
André Rauber Du Bois
Phil Trinder (Eds.)

 123

LN
CS

 8
12

9

17th Brazilian Symposium, SBLP 2013
Brasília, Brazil, October 2013
Proceedings

Programming
Languages

Lecture Notes in Computer Science 8129
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

André Rauber Du Bois Phil Trinder (Eds.)

Programming
Languages
17th Brazilian Symposium, SBLP 2013
Brasília, Brazil, October 3-4, 2013
Proceedings

13

Volume Editors

André Rauber Du Bois
Universidade Federal de Pelotas
Programa de Pós-Graduação em Computação
Rua Gomes Carneiro 1
96010-610 Pelotas, RS, Brazil
E-mail: dubois@inf.ufpel.edu.br

Phil Trinder
Glasgow University
School of Computing Science
Lilybank Gardens
Glasgow G12 8QQ, UK
E-mail: phil.trinder@glasgow.ac.uk

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-40921-9 e-ISBN 978-3-642-40922-6
DOI 10.1007/978-3-642-40922-6
Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2013948121

CR Subject Classification (1998): D.3.1-2, D.3.4, D.2.5-6, D.2.9, D.1.1, D.1.5, D.2.11

LNCS Sublibrary: SL 2 – Programming and Software Engineering

© Springer-Verlag Berlin Heidelberg 2013
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in its current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

The Brazilian Symposium on Programming Languages (SBLP) is a series of
annual conferences promoted by the Brazilian Computer Society (SBC) since
1996. In the last four years, it has been organized in the context of CBSoft
(Brazilian Conference on Software: Theory and Practice), co-located with a num-
ber of other events on computer science and software engineering.

SBLP 2013 was the 17th edition of the symposium, and was held in Braśılia,
Brazil, organized by the Department of Computer Science of the University of
Braśılia (UnB). It was collocated with the 2013 editions of SBMF (Brazilian
Symposium on Formal Methods), SBES (Brazilian Symposium on Software En-
gineering), and SBCARS (Brazilian Symposium on Software Components, Ar-
chitecture and Reuse), under CBSoft 2013. The previous editions in SBLP were
held in Natal (2012), São Paulo (2011), Salvador (2010), Gramado (2009), For-
taleza (2008), Natal (2007), Itatiaia (2006), Recife (2005), Niterói (2004), Ouro
Preto (2003), Rio de Janeiro (2002), Curitiba (2001), Recife (2000), Porto Alegre
(1999), Campinas (1997), and Belo Horizonte (1996).

The Program Committee (PC) of SBLP 2013 comprised 36 members, from
8 countries. SBLP 2013 received 31 submissions, including 4 short papers, with
authors from Argentina, Brazil, Mexico, The Netherlands, Portugal, USA, and
Uruguay. Each paper was reviewed by at least four reviewers, including 14 re-
viewers outside the PC. The referee reports were discussed by the reviewers,
generally leading to a consensus. The final selection was made by the PC co-
chairs, based on the reviews and PC discussion. As in previous editions, the
authors of the 10 full papers selected will be invited to submit extended versions
of their works to be considered for publication in a special issue of a reputed
journal in computer science. The technical program of SBLP 2013 also included
keynote talks from Tim Harris (Oracle Labs, UK), and Ryan R. Newton (Indiana
University).

We would like to thank the referees for their reviews, the members of the
PC for their reviews and contributions to the discussion and decision-making,
and the invited speakers for accepting our invitation and enriching the technical
program with interesting talks. We also thank the authors, the sponsors, and the
Organizing Committee of CBSoft 2013 for contributing to the success of SBLP
2013.

October 2013 André Rauber Du Bois
Phil Trinder

Organization

SBLP 2013 was organized by the Department of Computer Science, University of
Brasilia, and sponsored by the Brazilian Computer Society (SBC), in the context
of CBSoft 2013 (Fourth Brazilian Conference on Software: Theory and Practice).

Organizing Committee

Genaina Nunes Rodrigues UnB, Brazil
Rodrigo Bonifácio UnB, Brazil
Diego Aranha UnB, Brazil

Steering Committee

Francisco Heron de Carvalho
Junior UFC, Brazil

Christiano Braga UFF, Brazil
Ricardo Massa Ferreira Lima UFPE, Brazil
André Rauber Du Bois UFPel, Brazil

Program Committee Chairs

André Rauber Du Bois UFPel, Brazil
Phil Trinder Glasgow University, UK

Program Committee

Alberto Pardo Universidad de La República, Uruguay
Alex Garcia IME, Brazil

Álvaro Freitas Moreira UFRGS, Brazil
André Santos UFPE, Brazil
Carlos Camarão UFMG, Brazil
Christiano Braga UFF, Brazil
Edwin Brady University of St. Andrews, UK
Fernando Castor Filho UFPE, Brazil
Fernando Quintão Pereira UFMG, Brazil
Francisco H. de Carvalho

Junior UFC, Brazil
Hans-Wofgang Loidl Heriot-Watt University, UK
Jeremy Singer Glasgow University, UK
João Saraiva Universidade do Minho, Portugal

VIII Organization

João F. Ferreira Teesside University, UK
Lucilia Figueiredo UFOP, Brazil
Luis Soares Barbosa Universidade do Minho, Portugal
Manuel António Martins Universidade de Aveiro, Portugal
Marcelo A. Maia UFU, Brazil
Marcello Bonsangue Leiden University/CWI, The Netherlands
Marcelo d’Amorim UFPE, Brazil
Marco Tulio Valente UFMG, Brazil
Mariza A. S. Bigonha UFMG, Brazil
Martin A. Musicante UFRN, Brazil
Noemi Rodriguez PUC-Rio, Brazil
Peter Mosses Swansea University, UK
Zongyan Qiu Pekin University, China
Rafael Dueire Lins UFPE, Brazil
Ricardo Massa UFPE, Brazil
Roberto S. Bigonha UFMG, Brazil
Roberto Ierusalimschy PUC-Rio, Brazil
Sandro Rigo UNICAMP, Brazil
Sergio Soares UFPE, Brazil
Simon Thompson University of Kent, UK
Varmo Vene University of Tartu, Estonia

Additional Referees

A. Annamaa
J. Cunha
C. de Faveri
J. P. Fernandes
R. Ferreira

M. Garcia
F. Medeiros Neto
H. Nestra
R. Neves
E. Piveta

A. Rademaker
P. Torrini
M. Viera
V. Vojdani

Sponsoring Institutions

CNPq - Conselho Nacional de Desenvolvimento Cient́ıfico e Tecnológico
http://www.cnpq.br

CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nı́vel Superior
http://www.capes.gov.br

Ministério da Educação, Brazilian Government
http://www.mec.gov.br

Instituto Nacional de Ciência e Tecnologia para Engenharia de Software
http://www.ines.org.br

Google
http://www.google.com

Abstracts of Invited Papers

Big-Tent Deterministic Parallelism

Ryan R. Newton

Indiana University, USA

rrnewton@cs.indiana.edu

Abstract. Nondeterminism is essential for achieving flexible parallelism:
it allows tasks to be scheduled onto cores dynamically, in response to the
vagaries of an execution. But if schedule nondeterminism is observable
within a program, it becomes much more difficult for programmers to
discover and correct bugs by testing, let alone to reason about their pro-
grams in the first place. While much work has focused on identifying
methods of deterministic parallel programming, guaranteed determinism
in real parallel programs remains a lofty and rarely achieved goal. It
places stringent constraints on the programming model: concurrent tasks
must communicate in restricted ways that prevent them from observing
the effects of scheduling, a restriction that must be enforced at the lan-
guage or runtime level.

This talk will overview the known forms of deterministic-by-construction
parallel languages, including: Kahn process networks, pure data-parallelism,
single assignment languages, functional programming, and type-effect
systems that enforce limited access to state by threads. However, I will
argue that existing approaches remain fragmented and under-exploited,
and that an effort is called for both to extend the scope of deterministic
approaches and to better integrate known approaches. The ultimate tar-
get is a full-featured programming environment that enables a practical
form of guaranteed-deterministic parallelism not possible today.

I will present our recent work in this area. We have extended Haskell’s
Par monad with arbitrary monotonic data structures called LVars. These
go beyond single-assignment and include any shared data structures to
which information is added but never removed. Specifically, each LVar is
associated with a lattice from which its states are drawn; writes become
join operations; and reads block on a monotonic threshold functions,
preventing observation of the order in which information is added. I will
describe a prototype implementation of this model called LVish, and will
describe both its facilities for task-parallelism with monotonic shared
data, and its ability to support other idioms: for example, parallel in-
place update of array locations via a monad-transformer we call VecParT.

Haskell provides an attractive environment for implementing such ap-
proaches, because deterministic parallelism constructs can be presented
as dischargable effects, and used within ordinary (non-IO) purely func-
tional code. The result is that parallel programming mechanisms can be
arbitrarily composed. For example, LVish programs can internally exe-
cute GPU code with Accelerate, or use threaded array parallelism with

XII Newton R.R.

REPA, or do in-place parallel array computations with a VecParT trans-
former, all while modifying and reading monotonic data structures, and
all while retaining a full guarantee of determinism.

Language Design, in Theory and Practice

Tim Harris

Oracle Labs, Cambridge, UK

timothy.l.harris@oracle.com

Abstract. The end of the “free lunch” of rising CPU clock rates has led
to a resurgence of interest in techniques for parallel programming. Some
techniques are well established, coming from fields such as databases and
high-performance computing. Other techniques are more recent, such as
programming models that target GPUs, or that build on the emerg-
ing transactional memory systems. To be effective, many emerging tech-
niques require changes at multiple layers of the stack: a hardware com-
ponent, support in the operating system, and changes to the language
runtime system in addition to the evolution of the language itself.

A common theme is that the role of hardware is becoming more signifi-
cant. This setting creates new challenges for the programming languages
community: how do we reconcile the need for portable programs and well-
defined languages with the ability to use specialized hardware where it
is available.

I will talk about my experience trying to tackle instances of these prob-
lems, and I will try to identify some lessons learned. I will focus on three
examples. First, transactional memory, and the tensions that exist be-
tween specifying simple language constructs, enabling “transactionaliza-
tion”of existing code, and enabling efficient implementations in hardware
and software. Second, the message passing abstractions exposed by the
Barrelfish research OS, and the tension between providing well-defined
semantics, while being able to build over diverse forms of communication
stack. Finally, I will talk about my current work on supporting multiple
parallel applications together on the same machine, and how previous
work has influenced the design choices there.

Table of Contents

Exception Handling for Error Reporting in Parsing Expression
Grammars . 1

André Murbach Maidl, Fabio Mascarenhas, and
Roberto Ierusalimschy

LuaRocks - A Declarative and Extensible Package Management System
for Lua . 16

Hisham Muhammad, Fabio Mascarenhas, and Roberto Ierusalimschy

On the Performance of Multidimensional Array Representations
in Programming Languages Based on Virtual Execution Machines 31

Francisco Heron de Carvalho Junior, Cenez Araújo Rezende,
Jefferson de Carvalho Silva, Francisco José Lins Magalhães, and
Renato Caminha Juaçaba-Neto

Modular Bialgebraic Semantics and Algebraic Laws 46
Ken Madlener, Sjaak Smetsers, and Marko van Eekelen

A Double Effect λ-calculus for Quantum Computation 61
Juliana Kaizer Vizzotto, Bruno Crestani Calegaro, and
Eduardo Kessler Piveta

Boilerplates for Reconfigurable Systems: A Language and
Its Semantics . 75

Alexandre Madeira, Manuel A. Martins, and Lúıs S. Barbosa

Contextual Abstraction in a Type System for Component-Based High
Performance Computing Platforms . 90

Francisco Heron de Carvalho Junior, Cenez Araújo Rezende,
Jefferson de Carvalho Silva, and Wagner Guimarães Al-Alam

Towards a Domain-Specific Language for Patterns-Oriented Parallel
Programming . 105

Dalvan Griebler and Luiz Gustavo Fernandes

Multiple Intermediate Structure Deforestation by Shortcut Fusion 120
Alberto Pardo, João Paulo Fernandes, and João Saraiva

Zipper-Based Attribute Grammars and Their Extensions 135
Pedro Martins, João Paulo Fernandes, and João Saraiva

Author Index . 151

Exception Handling for Error Reporting

in Parsing Expression Grammars

André Murbach Maidl1, Fabio Mascarenhas2, and Roberto Ierusalimschy1

1 Department of Computer Science, PUC-Rio, Rio de Janeiro, Brazil
{amaidl,roberto}@inf.puc-rio.br

2 Department of Computer Science, UFRJ, Rio de Janeiro, Brazil
fabiom@dcc.ufrj.br

Abstract. Parsing Expression Grammars (PEGs) are a new formalism
to describe a top-down parser of a language. However, error handling
techniques that are often applied to top-down parsers are not directly
applicable to PEGs. This problem is usually solved in PEGs using a
heuristic that helps to simulate the error reporting technique from top-
down parsers, but the error messages are generic. We propose the intro-
duction of labeled failures to PEGs for error reporting, as labels help to
produce more meaningful error messages. The labeled failures approach
is close to that of generating and handling exceptions often used in pro-
gramming languages, being useful to annotate and label grammar pieces
that should not fail. Moreover, our approach is an extension to the PEGs
formalism that is expressive enough to implement some previous work on
parser combinators. Finally, labeled failures are also useful to compose
grammars preserving the error messages of each separate grammar.

Keywords: parsing, error reporting, parsing expression grammars,
packrat parsing, parser combinators.

1 Introduction

When a parser receives an erroneous input, it should indicate the existence
of syntax errors. However, a generic error message (e.g. syntax error) does
not help the programmer to find and fix the errors that the input may have.
Therefore, the least that is expected from a parser is that it should produce
an error message indicating the position of an error in the input and some
information about the context of this error. The LL and LR methods detect
syntax errors very efficiently because they have the viable prefix property, that
is, these methods detect a syntax error as soon as a token is read and cannot be
used to form a viable prefix of the language [1].

Usually, there are two ways to handle errors: error reporting and error recov-
ery. In error reporting, the parser aborts with an informative message when the
first error is found. In error recovery, the parser is adapted to not abort on the
first error, but to try processing the rest of the input, informing all errors that
it found. Such error handling techniques are described in more detail in [1] and

A. Rauber Du Bois and P. Trinder (Eds.): SBLP 2013, LNCS 8129, pp. 1–15, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

2 A.M. Maidl, F. Mascarenhas, and R. Ierusalimschy

[5]. In this paper we focus on error reporting because error recovery can produce
cascading errors.

Parsing Expression Grammars (PEGs) [4] are a new formalism for describing
the syntax of programming languages. We can view a PEG as a formal descrip-
tion of a top-down parser for the language it describes. The syntax of PEGs has
similarities to Extended Backus-Naur Form (EBNF), but, unlike EBNF, PEGs
avoid ambiguities in the definition of the grammar’s language due to the use of
an ordered choice operator. More specifically, a parser implemented by a PEG
is a recursive descent parser with restricted backtracking. This means that the
alternatives of a non-terminal are tried in order; when the first alternative rec-
ognizes an input prefix, no other alternative of this non-terminal is tried, but
when an alternative fails to recognize an input prefix, the parser backtracks on
the input to try the next alternative.

On the one hand, PEGs are an expressive formalism for describing top-down
parsers [4]; on the other hand, PEGs cannot use error handling techniques that
are often applied to top-down parsers, because these techniques assume the
parser reads the input without backtracking [2]. In top-down parsers without
backtracking, it is possible to signal a syntax error when there is no alternative
to continue reading. In PEGs, it is more complicated to identify the cause of an
error and the position where it happened because failures during parsing are not
necessarily errors, but just an indication that the parser should backtrack and
try a different alternative.

Ford [2] provided a heuristic to the problem of error handling in PEGs. His
heuristic simulates the error reporting technique that is implemented in top-
down parsers without backtracking. However, the error messages produced by
both regular top-down parsers and parsers that use this heuristic are still generic.
The best the parsers can do is to tell the user the position where the error
happened, what was found in the input and what they were expecting.

In this paper we present a new approach for error reporting in PEGs, based
on the concept of labeled failures. In our approach, each label may be tied to a
specific error message and resembles the concept of exceptions from programming
languages. Our approach is not tied to a specific implementation of PEGs, being
an extension to the PEGs formalism itself. We show how to use labeled failures to
implement error reporting. We also show that our extension is expressive enough
to implement alternative error reporting techniques from top-down parsers with
backtracking.

The rest of this paper is organized as follows: in Section 2 we contextualize
the problem of error handling in PEGs and we also explain in detail the heuristic
that Ford used to implement error reporting. In Section 3 we discuss alternative
work on error reporting for top-down parsers with backtracking. In Section 4 we
introduce the concept of labeled failures, show how to use it for error reporting,
and show how labeled failures can encode some of the techniques of Section 3.
Finally, we draw our conclusions in Section 5.

Exception Handling for Error Reporting in Parsing Expression Grammars 3

2 Error Reporting in PEGs

In this section we use examples to present in more detail how a PEG behaves
badly on the presence of syntax errors. After that, we present a heuristic pro-
posed by Ford [2] to implement error reporting in PEGs. Rather than using the
original definition of PEGs by Ford [4], our examples use the equivalent and
more concise definition proposed by Medeiros et al. [12,13]. We will extend this
definition in Section 4 to present a semantics for PEGs with labeled failures.

A PEG G is a tuple (V, T, P, pS) where V is a finite set of non-terminals, T
is a finite set of terminals, P is a total function from non-terminals to parsing
expressions and pS is the initial parsing expression. We describe the function P
as a set of rules of the form A← p, where A ∈ V and p is a parsing expression.
A parsing expression, when applied to an input string, either fails or consumes
a prefix of the input resulting in the remaining suffix. The abstract syntax of
parsing expressions is given as follows:

p = ε | a | A | p1p2 | p1/p2 | p ∗ | !p

Intuitively, ε successfully matches the empty string, not changing the input;
a matches and consumes itself or fails otherwise; A tries to match the expression
P (A); p1p2 tries to match p1 followed by p2; p1/p2 tries to match p1; if p1 fails,
then it tries to match p2; p∗ repeatedly matches p until p fails, that is, it consumes
as much as it can from the input; the matching of !p succeeds if the input does
not match p and fails when the the input matches p, not consuming any input
in both cases; we call it the negative predicate or the lookahead predicate.

Hereafter, we present the fragment of a PEG for the Tiny language [11] to
show how error reporting differs between top-down parsers without backtracking
and PEGs. Tiny is a simple programming language with a syntax that resembles
Pascal’s.

Tiny ← CmdSeq

CmdSeq ← (Cmd SEMICOLON) (Cmd SEMICOLON)∗
Cmd ← IfCmd / RepeatCmd / AssignCmd / ReadCmd / WriteCmd

IfCmd ← IF Exp THEN CmdSeq (ELSE CmdSeq / ε) END

RepeatCmd ← REPEAT CmdSeq UNTIL Exp

AssignCmd ← Name ASSIGNMENT Exp

ReadCmd ← READ Name

WriteCmd ← WRITE Exp

PEGs usually express the language syntax down to the character level, without
the need of a separate lexer. For instance, we can write the lexical rule IF as
follows:

IF← if !IDRest Skip

That is, the rule matches the keyword if provided that it is not a prefix of
an identifier and then the rule skips surrounding white spaces and comments.

4 A.M. Maidl, F. Mascarenhas, and R. Ierusalimschy

The non-terminal IDRest recognizes any character that may be present on a
proper suffix of an identifier while the non-terminal Skip recognizes white spaces
and comments. In the presented fragment, we omitted the lexical rules and the
definitions of Exp and Name for brevity.

Now, we present an example of erroneous Tiny code to compare approaches
for error reporting. The program has a missing semicolon (;) in the assignment
in line 5:

1 n := 5;

2 f := 1;

3 repeat

4 f := f * n;

5 n := n - 1

6 until (n < 1);

7 write f;

A hand-written top-down parser without backtracking that aborts on the first
error presents an error message like this:

factorial.tiny:6:1: syntax error, unexpected ’until’, expecting ’;’

The error is reported in line 6 because the parser cannot complete a valid
prefix of the language, since it unexpectedly finds the token until when it was
expecting a command terminator (;).

In PEGs, we can try to report errors using the remaining suffix, but this
approach usually does not help the PEG to produce an error message like the
one shown above. In general, when a PEG finishes parsing the input, a remaining
suffix that is not the empty string means that parsing did not reach the end of file
due to a syntax error. However, this remaining suffix usually does not indicate
the position where the longest parse ends. This problem happens because the
failure of a parsing expression does not necessarily mean an error. Actually, the
failure usually means that the PEG should backtrack the input to try a different
alternative. For this reason, the remaining suffix probably indicates a position
far away from the real position where the first error happened when parsing
finishes without consuming all the input.

In our example, the problem happens when the PEG tries to recognize the
sequence of commands inside the repeat command. Even though the program
has a missing semicolon (;) in the assignment in line 5, making the PEG fail to
recognize the sequence of commands inside the repeat command, this failure is
not treated as an error. Instead, this failure makes the recognition of the repeat
command also fail. For this reason, the PEG backtracks the input to line 3 to try
other command alternatives that exist in the language. Since it is not possible to
recognize a command other than repeat in line 3, the parsing finishes without
consuming all the input. Hence, if the PEG uses the remaining suffix to produce
an error message, the PEG shows a wrong position where the error happened.

We can also make the PEG fail whenever it does not consume all the input,
instead of checking whether the remaining suffix is the empty string. To do that,

Exception Handling for Error Reporting in Parsing Expression Grammars 5

we change the starting symbol to fail when it does not reach the end of file. Even
though the failure of the PEG indicates the presence of syntax errors, it does
not indicate a possible position where the first error happened.

According to Ford [2], although there is no perfect method to identify which
information is the most relevant to report an error, using the information of the
farthest position that the PEG reached in the input is a heuristic that provides
good results. PEGs implement top-down parsers and try to recognize the input
from left to right, so the position farthest to the right in the input that a PEG
reaches during parsing usually is close to the real error [2].

Ford used this heuristic to add error reporting to his packrat parsers [2].
A packrat parser generated by Pappy [3], Ford’s PEG parser generator, tracks
the farthest position and uses this position to report an error when parsing
fails because it finished without consuming all the input. In other words, this
heuristic helps packrat parsers to simulate the error reporting technique that is
implemented in top-down parsers without backtracking.

During our research, we realized that we can use the farthest position heuristic
to add error reporting to any implementation of PEGs that provides semantic
actions. The idea is to annotate the grammar with semantic actions that track
the farthest failure position. For instance, in Leg [16], a PEG parser generator
with Yacc-style semantic actions, we can annotate the rule CmdSeq as follows:

CmdSeq = Cmd (";" Skip | &{ updateffp() })

(Cmd (";" Skip | &{ updateffp() }))*

The parser calls the function updateffp when the matching of a semicolon
fails. The function updateffp is a semantic action that updates the farthest
failure position in a global variable if the current parsing position is greater than
the position that is stored in this global. After the update, the semantic action
forces another failure to not interrupt backtracking.

Since this semantic action propagates failures and runs only when a parsing
expression fails, we could annotate all terminals and non-terminals in the gram-
mar without changing the behavior of the PEG. In practice, we just need to
annotate terminals to implement error reporting.

However, storing just the farthest failure position does not give the parser all
the information it needs to produce an informative error message. That is, the
parser has the information about the position where the error happened, but
it lacks the information about what terminals failed at that position. Thus, we
should include the name of the terminals in the annotations so the parser can
also track these names to compute the set of expected terminals at a certain
position.

Basically, we give an extra argument to each semantic action. This extra
argument is a hard-coded name for the terminal that we want to keep track along
with the farthest failure position. For instance, now we annotate the CmdSeq rule
in Leg as follows:

CmdSeq = Cmd (";" Skip | &{ updateffp(";") })

(Cmd (";" Skip | &{ updateffp(";") }))*

6 A.M. Maidl, F. Mascarenhas, and R. Ierusalimschy

We then extend the implementation of updateffp to also update the set
of expected terminals; the update of the farthest failure position continues the
same. If the current position is greater than the farthest failure, the set contains
only the given name. If the current position equals the farthest failure, the given
name is added to the set.

Parsers generated by Pappy also track the set of expected terminals, but with
limitations. The error messages include only symbols and keywords that were
defined in the grammar as literal strings. That is, the error messages do not
include terminals that were defined through character classes.

The approach of naming terminals in the semantic actions avoids the kind of
limitation found in Pappy, though it increases the annotation burden because
who is implementing the PEG is also responsible for adding one semantic action
for each terminal and its respective name.

The annotation burden can be lessened in implementations of PEGs that
treat parsing expressions as first-class objects, as we are able to define functions
to annotate the lexical parts of the grammar to track errors, record information
about the expected terminals to produce good error messages, and enforce lexical
conventions such as the presence of surrounding white spaces. For instance, in
LPeg [7,8], a PEG library for Lua that defines patterns as first-class objects, we
can annotate the rule CmdSeq as follows:

CmdSeq = V"Cmd" * symb(";") * (V"Cmd" * symb(";"))^0;

The function symb works like a parser combinator [6]. It receives a string
as its only argument and returns a pattern that is equivalent to the parsing
expression that we used in the Leg example. That is, symb(";") is equivalent
to ";" Skip | &{ updateffp(";") }. Notice that the patterns V"A", p1 * p2,
and p^0 are equivalent to the following parsing expressions: A, p1p2, and p∗.

We implemented error tracking and reporting using semantic actions as a set
of parsing combinators on top of LPeg and used these combinators to implement
the PEG for Tiny. It produces the following error message for the example we
have been using in this section:

factorial.tiny:6:1: syntax error, unexpected ’until’,

expecting ’;’, ’=’, ’<’, ’-’, ’+’, ’/’, ’*’

We tested the PEG for Tiny with other erroneous inputs and in all cases
the PEG identified an error in the same place as a top-down parser without
backtracking. In addition, the PEG for Tiny produced error messages that are
similar to the error messages produced by packrat parsers generated by Pappy.
We annotated other grammars too and successfully obtained similar results.
However, the error messages are still generic.

3 Error Reporting in Top-Down Parsers with
Backtracking

In this section we discuss alternative approaches for error reporting in top-down
parsers with backtracking other than the heuristic explained in Section 2.

Exception Handling for Error Reporting in Parsing Expression Grammars 7

Mizushima et al. [14] proposed a cut operator (↑) to reduce the space con-
sumption of packrat parsers; the authors claimed that the cut operator can also
be used to implement error reporting in packrat parsers, but the authors did
not give any details on how the cut operator could be used for this purpose.
The cut operator is borrowed from Prolog to annotate pieces of a PEG where
backtracking should be avoided. PEGs’ ordered choice works in a similar way
to Prolog’s green cuts, that is, they limit backtracking to discard unnecessary
solutions. The cut proposed to PEGs is a way to implement Prolog’s white cuts,
that is, they prevent backtracking to rules that will certainly fail.

The semantics of cut is similar to the semantics of an if-then-else con-
trol structure and can be simulated through predicates. For instance, the PEG
(with cut) A ← B ↑ C/D is functionally equivalent to the PEG (without cut)
A ← BC/!BD that is also functionally equivalent to the rule A ← B[C,D] on
Generalized Top-Down Parsing Language (GTDPL), one of the parsing tech-
niques that influenced the creation of PEGs [2,3,4]. On the three cases, the
expression D is tried only if the expression B fails. Nevertheless, this translated
PEG still backtracks the input whenever B successfully matches and C fails.
Thus, it is not trivial to use this translation to implement error reporting in
PEGs.

Even though error handling is an important task for parsers, we did not find
any other research about error handling in PEGs, beyond the heuristic proposed
by Ford and the cut operator proposed by Mizushima et al. However, parser
combinators [6] present some similarities with PEGs so we will briefly discuss
them for the rest of this section.

In functional programming it is common to implement recursive descent
parsers using parser combinators [6]. A parser is a function that we use to model
symbols of the grammar. A parser combinator is a higher-order function that we
use to implement grammar constructions such as sequencing and choice. Usually,
we use parser combinators to implement parsers that return a list of results. That
is, we use non-deterministic parser combinators that return a list of results to
implement recursive descent parsers with full backtracking. We get parser combi-
nators that have the same semantics as PEGs by changing the return type from
list of results to Maybe. That is, we use deterministic parser combinators that
return Maybe to implement recursive descent parsers with limited backtracking.
In this paper we are referring to deterministic parser combinators.

Like PEGs, parser combinators also use ordered choice and try to accept
input prefixes. More precisely, parsers implemented using parser combinators
also backtrack the input in case of failure. For this reason, when the input string
contains syntax errors, the longest parse usually indicates a position far away
from the position where the error really happened.

Hutton [6] introduced the nofail combinator to implement error reporting in
a quite simple way: we just need to distinguish between failure and error during
parsing. More specifically, we can use the nofail combinator to annotate the
grammar’s terminals and non-terminals that should not fail; when they fail, the
failure should be transformed into an error that aborts parsing. This technique

8 A.M. Maidl, F. Mascarenhas, and R. Ierusalimschy

Table 1. Behavior of sequence and choice in the four-values technique

p1 p2 p1p2 p1 | p2

Error Error Error Error
Error Fail Error Error
Error Epsn Error Error
Error OK (x) Error Error
Fail Error Fail Error
Fail Fail Fail Fail
Fail Epsn Fail Epsn
Fail OK (x) Fail OK (x)
Epsn Error Error Error
Epsn Fail Fail Epsn
Epsn Epsn Epsn Epsn
Epsn OK (x) OK (x) OK (x)
OK (x) Error Error OK (x)
OK (x) Fail Error OK (x)
OK (x) Epsn OK (x) OK (x)
OK (x) OK (y) OK (y) OK (x)

is also called the three-values technique because the parser finishes with one of
the following values: OK, Fail or Error.

Röjemo [17] presented a cut combinator that we can also use to annotate
the grammar pieces where parsing should be aborted on failure, on behalf of effi-
ciency and error reporting. The cut combinator is different from the cut operator
(↑) for PEGs because the combinator is abortive and unary while the operator
is not abortive and nullary. The cut combinator introduced by Röjemo has the
same semantics as the nofail combinator introduced by Hutton. However, the
cut implementation uses an approach based on continuations while the nofail

implementation uses an approach based on constructs.
Partridge and Wright [15] showed that error detection can be automated in

parser combinators when we assume that the grammar is LL(1). Their main
idea is: if one alternative successfully consumes at least one symbol, no other
alternative can successfully consume any symbols. Their technique is also known
as the four-values technique because the parser finishes with one of the following
values: Epsn, when the parser finishes with success without consuming any input;
OK, when the parser finishes with success consuming some input; Fail, when
the parser fails without consuming any input; and Error, when the parser fails
consuming some input. Three values were inspired by Hutton’s work [6], but
with new meanings.

In the four-values technique, we do not need to annotate the grammar because
the authors changed the semantics of the sequence and choice combinators to
automatically generate the Error value according to the table 1. In summary,
the sequence combinator propagates an error when the second parse fails after
consuming some input while the choice combinator does not try further alter-
natives if the current one consumed at least one symbol from the input. In case
of error, the four-values technique detects the first symbol following the longest
parse of the input and uses this symbol to report an error.

The four-values technique assumes that the input is composed by tokens which
are provided by a separate lexer. However, being restricted to LL(1) grammars
can be a limitation because parser combinators, like PEGs, usually operate on

Exception Handling for Error Reporting in Parsing Expression Grammars 9

strings of characters to implement both lexer and parser together. For instance, a
parser for Tiny that is implemented with Parsec [10] does not parse the following
program: read x;. That is, the matching of read against repeat generates an
error. Such behavior is confirmed in table 1 by the third line from the bottom.

Parsec is a parser combinator library for Haskell that employs a technique
equivalent to the four-values technique for implementing LL(1) predictive parsers
that automatically report errors [10], so in this paper we refer to Parsec using the
four-values technique. A predictive parser is a recursive descent parser without
backtracking. Parsec inspired Ford on his heuristic that tracks the longest parse
of the input to implement error reporting in packrat parsers and on the creation
of a parser combinator library for Haskell to implement packrat parsers.

The authors of Parsec introduced the try combinator to avoid the LL(1)
limitation found in the four-values technique. More precisely, we use try to
annotate parts of the grammar where arbitrary lookahead is needed, though
Parsec is a library for implementing LL(1) predictive parsers. Dual to the nofail
combinator, the try combinator transforms an error into a failure. That is, the
try combinator pretends that a parser p did not consume any input when p fails.
For this reason, it should be used carefully because it breaks Parsec’s automatic
error detection system when it is overused.

Parsec’s restriction to LL(1) grammars made it possible to implement in the li-
brary an error reporting technique similar to the one applied to top-down parsers.
Parsec produces error messages that include the error position, the character at
this position and the FIRST set of the productions that were expected at this
position. Parsec also implements the error injection combinator (<?>) for naming
productions. This combinator gets two arguments: a parser p and a string exp.
The string exp replaces the FIRST set of a parser p when all the alternatives of
p failed. This combinator is useful to name terminals and non-terminals to get
better information about the context of a syntax error.

Swierstra and Duponcheel [18] showed an implementation of parser combina-
tors for error recovery, although most libraries and parser generators that are
based on parser combinators implement only error reporting. Their work shows
an implementation of parser combinators that repair the input in case of error,
produce an appropriated message, and continue parsing the rest of the input.

4 Labeled Failures for Error Reporting

Exceptions are a common mechanism for signaling and handling errors in pro-
gramming languages. Exceptions let programmers classify the different errors
their programs may signal by using distinct types for distinct errors, and decou-
ple error handling from regular program logic.

In this section we add labeled failures to PEGs, a mechanism akin to exceptions
and exception handling, with the goal of improving error reporting preserving
PEGs composability. We also discuss how to use PEGs with labels to implement
some of the techniques that we have discussed in the previous section: the nofail
combinator [6], the cut combinator [17], the four-values technique [15] and the
try combinator [10].

10 A.M. Maidl, F. Mascarenhas, and R. Ierusalimschy

A labeled PEG G is a tuple (V, T, P, L, fail, pS) where L is a finite set of
labels and fail ∈ L. The other parts use the same definitions from Section 2.
The abstract syntax of labeled parsing expressions adds the throw operator ⇑l,
which generates a failure with label l, and adds an extra argument S to the
ordered choice operator, which is the set of labels that the ordered choice should
catch. S must be a subset of L.

p = ε | a | A | p1p2 | p1/Sp2 | p ∗ | !p | ⇑l

The semantics of PEGs with labels is defined by the relation
PEG� among a

parsing expression, an input string and a result. The result is either a string

or a label. The notation G[p] xy
PEG� y means that the expression p matches

the input xy, consumes the prefix x and leaves the suffix y as the output. The

notation G[p] xy
PEG� l indicates that the matching of p fails with label l on the

input xy.
Figure 1 presents the semantics of PEGs with labels using natural semantics

[19]. Intuitively, ε successfully matches the empty string, not changing the input;
a matches and consumes itself and fails with label fail otherwise; A tries to
match the expression P (A); p1p2 tries to match p1, if p1 matches an input prefix,
then it tries to match p2 with the suffix left by p1, the label l is propagated
otherwise; p1/

Sp2 tries to match p1 in the input and tries to match p2 in the
same input only if p1 fails with a label l ∈ S, the label l is propagated otherwise;
p∗ repeatedly matches p until the matching of p silently fails with label fail,
and propagates a label l when p fails with this label; !p successfully matches if
the input does not match p with the label fail, fails producing the label fail
when the input matches p, and propagates a label l when p fails with this label,
not consuming the input in all cases; ⇑l produces the label l.

We faced some design decisions in our formulation that are worth discussing.
We use fail as a label to maintain compatibility with the original semantics

of PEGs. For the same reason, we define the expression p1/p2 as syntactic sugar
for p1/

{fail}p2.
We use a set of labels in the ordered choice as a convenience. We could have

each ordered choice handling a single label, and it would just lead to duplication:
an expression p1 /{l1,l2,...,ln} p2 would become (... ((p1 /l1 p2) /

l2 p2) ... /
ln p2).

The repetition stops silently only on the fail label to maintain the following
identity: the expression p∗ is equivalent to a fresh non-terminal A plus the rule
A← p A / ε.

The negative predicate succeeds only on the fail label to allow the implemen-
tation of the positive predicate: the expression &p that implements the positive
predicate in the original semantics of PEGs [2,3,4] is equivalent to the expression
!!p. Both expressions successfully match if the input matches p, fail producing
the label fail when the input does not match p, and propagate a label l when
p fails with this label, not consuming the input in all cases.

Exception Handling for Error Reporting in Parsing Expression Grammars 11

Empty
G[ε] x

PEG� x
(empty.1)

Terminal
G[a] ax

PEG� x
(char.1)

G[b] ax
PEG� fail

, b �= a (char.2)
G[a] ε

PEG� fail
(char.3)

Non-terminal
G[P (A)] x

PEG� X

G[A] x
PEG� X

(var.1)

Concatenation
G[p1] xy

PEG� y G[p2] y
PEG� X

G[p1 p2] xy
PEG� X

(con.1)
G[p1] x

PEG� l

G[p1 p2] x
PEG� l

(con.2)

Ordered Choice
G[p1] xy

PEG� y

G[p1 /S p2] xy
PEG� y

(ord.1)
G[p1] x

PEG� l

G[p1 /S p2] x
PEG� l

, l �∈ S (ord.2)

G[p1] x
PEG� l G[p2] x

PEG� X

G[p1 /S p2] x
PEG� X

, l ∈ S (ord.3)

Repetition
G[p] x

PEG� fail

G[p∗] x PEG� x
(rep.1)

G[p] xyz
PEG� yz G[p∗] yz PEG� z

G[p∗] xyz PEG� z
(rep.2)

G[p] x
PEG� l

G[p∗] x PEG� l
, l �= fail (rep.3)

Negative Predicate
G[p] x

PEG� fail

G[!p] x
PEG� x

(not.1)
G[p] xy

PEG� y

G[!p] xy
PEG� fail

(not.2)

G[p] x
PEG� l

G[!p] x
PEG� l

, l �= fail (not.3)

Throw
G[⇑l]

PEG� l
(throw.1)

Fig. 1. Natural Semantics of PEGs with labels

Now, we use labeled failures to implement error reporting in the fragment
of the Tiny grammar that we presented in Section 2. In the following example,
the expression [p]l is syntactic sugar for (p / ⇑l). We use the expression [p]l to
annotate the pieces of the PEG that should not fail and that should generate a
label l to name the error and interrupt backtracking when they fail, saving the
error position. That is, we use the fail label only for backtracking and other
labels for tagging errors.

12 A.M. Maidl, F. Mascarenhas, and R. Ierusalimschy

Tiny ← CmdSeq

CmdSeq ← (Cmd [SEMICOLON]sc) (Cmd [SEMICOLON]sc)∗
Cmd ← IfCmd / RepeatCmd / AssignCmd / ReadCmd / WriteCmd

IfCmd ← IF [Exp]eif [THEN]then [CmdSeq]cs1(ELSE [CmdSeq]cs2/ε) [END]end

RepeatCmd ← REPEAT [CmdSeq]csr [UNTIL]until [Exp]erep

AssignCmd ← Name [ASSIGNMENT]bind [Exp]ebind

ReadCmd ← READ [Name]read

WriteCmd ← WRITE [Exp]write

We use labeled failures to mark only the pieces of the PEG that should not
fail. The PEG detects an error situation when parsing finishes with a certain
label that was not caught, so it can identify the error information that is tied to
that certain label to report a more meaningful error message. For instance, if we
use this PEG for Tiny to parse the example from Section 2, parsing finishes with
the sc label and the PEG can use it to produce an error message like below:

factorial.tiny:6:1: syntax error, there is a missing ’;’

Note how the semantics of the repetition works with the rule CmdSeq. Inside
the repetition, the fail label means that there are no more commands to be
matched and the repetition should stop while the sc label means that a semicolon
(;) failed to match. It would not be possible to write the rule CmdSeq using
repetition if we had chosen to stop the repetition with any label, instead of
stopping only with the fail label, because the repetition would accept the sc

label as the end of the repetition when it should propagate this label.
Like PEGs, parsers written using parser combinators also finish with success

or failure and usually backtrack in case of failure, making it difficult to imple-
ment error reporting. In Section 3 we have briefly discussed some related work
[6,17,15,10] that solve this problem. Now, we will discuss how these techniques
can be expressed using PEGs with labels.

In Hutton’s deterministic parser combinators, the nofail combinator is used
to distinguish between failure and error. We can express the nofail combinators
using PEGs with labels as follows:

nofail p ≡ p / ⇑error

That is, nofail is an expression that transforms the failure of p into an error
to abort backtracking. Note that the error label should not be caught by any
ordered choice. Instead, the ordered choice propagates this label and catches
solely the fail label. The idea is that parsing should finish with one of the
following values: success, fail or error.

The annotation of the Tiny grammar to use nofail is similar to the anno-
tation we have done using labeled failures. Basically, we just need to change
the grammar to use nofail instead of [p]l. For instance, we can write the rule
CmdSeq as follows:

CmdSeq ← (Cmd (nofail SEMICOLON)) (Cmd (nofail SEMICOLON))∗

Exception Handling for Error Reporting in Parsing Expression Grammars 13

If we are writing a grammar from scratch, there is no advantage to use nofail
instead of more specific labels, as the annotation burden is the same and with
nofail we lose more specific error messages.

The cut combinator was introduced to reduce the space inefficiency of nofail,
which is space inefficient when implemented in a lazy language due to the error
propagation. The semantics of PEGs abstracts the implementation details that
differentiate cut and nofail, thus, in PEGs they are expressed in the same way.

The four-values technique changed the semantics of parser combinators to
implement predictive parsers for LL(1) grammars that automatically identify
the longest input prefix in case of error, without needing annotations in the
grammar. We can express this technique using labeled failures by transforming
the original PEG with the following rules:

�ε� ≡ ⇑epsn (1)

�a� ≡ a (2)

�A� ≡ A (3)

�p1p2� ≡ �p1� (�p2� / ⇑error /{epsn} ε) /{epsn} �p2� (4)

�p1/p2� ≡ �p1� /
{epsn} (�p2� / ⇑epsn) / �p2� (5)

This translation is based on three labels, epsn means that the expression
successfully finished without consuming any input, fail means that the expres-
sion failed without consuming any input, and error means that the expression
failed after consuming some input. In our translation we do not have an ok

label because a resulting suffix means that the expression successfully finished
after consuming some input. It is straightforward to check that the translated
expressions behave according to the table 1 from Section 3.

Parsec introduced the try combinator to annotate parts of the grammar where
arbitrary lookahead is needed. We need arbitrary lookahead because PEGs and
parser combinators usually operate on the character level. The authors of Parsec
also showed a correspondence between the semantics of Parsec as implemented
in their library and Partridge and Wright’s four-valued combinators, so we can
emulate the behavior of Parsec using labeled failures by building on the five rules
above and adding the following rule for try:

�try p� ≡ �p� /{error} ⇑fail (6)

If we take the Tiny grammar from Section 2, insert try in the necessary
places, and pass this new grammar through the transformation � �, then we get
a PEG that automatically identifies errors in the input with the error label.
For instance, we can write the rule RepeatCmd as follows:

RepeatCmd ← (try REPEAT) CmdSeq UNTIL Exp

5 Conclusions

In this paper we discussed error reporting in PEGs. Unfortunately, PEGs behave
badly on the presence of syntax errors because backtracking usually makes the

14 A.M. Maidl, F. Mascarenhas, and R. Ierusalimschy

PEG report a position far away from the position where the error happened.
Ford [2] showed how he changed his implementation of PEGs to add his far-
thest position heuristic to have error reporting in packrat parsers. We showed
that we can use this heuristic without changing the implementation of PEGs,
when it provides mechanisms to produce semantic actions. Although the far-
thest position heuristic helps PEGs to produce error messages that are close to
the ones produced by predictive top-down parsers, these error messages are still
generic.

The main contribution of this paper is the introduction of labeled failures
to PEGs. The new approach closely resembles the technique of generating and
handling exceptions. In this approach, the throw operator ⇑l throws labeled
failures and the ordered choice catches these failures.

We introduced labeled failures to PEGs as a way to annotate error points
in the grammar and tie them to more meaningful error messages. We showed
that PEGs with labels report an error when parsing finishes with a label that
was not caught. In practice, if we use labeled failures along with the heuristic
proposed by Ford, PEGs give specific error messages that report the right place
of the error. Furthermore, these error messages can be customized according to
the labels that are being used. We also showed that our approach can express
several techniques for error reporting on parser combinators as presented in
related work [6,17,15,10].

The grammar annotation demands care: if we mistakenly annotate expres-
sions that should be able to fail, this actually modifies the behavior of the parser
beyond error reporting. In any case, labeled PEGs introduce an annotation bur-
den that is lesser than the annotation burden introduced by error productions in
LR parsers, because error productions usually introduce reduce-reduce conflicts
to the parser [9].

We implemented the semantics of PEGs with labels using Haskell as a pro-
totype to help us testing our approach. We tested the annotation of Tiny and
Lua grammars using this prototype. The tests succeeded in our goal of reporting
errors in the correct places and with specific error messages. We also tested in
our prototype the translations that we have presented in the previous section,
and successfully obtained the expected results.

Finally, labeled failures also help to compose PEGs preserving specific error
messages of each separate PEG. For instance, we can compose an annotated
PEG that parses HTML with an annotated PEG that parses JavaScript, hav-
ing specific error messages for each PEG. Composing two different PEGs is an
interesting case study to be implemented. It would be also interesting to investi-
gate other cases where exception handling may be useful in PEGs beyond error
reporting.

References

1. Aho, A.V., Lam, M.S., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques,
and Tools, 2nd edn. Addison-Wesley Longman Publishing Co., Inc., Boston (2006)

Exception Handling for Error Reporting in Parsing Expression Grammars 15

2. Ford, B.: Packrat parsing: a practical linear-time algorithm with backtracking.
Master’s thesis, Massachusetts Institute of Technology (September 2002)

3. Ford, B.: Packrat Parsing: Simple, Powerful, Lazy, Linear Time. In: ICFP 2002:
Proceedings of the 7th ACM SIGPLAN International Conference on Functional
Programming, pp. 36–47. ACM, New York (2002)

4. Ford, B.: Parsing Expression Grammars: A Recognition-Based Syntactic Foun-
dation. In: POPL 2004: Proceedings of the 31st ACM SIGACT-SIGPLAN Sym-
posium on Principles of Programming Languages, pp. 111–122. ACM, New York
(2004)

5. Grune, D., Jacobs, C.J.: Parsing Techniques: A Practical Guide, 2nd edn. Springer
Publishing Company, Incorporated (2010)

6. Hutton, G.: Higher-Order Functions for Parsing. Journal of Functional Program-
ming 2(3), 323–343 (1992)

7. Ierusalimschy, R.: LPeg - Parsing Expression Grammars for Lua (2008),
http://www.inf.puc-rio.br/~roberto/lpeg/lpeg.html (visited on March 2013)

8. Ierusalimschy, R.: A Text Pattern-Matching Tool based on Parsing Expression
Grammars. Software - Practice & Experience 39(3), 221–258 (2009)

9. Jeffery, C.L.: Generating LR Syntax Error Messages from Examples. ACM Trans-
actions on Programming Languages and Systems 25(5), 631–640 (2003)

10. Leijen, D., Meijer, E.: Parsec: Direct Style Monadic Parser Combinators For The
Real World. Technical Report UU-CS-2001-35, Department of Computer Science,
Utrecht University (2001)

11. Louden, K.C.: Compiler Construction: Principles and Practice. PWS Publishing
Co., Boston (1997)

12. Medeiros, S., Mascarenhas, F., Ierusalimschy, R.: From Regular Expressions to
Parsing Expression Grammars. In: Brazilian Symposium on Programming Lan-
guages (2011)

13. Medeiros, S., Mascarenhas, F., Ierusalimschy, R.: Left Recursion in Parsing Ex-
pression Grammars. In: de Carvalho Junior, F.H., Barbosa, L.S. (eds.) SBLP 2012.
LNCS, vol. 7554, pp. 27–41. Springer, Heidelberg (2012)

14. Mizushima, K., Maeda, A., Yamaguchi, Y.: Packrat Parsers Can Handle Practical
Grammars in Mostly Constant Space. In: PASTE 2010: Proceedings of the 9th
ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for Software Tools
and Engineering, pp. 29–36. ACM, New York (2010)

15. Partridge, A., Wright, D.: Predictive parser combinators need four values to report
errors. Journal of Functional Programming 6(2), 355–364 (1996)

16. Piumarta, I.: Peg/leg — recursive-descent parser generators for C (2007),
http://piumarta.com/software/peg/ (visited on March 2013)

17. Röjemo, N.: Efficient Parsing Combinators. Technical report, Department of Com-
puter Science, Chalmers University of Technology (1995)

18. Swierstra, S.D., Duponcheel, L.: Deterministic, Error-Correcting Combinator
Parsers. In: Launchbury, J., Sheard, T., Meijer, E. (eds.) AFP 1996. LNCS,
vol. 1129, pp. 184–207. Springer, Heidelberg (1996)

19. Winskel, G.: The Formal Semantics of Programming Languages: An Introduction.
MIT Press, Cambridge (1993)

http://www.inf.puc-rio.br/~roberto/lpeg/lpeg.html
http://piumarta.com/software/peg/

LuaRocks - A Declarative and Extensible
Package Management System for Lua

Hisham Muhammad1, Fabio Mascarenhas2, and Roberto Ierusalimschy1

1 Department of Computer Science, PUC-Rio, Rio de Janeiro, Brazil
{hisham,roberto}@inf.puc-rio.br

2 Department of Computer Science, UFRJ, Rio de Janeiro, Brazil
fabiom@dcc.ufrj.br

Abstract. While sometimes dismissed as an operating systems issue, or
even a matter of systems administration, module management is deeply
linked to programming language design. The main issues are how to
instruct the build and runtime environments to find modules and handle
their dependencies; how to package modules into redistributable units;
how to manage interaction of code written in different languages; and how
to map modules to files. These issues are either handled by the language
itself or delegated to external tools. Language-specific package managers
have risen as a solution to these problems, as they can perform module
management portably and in a manner suited to the overall design of
the language. This paper presents LuaRocks, a package manager for Lua
modules. LuaRocks adopts a declarative approach for specifications using
Lua itself as a description language and features an extensible build
system that copes with the heterogeneity of the Lua ecosystem.

