(Σ) ∝ |Σ|−m+d+1
2 exp

(
−1

2
Tr(SΣ−1)

)
.

Remark that this prior is particularly convenient as it is then possible to give
explicit forms for the marginal posteriors. This allows an implementation of
the Gibbs algorithm to sample from the posterior. As the formulas are a bit
cumbersome, we do not provide them here, however, the interested reader can
find them in [7].

The weak point in this approach is that the question of the choice of the
reduced rank k is not addressed. It is possible to estimate M and N for any
possible k and to use Bayes factors for model selection, as in [26]. Numerical ap-
proximation and assessment of convergence for this method are provided by [27].

A more recent approach consists in fixing a large k, as k = min(p,m), and
then in calibrating the prior so that it would naturally favour matrices with rank
smaller than k (or, really close to such matrices). To our knowledge, the first
attempt in this direction is [8]. Note that this paper was actually about matrix
completion rather than reduced rank regression, but once again, all the priors in
this subsection can be used in both settings. Here again, we write B = MNT ,
and

π(M,N) ∝ exp

⎧⎨
⎩−1

2

⎛
⎝ p∑

i=1

k∑
j=1

M2
i,j

σ2
j

+
m∑
i=1

k∑
j=1

N2
i,j

ρ2j

⎞
⎠
⎫⎬
⎭ .

In other words, if we write M = (M1| . . . |Mk) and N = (N1| . . . |Nk), then the
Mj and Nj are independent and respectively Np(0, σ

2
j Ip) and Nm(0, ρ2jIm) where

Id is the indentity matrix of size d. In order to understand the idea behind this
prior, assume for one moment that σ2

j and ρ2j are large for 1 ≤ j ≤ k0 and very
small for j > k0. Then, for j > k0, Mj and Nj have entries close to 0, and so
MjN

T
j � 0. So, the matrix

B = MNT =

k∑
j=1

MjN
T
j �

k0∑
j=1

MjN
T
j ,

a matrix that has a rank at most k0. In practice, the choice of the σ2
j ’s and

ρ2j ’s is the main difficulty of this approach. Based on a heuristic, the authors
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proposed an estimation of these quantities that seems to perform well in practice.
Remark that the authors assume that the Ei,j are independent N (0, σ2) and the
parameter σ2 is not modelled in the prior (but is still estimated on the data).
They finally propose a variational Bayes approach to approximate the posterior.

Very similar priors were used by [9] and in the PMF method (Probabilis-
tic Matrix Factorisation) of [10]. However, improved versions were proposed
in [28, 29, 30, 31]: the authors proposed a full Bayesian treatment of the prob-
lem by putting priors on the hyperparameters. We describe more precisely the
prior in [28]: the Mj and Nj are independent and respectively Np(μM , ΣM ) and
Nm(μN , ΣN ), and then: μM ∼ Np(μ0, β

−1
0 ΣM ), μM ∼ Np(μ0, β

−1
0 ΣN ), and fi-

nally Σ−1
M , Σ−1

N ∼ Wp(d, S). Here again, the hyperparameters β0, d and S are
to be specified. The priors in [29, 30] are quite similar, and we give more details
about the one in [30] in Section 3. In [10, 28, 29, 30], the authors simulate from
the posterior thanks to the Gibbs sampler (the posterior conditional distribution
are explicitely provided e.g. in [28]). Alternatively, [9] uses a stochastic gradient
descent to approximate the MAP (maximum a posteriori).

Some papers proposed a kernelized version of the reduced rank regression and
matrix completion models. Let M i denote the i-th row of M and Nh the h-th
row of N . Then, B = MNT leads to Bi,h = M i(Nh)T . We can replace this
relation by

Bi,h = K(M i, Nh)

for some RKHS Kernel K. In [32], the authors propose a Bayesian formulation
of this model: B is seen as a Gaussian process on {1, . . . , p} × {1, . . . ,m} with
expectation zero and covariance function related to the kernel K. The same idea
is refined in [33] and applied successfully to very large datasets, including the
NetFlix challenge dataset, thanks to two algorithms: the Gibbs sampler, and the
EM algorithm to approximate the MAP.

