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Preface

This year’s International Conference on Discovery Science (DS) was the 16th
event in this series. Like in previous years, the conference was co-located with
the International Conference on Algorithmic Learning Theory (ALT), which is
already in its 24th year. Starting in 2001, ALT/DS is one of the longest-running
series of co-located events in computer science. The unique combination of re-
cent advances in the development and analysis of methods for automatic scientific
knowledge discovery, machine learning, intelligent data analysis, and their appli-
cation to knowledge discovery on the one hand, and theoretical and algorithmic
advances in machine learning on the other hand makes every instance of this
joint event unique and attractive.

This volume contains the papers presented at the 16th International Confer-
ence on Discovery Science, while the papers of the 24th International Conference
on Algorithmic Learning Theory are published in a companion volume edited
by Sanjay Jain, Rémi Munos, Frank Stephan, and Thomas Zeugmann (Springer
LNCS Vol. 8139). We had the pleasure of selecting contributions from 52 sub-
missions by 142 authors from 23 countries. Each submission was reviewed by
three Program Committee members. The program chairs eventually decided to
accept 23 papers, yielding an acceptance rate of slightly less than 45%.

The program also included 3 invited talks and 2 tutorials. In the joint DS/ALT
invited talk, Nir Ailon gave a presentation about“Learning and Optimizing with
Preferences.” The DS invited talk by Hannu Toivonen was on “Creative Com-
puters and Data Mining.” Finally, DS participants also had the opportunity to
attend the ALT invited talk on “Efficient Algorithms for Combinatorial On-
line Prediction”, which was given by Eiji Takimoto. The two tutorial speakers
were Krzysztof Dembczyński (“Multi-Target Prediction”) and Nader H. Bshouty
(“Exact Learning from Membership Queries: Some Techniques, Results and New
Directions”).

This year, both conferences were held in Singapore, organized by the School
of Computing, National University of Singapore (NUS). We are very grateful to
the School of Computing at NUS for sponsoring the conferences and providing
administrative support. In particular, we thank the local arrangement chair, Lee
Wee Sun, and his team, Mark Bartholomeusz and Kee Yong Ngee, as well as
all of the other administrative staff at the School of Computing, NUS, for their
efforts in organizing the two conferences. We would like to thank the Office of
Naval Research Global for the generous financial support provided under ONRG
GRANT N62909-13-1-C208.

We would also like to thank all authors of submitted papers, the Program
Committee members, and the additional reviewers for their efforts in evaluating
the submitted papers, as well as the invited speakers and tutorial presenters. We
are grateful to Frank Stephan and Sanjay Jain for their timely answers to many
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questions and for ensuring a smooth coordination with ALT, Thomas Zeugmann
for his help with the proceedings, Robin Senge for putting up and maintaining
our website, and Andrei Voronkov for making EasyChair freely available. Finally,
special thanks go to the Discovery Science Steering Committee, in particular to
its past and current chairs, Einoshin Suzuki and Akihiro Yamamoto, for en-
trusting us with the organization of the scientific program of this prestigious
conference.

July 2013 Johannes Fürnkranz
Eyke Hüllermeier
Tomoyuki Higuchi
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Sašo Džeroski Jozef Stefan Institute, Slovenia
Tapio Elomaa Tampere University of Technology, Finland
Ad Feelders Universiteit Utrecht, The Netherlands
Peter Flach University of Bristol, UK
Joao Gama University Porto, Portugal
Mohand-Said Hacid Université Claude Bernard Lyon, France
Howard Hamilton University of Regina, Canada
Makoto Haraguchi Hokkaido University, Japan
Kouichi Hirata Kyushu Institute of Technology, Japan
Jaakko Hollmén Aalto University School of Science, Finland
Geoffrey Holmes University of Waikato, New Zealand
Tamas Horvath University of Bonn and Fraunhofer IAIS, Germany
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Desmier, Elise
Hoang, Lam Thanh
Huang, Sheng-Jun
Kaytoue, Mehdi
Kocev, Dragi
Kuboyama, Tetsuji
Kuzmanovski, Vladimir

Moreira-Matias, Luis
Otaki, Keisuke
Panov, Pance
Phan, Nhat Hai
Rabatel, Julien
Ribeiro, Rita
Sakamoto, Hiroshi
Soulet, Arnaud
Tromp, Erik
Zenko, Bernard



Invited Talks

(Abstracts)



Learning and Optimizing with Preferences�

Nir Ailon

Department of Computer Science
Technion Israel Institute of Technology

Haifa, Israel

nailon@cs.technion.ac.il

Abstract. Preferences and choices are a central source of information
generated by humans. They have been studied for centuries in the context
of social choice theory, econometric theory, statistics and psychology. At
least two Nobel prizes in economics have been awarded for work reasoning
about human preferences and choices.

In the last two decades computer scientists have studied preference
data, which became available in unprecedented quantities: Each time
we click or tap on a search result, a sponsored ad or a product recom-
mendation, we express preference of one alternative from a small set of
alternatives. Additionally, many crowsdsourcing systems explicitly ask
(paid?) experts to solicit preferences or even full rankings of alternative
sets.

What are the advantages of preferences compared to other forms
of information, and what challenges do they give rise to? I will present
important problems and survey results.

* An extended version of this paper can be found in Sanjay Jain, Rémi Munos, Frank
Stephan, and Thomas Zeugmann, Proceedings of the 24th International Confer-
ence on Algorithmic Learning Theory (ALT-13), Lecture Notes in Computer Science
Vol. 8139, Springer-Verlag, 2013.



Efficient Algorithms for

Combinatorial Online Prediction�

Eiji Takimoto

Department of Informatics
Kyushu University

Japan

eiji@inf.kyushu-u.ac.jp

We study online linear optimization problems over combinatorial concept classes
C ⊂ Rn that are defined in some combinatorial ways. Examples of such classes
are s-t paths in a given graph, spanning trees of a given graph, permutations
over a given set, truth assignments for a given CNF formula, set covers of a given
subset family, and so on. Typically, those concept classes are finite but contain
exponentially many concepts. The problem for a concept class C is described as
follows: At each trial t, the algorithm chooses a concept ct ∈ C, the adversary
returns a loss vector �t ∈ [0, 1]n, and the algorithm incurs a loss given by ct · �t.
The goal of the algorithm is to make the cumulative loss not much larger than
that of the best concept in C.

One of the major approaches to the problem is to apply Follow the Regular-
ized Leader (FTRL) framework, in which two external procedures projection and
decomposition are assumed to be implemented. In other words, for each concept
class C, we need to design algorithms for the two procedures. In this talk, we give
a projection and decomposition algorithms that work efficiently and uniformly
for a wide class of concept classes. More precisely, if the convex hull of C is a
submodular base polyhedron specified by a submodular functoin f , then the two
procedures are computed in polynomial time, assuming that f can be computed
in polynomial time.

Another approach is to use an offline algorithm as an oracle to construct
an online algorithm. Here, the offline algorithm solves the corresponding offline
optimization problem. Follow the perturbed leader (FPL) and the Online Frank-
Wolfe (OFW) are of this type. In this talk, we consider a harder but typical case
where the offline optimization problem for C is NP-hard, for which none of the
FTRL, FPL and OFW work. The FTRL has been generalized so that it works
when an offline approximation algorithm is available. However, it is not efficient
enough. In this talk, we give a more efficient online algorithm using an offline
approximation algorithm which has a guarantee of a certain integrity gap.

* An extended version of this paper can be found in Sanjay Jain, Rémi Munos, Frank
Stephan, and Thomas Zeugmann, Proceedings of the 24th International Confer-
ence on Algorithmic Learning Theory (ALT-13), Lecture Notes in Computer Science
Vol. 8139, Springer-Verlag, 2013.



Creative Computers and Data Mining

Hannu Toivonen

Department of Computer Science and HIIT
University of Helsinki

Finland

hannu.toivonen@cs.helsinki.fi

Abstract. In the field of computational creativity, researchers aim to
give computers creative skills, such as those needed in writing poetry or
composing music. Obviously, an agent needs to know the field in which it
operates. This is where data mining has great potential: making creative
agents adaptive to various fields and genres by automatic discovery of
relevant information from existing creative artifacts. We give several ex-
amples of how verbal creativity can benefit from data mining of existing
text corpora.

On the other hand, computational creativity tools allow a whole new
approach to data analysis. In this “Affective Data Analysis”, the goal
is to turn data into a subjective, esthetic experience by automatic or
semiautomatic creation of a novel artifact using the user’s data as inspi-
ration. This is in strong contrast with traditional data analysis methods
that emphasize cold facts instead of warm feelings. We illustrate this idea
with musicalization of sleep measurements and chat discussions.
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Sašo Džeroski

Fast Compression of Large-Scale Hypergraphs for Solving Combinatorial
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281

Takahisa Toda

Semantic Data Mining of Financial News Articles . . . . . . . . . . . . . . . . . . . . 294
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Mixture Models from Multiresolution 0-1 Data

Prem Raj Adhikari and Jaakko Hollmén

Helsinki Institute for Information Technology (HIIT), and
Department of Information and Computer Science (ICS)

Aalto University School of Science,
PO Box 15400, FI-00076 Aalto, Espoo, Finland
{prem.adhikari,jaakko.hollmen}@aalto.fi

Abstract. Multiresolution data has received considerable research in-
terest due to the practical usefulness in combining datasets in different
resolutions into a single analysis. Most models and methods can only
model a single data resolution, that is, vectors of the same dimensional-
ity, at a time. This is also true for mixture models, the model of interest.
In this paper, we propose a multiresolution mixture model capable of
modeling data in multiple resolutions. Firstly, we define the multireso-
lution component distributions of mixture models from the domain on-
tology. We then learn the parameters of the component distributions in
the Bayesian network framework. Secondly, we map the multiresolution
data in a Bayesian network setting to a vector representation to learn the
mixture coefficients and the parameters of the component distributions.
We investigate our proposed algorithms on two data sets. A simulated
data allows us to have full data observations in all resolutions. However,
this is unrealistic in all practical applications. The second data consists
of DNA aberrations data in two resolutions. The results with multireso-
lution models show improvement in modeling performance with regards
to the likelihood over single resolution mixture models.

Keywords: Multiresolution data, Mixture Models, Bayesian Networks.

1 Introduction

A phenomenon or a data generating process measured in different levels of ac-
curacy results in multiresolution data. This difference in accuracy arises because
of improvement in measurement technology [1]. Newer generation technology
measures finer units of data producing data in fine resolution. In contrast, older
generation technology measures only the coarse units of data producing data in
coarse resolution. Thus, accumulation of data over long duration of time results
in multiresolution data. The availability of multiresolution data ranges across
diverse application domains such as computer vision, signal processing, telecom-
munications, and biology [2].

The domain of scale-space theory [4], and wavelets [5] have close affinity with
the domain of multiresolution modeling thus widening the scope of multiresolu-
tion modeling research. Furthermore, multiresolution data falls under one of the

J. Fürnkranz, E. Hüllermeier, and T. Higuchi (Eds.): DS 2013, LNAI 8140, pp. 1–16, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



2 P.R. Adhikari and J. Hollmén

q22 q23

q24

q25

q21.1 q21.2 q21.31 q21.32 q21.33 q22 q23.1 q23.2 q23.3

q24.1 q24.2 q24.3

q25.3q25.2q25.1

q21.1 q21.2 q21.31 q21.32 q21.33 q22 q23.1 q23.2 q23.3 q25.3q25.2q25.1

q22-24

q23

q21

q21

q21.1 q21.2 q21.3

q22 q24

q24

q25

q25

Coarse
Resolution

Fine
Resolution

Fig. 1. A typical dichotomy of universals and particulars in giving rise to multires-
olution data. Figure shows a part of chromosome–17 in five different resolutions of
nomenclature as defined by ISCN [3].

essential ontological dichotomies of universals and particulars [6]. For example
in cytogenetics, an application area of interest, International System for Human
Cytogenetic Nomenclature (ISCN) has a standardized nomenclature for the parts
of the genome. It has defined five different resolutions of the chromosome band:
300, 400, 550, 700, and 850 [3]. In other words, there are 862, and 311 regions
in a genome in resolution 850 (fine resolution), and 300 (coarse resolution), re-
spectively. Figure 1 shows an example of multiresolution data resulting from the
ISCN nomenclature which is also our application area of interest. Figure 1 shows
a part of chromosome–17 in five different resolutions forming a tree structure
among different chromosome bands. Here, the same part of genome measured in
different levels of detail generating multiresolution data.

Finite Mixture Models are semi-parametric probability density functions rep-
resented as the weighted sum of component densities of chosen probability distri-
butions such as Gaussian, Bernoulli, or Poisson [7,8]. Mixture models have found
wide spectrum of uses such as clustering [9], density estimation [10], modeling
heterogeneity [11], handling missing data [12], and model averaging. They are
versatile because of their suitability for any choice of data distribution, either dis-
crete or continuous, and flexibility in the choice of component distributions [8].
However, mixture models in their basic form only operate on single data reso-
lution, and is unable to model multiresolution data. The only mixture modeling
solution to multiresolution data are to model the different resolutions separately
and at best compare the findings. Cancer is not a single disease but a hetero-
geneous collection of several diseases [13]. Therefore, we use mixture models to
model cancer patients discussed in Section 4.2 because mixture models are well
known for their ability to model heterogeneity.

In our previous work, we transform the multiresolution data to a single res-
olution using different deterministic transformation methods, and model the
resulting single resolution data [14]. Results in [14] shows improvement in the
performance of mixture models through multiresolution analysis compared to
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single resolution analysis. We also proposed a multiresolution mixture model
based on merging of mixture components across different resolutions in [15].
The improvement in [15] is that the models assimilate the information con-
tained in other data resolutions. Furthermore, transformations here are in the
model domain unlike in the data domain as in [14]. In all scenarios above, the
mixture models are generated in a single resolution and directly unusable in
multiresolution scenarios without modification.

In the past, research has considered formulating the multiresolution mixture
model in different application areas. For instance, the multiresolution Gaus-
sian mixture model in [16] approximates the probability density, and adapts to
smooth motions. The design of the model is for a specific choice of data distri-
bution, and generates trees of decreasing variance, and consequently a tree of
Gaussians. Unlike an actual multiresolution model, this essentially models sin-
gle resolution data using a tree from the same data for multiple Gaussians on
different scales with different variance. Furthermore, difference in the pyramid
structure present in other domains limit its general applicability.

Authors have increased the efficiency and robustness of learning mixture mod-
els using multiresolution kd-trees [9,17]. Furthermore, authors in [10] have pro-
posed the a mixture of tree distributions in a maximum likelihood framework.
Similarly, authors in [18,19] use multiresolution binary trees to learn discrete
probability distribution. However, it is impossible to represent all multiresolu-
tion data as kd-trees which are binary in nature. In addition, the focus in [18,19]
is in modeling single resolution data. Additionally, multiresolution trees are also
used in object recognition [20], and as binary space portioning trees [21]. How-
ever, the authors in [20,21] use them in the context of recursive neural networks,
and geometric representations for information visualization, respectively.

In this paper, we propose a multiresolution mixture model whose components
are Bayesian networks denoting the hierarchical structure present in multiresolu-
tion data. We learn the parameters of each component distribution in a Bayesian
network framework. Component distributions in the form of Bayesian network
is useful also to impute the missing data resolutions considering them as missing
values. Finally, we transform the multiresolution data in the Bayesian network
representation to a single data in vector form to learn the mixing coefficients
and the parameters of the mixture model in a maximum likelihood framework
using the EM algorithm.

2 Bayesian Networks of Multiresolution Data

Bayesian networks bring the disciplines of graph theory and probability to-
gether to elegantly represent complex real-world phenomena dealing with un-
certainty [22,23]. A Bayesian network consists of nodes or vertices that encode
information about the system in the form of probability distributions, and links
or arcs or edges that denote the interconnections or interactions between nodes
in the form of conditional independence [22]. It analytically represents a joint
distribution over a large number of variables. Furthermore, it treats learning
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and inference simultaneously, seamlessly merges unsupervised and supervised
learning, and also provides efficient methods for handling missing data [23].

2.1 Component Distributions of Multiresolution Hierarchy as
Bayesian Networks

A Bayesian network is a directed acyclic graph (DAG) that describes a joint
distribution over the set of random variables X1, . . . , Xd such that

P (X1, . . . , Xd) =

d∏
i=1

P (Xi | parents(Xi)), (1)

where parents(Xi) are the set of vertices from which there is an edge to Xi.
Figure 2 shows an example of a Bayesian network of six random variables A,
B, C, D, E, and F. The six vertices represent the six random variables, and
the five directed edges represent the conditional dependencies (independence).
We can define conditional independence in a Bayesian network as: A variable is
conditionally independent of all the variables in the network given its Markov
blanket. The Markov blanket of a variable is the set of its parents, its children,
and the other parents of its children.

Data in multiple resolutions share a commonality because they measure the
same phenomenon. A single feature in the coarse resolution corresponds to one
or more features in the fine resolution. We can exploit this information from
the application area to determine the relationships between data resolutions

Fig. 2. Network representation of the multiresolution data where ancestors denote data
in coarse resolution and leaves denote data in fine resolution. The network a simple
Bayesian network of six random variables with five edges along with the associated
probability tables.
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and consequently, the structure of the Bayesian network. The data features in
the coarse resolution form the root and branches near the root of the network.
Similarly, the data features in the fine resolution form the branches towards the
leaves and the leaves of the tree. Additionally, we can assume that the directed
arrows originate from the features in the coarse resolution for computational
efficiency.

Each vertex of a Bayesian network bears a corresponding conditional proba-
bility distribution (CPD). The CPD specifies that a child takes a certain value
with a probability depending the value of its parents [22]. In the figure, for ex-
ample the variables D, and E are conditionally independent given B. We can
simplify the joint probability distribution of A, B, C, D, E, and F using the
conditional independences in Figure 2 as:

P (A,B,C,D,E, F ) = P (A|B,C,D,E, F )P (B|A,C,D,E, F ) . . .

P (C|A,B,D,E, F )P (D|A,B,C,E, F ) . . .

P (E|A,B,C,D, F )P (F |A,B,C,D,E)

= P (A)P (B|A)P (C|A)P (D|B)P (E|B)P (F |C) (2)

The CPD of a discrete variable is represented in a table as shown in
Figure 2. It enumerates each possible set of values for the variable and its parents.
Algorithms based on maximum likelihood (MLE) and maximum a posteriori es-
timates (MAP) can learn the parameters of the Bayesian network with a known
structure [24]. In our application, the structure of Bayesian networks comes from
the domain knowledge. The depth of the Bayesian network depends on the num-
ber of resolutions in multiresolution data. Learning a Bayesian network of known
structure involves determining the CPD of the variables in the network. We learn
the CPD of the variables using the Maximum Likelihood Estimate (MLE) [22].

2.2 Missing Resolutions in Multiresolution Data

Missing data has received considerable research interest because of their abun-
dant occurrence in many domains [12,25]. The problem of missing data escalates
when some resolutions (entire data) in a multiresolution setting are missing.
Therefore, when the values are missing in multiresolution analysis, one or more
resolutions (entire data) will be missing. This is unlike the typical missing data
problems where small number of variables in some samples will be missing. For
example, data in a coarse resolution can be missing while data in other resolu-
tions are available. Bayesian networks have a seamless ability to handle missing
data [12]. Therefore, learning the Bayesian networks also helps to generate the
data in missing resolutions because Bayesian networks are generative models.

We can impute the missing values using marginal inference in Bayesian Net-
works. Marginal inference is the process of computing the distribution of a subset
of variables conditioned on another subset [22]. We can calculate the marginal
inference for a joint distribution P(A,B,C) given the evidence B=true as:

P (A | B = true) ∝
∑
C

P (A,B = true, C).
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Authors have proposed algorithms such as variable elimination, and sum prod-
uct algorithm to compute marginal inference [22]. We draw samples under the
given evidence from consistent junction trees using the BRMLToolbox [22].

3 Multiresolution Mixture Model of Multivariate
Bernoulli Distributions

Mixture Models are semi–parametric latent variable models that models a sta-
tistical distribution by a weighted sum of parametric distributions [7,8,22]. They
are flexible for accurately fitting any complex data distribution for a suitable

Fig. 3. Top panel shows the general representation of multiresolution data. There are
‘r’ data resolutions of different dimensionality. The multiresolution data representation
is then transformed to a Bayesian network representation which in turn is mapped to
a vector of single resolution data. The Bayesian network representation in the middle
panel (within the dashed rectangle) also depicts a mixture model having the Bayesian
networks as the components for data in multiple resolutions. The three solid rectangles
on the top represent different mixture coefficients. Similarly, the three network of nodes
denote the three component distributions where each vertex defines a parameter of
the component distribution. The numbers inside the nodes denote the position of the
variable in the vector representation with regards to dimensionality. The dash–dotted
rectangle in the bottom of the figure shows the vector representation of the data derived
from the Bayesian network representation. In the figure, Nt, and Nv denote the number
of networks abreast adjacently in the multiresolution data, and the number of samples
in multiresolution data mapped to a vector representation, respectively.
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choice of data distribution, and a good enough number of mixture components.
Expectation Maximization (EM) algorithm helps to learn the maximum likeli-
hood parameters of the mixture model [26]. The EM algorithm requires prior
knowledge of the number of components in the mixture model. Model selection is
the process of determining the number of components in the mixture model [8].
In our previous work, we have tried to solve the problem of model selection in
mixture models [11,27,28]. We learn mixture model of different complexities in a
cross-validation setting and select a model with the number of components that
gives the best generalization performance.

A multiresolution data is a collection of different component distributions as
shown in the middle panel (within the dashed rectangle) of Figure 3. The mul-
tiresolution components in the middle panel (within the dashed rectangle) of
Figure 3 encode the relationships between different resolutions of multiresolu-
tion data. The structure of the component distribution comes from the domain
knowledge. Thus, the problem with regard to model selection in multiresolution
data culminates to determining the optimal number of such component distri-
butions present in the data. Similarly, learning the parameters of the component
distributions involves learning the parameters of those networks.

In the general framework for the EM algorithm, we can assign only a single
probability value to a node in the mixture model [26]. However, each variable
in Bayesian network consists of minimum of two probability values denoting the
CPD of the nodes. Therefore, in this contribution, we map the Bayesian network
to vector representation to learn a multiresolution mixture model of Bayesian
networks. This simple and intuitive solution proposed in this contribution trans-
forms Bayesian networks to vectors with increasing dimensionality representing
increasing depth of the Bayesian network. The first element of the vector will be
the root node in the first generation i.e. coarsest resolution. Similarly, the last
element of the vector will be leaf node of the last generation i.e. finest resolution
arranged from left to right as shown in the bottom panel (within the dashed
dotted rectangle) of Figure 3. In the middle and the bottom panel of Figure 3,
the number inside the vertices denote the relative position of the variable in the
vector representation with regards to dimensionality. Multiresolution mixture
components transformed to a vector representation will have the same dimen-
sionality because the structure of component distributions are identical with one
another. However, component distributions have different parameters.

Vector representation of Bayesian networks eases modeling multiresolution
data in one resolution. Furthermore, it increases the number of data samples.
The number of samples in the vector form, Nv will be Nv = N × Nt. Here, N
is the number of samples of data in each resolution. Similarly, Nt is the number
of Bayesian networks present in the data along the dimension corresponding to
one sample. Furthermore, the data dimensionality will be considerably reduced
as the depth of the Bayesian network is generally small. Additionally, Bayesian
networks provide the sparsity [24], making data dimensionality in the vector rep-
resentation dv is smaller than that of the finest resolution of the multiresolution
data. Furthermore, the vector representation has larger number of data samples
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than the original Bayesian networks representation, dv < max(dr) � Nt � Nv.
Here, dr is the dimensionality of data in different resolutions. An increase in
the number of data samples and a reduction in dimensionality facilitates the
learning of mixture models because they require a large number of samples to
accommodate the increasing dimensionality of the data.

