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Abstract. In this paper we explore the problem of the reconstruction
of images with additive Gaussian noise. In order to solve this inverse
problem we use stochastic differential equations with reflecting bound-
ary and famous non local means algorithm. Expressing anisotropic dif-
fusion in terms of stochastic equations allows us to adapt the concept of
similarity patches used in non local means. This novel look on the re-
construction problem is fruitful, gives encouraging results and compares
favourably with other image denoising filters.
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1 Introduction

Let D be a bounded, convex domain in R?, u : D — R be an original image and
ug : D — R be the observed image of the form

ug =u+mn,

where 7 stands for a white Gaussian noise. We assume that u and ug are ap-
propriately regular. We are given ug, the problem is to reconstruct w. This is a
typical example of an inverse problem [2].

Problem of image denoising using fully automatic and reliable methods is one
of the most important issues of digital image processing and computer vision.
Efficient and effective reconstruction of images is an essential element of most
image processing and recognising algorithms. Reconstruction algorithms allow
us to make initial treatment of data for further analysis, which is very important,
especially in astronomy, biology or medicine.

Various techniques were proposed to tackle this inverse problem. One may
quote the linear filtering, DCT [31], wavelets theory |12, [15], variational methods
[12, 23] and stochastic modelling which are generally based on the Markov field
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theory and Bayesian approach [12, (16, 22]. The most important methods in the
last decade in image processing have been methods driven by nonlinear diffusion
equation [11, 21, [29, 130], where some papers [3-7, |17, [26, 27] involve advanced
tools of stochastic analysis such as stochastic differential equations. In another
class, one could include methods that take advantage of the non-local similarity
of patches in the image. Among the most famous, we can name non local means
(in short NL-means) [&,19], BM3D [13, 14, 18], NL-Bayes [19] and K-SVD |[1, 20].
In this paper we focus on two methods using to image denoising: anisotropic
diffusion and non local means. We propose a method which combines these two
approaches. Reconstructed pixel is expressed in terms of stochastic anisotropic
diffusion which is itself driven by similarity of patches of the noisy image.

2 Mathematical Preliminaries

Let D C R"™ be a domain with closure D and boundary dD. Let T > 0 and by
C([0,T];R™) we denote a set of continuous functions f : [0,7] — R™.

Definition 1. Let y € C([0,T|;R"), yo € D. A pair (z,k) € C([0,T}; R*") is
said to be a solution to the Skorokhod problem associated with y and D if

1. xt:yt+kt> tG[O,T},
2. 2z e€D, tel0,T),
3. k is a function with bounded variation |k| on [0,T], ko = 0 and

t t
ktz/ n dlks, |k\t=/ La.cony dlE]s, ¢ € [0,7],
0 0

where ng = n(xg) is an inward normal unit vector at xs € OD.

It is known that if D is a convex set, then there exists a unique solution to the
Skorokhod problem [25].

Definition 2. Let (2, F,P) be a probability space.

1. An n-dimensional stochastic process X = {X;;t € [0,T)} is a parametrised
collection of random variables defined on a probability space (2, F,P) with
values in R™.

For each fized w € (2 the function X¢(w), t € [0,T] is called a trajectory
of X and is denoted by X (w).

2. A filtration (F;) = {Fy;t € [0,T]} is a nondecreasing family of sub-o-fields
of Fyie. Fs CF CF for0<s<t<T.

By (FX) we denote a filtration generated by a process X, i.e.
F¥ =0(X;0<s<t).

3. A stochastic process X is adapted to the filtration (Fi) (X is (Fi) adapted)

if for each t € [0,T], X; is F¢ - measurable random variable.

Definition 3. Let Y be (F;) adapted process with continuous trajectories,
Yo € D. We say that a pair (X,K) of (F) adapted processes is a solution
to the Skorokhod problem associated with Y and D, if for almost every w € (2,
(X (w), K(w)) is a solution to the Skorokhod problem associated with'Y (w) and D.
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In what follows, by W = {Wy;t € [0,T]} we shall denote a Wiener process
starting from zero. We assume that we are given a point g € D and some
function o : R — R" x R™.

