
Mining Interesting Patterns in Multi-relational

Data with N-ary Relationships

Eirini Spyropoulou1, Tijl De Bie1, and Mario Boley2

1 Intelligent Systems Lab, University of Bristol, UK
2 Fraunhofer, IAIS, Germany

Abstract. We present a novel method for mining local patterns from
multi-relational data in which relationships can be of any arity. More
specifically, we define a new pattern syntax for such data, develop an
efficient algorithm for mining it, and define a suitable interestingness
measure that is able to take into account prior information of the data
miner. Our approach is a strict generalisation of prior work on multi-
relational data in which relationships were restricted to be binary, as well
as of prior work on local pattern mining from a single n-ary relationship.
Remarkably, despite being more general our algorithm is comparably fast
or faster than the state-of-the-art in these less general problem settings.

1 Introduction

Pattern mining research has mostly focused on mining itemsets or association
rules on one binary table representing transactions and items. Real world data
is often more complex, commonly stored in a relational database that allows to
capture the relations that exist among the different entity types in the data.

Mining multi-relational data has for a long time been approached by Inductive
Logic Programming (ILP) methods where the goal is to mine frequent rules
about the data [5,12]. More recently, there have also been generalisations of
itemset mining to more complex settings.

Itemset mining has been generalised to mining local patterns in a (single)
relationship that involves several entity types. Such a relationship is known as n-
ary relationship [3,8,9]. An example of a 3-ary relationship is a shop transaction
record containing the item sold, the customer, as well as the mode of payment
used (e.g. cash/debit card/credit card). The definition of a closed itemset can be
generalised fairly directly to n-ary relationships. Algorithms designed to mine
such patterns typically require choosing a frequency threshold for each entity
type, and do not define an interestingness to rank the patterns found.

Another strand of research has generalised itemset mining to multi-relational
data. Think for example of a retail database which contains customers, items
they bought as well as characteristics of customers and characteristics of items.
The most common strategy has been to essentially apply frequent itemset mining
on the join of all tables of the database [11,7,10]. Although this strategy seems
sensible, in previous work [13,14] we argued that it has significant disadvantages.

J. Fürnkranz, E. Hüllermeier, and T. Higuchi (Eds.): DS 2013, LNAI 8140, pp. 217–232, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

218 E. Spyropoulou, T. De Bie, and M. Boley

We thus proposed the so-called Maximal Complete Connected Subset (MCCS)
pattern syntax as an alternative, which is a natural generalisation of closed
itemsets and their supporting transactions. We also proposed a global measure of
subjective interestingness. While we were able to demonstrate promising results,
a restriction is that the method can be applied to multi-relational data only if
all relationships in the database are binary.

Contributions in this paper. Although both research strands have remained
largely independent, real data is often multi-relational while also involving rela-
tionships of arity larger than 2. To the best of our knowledge no local pattern
mining method exists targeting this case, and we aim to fill this gap in the cur-
rent paper. In doing this, we wanted to ensure backward compatibility of the
newly introduced notions with both these strands of research, ideally without
sacrificing computational tractability. More specifically, we introduce a novel
pattern syntax called N-MCCSs and show that it is a generalisation of pattern
syntaxes defined for simpler settings; namely of MCCSs for multi-relational data
with binary relationships [13,14], as well as of n-Sets for data represented by a
single n-ary relationship [3].

Developing an algorithm to mine N-MCCSs proved non-trivial owing to the
differences in algorithmic approaches for both strands of research. Nonetheless,
our experiments show that the proposed algorithm performs similarly to the al-
gorithm for mining MCCSs from multi-relational data with binary relationships
only [14], and on n-ary data it considerably outperforms Data-Peeler [3], the
state-of-the-art algorithm for mining data containing a single n-ary relationship.
Thus, our contributions simultaneously generalize and unify important previous
data mining methods and approximately match or even improve on them in terms
of computation times.

2 Definitions and Concepts

Here we formalize multi-relational data as considered in this paper and define
the concepts needed to introduce the pattern syntax we propose.

2.1 Multi-relational Data

Our formalization of multi-relational data follows the Entity-Relationship (ER)
model [6], with the difference that we treat every attribute as an entity type of
its own. This unified treatment of entity types and attributes leads to a simple
formalization which still captures all the associations in the data.

We formalize multi-relational data as D = (E, t,R,R). E is a finite set of
entities which is partitioned into k entity types. We formalize this by defining
a mapping from the entity set onto an index set for the types: t : E → T =
{1 . . . , k}. Thus, the set of entities is the union of the sets of entities for each
type: E = E1

.∪ . . .
.∪ Ek with Ei = {e ∈ E | t(e) = i}. Slightly abusively, we

will also apply t to sets of entities, to yield a set with their entity types.

Multi-relational Patterns with N-ary Relationships 219

We also define a relationship type R as a set of entity types, such that the
set of all relationship types R is a subset of the power set of T , i.e.: R ⊆ P(T).
For each R ∈ R there is an |R|-ary relationship RR ⊆ {{e1, . . . , en} : R =
{t(e1), . . . , t(en)}}, containing all sets of entities of the types in R that are indeed
related with each other. We say that a set {e1, . . . , en} ∈ RR is a relationship
instance. The set R is the union of all relationships, i.e., R =

⋃
R∈R RR.