Keywords: programming language environments, scripting languages,
modules and libraries, package management.

1 Introduction

While it is sometimes dismissed as an operating systems issue, or even a mat-
ter of systems administration, module management (and by extension package
management) is deeply linked to programming language design. The questions
of how modules are built, packaged, deployed, detected, and used are mostly
dependent on decisions in the design and implementation of the languages in
which they are written.

In languages that feature a separate compilation step, there’s the issue of
how to specify dependencies between modules, and how to instruct the compiler
to find them. Some languages take care of this matter internally, such as the
management of units in Pascal or classes in Java. Others, like C, relegate it to
external tools — in the case of C, the preprocessor is used to forward-declare
prototypes and tools like Make are used to handle dependencies between objects
during build. In contrast, the Java compiler extracts the classes and interfaces a
source file references, finds the files where they are defined, and compiles them

A. Rauber Du Bois and P. Trinder (Eds.): SBLP 2013, LNCS 8129, pp. 16–30, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

LuaRocks - A Declarative and Extensible Package Management System 17

on demand. Still, building complex projects usually involves more than sources
(including, for instance, generation and conversion of icons, interface description
files and other assets, as well as inter-language dependencies), leading to the
creation of external tools such as Apache Ant [13].

Packaging modules into redistributable units is another design issue. Some
languages define packaging formats as part of their specification. Java has poli-
cies for the namespace hierarchy and defines the JAR format, with rules for the
file format and its metadata. It also includes a library for reading and writ-
ing such archives in its standard library (java.util.jar). The .NET Common
Language Infrastructure also defines package formats for module bundles, called
assemblies, which contain compiled classes and metadata, as well as versioning
information [16]. In the other extreme, languages such as C leave the definition
of library formats entirely to the operating system and language implementors:
support for modularization through dynamic libraries is implemented through
OS-specific linkers and runtime support libraries. In all cases, the handling of
modules requires some interaction with the operating system due to portability
concerns, including varying installation directories and lookup paths.

Languages also employ different approaches when adding support for modules
written in different languages. Extensible languages like Perl, Python, Ruby and
Lua provide C APIs that allow dynamic libraries to interact with the runtime
state of the language’s virtual machine [21], as well as facilities to load those
libraries into the runtime and register them as modules. Some languages also
feature foreign-function interfaces, through which the mapping between func-
tions of external libraries and the language environment are written in the host
language itself; an example is the Racket FFI [5]. Those interfaces may be bun-
dled into the language’s standard libraries [14], or may be external modules
themselves [22]. Loading those external libraries and modules again requires in-
teraction with the operating system, and the extent to which this is performed
internally or done by external tools is up to the language’s design to define. In
the case of modules written in different languages, this means one has two sets
of design and implementation aspects to deal with (or even three, when C APIs
are used as a bridge between two other languages, as is the case, for example, of
LuaJava [18]).

Finally, there is the issue of deployment. While languages such as C and Pascal
traditionally left the mapping between modules and files, the physical locations
of those files, and the installation processes of the modules to be specified as
implementation details, the desire for portability and increased code reuse has
led the communities of many languages to attempt to standardize these defini-
tions. From those efforts, a number of language-specific deployment tools have
emerged: CPAN for Perl [8], RubyGems for Ruby [7], PIP for Python [29], Cabal
for Haskell [17], and so on. While originally developed as external tools, many
of these have in fact been integrated into the standard distribution of those lan-
guages, and are now considered to be part of their standard libraries, showing
that deployment has grown from an OS issue into a core language concern.

18 H. Muhammad, F. Mascarenhas, and R. Ierusalimschy

These tools are essentially portable, language-specific package managers. Pack-
age management, however, is a task of the operating system in platforms such
as Linux, and this overlap between OS and language concerns may put the ne-
cessity of these language-specific tools into question. This feeling is understand-
able, but comparing the numbers of packages provided by distributions versus the
number of modules available in mature module repositories from scripting lan-
guages, it becomes clear that the approach of converting everything into native
packages is untenable: for example, while the repository for the Ubuntu Linux
distribution features 37,000 packages in total, Perl’s CPAN alone contains over
23,000 packages, with the advantage that the language’s repository is portable to
various platforms. Besides, some platforms simply lack universal package man-
agement (Microsoft Windows being a notable case). The portability aspect and
the great number of packages make a good case for having package managers for
programming languages.

This paper presents one such language-specific package manager: LuaRocks,
for the Lua programming language. Lua was originally designed as an embed-
dable language, to be loaded as a library into other programs. As such, it fea-
tures extensive facilities for inter-language interaction, through a complete and
reentrant C API and a first-class type for boxed C pointers. However, features
oriented towards the use of Lua as the host program language are more recent:
Lua only gained a module system two major revisions ago, in version 5.0, ten
years after the first release of the language [15]. With the module system, many
of the concerns enumerated above naturally emerged: namespace issues, build
methods, packaging formats, deployment and redistribution of modules. The fo-
cus of the language in being a portable language with a small footprint meant
that Lua would not take the approach of dealing with these issues internally. In-
stead, it provides the minimal core of an extensible module system, concerning
the integration with the language runtime (package loaders, namespace manage-
ment), and all other tasks are left for external tools to perform. LuaRocks is an
integrated solution for these tasks related to module management, providing a
portable build system for both C and Lua code, package format specifications
and a package management tool for remote deployment of modules.

2 Related Work

This section provides background on package managers, tracing their origins as
operating system tools and the history of language-specific package management.
As systems grow in complexity, library dependencies become harder to track.
Package management is the most common solution for this problem [33]; on
environments without system-wide package management, these conflicts have to
be tracked on a file-by-file basis [23], which is a more fragile approach [34].

2.1 Operating System Package Managers

The idea of having a unified system for building and installing packages can
be traced back to open source operating systems in the 1990s. The growth of

LuaRocks - A Declarative and Extensible Package Management System 19

both the free software movement and the commercial internet meant that a
large number of independently developed projects were available in source form.
However, much of this software could not be built unmodified in a variety of
platforms, often requiring OS-specific patches to adapt them to the peculiarities
of each system. In 1993, the Debian project introduced dpkg [19], a program for
installing, removing and keeping track of installed packages, which are archives
containing all files that compose a given compiled program. In 1994, FreeBSD
introduced the Ports collection, a system of Makefiles that provided a unified
interface for building software from third-party (upstream) developers while au-
tomatically applying compatibility patches [20]. Having a Makefile in the Ports
collection means that a program can be easily installed into FreeBSD by using
standardized commands.

Linux distributions soon adopted this concept. Red Hat Linux was the first
distribution to gain popularity on the merits of its package management system,
called RPM [3]. RPM combined both the facilities for creating binary pack-
ages found in dpkg with the unified method for building sources from Ports.
Later, Debian introduced APT, a front-end tool to dpkg which included depen-
dency resolution, recursively scanning for package dependencies, fetching neces-
sary packages over the network and installing them in topologically-sorted or-
der [19]. Over time, many other package management tools emerged, and these
features have grown to become the essential expected feature set: fetching pack-
ages remotely; resolving dependency graphs; and installing, removing and listing
packages. Current versions of FreeBSD Ports also allow the installation of pre-
compiled packages, and RPM performs dependency management. Some of these
features have also evolved in sophistication, for instance, with the distinction
between build dependencies (packages that need to be installed in the system
where the package is being compiled, such as a parser generator or a set of C
header files) and runtime dependencies (packages that need to be installed in
the system where the package will run, such as a shared library).

In recent years, deployment tools for centralized package management have
been adopted in platforms for distribution and sale of binary packages as well:
these are usually named “application stores”. Some examples are the Apple App
Store, Google Play and the Amazon Appstore.

2.2 Language-Specific Package Managers

The history of language-specific package managers can be traced to online repos-
itories of software. CPAN [8], the Comprehensive Perl Archive Network, was
mainly influenced by CTAN, a repository for TEX class files. Created in 1995,
CPAN is the oldest repository for language modules and over the years evolved
into a fully-featured package manager. Figure 1 lists 15 of the most popular
language specific package managers, along with their start years and number of
available packages. Over the last 15 years, many languages, especially those as-
sociated with the notion of scripting [24], have gained package managers of their
own. Some languages define a official package format as part of their specifica-
tion, such as JAR for Java, and some include the package management tool along

20 H. Muhammad, F. Mascarenhas, and R. Ierusalimschy

Language package manager /
repository packages included in

lang. distr.
official

pkg. format
repository
start year

direct
publishing

Java Maven/Central 56697 no yes 2005 no*

Ruby RubyGems 55035 yes yes 2003 yes

Python pip/PyPI 32180 no yes 2003 yes

JavaScript npm (node.js) 27688 yes yes* 2009 yes

Perl CPAN 24092 yes yes 1995 no

C#/.NET NuGet 11823 no no 2011 yes

PHP Composer/Packagist 9757 no no 2011 yes

Clojure Leiningen/Clojars 6004 no yes 2009 yes

Haskell Cabal/Hackage 5062 no** yes 2007 yes

R CRAN 4450 yes yes 1997 no

Objective-C CocoaPods 1391 no no 2011 no

Common Lisp Quicklisp 850 no no 2010 no

Go go 744 yes no 2009 no***

Racket PLaneT 510 yes yes 2004 yes

Lua LuaRocks 266 no no 2007 no

* The Maven Central is a two-tier repository: it aggregates a number of ap-
proved repositories, some of which may provide direct publishing functionality.
** Cabal is not included with Haskell implementations such as GHC and Hugs, but it
is part of the Haskell Platform “batteries” package from haskell.org.
*** The Go repository is in fact just a wiki of links to projects which can be imported
directly with the Go import statement; editing the list requires contributor access.

Fig. 1. Language-specific package managers, as of April 16, 2013

with the sources of the language reference implementation. These are identified
in Figure 1 as well.

Following the steps of CPAN, CRAN [1] was started in 1997 as a repository
and later package manager for R, a niche language in the field of statistics. In
2003, RubyGems was created for the Ruby language. Unlike its predecessors,
RubyGems [7] allows any developer to publish modules directly in the pub-
lic repository, without any curating process. By lowering the barrier of entry
early on, RubyGems gained enormous popularity and became the largest mod-
ule repository among scripting languages. In fact, the aspect that seems to affect
most directly the number of available packages in a repository is whether the
repository allows developers to publish packages directly or if it requires some
kind of approval step. From the 15 languages listed in Figure 1, 8 allow direct
publishing of modules; 7 of them are in the top 9 positions when ranked by num-
ber of available packages. The two exceptions in the top positions are Maven’s
Central, which is an aggregator of repositories, and CPAN, which has a large
total of packages due to being much older than the other repositories. Maven
[2] is a build and deployment tool for Java, which eventually evolved into a
full-fledged package manager. Maven Central is currently the largest language-
specific package repository in existence, with over 56000 packages [32].

LuaRocks - A Declarative and Extensible Package Management System 21

Package management systems for Python have had an eventful evolution [35].
The package management tool has been added and then removed from the main
Python distribution, and the original tool, easy_install, was eventually re-
placed by pip. Still, the package repository, PyPI (Python Package Index) has
seen continuous growth [29]. PHP originally had two official package reposito-
ries, PEAR and PECL, respectively for PHP extensions and library bindings.
These are not open for direct publishing of modules. Eventually, a new package
manager, Composer, was created alongside a new open repository, called Pack-
agist. Composer and Packagist quickly eclipsed the original repositories: while
PEAR/PECL have less than 900 packages, Packagist features over 9700 [26].

The JavaScript world did not have a package manager until 2009, when npm
was created. This tool has the peculiarity among package managers of being not
only language-specific, but in fact framework-specific, being a tool created to be
used with Node.js, an event-driven platform for server-side development [28].

Objective-C, like C and C++, does not define its own package format, but it
has an unofficial package management system for class libraries. The CocoaPods
project [9] was started in 2011 and hosts modules for iOS and Mac OS X plat-
forms. It has the distinction of being the only one of the language-specific package
management systems studied that is not implemented in the target language it-
self: instead, CocoaPods is written in Ruby, and it is in fact distributed as a
Ruby gem. In the .NET platform, there is also no official package manager, but
NuGet [25] is a popular tool, which integrates with the Visual Studio IDE.

The Go language adopts a very unusual approach towards module manage-
ment. Go bundles the compiler, build and deployment tools, and instead of using
a centralized repository, adds support for decentralized cross-reference of mod-
ules in the language itself: its import statement can refer to full URLs which
point to source code repositories [4].

Cabal [17] is the package manager for Haskell. Due to the language’s sophis-
ticated type system, Haskell modules are known for their intricate dependency
relations, as minor interface changes cause incompatibilities and there is no way
for incompatible packages to coexist in an installed environment [31]. Other
package managers worth mentioning are: PLaneT [27], for Racket; Quicklisp [6],
for Common Lisp (which aims to be compatible with several implementations of
the language standard); and Leiningen [12], for Clojure (a language that targets
the Java Virtual Machine and therefore also uses the JAR format for packages).

Architecturally, all these tools are very similar to their OS-level counterparts,
as they perform the same basic tasks: fetching modules; resolving dependencies;
and building, installing, and removing modules. A common issue is avoiding
conflicts with packages installed by the OS package manager, and how to inform
the language runtime about newly installed modules. Old versions of Ruby, for
example, required the user to write require "rubygems" to enable gem-installed
modules, but more recently this support has been integrated by default. Modules
that feature dependencies on external libraries, such as bindings to C libraries,
are another point of concern. Each package manager specifies its own syntax for
locating these libraries, and they often make OS-specific assumptions such as

22 H. Muhammad, F. Mascarenhas, and R. Ierusalimschy

filenames and paths. Integration between OS-level and language-level package
managers is a problem that cannot be solved in the general case. For example,
a module providing bindings to a JPEG library may be aware that the library
is provided by an OS package called jpeg-dev in one platform, libjpeg6-dev
in another, or even by a file called JPEG.DLL available somewhere in the library
path, when the OS does not feature a standard package manager.

3 The Design of LuaRocks

LuaRocks is written as a pure Lua application and does not assume the availabil-
ity of any other Lua modules in the system. To perform operations not provided
by stock Lua, such as manipulating directories or downloading remote files, it can
either launch external programs (e.g. wget) or use additional modules such as
LuaSocket, depending on what is available. On Windows, a set of helper binaries
is included in the distribution that aids the bootstrapping process.

On the surface, LuaRocks behaves like any other package manager. It provides
two command-line tools: luarocks, the main interface; and luarocks-admin, for
managing remote repositories. These tools support typical commands, such as
luarocks install 〈package_name〉 and luarocks remove 〈package_name〉,
respectively for installing and removing packages, while performing recursive de-
pendency matching as expected. While all package managers perform essentially
the same tasks, the specifics of each environment impose some design restrictions
while opening up some possibilities. In this section, we discuss the novel aspects
in the design of LuaRocks. They explore the potential of Lua as a data descrip-
tion language, its sandboxing facilities, and the extensible solutions LuaRocks
uses to deal with the heterogeneity of operating systems and build tools that
developers use. We also discuss the approach we take to versioning, which makes
it easier to deal with package conflicts.

3.1 Declarative Specifications

Package management tools usually define a file format through which pack-
ages are specified. Those files can be as simple as a Makefile, as is the case
with FreeBSD Ports [20], or may contain various metadata and embedded build
scripts, such as .spec files for the RPM package manager. For specifying Lu-
aRocks packages, which we call “rocks”, we devised a file format called “rockspec”,
which is actually a Lua file containing a series of assignments to predefined vari-
able names such as dependencies and description, defining metadata and
build rules for the package.

Rockspecs are loaded by LuaRocks as Lua scripts inside a sandbox that allows
the use of Lua syntactical constructs, but no access to its standard libraries or
external libraries. This ensures that the loading of the package specification
is safe: loading a rockspec file (for example, for syntax verification with the
luarocks lint command) can at most lock the command-line tool through
an endless loop, but it is not able to access any system resources. Even the

LuaRocks - A Declarative and Extensible Package Management System 23

%define luaver 5.1
%define lualib %{_libdir}/lua/%{luaver}
%define luapkg %{_datadir}/lua/%{luaver}
Name: luasocket
Version: 2.0.2
Release: 8%{?dist}
Summary: Network socket extension for Lua
...
Source0: http://.../luasocket-2.0.2.tar.gz
Patch0: lua-socket-unix-sockets.patch
...
%prep
%setup -q -n luasocket-%{version}
%patch0 -p1 -b .unix
%build
make %{?_smp_mflags} CFLAGS="%{optflags}
↪→ -fPIC"
%install
rm -rf $RPM_BUILD_ROOT
make install
↪→ INSTALL_TOP_LIB=$RPM_BUILD_ROOT%{lualib}
↪→ INSTALL_TOP_SHARE=$RPM_BUILD_ROOT%{luapkg}
%clean
rm -rf $RPM_BUILD_ROOT

...

package = "LuaSocket"
version = "2.0.2-5"
source = {

url = "http://.../luasocket-2.0.2.tar.gz",
}
description = {

summary = "Network support for the Lua
language",

-- ...
}
build = {

type = "make",
build_variables = {

CFLAGS = "$(CFLAGS) -I$(LUA_INCDIR)",
LDFLAGS = "$(LIBFLAG) -O -fpic",
LD = "$(CC)"

},
install_variables = {

INSTALL_TOP_SHARE = "$(LUADIR)",
INSTALL_TOP_LIB = "$(LIBDIR)"

},
-- ...

}

(a) RPM .spec file (b) LuaRocks rockspec

Fig. 2. Excerpts from specification files for LuaSocket 2.0.2 using RPM (from Fedora
18) and LuaRocks, including basic package identification, download URL and build
instructions

possibility of an endless loop can be removed using hooks in the Lua virtual
machine, making the loading of rockspecs completely safe for use by servers that
accept arbitrary rockspecs.

While the loading of a rockspec is imperative, it is not a “build script”, but a
declarative specification of the package and its build process. Imperative build
scripts impose a strict order on operations. A rockspec does not list the sequence
of build operations in order as a makefile or an RPM .spec would (Figure 2a),
but rather contains definitions which describe the build method declaratively
(Figure 2b). The use of declarative descriptions gives us more liberty as tool
implementors to make changes to the way the build process is implemented
from one version of LuaRocks to another.

Rockspecs allow developers to make higher-level descriptions of their build
processes, as we will see in more detail in Section 3.2, and let the tool handle
low-level details such as portability adaptations. As a simple example, the in-
vocation of the make command is explicit in Figure 2a and implicit in Figure
2b, which allows LuaRocks to adjust the command name to gmake in some BSD
environments. LuaRocks also provides a general method for conditionally re-
placing entries in a rockspec in a per-platform basis. For example, a field named
source.platforms.win32.urlwill overwrite the source.url field on Windows
platforms and will be ignored on other operating systems. Through platforms
subtables, a developer can conditionally specify platform-specific build flags,
module dependencies and external library requirements.

24 H. Muhammad, F. Mascarenhas, and R. Ierusalimschy

After LuaRocks compiles and installs a rockspec, the rockspec maintainer
can package it as a .rock file, which is a .zip archive containing all modules, the
rockspec and a manifest file. Manifest files are essentially plain-text databases for
package management, implemented as Lua tables which are loaded in the same
sandbox used for rockspecs and saved using a simple serialization procedure.

While each rock has its own manifest in a rock_manifest file (containing
also the MD5 checksum for each deployed file), LuaRocks also caches a global
manifest for all packages in a system manifest file for quicker initialization.
This global manifest has indexes for efficiently finding dependencies between
packages, which package owns a module, and which modules a package owns.
This same style of global manifest is used in remote repositories as a directory of
available packages. In short, LuaRocks stores all of its metadata as Lua source
files, making heavy use of Lua facilities for sandboxes and data description.

3.2 Extensible Build System

One aspect in which the design of LuaRocks resembles OS-level package man-
agers more than typical language-specific package managers is in its handling
of build tools. Often, language-specific repositories are built around one specific
tool: for example, easy_install and later pip for Python, Rake for Ruby, Ex-
tUtils::MakeMaker and later Module::Build for Perl. The package manager then
delegates the build process to the build tool and focuses on tracking installed
files and dependencies. Lua, however, does not have a standard build system.
By the time LuaRocks was created, a number of Lua-based build tools had been
proposed, but none have gained traction in the developer community. Most Lua
modules were distributed by upstream authors along with Unix Makefiles only,
or with no build scripts at all, and the user is expected to build and deploy the
modules by hand. Some developers also use other tools, such as CMake.

To support these uses, LuaRocks supports several build tools, like OS-level
package managers normally do. OS-level package managers typically let develop-
ers call their preferred build tools explicitly in imperative specification scripts,
as seen in the call to make in the .spec file from Figure 2a. This is an open-ended
approach that allows the use of any build tool, at the cost of having hard-coded
references and a low abstraction level, akin to a shell script or a batch file.

LuaRocks, however, does this in a more controlled manner, with a system
of plugins for the different build tools. Each plugin is implemented as a Lua
module, and selected through the build.type field in the rockspec. For example,
using build.type="make" (as in Figure 2b) causes LuaRocks to load the module
luarocks.build.make, which is then responsible for providing the necessary
plumbing that connects LuaRocks with the build tool.

The buildfield has additional entries specific for the build type, which are passed
to the plugin. These entries, and a set of context variables describing the system
where LuaRocks is installed, can be used to parameterize the build. For exam-
ple, in Figure 2b, the plugin responsible for the “make” build type interprets the
build.build_variablesand build.install_variablesentries, passing the ap-
propriate variables to the build tool. Other customizations are possible: for

LuaRocks - A Declarative and Extensible Package Management System 25

package = "midialsa"; version = "1.17-1"
source = {

url = "http://www.pjb.com.au/comp/lua/midialsa-1.17.tar.gz",
md5 = "0482df57c2262ff75f09cec5568352a7"

}
description = {

summary = "Provides access to the ALSA sequencer", detailed = [[...]],
homepage = "http://www.pjb.com.au/comp/lua/midialsa.html", license = "MIT/X11"

}
dependencies = { "lua >= 5.1" }
external_dependencies = { ALSA = { header = "alsa/asoundlib.h", library = "asound" }
}
build = {

type = "builtin",
modules = {

[’C-midialsa’] = {
incdirs = { "$(ALSA_INCDIR)" }, libdirs = { "$(ALSA_LIBDIR)" },
libraries = { "asound" }, sources = { "C-midialsa.c" }

},
midialsa = "midialsa.lua"

},
copy_directories = { "doc", "test" }

}

Fig. 3. Rockspec for a module using the builtin build type

instance, the default make target for installation is “install”, but one can over-
ride that using build.install_target. Any of these fields can be specified in
a platform-specific manner. For example, a rockspec may specify build variables
specific to the Windows platform in a build.platforms.win32.install_target
field.

The first release of LuaRocks shipped with support for three build types:
make, cmake and command. The command type is a catch-all backend for unsup-
ported build tools: it allows writing a pair of operating system commands in
the rockspec (build.build_command and build.install_command) which Lu-
aRocks then calls. Early on in its history, however, a fourth standard type was
added, called builtin. The builtin type, as the name suggests, is a lightweight
built-in build tool integrated with LuaRocks. It was designed to cover the com-
mon cases when a module is either written in pure Lua, or contains C code that
can be compiled without sophisticated pre-configuration.

Figure 3 depicts a complete rockspec that uses the builtin build type. This
is the rockspec for midialsa, Lua bindings for the MIDI features of the Advanced
Linux Sound Architecture (ALSA). This package installs a module written in
Lua, midialsa, which provides a high-level Lua API, and a module written in
C, C-midialsa, which links to the ALSA library and provides core functions for
the Lua module. This is a fairly typical setup for library bindings.

The builtin build type expects a modules map. In the simpler cases, such
as pure Lua modules, it associates the name of each module to the source file
that implements it. For modules written in C, one can specify more metadata.
These are typically paths where to find headers and libraries needed to build
the module, names of libraries the module depends on, and the source files for
the module. In Figure 3, C-midialsa specifies that it needs to be linked to the
asound library and has its implementation in the C-midialsa.c file.

26 H. Muhammad, F. Mascarenhas, and R. Ierusalimschy

The example also references two context variables that LuaRocks provides,
ALSA_LIBDIR and ALSA_INCDIR. LuaRocks defines these variables after detecting
the location of the alsa/asoundlib.h and asound library the rockspec specifies
in the external_dependencies section of the rockspec.

To deal with variations between operating systems, external dependencies to
libraries are given as abstractly as possible: based on libraries = "asound",
LuaRocks will look for files matching one of various possibilities: libasound.so,
libasound.so.*, libasound.dylib, ASOUND.DLL, ASOUND.LIB and so on, de-
pending on the running platform. LuaRocks searches for these files in a series
of OS-specific directories. This flexible approach for dependency verification has
proven to be a good compromise solution that limits the amount of OS-specific
information in the specification file and keeps platform-specific metadata to a
minimum. The locations of system header and library directories can, if nec-
essary, be adjusted permanently by the user in a configuration file, or on a
case-by-case basis with command-line arguments.

The builtin plugin launches the C compiler and linker, passing proper flags
for the system it is running on. It has internal support for the GCC and Visual
Studio toolchains by default, but it is also largely configurable. All programs and
flags used can be overridden using familiar variables such as CC, LD and CFLAGS
in the LuaRocks configuration file, in particular making it easy to use alternative
compiler toolchains, including cross-compilers.

The builtin build type provides LuaRocks with a build tool that is declara-
tive, like the rest of the rockspec format. Platform-specific details are abstracted
as much as possible, and can be added only when needed. This gives an easy
way for developers who often shipped Unix-only makefiles to support Windows
builds with little effort. Still, developers wishing to continue using other tools
such as make, CMake, and GNU Autotools can easily do so. LuaRocks integrates
well with these tools, as all configuration variables it provides are available for
all build plugins, including those by detected external dependencies such as
ALSA_LIBDIR in the above example, and others such as PREFIX and CFLAGS.

For all build types, LuaRocks executes the build stage targeting a temporary
sandbox directory in its PREFIX variable, later moving the generated files to their
final locations. This forces relocatability: there is no way for a module compiled
through LuaRocks to hard-code its install location. In other words, any module
built with LuaRocks can be packed into a .rock file with luarocks pack 〈rock〉
and then installed in a different directory. This is important when deploying
binaries, particularly on Windows environments.

3.3 Versioning

Another feature that sets LuaRocks apart from other package managers is the fact
that it supports multiple simultaneous versions of the same package in a single
installed tree, so that one can, for example, install two modules A and B, where A
depends on C version< 2 and B depends on C version≥ 2. LuaRocks allows all four
modules to remain installed in the same directory simultaneously, and provides
runtime support so that the correct version of C is used for either A or B.

LuaRocks - A Declarative and Extensible Package Management System 27

Fig. 4. Timeline of LuaRocks releases

When LuaRocks installs a new version of a module, it renames the old ver-
sion so they can coexist in the same directory (adding the rock name and
version as a prefix). The idea is that Lua will always find the latest installed
version of each module, as that file will have a standard pathname such as
/usr/local/lib/lua/5.1/socket.so.

Users who need support for loading versions other than the latest one can
use a custom module loader that LuaRocks provides. Module loaders are the
extensibility mechanism for the Lua module system. Whenever a module is re-
quested, Lua tries to load it using a series of loader functions registered in a list.
The LuaRocks module loader keeps in memory a “context”, which is the list of
previously loaded modules, the rocks they belong to, and their dependencies, so
that when Lua needs to load a new module, the LuaRocks module loader can
choose a version based on dependencies from the current context.

This approach to versioning alleviates the so called “dependency hell” experi-
enced in many other package managers. If the user wants to write a script using
a module that happens to depend on a version of another module that is differ-
ent than what is already installed on their system, they are free to install that
additional dependency without worrying that other modules that depend on the
previously installed version will break. When using package managers that lack
this feature, the workaround is to create separate local module trees in different
directories and configure the runtime environment accordingly whenever each
script is run. Some languages even feature tools that encapsulate this usage pat-
tern, creating replicated environments to avoid conflicting dependencies: RVM
[30] for Ruby and Virtualenv [11] for Python are two examples.

4 Development History

The initial release of LuaRocks was published in August 2007. After thirteen
0.x releases, LuaRocks 1.0 was released in September 2008 (See Figure 4), and
the rockspec format specification has been frozen ever since. LuaRocks 2.0 was
released in October 2009, introducing the custom module loader.

Given that Lua has a history as a language for embedding into applications
and games, where the only additional modules are those specific to the underlying
program, the developer community for reusable modules is small compared to
languages with a focus on areas such as, for example, web development. Still,
the LuaRocks repository has shown a steady growth. Figure 5, generated from
archive snapshots of the repository index, shows the growth of the collection,
from October 2009 when LuaRocks 2.0 was released and the repository contained

28 H. Muhammad, F. Mascarenhas, and R. Ierusalimschy

���

���

���

���

���

���

���

���

���

����

��

����

��

����

��

����

��

����

��

����

��

����

��

���	

��

���	

��

Fig. 5. Number of packages in the LuaRocks repository during the 2.0 series, from
October 2009 to March 2013

exactly 100 packages, up to March 2013, when we just surpassed 250 packages.
During this time, the 2.0 series had a number of point releases. Save for bugfixes,
these releases are essentially compatible. They were mainly driven by feedback
and contributions from users, and were focused on improving portability, adding
new commands to the luarocks and luarocks-admin command-line tools, and
improving user experience with better platform detection.

The builtin build plugin proved to be quite popular. As of this writing, of the
258 projects in the LuaRocks repositories, 195 of them use the builtin build
type, and only 26 use make1. In particular, from those 195 rocks, 29 of them
originally used the make build type and later switched to builtin, suggesting
that it was a good strategy to allow developers to warm up to the idea of using
LuaRocks by letting them start to use it along with their existing build systems.
The make build type often exposed shortcomings in the developers’ makefiles,
such as poor support for specifying custom install paths and linker flags. This
was often noticed when Mac users attempted to install rocks written by Linux
developers and vice versa, and also as developers transitioned from x86 to x86-64.
The builtin type handles those issues transparently.

5 Conclusion

In recent years, language-specific package managers have become an essential
part of programming language ecosystems, as the internet allows large commu-
nities of developers to build upon each other’s work by reusing modules. The
exact role and scope of language-specific package managers vary from language
to language, as the definitions of what is handled by the language and what is
1 From the 37 remaining projects, 10 use command, mostly for invoking GNU Auto-

tools, and 27 use none, which is a blank build type for merely copying .lua files (a
predecessor of builtin).

LuaRocks - A Declarative and Extensible Package Management System 29

delegated to the package manager are language design decision themselves. Still,
these developments have been underrepresented in academic literature so far.

This paper presented LuaRocks, a package manager for the Lua program-
ming language. LuaRocks brings some novel concepts to language-specific pack-
age manager design, such as a completely declarative integrated build system,
thorough use of the language itself as its data description language (which allows
the tool to bootstrap itself without any external dependencies) and support for
coexisting versions of modules in local repositories, with runtime support for de-
pendency resolution based on the extensibility mechanisms of the Lua language.

LuaRocks is used in production systems around the world and is included in
repositories of several Linux distributions. As of this writing, the rocks repository
features 750 rockspecs for 258 different projects. LuaRocks users have reported
success using it in a number of platforms, such as Windows (either natively, with
Cygwin, or with Mingw32), Linux, Mac OS X, FreeBSD, OpenBSD, NetBSD
and Solaris. The directions of development nowadays are essentially dictated by
the needs of the community, while trying to balance concerns of compatibility,
portability and ease of use. For many developers, especially those familiar with
other languages that already have similar ecosystems in place, LuaRocks is their
introduction to writing and sharing Lua modules.

The declarative rockspec format proved to be a success among developers,
and its specification remains largely frozen since LuaRocks 1.0. Still, we have
identified some possibilities for improvement of the format over the years, and
the next major release may include a revision of the specification, while keep-
ing backward compatibility. LuaRocks is prepared to recognize incompatibilities
through the rockspec_format field, so the transition shouldn’t be traumatic.

Another frequent request is implementing support for LuaRocks to upgrade
itself. The tool already has experimental support for that, but it is not enabled by
default, since the interaction with installations made through OS-level package
managers still has to be assessed. Another plan is to eventually allow direct
publishing of modules by developers. This requires development of server-side
infrastructure, but the LuaRocks community has already started efforts in this
direction, with an alternative repository called MoonRocks which allows direct
publishing [10].

References

1. Adler, J.: R in a Nutshell, pp. 37–47. O’Reilly Media (October 2012) ISBN
144931208X

2. Apache Software Foundation. Apache Maven Project,
https://maven.apache.org/

3. Bailey, E.: Maximum RPM, p. 450. Sams (August 1997) ISBN 0672311054
4. Balbaert, I.: The Way To Go: A Thorough Introduction to the Go Programming

Language, pp. 203–223. iUniverse (March 2012) ISBN 1469769166
5. Barzilay, E., Orlovsky, D.: Foreign Interface for PLT Scheme. In: Fifth Workshop

on Scheme and Functional Programming, Snowbird Utah, USA (September 22,
2004)

https://maven.apache.org/

30 H. Muhammad, F. Mascarenhas, and R. Ierusalimschy

6. Beane, Z.: Quicklisp, http://www.quicklisp.org/
7. Berube, D.: Practical Ruby Gems. Apress (April 2007) ISBN 1590598113
8. Christiansen, T., Foy, B.D., Wall, L., Orwant, J.: Programming Perl, 4th edn., pp.

629–644. O’Reilly Media, ISBN 0596004923
9. CocoaPods, http://www.cocoapods.org

10. Corcoran, L.: MoonRocks, http://rocks.moonscript.org/
11. Gift, N., Jones, J.: Python for Unix and Linux System Administration, pp. 279–283.

O’Reilly Media (August 2008) ISBN 0596515820
12. Hagelberg, P., et al.: Leiningen, http://leiningen.org/
13. Hatcher, E., Loughran, S.: Java Development with Ant, p. 672. Manning Publica-

tions (August 2002) ISBN 1930110588
14. Heller, T., et al.: Python CTypes,

http://docs.python.org/3/library/ctypes.html
15. Ierusalimschy, R., Figueiredo, L.H., Celes, W.: The evolution of Lua. In: History

of Programming Languages III, San Diego, USA (June 2007)
16. ISO/IEC 23271:2012. Information Technology — Common Language Infrastruc-

ture (CLI)
17. Jones, I., Peyton Jones, S., Marlow, S., Wallace, M., Patterson, R.: The Haskell

Cabal: A Common Architecture for Building Applications and Tools. In: Haskell
Workshop (2005)

18. Kepler Project. LuaJava — A script tool for Java,
http://keplerproject.org/luajava/

19. Krafft, M.: The Debian System: Concepts and Techniques, p. 608. No Starch Press
(September 2005) ISBN 1593270690

20. Lehey, G.: The Complete FreeBSD: Documentation from the Source, 4th edn., pp.
167–180. O’Reilly Media (April 2003) ISBN 0596005164

21. Muhammad, H., Ierusalimschy, R.: C APIs in extension and extensible languages.
Journal of Universal Computer Science 13(6)

22. Mascarenhas, F.: Alien — Pure Lua extensions,
http://mascarenhas.github.com/alien/

23. Microsoft, MSDN Library, Side-by-side Assemblies (Windows) (August 2010),
http://msdn.microsoft.com/en-us/library/aa376307.aspx

24. Osterhout, J.: Scripting: Higher Level Programming for the 21st Century. IEEE
Computer 31(3), 23–30 (1998)

25. Outercurve Foundation. NuGet Gallery, https://nuget.org/
26. Packagist, http://www.packagist.org
27. PLaneT Package Repository, http://planet.racket-lang.org/
28. Powers, S.: Learning Node, pp. 63–79. O’Reilly Media (October 2012) ISBN

1449323073
29. Python Package Index, https://pypi.python.org/pypi
30. Ruby Version Manager, https://rvm.io/
31. Snoyman, M.: Solving Cabal Hell,

http://www.yesodweb.com/blog/2012/11/solving-cabal-hell
32. Sonatype Inc. The Central Repository, https://search.maven.org
33. Spinellis, D.: Package Management Systems. IEEE Software 29(2), 84–86 (2012),

doi:10.1109/MS.2012.38
34. Worthmuller, S.: No End to DLL Hell! Dr. Dobb’s Journal (September 2010),

http://www.drdobbs.com/windows/no-end-to-dll-hell/227300037
35. Ziadć, T.: Chronology of Packaging,

http://ziade.org/2012/11/17/chronology-of-packaging/

http://www.quicklisp.org/
http://www.cocoapods.org
http://rocks.moonscript.org/
http://leiningen.org/
http://docs.python.org/3/library/ctypes.html
http://keplerproject.org/luajava/
http://mascarenhas.github.com/alien/
http://msdn.microsoft.com/en-us/library/aa376307.aspx
https://nuget.org/
http://www.packagist.org
http://planet.racket-lang.org/
https://pypi.python.org/pypi
https://rvm.io/
http://www.yesodweb.com/blog/2012/11/solving-cabal-hell
https://search.maven.org
http://www.drdobbs.com/windows/no-end-to-dll-hell/227300037
http://ziade.org/2012/11/17/chronology-of-packaging/

On the Performance of Multidimensional Array

Representations in Programming Languages
Based on Virtual Execution Machines

Francisco Heron de Carvalho Junior, Cenez Araújo Rezende,
Jefferson de Carvalho Silva, Francisco José Lins Magalhães,

and Renato Caminha Juaçaba-Neto

Mestrado e Doutorado em Ciência da Computação,
Universidade Federal do Ceará, Brazil

heron@lia.ufc.br

Abstract. This paper evaluates the performance of virtual execution
machines (VM) of the CLI and JVM standards for the common ap-
proaches to represent multidimensional arrays in high performance com-
puting applications. In particular, it shows which representation is the
best for each virtual machine implementation, showing that the choices
may be surprisingly contradictory, even with respect to previous results
of other works on performance evaluation of VMs.

1 Introduction

Object-oriented programming languages based on virtual execution environ-
ments (VEE), such as Java and C#, are consolidated in software industry,
motivated by the security, safety and interoperability they provide to software
products and the productivity they provide to software development and main-
tenance. These languages have caught the attention of Fortran and C users from
computational sciences and engineering, interested in modern techniques and
tools for large-scale software development [28]. However, most of them still con-
sider that the performance of VEEs does not attend the needs of HPC (High
Performance Computing) applications.

In the 1990s, the performance bottlenecks of JVM (Java Virtual Machine) for
HPC have been extensively investigated. New techniques have been proposed to
circumvent them, also incorporated in CLI (Common Language Infrastructure)
virtual execution machines [15], such as .NET and Mono. In the 2000s, most
of these efforts moved to the design of new high-level programming languages
aimed at the HPC needs [21]. However, the performance of virtual machines
have been significantly improved with just-in-time (JIT) compilation during this
period. Also, the new CLI standard have introduced new features for addressing
HPC requirements, such as rectangular arrays, direct interface to native code,
language interoperability and unsafe pointers.

After a decade of developments in the design and implementation of virtual
execution machines, there is still a lack of rigorous studies about their serial

A. Rauber Du Bois and P. Trinder (Eds.): SBLP 2013, LNCS 8129, pp. 31–45, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

32 F.H. de Carvalho Junior et al.

performance in the context of HPC applications [17]. Recent works have evalu-
ated current JVM machines by taking parallel processing into consideration (i.e.
including communication/synchronization costs) [31,9], both in shared-memory
and distributed-memory platforms, using a subset of NPB-JAV [16], a Java im-
plementation of the NPB (NAS Parallel Benchmarks) suite [11]. Also, for our
knowledge, it is only devoted to W. Vogels the publication of a comprehensive
performance comparison between JVM and CLI machines [35]. Finally, the ex-
isting works barely take into consideration the analysis of different approaches
to implement multidimensional arrays, which is relevant in the HPC context.

This paper reports the results of a performance evaulation with the following
goals in mind: to compare the current performance of virtual execution engines
that follow the CLI and JVM standards for different approaches to implement-
ing multidimensional arrays, using real-world numerical simulation programs; to
obtain a more realist measure of the performance gap between virtual and native
execution; and to identify bottlenecks in the current implementation of virtual
machines, regarding the support to multidimensional arrays.

As far we know, this paper is the first one to report a comprehensive study
about the performance of distinct approaches to implementing multidimensional
arrays in programming languages based on virtual execution, which are: in-
dex mapping to unidimensional arrays; jagged arrays; and rectangular arrays.
It points out at invalid generalizations of results reported in previous works,
contradicting some common sense ideas of programmers that do not apply de-
pending on the virtual machine implementations, and quantifying the cost of
array-bounds-checking 1.

The results of this paper complement the results of previous works on the per-
formance evaluation of JVM and CLI for scientific/engineering code [31,8,35,16],
finding that they present some contradictory results due to the lack of analysis
of different forms of implementing multidimensional arrays, as well as providing
recommendations on how to optimize the performance of array intensive code
according to the features of the virtual machine.

Section 2 introduces virtual execution technology and presents the motivations
of the experimental work whose results are presented in this paper, based on an
analysis of related works. Section 3 presents the methodology adopted in the
experiments, whose results are presented and discussed in Section 4. Section
5 summarizes the results and contributions of this paper and suggests further
works on improving the performance of virtual machines.

2 Context and Related Works

Programming languages based on virtual execution environments (VEE) ab-
stract away from the hardware and operating systems of computing systems,
reaching high portability. In heterogeneous environments, the benefits of virtual
execution, such as security and cross-platform portability, are clear, in particular
for applications that are distributed across a network, such as the internet.

1 The results of this paper is available at http://npb-for-hpe.googlecode.com

http://npb-for-hpe.googlecode.com

On the Performance of Multidimensional Array Representations 33

Java was launched by Sun Microsystem in the 1990s. The Java Virtual Ma-
chine (JVM) has an available implementation for virtually any platform. Its
intermediate representation, the so-called bytecode, is dynamically compiled, on
demand, through just-in-time (JIT) compilation. The JIT compiler implementa-
tion dictates the performance of virtual execution machines such as JVM. The
most important industrial-strength implementations of JVM are now supported
by Oracle [7] and IBM [2]. OpenJDK [6], also popular, is an open-source project
directly related to the Oracle’s JVM.

The CLI standard [15] has been introduced in the beginning of 2000s, speci-
fying virtual execution machines with distinguishing features, such as: support
for multiple programming languages and their interoperability [19]; a strongly
typed and polymorphic intermediate representation, called IL (Intermediate
Language); version control; ahead-of-time compilation; true multidimensional
arrays; unsafe execution using pointers, like in C; and so on.

.NET [5] and Mono [1] are interoperable implementations of CLI. The .NET
framework has been developed by Microsoft for the Windows Platform, whereas
Mono is an open source project started by Novell, with implementations for a
wide range of platforms, including Windows. Mono and its related products are
now property of Xamarin. Also, IKVM.NET [3] is an implementation of the Java
Platform for Mono and .NET, including an implementation of JVM, standard
Java class libraries, and tools for Java and Mono/.NET interoperability.

2.1 Virtual Execution Environments in HPC

In the end of 1990s, Java started to attract the attention of programmers from
scientific and engineering community, due to its productivity and interoperabil-
ity features. However, the poor performance of the first JVM implementations,
the difficulties to introduce usual loop optimizations in JIT compilers, and the
absence of true multidimensional arrays were considered prohibitive for HPC ap-
plications, motivating researchers in quantifying the performance bottlenecks of
JVM and proposing solutions to circumvent them [27,24], including language
extensions [33], support for multidimensional arrays [23,18], specific-purpose
scientific computing libraries [4,32,34], interfaces for interoperability with na-
tive scientific computing libraries [12], and compiler support [13], including loop
optimizations [10] and array-bounds-checking (ABC) elimination [20,29,25,36].
However, it was JIT compilation that made VEEs attractive for HPC software.

.NET attempted to narrow the performance gap between native and virtual
execution, by introducing true multidimensional arrays and JIT optimizations.
W. Vogels [35] was the first to compare CLI and JVM implementations, showing
that .NET performance is competitive with the performance of the best JVM im-
plementations, but not providing significative gains. Surprisingly, jagged arrays
outperformed rectangular arrays in .NET, justified by further JIT optimizations.

In 2003, Frumkin et al. [16] proposed NPB-JAV, a multi-threaded Java im-
plementation of the NAS Paralell Benchmarks (NPB) [11], reporting that per-
formance of Java was still lagging far behind Fortran and C. Also in 2003,
Nikishkov et al. [26] compared the performance of Java (object-oriented design)

34 F.H. de Carvalho Junior et al.

and C using a three-dimensional finite element code, reporting similar per-
formance conditioned to code tuning and the choice of the virtual machine
implementation.

In a special issue of a journal devoted to the 2001 Java Grande-ISCOPE
(JGI’2001) conference, published in 2003, two papers deserves special attention.
The paper of Riley et al. [30] reported slowdown factors between 1.5 and 2.0
for carefully object-oriented designed Java implementations of real-world appli-
cations from computational fluid dynamics (CFD), running in Sun and IBM
JVMs. In turn, the paper of Bull et al. [14] compared directly the performance
of Java Grande Benchmarks [22] re-written in C and Fortran with their per-
formance in Java, accross a number of JVM implementations and computing
platforms, showing small performance gaps, notably for Intel Pentium.

The most recent works on the performance evaluation of virtual machines are
due to Taboada et al. [31] and Amedro et. al. [9], with focus on parallel pro-
gramming. Contrariwise to the previous works, they presented results where the
performance of virtual execution is near to the performance of native execution.
However, their evaluation is only based on Oracle JVM implementation. The
results of Section 4 will show that some conclusions of these works cannot be
generalized to other implementations. Also, we consider important to evaluate
pure sequential execution, not affected by communications and synchronization
costs of parallel execution, since an efficient parallel program cannot be obtained
from inefficient sequential code.

2.2 Multidimensional Arrays

In computational intensive programs from scientific and engineering domains,
arrays of multiple dimensions are the most used data structures. For this reason,
HPC programmers use techniques for efficient access to multidimensional arrays,
based on their layout in memory, attempting to promote spacial locality for
optimizing cache performance [17]. For that, Fortran supports rectangular arrays,
whose elements may be accessed as in standard mathematical notation, and
stored consecutively in memory. In C and C++, rectangular arrays are static.

Java was conceived without rectangular arrays, which has been viewed as an
annoying limitation for using Java in HPC, together with bytecode interpreta-
tion. Java supports jagged arrays (arrays-of-arrays), where a N1×N2×· · ·×Nk

array (k dimensions, with Ni elements in the i-th dimension), where k > 2,
must be represented as an unidimensional array whose elements are pointers to
N2 × · · · ×Nk multidimensional arrays. By consequence, only the Nk elements
in the last dimension of the array may be consecutive in memory. The memory
requirements of jagged arrays and rectangular ones are different. Jagged arrays
require much more memory due to the additional pointers for redirecting the
elements of the first k − 1 indexes, in a k dimensional array.

In turn, CLI designers decided to introduce rectangular arrays, as well as other
features considered relevant in HPC, such as cross-language interoperability, in-
tegration to unmanaged code and ahead-of-time (AOT) compilation. Due to the
lack of support for rectangular arrays, Java programmers in the HPC domain

On the Performance of Multidimensional Array Representations 35

usually implement multidimensional arrays by using the common C/C++ tech-
nique for implementing dynamic rectangular arrays, by explicitly mapping their
indexes to the indexes of unidimensional (unboxed) arrays, ensuring that all ele-
ments are consecutive in memory. For instance, let a be aN1×N2×· · ·×Nk array
and let A be a unidimensional array that will represent a in a Java program. In
the case of row-major memory layout, the element ai1,i2,...,ik must be mapped to
the element index (i1, i2, . . . , ik), where

index (x1, x2, . . . , xk) =

k∑
i=1

⎛
⎝xi ∗

k∏
j=i+1

Nj

⎞
⎠.

In HPC practice, the index function is “inlined” for avoiding function calls.
These techniques, originated from the experience of HPC programmers with

native languages, are followed by NPB-JAV. However, this paper shows that
they may cause overheads in virtual machine-based languages, depending on the
choice of virtual machine implementation.