We can describe the mixture model of multivariate Bernoulli distributions for
a 0-1 data [7] as:

p(x | Θ) =

J∑
j=1

πj

d∏
i=1

θxi

ji (1 − θji)
1−xi . (3)

Here, Θ = {J , {πj , θj}Jj=1} denotes the parameters of the mixture model of
multivariate Bernoulli distributions. Here, πj denotes the mixing proportions
which sum to 1. Similarly, θji is the probability that a random variable of the
jth component in the ith dimension will take the value of 1. In multiresolution
scenario, i differs for each resolution. Therefore, we have to model different res-
olutions with different models. We can formulate Equation 3 with respect to log
likelihood to learn the mixture model using the EM algorithm in a maximum
likelihood framework [8] as:

L(Θ) =

N∑
n=1

log P (xn | Θ) =

N∑
n=1

log

⎡
⎣ J∑
j=1

πj

d∏
i=1

θxni

ji (1− θji)
1−xni

⎤
⎦ . (4)

Given the number of mixture components, J, parameterized by Θ = {πj, θj},
the EM algorithm can learn the mixture model that maximizes the likelihood in
Equation 4. Model selection using cross-validated log likelihood can determine
the number of mixture components, J [11,27,28].

4 Experimental Data

We experiment with the proposed methodology on two multiresolution data: an
artificial data, and a chromosomal aberrations data, both in three resolutions.

4.1 Artificial Multiresolution 0-1 Dataset

In some application areas the relationships between different resolutions in a
multiresolution setting are well known [6]. We can exploit such knowledge to ar-
tificially generate realistic multiresolution data. We initially fixed the structure
of a Bayesian network to the the components of the mixture model shown in
the middle panel (within the dashed rectangle) of Figure 3. Five such Bayesian
networks were abreast along the dimensionality of the data. The dimensional-
ity of data in three different resolutions are 5, 15, and 25 respectively. Firstly,
we generate the data in the finest resolution i.e. having dimensionality of 25.
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We fix two parameters to sample the data of given dimensionality:X is uniformly
distributed in the range [0, 1], and l is normally distributed with mean 0.1 and
standard deviation 0.04.

X ∼ U [0, 1]× d and l ∼ N
(
μ = 0.1, σ2 = 0.04

)
× d

where d denotes the data dimension.

Fig. 4. First thirty samples of three different resolutions of the artificial 0-1 data. Black
denotes 1s and white denotes 0s.

First, we create a matrix of the required size with all zeros. We divide the unit
interval in 25 equal parts to generate 25–dimensional data. The parameter, X ,
defines the beginning of an aberration, and l defines the length of the aberration.
We randomly choose a data sample for aberration and flip zeros to ones from
dimensionalityX of length l i.e. from dimensionX to dimensionX+l . We ignore
the the lengths that are greater than the dimension 25 < (X+ l) to maintain the
data dimensionality. We continue this process iteratively until the number of 1s
is approximately 55-60% of the data to mimic chromosomal aberration datasets.

Domain knowledge of chromosomal aberrations informs us about the typi-
cal length of aberrations. Furthermore, aberrations never span across the cen-
tromere. Therefore, we break an aberration that is longer than a predefined
length, 15 in the experiments, randomly either on the left or the right of the
centromere. We fix the centromere after the 10th dimension, i.e. variable on the
10th dimension is on the left side of the centromere, and the variable on the 11th

dimension is on the right side of the centromere.
Figure 4 shows artificial data in three different resolutions with dimensionali-

ties 5, 15, and 25, respectively. Figure 4 also shows that similar to chromosomal
aberration data, the artificial data are sparse, and spatially dependent. We gain
the knowledge of relationships between data in different resolutions from the
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Bayesian network as shown in the middle panel (within the dotted rectangle) of
Figure 3. We apply that knowledge to downsample the data in dimensionality 25
to a dimensionality of 15, and then 5 using the majority voting downsampling
method proposed in [14]. In experiments we fix the number of samples of the
dataset to 1000 which is similar to the chromosomal aberration dataset.

4.2 Multiresolution Chromosomal Aberration Dataset

The causes and consequences of chromosomal aberration such as amplification,
deletion, and duplication have significant roles in cancer research [13]. DNA copy
number amplifications have been defined as the hallmarks of cancer [11,28]. Chro-
mosomal aberrations are early markers of cancer risk and their detection and
analysis has considerable clinical merits [11,29]. The two chromosomal aberra-
tion datasets in two resolutions have a dimensionality of 393, and 862 in coarse,
and fine resolution, respectively. Both datasets are used in [11,27,28]. Datasets
are available from the authors on request. The sources of the two datasets
were different and correspond to different cancer patients in the two different
resolutions.

We experiment chromosome–wise to constrain the complexity of learning the
mixture model because the data are high dimensional and samples are small.
Complexity of mixture models increases quadratically with the dimensionality.
For example, the number of samples in chromosome 17 is 342 and 2716 in coarse
and fine resolution, respectively. Therefore, we correspond the first 342 samples
in fine resolution to the samples in coarse resolution. We then downsample the
next 342 samples (samples 343 to 684) to a resolution between coarse and fine
resolution such that the depth and structure of the resulting Bayesian network
are similar to those of the networks used for artificial dataset. We ignore the
remaining 2032 samples in the fine resolution.Similarly, the network present in
the real world dataset differ from the artificial dataset. We select the most rep-
resentative network covering more than 50% of the data and ignore the other
networks. The structures of the networks are similar (often number of types of
trees in the dataset is about ≈ 3).

5 Experiments and Results

The experimental studies in this paper are a two-step procedure because the algo-
rithm models multiresolution data in two steps. Firstly, we learn the component
distributions in a Bayesian network framework from different resolutions of the
data. Secondly, we model multiresolution data after transforming the Bayesian
networks to vectors using mixture models.

5.1 Experiments with Bayesian Networks of Multiresolution Data

From the knowledge of multiresolution data relationships in Section 4, we gen-
erate the five different Bayesian networks abreast adjacently along the dimen-
sionality of the data. We use BRMLToolbox to encode and generate Bayesian
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network [22]. We use a maximum likelihood framework to learn the conditional
probabilities of the network.

As discussed in Section 2.2, some of the resolutions (entire datasets) can be
missing in a multiresolution scenario. We use the prowess of Bayesian networks
in handling missing data [12] to impute missing resolutions. In experimental
setup: firstly, we learn the parameters of the component distributions in Bayesian
network framework via maximum likelihood. We then ascertain the performance
of component distributions as Bayesian network models especially with respect
to their ability to impute missing values. We artificially generate two scenarios:
where one, and two resolutions of data are missing. We draw the samples from a
consistent junction tree in the Bayesian network under the given evidence using
BRMLToolbox [22]. The number of samples equal that of the original dataset.
We then compare the re-sampled data with the original data.

Fig. 5. The accuracy in re-sampling the data in missing resolutions conditioned on the
data in other available resolutions. Comma in the X-axis separates the dimensionalities
of the artificial data and the chromosomal aberration data, i.e. d=x,y denotes dimen-
sionality (d) = (chromosomal aberrations data dimension (x), artificial data dimension
(y)).

We calculate the matrix difference between the original data and the data
sampled from the Bayesian networks. The difference in the binary data is sum
of the number of places where 0s are 1s, and 1s are 0s. The difference is compar-
atively small in smaller dimensions than in the larger dimensions because the
cumulative difference depends on the size of the dataset. Therefore, we calculated
the accuracy of element-wise matching of two datasets as shown in Figure 5. Ac-
curacy is the percentage of places where each element of both the matrices are
equal.
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In artificial data, when the data resolution with dimensionality 15 is missing,
other data resolutions with dimensionality 5, and 25 are available, and we need
to impute only data in resolution 15. Similarly, Data resolutions with dimen-
sionalities 5, and 25 are missing when the data resolution with dimensionality
15 is available. Therefore, we should impute both the resolutions with dimen-
sionalities 5, and 15. In this case, we can simply run single resolution analysis.
However, we try to artificially create this scenario to demonstrate that our al-
gorithm performs reliably under harsh conditions of large amount of missing
values. In chromosomal aberrations data, coarse and the in–between data reso-
lutions have the same dimensionality of 5. Therefore, when the in–between data
resolution with dimensionality 5 is missing, coarse, and fine data resolution with
dimensionality 5, and 15 are available, respectively. Similarly, the coarse, and
fine data resolutions with dimensionalities 5, and 15 are missing when the data
in the in–between resolution with dimensionality 5 are available.

The results in Figure 5 show that accuracy of matching is higher when two
resolutions of data are available and only the data in a single resolution are
missing. When only one data resolution is available, and we need to impute two
resolutions in the coarse and the fine resolution, the accuracy is poorer. This
result is intuitive because the number of known variables is smaller than the
number of missing variables when two data resolutions are missing. Similarly,
accuracy is poorer in high dimensional data (fine resolution) compared to data
with lower dimensionality (coarse resolution). This discrepancy is the result of
the curse of dimensionality phenomenon. Overall, the results show that the model
of component distributions as Bayesian networks produces plausible results.

5.2 Experiments on Mixture Modeling of Multiresolution Data

In experimental setup, firstly, we transform the multiresolution data to the
Bayesian network representation as shown in the Figure 3. Secondly, we trans-
form the Bayesian network representation to the vector representation after
imputing missing values (if any) as explained in Section 3. In the vector repre-
sentation, the transformed multiresolution data have same dimensionality. The
EM algorithm learns the mixture model with a priori knowledge of the num-
ber of components for data. As in [11,27,28], we use model selection in a 10-fold
cross-validation setting to select the appropriate number of mixture components.

We train models of different complexities in a ten-fold cross–validation setting
and select the model with the best generalization performance. Figure 6 shows
that both training and validation likelihood steadily increases until the number
of components is 5, then smoothen and flatten after the number of components
is 5. This suggests that 5 is the appropriate number of mixture components.

After selecting the number of components, we train 200 different models of
the same complexity and choose the model that produces the best likelihood on
the data to ameliorate the problem of local optima in the EM algorithm. We also
perform similar experiments with data in each resolution to select the number
of mixture components and train the mixture model as a comparison with the
results of the multiresolution model. Table 1 shows the variation in the number
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Fig. 6. Model selection in a 10-fold cross-validation setting in multiresolution artificial
data. Final results for the same model selection are denoted by a boldfaced row in
Table 1. Averaged training and validation likelihood along with their corresponding
Inter Quartile Range (IQR) for each training and validation run has also been plotted.
The selected number of components is 5.

Table 1. The results of mixture modeling on single resolution and multiresolution
models. Here, J and L, denote the selected number of components and the log likelihood
obtained by the best model, respectively.

Artificial Data Chromosome-17

Datasets Results Datasets Results
(Dimension) J L Dimension) J L
Single Resolution (5) 3 -3.24 Single Resolution (5) 4 -2.23

Single Resolution (15) 6 -8.32 Single Resolution (5) 3 -2.17

Single Resolution (25) 7 -12.84 Single Resolution (15) 5 -3.73

Multiresolution (9) 5 -2.40 Multiresolution (5) 4 -2.14

of components required to fit the data in different resolutions. Furthermore, the
likelihood is considerably smaller in single resolution showing improvement in
mixture modeling because of the use of multiple resolutions.

Figure 7 shows the log likelihood of three single resolution models and a
multiresolution model. We trained the mixture model initialized at random in
a ten-fold cross-validation setting with the selected number of components to
convergence, i.e. until the increase in log-likelihood is small, 0.0001 in the exper-
iments. The shorter the bar the better the result as Y-axis depicts negative log
likelihood.
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Fig. 7. The log likelihood of three mixture models in single resolution and a multires-
olution mixture model trained in a 10-fold cross-validation setting after selecting the
number of components. The Y-axis shows the negative log likelihood, therefore, the
shorter the bar, the better the result.

We select a different number of components for each dataset as shown in
Table 1. The results also show that multiresolution mixture model outperforms
the single resolution models. Log likelihood is comparatively smaller in dimen-
sionalities of 15, and 25 because of the increased dimensionality of the data. The
likelihood of the multiresolution model is better than the data with the smallest
dimensionality of 5 in single resolution although the dimensionality of the mul-
tiresolution data is 9. The Table 1 also shows similar results on chromosomal
data.

6 Summary and Conclusions

In this paper, we proposed a mixture model of multiresolution components to
model multiresolution 0-1 data. Firstly, we design the multiresolution compo-
nents of the mixture model as Bayesian networks with the knowledge of the
hierarchy of resolutions from the domain ontology. We then learn the CPD of
the networks from the multiresolution data. Secondly, we transform the multires-
olution component distributions to vector representation and learn the mixture
model in a ten-fold cross validation setting. We experimented with the algorithm
on a multiresolution artificial dataset and also on a multiresolution chromosomal
aberration dataset. The experimental results show that the proposed approach
of multiresolution modeling outperforms single resolution models.
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Abstract. We address the task of discrete-time modeling of nonlinear
dynamic systems using measured data. In the area of control engineer-
ing, this task is typically converted into a classical regression problem,
which can then be solved with any nonlinear regression approach. As
tree ensembles are a very successful predictive modelling approach, we
investigate the use of tree ensembles for regression for this task.

While ensembles of regression trees have been extensively used and
different variants thereof explored (such as bagging and random forests),
ensembles of model trees have received much less attention, being lim-
ited mostly to bagging of model trees. We introduce a novel model tree
ensemble approach to regression, namely, bagging and random forests of
fuzzified model trees. The main advantage of the new approach is that
it produces a model with no discontinuities with a satisfactory extrapo-
lation behavior, needed for modeling dynamic systems.

We evaluate existing tree ensemble approaches to regression and the
approach we propose on two synthetic and one real task of modeling
nonlinear dynamic systems coming from the area of control engineering.
The results show that our proposed model tree ensembles outperform
ensembles of regression trees and have comparable performance to state-
of-the-art methods for system identification typically used in control en-
gineering. The computing time of our approach is comparable to that of
the state-of-the-art methods on the small problems considered, with the
potential to scale much better to large modeling problems.

1 Introduction

Dynamic systems are systems that change over time. The task of modeling dy-
namic systems is of high practical importance, because such systems are ubiqui-
tous across all areas of life. The models allow for better understanding of dynamic
systems, as well as their control, the latter being the focus of study in control
engineering.

In control engineering, a dynamic system is typically represented by two (sets
of) variables. System (endogenous) variables, denoted by y, describe the state
that the system is in at any particular point in time. Input (exogenous) variables,
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denoted by u, capture external conditions that influence, i.e., are relevant to, the
system.

Dynamic systems can be modeled in continuous time with systems of ordinary
differential equations, describing the rate of change for each of the system vari-
ables. They can also be modeled in discrete time, by using difference equations
that describe the state of the system at (a discrete) time point k as a function of
previous system states and inputs. The task of constructing models of dynamic
systems, both in continuous and discrete time, from measured data is the topic
of study of the system identification sub-area of control engineering.

The Task of Discrete-Time Modeling of Dynamic Systems

This paper addresses the task of discrete-time modeling of nonlinear dynamic
systems. As mentioned above, two types of variables are used in modeling, system
(endogenous) and input (exogenous) variables, denoted by y and u, respectively.
Using the external dynamics approach [1], the task of empirical modeling of a
dynamic system can be formulated as a regression problem of finding a difference
equation that fits an observed behavior of the system.

More precisely, to model a system described by y and u, we need to formulate
a difference equation that expresses the value of the state variable y at a given
time point k as a function of past system and input variables (y and u).

The transformation creates a new vector of features which is composed from
the lagged values of the input variable u and system variable y. Typically, up to
n time points in the immediate past (with respect to k) are considered.

At time point k, the dynamic system is thus represented by the vector of
features x(k)

x(k) = [u(k − 1), u(k − 2), .., u(k − n), y(k − 1), y(k − 2), .., y(k − n)]T (1)

where n is the dynamic order (lag) of the system. The model of the system
is a difference equation that describes the state of the system at (a discrete)
time point k, y(k) as a function of the previous system states and inputs (i.e.,
x(k)). The corresponding regression problem is to train a nonlinear function
approximator f(.), s.t. y(k) = f(x(k)), from a table of data generated from an
observed behavior in the manner described above.

Early research in discrete-time system identification focused on parametric
and semi-parametric regression approaches. More recently, non-parametric ap-
proaches dominate. These include the widely used basis-function approaches of
Artificial Neural Networks [1] and fuzzy modeling, as well as kernel methods [2]
and Gaussian Process models [3].

In this context, we propose the use of another non-parametric approach to
regression, coming from the area of machine learning. Tree ensembles are very
well known and perform well in terms of predictive power. They are also very
efficient and scale well to large problems. We thus set out to investigate the use
of tree ensembles for regression for the above task.

To our knowledge, the present work is the first to consider the use of tree
ensemble methods for modeling dynamic systems.
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Tree Ensembles for Regression

The simplest ensemble creation procedures is based on the resampling
principle and is known as Bootstrap Aggregation (Bagging) [4]. It generates
ensembles from randomly sampled bootstrap replicates (random samples with
replacements) of the training set. Each bootstrap replicate is used to build a
base model, using the base learner algorithm. Hopefully, each base model would
capture and represent a different hypothesis and the combination of the base
models would be a more accurate predictor than each base model. Bagging can
be seen as an ensemble method that modifies the training data.

Later work by Breiman [5] concluded that ensembles could benefit from mod-
ifying the learning process as well. This tree ensemble methodology is known
as Random Forests and includes randomization of the attributes considered for
split nodes of the trees. Both tree ensemble approaches use a regression tree
learning algorithm as a base learner, which only provides a piecewise constant
approximation of the true function.

However, the modeling of nonlinear dynamic systems using the transformation
to a regression task requires approximating (smooth) nonlinear functions. Also,
the extrapolation behavior of the model is important because the measured
(training) data for the dynamic system cannot capture all parts of the operating
region being modeled [6]. The existing piecewise constant fit that a regression
tree or an ensemble of regression trees provide is not sufficient for this task. An
obvious solution of extending the ensembles of regression trees methodology is
introducing ensembles of model trees, which learn linear models for the terminal
nodes.

Linear model trees provide a piecewise linear approximation and are a more
powerful approximator which also handles the extrapolation problem better than
regression trees. Another approach that is often pursued in the system identi-
fication community, for modeling dynamic systems, is utilizing fuzzy methods.
In the context of model trees, fuzzy approaches are able to provide continuous
transitions between neighboring local (linear) models and a more accurate fit to
the true nonlinear function.

While ensembles of regression trees have been used extensively and different
variants thereof have been explored [7,8,5], ensembles of model trees have re-
ceived much less attention in the machine learning literature. In fact, they have
been mostly limited to bagging of model trees. Here we introduce a novel model
tree ensemble approach to regression, namely, bagging and random forests of
fuzzified model trees, which produce models with no discontinuities and with
satisfactory extrapolation behavior.

Paper Outline

In this paper, we introduce a novel model tree ensemble approach to regression,
namely, (bagging and) random forests of fuzzified model trees (Section 2). The
main advantage of the new approach is that it produces a model with no dis-
continuities with a satisfactory extrapolation behavior. As explained above, this
is needed for modeling dynamic systems.
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We then evaluate existing tree ensemble approaches to regression and the
approach we propose on two synthetic and one real task of modeling nonlinear
dynamic systems coming from the area of control engineering. We also consider
two state-of-the-art approaches to system identification coming from that area.
Section 3 describes the experimental setup, while Section 4 presents the results.

The results show that our proposed model tree ensembles outperform ensem-
bles of regression trees. They have comparable performance to the two state-
of-the-art methods for system identification that are typically used in control
engineering. The computing time of our approach is comparable to that of the
state-of-the-art methods on the small problems considered, with the potential
to scale much better to large modeling problems.

2 Model Trees Ensembles

The Model Trees Ensembles (MTE) methodology works by learning fuzzified
linear model trees from bootstrap samples of the training data. The pseudocode
for the Model Tree Ensembles methodology is shown in Table 1. The base learner
algorithm starts by learning crisp linear model trees, where an example follows
exactly one branch of a split in the tree for tests of the form [A < v] (v is a
crisp threshold). The next stage involves a tree fuzzification procedure, which
transforms each (crisp) split of the trees into a fuzzy split, where an example
can be sorted down both branches resulting from a split and the two corre-
sponding predictions are combined. The prediction of the model tree ensem-
ble E = {T1, T2, .., Tm} is a uniformly weighted average of the individual tree
predictions:

f̂(x) =
1

m

∑
T∈{T1,T2,..,Tm}

f̂T (x) (2)

where f̂T is the prediction of model tree T .
The crisp model tree learning is based on the well-known M5′ algorithm [9,10].

The randomized base learner for building fuzzified model trees operates in the
following stages: tree growing phase, tree pruning phase, and tree fuzzification
phase. The tree growing phase includes a randomization of the split attribute
selection, in line with the ideas from Random Forests [5]. The different stages
of the tree learning algorithm are described in the sections that follow, and the
pseudocode is shown in Tables 2, 3 and 4.

2.1 Tree Growing Phase

Tree growing is a recursive procedure that generates the initial structure of the
tree. The procedure consists of determining whether the tree node should be a
split (inner) node or a terminal node containing a linear model. If a split node is
created, the procedure continues recursively for the examples sorted down each
of the two branches created by the split.

The decision to create a terminal node instead of a split node (i.e. to perform
pre-pruning) is taken when one of the two stopping criteria are met. The first
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criterion tests if the number of training points in the current node is smaller
than the value of the minimal number of instances parameter (t). The second
criterion stops tree growing when the standard deviation of the target attribute
on the data points falling in the current node is smaller than 5% of its standard
deviation on the whole training set.

The selection of the split parameters (the feature attribute to split on and the
cut-point) is guided by the standard deviation reduction (SDR) heuristic, shown
in (3) below. Normally the split with the highest reduction in the standard
deviation is chosen. However, a randomization of the split attribute selection
process can also be implemented in the tree growing phase, as described below.

Randomization of Attribute Selection. We consider a randomization of the
base learning algorithm as in the random forests approach: instead of considering
all features, only a random subset of features is considered when selecting the
best split in a given node. A different random subset of the same size is consid-
ered in different nodes. The size is determined by the attribute randomization
parameter p. For each candidate attribute in the subset, the standard deviation
reduction (SDR) heuristic is used to evaluate all possible split cut-points. The
feature attribute (A) and cut-point (c) combination in the test [A < c] which
maximizes the SDR heuristic is selected and used as a split at the current tree
node. The SDR heuristic score is calculated as:

SDR = σ2
S − |Sl|

|S| σ
2
Sl

− |Sr|
|S| σ

2
Sr

(3)

where S is the set of data points falling in the current tree node, Sl and Sr are
the two subsets of data points corresponding to the left and right branches of
the split. σ2

S denotes the standard deviation of the target attribute in the set S.

2.2 Tree Pruning Phase

It is well known that overly large trees are prone to overfitting. Tree pruning
(shown in Table 3) is a method that handles overfitting by removing tree nodes
which may deteriorate the performance of the tree. As a first step, linear models
are estimated in all nodes of the tree, by using linear regression. The estimation
of linear models also includes an attribute removal part: Features whose effect
is small are dropped from the linear model [9].

After the estimation of linear models, the bottom-up pruning function eval-
uates whether to prune each tree node. It compares the accuracy of the linear
model learnt for a node to the accuracy of the subtree rooted at the node. A
decision to prune (replace the subtree rooted at that node with a terminal node)
is made only if the accuracy of the subtree is smaller than the accuracy of the
linear model.