Figure 1 shows a toy example of some multi-relational data highlighting the
notions we just introduced.

user tag paper
U1 algorithms P1

U1 large graphs P2

U1 algorithms P2

U2 large graphs P1

U2 large graphs P2

paper author
P1 Jure Lescovec

P1 Christos Faloutsos

P2 Jure Lescovec

P2 Christos Faloutsos

Bibliographic multi-relational data

tagged_by_user

authored_by

Fig. 1. Bibliographic multi-relational data containing four entity types (“user”, “tag”,
“paper”, “author”) and two relationship types. One 3-ary between “user”, “tag” and
“paper” and one binary between “paper” and “author”.

2.2 The Pattern Syntax of N-MCCSs

The pattern syntax proposed in this paper is called N-MCCS and builds upon two
previously considered ones: the pattern syntax of MCCSs, which was proposed
for the case of multi-relational data with many binary relationships and is a
generalisation of closed itemsets or maximal tiles [13,14], and the pattern syntax
of n-Sets, which was proposed for the case of data with one n-ary relationship
only [3]. In this section we define N-MCCSs and in the next section we show
that it is indeed a generalisation of MCCSs and n-Sets.

Intuitively, N-MCCSs capture associations between entities of different entity
types. In the example of Fig. 1, an N-MCCS could correspond to a group of
users that have tagged the same group of papers of the same authors or a group
of users that have tagged the same group of papers with the same tags.

The definition of N-MCCSs is based on the notions of connectedness and
completeness. A set of entities is connected if any pair of entities in it is connected
through a sequence of entities that are pairwise related. Formally:
Definition 1. We call a set of entities F ⊆ E connected if for all distinct
e, e′ ∈ F there is a sequence e = e1 . . . el = e′ with {e1..el} ⊆ F such that for
i ∈ {1, . . . , l− 1} it holds that there is an F ′ ⊇ {ei, ei+1} such that F ′ ∈ R.

Example 1. In the toy data example of Fig. 1 the set of entities {U1, U2, large
graphs, P2, Christos Faloutsos} is connected whereas the set of entities {U1,
U2, large graphs, Christos Faloutsos} is not connected because for none of the
pairs {U1, Christos Faloutsos}, {U2, Christos Faloutsos}, {large graphs, Christos
Faloutsos} is there a superset which is a subset of any relationship.

220 E. Spyropoulou, T. De Bie, and M. Boley

A set of entities is complete if every subset containing entities of different en-
tity types that belong to the same relationship type, is a subset of a relationship
instance. One might expect that for completeness we would require all entity
types of a relationship type to be present in a pattern. However our definition
of completeness is more flexible. In the example of Fig. 1 for instance it allows
patterns containing only a set of papers and their tags without containing the
users. We formally define completeness using the notion of a critical subset.

Definition 2. Given some relational data D = (E, t,R,R), and a set of entities
F ⊆ E, a set F ′ ⊆ F , with |t(F ′)| = |F ′| and t(F ′) ⊆ R ∈ R is called a critical
subset of F with respect to R. We say that a critical subset, F ′ of F , is covered
in R if for all R ∈ R with respect to which it is critical, there exists an F ′′ ⊇ F ′

such that F ′′ ∈ RR.

Definition 3. Given some relational data D = (E, t,R,R), we call a set of
entities F ⊆ E complete iff all critical subsets of F are covered in R.

Example 2. Considering again the data toy example of Fig. 1 the set{U1, U2,
large graphs, Christos Faloutsos} is complete but not connected.

A set of entities F ⊆ E is called a Complete Connected Subset and abbrevi-
ated as N-CCS if it satisfies both completeness and connectedness as defined
here for multi-relational data of n-ary relationships. Like in other pattern min-
ing tasks the set of N-CCSs is typically exponentially larger than the input size.
For reasons of efficiency of the mining algorithm, we focus on a smaller subset
of the N-CCSs namely the maximal N-CCSs. A maximal N-CCS, abbreviated
as N-MCCS, is an N-CCS to which no entity can be added without violating
connectedness or completeness.

Example 3. Two examples of N-MCCSs from the toy data of Fig. 1 are: {U1, U2,
large graphs, P2, Christos Faloutsos, Jure Lescovec} and {P1, P2, large graphs,
algorithms, Christos Faloutsos, Jure Lescovec}.

2.3 From MCCSs and n-Sets to N-MCCSs

Here we show that the proposed pattern syntax of N-MCCSs is a generalisation
of MCCSs [13,14], as well as n-Sets [3]. We do this by translating the definition
of MCCSs and n-Sets using the concepts of this paper.

MCCSs are Maximal Complete Connected Subsets where completeness and
connectedness are defined as follows. For D = (E, t,R,R) where ∀R ∈ R, |R| =
2, a set F ⊆ E is complete if ∀F ′ ⊆ F with t(F ′) ∈ R and |F ′| = 2 it holds
that F ′ ∈ Rt(F ′). A set F ⊆ E is connected if for all e, e′ ∈ F there is a
sequence e = e1, . . . , el = e′ with {e1, . . . , el} ⊆ F such that for i ∈ {1, . . . , l−1}
it holds that {ei, ei+1} ∈ R. Clearly both completeness and connectedness are
special cases of completeness and connectedness as defined in Def. 3 and Def. 2
respectively.

n-Sets are defined as follows. For some multi-relational data D = (E, t,R,R)
where |R| = 1 and for R ∈ R, |R| = n, a set F ⊆ E with |t(F)| = n is an

Multi-relational Patterns with N-ary Relationships 221

n-Set if ∀F ′ ⊆ F with |t(F ′)| = |F ′| = n, F ′ ∈ RR and it is maximal under this
condition. Since |R| = 1, and for every n-Set F , |t(F)| = n, if F is complete
it will be connected as well. Therefore the pattern syntax of N-MCCSs is a
generalisation of the pattern syntax of n-Sets.