3 Methodology

For achieving the experimental goals announced in Section 1, it is required the
use of near-optimal code from realistic HPC applications. For this reason, we
have adopted NPB (NAS Parallel Benchmarks), a benchmark suite derived from
CFD (Computational Fluid Dynamics) applications by the Advanced Supercom-
puting Division of NASA for evaluating the performance of parallel computing
platforms [11]. It has reference implementations written by expert HPC program-
mers in Fortran, C and Java [16]. NPB has been widely used along the years for
evaluating the performance of programming language abstractions, compilers,
and execution environments.

The NAS Parallel Benchmarks (NPB) comprises eight programs, from which
one benchmark and three simulated applications have been selected for the pur-
poses of the experiment reported in this paper. They are:FT (Fast Fourier Trans-
form), SP (Scalar Pentadiagonal Linear System Solver), BT (Block-Triagonal
Linear System Solver), and LU (LU Factorization).

NPB specifies a set of problem classes, which define standard workloads to be
applied to the programs, based on realistic problem instances. They are refer-
enced by letters: S and W, originally for testing purposes; A, B, C, and so on,
defining realistic workload levels.

3.1 Experimental Factors

For the purposes of this performance evaluation, the following experimental fac-
tors and levels have been selected:

– Program: SP, BT, LU and FT;
– Problem class: S, W, A and B;

36 F.H. de Carvalho Junior et al.

– Virtual machine: IBM JVM 1.7 (JVM1), Oracle JVM 1.7 (JVM2), Mono
2.11.3 (CLI1), .NET 4.0.3 (CLI2) and IKVM 0.46.0.1 (JVM3);

– Multidimensional array representation: unidimensional arrays with in-
line index arithmetic (AU) and with index arithmetic encapsulated in meth-
ods (AU∗), row-major ordered jagged arrays (AJR), column-major ordered
jagged arrays (AJC), row-major ordered rectangular arrays (ARR) and
column-major ordered rectangular arrays (ARC).

3.2 Derivation of Program Versions

We have derived Java sequential versions of SP, BT, LU and FT from NPB-JAV
[16], officially supported by NPB 3.0, corresponding to the AU version. For
supporting the other kinds of multidimensional arrays, versions of each program
have been derived for AU∗, AJR, and AJC. Then, C# versions were derived
from the Java versions, except for AU∗. Finally, the ARR and ARC versions
have been written only in C#, which supports rectangular arrays.

3.3 Performance Measures

The performancemeasures have been collected in aDell Studio XPS 810, equipped
with an Intel Core i5 processor (Cores: 4, RAM: 8GB, Clock: 2.66MHz). The op-
erating system is Ubuntu 12.04.1 LTS (GNU/Linux 3.2.0-30-generic x86 64).

For each combination of levels of the experimental factors, we have collected
a sample of execution times from 10 runs, defining the set of observations.

The sample size has been derived from a preliminary experiment with 100
observations for the problem classes S and W, with outliers elimination, where
we calculated that the sample size does not need to be greater than 10 to achieve
acceptable confidence in the use of the average as the central tendency measure,
by assuming normal distribution.

4 Results and Discussion

The experimental data is summarized in the graphs of figures 1-3. Each graph
shows the average execution times (y axis) of the levels of array kind for
each problem class (x axis), for one combination of program and virtual
machine. The graphs also includes the execution times of the native versions.
Logarithmic scale is used for better interpretation and visualization, since the
workloads of the NPB problem classes increases in one level of magnitude.

Using logarithm scale, if the difference between the execution times of two
program versions is nearly the same from one problem class to another one that
represents a bigger workload, there is a strong evidence that the computation
workload do not affect the two versions in different ways. For instance, by com-
paring the differences between the execution times of row-major (AJR, ARR)
and column-major versions (AJC, ARC) across the problem classes, the over-
head of column-major traversing tends to increase slightly with the workload,
as expected. So, we focus our attention in comparing AJR, ARR and AU.

On the Performance of Multidimensional Array Representations 37

SP / JVM1
2,861.3

1.1
15.7

87.5

352.0

45.3

458.0

2.3

613.2

23.5

154.2
1.8

218.4

0.1

7.5

52.1
0.9

36.9

198.4

823.0

S W A B

problem class

tim
e

(s
) -

 lo
g

sc
al

e

AU
AJC
AJR
Native
AU*

BT / JVM1

5.5

121.3

516.1

1.0

15.8

3.2

452.2

2,319.3

678.2

8.8

3.3

153.1

3.0

0.1

69.1

288.0

1,692.3

22.9

1.0

409.2

S W A B

problem class

tim
e

(s
) -

 lo
g

sc
al

e

AU AJC AJR Native AU*

SP / JVM2

2.1

7,492.4

1,780.8

293.8

3,399.6

569.7

45.11.9

413.3

97.1

11.2
1.2

218.4

0.1

7.5

52.1
0.8 28.7

181.6

907.4

S W A B

problem class

tim
e

(s
) -

 lo
g

sc
al

e

AU
AJC
AJR
Native
AU*

BT / JVM2

1.5
42.3

944.1

3,943.2
2,536.5

6.1

23.3

495.1

595.1

2.7

7.0

131.6

3.00.1

288.0

69.11.6

19.8

439.9

1,888.4

S W A B

problem class

tim
e

(s
) -

 lo
g

sc
al

e

AU
AJC
AJR
Native
AU*

SP / JVM3

0.2

34.8

215.1

913.5

0.3

72.2

842.7

3,671.5

43.8

289.8

1,244.8

0.3

218.4

0.1

52.1

7.5

0.5

73.3
443.2

1,872.2

S W A B

problem class

tim
e

(s
) -

 lo
g

sc
al

e

AU
AJC
AJR
Native
AU*

BT / JVM3 1,120.9

268.7

12.1
0.4

4,307.2

993.6

29.6
0.8
0.8

2,675.6

631.3

27.8

288.0

69.1

3.00.1

1.2
40.6

881.4

3,738.7

S W A B

problem class

tim
e

(s
) -

 lo
g

sc
al

e

AU
AJC
AJR
Native
AU*

SP / CLI1

0.2 33.9

211.6

887.1

0.3 70.1

819.7

3,540.8

42.2

278.0

1,178.8

0.3

0.8 125.9

1,237.7

5,013.0

0.8 160.0
966.1

2,875.2

0.1
7.5

218.4

52.1

S W A B

problem class

tim
e

(s
) -

 lo
g

sc
al

e

AU
AJC
AJR
ARC
ARR
Nativo

BT / CLI1

2.4

1,087.6

259.6

11.8

0.4

4,213.7

979.3

29.2

0.8
0.8

2,564.4

613.6

27.1

82.9

2,037.9

8,432.4

2.4

135.2

2,926.0

7,350.5

0.1

69.1

3.0
288.0

S W A B

problem class

tim
e

(s
) -

 lo
g

sc
al

e

AU AJC AJR
ARC ARR Nativo

SP / CLI2

0.3

36.8

228.1

964.5

0.3

63.3

646.3

3,981.0

27.3

178.2

756.6

0.2

3,686.6

0.5

900.9

90.8 1,995.9

0.5

482.0

77.8

0.1

7.5

52.1

218.4

S W A B

problem class

tim
e

(s
) -

 lo
g

sc
al

e

AU
AJC
AJR
ARC
ARR
Nativo

BT / CLI2

0.4

13.1

299.5

1,238.1

0.8

28.5

824.2

3,932.4

21.8

490.6

2,045.9

0.7

1,286.0

50.2

1.5

5,418.1

49.5

1,062.6

1.5

4,401.5

0.1

3.0

69.1

288.0

S W A B

problem class

tim
e

(s
) -

 lo
g

sc
al

e

AU AJC AJR
ARC ARR Nativo

Fig. 1. SP and BT - Performance Figures

38 F.H. de Carvalho Junior et al.

4.1 Jagged versus Unidimensional Arrays

The Java virtual machines JVM1 and JVM2 present contradicting performance
results for AU and AJR. For JVM1, AU outperforms AJR for all the pro-
grams, as expected, by a nearly constant factor across problem classes. On the
other hand, AJR outperforms AU for JVM2, except for FT.

For SP, BT and LU, the inclination of the native performance curve between
S and W is followed only by AU in JVM2. For the other cases with JVM
machines, the ratio between the average execution times of the virtual and the
native versions is reduced from S to W, explaining the poor performance that
JVM2 presents for AU, in the cases of SP, BT and LU.

Table 1. Comparing AU and AU∗

S W A B S W A B S W A B S W A B

SP 2.8 10.2 9.8 8.3 0.6 2.6 1.9 2.2 0.7 2.3 2.3 2.3 0.7 2.3 2.3 2.3
BT 0.9 2.1 2.1 2.1 0.6 2.8 3.3 3.2 1.0 4.1 3.4 3.3 1.0 4.1 3.4 3.3
LU 2.5 13.4 13.4 12.0 0.7 2.5 2.2 2.1 0.5 2.2 1.8 2.0 0.5 2.2 1.8 2.0
FT 0.9 0.9 0.8 0.9 0.7 0.7 0.7 0.9 1.1 0.9 1.0 1.0 1.1 0.9 1.0 1.0

(a) (b) (c) (d)

Ratio between average execution times of AU∗ and AU for JVM2 (a), AU∗ and AJR
for JVM2 (b), AU and AU∗ for JVM1 (c), and AU and AU∗ for JVM3 (d).

Taboada et al. [31] reported similar performance overheads for NPB-JAV
(AU), justifying them by the inlining of index calculation arithmetic. Since the
HotSpot JIT compiler (JVM2) cannot perform dynamic optimizations in long
running monolithic loops, they recommend to factorize the loop code in sim-
ple and independent methods as much as possible. For that, it is necessary to
encapsulate array indexing arithmetic in reusable methods. Following this rec-
ommendation, we have implemented a new version of AU, calledAU∗, obtaining
high speedups with JVM2 (Table 1-a). However, AU∗ is also slower than AJR
(Table 1-b). Moreover,AU∗ results in performance degradation with JVM1 and
JVM3 (Table 1-c and Table 1-d), demonstrating that the recommendations of
Taboada et al. cannot be generalized to all JIT compilers.

For CLI virtual machines (CLI1, CLI2 and JVM3), it is not possible to
conclude whether AU or AJR presents better performance. For instance, AU
performs better for FT and BT, whereas AJR performs slightly better for
SP. In LU, there is no significant difference between AU and AJR for CLI1
(Mono) and JVM3 (IKVM), but there is a slight, although significant, tendency
in favor of AJR for CLI2 (.NET). Finally, notice that AU∗ causes performance
degradation in JVM3, compared to AU, as for JVM1.

The CLI virtual machines (JVM3,CLI1, CLI2) have presented higher execu-
tion times compared to the best JVM results, for both AU and AJR. Further-
more,CLI2 (.NET/Windows) outperformsCLI1 (Mono/Linux) for all programs
and problem classes. Table 2 shows the ratios between the best execution times
obtained using a CLI virtual machine and using a JVM one, for AU and AJR.

On the Performance of Multidimensional Array Representations 39

Table 2. CLI versus JVM in AU and AJR

S W A B S W A B

SP 0.3 2.2 2.4 2.5 0.1 2.4 1.8 2.9
BT 0.4 2.1 2.1 2.1 0.2 3.1 3.7 4.3
LU 0.3 2.1 2.5 2.3 0.2 1.8 1.7 2.9
FT 2.0 1.9 1.9 2.0 1.5 1.4 1.4 −

(a) (b)

Ratio between the best execution time of CLI1
and CLI2 and the best execution time of JVM1

and JVM2 for AU (a) and AJR (b).

u[k][j][i][m] u[m+i*isize2 + j*jsize2 + k*ksize2]

ldfld float64[][][][] 〈CLASS〉::u
ldloc.2

ldelem.ref

ldloc.1

ldelem.ref

ldloc.0

ldelem.ref

ldloc.3

ldelema [mscorlib]System.Double

〈CLASS〉 ≡ NPB3 0 JAV.SPThreads.SPBase

ldfld float64[] 〈CLASS〉::u
ldloc.3

ldloc.0

ldarg.0

ldfld int32 〈CLASS〉::isize1
mul

add

ldloc.1

ldarg.0

ldfld int32 〈CLASS〉::jsize1
mul

add

ldloc.2

ldarg.0

ldfld int32 〈CLASS〉::ksize1
mul

add

ldelema [mscorlib]System.Double

Fig. 2. CIL Codes for Accessing a Multidimensional Array (Comparing AU and AJR)

Figure 2 compares the CIL code generated by the C# compiler for accessing
the array u in SP and BT, using jagged array (a) and unidimensional array (b).
An access to a jagged array is dominated by a sequence of indirection operations
(ldloc/ldref.i), for each index i, followed by a fetch operation (ldelema). The
JIT compiler emits the array bounds checking code to protect ldref instructions.
In turn, the unidimensional version performs arithmetic to calculate the array
index, followed by a fetch operation. Indirection operations perform very fast if
data is in cache, justifying the better performance compared to index calculation
arithmetic. Moreover, this may be the reason why AU performs better than
AJR only for FT. FT stores complex numbers, distinguishing the real and
imaginary parts in the last dimension of the arrays (size 2), which is not large
enough to take advantage of data locality for better cache performance.

Table 3. Virtual versus Native Execution

S W A B

SP 15.2 1.5 1.7 1.6

S W A B

BT 10.6 1.9 1.8 1.8

S W A B

LU 18.8 1.8 1.6 1.7

S W A B

FT 2.5 2.7 2.6 2.9

The best results across all the experimental cases have been obtained by
JVM1 using AU, followed by JVM2 using AJR. As expected, their perfor-
mance are still worse compared to native execution, in Fortran, by the factors

40 F.H. de Carvalho Junior et al.

LU / JVM1

15.7
1.6

91.8

409.2

3.2

58.0

2,616.8
511.7

734.6

156.5

22.9
2.8

0.0

243.1

56.0

7.9

1,046.6
206.1

34.7

0.8

S W A B

problem class

tim
e

(s
) -

 lo
g

sc
al

e

AU AJC AJR Native AU*

FT / JVM1

239.2

17.8
1.5

0.9

1,228.0

87.1

3.6

1.7

410.4

29.8
2.3

1.7

60.5

4.9
0.3

0.1

247.7

1.4

1.0

18.4

S W A B

problem class

tim
e

(s
) -

 lo
g

sc
al

e

AU
AJC
AJR
Native
AU*

LU / JVM2

2.8
483.8

3,200.1

13,416.4

2.3
51.2

469.5

2,485.0

1.6

14.3

107.6

523.8

0.0
7.9

56.0

243.1

1.1 36.1

239.4

1,121.9

S W A B

problem class

tim
e

(s
) -

 lo
g

sc
al

e

AU
AJC
AJR
Native
AU*

FT / JVM2

177.5

12.8

0.7

0.3

1,266.6

91.6

3.5

1.1

305.1

21.2

1.1

0.5

60.5

4.9

0.3

0.1
0.3

0.8

15.2

193.9

S W A B

problem class

tim
e

(s
) -

 lo
g

sc
al

e

AU
AJC
AJR
Native
AU*

LU / JVM3

0.2
33.3

226.3

962.7

0.3

70.5

817.8

4,553.1

45.8

338.9

1,539.1

0.3

0.0

7.9

56.0

243.1

0.4

74.2

2,130.9

499.5

S W A B

problem class

tim
e

(s
) -

 lo
g

sc
al

e

AU
AJC
AJR
Native
AU*

FT / JVM3

0.6

1.5

27.2
363.6

1.6

5.5

128.6
1,770.6

2.6

48.7
1,246.0

1.1

4.9

0.1

0.3

60.5

597.4

1.1

2.5

44.4

S W A B

problem class

tim
e

(s
) -

 lo
g

sc
al

e

AU
AJC
AJR
Native
AU*

LU / CLI1

0.2

33.6

225.4

957.3

0.4

68.9

787.7

4,571.7

45.2

329.4

1,493.2

0.3

5,356.1

1,183.5

140.2

0.8

3,928.7

1,384.1

207.3

0.8

243.1

56.0

7.9

0.0

S W A B

problem class

tim
e

(s
) -

 lo
g

sc
al

e

AU
AJC
AJR
ARC
ARR
Nativo

FT / CLI1

445.834.3

1.9

0.9

1,764.2127.8

5.5

1.8
1.2

641.748.1

2.6

2.4

6.2

137.0 1,921.8

2.2

6.4

111.1 1,137.4

60.54.9

0.3

0.1

S W A B

problem class

tim
e

(s
) -

 lo
g

sc
al

e

AU
AJC
AJR
ARC
ARR
Nativo

LU / CLI2
1,101.4

259.9

39.5
1.1

4,111.1

644.0

69.5

0.7
0.4

867.8

183.7

26.0

827.4

94.8

0.8

3,686.0

600.5
90.7

0.8

2,501.9

243.1

56.0

7.9

0.0

S W A B

problem class

tim
e

(s
) -

 lo
g

sc
al

e

AU
AJC
AJR
ARC
ARR
Nativo

FT / CLI2

307.7

23.8

1.4

0.6

1,363.4
100.2

3.9

1.5

0.7

392.6

28.8

1.5

1,129.5

1.2

3.6

85.2

587.4

1.2

2.7

45.9

0.1

0.3

4.9

60.5

S W A B

problem class

tim
e

(s
) -

 lo
g

sc
al

e

AU
AJC
AJR
ARC
ARR
Nativo

Fig. 3. LU and FT - Performance Figures

On the Performance of Multidimensional Array Representations 41

presented in Table 3, confirming, for large workloads, the results found by Riley
et al. [30]. However, we think that the advantages of using object-oriented lan-
guages, regarding modularity and abstraction, make them competitive for bigger
problem instances, where virtual execution presents better results.

For HPC programmers, it is a surprise that AJR may be competitive to AU
in Java, since they avoid jagged arrays due to three beliefs that come from their
familiarity with C and Fortran. Firstly, the elements of a jagged arrays are not
consecutive in memory, making difficult to take advantage of spatial locality of
array accesses for better performance of the memory hierarchy system. Secondly,
the cost of array bounds checking is proportional to the number of dimensions.
Thirdly, the time of jagged array accesses is also proportional to the number of
dimensions. Thus, this is a useful result for helping HPC programmers to im-
prove the quality of their code, since jagged arrays is the best way to implement
multidimensional arrays in Java, in terms of safety and code readability.

Together, the above beliefs and the results of Taboada et al.[31] suggest that
Java HPC programmers must use unidimensional arrays encapsulated in classes,
with methods for accessing the elements through multiple dimensions, avoiding
the scattering of the index calculation arithmetic in the source code. However,
this paper shows that the performance of this approach depends on the un-
derlying virtual machine implementation. For JVM1 (IBM), it is better to use
jagged arrays or, even better, to inline array accesses, whereas for JVM2 (Or-
acle), it is better to use jagged arrays and inlining is prohibitive. This kind of
poor performance portability is a coherent argument against the use of Java
HPC applications, since it requires that programmers write code that will run
efficiently only in a specific JVM implementation.

Table 4. Performance of Rectangular Arrays

S W A B S W A B

SP 1.4 1.4 1.4 1.4 3.1 7.0 5.5 5.7
BT 1.7 1.6 1.7 1.7 4.1 9.0 8.8 8.5
LU 1.1 1.5 1.5 1.6 3.9 6.4 6.5 6.1
FT 1.9 1.9 1.9 1.9 3.9 3.9 3.6 3.3

(a) (b)

(a) Ratio between execution times of CLI1
and CLI2 for ARR

(b) Ratio between execution times of CLI2
and the best execution times across all the
other virtual machines.

4.2 Rectangular versus Jagged Arrays

As discussed before, CLI compliant virtual execution machines have introduced
the support for rectangular arrays, also referred as true multidimensional arrays,
for the needs of scientific computing code, where it is important to traverse ar-
ray elements by supposing they are stored consecutively in memory for taking
advantage of spatial data locality. Also, array elements may be accessed in con-
stant time, whereas in jagged arrays the access time depends on the number of
array dimensions. However, the results for rectangular versions of SP, BT, LU
and FT (ARR and ARC) are disappointing, both for CLI1 and CLI2.

42 F.H. de Carvalho Junior et al.

Compared to AU and AJR, ARR performs worse. In some cases of CLI1
(Mono),ARR performs worse even thanAJC. CLI2 (.NET) outperforms Mono
for rectangular arrays. For quantifying the differences, Table 4 shows the ratio
of execution times between CLI1 and CLI2 for ARR (a) and between ARR of
CLI2 and the best execution time across all the evaulated virtual machines (b).

Table 5. Optimizations and ABC in Mono

Optimizations ABC Off

S W A S W A

AU

SP 1.03 1.03 1.03 1.08 1.07 1.07
BT 1.01 1.01 1.01 1.15 1.12 1.11
LU 0.95 1.00 1.00 1.11 1.11 1.11
FT 0.97 0.97 0.97 1.04 1.04 1.04

AJR

SP 1.04 1.04 1.05 1.28 1.30 1.28
BT 0.98 0.98 0.99 1.26 1.27 1.27
LU 0.88 1.03 1.03 1.33 1.34 1.32
FT 0.96 0.96 0.95 1.11 1.12 1.12

ARR

SP 1.10 1.10 1.10 1.13 1.14 1.13
BT 1.16 1.15 1.16 1.31 1.29 1.29
LU 1.12 1.12 1.13 1.21 1.19 1.20
FT 1.13 1.14 1.12 1.02 1.02 1.02

4.3 Particular Features of Mono

Mono provides some additional features for improving the performance of pro-
gram execution. In the following sections, we discuss the most important ones.

JIT Optimizations. Mini, the Mono JIT compiler, supports a set of compiler
optimizations that is applied to the CIL code. The users may enable each opti-
mization separately through the flag --optimize. In the experiments described
above, all optimization flag has been enabled, under the assumption that HPC
users will try the most aggressive alternatives to reduce execution time. In Table
Table 5, the optimized execution times are compared with the execution times
by ignoring the optimization flag. In AU and AJR, no gains in performance
have being observed. In ARR, there are modest gains, between 10% and 16%.

ABC Disabling. The overhead of array bounds checking (ABC) motivates
many HPC programmers to avoid using safe programming languages, such as
Java and C#, despite the sophisticated static analysis techniques applied for
ABC elimination [36]. Table 5 presents the speedup obtained by turning off ABC
in AU, AJR and ARR, in Mono. For AU and AJR, ABC may be turned off
by setting the unsafe optimization flag (-O=unsafe). However, this approach
does not apply to ARR, forcing us to disable emission of ABC code in the

On the Performance of Multidimensional Array Representations 43

source code of Mono, requiring its recompilation. The ABC overhead of AJR
and ARR is greater than AU, since it has more dimensions bounds checking.
Also, the speedups are nearly independent of the problem class (array size).

5 Conclusions and Further Works

This paper evaluated the serial performance of current implementations of CLI
and JVM virtual execution machines for different implementations of multidi-
mensional arrays, for HPC programs from sciences and engineering, showing a
relevant dependency of their performance with respect to the kind of multidi-
mensional array and the virtual machine implementation. So, it provides useful
guidelines for decisions of programmers that want to take advantage of the fea-
tures of high-level programming languages in HPC applications.

JVM implementations still outperform CLI ones for bigger workloads (W,
A and B), despite the CLI support for rectangular arrays. However, the better
performance of CLI for the smallest workload (S) evidences that this is caused
by dynamic JIT optimizations of JVM implementations. One could investigate
how to port JIT optimizations of JVM implementations to CLI ones.

The most efficient combinations of virtual machine implementation and kind
of multidimensional arrays are the IBM JVM (JVM1) with AU and the Ora-
cle/Open JVM (JVM2) with AJR. This second approach, using jagged arrays,
is a more natural solution in Java, resulting in a more readable code.

In the results reported in this paper, virtual was still slower than native exe-
cution by factors between 1.9 and 2.8 for realistic workloads (A and B), which
could be yet reduced by applying certain coding recommendations for enabling
further optimizations of the JIT compiler [9]. However, they are not portable, as
demonstrated in this paper for the refactoring strategy proposed by Taboada et
al. [31], causing high speedups in Oracle JVM and prohibitive overheads in the
IBM JVM and CLI implementations.

The overhead of array-bounds-checking (ABC) is still relevant in virtual ex-
ecution, despite ABC elimination techniques. This paper reported overheads
around 30% for Mono, but it makes possible to bypass ABC through unsafe
code blocks, where memory addresses may be accessed directly. However, this
approach makes array-intensive programs very hard to understand and debug.

Finally, the findings of this paper suggest directions for investigations about
the bottlenecks of JVM and CLI virtual machines with multidimensional arrays,
by taking advantage that the source code of some industrial-strength virtual
machines are open, such as OpenJDK, Jikes RVM, SSCLI and Mono.

References

1. The Mono Project (2006), http://www.mono-project.com
2. IBM Java Development Kit (May 2012)
3. IKVM.NET Home Page (May 2012)
4. JSci - A science API for Java (May 2012)

http://www.mono-project.com

44 F.H. de Carvalho Junior et al.

5. Microsoft .NET Framework (2012), http://www.microsoft.com/net
6. OpenJDK (May 2012)
7. Oracle Java Development Kit (May 2012)
8. Amedro, B., Baude, F., Caromel, D., Delbe, C., Filali, I., Huet, F., Mathias, E.,

Smirnov, O.: An Efficient Framework for Running Applications on Clusters, Grids
and Clouds, ch. 10, pp. 163–178. Springer (2010)

9. Amedro, B., Caromel, D., Huet, F., Bodnartchouk, V., Delbé, C., Taboada, G.:
HPC in Java: Experiences in Implementing the NAS Parallel Benchmarks. In:
Proceedings of the 10th WSEAS International Conference on Applied Informatics
and Communications (AIC 2010) (August 2010)

10. Artigas, P.V., Gupta, M., Midkiff, S.P., Moreira, J.E.: Automatic Loop Trans-
formations and Parallelization for Java. In: Proceedings of the 14th International
Conference on Supercomputing (ICS 2000), pp. 1–10. ACM Press, New York (2000)

11. Bailey, D.H., et al.: The NAS Parallel Benchmarks. International Journal of Su-
percomputing Applications 5(3), 63–73 (1991)

12. Baitsch, M., Li, N., Hartmann, D.: A Toolkit for Efficient Numerical Applications
in Java. Advances in Engineering Software 41(1), 75–83 (2010)

13. Budimlic, Z., Kennedy, K.: JaMake: A Java Compiler Environment. In: Margenov,
S., Waśniewski, J., Yalamov, P. (eds.) LSSC 2001. LNCS, vol. 2179, pp. 201–209.
Springer, Heidelberg (2001)

14. Bull, J.M., Smith, L.A., Ball, C., Pottage, L., Freeman, R.: Benchmarking Java
against C and Fortran for scientific applications. Concurrency and Computation:
Practice and Experience 15(35), 417–430 (2003)

15. ECMA International. Common Language Infrastructure (CLI), Partitions I to VI.
Technical Report 335, ECMA International (June 2006)

16. Frumkin, M.A., Schultz, M., Jin, H., Yan, J.: Performance and Scalability of the
NAS Parallel Benchmarks in Java. In: 17th International Symposium on Parallel
and Distributed Processing (IPDPS 2003), p. 139 (April 2003)

17. Grama, A., Gupta, A., Karypis, J., Kumar, V.: Introduction to Parallel Computing.
Addison-Wesley (1976)

18. Gundersen, G., Steihaug, T.: Data structures in Java for matrix computations.
Concurrency and Computation: Practice and Experience 16(8), 799–815 (2004)

19. Hamilton, J.: Language Integration in the Common Language Runtime. SIGPLAN
Notices 38(2), 19–28 (2003)

20. Luján, M., Gurd, J.R., Freeman, T.L., Miguel, J.: Elimination of Java Array
Bounds Checks in the Presence of Indirection. In: Proceedings of the 2002 Joint
ACM-ISCOPE Conference on Java Grande (JGI 2002), pp. 76–85. ACM Press,
New York (2002)

21. Lusk, E., Yelick, K.: Languages for High-Productivity Computing - The DARPA
HPCS Language Support. Parallel Processing Letters (1), 89–102 (2007)

22. Mathew, J.A., Coddington, P.D., Hawick, K.A.: Analysis and development of Java
Grande benchmarks. In: Proceedings of the ACM 1999 Conference on Java Grande
(JAVA 1999), pp. 72–80. ACM Press, New York (1999)

23. Moreira, J.E., Midkiff, S.P., Gupta, M.: Supporting Multidimensional Arrays in
Java. Concurrency and Computation: Practice and Experience 15(35), 317–340
(2003)

24. Moreira, J.E., Midkiff, S.P., Gupta, M., Artigas, P.V., Wu, P., Almasi, G.: The
NINJA project. Communications of the ACM 44(10), 102–109 (2001)

25. Nguyen, T.V.N., Irigoin, F.: Efficient and Effective Array Bound Checking. ACM
Trans. on Programming Languages and Systems 27(3), 527–570 (2005)

http://www.microsoft.com/net

On the Performance of Multidimensional Array Representations 45

26. Nikishkov, G.P., Nikishkov, Y.G., Savchenko, V.V.: Comparison of C and Java
Performance in Finite Element Computations. Computers & Structures 81(24-25),
2401–2408 (2003)

27. Philippsen, M., Boisvert, R.F., Getov, V., Pozo, R., Moreira, J.E., Gannon, D.,
Fox, G.: JavaGrande - High Performance Computing with Java. In: Sørevik, T.,
Manne, F., Moe, R., Gebremedhin, A.H. (eds.) PARA 2000. LNCS, vol. 1947, pp.
20–36. Springer, Heidelberg (2001)

28. Post, D.E., Votta, L.G.: Computational Science Demands a New Paradigm. Physics
Today 58(1), 35–41 (2005)

29. Qian, F., Hendren, L., Verbrugge, C.: A Comprehensive Approach to Array Bounds
Check Elimination for Java. In: Nigel Horspool, R. (ed.) CC 2002. LNCS, vol. 2304,
pp. 325–342. Springer, Heidelberg (2002)

30. Riley, C.J., Chatterjee, S., Biswas, R.: High-Performance Java Codes for Com-
putational Fluid Dynamics. Concurrency and Computation: Practice and Experi-
ence 15(35), 395–415 (2003)

31. Taboada, G.L., Ramos, S., Expósito, R.R., Tourino, J., Doallo, R.: Java in the
High Performance Computing arena: Research, practice and experience. Science of
Computer Programming 78(5), 425–444 (2013)

32. Todorov, V.: Java and Computing for Robust Statistics. In: Developments in Ro-
bust Statistics, pp. 404–416. Physica-Verlag GmbH & Co. (2002)

33. van Reeuwijk, C., Kuijlman, F., Sips, H.J.: Spar: A Set of Extensions to Java
for Scientific Computation. Concurrency and Computation: Practice and Experi-
ence 15(35), 277–297 (2003)

34. VanderHeyden, W.B., Dendy, E.D., Padial Collins, N.T.: CartaBlanca A Pure-
Java, Component-Based Systems Simulation Tool for Coupled Nonlinear Physics
on Unstructured Grids. Concurrency and Computation: Practice and Experi-
ence 15(35), 431–458 (2003)

35. Vogels, W.: Benchmarking the CLI for high performance computing. Software IEE
Proceedings 150(5), 266–274 (2003)

36. Würthinger, T., Wimmer, C., Mössenböck, H.: Array bounds check elimination
for the Java HotSpot client compiler. In: Proceedings of the 5th International
Symposium on Principles and Practice of Programming in Java (PPPJ 2007), p.
125. ACM Press, New York (2007)

Modular Bialgebraic Semantics

and Algebraic Laws

Ken Madlener1, Sjaak Smetsers1, and Marko van Eekelen1,2

1 Institute for Computing and Information Sciences
Radboud University Nijmegen
2 School of Computer Science

Open University of the Netherlands
{K.Madlener,S.Smetsers,M.vanEekelen}@cs.ru.nl

Abstract. The ability to independently describe operational rules is in-
dispensable for a modular description of programming languages. This
paper introduces a format for open-ended rules and proves that conserva-
tively adding new rules results in well-behaved translations between the
models of the operational semantics. Silent transitions in our operational
model are truly unobservable, which enables one to prove the validity of
algebraic laws between programs. We also show that algebraic laws are
preserved by extensions of the language and that they are substitutive.
The work presented in this paper is developed within the framework of
bialgebraic semantics.

1 Introduction

In order to scale to the complexity of real-world programming languages, a mod-
ular way of describing semantics is highly desirable. When dealing with incre-
mentally constructed languages, one should anticipate on future extensions or
changes to the language. Moreover, a concrete program seldom uses all the con-
structs provided by the language. When reasoning about a program it is conve-
nient to narrow the semantics down to the part of the language which is actually
used. True modularity offers the possibility to build an ad hoc semantics, easing
the construction of correctness proofs.

Mosses [14] advocates to define higher-level language constructs out of so-
called “funcons”, language-independent fundamental programming constructs.
It is highly desirable that algebraic rules between programs are preserved under
the addition of new funcons, since this avoids the repetition of proofs.

The present paper provides a fundamental perspective on this issue, built
on the framework of Turi and Plotkin’s bialgebraic semantics [18]. One of the
advantages of this work is that it can be implemented in a functional language
such as Haskell as well as in a theorem prover like Coq. In fact, part of this
work has already been formalized within Coq, based on [11].

Each operation corresponding to a funcon has a number of defining opera-
tional rules, which may manipulate the state, or invoke an external operation.
For example, the rule for a condition-less loop would be loop x =⇒ seq x (loop x).

A. Rauber Du Bois and P. Trinder (Eds.): SBLP 2013, LNCS 8129, pp. 46–60, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Modular Bialgebraic Semantics and Algebraic Laws 47

The double arrow indicates that the transition is deemed silent, it does not gen-
erate an observable side-effect. To handle two subsequential commands, loop
invokes the external operation seq. This mechanism is comparable to interfaces
in object-oriented languages. Thus, we consider the operational rules correspond-
ing to some construct as open-ended, empowering true modularity in language
descriptions. By commencing with an empty language and then incrementally
extending this with new constructs, a full language is obtained.

Silent transitions are indispensable in providing independent descriptions of
the operations. An alternative version of the previous rule, which avoids the
use of a silent transition, can be defined by performing a “look-ahead”, i.e.
x

a−−→ x′
 loop x
a−−→ seq x′ (loop x). The problem with this version is that the

resulting rule is no longer modular. It makes implementation assumptions on seq,
namely that seq always makes a step on its first statement. Such assumptions
clearly violate the independency principle. On the other hand, representing silent
transitions as distinguished labels does not make them truly unobservable, as
loop x is no longer (behaviorally) equivalent to seq x (loop x), unless one resorts
to the more complex notion of weak bisimulations. Moreover, rules for silent
transitions are often not purely structural. For example, the rule seq skip x =⇒ x
inspects the first argument of the head operation before it can be applied.

In this paper we treat structural operational rules and rules for silent tran-
sitions as separate classes. A generalization of the categorical interpretation by
Turi and Plotkin [18] of the GSOS rule format accommodates the structural
rules. For the silent transitions we apply an altered construction of Klin [7].

The standard notion of bisimulation between computations expresses that
both computations exhibit the same observational behavior. Unfortunately, stan-
dard bisimulation is not preserved by language extensions [15]. De Simone [4]
introduced Formal-Hypothesis bisimulations, which take into account that vari-
ables in terms being evaluated may exhibit arbitrary behavior. A pair of FH-
bisimilar (open) terms is called an algebraic law. We prove that our notion of
language extension preserves algebraic laws. Moreover, we show that algebraic
laws are substitutive, in the sense of [16]. This property eases reasoning about
programs, since it allows program fragments to be replaced by other simpler
fragments, provided these are FH-bisimilar.

In summary, the contributions of this paper are threefold:

– We introduce a rule format, called “open GSOS”, which enables the mod-
ular description of operational semantics. Moreover, we provide a definition
for conservative extensions of open GSOS rules, and show that there exists
a well-behaved translation between the operational semantics described by
open GSOS rules and the operational semantics described by conservative
extensions of these rules.

– We add support for rules with silent transitions to open GSOS, in such a
manner that silent transitions are truly unobservable while well-behavedness
of the translation between the base and extended operational semantics re-
mains intact.

48 K. Madlener, S. Smetsers, and M. van Eekelen

– We formalize the notion of algebraic laws within the bialgebraic framework,
prove that these laws are preserved through conservative language exten-
sions, and prove that they are substitutive. This transfers results from [15]
and [16] to the setting of bialgebraic semantics.

The reader is expected to have some familiarity with category theory and
bialgebraic semantics. Proofs that were omitted for space reasons can be found
in the accompanying technical report [12].

2 Preliminaries

This section recalls some basic definitions. A good introduction to the field of
bialgebraic semantics is provided in [8], further background can be found in [5].

The (open) terms TX , generated by an endofunctor F , where X acts as the
variables, are the least solution to the equation Y ∼= X + FY . This means that
there is an isomorphism κX : TX → X + FTX , and we call the left and right
components of the inverse morphism ηX : X → TX and ψX : FTX → TX
respectively. One can show that the functor T is a monad, i.e. it has a unit,
η : Id→ T , and a join operation μ : TT → T , subject to the following conditions:

μ ◦ Tμ = μ ◦ μT , μ ◦ ηT = μ ◦ Tη = id.

Algebras such as ψX play a crucial role in the syntax, and dually coalgebras
play a crucial role for the behavior. A B-coalgebra consists of a state-space, i.e.
a set X of states, together with a morphism c : X → BX . Sometimes we will
also call c itself a coalgebra. One calls the pair 〈D, π〉 a copointed endofunctor
if there is a natural transformation π : D → Id. The leading example will be
DX := X ×BX (we assume that the underlying category has products).

A relation R ⊆ X ×X is a bisimulation relation between the coalgebras c, d
if there exists a morphism γ such that the following diagram commutes:

X
c ��

R
∃γ��

π1�� π2 �� X
d��

BX BR
Bπ1

��
Bπ2

�� BX

Here, R is considered to be an object of the underlying category. When B is a
polynomial functor, it is equivalent to say that any pair 〈x, y〉 ∈ R implies that
〈c x, d y〉 ∈ Rel(B)(R), where Rel(B)(R) ⊆ BX × BX is the lifting of R to B,
see Chapter 3 in [5].

In Section 4 we will need to make the additional assumption that the under-
lying category is CPPO-enriched. This holds true when the homsets, V say,
are cppo’s (i.e. (small) posets with a least element and closed under LUBs and
omega chains), and that composition is continuous in both arguments. Tarski’s
theorem asserts that for every continuous Ψ : V → V , if Ψ f ≥ f , then the least
fixpoint of Ψ exists, and it is equivalent to Ψ∗ f :=

⊔
n∈N

Ψn f .

Modular Bialgebraic Semantics and Algebraic Laws 49

if true x y =⇒ x
if false x y =⇒ y

x
a−−→ x′ � if x y z

a−−→ if x′ y z

seq skip x =⇒ x

x
a−−→ x′ � seq x y

a−−→ seq x′ y
loop x =⇒ seq x (loop x)

catch skip =⇒ skip

x
{ex′=false,...}−−−−−−−−−→ x′ � catch x

{ex′=false,...}−−−−−−−−−→ catch x′

x
{ex′=true,...}−−−−−−−−−→ x′ � catch x

{ex′=false,...}−−−−−−−−−→ skip

break
{ex′=true,−}−−−−−−−−−→ stuck

Fig. 1. Example operational rules

3 Rule Format

In [18] it was shown that the operational rules in the GSOS format can be
understood as a natural transformation FD → BT . In this section we intro-
duce a more general rule format, which we call “open GSOS”, tailored to the
independent description of operational rules.

3.1 Open GSOS

As an example, consider the constructs in Figure 1. We can define the higher-
level construct while by combining these:

while c b := catch (loop (if c b break)).

In this section we will strictly consider rules for non-silent transitions. For
the behavior functor, set BX := S → B0X , where B0X := 1 + S × X , and S
represents the states. In this case, the type for the GSOS format is isomorphic
to FD×S → 1+S×T . The option “1” is for operations which do not have any
defining operational rules, i.e. skip, stuck, true, false. Such operations are called
values, as they are only to be inspected by the rules [3]. We can send values to
1, to ensure that the rules are completely defined, e.g. skip �→ 1.

The rule for seq can be defined as follows:

〈seq 〈x, xB〉 〈y, yB〉, s〉 �−→ B0 (λx
′, seq x′ y) (xB s),

where the argument pairs stand for the variable and the behavior of that variable,
respectively, thus x, y : X and xB, yB : BX . The signature functor is FX :=
seq (x y : X).

The rules for catch, which catches loop breaks, have been provided in MSOS
notation [13]. The curly brackets indicate the pattern the label is matched on.
Primed component names (e.g. ex′) indicate an update of the state. We can
interpret the catch rules as follows:

〈catch 〈x, xB〉, s〉 �−→
{
B0 (λx

′, catch x′) (xB s) if is ex (xB s) = false
B0 (λx

′, skip) (reset ex (xB s)) if is ex (xB s) = true

50 K. Madlener, S. Smetsers, and M. van Eekelen

This rule requires that states come with a component s.ex ∈ {true, false}. To
query if an exception has been thrown, we use is ex : BX → {true, false}
(which reads s.ex from the input), and resetting the exception component is
done through reset ex : B0X → B0X .

We have defined a rule for the signature FX := catch (x : X), however, the
result points to skip, which is not included in F . We introduce a generalization
of the GSOS rule format that permits such a discrepancy between the set of
defined operations, the ingoing signature functor F , and the resulting terms T ′,
which are generated by the outgoing signature functor F ′.

Definition 1 (Open GSOS). Suppose that we have functors F, F ′, B, and that
T ′ is the free monad generated by F ′. A rule in open GSOS format is a natural
transformation ρ : FD → BT ′.

We will assume the existence of a natural transformation ιF,F ′ : F → F ′

between signature functors. The intuition is that ιF,F ′ corresponds to the set
inclusion of the operations (function symbols) corresponding to each of the sig-
natures, and henceforth we shall call this morphism an inclusion, but formally
all we require is that ιF,F ′ is natural. It is straightforward to extend ιF,F ′ to
the terms by induction, yielding a monad morphism ιT,T ′ : T → T ′. Likewise
we have an inclusion for the behavior functors and the obvious extension to
the copointed behavior functors. When the types are obvious, we will omit the
subscripts.

3.2 Operational Model

The following is a generalization of [18]. In this section, the monads T and T ′

are the free monads over F and F ′, respectively.

Definition 2. Suppose that there exists a natural transformation ι : T → T ′

between monads T and T ′. An open distributive law of T, T ′ over the copointed
functor D is a natural transformation Λ : TD → DT ′, subject to the following
three coherence conditions:

D
ηD ��

Dη′ ����
���

� TD
Λ��

DT ′

TTD
TΛ ��

μD ��

TDT ′ ΛT ′ �� DT ′T ′
Dμ′
��

TD
Λ

�� DT ′

TD
Λ ��

Tπ1 ��

DT ′
(π1)T ′��

T ι
�� T ′

From left to right, the first condition says that the law should behave trivially
on variables, the second condition characterizes the compositionality of the se-
mantics, and the third condition says that the first component of the result is
essentially the input, included into T ′.

Proposition 1. There exists a map ρ �→ Λρ, which is a one-to-one correspon-
dence between natural transformations ρ : FD → BT ′ and open distributive laws
Λρ : TD→ DT ′.

Modular Bialgebraic Semantics and Algebraic Laws 51

In the proof, Λρ is obtained from ρ by induction over the terms.
Any open distributive law Λ, whether obtained from an open GSOS rule or

not, induces an operational model :

opΛ

X
h−→ BX

TX
T 〈id,h〉−−−−−→ TDX

ΛX−−−→ DT ′X
(π2)T ′X−−−−−−→ BT ′X

.

The operational model takes an environment h (hypotheses about the behav-
ior of variables) and maps it over the terms, and then applies the distributive
law. The projection π2 leaves us with the resulting behavior. Throughout the
rest of this paper we will use the notation h+ := (ιB,B+)X ◦ h, to denote the
inclusion of the environment h into the extended behavior.

3.3 Operational Conservative Extensions

A language extension relates two open GSOS rules, the base language and the
extended language. We call an extension conservative when the base language,
as included in the extended language, retains its original behavior, see also [1].
In the rest of this paper we will omit the word “conservative”, as everything we
do is in this spirit.

As a convention, we will write F+, F
′
+ (T+, T

′
+) for the in- and outgoing sig-

natures (terms) of the extended language, respectively, and B+ (D+) for the
(copointed) behavior functor.

Definition 3. Let ρ : FD → BT ′ and ρ+ : F+D+ → B+T
′
+ be open GSOS

rules. Then ρ+ is a rule extension of ρ if the diagram below holds.

FD
ρ
��

ιD �� F+D
F+ι �� F+D+

ρ+��
BT ′

Bι
�� BT ′

+ ιT ′
+

�� B+T
′
+

Let Λ : TD → DT ′ and Λ+ : T+D → D+T+ be natural transformations. Then
Λ+ is a law extension of Λ if the diagram below holds.

TD

Λ ��

ιD �� T+D
T+ι �� T+D+

Λ+��
DT ′

Dι
�� DT ′

+ ιT ′
+

�� D+T
′
+

We view the full language as a closed set of rules that is obtained by gradually
extending a base language with new rules. If we take the liberty to assume a
category of partial functions as the underlying category, we can also view the rule
extension as the inequality ρX ≤ (ρ+)X between the two families of morphisms
{ρX}X∈C and {(ρ+)X}X∈C , and the full language would be the join of all sub-
languages. However, this is not general enough for Section 4.

52 K. Madlener, S. Smetsers, and M. van Eekelen

Proposition 2. Suppose that the signature inclusions satisfy:

ιF ′,F ′
+
◦ ιF,F ′ = ιF+,F ′

+
◦ ιF,F+ .

Then, if ρ+ is an extension of ρ, then Λρ+ is an extension of Λρ.

Proposition 3. Suppose that Λ+ is an extension of Λ. Let h : X → BX be
arbitrary. Then it holds that opΛ+

is an extension of opΛ, i.e.

TX
opΛ h

��

ιX �� T+X
opΛ+

h+��
BT ′X

BιX

�� BT ′
+X ιT ′

+
X

�� B+T
′
+X

4 Silent Transitions

It is trivial to represent silent transitions by adjusting the behavior functor to
X+BX . However, the problem with this approach is that for example the terms
seq skip x and x have different semantics, since in this case the silent transitions
are not truly unobservable, therefore and bisimilarity does not hold.

In this section, we introduce a merging of silent transition rules with an exist-
ing open distributive law, resulting in an operational model where silent transi-
tions are truly unobservable. We will need to assume that the underlying cate-
gory is CPPO-enriched, to ensure the existence of a least fixpoint construction.
Specifically, the examples are aimed at a category of partial maps.

4.1 Unfolding Rules and Their Conservative Extensions

A rule for a silent transition typically consists of an operation of the base lan-
guage applied to a computed value, e.g. seq skip x =⇒ x. In Section 3 we had
two kinds of signatures: the ingoing and the outgoing signature. We add a third
signature functor F ′′, which consists of the operations of the original ingoing
signature functor F , together with the computed values. Rules for silent transi-
tions will be regarded as maps T ′′ → TT ′′, where T ′′ is the free monad generated
by F ′′. For example, the aforementioned rule has the corresponding mapping
seq skip x �−→ x. We call these maps unfolding rules if they unfold variables in
a trivial way:

Definition 4. An unfolding rule is a natural transformation r : T ′′ → TT ′′,
subject to the condition r ◦ η′′ = Tη′′ ◦ η.

Set v : T → Id := [id,⊥] ◦ κ. This auxiliary morphism is called a variable
classifier, used to query whether a given term is a variable. The infinite unfolding
of r is r := Φ∗

X (ηX ◦ v′′X), the least fixpoint of Φ:

Φ
T ′′ f−→ T

T ′′ r−→ TT ′′ Tf−−→ TT
μ−→ T

.

Modular Bialgebraic Semantics and Algebraic Laws 53

One can show that this is a well-formed definition in aCPPO-enriched category,
and that it is a natural transformation, see [7]. We compute a few examples:

– r (if true (if false x y) z) = y
– r (loop x) = seq x (seq x (seq x . . .))
– r (skip) = ⊥

We also wish that r behaves as the identity on terms which have no silent
transition rules acting on them, e.g. r (seq x y) = seq x y. This is not warranted
by Definition 4, but can be solved by requiring that r is based on a decomposition
structure [7].

Definition 5. Suppose that we have unfolding rules r : T ′′ → TT ′′ and r+ :
T ′′
+ → T+T

′′
+. Then r+ is an unfolding rule extension of r if the following condi-

tion is satisfied:

T ′′

r
��

ι �� T ′′
+

r+��
TT ′′

Tι
�� TT ′′

+ ιT ′′
+

�� T+T
′′
+

Lemma 1. r+ ◦ ιT ′′,T ′′
+
= ιT,T+ ◦ r.

