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Abstract. We consider the problem of online combinatorial optimiza-
tion under semi-bandit feedback. The goal of the learner is to sequentially
select its actions from a combinatorial decision set so as to minimize
its cumulative loss. We propose a learning algorithm for this problem
based on combining the Follow-the-Perturbed-Leader (FPL) prediction
method with a novel loss estimation procedure called Geometric Resam-
pling (GR). Contrary to previous solutions, the resulting algorithm can
be efficiently implemented for any decision set where efficient offline com-
binatorial optimization is possible at all. Assuming that the elements of
the decision set can be described with d-dimensional binary vectors with
at most m non-zero entries, we show that the expected regret of our algo-
rithm after T rounds is O(m

√
dT log d). As a side result, we also improve

the best known regret bounds for FPL in the full information setting to
O(m3/2√T log d), gaining a factor of

√
d/m over previous bounds for

this algorithm.

Keywords: Follow-the-perturbed-leader, bandit problems, online learn-
ing, combinatorial optimization.

1 Introduction

In this paper, we consider a special case of online linear optimization known
as online combinatorial optimization (see Figure 1). In every time step t =
1, 2, . . . , T of this sequential decision problem, the learner chooses an action Vt

from the finite action set S ⊆ {0, 1}d, where ‖v‖1 ≤ m holds for all v ∈ S. At
the same time, the environment fixes a loss vector �t ∈ [0, 1]d and the learner suf-
fers loss V �

t �t. We allow the loss vector �t to depend on the previous decisions
V1, . . . ,Vt−1 made by the learner, that is, we consider non-oblivious environ-

ments. The goal of the learner is to minimize the cumulative loss
∑T

t=1 V
�
t �t.

Then, the performance of the learner is measured in terms of the total expected
regret

RT = max
v∈S

E

[
T∑

t=1

(Vt − v)
�
�t

]

= E

[
T∑

t=1

V �
t �t

]

−min
v∈S

E

[
T∑

t=1

v��t

]

, (1)
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Parameters: set of decision vectors S = {v(1),v(2), . . . ,v(N)} ⊆ {0, 1}d satisfy-
ing ‖v‖1 ≤ m for all v ∈ S , number of rounds T ;
For all t = 1, 2, . . . , T , repeat

1. The learner chooses a probability distribution pt over {1, 2, . . . , N}.
2. The learner draws an action It randomly according to pt. Consequently, the

learner plays decision vector Vt = v(It).
3. The environment chooses loss vector �t.
4. The learner suffers loss V �

t �t.
5. The learner observes some feedback based on �t and Vt.

Fig. 1. The protocol of online combinatorial optimization

Note that, as indicated in Figure 1, the learner chooses its actions randomly,
hence the expectation.

The framework described above is general enough to accommodate a number
of interesting problem instances such as path planning, ranking and matching
problems, finding minimum-weight spanning trees and cut sets. Accordingly,
different versions of this general learning problem have drawn considerable at-
tention in the past few years. These versions differ in the amount of information
made available to the learner after each round t. In the simplest setting, called
the full-information setting, it is assumed that the learner gets to observe the
loss vector �t regardless of the choice of Vt. However, this assumption does not
hold for many practical applications, so it is more interesting to study the prob-
lem under partial information, meaning that the learner only gets some limited
feedback based on its own decision. In particular, in some problems it is realis-
tic to assume that the learner observes the vector (Vt,1�t,1, . . . , Vt,d�t,d), where
Vt,i and �t,i are the ith components of the vectors Vt and �t, respectively. This
information scheme is called semi-bandit information. An even more challenging
variant is the full bandit scheme where all the learner observes after time t is its
own loss V �

t �t.
The most well-known instance of our problem is the (adversarial)multi-armed

bandit problem considered in the seminal paper of Auer et al. [4]: in each round of
this problem, the learner has to select one of N arms and minimize regret against
the best fixed arm, while only observing the losses of the chosen arm. In our frame-
work, this setting corresponds to setting d = N and m = 1, and assuming either
full bandit or semi-bandit feedback. Among other contributions concerning this
problem, Auer et al. propose an algorithm called Exp3 (Exploration and Exploita-

tion using Exponential weights) based on constructing loss estimates �̂t,i for each
component of the loss vector and playing arm i with probability proportional to
exp(−η∑t−1

s=1 �̂s,i) at time t (η > 0)1. This algorithm is known as theExponentially
Weighted Average (EWA) forecaster in the full information case. Besides proving

1 In fact, Auer et al. mix the resulting distribution with a uniform distribution over the
arms with probability γ > 0. However, this modification is not needed when one is
concerned with the total expected regret.
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that the total expected regret of this algorithm is O(
√
NT logN), Auer et al. also

provide a general lower bound ofΩ(
√
NT ) on the regret of any learning algorithm

on this particular problem. This lower bound was later matched by the Implicitly
Normalized Forecaster (INF) of Audibert and Bubeck [2] by using the same loss
estimates in a more refined way.