3 Mining Algorithm

In Sec. 2.2 we argued that for efficiency reasons we focus on mining maximal
patterns. An efficient algorithm to mine all N-MCCSs should avoid enumerat-
ing most N-CCSs that are not maximal. The algorithm proposed here, is an
instantiation of the fixpoint listing algorithmic framework [2] which is used to
enumerate all N-CCSs that are fixpoints of a closure operator and to which we
refer as closed N-CCSs. In Sec. 3.1 we establish the applicability of this frame-
work for mining N-MCCSs. Then, in Sec. 3.2 we describe the fixpoint listing
framework and in Sec. 3.3 we instantiate it for our setting by defining a suitable
closure operator. In Sec. 3.4 we also show that this operator is a generalisation of
the closure operator which was defined within the same algorithmic framework
for the case of MCCSs [14] and in Sec. 3.5 we discuss implementation details.

3.1 The Applicability of the Fixpoint Listing Framework

The divide-and-conquer fixpoint listing algorithm enumerates all closed sets of
a closure operator from a given set system. A set system is a family of subsets
F ⊆ P(A) over some ground set A, where P(A) the power set of A. A set F ∈ F
is called closed if it is a fixpoint of some closure operator ρ : F → F , i.e.,
ρ(F) = F . For the operator ρ to be a closure operator it must satisfy three
properties: extensivity (F ⊆ ρ(F) for all F ∈ F); monotonicity (ρ(F) ⊆ ρ(F ′)
for all F, F ′ ∈ F with F ⊆ F ′); and idempotence (ρ(ρ(F)) = ρ(F) for all F ∈ F).

In order for the fixpoint algorithmic framework to be applicable for mining N-
MCCSs, the set of closed N-CCSs needs to be a superset of the set of N-MCCSs.
This is guaranteed by the properties of the closure operator. If an N-CCSs F
is maximal it means that it cannot be extended by any other entity. From the
extensivity of the closure operator and from the fact that ρ(F) ∈ F , if follows
that ρ(F) = F . Which means that F is a closed N-CCS.

In order for the framework to be applicable for mining the closed sets of a set
system, this set system must satisfy a particular property called strong accessi-
bility [2]. We now prove that independent of the input data D = (E, t,R,R) the
corresponding set system of N-CCSs, defined as

FD = {F ⊆ E | F connected ∧ F complete}

is always strongly accessible. For a set system F ⊆ P(A) and a set F ∈ F , let
us denote by Aug(F) = {a ∈ A | F ∪ {a} ∈ F} the set of valid augmentation
elements of F . Then F is called strongly accessible if for all X ⊂ Y ⊆ A
with X,Y ∈ F there is an element e ∈ (Aug(X) \X) ∩ Y .

222 E. Spyropoulou, T. De Bie, and M. Boley

Theorem 1. For all relational data D = (E, t,R,R), the set system FD of N-
CCSs is strongly accessible.

In [14] we showed that for multi-relational data containing just binary relation-
ships the set system of Complete Connected Subsets (CCSs) is strongly accessi-
ble. The same argumentation line can be used to prove Theorem 1 as well.

3.2 N-RMiner

As we have already established that the divide and conquer fixpoint listing al-
gorithmic framework of [2] is applicable to the case of N-CCSs, we now describe
the instantiation of the framework for this setting.

Algorithm 1. N-RMiner: List all N-MCCSs

N-RMiner(F,B)

1: Select e ∈ Aug(F) \ (F ∪B)
2: F ′ = g(F ∪ {e})
3: if F ′ ∩B = ∅ then
4: if F ′ = Aug(F ′) then
5: Output F ′

6: else
7: N-RMiner(F ′, B)
8: end if
9: end if
10: N-RMiner(F , B ∪ {e})

The general structure of this divide-and-conquer algorithm is shown in Algo-
rithm 1. In each recursive call, the algorithm selects an element e from the set
of valid augmentation elements, Aug(F), of the current solution F (line 1), and
splits the search space into two subtrees: one subtree in which all N-CCSs include
the element e (lines 3-9) and another subtree in which all N-CCSs exclude e (line
10). This is achieved by adding it to B, which represents the set of elements al-
ready considered as extensions to F (line 10). The fact that only closed patterns
are sought is ensured in line 2, where the expanded set F ∪ {e} is potentially
further expanded by applying the operator g (see bellow for a definition).

As N-RMiner enumerates all closed N-CCSs, we added lines 4-5 to ensure it
outputs N-MCCSs only, i.e., N-CCSs F for which there are no augmentation
elements not yet in F . Formally this is verified by checking if F = Aug(F).

As defined in Sec. 3.1, the set of augmentation elements Aug(F) of a set
F ∈ FD from a set system is the set of all elements that can be individually
added to F to yield another set from the same set system. Specifically for the
set system FD of N-CCSs, and given a relational database D = (E, t,R,R),
the set Aug(F) corresponds to the following set: Aug(F) = {e ∈ E | F ∪
{e} is complete and connected}.

Multi-relational Patterns with N-ary Relationships 223

In [14] we presented a useful additional feature of the algorithm which gives the
option of focusing on a smaller set of patterns by defining additional constraints
on the pattern syntax. We defined constraints on the minimum number of entities
per entity type (minimum coverage constraint) as well as an upper bound which
can safely be used for pruning as the set system still remains strongly accessible.
The same type of constraints can be used here exactly in the same way.

3.3 The Closure Operator

Since Algorithm 1 is based on adding elements from Aug(F) one by one, it is
important to introduce the notion of compatibility of an element with a set,
upon which the definition of the closure operator g is based.