4.2 An Open Distributive Law for Silent Transitions

We incorporate the infinite unfolding into a law of type T ′′D → DT ′ by setting
Λr := Λ◦ rD. One can view Λr as an extension of Λ, in the sense of Definition 3.
In this situation, the inclusion of the ingoing terms is r, and since the behavior
functors and outgoing signatures are equal, the inclusion of the outgoing terms
is the identity. With (Λ+)

r+ being the usual extension counterpart, we can prove
the following theorem.

Theorem 1. op(Λ+)r+ is an extension of opΛr .

Proof. As in Proposition 3 we need to prove the statement for an arbitrary
h : X → BX . We show that everything in the following diagram commutes:

T ′′X
ιX ��

rX ��
��

��

opΛr h

��

T ′′
+X

r+X��
��

�	

op
(Λ+)

r+ h+

��

TX
ιX ��

opΛ h
��

T+X
opΛ+

h+��
BT ′X

BιX

�� BT ′
+X ιT ′

+
X

�� B+T
′
+X

The top square commutes by Lemma 1, and the other regions commute by
Proposition 3. Note that for the two side regions we instantiate ιT ′′,T with r and
r+. This is permitted, as the only requirement about ιT ′′,T by Proposition 3 is
that it is a natural transformation. ��

54 K. Madlener, S. Smetsers, and M. van Eekelen

Lemma 2. Λr is a natural transformation, and satisfies the first and third co-
herence condition of open distributive laws.

If r contains “non-regular” rules such as seq skip x =⇒ x, then Λr fails to
be compositional, i.e. it does not meet the second coherence condition. This
can be seen by considering the layering of seq skip x as an instance of TTDX
into seq (η skip) (η x). Then the upper leg of the diagram results in ⊥, since
Λr
X skip = ⊥, while the lower leg does not result in ⊥. By requiring that r is

regular, a notion due to Klin [7], we can show that Λr is an open distributive
law.

Definition 6. An unfolding rule r is regular if it can be generated by recursion
from a rule r0 : F ′′ → TT ′′ such that r0 ◦ ιF,F ′′ = Tη′′ ◦ φ.

Thus, the previous rule is not regular, but the rule for loop (see Figure 1) is.

Proposition 4. If r is a regular unfolding rule, then Λr is an open distributive
law.

Proof. What remains to verify is that Λr satisfies the second coherence condition,
as the other conditions have already been proved in Lemma 2.

Theorem 30 in [7] says that when r is regular, then r is a monad morphism
from T ′′ to T . Consider the following diagram in which we have unfolded the
definition of Λr:

T ′′T ′′D
T ′′rD ��

μ′′
D

��

T ′′TD
T ′′Λ ��

rTD ��

T ′′DT
rDT ′ �� TDT ′ ΛT ′ �� DT ′T ′

Dμ′

��

TTD

�	
TΛ

��

μD ��
T ′′D

rD
�� TD

Λ
�� DT ′

The region on the left commutes due to r being a monad morphism, the square
commutes by the naturality of r, and the remaining region commutes due to the
second coherence condition of Λ. ��

5 Algebraic Laws

It is desirable that bisimulation relations remain intact under extensions of the
language, so that bisimilarity proofs have to be checked only once. As it turns out,
whether this holds depends on the precise definition of bisimulation one chooses
to work with. In this section we consider a variant of the standard notion of
bisimulations, called Formal-Hypothesis bisimulations, tailored to the fact that
the state-space of the operational model consists of the terms. The perhaps most
straightforward choice, also called Closed-Instance bisimilarity, demands that all
substitutions of variables with closed terms are again bisimulations. However, CI-
bisimulations are not preserved by language extensions [15]. The reason for this is

Modular Bialgebraic Semantics and Algebraic Laws 55

that only substitutions with closed terms from the base language are considered
by the hypotheses.

FH-bisimulations, introduced by De Simone [4], take into account that the
variables of the terms in question may exhibit arbitrary behavior. CI- and FH-
bisimulations have only been studied in the context of transition systems, and
not of a generic B-coalgebra. We introduce FH-bisimulations here, adapted to
our coalgebraic setting.

Definition 7 (FH-bisimulation). A relation R ⊆ TX × TX is an FH-bisim-
ulation relation on opΛ if for every environment h : X → BX, it holds that R
is a bisimulation relation on opΛ h.

Since FH-bisimulations relate terms, we call a pair of such terms an algebraic
law. Some obvious examples can be found by formulating silent transition rules
as algebraic laws: seq skip x = x and catch skip = skip. Note that if the terms
are closed, then the definition coincides with standard bisimulations.

5.1 The Preservation of Algebraic Laws

We can prove that algebraic laws are preserved by conservative language exten-
sions, by making use of the fact that the operational behavior is preserved from
Theorem 1.

Theorem 2. Suppose that R ⊆ TX × TX is an FH-bisimulation relation on
opΛ, and that B = B+. Then

R+ := {〈(ιT,T+)X x, (ιT,T+)X y〉 | xR y}
is an FH-bisimulation on opΛ+

.

Proof. First note that R+ and R are isomorphic; we will denote the correspond-
ing morphisms by π+ : R+ → R and ι+ : R → R+. Let h : X → BX be given.
The assumption of the theorem says that for any h, there exists a morphism
γh satisfying the bisimulation diagram in Section 2. We claim that the follow-
ing composition is the required morphism to prove that R+ is a bisimulation
relation:

R
γh−−→ BR

R+
π+−−→ R

γh−−→ BR
Bι+−−−→ BR+

.

We verify this by the commuting diagram below for i = 1, 2, making use of
Theorem 1.

R+

π+
��

��

πi

��
R

πi ��

γh ��

TX
ιX ��

opΛ h��

T+X

�	

opΛ+
h

��

BR
Bπi ��

Bι+ ��

BTX
BιX��

BR+
Bπi

�� BT+X

56 K. Madlener, S. Smetsers, and M. van Eekelen

Thus, the claimed bisimulation mapping is correct, which finishes the proof. ��

The premise of Theorem 2 essentially means that the extended language can
not add any new effects. As a simple example to see how this fails without this
premise, first consider the law catch x = x in the absence of exceptions (i.e. for
every state s, set s.ex = false) as the base language, and then add states with
exceptions to the extended language.

5.2 Combining Algebraic Laws

Just as in the situation with standard bisimulations, there exists a greatest FH-

bisimulation relation, notation
FH↔, which is the union of all FH-bisimulation

relations. It is straightforward to show that
FH↔ itself is an FH-bisimulation rela-

tion, and that it is an equivalence relation.
Define the substitution of a function f : X → TX in a term t as t[f] :=

μX(Tf t). We will be concerned with proving that the following relation is an
FH-bisimulation relation:

R := {〈t[f1], u[f2]〉 | t FH↔ u},

in which f : X → FH↔, a function which assigns to variables an FH-bisimilar
pair of terms, and fi := πi ◦ f for i = 1, 2. Barring that this is valid, and
knowing that loop x = seq x (loop x) is a valid algebraic law, we can use
the substitution f : x �→ 〈loop x, seq x (loop x)〉 to derive that for example
loop x = seq x (seq x (loop x)). We call this property of FH-bisimulations be-
ing substitutive [16]. We prove this in two steps by considering the special cases
preservation by instantiation (t = u) and preservation by insertion (f1 = f2).

The proofs below make essential use of the assumption that Λ is a distributive
law. In the light of distributive laws obtained from mergings with unfolding rules
as in Section 4, this section only applies to the situation where the unfolding
rules are regular. This assumption provides a well-known property of bialgebraic
semantics, which says that the operational model is compositional.

Lemma 3 (Compositionality). BμX ◦ opΛ (opΛ h) = opΛ h ◦ μX .

Proof. Straightforward, making use of the naturality of μ and the second coher-
ence condition of Λ. ��

Proposition 5. The FH-bisimilarity relation is preserved by instantiation.

Proof. We need to prove that R′ := {〈t[f1], t[f2]〉} is an FH-bisimulation, in

which f : X →FH↔. Remark that we have an isomorphism R′ α

�
β

T
FH↔, such that:

R′

α��
πi

�������
������

������
������

����

T
FH↔

β

		

Tπi

�� TTX μX

�� TX

Modular Bialgebraic Semantics and Algebraic Laws 57

for i = 1, 2. Suppose that h : X → BX is arbitrary. The commuting diagram
below in conjunction with the above remark shows that R′ is an FH-bisimulation,
with bisimulation mapping Bβ ◦ opΛ γh ◦ α.

T
FH↔

Tπi ��

T 〈id,γh〉 ��
��

��

opΛ γh

��

TTX
μX ��

T 〈id,opΛ h〉
��

opΛ (opΛ h)

TX

opΛ h

��

TD
FH↔ TDπi

��

ΛFH↔ ��

TDTX

ΛTX

��
DT

FH↔ DTπi

��

π2 ��

DTTX

π2

��
BT

FH↔ BTπi

�� BTTX
BμX

�� BTX

The region on the right is exactly compositionality of the operational model. The

squares, from top to bottom respectively, make use of the fact that
FH↔ itself is

an FH-bisimulation relation, and that Λ and π2 are natural transformations. ��

Definition 8. Given a coalgebra d : Y → BY and f : X → Y , d can be
simulated via f if there exists a coalgebra c : X → BX and a morphism f ′ :
X → Y such that d ◦ f = Bf ′ ◦ c.

For the next proposition, we will need to make the assumption that for any h,
opΛ h can be simulated via f . To see that this is a reasonable assumption, as an
example, for X take an infinitely large set of variables, and BX := A ×X , for
some label set A. Gödel numberings provide a way to assign a unique number
to each well-formed term [17]. This means that there exist enc : TX → X and
dec : X → TX , which form a bijection between X and TX . Then the validity of
the assumption for this choice of B is witnessed by

h′ x := Benc (opΛ h (f x)), f ′ xB := Bdec (xB).

We will need the following technical lemma to prove preservation by insertion.

Lemma 4. If for every h : X → BX, opΛ h can be simulated via f : X →
TX, then opΛ h can be simulated via [f] by opΛ h′ for some h′ : X → BX, in
particular, the following diagram commutes:

TX
[f] ��

opΛ h′
��

TX
opΛ h��

BT ′X
B[f ′]

�� BT ′X

Proposition 6. The FH-bisimulation relation is preserved by insertion.

Proof. We need to prove that R′ := {〈t[f], u[f]〉 | t FH↔ u} is an FH-bisimulation
relation, where f : X → TX . This means that we need to show that for any set

58 K. Madlener, S. Smetsers, and M. van Eekelen

of hypotheses h : X → BX , and terms t0, u0 : TX such that t0 Ru0, it holds
that 〈opΛ h t0, opΛ hu0〉 ∈ Rel(B)(R′).

It follows by the definition of R′ that opΛ h t0 = opΛ h (t[f]) for some t,
and likewise for u0. By the assumption that opΛ h can be simulated via any
morphism, by Lemma 4 there exist f ′ : X → TX and h′ : X → BX , such that
opΛ h ◦ [f] = B[f ′] ◦ opΛ h′.

Thus, what remains to prove is that

〈B[f ′] (opΛ h′ t), B[f ′] (opΛ h′ u)〉 ∈ Rel(B)(R′).

It is enough to show that

〈opΛ h′ t, opΛ h′ u〉 ∈ Rel(B)(λx y, (x[f ′])R′ (y[f ′])),

which is equivalent to saying that the above pair is included in Rel(B)(R′),
which is true by the fact that t

FH↔ u. ��
Theorem 3. The FH-bisimilarity relation is substitutive.

Proof. By the previous two propositions, t[f1]
FH↔ t[f2]

FH↔ u[f2], and thus by

transitivity of
FH↔ we can conclude that FH-bisimilarity is substitutive. ��

6 Running the Operational Semantics

This section highlights another application of Theorem 1.
Final coalgebras, i.e. pairs 〈Z, ζ : Z → BZ〉, enjoy the property that there

exists an operator unfold : (X → BX) → X → Z which takes a coalgebra
as its argument and returns a morphism X → Z which maps the state-space
of the argument to the final state-space. This morphism unfold c is the unique
coalgebra homomorphism from c to ζ. Here Z is the greatest solution to the
equation Z ∼= BZ.1

When the rules are closed, then opΛ h (where h : X → BX) is a coalge-
bra and we can “run” the operational semantics by unfolding it, i.e. runΛ h :=
unfold (opΛ h). Set ιZ,Z+ := unfold ((ιB,B+)Z ◦ζ). We can prove that running the
extended operational model is faithful to running the base model.

Proposition 7. Suppose that Λ and Λ+ are closed distributive laws, and that
Λ+ is an extension of Λ. Then for all h : X → BX it holds that ιZ,Z+ ◦runΛ h =
runΛ+ h+ ◦ (ιT,T+)X .

Proof. Both sides of the equation are coalgebra homomorphisms from the coal-
gebra c := (ιB,B+)TX ◦ opΛ h to the final coalgebra ζ+. For the LHS this follows
easily from the definitions, while for the RHS we make use of Theorem 1. By
the fact that ζ+ is final, there is at most one coalgebra homomorphism from c
to ζ+, and thus the equality holds. ��
1 For BX := S → 1+S×X, as in Section 3, Z is given by the set of partial functions

{f : S∗ → S∗ | f is length and prefix preserving}.

Modular Bialgebraic Semantics and Algebraic Laws 59

7 Related Work

The results in this paper were developed within the bialgebraic semantics frame-
work, a body of research initiated by Turi and Plotkin [18].

The theorems in Section 5, which prove that FH-bisimulations are preserved
by conservative extensions, and that FH-bisimulations are substitutive, trans-
fer the original results, obtained in the more traditional set-theoretic approach
to SOS by Mosses et al. [15] and Rensink [16] respectively, to the bialgebraic
framework. FH-bisimulations were originally introduced by De Simone [4].

The dichotomy between value terms and computational terms was emphasized
by Churchill and Mosses [3], who introduce a rule format built on the tyft format,
which has built-in rules to deal with silent transitions. They provide a variant of
bisimilarity, and prove that it is a congruence in the resulting transition system.
The distributive law Λr of Section 4 has similar characteristics, through the
infinite unfolding of silent transitions. This law is a variant of the one introduced
by Klin [7].

An alternative to considering only free monads as in the present paper, is to
quotient the term monad by the algebraic laws. Bonsangue et al. [2] prove that
if Λ respects the algebraic laws, then there is a unique distributive law Λ′ such
that the quotient map is a well-behaved translation from Λ to Λ′.

A modular variant of GSOS has been provided by Jaskelioff et al. [6] as part of
a Haskell implementation of the bialgebraic framework. They distinguish ingo-
ing from outgoing signatures, as in the present paper, but consider the outgoing
signature as an abstract parameter of each modular rule, and add type-class con-
straints to ensure the inclusion of certain operations in the outgoing signature.

8 Conclusions

We have provided an operational rule format, tailored to the modular description
of programming languages. The semantics supports truly unobservable transi-
tions, as generated by rules for silent transitions. We have proved that algebraic
laws are preserved by conservative extensions of the operational semantics, and
that algebraic laws are substitutive. Our work has been developed within the
bialgebraic framework [18], making it amenable to implementation in a theorem
prover [11].

In future work we wish to ease the condition in Section 5.2 on the distributive
law, enabling the substitutivity of algebraic laws for a wider range of silent tran-
sition rules. We would also like to explore applications to software verification.

Acknowledgments. The inspiration for this work arose from consultation with
Peter D. Mosses by the author. Without his support this work would not have
been possible. The authors also wish to thank the anonymous reviewers for their
sharp comments.

60 K. Madlener, S. Smetsers, and M. van Eekelen

References

1. Aceto, L., Fokkink, W., Verhoef, C.: Structural operational semantics. In: Bergstra,
J., Ponse, A., Smolka, S. (eds.) Handbook of Process Algebra, pp. 197–292. Elsevier
(1999)

2. Bonsangue, M.M., Hansen, H.H., Kurz, A., Rot, J.: Presenting distributive laws.
In: Proceedings of CALCO 2013. LNCS, Springer (to appear, 2013)

3. Churchill, M., Mosses, P.D.: Modular bisimulation theory for computations and val-
ues. In: Pfenning, F. (ed.) FOSSACS 2013. LNCS, vol. 7794, pp. 97–112. Springer,
Heidelberg (2013)

4. De Simone, R.: Higher-level synchronising devices in Meije-SCCS. Theor. Comp.
Sci. 37, 245–267 (1985)

5. Jacobs, B.: Introduction to coalgebra: Towards mathematics of states and obser-
vations. in Preparation, version 2.0 (2012),
http://www.cs.ru.nl/B.Jacobs/CLG/JacobsCoalgebraIntro.pdf

6. Jaskelioff, M., Ghani, N., Hutton, G.: Modularity and implementation of math-
ematical operational semantics. Elec. Notes in Theor. Comp. Sci. 229(5), 75–95
(2011)

7. Klin, B.: Adding recursive constructs to bialgebraic semantics. J. of Logic and Alg.
Prog. 60, 259–286 (2004)

8. Klin, B.: Bialgebras for structural operational semantics: An introduction. Theor.
Comp. Sci. 412(38), 5043–5069 (2011)

9. Lenisa, M., Power, J., Watanabe, H.: Distributivity for endofunctors, pointed and
co-pointed endofunctors, monads and comonads. Elec. Notes in Theor. Comp.
Sci. 33, 230–260 (2000)

10. Lenisa, M., Power, J., Watanabe, H.: Category theory for operational semantics.
Theor. Comp. Sci. 327(1-2), 135–154 (2004)

11. Madlener, K., Smetsers, S.: GSOS formalized in Coq. In: Proceedings of TASE
2013, pp. 199–206. IEEE (2013)

12. Madlener, K., Smetsers, S., van Eekelen, M.: Modular bialgebraic semantics and al-
gebraic laws. Technical Report ICIS–R13008, Radboud University Nijmegen (July
2013)

13. Mosses, P.D.: Modular structural operational semantics. J. of Logic and Alg.
Prog. 60, 195–228 (2004)

14. Mosses, P.D.: Component-based semantics. In: Proceedings of SAVCBS 2009, pp.
3–10. ACM (2009)

15. Mosses, P.D., Mousavi, M.R., Reniers, M.A.: Robustness of equations under oper-
ational extensions. In: Fröschle, S., Valencia, F.D. (eds.) Proceedings of EXPRESS
2010, pp. 106–120. EPTCS (2010)

16. Rensink, A.: Bisimilarity of open terms. Inf. and Comp. 156(1), 345–385 (2000)
17. Sudkamp, T.A., Cotterman, A.: Languages and machines: An introduction to the

theory of computer science, 3rd edn. Addison-Wesley (2006)
18. Turi, D., Plotkin, G.D.: Towards a mathematical operational semantics. In: Proc.

of LICS 1997, pp. 280–291. IEEE (1997)
19. Watanabe, H.: Well-behaved translations between structural operational semantics.

Elec. Notes in Theor. Comp. Sci. 65(1), 337–357 (2002)

http://www.cs.ru.nl/B.Jacobs/CLG/JacobsCoalgebraIntro.pdf

A Double Effect λ-calculus
for Quantum Computation

Juliana Kaizer Vizzotto, Bruno Crestani Calegaro, and Eduardo Kessler Piveta

Programa de Pós Graduação em Informática
DELC/CT, Cidade Universitária

Universidade Federal de Santa Maria, RS/ Brazil

Abstract. In this paper we present a double effect version of the sim-
ply typed λ-calculus where we can represent both pure and impure
quantum computations. The double effect calculus comprises a quan-
tum arrow layer defined over a quantum monadic layer. In previous
works we have developed the quantum arrow calculus, a calculus where
we can consider just impure (or mixed) quantum computations. Techni-
cally, here we extend the quantum arrow calculus with a construct (and
equations) that allows the communication of the monadic layer with the
arrow layer of the calculus. That is, the quantum arrow is defined over a
monadic instance enabling to consider pure and impure quantum com-
putations in the same framework. As a practical contribution, the calcu-
lus allows to express quantum algorithms including reversible operations
over pure states and measurements in the middle of the computation
using a traditional style of functional programming and reasoning. We
also define equations for algebraic reasoning of computations involving
measurements.

1 Introduction

The last years have witnessed considerable efforts in the development of high
level quantum programming languages, abstractions, and models, starting by
the work of Selinger on the definition of functional quantum programming lan-
guages [1]. Since his work, many ideas have been proposed in this field, including
the work of Altenkirch and Grattage, which introduces a functional program-
ming language for pure quantum computations with quantum control [2], that
uses a type system based on first order strict linear logic. Additionally, Andre
van Tonder proposed a λ-calculus for pure quantum computations [3], and Ar-
righi and Dowek defined a linear-algebraic λ-calculus [4], which can be seen as a
purely quantum programming language, dispensing the use of classical data and
classical control structures. Following a series of works starting with [5], Selinger
and Valiron ended up with the design of a typed λ-calculus for quantum com-
putation [6] in which duplication is modeled by a comonad [7] and measurement
is modeled by a monad [8].

We also have been working in this direction. First, we defined an interface
for quantum computations inside Haskell [9] using monads and arrows [10].

A. Rauber Du Bois and P. Trinder (Eds.): SBLP 2013, LNCS 8129, pp. 61–74, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

62 J.K. Vizzotto, B.C. Calegaro, and E.K. Piveta

We started with a monadic construction to model the superpositions in pure
quantum state vectors, then we used arrows to model the probability distribu-
tions in quantum measurements (the mixed or impure states). This work was
based on the use of density matrices to model general quantum states, pure and
mixed, and superoperators to model general quantum computations, unitary and
measurements.

Recently, motivated by the idea of having a version of a lambda calculus
with effects and a traditional reasoning framework for quantum computation,
we have proposed to use the arrow calculus [11] as a quantum programming
language for mixed quantum computations [12]. However, in this last extension,
some of the generality from our previous arrow interface was lost, as there is no
construction to communicate the monadic layer of the calculus with the arrow
layer (i.e. we can consider just pure or just mixed quantum computations). This
restriction limits the expressiveness of the calculus as it is not possible, for in-
stance, to represent quantum algorithms with measurements in the middle of the
computation.

In this paper, we go one step further by proposing a new construction to
allow the use of both pure and mixed quantum computations, obtaining a double
effect λ-calculus with arrow computations built over a monadic instance. The
construction is a lifting operation that builds arrows from monads of different
types. As a practical contribution the calculus presented here allows to express
quantum algorithms including reversible operations and measurements in the
middle of the computation using a traditional style of functional programming
and reasoning. Additionally, we provide equations for the measurement operation
and investigate how these equations can be proved sound in the calculus. We
believe our work can also contribute in the discussion about the categorical
model of a general framework for quantum computation considering pure and
mixed quantum computations.

This paper is structured as follows. We start presenting the quantum monadic
λ-calculus for pure quantum computations in Section 2. Next, in Section 3, we
briefly show the quantum arrow calculus for mixed quantum computation and
discuss the limitations on the expressiveness of the calculus. Then, in Section 4,
we propose to build the arrows constructions over a monadic instance. This gives
the double effect λ-calculus for quantum computation. Finally, we conclude in
Section 5.

2 Quantum Monadic λ-calculus

Quantum computation can be understood as the task of processing information
using a quantum physical system. Then to study high level quantum program-
ming capabilities and features we need to define a high level model for quantum
operations and data.

Following the design and study of traditional programming languages, one
starts with a core pure model and extends it with additional features to express
computational effects like assignments, jumps, non-determinism, for instance.

A Double Effect λ-calculus for Quantum Computation 63

Mainly motivated by simplicity and by the necessity of a framework for rea-
soning about quantum programs, we consider the λ-calculus as the core model.

2.1 Monadic λ-calculus

Extensions of the λ-calculus to model computational effects often refer to the idea
introduced by Moggi [8] of using monads, a construction adopted from category
theory. Intuitively monads separate the pure language from the effects, imposing
minimal constraints on the language used to sequence effects. Extensions of the
λ-calculus with monads retain much of the benefits of the original calculus, such
as a formal algebraic system inspired by category theory.

Formally, the monadic λ-calculus extends the simply typed λ-calculus with
an operation to lift pure values to monadic computations, []M , and with a
composition operator to sequence effects that is associative, letM 1.

Beyond the basic monad laws for composition, some monads obey additional
laws. Interesting extensions in the case of quantum computing are the monad
Plus, which introduces a choice junction and a failure computation, and the
monad Minus.

2.2 Quantum Monadic λ-calculus

The basic unit of information in quantum computation is the qubit, i.e., a binary
quantum physical system. The first, say odd, characteristic of qubits is that
they can be in a quantum superposition of basic values. Intuitively instead of
being in a determinated state, say 0 or 1, a qubit can be in a superposition
of 0 and 1, written in the Dirac notation as α|0〉 + β|1〉. The values α and β
are complex numbers, called probability amplitudes for |0〉 and |1〉, respectivelly.
Mathematically, a qubit can be a unit vector in the two-dimensional vector space
spanned by |0〉 and |1〉 over the complex numbers.

As first noted by Mu and Bird [13] quantum superpositions can be elegantly
encoded using a monad for non-determinism, that is, a monad that maintains a
collection of possible values.

Consider type Vec A = A→ C the type of vectors over a computational basis
A. Each basis element is maped to a complex number. Then the monadic lifting
is used to build trivial vectors:

Γ
M : A

Γ
 [M]M : Vec A

The scalar multiplication allows to add probability amplitudes to the vectors:

Γ
M : Vec A

Γ
 α ∗M : Vec A

1 Subscript M stands for Monadic. In following sections we will change only the sub-
script.

64 J.K. Vizzotto, B.C. Calegaro, and E.K. Piveta

And the choice operator of the monad Plus extension is used to create quan-
tum superpositions of basic vectors:

Γ
M,N : Vec A

Γ
M +N : Vec A

In Figure 1 we show the types for the quantum monadic λ-calculus. The . . .
stand for core types and terms of simply typed λ− calculus in Appendix A.

Syntax
Probability Amplitudes α, β ∈ C

Typedef Vec A = A → C

Types A,B,C ::= ... | Vec A
Terms L,M,N ::= ... | [M]M | letM x = M in N | vzero | + | −

Monadic Types

Γ � M : A

Γ � [M]M : Vec A

Γ � M : Vec A Γ, x : A � N : Vec B

Γ � letM x = M in N : Vec B

MonadPlus Types

Γ � M,N : Vec A

Γ � M +N : Vec A Γ � vzero : Vec A

MonadMinus Type Scalars Type

Γ � M,N : Vec A

Γ � M −N : Vec A

Γ � M : Vec A

Γ � α ∗M : Vec A

Fig. 1. Quantum Monadic λ-calculus Types

The figure starts with the monadic types for simple vectors and for composi-
tion of vectors, and then shows the types for the extensions: monad Plus, monad
Minus and scalar multiplication.

The equations for the quantum monadic λ-calculus are presented in Figure 2.
The monad composition, letM , takes care of propagating all the values in the
superposition and summing up the different weights. The denotation of letM is a
matrix showing how to transform a quantum vector of type Vec A into a vector
of type Vec B.

The intuition behind the laws of the extensions is that monad Plus is a dis-
junction of goals and the composition is a conjunction of goals. The conjunction
evaluates the goals from left-to-right and is not symmetric.

A Double Effect λ-calculus for Quantum Computation 65

Laws
(leftM) letM x = [L]M in N = N [x := L]
(rightM) letM x = L in [x] = L
(assocM) letM y = (letM x = L in N) in T = letM x = L in (letM y = N in T)

MonadPlus Laws
vzero+ a = a
a+ vzero = a
a+ (b+ c) = (a+ b) + c
letM x = vzero in T = vzero
letM x = (M +N) in T = (letM x = M in T) + (letM x = N in T)

MonadMinus Laws
vzero− a = −a
a− vzero = a
letM x = (M −N) in T = (letM x = M in T)− (letM x = N in T)

Scalar Laws
letM x = α ∗M in T = α ∗ (letM x = M in T)
α1 ∗ (α2 ∗M + α3 ∗N) = (α1 ∗ α2) ∗M + (α1 ∗ α3) ∗N
α1 ∗ (α2 ∗M − α3 ∗N) = (α1 ∗ α2) ∗M − (α1 ∗ α3) ∗N

Pairs Laws
fst(α1 ∗ [L1]M + . . .+ αn ∗ [Ln]M) =

α1 ∗ [fst(L1)]M + . . .+ αn ∗ [fst(Ln)]M
snd(α1 ∗ [L1]M + . . .+ αn ∗ [Ln]M) =

α1 ∗ [snd(L1)]M + . . .+ αn ∗ [snd(Ln)]M

Fig. 2. Quantum Monadic λ-calculus Equations

In this fairly simple quantum monadic λ-calculus we can model all pure quan-
tum states and reversible quantum computations. In pure quantum computing
all operations must be reversible, that is, they must avoid decoherence and loss
of information.

Consider the type Lin Bool Bool as synonymous for Bool → Vec Bool.
The name Lin stands for linear or unitary operator, which is reversible.

As an example of linear operation consider the hadamard quantum operation,
which is the source of quantum superposition.

hadamard : Lin Bool Bool

hadamard = λx.if x == True then (1/
√
2) ∗ [False]M − (1/

√
2) ∗ [True]M

else (1/
√
2) ∗ [False]M + (1/

√
2) ∗ [True]M

66 J.K. Vizzotto, B.C. Calegaro, and E.K. Piveta

We can use the equations to prove that, for example, applying hadamard twice
is the same as identity:

hadmard2 = λx.letM y = hadamard x
in hadamard y

then

hadamard2False = False

However, there is another very important type of quantum operation called
measurement which is not reversible, and that can be understood as a classical
probabilistic view of quantum vectors. A measurement is an operation which out-
puts a probability distribution of quantum vectors. To deal with measurements
we use a generalization of monads called arrows.

3 Quantum Arrow Calculus

Using the simple reversible model of quantum computation based on pure quan-
tum vectors and reversible operations it is impossible to represent measurements.
Hence to have a general model for quantum computation we based our work [9]
on the idea of using density matrices to model general quantum states, pure and
mixed, and superoperators to model general quantum computations, reversible
and measurements. The appeal of using density matrix formalism is that we can
represent both pure and mixed states. Pure vectors are those states which are
intact. Mixed quantum states are those states which were subjected to observa-
tions, i.e, they are a classical probability distribution of pure quantum vectors.

Each pure vector |ψ〉 can be represented as a density matrix |ψ〉〈ψ| (multipli-
cation of a column vector by its dual row vector). In addition we can represent
classical probability distributions over pure vectors using this notation just set-
ting some parts of the matrix to zero. The classical probabilities are maintained
over the main diagonal.

Consider type Dens A = (A,A) → C the type of density matrices over the
basis A. Intuitivelly, the input (A,A) can be interpreted as a basis for a vector
and its dual.

More recently, Hughes [10] introduced a generalization of monads, called ar-
rows, to deal with a more general class of computational effects. Arrows include
notions of computations with static components, independent of the input, as
well as computations that consume multiple inputs.

Following the approach by Moggi [8] extending simply typed lambda calcu-
lus with monadic constructs and laws, the authors of the arrow calculus [11]
extended the core lambda calculus with four new constructs satisfying five laws.

We define in [14,12] a quantum lambda calculus based on the core arrow calcu-
lus [11], which we call quantum arrow calculus for mixed quantum computations.
As we will explain below, in the quantum arrow calculus it is just possible to
write mixed states. The main constructs of the quantum arrow calculus are pre-
sented in Figure 3.

A Double Effect λ-calculus for Quantum Computation 67

As in the monadic case, the first construct lifts basic values to density matri-
ces.

Γ,Δ
M : A

Γ ;Δ
 [M]A ! Dens A

Note that in the hypothesis we have an ordinary term judgment with one en-
vironment, Γ,Δ. However in the conclusion we have two environments, Γ and
Δ (explicitly separated by the semicolon). That is an important feature of the
arrow calculus: the command (for effectful computations) judgment has two en-
vironments, where variables in Γ come from ordinary lambda abstractions and
variables in Δ come from arrow abstractions.

Having density matrices as commands in the calculus, we can define effectfull
functions transforming density matrices into new density matrices, i.e. superop-
erators, using the arrow abstraction:

Γ ;x : A
 Q ! Dens B

Γ
 λ•x.Q : Super A B

The main point of using arrows is that computations mapping density matrices
to new density matrices consume multiple inputs, that is, the basis of a vector
and its dual.

The remaining two constructs: arrow application and composition are showed
directly in Figure 3. Arrow application L •M allows the application of a su-
peroperator to a density matrix, and composition, letA 2 resembles the monadic
composition.

The laws are the same of the arrow calculus, resembling the laws of the com-
putational lambda calculus of Moggi. Arrow abstraction and application satisfy
beta and eta laws, while arrow lifting and composition satisfy left unit, right
unit and associativity.

Using the quantum arrow calculus it is possible to write mixed quantum states
and superoperators acting on these states. One can note that we do not have
an explicit measurement operation. That is because we are directly working
with the observer perspective of the quantum system, i.e., just mixed states.
Any operation in the quantum arrow calculus denotes a probabilistic function
computed by quantum operations.

In [12], we add sum of arrows (++), to represent the probability distribution
generated by superpositions:

Γ ;Δ
 P,Q ! Dens A

Γ ;Δ
 P ++Q ! Dens A

The equation for sums of arrows resembles the equation for the monadic sum:

P ++(Q++R) = (P ++Q) ++R
letA x = P ++Q in R = (letA x = P in R) ++(letA x = Q in R)

2 Note here that we just changed de subscript from letM to letA (i.e., Arrow).

68 J.K. Vizzotto, B.C. Calegaro, and E.K. Piveta

Syntax

Typedef Dens A = (A,A) → C
Typedef Super A B = (A,A) → Dens B
Types A,B,C ::= . . . | Dens A | Super A B
Terms L,M,N ::= . . . | λ•x.Q
Commands P,Q,R ::= L •M | [M]A | letA x = P in Q
Environments Γ,Δ ::= x1 : A1, . . . , xn : An

Arrow Types

Γ ;x : A � Q ! Dens B

Γ � λ•x.Q : Super A B

Γ � L : Super A B Γ,Δ � M : A

Γ ;Δ � L •M ! Dens B

Γ,Δ � M : A

Γ ;Δ � [M]A ! Dens A

Γ ;Δ � P ! Dens A Γ ;Δ, x : A � Q !Dens B

Γ ;Δ � letA x = P in Q ! Dens B

Laws

(β�) (λ•x.Q) •M = Q[x := M]
(η�) λ•x.(L • [x]A) = L
(left) letA x = [M]A in Q = Q[x := M]
(right) letA x = P in [x] = P

(assoc) letA y = (let x = P in Q) in R = letA x = P in (letA y = Q in R)

Fig. 3. Quantum Arrow Calculus

However, using the quantum monadic λ-calculus or the quantum arrow cal-
culus we lose some generality from our previous arrow interface [9] as there is no
construction to communicate the monadic layer of the calculus with the arrow
layer of the calculus. That is, we can consider just pure or just mixed quantum
computations.

4 The Double Effect λ-calculus for Quantum
Computation

Unfortunately, using the quantum arrow calculus it is just possible to write
mixed quantum states and superoperators acting on these states. Hence, using
the quantum monadic λ-calculus or the quantum arrow calculus we lose some
generality from our previous arrow interface [9] as there is no construction to
communicate the monadic layer of the calculus with the arrow layer of the cal-
culus. That is, we can consider just pure or just mixed quantum computations.

A Double Effect λ-calculus for Quantum Computation 69

This restriction limits the expressiveness of the calculus as it is not possible, for
instance, to represent quantum algorithms with measurements in the middle of
the computation.

The main point is the arrow lifting operation, which just allows to lift ordinary
values to arrows. Lifting only ordinary values we get just mixed states. In our
Haskell interface for quantum computation [9] we implemented an operation to
lift monadic pure quantum values to quantum arrows, as any pure quantum
vector can be represented by its density matrix. Hence in the Haskell interface
we can implement quantum algorithms using reversible quantum computations
and measurements. However, this library uses classical arrows [10].

4.1 Constructions and Equations

So, with the purpose of having a calculus, based on the arrow calculus [11],
for expressing quantum algorithms including pure quantum states and measure-
ments in the middle of the computation, we first present a lifting construction
of a pure quantum vector to its density matrix representation:

Γ
 [L]M : Vec A

Γ
 [[L]M]A : Dens A

which allows to build mixtures of pure quantum states in the calculus. The
denotation of this construct is given by a function:

pureD :: Vec A→ Dens A
pureD v = uncurry(v 〉 ∗ 〈 v)

exactly how presented in [9], where the function 〉 ∗ 〈 produces the outer product
of two vectors. This function embeds a pure quantum vector into its density
matrix representation.

The calculus presented in this section inherits all the type rules and equations
of simply typed λ-calculus, the monadic calculus, and arrow calculus.

We will just discuss the new equation implied by the new lifting. We need a
new equations for arrow composition, as the terms to be composed can now be
lifted monadic types:

(leftAM)letA x = [α1 ∗ [L1]M + . . .+ αn ∗ [Ln]M]A in Q
= letM x = α1 ∗ [L1]M + . . .+ αn ∗ [Ln]M in Q

The equation essentially shows that arrow composition can now be defined
in terms of the monadic composition. This is the exact way we define arrow
composition in [9]. Soundness of this equation can be proved using the translation
o this construction of the calculus to classic arrows in [11], and then using the
definition of arrow composition for superoperators presented in [9].

The translation of arrow composition to classic arrows is given by:

[[let x = P in Q]]Δ = (arr id &&& [[P]Δ]) >>> [[Q]]Δ,x

70 J.K. Vizzotto, B.C. Calegaro, and E.K. Piveta

where arr promotes a function to a pure arrow, >>> is arrow composition, Δ is
the environment of variables that can be used in P , and f &&& g is a pairing
function that applies arrows f and g to the same argument and pairs the result.
The pairing is used to extend the environment with P . Then we can use the
definition of arrow composition for superoperators:

f >>> g = λa.f a >>= g

which says that superoperators’ composition is defined in terms of the monadic
composition, >>=, represented in the calculus as letM .

We also add two operations for measurement: meas :: Super A B, which
measures a quantum state, i.e., obtains classical information from quantum data,
and trL :: Super (A,B) B, which measures the quantum state and then traces
out (i.e., discharges) part of it, with the equations presented in Figure 5.

Now, we can also measure a pure quantum state and get, as the result, a
density matrix representing the classical probability distribution denoted by that
pure quantum state.

In Figures 4 and 5 we present all type rules, and laws of the modified calculus,
respectively.

The equation Meas1 shows that a measurement on a basic value simply re-
turns the density matrix for the basic value. Meas2 turns a monadic sum into an
arrow sum. The denotation of this is to build a diagonal matrix, i.e., to set some
parts of the density matrix to zero: a measurement. Equations trL1 and trL2

have the same meaning of the measurement equations, however they discharge
the left part of the state. Equations α and + show how to operate with the
monadic scalars and sums in the arrow level, respectively. Finally, we present
the equations for pairs. The use of pairs with monads and arrows construc-
tions is an abstraction that allows to work on separated parts of the quantum
values.

Simply-Typed Lambda Calculus
...
Monadic Types
...
Arrow Types
...
Types for measurements

Γ,Δ � meas : Super A B Γ,Δ � trL : Super (A,B) B

Fig. 4. Double Effect λ-calculus Types

A Double Effect λ-calculus for Quantum Computation 71

Simply-Typed Lambda Calculus Equations
...
Monadic Equations
...
Arrow Equations
...
New Arrow Equations

(leftAM) letA x = [α1 ∗ [L1]M + . . .+ αn ∗ [Ln]M]A in Q =
letM x = α1 ∗ [L1]M + . . .+ αn ∗ [Ln]M in Q

(Meas1) α ∗ (meas • L) = [α ∗ [L]M]A
(Meas2) α1 ∗ (meas • L1) + . . .+ αn ∗ (meas • Ln) =

α1 ∗ (meas • L) ++ . . .++αn ∗ (meas • Ln)
(trL1) α ∗ (trL • (L,N)) = [α ∗ [N]M]A
(trL2) α1 ∗ (trL • (L1, N1)) + . . .+ αn ∗ (trL • (Ln, Nn)) =

α1 ∗ (trL • (L1, N1)) ++ . . .++αn ∗ (trL • (Ln, Nn))
(α) α ∗ [α1 ∗ [L1]M + . . .+ αn ∗ [Ln]M]A =

[(α ∗ α1) ∗ [L1]M + . . .+ (α ∗ αn) ∗ [Ln]M]A
(+) [M]A + [N]A = [M +N]A
(fstA) fst ∗ [α1 ∗ [L1]M + . . .+ αn ∗ [Ln]M]A =

[α1 ∗ fst[(L1)]M + . . .+ αn ∗ fst[(Ln)]M]A
(sndA) snd ∗ [α1 ∗ [L1]M + . . .+ αn ∗ [Ln]M]A =

[α1 ∗ snd[(L1)]M + . . .+ αn ∗ snd[(Ln)]M]A

Fig. 5. Double Effect λ-calculus Equations

4.2 Examples

Consider the lifting of the hadamard example in section 2.2:

(λ•y.[hadamard y]A) • False

Then, applying the equation (β�) and the monadic equations on
hadamard False we get [1/

√
2 ∗ [False]M + 1/

√
2 ∗ [True]M]A, which has a

pure quantum vector, represented as a density matrix, as its denotation:

(
1/2 1/2
1/2 1/2

)

Now, we can also measure this pure quantum state and get, as the result, a
mixed state:

72 J.K. Vizzotto, B.C. Calegaro, and E.K. Piveta

letA x = (λ•y.[hadamard y]A) • False
in meas • x
≡β�...

letA x = [1/
√
2 ∗ [False]M + 1/

√
2 ∗ [True]M]A

in meas • x
≡leftAM

1/
√
2 ∗ (meas • False) + 1/

√
2 ∗ (meas • True)

≡Meas1andMeas2

[1/
√
2 ∗ [False]M]A ++[1/

√
2 ∗ [True]M]A

which denotes the following density matrix:
(
1/2 0
0 1/2

)

Note that arrowplus, ++, just sum the density matrix for [False]M with the
density matrix for [True]M .

Now to illustrate the use of the double effect calculus to model quantum
algorithms, which start with a pure quantum state and consider measurements
in the middle of the computation, we model the quantum teleportation.

alice = λ•(e, q).letA (q1, e1) = λ•(x, y).[cnot(x, y)]A • (q, e)
in letA q2 = λ•y.[hadamard y]A • q1

in meas • q2

bob = λ•(e,m1,m2).letA (m′
2,m

′
1) = λ•(x, y).[cnot(x, y)]A • (m2, e)

in letA (m′
1, e2) = λ•(x, y).[cz (x, y)]A • (m1, e)

in trL • ((m′
1,m

′
2), e2)

teleport = λ•(eL, eR, q).letA (m1,m2) = alice • (eL, q)
in bob • (eR, eL, q)

The example shows a conventional functional style of programming for quan-
tum computation, considering pure quantum states and mixed quantum states
together. In a previous work [12] we also model the teleportation using the quan-
tum arrow calculus, however just considering mixed states, i.e., we modeled the
user view of the quantum system. In the present work, due to the existence of the
lifting operation we can work with unitary reversible operations acting on pure
quantum values. The definition of the reversible operations: hadamard, controlled
not, cnot, and controlled phase, cz is done at the monadic level. The definition of
hadamard is given in Section 2.2. The controlled not can be defined as:

cnot : Lin (Bool,Bool) (Bool,Bool)

cnot = λ(x, y).if x == True then (1/
√
2) ∗ [(True, not y)]M

else (1/
√
2) ∗ [(False, y)]M

The controlled phase is defined in the same way. Moreover, we have an explicit
measurement operation.

A Double Effect λ-calculus for Quantum Computation 73

5 Conclusion

We have presented a quantum monadic λ-calculus as a quantum programming
language. Our first contribution is a calculus with quantum reversible and mea-
surement operations as well equations to make algebraic reasoning about quan-
tum programs. As future work we intend to add types and other high level
quantum data structures to the calculus. A prototype of an interpreter for this
calculus is under development. A deep investigation of the relations of this cat-
egorical model with other important works like [15,16,17,18] is also a future
work.

Acknowledgements. We thank the anonymous referee for useful comments
and suggestions.

References

1. Selinger, P.: Towards a quantum programming language. Mathematical Structures
in Computer Science 4(14), 527–586 (2004)

2. Altenkirch, T., Grattage, J.: A functional quantum programming language. In:
20th Annual IEEE Symposium on Logic in Computer Science (2005)

3. van Tonder, A.: A lambda calculus for quantum computation. SIAM Journal of
Computing 33, 1109–1135 (2004)

4. Arrighi, P., Dowek, G.: Linear-algebraic λ-calculus: higher-order, encodings, and
confluence. In: Voronkov, A. (ed.) RTA 2008. LNCS, vol. 5117, pp. 17–31. Springer,
Heidelberg (2008)

5. Selinger, P., Valiron, B.: A lambda calculus for quantum computation with classical
control. Mathematical Structures in Computer Science 16(3), 527–552 (2006)

6. Selinger, P., Valiron, B.: Quantum lambda calculus. In: Gay, S., Mackie, I. (eds.)
Semantic Techniques in Quantum Computation, pp. 135–172. Cambridge Univer-
sity Press (2009)

7. Uustalu, T., Vene, V.: The essence of dataflow programming. In: Yi, K. (ed.)
APLAS 2005. LNCS, vol. 3780, pp. 2–18. Springer, Heidelberg (2005)

8. Moggi, E.: Computational lambda-calculus and monads. In: Proceedings of the
Fourth Annual Symposium on Logic in Computer Science, pp. 14–23. IEEE Press
(1989)

9. Vizzotto, J.K., Altenkirch, T., Sabry, A.: Structuring quantum effects: Superoper-
ators as arrows. Journal of Mathematical Structures in Computer Science: Special
Issue in Quantum Programming Languages 16, 453–468 (2006)

10. Hughes, J.: Generalising monads to arrows. Science of Computer Programming 37,
67–111 (2000)

11. Lindley, S., Wadler, P., Yallop, J.: The arrow calculus. Journal of Functional Pro-
gramming, 51–69 (2010)

12. Vizzotto, J.K., Librelotto, G.R., Sabry, A.: Reasoning about general quantum pro-
grams over mixed states. In: Oliveira, M.V.M., Woodcock, J. (eds.) SBMF 2009.
LNCS, vol. 5902, pp. 321–335. Springer, Heidelberg (2009)

13. Mu, S.C., Bird, R.: Functional quantum programming. In: Second Asian Workshop
on Programming Languages and Systems, KAIST, Korea (December 2001)

14. Vizzotto, J.K., Du Bois, A.R., Sabry, A.: The arrow calculus as a quantum pro-
gramming language. In: Ono, H., Kanazawa, M., de Queiroz, R. (eds.) WoLLIC
2009. LNCS, vol. 5514, pp. 379–393. Springer, Heidelberg (2009)

74 J.K. Vizzotto, B.C. Calegaro, and E.K. Piveta

15. Altenkirch, T., Chapman, J., Uustalu, T.: Relative monads formalised. Under con-
sideration for Publication in Mathematical Structures in Computer Science (2010)

16. Abramsky, S.: High-level methods for quantum computation and information. In:
LICS, pp. 410–414 (2004)

17. Selinger, P.: Dagger compact closed categories and completely positive maps. Elec-
tronic Notes in Theoretical Computer Science 170, 139–163 (2007)

18. Coecke, B.: Strongly compact closed semantics. Electronic Notes Theoretical Com-
puter Science 155, 331–340 (2006)

A Simply-Typed Lambda Calculus

The simply-typed lambda calculus with the type of booleans, and with let and
if is shown in Figure 6. Let A,B,C range over types, L,M,N range over terms,
and Γ,Δ range over environments. A type judgment Γ
 M : A indicates that
in environment Γ term M has type A.

Syntax
Types A,B,C ::= Bool | A×B | A → B
Terms L,M,N ::= x | True | False | (M,N) | fst L | snd L | λx.N | L M

let x = M in N | if L then M else N
Environments Γ,Δ ::= x1 : A1, . . . , xn : An

Types

∅ � False : Bool ∅ � True : Bool

(x : A) ∈ Γ

Γ � x : A

Γ � M : A Γ � N : B

Γ � (M,N) : A×B

Γ � L : A×B

Γ � fst L : A

Γ � L : A×B

Γ � snd L : B

Γ, x : A � N : B

Γ � λx.N : A → B

Γ � L : A → B Γ � M : A

Γ � L M : B

Γ � M : A Γ, x : A � N : B

Γ � let x = M in N : B

Γ � L : Bool Γ � M,N : B

Γ � if L then M else N : B
Laws
(βx

1) fst (M,N) = M
(βx

2) snd (M,N) = N
(ηx) (fst L, sndL) = L
(β→) (λx.N)M = N [x := M]
(η→) λx.(L x) = L
(let) let x = M in N = N [x := M]

(βif
1) if True then M else N = M

(βif
2) if False then M else N = N

Fig. 6. Simply-typed Lambda Calculus

Boilerplates for Reconfigurable Systems:

A Language and Its Semantics

Alexandre Madeira1,2,3, Manuel A. Martins2, and Lúıs S. Barbosa2

1 HASLab - INESC TEC and Universidade do Minho, Portugal
2 CIDMA-Dep. of Mathematics, Universidade de Aveiro, Portugal

3 Critical Software S.A., Portugal

Abstract. Boilerplates are simplified, normative English texts, intended
to capture software requirements in a controlled way. This paper proposes
a pallet of boilerplates as a requirements modelling language for recon-
figurable systems, i.e., systems structured in different modes of execution
among which they can dynamically commute. The language semantics is
given as an hybrid logic, in an institutional setting. The mild use made of
the theory of institutions, which, to a large extent, may be hidden from
the working software engineer, not only provides a rigorous and generic
semantics, but also paves the way to tool-supported validation.