The most popular example of online learning problems with actual combinato-
rial structure is the shortest path problem first considered by Takimoto and War-
muth [17] in the full information scheme. The same problem was considered by
György et al. [10], who proposed an algorithm that works with semi-bandit infor-
mation. Since then, we have come a long way in understanding the “price of infor-
mation” in online combinatorial optimization—see [3] for a complete overview of
results concerning all of the previously discussed information schemes. The first
algorithm directly targeting general online combinatorial optimization problems
is due to Koolen et al. [13]: their method named Component Hedge guarantees
an optimal regret of O(m

√
T log d) in the full information setting. In particu-

lar, this algorithm is an instance of the more general algorithm class known as
Online Stochastic Mirror Descent (OSMD) or Follow-The-Regularized-Leader
(FTRL) methods. Audibert et al. [3] show that OSMD/FTRL-based methods
can also be used for proving optimal regret bounds of O(

√
mdT ) for the semi-

bandit setting. Finally, Bubeck et al. [6] show that the natural extension of the
EWA forecaster (coupled with an intricate exploration scheme) can be applied
to obtain a O(m3/2

√
dT log d) upper bound on the regret when assuming full

bandit feedback. This upper bound is off by a factor of
√
m log d from the lower

bound proved by Audibert et al. [3]. For completeness, we note that the EWA
forecaster attains a regret of O(m3/2

√
T log d) in the full information case and

O(m
√
dT log d) in the semi-bandit case.

While the results outlined above suggest that there is absolutely no work left
to be done in the full information and semi-bandit schemes, we get a differ-
ent picture if we restrict our attention to computationally efficient algorithms.
First, methods based on exponential weighting of each decision vector can only
be efficiently implemented for a handful of decision sets S—see [13] and [8] for
some examples. Furthermore, as noted by Audibert et al. [3], OSMD/FTRL-
type methods can be efficiently implemented by convex programming if the
convex hull of the decision set can be described by a polynomial number of
constraints. Details of such an efficient implementation are worked out by Sue-
hiro et al. [16], whose algorithm runs in O(d6) time, which can still be prohibitive
in practical problems. While Koolen et al. [13] list some further examples where
OSMD/FTRL can be implemented efficiently, we conclude that results concern-
ing general efficient methods for online combinatorial optimization are lacking
for (semi or full) bandit information problems.

The Follow-the-Perturbed-Leader (FPL) prediction method (first proposed by
Hannan [11] and later rediscovered by Kalai and Vempala [12]) method offers
a computationally efficient solution for the online combinatorial optimization
problem given that the static combinatorial optimization problem minv∈S v��
admits computationally efficient solutions for any � ∈ R

d. The idea underlying
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FPL is very simple: in every round t, the learner draws some random perturba-
tions Zt ∈ R

d and selects the action that minimizes the perturbed total losses:

Vt = argmin
v∈S

{

v�
(

t−1∑

s=1

�s −Zt

)}

.

Despite its simplicity, FPL is usually relatively overlooked due to many “rea-
sons”, some of them listed below:

– The best known bound for FPL in the full information setting is O(m
√
dT ),

which is worse than the bounds for both EWA and OSMD/FTRL.
– It is commonly believed that the standard proof techniques for FPL do

not apply directly against adaptive adversaries (see, e.g, the comments of
Audibert et al. [3, Section 2.3] or Cesa-Bianchi and Lugosi [7, Section 4.3]).
On the other hand, a direct analysis for non-oblivious adversaries is given
by Poland [15] in the multi-armed bandit setting.

– Considering bandit information, no efficient FPL-style algorithm is known
to achieve a regret of O(

√
T ). Awerbuch and Kleinberg [5] and McMahan

and Blum [14] proposed FPL-based algorithms for learning with full bandit
feedback in shortest path problems, and provedO(T 2/3) bounds on the regret
(1). Poland [15] proved bounds of O(

√
NT logN) in the N -armed bandit

setting, however, the proposed algorithm requires O(T 2) computations per
time step.