Finally, we want to mention the nice theoretical work [34, 35]: in these papers,
the authors study the asymptotic performance of Bayesian estimators in the re-
duced rank regression model under a general prior π(M,N) that has a compactly
supported and infinitely differentiable density. Clearly, the priors aforementioned
do not fit the compact support assumption. The question wether algorithmically
tractable priors fit this assumption is, to our knowledge, still open. In Section 3,
we propose a non-asymptotic analysis of the prior of [30].

3 Theoretical Analysis

In this section, we provide a theoretical analysis of the Bayesian estimators ob-
tained by using the idea of hierarchical priors of [28, 29, 30, 31]. More precisely,
we use exactly the prior of [30] and provide a theoretical result on the perfor-
mance of the estimator in the reduced-rank regression model.

Several approaches are available to study the performance of Bayesian
estimators: the asymptotic approach based on Bernstein-von-Mises type
theorems, see Chapter 10 in [36], and a non-asmptotic approach based on PAC-
Bayesian inequalities. PAC-Bayesian inequalities were introduced for classifica-
tion by [37, 38] but tighter bounds and extentions to regression estimation can
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be found in [39, 40, 41, 42, 43]. In all approaches, the variance of the noise is as-
sumed to be known or at least upper-bounded by a given constant, so we use this
framework here. To our knowledge, this is the first application of PAC-Bayesian
bounds to a matrix estimation problem.

3.1 Theorem

Following [30] we write B = MNT where M is p× k, N is m× k, k ≤ min(p,m)
and then

π(M,N |Γ ) ∝ exp

[
−1

2

(
Tr(MTΓ−1M) + Tr(NTΓ−1N)

)]

for some diagonal matrix

Γ =

⎛
⎜⎝

γ1 . . . 0
...

. . .
...

0 . . . γk

⎞
⎟⎠ ,

the γj are i.i.d. and 1/γj ∼ Gamma(a, b):

π(M,N) =

∫
π(M,N |Γ )π(Γ )dΓ

where

π(Γ ) =
bka

Γ (a)k

k∏
j=1

{
γ−a−1
j exp

(
− b

γj

)}
.

We will make one of the following assumptions on the noise:

– Assumption (A1): the entries Ei,j of E are i.i.d. N (0, σ2), and we know an
upper bound s2 for σ2.

– Assumption (A2): the entries of E are iid according to any distribu-
tion supported by the compact interval [−ζ, ζ] with a density f w.r.t. the
Lebesgue measure and f(x) ≥ fmin > 0, and we know an upper bound
s2 ≥ E(|E1,1|)/(2fmin).

Note that (A1) and (A2) are special case of the one in [41], the interested reader
can replace these assumptions by the more technical condition given in [41]. We
define

B̂λ =

∫
MNT ρ̂λ(d(M,N))

where ρ̂λ is the probability distribution given by

ρ̂λ(d(M,N)) ∝ exp
(−λ‖Y −XMNT‖2F

)
π(d(M,N)).

Note that in the case where the entries of E are i.i.d. N (0, σ2) then this is the
Bayesian posterior, ρ̂λ(d(M,N)) = π(d(M,N)|Y ), when λ = 1/(2σ2), and so
B̂λ is the expectation under the posterior. However, for theoretical reasons, we
have to consider slightly smaller λ to prove theoretical results.
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Theorem 1. Assume that either (A1) or (A2) is satisfied. Let us put a = 1

and b = s2

2�pk2(m2+p2) in the prior π(Γ ). For λ = 1
4s2 ,

E

(
‖XB̂λ −XB‖2F

)
≤ inf

J,M,N
Mj , Nj = 0 when j /∈ J

{
‖X(MNT −B)‖2F

+ 6s2(m+ p)|J | log
(
1.34�p

s2

)
+ 8s2k log

(
22.17�pk2(m2 + p2)

s2

)

+
2s2‖X‖2F

�p

{
‖N‖2F + ‖M‖2F +

2s2

�p
+ 16s2

}

+ 8s2
(‖N‖2F + ‖M‖2F + log(2)

)}
.