1 Motivation and Overview

Requirements Engineering [9] is the branch of software engineering concerned
with the precise identification of goals and constraints of the services provided
by systems. Typically, this involves understanding, modelling and documenting
not only the needs of potential users or customers, but also the deployment
contexts in which such systems under development will be used. The deliverable
of this stage in the software development process must be expressed in a form
that is amenable to analysis, communication, and subsequent implementation.

In practice requirements engineers start with ill-defined, often conflicting,
ideas of what the new system is expected to do. They are supposed to make
progress towards a detailed, technical specification of the system. This entails
the need for suitable support methodologies to record and structure the relevant
information, as well as to express it in a clear, easy to understand notation.

The notion of a boilerplate, first introduced in [9], is a step in this direction:
for each class of requirements, within a specific domain, a generic template is de-
fined so that capturing requirements amounts to instantiated well-characterized
textual schemes written in simplified, normative English. Informally, a boiler-
plate is a standardized scheme that can be reused over and over again, and is
amenable to some form of computer-based simulation. The term derives from
steel manufacturing, where it refers to steel rolled into large plates for use in
steam boilers. The intuition is that a boilerplate has been time-tested and is
‘strong as steel’ suitable for repeated reuse. The use of ‘controlled natural lan-
guage’ for requirements elicitation is a successful practice in industry and, despite

A. Rauber Du Bois and P. Trinder (Eds.): SBLP 2013, LNCS 8129, pp. 75–89, 2013.
© Springer-Verlag Berlin Heidelberg 2013

76 A. Madeira, M.A. Martins, and L.S. Barbosa

of its informal character, does provide an interesting starting point towards more
formal approaches.

Boilerplates are usually developed for specific business areas, classes of systems
or typical design stages.This paper focus in reconfigurable systems. Those are
systems whose form (i.e. resources involved, network topology, etc) changes along
the computational process in response to varying context conditions.

The behavior of this kind of systems is indexed to a set of different run-time
configurations between which the system commutes dynamically. Therefore, a
specification takes the form of a structured transition system: transitions capture
the evolution from one configuration to another, whereas each state corresponds
to the full specification of data and services available at a particular configura-
tion. Such local configurations can be described in different languages, ranging
from, equational to first order logic or even to less conventional formalisms, e.g.,
fuzzy or multivalued logics. In the sequel we will refer to the logic used at the
local level of configurations as the base logic.

If the base logic provides a language to express requirements relative to each
configuration of the system, describing the reconfiguration dynamics itself re-
quires a modal logic to express transition and change. Actually, we adopt an
extension of ordinary modal logic in which dedicated propositional symbols,
called nominals, each being true at exactly one possible state, are used to name
states, i.e., the system’s individual configurations. This extension is known as
hybrid logic, whose roots go back Arthur N. Prior’s work in the 1960s; see [1] for
a detailed account and historic perspective. Along with nominals, it also intro-
duces satisfaction operators @iφ, which formalise a statement φ being true at a
specific configuration named i.

In such a context, the paper’s contribution is twofold:

– first it introduces a collection of boilerplates for capturing typical require-
ments of reconfigurable systems;

– then, it takes seriously the challenge of providing a proper, unambiguous
semantics for them.

Our perspective is that the methodological advantages of boilerplates, i.e. their
conciseness and genericity, depends on the existence of a rigorous formal seman-
tics for them, amenable to formal transformation and verification. On the other
hand, the distinguishing feature of our approach is that boilerplates are paramet-
ric on whatever (base) logic is chosen for specifying the system’s configurations.

The methodology proposed proceeds as follows: first a suitable base logic to
express the properties of (local) configurations is chosen. Then, the requirements
are collected into specific boilerplates which structure information on the rele-
vant vocabulary, available configurations, events triggering reconfiguration and
both local and global properties. Once instantiated, boilerplates are translated
into specifications in (a suitable version of) hybrid logic (e.g. [2]) providing a
formal description of requirements amenable to tool-supported validation. By
the expression ’(suitable version of) hybrid logic’ we mean a language with
enriches the base logic specific to each application with modalities and hybrid
features to express reconfiguration and evolution. Such a language is derived in

Boilerplates for Reconfigurable Systems: A Language and Its Semantics 77

a formal and systematic way — the so-called hybridisation process whose theory
was developed by the authors in [13,4].

Going generic entails a price to pay: to seek for a suitably generic notion
of logical system encompassing syntax, semantics and satisfaction. Fortunately
the concept is already well-established in the so-called theory of institutions of
Goguen and Burstall [6,3]. At expenses of some extra (and a bit heavy) notation,
institutions offer an abstract representation of a logic, and their theory provides
modular structuring and parameterization mechanisms which are defined ‘once
and for all’, abstracting from the concrete particularities of the each specification
logic [5]. The formal semantics for boilerplates proposed in this paper is framed
in this setting: each logic (base and hybridised) is regarded as an institution.

Another advantage of the institutional framework is its ability to relate logics
and transport results from one to another [14], which means that a theorem
prover for the latter can be used to reason about specifications written in the
former. Our approach takes advantage of this to provide ‘for free’ suitable tool
support through a translation of collections of boilerplates to first-order logic
and their validation in the Hets [16] tool.

The paper is organized as follows: Section 2 introduces a pallet of boilerplates
for reconfigurable systems and illustrates their use through a small example. A
formal semantics for this pallet of boilerplates is addressed in Section 3. Finally,
Section 4 proposes a methodology for engineering requirements of reconfigurable
systems, from their elicitation and expression in boilerplates until their validation
and prototyping within the Hets framework.

The semantic framework used in the sequel is based on the theory of institu-
tions and a method to generate hybrid from arbitrary logics. Part of it, namely
the background formalism and notation, can be skipped at first reading without
compromising a broader understanding of the paper’s ideas. For the interested
reader, details and examples are given in the Appendix.

2 A Language of Boilerplates for Reconfigurability

As sketched in the previous section, requirements for reconfigurable systems are
captured in a collection of boilerplates which, taken jointly, specify a structured
transition system. Its states, corresponding to different configurations, or modes
of execution, are endowed with a specific description of the functionality available
locally. The boilerplates proposed below define globally the relevant modes of
execution and the transition structure, as well as, at the local level of each mode,
the interface of services available and their properties.

Basic Boilerplates

Five classes of boilerplates are introduced to register requirements, structur-
ing them as a (structured) transition system. The choice of the base logic I
is made within the boilerplates concerned with the system’s interface. A con-
crete instantiation of these boilerplates requires such a choice: notation BP (I)

78 A. Madeira, M.A. Martins, and L.S. Barbosa

stands therefore, for the set of boilerplates in which the requirements for local
configurations are given in I. The basic boilerplates proposed are as follows:

1. Identification of the relevant configurations:

System plays the configurations <set of configurations>
<Mode> is a execution mode

2. Definition of event sets able to trigger a mode transition, i.e., a system’s
reconfiguration:

System has events <set of Event>
<Event> is an event

3. Definition of the basic transition structure:

System changes from <Mode> to <Mode> through the event <Event>
System may change from <Mode> to <Mode> through the event <Event>

4. Definition of the system’s interface:

System interface is defined by <InterfaceExp>

5. Local specification, i.e., relative to the system’s functionality at each config-
uration (stated in the chosen base logic):

Property <Prop> holds in all modes
Property <Prop> holds in <Mode>

6. Definition of possible transitions (i.e., reconfigurations) emerging from local
properties (e.g., a certain limit value for a parameter is achieved).

<Event> changes modes satisfying <Prop> into modes satisfying <Prop>
<Event> changes <Mode> to modes satisfying <Prop>

An Example

For example let us consider a small, self-contained example. Other examples
appeared in the first author’s PhD thesis [10]. For the moment, consider the
following requirements for a quite peculiar, ‘plastic’ buffering structure:

A ‘plastic’ buffer is a versatile data structure with two distinct modes
of execution: in one of them it behaves as a stack; in the other as a queue.
The reconfiguration is triggered by by an external event ‘shift’.

We start fixing the transition structure between the buffer’s (two) modes of
execution.

Modes and events:

– fifo is a mode
– lifo is a mode
– Shift is an event

Boilerplates for Reconfigurable Systems: A Language and Its Semantics 79

Transition structure:

System changes from <lifo> to <fifo> through the event <shift>
System changes from <fifo> to <lifo> through the event <shift>

For the specification of each execution mode, or configuration, one may resort
to propositional logic PL, the buffer requirements are expressed in BP (PL).
The following boilerplate fixes the local behaviour: the proposition stack bh is
to hold in configurations in which the buffer behaves like a stack; proposition
queu bh when it behaves as a queue.

System interface is defined by <{stack bh,queu bh}>

Hence,

– Property queu bh holds in fifo
– Property stack bh holds in lifo

In practice, however, the propositional setting may not be enough: most prop-
erties are better expressed in equational logic EQ. Thus, one my state

System interface is defined by < ΣPbuffer >

where ΣPbuffer is the classical first-order signature of a stack/queue data type
with write, read and del operations together with a constant new to denote the
empty buffer. Hence, local properties are expressed by

– Property read(write(m, e)) = e holds in lifo
– Property m = new ⇒ read(write(m, e)) = e holds in fifo
– Property ¬(m = new) ⇒ read(write(m, e)) = read(m) holds in fifo
– Property del(write(m, e)) = m holds in lifo
– Property ¬(m = new) ⇒ del(write(m, e)) = write(del(m), e) holds in fifo
– Property m = new ⇒ del(write(m, e)) = new holds in lifo, fifo

A precise semantics for this sort of boilerplates is given in the following section
by their transformation into a proper formal specifications in suitable hybrid
logics.

3 A Formal Semantics for BP (I)
If the collection of boilerplates proposed here for reconfigurable systems leads
naturally to models based on structured transition systems, the choice of (a vari-
ant of) hybrid logic for their semantics comes as no surprise. Reactive systems
are classically expressed in modal languages; on the other hand, a naming mech-
anism for states makes easier to distinguish between properties valid in some,
but not all, configurations.

The semantic framework is as follows: Once the system’s requirements are
captured in a collection BP (I) of boilerplates instantiated over a base logic I,
its semantics is given by a systematic translation to a hybrid logic over I. I.e,
a logic whose language extends that of I with a set Λ of modalities, the corre-
sponding eventually (〈λ〉) and henceforth ([λ]) operators, for each λ ∈ Λ, a set
Nom of nominals to name configurations, and, for each i ∈ Nom a satisfaction

80 A. Madeira, M.A. Martins, and L.S. Barbosa

operator @i enforcing the validity of its argument in configuration i. Formally,
the collection of boilerplates gives rise to a proper specification in the hybrid
logic HI corresponding to I. The generation of HI from I, i.e., the hybridisa-
tion of I, is also a systematic process whose technical details are summarised in
the Appendix.

For the moment we shall concentrate in the process of generating a HI-
specification from a collection of boilerplates. Note the introduction of nominals
to refer to local configurations and of modalities to state properties of the overall
transition structure. This is better illustrated through an example. Let us, thus,
revisit the buffer example.

In Section 2 two collections of boilerplates were considered for this example.
The first one resorted to propositional logic PL. Its semantics is, therefore, a
generated specification in hybrid propositional logic HPL:

spec ReconfBuffer1 =
nominal fifo, lifo
modalities shift
propositions stack bh,queue bh
• @fifostack bh
• @lifoqueue bh
• @lifo< shift > fifo
• @fifo< shift > lifo

The models M for this specification are standard Kripke structures. For in-
stance, the structure defined over a set of two states {slifo, sfifo} and whose ac-
cessibility relation is Wshift = {(slifo, sfifo), (sfifo, slifo)}. The value of propo-
sitions stack bh and queue bh is each state is as follows: Mslifo

(stack bh) =
Msfifo

(queue bh) = � and Mslifo
(queue bh) = Msfifo

(stack bh) = ⊥.
The second, richer set of boilerplates resorted to equational logic EQ to cap-

ture local requirements equationally. The resulting specification is now expressed
in hybrid equational logic HEQ, as follows.

spec ReconfBuffer2 =
nominal fifo, lifo
modalities shift
sorts mem, item
op new : mem; write : mem × item → mem; del : mem → mem;read : mem → item
∀ m : mem; e : item;
• read(write(new, e)) = e
• del(write(new, e)) = new
• @liforead(write(m, e)) = e
• @fifo(m=new) ⇒ read(write(m, e)) = e
• @fifo¬ (m=new) ⇒ read(write(m, e)) = read(m)
• @lifodel(write(m, e)) = m
• @fifo(m=new) ⇒ del(write(m, e)) = new
• @fifo¬ (m=new) ⇒ del(write(m, e)) = write(del(m), e)
• @lifo< shift > fifo
• @fifo< shift > lifo

A model M for this second specification is given by a Kripke structure as
above but realising, in each state, Mslifo

and Msfifo
as the classical (initial)

models for the stack and queue data types, respectively.

Boilerplates for Reconfigurable Systems: A Language and Its Semantics 81

Boilerplates for LTS components specification:

•System has modes <set of Mode> • Nom := Nom � set of Mode

•<Mode> is a mode • Nom := Nom � {Mode}

•System has events <set of Event> • Λ := Λ � set of Event

•<Event> is an event • Λ := Λ � {Event}

• System’s interface is defined by<InterfaceExp> • Σ := InterfaceExp

Boilerplates for simple transitions:

•System changes from <Mode1> to <Mode2> through event
<Event>

• @Mode1〈Event〉Mode2

• System may change from <Mode1> to <Mode2> through
event <Event>

• @Mode1[Event]Mode2

• <Event> changes system to <Mode> • [Event]Mode

•There are no transitions into <Mode> through <Event> • ¬〈Event〉Mode

Boilerplates for transitions tagged by properties:

• <Event> changes modes satisfying <Prop1> into modes sat-
isfying <Prop2>

• Prop1 ⇒ [Event]Prop2

• <Event> changes <Mode> to modes satisfying <Prop> • Mode ⇒ [Event]Prop

• <Event>changes modes satisfying <Prop> to mode <Mode> • Prop ⇒ [Event] Mode

Boilerplates for properties:

• Property <Prop> holds in all modes • Prop

• Property <Prop> holds in <Mode> • @ModeProp

• There is no mode satisfying <Prop> • ¬ Prop

• There is at least one mode satisfying <Prop> • Ew Prop

• There is exactly one mode satisfying <Prop> • ∀w, v ∈ W [@vProp∧@wProp]
⇒ v = w

4 The Specification Process

We have seen how to go from a collection of boilerplates to a formal specification
in a suitable hybrid logic. The latter not only provides a precise semantics to
the requirements gathered, but also paves the way to their validation. Actually,
a central ingredient for the successful integration of a formal methodology in the
industrial practice is the existence of effective tool support.

In order to prototype requirements captured by a collection of boilerplates
or to validate their internal consistency, the hybrid specifications are translated
into first-order logic (FOL), so that the software engineer can take advantage
of several provers already available for FOL.

The institution-based framework underlying the hybridisation process, which
provides a whole pallet of (hybrid) logics for translating requirements, also of-
fers for free the conceptual machinery for this translation to FOL, whenever

82 A. Madeira, M.A. Martins, and L.S. Barbosa

it exists. Then, the prover toolset Hets [16], a framework specifically designed
to support specifications expressed in different institutions, offers suitable tool
support. Using a metaphor of [15], Hets may be seen as a “motherboard” where
different “expansion cards” can be plugged. These pieces are individual logics
(with their particular analysers and proof tools) as well as logic translations,
suitably encoded in the theory of institutions.

Hets already integrates parsers, static analyzers and provers for a wide set
of individual logics and manages heterogeneous proofs resorting to the so-called
graphs of logics, i.e., graphs whose nodes are logics and, whose edges, are comor-
phisms between them. Note that hybrid logic, namely its propositional variant,
has already a number of implementations (see e.g. HTab [8], HyLoTab [19]
and Spartacus [7]). Our approach, however, provides a uniform first order log-
ical framework for analysis and verification supporting the whole methodology.
Moreover, to the best of our knowledge, richer versions of hybrid logic do lack
effective tool support, which makes our approach by translation the only option
available.

We can now explain, step-by-step, the overall methodology for requirements
elicitation and validation, as depicted in Fig. 1.

HI
spec

FOL
spec

Consistency
Check

Prop. analysis
 by

Thm Proving

Executable
Requirements

Prototyping

Requirements
in

 -Boilerplates
(f)

(g)

(h)

Req. Formalisation HETS support

choose a
 logic for

 configurations

syntactical
support

Natural
Language

Spec

Req. Elicitation

(a)
(b)

when
possible

(c)

Proof support

(d)

I

BP (I)

(e)

Fig. 1. Tool support

(a),(b) As usual, requirements start from a set of basic facts about what is
perceived as the system’s goals and constraints. Typically, this determines
the choice of a base logic I for expressing properties of local configurations.
Examples in propositional and equational logic were discussed above. Often,
however, more complex languages are required. One can, for example, spec-
ify configurations as multialgebras to cope with non determinism, in which
case a multi-valued logic would be the obvious choice. Another possibility to
explore is resorts to partial equational logic to deal with exceptions, or obser-
vational logics to specify systems whose configurations encapsulate hidden
state-spaces. Finally, if each configuration is itself presented as a transition
system, one may choose a modal logic as a base, ending up with a (global)
modal language to express evolution of modal (local) specifications. This

Boilerplates for Reconfigurable Systems: A Language and Its Semantics 83

freedom of choosing a base logic for each application is in line with a ba-
sic engineering concern which recommends that the choice of a specification
framework depends on the nature of the requirements one has to deal with.
Once I is fixed, the systems requirements are captured in BP (I) instanti-
ation of boilerplates. Note that the set of boilerplates proposed enforces a
specification organised in terms of a structured transition system.

(c),(d) The next stage is the translation of the collection of boilerplates BP (I)
into a specification in the corresponding hybrid logic HI according to Boil-
erplates Table. This specification can be recognized as a Hets specification
using the HCASL package recently introduced by the authors in [17].

(e) The existence of a suitable translation, technically a comorphism [3], from
HI to FOL gives, for free, access to a number of provers integrated in
Hets in which requirements can be validated. Such a translation, as no-
ticed above, is not available for all logics. References [13,4], however, do
provide a roadmap for addressing this issue: [13] shows that the hybridis-
ation of an institution with a comorphism to FOL also has a comorphism
to FOL. Then reference [4] extends this result and characterizes conserva-
tivity of those translations to define in which cases it is possible to borrow,
in an effective way, proof support from FOL. Note that the proof of this
result is is constructive, offering a method to implement such translations. In
practice, this is a very general, broadly applicable result since several speci-
fication logics do have a comorphism to FOL. Such is the case, for example,
of propositional, equational, first-order, modal or even hybrid logic among
many others.
Once framed in Hets, the requirement specifications can be validated re-
sorting to several provers for FOL already “plugged” into Hets [15], e.g.,
SoftFOL, Spass and MathServe Broker, among others. Additionally,
one may also to take advantage of a number of other provers borrowed from
other institutions through comorphisms with source in FOL.

(f),(g) Several other features of Hets can be explored in the context of the
methodology proposed here. For instance, the model finder of Darwin, which
is already integrated in the platform, may be used as a consistency checker
for specifications derived from requirements. On the other hand, encodings of
FOL into HasCASL[18], a specification language for functional programs,
open new perspectives for prototyping BP (I) generated specifications in a
standard programming language as Haskell.

5 Concluding

The paper proposes a pallet of boilerplates requirements elicitation of reconfig-
urable systems, as a first step to the definition of a domain specific language for
this domain of software technology. The pallet is, obviously, not closed, provided
that every extension comes equipped with a translation scheme. The combi-
nation of different sets of requirements expressed in hybridised versions HI of
different base logics I is also an interesting strategy to take.

84 A. Madeira, M.A. Martins, and L.S. Barbosa

The hybridisation method introduced in [13], which, underlies the construc-
tion of suitable specification languages is also able to cope with quantification
modalities (i.e., the system’s events), a feature which may lead to an enrichment
of the boilerplates pallet available at the time of writing. This may provide se-
mantics for boilerplates able to express deadlock situations or to specify more
than one-step (ir)-reversibility transition properties. Unfortunately the introduc-
tion of nominal quantification rules out the possibility of a suitable first order
encoding for the logic, thus reducing the method tool support. Encodings to
second-order-logic are, however, being developed.

A known limitation of the method proposed in this paper concerns interface
reconfiguration. Technically, service functionality and behaviour exhibited in all
system’s configurations need to be specified over a common first-order signature.
This difficulty was overcome, to a large extent, in a recent publication [12].

Acknowledgements. This work is funded by ERDF - European Regional De-
velopment Fund through the COMPETE Programme and by National Funds
through FCT, the Portuguese Foundation for Science and Technology, project
FCOMP-01- 0124-FEDER-028923.

References

1. Blackburn, P.: Arthur Prior and hybrid logic. Synthese 150(3), 329–372 (2006)
2. Brauner, T.: Hybrid Logic and its Proof-Theory. Applied Logic Series. Springer

(2010)
3. Diaconescu, R.: Institution-independent Model Theory. Studies in Universal Logic.

Birkhäuser Basel (2008)
4. Diaconescu, R., Madeira, A.: Encoding hybridized institutions into first order logic

(submitted, 2013)
5. Diaconescu, R., Tutu, I.: On the algebra of structured specifications. Theor. Com-

put. Sci. 412(28), 3145–3174 (2011)
6. Goguen, J.A., Burstall, R.M.: Institutions: Abstract model theory for specification

and programming. J. ACM 39(1), 95–146 (1992)
7. Götzmann, D., Kaminski, M., Smolka, G.: Spartacus: A tableau prover for hybrid

logic. Electr. Notes Theor. Comput. Sci. 262, 127–139 (2010)
8. Hoffmann, G., Areces, C.: Htab: a terminating tableaux system for hybrid logic.

Electr. Notes Theor. Comput. Sci. 231, 3–19 (2009)
9. Hull, M.E.C., Jackson, K., Dick, J.: Requirements engineering, 2nd edn. Springer

(2005)
10. Madeira, A.: Foundations and techniques for software reconfigurability. PhD thesis,

University of Minho, Portugal (Joint MAP-i Doctoral Program) (2013)
11. Madeira, A., Faria, J.M., Martins, M.A., Barbosa, L.S.: Hybrid specification of

reactive systems: An institutional approach. In: Barthe, G., Pardo, A., Schneider,
G. (eds.) SEFM 2011. LNCS, vol. 7041, pp. 269–285. Springer, Heidelberg (2011)

12. Madeira, A., Neves, R., Martins, M.A., Barbosa, L.S.: When even the interface
evolves. In: Wang, H., Banach, R. (eds.) Proceedings of TASE the 7th IEEE Symp.
on Theoretical Aspects of Software Engineering, TASE, Birmingham, pp. 79–82.
IEEE Computer Society (July 2013)

Boilerplates for Reconfigurable Systems: A Language and Its Semantics 85

13. Martins, M.A., Madeira, A., Diaconescu, R., Barbosa, L.S.: Hybridization of in-
stitutions. In: Corradini, A., Klin, B., Ĉırstea, C. (eds.) CALCO 2011. LNCS,
vol. 6859, pp. 283–297. Springer, Heidelberg (2011)

14. Mossakowski, T.: Foundations of heterogeneous specification. In: Wirsing, M.,
Pattinson, D., Hennicker, R. (eds.) WADT 2003. LNCS, vol. 2755, pp. 359–375.
Springer, Heidelberg (2003)

15. Mossakowski, T., Maeder, C., Codescu, M., Lucke, D.: HETS User Guide - Version
0.99. Technical report, DFKI Lab Bremen (April 2013)

16. Mossakowski, T., Maeder, C., Lüttich, K.: The heterogeneous tool set, hets. In:
Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 519–522.
Springer, Heidelberg (2007)

17. Neves, R., Madeira, A., Martins, M.A., Barbosa, L.S.: Hybridisation at work. In:
CALCO TOOLS. LNCS. Springer (to appear, 2013)

18. Schröder, L., Mossakowski, T.: Hascasl: Towards integrated specification and de-
velopment of functional programs. In: Kirchner, H., Ringeissen, C. (eds.) AMAST
2002. LNCS, vol. 2422, pp. 99–116. Springer, Heidelberg (2002)

19. van Eijck, J.: Hylotab-tableau-based theorem proving for hybrid logics. Technical
report, CWI, Amsterdam (2002)

Appendix: The Hybridisation Process

This appendix provides a brief overview of the hybridisation method which allows
for the systematic construction of hybrid languages from arbitrary logics. The
method is framed in the theory of institutions whose basic definitions are recalled.

Institutions

An institution is a category theoretic formalisation of a logical system, encom-
passing syntax, semantics and satisfaction. The concept was put forward by
Goguen and Burstall, in the end of the seventies, in order to “formalise the for-
mal notion of logical systems”, in response to the “population explosion among
the logical systems used in Computing Science” [6]. Formally,

I = (SignI , SenI ,ModI , (|=I
Σ)Σ∈|SignI |)

– a category SignI of signatures and signature morphisms,
– a functor SenI : SignI → Set giving for each signature a set whose elements

are called sentences over that signature,
– a functor ModI : (SignI)op → CAT , giving for each signature Σ a category

whose objects are called Σ-models, and whose arrows are called Σ-(model)
homomorphisms, and

– a relation |=I
Σ⊆ |ModI(Σ)| × SenI(Σ) for each Σ ∈ |SignI |, called the

satisfaction relation,

such that for each morphism ϕ : Σ → Σ′ ∈ SignI , the satisfaction condition

M ′ |=I
Σ′ SenI(ϕ)(ρ) if and only if ModI(ϕ)(M ′) |=I

Σ ρ (1)

holds for each M ′ ∈ |ModI(Σ′)| and ρ ∈ SenI(Σ).

86 A. Madeira, M.A. Martins, and L.S. Barbosa

Example 1 (Propositional Logic).

A signature Prop ∈ |SignPL| is a set of propositional variables symbols and
a signature morphism is just a function ϕ : Prop → Prop′ Therefore, SignPL

coincides with the category Set.
Functor Mod maps each signature Prop to the category ModPL(Prop) and

each signature morphism ϕ to the reduct functor ModPL(ϕ). Objects of
ModPL(Prop) are functions M : Prop → {�,⊥} and, its morphisms, functions
h : Prop → Prop such that M(p) = M ′(h(p)). Given a signature morphism
ϕ : Prop → Prop′, the reduct of a model M ′ ∈ |ModPL(Prop′)|, say M =
ModPL(ϕ)(M ′) is defined, for each p ∈ Prop, as M(p) = M ′(ϕ(p)).

The sentences functor maps each signature Prop to the set of propositional
sentences SenPL(Prop) and each morphism ϕ : Prop→ Prop′ to the sentences’
translation SenPL(ϕ) : SenPL(Prop) → SenPL(Prop′). The set SenPL(Prop) is
the usual set of propositional formulae defined by the grammar

ρ ::= p | ρ ∨ ρ | ρ ∧ ρ | ρ⇒ ρ | ¬ρ

for p ∈ Prop. The translation of a sentence SenPL(ϕ)(ρ) is obtained by replacing
each proposition of ρ by the respective ϕ-image. Finally, for each Prop ∈ SenPL,
the satisfaction relation |=PL

Prop is defined as usual:

– M |=PL
Prop p iff M(p) = �, for any p ∈ Prop;

– M |=PL
Prop ρ ∨ ρ′ iff M |=PL

Prop ρ or M |=PL
Prop ρ′,

and similarly for the other connectives.

Example 2 (Equational logic).

Signatures in the institution EQ of equational logic are pairs (S, F) where S
is a set of sort symbols and F = {Far→s | ar ∈ S∗, s ∈ S} is a family of sets
of operation symbols indexed by arities ar (for the arguments) and sorts s (for
the results). Signature morphisms map both components in a compatible way:
they consist of pairs ϕ = (ϕst, ϕop) : (S, F)→ (S′, F ′), where ϕst : S → S′ is a
function, and ϕop = {ϕop

ar→s : Far→s → F ′
ϕst(ar)→ϕst(s) | ar ∈ S∗, s ∈ S} a family

of functions mapping operations symbols respecting arities.
A model M for a signature (S, F) is an algebra interpreting each sort symbol

s as a carrier set Ms and each operation symbol σ ∈ Far → s as a function
Mσ : Mar → Ms, where Mar is the product of the arguments’ carriers. Model
morphism are homomorphisms of algebras, i.e., S-indexed families of functions
{hs : Ms → M ′

s | s ∈ S} such that for any m ∈ Mar, and for each σ ∈ Far→s,
hs(Mσ(m)) = M ′

σ(har(m)). For each signature morphism ϕ, the reduct of a

model M ′, say M = ModEQ (ϕ)(M ′) is defined by (M)x = M ′
ϕ(x) for each sort

and function symbol x from the domain signature of ϕ. The models functor maps
signatures to categories of algebras and signature morphisms to the respective
reduct functors.

Sentences are universal quantified equations (∀X)t = t′. Sentence trans-
lations along a signature morphism ϕ : (S, F) → (S′, F ′), i.e., SenEQ (ϕ) :

Boilerplates for Reconfigurable Systems: A Language and Its Semantics 87

SenEQ (S, F) → SenEQ (S′, F ′), replace symbols of (S, F) by the respective ϕ-
images in (S′, F ′). The sentences functor maps each signature to the set of
first-order sentences and each signature morphism to the respective sentences
translation. The satisfaction relation is the usual Tarskian satisfaction defined
recursively on the structure of the sentences as follows:

– M |=(S,F) t = t′ when Mt = Mt′ , where Mt denotes the interpretation of the
(S, F)-term t in M defined recursively by Mσ(t1,...,tn) = Mσ(Mt1 , . . . ,Mtn).

– M |=(S,F) (∀X)ρ when M ′ |=(S,F+X) ρ for any (S, F +X)-expansion M ′ of
M .

The Hybridisation Method

Having recalled the notion of an institution, we shall now briefly review the core
of the hybridisation method proposed in [13,4]. For the sake of brevity, we shall
restrict ourselves to a simplified (quantifier-free and non-constrained) version of
the general method.

As explained in the paper, the method enriches a base (arbitrary) institution
I = (SignI , SenI ,ModI , (|=I

Σ)Σ∈|SignI |) with hybrid logic features and the cor-
responding Kripke semantics. The result is still an institution, HI, called the
hybridisation of I.
The category of HI-signatures. The base signature is enriched with nominals
and polyadic modalities. Therefore, the category of I-hybrid signatures, denoted
by SignHI , is defined as the direct (cartesian) product of categories:

SignHI = SignI × SignREL.

Thus, signatures are triples (Σ,Nom, Λ), where Σ ∈ |SignI | and, in the REL-
signature (Nom, Λ), Nom is a set of constants called nominals and Λ is a set
of relational symbols called modalities ; Λn stands for the set of modalities of
arity n. Morphisms ϕ ∈ SignHI((Σ,Nom, Λ), (Σ′,Nom′, Λ′)) are triples ϕ =
(ϕSig, ϕNom, ϕMS) where ϕSig ∈ SignI(Σ,Σ′), ϕNom : Nom→ Nom′ is a function
and ϕMS = (ϕn : Λn → Λ′

n)n∈N a N-family of functions mapping nominals and
n− ary-modality symbols, respectively.

HI-sentences functor. The second step is to enrich the base sentences accord-
ingly. The sentences of the base institution and the nominals are taken as atoms
and composed with the boolean connectives, modalities, and satisfaction opera-
tors as follows: SenHI(Σ,Nom, Λ) is the least set such that

– Nom ⊆ SenHI(Δ);
– SenI(Σ) ⊆ SenHI(Δ);
– ρ � ρ′ ∈ SenHI(Δ) for any ρ, ρ′ ∈ SenHI(Δ) and any � ∈ {∨,∧,⇒},
– ¬ρ ∈ SenHI(Δ), for any ρ ∈ SenHI(Δ),
– @iρ ∈ SenHI(Δ) for any ρ ∈ SenHI(Δ) and i ∈ Nom;
– [λ](ρ1, . . . , ρn), 〈λ〉(ρ1, . . . , ρn) ∈ SenHI(Δ), for any λ ∈ Λn+1, ρi ∈

SenHI(Δ), i ∈ {1, . . . , n}.

88 A. Madeira, M.A. Martins, and L.S. Barbosa

Given a morphism ϕ = (ϕSig, ϕNom, ϕMS) : (Σ,Nom, Λ) → (Σ′,Nom′, Λ′), the
translation of sentences SenHI(ϕ) is defined as follows:

– SenHI(ϕ)(ρ) = SenI(ϕSig)(ρ) for any ρ ∈ SenI(Σ);
– SenHI(ϕ)(i) = ϕNom(i);
– SenHI(ϕ)(¬ρ) = ¬SenHI(ϕ)(ρ);
– SenHI(ϕ)(ρ � ρ′) = SenHI(ϕ)(ρ) � SenHI(ϕ)(ρ′), � ∈ {∨,∧,⇒};
– SenHI(ϕ)(@iρ) = @ϕNom(i)Sen

HI(ρ);
– SenHI(ϕ)([λ](ρ1, . . . , ρn)) = [ϕMS(λ)](Sen

HI(ρ1), . . . , SenHI(ρn));
– SenHI(ϕ)(〈λ〉(ρ1, . . . , ρn)) = 〈ϕMS(λ)〉(SenHI(ρ1), . . . , SenHI(ρn)).

HI-models functor. Models of the hybridised logic HI can be regarded as
(Λ-)Kripke structures whose worlds are I-models. Formally (Σ,Nom, Λ)-models
are pairs (M,W) where

– W is a (Nom, Λ)-model in REL;
– M is a function |W | → |ModI(Σ)|.

In each world (M,W), {Wn | n ∈ Nom} provides interpretations for nominals
in Nom, whereas relations {Wλ | λ ∈ Λn, n ∈ ω} interprete modalities in Λ.
We denote M(w) simply by Mw. The reduct definition is lifted from the base
institution: the reduct of a Δ′-model (M ′,W ′) along a signature morphism ϕ =
(ϕSig, ϕNom, ϕMS) : Δ → Δ′, denoted by ModHI(ϕ)(M ′,W ′), is the Δ-model
(M,W) such that

– W is the (ϕNom, ϕMS)-reduct of W
′; i.e.

• |W | = |W ′|;
• for any n ∈ Nom,Wn = W ′

ϕNom(n);

• for any λ ∈ Λ, Wλ = W ′
ϕMS(λ)

;

and
– for any w ∈ |W |, Mw = ModI(ϕSig)(M

′
w).

Satisfaction. Let (Σ,Nom, Λ) ∈ |SignHI | and (M,W) ∈ |ModHI(Σ,Nom, Λ)|.
For any w ∈ |W | we define:

– (M,W) |=w ρ iff Mw |=I ρ; when ρ ∈ SenI(Σ),
– (M,W) |=w i iff Wi = w; when i ∈ Nom,
– (M,W) |=w ρ ∨ ρ′ iff (M,W) |=w ρ or (M,W) |=w ρ′,
– (M,W) |=w ρ ∧ ρ′ iff (M,W) |=w ρ and (M,W) |=w ρ′,
– (M,W) |=w ρ⇒ ρ′ iff (M,W) |=w ρ implies that (M,W) |=w ρ′,
– (M,W) |=w ¬ρ iff (M,W) � |=wρ,
– (M,W) |=w [λ](ξ1, . . . , ξn) iff for any (w,w1, . . . , wn) ∈ Wλ we have that

(M,W) |=wi ξi for some 1 ≤ i ≤ n.
– (M,W) |=w 〈λ〉(ξ1, . . . , ξn) iff there exists (w,w1, . . . , wn) ∈ Wλ such that

and (M,W) |=wi ξi for any 1 ≤ i ≤ n.
– (M,W) |=w @jρ iff (M,W) |=Wj ρ,

We write (M,W) |= ρ iff (M,W) |=w ρ for any w ∈ |W |.

Boilerplates for Reconfigurable Systems: A Language and Its Semantics 89

Theorem 1 ([13]). Let Δ = (Σ,Nom, Λ) and Δ′ = (Σ′,Nom′, Λ′) be two HI-
signatures and ϕ : Δ → Δ′ a morphism of signatures. For any ρ ∈ SenHI(Δ),
(M ′,W ′) ∈ |ModC(Δ′)|, and w ∈ |W |,

ModHI(ϕ)(M ′,W ′) |=w ρ iff (M ′,W ′) |=w SenHI(ϕ)(ρ).

The method can be illustrated through its application to the two institutions
described above and used in the paper: those of propositional and equational
logics.

Example 3 (HPL). The hybridisation of the propositional logic institution PL
is an institution where signatures are triples (Prop,Nom, Λ) and sentences are
generated by

ρ ::= ρ0 | i | @iρ | ρ� ρ | ¬ρ | 〈λ〉(ρ, . . . , ρ) | [λ](ρ, . . . , ρ) (2)

where ρ0 ∈ SenPL(Prop), i ∈ Nom, λ ∈ Λn and � = {∨,∧,⇒}. Note there is
a double level of connectives in the sentences: the one coming from base PL-
sentences and another introduced by the hybridisation process. However, they
“semantically collapse” and, hence, no distinction between them needs to be
done (see [4] for details). A (Prop,Nom, Λ)-model is a pair (M,W), where W
is a transition structure with a set of worlds |W |. Constants Wi, i ∈ Nom stand
for the named worlds and (n+ 1)-ary relations Wλ, λ ∈ Λn are the accessibility
relations characterising the structure. For each world w ∈ |W |, M(w) is a (local)
PL-model, assigning propositions in Prop to the world w.

Restricting the signatures to those with just a single unary modality (i.e.,
where Λ1 = {λ} and Λn = ∅ for the remaining n �= 1), results in the usual
institution for classical hybrid propositional logic [2].

Example 4 (HEQ). Signatures of HEQ are triples ((S, F),Nom, Λ) and the sen-
tences defined as in (2), but taking (S, F)-equations (∀X)t = t′ as atomic base
sentences. Models are Kripke structures with a (local)-(S, F)-algebra per state.
Distinct configurations are therefore modeled by distinct algebras and reconfig-
urations expressed by transitions over a graph of algebras (cf., [11,10]).

Contextual Abstraction in a Type System

for Component-Based High Performance
Computing Platforms

Francisco Heron de Carvalho Junior, Cenez Araújo Rezende,
Jefferson de Carvalho Silva, and Wagner Guimarães Al-Alam

Pós-Graduao em Ciência da Computação,
Universidade Federal do Ceará, Brazil

{heron,cenezaraujo,jeffersoncarvalho,alalam}@lia.ufc.br

Abstract. This paper presents the formalization of HTS (Hash Type
System), a type system for component-based high performance comput-
ing (CBHPC) platforms. HTS aims at supporting an automated
approach for dynamic discovering, loading and binding of parallel com-
ponents. HTS gives support for building multiple implementations of
abstract components, the performance of which are tuned according to
the specific features of high-end distributed-memory parallel computing
platforms and the application requirements, through context abstraction.

1 Introduction

Grids [16] and clouds [4] have introduced a new class of large-scale HPC plat-
forms formed by heterogeneous collections of computational resources. Such
platforms aim at enabling applications with outstanding impact in scientific
discovery and technological innovation, leading to an ever-increasing scale and
complexity of software in HPC. At the same time, the hardware complexity has
increased due to heterogeneous parallel computing [18], making the tuning of the
software performance according to the particular characteristics of each target
parallel computing architecture important. So, there is an increasing need of new
programming models, techniques and abstractions to face these challenges.

Components are independent units of software composition with well-defined
interfaces, subject to independent deployment and third-party composition [23].
The research on component-based high performance computing (CBHPC) plat-
forms investigate how to use components in dealing with scale and complexity of
modern HPC software, subject to the heterogeneity of parallel computing plat-
forms [18]. CCA (Common Component Architecture) [5], Fractal [8], and GCM
(Grid Component Model) [7] are the most prominent CBHPC initiatives, which
have presented successful case studies using real applications.

Our main contribution to CBHPC is the Hash component model, which faces
the lack of both expressive and efficient models of parallel components and their
connectors [11]. HPE (Hash Programming Environment) is the reference imple-
mentation of Hash, as a platform for managing the life-cycle of parallel compo-
nents, so-called #-components, in cluster computing platforms [13,15].

A. Rauber Du Bois and P. Trinder (Eds.): SBLP 2013, LNCS 8129, pp. 90–104, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Contextual Abstraction in a Type System 91

In a parallel computing system, the best algorithms and parallelism strategies
for implementing its software parts is highly dependent on the architecture of
the target parallel computing platform [17]. In the context of CBHPC platforms,
we are interested in addressing the problem of selecting the best implementa-
tion for each component of a parallel computing system according to a context,
from a set of alternative implementations cataloged in a library. A context is an
abstraction for the characteristics of parallel computing systems that influence
their performance. The relevance of this problem has increased with the emerg-
ing of heterogeneous parallel computing platforms [18] as resources of grids and
clouds. For addressing it, this paper introduces HTS (Hash Type System), the
type system developed for HPE. HTS aims at minimizing the end-user interven-
tion by delegating the decisions in the implementation of components to parallel
computing specialists. For that, it is based on a kind of contractual interface, so-
called abstract component, which represents a set of components that address a
well-defined concern. The implementation of each component is tuned according
to a set of context parameters. The contextual abstraction distinguishes HTS
from the other component adaptability approaches of CBHPC platforms.

Following this introduction, Section 2 presents the Hash Component model
and its reference implementation, HPE, where HTS has been implemented and
validated, followed by an overview of related works. Section 3 provides an intu-
itive introduction to the abstractions behind HTS, such as abstract components,
contexts and resolution, also presenting a case study with simulated applica-
tions from NPB (NAS Parallel Benchmarks). Section 4 presents a mathematical
formalization of HTS on top of a composition calculus, with the purpose of
proving its relevant safety properties. Finally, Section 5 concludes this paper, by
discussing its contributions, limitations, and lines for further works with HTS.

2 Background

The Hash component model brings to CBHPC a general concept of parallel
component - the so-called #-component, formed by a set of units that represent
processes running at distinct processing nodes of a parallel computing platform.
Like Fractal, a #-component may be composed from other #-components, the
so-called inner components, by overlapping composition [12]. For that, an over-
lapping function maps the units of the inner components to the units of the
#-component. Each mapping defines a slice of the target unit.

A configuration specifies the units, inner components and overlapping function
of a #-component, using an architecture description language (ADL).

As a consequence of overlapping composition, the slices of a unit belongs to
the same process, communicating with each other directly through the same ad-
dress space. Thus, a #-component may coordinate its inner components through
local procedure calls (inter-component interactions), whereas the units of a #-
component may communicate through message-passing (intra-component inter-
actions). In doing so, #-components may encapsulate patterns of parallel com-
putation and communication, also minimizing the cost of component bindings.

92 F.H. de Carvalho Junior et al.

A component platform that complies with the Hash component model sup-
ports distributed units, overlapping composition and a set of component kinds.

Component kinds group #-components that comply with the same component
model. They are like meta-components of SCIJump [21], but also used for intro-
ducing new programming abstractions to a CBHPC platform, possibly oriented
to specific application domains. For example, it provides support for libraries of
reusable connectors [10] and the distinction of #-components according to the
kind of HPC resources they represent in a cloud-based CBHPC platform. Other
component platforms support a single component kind and a pre-defined set
of connectors, making it difficult dealing with the heterogeneity and evolution
of parallel computing platforms. For that, they often deal with non-functional
concerns by introducing orthogonal abstractions, such as controllers (Fractal),
indirect bindings and cohorts (CCA) and collective ports (GCM).

HPE (Hash Programming Environment)1 is a general purpose CBHPC plat-
form which complies with CCA and the Hash component model, targeted at
cluster computing platforms [13,9]. It supports eight component kinds: com-
putations, data structures, synchronizers, topologies, platforms, environments,
applications, and features. HPE faces the problem of supporting a fully expres-
sive and simple definition of parallel component in a CBHPC platform, with
minimal intrinsic performance overhead compared to monolithic code [15].

HPE is a choreography of services of three types: the Front-End, from which
a programmer build configurations and implementations of #-components, and
control their life cycle; the Core, for cataloging #-components in a distributed
library; and the Back-End, for managing a parallel computing platform where
#-components are deployed and execute.

The Front-End accesses the services of the Core for cataloging user-defined
configurations and retrieving configurations for overlapping composition. Also, it
accesses the services of theBack-End for executing #-components of kind appli-
cation, retrieved from the Core. From the Core, when loading an application,
the Back-End discovers and retrieves the implementation of each #-component
of the application which is the best tuned to its parallel computing platform,
and also according to the application requirements.

In CBHPC, the works on dynamic adaptation of components have relation
with HTS [14,2,19]. The relevance of this topic in grid platforms [3] has mo-
tivated GCM designers to support general autonomic computing capabilities.
These works address the problem of supporting runtime changes in component
configuration and/or implementation according to the evolving conditions of
the parallel system. In general, they require monitoring a set of pre-defined
parameters of system evolution, and reconfiguration actions must be known a
priori. However, the autonomic computing capabilities of GCM make possible
ad-hoc reconfigurations, by supporting appropriate non-functional controllers.
Behavioural skeletons have proposed the idea of capturing adaptation patterns
in common patterns of parallel computations [1].

1 The HPE code is hosted at http://hash-programming-environment.googlecode.com

Contextual Abstraction in a Type System 93

P-COM2 [24], a CBHPC platform developed in a research work outside CCA
and GCM initiatives, has a closer relation with HTS. It proposes a compile-time
solution based on self-describing components with associative interfaces. They
are contractual interfaces that carry information used for selection and matching
of components (profile) and formal descriptions of their interactions, behaviour
and safety properties (state machine and protocol) through ASL (Architecture
Specification Language). The profiles are related to HTS contexts. P-COM2 fo-
cuses on the problems of encapsulating legacy code and formal analysis of com-
ponents behavior and interactions. Both are subject to dynamic reconfiguration
through orthogonal mechanisms, but HTS provides more flexibility for tuning
components, since it is not restricted to a fixed set of possible assumptions, like
that ones supported by ASL.

〈context signature〉 := Component ID [〈param1〉, 〈param2〉, · · · , 〈paramn〉]
〈param〉 := parameter id = CTX V AR : 〈instantiation type〉
〈instantiation type〉 := Component ID [〈arg1〉, 〈arg2〉, ..., 〈argn〉]
〈arg〉 := parameter id = 〈instantiation type〉 | parameter id = CTX V AR

Fig. 1. Abstract Syntax of Abstract Component Signatures and Instantiation Types

3 Contextual Abstraction through Abstract Components

An abstract component is the type of a set of #-components representing distinct
implementations of a given concern. It is abstracted away, through the so-called
contextual abstraction, from a set of assumptions about how each #-component
must be implemented according to the features of the target parallel computing
platform and the application to which it will be bound.

The configuration of an abstract component describes the units, inner
components and the overlapping function of the #-components it represents.
Also, it describes a context signature. Figure 1 presents a simple syntax for repre-
senting context signatures (〈context signature〉). They are defined by the name
of the abstract component (Component ID) and a set of context
parameters (〈param〉), each one having a name (parameter id), a context vari-
able (CTX V AR) and a bound, defined by an instantiation type
(〈instantiation type〉).

An instantiation type is recursively defined by a pair of a name of an abstract
component and a set of context arguments (〈arg〉), each one defined by an instan-
tiation type and associated to a context parameter of the abstract component
though its name. The context argument must be a subtype of the bound of the
context parameter.

An instantiation type is open if it has at least one context parameter which is
not associated neither with a context argument nor with a variable identifier of
the enclosing configuration, so-called a free context parameter. Otherwise, it is
close. We say that two free context parameters are binded if they have the same
variable identifier.