In this paper, we offer an efficient FPL-based algorithm for regret minimization
under semi-bandit feedback. Our approach relies on a novel method for estimating
components of the loss vector. The method, called geometric resampling (GR),
is based on the idea that the reciprocal of the probability of an event can be
estimated by measuring the reoccurrence time. We show that the regret of FPL
coupled with GR attains a regret of O(m

√
dT log d) in the semi-bandit case. To

the best of our knowledge, our algorithm is the first computationally efficient
learning algorithm for this learning problem. As a side result, we also improve
the regret bounds of FPL in the full information setting to O(m3/2

√
T log d),

that is, we close the gaps between the performance bounds of FPL and EWA
under both full information and semi-bandit feedback.

2 Loss Estimation by Geometric Resampling

For a gentle start, consider the problem of regret minimization in N -armed
bandits. This is a special case of the decision problem described on Figure 1
where the decision set consists of the basis vectors {ei}Ni=1 (and, obviously, d = N
and m = 1 hold). In each time step, the learner specifies a distribution pt over
the arms, where pt,i = P [It = i| Ft−1], where Ft−1 is the history of the learner’s
observations and choices up to the end of time step t−1. Most bandit algorithms
rely on feeding some loss estimates to a black-box prediction algorithm. It is
commonplace to consider loss estimates of the form
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�̂∗t,i =
�t,i
pt,i

I {It = i} , (2)

where pt,i = P [It = i |Ft−1 ], where Ft−1 is the history of observations and in-
ternal random variables used by the algorithm up to time t− 1. It is very easy
to show that �̂t,i is an unbiased estimate of the loss �t,i for all t, i such that pt,i

is positive. For all other i and t, E
[
�̂t,i

∣
∣
∣Ft−1

]
= 0 ≤ �t,i.

To our knowledge, all existing bandit algorithms utilize some version of the
loss estimates described above. While for many algorithms (such as the Exp3
algorithm of Auer et al. [4] and the Green algorithm of Allenberg et al. [1]), the
probabilities pt,i are readily available and the estimates (2) can be computed
efficiently, this is not necessarily the case for all algorithms. In particular, FPL
is notorious for not being able to handle bandit information efficiently since the
probabilities pt,i cannot be expressed in closed form. To overcome this difficulty,
we propose a different loss estimate that can be efficiently computed even when
pt,i is not available for the learner.

The estimation procedure executed after each time step t is described below.

1. The learner draws It ∼ pt.
2. For n = 1, 2, . . .

(a) Let n← n+ 1.
(b) Draw I ′t(n) ∼ pt.
(c) If I ′t(n) = It, break.

3. Let Kt = n.

ObserveKt is a geometrically distributed random variable given It and Ft−1, and
thus E [Kt |Ft−1, It ] = 1/pt,It. We use this property to construct the estimates

�̂t,i = �t,iI {It = i}Kt (3)

for all arms i. We can easily show that the above estimate is conditionally unbi-
ased whenever pt,i > 0:

E

[
�̂t,i

∣
∣
∣Ft−1

]
=
∑

j

pt,jE
[
�̂t,i

∣
∣
∣Ft−1, It = j

]

= pt,iE [�t,iKt |Ft−1, It = i ]

= pt,i�t,iE [Kt |Ft−1, It = i ]

= �t,i.

Clearly, E
[
�̂t,i

∣
∣
∣Ft−1

]
= 0 still holds whenever pt,i = 0.

The main problem with the above sampling procedure is that its worst-
case running time is unbounded: while the expected number of necessary sam-
ples Kt is clearly N , the actual number of samples might be much larger. To
overcome this problem, we maximize the number of samples by M and use
K̃t = min {Kt,M} instead of Kt in (3). While this capping obviously introduces
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Algorithm 1. FPL with GR

Input: S = {v(1),v(2), . . . ,v(N)} ⊆ {0, 1}d, η ∈ R
+, M ∈ Z

+;

Initialization: L̂(1) = · · · = L̂(d) = 0;
for t=1,. . . ,T do

Draw Z(1), . . . ,Z(d) independently from distribution Exp(η);

Choose action I = argmin
i∈{1,2,...,N}

{
v(i)�

(
L̂−Z

)}
;