Our experience showed that including unpruned model trees in the ensem-
ble resulted in deterioraion of the ensemble performance. The linear regres-
sion procedure for the terminal nodes that contained smaller number of data
points resulted in invalid linear models. One possible solution to this problem
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was to include a tree pruning method, which increased the performance of the
ensembles.

2.3 Fuzzification

In order to smooth out the discontinuous transitions between two neighboring
linear models of a model tree (i.e. linear models placed in two nodes following
the same split node), we implement a split fuzzification procedure. A crisp split
of the form s[A < c], where A is a descriptive attribute and c is a cut-point,
is transformed to a fuzzy split: A data instance now belongs to both the left
and right subtrees of the split with probabilities μA<c and μA≥c respectively.
The probabilities for membership to the left and right subtrees are calculated by
using a sigmoidal membership function with a single parameter: α - the inverse
split width, as defined by (4) below.

μA<c =
1

1 + exp(−α(A − c))
, μA≥c = 1− μA<c (4)

The value of the split parameter α is different for each split. It is calculated so
that the overlap between the two neighboring partitions that the split creates in
the dimension of the split variable A is equal to some percentage w of the range
of values for that attribute. In the experiments, the value of the parameter w is
optimized using cross-validation.

2.4 Implementation

The Model Tree Ensembles method is implemented in Java, using the WEKA
data mining software [11]. The WEKA implementation of the M5′ algorithm
[9] for building model trees has been modified to include the changes described
here.

In the Model Tree Ensembles method we extend the M5′ algorithm, but with
some of its features disabled. The disabled features consider the learning of the
linear models and the smoothing procedure.

The linear models in a node of an M5′ tree are learnt only using variables
found in tests in the subtree rooted at that node. Instead of keeping this feature
we learn the linear models by using all available features. Also, we turn off the
smoothing procedure of M5′. Our preliminary experiments have shown that there
is no difference in performance between ensembles which include and those that
do not include the two features of the base learner.

3 Experimental Setup

In this section, we describe the datasets used for the experimental evaluation, the
methods that we compare, the optimization of the parameters and the metrics
used for the evaluation of the results.
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Table 1. Pseudocode for the top level of the Model Tree Ensembles method

Learn_ensemble(S)
Input: S - training set
Output: E - an ensemble
Create m bootstrap samples of S : S1, S2, .., Sm

For k = 1 → m do
Tk =Build_tree(Sk)
Tk = Prune(Tk)

Let wopt = Optimize_overlap_width_parameter({T1, T2, .., Tm}, S)
For k = 1 → m do

Tk = Fuzzify(Tk, wopt)
Return ensemble E = {T1, T2, .., Tm}

3.1 Datasets

We have used three dynamic system datasets from the area of control engineer-
ing, more precisely process-industries. One of the datasets is measured, while the
other two are synthetic. Of the latter, one is noise-free and the other is noisy.

The first dataset concerns the modeling of a unit for separating gas from liquid,
which is part of a larger pilot plant [12]. It is a dataset with measured values
concerning a semi-industrial process plant. The dynamic system is represented by
4 variables: three input (state of first valve, state of second valve, level of liquid in
tank) and one system (pressure of gas in tank) variable. The dynamic order (lag)
selected for this dataset is 1, which means that the regression dataset contains
4 features and 1 target variable. The dataset is already split into a training and
test part, each of which contains 733 data instances.

The second dataset is generated from a dynamic system model that concerns
the control of pH neutralization [13]. This synthetic dataset contains one input
variable and one system variable. The selected dynamic order (lag) is 2, which
means that the regression dataset contains 4 features and 1 target variable. This
dataset too is split into a training and a test part, each having 320 data points.
The training and testing sets for both datasets are obtained from different signals
generated under the same conditions.

The third dataset is generated from the same dynamic system model as the
second one, but with added noise. In more detail, the noise is added only to
the system variable and only in the training set. In the final regression dataset,
this means that two of the four feature variables (the ones corresponding to the
system variable of the dynamic system model), as well as the target variable,
contain noise in the training set. The noise added is white noise with a standard
deviation equal to 20% of the standard deviation of the target variable.

3.2 Methods and Parameter Settings

We compare MTEs with two selected methods typically used in system identifi-
cation. The first method that we compare to is the method of Neural Networks
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Table 2. Pseudocode for the tree growing phase of the Model Tree Ensembles method

Build_tree(S)
Input: S - a training set
Output: T - a tree
If |S| < t

Return a terminal node
If standard deviation pre-pruning criterion is satisfied

Return a terminal node
Let {A1, A2, .., Ap} be a random subset of feature attributes
Initialize sbest
For k = 1 → p do

Let split s∗[Ak < c] = argmax
s

(SDR(s[Ak < c]))

If SDR(s∗) < SDR(sbest)
sbest = s∗

Split set S into subsets Sl and Sr based on split sbest
Let Tl = Build_tree(Sl), Tr = Build_tree(Sr)
Return a tree with a split node sbest and subtrees Tl and Tr

Table 3. Pseudocode for the tree pruning phase of the Model Tree Ensembles method

Prune(T )
Input: T - a tree
Output: pruned tree
If root of T is a split node

Prune( T → left )
Prune( T → right )
Learn a linear model for the root node of T
Calculate the error of the linear model errLM

If Subtree_error(T ) > errLM then
Convert root of T to a terminal node

Return T

Subtree_error(T )
Input: T - a tree
Output: numeric value
If root of T is a split node

Let Tl=T → left, Tr=T → right
Let S=T → examples, Sl=Tl → examples, Sr=Tr → examples
Return ( |Sl| * Subtree_error(Tl) + |Sr| * Subtree_error(Tr) ) / |S|

Otherwise
Return the error of the linear model in root of T



Model Tree Ensembles for Modeling Dynamic Systems 25

Table 4. Pseudocode for the fuzzification phase of the Model Tree Ensembles method

Fuzzify(T,w)
Input: T - a tree, and w - overlap width parameter
Output: fuzzified tree
If root of T is a split node

Let the split at root of T be s[Ak < c]
Let [xmin

k , xmax
k ] be the range of the data points in dimension k

Calculate α s.t. split width is equal to w|xmax
k − xmin

k |
Create fuzzy split at root of T with parameters α,Ak, c using Eq.4
Fuzzify(T → left)
Fuzzify(T → right)

Return T

Optimize_overlap_width_parameter(E,S)
Input: E - an ensemble, and S - a training set
Output: optimal overlap width
Let w = [10%, 20%, 30%, .., 90%]T

For k = 1 → 9 do
For each tree T in ensemble E do
T = Fuzzify(T, wk)

Let errk be a cross-validation estimate of the error of ensemble E, using set S
Let p = argmin

k
(errk)

Return wp

(NN). We use feed-forward multi-layer perceptron (MLP) networks [1] with one
hidden layer of nodes. The only parameter that we tune for NN is the number
of nodes in the single hidden layer. We test values for this parameter in the
range from 1 to 10, so in total we test 10 possible values. For this work we don’t
anticipate a need for more than 10 hidden neurons or the need for more than one
hidden layer. The implementation of the multi-layer perceptron networks that
we use is the one from the Neural Network Toolbox in Matlab.

The second method is the Adaptive Network Based Fuzzy Inference System
(ANFIS) [14]. It is a hybrid neural-network approach, which combines backprop-
agation gradient descent and least-squares regression. The model it builds is a
set of fuzzy rules (Takagi-Sugeno fuzzy model). The premise parts of the rules
are built using fuzzy sets, while the consequents are linear models of the feature
attributes.

The method first determines the number of fuzzy rules and their initial po-
sitions (structure identification part). This is done by using a fuzzy c-means
clustering algorithm. After the initial stage, the method applies an iterative
improvement of the model, consisting of two steps. The first step is backpropa-
gation gradient descent, which modifies the parameters of the fuzzy membership
functions (it re-locates the centers of the fuzzy rules and changes the param-
eters of the Gaussian membership functions). The second step is learning the
parameters of the linear models of the rule consequents. For this step a weighted
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least-squares regression is applied, and the linear model parameters of all rules
are learnt simultaneously.

The only parameter that needs to be set for ANFIS is the number of rules
(clusters). The Matlab implementation (available in the Fuzzy Logic Toolbox)
we use has the option to determine automatically the number of rules, but in
our experience suboptimal results are obtained in that way. We thus tune the
value of this parameter (which is in the range from 2 to 10) by considering 9
possible integer values for it.

The parameters that need tuning for MTE are the following a) the minimal
number of examples t, b) the attribute randomization parameter p and c) the
overlap width parameter w. First, we perform a search for the optimal combina-
tion of the two parameters (topt, popt) using internal cross-validation of ensembles
of 10 trees. Once this pair has been found, we optimize the overlap width pa-
rameter w. We consider 9 different values for this parameter, ranging from 10%
to 90%. After the parameter optimization step, the training of the ensembles is
carried out, by learning 50 trees. The total number of parameter combinations
tried for each of the datasets is reported in Section 4.2.

We also consider four alternatives of our method: bagging of model trees
(BMT), bagging of fuzzified model trees (BTM+fz), (random) forests of model
trees (FMT) and (random) forests of fuzzified model trees (FMT). In addition,
we consider several baselines closely related to our MTE method. The baseline
methods chosen are: a single M5′ model tree (M5′), bagging of M5′ regression
trees (BRT) and (random) forests of M5′ regression trees (FRT). The parameters
of the baseline methods are optimized using the same internal cross-validation
procedure as for the MTE method. The baseline methods we consider are im-
plemented in WEKA [11].

3.3 Evaluation Criterion and Methodology

We evaluate the predictive performance and training time of the MTE method
and compare these to the corresponding measures for NN and ANFIS. For the
predictive performance, we calculate the squared prediction error, and report
the root-relative mean-squared error (RRMSE), as defined by (5).

RRMSE =

√∑
(yi − f̂(xi))2√∑
(yi − ȳ)2

(5)

Note that RRMSE normalizes the root mean squared error (RMSE) by the error
of the single model that always predicts the average.

For the training time, we evaluate the time needed for parameter optimization
and training (i.e. learning a regression model). The times are reported in seconds
and all of the experiments are run on a machine with an Intel Pentium 4 CPU
running at 3.2Ghz and 2GB of RAM memory.

The parameter optimization part of the learning is carried out by using 5-
fold cross-validation. The prediction error of the cross-validation procedure is
a criterion for selecting the best parameter or parameter combination. In order
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to get a more reliable estimate of the performance of the methods with the
selected parameters, we run the experiments 20 times using different random
seeds. The performance values reported in Section 4 are the mean and standard
deviations of the 20 experiment runs. Note that ANFIS uses randomization for
setting the initial parameters of the fuzzy rules, NN use randomization to set
the initial parameters of the network and MTEs use randomization for creating
the bootstrap replicates and for split attribute randomization.

4 Results and Discussion

Here we report the experimental results, i.e. the predictive performance of the
methods, the time for training needed, and the effect of the size of the ensembles
(number of trees) on the predictive performance.

4.1 Predictive Performance

The predictive performance of the MTE method, its variants and the base-
line methods we compare it to on the dynamic system datasets is shown in
Table 5 and Figure 1. First we note that ensembles of regression trees perform
much worse than all model-tree based methods. They perform worse than even
a single model tree. This is in line with the perceived idea of smoothness and
extrapolation for modeling dynamic systems. Note that bagging of model trees
performs worse than an individual model tree, both for crisp and fuzzified trees.
The only exception is ensembles of the pH20 datasets, where bagging of fuzzified
trees performs better than a single model tree. Random forests of model trees
(both crisp and fuzzy) perform better than bagging.

In fact, random forests of fuzzified model trees perform best for all three
datasets. For the GLS and pH datasets, the improvement in predictive perfor-
mance over that of a single tree is small. On the noisy dataset pH20, the im-
provement in performance is clearly visible. The fuzzification of the trees in the
ensemble helps in decreasing the error, both for random forests and for bagging
of model trees.

GLS pH pH20
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BMT + fz
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Fig. 1. Predictive performance of Model Tree Ensemble variants and baseline tree-
based models
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Table 5. Predictive performance of Model Tree Ensemble variants and baseline tree-
based models

GLS pH pH20
mean st.dev. mean st.dev. mean st.dev.

M5′ 0.1096 0.0000 0.0553 0.0000 0.1125 0.0000
BRT 0.1743 0.0017 0.1396 0.0030 0.1794 0.0048
FRT 0.1513 0.0036 0.1237 0.0091 0.1743 0.0049
BMT 0.1142 0.0056 0.0562 0.0021 0.1238 0.0027
BMT + fz 0.1137 0.0054 0.0556 0.0016 0.1033 0.0018
FMT 0.1060 0.0019 0.0555 0.0020 0.1016 0.0029
FMT + fz 0.1055 0.0019 0.0551 0.0017 0.0936 0.0018

The predictive performance of the MTE methodology is also compared to the
selected methods, used in system identification, and described in Section 3.2.
The results of the comparison are shown in Table 6 and Figure 2.

Table 6. Predictive performance of MTEs as compared to selected methods used in
system identification

GLS pH pH20
mean st.dev. mean st.dev. mean st.dev.

FMT 0.1060 0.0019 0.0555 0.0020 0.1016 0.0029
FMT + fz 0.1055 0.0019 0.0551 0.0017 0.0936 0.0018
ANFIS 0.1015 0.0000 0.0751 0.0000 0.0937 0.0000
NN 0.1243 0.0350 0.0803 0.0095 0.1284 0.0139
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Fig. 2. Predictive performance of MTEs as compared to selected methods used in
system identification
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The comparison of the RRMSE for MTEs, ANFIS and NN shows that the
performance of MTEs is better or comparable to ANFIS. On the GLS dataset,
ANFIS is the winning method, but MTEs are the winning method in the other
two cases. The performance of ANFIS is worse on the pH dataset, as the optimal
number of fuzzy rules, as determined by the cross-validation procedure, is only
2. For comparison, the optimal number of fuzzy rules for the noisy counterpart,
i.e. pH20 dataset, is 5, which leads to more competitive performance.

For the noisy pH20 dataset, MTEs show good performance, comparable to
that of ANFIS. The standard deviation of the estimates of RRMSE error is
almost zero for ANFIS and quite small for the MTE method. On the other hand,
Neural Networks show quite a large deviation of the RRMSE result, because the
random initial values used for the optimization of the network parameters lead
to solutions with very different quality.

The optimal sets of parameters for the results presented in Tables 5 and 6 are
as follows: For the FMT+fz variant of the MTEs, the value of the parameter
t, the minimal number of examples, was 125, 50 and 90 for the three datasets,
i.e. GLS, pH and pH20, respectively. The value of the attribute randomization
parameter p was 1, 2 and 2, while the optimal overlap w had values of 20%,
20% and 30%. The number of trees included in all of the ensembles was 50.
The optimal number of rules for ANFIS was 2, 2 and 5, while the optimal
number of nodes in the hidden layer of NN was 6, 2 and 2 for the three datasets,
respectively.

4.2 Computing Times

In this section, the time for parameter optimization and training is evaluated
both separately and together for the three methods: MTE, ANFIS and NN.
Table 7 summarizes the number of parameters that need tuning for each method
and the number of possible combinations of parameter values that were tested
in the 5-fold cross-validation procedure. It also reports the time needed for pa-
rameter optimization and for training (separately and together).

As discussed in Section 3.2 the MTE methodology has three parameters to
tune and the total number of parameter value combinations tested ranges from
72 to 120. However, the tree building procedure is relatively fast, so the to-
tal time for model selection comparable to the time taken by the two selected
methods. The results show that, in spite of the large number of parameter value
combinations tested for MTEs, it takes less time to determine their optimal val-
ues and train the resulting model as compared to ANFIS. It can be noticed that
the duration of the training procedure is shortest for NN, while it is longest for
ANFIS. This is also visible in Figure 3.
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Table 7. Computing times taken for parameter optimization and model training. The
number of parameters tuned and the number of combinations of their values are listed
as well.

Parameter optimization Training Total
time (sec) num.param. num.values time (sec) time (sec)

GLS
FMT+fz 230.0 3 120 2.6 232.6
ANFIS 319.0 1 9 17.5 336.5

NN 174.6 1 10 4.1 178.7

pH
FMT+fz 72.0 3 72 1.1 73.1
ANFIS 197.5 1 9 7.5 205.0

NN 45.9 1 10 1.0 46.9

pH20
FMT+fz 79.1 3 72 0.8 79.9
ANFIS 198.1 1 9 7.7 205.8

NN 33.8 1 10 0.6 34.4

GLS pH pH20
0.0

100.0

200.0

300.0

400.0

FMT+fz
ANFIS
NN

Fig. 3. Computing times

Note that decision trees scale very well as the number of training instances
and the number of features increases. The same holds for ensembles of trees,
especially for random forests. We thus expect our MTE methodology to perform
more efficiently than both ANFIS and NN for larger problems.

4.3 The Effect of the Number of Trees in Ensemble

Table 8 and Figure 4 present the predictive performance (in terms of RRMSE)
of MTEs with different number of trees. The results, obtained by using the FMT
variant, show that the mean performance (out of 20 runs) increases slightly but
not substantially by using more trees. This means that the optimal predictive
performance can be obtained by using as few as 10 or 50 trees. In Table 8
however, it can be seen that the standard deviation of the error decreases when
more trees are included in the ensemble.
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Table 8. Effect of the number of trees in the ensemble on its performance

Num.trees in GLS pH pH20
ensemble mean st.dev. mean st.dev. mean st.dev.

10 0.1091 0.0044 0.0566 0.0032 0.1038 0.0059
50 0.1060 0.0019 0.0555 0.0020 0.1016 0.0029
100 0.1053 0.0020 0.0558 0.0011 0.1012 0.0025
500 0.1054 0.0007 0.0553 0.0006 0.1002 0.0010

GLS pH pH20
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0.0800

0.0900
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0.1100

10 trees
50 trees
100 trees
500 trees

Fig. 4. Effect of the number of trees in the ensemble on its performance

5 Conclusions

In this paper, we investigated the task of modeling dynamic systems using tree
ensembles. As it requires a modeling procedure which produces a smooth fit and a
reasonable extrapolation behavior, we experimentally confirmed our hypothesis
that regression trees and ensembles thereof are not appropriate. Instead, we
introduced and evaluated ensembles of model trees with fuzzy splits.

Our experimental evaluation showed that the fuzzification procedure improves
the performance of the model tree ensembles, especially on noisy data. Overall,
the accuracy of the model tree ensembles was better than ensembles of regression
trees and it also was better than a single model tree. Compared to selected
state-of-the-art methods used in the area of system identification, the model
tree ensembles performed equally well or better.

In our future work, we would like to evaluate the performance of ensemble
models using a more stringent evaluation methodology tailored for modeling
dynamic systems. This evaluation concerns the output error which is calculated
by a procedure of simulation: the model at hand is repeatedly used for prediction
in consecutive time points, with the feature vector at each time point modified to
contain previous model predictions instead of the measured lagged values of the
system variable. The evaluation in terms of output error would show whether
the model predictions can be used for practical purposes or overfit noise and
cause the simulation to diverge.
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Abstract. The recent overwhelming increase in the amount of available
visual information, especially digital images,has brought up a pressing
need to develop efficient and accurate systems for image retrieval. State-
of-the-art systems for image retrieval use the bag-of-visual-words repre-
sentation of the images. However, the computational bottleneck in all
such systems is the construction of the visual vocabulary (i.e., how to
obtain the visual words). This is typically performed by clustering hun-
dreds of thousands or millions of local descriptors, where the resulting
clusters correspond to visual words. Each image is then represented by
a histogram of the distribution of its local descriptors throughout the
vocabulary. The major issue in the retrieval systems is that by increas-
ing the sizes of the image databases, the number of local descriptors to
be clustered increases rapidly: Thus, using conventional clustering tech-
niques is infeasible. Considering this, we propose to construct the visual
codebook by using predictive clustering trees, which are very efficient
and have good performance. Moreover, to increase the stability of the
model, we propose to use random forests of predictive clustering trees.
We evaluate the proposed method on a benchmark database of a million
images and compare it to other state-of-the-art methods. The results
reveal that the proposed method produces a visual vocabulary with su-
perior discriminative power and thus better retrieval performance.

Keywords: image retrieval, visual vocabulary construction, predictive
clustering.

1 Introduction

An ever increasing amount of visual information is becoming available in various
digital archives. For instance, the widely used social web sites such as Face-
book1 and Flickr2 store several billions images for their users. The improve-
ment of digital cameras and user interfaces for upload of images will further

1 Facebook c©– http://www.facebook.com
2 Flickr from Yahoo! c©– http://www.flickr.com

J. Fürnkranz, E. Hüllermeier, and T. Higuchi (Eds.): DS 2013, LNAI 8140, pp. 33–48, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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increase the amount of available images. The value of the information obtained
from an image depends on how easily it can be found, retrieved, accessed, fil-
tered and managed. Considering this, the development of systems for efficient
archiving, browsing and searching images is a necessity. Such systems are being
developed within the research area of image retrieval.

Image retrieval is an inter-disciplinary research area that cross-fertilizes the
following research areas: multimedia research, information retrieval, machine
learning, computer vision, and human-computer interaction. The methods for
image retrieval can be categorized into two categories [1]: text-based image re-
trieval (TBIR) and content-based image retrieval (CBIR). The former group
of methods require some meta-data for each image in textual format (i.e., im-
age tags) and then the retrieval is performed by providing textual queries. These
methods perform well and are efficient as long as the images are correctly tagged.
However, these methods have two serious limitations: a large amount of human
labour for manual annotation (which is even more exacerbated in the case of
large image databases) and the inaccuracy from the subjectivity of the human
annotators. To alleviate these limitations, CBIR methods were introduced. They
describe the images by their visual content, such as color, texture, shapes and lo-
cal descriptors. The CBIR methods heavily rely on extracting appropriate image
descriptors and a good similarity measure between images.

In this work, we focus on developing a method for efficient CBIR in large scale
image databases. More specifically, we are concerned with developing a method
for particular object retrieval from a large scale database which will retrieve all
images that contain the specific query object. In other words, we are interested
to associate two images based on the objects they contain and not based on the
entire images. For example, if the query object is a specific model of a BMW
car, then the method should retrieve the images containing that specific model
of a BMW and not other models of a BMW or any other type of car.

These methods can be readily applied in several practically relevant domains
[2]. To begin with, they can be used for creation of a web-scale visual search
engine where the query will be a visual object. Second, they can be used for
searching through personal image databases (e.g., select the photos that contain
an image of the Eiffel Tower). Next, performing product search will strongly
benefit from such systems: The user can take a photo of a given product, perform
a search on the web and compare its prices from the given store to the price in
the on-line shops. Furthermore, these methods will facilitate automatic tagging
of images upload on social media, such as Flickr and Facebook. Finally, these
methods can be used for augmented reality and creation of visual guides for
museums and art galleries. For instance, a user can take a photo of a given
sculpture and look for info on the web for the given sculpture.

Several systems for particular object retrieval have been proposed in the liter-
ature [3,2,4]. These systems are inspired from the text retrieval systems using the
analogy between bag-of-words and bag-of-visual-words representation [5]. They
consist of three phases: creation of visual vocabulary, image description and sim-
ilarity definition. The creation of the visual vocabulary starts with detection of
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interesting points in the images. From these points, then, local invariant de-
scriptors are extracted. Finally, the visual codebook is obtained by clustering
the large set of descriptors obtained from all of the images. The resulting clus-
ters represent the visual word, while all the visual words comprise the visual
dictionary. The image description phase consists of assigning all of the local
image descriptors to the visual words from the visual dictionary. Each image
is then described with a high-dimensional histogram and each component from
the histogram is the number of descriptors that are assigned to a given visual
word. Finally, the images are ranked using term frequency inverse document
frequency (tf − idf) scores which discount the influence of visual words which
occur in many images. The search is then performed efficiently using a fast and
tree-based inverted index structure [6].