94 F.H. de Carvalho Junior et al.

The inner components of a configuration and #-components are typed by
instantiation types. Different combinations of context arguments lead to distinct
contexts. In execution time, a #-component whose instantiation type is closer to
the instantiation type of each inner component of a #-component instantiated
from a configuration will be chosen by a resolution algorithm, constrained by
the the subtyping relation. The resolution algorithm will be presented in Section
3.2. Before it, the next section presents an example that provide more intuition
for abstract components and contextual abstraction.

y
z

x y z

x

SP and BT are distinguished
by their implementations of Solver

for each axis (x, y, z)

by the current value for the
subtypes of Solver defined

context parameter solver

<<component>>

<<component>>

**

*

*
**

*
**

*
**

*
**

**

*

**

*

**

*

** *
**

*
**

*
**

*
**

*
**

*

**

*
**

x y z

x y z x y z
x y z

x y z

x y z

<<component>>

<<component>>

Timer

LHSInit

Initialize

ExactRHS

MultiPartition

CopyFaces
ComputeRHS

Solver

Solver

Solver

Add

Verify

ADI

ErrorNorm

RHSNorm

Ring

Ring

Ring

ProblemData

MultiPartitionCells

<<component>>

x

y

z

<<component>>
<<component>>

<<component>>

<<component>>

<<component>>

<<component>>

<<component>>

<<component>>

<<component>>

<<component>>

<<component>>

<<component>>

<<component>>

<<component>>

ADI_Solver3D [class = C:Class,
 method = S:SolvingMethod]

problem_data

cells_config

y

z

x

initialize

data_partition

exact_rhs

compute_rhscopy_faces

rhs_norm

verify

error_norm

add

copy_faces

z_solve

x_solve y_solve

adi

sp/bt

lhsinit

timer

CopyFaces

Fig. 2. SP/BT Configuration Architecture [15]

3.1 Case Study: SP and BT from the NAS Parallel Benchmarks

The NAS Parallel Benchmarks (NPB) [6] is a software package for evaluat-
ing the performance of parallel computers, comprising 8 programs. SP (Scalar-
Pentadiagonal Linear System Solver), BT (Block-Tridiagonal Linear System
Solver), LU (LU factorization) and FT (Fourier Transform) have been trans-
lated to C#/MPI.NET and refactored into components for evaluating the per-
formance of HPE [15]. SP and BT demonstrate the ability of changing the
component architecture of an application through dynamic context changing.

SP and BT are alternative implementations of the alternating direct implicit
(ADI) method for solving three sets of uncoupled 3D systems of equations. Thus,
they have similar architectures, as depicted in Figure 2. HTS captures the sim-
ilarities between them, which are not clear in the original versions. Automated
resolution and binding have made it possible to configure an abstract component
ADI Solver3D of kind application, which can be instantiated to SP or BT

Contextual Abstraction in a Type System 95

according to the choices of its context arguments in instantiation types, isolating
their differences in the solver components as depicted in Figure 2.

ADI Solver3D has two context parameters: method , bound by Solving-

Method, defining the solving method; and class, bound by Class, specifying
the problem class. SPMethod and BTMethod are the subtypes of Solving-
Method that distinguish the solvers of SP and BT, by supplying method .
In turn, the subtypes of Class are Class W and Class A, representing de-
fault workloads of NPB. A generic #-component ADI Solver3DImpl implements
the instantiation type ADI Solver3D[method = SolvingMethod, class =
Class]. For instance, one may run SP on the problem class A by submitting
ADI Solver3D[method = SPMethod, class = Class A] to the Back-End

of HPE. The resolution algorithm will find ADI Solver3DImpl and instantiate it
by applying the context arguments of the submitted instantiation type, which
are recursively passed to the inner components.

During execution, one may changemethod from SPMethod toBTMethod,
causing disconnection of all the #-components binded to inner components
whose instantiation types depends on method and whose available
#-components are distinguished by it, such as adi, x solve, y solve and z solve
(Figure 2).

x solve, y solve and z solve are inner components of adi, typed by ADI

with the argument to method. The #-components of ADI may be ADIImpl, if
method=BTMethod, and SP ADIImpl, if method=SPMethod. SP ADIImpl
is a #-component of SP ADI, which is derived from ADI by adding the in-
ner component txinvr and freezing the context parameter method to SP-

Method (see inheritance operations in Section 4.3), not shown in Figure 2.
Thus, a change of method from BTMethod to SPMethod reconfigures adi
from an instance of ADIImpl to an instance of SP ADIImpl, to which the existing
copy faces, compute rhs and add are reconnected and txinvr is instanti-
ated and connected. Finally, x solve, y solve and z solve are changed from
impl.sp.solve.SolverImpl to impl.bt.solve.SolverImpl, by keeping the old instances
of problem data and cells info since they do not depend on method. They
represent the data structures processed by the application, i. e. its state.

3.2 Resolution Algorithm

The resolution algorithm looks for a #-component that matches an instantiation
type, by traversing the its subtypes in a certain order. Subtypes are determined
at each step by generalizing the next non-free context parameter, in the order
they are declared in the instantiation type. Thus, by controlling the order in
which context parameters are specified in an instantiation type, a programmer
may give priority to the most critical assumptions about the implementation of
the given abstract component, according to the application needs. This is the
reason for using names, instead of the position, to refer to context parameters.

Let C

[
par1 = X1 : BX

1 ,par2 = X2 : BX
2 , · · · ,parm = Xm : BX

m

]
represent

the abstract component C, where {X1, X2, . . . , Xm} are context variables and
{BX

1 ,BX
2 , . . . ,BX

m} are instantiation types (bounds). Let {Y1, Y2, . . . , Yq} be the

96 F.H. de Carvalho Junior et al.

free context variables in B
X
1 ,BX

2 , . . . ,BX
n , bounded by {BY

1 ,B
Y
2 , . . . ,B

Y
q }, re-

spectively. Finally, let T ≡ C

[
par i1 = A1,par i2 = A2, · · · ,par in = An

]
, where

{par i1 ,par i2 , · · · ,par in} ⊆ {par1 ,par2 , · · · ,parm} and Ak <: BX
ik
, for k ∈

{1, 2, . . . , n}, be the instantiation type of an inner component ι of some con-
figuration. The following resolution algorithm will look for a #-component for
matching the instantiation type T , which will be bound to ι:

1. Let Ci be the abstract component of Ai, for i ∈ {1, . . . , n};
2. For i ∈ {1, 2, . . . , n}, let Cj

i be the j-th supertype of Ci, where C
0
i ≡ Ci and

C
j
i is the direct supertype of Cj−1

i by inheritance, if it exists;
3. Let R be a resolution tree, whose root is labeled C

0
0. For i ∈ {1, 2, . . . , n−1},

a node labeled C
j
i has sons with labels C0

i+1, C
1
i+1, . . . , C

ki

i+1, where C
ki

i+1 is

the top-level supertype of C0
i+1;

4. Do a pre-order depth-first traversing of R. At each visit to a leaf node,
{Cj1

1 ,Cj2
2 , . . . ,Cjn

n } include the labels of the nodes in the path from the
root to the leaf. By construction, they are valid context arguments for
par i1 ,par i2 , . . . ,par in , respectively, which are the non-free context param-
eters of T . Then, perform the following operations:
(a) Build an instantiation type T ′ from T , by defining the instantiation

types A
′
1,A

′
2, . . . ,A

′
n by replacing C

j1
1 ,Cj2

2 , . . . ,Cjn
n for C1,C2, . . . ,Cn

in A1,A2, . . . ,An, respectively, and then by replacingA′
1,A

′
2, . . . ,A

′
n for

A1,A2, . . . ,An in T , in such a way that the occurrences of the context
variables Xi1 , Xi2 , . . . , Xin of the signature of C have A′

1,A
′
2, . . . ,A

′
n as

context arguments in T ′;
(b) Look at the environment of #-components for a #-component whose

instantiation type matches T ′ in their closed context arguments.
(c) If a #-component is found, abort the traversal and return it;

5. If all nodes have been visited, and no #-component has been found, an
exception is raised informing that a #-component that fits the instantiation
type of the ι does not exist in the environment of #-components.

The resolution algorithm assumes that a #-component of an abstract compo-
nent C is also registered as a #-component of any abstract component C′, such
that C′ is a supertype of C. By subtyping inheritance, this is a valid assumption,
since C implements the concern of C′. Using this approach, the inner component
adi of ADI Solver3D, typed by ADI, may be supplied by a #-component of
its subtype SP ADI, derived by inheritance from ADI as pointed out in the pre-
vious section. This occurs when instantiating SP, when the context parameter
method of ADI in the type of adi is supplied with SPMethod. This is pos-
sible because SP ADIImpl is registered as a subtype of both ADI and SP ADI.
Inheritance derivation is formally discussed in Section 4.3.

4 Formalization and Safety Properties

This section presents τHOC3 (Hash Overlapping Component Composition Cal-
culus), a calculus for hierarchical composition of #-components, where they are

Contextual Abstraction in a Type System 97

t −→ x variable
t t application
λx.t untyped #-component functor(
ui

i=1...k
)

#-component instance

u −→ l ���
〈
ui

i=1...k
〉

slice composition
l base slice
x.l slice projection variable

v −→ λx.t untyped #-component functor(
ui

i=1...k
)

#-component instance

Fig. 3. τHOC3 - Untyped Fragment (Syntax)

functions whose arguments are inner components combined, by overlapping com-
position, for defining their units. It is aimed at reasoning about HTS.

Figure 3 and 5 show the syntax and composition semantics of terms (t) of
τHOC3, respectively. The composition semantics presents reduction rules for
mapping terms to non-reducible terms, which may be either a stuck term or a
value (v). A value represents a #-component instance. A well-formed term, i.
e. a term that can be reduced to a value, represents a configuration. HPE uses
a second-order fragment of τHOC3, since inner components (parameters) of #-
components are always supplied with #-component instances (value arguments).

A #-component instance is defined by a non-empty set of units. Each unit is
a rooted labeled directly acyclic graph (DAG), the so-called unit graph, whose
label is defined by the label of the root. The other nodes represent the slices of
the unit, whose labels are labels of units of overlapped inner components. In a
unit graph of a #-component functor, a slice projection variable x.l refers to the
unit labeled l of the #-component in the argument x. After an application, if
x is a #-component instance with a unit labeled l, x.l refers to its unit graph,
i. e.

(
ui

i=1···k) .l ≡ uj, for some j ∈ {1, · · · , k} such that label (uj) = l, where

label (l) = l and label
(
l ���

〈
si

i=1...k
〉)

= l.

t −→
...

λx:T.t typed #-comp. functor
[X <: T]� t context abstraction
t� [T] context application

v −→
...

λx : T.t typed #-comp. functor
[X <: T]� t context abstraction

T −→ X context variable

 maximal type
T → T functor type((
Ui

i=1...k
))

#-component type
C� [[T]] instantiation type

C −→ [[X <: T]]� T abstract component

U −→ l ���
〈〈
Ui

i=1...k
〉〉

slice type
l base slice type

(a) Additional Terms (b) Context Types

Fig. 4. τHOC3 - Typed Fragment (Syntax)

98 F.H. de Carvalho Junior et al.

Figure 4 presents the typed fragment of τHOC3, aimed at reasoning about
abstract components and instantiation types. Context abstraction terms repre-
sent configurations that abstract away from the types of its constituent terms
through context parameters. The context arguments may be supplied by means
of context application terms (reduction rules E-TApp and E-TAppTAbs). Typ-
ing and subtyping relations are defined in Figures 6 and 7, respectively. For type
variables and functor types, typing and subtyping rules are inherited from the
specifications of the typed λ-calculus [22].

Σ � t1 → t′1
Σ � t1 t2 → t′1 t2

Σ � t2 → t′2
Σ � v1 t2 → v1 t′2

Σ � (λx:T.t1) v2 → [x �−→ v2] t1

(E-App1) (E-App2) (E-AppAbs)

Σ � t1 → t′1
Σ � t1 � [T1] → t′1 � [T1]

Σ � ([X <: T1]� t1)� [T2] → [X �−→ T2] t1

(E-TApp) (E-TAppTAbs)

Fig. 5. τHOC3 (Reduction Rules - Composition Semantics)

According to the typing rule T-Max, any type is a subtype of �, representing
the maximal type of HTS. Therefore, a term λx.t is equivalent to λx:�.t.

Types of #-component instances are also represented by rooted DAG’s of
labeled units, excepting for slice projection variables. Therefore, in the subtyping

rule S-Hash, Ui
hom�−→ U ′

i
i=1...k means that there is a graph homomorphism 2 from

the unit type Ui to the unit type U ′
i , for each i ∈ {1, · · · , n}, i. e. a unit typed

as U ′
i has the slices and the same root of a unit typed as Ui.

An instantiation type has two parts, separated by �: an abstract component,
represented by the syntax variable C, and a type, representing the context ar-
gument. The typing rule T-TAbs defines that a term [X <: T1]� t represents a
configuration of a #-component of an abstract component [[X <: T1]] � T2 for
the context defined by T1, where X denotes the context parameter of the ab-
stract component, also with bound T1. By subtyping rule S-Abstract, the bound
of X may be generalized to a supertype of T1, whereas the context T1 may be
specialized to a subtype of T1. Therefore, given an abstract component repre-
sented by [[X <: T1]] � T2, configurations of #-components that complies with
it may have the form [X <: T ′

1]� t, where T ′
1 is a subtype of T1. Moreover, such

#-components may be used in a context where T ′′
1 , a subtype of T ′

1, is applied
to X . In other terms, a #-component of the form [X <: T ′

1]� t may be used in a
context where an inner component typed as [[X <: T1]]�T2� [[T ′′

1]] is required,
provided that T ′′

1 <: T ′
1 <: T1. In fact, the resolution algorithm of Section 3.2

may traverse all the possible types T ′
1 in the range from T ′′

1 to T1.

2 Mapping from a source graph to target one that respect the structure of the source,
i. e. adjacent vertices of the source are mapped to adjacent vertices of the target.

Contextual Abstraction in a Type System 99

Γi � ui : Ui
i=1...n

Γ � (
ui

i=1...n
)
:
((
Ui

i=1...n
)) l1 = l2 Γi � ui : Ui

i=1...k

Γ � l1 ���
〈
ui

i=1...k
〉
: l2 ���

〈
Ui

i=1...k
〉

(T-Base1) (T-Base2)

Γ � l : l
Γ � x :

((
Ui

i=1...n
))

label (U) = l U ∈ {U1, . . . , Un}
Γ � x.l : U

x : T ∈ Γ

Γ � x : T
(T-Base3) (T-Base4) (T-Var)

Γ, x : T1 � t : T2

Γ � λx:T1.t : T1→T2

Γ � t1 : T11→T12 Γ � t2 : T11

Γ � t1 t2 : T12

Γ � t : T ′ Γ � T ′<:T

Γ � t : T
(T-Abs) (T-App) (T-Sub)

Γ,X <: T1 � t : T2

Γ � [X <: T1]� t : [[X <: T1]]� T2 � [[T1]]

Γ � t : [[X <: T1]]� T2 � [[T1]]

Γ � t� [T1] : T2

(T-TAbs) (T-TApp)

Fig. 6. τHOC3 (Typing Relation)

4.1 Representation of Abstract Components and Instantiation
Types in τHOC3

LetC [par1 = X1 : B1,par2 = X2 : B2, · · · ,parm = Xm : Bm] be the signature
of the abstract component C. It can be represented as C ≡ [[X1 <: B1, X2 <:
B2, · · · , Xm <: Bm]] � Ubody , where B1,B2, . . . ,Bm are the τHOC3 representa-
tion of the bounds and Ubody represents the specification of the abstract compo-
nent in terms of the context variables X1, X2, . . . , Xm.

Let C

[
par1 = B

′
1,par2 = B

′
2, · · · ,parm = B

′
m

]
be a closed instantiation

type of C, represented as C �
[[
B

′
1,B

′
2, · · · ,B′

m

]]
. Moreover, let CImpl be a

#-component typed with this instantiation type. In τHOC3, it has the form
CImpl ≡ [X1 <: B′

1, X2 <: B′
2, · · · , Xm <: B′

m] � vbody , where the term vbody
represents the implementation of the #-component under the assumptions rep-
resented by B

′
1,B

′
2, · · ·B′

m. If CImpl is chosen for an inner component typed as
C

[
par1 = B

′′
1 ,par2 = B

′′
2 , · · · ,parm = B

′′
m

]
, where B

′′
i < B

′
i for i = 1, 2, · · · ,

m, it is applied to the context arguments by the term CImpl�
[
B

′′
1 ,B

′′
2 , · · · ,B′′

m

]
.

If CImpl has inner components typed by instantiation types T1,T2, . . . ,Tn, the
term vbody may be vbody ≡ ?x1:T1. (?x2:T2. (· · · . (?xn:Tn. v))), where ?x:T.t is
a resolution term. Let Ti ≡ [[X1 <: B1, . . . , Xn <: Bn]] � U �

[[
B

′′
1 , . . . ,B

′′
n

]]
be the instantiation type of the i-th inner component. The rule E-Resolution
says that Σ,Δ
?xi:Ti.t → (λxi:U.t)

(
t′ �

[
B

′′
1 , . . . ,B

′′
n

])
, where t′ represents

the #-component found by the resolution algorithm (Section 3.2) for Ti, in the
environment Δ of cataloged #-components. For this extension, it is necessary to
add Δ to the other reduction rules.

Note that the types of inner components (T1,T2, . . . ,Tn) may be defined
in terms of X1, X2, . . . , Xm. Also, Ubody is a #-component instance type, since

100 F.H. de Carvalho Junior et al.

Γ � S<:S Γ � S<:
 Γ � S<:U Γ � U<:T

Γ � S<:T

Γ � T ′
1<:T1 Γ � T ′

2<:T2

Γ � T1→T ′
2 <: T ′

1→T2

X <: T ∈ Γ

Γ � X <: T
(S-Refl) (S-Max) (S-Trans) (S-Arrow) (S-TVar)

Ui
hom�−→ U ′

i
i=1...k

((
U ′

i
i=1...k

))
<:

((
Ui

i=1...k
))

Γ � T ′
0 <: T0 Γ,X<:T � T ′

1<:T1 Γ � T ′
2 <: T2

Γ � [[X<:T ′
0]]� T ′

1 � [[T2]] <: [[X<:T0]]� T1 � [[T ′
2]]

(S-Hash) (S-Abstract)

Fig. 7. τHOC3 (Subtyping Relation)

vbody evaluates to a #-component instance if x1, x2, . . . , xn are resolved in CImpl�[
B

′′
1 ,B

′′
2 , · · · ,B′′

m

]
, i.e. Xi = B

′′
i
i=1...m

.

4.2 Progress and Preservation in HTS

In what follows, the proofs of two important theorems about τHOC3 are out-
lined. By progress, an HPE configuration must always define a well structured
#-component instance or a parallel program, since it is a well-typed term of
τHOC3. By preservation, the type of a #-component instance or parallel pro-
gram is completely defined by its HPE configuration. For brevity, since τHOC3

is defined as an extension of the typed lambda calculus with subtyping, some
results and proof fragments presented in Benjamin Pierce’s book [22] are reused
in the following proofs.

Lemma 1. Canonical Forms for Context Abstraction Terms. If v is
a value of type [[X <: T1]]� T2 � [[T1]], then v ≡ [X <: T1]� t.

Proof. By the syntax of τHOC3 (figures 3 and 4), a value may be either an
abstraction, a #-component instance, or a context abstraction. By the typing
relation, only a context abstraction of the form [X <: T1]� t may be v.

Theorem 1. Progress. Suppose t is a closed, well-typed term (i. e.
 t : T for
some T). Then either t is a value or else there is some t’ with t→ t′.

Proof. By induction on a derivation of t : T . The cases for T-Var, T-Abs, T-App,
and T-Sub come from the proof for the simply typed lambda calculus. The cases
for T-TAbs and T-Base1 are trivial, since t is a value in the rule. In the case of
T-TApp, t ≡ t1� [T1] and T ≡ T2, where Γ
 t1 : [[X <: T1]]�T2� [[T1]]. By the
induction hypothesis, t1 is a value or t1 can make a step of derivation towards t′1
(Σ
 t1 → t′1). If t1 is a value, by Lemma 1, it has the form [X <: T1]�t2, yielding
t′ ≡ [X → T1] t2. Therefore, E-TAppTAbs applies. Otherwise, it is possible to
apply E-TApp, yielding t′ ≡ t′1 � [T1].

Lemma 2. Type Substitution Preserves Typing [22]. If Γ,X <: Q,Δ

t : T and Γ
 P <: Q, then Γ, [X �−→ P]Δ
 [X �−→ P] t : [X �−→ P]T .

Contextual Abstraction in a Type System 101

Theorem 2. Preservation. if Γ
 t : T and t→ t′, then Γ
 t′ : T .

Proof. Also, by induction on a derivation of t : T . The cases for T-Var, T-
Abs, T-App, and T-Sub come from the proof for the typed lambda calculus with
subtyping. For T-TAbs and T-Base1, where t is a value, and so t does not reduce
to t′, the theorem is vacuously satisfied. For T-TApp, where t ≡ t1� [T1], t1 may
be either a value or a derivable term for which there is a t′1 such that Σ
 t1 → t′1.
In the former case, by Lemma 1, t1 ≡ [X <: T1]� t2, and T ≡ [[X <: T1]]�T �
[[T1]]. Thus, by the antecedent of T-TApp, conclude that Γ,X <: T1
 t2 :
T . Since the application of E-TAppTAbs yields [X �−→ T1] t2, it is possible to
conclude, by using the Lemma 2, that Γ
 [X �−→ T1] t2 : T . In the latter case,
by induction hypothesis, Σ
 t1 → t′1 and Γ
 t′1 : [[X <: T1]] � T � [[T1]] too,
since Γ
 t1 : [[X <: T1]] � T � [[T1]]. Therefore, by letting t′ ≡ t′1 � [T1], it is
possible to conclude that Γ
 t′ : T .

4.3 Type Safety of Inheritance Derivation of HPE Configurations

HPE supports the derivation of abstract components from other ones through
inheritance of their configurations. In the example of Section 3.1, this is used for
introducing particular restrictions of SP to the abstract component ADI, which
is common to SP andBT. Due to these additional restrictions, the #-component
ADIImpl, of ADI, is only appropriate to BT, but not to SP. For including the re-
strictions of SP, by reusing ADI, an abstract component SP ADI was derived
by inheritance from ADI, by freezing the context parameter method to SP-

Method and by adding the required inner component txinvr. From SP ADI,
a #-component SP ADIImpl is derived for attending the needs of SP.

Inheritance derivation leads to safety issues. Formally, let Cabs be an arbi-
trary abstract component, where Cabs ≡ [[X1 <: B1, X2 <: B2, · · · , Xm <:
Bm]]�Ubody . Is it safe to use a #-component of an abstract component derived
by inheritance from Cabs in the context of an inner component typed with an
instantiation type Cabs �

[[
B

′′
1 ,B

′′
2 , · · · ,B′′

m

]]
? For responding it, let CImpl ≡[

X1 <: B′
1, X2 <: B′

2, · · · , Xm <: B′
m

]
� ?i1:T1. (?i2:T2. (· · · . (?in:Tn. v))) be a

#-component of Cabs �
[[
B

′
1,B

′
2, · · · ,B′

m

]]
applied to the context of Cabs �[[

B
′′
1 ,B

′′
2 , · · · ,B′′

m

]]
, where B

′′
i <: B′

i
i=1...m, where B

′′
i <: B′

i
i=1...m

, i. e. it is

instantiated as CImpl �
[
B

′′
1 ,B

′′
2 , · · · ,B′′

m

]
. In what follows, the four inheritance

operations for deriving a configuration from other configuration in HPE are in-
troduced, followed by a proof that the abstract component represented by the
former is a subtype of the abstract component represented by the latter.

Case 1 - Adding a Context Parameter. Let C
′
abs ≡ [[X1 <: B1, X2 <:

B2, · · · , Xm <: Bm, Xm+1 <: Bm+1]]� Ubody be the abstract component inher-
ited from Cabs by adding a context parameter Xm+1 bounded by Bm+1. Note
that Xm+1 is not referred to in the body of C′

abs, which is the same body Ubody of
Cabs. Now, let C

′
Impl ≡ [X1 <: B′

1, X2 <: B′
2, · · · , Xm <: B′

m, Xm+1 <: B′
m+1]�

?i1:T1. (?i2:T2. (· · · . (?in:Tn. v))) be an arbitrary #-component derived from

102 F.H. de Carvalho Junior et al.

CImpl, typed as C′
abs�

[[
B

′
1,B

′
2, · · · ,B′

m,B′
m+1

]]
. Now, suppose C′

Impl�
[
B

′
m+1

]
,

i.e. the result of an application of C′
Impl that supplies the context parameterXm+1

with B
′
m+1, its argument in the instantiation type of C′

Impl. By E-TAppTAbs,

C′
Impl �

[
B

′
m+1

]
evaluates to [Xm+1 �−→ B

′
m+1][X1 <: B′

1, X2 <: B′
2, · · · , Xm <:

B
′
m] � ?i1:T1. (?i2:T2. (· · · . (?in:Tn. v))). Since Xm+1 is not referenced in the

right side of the substitution, it is possible to conclude that C′
Impl �

[
B

′
m+1

]
≡

CImpl. Also, by construction of HPE configurations, C′
Impl represents all the pos-

sible #-components of C′
abs, since there are no points where references to the

additional type variable Xm+1 might appear in the configurations of the #-
components of C′

abs. Therefore, it is always possible to apply a #-component of
the derived abstract component by taking the bound of the additional context
parameter as its argument in the instantiation type of the #-component.

Case 2 - Adding an Inner Component. In this case, let C
′
abs ≡ [[X1 <:

B1, X2 <: B2, · · · , Xm <: Bm]] � U ′
body be the inherited abstract component,

with an additional inner component, which change Ubody to U ′
body . Thus, a #-

component of C′
abs has the form C′

Impl ≡ [X1 <: B′
1, X2 <: B′

2, · · · , Xm <: B′
m]�

?i1:T1. (?i2:T2. (· · · . (?in:Tn. (?in+1:In+1. v
′)))). By construction, the type

U ′
body , of v′, derives from the type Ubody , of v, by adding the slices of in+1.

Therefore, let Ubody ≡ ((U1, U2, . . . , Uk)) and U ′
body ≡ ((U ′

1, U
′
2, . . . , U

′
k)). For

some i, either Ui = U ′
i or U ′

i − Ui = 〈S〉, where S is the graph of a unit of the

#-component typed as In+1. In both cases, Ui
hom�−→ U ′

i for any i. Therefore, by
S-Hash, U ′

body <: Ubody .

Case 3 - Narrowing the Bound of a Context Parameter. Let C
′
abs ≡

[[X1 <: B1, X2 <: B2, · · · , Xi <: B�
i , · · · , Xm <: Bm]] � U ′

body be the inherited
abstract component, with the bound of the context parameter Xi restricted
from Bi to B

�
i , where B

�
i <: Bi. Thus, any #-component of C′

abs is also a #-
component of Cabs, since any context argument for Xi in the instantiation type
of a #-component of C′

abs, say B
′
i, is also a subtype of Bi, since B

′
i <: B�

i <: Bi.

Case 4 - Freezing a Context Parameter. Let C
′
abs ≡ [[X1 <: B1, X2 <:

B2, · · · , Xi−1 <: Bi−1, Xi+1 <: Bi+1, · · · , Xm <: Bm]]� → U ′
body be the inher-

ited abstract component, where the context parameter Xi is freezed to the value
B

�
i , where B

�
i <: Bi, so that all the occurrences of Xi in the instantiation types

of the inner components of #-components of C′
abs are replaced by B

�
i . Using the

same argument of Case 3 , any #-component of C′
abs is a #-component of Cabs.

5 Conclusions

HTS is a type system for addressing the problem of automated discovering and
binding of parallel components tuned to the architecture of target parallel com-
puting platforms and fitting the requirements of applications. It is relevant due

Contextual Abstraction in a Type System 103

to the dissemination of cloud computing platforms that offer the performance of
heterogeneous parallel computing platforms as services, where the choice of the
best implementation of a component may be a cumbersome task, yet essential
for taking advantage of the power of the computational resources.

This paper is concerned with relevant formal properties of HTS, on top of a
calculus of overlapping composition of #-components, which show that HTS may
be implemented safely, i.e. a #-component derived from a well-formed configu-
ration always exist, it is unique and it can be discovered from a proper abstract
specification (instantiation type) and its super-types. Also, it has been shown
that operations used to derive abstract components from other ones are safe.

HTS has been implemented in HPE, following the Hash component model.
Since HPE complies with CCA, HTS might be introduced to other CBHPC
platforms, including Fractal/GCM compliant ones, since the essential differences
between CCA and Fractal/GCM platforms are well-known [20].

HTS may be also applied to the design of other kinds of programming systems,
such as usual programming languages. For instance, in an object-oriented pro-
gramming language, context parameters may be introduced to classes, leading
to a concept of class augmented with contextual abstraction, for instantiating
objects from one in a set of classes according to some specified context, possibly
taking into consideration dynamic properties of the execution environment.

References

1. Aldinucci, M., Campa, S., Danelutto, M., Vanneschi, M., Kilpatrick, P., Dazzi, P.,
Laforenza, D., Tonellotto, N.: Behavioural Skeletons in GCM: Autonomic Manage-
ment of Grid Components. In: Proceedings of the 16th Euromicro Conference on
Parallel, Distributed and Network-Based Processing (PDP 2008), pp. 54–63. IEEE
Computer Society (2008)

2. André, F., Buisson, J., Pazat, J.-L.: Dynamic Adaptation of Parallel Codes: Toward
Self-Adaptable Components for the Grid. In: Proceedings of the Workshop on
Component Models and Systems for Grid Applications (in ICS 2004), pp. 143–
156. Springer, US (June 2004)

3. Andrzejak, A., Reinefeld, A., Schintke, F., Schtt, T.: On Adaptability in Grid Sys-
tems. In: Getov, V., Laforenza, D., Reinefeld, A. (eds.) Future Generation Grids,
pp. 29–46. Springer, US (2006)

4. Antonopoulos, N., Gillam, L.: Cloud Computing: Principles, Systems and Appli-
cations. Computer Commmunications and Networks. Springer (2011)

5. Armstrong, R., Kumfert, G., McInnes, L.C., Parker, S., Allan, B., Sottile, M.,
Epperly, T., Tamara, D.: The CCA Component Model For High-Performance Sci-
entific Computing. Concurrency and Computation: Practice and Experience 18(2),
215–229 (2006)

6. Bailey, D.H., Harris, T., Shapir, W., van der Wijngaart, R., Woo, A., Yarrow, M.:
The NAS Parallel Benchmarks 2.0. Technical Report NAS-95-020, NASA Ames
Research Center (December 1995), http://www.nas.nasa.org/NAS/NPB

7. Baude, F., Caromel, D., Dalmasso, C., Danelutto, M., Getov, W., Henrio, L., Prez,
C.: GCM: A Grid Extension to Fractal for Autonomous Distributed Components.
Annals of Telecommunications 64(1), 5–24 (2009)

http://www.nas.nasa.org/NAS/NPB

104 F.H. de Carvalho Junior et al.

8. Bruneton, E., Coupaye, T., Stefani, J.B.: Recursive and Dynamic Software Com-
position with Sharing. In: European Conference on Object Oriented Programming
(ECOOP 2002). Springer (2002)

9. Carvalho Junior, F.H., Correa, R.C.: The Design of a CCA Framework with Dis-
tribution, Parallelism, and Recursive Composition. In: Workshop on Component-
Based High Performance Computing (CBHPC 2010), pp. 339–348. IEEE (2010)

10. Carvalho Junior, F.H., Correa, R.C., Lins, R.D., Silva, J.C., Araújo, G.A.: High
Level Service Connectors for Components-Based High Performance Computing.
In: Proceedings of the 19th International Symposium on Computer Architecture
and High Performance Computing, pp. 237–244. IEEE (October 2007)

11. Carvalho Junior, F.H., Lins, R.D.: Separation of Concerns for Improving Practice
of Parallel Programming. INFORMATION, An International Journal 8(5), 621–
638 (2005)

12. Carvalho Junior, F.H., Lins, R.D.: An Institutional Theory for #-Components.
Electronic Notes in Theoretical Computer Science 195, 113–132 (2008)

13. Carvalho Junior, F.H., Lins, R.D., Correa, R.C., Araújo, G.A.: Towards an Archi-
tecture for Component-Oriented Parallel Programming. Concurrency and Compu-
tation: Practice and Experience 19(5), 697–719 (2007)

14. Courtrai, L., Guidec, F., Le Sommer, N., Maheo, Y.: Resource management for
parallel adaptive components. In: Proceedings of the 2003 International Parallel
and Distributed Processing Symposium (IPDPS 2003), p. 7. IEEE (April 2003)

15. de Carvalho Junior, F.H., Rezende, C.A.: A Case Study on Expressiveness and
Performance of Component-Oriented Parallel Programming. Journal of Parallel
and Distributed Computing 73(5), 557–569 (2013)

16. Foster, I., Kesselman, C.: The Grid 2: Blueprint for a New Computing Infrastruc-
ture. M. Kauffman (2004)

17. Grama, A., Gupta, A., Karypis, J., Kumar, V.: Introduction to Parallel Computing.
Addison-Wesley (1976)

18. Hall, M.W., Gil, Y., Lucas, R.F.: Self-Configuring Applications for Heterogeneous
Systems: Program Composition and Optimization Using Cognitive Techniques.
Proceedings of the IEEE 96(5), 849–862 (2008)

19. Liu, H., Parashar, M.: Enabling self-management of component-based high-
performance scientific applications. In: Proceedings of the 14th IEEE International
Symposium on High Performance Distributed Computing (HPDC-14), pp. 59–68.
IEEE (July 2005)

20. Malawski, M., Bubak, M., Baude, F., Caromel, D., Henrio, L., Morel, M.: Inter-
operability of Grid Component Models: GCM and CCA Case Study. In: Priol, T.,
Vanneschi, M. (eds.) CoreGRID, pp. 95–105. Springer (2007)

21. Parashar, M., Li, X., Parker, S.G., Damevski, K., Khan, A., Swaminathan, A.,
Johnson, C.R.: Advanced Computational Infrastructures for Parallel/Distributed
Adaptive Applications. In: The SCIJump Framework for Parallel and Distributed
Scientific Computing. Wiley Press (2009)

22. Pierce, B.: Types and Programming Languages. The MIT Press (2002)
23. Wang, A.J.A., Qian, K.: Component-Oriented Programming. Wiley-Interscience

(2005)
24. Yoon, Y., Browne, J.C., Crocker, M., Jain, S., Mahmood, N.: Productivity and

performance through components: the ASCI Sweep3D application. Concurrency
and Computation: Practice and Experience 19(5), 721–742 (2007)

Towards a Domain-Specific Language

for Patterns-Oriented Parallel Programming

Dalvan Griebler and Luiz Gustavo Fernandes

Pontif́ıcia Universidade Católica do Rio Grande do Sul (PUCRS),
GMAP Research Group (FACIN/PPGCC), Brazil

Av. Ipiranga, 6681 - Prédio 32, 90619-900 - Porto Alegre, RS, Brazil
dalvan.griebler@acad.pucrs.br, luiz.fernandes@pucrs.br

Abstract. Pattern-oriented programming has been used in parallel code
development for many years now. During this time, several tools (mainly
frameworks and libraries) proposed the use of patterns based on pro-
gramming primitives or templates. The implementation of patterns using
those tools usually requires human expertise to correctly set up commu-
nication/synchronization among processes. In this work, we propose the
use of a Domain Specific Language to create pattern-oriented parallel
programs (DSL-POPP). This approach has the advantage of offering a
higher programming abstraction level in which communication/synchro-
nization among processes is hidden from programmers. We compensate
the reduction in programming flexibility offering the possibility to use
combined and/or nested parallel patterns (i.e., parallelism in levels), al-
lowing the design of more complex parallel applications. We conclude
this work presenting an experiment in which we develop a parallel ap-
plication exploiting combined and nested parallel patterns in order to
demonstrate the main properties of DSL-POPP.

1 Introduction

In recent years, High Performance Computing (HPC) has become a wide spread
research field which is no more restricted to highly specialized research centers.
The use of HPC is crucial to achieve significant research goals in many segments
of the modern Computer Science. In this scenario, multi-core processors are now
a mainstream approach to deliver higher performance to parallel applications
and they are commonly available in workstations and servers.

Although these architectures present a high computing power, developers still
have to acquire technical skills to take advantage of the available parallelism.
This can lead developers to deal with complex mechanisms, which in addition
may result in very specialized solutions [1]. In this sense, programmers may
prefer to stay away from parallel programming due to the required efforts to
learn how to correctly use it. For that reason, it becomes necessary to investigate
alternatives to face this complexity offering to developers different ways to create
efficient scalable parallel applications for current architectures.

In the HPC literature, many libraries and frameworks based on the pattern-
oriented approach or similar were proposed to make parallel programming easier.

A. Rauber Du Bois and P. Trinder (Eds.): SBLP 2013, LNCS 8129, pp. 105–119, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

106 D. Griebler and L.G. Fernandes

As recent successful examples, it is possible to cite FastFlow [2], Muesli [3], SkeTo
[4] and Skandium [5] (among many others that will be discussed in Section 2).
This scenario is an evidence that parallel patterns, initially known as skeletons
[6], provide a high-level abstraction to develop algorithms while taking advantage
of the benefits of parallel architectures. Thus, besides improving the productivity
of expert parallel code developers, the use of specific patterns or combinations
of them can help less experienced parallel code developers to create efficient and
scalable applications [7].

Most part of the pattern-oriented environments proposed so far were designed
for clusters and computational grids [8]. With the advance of multi-core plat-
forms, this tendency is changing. Pattern-oriented libraries and frameworks for
shared memory systems are becoming more and more necessary. In this context,
we believe that parallel patterns along with an expert code generation can guide
developers to efficiently create parallel applications for those kind of platforms.

In this paper, we intend to explore the use of patterns an their features through
a Domain-Specific Language for Patterns-Oriented Parallel Programming (DSL-
POPP) designed for multi-core platforms. By doing that, we intend to hide
from developers low level mechanisms such as load balance, flow control schemes
and synchronization operations needed to implement parallel applications using
patterns. Additionally, we want to provide a way for developers to easily combine
patterns in different levels of parallelism (nested and fused patterns). One of the
main reasons of using the DSL approach is because it allows minimal changes
in a general purpose language (such as the C language for instance, which is
familiar to many programmers). Besides, it is crucial for our goal because it
makes it easier to change code to experiment different nesting of parallel patterns.
Summarizing, the main contributions of our paper are the following:

– we introduce a Domain-Specific Language for Patterns-Oriented Parallel
Programming;

– we propose a programming model to achieve nested parallelism through dif-
ferent combinations of patterns based on routines and code blocks structures;

– we show an experimental image processing scenario in which we carry out
implementations and tests with the combination of pipeline and master/slave
patterns.

The rest of this paper is organized as follows. Section 2 presents the related
work. Section 3 discusses the Pattern-Oriented Parallel Programming paradigm
(POPP). The DSL-POPP environment is introduced in Section 4. Section 5
presents performance evaluation experiments of parallel code developed using
DSL-POPP. Finally, Section 6 concludes this work.

2 Related Work

Since the emergence of the structured programming concept with parallel skele-
tons introduced by Murray Cole [6], several libraries, frameworks and languages
employed this approach on parallel and distributed systems. Murray proposed

Towards a DSL-POPP 107

eSkel, an environment that allows skeletons constructions of parallel program-
ming using similar MPI primitives in C code [9]. More recently, the SkeTo parallel
skeleton library (a C++ library coupled with MPI) implements two-stage dy-
namic task scheduling to support multi-core clusters [4]. The nestable parallelism
pattern is not an objective, but SkeTo provides data structures (lists, trees and
matrices) implemented using templates, and parallel skeletons operations (map,
reduce, scan and several others) can be invoked on them.

Muesli is a C++ template library that uses MPI and OpenMP to support
multi-processor and multi-core architectures [3]. Contrary to SkeTo, Muesli sup-
ports nesting data and task parallel skeletons. Also, Lithium [10] and its succes-
sor Muskel [11] are skeletons libraries for clusters and both support the nestable
skeletons using the macro data-flow model. Inspired on Lithium and Muskel
frameworks, Skandium is a Java library for shared memory systems that pro-
vides task and data nested skeletons, instantiated via parametric objects [5].

FastFlow is a programming framework for shared memory systems which
implements a stack of C++ template libraries using lock-free synchronization
mechanisms [2]. However, in FastFlow, developers must implement the pattern
through framework routines as in others frameworks and libraries previously
mentioned. Differently, we propose the use of a Domain Specific Language to ab-
stract the low level parallel mechanisms necessary to implement parallel patterns,
such as load balance, control flow, tasks splitting and synchronization operations.
In DSL-POPP user interface environment, programmers develop sequential code
in code blocks inside the pattern predefined structure. Our language offers the
possibility of nesting (parallelism in levels) and combining parallel patterns.

Finally, there are research works that focus on pattern-oriented parallel lan-
guages. These languages and domain-specific languages share similar features
such as the existence of a compiler and automatic code generation. P3L is an
explicit parallel language that provides skeletons constructions to explore paral-
lelism [12]. In other words, P3L defines skeletons constructions with input/out-
put and sequential modules. More recently, Skil [13] offers a subset of C language
(high order functions, curring and polymorphic types) which should be used to
implement patterns. Skill does not offer pre-implemented patterns and does not
allow nested patterns. In contrast to those languages, we have designed DSL-
POPP to explore different combinations of patterns and levels of parallelism in
shared memory systems. Additionally, we have introduced an alternative way
to implement patterns in user level interface through routines and code blocks
directly integrated in the C language code.

3 Patterns-Oriented Parallel Programming

Parallel skeletons have been an alternative to create parallel programming in-
terfaces since the early 90s. As the name implies, they are algorithms skeletons
to develop structured parallel programs. Skeletons are similar to Software En-
gineering concept of Design Patterns [14]. Patterns became popular in parallel
programming with object-oriented programming. One of the main reasons to use

108 D. Griebler and L.G. Fernandes

parallel patterns, is because they allow the programming environment designers
to generate parallel codes freely from the parametrization of the abstractions
and from the addition of sequential code [1,7]. Also, a pattern-oriented approach
can help programmers to develop complex parallel applications since a pattern
provide the structure of the program implementation. This reduces considerably
the efforts to learn how to use parallelism techniques to take advantage from
high performance architectures [1,14].

We propose the use of POPP (Patterns-Oriented Parallel Programming)
generic model to create an interface programming environment based on the
patterns approach. This model is potentially designed to explore different lev-
els and combinations of patterns implementations. We chose to offer the POPP
model through a domain-specific language programming interface what allow us
to automatically generate parallel code. Our objective is not to create a new and
independent parallel language, but extend a general purpose language offering a
higher abstraction layer over it in which we intend to make low level parallelism
mechanisms as abstract as possible for developers.

The POPP model relies on a combination of patterns routines conceptually
defined and code blocks corresponding to the parallel pattern. Since programs
can be composed by different types of computations (routines), the parallelism
may not be expressed by a single routine. For that reason, our model allows the
inclusion of subroutines which can be used to compose patterns in a hierarchical
way offering different parallelism levels. A representation of the POPP generic
model is illustrated in Figure 1.

�������	
���

�	
��	
�����

������������

����
�����
�����

����
�����
�����

�	
��	
�����

����
�����
�����

����
�����
�����

�	
��	
�����

����
�����
�����

����
�����
�����

������������

�����
����� ����� ����� �����

Fig. 1. The POPP model

In order to illustrate how to implement a parallel pattern in the POPP model,
we describe two examples of classical parallel patterns: master/slave and pipeline
(Figure 2). In master/slave pattern, the master is responsible for sending the
computational tasks for all slaves. Then, once all tasks have been computed,
results are sent back to the master to finalize the whole computation. For this
pattern, both POPP routine and subroutines can implement their own master

Towards a DSL-POPP 109

and slaves code blocks. For instance, it is possible to have inside a slave code
block a subroutine composed of other master and slaves code blocks.

Differently, the pipeline pattern is based on a line of stages, in which each
stage performs part of the computational workload. The output of each stage is
the input of the next one [1]. The POPP model allows the creation of a pipeline
in which stages can be implemented as subroutines with their own stages. The
final composition can be represented by several pipeline stages.

�

�� �������
�

	� 	����

��

���
�	

�

	� 	����

	��������
�� 	��������
��
�����������

��	�
������
�����
��

�� �����

�� �����

	��������
��
�� �����

	��������
��

��

���
�	

�����������

�
�
���
�������	�
������
�������������
�
�������	�
��	���
��	�������
�
������
���
�	���
�������������
�
������
���
�	���
��	��������
�

���
���
�����
��

Fig. 2. Master/slave and pipeline patterns

As previously mentioned, patterns can be combined in the POPP model us-
ing main routine and subroutines combinations. We present a version of hybrid
patterns in Figure 3. In this example, the main routine uses the pipeline pattern
and two of its stage blocks parallelize their operations using the master/slave
pattern. This configuration is only an example. Others combinations of patterns
can be also implemented such as a master/slave pattern in which slaves apply
the pipeline pattern as subroutines.

�� ��

�

�� �����

�

�� �����

�	
��	
�����
����
���������

�	
��	
�����
����
���������

��

�� �����

�	
��	
�����
����������

���

�������	
��������������

��
������

����

Fig. 3. An example of combined patterns

110 D. Griebler and L.G. Fernandes

In this section we presented the abstract idea of the POPP model, which
includes different levels of patterns implementation and their combination. These
features became clearer in the next section, in which a domain-specific language
is proposed based on this programming model.

4 DSL-POPP in a Nutshell

The structure of the POPP model is generic enough to support different parallel
patterns. However, in this paper we intend to demonstrate its usability through
the implementation of master/slave and pipeline patterns on DSL-POPP. It is
important to highlight that our DSL can be extended to provide other parallel
patterns. For each new pattern, a new set of routines should be defined.

4.1 Compilation

In order to use our DSL, developers have to include our library (poppLinux.h) in
the source code and use our compiler (named popp). This library includes all the
routines, code blocks and primitives definitions. The compilation process of the
source code is depicted in Figure 4. The source-to-source code transformation be-
tween our language and C code is automatically performed by our pre-compiler
system, which is responsible for checking syntax and semantic errors. Then, the
pre-compiler systems generates the C parallel code using the Pthreads library
based on the parallel patterns used. Besides, for the source-to-source code trans-
formation, we created a Shared Memory Message Passing Interface (SMMPI)
to carry out threads communication. Finally, we use the GNU C compiler to
generate binary code for the target platform.

����������	

������
�
	��������
��������������
������������
	��������

�����������
������������
	��������

�����������
�����

�

���������
���	���
���������

����

���������������
���������������

�
���	�����	
������
�
���	��� �������

��������	�
������
���
����

�����
���������

��������������

� �����! �� "�#$�%�������
�������&�
�

���
�����

�

������
���

����
�����

Fig. 4. Overview of the DSL-POPP compilation process

4.2 Programming Interface

In DSL-POPP, language interface specification routines begin with “$” and code
blocks with “@”. The pattern routine should be declared in a function followed
by the return data type and its name. Code blocks should be used inside of the

Towards a DSL-POPP 111

pattern routine and they contain full C code. Figure 5 describes the syntax and
logical structure of DSL-POPP constructions.

As we can see in Figure 5(a) at the left side, a $PipelinePattern rou-
tine supports two code blocks: pipeline block (@Pipeline{}) and stage block
(@Stage(...){}). The pipeline block should be declared at least once and it is
responsible for coordinating the pipeline flow. Each stage block corresponds to
a stage in the pipeline and can be declared as many times as necessary inside
the pipeline code block. In stage blocks, parameters are the number of threads,
the buffer to be sent to the next stage and the buffer size.

������
�����	

��� �����	��
������

��������	�
������

����
�����	

��� �����	��
������

�����������
������������������������	

����
����������	��������

�������������
��������
	�����
�����
���
���������������
����� �!���

������"
��������
	�����
�����
���
���������������
����� �!�����������

������"
��������
	�����
�����
���
���������������
����� �!�����������

������"
���"
"

(a) Pipeline

��������

�������	

����������	��� �����	��

�������

�����	�	���

�������������

���
�������

��
���������

�����������

��������	�
��������

���
���������������

��������

��	�
�����
�������

����
�������
���
���������

�����
������#���	��$��

%

%
%

(b) Master/Slave

Fig. 5. Syntax and logical structure of the DSL-POPP

In Figure 5(b) also at the left side, we show how a $MasterSlavePattern
routine implements algorithms using master and slave blocks (@Master{} and
@Slave(...){}). The master coordinates all computation flow and starts the
slave blocks. The slave blocks must be used to obtain parallelism inside of the
master. Additionally, it is necessary to inform the number of slave threads, the
buffer to be sent to the master, the size of the buffer and the load balance policy.

4.3 Patterns Implementation

Still in Figure 5, we show how DSL-POPP organizes routines and code blocks and
implements the pattern-oriented parallelism. Basic parallel patterns such as Mas-
ter/Slave or Pipeline are structured based on data exchange through messages.
Aiming at simplifying the Pthreads code generation phase for multi-core plat-
forms, we created a Shared Memory Message Passing Interface (SMMPI) which
implements threads communication through semaphore routines. The send and
receive operations are carried out based on threads identification. For instance,
when a thread send a buffer to another thread, in reality it is using sem post

112 D. Griebler and L.G. Fernandes

to unblock the destination thread which is waiting on a sem wait to receive the
buffer and start its work. In the pipeline pattern code generation, we use SMMPI
routines to perform send and receive through pipeline stages transferring data
through the buffer defined as a parameter of the stage block.

A pipeline routine can be implemented in several ways. The example presented
at the right side of Figure 5(a) shows the classic scenario in which all stages blocks
have only one thread per stage. In this scenario, the pipeline block creates all
necessary threads and wait them all to finish their works. This procedure is
repeated transparently from the first up to the last stage block declaration. As
it is possible to notice, communication between stages is also implicit and it
happens through the buffer declared as a parameter. When stages have different
workloads, a non-linear pipeline can be implemented using more threads on the
unbalanced stage. This feature avoids significant performance losses in pipeline
implementations.