Definition 4. For some relational data D = (E, t,R,R), we say that an entity
e is compatible with a set G ⊆ E and denote e ‖G, iff all critical sets F ′ ⊆
(G ∪ {e}) with e ∈ F ′, are covered in R.

We call the set of all e ∈ E that are compatible with a set F ∈ FD the set of
compatible entities of F and denote it as Comp(F). We note here that the
compatibility property is anti-monotone. This means that for F, F ′ ⊆ E with
F ⊆ F ′, if for e ∈ E it holds that e‖F ′ then e‖F . Therefore also for F, F ′ ∈ FD

with F ⊆ F ′, Comp(F ′) ⊆ Comp(F).
We would like to note here that for entities of type i �∈ t(Aug(F)) there are

no critical sets between them and F and therefore by definition of compatibility
Comp(F) ∩ Ei = Ei.

Lemma 1. Let D = (E, t,R,R) some relational data. A set F ⊆ E is complete
if and only if for all e ∈ F it holds that e‖F .

Proof. If an F ⊆ E is complete then all the critical subsets of F are covered in
R. Since e ∈ F , we have that all critical subsets of F ∪ {e} are covered, and
therefore e ‖F . Conversely, for an F ⊆ E such that for all e ∈ F it holds that
e ‖F , we have that for all e ∈ F all critical subsets containing e are covered in
R, which means that all critical subsets of F are covered. Thus F is complete.

It follows from Lemma 1 that for a set F ∈ FD, F ⊆ Comp(F). It also follows
that Aug(F) ⊆ Comp(F), because for every element e ∈ Aug(F), e ‖F always
holds. Therefore F ⊆ Aug(F) ⊆ Comp(F).

From Lemma 1 it also follows that for F ∈ FD, Comp(F) can equivalently be
defined as the set of all e ∈ E such that F ∪ {e} is complete.

We are now able to define the operator g. The definition of g requires that
every element in the closure of F is compatible with all the compatible elements
of F . Formally:

g(F) = F ∪ {e ∈ Aug(F) \ F : e‖Comp(F)}, F ∈ FD.

Before we show that g is a closure operator by proving each of the essential
properties, we give an example of applying g to a set.

224 E. Spyropoulou, T. De Bie, and M. Boley

Example 4. Let us consider again the toy dataset of Fig. 1. Let us also consider
that F = {P2, Christos Faloutsos}. Then Aug(F) \ F = {P1, U1, U2, large
graphs, algorithms, Jure Lescovec} and Comp(F) = {P1, P2, U1, U2, large
graphs, algorithms, Jure Lescovec, Christos Faloutsos} and g(F) = {P2, Christos
Faloutsos, Jure Lescovec}. We see that from all the elements of Aug(F)\F only
“Jure Lescovec” is compatible with Comp(F) because all critical sets, namely
{P1,Jure Lescovec} and {P2,Jure Lescovec}, are covered.

Proposition 1. For all D = (E, t,R,R) the codomain of g is the set system
FD of N-CCSs, i.e., for all F ∈ FD it holds that g(F) ∈ FD.

Proof. We need to show that for every F ∈ FD, g(F) is complete and connected.
When F = ∅ then g(F) = ∅ and therefore it is complete and connected. We
show this is the case as well for all F �= ∅, F ∈ FD.

We have that g(F) ⊆ Aug(F). From the definition of the set Aug(F) this
means that for every e ∈ g(F), F ∪ e is connected. This means that there is a
sequence of pairwise related entities between every pair e, f ∈ g(F). Therefore
g(F) is connected.

To show completeness let us assume that g(F) is not complete. This means
that there is a critical subset F ′ ⊆ g(F), that is not covered. We have that F
is complete since F ∈ FD. This means that F ′ �⊆ F and therefore there must
be at least one e′ ∈ F ′ such that e′ ∈ {e ∈ Aug(F) \ F : e ‖ Comp(F)}. We
therefore have that all critical subsets of Comp(F) that contain e′ are covered.
Since F ′ ⊆ g(F) ⊆ Comp(F), the fact that F ′ is not covered is a contradiction.
Therefore g(F) is complete.

It is trivial to see that g is extensive, as it does not remove any elements
from the set it is applied to. Next we will prove that g is also monotone and
idempotent (as long as the data satisfies some properties).

Proposition 2. For all D = (E, t,R,R) the operator g is monotone.

Proof. Assume the operator is not monotone, i.e., there are F ′, F ∈ FD with F ⊆
F ′ such that g(F) �⊆ g(F ′). Hence, there is an e ∈ g(F)\g(F ′). We also have e ∈
g(F)\F because g is extensive. From the definition of g it follows e‖Comp(F). By
anti-monotonicity of compatibility, F ⊆ F ′ implies that Comp(F) ⊇ Comp(F ′).
Applying once again the monotonicity of compatibility, e‖Comp(F) also implies
e‖Comp(F ′). Since F ′ ⊆ Comp(F ′) we have that e‖F ′. Also e ∈ (Aug(F) \ F)
and since F ′ is a connected superset of F , e is connected to F ′, and thus e ∈
Aug(F ′). Hence e �∈ g(F ′) is a contradiction.

Before we give the proposition about idempotence, we define a class of multi-
relational data called acyclic multi-relational data as all D = (E, t,R,R)
such that there does not exist a sequence of entity types {i1 . . . il} such that for
j = 1 . . . l− 1, {ij, ij+1} ⊆ R ∈ R and i1 = il.

Proposition 3. For all acyclic D = (E, t,R,R) with the property that �e ∈ E
such that ∃R ∈ R with e‖(∪i∈REi), the operator g is idempotent.