The systems for particular object retrieval face several challenges [2]. To begin
with, the changes in the lighting, image scale and rotation can hurt the perfor-
mance of the retrieval systems. Second, viewpoint changes can make previously
unseen parts of the object visible and also may include obstructions which will
cover parts of the object. Finally, the systems need to be scalable with respect
to the size of the image database, while preserving the retrieval accuracy. More-
over, the construction of the visual vocabulary should be also performed more
efficiently.

In this paper, we present a novel method for fast and efficient construction
of the visual codebook for particular object retrieval. The proposed method is
based on the predictive clustering framework [7] which unifies predictive mod-
elling and clustering through methods that partition the instances into subsets,
such as decision trees and decision rules. The task of predictive clustering is
to identify clusters of instances that are close to each other both in the target
and in the descriptive space. In this work, we use the predictive clustering trees
(PCTs) to construct the visual vocabulary. More specifically, we use PCTs for
predicting multiple targets in which the descriptive attributes are also considered
as clustering/target attributes.

Using a single PCT is a fast and efficient approach to the construction of
visual codebooks. However, PCTs (and decision trees in general) are unstable,
i.e., can change substantially for small changes in the data. To further improve
the discriminative power and the robustness of our approach, we are using a
small ensemble (random forest) of PCTs (as suggested in [8]). This produces
several visual codebooks (each codebook corresponding to a single PCT from
the ensemble). The overall visual codebook is then obtained by concatenating
the visual codebooks from the single PCTs.

The remainder of this paper is organized as follows. Section 2 briefly presents
the related state-of-the-art methods for particular object retrieval. The predic-
tive clustering framework is described in Section 3. Section 4 gives the pro-
posed method for codebook construction for particular object retrieval. Section
5 outlines the experimental design, while Section 6 presents the results from the
experimental evaluation. Finally, the conclusions and a summary are given in
Section 7.
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2 Related Work

In this section, we briefly present the most widely used and state-of-the-art meth-
ods for CBIR. Many studies have shown that the bag of visual words approach
exhibits a high retrieval performance for object retrieval given a query image of
some particular object [9,10]. A crucial step in the bag of visual words approach
is the codebook construction. The best results are achieved by using large code-
book that contains one million or even more entries/visual words, which requires
clustering tens or even hundreds of millions of high-dimensional feature descrip-
tors into one million or more clusters. The methods for CBIR mainly differ in
the process of the visual codebook construction.

The visual codebook is typically constructed by applying k-means cluster-
ing to the local descriptors (e.g., Scale Invariant Feature Transform descriptors)
extracted from the images [11,12]. The resulting clusters are actually the vi-
sual words. Although this method works very well for smaller databases (and
consequently small number of descriptors), it has very serious limitations when
applied to the problem of large scale object retrieval [13]. It works with small
visual codebooks, i.e., with only thousands of visual words, while many datasets
may have tens of thousands of visual words.

The hierarchical k-means (HKM) approach [3] addresses the issue of small
visual codebook. HKM performs the clustering in a hierarchical manner with a
predefined number of levels (n). At the first level, the descriptor space is clustered
into k1 clusters, then at the second level, each of the k1 clusters is re-clustered
into k2 clusters, and so on, until level n. The final visual codebook then consists
of k1 ·k2 · ... ·kn visual words. However, a major drawback of this method is that
it is not a priori clear how many levels to use and how to choose the appropriate
values for k1..., kn.

Philbin [2] proposed the approximate k-means (AKM) algorithm. In AKM,
the exact nearest neighbor search is replaced with approximate nearest neighbor
search in the assignment step when searching for the nearest cluster center for
each point. In particular, the current cluster centers in each k-means iteration
are organized by a forest of k − d trees to perform an accelerated approximate
nearest neighbor search.

Most closely related to our approach is the CBIR method based on indexing
random sub-windows (extracted from the images) with extremely randomized
trees [14]. These sub-windows are sampled from the images at random positions
and random sizes. The sampled sub-windows are resized using bilinear inter-
polation to size 16 × 16. Each of the sub-windows is then described with the
HSV values (thus resulting in a 768 feature vectors). Next, these feature vec-
tors are used to construct extremely randomized tree: each node split is selected
randomly; thus, these trees are constructed in an unsupervised manner. These
trees are then used as search structures for the retrieval phase. Furthermore, the
extremely randomized trees method can be used to construct ensembles thus
further improve their retrieval performance [8].

Uijlings et al. [15] have performed experimental comparisons of visual
dictionaries constructed using k-means and tree-based approaches. The main
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conclusions from their study is that the tree-based approaches are more efficient
than approaches based on k-means. However, the improvement of the computa-
tional efficiency comes with the price of decreasing the discriminative power of
the vocabulary.

In this paper, we propose a method for visual codebook construction using the
predictive clustering framework. More specifically, we propose to construct the
visual codebook using PCTs and random forests of PCTs. There are two major
differences between the method proposed here and the one proposed by Mareé et
al. [14]. First, the former is used in the vocabulary construction phase and then
it employs the tf − idf scores and inverted index for the retrieval process, while
the latter method tries to emulate the complete process. Second, the selection
of splits in the former is performed with an informed approach, while in the
latter method this is done randomly. Namely, the split selection in the proposed
method is performed by considering the compactness of the produced clusters.
This split selection is the main reason for obtaining a visual vocabulary with
high discriminative power.

3 Predictive Clustering

In this section, we first outline the predictive clustering framework, which is the
foundation of our codebook generation approach. We then briefly describe
the predictive clustering trees for predicting multiple targets. Finally, we present
the method for construction of random forests of predictive clustering trees.

3.1 Predictive Clustering Framework

The notion of predictive clustering was first introduced by Blockeel [7]. The pre-
dictive clustering framework unifies two machine learning techniques, predictive
modelling and clustering, usually viewed as completely different. The connection
between these techniques is made by machine learning methods that partition
the instances into subsets, such as decision trees and decision rules. These meth-
ods can be considered both as predictive and as clustering methods.

The task of predictive clustering is to identify clusters of instances that are
close to each other both in the target and in the descriptive space. Figure 1 il-
lustrates the tasks of predictive modelling (Figure 1(a)), clustering (Figure 1(b))
and predictive clustering (Figure 1(c)). Note that Figure 1 presents the target
and the descriptive space as one-dimensional axes for easier visual interpretation,
but they are usually of higher dimensionality.

The clusters that were obtained using the target space only (Figure 1(a)) are
homogeneous in the target space (the target variables of the instances belonging
to the same cluster have similar values). On the other hand, the clusters obtained
using the descriptive space only (Figure 1(b)) are homogeneous in the descriptive
space (the descriptive variables of the instances belonging to the same cluster
have similar values). The predictive clustering combines these two and produces
clusters that are homogeneous both in the target and in the descriptive space
(Figure 1(c)).
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Fig. 1. An illustration of predictive clustering: (a) clustering in the target space, (b)
clustering in the descriptive space, and (c) clustering in both the target and the de-
scriptive space. Figure adapted from [7].

In this work, we use a specific setting from the predictive clustering frame-
work where the descriptive space is equal to the target space, i.e., the target
variables are used to provide descriptions for the obtained clusters. This focuses
the predictive clustering setting more on the task of clustering. This approach
has two major advantages over classical clustering (such as k-means). First, we
obtain the clusters much more efficiently as compared to standard clustering
algorithms. Second, there are cluster descriptions for each of the clusters. The
cluster description is the conjunction of the tests starting from the root node of
the tree then following the path to the leaf (or the conditions used in a predictive
clustering rule). This also improves the efficiency when new examples need to
be projected into the clusters.

3.2 PCTs for Multiple Continuous Variables

The predictive clustering framework is implemented using decision trees (called
predictive clustering trees - PCTs) and decision rules (called predictive clustering
rules) as predictive models. The predictive clustering framework sees a decision
tree as a hierarchy of clusters: the top-node corresponds to one cluster containing
all data, which is recursively partitioned into smaller clusters while moving down
the tree. PCTs can be induced with a standard top-down induction of decision
trees (TDIDT) algorithm [16]. The algorithm is presented in Table 1. It takes as
input a set of examples (E) and outputs a tree. The heuristic (h) that is used
for selecting the tests (t) is the reduction in variance caused by partitioning (P)
the instances (see line 4 of BestTest procedure in Table 1). By maximizing the
variance reduction the cluster homogeneity is maximized and it improves the
predictive performance. If no acceptable test can be found (see line 6), that is, if
the test does not significantly reduces the variance, then the algorithm creates
a leaf and computes the prototype of the instances belonging to that leaf.

The main difference between the algorithm for learning PCTs and a standard
decision tree learner is that the former considers the variance function and the
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Table 1. The top-down induction algorithm for PCTs

procedure PCT(E) returns tree

1: (t∗, h∗,P∗) = BestTest(E)
2: if t∗ �= none then
3: for each Ei ∈ P∗ do
4: tree i = PCT(Ei)

5: return node(t∗,
⋃

i{tree i})
6: else
7: return leaf(Prototype(E))

procedure BestTest(E)

1: (t∗, h∗,P∗) = (none, 0, ∅)
2: for each possible test t do
3: P = partition induced by t on E
4: h = Var(E)−∑

Ei∈P
|Ei|
|E| Var(Ei)

5: if (h > h∗) ∧Acceptable(t,P) then
6: (t∗, h∗,P∗) = (t, h,P)

7: return (t∗, h∗,P∗)

prototype function, that computes a label for each leaf, as parameters that can be
instantiated for a given learning task. So far, the predictive clustering framework
has been used for the prediction of multiple continuous variables, prediction
of multiple discrete variables, hierarchical multi-label classification (HMC) and
prediction of time series [17]. The predictive clustering framework is implemented
in the CLUS system3.

The variance and prototype functions of PCTs for predicting multiple con-
tinuous variables are instantiated as follows. The variance is calculated as the
sum of the variances of the target variables, i.e., Var(E) =

∑T
i=1 V ar(Yi). The

variances of the target variables are normalized, so that each target variable con-
tributes equally to the overall variance. This is due to the fact that the target
variables can have completely different ranges. Namely, if one of the target vari-
ables is in the range (0, 1) and another in the range (10, 100) and normalization
is not used, then the values of the second variable will contribute much more
to the overall score than the values of the first variable. In addition, weighting
of the (normalized values of the) target variables so that the variance function
gives more weight to some variables and less to others is supported. The proto-
type function (calculated at each leaf) returns as a prediction the tuple with the
mean values of the target variables, calculated by using the training instances
that belong to the given leaf.

3.3 Random Forests of Predictive Clustering Trees

An ensemble classifier is a set of base classifiers, which typically has a better
performance than the individual classifiers. A new example is classified by com-
bining the predictions of each classifier from the ensemble for that example. The
predictions are typically combined by taking their average (for regression tasks)
or their majority/probability vote (for classification tasks).

We use the random forests method to create the base classifiers in the ensem-
bles. A random forest [18] is an ensemble of trees, obtained both by bootstrap
sampling of the training set and by randomly changing the feature set during
learning. More precisely, at each node in the decision tree, a random subset of

3 The CLUS system is available for download at http://clus.sourceforge.net/ .

http://clus.sourceforge.net/
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the input attributes is taken, and the best feature is selected from this sub-
set (instead of the set of all attributes). The number of attributes that are
retained is given by a function f of the total number of input attributes x (e.g.,
f(x) = x, f(x) =

√
x, f(x) = �log2 x	+ 1).

4 Codebook Construction Using Predictive Clustering

The architecture of the system for fast and scalable image retrieval using PCTs
is presented in Figure 2. The systems consists of an off-line phase and an on-line
phase. The off-line phase implements the construction of the visual codebook,
the image descriptions and the search structure for the retrieval. The on-line
phase implements the construction of the query image description, the querying
of the images and presenting the result of the retrieval. In the remainder of this
section, we discuss these phases in more detail.

The off-line phase starts with the generation of the local descriptors for the im-
ages. For each image in the database, affine-invariant Hessian regions are located
[2]. Typically there are 3300 regions detected on an image of size 1024× 768. For
each of these affine regions, a 128-dimensional Scale invariant feature transform
(SIFT) descriptor is then computed [12]. Next, the descriptors are used to create
the visual codebook, which is the central part of the image retrieval system.

The proposed method for constructing the visual codebook is as follows. First,
we randomly select a subset of the local (SIFT) descriptors from all of the images.
Next, the selected local descriptors constitute the training set used to construct a
PCT. For the construction of the PCT, we set the descriptive attributes (i.e., the
128 dimensional vector) to be also target and clustering attributes. Note that,
this feature is a unique characteristic of the predictive clustering framework. To
control the size of the visual codebook, we apply pre-pruning of the trees by
requiring a given minimum number of instances/descriptors in each tree leaf.
In order to get the desired number of leaves of a tree (i.e., visual words) for a
given dataset, the number of required instances in a leaf can be easily estimated
(roughly, it should be a bit smaller than the ratio between the number of training
examples and the desired codebook size). Each leaf of the tree is a separate visual
word and all of the leaves constitute the visual codebook. After the construction
of the visual codebook, we sort all of the descriptors through the tree and count
the number of descriptors that fall in a given leaf (i.e., correspond to a given
visual word). We describe each image then with a histogram (sparse frequency
vector) of the number of descriptors per visual word.

The PCTs are computationally efficient: it is very fast to construct them and
to produce a prediction. However, the trees are unstable, i.e., the structure of
the tree can change substantially for small changes in the training data [18].
To overcome this limitation and to further improve the discriminative power of
the visual codebook, we use a small random forest that consists of four PCTs
(similarly as in [8]). The final visual codebook is then obtained by concatenating
the individual visual codebooks from each of the PCTs in the forest, thus the
size of the final visual codebook is the sum of the sizes of the individual visual
codebooks.
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Once the visual codebook is constructed and the image descriptors are ob-
tained, we proceed to create the search structure for the retrieval. For the search
engine, we use the vector-space model of information retrieval [6]. The query
and each image in the database is represented as a sparse vector of visual word
occurrences. The search then calculates the similarity between the query vector
and each image vector by using a L2 distance. As a weighting scheme for the
distance, we use the standard tf − idf weighting scheme [6], which reduces the
contribution to the relevance score of the words that occur commonly (since they
are less discriminative).

For computational efficiency, the search engine stores the word occurrences in
an tree-like index structure. The index structure maps the individual words to
the images in which they occur. In the worst case, the computational complexity
of querying the index structure depends linearly from the database size, but in
practice it depends closely to linear from the number of images that match a
given query. This presents a big saving of computational time. For sparse queries,
this can result in even a more substantial speed-up, as only images which contain
visual words present in the query need to be examined. The scores for each image
are accumulated so that they are identical to explicitly computing the similarity.
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Fig. 2. Architecture of the proposed system for fast and scalable image retrieval based
on predictive clustering trees
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5 Experimental Setup

In this section, we present the experimental design we used to evaluate the
proposed algorithm and compare it to other approaches. First, we present the
dataset of images that we use. Next, we describe the evaluation metric we use
to assess the retrieval performance. Finally, we state the experimental questions
under investigation in this study.

5.1 Oxford Buildings Dataset

The Oxford Buildings dataset [19] is typically used as a benchmark dataset for
large scale particular object retrieval. It consists of 5062 high-resolution images
(1024 × 768) automatically downloaded from Flickr by searching for 11 Ox-
ford landmarks. The images are then manually annotated as to provide a solid
ground truth for evaluation of the performance of retrieval systems. It also de-
fines 55 queries (5 query objects/images for each of the 11 Oxford landmarks)
that are used for performance evaluation. Each query consists of an image and
query region/object of interest. This dataset is very challenging due to the sub-
stantial variations in scale, viewpoint and lighting conditions of the images and
the objects that need to be retrieved.

In addition to this dataset often called Oxford 5K, we use two other datasets
to test the scaling abilities of the retrieval systems: Oxford 100K and Oxform
1M [2]. The Oxford 100K dataset contains 99782 high resolution images (1024×
768), which were obtained from Flickr by searching the 145 most popular tags.
The Oxford 1M is created in a similar way, by crawling the 450 most popular
tags from Flickr and it consists of 1040801 images with medium resolution
(500× 333). These datasets are not challenging in terms of size, but also in the
fact that they have much broader domain than the Oxford buildings: they include
a mixture of different scenes, object, people, and buildings from all around the
world.

5.2 Evaluation Measure

The most widely used performance measure for evaluation of methods in image
retrieval is the mean average precision (mAP ) [9,10]. We thus adopt mAP to
evaluate the performance of our method for particular object retrieval and the
discriminative power of its visual codebook.

The mAP is calculated as follows. For each of the 55 queries (5 for each of
the 11 chosen Oxford landmarks), the average precision (AP ) is computed as
the area under the precision-recall curve (AUPRC) for that query. This score
combines both precision and recall into a single performance score. Precision is
defined as the ratio of retrieved positive images to the total number retrieved.
Recall is defined as the ratio of the number of retrieved positive images to the
total number of positive images in the dataset. An ideal precision-recall curve
has precision 1 over all recall levels and this corresponds to an average precision
of 1 and also AUPRC of 1. The values of AUPRC score are in the range [0,1]
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and if they are bigger then the retrieval performance of the system is better. The
overall mAP value is obtained by taking the mean of the average precisions of
all queries and it is used as a single number to evaluate the overall performance.

5.3 Experimental Questions

We focus the experimental evaluation of the propose method on the following
three research questions:

1. Does the use of predictive clustering trees for visual codebook construc-
tion improves the retrieval performance of the bag-of-visual-words approach
compared to the widely used methods based on k-means and approximate
k-means?

2. Whether the increase of number of descriptors and the visual codebook size
influences the retrieval performance?

3. Does the proposed method for visual codebook construction is efficient and
scalable to larger problems?

In order to answer these three question, we designed the following experimen-
tal setup. For answering the first question, we compare the performance of the
visual codebook constructed using the random forest of PCTs with the perfor-
mance of the one constructed using k-means and approximate k-means. This
comparison is justified by the fact that most current results related to content-
based particular object retrieval are obtained by using large visual codebooks
created using k-means, while the current state-of-the-art results are obtained
using approximate k-means.

We address the second question by constructing visual codebooks with differ-
ent size and by using different numbers of local descriptors. More specifically, we
use 800K, 1M , 5M , 16.7M of local descriptors and produce codebooks with 10K,
20K, 50K and 1M visual words, respectively. The codebooks are constructed
using our approach and the competing k-means and approximate k-means.

For answering the third question, we apply the visual codebook obtained
by our method to the Oxford 100K and Oxford 1M image datasets. The per-
formance results are compared with the results obtained using approximate k-
means. We do not compared with exact k-means because it can’t be scaled up
to such a huge number of descriptors and visual words [2].

6 Results and Discussion

In this section, we present and discuss the results obtained from the experimen-
tal evaluation of the proposed method. First, we compare the performance of
the proposed method to other methods from the literature. Next, we discuss the
influence of the size of the codebook and the number of local descriptors consid-
ered to the retrieval performance of our system. Finally, we show the scalability
of the proposed method by comparing its performance on a database with a
million images.
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Table 2 shows the results of the comparison of the three algorithms for visual
codebook construction: k-means, approximate k-means (AKM) and random for-
est of predictive clustering trees (RF of PCTs). The results include experiments
with a varying number of descriptors and a varying number of clusters. From
the presented results, we can note that our method has a performance that is as
least good as the one of the competing methods.

Table 2. Retrieval performance of k-means, approximate k-means and our algorithm
based on predictive clustering trees (RF of PCTs) over the Oxford Buildings image
dataset using different number of descriptors and visual words

Clustering parameters mAP

# of descriptors codebook size k-means AKM RF of PCTs

800K 10K 0.355 0.358 0.360
1M 20K 0.384 0.385 0.384
5M 50K 0.464 0.453 0.468

16.7M 1M / 0.618 0.618

Furthermore, these results clearly show that the increase of the number of local
descriptors and codebook size improve the retrieval performance of the systems.
The best result (last row of Table 2) is obtained by using visual codebook with
1 million visual words obtained by all SIFT descriptors generated from all the
images of the Oxford 5K dataset. To construct the codebook our method was
running for 43.35h, while the approximate k-means needed 69.9h (which is ∼ 1.6
times slower). Considering that the proposed method based on random forests
of PCTs is very computationally efficient [17], we can at small computational
expense construct even larger visual codebook. An initial set of experiments
indicates that further increase of the codebook size improves even more the
retrieval performance.

Next, we evaluate the scalability of our method on the 5K, 5K + 100K and
5K+100K+1M datasets using the 1M words visual codebook. The results are
given in Table 3. Here, we compare our method to approximate k-means, since
using the standard k-means is not feasible. From the results, we can see that
the retrieval performance of our method is better than the one of approximate
k-means. We can also note the drop in performance with the increase of the size
of the image database. This is mainly due to the fact that these datasets now
include much more noisy images outside of the domain of Oxford buildings.

We visually inspect the retrieval results and illustrate part of them in Figures 3
and 4. The first image in each row is the image that contains the query object,
while the remaining four images are part of the retrieved images. The retrieval
results given in Figure 3 reveals that the proposed method performs very well
when there are considerable variations in the viewpoint, the image scale, the
lighting and partial occlusion of the object.

On the other hand, the retrieval results given in Figure 4 illustrate examples
in which the proposed systems fails to successfully retrieve the particular query
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Table 3. Comparison of the discriminative power (with the mAP values) of the visual
codebooks obtained by AKM and our method (RF of PCTs) over the three image
datasets (both the algorithms use a codebook with 1M visual words)

Image dataset AKM RF of PCTs

5K 0.618 0.618
5K+100K 0.490 0.512

5K+100K+1M 0.393 0.401

Fig. 3. Examples of searching the 5K dataset for: Bridge of sighs, Hertford College
(first row), Pitt Rivers Museum (second row). First image in each row is the query
image and the selected region with yellow color is the query object/building. The other
four images in each row are result images obtained using the proposed system and
algorithm.

Fig. 4. Examples of errors in retrieval for two query images (first images in the rows).
The false positives for the first query is visually plausible, but the false positive for the
second query is due to visual ambiguities in the local regions and the low numbers of
visual words in the retrieved image.

object. For the first query (the first row of images), the failure is due to the
presence of images that are visually plausible and consistent with the query
image (the retrieved images also contain windows with bars).
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The failure for the second query (the second row of images) is a result of the
visual ambiguities present in the images (the first two result images) and the
‘burstiness’ effect (the second two result images) [20]. The visual ambiguities
arise because the images have a very small number of local regions. This in turn
results in a very large tf − idf weights in the matching phase thus making an
error while retrieving the particular object. The burstiness effect appears when a
given local descriptors appear more frequently in an image than a model would
predict. In this context, the burstiness distorts the image similarity measure (i.e.,
the tf − idf weights) and thus pollutes the ranking of the images in the retrieval
results. In our case, this is a result of the rich texture present in the resulting
images such as water-drops and flowers.

7 Conclusion

In this paper, we present a method for fast and efficient construction of visual
codebooks for particular object retrieval from large scale image databases. The
construction of a codebook is an essential part of the bag-of-visual-words ap-
proach to image retrieval. It should thus be efficient and deliver a codebook
with high discriminative power. However, the construction of a visual codebook
is a bottleneck in the bag-of-visual-words approach, because it typically uses k-
means clustering over millions image patches to obtain several tens of thousands
visual words. Existing approaches are able to solve the efficiency issue, however,
a part of the discriminative power of the codebook is sacrificed for better effi-
ciency. In this paper, we propose to use predictive clustering trees (PCTs) for
codebook construction. In this way, we efficiently construct visual codebooks
and increase the discriminative power of the dictionary.