Remark 1. Note that when all the entries of X satisfy |Xi,j | ≤ C for some
C > 0, ‖X‖2F/(�p) ≤ C2. Moreover, let us assume that rank(B) = k0 and that
we can write B = MNT with Mk0+1 = · · · = Mk = 0 and Nk0+1 = · · · = Nk = 0
and |Ni,j |, |Mi,j | ≤ c. Assume that the noise is Gaussian. We get

E

(
‖XB̂λ −XB‖2F

)
≤ 50s2(m+ p)k0

{
log(�(p ∨m))

+ log

(
1

s2
∨ 1

)
+ 1 + C2(1 + c2 + s2)

}

where we remind that p ∨m = max(p,m). When rank(X) = p, we can see that
we recover the same upper bound as in [1], up to a log(�(p∨m)) term. This rate
(without the log) is known to be optimal, see [1] remark (ii) p. 1293 and [17].
However, the presence of the terms ‖M‖2F and ‖N‖2F can lead to suboptimal
rates in less classical asymptotics where ‖B‖F would grow with the sample size
�. In the case of linear regression, a way to avoid these terms is to use heavy-
tailed priors as in [41, 42], or compactly supported priors as in [44]. However,
it is not clear whether this approach would lead to feasible algorithms in matrix
estimation problems. This question will be the object of a future work.

Remark 2. We do not claim that the choice b = s2

2�pk2(m2+p2) is optimal in
practice. However, from the proof it is clear that our technique requires that b
decreases with the dimension of B as well as with the sample size to produce
a meaningfull bound. Note that in [30], there is no theoretical approach for the
choice of b, but their simulation study tends to show that b must be very small
for MNT to be approximately low-rank.

Remark 3. In all the above mentionned papers on PAC-Bayesian bounds, it is
assumed that the variance of the noise is known, or upper-bounded by a known
constant. More recently, [45] managed to prove PAC-Bayesian inequalities for
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regression with unknown variance. However, the approach is rather involved and
it is not clear whether it can be used in our context. This question will also be
addressed in a future work.

3.2 Proof

First, we state the following result:

Theorem 2. Under (A1) or (A2), for any λ ≤ 1/(4s2), we have

E

(
‖XB̂λ −XB‖2F

)
≤ inf

ρ

{∫
‖XμνT −XB‖2Fρ(d(μ, ν)) +

K(ρ, π)

λ

}

where K(ρ, π) stands for the Kullback divergence between ρ and π, K(ρ, π) =∫
log( dρdπ )dρ if ρ is absolutely continuous with respect to π and K(ρ, π) = ∞

otherwise.

Proof of Theorem 2. Follow the proof of Theorem 1 in [41] and check that every
step is valid when B is a matrix instead of a vector. �

We are now ready to prove our main result.
Proof of Theorem 1. Let us introduce, for any c > 0, the probability distribution
ρM,N,c(dμ, dν) ∝ 1(‖μ − M‖F ≤ c, ‖ν − N‖F ≤ c)π(dμ, dν). According to
Theorem 2 we have

E

(
‖XB̂λ −XB‖2F

)

≤ inf
M,N,c

{∫
‖XμνT −XB‖2FρM,N,c(dμ, dν) +

K(ρM,N,c, π)

λ

}
. (1)

Let us fix c, M and N . The remaining steps of the proof are to upper-bound the
two terms in the r.h.s. Both upper bounds will depend on c, we will optimize on
c after these steps to end the proof. We have
∫

‖XμνT −XB‖2FρM,N,c(dμ, dν)