Multi-relational Patterns with N-ary Relationships 225

Proof. Assume that for an acyclic D = (E, t,R,R), such that �e ∈ E such that
∃R ∈ R with e ‖ (∪i∈REi), the operator g is not idempotent. This means that
∃f ∈ g(g(F)) such that f �∈ g(F). This can happen if:

(a) f ∦ Comp(F). Since f ∈ g(g(F)), f ‖ Comp(g(F)). For all e ∈ g(F) we
have that e‖Comp(F). This means that e is compatible with all the compatible
elements of F including F itself. Therefore adding e to F does not change this
set which means that for every e ∈ g(F), Comp(F ∪{e}) = Comp(F). Therefore
Comp(g(F)) = Comp(F) and as a result f ‖Comp(F). A contradiction.

(b) f �∈ Aug(F). From the anti-monotonicity of compatibility and f ‖Comp(F),
it holds that f ‖F . Therefore for f �∈ Aug(F) it must be that f is not connected to
F . Therefore t(f) �∈ t(Aug(F)) which means that t(f) belongs to a relationship
type R of which no entity types are in F . However, t(f) ∈ t(Aug(g(F))). There-
fore there must be an e ∈ g(F) such that there is a set F ′, with t(F ′) ⊆ R ∈ R,
e, f ∈ F ′ andF ′ ∈ R. Since e ∈ g(F) we have that e‖Comp(F). SinceD is acyclic,
no entity type of R except t(e) belongs to Aug(F). Therefore we have that for ev-
ery i ∈ R, i �= t(e), Comp(F) ∩ Ei = Ei. Therefore, for e ‖Comp(F) it must be
that e ‖ (∪i∈REi) (since e is compatible to the entities of the same type as well).
A contradiction.

From the above propositions we have the following corollary:

Corollary 1. For all acyclic multi-relational data D = (E, t,R,R) with the
property that �e ∈ E such that ∃R ∈ R with e ‖ (∪i∈REi), the operator g is a
closure operator.

We note here that even though the idempotency of the operator g holds for
acyclic multi-relational data that do not contain any entity belonging to all the
relationship instances of a relationship, our method can still be applied to any
multi-relational data by introducing an operator applying g to a set F as many
times as required until the mapped set does not increase any more.

3.4 The Generality of the Closure Operator

The fixpoint listing algorithmic framework has also been used for mining MCCSs
in multi-relational data with binary relationships. The instantiated algorithm for
this setting is called RMiner [14]. Here we are going to show that the closure
operator g is more general than the closure g2 defined in R-Miner as:

g2(F) = {e ∈ Aug(F) : Comp′(F ∪ {e}) = Comp′(F)}

The set of compatible elements for a setF ∈ FD is defined in [14] asComp′(F) =
{e ∈ E | F ∪ {e} is complete}. In the conclusions of Lemma 1 we said that this is
an equivalent definition for the set Comp that we defined in this paper. Therefore
Comp and Comp′ map to the same set.

Following from that the pattern syntax of N-MCCSs is a generalisation of the
pattern syntax of MCCSs it also holds that the codomain of the two closure
operators is the same. We can now state the following theorem.

226 E. Spyropoulou, T. De Bie, and M. Boley

Theorem 2. For all relational data D = (E, t,R,R), such that ∀R ∈ R, |R| =
2, the closure operator g : FD → FD is a generalisation of the closure operator
g2 : FD → FD [14], i.e., ∀F ∈ FD, g(F) = g2(F).

Proof. We are first going to prove that g(F) ⊇ g2(F). Let us assume the opposite,
i.e., ∃e ∈ g2(F) such that e �∈ g(F). e �∈ g(F) means that e �∈ F and e∦Comp(F).
Therefore there is at least one e′ ∈ Comp(F) such that {e, e′} �∈ R which means
that Comp(F ∪ {e}) ⊂ Comp(F). Contradiction.

Now we are going to prove that g(F) ⊆ g2(F). Let us assume the opposite,
i.e., that ∃e ∈ g(F) such that e �∈ g2(F). e �∈ g2(F) means that Comp(F ∪
{e}) ⊂ Comp(F) and therefore there exists at least one e′ ∈ Comp(F) such that
{e, e′} �∈ R. This means that e∦Comp(F) which is a contradiction since we have
assumed that e ∈ g(F). Therefore g(F) = g2(F).

The result presented in Theorem 2 is very important as it means that when
N-RMiner is applied to data with binary relationships only, it enumerates exactly
the same set of patterns as RMiner which is using the operator g2.

3.5 Implementation Details

Our implementation is based on giving an id to every relationship instance and
storing the relationship instance ids, in a global structure containing for every
entity and every relationship type, a list of relationship instance ids. Then the
coverage of a critical subset can easily be checked by checking whether the inter-
section of the relationship instance ids of the entities it contains is non-empty.
Although to check the compatibility of an element with a set all critical sets
need to be checked for coverage, it can be done more efficiently as it suffices for
one critical set not to be covered in order for the compatibility not to hold.

The choice of the next element to extend the current partial solution is im-
plemented with a for loop using an ordering of the entities in terms of increasing
Aug(e). This way the number of closure checks is reduced.

4 Assessment of Patterns

We assess the quality of a pattern based on a subjective interestingness measure
which formalises how interesting a pattern is based on the prior information of
the user. We adopt a definition of interestingness which was proposed for binary
tables and adapted for binary related multi-relational data as well in our previous
work [4,13]. According to this definition interestingness is defined as unexpected-
ness with respect to a Maximum Entropy model of the prior information of the
user. In what follows we describe the type of prior information we consider in this
paper and formalize and derive the Maximum Entropy optimization problem.
We then give the definition of the interestingness measure.