Definition 4. Let Y be an (F;) adapted process. A pair (X, KP) of (F;) adapted
processes is called a solution to reflected stochastic differential equation (in short
reflected SDE)

t
X, = 0 +/ o(Xs)dW, + KP, t € [0,T], (1)
0
if (X, KP) is a solution to the Skorokhod problem associated with

¢
Y}:xOJr/ o(Xs)dWs, t€[0,T] and D.
0

The process X is called the process with reflection. The proof of existence and
uniqueness of the solution to reflected SDEs can be found in [25].

3 Stochastic Anisotropic Diffusion

Following [21), 130] we propose the following stochastic model of an anisotropic

diffusion:
o (G'y*uo):cz (Xs)

t] T IV G ) (X)) .
Xe=a+t [ aw, + KP,
0 (Gy*uo)zy (Xs) 0
V(G o) (X
where u, (y) = 5" (y). To avoid false detections due to noise, ug is convolved
_l=I?
with a Gaussian kernel G (z) = 27372 e 2% (in practice a 3 x 3 Gaussian mask).

The reconstruction pixel is given by
u(x) = E [ug(X7)] Zuo (X7 (wyi)) (2)

where X™(w;) is the approximation of trajectory of stochastic process X and
M is the number of Monte Carlo method iterations.

3.1 Euler’s Approximation

Consider the following numerical scheme

Xt =1p[X[  +o(Xy YWy =Wy )L E=1,...,m,

tr—1 tk1

where t;, = kh, h = ;L, k=0,1,...,m and IT,(z) denotes a projection of z on
the set D. Since D is convex, the projection is unique.
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Theorem 1. Let (X, KP) be the solution to the reflected SDE (). If there exists
C > 0 such that
lo(@) = o@)|* < Clz - y/?,

then
lim |X7 —Xp| =0 almost surely.
m——+o0

The proof of the above theorem can be found in [24].

3.2 Modified Diffusion

The numerical scheme (Bl gives good results, but only with a small value of
the time-step parameter h = 7Tn (for example h = 0.05). Calculating the mean
value using Monte Carlo method for small & is not effective and takes a long
time. To omit this problem, we improve the scheme () by adding a controlled
parameter p [4].

X' = Xo,
HZZ = HD[XZ:,l + O'(XZZ,l)(Wtk - Wtk—l)L
(4)
Hi, it O,
X7 = k=1,2,...,m,
X' |, elsewhere,

where by @ we mean the condition
(G uo) () — (Gy s uo) (X7 )| < p.

Note that the parameter p > 0 guarantees that if the image exhibits a strong
gradient then the process X™ diffuses as a process with small value of the param-
eter h and at locations where variations of the brightness are small, the process
X™ can diffuse with a large value of h (for example h = 4).

The figure Fig.[I] illustrates a difference between the scheme (B]) and the scheme
(). There are shown three examples of trajectories of the process ug(X[™) from the
pixel A to the pixel B. Trajectories (I) and (III) were generated using the scheme
@) for large and small value of the parameter h, respectively. Trajectory (II) was
generated using the scheme ([@]) for large h. It is easy to see, that at locations where
the image is constant, trajectory (II) diffuses as trajectory (I). At locations where
the image has strong gradient, the trajectory (I) is similar to the trajectory (IIT).

For small h or p = 400 (in practice p > 255) the numerical scheme (@) is
equivalent to the scheme (3]).

3.3 Modified Diffusion with Random Terminal Time

At locations where gradient is large in all directions it is possible that condition
© does not hold as many times as we would expect. To avoid this we propose
the following modification [6]:
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(G # uo) (4 5)

200

Fig. 1. Example of trajectories of the process (G~ * uo)(X{") from pixel A to B: (I) —
with using the scheme (@) and large h, (II) — with using the scheme () and large h,
(III) — with using the scheme (B]) and small h

Xy = Xo,

HtT = HD[XZ:_l + O'(XZ:_l)(Wtk - Wtk—l)L
HiY, it O,

X = k=1,2,..., T,
X' |, elsewhere,

where 7,, = min{k; k > mand © is true m times}.