At the right side of Figure 5(b), we illustrate how DSL-POPP organizes the
Master/Slave pattern implementation. The master block creates as many threads
as defined in the slave block and it waits until all slave threads finish their works.
This is transparent for programmers, since threads creation occurs where the
slave block starts and the synchronization occurs automatically at the end of
the slave block. Besides, at the end of slave block, all slave threads send their
works back to master thread (using the slave block parameter buffer) in order to
allow it to merge all results. This communication procedure is also transparent to
developers. Finally, the implementation of the load balance policy is also hidden
from developers. In fact, slave threads receive their workloads according to the
policy informed by parameter in the slave block. The implementation of these
policies is entirely automatic generated by our pre-compiler system. Three load
balance policies are available:

– POPP LB STATIC: the workload is divided by the number of threads. The
resulting chunks are then statically assigned to slave threads as they start
their computation;

– POPP LB DYNAMIC: the workload is divided in chunks, each one containing a
number of tasks defined by the number of slave threads (finer task grain).
When a thread finishes a task, it dynamically asks for another one to the
master thread until there are no more tasks to be computed;

– POPP LB COST: the workload is divided in chunks, each one containing a num-
ber of tasks defined by the number of slave threads. Tasks are reorganized in
such a way chunks have similar computational costs. Chunks are dynamically
assigned to slave threads during execution time.

4.4 Levels of Parallelism

In the DSL-POPP, we use nested and combined patterns to achieve sub-level
parallelism and hybrid patterns combination. It is important to mention that
our implementation allows the use of nested patterns only inside slave (Mas-
ter/Slave) and stage (Pipeline) blocks, not in the master block. Figure 6 shows

Towards a DSL-POPP 113

the threads flow control graph for possible uses of nested and combined patterns
implementations for a two level parallelism.

In Figure 6(a), we illustrate the use of nested pipeline patterns. Figure 6(b)
and (d) present combination of pipeline and master/slave patterns (hybrid ver-
sions). Finally, Figure 6(c) shows how is the control flow when nested mas-
ter/slave patterns are used inside of the slave block.

�� ��

�� ��

�������	
	������
	��
�	���

����	�����
	�������	�����
	 ����	�����
	������	���	

���	���	�������	�����
	���	���	������	���	

�	������	
	������
	��
�	������������
�	���������	��

Fig. 6. Overview of thread graph in DSL-POPP

Also, it is possible to notice through an analysis of the control flows in Figure
6 what are the active threads during the execution time of a given application
(taken in account for performance evaluation measurements). Control threads
(representing the master thread) do not perform significant computation and
appear only to facilitate the comprehension of the abstract representation of the
master/slave pattern control flow. An example demonstrating the use of nested
and combined patterns over a real application is presented in the next section.

5 Experimental Evaluation

In order to carry out an experimental evaluation of DSL-POPP and its features,
we use it to parallelize an image processing application which applies a sequence
of filters in a set of input images. In this section, we start briefly describing
how we parallelize the application using DSL-POPP (Section 5.1). After, we
introduce our experimental scenario in terms of platform and set of tests (Section
5.2). Finally, we present and discuss the performance results (Section 5.3).

5.1 Application Description and Implementation

We chose an image processing application because it allows us to explore par-
allelism combining both patterns available in DSL-POPP. The input is a list
of bitmap images over which three different edge detection filters are applied
(Prewitt, Sobel and Roberts) sequentially.

114 D. Griebler and L.G. Fernandes

1#include<poppLinux . h>

2int l i s t s i z e , num th ;
3char ∗∗ l i s t b u f f e r ;

4 $MasterSlavePattern unsigned char ∗ do sobe l (unsigned char ∗ image ,

5int width , int he ight){
6 @Master{
7 unsigned char ∗ f i l t e r s o b e l =(unsigned char∗) mal loc (he ight ∗width) ;
8 @Slave (num th , f i l t e r s o b e l , he ight ∗width ,POPP LB STATIC){
9 unsigned char ∗ f i l t e r s o b e l =(unsigned char∗) mal loc (he ight ∗width) ;

10 int x , y , u , v ;

11 unsigned char image bu f f e r [3] [3] ;
12 for (y=1;y<height −1;y++)
13 for (x=1;x<width−1;x++)
14 for (v=0;v<3;v++)
15 for (u=0;u<3;u++)
16 image bu f f e r [v] [u]=image [(((y+v−1)∗width)+(x+u−1))] ;
17 f i l t e r s o b e l [((y∗width)+x)]= sobe l (image bu f f e r) ;
18 } // s l ave
19 return f i l t e r s o b e l ;
20 } //master
21}
22 $P ipe l i n ePatt e rn int main (int argc , char ∗∗ argv){
23 @Pipel ine {
24 // pre p roc e s s i ng . . .
25 @Stage (1 , f i l t e r , he ight ∗ width){
26 int width , height , row ;

27 unsigned char ∗ image , ∗ f i l t e r ;
28 for (row=0; row< l i s t s i z e ; row++){
29 get ImageS ize (l i s t b u f f e r [row] ,&width ,& he ight) ;

30 image=(unsigned char ∗) mal loc (he ight ∗width) ;

31 f i l t e r =(unsigned char ∗) mal loc (he ight ∗width) ;
32 memcpy(image , save bmp2binary (l i s t b u f f e r [row] , image , width , he ight) ,
33 width∗ he ight) ;
34 memcpy(f i l t e r , do prewi t t (image , width , he ight) , width∗ he ight) ;
35 }
36 }// stage
37 @Stage (1 , f i l t e r , he ight ∗ width){
38 int width , height , row ;

39 unsigned char ∗ f i l t e r ;
40 for (row=0; row< l i s t s i z e ; row++){
41 get ImageS ize (l i s t b u f f e r [row] , &width , &he ight) ;

42 f i l t e r = (unsigned char ∗) mal loc (he ight ∗ width) ;
43 memcpy(f i l t e r , do sobe l (f i l t e r , width , he ight) , width∗ he ight) ;
44 }
45 }// stage
46 @Stage (1 , f i l t e r , he ight ∗ width){
47 int width , height , row ;

48 unsigned char ∗ f i l t e r ;
49 for (row=0; row< l i s t s i z e ; row++){
50 get ImageS ize (l i s t b u f f e r [row] , &width , &he ight) ;

51 f i l t e r = (unsigned char ∗) mal loc (he ight ∗ width) ;
52 memcpy(f i l t e r , do robe r t s (f i l t e r , width , he ight) , width∗ he ight) ;
53 save bmp (convertName bmp2f i l ter (l i s t b u f f e r [row]) , f i l t e r , width ,
54 he ight) ;
55 }
56 }// stage
57 // pos p roc e s s i ng
58 }
59}
Listing 1.1. Overview of DSL-POPP Image Processing Algorithm Implementation

Towards a DSL-POPP 115

In Listing 1.1, we present one possible way to parallelize the application using
patterns available in DSL-POPP. Only parts of the application code are shown
in order to evaluate the use DSL-POPP key features. In this example, we im-
plemented the sequence of filter as a pipeline and each filter was individually
parallelized using master/slave pattern.

In line 4, the Sobel filter function is implemented using the master/slave pat-
tern. We do not show here, but both Prewitt and Roberts filters apply the same
master/slave pattern since the base edge detection algorithm is quite similar.
Readers can notice that the use of the master/slave routines does not require
significant changes in the sequential code. We only declare the Sobel function us-
ing master/slave syntax routines, and the filter_sobel variable (line 7) defined in
the master block receives the slave results. The double declaration of filter_sobel
is necessary because variables are private in each code block. Moreover, we used
the static load balance policy (POPP_LB_STATIC) in the slave block (line 8). In
this implementation, the outermost for-loop (line 12) will be automatically split
among the slave threads during the automatic code generation.

For the main function (line 22), a pipeline routine (lines 23 to 54) performs all
pre-processing instructions (e.g., input images list allocation and organization) in
the pipeline block and introduces the declaration of all pipelines stages (lines 25,
36 and 45). Again, no significant changes in the sequential code were necessary.
We kept the same for-loop construction for all stage blocks. The course of a single
input image through the pipeline stages is transparent for the developer since
DSL-POPP analyzes the code blocks declarations and automatically generates a
code in which the image is moved to the next stage through the buffer parameter.
Once again, all internally declared code blocks variables are private.

5.2 Tests Scenario

We created a set of different implementations of the image processing applica-
tion intending to highlight how patterns can be easily combined in different ways
using DSL-POPP. Evidently, some of the pattern combinations presented better
results than the others and many others combinations were possible. What is
important in our point of view is that DSL-POPP make it easier to create those
parallel versions offering a way to compare parallel solutions for the same prob-
lem with less development effort. The following implementations were evaluated:

– Test-1: implements just one level of parallelism using master/slave for the
image filter functions. In this scenario, we employed 3 to N slave threads;

– Test-2: achieves parallelism using pipeline in the main function and mas-
ter/slave for filter functions. Tests in this implementation were carried out
using one thread per stage combined with 1 to N slaves threads;

– Test-3.1: both main and filter functions were implemented using master/
slave. For this test, we used 3 slaves threads in the main function with 1 to
N slaves in the filter functions;

– Test-3.2: implements the same patterns routines that Test-3.1, but the main
function combines from 1 to N slaves threads and the filter functions only
execute with 3 slave threads;

116 D. Griebler and L.G. Fernandes

– Test-4: the main function is implemented using pipeline in which each stage
employs 1 to N threads;

– Test-5: just implements master/slave in the main function in which 3 to N
slaves threads are used.

Our results were obtained by computing the average execution time of 40
executions for each thread count. We fixed the number of necessary samples
using a 95% confidence interval. For our experimental evaluation, we used 40
input images of size 3000× 2550. The target architecture is composed of two Intel
Xeon E7-2850 (ten cores each) at 2.0GHz and 80GB of main memory running
Ubuntu-Linux-10.04-server-64bits. It is important to mention that experiments
with more than 20 threads were possible due to virtual nodes (hyper-threading).

5.3 Performance Results

For the performance evaluation, we calculate the speedup as well as the efficiency
through an average of 40 executions. We plotted the performance results in
Figure 7.

The experiments results show that Test-1 does not achieve acceptable per-
formance when the number of threads increases. This occurs in this scenario
because we are doing the parallelism only in the image filters and the grain
becomes too small as the number of threads grows. A better performance is
achieved in the Test-2, in which we also explore parallelism in the main function
with a pipeline routine at the same time as the filter functions with master/slave
routine. Nevertheless, Test-2 does not scale well after 15 threads.

Test-3.1, which uses nested master/slave patterns, has similar performance
to Test-2 even though the main routine in that case was implemented using
the pipeline pattern. Test 3.2 presented the best results due to a better match
between the number of active slave threads used and the static load balance
policy applied. In fact, the limitation of the slave threads to 3 in the second level
helped to avoid the computation of very fine grain tasks.

In Test-4, only the main routine was parallelized using the pipeline pattern. In
this case, as the number of threads grows, pipeline stages become multi-threaded.
Results indicate a better performance with less threads than Test-2 and Test-3.1,
but they are not better than Test-3.2 possibly due to slightly different compu-
tational costs in each pipeline stage. Finally, Test-5 which implements just a
one level master/slave pattern, presented loss of performance in some threads
configuration (12, 18 and 24) due to a larger grain that does not match well with
the static load balance policy we used.

At this point, it is important to stress out that all six implementations were
carried out with very few modifications in the original source code. The essence of
the algorithms itself was not changed, only the structure of the parallel solutions
were inserted in the code. Even for more complex hybrid implementations, the
effort to modify the code was minimum. Thus, we could test different solutions
very quickly and find one with satisfactory performance and scalability.

Towards a DSL-POPP 117

1
3
6
9

12
15
18
21
24

3 6 9 12 15 18 21 24
 0

 0.2

 0.4

 0.6

 0.8

 1

S
p

e
e

d
u

p

E
ff

ic
ie

n
c
y

Number of threads

Test-1

Efficiency Speedup Ideal

1
3
6
9

12
15
18
21
24

3 6 9 12 15 18 21 24
 0

 0.2

 0.4

 0.6

 0.8

 1

S
p

e
e

d
u

p

E
ff

ic
ie

n
c
y

Number of threads

Test-2

Efficiency Speedup Ideal

1
3
6
9

12
15
18
21
24

3 6 9 12 15 18 21 24
 0

 0.2

 0.4

 0.6

 0.8

 1

S
p

e
e

d
u

p

E
ff

ic
ie

n
c
y

Number of threads

Test-3.1

Efficiency Speedup Ideal

1
3
6
9

12
15
18
21
24

3 6 9 12 15 18 21 24
 0

 0.2

 0.4

 0.6

 0.8

 1

S
p

e
e

d
u

p

E
ff

ic
ie

n
c
y

Number of threads

Test-3.2

Efficiency Speedup Ideal

1
3
6
9

12
15
18
21
24

3 6 9 12 15 18 21 24
 0

 0.2

 0.4

 0.6

 0.8

 1

S
p

e
e

d
u

p

E
ff

ic
ie

n
c
y

Number of threads

Test-4

Efficiency Speedup Ideal

1
3
6
9

12
15
18
21
24

3 6 9 12 15 18 21 24
 0

 0.2

 0.4

 0.6

 0.8

 1

S
p

e
e

d
u

p

E
ff

ic
ie

n
c
y

Number of threads

Test-5

Efficiency Speedup Ideal

Fig. 7. DSL-POPP Results

6 Conclusions

In this paper, we proposed a Domain Specific Language for Patterns-Oriented
Parallel Programming (DSL-POPP) that automatically generates parallel code
for multi-core platforms. DSL-POPP offers primitives and programming environ-
ments to implement parallel code based on patterns with the C programming
language. The main idea is to completely hide from developers low level mech-
anisms necessary to implement flow control, threads synchronization and load
balance in parallel programs. Additionally, structured patterns may be easily
nested or combined to create more complex parallel solutions with more than
one level of parallelism.

118 D. Griebler and L.G. Fernandes

In the experimental evaluation we have shown, our automatically generated
Pthreads code proved to be capable to achieve good performances for the chosen
application. It was also possible to verify that different parallel implementations
were very easily produced with very few modifications in the same original code.
This confirms our original idea that using a DSL would allow us to increase
transparency in pattern-oriented parallel programming due to the treatment of
low level parallel mechanisms at the code generation phase.

As future works we intend to include other traditional parallel patterns to
our DSL (e.g., divide and conquer, heartbeat, map-reduce, among others). We
also consider necessary to invest more time to investigate optimized techniques
in the parallel code generation exploring memory affinity for instance.

Acknowledgments. Authors wish to thank Jean-François Méhaut and Márcio
B. Castro from the Laboratoire d’Informatique de Grenoble (LIG) for the very
useful and fruitful discussions about parallel patterns which have strongly con-
tributed to set directions for this work. Additionally, authors would like to thank
the support of FAPERGS (Fundação de Amparo à Pesquisa do Estado do Rio
Grande do Sul) and CAPES (Coordenação de Aperfeiçoamento Pessoal de Nı́vel
Superior).

References

1. Mattson, G.T., Sanders, A.B., Massingill, L.B.: Patterns for Parallel Programming.
Addison-Wesley, Boston (2005)

2. Aldinucci, M., Danelutto, M., Kilpatrick, P., Torquati, M.: FastFlow: High-Level
and Efficient Streaming on Multi-core. In: Programming Multi-Core and Many-
Core Computing Systems. Parallel and Distributed Computing, ch. 13. Wiley,
Boston (2013)

3. Ciechanowicz, P., Kuchen, H.: Enhancing Muesli’s Data Parallel Skeletons for
Multi-core Computer Architectures. In: 2010 12th IEEE International Conference
on High Performance Computing and Communications (HPCC), Melbourne, Aus-
tralia, pp. 108–113 (September 2010)

4. Karasawa, Y., Iwasaki, H.: A Parallel Skeleton Library for Multi-core Clusters. In:
International Conference on Parallel Processing (ICPP 2009), Vienna, Austria, pp.
84–91 (September 2009)

5. Leyton, M., Piquer, J.M.: Skandium: Multi-core Programming with Algorithmic
Skeletons. In: 2010 18th Euromicro International Conference on Parallel, Dis-
tributed and Network-Based Processing (PDP), Pisa, Italy, pp. 289–296 (February
2010)

6. Cole, M.: Algorithmic Skeletons: Structured Management of Parallel Computation.
MIT Press, Cambridge (1989)

7. Intel Mccool, D.M.: Structured Parallel Programming with Deterministic Patterns.
In: HotPar-2nd USENIX Workshop on Hot Topics in Parallelism, Berkeley, CA,
pp. 1–6 (June 2010)

8. González-Vélez, H., Leyton, M.: A Survey of Algorithmic Skeleton Frame-
works: High-Level Structured Parallel Programming Enablers. Softw. Pract. Ex-
per. 40(12), 1135–1160 (2010)

Towards a DSL-POPP 119

9. Benoit, A., Cole, M., Gilmore, S., Hillston, J.: Flexible Skeletal Programming with
eSkel. In: Cunha, J.C., Medeiros, P.D. (eds.) Euro-Par 2005. LNCS, vol. 3648, pp.
761–770. Springer, Heidelberg (2005)

10. Aldinucci, M., Danelutto, M., Teti, P.: An Advanced Environment Supporting
Structured Parallel Programming in Java. Future Gener. Comput. Syst. 19(5),
611–626 (2003)

11. Aldinucci, M., Danelutto, M., Kilpatrick, P.: Skeletons for Multi/Many-core Sys-
tems. In: Proc. of the Parallel Computing: From Multicores and GPU’s to Petascale
(Proc. of PARCO 2009), Lyon, France, pp. 265–272 (September 2009)

12. Bacci, B., Danelutto, M., Orlando, S., Pelagatti, S., Vanneschi, M.: P3L: A Struc-
tured High-Level Parallel Language, and its Structured Support. Concurrency:
Practice and Experience 7(3), 225–255 (1995)

13. Botorog, G.H., Kuchen, H.: Skil: An Imperative Language with Algorithmic Skele-
tons for Efficient Distributed Programming. In: Proceedings of 5th IEEE Inter-
national Symposium on High Performance Distributed Computing, Syracuse, NY,
USA, pp. 243–252 (August 1996)

14. Gamma, E., Helm, R., Jonhson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, Boston (2002)

Multiple Intermediate Structure Deforestation

by Shortcut Fusion�

Alberto Pardo1, João Paulo Fernandes2,3, and João Saraiva2

1 Instituto de Computación, Universidad de la República, Uruguay
pardo@fing.edu.uy

2 HASLab / INESC TEC, Universidade do Minho, Portugal
{jpaulo,jas}@di.uminho.pt

3 Reliable and Secure Computation Group ((Rel)ease),
Universidade da Beira Interior, Portugal

Abstract. Shortcut fusion is a well-known optimization technique for
functional programs. Its aim is to transform multi-pass algorithms into
single pass ones, achieving deforestation of the intermediate structures
that multi-pass algorithms need to construct. Shortcut fusion has already
been extended in several ways. It can be applied to monadic programs,
maintaining the global effects, and also to obtain circular and higher-
order programs. The techniques proposed so far, however, only consider
programs defined as the composition of a single producer with a single
consumer. In this paper, we analyse shortcut fusion laws to deal with
programs consisting of an arbitrary number of function compositions.

1 Introduction

Shortcut fusion [1] is an important optimization technique for functional pro-
grams. It was proposed as a technique for the elimination of intermediate data
structures generated in function compositions fc ◦ fp, where a producer fp ::a → t
builds a data structure t , which is then traversed by a consumer fc :: t → b to
produce a result. When some conditions are satisfied, we may transform these
programs into equivalent ones that do not construct the intermediate structure t .

Extended forms of shortcut fusion have also been proposed to eliminate in-
termediate structures in function compositions in which the producer and the
consumer share some additional context information. These extensions transform
compositions fc ◦ fp, where fp :: a → (t , z) and fc :: (t , z)→ b, into circular [2,3]
and higher-order [3,4] equivalent programs, and have increased the applicabil-
ity of shortcut fusion. Nevertheless, they consider programs consisting of the
composition between two functions only. As a consequence, it is not possible
to (straightforwardly) apply such techniques to programs that rely on multiple
traversal strategies, like compilers and advanced pretty-printing algorithms [5].

� This work is funded by ERDF - European Regional Development Fund through the
COMPETE Programme (operational programme for competitiveness) and by Na-
tional Funds through the FCT - Fundação para a Ciência e a Tecnologia (Portuguese
Foundation for Science and Technology) within projects FCOMP-01-0124-FEDER-
020532 and FCOMP-01-0124-FEDER-022701.

A. Rauber Du Bois and P. Trinder (Eds.): SBLP 2013, LNCS 8129, pp. 120–134, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Multiple Intermediate Structure Deforestation by Shortcut Fusion 121

The main contribution of this paper is to present generalized forms of shortcut
fusion which apply to an arbitrary number of function compositions of the form
fn◦· · ·◦f1, for n > 2. We establish sufficient conditions on each fi that guarantee
that consecutive fusion steps are applicable when following both a left-to-right
and a right-to-left strategy. By means of what we call chain laws, we show how
to obtain the intermediate fused definitions in such a way that further fusion
steps apply. The formulation of the chain laws is the result of combining two
fusion approaches: that of shortcut fusion and the one used in the formulation of
fusion laws known as acid rain [6]. Our fusion method, characterised by requiring
certain conditions on the functions involved in the compositions, differs from that
employed by warm fusion [7].

We analyse two cases of multi-traversal programs: a) the standard case where
only a data structure is passed between producer and consumer, and b) programs
where in each composition, besides a data structure, some additional information
is passed. Case b) is particularly interesting because it is the case where circular
and higher-order programs are derived by applying fusion. The type of circular
programs we derive are the natural representation of Attribute Grammars (AG)
in a lazy setting [8,9]. In the AG community, however, a multi-pass program is
usually derived from an AG (i.e., from a circular program) [10,11]. In this paper
we study and prove correctness of the opposite transformation, that is, we study
how a circular program (i.e., an AG) is derived from a multi-pass one.

Throughout the paper we will use Haskell notation, assuming a cpo semantics
in terms of pointed cpos, but without the presence of the seq function [12]. For
the sake of presentation, we will focus on definitions, laws, and examples over
the list datatype only. A generic formulation of all concepts and laws developed
in the paper, as well as their proofs, valid for a wide range of datatypes, is
presented in an extended version of the paper.

The paper is organized as follows. In Section 2 we review shortcut fusion while
in Section 3 we do so with the laws that serve for the derivation of circular and
higher-order programs. In Section 4 we analyse the problem of fusing multi-
traversal programs and present laws that give conditions for the derivation of
circular and higher-order programs in those cases. Section 5 concludes the paper.

2 Shortcut Fusion

Shortcut fusion [1] is a program transformation technique for the elimination of
intermediate data structures generated in function compositions. This technique
is a consequence of parametricity properties, known as “free theorems” [13], as-
sociated with polymorphic functions. For its application, shortcut fusion requires
the consumer to process all the elements of the intermediate data structure in
a uniform way. This condition is established by requiring that the consumer is
expressible as a fold [14], a program scheme that captures function definitions
by structural recursion. For example, for lists, fold is defined as:

fold :: (b, a → b → b)→ [a]→ b

fold (nil , cons) [] = nil

fold (nil , cons) (a : as) = cons a (fold (nil , cons) as)

122 A. Pardo, J.P. Fernandes, and J. Saraiva

This function is equivalent to the well-known foldr function [14]. It traverses the
list and replaces [] by the constant nil and the occurrences of (:) by function
cons . The pair (nil , cons) is called an algebra. We denote by inL = ([], (:)) the
algebra composed by the list constructors. For example, the function that selects
the elements of a list that satisfy a given predicate:

filter :: (a → Bool)→ [a]→ [a]

filter pr [] = []

filter pr (a : as) = if pr a then a : filter pr as else filter pr as

can be written in terms of fold as follows:

filter pr = fold (fnil , fcons) where fnil = []

fcons a r = if pr a then a : r else r

On the other hand, the producer must be a function such that the computation
that builds the output data structure consists of the repeated application of the
data type constructors. To meet this condition the producer is required to be
expressible in terms of a function, called build [1], which carries a “template” (a
polymorphic function) that abstracts the occurrences of the constructors of the
intermediate data type. In the case of lists:

build :: (∀ b . (b, a → b → b)→ c → b)→ c → [a]

build g = g inL

The polymorphic type of g ensures that it can only construct its result of type
b by using the operations of its argument algebra of type (b, a → b → b).
As a result, build returns a list that is uniformly constructed by the repeated
application of the list constructors [] and (:). For example, the function that
constructs the list of numbers between n and 1:

down :: Int → [Int]

down 0 = []

down n = n : down (n − 1)

can be written in terms of build as follows:

down = build gd where gd (nil , cons) 0 = nil

gd (nil , cons) n = cons n (gd (nil , cons) (n − 1))

The essential idea behind shortcut fusion is then to replace, in the producer,
the occurrences of the intermediate datatype’s constructors (abstracted in the
“template” of the build) by appropriate values/functions specified within the
consumer (the algebra carried by the fold). As a result, one obtains a definition
that computes the same as the original composition but without building the
intermediate data structure. This transformation is usually referred to as the
fold/build law.

Law 1 (fold/build for lists) fold (nil , cons) ◦ build g = g (nil , cons)

To see an example of application of this law, let us consider the function that
computes the factors of a number:

factors :: Int → [Int]

factors n = filter (‘isFactorOf ‘ n) (down (n ‘div ‘ 2))

Multiple Intermediate Structure Deforestation by Shortcut Fusion 123

where x ‘isFactorOf ‘ n = n ‘mod ‘ x == 0

Since filter is a fold and down a build, we can apply the law to eliminate
the intermediate list. If we define fd pr = filter pr ◦ down , then factors n =
fd (‘isFactorOf ‘ n) (n ‘div ‘ 2) and by Law 1 we obtain fd pr = gd (fnil , fcons).
Inlining we get the following recursive definition for fd pr :

fd pr 0 = []

fd pr n = if pr n then n : fd pr (n − 1) else fd pr (n − 1)

It is possible to formulate an extended form of shortcut fusion which captures
the case when the intermediate data structure is generated as part of another
structure. This extension has been fundamental for the formulation of shortcut
fusion laws for monadic programs [15,16], and for the derivation of (monadic)
circular and higher-order programs [3]. It is based on an extended form of build:

buildN :: (∀ b . (b, a → b → b)→ c → N b)→ c → N [a]

buildN g = g inL

where N represents a data structure in which the produced list is contained.
Technically, N is a functor, i.e. a type constructor N of kind � → � equipped
with a function mapN :: (a → b)→ (N a → N b), which preserves identities and
compositions: mapN id = id and mapN (f ◦ g) = mapN f ◦mapN g.

The above is a natural extension of the standard build function. In fact, build
can be obtained from buildN by considering the identity functor corresponding
to the identity type constructor: type N a = a and mapN f = f .

Based on this extended form of build an extended shortcut fusion law can be
formulated (see [15] for a proof):

Law 2 (extended fold/build) For strictness-preserving 1 N ,

mapN (fold (nil , cons)) ◦ buildN g = g (nil , cons)

To see an example consider the following composition, where filterLen is the
function that, given a list of numbers, returns a pair formed by a list containing
the positive numbers together with the length of the output list.

sumFilLen = (sum × id) ◦ filterLen
sum :: Num a ⇒ [a]→ a

sum [] = 0

sum (a : as) = a + sum as

filterLen :: Num a ⇒ [a]→ ([a], Int)

filterLen [] = ([], 0)

filterLen (x : xs) = if x > 0 then (x : ys , 1 + l) else (ys , l)

where (ys , l) = filterLen xs

where (f × g) is defined as (f × g) (x , y) = (f x , g y); id is the identity function.
To simplify the expression of sumFilLen we first observe that filterLen can be
written as a buildN with functor N a = (a, Int) and mapN f = f × id .

1 By strictness-preserving we mean that mapN preserves strict functions, i.e. if f is
strict, then so is mapN f .

124 A. Pardo, J.P. Fernandes, and J. Saraiva

filterLen = buildN gfL

where

gfL (nil , cons) [] = (nil , 0)

gfL (nil , cons) (x : xs) = if x > 0 then (cons x ys , 1 + l) else (ys , l)

where (ys , l) = gfL (nil , cons) xs

It is easy to see that sum is a fold: sum = fold (0, (+)). Then, by applying Law 2
we can deduce: sumFilLen = (fold (0, (+)) × id) ◦ buildN gfL = gfL (0, (+))),
which corresponds to the following recursive definition:

sumFilLen [] = (0, 0)

sumFilLen (x : xs) = if x > 0 then (x + s , 1 + l) else (s , l)

where (s , l) = sumFilLen xs

3 Circular and Higher-Order Programs

In this section we review the laws that make it possible to derive circular as well
as higher-order programs from function compositions that communicate through
an intermediate pair (t , z), where t is a data structure and z some additional
information. The derivation can be done both for pure and monadic programs
(see [3]), and like for shortcut fusion, it requires both consumer and producer to
be expressible in terms of certain program schemes. The consumer is required
to be a structural recursive definition that can be written as a pfold, a program
scheme which is similar to fold but that additionally takes a constant parameter
for its computation. For lists, it corresponds to the following definition:

pfold :: (z → b, a → b → z → b)→ ([a], z)→ b

pfold (hnil , hcons) ([], z) = hnil z

pfold (hnil , hcons) (a : as , z) = hcons a (pfold (hnil , hcons) (as , z)) z

The producer is required to be expressible in terms of a kind of build function,
called buildp, that returns a pair formed by a data structure and a value instead
of simply a data structure. For lists:

buildp :: (∀ b . (b, a → b → b)→ c → (b, z))→ c → ([a], z)

buildp g = g inL

Note that buildp corresponds to buildN with functor N a = (a, z) for some z .

3.1 Derivation of Circular Programs

The derivation of purely functional circular programs is stated by the following
law (see [3] for further details and a proof). To improve the understanding of
circular definitions we frame their circular arguments.

Law 3 (pfold/buildp)

pfold (hnil , hcons) (buildp g c) = v
where (v , z) = g (knil , kcons) c

knil = hnil z
kcons x r = hcons x r z

Multiple Intermediate Structure Deforestation by Shortcut Fusion 125

To see an example, let us consider addLen = addL ◦ filterLen where:

addL ([], l) = []

addL (x : xs, l) = (x + l) : addL (xs, l)

First, we express addL and filterLen in terms of pfold and buildp, respectively:

addL = pfold (hnil , hcons) where hnil l = []

hcons x r l = (x + l) : r

filterLen = buildp gfL

where gfL is the same function presented in Section 2. Then, by applying Law 3
we derive the following circular definition:

addLen xs = ys

where (ys , l) = gk xs

gk [] = ([], 0)

gk (x : xs) = if x > 0 then ((x + l) : ys , 1 + n) else (ys , n)

where (ys , n) = gk xs

Law 3 can be generalized similarly to extended shortcut fusion. The general-
ization works on an extended form of buildp and represents the case where the
intermediate pair is produced within another structure given by a functor N .

buildpN :: (∀ b . (b, a → b → b)→ c → N (b, z))→ c → N ([a], z)

buildpN g = g inL

Observe that buildpN = buildM for M a = N (a, z).
For the formulation of the new law it is necessary to assume that functor N

possesses an associated polymorphic function εN ::N a → a that projects a value
of type a from a structure of type N a. A free theorem [13] associated with the
type of εN states that f ◦ εN = εN ◦mapN f , for every f .

The desired generalization of Law 3 is as follows. Let f $ x = f x .

Law 4 (pfold/buildpN) Let (N , εN) be a strictness-preserving.

pfold (hnil , hcons) ◦ εN ◦ buildpN g $ c = v
where (v , z) = εN (g (knil , kcons) c)

knil = hnil z
kcons x r = hcons x r z

3.2 Derivation of Higher-Order Programs

Starting from the same kind of compositions used to derive circular programs it
is possible to derive, by alternative laws, higher-order programs [3]. Higher-order
programs are sometimes preferred over circular ones as they are not restricted
to a lazy evaluation setting and their running performance is often better than
that of their circular equivalents.

The transformation into higher-order programs is based on the fact that ev-
ery pfold can be expressed in terms of a higher-order fold. For example, given

126 A. Pardo, J.P. Fernandes, and J. Saraiva

pfold (hnil , hcons) :: ([a], z)→ b, with hnil :: z → b and hcons :: a → b → z → b,
we can write it as a fold of type [a]→ z → b:

pfold (hnil , hcons) (xs , z) = fold (knil , kcons) xs z

where knil = λz → hnil z :: z → b and kcons x r = λz → hcons x (r z) z ::
a → (z → b) → (z → b). With this relationship at hand we can state the
following law, which is the instance to our context of a more general program
transformation technique called lambda abstraction [17].

Law 5 (h-o pfold/buildp) For left-strict hcons,2

pfold (hnil , hcons) (buildp g c) = f z
where (f , z) = g (knil , kcons) c

knil = λz → hnil z
kcons x r = λz → hcons x (r z) z

Like in Law 3, g (knil , kcons) returns a pair, but now composed by a function
of type z → b and a value of type z . The final result then corresponds to the
application of the function to that value.

To see an example of the use of this law, let us consider again the composition
addLen = addL ◦ filterLen. By applying Law 5 we get the following definition:

addLen xs = f l

where (f , l) = gk xs

gk [] = (λl → [], 0)

gk (x : xs) = if x > 0 then (λl → (x + l) : f ′ l , 1 + l ′) else (f ′, l ′)
where (f ′, l ′) = gk xs

The following is a generalization of the previous law.

Law 6 (h-o pfold/buildpN) Let (N , εN) be a strictness-preserving functor.

pfold (hnil , hcons) ◦ εN ◦ buildpN g $ c = f z
where (f , z) = εN (g (knil , kcons) c)

knil = λz → hnil z
kcons x r = λz → hcons x (r z) z

4 Multiple Intermediate Structure Deforestation

In this section we analyse how can we deal with a sequence of compositions
fn ◦ · · · ◦ f1, for n > 2. We start with the analysis of the standard case in
which a single data structure is generated in each composition. Our aim is to
look at the conditions the functions fi need to satisfy in order to be possible
to derive a monolithic definition from such a composition. We then turn to
the analysis of situations in which the intermediate data structures are passed
between functions inside a pair. As we saw in Section 3, compositions of this
kind give rise to circular and higher-order definitions.

2 By left-strict we mean strict on the first argument, that is, hcons (⊥, z) = ⊥.

Multiple Intermediate Structure Deforestation by Shortcut Fusion 127

4.1 Standard Case

Let us suppose that in every composition fi+1 ◦ fi only an intermediate data
structure is passed between the functions. To derive a monolithic definition from
the whole sequence fn ◦ · · · ◦ f1 the involved functions need to satisfy certain
conditions. Clearly, f1 needs to be a producer while fn a consumer. Functions
f2, . . . , fn−1 are more interesting since they all need to be both consumers and
producers in order to be possible to fuse them with their neighbour functions.

Suppose, for example, that we want to test whether a number is perfect. A
number is said to be perfect when it is equal to the sum of its factors:

perfect n = sumFactors n == n

sumFactors n = sum (factors n)

Notice that two intermediate lists are generated by sumFactors : one by factors
and the other in the composition of sum with factors . If we want to eliminate
those data structures the essential expression to fuse is sum ◦filter pr ◦down . As
shown in Section 2, down is a producer. On the other hand, sum is a consumer
as it can be written as a fold. Concerning filter pr , it is a consumer, but it can
also be a producer maintaining its formulation as a fold, appealing to the notion
of an algebra transformer, traditionally used in the context of fusion laws known
as acid rain [6]. Similar to the “template” of a build, a transformer makes it
possible to abstract the occurrences of the constructors of the data structure
produced as result from the body of a fold, or which is the same, from the
operations of the algebra carried by a fold. In the case of filter pr , we can write:

filter pr = fold (τ inL)

where τ (nil , cons) = (nil , λa r → if pr a then cons a r else r)

The algebra transformer τ :: ∀ b . (b, a → b → b) → (b, a → b → b) simply
abstracts the list constructors from the algebra ([], λa r → if pr a then a :
r else r) of the fold for filter pr by replacing its occurrences by the components
of an arbitrary algebra (nil , cons). As mentioned above, transformers are useful
in the context of acid rain laws because they permit to specify producers given by
folds. The following is an acid rain law with a transformer between list algebras.

Law 7 (fold-fold fusion for lists)

τ :: ∀ b . (b, a → b → b)→ (b, a′ → b → b)
⇒

fold (nil , cons) ◦ fold (τ inL) = fold (τ (nil , cons))

Acid rain laws can be expressed in terms of shortcut fusion [18]. For example,
Law 7 can be seen as a particular case of Law 1. In fact, by defining gfold k =
fold (τ k) it follows that fold (τ inL) = build gfold .

Returning to the composition sum ◦filter pr ◦down , there are various ways in
which fusion can proceed in this case. One way is to proceed from left-to-right
by first fusing sum with filter pr , and then fusing the result with down . For
fusing sum ◦ filter pr we can apply Law 7, obtaining as result fold (τ (0, (+))).
Fusing this fold with down by Law 1 we obtain gd (τ (0, (+))) as final result.

128 A. Pardo, J.P. Fernandes, and J. Saraiva

An equivalent alternative is to proceed from right-to-left by first fusing filter pr
with down and then fusing the result with sum. Fusion of filter pr ◦down is per-
formed by applying Law 1, obtaining gd (τ inL) as result; this coincides with the
function fd pr shown in Section 2. If we now want to fuse sum with gd (τ inL)
then we first need to rewrite this function as a build. It is in such a situation that
a new law, that we call chain law, comes into play. It states conditions under
which the composition of a consumer with a producer, such that the consumer
happens to be also a producer, can be fused resulting in a function that can
be directly expressed as a producer. The key idea of this law is the appropriate
combination of the fusion approaches represented by shortcut fusion and acid
rain. We present the case of the chain law for an algebra transformer with same
type as in Law 7.

Law 8 (chain law for lists)

τ :: ∀ b . (b, a → b → b)→ (b, a′ → b → b)
⇒

fold (τ inL) ◦ build g = build (g ◦ τ)

Applying this law we have that filter pr ◦ down = build (gd ◦ τ), which can be
directly fused with sum, obtaining gd (τ (0, (+))) as before. To see its recursive
definition, let us define sfd pr = gd (τ (0, (+))). Inlining,

sfd pr 0 = 0

sfd pr n = if pr n then n + sfd pr (n − 1) else sfd pr (n − 1)

It is then natural to state a chain law associated with the extension of build.

Law 9 (extended chain law) For strictness-preserving N ,

τ :: ∀ b . (b, a → b → b)→ (b, a′ → b → b)
⇒

mapN (fold (τ inL)) ◦ buildN g = buildN (g ◦ τ)

The next law describes a more general situation where the transformer τ
returns an algebra whose carrier is the result of applying a functor W to the
carrier of the input algebra. Law 9 is then the special case when W is the
identity functor. By NW we denote the composition of functors N and W , that
is, NW a = N (W a) and mapNW f = mapN (mapW f).

Law 10 Let W be a functor. For strictness-preserving N ,

τ :: ∀ b . (b, a → b → b)→ (W b, a′ →W b →W b)
⇒

mapN (fold (τ inL)) ◦ buildN g = buildNW (g ◦ τ)

4.2 Derivation of Programs with Multiple Circularities

We now analyse laws that make it possible the derivation of programs with
multiple circularities. We consider that the sequence of compositions fn ◦ · · · ◦ f1

Multiple Intermediate Structure Deforestation by Shortcut Fusion 129

is such that a pair (ti, zi) of a data structure ti and a value zi is generated in
each composition. Like before, f1 needs to be a producer, fn a consumer, whereas
f2, . . . , fn−1 need to be simultaneously consumers and producers. Therefore, in
this case the sequence of compositions is of the form pfold ◦ · · · ◦ pfold ◦ buildp.

Like in the standard case, we want to analyse the transformation in both
directions: from left-to-right and right-to-left. We will see that in this case there
are significant differences between the transformation in each direction, not in
the result, but in the complexity of the laws that need to be applied.

Right-to-Left Transformation. Following a similar approach to the one used
for the standard case, when the transformation proceeds from right to left it
is necessary to state sufficient conditions that permit us to establish when the
composition of a pfold with a buildp is again a buildp. Interestingly, the resulting
definition would be not only a producer (a buildp) that can be fused with the
next pfold in the sequence, but by Law 3 it would be also a circular program that
internally computes a pair (v, z) formed by the result of the program (v) and
the circular argument (z). Therefore, by successively fusing the compositions
in the sequence from right to left we finally obtain a program with multiple
circular arguments, one for each fused composition. During this process, we
incrementally introduce a new circular argument at every fusion step without
affecting the circular arguments previously introduced.

At the i-th step, the calculated circular program internally computes a nested
product of the form ((. . . (vi, zi), . . .), z1), where vi is the value returned by that
program and z1, . . . , zi are the circular arguments introduced so far. As a conse-
quence of this, at each step it is necessary to employ an extended shortcut fusion
law because the pair (ti, zi) to be consumed by the next pfold is generated within
the structure formed by the nested product. Thus, we will be handling extensions
with functors of the form N a = ((. . . (a, zj), . . .), z1).

Therefore, to deal with this process appropriately we need to state a chain
law in the sense of Law 9 but now associated with the composition of a pfold
with an extended buildp. Given a transformer σ :: ∀ b . (b, a → b → b) →
(z → W b, a′ → W b → z → W b), where W is a functor and, for each
algebra k , σ k = (σ1 k , σ2 k), it is possible to derive an algebra transformer:
τ ::∀ b . (b, a → b → b)→ (W b, a′ →W b →W b) such that τ k = (τ1 k , τ2 k)
with τ1 k = σ1 k z and τ2 k x r = σ2 k x r z , for a fixed z . Such a σ is used in
the next law to represent a case when the consumer, given by a pfold, is also a
producer. In fact, observe that the pfold in the law has type ([a′], z)→ ([a], y).

Law 11 (chain rule) Let (N , εN) be a strictness-preserving functor, and
M a = N (a, z). Let W a = (a, y), for some type y. Let σ k = (σ1 k , σ2 k).

σ :: ∀ b . (b, a → b → b)→ (z →W b, a′ →W b → z →W b)
⇒

pfold (σ inL) ◦ εN ◦ buildpN g $ c = p
where (p, z) = εN (buildpM (g ◦ τ) c)

τ k = (τ1 k , τ2 k)
τ1 k = σ1 k z
τ2 k x r = σ2 k x r z

130 A. Pardo, J.P. Fernandes, and J. Saraiva

Example 1. Consider the following program that given a set of points in a plane
returns the maximum distance between the points located above the average
height and the highest point below the average height. We assume that the
height of all points is non-negative.

type Point = (Float ,Float)

type Height = Float

type Distance = Float

distance = maxDistance ◦ takePoints ◦ avrgHeight 0 0

avrgHeight :: Height → Integer → [Point]→ ([Point],Height)

avrgHeight h l [] = ([], h / fromInteger l)

avrgHeight h l ((x , y) : ps) = let (ps ′, avH) = avrgHeight (y + h) (1 + l) ps

in ((x , y) : ps ′, avH)

takePoints :: ([Point],Height)→ ([Point],Point)

takePoints ([], avH) = ([], (0, 0))

takePoints ((x , y) : ps , avH) = let (ps ′, hp) = takePoints (ps , avH)

in if y > avH then ((x , y) : ps ′, hp)
else (ps ′, if y > snd hp then (x , y) else hp)

maxDistance :: ([Point],Point)→ Distance

maxDistance ([], hp) = 0

maxDistance ((x , y) : ps , hp@(hx , hy))

= sqrt ((x − hx)2 + (y − hy)2) ‘max ‘maxDistance (ps , hp)

To apply the rules, first we need to express these functions in terms of the
corresponding program schemes.

avrgHeight = buildp gavrgH

where gavrgH (nil , cons) h l [] = (nil , h / fromInteger l)

gavrgH (nil , cons) h l ((x , y) : ps)

= let (ps ′, avH) = gavrgH (nil , cons) (y + h) (1 + l) ps

in (cons (x , y) ps ′, avH)

takePoints = pfold (tnil , tcons)

where tnil avH = ([], (0, 0))

tcons (x , y) r avH = let (ps , hp) = r

in if y > avH then ((x , y) : ps , hp)

else (ps , if y > snd hp then (x , y) else hp)

maxDistance = pfold (hnil , hcons)

where hnil hp = 0

hcons (x , y) r hp@(hx , hy) = sqrt ((x − hx)2 + (y − hy)2) ‘max ‘ r

Since (tnil , tcons) can be expressed as σ inL, where σ is a transformer:

σ (nil , cons) = (λavH → (nil , (0, 0))

, λ(x , y) r avH →
let (ps , hp) = r

Multiple Intermediate Structure Deforestation by Shortcut Fusion 131

in if y > avH then (cons (x , y) ps , hp)

else (ps , if y > snd hp then (x , y) else hp))

our program corresponds to the following composition:

distance = pfold (hnil , hcons) ◦ pfold (σ inL) ◦ buildp gavrgH 0 0

The transformation from right to left essentially proceeds by first applying
Law 11 and then Law 4. The program that is finally obtained is the following:

distance inp = v

where (v , u) = w

(w , z) = gk 0 0 inp

gk h l [] = ((0, (0, 0)), h / fromInteger l)

gk h l ((x , y) : ps) =

let (ps ′, avH) = gk (y + h) (1 + l) ps

in (let (qs , hp) = ps ′

in if y > z

then (sqrt ((x − fst u)2 + (y − snd u)2) ‘max ‘ qs , hp)

else (qs , if y > snd hp then (x , y) else hp), avH)

Left-to-right Transformation. When the transformation is in left to right
order we worry about the opposite situation. Except for the last step, at each
intermediate stage of the transformation process we are interested in that the
definition that results from a fusion step is a consumer. If that is the case then
it is guaranteed that we can successively apply fusion until cover all function
compositions. It is then necessary to state sufficient conditions to establish when
the composition of two pfolds is again a pfold.

The following acid rain law is inspired in fold-fold fusion (Law 7).

Law 12 (pfold-pfold fusion)

σ :: ∀ b . (b, a → b → b)→ (z → b, a′ → b → z → b)
⇒

pfold (hnil , hcons) (pfold (σ inL) c) = v
where (v , z) = pfold (σ (knil , kcons)) c

knil = hnil z
kcons x r = hcons x r z

Like fold-fold fusion, this law can also be formulated in terms of shortcut
fusion. By defining gpfold k = pfold (σ k), it follows that pfold (σ inL) =
buildp gpfold . Then, by Law 3 we obtain the same result.

Observe that, unlike the right to left transformation, now we do not need to
worry about any data structure (a nested pair) inside which fusion is performed.
A nested pair is in fact created, but on the result side of the consumers that are
successively calculated. It is interesting to see how the nested pair that appears
in the final circular program is incrementally generated in each transformation.
In the left-to-right transformation the nested pair is generated from inside to
outside, i.e. the pair generated in each fusion step contains the previous existing

132 A. Pardo, J.P. Fernandes, and J. Saraiva

pair, whereas in the right-to-left transformation the nested pair is generated from
outside to inside.

Returning to the example of function distance, the transformation from left
to right essentially proceeds by simply applying Law 12 and then Law 3. The
program that is finally obtained is of course the same.

4.3 Derivation of Higher-Order Programs

During the transformation to a higher-order program we will deal again with
a nested structure. Instead of a nested pair we will incrementally construct a
structure of type (z1 → (z2 → (· · · → (zi → a, zi) · · ·), z2), z1) where the zs are
the types of the context parameters that are passed in the successive compo-
sitions. So, a structure of this type is a pair (p1, z1) composed by a function
p1, which returns a pair (p2, z2) such that p2 is a function that returns again a
pair, and so on. Associated to each of these structures we can define a functor
N a = (z1 → (z2 → (· · · → (zi → a, zi) · · ·), z2), z1) whose projection function
εN ::N a → a is given by iterated function application: εN (p1, z1) = pi zi where
(pj , zj) = pj−1 zj−1, j = 2, i.

Like for circular programs, we will see differences in the process of derivation
of a a higher-order program when we transform a sequence of compositions
fn ◦ · · · ◦ f1 from right to left and left to right. Again one of the differences is
the order in which the nested structure is generated.

Right-to-Left Transformation. For the transformation in this direction we
need to consider again the situation in which the consumer (a pfold) composed
with a producer (a buildp) is again a buildp, The situation is similar to the one
faced with Law 11 with the only difference that now we are in the context of
a higher-order program derivation. Given a transformer σ :: ∀ b . (b, a → b →
b) → (z → W b, a′ → W b → z → W b), where W is a functor and, for each
algebra k , σ k = (σ1 k , σ2 k), it is possible to derive an algebra transformer:
τ ::∀ b . (b, a → b → b)→ (z →W b, a′ → (z →W b)→ (z →W b)) such that
τ k = (τ1 k , τ2 k) with τ1 k = λz → σ1 k z and τ2 k x r = λz → σ2 k x (r z) z .
Observe that the pfold in the next law has type ([a′], z)→ ([a], y).

Law 13 (h-o chain rule) Let (N , εN) be a strictness-preserving functor and
M a = N (a, z). Let W a = (a, y), for some type y. Let σ k = (σ1 k , σ2 k).