K(1) = · · · = K(d) = M ;
k = 0; /* Counter for reoccurred indices */

for n=1,. . . ,M-1 do /* Geometric Resamplig */

Draw Z′(1), . . . ,Z′(d) independently from distribution Exp(η);

I ′(n) = argmin
i∈{1,2,...,N}

{
v(i)�

(
L̂−Z′

)}
;

for j=1,. . . ,d do
if v(I ′(n))(j) = v(I)(j) = 1 & K(j) = M then

K(j) = n;
k = k + 1;
if k =

∥
∥v(I)

∥
∥
1
then break; /* All indices reoccurred */

end

end

end

for j=1,. . . ,d do L̂(j) = L̂(j) +K(j)v(I)(j)�(j) ; /* Update */

end

some bias, we will show later that for appropriate values of M , this bias does
not hurt the performance too much.

3 An Efficient Algorithm for Learning with Semi-bandit
Feedback

First, we generalize the geometric resampling method for constructing loss es-
timates in the semi-bandit case. To this end, let pt,i = P [It = i |Ft−1 ] and
qt,j = E [Vt,j |Ft−1 ]. First, the learner plays the decision vector with index
It ∼ pt. Then, it draws M additional indices I ′t(1), I

′
t(2), . . . , I

′
t(M) ∼ pt in-

dependently of each other and It. For each j = 1, 2, . . . , d, we define the random
variables

Kt,j = min {1 ≤ s ≤M : vj(I
′
t(s)) = 1} ,

with the convention that min {∅} = M . We define the components of our loss

estimates �̂t as

�̂t,j = Kt,jVt,j�t,j (4)

for all j = 1, 2, . . . , d. Since Vt,j are nonzero only for coordinates for which �t,j is
observed, these estimates are well-defined. It also follows that it is sufficient to
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draw the additional indices {I ′t(s)} for components with Vt,j = 1. Letting L̂t =∑t
s=1 �̂s, at time step t the algorithm draws the components of the perturbation

vector Zt independently from an exponential distribution with parameter η and
selects the index

It = argmin
i∈{1,2,...,N}

{
v(i)�

(
L̂t−1 −Zt

)}
.

As noted earlier, the distribution pt, while implicitly specified by Zt and the es-
timated cumulative losses L̂t, cannot be expressed in closed form for FPL. How-
ever, sampling the indices I ′t(1), I ′t(2), . . . , I ′t(M) can be carried out by drawing
additional perturbation vectors Z ′

t(1),Z
′
t(2), . . . ,Z

′
t(M) independently from the

same distribution as Zt. We emphasize that the above additional indices are
never actually played by the algorithm, but are only necessary for constructing
the loss estimates. We also note that in general, drawing as much as M samples
is usually not necessary since the sampling procedure can be terminated as soon
as the values of Kt,i are fixed for all i such that Vt,i = 1. We point the reader to
Section 3.1 for a more detailed discussion of the running time of the sampling
procedure.

Pseudocode for the algorithm can be found in Algorithm 1. We start analyzing
our method by proving a simple lemma on the bias of the estimates.

Lemma 1. For all j ∈ {1, 2, . . . , d} and t = 1, 2, . . . , T such that qt,j > 0, the
loss estimates (4) satisfy

E

[
�̂t,j

∣
∣
∣Ft−1

]
=
(
1− (1− qt,j)

M
)
�t,j.

Proof. Fix any j, t satisfying the condition of the lemma. By elementary calcu-
lations,

E

[
�̂t,j

∣
∣
∣Ft−1

]
= qt,j�t,jE [Kt,j | Ft−1, Vt,j = 1] .

Setting q = qt,j for simplicity, we have

E [Kt,j |Ft−1, Vt,j = 1] =

∞∑

n=1

n(1− q)n−1q −
∞∑

n=M

(n−M)(1− q)n−1q

=

∞∑

n=1

n(1− q)n−1q − (1− q)M
∞∑

n=M

(n−M)(1− q)n−M−1q

=
(
1− (1− q)M

) ∞∑

n=1

n(1− q)n−1q =
1− (1− q)M

q
.

Putting the two together proves the statement. 
�

The following theorem gives an upper bound on the total expected regret of the
algorithm.
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Theorem 1. The total expected regret of FPL with geometric resampling satis-
fies

Rn ≤ m (log d+ 1)

η
+ 2ηmdT +

dT

eM

under semi-bandit information. In particular, setting η =
√
(log d+ 1) /(dT )

and M ≥ √dT/
(
em

√
2 (log d+ 1)

)
, the regret can be upper bounded as

Rn ≤ 3m
√
2dT (log d+ 1).