Multi-relational Patterns with N-ary Relationships 227

4.1 The Maximum Entropy Model

In this paper we consider as prior information the number of relationship in-
stances an entity participates in. This intuitively means that a pattern containing
entities that appear less frequently in relationship instances will be deemed more
interesting by our measure. As an example consider a movie database consisting
of three entity types, “person”, “role” and “movie” and a 3-ary relationship be-
tween them. According to this prior information, a pattern containing persons
that appear in many films under any role will be rendered less interesting than a
pattern containing people that appear less often as the later is more unexpected.

We formalize this prior information by fitting the Maximum Entropy (Max-
Ent) distribution P on the data, with constraints on the expected sum of the
relationship instances every entity participates in, being equal to the actual sum
of relationship instances it participates in. Without details, we point out that a
similar reasoning as in [13,14] establishes that this MaxEnt model P is a product
distribution, with a factor PR for each relationship type—so here we focus on
how to obtain a MaxEnt model for just one n-ary relationship type.

For convenience, let us represent each n-ary relationship RR (with |R| = n)
of some multi-relational data D = (E, t,R,R) by means of an n-dimensional
binary valued tensor DR. The dimensions of DR are indexed by the entity types
t ∈ R, and each dimension itself is indexed by an index it running over all entities
of type t ∈ R. We denote as eit the i’th entity of type t. The relationship RR

is encoded in DR by ensuring that DR(i1, . . . , in) = 1 iff {ei1 , . . . , ein} ∈ RR.
Then the prior information on the relationship type R can be expressed as:

∑

DR

PR(DR)
∑

(i1...in):it=k

DR(i1, . . . , it, . . . , in) = dt,kR , (∀t ∈ R)

where dt,kR is the sum of all elements in DR for which it = k or in other words
the number of relationship instances that the kth entity participates in. Finally,
being a probability distribution, PR needs to be normalised:

∑
DR

PR(DR) = 1.
The MaxEnt optimization problem maximizes

∑
DR

−PR(DR) log(PR(DR)),
the entropy, with respect to PR, subject to the above constraints. Computing
the Karush Kuhn Tucker optimality conditions, similar to [4], shows that the
optimal solution is of the form:

PR(DR) =
∏

i1...,in

P
{i1,...,in}
R (DR(i1, . . . , in)),

where P
{i1,...,in}
R (d) =

exp
(
d ·∑t λ

t,it
R

)

1 + exp
(∑

t λ
t,it
R

) .

Here, λt,it
R is a Lagrange multiplier corresponding to the constraint for entity

it of type t. Thus, every factor PR of the distribution P , is itself a product of
independent Bernoulli distributions for the elements of the tensor. The optimal
value of the Lagrange multipliers can be found by solving the convex Lagrange
dual optimization problem ([4] gives details for the binary case).

228 E. Spyropoulou, T. De Bie, and M. Boley

4.2 The Interestingness of a Pattern

The proposed interestingness measure is a trade-off between the self-information
of a pattern, which measures how much information a pattern carries, and the
description length of a pattern, which measures how concisely it conveys this
information. Intuitively an end user wants to see patterns that convey as much
information as possible, as concisely as possible. Thus, interestingness of an N-
MCCS F ∈ FD is defined as follows:

Interestingness(F) =
SelfInformation(F)

DescriptionLength(F)
.

Let us define the set of maximal critical subsets of F , denoted as M(F), as
the set of all F ′ ⊆ F such that |t(F ′)| = |F ′| and t(F ′) ⊆ R ∈ R and �F ′′ ⊆ F
with t(F ′) ⊂ t(F ′′) ⊆ R. The self-information of a pattern F is given by:

SelfInformation(F) = −
∑

R∈R

∑

F ′∈M(F)

log(PR(F
′)).

where PR(F
′) signifies the probability that the entities in F ′ are related in R.

For the terms with t(F ′) = R, the probability PR(F
′) can be computed

directly using the MaxEnt model as PR(F
′) = PF ′

R (1), i.e. the probability that
the relationship instance specified by the entities in F ′ is present in RR.

For the terms with t(F ′) ⊂ R, the probability that there exists at least one
relationship instance of type R involving all entities from F ′ is computed as

PR(F
′) = 1 − ∏

I={it}t∈R\t(F ′)

(
1− PF ′∪I

R (1)
)
. This follows directly from the

independence of the different entries in the tensor DR, under the MaxEnt model.
We define the description length of a pattern F ∈ FD by specifying for each

entity whether it does or it does not belong to the pattern. We use −log(p) bits
to specify that an entity belongs to the pattern and −log(1− p) bits to specify
that it does not, where p is a probability parameter. The description length of a
pattern is given by the following equation:

DescriptionLength(F) = − ∑

i�∈F

log(1− p)− ∑

i∈F

log(p).

5 Experiments

In this section we present a qualitative evaluation of our method, by discussing
some of the top ranked patterns on real-world data sets and a quantitative
evaluation by showing scalability results and comparisons with other methods.
For all the experiments we used parameter p equal to the density of the dataset.