PCTs are a generalization of decision trees and are capable of performing
predictive modelling and clustering simultaneously. More specifically, the method
we propose uses PCTs for predicting multiple targets to construct the visual
codebook – each leaf in the tree is a visual word. Furthermore, we construct
a small random forest of PCTs to increase the stability of the codebook and
its discriminative power. The overall codebook is obtained by concatenating the
smaller codebooks from each tree.

We evaluated the proposed method on the Oxford buildings image database,
which is a benchmark database for large scale particular object retrieval. We
used three variants of the database that include 5K, 100K and 1M images.
We compare the proposed method to literature standard and state-of-the-art
methods: k-means and approximate k-means clustering.

The results from the experimental evaluation reveal the following. To begin
with, our method has a performance that is as least good as the competing meth-
ods on the smaller database with 5K images. Next, the increase of the number
of local descriptors and codebook size improve the retrieval performance of the
systems. Considering that the proposed method is computationally efficient, we
can afford to construct larger codebooks that in turn will increase the retrieval
performance. Finally, on the large databases, our method exhibits better re-
trieval performance than the competing approximate k-means. All in all, the
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proposed method is able to efficiently produce a visual codebook with a high
discriminative power.

We plan to extend this work along three major dimensions. First, we plan to
extend the method and allow soft assignment of the descriptors to the visual
words. Several studies have suggested that this could increase the retrieval per-
formance of the system. Second, we will use the PCTs as search structures for
performing the retrieval itself. This means that we will bypass the tf − idf cal-
culation and the creation of the inverted index, thus speed-up the retrieval even
more. Finally, we will address the issue of burstiness by performing re-ranking
of the top-ranked results by using spatial constraints. This procedure uses the
predictions of the feature locations to estimate a transformation between the
query region and each target image.
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Abstract. The presence of anomalies in data compromises data quality and can
reduce the effectiveness of learning algorithms. Standard data mining methodolo-
gies refer to data cleaning as a pre-processing before the learning task. The prob-
lem of data cleaning is exacerbated when learning in the computational model of
data streams. In this paper we present a streaming algorithm for learning classifi-
cation rules able to detect contextual anomalies in the data. Contextual anomalies
are surprising attribute values in the context defined by the conditional part of
the rule. For each example we compute the degree of anomaliness based on the
probability of the attribute-values given the conditional part of the rule covering
the example. The examples with high degree of anomaliness are signaled to the
user and not used to train the classifier. The experimental evaluation in real-world
data sets shows the ability to discover anomalous examples in the data. The main
advantage of the proposed method is the ability to inform the context and explain
why the anomaly occurs.

Keywords: Data Streams, Rule Learning, Anomaly Detection.

1 Motivation

The amount of digital data currently handled is huge. Our ability to collect huge amounts
of detailed information is increasing exponentially. Nevertheless, data anomalies such
as inconsistencies, missing values, outliers, etc. are more frequent than desired. The ex-
istence of these data problems, commonly called dirty data, degrades the quality of the
information with direct impact on the efficiency of data analysis techniques [1]. These
problems can lead to incorrect decisions or strategies that often are costly to organiza-
tions. Improving data quality by detecting and eliminating errors and inconsistencies in
the data is a relevant data mining problem.

Standard data mining methodologies define pre-processing as a key step before the
learning phase. Pre-processing is essential to analyze the multivariate data sets before
data mining. In this step, the data set is cleaned, by removing observations containing
noise and those with missing data. The identification of observations that are not coher-
ent with the rest of the data, can be used in two different perspectives. One perspective
consists of removing these observations from the analysis. The other perspective con-
siders these observations as interesting and therefore is very important to detect. De-
pending on the application, the user can be especially interested in the anomalous cases
more than in the ’normal’ observations. They may represent malicious cases such as
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intrusions, frauds or diseases. One way or another, the detection of anomalies is very
important.

Most of the works in pre-processing data, anomaly and outlier detection are off-line.
Current tasks usually consist of many observations being processed and the number is
still increasing. It is increasing to the extent that the relatively recent approach called
stream mining considers the data possibly infinite. Finding anomalies in such a setting
is especially a difficult task not only because of the potentially unbounded size, but
also because one of the typical characteristics of data stream is that the distribution
generating the data can change over time.

This work presents a method for on-line anomaly detection, a crucial task in real-
world applications. The method is embedded in a streaming classification rule learner,
although it can be integrated with any VFDT like algorithm. The anomalies detected are
characterized by a context that refers the region of the instance where the anomaly was
detected, and behavioral attributes, those with anomalous values. This is a key advan-
tage of the proposed system: it explains where and why a given example is anomalous.

The paper is organized as follows. The next section presents the related work in
outlier and anomaly detection. Section 3 describes the method used to detect contex-
tual anomalies that has been implemented inside a classification rule learner for data
streams. Section 4 describes the anomalies detected in several well-known datasets.
The last Section presents the conclusions and futures work.

2 Related Work

Anomaly detection refers to detecting observations that do not conform to an estab-
lished normal behavior. Anomalies are also referred to as outliers, change, deviation,
surprise, aberrant, peculiarity, intrusion, etc [2]. [9] points out the importance of data
cleaning in developing real world applications. Data cleaning deals with missing val-
ues, noisy data, inconsistent data, etc. In this work, we focus in a particular form of
inconsistent data: anomalies or outliers.

Statistical approaches were the earliest algorithms used for outlier detection. The
most common approaches are univariate. Probably one of the simplest statistical outlier
detection techniques use informal box plots [18] to pushup outliers in both univariate
and multivariate data sets. Another single dimensional method was presented in [18]
which calculates a Z value as the difference between the mean value for the attribute
and the query value divided by the standard deviation for the attribute. The Z value for
the query is compared with a 1% or 5% significance level. The technique requires no
user parameters as all parameters are derived directly from data.

The literature in anomaly and outlier detection is huge. Two recent overviews, with
excellent references are [11] and [2]. Most of the works refer to off-line approaches.
A recent paper [15], addresses the anomaly detection problem in large-scale data min-
ing applications using residual subspace analysis. The authors suggest a framework
wherein random projection can be used to obtain compressed data. Their contribution
shows that the spectral property of the compressed data is approximately preserved un-
der such projection and thus the performance of spectral-based methods for anomaly
detection is almost equivalent to the case in which the raw data is completely available.
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[19] present an approach for combining adaptive pre-processing with adaptive online
predictor. The authors present a case study with real sensory data from a production
process. In that case, decoupling the adaptively of pre-processing and the predictor
contributes to improving the prediction accuracy.

The authors of [2] define 2 types of anomalies.

– Point Anomalies. If an individual data instance can be considered as anomalous
with respect to the rest of data, then the instance is termed as a point anomaly. This
is the simplest type of anomaly and is the focus of majority of research on anomaly
detection.

– Contextual Anomalies. If a data instance is anomalous in a specific context.. In this
case, it is convenient to define:
• Contextual attributes. The contextual attributes are used to determine the con-

text for that instance.
• Behavioral attributes. The attributes with abnormal values in the contexts de-

fined by the contextual attributes.

A relevant aspect, pointed out by [2], is that an observation might be an anomaly
in a given context, but an identical data instance (in terms of behavioral attributes)
could be considered normal in a different context. This property is a key characteristic
in identifying contextual and behavioral attributes for a contextual anomaly detection
technique.

In [13], the authors discuss distance-based outlier detection methods for very large
data bases, and propose several algorithms. The most efficient has complexity that is
linear with the number of examples but exponential in the number of attributes. It is
based on nearest neighbour search over cells defined by indexing structures. While the
proposed algorithms are effective for very large data bases, its complexity limit their
applicability in the streaming computational model.

One of the few systems that can detect contextual anomalies is Gritbot [16]. GritBot
is not described in any scientific paper, is a commercial tool that detects inconsistencies
in the data set. GritBot is an off-line tool that finds anomalies in data as a pre-processing
to data mining algorithms. It can be thought as an autonomous data quality auditor
that hunts for records having ”surprising” values of nominal and/or numeric attributes.
Anomalies need not stand out in the complete dataset – GritBot searches for subsets of
records in which the anomaly is apparent. Although there is no technical description of
the methods used by GritBot, we can guess from the code, results and studies published
by Quinlan that the GriBot generates rules iteratively. In each iteration, considers an
attribute from a subset of n attributes as objective (dependent) attribute. Then, to each
tuple that violates a certain rule is assigned the probability that the value anomaly can
occur by chance and not by error. The approach we present in this paper identifies
anomalies a la Gritbot, but on-line, with a single-scan over the data.

3 Anomaly Detection

The method we propose detects contextual anomalies. Contextual anomalies are char-
acterized by a context that refers the region of the instance space where the anomaly
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was detected, and behavioral attributes, those with anomalous values. One example of
the type of anomalies we detect, from the Adult dataset [5], is:

Case 15904:
education = 10th [6 in 1470]
capital-gain = 99999 [889.2±633.6]
Rule:
education-num <= 10 ∧
marital-status = Married-civ-spouse → >50K

The 15904th example is signaled as an anomaly, and is interpreted as follows. The
context of the anomaly is given by the rule:
education-num <= 10 ∧
marital-status = Married-civ-spouse → >50K.
The attributes with suspicious values are education and capital-gain. The first attribute
is nominal. In 1470 examples, the attribute value education = 10 was observed 6 times.
The second attribute is numerical. The mean of this variable (using the examples seen
so far) is 889 and the standard deviation is 633. The anomaliness score for this example
is 0.99.

In the first part of this section, we describe the algorithm to learn the decision rules
defining the context of the anomalies. We should point out, that our anomaly detection
system can be used in classification and regression problems with any VFDT like algo-
rithms [4]. The current implementation is based on a stream classification rule learner,
previously presented in [8]. In the next Section we provide a concise description of the
learning algorithm, to clarify how the detection method works.

3.1 Very Fast Decision Rules Algorithm

As in many other systems, a rule in VFDR [14] is an implication of the form A ⇒ C.
The A part of a rule is a conjunction of literals, that is, conditions based on attribute
values. For numerical attributes, each literal is of the form Xi > v, or Xi ≤ v for
some feature Xi and some constant v. For categorical attributes VFDR produce literals
of the form Xi = vj where vj is a value in the domain of Xi. The C part of a rule r,
designated Lr, is not a constant as in most of rule based systems, but a function. This is
the most different feature of VFDR.

The VFDR algorithm is designed for high-speed data streams. It learns ordered or
unordered rule sets. It needs only one scan of data and is able to provide any-time
classifications.

Growing a Set of Rules. The algorithm begins with a empty rule set (RS) and a
default rule {} → L, where L is initialized to ∅. L is a data structure that contains
information used to classify test instances, and the sufficient statistics needed to expand
the rule.

As already said, each learned rule (r) is a conjunction of literals, that are conditions
based on attribute values, and a Lr. If all the literals are true for a given example, then
the example is said to be covered by the rule. The labeled examples covered by a rule



Avoiding Anomalies in Data Stream Learning 53

r are used to update Lr. A rule is expanded with the literal that has the highest gain
measure of the examples covered by the rule. Lr accumulates the sufficient statistics to
compute the gain measure of all possible literals. Lr is a data structure that contains:
an integer that stores the number of examples covered by the rule; a vector to compute
p(ck), i.e., the probability of observing examples of class ck; a matrix p(Xi = vj |ck) to
compute the probability of observing value vj of a nominal attribute Xi per class; and
a btree to compute the probability of observing values greater than vj of continuous
attribute Xi, p(Xi > vj |ck), per class. The information maintained in Lr is similar to
the sufficient statistics [6].

The number of observations, after which a rule can be expanded or new rule can be
induced, is determined by the Hoeffding bound. It guarantees that, with probability at
least 1− δ, the true mean of a random variable x with a range R will not differ from the
sample mean of size N by more than:

ε =

√
R2ln(1/δ)

2N
.

It is not efficient to check for the sufficient number of examples with every incoming
example, therefore this is done only after every Nmin observations.

The set of rules (RS) is learned in parallel as described in Algorithm 1. We consider
two cases: learning ordered or unordered set of rules. In the former, every labeled exam-
ple updates statistics of the first rule that covers it. In the latter, every labeled example
updates statistics of all the rules that cover it. If a labeled example is not covered by any
rule, the default rule is updated.

The expansion of a rule is done using Algorithm 2 that employs the aforementioned
Hoeffding bound. For each attribute Xi the value of split evaluation function G is com-
puted for each attribute value vj . If the best merit is better the second best with given
confidence, i.e. satisfies condition gbest − g2best > ε, the rule is expanded with condi-
tion Xa = vj and the class of the rule is assigned according to the majority class of
observations of Xa = vj .

Classification Strategies. The set of rules learned by VFDR can employ different clas-
sification strategies: First Hit, and Weighted Sum. As in [3], the ordered rules use the
First Hit strategy, while the unordered rules use the Weighted Sum strategy. In that case
all rules covering the example are used for classification and the final class is decided
by using weighted vote.

More specifically, assume that a rule r covers a test example. The example will be
classified using the information in Lr of that rule. The simplest strategy uses the distri-
bution of the classes stored in Lr, and classify the example in the class that maximizes
p(ck). This strategy only use the information about class distributions and does not
look for the attribute-values, therefore it uses only a small part of the available infor-
mation. In a more informed strategy, a test example is classified with the class that
maximizes the posteriori probability given by Bayes rule assuming the independence
of the attributes given the class. There is a simple motivation for this option. L stores
information about the distribution of the attributes given the class usually for hundreds
or even thousands of examples, before expanding the rule and re-initializing the coun-
ters. Naive Bayes (NB) takes into account not only the prior distribution of the classes,
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Algorithm 1: VFDR: Rule Learning Algorithm
input : S: Stream of examples

Nmin: Minimum number of examples
ordered set: boolean flag

output: RS: Set of Decision Rules
begin

Let RS ← {}
Let default rule L ← ∅
foreach example (x, yk) ∈ S do

foreach Rule r ∈ RS do
if r covers the example then

Update sufficient statistics of Rule r
if Number of examples in Lr mod Nmin = 0 then

r ← ExpandRule(r)

if ordered set then
BREAK

if none of the rules in RS trigger then
Update sufficient statistics of the empty rule
if Number of examples in L mod Nmin = 0 then

RS ← RS∪ ExpandRule(default rule)

but also the conditional probabilities of the attribute-values given the class. This way,
there is a much better exploitation of the available information in each rule. Given the
example x = (x1, . . . , xj) and applying Bayes theorem, we obtain:

P (ck|x) ∝ P (ck)
∏

P (xj |ck).

Using NB in VFDT like algorithms [4], is a well-known technique since it was intro-
duced in [7]. One of its greatest advantages is the boost in any-time learning property
because even though the learned rule set might not be robust enough or the individual
rules might not provide sufficient information for expert interpretation (not being spe-
cialized enough, i.e., having only one or few conditions), it may already be able highly
informed predictions based on NB classification.

3.2 Detecting Anomalies

Different kinds of rule systems are commonly used in multivariate anomaly detection.
The use of AVFDR in on-line detection is one of the advantages the system provides. It
can detect possible anomalies during the learning process. The detection process works
as follows. When the system reads a new example, the rule set is checked to find the
rules that cover the example. An example is covered by a rule, when the conditional
tests of the antecedent of the rule are true for that example. For each attribute value, we
compute the probability P (Xi = v|Ruler). These probabilities are computed from the
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Algorithm 2: ExpandRule: Expanding one Rule
input : r: One Rule

G: Split evaluation function;
δ: is one minus the desired probability
of choosing the correct attribute;

output: r: Expanded Rule
begin

Compute ε =

√
R2ln(1/δ)

2N
(Hoeffding bound)

EvaluateLiterals()
if (gbest − g2best > ε) then

Extend r with a new condition based on the best attribute Xa = vj
Release sufficient statistics of Lr

r ← r ∪ {Xa = vj}
return r

consequent of the rule, Lr, that maintains the sufficient statistics required to expand the
rule. Low values of these probabilities suggest that the example is an uncommon case in
the context of the rule, and it is reported as anomaly. More specifically, for an example
(x, y) and its attribute Xi = v let

Pr(Xi = v|Lr)

be the probability of observing attribute value v of the attribute Xi given the conditions
of a rule r.

We compute the univariate anomaliness score as:

Uscorei = 1− Pr(Xi = v|Lr) (1)

This score is unsupervised in the sense that does not take into account the class label
of the example. During the on-line learning, the learner receives labeled examples and
therefore we can use the class information to compute the univariate score. The super-
vised univariate anomaly score is given by:

Usscorei = 1− Pr(Xi = v|y,Lr) (2)

If Uscorei > λ, for a given value of λ (typically 99%), the attribute value is said to
be an anomaly for the context provided by rule r. This is applicable both for supervised
and unsupervised scores.

Computing the Anomaly Score for Nominal Attributes. The domain of nominal is
finite and unordered. For each nominal attribute, the statistics store in Lr of a rule,
are in the form of a contingency table. For a given attribute, let N be the number of
examples, seen so far, covered by rule r, Ni,· the number of examples, covered by rule
r, where the attribute take the ith value, N·,j the number of examples, covered by rule
r, from class j, and Ni,j be the number of examples where the attribute takes value i in
examples of class j.
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Assume we observe an example of class c where the value of attribute i is v. The
univariate anomaliness score for this attribute is computed as:

Uscorei = 1− Nv,·
N

(3)

The supervised anomaly score is computed as:

Usscorei = 1− Nv,c

N·,c
(4)

Again, if Uscorei > λ, the attribute value is said to be an anomaly for the context
provided by rule r.

Computing the Anomaly Score for Continuous Attributes. For continuous attributes,
the statistics stored in Lr include the mean and standard deviation of each attribute given
the class. Remember that these statistics are computed from the examples covered by
the rule. Using these statistics we can compute Equation 1 (or Equation 2) using differ-
ent strategies, including Normal distribution, Z scores, etc. From a set of experiments
not described here, the Chebyshev inequality seems to be more effective.

The Chebyshev inequality guarantees that in any probability distribution, ’nearly all’
values are close to the mean. More precisely no more than 1

k2 of the distribution’s values
can be more than k standard deviations away from the mean. Although conservative,
the inequality can be applied to completely arbitrary distributions (unknown except for
mean and variance). Let x be a random variable with finite expected value x and finite
non-zero variance σ2. Then for any real number k > 0,

Pr(|x− x| ≥ kσ) ≤ 1

k2
.

Only the case k > 1 provides useful information. When k < 1 the right-hand side is
greater than one, so the inequality becomes vacuous, as the probability of any event
cannot be greater than one. When k = 1 it just says the probability is less than or equal
to one, which is always true.

Therefore, for k = |x−x|
σ and k > 1, the anomaliness score is:

Uscorei = 1− 1

( |x−x|
σ )2

(5)

The anomaliness score in Equation 5 can be computed using supervised or unsuper-
vised information depending on computing x and σ conditioned to the class or not.

Relatively new rules, that are rules that have not been trained with many examples,
would more often tend to report a training example as anomaly. In order to prevent this
situation, only rules that were trained with more than mmin examples are used in the
anomaly detection.

Multivariate Score. For each training example and for each attribute value i, we com-
pute the univariate score, Uscorei using Equation 1. The join degree of anomaliness,
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assuming that the attributes are independent, is computed for all the attributes such that
Uscorei > λ, and is given by: ∏

k

Uscorei

where k is the set of anomalous attributes.
By applying logarithms, to avoid numerical instabilities, and normalizing, the degree

of anomaliness of an example is given by:

Ascore =

∑n
i=1 I(Uscorei)∑n
i=1 log(Uscorei)

(6)

where

I(x) =
{
0 if x < λ

log(x) otherwise

Equation 6 takes values in the interval [0, 1], where 0 corresponds to the case that
none of the attributes is anomalous, and 1 when all the attributes are anomalous.

3.3 Discussion

The main contribution of this work is the ability of incorporating anomaly detection
inside the learning process. The advantages of this integration are two-fold. On one
hand, the system reports possibly anomalous values, together with an explanation of
why each value seems surprising. This information provides insights to the user about
the dynamic of the process generating data. On the other hand, the online identification
of anomalous examples prevents us to learn from outliers. This is a crucial task in online
learning.

Although we illustrate the usability of anomaly detection coupled with a decision
rule learner, the proposed method can be used in classification and regression problems
with any VFDT like algorithm. The information required to compute the anomaly score
is stored in the consequent of rules and in the leaves of a decision tree. Algorithms like
decision trees [6] and regression trees [12] can easily incorporate the techniques pre-
sented here. The proposed method does not guarantee to find all the anomalies. More-
over, what is an anomaly might depend in the order that examples arrive. The set of
rules learned by AVFDR are stable with respect to the order of examples [8].

4 Experimental Evaluation

4.1 UCI Datasets

In a firs set of experiences, and for sanity check, we run the on-line anomaly detection
in two artificial datasets - waveform21 [5] and SEA [17]. In these datasets the algorithm
did not find any anomalies, which is the correct behavior. In the SEA dataset, shown in
Figure 1, the anomaly score 1 is always around 0.

1 The y axis in the plots showing the distribution of the anomaliness score is in log scale.
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Table 1. Anomaly Detection Summary

Nr.Anomalies Prequential error Error in holdout
Adult
Normal - 17.58 17.51
Unsupervised 9 17.57 17.51
Supervised 9 17.57 17.51
Covertype
Normal - 24.92 38.46
Unsupervised 57 23.75 32.55
Supervised 37 23.91 36.88

Electricity
Normal - 18.77
Unsupervised 189 18.51
Supervised 13 18.96
KDDCup99
Normal - 0.86
Unsupervised 10 0.84
Supervised 17 0.82

4.2 Real-World Data

The second set of experiments uses well-known datasets were we find anomalies. A
summary of the number of anomalies detected is presented in Table 1. For each dataset,
we report 3 lines. The first line reports the behavior of AVFDR without detecting
anomalies. The second and third line summarizes the behavior of the system using un-
supervised and supervised anomaly detection, respectively. The anomalies detected are
not used for training the rule learner. The details about these experiments are reported
in the following subsections.

Intrusion Dataset. The KDDCUP 99 is a data set [5] of TCP/IP connections which
are labeled either as normal or one of many different types of attacks. In many cases, the
attacks are grouped into four categories: DOS (denial-of-service), R2L (unauthorized
access from a remote machine), U2R (unauthorized access to local superuser privi-
leges), and probing (surveillance and other probing).

– DOS: denial-of-service, e.g., syn flood;
– R2L: unauthorized access from a remote machine, e.g. guessing password;
– U2R: unauthorized access to local superuser (root) privileges, e.g., various ’buffer

overflow’ attacks;
– probing: surveillance and other probing, e.g., port scanning.

The test data is not from the same distribution as the training data and moreover there
are new attack types that are not in the training data. These new types can be grouped
to the categories above as well. The set consist of 4,898,431 and 311,029 instances for
training and test respectively.
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Fig. 1. Distribution of the anomaliness score (supervised and unsupervised) in the SEA dataset

Fig. 2. Anomaly detection influence on prequential error in Intrusion dataset

An example of supervised anomalies found in intrusion dataset:
case 148160:
dst host count=15 [252.2±21.3 class=normal]

dst host srv count=13 [248.1±20.9 class=normal]

in rule:
count ≤ 5 ∧ service = private → Probing

An example of unsupervised anomalies found in intrusion dataset:
case 121735:
dst host srv count=163 [254.9±4.51]
dst host same srv rate=0.64 [1.0±0.02]
in rule:
count > 508 ∧ service = ecr i → DoS

Distribution of the anomaliness score (supervised and unsupervised) in the Intrusion
dataset is provided in 3.
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Fig. 3. Distribution of the anomaliness score (supervised and unsupervised) in the Intrusion
dataset

Adult Dataset. Data was extracted from the census bureau database in 1994. Prediction
task is to determine whether a person makes over 50K a year. The description of data
in UCI [5] refers: A set of reasonably clean records. The distribution of the anomali-
ness score (supervised and unsupervised) in the Adult dataset4. Examples of supervised
anomalies found in adult dataset:

case 1231
occupation = Priv-house-serv [0 in 216 class=≤ 50K]

native-country = France [0 in 216 class=≤ 50K]

in rule:
education-num > 12 ∧ marital-status = Never-married →
→≤ 50K

case 98361:
occupation = Tech-support [3 in 625 class=≤ 50K]

native-country = Peru [0 in 625 class=≤ 50K]

in rule:
age > 35 ∧ education-num <= 9 ∧ marital-status = Married-civ-

spouse →> 50K

Electricity Dataset. A widely used dataset is the Electricity Market Dataset introduced
in [10]. This time series based data was collected from the Australian New South Wales
Electricity Market. The class label identifies the change of the price related to a moving
average of the last 24 hours.