Note that the regret bound stated above holds for any non-oblivious adversary
since the decision It only depends on the previous decisions It−1, . . . , I1 through
the loss estimates �̂t−1, . . . , �̂1. While the main ingredients of the proof presented
below are rather common (we borrow several ideas from Poland [15], the proof of
Theorem 3 of Audibert et al. [3] and the proof of Corollary 4.5 of Cesa-Bianchi
and Lugosi [7]), these elements are carefully combined in our proof to get the
desired result.

Proof. Let Z̃ be a perturbation vector drawn independently from the same dis-
tribution as Z1 and

Ĩt = argmin
i∈{1,2,...,N}

{
v(i)�

(
L̂t − Z̃

)}
.

In what follows, we will crucially use that Ṽt = v(Ĩt) and Vt+1 = v(It+1) are
conditionally independent and identically distributed given Fs for any s ≤ t. In
particular, introducing the notations

qt,k = E [Vt,k| Ft−1] q̃t,k = E

[
Ṽt,k

∣
∣
∣Ft

]

pt,i = P [It = i| Ft−1] p̃t,i = P

[
Ĩt = i

∣
∣
∣Ft

]
,

we will exploit the above property by using qt,k = q̃t−1,k and pt,i = p̃t−1,i

numerous times below.
We start by using Lemma 3.1 of Cesa-Bianchi and Lugosi [7] (sometimes

referred to as the “be-the-leader” lemma) for the sequence
(
�̂1 − Z̃, �̂2, . . . , �̂T

)

to obtain
T∑

t=1

Ṽ �
t �̂t − Ṽ �

1 Z̃ ≤
T∑

t=1

v��̂t − v�Z̃

for any v ∈ S. Reordering and taking expectations gives

E

[
T∑

t=1

(
Ṽt − v

)�
�̂t

]

≤ E

[(
Ṽt − v

)�
Z̃

]

≤ m (log d+ 1)

η
, (5)

where we used E [‖Zt‖∞] ≤ log d + 1. To proceed, we study the relationship
between p̃t,i and p̃t−1,i = pt,i. To this end, we introduce the “sparse loss vector”

�̂′t(i) with components �̂′t,k(i) = vk(i)�̂t,k and
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Ĩ ′t(i) = argmin
i∈{1,2,...,N}

{
v(i)�

(
L̂t−1 + �̂′t(i)− Z̃

)}
.

Using the notation p̃′t,i = P

[
Ĩ ′t(i) = i

∣
∣
∣Ft

]
, we show in Lemma 2 (stated and

proved after the proof of the theorem) that p̃′t,i ≤ p̃t,i.
2 Also, define

J(z) = argmin
j∈{1,2,...,N}

{
v(j)�

(
L̂t−1 − z

)}
.

Letting f(z) be the density of the perturbations, we have

p̃t−1,i =

∫

z∈[0,∞]d

I {J(z) = i} f(z) dz

= eη‖�̂′t(i)‖1
∫

z∈[0,∞]d

I {J(z) = i} f
(
z + �̂′t(i)

)
dz

= eη‖�̂′t(i)‖1
∫

· · ·
∫

zi∈[�̂′t,i,∞]

I

{
J
(
z − �̂′t(i)

)
= i

}
f(z) dz

≤ eη‖�̂′t(i)‖1
∫

z∈[0,∞]d

I

{
J
(
z − �̂′t(i)

)
= i

}
f(z) dz

≤ eη‖�̂′t(i)‖1 p̃′t,i ≤ eη‖�̂′t(i)‖1 p̃t,i,

where we used f(z) = η exp(−η‖z‖1) for z ∈ [0,∞]d. Now notice that
∥
∥�̂′t(i)

∥
∥
1
=

v(i)��̂′t(i) = v(i)��̂t, which yields

p̃t,i ≥ p̃t−1,ie
−ηv(i)��̂t ≥ p̃t−1,i

(
1− ηv(i)��̂t

)
.