5.1 Qualitative Evaluation

Here we show the highest ranked patterns found in real world datasets. We per-
formed experiments on two real world datasets, one created from Bibsonomy [1]

Multi-relational Patterns with N-ary Relationships 229

(bibsonomy-journals) and another one created from IMDB1(imdb-3years).
Figure 2 depicts the diagrams of these datasets showing how different entity
types are related as well as the number of instances for every relationship type
and every entity type. To create the bibsonomy-journals dataset we selected the
bibtex entries that corresponded to journal papers, along with their authors,
users and tags. To create the imdb-3years dataset we created a view of the
IMDB database containing person names and roles, as well as genres of movies
produced from year 2008 to year 2010 and are not of the genre “Short”. The
role of a person in a movie can be actor, actress, producer, director etc.

movie
(28564 instances)

genre
(27 instances)

person
(537165 instances)

role
(11 instances)

3-ary relationship type
(594496 instances)

binary relationship type
(44503 instances)

paper
(206823 instances)

author
(296734 instances)

user
(2840 instances)

tag
(65657 instances)

3-ary relationship type
(594496 instances)

binary relationship type
(489853 instances)

Fig. 2. Diagrams of the imdb-3years (top) and bibsonomy-journals datasets

We run experiments on both these datasets using different constraints. The re-
sults were ranked based on the interestingness measure we introduced in Sec. 4.2.
In order to avoid redundancy we iteratively output the top ranked pattern and
then re-rank the pattern set by taking into account in the interestingness of a
pattern only relationship instances that have not been presented before.

The first ranked pattern on the imdb-3years dataset when requiring at least 2
papers, 2 titles, 2 roles and 1 genre, contains as entities: 2 persons: Joel Coen;
Ethan Coen; 4 titles: The Yiddish Policemen’s Union; True Grit; A Serious
Man; Burn After Reading; 2 roles: Director; Producer; 1 genre: Drama. This
pattern ranks first as it contains a lot of information (20 of relationship instances)
conveyed in a concise way (9 entities). Recall here that our measure of self-
information is an additive measure over the number of relationship instances
and our measure of description length is an additive measure over the entities.
The second pattern contains 18 relationship instances conveyed with 9 entities.

In the first experiment on bibsonomy-journals we required at least 2 enti-
ties from each entity type. The top pattern contains: 3 users: 650753; 594907;
576800; 5 tags: meningococcal; meningitidis; infections; neisseria; human; 6
papers: (not shown here due to space constraints); 2 authors: Heike Claus;
Matthias Frosch. This pattern ranks highly as it conveys a lot of information

1 See http://www.imdb.com/

230 E. Spyropoulou, T. De Bie, and M. Boley

(102 relationship instances) in a concise way (16 entities). The second pattern,
in comparison, contains 48 relationship instances and 12 entities. We also run
an experiment not necessarily requiring any entities of the entity type user, but
at the same time requiring at least 5 tags, 5 papers and 2 authors. The most
interesting pattern remains the same as in the previous experiment.

5.2 Quantitative Evaluation

In this subsection we show the performance of N-RMiner by presenting scalability
results as well as results comparing N-RMiner with other algorithms on special
cases of multi-relational data. All the experiments were run on a CentOS Linux
machine with Intel Xeon@2.6GHz and 24GB of RAM.

In order to test the scalability we used the bibsonomy-journals dataset, of
which we got five snapshots of increasing size. The first four snapshots were pro-
duced by randomly picking 0.01%, 0.1%, 1% and 10% of the entities of the type
“paper” and selecting the entities of the other types that correspond to them.
The final snapshot contains all of the bibsonomy-journals dataset. The results
are shown in Table 1. The “-”s mean that the particular run did not finish within
2 days. As with most local pattern mining algorithms, time scales exponentially
to the input size. However, when using constraints of at least 2 entities per entity
type N-RMiner runs within a few hours for data sizes of approximately 5× 105.
The space that N-RMiner consumes also increases exponentially to the input
size. However it only grows up to 1.5 GB for the largest dataset. As we are un-
aware of any other local pattern mining method that considers the general case
of multi-relational data, where there can be any number of relationships of any
arity, we compare N-RMiner with methods for specific cases of multi-relational

Table 1. Scalability testing of N-RMiner for increasing subsets of bibsonomy-journals

Constraints #Entities #N-MCCSs Time (sec) Space (MB) Depth Size of max N-MCCS

(0,0,0,0) 63 17 0 1.42 3 13
1,167 295 2.17 3.63 5 100
9,643 4,177 2599.22 28.32 14 800
77,452 - - - - -
567,416 - - - - -

(1,1,1,1) 63 12 0 1.40 1 13
1,167 206 0.11 3.24 4 100
9,643 2,186 8.52 18.99 5 83
77,452 22,267 1,055.14 175.68 11 107
567,416 - - - - -

(2,2,2,2) 63 0 0 1.37 0 0
1,167 0 0.01 3.01 0 0
9,643 0 0.6 16.98 0 0
77,452 3 118.36 151.25 5 14
567,416 359 13,121.4 1,502.95 16 27

Multi-relational Patterns with N-ary Relationships 231

data, namely Data-Peeler that mines n-Sets in one n-ary relationship (n > 2) [3]
and RMiner which mines MCCSs in multi-relational data with binary relation-
ships [14]. As we have shown in Sec. 2.3, both these pattern syntaxes constitute
special cases of N-MCCSs and therefore the comparison of the algorithms is fair.

Table 2 (left) shows the time comparison between N-RMiner and Data-Peeler
on random snapshots of increasing sizes of the 3-ary relationship of the bibsonomy-
journals dataset. Data-Peeler offers the opportunity to use constraints on the
minimum number of entities per entity type, like ours. However n-Sets are not
as flexible as N-MCCSs in the sense that all entity types of the relationship need
to be present in a pattern. We therefore compare the two algorithms in the sim-
plest common setting of requiring at least one entity per entity type. The results
show that N-RMiner outperforms Data-Peeler by at least one order of magnitude
most of the times. Also for the dataset of 36,367 entities Data-Peeler could not run
as it was crashing due to high memory requirements. This is because Data-Peeler
uses a dense representation to store the dataset.