=

∫
‖XμνT −XMνT +XMνT −XMNT

+XMNT −XB‖2FρM,N,c(dμ, dν)

=

∫ (
‖XμνT −XMνT ‖2F + ‖XMνT −XMNT‖2F

+ ‖XMNT −XB‖2F + 2
〈
XμνT −XMνT , XMνT −XMNT

〉
F

+ 2
〈
XμνT −XMνT , XMNT −XB

〉
F

+ 2
〈
XMνT −XMNT , XMNT −XB

〉
F

)
ρM,N,c(dμ, dν)
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and, as
∫
μρM,N,c(dμ) = M and

∫
νρM,N,c(dν) = N , it is easy to see that

integral of the three scalar product vanish. So∫
‖XμνT −XB‖2FρM,N,c(dμ, dν)

=

∫ {‖XμνT −XMνT‖2F + ‖XMνT −XMNT‖2F
}
ρM,N,c(dμ, dν)

+ ‖XMNT −XB‖2F
≤ ‖X‖2F

∫ {‖μ−M‖2F‖ν‖2F + ‖M‖2F‖ν −N‖2F
}
ρM,N,c(dμ, dν)

+ ‖X(MNT −B)‖2F
≤ 2c2‖X‖2F

{
(‖N‖2F + c2) + (‖M‖2F + c2)

}
+ ‖X(MNT −B)‖2F . (2)

Now, we deal with the second term:

K(ρM,N,c, π) = log
1

π({μ, ν : ‖μ−M‖F ≤ c, ‖ν −N‖F ≤ c}) .

We remind that M = (M1| . . . |Mk) and N = (N1| . . . |Nk) and let us denote J
the subset of {1, . . . , k} such that Mj = Nj = 0 for j /∈ J . We let k0 denote
the cardinality of J , k0 = |J |. Note that we have rank(MNT ) ≤ k0. For any
κ ∈ (0, 1) let Eκ be the event

{
κ

2
< |γj | < κ for any j /∈ J and |γj − 1| < 1

2
for any j ∈ J

}
.

Then

K(ρM,N,c, π) ≤ log
1∫

π({μ, ν : ‖μ−M‖F ≤ c, ‖ν −N‖F ≤ c}|Γ )π(Γ )dΓ

= log
1∫

π({‖μ−M‖F ≤ c}|Γ )π(Γ )dΓ

+ log
1∫

π({‖ν −M‖F ≤ c}|Γ )π(Γ )dΓ

≤ log
1∫

Eκ
π({‖μ−M‖F ≤ c}|Γ )π(Γ )dΓ

+ log
1∫

Eκ
π({‖ν −M‖F ≤ c}|Γ )π(Γ )dΓ

. (3)

By symmetry, we will only bound the first of these two terms. We have∫
Eκ

π({‖μ−M‖F ≤ c}|Γ )π(Γ )dΓ

=

∫
Eκ

π

⎛
⎝ p∑

i=1

k∑
j=1

(μi,j −Mi,j)
2 ≤ c2

∣∣∣∣∣∣Γ
⎞
⎠π(Γ )dΓ
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≥
∫
Eκ

π

(
∀i, ∀j, (μi,j −Mi,j)

2 ≤ c2

pk

∣∣∣∣Γ
)
π(Γ )dΓ

=

∫
Eκ

{
1− π

(
∃i ∈ {1, . . . , p}, ∃j /∈ J, (μi,j −Mi,j)

2 ≥ c2

pk

∣∣∣∣Γ
)}

p∏
i=1

∏
j∈J

π

(
(μi,j −Mi,j)

2 ≤ c2

pk

∣∣∣∣Γ
)
π(Γ )dΓ

≥
∫
Eκ

⎧⎨
⎩1−

p∑
i=1

∑
j /∈J

π

(
(μi,j −Mi,j)

2 ≥ c2

pk

∣∣∣∣Γ
)⎫⎬
⎭

p∏
i=1

∏
j∈J

π

(
(μi,j −Mi,j)