Examples of supervised anomalies found in electricity dataset:
case: 7123

day = 6 [0 in 185 class UP]

in rule:
nswprice > 0.102 → UP
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Fig. 4. Distribution of the anomaliness score (supervised and unsupervised) in the Adult dataset

Fig. 5. Distribution of the anomaliness score (supervised and unsupervised) in the Electricity
dataset

Fig. 6. Anomaly detection influence on prequential error in Electricity dataset
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The distribution of the anomaliness score (supervised and unsupervised) in the Elec-
tricity dataset is presented in 5. Examples of unsupervised anomalies found in electricity
dataset:

case: 17434
vicdemand = 0.032626 [0.423±7.15E-8]
transfer = 0.500526 [0.41±6.96E-8]
in rule:
date > 0.0131 ∧ nswprice ≤ 0.0425 → UP

5 Conclusions

In this paper we present a one-pass, streaming algorithm for learning classification rules
able to detect contextual anomalies in the data. Contextual anomalies are surprising
attribute values in the context defined by the conditional part of the rule. The anomalies
detected are characterized by a context that refers the region of the instance where the
anomaly was detected, and behavioral attributes, those with anomalous values. For each
example we compute the degree of anomaliness based on the probability of the attribute-
values given the conditional part of the rule covering the example. Our system reports
two types of anomalies: supervised and unsupervised anomalies. The examples with
high degree of anomaliness are signaled to the user and not used to train the classifier.
This is the main claim of this paper: online algorithms benefit from online anomaly
detection by rejecting anomalous examples. The experimental evaluation in real-world
data sets shows the ability to discover anomalous examples in well-known datasets. The
main advantage of the proposed method is the ability to inform the context and explain
why the anomaly occurs.
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Abstract. We consider the following problem: Given a set of data and one or
more examples of clusters, find a clustering of the whole data set that is consis-
tent with the given clusters. This is essentially a semi-supervised clustering prob-
lem, but it differs from previously studied semi-supervised clustering settings in
significant ways. Earlier work has shown that none of the existing methods for
semi-supervised clustering handle this problem well. We identify two reasons for
this, which are related to the default metric learning methods not working well in
this situation, and to overfitting behavior. We investigate the latter in more detail
and propose a new method that explicitly guards against overfitting. Experimen-
tal results confirm that the new method generalizes much better. Several other
problems identified here remain open.

Keywords: Clustering, Semi-supervised Clustering, Constraint-based Cluster-
ing, Metric Learning.

1 Introduction

The task of clustering data is ubiquitous in knowledge discovery. Partitional (or non-
hierarchical) clustering can be defined as the following task: given a dataset D, partition
D into subsets (“clusters”) such that instances within the same cluster tend to be sim-
ilar, and instances in different clusters dissimilar. The notion of “similarity” is crucial
here: depending on how this is defined, different solutions will be found. This is true
especially for high-dimensional spaces, where different subspaces may reveal different
clusterings [1].

It is not always easy for a user to define a good similarity measure. However, users
may be able to give examples of instances that in their opinion should, or should not, be-
long to the same cluster. The clustering system may use this information to understand
better the notion of similarity that the user has in mind, and as a consequence produce
a better clustering. This type of clustering setting is called semi-supervised clustering,
or constraint-based clustering, as the user gives partial information about the desired
clustering in the form of constraints that the clustering must fulfill.

Most existing methods for semi-supervised clustering allow the user to provide a
number of so-called must-link and cannot-link constraints, indicating for pairs of in-
stances whether they should (not) be in the same cluster. Vens et al. [11] recently in-
troduced a slightly different setting, called “semi-supervised clustering with example

J. Fürnkranz, E. Hüllermeier, and T. Higuchi (Eds.): DS 2013, LNAI 8140, pp. 64–78, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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clusters”. The task can be formulated as follows: given a set of data and one or more
examples of clusters in the data, find a clustering of the entire data set that is consistent
with these example clusters. While this task could in principle be formulated for hier-
archical as well as partitional clustering, we focus here on partitional clustering, as do
Vens et al.

This type of supervision is often quite natural. Take, for instance, entity resolution in
a database of authors: the task is to cluster occurrences of author names on papers such
that occurrences are in the same cluster if they refer to the same actual person.1 If one
person indicates all the papers she authored, that set of papers is an example cluster.
Knowing one, or a few, such clusters may help the system determine what kinds of
clusters are good, so it can better cluster the other instances. Similarly, when clustering
images of faces, one may want to cluster according to identity, poses, emotions, etc.
Providing a few example clusters may be easy, and may help the system optimize its
similarity measure.

Strictly speaking, the task of clustering from example clusters is a special case of
semi-supervised clustering using must-link and cannot-link constraints. Indeed, an ex-
ample cluster can be translated to a set of such constraints. There are disadvantages to
such a translation, however: it can generate a large number of pairwise constraints, and
these will be distributed very unevenly over the data set. This is a rather extreme set-
ting for standard semi-supervised clustering methods, and it is not obvious that existing
methods can handle it well. In fact, Vens et al. show experimentally that they do not,
and also show that a method that explicitly addresses the problem can do better. They
do not provide much insight into why this is, though.

In this paper, we analyze the problem of semi-supervised clustering with exam-
ple clusters in more detail. We provide insight into why existing methods for semi-
supervised clustering do not handle this type of problem very well. We identify two
reasons. First, most of these methods learn a Mahalanobis distance metric that is more
consistent with the given constraints; an alternative view on this is that they implicitly
transform the data in such a way that data points that should end up in the same cluster
are drawn closer together (and data points that should not, are not). We illustrate visu-
ally that these methods may not have the desired effect when the pairwise constraints
are concentrated in one cluster. Second, the learned metric has a tendency to overfit
the example clusters, especially when learning from few and/or small example clusters,
and when learning in high-dimensional spaces. This overfitting was mentioned by Vens
et al., but not studied in detail, and no solution was proposed. We here propose an im-
provement to Vens et al.’s method that explicitly takes the overfitting into account and
guards against it. We show that the improved method yields considerably better results.

The remainder of this paper is structured as follows. We first briefly survey the work
on semi-supervised clustering (Section 2), including the recent work by Vens et al. [11],
on which we build. We next identify two problems that these methods suffer from, and
investigate empirically to what extent they do (Section 3). These observations lead to an
improved version of Vens et al.’s method, which we describe and empirically evaluate
in Section 4. Section 5 presents our conclusions.

1 This task is not trivial because different persons may have the same name, and the same person
may be referred to in different ways, e.g., “John Smith”, “J.L. Smith”.
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2 Semi-supervised Clustering

2.1 Using Pairwise Constraints

Most research on semi-supervised clustering has focused on providing pairwise con-
straints to the clustering algorithm. In their seminal paper, Wagstaff et al. [12,13] intro-
duce the concept of must-link and cannot-link constraints for specifying, respectively,
that two instances should, or should not, be in the same cluster.

One way of dealing with these pairwise constraints is adapting existing clustering
algorithms to take them into account. Wagstaff et al. [13] adapt K-Means to this ef-
fect. The resulting Constrained Kmeans algorithm iteratively updates cluster centers
and cluster assignments exactly like K-Means does, but with the exception that an in-
stance cannot be assigned to a cluster if that would cause constraints to be violated.

Alternatively, one can use a standard algorithm, but adapt the distance metric. Xing
et al. [15] propose to learn a Mahalanobis matrix M [8], which defines a corresponding
Mahalanobis distance

dM(x,y) =
√
(x− y)T M(x− y) (1)

They find the M that minimizes the sum of squared distances between instances that
must link, under the constraint that dM(x,y) ≥ 1 for all x and y that cannot link. M can
be restricted to be a diagonal matrix, or can be full. The idea of learning such a distance
function is generally referred to as metric-based or similarity-adapting methods [7]. An
important point to remember is that the Mahalanobis distance dM is equivalent to the
Euclidean distance in the transformed space obtained by multiplying the data matrix by
M1/2.

Combining algorithm and similarity adaptation, Bilenko et al. [4] introduced the
MPCK-Means algorithm. A first difference with Wagstaff et al. is that constraints are
now handled in a soft-constrained manner by defining costs for unsatisfied constraints.
Furthermore, the k means are initialized using a seeding procedure proposed by Basu
et al. [3]. For metric learning, MPCK-Means provides two options: a separate Maha-
lanobis metric can be learned for each tentative cluster in every iteration of the algo-
rithm, allowing clusters of different shapes in the final partition (we refer to this as
local metric learning), or a single Mahalanobis metric can be learned for the whole
space (global metric learning).

2.2 Using Chunklets

Alternatively to pairwise constraints, Bar Hillel et al. [2] use chunklets, groups of in-
stances that are known to belong to the same cluster. Their Relevant Component Anal-
ysis (RCA) algorithm takes chunklets as input and learns a Mahalanobis matrix. This
approach is shown to work better than Xing et al.’s for high-dimensional data. A down-
side is that only must-link information is taken into account. There is no information
about which instances cannot link: different chunklets may belong to the same cluster,
or they may not. RCA minimizes the same function as Xing et al.’s method, but under
different constraints [2].

Yeung and Chang [16] have extended RCA to include cannot-link information. They
treat each pairwise constraint as a chunklet, and compute a separate matrix for the
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must-link constraints, AML, and for the cannot-link constraints, ACL. The data are then
transformed by A1/2

CL ·A−1/2
ML . This “pushes apart” cannot-link instances in the same way

that must-link instances are drawn together. It is equivalent to learning a Mahalanobis

distance metric dM with M = A−1/2
ML ·ACL ·A−1/2

ML .

2.3 Using Example Clusters

Vens et al. [11] formally define the task of semi-supervised clustering with example
clusters as follows (P (· · · ) denotes the power set):

Given: An instance space X , a set of instances D ⊆ X , a set of disjoint example
clusters E ⊆ P (D), and a quality measure Q : P (D)×P (D)→R.
Find: A partition C = {C1,C2, ...,Ck} over D that maximizes Q(C,E).

Q typically measures to what extent C is consistent with E (ideally, E ⊆ C), but may
also take general clustering quality into account. The number of clusters to be found, or
the distance metric to be used, are not part of the input. The requirement that E ⊆ C is
not strict; this allows for noise in the data.

Applications for this setting include all problems where it is easy to provide reason-
ably accurate example clusters (e.g., entity resolution in author databases, face recog-
nition in picture databases), and where different natural clusterings may exist (e.g.,
clustering in high-dimensional spaces, where different subspaces may reveal different
clusterings, or clustering data that exhibit structure at different levels of granularity).

Example clusters can easily be translated into pairwise constraints, but this results
in many constraints (for a single example cluster with n instances in a dataset with N
instances, this number is O(nN)), and these are highly concentrated (they all involve
the example cluster) [11]. This poses problems for several of the existing methods, as
we shall see further on. Alternatively, cluster examples can be seen as a special type
of chunklets, namely, “maximal” chunklets. RCA can therefore be applied without any
translation, but then the information about the maximality of the chunklets is lost (RCA
allows separate chunklets to end up in the same cluster, which is not wanted when
chunklets are known to be maximal). Yeung and Chang’s extension allows for negative
information, which solves this problem; but this negative information is again expressed
by means of pairwise constraints. Thus, although the chunklet based methods provide a
concise representation for the must-link constraints, they do not provide one for cannot-
link constraints, so they, too, suffer from the problem of generating many constraints.

Motivated by the above considerations, Vens et al. propose the CLUE algorithm. As
we build upon this algorithm, we next discuss it in some more detail.

2.4 The CLUE Algorithm

Algorithm 1 [11] presents CLUE. This algorithm uses a dataset and one or more example
clusters as inputs. It does not require the user to provide the number of clusters or a
particular distance metric.



68 P. Hu et al.

Algorithm 1. CLUE

Input: D: a data set, E: a set of example clusters {Ei}k
i=1 with Ei ⊆ D

Output: a partition P of D
Algorithm:
1. Rescale all attributes linearly to [0,1]
2. Learn a Mahalanobis distance dM that is adapted to the constraints
3. Construct a dendrogram Δ by applying a bottom-up hierarchical clustering procedure with dM

4. Find the range of partitions in Δ for which the examples clusters are reconstructed optimally
5. Within that range, find the best partition P

The algorithm computes a distance metric using an approach similar to that of Yeung

and Chang [16]. It computes a Mahalanobis matrix M = A−1/2
ML ·ACL ·A−1/2

ML , with

AML =
1

Na
∑

Ei∈E
∑

x∈Ei

(x− Ēi)(x− Ēi)
T (2)

ACL =
1

Nb
∑

Ei∈E
∑

x/∈Ei

(x− Ēi)(x− Ēi)
T (3)

where Na = ∑Ei∈E |Ei| and Nb = |D| · |E|−∑Ei∈E |Ei|.
Thus, while Yeung and Chang use as chunklets the pairwise constraints, CLUE uses

as “positive” chunklets the example clusters, and as negative chunklets, pairs (x, Ēi)
with x �∈ Ei and Ēi the mean of the cluster. Intuitively, this pulls instances in the example
closer to its center, and pushes other instances farther away from it. The method has
complexity O(n+ kN), with k the number of example clusters, n the total number of
instances in these, and N the overall number of instances, as opposed to O(nN) if Yeung
and Chang’s method were used.

Next, a standard bottom-up hierarchical clustering method is used, using dM as dis-
tance metric, and using single or complete linkage. In this paper we use the latter. This
gives a dendrogram that represents N partitional clusterings, from N singletons at the
bottom to a single cluster at the top. This dendrogram is then cut as follows. At each
level, the corresponding partition is evaluated using the so-called CORI measure, which
tests how well this partition reconstructs the example cluster. With SML and SCL the set
of, respectively, all must-link and cannot-link constraints induced by the example clus-
ters, and Scorrect

ML and Scorrect
CL the sets of all those constraints fulfilled by a clustering C,

the CORI of C is defined as:

CORI(C) =

(
|Scorrect

ML |
|SML|

+

∣∣Scorrect
CL

∣∣
|SCL|

)
/2 (4)

The CORI measure equals 0.5 at the lowest and upper level, and reaches 1 when all
example clusters occur in the clustering (i.e., are identical to one Ci). Note that the must-
link and cannot-link components of the CORI each have a total weight of 0.5, regardless
of how many constraints of each type there are. This is because usually |SCL| � |SML|.

The returned clustering is the one with highest CORI. When multiple clusterings
have the same highest CORI, the one with best overall clustering quality is chosen, as
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measured by category utility [5]. This is an evaluation metric that judges cluster quality
in terms of intra- and inter-cluster dissimilarity. Witten et al. [14] proposed a version
of category utility for numeric data. CLUE uses “weighted category utility” (WCU), a
variant of Witten et al.’s version that takes the Mahalanobis distance into account; it
corresponds to implicitly transforming the data according to M1/2 and then computing
category utility exactly as proposed by Witten et al.

3 Analysis

Our analysis of the behavior of semi-supervised clustering algorithms when learning
from example clusters is largely empirical. We first describe the datasets used in the
analysis, then the evaluation measures, then we consecutively discuss two weaknesses
that the current methods suffer from. In most of this analysis, we assume only one
example cluster is given (this is in a sense the most extreme case). The CLUE algorithm
is consistently run with Complete Linkage hierarchical clustering [9].

3.1 Datasets

We use the same datasets as in Vens et al. [11]. One is a synthetic dataset with 200
instances and 6 numeric dimensions with different domain sizes, see Figure 1. Three
dimensions were randomly generated, one dimension contains five bar-shaped clusters,
and two dimensions together form 16 circle-shaped clusters. Thus, two possible target
clusterings are embedded in these data, which we refer to as Bars and Circles.
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Fig. 1. The 6 dimensions of the synthetic dataset

Besides this, three UCI datasets [6] are used. CMU Face Images contains 640 pic-
tures of 20 different persons2, each shown with 4 poses, 4 emotions, and with or with-
out sunglasses. This is an example of a dataset that can naturally be clustered in several
ways. We use the “identity” and “pose” as target clusterings, leading to the Identity
and Pose tasks. Principal Component Analysis was applied to the original data to repre-
sent the images as linear combinations of eigenfaces [10]. Only the first 100 eigenfaces
were kept; this allowed us to represent the data in a more compact way, while preserv-
ing 97% of the original variance in the data. Libras Movement contains 15 classes

2 Due to a corrupted image file, the identity “karyadi” was left out, resulting in 19 identities.



70 P. Hu et al.

of 24 instances each. Each class references to a hand movement type in Brazilian sig-
nal language. Seeds contains measurements of seven geometrical properties of kernels
belonging to three different varieties of wheat. It has 210 instances.

3.2 Evaluating Clusterings

We use several cluster evaluation measures. In the following, P = {p1, p2, ..., pk} de-
notes the predicted clustering, and T = {t1, t2, ..., tl} the target clustering. c(x) denotes
the event that an instance x is in a particular cluster c, and Pr(c(x)) the probability of
this event if x is selected randomly from the data (with c typically of the form pi or t j).

The Rand Index (RI) is commonly used to compare a predicted clustering to a target
clustering. It expresses the proportion of instance pairs for which both clusterings agree
on whether they are in the same cluster or not.

When there are many clusters, RI can be dominated by instances correctly predicted
not to be in the same cluster. For instance, if P = {{a,b}, {c,d}, {e, f},{g,h},{i, j}}
and T = {{ j,a}, {b,c},{d,e},{ f ,g},{h, i}}, we obtain RI = 0+35

45 = 0.778, a high
score for a bad clustering. The Weighted Rand Index (WRI) cancels this effect by
giving the same importance to the set of pairs that should be in the same clusters, and
the set of pairs that should not be (each get weight 0.5). For the clustering given above,
we obtain WRI = 1

2 ·
0
5 +

1
2 ·

35
40 = 0.438

Normalized mutual information (NMI) [9] measures the amount of information
that is shared by two clusterings, and penalizes large clusterings. It is defined as follows:

NMI(P,T ) =
MI(P,T )

(H(P)+H(T))/2
(5)

where MI is mutual information:

MI(P,T ) =
k

∑
i=1

l

∑
j=1

Pr(pi(x), t j(x)) · log

(
Pr(pi(x), t j(x))

Pr(pi(x)) ·Pr(t j(x))

)

and H is entropy:

H({c1,c2, . . . ,cn}) =−
n

∑
i=1

Pr(ci(x)) · log(Pr(ci(x)))

This measure gives a higher weight to larger clusters, which can be undesirable when
cluster sizes may differ substantially. For instance, consider T = {{a},{b},{c},
{d,e, f}} and P = {{a,b,c},{d,e, f}}. If we add more and more instances to the last
cluster in both T and P, then H(P) and H(T ) will get closer to zero, making P a better
clustering, although it still correctly identifies only one of the four clusters in T .

To deal with this, Vens et al. propose a new clustering evaluation measure, called
complemented entropy (CE). It scores the entropy of the target labels in the predicted
clusters (Ht), as well as the entropy of the predicted labels in the target clusters (Hp).
These entropies are in a sense complementary: predicting too few clusters increases Ht ,
predicting too many increases Hp. A formal definition is given below:

Ht =−
k

∑
i=1

l

∑
j=1

Pr(t j(x) | pi(x)) · log(Pr(t j(x) | pi(x)))
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Hp =−
l

∑
j=1

k

∑
i=1

Pr(pi(x) | t j(x)) · log(Pr(pi(x) | t j(x)))

CE = 1−
(

Ht

maxHt
+

Hp

maxHp

)
/2 (6)

In this definition, maxHt denotes the highest possible value for Ht , and is reached when
all predicted clusters contain an equal number of target labels, and similarly for maxHp.

Whereas NMI gives more weight to clusters with high cardinality, CE gives equal
weight to each cluster, irrespective of its cardinality. In the previous example, if we
increase the number of instances in the last clusters, CE remains unchanged.

3.3 The Mahalanobis Metric

In this and the following section, we discuss two problems that the current methods for
metric learning suffer from, when used with example clusters. First, we show that the
learned Mahalanobis metric will not always transform the data in a good way. Second,
we show that virtually all metric learning methods overfit the example cluster.

Consider the dataset shown in Figure 2, consisting of four square-like clusters (points
drawn from a two-dimensional uniform distribution). Figure 3 shows the transformed
instances for two methods that learn a Mahalanobis metric: the method by Xing et al.
[15] and the CLUE method [11].

Although the clusters in the original dataset are well-separated, both methods trans-
form the data significantly. By skewing the original clusters, the transformations actu-
ally often lead to a worse configuration for clustering, rather than a better one. While in
the original dataset, points belonging to different clusters are rarely closer to each other
than points drawn from the same cluster, this happens much more frequently in the
transformed dataset. Furthermore, the skew that is introduced depends on the example
cluster: using a different example cluster results in a very different transformation.

To understand what happens, observe that metric learners tend to push together pairs
that must link, and draw apart pairs that cannot link (in the case of Xing et al., these
are not drawn apart but a lower bound on their distance is imposed). Assume the lower
left cluster is used as an example; then must-link constraints cause compression of the
space in mostly random directions, but cannot-link constraints cause expansion of the
space mostly to the right, up, or upper right (on average around a line with slope 1). The
same holds when the example cluster is the upper right one. For the other two clusters,
expansion happens on average around a line with slope -1. This is clearly visible in the
figures. Although Xing et al.’s method does not expand the space in this directions, it
avoids compression in exactly the same direction, while compressing maximally in the
perpendicular direction, so a similar effect is obtained. The one run where no compres-
sion is obtained, is where compression is not possible without violating constraints (i.e.,
the points cannot be projected onto a line without some clusters overlapping).

The effect is demonstrated here for only two methods, but the other methods exhibit
similar behavior. The high concentration of must-link and cannot-link constraints in a
small area has the effect of stretching the space in the direction where many other points
happen to be. There is no reason to believe that this would yield a good metric, unless
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Fig. 2. Synthetic dataset with four clusters

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7 8

-2

0

2

4

6

8

-1 0 1 2 3 4 5 6

0

2

4

6

8

10

0 2 4 6 8 10

-2

-1

0

1

2

3

4

5

6

-2 -1 0 1 2 3 4 5 6

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0 0.01 0.02 0.03 0.04 0.05

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0 0.01 0.02 0.03 0.04 0.05 0.06

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

-0.03 -0.02 -0.01 0 0.01 0.02

Fig. 3. Transformed data for the synthetic dataset. Metric learning methods: CLUE (row 1) and
Xing et al. (row 2). Example clusters: bottom left cluster (column 1), top left cluster (column 2),
top right cluster (column 3), bottom right cluster (column 4).

one only wants to separate the one example cluster from all the others. On the contrary,
it can have a detrimental effect, as shown here.

3.4 Overfitting

In their earlier experiments with CLUE, Vens et al. observe that it returns too many
clusters. It turns out that the CORI measure peaks too early. This can only be explained
if example clusters are reconstructed much earlier than other clusters, which means the
metric is overfitting the example clusters in the sense that pairs of instances in these
clusters are drawn together much more than pairs in other clusters.