Table 2. Comparing N-RMiner w. Data-Peeler (left) and N-RMiner w. RMiner (right).

Cons- #Entities N-RMiner Data-Peeler
traints time (sec) time (sec)

(1,1,1) 39 0 0
774 0.28 2.39
5,405 97.75 2960.73
36,367 182,156 -

Cons- #Entities N-RMiner RMiner
traints time (sec) time (sec)

(1,1,1) 3,291 2.81 1.65
8,686 21.41 12.01
51,203 1,296 610
111,320 7,456 2,813

Table 2 (right) compares running times between N-RMiner and RMiner on
increasing subsets from IMDB containing two binary relationships: between di-
rectors and titles, and between titles and genres. Since both algorithms use the
same algorithmic framework [2] and the closure operator of N-RMiner is a gener-
alisation of RMiner’s (see Sec 3.2), it should be no surprise that they are similarly
efficient, with a small slowdown of N-RMiner owing to its greater generality.

6 Conclusion

In this paper we took an important step towards the development of local pat-
tern mining algorithms that can be directly applied to data as it often presents
itself in real-life: represented in a relational database. More specifically, the N-
MCCS pattern syntax and associated mining algorithm N-RMiner are applicable
to multi-relational data with categorical attributes and n-ary relationships. Our
approach is a strict generalisation of two less general problem settings [13,14,3],
and it matches or even outperforms algorithms that were designed for these spe-
cial cases. Additionally, we introduced a subjective interestingness measure for
ranking the N-MCCSs found. An interesting research direction further increasing
generality would be the extension of our results to ordinal and numerical data.

232 E. Spyropoulou, T. De Bie, and M. Boley

Acknowledgements. We thank L. Cerf for his help in running Data-Peeler.
This work is funded by the grant EP/G056447/1 and by the PASCAL2 NoE.

References

1. Knowledge and data engineering group, University of Kassel: Benchmark folkson-
omy data from bibsonomy, version of January 1 (2012)

2. Boley, M., Horvath, T., Poigné, A., Wrobel, S.: Listing closed sets of strongly
accessible set systems with applications to data mining. Theoretical Computer
Science 411(3), 691–700 (2010)

3. Cerf, L., Besson, J., Robardet, C., Boulicaut, J.-F.: Closed patterns meet n-ary
relations. ACM Trans. Knowl. Discov. Data 3(1), 3:1–3:36 (2009)

4. De Bie, T.: Maximum entropy models and subjective interestingness: an application
to tiles in binary databases. Data Mining and Knowledge Discovery 23(3), 407–446
(2011)

5. Dehaspe, L., Toivonen, H.: Discovery of frequent datalog patterns. Data Mining
and Knowledge Discovery 3, 7–36 (1999)

6. Elmasri, R., Navathe, S.B.: Fundamentals of Database Systems. Addison Wesley
(2006)

7. Goethals, B., Page, W.L., Mampaey, M.: Mining interesting sets and rules in rela-
tional databases. In: Proc. of the ACM Symposium on Applied Computing (SAC),
pp. 997–1001 (2010)

8. Jaschke, R., Hotho, A., Schmitz, C., Ganter, B., Stumme, G.: Trias–an algorithm
for mining iceberg tri-lattices. In: Proc. of the Sixth International Conference on
Data Mining (ICDM), pp. 907–911 (2006)

9. Ji, L., Tan, K.-L., Tung, A.K.H.: Mining frequent closed cubes in 3d datasets. In:
Proc. of the 32nd International Conference on Very Large Data Bases (VLDB),
pp. 811–822 (2006)

10. Koopman, A., Siebes, A.: Discovering relational item sets efficiently. In: Proc. of
the SIAM Conference on Data Mining (SDM), pp. 108–119 (2008)

11. Ng, E.K.K., Ng, K., Fu, A.W.-C., Wang, K.: Mining association rules from stars.
In: Proc. of the 2002 IEEE Int. Conference on Data Mining, ICDM, pp. 322–329
(2002)

12. Nijssen, S., Kok, J.N.: Efficient frequent query discovery in farmer. In: Lavrač,
N., Gamberger, D., Todorovski, L., Blockeel, H. (eds.) PKDD 2003. LNCS(LNAI),
vol. 2838, pp. 350–362. Springer, Heidelberg (2003)

13. Spyropoulou, E., De Bie, T.: Interesting multi-relational patterns. In: Proc. of the
IEEE International Conference on Data Mining, ICDM, pp. 675–684 (2011)

14. Spyropoulou, E., De Bie, T., Boley, M.: Mining interesting patterns in multirela-
tional data. Data Mining and Knowledge Discovery (in print, 2013)

	Mining Interesting Patterns in Multi-relational Data with N-ary Relationships
	1Introduction
	2Definitions and Concepts
	2.1Multi-relational Data
	2.2The Pattern Syntax of N-MCCSs
	2.3From MCCSs and n-Sets to N-MCCSs

	3Mining Algorithm
	3.1The Applicability of the Fixpoint Listing Framework
	3.2N-RMiner
	3.3The Closure Operator
	3.4The Generality of the Closure Operator
	3.5Implementation Details

	4Assessment of Patterns
	4.1The Maximum Entropy Model
	4.2The Interestingness of a Pattern

	5Experiments
	5.1Qualitative Evaluation
	5.2Quantitative Evaluation

	6Conclusion
	References