Terminal time 7, guarantees that the numerical simulation of the diffusion
trajectory gives at least m values of X3 which differ from the value in the
previous step.

3.4 Implementation

The above schemes are simple to implement. Observe that the schemes works
well only if the model of the digital image G, * ug is continuous. In practice,
we can use a linear interpolation to get the value of the image G * ug, for any
point x € D. We note also that since Wy, — Wy, _, ~ N(0,tx — tx—1), it can be
approximated by a random number generator of the normal distribution.

4 Non Local Means Algorithm

In this section we cite results from B@}

Let v = {v(i)|¢ € I} be a discrete noisy image and {w(i,j)} be the weights
that depend on the similarity between the pixels ¢ and j and satisfy the usual
conditions 0 < w(é, j) < 1and ) ; w(i,j) = 1. The reconstructed value N'L(v)(i)
for a pixel 7 is defined as a weighted average of all pixels in the image
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NL(w)(i) = Y Jw(i, j)v().
jeI
The weight w(i, j) depends on the similarity of the intensity gray level vectors
of neighbourhoods centred at pixels ¢ and j.

Definition 5. A neighbourhood system on I is a family N' = {N; }icr of subsets
of I such that for alli €1,

1. i eN;,
2. jeN; =i eN,.

The subset N is called the neighbourhood or the similarity window of i.

The weights can be defined by

w(i,j) = Z(i)e 52

AN N
where Z(i) is the normalising factor Z(i) = >, e~ e and d(N;, Nj) is some
measure of distance between intensity gray level vectors of similarity windows.
The number s is a parameter that controls the decay of the exponential function.

In original approach [8] the authors propose to use square windows of fixed
size as similarity windows (see Fig.[2) and the distance between neighbourhoods
was measured as a decreasing function of the weighted Euclidean distance i.e.
d(NG, NG) = [[o(NG) — 0(A)[13.0, where v(A;) = (u(j),j € ;) and a > 0 s the

standard deviation of the Gaussian kernel.

4.1 Patchwise Implementation

By ||Bir — Bjrll2 we denote the Euclidean distance between B, , and B,
where patch B; , means a neighbourhood of a size 2r 4+ 1 x 27 41 pixels centred
at i. Patchwise implementation [10] is based on a simple observation. When
computing the Euclidean distance ||B;, — Bjr||2, all pixels in the patch B;,
have the same importance, and therefore the weight F'(||B;, — Bj.r||2), where
F is a decreasing function, can be used to denoise all pixels in the patch B; .
and not only i. For computational purposes the searching of similar windows
can be restricted from all pixels in the image to some square window B; ¢. The
denoising of an image v and a certain patch B; , is equal to

- 1
Bir =, > o(Bjr)w(Bir, Bj,),
JEB; ¢
where Z =3, p. ; w(B; r, Bj,») and the weight function is given by

max(HB*QHg*2p2,O.D)

w(B,Q) = e~
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Fig. 2. Idea of NL-means from E] Pixels j and k have large weights w(i, j) and w(%, k)
because their similarity windows are similar to that of i. The weight w(4,!) is much
smaller because the intensity grey values in the similarity windows are very different.

Here by p we denoted the standard deviation of the noise and by s the filtering
parameter set depending on the value of p. The weight function is chosen in order
to average similar patches up to noise. That is, patches with square distances
smaller than 2p? are set to 1, while larger distances decrease rapidly accordingly
to the exponential kernel.

By applying the procedure for all patches in the image, we will get (2r + 1)?
possible estimates for each pixel. These estimates can be finally averaged at each
pixel location in order to build the final denoised image

NL()(i) = 2T+12 > B

5 Anisotropic Stochastic Diffusion Collaborated with
Non Local Means

In this section we propose a new method of the image reconstruction based on
modified diffusion with random terminal time and patchwise implementation of
non local means.