It follows that

E

[
Ṽ �
t−1�̂t

∣
∣
∣Ft

]
=

N∑

i=1

p̃t−1,iv(i)
��̂t ≤

N∑

i=1

p̃t,iv(i)
��̂t + η

N∑

i=1

p̃t−1,i

(
v(i)��̂t

)2

= E

[
Ṽ �
t �̂t

∣
∣
∣Ft

]
+ η

N∑

i=1

p̃t−1,i

(
v(i)��̂t

)2

,

(6)

where we used E

[
Ṽt−1

∣
∣
∣Ft

]
= E

[
Ṽt−1

∣
∣
∣Ft−1

]
in the second equality.

Thus, we are left with the problem of upper bounding
∑N

i=1 p̃t−1,i

(
v(i)��̂t

)2

.

Had we been able to construct the estimates by replacing Kt,j with 1/qt,j for all

2 Note that a similar trick was used in the proof Corollary 4.5 in [7]. Also note that
this trick only applies in the case of non-negative losses.
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j = 1, 2, . . . , d in Equation (4), we could simply upper bound the expectation of
this term by md (see Theorem 8 of [3]). Since this is not the case, we have to be
much more careful. First, notice that

E

[
N∑

i=1

p̃t−1,i

(
v(i)��̂t

)2
∣
∣
∣
∣
∣
Ft−1

]

= E

⎡

⎣
d∑

j=1

d∑

k=1

(
Ṽt−1,j �̂t,j

)(
Ṽt−1,k �̂t,k

)
∣
∣
∣
∣
∣
∣
Ft−1

⎤

⎦

= E

⎡

⎣
d∑

j=1

d∑

k=1

(
Ṽt−1,jVt,jKt,j�t,j

)(
Ṽt−1,kVt,kKt,k�t,k

)
∣
∣
∣
∣
∣
∣
Ft−1

⎤

⎦

≤ E

⎡

⎣
d∑

j=1

d∑

k=1

K2
t,j +K2

t,k

2

(
Ṽt−1,jVt,j�t,j

)(
Ṽt−1,kVt,k�t,k

)
∣
∣
∣
∣
∣
∣
Ft−1

⎤

⎦ ,

where we used the fact that for any j, k and t, Kt,jKt,k ≤ K2
t,j+K2

t,k

2 holds. Also
noticing that

E

[
K2

t,j

∣
∣
∣Ft−1,Vt, Ṽt−1

]
≤ 2− qt,j

q2t,j
≤ 2

q2t,j
,

we obtain

E

[
N∑

i=1

p̃t−1,i

(
v(i)��̂t

)2
∣
∣
∣
∣
∣
Ft−1

]

≤ 2E

⎡

⎣
d∑

j=1

1

q2t,j

(
Ṽt−1,jVt,j�t,j

) d∑

k=1

Vt,k�t,k

∣
∣
∣
∣
∣
∣
Ft−1

⎤

⎦

≤ 2mE

⎡

⎣
d∑

j=1

�t,j

∣
∣
∣
∣
∣
∣
Ft−1

⎤

⎦ ≤ 2md,

where we used that E [Vt,j | Ft−1] = E

[
Ṽt−1,j

∣
∣
∣Ft−1

]
= qt,j . That is, we have

proved

E

[
T∑

t=1

Ṽ �
t−1�̂t

]

≤ E

[
T∑

t=1

Ṽ �
t �̂t

]

+ 2ηmd, (7)

implying that the price we pay for not being able to use the traditional loss
estimates is a factor of ηmd.

Finally, let us address the bias of the loss estimates generated by GR. By

Lemma 1, we have that E

[
�̂t,k

∣
∣
∣Ft−1

]
≤ �t,k for all k and t, and therefore

E

[
v��̂t

∣
∣
∣Ft−1

]
≤ v��t holds for any fixed v ∈ S. Furthermore, we have

E

[
Ṽ �
t−1�̂t

∣
∣
∣Ft−1

]
=

d∑

k=1

q̃t−1,kE

[
�̂t,k

∣
∣
∣Ft−1

]

=

d∑

k=1

q̃t−1,k

(
1− (1− qt,k)

M
)
�t,k,
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where we used Lemma 1 in the second line. Now using that q̃t−1,k = qt,k for all

k and t and noticing that E
[
V �
t �t

∣
∣Ft−1

]
=
∑d

k=1 qt,k�t,k, we get that

E
[
V �
t �t

∣
∣Ft−1

] ≤ E

[
Ṽ �
t−1�̂t

∣
∣
∣Ft−1

]
+

d∑

i=1

qt,k(1− qt,k)
M . (8)

To control
∑

k qt,k(1 − qt,k)
M , note that qt,k(1 − qt,k)

M ≤ qt,ke
−Mqt,k . Since

f(q) = qe−Mq takes its maximum at q = 1/M , we get

d∑

k=1

qt,k(1− qt,k)
M ≤ d

eM
.