σ :: ∀ b . (b, a → b → b)→ (z →W b, a′ →W b → z →W b)
⇒

pfold (σ inL) ◦ εN ◦ buildpN g $ c = f z
where (f , z) = εN (buildpM (g ◦ τ) c)

τ k = (τ1 k , τ2 k)
τ1 k = λz → σ1 k z
τ2 k x r = λz → σ2 k x (r z) z

The higher-order program derivation in right to left order applied to distance
essentially proceeds by first applying Law 13 and then Law 6. As result we obtain
the following higher-order program:

Multiple Intermediate Structure Deforestation by Shortcut Fusion 133

distance inp = f u

where (f , u) = g z

(g, z) = gk 0 0 inp

gk h l [] = (λz → (λu → 0, (0, 0)), h / fromInteger l)

gk h l ((x , y) : ps) =

let (ps ′, avH) = gk (y + h) (1 + l) ps

in (λz →
let (qs , hp) = ps ′ z
in if y > z

then (λu → sqrt ((x − fst u)2 + (y − snd u)2) ‘max ‘ (qs u), hp)

else (λu → qs u, if y > snd hp then (x , y) else hp), avH)

Left-to-Right Transformation. For the transformation in this other direction
we proceed similarly as we did for circular programs. The same considerations
hold in this case. The calculation of the successive consumers from left to right
is performed using the following acid rain law:

Law 14 (h-o pfold-pfold fusion)

σ :: ∀ b . (b, a → b → b)→ (z → b, a′ → b → z → b)
⇒

pfold (hnil , hcons) (pfold (σ inL) c) = f z
where (f , z) = pfold (σ (knil , kcons)) c

knil = λz → hnil z
kcons x r = λz → hcons x (r z) z

This law can also be formulated in terms of shortcut fusion. By defining
gpfold k = pfold (σ k), we have that pfold (σ inL) = buildp gpfold . Then, by
Law 5 we obtain the same result.

Concerning the example of function distance, the higher-order program deriva-
tion from left to right essentially proceeds by applying Law 14 and then Law 5.

5 Conclusions

In this paper, we have presented an approach, based on shortcut fusion, to
achieve deforestation in an arbitrary number of function compositions. Our
work generalizes standard shortcut fusion [1], circular shortcut fusion [3] and
higher-order shortcut fusion [3]. The derivation of circular programs is strongly
associated with attribute grammar research [10,11], and we expect our work
to clarify even further their similar nature. The derivation of higher-order pro-
grams is motivated by efficiency. Indeed, as the programs we consider here are of
the same kind as the ones we have benchmarked in [19], we expect the derived
higher-order programs to be significantly more efficient when compared to their
multiple traversal and circular counterparts.

Our approach is calculational and establishes sufficient conditions for fusion
to proceed. For now, we have not focused on implementation details, that we

134 A. Pardo, J.P. Fernandes, and J. Saraiva

are considering to present in an extended version of this paper as well as fur-
ther demonstrational examples that have not been included here due to space
limitations.

References

1. Gill, A., Launchbury, J., Peyton Jones, S.: A short cut to deforestation. In: Func-
tional Programming Languages and Computer Architecture. ACM (1993)

2. Bird, R.: Using circular programs to eliminate multiple traversals of data. Acta
Informatica 21, 239–250 (1984)

3. Pardo, A., Fernandes, J.P., Saraiva, J.: Shortcut fusion rules for the derivation
of circular and higher-order programs. Higher-Order and Symbolic Computa-
tion 24(1-2), 115–149 (2011)

4. Voigtländer, J.: Semantics and pragmatics of new shortcut fusion rules. In: Gar-
rigue, J., Hermenegildo, M.V. (eds.) FLOPS 2008. LNCS, vol. 4989, pp. 163–179.
Springer, Heidelberg (2008)

5. Swierstra, D., Chitil, O.: Linear, bounded, functional pretty-printing. Journal of
Functional Programming 19(1), 1–16 (2009)

6. Onoue, Y., Hu, Z., Iwasaki, H., Takeichi, M.: A Calculational Fusion System HYLO.
In: IFIP TC 2 Working Conference on Algorithmic Languages and Calculi, pp. 76–
106. Chapman & Hall (1997)

7. Launchbury, J., Sheard, T.: Warm fusion: Deriving build-catas from recursive def-
initions. In: Funct. Prog. Lang. and Computer Architecture. ACM (1995)

8. Johnsson, T.: Attribute grammars as a functional programming paradigm. In:
Kahn, G. (ed.) FPCA 1987. LNCS, vol. 274, pp. 154–173. Springer, Heidelberg
(1987)

9. de Moor, O., Backhouse, K., Swierstra, S.D.: First-class attribute grammars. In-
formatica (Slovenia) 24(3) (2000)

10. Fernandes, J.P., Saraiva, J.: Tools and Libraries to Model and Manipulate Circular
Programs. In: Workshop on Partial Eval. and Program Manipulation. ACM (2007)

11. Fernandes, J.P., Saraiva, J., Seidel, D., Voigtländer, J.: Strictification of circular
programs. In: Workshop on Partial Eval. and Program Manipulation. ACM (2011)

12. Johann, P., Voigtländer, J.: Free theorems in the presence of seq. In: Symposium
on Principles of Programming Languages, pp. 99–110. ACM (2004)

13. Wadler, P.: Theorems for free! In: Functional Programming Languages and Com-
puter Architecture. ACM (1989)

14. Bird, R., de Moor, O.: Algebra of Programming. Prentice-Hall Inernational Series
in Computer Science, vol. 100. Prentice-Hall (1997)

15. Manzino, C., Pardo, A.: Shortcut Fusion of Monadic Programs. Journal of Univer-
sal Computer Science 14(21), 3431–3446 (2008)

16. Ghani, N., Johann, P.: Short cut fusion for effects. In: TFP 2008. Trends in Func-
tional Programming, vol. 9, pp. 113–128. Intellect (2009)

17. Pettorossi, A., Skowron, A.: The lambda abstraction strategy for program deriva-
tion. Fundamenta Informaticae 12(4), 541–561 (1989)

18. Takano, A., Meijer, E.: Shortcut deforestation in calculational form. In: Functional
Programming Languages and Computer Architecture, pp. 306–313. ACM (1995)

19. Fernandes, J.P.: Desing, Implementation and Calculation of Circular Programs.
PhD thesis, Dept. of Informatics, Univ. of Minho, Portugal (2009)

Zipper-Based Attribute Grammars

and Their Extensions�

Pedro Martins1, João Paulo Fernandes1,2, and João Saraiva1

1 High-Assurance Software Laboratory (HASLAB/INESC TEC),
Universidade do Minho, Portugal

2 Reliable and Secure Computation Group ((Rel)ease),
Universidade da Beira Interior, Portugal
{prmartins,jpaulo,jas}@di.uminho.pt

Abstract. Attribute grammars are a suitable formalism to express com-
plex software language analysis and manipulation algorithms, which rely
on multiple traversals of the underlying syntax tree. Recently, Attribute
Grammars have been extended with mechanisms such as references and
high-order and circular attributes. Such extensions provide a powerful
modular mechanism and allow the specification of complex fix-point com-
putations. This paper defines an elegant and simple, zipper-based embed-
ding of attribute grammars and their extensions as first class citizens. In
this setting, language specifications are defined as a set of independent,
off-the-shelf components that can easily be composed into a powerful,
executable language processor. Several real examples of language speci-
fication and processing programs have been implemented in this setting.

1 Introduction

Attribute Grammars (AGs) [1] are a well-known and convenient formalism not
only for specifying the semantic analysis phase of a compiler but also to model
complex multiple traversal algorithms. Indeed, AGs have been used not only
to specify real programming languages, like for example Haskell [2], but also to
specify powerful pretty printing algorithms [3], deforestation techniques [4] and
powerful type systems [5], for example.

All these attribute grammars specify complex and large algorithms that rely
on multiple traversals over large tree-like data structures. To express these algo-
rithms in regular programming languages is difficult because they rely in complex
recursive patterns, and, most importantly, because there are dependencies be-
tween values computed in one traversal and used in following ones. In such cases,
an explicit data structure has to be used to glue different traversal functions. In
an imperative setting those values are stored in the tree nodes (which work as a
gluing data structure), while in a declarative setting such data structures have to

� This work is funded by ERDF - European Regional Development Fund through the
COMPETE Programme (operational programme for competitiveness) and by Na-
tional Funds through the FCT - Fundação para a Ciência e a Tecnologia (Portuguese
Foundation for Science and Technology) within projects FCOMP-01-0124-FEDER-
020532 and FCOMP-01-0124-FEDER-022701.

A. Rauber Du Bois and P. Trinder (Eds.): SBLP 2013, LNCS 8129, pp. 135–149, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

136 P. Martins, J.P. Fernandes, and J. Saraiva

be defined and constructed. In an AG setting, the programmer does not have to
concern himself on scheduling traversals, nor on defining gluing data structures.

Recent research in attribute grammars is working in two main directions.
Firstly, AG-based systems are supporting new extensions to the standard AG
formalism that improve the AG expressiveness. Higher-order AGs (HOAGs) [6,
7] provide a modular extension to AGs. Reference AGs (RAGs) [8] allow the
definition of references to remote parts of the tree, and, thus, extending the
traditional tree-based algorithms to graphs. Finally, Circular AGs (CAGs) allow
the definition of fix-point based algorithms. AG systems like Silver [9], JastAdd
[10], and Kiama [11] all support such extensions. Secondly, attribute grammars
are embedded in regular programming languages and AG fragments are first-
class citizens: they can be analyzed, reused and compiled independently.

First class AGs provide: i) a full component-based approach to AGs where a
language is specified/implemented as a set of reusable off-the-shelf components,
and ii) semantic-based modularity, while traditional AG specifications use a (re-
strict) syntax modular approach. Moreover, by using an embedding approach
there is no need to construct a large AG (software) system to process, analyse
and execute AG specifications: first class AGs reuse for free the mechanisms
provided by the host language as much as possible, while increasing abstraction
on the host language. Although this option may also entail some disadvantages,
e.g. error messages relating to complex features of the host language instead of
specificities of the embedded language, the fact is that an entire infrastructure,
including libraries and language extensions, is readily available at a minimum
cost. Also, the support and evolution of such infrastructure is not a concern.

This paper presents a novel technique combining these two AG advances.
First, we propose a concise embedding of AGs in Haskell. This embedding

relies on the extremely simple mechanism of functional zippers. Zippers were
originally conceived by Huet [12] to represent a tree together with a subtree
that is the focus of attention, where that focus may move within the tree. By
providing access to any element of a tree, zippers are very convenient in our
setting: attributes may be defined by accessing other attributes in other nodes.
Moreover, they do not rely on any advanced feature of Haskell. Thus, our em-
bedding can be straightforwardly re-used in any other functional environment.

Second, we extend our embedding with the main AG extensions proposed to
the AG formalism. In fact, we present the first embedding of HOAGs, RAGs and
CAGs as first class attribute grammars. By this we are able to express powerful
algorithms as the composition of AG reusable components. An approach that
we have been using, e.g., in developing techniques for a language processor to
implement bidirectional AG specifications and to construct a software portal.

2 Motivation

In this section we introduce the Desk language, that was proposed in [13],
and that we will use as our running example throughout the paper. This lan-
guage is small enough to be completely defined here while still holding central

Zipper-Based Attribute Grammars and Their Extensions 137

characteristics of real programming languages, such as mandatory but unique
declaration of all name entities that are used. The Desk language allows the
definition of simple arithmetic expressions whose single operator is addition and
that uses globally scoped variables. A concrete sentence in this language defines
the sum of variables x and y with the value 1, where x and y are set to 2 and 3,
respectively:

PRINT x + y + 1 WHERE x = 2, y = 3

Our goal here is similar to the one of [13]: we want to define a mapping from
Desk sentences to assembly code for a simple machine with one register only. For
the sentence above, we want to transform it into the following assembly program:

{ LOAD 2 (the value of x); ADD 3 (the value of y); ADD 1; PRINT 0; HALT 0 }
Implementing this transformation introduces typical language processing chal-

lenges such as lexical and syntactical analysis, name analysis through symbol
table management, verification of static conditions, right-to-left processing and
interpretation and code generation. Since declaration of entities may come after
their usage, a traditional approach to solve this problem relies on complex, multi-
ple traversal algorithms. In his original paper [13], Paaki proposed to implement
this mapping using an AG with the following set of attributes:

code - synthesized target code

name - synthesized name of a constant

value - synthesized value of a constant or a number

ok - synthesized attribute that indicates correcteness

envs - synthesized environment (symbol table)

envi - inherited environment (symbol table)

Attributes envs and envi both have the form of a list with (name, value)

pairs representing a symbol table. Attribute code is the actual meaning of the
grammar, i.e., the final result of processing a sentence, and it has the form of
a list of pairs (instruction, value). An important thing to notice is that an
incorrect Desk phrase also yields a meaning. For example,

PRINT z WHERE x = 2, y = 3

produces the resulting code (i.e., has the following meaning):

{ HALT 0; PRINT 0; HALT 0 }

Next, we present the implementation of the Desk AG, as proposed in [13]:

(p1) Prog -> PRINT Exp Cons

{ Prog.code = if Cons.ok then Exp.code + (PRINT, 0) + (HALT, 0)

else (HALT, 0)

, Exp.envi = Cons.envs }
(p2) Exp1 -> Exp2 ’+’ Fact

{ Exp1.code = if Fact.ok then Exp2.code + (ADD, Fact.value)

else (HALT, 0)

, Exp2.envi = Exp1.envi

, Fact.envi = Exp1.envi }
(p3) Exp -> Fact

{ Exp.code = if Fact.ok then (LOAD, Fact.value) else (HALT, 0)

, Fact.envi = Exp.envi }

138 P. Martins, J.P. Fernandes, and J. Saraiva

(p4) Fact -> Name

{ Fact.ok = isin (Name.name, Fact.envi)

, Fact.value = getvalue (Name.name, Fact.envi) }
(p5) Fact -> Number

{ Fact.ok = true, Fact.value = Number.value }
(p6) Name -> Id

{ Name.name = Id.name }
(p7) Cons -> empty

{ Cons.ok = true, Cons.envs = () }
(p8) Cons -> WHERE DefList

{ Cons.ok = DefList.ok, Cons.envs = DefList.envs }
(p9) DefList1 -> DefList2 ’,’ Def

{ DefList1.ok = DefList2.ok and not isin (Def.name, DefList2.envs)

, DefList1.envs = DefList2.envs + (Def.name, Def.value) }
(p10) DefList -> Def

{ DefList.ok = true, DefList.envs = (Def.name, Def.value) }
(p11) Def -> Name ’=’ Number

{ Def.name = Name.name, Def.value = Name.value }

A definition (p n) production {semantic rules} is used to associate concrete
semantics (using semantic rules to define attribute values) to the syntax (de-
fined by context-free grammar productions) of a language. In a production, when
the same non-terminal symbol occurs more than once, each occurrence is denoted
by a subscript (starting from 1 and counting left to right).

In this particular case, it is assumed that the values of attributes name and
value are externally provided, e.g., by a lexical analyzer. Also, we use construc-
tions if then else, and and not assuming their standard interpretation; + is used
for list consing, isin to check wether a value is contained within a symbol table
and getvalue to extract a value from a symbol table, returning 0 if it does not
exist1. Conventional constant functions are also used, such as the integer 0, the
Boolean true and the empty list ().

3 Zipper-Based Attribute Grammars

In this section we show how we can implement Desk as an AG embedded in
Haskell relying on the concept of functional zippers, that we start by revising.

3.1 Functional Zippers

In our work we have used the generic zipper library of [14]. It works for both
homogeneous and heterogeneous datatypes, and data-types for which an instance
of the Data and Typeable type classes [15] are available can be traversed.

In order to illustrate how we may use zippers, we consider the following Haskell
data-type straightforwardly obtain from the syntax of the Desk language.

1 The traditional definition of AGs only permits semantic rules of the form X.a =

f(...), forcing the use of identity functions for constants. For clarity and simplicity,
we allow their direct usage in attribute definitions.

Zipper-Based Attribute Grammars and Their Extensions 139

data Root = Root Prog

data Prog = PRINT Exp Cons

data Exp = Add Exp Fact | Fact Fact

data Fact = Name Name | Number String

data Name = Id Constant

data Cons = EmptyCons | WHERE DefList

data DefList = Comma DefList Def | Def Def

data Def = Equal Name Value

type Constant = String

type Value = Int

type SymbolTable = [(String,String)]

We may use this data-type to represent PRINT x + y + 1 WHERE x = 2, y = 3 as
the following program:

exp = Add (Add (Fact (Name (Id "x")))

(Name (Id "y")))

(Number 1)

deflst = WHERE (Comma (Def (Equal (Id "y") 5))

(Equal (Id "x") 3))

program = PRINT exp deflst

In order to navigate on program, we start by wrapping it up using the library-
provided function toZipper :: Data a => a -> Zipper a:

program’ = toZipper (Root program)

We end up with an aggregate data structure which is easy to traverse and
update. For example, we may move the focus of attention on program’ from the
topmost node to the exp node as follows:2

exp’ = (getHole . down . down) program’

The library function down goes down to the leftmost (immediate) child of a
node whereas function getHole extracts the node under focus from a zipper.

3.2 Desk as an Embedded Attribute Grammar

On top of the zipper library of [14], we have implemented several simple com-
binators that facilitate the embedding of attribute grammars. In particular, we
have defined: (.$) :: Zipper a -> Int -> Zipper a for accessing any child of a
structure given by its index starting in 1; parent :: Zipper a -> Zipper a to
move the focus to the parent of a concrete node, and, to check whether the
current location is a sibling of a tree node, (.|) :: Zipper a -> Int -> Bool.

We may now define each attribute of the Desk attribute grammar. For syn-
thesizing the name of a constant, as defined in the semantics of production (p6)

and (part of) production (p11) we define an attribute name as follows3.

2 For totality, the results of functions down :: Zipper a -> Maybe (Zipper a) and

getHole :: Zipper a -> Maybe b are within Maybe. As the analysis of their results

is provided by our combinators, we simplify the example by abstracting this analysis.
3 Function constructor exposes the type of the node under focus, and function lexeme

simulates a standard lexer, and both can be automatically generated.

140 P. Martins, J.P. Fernandes, and J. Saraiva

name :: Zipper Root -> String

name ag = case (constructor ag) of "Id" -> lexeme ag

"Equal" -> name (ag.$1)

where Zipper Root is the type of an instance of Root embedded inside the Zipper.
The purpose of the attributes envs and envi is, respectively, to compute and to

appropriately pass around an environment mapping constant names to values in
accordance with the bindings in DefList. For a node being a Prog, the inherited
environment envi is given by the synthesized environment envs of its Cons child,
as defined in (p1). For any other node, envi is accessed in its parent node:

envi :: Zipper Root -> SymbolTable

envi ag = case (constructor ag) of "PRINT" -> envs (ag.$2)

otherwise -> envi (parent ag)

Attribute envi is copied from the root node where it is computed to any other
node. There is usually a primitive that allows the programmer to define this
type of attributes without having to specify them throughout the grammar: in
Silver [9], for example, this is called autocopy. Our solution relies on Haskell ’s
case/otherwise construction to implement a similar feature.

The synthesized environment envs goes down a sentence in search for the
constants defined in it. When one such definition is found, a pair (c, v), where c

is the constant name and v the value being set for it, is added to the environment:

envs :: Zipper Root -> SymbolTable

envs ag = case (constructor ag) of

"EmptyCons" -> []

"WHERE" -> envs (ag.$1)

"Comma" -> (name (ag.$2), value (ag.$2)) : envs (ag.$1)

"Def" -> [(name (ag.$1), value (ag.$1))]

The value of a constant or a number is given by attribute value as follows:

value :: Zipper Root -> String

value ag = case (constructor ag) of

"Name" -> getValue (name (ag.$1)) (envi ag)

"Number" -> lexeme ag

"Equal" -> lexeme ag

The value of a constant Name c occurring in the Expression part of a sentence
must be searched for in the environment, which is precisely what getValue does.
The value of Number v or the constant definition Equal c v is simply v.

The attribute ok checks if a variable is defined once and only once:

ok :: Zipper Root -> Bool

ok ag = case (constructor ag) of

"Name" -> isIn (name (ag.$1)) (envi ag)

"Number" -> True

"EmptyCons" -> True

"WHERE" -> ok (ag.$1)

"Comma" -> ok (ag.$1) && not isIn (name (ag.$2)) (envs (ag.$1))

"Def" -> True

The synthesized attribute code reuses the defined attributes to generate code.

Zipper-Based Attribute Grammars and Their Extensions 141

code :: Zipper Root -> String

code ag = case (constructor ag) of

"Root" -> code (ag.$1)

"PRINT" -> if ok (ag.$2)

then code (ag.$1) ++ "PRINT, 0" ++ "HALT, 0"

else "HALT, 0"

"Add" -> if (ok (ag.$2))

then code (ag.$1) ++ "ADD, " ++ value (ag.$2)

else "HALT, 0"

"Fact" -> if (ok (ag.$1))

then "LOAD, " ++ value (ag.$1)

else "HALT, 0"

In this section, we have embedded the Desk analysis as an AG in Haskell. Our
solution is simple and elegant, easy to implement, to analyze and to extend.

A difference between our embedding and the traditional definition of AGs is
that in the former, an attribute is defined as a semantic function on tree nodes,
while in the latter the programmer defines on one production exactly how many
and how attributes are computed. Nevertheless, we argue that this difference
does not impose increasing implementation costs as the main advantages of the
attribute grammar setting still hold: attributes are modular, their implemen-
tation can be sectioned by sites in the tree and as we will see inter-attribute
definitions work exactly the same way. What is more, our embedding might pro-
vide an easier setting for debugging as the entire definition of one attribute is
localized in one semantic function. Furthermore, we believe that the individual
attribute definitions in our embedding can straightforwardly be understood and
derived from their traditional definition on an attribute grammar system, as can
be observed comparing the attribute definitions in the previous section with the
ones in this section.

A traditional advantage of the embedding of domain-specific languages in a
host language is the use of target language features as native. In our case, this
applies, e.g., to the Haskell functions && for Boolean conjunction, not for Boolean
negation and ++ for list concatenation, whereas on specific AG systems the set
of functions is usually limited and pre-defined. Also, regarding distribution of
language features for dynamical load and separate compilation, it is posible to
divide an AG in modules that, e.g., may contain contain data types (representing
the grammar) and functions (representing the attributes).

4 Zipper-Based Attribute Grammar Extensions

After showing first class attribute grammars embedded in a zipper framework,
we present the embedding of three well known AG extensions.

4.1 Referenced Attribute Grammars

Referenced Attribute Grammars [8] allow references to arbitrary nodes in the
tree, and attributes attached to those nodes to be accessed via the referenced

142 P. Martins, J.P. Fernandes, and J. Saraiva

attributes. Because RAGs allow nodes to reference any node in the tree (not
only their children), they allow the expression of graph-based algorithms.

In the original Desk AG, the inherited attribute envi is used to collect and
pass context information to the expression part of a sentence. However, if this
language evolves to allow, e.g., type definitions, then a complete re-write of the
symbol table with the respective attributes and semantics may be needed. By
using RAGs, the symbol table is promoted to contain references to locations in
the tree. As a result, if the definition part evolves, then the attribute references
still point to the evolved tree, and changes are much easier to carry.

In our embedding, references are represented by zippers whose focus points
to relevant tree locations. This implies changes on the symbol table’s data type,
its construction and the lookup semantic function that uses it:

type SymbolTable = [(String, Zipper Root)]

envs :: Zipper Root -> SymbolTable

envs ag = case (constructor ag) of

"EmptyCons" -> []

"WHERE" -> envs (ag.$1)

"Comma" -> envs (ag.$1) ++ [(name (ag.$2), ag.$2)]

"Def" -> [(name (ag.$1), ag.$1)]

isIn :: String -> SymbolTable -> Bool

isIn _ [] = False

isIn name ((a,b):xs) = if (name == a) then True else isIn name xs

getValue :: String -> SymbolTable -> Bool

getValue name ((a,b):xs) = if (name == a) then (value b)

else (getValue name xs)

This definition is very similar to the AG in Section 3, with the main differ-
ence being the fact that, since the symbol table is composed by references, the
semantic function getValue has to use the attribute value to extract the actual
assigned values, where it only had to return information contained in the list.
This is the general approach in RAGs.

4.2 Higher-Order Attribute Grammars

Higher-order attribute grammars [6] are an important extension of AGs because
they allow both tree changes during attribute evaluation, and the definition of
any (first-order) recursive functions as AG computations. Moreover, they also
provide a component-based (modular) approach to AG specifications [7].

In our running example the functions getValue and isIn are semantically
expressed, contrary to the AG, while on a HOAG setting those computations
are promoted to higher-order attributes.

We start by creating a new data type for the symbol table:

data Rootho = Rootho SymbolTable

data SymbolTable = NilST | ConsST Tuple SymbolTable

type Tuple = (String, String)

Zipper-Based Attribute Grammars and Their Extensions 143

The symbol table becomes a tree-based structure with clear constructors and
names for tree nodes. Having defined these data types, we only need to express
the lookup operations as attribute computations.

isIn :: String -> Zipper Rootho -> Bool

isIn name ag = case (constructorho ag) of

"Rootho" -> isIn name (ag.$1)

"NilST" -> False

"ConsST" -> isIn name (ag.$1) || isIn name (ag.$2)

"Tuple" -> lexemeho z == name

getValue :: String -> Zipper Rootho -> String

getValue name ag = case (constructorho ag) of

"Rootho" -> getValue (ag.$1)

"ConsST" -> if (lexemeho (ag.$1) == name)

then (lexemeho (ag.$1))

else (getValue name (ag.$2))

Having modelled the two lookup functions, we now need to focus on the part
of the specification where those functions are called. Instead of a function call,
in a HOAG setting we need to instantiate the higher-order tree as a zipper, as
shown next (we include the relevant productions only):

value :: Zipper Root -> String

value ag = case (constructor ag) of

"Name" -> getValue (name ag.$1) (toZipper (Rootho (envi ag)))

ok :: Zipper Root -> String

ok ag = case (constructor ag) of

"Name" -> isIn (name ag.$1) (toZipper (Rootho (envi ag)))

"Comma" -> (ok ag.$1) && not

isIn (name ag.$2) (toZipper (Rootho (envs ag.$1)))

Like in standard HOAG specifications, as supported by LRC [16], a call to a
semantic function (in a classical AG) is transformed into a higher-order tree/at-
tribute. In our embedding the function toZipper is used to model this.

4.3 Circular Attribute Grammars

HOAGs allow expressing first-order computations but several algorithms, such
as type inference, rely on fix-point computations. In order to express these algo-
rithms in a AG setting, we need to consider Circular Attribute Grammars [17].

As an example, lets imagine the revised version of Desk as considered by [13],
where assignments can be symbolical and their order is not relevant:

PRINT x + y + 1 WHERE x = y, z = 1, y = z

To process this Desk expression, we need a fixed-point evaluation strategy. The
general idea is to start with a bottom value, ⊥, and compute approximations of
the final result until it is not changed anymore, that is, the least fixed point is
reached: x = ⊥; x = f(x); x = f(f(x));

144 P. Martins, J.P. Fernandes, and J. Saraiva

To guarantee the termination of this computation, it must be possible to
test the equality of the result (with ⊥ being its smallest value). With this, the
sequence x = ⊥; x = f(x); x = f(f(x)); ... will return the final result, in the
form f(f(...f(⊥)...)).

Of course, this solution might produce an infinite loop in cases such as:

PRINT x + y + 1 WHERE x = y, y = x

While this is undesired, this assignment is actually impossible to solve (be-
sidesm it corresponds to an invalid Desk phrase).

Next, we present the Haskell function that implements this definition:

fixed-point :: Eq a => (a -> a) -> a -> a

fixed-point f s | s == next = s

| otherwise = fixed-point f next

where next = f s

This is a standard Haskell solution, that takes as argument f, an input s and
applies the function indefinitely until it can not perform more changes to the
input, i.e., until f(s) == s. It is easy to imagine in Desk a call such as fixed-point
solver symbol-table, where solver solves as much assignments as possible in
one traverse, and is applied until no more assignments can be resolved. Such
improvement to Desk would successfully update the original implementation of
the language to solve a new class of circular dependencies. Despite successful,
this solution is not preferable since it forces standard semantic approaches and
we loose part of the expressive power of AGs. Therefore, our approach is to
define a new attribute, isSolved, that terminates the fixed-point computation.
This is a more desirable way of controlling the fixed-point process since we are
not constrained to function equality and we can do so in an AG fashion, by
modularly creating definitions per tree node, as shown next.

isSolved :: Zipper Rootho -> Bool

isSolved ag = case (constructorho ag) of

"Rootho" -> auxIsSolved (ag.$1)

otherwise -> isSolved (parent ag)

auxIsSolved :: Zipper Rootho -> Bool

auxIsSolved ag = case (constructorho ag) of

"Rootho" -> auxIsSolved (ag.$1)

"ConsST" -> (auxIsSolved ag.$1) &&

(auxIsSolved ag.$2)

"NilST" -> True

"TupleInt" -> True

"TupleString" -> False

The attribute isSolved exists only to ensure that this test is performed on the
whole HOAG, and not only on a subpart of it. Therefore, it goes all the way to
the top where it calls another attribute, auxIsSolved. The attribute auxIsSolved

goes through the tree and checks if any of the position contains an assignment
to another variable. If it does, the symbol table is not ”complete”, i.e., there are
assignments still left to solve.

Zipper-Based Attribute Grammars and Their Extensions 145

Secondly, to make the example more interesting, we shall implement this using
a high-order AG. HOAG is being constantly calculated until a certain condition
is met (remember, in the traditional fixed-point approach, this condition would
be that two subsequent computations produce the same output). It is a good idea
to use an HOAG because, as we have seen in Section 4.2, this type of grammars
are much more easier to handle, to manage and to reason about.

Next, we present the attributes responsible for solving as much assignments
as possible of the high-order symbol table in one traverse:

solve :: Zipper Rootho -> Zipper Rootho
solve ag = case (constructorho ag) of

"Rootho" -> solve (ag.$1)

"NilST" -> NilST

"ConsST" -> ConsST (check ag.$1) (solve ag.$2)

check :: Zipper Rootho -> Bool

check ag = case (constructorho ag) of

"TupleInt" -> lexemeho ag

"TupleString" -> substitute (solvedSymbols ag)

(lexemeho ag)

The attribute solve goes recursively through the tree and calls the attribute
check on every tree node. If this node contains an assignment to a number, check
does not do anything. On the other hand, if the assignment is to a variable,
check uses a supporting semantic function, substitute, that takes as argument
the unresolved assignment and a list of all the resolved assignments that exist in
the symbol table and sees if any of this information can be used. The attribute
that creates the list of resolved assignments is presented next.

solvedSymbols :: Zipper Rootho -> [(String, Int)]

solvedSymbols ag = case (constructorho ag) of

"Rootho" -> auxSolvedSymbols (ag.$1)

otherwise -> solvedSymbols (parent ag)

auxSolvedSymbols :: Zipper Rootho -> [(String, Int)]

auxSolvedSymbols ag = case (constructorho ag) of

"ConsST" -> auxSolvedSymbols (ag.$1) ++

auxSolvedSymbols (ag.$2)

"NilST" -> []

"TupleInt" -> [(lexeme z, lexeme z)]

"TupleString" -> []

With all the necessary attributes implemented, we only have to define the
attribute that applies this fixed-point strategy on the HOAG. As stated earlier,
the idea of this fixed-point computation is to indefinitely apply a computation
(solve) until a stop condition is reached (isSolved).

146 P. Martins, J.P. Fernandes, and J. Saraiva

fixed-point ag = case (constructorho ag) of

"Rootho" -> if (isSolved ag) then ag

else fixed-point (toZipper (Rootho (solve ag.$1)))

otherwise -> fixed-point (parent ag)

This way, we solved the cyclic dependencies imposed by a new version of Desk
without loosing the modularity and expressiveness of AGs in our embedding.
What is left to do is to call this fixed-point attribute immediately after the
symbol table is created, namely in the original attribute envi.

5 Related Work

In this paper, we have proposed a zippers-based embedding of attribute gram-
mars in a functional language. The implementations we obtain are modular and
do not rely on laziness. We believe that our approach is the first that deals
with arbitrary tree structures while being applicable in both lazy and strict set-
tings. Furthermore, we have been able to implement in our environment all the
standard examples that have been proposed in the attribute grammar literature.
This is the case of repmin [18], HTML table formatting [7], and smart parentesis,
an illustrative example of [9], that are available from the first author’s webpage
and that we will include in an extended version of the paper.

Moreover, the navigation via a generic zipper that we envison here has ap-
plications in other domains: i) our setting is being used to create combinator
languages for process management [19] which themselves are fundamental to a
platform for open source software analysis and certification [20, 21]; and ii), the
setting that we propose was applied on a prototype for bidirectional transfor-
mations applied to programming environments for scientific computing.

Below we survey only works most closely related to ours: works in the realm
of functional languages and attribute grammar embeddings.

Zipper-based approaches. Uustalu and Vene have shown how to embed at-
tribute computations using comonadic structures, where each tree node is paired
with its attribute values [22]. This approach is notable for its use of a zipper as
in our work. However, it appears that this zipper is not generic and must be
instantiated for each tree structure. Laziness is used to avoid static scheduling.
Moreover, their example is restricted to a grammar with a single non-terminal
and extension to arbitrary grammars is speculative.

Badouel et al. define attribute evaluation as zipper transformers [23]. While
their encoding is simpler than that of Uustalu and Vene, they also use laziness
as a key aspect and the zipper representation is similarly not generic. This is
also the case of [24], that also requires laziness and forces the programmer to be
aware of a cyclic representation of zippers.

Yakushev et al. describe a fixed point method for defining operations on mu-
tually recursive data types, with which they build a generic zipper [25]. Their
approach is to translate data structures into a generic representation on which
traversals and updates can be performed, then to translate back. Even though
their zipper is generic, the implementation is more complex than ours and incurs

Zipper-Based Attribute Grammars and Their Extensions 147

the extra overhead of translation. It also uses more advanced features of Haskell
such as type families and rank-2 types.

Non-zipper-based approaches. Circular programs have been used in the past to
straightforwardly implement AGs in a lazy functional language [26, 27]. These
works, in contrast to our own, rely on the target language to be lazy, and their
goal is not to embed AGs: instead they show that there exists a direct corre-
spondence between an attribute grammar and a circular program.

Regarding other notable embeddings of AGs in functional languages [28–30],
they do not offer the modern AG extensions that we provided, with the exception
of [30] that uses macros to allow the definition of higher-order attributes. Also,
these embeddings are not based on zippers, rely on laziness and use extensible
records [28] or heterogeneous collections [29, 30]. The use of heterogeneous lists in
the second of these approaches replaces the use in the first approach of extensible
records, which are no longer supported by the main Haskell compilers. In our
framework, attributes do not need to be collected in a data structure at all: they
are regular functions upon which correctness checks are statically performed by
the compiler. The result is a simpler and more modular embedding. On the other
hand, the use of these data structures ensures that an attribute is computed
only once, being then updated to a data structure and later found there when
necessary. In order to guarantee such a claim in our setting we need to rely on
memoization strategies, often costly in terms of performance.

Our embedding does not require the programmer to explicitly combine differ-
ent attributes nor does it require combination of the semantic rules for a partic-
ular node in the syntax tree, as is the case in the work of Viera et al. [29, 30].
In this sense, our implementation requires less effort from the programmer.

The Kiama library embeds attribute grammars in Scala [11]. This embedding
is not purely functional, but uses generic ’parent’ and similar operations to access
the structure, instead of having more traditional inherited attribute definitions.

In general, when designing a Domain Specific Language (DSL), it is often
the case that “syntax is not quite right” [31]. With this observation, the author
claims that DSLs must be as close to the language being embedded as possible.
Our DSL for AGs closely resembles custom AG languages, so we have the nota-
tional power without incurring the implementation cost of a custom language.

6 Conclusions and Future Work

In this paper we have presented the first embedding of modern AG extensions
using a concise and elegant zipper-based implementation. We have presented how
reference, higher-order and circular attribute grammars can be expressed as first
class AGs in this setting. As a result, complex multiple traversal algorithms can
be expressed in this setting in an off-the-shelf set of reusable components.

We have presented our embedding in the Haskell programming language, de-
spite not relying on any advanced feature of Haskell (namely on lazy evaluation).
Thus, similar concise embeddings can be defined in other declarative languages.

148 P. Martins, J.P. Fernandes, and J. Saraiva

As we have shown both by the example presented and by the ones available
online, our simple embedding provides the same expressiveness of modern, large
and more complex attribute grammar based systems.

As part of our future research, we plan to: i) improve attribute definition by
referencing non-terminals instead of (numeric) positions on the right-hand side
of productions; and ii) wherever possible, benchmark our embedding against
other AG embeddings and systems.

References

1. Knuth, D.: Semantics of Context-free Languages. Mathematical Systems The-
ory 2(2) (June 1968); Correction: Mathematical Systems Theory 5(1) (March 1971)

2. Dijkstra, A., Fokker, J., Swierstra, S.D.: The architecture of the utrecht haskell
compiler. In: Weirich, S. (ed.) Haskell, pp. 93–104. ACM (2009)

3. Swierstra, D., Azero, P., Saraiva, J.: Designing and Implementing Combinator
Languages. In: Swierstra, S.D., Oliveira, J.N. (eds.) AFP 1998. LNCS, vol. 1608,
pp. 150–206. Springer, Heidelberg (1999)

4. Fernandes, J.P., Saraiva, J.: Tools and Libraries to Model and Manipulate Circular
Programs. In: Proceedings of the ACM SIGPLAN 2007 Symposium on Partial
Evaluation and Program Manipulation, PEPM 2007, pp. 102–111. ACM Press
(2007)

5. Middelkoop, A., Dijkstra, A., Swierstra, S.D.: Iterative type inference with at-
tribute grammars. In: Visser, E., Järvi, J. (eds.) GPCE, pp. 43–52. ACM (2010)

6. Vogt, H.H., Swierstra, S.D., Kuiper, M.F.: Higher order attribute grammars. SIG-
PLAN Not. 24(7), 131–145 (1989)

7. Saraiva, J., Swierstra, S.D.: Generating spreadsheet-like tools from strong attribute
grammars. In: Pfenning, F., Macko, M. (eds.) GPCE 2003. LNCS, vol. 2830, pp.
307–323. Springer, Heidelberg (2003)

8. Magnusson, E., Hedin, G.: Circular reference attributed grammars - their evalua-
tion and applications. Sci. Comput. Program. 68(1), 21–37 (2007)

9. Van Wyk, E., Bodin, D., Gao, J., Krishnan, L.: Silver: an extensible attribute
grammar system. Electron. Notes Theor. Comput. Sci. 203(2), 103–116 (2008)

10. Ekman, T., Hedin, G.: The jastadd extensible java compiler. SIGPLAN
Not. 42(10), 1–18 (2007)

11. Sloane, A.M., Kats, L.C.L., Visser, E.: A pure object-oriented embedding of at-
tribute grammars. Electron. Notes Theor. Comput. Sci. 253(7), 205–219 (2010)

12. Huet, G.: The zipper. Journal of Functional Programming 7(5), 549–554 (1997)
13. Paakki, J.: Attribute grammar paradigms a high-level methodology in language

implementation. ACM Comput. Surv. 27(2), 196–255 (1995)
14. Adams, M.D.: Scrap your zippers: a generic zipper for heterogeneous types. In:

Proceedings of the 6th ACM SIGPLAN Workshop on Generic Programming, WGP
2010, pp. 13–24. ACM, New York (2010)

15. Lämmel, R., Jones, S.P.: Scrap your boilerplate: a practical design pattern for
generic programming. In: Procs. of the 2003 ACM SIGPLAN Inter. WorkShop
on Types in Language Design and Implementation, TLDI 2003, pp. 26–37. ACM
(2003)

16. Kuiper, M., Saraiva, J.: Lrc - A Generator for Incremental Language-Oriented
Tools. In: Koskimies, K. (ed.) CC 1998. LNCS, vol. 1383, pp. 298–301. Springer,
Heidelberg (1998)

Zipper-Based Attribute Grammars and Their Extensions 149

17. Magnusson, E., Hedin, G.: Circular reference attributed grammars - their evalua-
tion and applications. Sci. Comput. Program. 68(1), 21–37 (2007)

18. Bird, R.: Using circular programs to eliminate multiple traversals of data. Acta
Informatica 21, 239–250 (1984)

19. Martins, P., Fernandes, J.P., Saraiva, J.: A purely functional combinator language
for software quality assessment. In: Symposium on Languages, Applications and
Technologies, SLATE 2012. OASICS, vol. 21, pp. 51–69. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik (2012)

20. Martins, P., Fernandes, J.P., Saraiva, J.: A web portal for the certification of open
source software. In: 6th International Workshop on Foundations and Techniques for
Open Source Software Certification, OPENCERT 2012. LNCS (2012) (to appear)

21. Martins, P., Carvalho, N., Fernandes, J.P., Almeida, J.J., Saraiva, J.: A frame-
work for modular and customizable software analysis. In: Murgante, B., Misra, S.,
Carlini, M., Torre, C.M., Nguyen, H.-Q., Taniar, D., Apduhan, B.O., Gervasi, O.
(eds.) ICCSA 2013, Part II. LNCS, vol. 7972, pp. 443–458. Springer, Heidelberg
(2013)

22. Uustalu, T., Vene, V.: Comonadic functional attribute evaluation. In: Trends in
Functional Programming, vol. (10), pp. 145–162. Intellect Books (2005)

23. Badouel, E., Fotsing, B., Tchougong, R.: Yet another implementation of attribute
evaluation. Research Report RR-6315, INRIA (2007)

24. Badouel, E., Fotsing, B., Tchougong, R.: Attribute grammars as recursion schemes
over cyclic representations of zippers. Electronic Notes Theory Computer Sci-
ence 229(5), 39–56 (2011)

25. Yakushev, A.R., Holdermans, S., Löh, A., Jeuring, J.: Generic programming with
fixed points for mutually recursive datatypes. In: Procs. of the 14th ACM SIG-
PLAN International Conference on Functional Programming, pp. 233–244 (2009)

26. Johnsson, T.: Attribute grammars as a functional programming paradigm. In:
Kahn, G. (ed.) Functional Programming Languages and Computer Architecture.
LNCS, vol. 274, pp. 154–173. Springer, Heidelberg (1987)

27. Kuiper, M., Swierstra, D.: Using attribute grammars to derive efficient functional
programs. In: Computing Science in the Netherlands (November 1987)

28. de Moor, O., Backhouse, K., Swierstra, S.D.: First-class attribute grammars. In-
formatica (Slovenia) 24(3) (2000)

29. Viera, M., Swierstra, D., Swierstra, W.: Attribute Grammars Fly First-class: how
to do Aspect Oriented Programming in Haskell. In: Procs. of the 14th ACM SIG-
PLAN Int. Conf. on Functional Programming, ICFP 2009, pp. 245–256 (2009)

30. Viera, M.: First Class Syntax, Semantics, and Their Composition. PhD thesis,
Utrecht University, The Netherlands (2013)

31. Siek, J.: General purpose languages should be metalanguages. In: Procs. of ACM
SIGPLAN Workshop on Partial Evaluation and Program Manipulation, pp. 3–4
(2010)

Author Index

Al-Alam, Wagner Guimarães 90

Barbosa, Lúıs S. 75

Calegaro, Bruno Crestani 61

de Carvalho Junior, Francisco Heron
31, 90

Fernandes, João Paulo 120, 135
Fernandes, Luiz Gustavo 105

Griebler, Dalvan 105

Ierusalimschy, Roberto 1, 16

Juaçaba-Neto, Renato Caminha 31

Madeira, Alexandre 75
Madlener, Ken 46

Magalhães, Francisco José Lins 31
Maidl, André Murbach 1
Martins, Manuel A. 75
Martins, Pedro 135
Mascarenhas, Fabio 1, 16
Muhammad, Hisham 16

Pardo, Alberto 120
Piveta, Eduardo Kessler 61

Rezende, Cenez Araújo 31, 90

Saraiva, João 120, 135
Silva, Jefferson de Carvalho 31, 90
Smetsers, Sjaak 46

van Eekelen, Marko 46
Vizzotto, Juliana Kaizer 61

	Preface
	Organization
	Table of Contents
	Exception Handling for Error Reporting
in Parsing Expression Grammars
	1 Introduction
	2 Error Reporting in PEGs
	3 Error Reporting in Top-Down Parsers with Backtracking
	4 Labeled Failures for Error Reporting
	5 Conclusions
	References

	LuaRocks - A Declarative and Extensible
Package Management System for Lua
	1 Introduction
	2 Related Work
	2.1 Operating System Package Managers
	2.2 Language-Specific Package Managers

	3 The Design of LuaRocks
	3.1 Declarative Specifications
	3.2 Extensible Build System
	3.3 Versioning

	4 Development History
	5 Conclusion
	References

	On the Performance of Multidimensional Array Representations in Programming Languages
Based on Virtual Execution Machines
	1 Introduction
	2 Context and Related Works
	2.1 Virtual Execution Environments in HPC
	2.2 Multidimensional Arrays

	3 Methodology
	3.1 Experimental Factors
	3.2 Derivation of Program Versions
	3.3 Performance Measures

	4 Results and Discussion
	4.1 Jagged versus Unidimensional Arrays
	4.2 Rectangular versus Jagged Arrays
	4.3 Particular Features of Mono

	5 Conclusions and Further Works
	References

	Modular Bialgebraic Semantics
and Algebraic Laws
	1 Introduction
	2 Preliminaries
	3 RuleFormat
	3.1 Open GSOS
	3.2 Operational Model
	3.3 Operational Conservative Extensions

	4 Silent Transitions
	4.1 Unfolding Rules and Their Conservative Extensions
	4.2 An Open Distributive Law for Silent Transitions

	5 Algebraic Laws
	5.1 The Preservation of Algebraic Laws
	5.2 Combining Algebraic Laws

	6 Running the Operational Semantics
	7 Related Work
	8 Conclusions
	References

	A Double Effect λ-calculus
for Quantum Computation
	1 Introduction
	2 Quantum Monadic λ-calculus
	2.1 Monadic λ-calculus
	2.2 Quantum Monadic λ-calculus

	3 Quantum Arrow Calculus
	4 The Double Effect
	4 The Double Effect λ-calculus for Quantum
Computation
	4.1 Constructions and Equations
	4.2 Examples

	5 Conclusion
	References

	Boilerplates for Reconfigurable Systems:
A Language and Its Semantics
	1 Motivation and Overview
	2 A Language of Boilerplates for Reconfigurability
	3 AFormalSemanticsforBP(I)
	4 The Specification Process
	5 Concluding
	References
	Appendix: The Hybridisation Process
	Institutions
	–
	–
	–
	–
	–
	–
	The Hybridisation Method
	–
	–
	–
	–
	–
	–
	–
	–
	–
	–
	–
	–
	–
	–
	–
	–
	–
	–
	–
	–
	–
	–
	–
	–
	–
	–
	Theorem 1 ([13]).

	Contextual Abstraction in a Type System for Component-Based High Performance
Computing Platforms
	1 Introduction
	2 Background
	3 Contextual Abstraction through Abstract Components
	3.1 Case Study: SP and BT from the NAS Parallel Benchmarks
	3.2 Resolution Algorithm

	4 Formalization and Safety Properties
	4.1 Representation of Abstract Components and Instantiation
Types in τHOC3
	4.2 Progress and Preservation in HTS
	4.3 Type Safety of Inheritance Derivation of HPE Configurations

	5 Conclusions
	References

	Towards a Domain-Specific Language
for Patterns-Oriented Parallel Programming
	1 Introduction
	2 Related Work
	3 Patterns-Oriented Parallel Programming
	4 DSL-POPP in a Nutshell
	4.1 Compilation
	4.2 Programming Interface
	4.3 Patterns Implementation
	4.4 Levels of Parallelism

	5 Experimental Evaluation
	5.1 Application Description and Implementation
	5.2 Tests Scenario
	5.3 Performance Results

	6 Conclusions
	References

	Multiple Intermediate Structure Deforestation
by Shortcut Fusion
	1 Introduction
	2 Shortcut Fusion
	3 Circular and Higher-Order Programs
	3.1 Derivation of Circular Programs
	3.2 Derivation of Higher-Order Programs

	4 Multiple Intermediate Structure Deforestation
	4.1 Standard Case
	4.2 Derivation of Programs with Multiple Circularities
	4.3 Derivation of Higher-Order Programs

	5 Conclusions
	References

	Zipper-Based Attribute Grammars
and Their Extensions
	1 Introduction
	2 Motivation
	3 Zipper-Based Attribute Grammars
	3.1 Functional Zippers
	3.2 Desk as an Embedded Attribute Grammar

	4 Zipper-Based Attribute Grammar Extensions
	4.1 Referenced Attribute Grammars
	4.2 Higher-Order Attribute Grammars
	4.3 Circular Attribute Grammars

	5 Related Work
	6 Conclusions and Future Work
	References

	Author Index