In the case of numerical scheme with random terminal time the reconstructed
formula of anisotropic diffusion (2) can be written as

SN
)Y (X (i),

i=1
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which means that each pixel uo(X™ (w;)) is weighted with the value ,,. But
since pixels have different intensities we may consider them with different weights
depending on their neighbourhood. We follow NL-means algorithm and propose
a new method of the image restoration based on modified diffusion but such that
the weights depend on patches similarity:

M
1
u(z) =, > uo(X7 (W) w(Bar, Bxp (w,).r)-
=1

In the above formula we used the following notations:

M max (| B-Ql13-202,0.0)
Z = Zw(BI,Ta BX;’:W (wi),r)a ’U)(B, Q) = 67 52
i=1
Xg'(wi) =,
Hi(wi) = Hp[X7 (wi) + o (X (wi))(We, = W, )]
H™wi), if 6,
X[ (wi) = k=1,2,...,Tm.
X (wi), elsewhere,

The meaning of the parameters in the new method is the same as in original
approaches. This method of the image reconstruction we will call the stochastic
diffusion with non local means (in short SDNLM).

6 Experimental Results

Some measures of quality for our evaluation experiments regarding new method,
non local means algorithm, anisotropic Perona-Malik model [21] and anisotropic
stochastic diffusion are presented in Table[Il Table 2l Fig. Bl and Fig. @l The re-
sults refer to greyscale images pirate and cameraman corrupted with the Gaus-
sian noise with standard deviation p. The maximum values of Peak Signal to
Noise Ratio (in short PSNR) and Structural Similarity Index (in short SSIM)
obtained using tested methods are given in tables. Parameters of SSIM were set
to the default values as recommended by [2§].

The analysis of the measures of image quality shows that in most cases the
new method performs better. Moreover, when comparing the figures one can
observe that the image created by the SDNLM is visually more pleasant. The
reason for this is that the NL-means approach shows clear evidence of a halo of
noise effect around the edges whereas anisotropic diffusions smooth details too
much.
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Fig. 3. a) Original image: 512 x 512 (top) and 128 x 128 (bottom) b) Noisy image:
p = 15 ¢) NL-means: SSIM = 0.9245 d) Stochastic anisotropic diffusion: SSIM = 0.9246
e) Perona-Malik: SSIM = 0.9204 f) New method: SSIM = 0.9257
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Fig. 4. a) Original image: 512 X 512 (top) and 96 x 96 (bottom) b) Noisy image: p = 20
¢) NL-means: SSIM = 0.9214 d) Stochastic anisotropic diffusion: SSIM = 0.9144 e)
Perona-Malik: SSIM = 0.8838 f) New method: SSIM = 0.9196



Image Restoration Using Anisotropic Stochastic Diffusion 187

Table 1. Maximum values of PSNR

Image Noise NL-means Stoch. anisotropic Perona- New method
p algorithm [10] diffusion [6] Malik [21]

Pirate 10 33.0394 32.0450 32.8268 33.1379

15 30.7474 30.5158 30.8167 30.8944

20 29.6731 29.3619 29.5095 29.6914

Cameraman 10 35.3814 35.2304 34.9002 35.8238
15 32.9025 33.7815 32.8394 33.8727

20 32.1931 32.2683 31.2357 32.1571

Table 2. Maximum values of SSIM

Image Noise NL-means Stoch. anisotropic Perona- New method
p  algorithm [10] diffusion [6] Malik [21]

Pirate 10 0.9562 0.9533 0.9519 0.9558

15 0.9245 0.9246 0.9204 0.9257

20 0.8952 0.8935 0.8913 0.8974

Cameraman 10 0.9600 0.9583 0.9436 0.9606
15 0.9334 0.9369 0.9173 0.9393

20 0.9214 0.9144 0.8838 0.9196

7 Conclusion

In this paper we proposed a new method of digital image denoising. Expressing
anisotropic diffusion in terms of stochastic equations allows us to adapt the idea
from non local means approach. The new method takes what is the best both
from anisotropic diffusion and non local means method: reconstructed image is
smooth and at the same time details are preserved.

As a future work, the algorithm can be extended to vector valued images, in
particular, colour images.
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