Putting Equations (5), (7) and the above observations together, we obtain

E

[
T∑

t=1

(Vt − v)
�
�t

]

≤ m (log d+ 1)

η
+ 2ηmdT +

dT

eM

as stated in the theorem. 
�
In the next lemma, we prove that p̃′t,i ≤ p̃t,i holds for all t and i. While this
statement is rather intuitive, we include its simple proof for completeness.

Lemma 2. Fix any i ∈ {1, 2, . . . , N} and any vectors L ∈ R
d and � ∈ [0,∞)d.

Furthermore, define the vector �′ with components �′k = vk(i)�k and the pertur-
bation vector Z with independent components. Then,

P
[
v(i)� (L+ �′ −Z) ≤ v(j)� (L+ �′ −Z) (∀j ∈ {1, 2, . . . , N})]

≤ P
[
v(i)� (L+ �−Z) ≤ v(j)� (L+ �−Z) (∀j ∈ {1, 2, . . . , N})] .

Proof. Fix any ∀j ∈ {1, 2, . . . , N} \ i and define the vector �′′ = � − �′. Define
the events

A′
j =

{
ω : v(i)� (L+ �′ −Z) ≤ v(j)� (L+ �′ −Z)

}

and
Aj =

{
ω : v(i)� (L+ �−Z) ≤ v(j)� (L+ �−Z)

}
.

We have

A′
j =

{
ω : (v(i)− v(j))

�
Z ≥ (v(i)− v(j))

�
(L+ �′)

}

⊆
{
ω : (v(i)− v(j))

�
Z ≥ (v(i)− v(j))

�
(L+ �′)− v(j)��′′

}

=
{
ω : (v(i)− v(j))� Z ≥ (v(i)− v(j))� (L+ �)

}
= Aj ,

where we used v(i)�′′ = 0 and v(j)�′′ ≥ 0. Now, since A′
j ⊆ Aj , we have

∩Nj=1A
′
j ⊆ ∩Nj=1Aj , thus proving P

[∩Nj=1A
′
j

] ≤ P
[∩Nj=1Aj

]
as requested. 
�
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3.1 Running Time

Let us now turn our attention to computational issues. First, we note that the
efficiency of FPL-type algorithms crucially depends on the availability of an effi-
cient oracle that solves the static combinatorial optimization problem of the form
minv∈S v��. Computing the running time of the full-information variant of FPL
is straightforward: assuming that the oracle computes the solution to the static
problem in O(f(S)) time, FPL returns its prediction in O(f(S) + d) time (with
the d overhead coming from the time necessary to generate the perturbations).
Naturally, our geometric resampling scheme multiplies these computations by the
number of samples taken in each round. As mentioned earlier, since we cut off
the number of times we resample the decision vectors, the maximum number of
additional samples per time step is M . This implies an O((T 3/2d1/2) ·(f(S)+d))
worst-case running time when using the parameter settings suggested by Theo-
rem 1. However, the expected running time is much more comforting. The next
simple result ensures that our algorithm requires a total of O(f(S)dT + d2T )
processing time on expectation.

Proposition 1. The expected number of times the algorithm draws an action
up to time step T can be upper bounded by dT .

Proof. Fix a time step t. We will denote the number of samples used by the
original algorithm in round t by Nt. The expected number of samples Nt can be
simply upper bounded as

E [Nt| Ft−1] = E

[

max
j:Vt,j=1

Kt,j

∣
∣
∣
∣Ft−1

]

= E

[

max
j=1,2,...,d

Vt,jKt,j

∣
∣
∣
∣Ft−1

]

≤ E

⎡

⎣
d∑

j=1

Vt,jKt,j

∣
∣
∣
∣
∣
∣
Ft−1

⎤

⎦ .

(9)

By Lemma 1, we have E [Kt,j | Ft−1, Vt,j ] ≤ 1/E [Vt,j | Ft−1], and thus we obtain
E [Nt] ≤ d and the statement of the lemma follows. 
�

Note that this bound is essentially tight since the non-strict inequality (9)
holds with equality in the multi-armed bandit setting (see Section 2).