2 ≤ c2

pk

∣∣∣∣Γ
)
π(Γ )dΓ. (4)

We lower-bound the three factors in the integral in (4) separately. First, note
that, on Eκ,

π(Γ ) =
k∏

j=1

ba

Γ (a)
γ−a−1
j exp

(
− b

γj

)

=
bka

Γ (a)k

⎧⎨
⎩
∏
j∈J

γ−a−1
j exp

(
− b

γj

)⎫⎬
⎭
⎧⎨
⎩
∏
j /∈J

γ−a−1
j exp

(
− b

γj

)⎫⎬
⎭

≥ bka

Γ (a)k

{
κ−a−1 exp

(
−2b

κ

)}k−k0
{(

3

2

)−a−1

exp (−2b)

}k0

≥ bka

Γ (a)k
exp

{
−2b

(
k − k0

κ
− k

)}(
3

2

)(−a−1)k0

κ(−a−1)(k−k0)

≥ bka

Γ (a)k

(
2

3

)(a+1)k

exp

{−2bk

κ

}
κ(−a−1)(k−k0). (5)

On Eκ, and for j /∈ J :

π

(
|μi,j | ≥ c√

pk

∣∣∣∣Γ
)
= 2Φ

(
c√
pkγj

)

where Φ is the c.d.f. of N (0, 1). We use the classical inequality

Φ(x) ≤
exp

(
−x2

2

)
2

to get:

π

(
|μi,j | ≥ c√

pk

∣∣∣∣Γ
)

≤ exp

(
− c2

2pkγj

)
≤ exp

(
− c2

2pkκ

)
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and finally

p∑
i=1

∑
j /∈J

π

(
(μi,j −Mi,j)

2 ≥ c2

pk

∣∣∣∣Γ
)

≤ pk0 exp

(
− c2

2pkκ

)
. (6)

Then, on Eκ, and for j ∈ J :

π

(
(μi,j −Mi,j)

2 ≤ c2

pk

∣∣∣∣Γ
)

= π

(
(μi,j −Mi,j)

2 ≤ c2

pk

∣∣∣∣Γ
)

=
1√
2πγj

∫ Mi,j+
c√
pk

Mi,j− c√
pk

exp

(
− x2

2γj

)
dx

≥ c

√
2

πpkγj
exp

(
−M2

i,j

γj
− c2

pkγj

)

≥ c

√
4

3πpk
exp

(
−2M2

i,j −
2c2

pk

)

and so

p∏
i=1

∏
j∈J

π

(
(μi,j −Mi,j)

2 ≤ c2

pk

∣∣∣∣Γ
)

≥
(
c

√
4

3πpk

)pk0

exp
(−2‖M‖2F − 2c2

)
. (7)

We plug (5), (6) and (7) into (4) and we obtain:
∫
Eκ

π({‖μ−M‖F ≤ c}|Γ )π(Γ )dΓ

≥
∫
Eκ

κ(−a−1)(k−k0) bka

Γ (a)k

(
2

3

)(a+1)k

exp

{−2bk

κ

}(
c

√
4

3πpk

)pk0

exp
(−2‖M‖2F − 2c2

)(
1− pk0 exp

(
− c2

2pkκ

))
dγ1 . . . dγk

=
(κ
2

)k−k0

κ(−a−1)(k−k0)
bka

Γ (a)k

(
2

3

)(a+1)k

exp

{−2bk

κ

}(
c

√
4

3πpk

)pk0

exp
(−2‖M‖2F − 2c2

)(
1− pk0 exp

(
− c2

2pkκ

))
.

Now, let us impose the following restrictions: b = κ ≤ c2

2pk log(2pk) ≤ c2

2pk log(2pk0)

so the last factor is ≥ 1/2. So we have:
∫
Eκ

π({‖μ−M‖F ≤ c}|Γ )π(Γ )dΓ
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≥ κka

Γ (a)k
2ak+1

3(a+1)k
exp {−2k}

(
c

√
4

3πpk

)pk0

exp
(−2‖M‖2F − 2c2

)
.