That this is indeed the case, is clearly visible in Figure 4, which shows the dendro-
gram constructed by CLUE for the Libras dataset with a single example cluster. The
example cluster is shown in red. It is clear that the metric pushes together the pairs
of instances in the example cluster much more than for other clusters, otherwise all
clusters should be reconstructed at approximately the same level.

We have measured the degree of overfitting for all methods, as follows. We consider
all instance pairs that belong to the same cluster, and sort them according to the learned
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Fig. 4. Dendrogram constructed by CLUE for the Libras dataset. The red part corresponds to the
example cluster.

distance between the instances. We then compare the sum of the distance ranks for the
instance pairs in the example cluster to the average sum of the ranks over all clusters:

∑xk,xl∈E rank(xk,xl)

∑xk,xl∈C rank(xk,xl)/|C|

where E denotes the example cluster, and C denotes any cluster. Table 1 shows the
overfitting results for all metric learning methods. We have used each cluster as an
example cluster once, and report the average results.

The table clearly shows that, apart from MPCK-Means with global metric learning,
all methods have a high risk of strongly overfitting the example cluster. One would ex-
pect this risk to be higher as the dimensionality of the space increases (more parameters
to be tuned) and the size of the example cluster decreases (fewer independent data to
tune these parameters). The table confirms this; for instance, overfitting is worse for
Identity (19 small clusters) than for Pose (4 large clusters), which have the same di-
mensionality, and is worse for Libras (90 dimensions) than for Circles (6 dimensions).

MPCK-Means does not overfit the example cluster, because it does not seek the
minimization of distances within the example cluster. Instead, it uses an objective func-
tion similar to that of K-Means, but adds penalties for violated constraints, and adapts
its metric after each iteration. Thus, metric learning and clustering are interleaved, in
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Table 1. Overfitting results. The closer the values are to 1, the less overfitting occurs.

Method Bars Circles Identity Pose Libras Seeds

MPCK-MEANS global 1.008 0.970 0.996 1.001 0.984 1.000
MPCK-MEANS local 1.188 1.247 0.725 0.547 0.427 0.939
Xing et al. 0.921 0.674 0.068 0.261 0.150 0.831
RCA 0.869 0.590 0.053 0.268 0.060 0.575
Yeung&Chang 0.899 0.604 0.053 0.274 0.090 0.911
CLUE 0.861 0.564 0.053 0.266 0.080 0.908

Table 2. Comparing distance ranks within and between clusters

Method Bars Circles Identity Pose Libras Seeds

original 0.184 0.076 0.014 0.398 0.041 0.424
MPCK-MEANS global 0.111 0.027 0.033 0.480 0.041 0.699
CLUE 0.066 0.006 0.011 0.360 0.041 0.431

contrast to the other methods which first learn a metric based on constraints only, then
perform clustering. All together, this puts less weight on satisfying the constraints.

The above might suggest that MPCK-Means learns a metric that may fit the example
cluster less well, but fits the overall clustering better. As it turns out, this is not the case.
We have evaluated this hypothesis as follows.

We consider all instances outside the example cluster, and compute their pairwise
distances. We sort these distances, and compare the sum of the distance ranks for pairs
of instances in the same cluster to the sum of distance ranks for pairs of instances in
different clusters:

∑xk ,xl∈C rank(xk,xl)

∑xk∈Ci ,xl∈Cj ,i�= j rank(xk,xl)

We call this the “within/between measure”. Clearly, a good metric will decrease this
ratio. Table 2 shows the results for MPCK-Means (with global metric) and CLUE, be-
fore and after transformation with the learned metric. We observe that only in 2 out
of 6 cases, MPCK-Means improves the rank ratios. For Seeds, Identity and Pose, the
results are much worse than without metric learning. CLUE, on the other hand, brings
improvements in 4 cases, and has no or a slight opposite effect on 2 cases.

We conclude that MPCK-Means indeed avoids overfitting, yet does not successfully
adapt its metric to the clustering problem, whereas the other metric learning methods
adapt the metric too much, overfitting the example cluster.

4 CLUE with Defense against Overfitting: CLUEDO

The observation that most systems tend to overfit, and that this is likely due to the pair-
wise constraints being concentrated in part of the input space, points to an opportunity
to improve CLUE. The basic reasoning is as follows. The original CLUE system tends to
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return too many clusters because the CORI reaches its optimal point too early, and this
happens because overfitting causes the example cluster to be compressed more strongly
than the other clusters. Even though the example cluster gets reconstructed early, some
pairs from other clusters have already been merged at this point. It seems relatively safe
to assume that most of these pairs indeed belong to the same cluster. One could add
such merged pairs to the list of must-link constraints and re-run the clustering process.

We have tried several variants of this idea, for the case of a single example cluster.

1. Run CLUE, find the optimal clustering level, add all pairs of examples that got
merged before this level to the list of must-link constraints, repeat until some stop-
ping criterion is fulfilled.

2. Run CLUE, find the lowest clustering level for which the example cluster is recon-
structed, add all pairs of examples that got merged before this level to the list of
must-link constraints, repeat until some stopping criterion is fulfilled.

It turns out both methods suffer from too many erroneous must-link constraints being
added, which results in decreasing, rather than increasing, performance. We therefore
decided to add must-link constraints more cautiously. This results in the CLUEDO algo-
rithm, shown as Algorithm 2.

Algorithm 2. CLUEDO

Input: D: a data set, E: a set of example clusters {Ei}k
i=1 with Ei ⊆ D

Output: a partition P of D
Algorithm:
1. Rescale all attributes linearly to [0,1]
2. For i = 1 to 10 do:

2.1 Learn a Mahalanobis distance dM that is adapted to the current constraints
2.2 Construct a dendrogram Δ with a bottom-up clustering procedure using dM
2.3 For all instance sets merged below level iN/10 : add pairwise constraints

for all pairs in these sets, unless they violate the original constraints
3. Find the range of partitions in Δ for which the examples clusters are reconstructed optimally
4. Within that range, find the best partition P

Table 3. Overview of CLUEDO results (improvements over CLUE shown in boldface)

Bars Circles Identity Pose Libras Seeds

# Clusters CLUE 5 22.1 131.5 169.5 254.8 4.3
CLUEDO 5 14.9 32.1 35 13.9 3
true 5 16 19 4 15 3

Overfitting CLUEDO 0.89 0.97 0.70 0.38 0.69 0.95
Within/between CLUEDO 0.0664 0.0054 0.0053 0.3879 0.0311 0.4155
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Table 4. Various evaluation measures for various methods. The last column shows the average
rank of the methods. Best results are shown in boldface.

Method Bars Circles Identity Pose Libras Seeds Avg. rank

Normalized mutual information (NMI)
K-MEANS 0.039 0.501 0.717 0.039 0.559 0.641 8.000
CONSTRAINED K-MEANS (CKM) 0.275 0.494 0.738 0.191 0.564 0.747 7.167
MPCK-MEANS global 0.757 0.281 0.797 0.035 0.535 0.750 6.667
MPCK-MEANS local 0.391 0.252 0.673 0.026 0.433 0.748 9.000
Xing et al. + CKM 0.889 0.938 0.793 0.563 0.548 0.788 3.833
RCA + CKM 0.542 0.631 0.805 0.544 0.580 0.827 4.333
Yeung&Chang + CKM 0.596 0.789 0.775 0.533 0.590 0.879 4.167
CLUE 1.000 0.952 0.706 0.357 0.645 0.453 4.530
CLUEDO 1.000 0.934 0.919 0.335 0.555 0.660 4.333
CLUEDO + CKM 0.674 0.781 0.885 0.552 0.645 0.883 2.667

Complemented entropy (CE)
K-MEANS 0.051 0.529 0.768 0.133 0.615 0.704 8.167
CONSTRAINED K-MEANS (CKM) 0.284 0.519 0.793 0.282 0.603 0.751 7.500
MPCK-MEANS global 0.757 0.336 0.829 0.074 0.558 0.760 7.167
MPCK-MEANS local 0.513 0.419 0.711 0.054 0.534 0.764 8.667
Xing et al. + CKM 0.932 0.951 0.840 0.592 0.587 0.792 4.167
RCA + CKM 0.543 0.661 0.845 0.612 0.643 0.835 4.000
Yeung&Chang + CKM 0.602 0.808 0.817 0.590 0.629 0.883 4.667
CLUE 1.000 0.965 0.780 0.619 0.744 0.631 3.667
CLUEDO 1.000 0.947 0.940 0.588 0.633 0.726 3.833
CLUEDO + CKM 0.683 0.800 0.927 0.609 0.672 0.885 3.000

Weighted rand index (WRI)
K-MEANS 0.504 0.587 0.767 0.507 0.662 0.853 8.500
CONSTRAINED K-MEANS (CKM) 0.598 0.590 0.794 0.564 0.664 0.903 6.500
MPCK-MEANS global 0.838 0.518 0.829 0.515 0.669 0.899 6.000
MPCK-MEANS local 0.650 0.526 0.730 0.511 0.623 0.891 8.167
Xing et al. + CKM 0.906 0.948 0.832 0.748 0.662 0.882 4.167
RCA + CKM 0.717 0.671 0.839 0.734 0.696 0.913 4.000
Yeung&Chang + CKM 0.742 0.798 0.815 0.733 0.692 0.942 4.167
CLUE 1.000 0.961 0.658 0.510 0.517 0.679 7.000
CLUEDO 1.000 0.964 0.894 0.579 0.688 0.835 3.667
CLUEDO + CKM 0.782 0.789 0.922 0.744 0.715 0.946 2.500

Rand index (RI)
K-MEANS 0.651 0.896 0.930 0.561 0.899 0.853 7.500
CONSTRAINED K-MEANS (CKM) 0.696 0.895 0.928 0.593 0.900 0.903 6.500
MPCK-MEANS global 0.878 0.866 0.944 0.555 0.888 0.899 6.833
MPCK-MEANS local 0.670 0.806 0.924 0.554 0.857 0.891 9.000
Xing et al. + CKM 0.918 0.983 0.945 0.801 0.897 0.894 3.833
RCA + CKM 0.819 0.918 0.951 0.766 0.895 0.921 4.833
Yeung&Chang + CKM 0.830 0.948 0.946 0.767 0.909 0.948 3.500
CLUE 1.000 0.984 0.911 0.675 0.933 0.679 4.833
CLUEDO 1.000 0.975 0.978 0.701 0.849 0.835 4.833
CLUEDO + CKM 0.854 0.945 0.961 0.761 0.919 0.952 3.167



Generalizing from Example Clusters 77

CLUEDO repeatedly runs steps 2 and 3 of CLUE, each time adding more must-link
constraints. It first adds the most certain ones, corresponding to pairs that were among
the first 10% to get merged (but excluding those pairs that would violate the original
constraints). It relearns the Mahalanobis metric with those pairs added, re-clusters with
this new metric, then adds also must-link constraints for pairs that got merged in the
lower 20% levels. It continues doing this up to the 90% level, then stops and returns the
partition with optimal CORI and WCU, as in CLUE.

Table 3 summarizes the results obtained with CLUEDO. It confirms that the num-
ber of clusters returned by CLUEDO is often much lower than that of CLUE; also the
overfitting metric improves substantially and consistently. This shows that the method
achieves its goal of guarding against the overfitting behavior discussed earlier. The
within/between measure improves 4 times out of 6, and worsens 1 time.

To put the results into context, we include in Table 4 the NMI, CE, and (W)RI results
for a variety of approaches, most of which consist of running constrained K-means with
the right number of clusters, and with a metric learned by one of the alternative metric
learning methods. Although the evaluation measures generally agree which are the better
or worse performing methods, there are some differences. For instance, for Libras, CLUE

is the best performing method according to NMI, CE, and RI; however, it is the worst
method according to WRI. This results in a lower average WRI rank for CLUE. The
results further show that, overall, CLUE and CLUEDO are among the better-performing
methods, even though they do not know the number of clusters in advance. Comparing
CLUEDO to CLUE, we always observe an improved WRI, while the RI, NMI and CE are
more mixed. For completeness, we also included the results for CLUEDO combined with
constrained K-means (and hence, using the number of clusters as input) instead of using
agglomerative clustering to obtain the final partition. It turns out that this combination
has the best average rank over all methods, for all evaluation measures.

5 Conclusions

Generalizing from example clusters is a relatively novel setting for semi-supervised
clustering. It can in principle be dealt with by methods that can handle pairwise must-
link / cannot-link constraints, but from this point of view it is a rather extreme setting.
We have investigated the behavior of these methods in this context, and identified sev-
eral effects that cause them to perform badly. One is the high concentration of pairwise
constraints in one area of the input space, another is the tendency to overfit example
clusters. We have quantified these effects for several clustering methods. These ob-
servations have led us to propose a new semi-supervised clustering algorithm for this
setting, CLUEDO, which is shown to substantially improve upon its predecessor CLUE

in terms of finding a clustering with a reasonable number of clusters, and in terms of
learning a distance metric that much less overfits example clusters.

Many questions remain. We have mostly focused on extreme situations (generaliz-
ing from one example cluster), and while our experiments use a variety of datasets,
none of these are very large or high-dimensional. Further, an evaluation of the setting in
practical application settings, such as entity resolution (in textual, visual, audio, graph,
. . . data), would be interesting. Semi-supervised clustering by generalizing from exam-
ple clusters remains a largely unexplored area that in our view has much potential.
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Abstract. Data labeling is an expensive and time-consuming task.
Choosing which labels to use is increasingly becoming important. In the
active learning setting, a classifier is trained by asking for labels for only
a small fraction of all instances. While many works exist that deal with
this issue in non-streaming scenarios, few works exist in the data stream
setting. In this paper we propose a new active learning approach for
evolving data streams based on a pre-clustering step, for selecting the
most informative instances for labeling. We consider a batch incremen-
tal setting: when a new batch arrives, first we cluster the examples, and
then, we select the best instances to train the learner. The clustering
approach allows to cover the whole data space avoiding to oversample
examples from only few areas. We compare our method w.r.t. state of the
art active learning strategies over real datasets. The results highlight the
improvement in performance of our proposal. Experiments on parameter
sensitivity are also reported.

1 Introduction

Today, large amounts of data are being generated continuously, and we are cre-
ating more data every two days, than all the data we created before 2003 [15].
Data streams pose new serious challenges to the data analysis community. To
learn supervised models, we need to obtain true labels from the instances of
the streams . This labeling phase is usually an expensive and tedious task for
domain experts. Consider, for example, textual news arriving as a data stream.
The goal is to predict if a news item will interest a given user at a given time.
The interests of the user may change over time. To obtain training data, news
need to be labeled as interesting or not interesting. This requires human labor.
For instance, Amazon Mechanical Turk1 provides a marketplace for intelligent
human labeling.

1 https://www.mturk.com
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Labeling can also be costly because it requires expensive, intrusive or destruc-
tive laboratory test. Consider a production process in a chemical plant where
the goal is to predict the quality of production output. The relationship between
input and output quality might change over time due to constant manual tuning,
complementary ingredients or replacement of physical sensors. In order to know
the quality of the output (the true label) a laboratory test needs to be performed
which is costly. Under such conditions it may be unreasonable to require true
labels for all incoming instances.

A way to alleviate this issue is to ask for labels, over time, for only a small
and reasonable portion of the data. The main question then is: How can we
select a good subset of instances for learning a model? Such a learning scenario
is referred to as active learning.

Active learning studies how to label selectively instead of asking for all true
labels. It has been extensively studied in pool-based [13] and online settings [5].
In pool-based settings the decision concerning which instances to label is made
by ranking all historical instances (e.g. according to uncertainty) while in on-
line active learning each incoming instance is compared to a threshold (e.g. an
uncertainty threshold) and the system asks for the true label if the threshold is
exceeded. The main difference between online active learning and active learning
in data streams is in expectations around changes. In data streams the relation-
ship between the input data and the label may change (concept drift) and these
changes can happen anywhere in the instance space while online learning assumes
a stationary relationship between examples and their labels. As mentioned be-
fore, concept drifts in streams can happen anywhere in the data.

To cope with this issue previous works exploit randomization strategies to
span the whole instance space [24]. We propose a clustering based approach
ACLStream (Active Clustering Learning for Data Streams)to better deal with
possible drifts. More specifically, when a batch of instances arrives, we first par-
tition these instances using a clustering algorithm. Then we query examples for
labeling by combining geometrical information (supplied by the clustering) and
the maximum a posteriori probability of the model learnt from all the labelled
examples from previous batches of data. Once the query labels are obtained, the
data stream classifier is updated and it is ready to classify new incoming data.
The proposed strategy allows to selectively sample a subset of well distributed
instances in the data space. We demonstrate that the selected examples summa-
rize the stream sufficiently for learning an evolving classification model.

The remainder of this paper is organized as follows. Section 2 briefly explores
the state of the art in active learning for data streams and makes some connec-
tions with semi-supervised learning in data streams. The proposed methodology
is presented in Section 3. In Section 4 we present experimental results for a
number of real world datasets and we also supply a sensitivity analysis of the
essential parameters of the approach. Finally, Section 5 concludes the study.
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2 Related Work

Online active learning has been the subject of a number of studies, where the
data distribution is assumed to be static [2, 5, 9, 20]. The goal is to learn one
accurate model with minimum labeling effort. In contrast, in the evolving data
streams setting, which is the subject of our study, the goal is to continuously
update a model over time so that accuracy is maintained as the data distribution
is changing. The problem of label availability in evolving data streams has been
the subject of several recent studies [6,10,12,17,22,24] that fall into three main
groups.

The first group of works uses semi-supervised learning approaches to label
some of the unlabeled data automatically [12, 17, 22], which can only work un-
der the assumption that the class conditional distribution does not change (no
concept drift). Semi-supervised learning approaches are conceptually different
from the active learning approaches, that are the subject of our study, since the
former can only handle changes in the input data distribution, changes in the
relation between the input data and the target label cannot be spotted without
querying an external oracle as is done in active learning.

The second group of works process data in batches implicitly or explicitly
assuming that data is stationary within batches [6, 10, 14, 16]. Such approaches
require an external mechanism to handle concept drift. Lindstrom et al. [14] use
uncertainty sampling to label the most representative instances within each new
batch. They do not explicitly detect changes, instead they use a sliding window
approach, which discards the oldest instances. Masud et al. [16] use uncertainty
sampling within a batch to request labels. In addition, they use the unlabeled
instances with their predicted labels for training (semi-supervised learning ap-
proach). A few works integrate active learning and change detection [6, 10] in
the sense that they first detect change and only if change is detected do they ask
for representative true labels using offline active learning strategies designed for
stationary data. In this scenario drift handling and active learning can be consid-
ered as two mechanisms operating in parallel, but doing so independently. This
is the main difference between this scenario and the last one, which combines
the two mechanisms more closely together.

Finally, the third group of works use randomization to capture possible changes
in the class conditional distribution [4, 23, 24]. Cesa-Bianchi et al [4] develop an
online active learning method for a perceptron based on selective sampling using
a variable labeling threshold b/(b+ |p|), where b is a parameter and p is the pre-
diction of the perceptron. The threshold itself is based on certainty expectations,
while the labels are queried at random. This mechanism could allow adaptation
to changes, although they did not explicitly consider concept drift. Zhu et al. [23]
build a classifier on a small portion of data within a batch at random and use
uncertainty sampling to label more instances within this batch. A new classifier
in each batch is needed to take into account concept drift. Zliobaite et al. [24]
operate in the pure online setting without batches, where they combine station-
ary online active learning with randomization over the instance space. Our study
moves a step further from just employing randomization over the instances to
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capture a potential concept drift. We use stratified sampling over the instance
space instead, where the strata are determined using a clustering mechanism.

The idea of pre-clustering has been considered for active learning in the sta-
tionary setting [18]. The selection criterion gives priority to two types of samples:
samples close to the classification boundary and samples which are cluster rep-
resentatives. This way the prior data distribution can be taken into account
when making labeling decisions, which has been shown to work well empirically
and theoretically for certain data distributions. Employing clustering is concep-
tually similar to our approach, however, the motivation behind doing that in
our approach is different. We mainly aim at tracking concept drift using this
mechanism.

3 Setting and Methods

In this section we describe our new algorithm ACLStream (Active Clustering
Learning for Data Streams). We suppose that our incoming data stream is di-
vided into batches. Each batch St is associated with the arrival time denoted
by the index t: S = {S1, S2, ..., Sn, ...}. This scenario is general enough to model
arbitrary real-world data streams. Note that even in the case of a fully incremen-
tal scenario, we can still build batches by employing a buffer based procedure to
collect examples. Given a data stream S and a budget b we want to learn a clas-
sifier cl with only b% of the instances in the stream. How to select the instances
to query is challenging for any active learning strategy. As we are working in a
batch incremental scenario, this means that if the value of b is 0.2 we can select
20% of the labels for each batch St. The proposed strategy is based on the clus-
tering of instances in a batch. To select a query point, first we choose a cluster
and then we select as query one of the instances belonging to that cluster. The
use of clusters helps the selection strategy to sample queries from different, but
still reasonably densely populated parts of the instance space. In this way we
hope to improve coverage for the different classes of the problem and to over-
come possible concept drift that can appear anywhere in the data space. Once
the clustering is produced we need to determine (i) which are the most useful
clusters to select, and (ii) given a cluster, which are the most useful instances
inside this specific cluster. For both cases we will define a ranking for all respec-
tive objects, clusters or instances. Thus we implement a two step procedure. As
a Macro Step, we need to define how to produce a suitable ranking of clusters
and then, as a Micro Step, we need to define how to rank the instances inside
each cluster in order to retrieve the most informative instances for labeling first.

The use of clustering, to select query instances, allows covering the whole
data space, albeit in a more focused manner than purely random sampling.
Points from all areas of the instance space may be sampled, which is a welcome
property in a data stream scenario in which concept drifts can appear anywhere.
Contrary to randomized strategies [24], that also try to cover the whole data
space, ACLStream is guided by the partitioning of the space induced by the
clustering algorithm. One of the advantages is higher robustness with regard to
outliers, where purely random sampling might waste valuable labeling resources.
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3.1 Macro Step: Evaluating the Importance of a Cluster

After clustering of a batch is finished, we evaluate the quality of each partition
employing the classifier cl which was trained on all previously labeled data.
We classify all the instances of the batch St without taking into account the
clustering solution. After the classification step, we compute, separately for each
cluster, a distribution vector w.r.t. the class values. This means that each cluster
C∗ will be associated with a vector of length equals to the number of classes.
We indicate this vector as VC∗ . Each cell of the vector contains the number
of instances in the cluster, for which the classifier predicts that specific class
value. Intuitively, if the vector is balanced – all the class values are equally
probable – that cluster covers a more difficult part of the data space to classify in
comparison to a cluster with a very skewed distribution, in which there is a clear
predominant class value. Starting from this intuition, we introduce a function
to quantify the homogeneity of the predicted class distribution in a cluster. In
particular, the proposed measure returns values closer to 0 when class values are
equally probable while it returns 1 when the cluster is homogeneous w.r.t. the
predicted class values. The homogeneity function is defined as follows:

homogeneity(C∗) =

∑|VC∗ |
i=0

∑|VC∗ |
j=i+1 |VC∗ [i]− VC∗ [j]|

size(C∗) ∗ (|VC∗ | − 1)
(1)

where size(C∗) is the number of instances in the cluster C∗. The homogeneity
function is bounded between 0 and 1. The numerator evaluates the variation
of the prediction among the different class values to evaluate how far is from a
completely equiprobable situation. The numerator is then normalized by the ex-
treme case in which we assume that all the examples, in the cluster, are assigned
to the same class value.