4 Improved Bounds for Learning with Full Information

Our technique used to prove Theorem 1 also enables us to improve the best
known guarantees for FPL in the full information setting, which are ofO(m

√
dT )

(see [12, 3]). In particular, we consider the algorithm choosing the index

It = argmin
i∈{1,2,...,N}

{
v(i)� (Lt−1 −Zt)

}
,

where Lt =
∑t

s=1 �s and the components of Zt are drawn independently from an
exponential distribution with parameter η. We state our improved regret bounds
concerning this algorithm in the following theorem.
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Theorem 2. Let CT =
∑T

t=1 E
[
V �
t �t

]
. Then the total expected regret of FPL

satisfies

Rn ≤ m (log d+ 1)

η
+ ηmCT

under full information. In particular, setting η =
√

(log d+ 1) /(mT ), the regret
can be upper bounded as

Rn ≤ 2m3/2
√
T (log d+ 1).

Note that the above bound can be further tightened if some upper bound
C∗

T ≥ CT is available a priori. Once again, these regret bounds hold for any
non-oblivious adversary since the decision It depends on the previous decisions
It−1, . . . , I1 only through the loss vectors �t−1, . . . , �1.

Proof. The statement follows from a simplification of the proof of Theorem 1
when using �̂t = �t. First, identically to Equation (5), we have

E

[
T∑

t=1

(
Ṽt − v

)�
�t

]

≤ E

[(
Ṽt − v

)�
Z̃

]

≤ m (log d+ 1)

η
.

Further, it is easy to see that the conditions of Lemma 2 are satisfied and,
similarly to Equation (6), we also have

E

[
Ṽ �
t−1�t

]
≤ E

[
Ṽ �
t �t

]
+ η

N∑

i=1

p̃t−1,i

(
v(i)��t

)2

≤ E

[
Ṽ �
t �t

]
+ ηm

N∑

i=1

p̃t−1,iv(i)
��t.

Using that Vt and Ṽt−1 have the same distribution, we obtain the statement of
the theorem. 
�

5 Conclusions and Open Problems

In this paper, we have described the first general efficient algorithm for online
combinatorial optimization under semi-bandit feedback. We have proved that the
regret of our algorithm is O(m

√
dT log d) in this setting, and have also shown

that FPL can achieve O(m3/2
√
T log d) in the full information case when tuned

properly. While these bounds are off by a factor of
√
m log d and

√
m from the

respective minimax results, they exactly match the best known regret bounds for
the well-studied Exponentially Weighted Forecaster (EWA). Whether the gaps
mentioned above can be closed for FPL-style algorithms (e.g., by using more
intricate perturbation schemes) remains an important open question. Neverthe-
less, we regard our contribution as a significant step towards understanding the
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inherent trade-offs between computational efficiency and performance guaran-
tees in online combinatorial optimization and, more generally, in online linear
optimization.

The efficiency of our method rests on a novel loss estimation method called
geometric resampling (GR). Obviously, this estimation method is not specific
to the proposed learning algorithm. While GR has no immediate benefits for
OSMD/FTRL-type algorithms where the probabilities qt,k are readily available,
it is possible to think about problem instances where EWA can be efficiently
implemented while the values of qt,k are difficult to compute.

The most important open problem left is the case of efficient online linear opti-
mization with full bandit feedback. Learning algorithms for this problem usually
require that the pseudoinverse of the covariance matrix Pt= E

[
VtV

�
t

∣
∣Ft−1

]
is

readily available for the learner at each time step (see, e.g., [14, 9, 8, 6]). While
for most problems, this inverse matrix cannot be computed efficiently, it can
be efficiently approximated by geometric resampling when Pt is positive definite
as the limit of the matrix geometric series

∑∞
n=1(I − Pt)

n. While this knowl-
edge should be enough to construct an efficient FPL-based method for online
combinatorial optimization under full bandit feedback, we have to note that the
analysis presented in this paper does not carry through directly in this case: as
usual loss estimates might take negative values in the full bandit setting, proving
a bound similar to Equation (6) cannot be performed in the presented manner.

Acknowledgments. This work was supported in part by the Hungarian Scien-
tific Research Fund and the Hungarian National Office for Research and Technol-
ogy (KTIA-OTKA CNK 77782) and by DARPA grant MSEE FA8650-11-1-7156.

References

[1] Allenberg, C., Auer, P., Györfi, L., Ottucsák, G.: Hannan consistency in on-line
learning in case of unbounded losses under partial monitoring. In: Balcázar, J.L.,
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