So,

log
1∫

Eκ
π({‖μ−M‖F ≤ c}|Γ )π(Γ )dΓ

≤ 2c2 + 2‖M‖2F

+ log(2) + pk0 log

(
1

c

√
3πpk

4

)
+ k log

(
Γ (a)3a+1 exp(2)

κa+12a

)
. (8)

By symmetry,

log
1∫

Eκ
π({‖ν −N‖F ≤ c}|Γ )π(Γ )dΓ

≤ 2c2 + 2‖N‖2F + log(2)

+mk0 log

(
1

c

√
3πpk

4

)
+ k log

(
Γ (a)3a+1 exp(2)

κa+12a

)
, (9)

and finally, plugging (8) and (9) into (3)

K(ρM,N,c, π) ≤ 4c2 + 2‖M‖2F + 2‖N‖2F + 2 log(2)

+ (m+ p)k0 log

(
1

c

√
3πpk

4

)
+ 2k log

(
Γ (a)3a+1 exp(2)

κa+12a

)
. (10)

Finally, we can plug (2) and (10) into (1):

E

(
‖XB̂λ −XB‖2F

)

≤ inf
J,M,N, c

Mj , Nj = 0 when j /∈ J

{
2c2‖X‖2F

{‖N‖2F + ‖M‖2F + 2c2
}

+ ‖X(MNT −B)‖2F +
4c2 + 2‖M‖2F + 2‖N‖2F + 2 log(2)

λ

+

(m+ p)|J | log
(

1
c

√
3πpk
4

)
+ 2k log

(
Γ (a)3a+1 exp(2)

κa+12a

)

λ

}
.

Let us put c =
√
s2/�p to get:

E

(
‖XB̂λ −XB‖2F

)
≤ inf

J,M,N
Mj , Nj = 0 when j /∈ J

{
‖X(MNT −B)‖2F



Bayesian Low-Rank Matrix Estimation 321

+

(m+ p)|J | log
(
p
√

�k3π
4s2

)
+ 2k log

(
Γ (a)3a+1 exp(2)

κa+12a

)

λ

+
2‖M‖2F + 2‖N‖2F + 2 log(2)

λ
+

2s2‖X‖2F
{
‖N‖2F + ‖M‖2F + 2s2

�p + 4
λ

}
�p

}
.

Finally, remember that the conditions of the theorem impose that a = 1, and
b = s2

2�pk2(m2+p2) . However, we used until now that b = κ, that κ < 1/2, that κ ≤
c2/(2pk log(2pk)) = s2/(2p2�k log(2pk)), and that κ ≤ c2/(2mk log(2mk)) =
s2/(2mp�k log(2mk)). Remember that k ≤ min(p,m) so all these equations are
compatible. We obtain:

E

(
‖XB̂λ −XB‖2F

)
≤ inf

J,M,N
Mj , Nj = 0 when j /∈ J

{
‖X(MNT −B)‖2F

+

(m+ p)|J | log
(
p
√

�k3π
4s2

)
+ 2k log

(
2�pk2(m2+p2)3 exp(2)

s2

)

λ

+
2‖M‖2F + 2‖N‖2F + 2 log(2)

λ
+

2s2‖X‖2F
{
‖N‖2F + ‖M‖2F + 2g

�p + 4
λ

}
�p

}
.

This ends the proof. �

4 Conclusion

We proved that the use of Gaussian priors in reduced-rank regression models
leads to nearly optimal rates of convergence. As mentionned in the paper, al-
ternative priors would possibly lead to better bounds but could also result in
less computationaly efficient methods (computational efficiency is a major issue
when dealing with high-dimensional datasets such as the NetFlix dataset). A
complete exploration of this issue will be addressed in future works.
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