Clusters are sorted in increasing value of their homogeneity, from perfectly
balanced to fully homogeneous.

3.2 Micro Step: Instance Certainty Inside a Cluster

In order to quantify the importance or certainty of each instance, inside each
cluster, we combine two different factors. One is based on the centrality of the
instance w.r.t. its cluster centroid while the second one exploits the classifier cl.
To compute the centrality of an instance xi w.r.t. its cluster C∗ we simply use the
Euclidean distance between xi and the centroid of C∗ (centroid(C∗)). We refer
to this quantity using the notation d(xi, C∗) without explicitly indicating the use
of centroid(C∗) to simplify the notation. The second factor is computed by the
classifier. We use the maximum a posteriori probability of the classifier for the
particular instance xi. The maximum a posteriori probability is the maximum
among all the class probabilities predicted for xi. We indicate the maximum a
posteriori using the notation MAPcl(xi). Given a cluster C∗ and an instance xi

belonging to that cluster, the centralized certainty of the instance is supplied by
the following formula:

certainty(xi) = MAPcl(xi) ∗ d(xi, C∗) (2)



84 D. Ienco et al.

Intuitively we want to select instances i) for which the decision of the classifier
is less clear and ii) which are good representatives, or exemplars, for the area
covered by the cluster. To do this we combine the MAPcl(xi) that represents
point i) and d(xi, C∗) corresponding to point ii) by multiplication, and name the
resulting quantity the certainty of xi. Then, for each cluster, all instances are
sorted by increasing values of certainty. Therefore the most uncertain instances
will be selected first for labeling.

3.3 ACLStream Strategy

Given a batch of instances St and a budget b, our solution uses clustering to select
a fraction (b) of instances from batch St that are deemed the most informative
for training a stream classifier. cl first classifies the incoming instances, then
we cluster the elements in St, obtaining a partition C = {C1, ..., Ck}. After
clustering, we apply our sampling strategy. First we perform the macro-step
that ranks the clusters in C according to the homogeneity function defined in
Equation 1. After that, for each cluster, we perform the micro-step which ranks
the instances according to their certainty (Equation 2). The returned result
is a set X of instances selected for labeling. The procedure is summarized in
Algorithm 1.

Our solution can also be adopted to work in a one-by-one classification sce-
nario. Using a buffer that collects batches of instances, the classifier continuously
classifies examples until the batch is full. At that point, we can interrupt the
classification process, select query points through the active learning strategy,
update the classifier and reset the buffer to restart collecting examples.

Algorithm 1. ACLStream(St, cl, b, k)

Require: St: batch of instances
Require: cl: classifier
Require: b: budget
Require: k: number of clusters
1: X = ∅
2: C = clustering(St,k)
3: Lc = rankClusters(C, cl) according to homogeneity (eq. 1)
4: for all c ∈ Lc do
5: rankExamples(c, cl) according to certainty (eq. 2)
6: end for
7: for i = 1 → b× size(St) do
8: X = X ∪ dequeue(Lc[i % k])
9: end for
10: return X

As a clustering algorithm we employ the standard K-Means algorithm [21].
Any kind of clustering algorithm could be used to perform this step. The use
of K-Means is motivated by its time complexity, which is linear w.r.t. the size
of the batch, and by the fact that it is generally used as universal baseline
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in clustering. Future work will investigate the utility of alternative clusterers.
Once the partition is available, we rank the clusters w.r.t. their homogeneity
(see Formula 1). Clusters at the top of the ranking are the most balanced ones
in terms of their class distributions. Therefore they also represent areas of the
instance space over which the classifier is less confident. This ranking is stored
in a ranked list Lc. Then, for each cluster c of Lc we rank their instances. This
ranking is performed employing Formula 2. At this point we have quantified the
usefulness of both clusters and instances. To select instances for labelling, we
start from the top ranked cluster and we select and remove the first instance.
Then, iteratively, we select one instance from every other cluster in order to
explicitly cover all the different areas of the data space. If the budget exceeds
the number of clusters, we restart to sample instances again starting from the
top of the cluster ranking. If the budget is low and the number of instances to
sample is smaller than the number of clusters we only consider clusters in the
top of Lc.

3.4 General Classification Schema

Algorithm 2 summarizes the general classification schema. The Main loop simu-
lates the streaming process collecting batches of data. Once a batch is collected,
the data is classified and then used as input for the proposed active learning strat-
egy that returns the set of selected query points. The active learning strategy is
realized through Algorithm 1. To evaluate classifier performance we adopt the
prequential schema. The evaluation through the prequential setting involves two
steps: i) classify an instance, and ii) use the same instance to train the learner.
To implement this strategy, first we test all the instances in the batch with the
classifier cl. Second, we select examples for labeling using ACLStream. In this
way we respect the constraints imposed by our setting. Function askLabel(xj)
simulates the user in the labeling phase. At the end, the classifier cl is trained
over the set X of labeled data. The process continues until the end of the data
stream is reached.

4 Experiments

In this section we evaluate the performance and the quality of the proposed
ACLStream. We compare our algorithm with three other methods that are ex-
plicitly designed for active learning over data streams. We use the prequential
evaluation procedure: each time an instance arrives, we first test the algorithm
on it, and then we decide on whether pay the cost for labeling it and subsequently
use it as an input for updating the classifier.

The first method is a baseline approach, also used in [24], that randomly
chooses examples for labeling. We call this method Random. The second method,
also proposed in [24], uses a randomized variable uncertainty strategy that com-
bines the randomization with maximum a posteriori probability and an adaptive
method to avoid consuming too much of the budget when a consecutive run of
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Algorithm 2. Active Learning Process(S, b, k)

Require: S: stream of instances
Require: b: budget
Require: k: number of clusters
1: Init classifier cl
2: while hasMoreInstances(S) do
3: St = extractNextBatch(S)
4: for all xj ∈ St do
5: test(cl,xj)
6: end for
7: X = ACLStream(St,cl,b,k)
8: for all xj ∈ X do
9: yj = askLabel(xj)
10: train(cl,xj ,yj)
11: end for
12: end while

easy instances is encountered. We call this approach Rand Unc. The last com-
petitor is an ensemble approach [23] that uses a maximum variance principle.
Given a set of classifiers, in a batch incremental scenario, the instances to label
are the ones over which the classifiers disagree the most. In the original work,
given a batch, the authors propose to first select the instances to label and then
classify the remain instances in the batch.

To have a fair comparison with the other approaches we wait until the end of
the batch before executing active learning. This way the model will be trained to
classify the instances of the next batch. We call this classifier MVC (Maximum
Variance Classifier). Using this set up i) we ensure that the budget constraints are
always respected during the stream process, ii) the comparison is fair w.r.t. our
approach and the other two competitors that suppose a full incremental scenario,
and iii) we respect prequential learning schema. For all methods a warm-up step
is introduced. In detail, the first 500 instances of each dataset are all labeled and
used to train the initial model used by the specific approach. Evaluation only
starts after this warm-up step. All the methods need a classification algorithm
as a base block to perform the classification and to produce the maximum a
posteriori probability. For this reason for our approach, for the Random and for
the Rand Unc strategies we use the classifier proposed in [7]. This classifier is
able to adapt itself to drift situations: when the accuracy of the classifier begins
to decrease a new classifier is built and trained with new incoming instances. For
MVC we use the C4.5 algorithm [19] as suggested in the original paper. Always
following the original paper we use a window size of 1 000 instances for MVC
as that size obtains best results, while for ACLStream we employ a window size
of 100 instances. The default number of clusters is 5. As our approach uses a
nondeterministic algorithm to perform the clustering, each result for ACLStream
is averaged over 30 runs. All our experiments are performed using the MOA data
stream software suite [3]. MOA is an open source software framework in Java
designed specifically for data stream mining.
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4.1 Datasets

To evaluate all the algorithms we use five real world “datasets: Electricity, Cover
Type, Airlines, Poker, KDD99. Electricity data [8] is a popular benchmark in
evaluating streaming classifiers. The task is to predict the rise or fall of elec-
tricity prices (demand) in New South Wales (Australia), given recent consump-
tion and prices in the same and neighboring regions. Cover Type data [1] is
also often used as a benchmark for evaluating stream classifiers. The task is to
predict forest cover types or types of vegetation from cartographic variables.
Inspired by [11] we constructed an Airlines dataset using the raw data from
US flight control. The task is to predict whether a given flight will be delayed,
given the information of the scheduled departure. The Poker dataset represents
all the possible combination of cards in one hand with the corresponding score
as the class value. This results in a big dataset with more than 800k instances.
The last dataset, KDD99, is commonly used as a benchmark anomaly detection
task but recently it has also been employed as a dataset for testing data stream
algorithms [17]. One of the big problems with this dataset is the big amount of
redundancy among instances. To solve this problem we use the cleaned version
named NSL-KDD2. To build the final dataset we join both training and test data.
A summary of the datasets’ characteristics is reported in Table 1. We observe
that this collection of datasets contains both binary and multi-class classification
problems, datasets with different numbers of instances (varying between 42k to
829k) and different numbers of features (from 7 to 54).

For analysis purposes, we also introduce one more dataset, named Cover Type
Sorted, in which the instances of the Cover Type dataset are reordered w.r.t. the
attribute elevation. Due to the nature of the underlying problem, sorting the
instances by the elevation attribute induces a natural gradual drift on the class
distribution, because at higher elevation some types of vegetation disappear
while other types of vegetation appear gracefully. We think that this final set of
six datasets is a good benchmark for evaluating the performance of our approach,
ACLStream, w.r.t. state of the art methods.

Table 1. Dataset characteristics

Dataset n. of Instances n. of Features n. of Classes

Airlines 539 383 7 2

Electricity 45 312 8 2

Cover Type 581 012 54 7

Poker 829 201 10 10

KDD99 148 517 41 2

4.2 Analysis of Classification Accuracies

The final accuracy results are reported in Figure 1. In this experiment we
evaluate the different methods, over the different datasets, varying the budget

2 http://nsl.cs.unb.ca/NSL-KDD/
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percentage. We start with a budget percentage of 0.03 and go up to a per-
centage of 0.3. Obviously, to evaluate the results we need to take into account
both budget size and accuracy. We can observe that, except for KDD99 dataset,
ACLStream outperforms the other methods for low budgets, less than 0.15, while
for bigger budgets the performances are either better as well, or at least com-
parable. For the case of KDD99 the performances of Random, Rand Unc and
ACLStream are very close to each other and the difference is smaller than 1.5
percentage points of accuracy. Another useful feature of our new method is its
stability. As we can see from the graphs, ACLStream always remains stable vary-
ing the budget percentage while this is not the case for all the other methods.
This behaviour is clearly present for the Cover Type dataset. In this case the
Rand Unc strategy is very unstable and small changes of the budget (from 0.15
to 0.25) induce a big change (ten points of accuracy) in the final performance.
Also the Random strategy is much more unstable than our proposed method.
Another general conclusion we can draw regardsMVC, which always obtains low
accuracy performance when compared to all the other methods. To wrap up all
the findings from this experiment, we can claim that ACLStream works well for
very low budget percentages, which is a very important and desirable feature for
any active learning strategy. This is particularly important in the data stream
domain, in which data arrives continuously and time-consuming operations, such
as data labeling, need to be minimized. On the other hand, due to its stability,
ACLStream small budget results are very similar to ones obtained with higher
budget. This observation implies that the active learning strategy based on our
clustering approach is especially effective for small budgets.

4.3 Influence of the Number of Clusters

We evaluate how the number of clusters influences the performance ofACLStream.
For this analysis we fix the batch size to 100 as in the general experiment, and we
vary the number of clusters from 5 to 25 with a step size of 5. We report results in
Figure 2. As we can note, the number of clusters does not affect the general per-
formance of the algorithm, so it is also very stable w.r.t. the setting of this param-
eter. We can observe that for Airlines, Electricity, KDD99 and Cover Type Sorted
datasets the maximum accuracy fluctuation over the different datasets is smaller
than 0.8 points of accuracy. For the Cover Type dataset we reach the maximum
accuracy gain (1.4 points of accuracy) between k=5 and k=25 when the budget is
equal to 0.3. The maximum difference in accuracy (2.5 points of accuracy), among
all the experiments, is measured for the Poker dataset for a budget of 0.15. For
this dataset, ACLStream with a number of clusters equal to 5 always obtains the
best accuracy. Still, even in this case, the performances of different numbers of
clusters are very close to each other.

The obtained stability w.r.t. the number of clusters underlines that the com-
bination of our macro and micro steps is effective for dealing with the complexity
of data streams. Specifically, starting to analyze clusters with low homogeneity,
which are clusters covering areas that are ambiguous according to prediction ev-
idence, forces the method to sample examples where labeling information seems
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Fig. 1. Accuracy on a) Airlines b) Cover Type c) Poker d) Electricity e) Cover Type
Sorted and f) KDD99

most useful. This is particularly important when the budget size is actually
smaller than the total number of clusters.

4.4 Influence of the Batch Size

The last set of experiments focuses on the influence of the second parameter:
the size of the batches. In particular, we analyze how the size of a batch impacts
the final accuracy of ACLStream. For this purpose, we run experiments varying
the size of the batches from 100 to 500 with a step size of 100. We average each
result over 30 runs and we set the number of clusters equal to 5. The results are
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Fig. 2. Accuracy of ACLStream varying the number of clusters from 5 to 25 on a)
Airlines b) Cover Type c) Poker d) Electricity e) Cover Type Sorted and f) KDD99

reported in Figure 3. We can observe two distinct behaviors. There is one group
of three datasets – Cover Type, Poker and Electricity – for which the batch
size influences the final accuracy, and another group comprising the remaining
three datasets – Airlines, Cover Type Sorted and KDD99 ) – for which this
parameter does not seem to affect the final performance. For the latter group
of datasets the fluctuation in accuracy is less than 0.5 points. For the former
group of datasets, the ones influenced by the batch size, we can note that in
general smaller batches outperform bigger ones. Using small batches forces the
learner to adapt faster to possible changes, and to sample instances in a more
regular way. This is particularly useful where concept drift happens quickly and
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Fig. 3. Accuracy Results for ACLStream on a) Airlines b) Cover Type c) Poker d)
Electricity e) Cover Type Sorted and f) KDD99 varying the batch size from 100 to 500

frequently. This is the case for the Electricty dataset, where multiple levels of
periodicity are present, over 24 hours, over 7 days, and over 4 seasons. Drift can
be visually presented by plotting class conditional distributions over time. On the
other hand, this is not the case for the Cover Type Sorted dataset, where batch
size does not produce significant accuracy changes, as very gradual and smooth
concept drift as induced by sorting the instances by the elevation attribute. This
gradual drift phenomena can be managed well by all batch sizes evaluated here.

To summarize, for ACLStream we can state that small values for batch size are
preferable over large ones. Using a small batch size forces the system to sample
labels at more regular intervals. Consequently, the learner adapts better and
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faster in case of fast concept drift, without negatively impacting the performance
on datasets where concept drift may be more gradual or not present at all.

5 Conclusions

Building classification models on data streams considering only a limited amount
of labeled data is starting to be a common task due to time and cost con-
straints. In this paper we presented ACLStream, a novel algorithm to perform
active learning in a data stream scenario. Our approach exploits a clustering
based partitioning of the data space to focus sampling on the potentially most
useful examples to label. Clusters are ranked by homogeneity of their predicted
class distributions. Instances in each cluster are ranked according to two factors:
i) maximum a posteriori classification probability, and ii) geometrical position
inside the cluster. Certainty is defined to be the product of these two factors.
Instances with low certainty inside a given cluster are preferred, as they rep-
resent central points over which the classifier is more uncertain. We assessed
the performance of ACLStream over real world datasets and we showed that
it outperforms state-of-the-art active learning strategies for data streams. We
also empirically studied how our proposal is influenced by the setting of its pa-
rameters. As future work we would like to investigate in more detail the use of
clustering for active learning in data streams considering alternative clustering
algorithms as well as alternative ranking heuristics.
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Abstract. Crowd-labeling emerged from the need to label large-scale and com-
plex data, a tedious, expensive, and time-consuming task. But the problem of ob-
taining good quality labels from a crowd and their integration is still unresolved.
To address this challenge, we propose a new framework that automatically com-
bines and boosts bulk crowd labels supported by limited number of “ground truth”
labels from experts. The ground truth labels help to estimate the individual ex-
pertise of crowd labelers and difficulty of each instance, both of which are used
to aggregate the labels. We show through extensive experiments that unlike other
state-of-the-art approaches, our method is robust even in the presence of a large
proportion of bad labelers in the crowd. We derive a lower bound on the number
of expert labels needed to judge crowd and dataset as well as to get better quality
labels.

Keywords: Crowd-sourcing, Multiple labels, Ground truth.

1 Introduction

Crowd-sourcing is the gathering and leveraging of collective human intelligence to
tackle tasks that cannot be readily automated. One example of a successful crowd-
sourcing system is the reCAPTCHA project [22] for digitizing old books. This project
leverages the power of human volunteers to transcribe approximately 500 million words
at close to 100% accuracy, words that were otherwise unrecognizable by Optical Char-
acter Recognition (OCR) software. Another example of a widely used crowd-sourcing
system is Amazon’s Mechanical Turk (MTurk), which engages nearly thousands of
workers registered to apply their brainpower to complex tasks including annotating
medical images that contain malignant cells and identifying the videos suitable for a
general audience.

In a crowd-labeling scene, an object is usually annotated by more than one person and
the multiple labels are combined to produce one final label. While significant progress
has been made on this process of aggregating crowd-labeling results, (e.g. [9],[19], [24])
it is well-known that the precision and accuracy of labeling can vary due to differing
skill sets or even malicious behaviors of a labeler. Labelers can disagree about a specific
label, requiring some type of mediation to resolve conflicting opinions. It is difficult to
control for or determine in advance the proportion of low-quality/malicious labelers.
If that proportion grows too high, there is often a phase transition leading to a steep,
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Fig. 1. Phase transition in the performance of majority voting, GLAD and GLAD with clamping
[24] and iterative method [9] on UCI Mushroom dataset

non-linear drop in labeling accuracy as noted by Karger et al. [9]. It is also confirmed
by our experiments on five different UCI datasets as we observe a phase transition in
the performance of majority voting, GLAD and GLAD with clamping [24] and iterative
method [9]. Figure 1 shows the phase transition for the UCI Mushroom dataset. This
highlights the larger challenge of producing an objective assessment to measure the
quality of the crowd for a given task.

One solution is to differentiate “Good Labelers” from the novice, careless or mali-
cious labelers weighing their assessments more heavily in the final aggregation. Another
important aspect that must be taken into consideration is the variability of the instance
difficulty, which has received less attention in the crowd-sourcing literature.

We propose a new approach named Expert Label Injected Crowd Estimation (ELICE)
which incorporates both metrics, expertise of crowd labeler and difficulty of the in-
stance. ELICE uses only a few expert labels other than the crowd labels, to assess these
metrics, which help to stabilize labeling and delay the phase transition to inaccurate
labels. By experts, we mean the domain experts who provide ground truth. Acquiring
expert labels is in most cases very expensive if not infeasible. However, acquiring crowd
labels is cheap and easy, therefore, we get crowd labels for all instances.

Our main hypothesis is that using few expert-labeled instances, when available,
tremendously benefits the crowd-labeling process. To assess the validity of our hypoth-
esis, we have conducted an empirical evaluation that demonstrates the superiority of
ELICE as compared to other state-of-the-art methods even when one injects only “few”
expert labels in the labeling process. Our methodology appears to be robust even in the
presence of a large proportion of low-quality labelers in the crowd. Furthermore, we
derive a lower bound for the number of expert labels needed. This lower bound is a
function of the overall quality of the crowd and difficulty of the dataset.
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2 Related Work

Many recent works have addressed the topic of learning from crowd [18]. The most
common and straightforward approach to aggregate crowd labels is majority voting.
But the drawback of this method is that equal weights are assigned to the labels of
each crowd labeler irrespective of his expertise. To overcome this problem of assigning
equal weights to all the workers, different solutions are proposed. Many researchers use
optimization methods such as Expectation-Maximization (EM) to solve this problem.
In this context, Dawid & Skene [3] are the first to use EM algorithm for finding better
quality labels as well as approximating the expertise of the labeler.

A probabilistic model of the labeling process is proposed by Whitehill et al. [24]
named Generative model of Labels, Abilities, and Difficulties (GLAD). In this model
EM is used to obtain maximum likelihood estimates of the unobserved variables and is
shown to outperform majority voting. The authors also propose a variation of GLAD
that clamps some known labels into the EM algorithm. More precisely, clamping is
achieved by choosing the prior probability of the true labels very high for one class and
very low for the other.

A probabilistic framework is also proposed by Yan et al. [25] as an approach to
model annotator expertise and build classification models in a multiple label setting. A
Bayesian framework is proposed by Raykar et al. [17] to estimate the ground truth and
learn a classifier.

Sheng et al. [19], Sorokin et al. [21], and Snow et al. [20] show that using multiple,
noisy labelers is as good as using fewer expert labelers. Active learning is used by Don-
mez et al. [5] to increase labeling accuracy choosing the most informative labels. This
is done by constructing a confidence interval called “Interval Estimate Threshold” for
the reliability of labeler. Also, Yan et al. [26] develop a probabilistic method based on
the idea of active learning, to use the best labels from the crowd. An iterative approach
is proposed by Karger et al. [9,10] which relies on a belief propagation algorithm to
estimate the final labels weighted by each worker reliability. The authors use an ex-
plicit approach of instance assignment to labelers using a bipartite graph generated by
random graph generation algorithm.

To handle adversarial labelers, Dekel & Shamir [4] propose the methodology that
handles noisy labels and outperforms SVM classification, especially when the noise
in the labels is moderate to high. In a crowd-labeling setting, identifying adversarial
labelers is tackled through an a priori identification of those labelers before the labeling
task starts, e.g. Paolacci et al. [15] but a malicious labeler can perform well on the test
and then be adversarial again during the labeling process.

Similarly, the idea of using ground truth labels has been used by Crowdflower [13]
who test the crowd expertise based on few ground truth. Their approach tests the crowd
labelers during the training phase (before the actual labeling starts) and blocks the la-
belers who do not pass the training. Subsequent tests are also used to block bad crowd
labelers after giving warnings. This is done by injecting instances for which ground
truth is available during the actual labeling task. This approach can be helpful when a
large number of ground truth instances which may not readily be available. To handle
this problem Oleson et al. [14] propose “Progsrammatic gold” that generates gold units
automatically which may not be possible for many datasets. Khattak and Salleb-Aouissi
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[11,12] use ground truth to judge the crowd labeler expertise, instance difficulty as well
as for inference of the final labels. The crowd labeler expertise are evaluated by adding
one point for the correctly labeled instances and deducting one point for the mislabeled
ones. Similarly the instance difficulty is estimated by adding one point for acquiring
correct label from any labeler for an instance. These measure are then used to aggregate
the crowd labels to get one final label.

The model proposed by Iperiotis et al. [7], [6] identifies the biased or adversarial
labelers and corrects their assigned labels. This is done by replacing the hard label by
a soft label. Class priors and the probability of a labeler assigning an instance from a
particular class to some other class is used to calculate the soft labels.

ELICE has the ability to handle adversarial and below average labelers, in an inte-
grated way. Instead of identifying them separately, we propose to acquire few expert
labels for instances that are representative of the data, and judge the labelers and in-
stance difficulty after the labeling task is achieved. Since our judgment is based only
on a subset of instances and involves uncertainty about the estimates, we use entropy
which allows to incorporate the uncertainty in the estimation of expertise of the labeler
and difficulty of the dataset. We use these measures to calculate the trust we have in a
label provided by a labeler for a particular instance. Based on this trust, we combine
the crowd labels into one final label. This method helps in getting good approximation
even when good labels are not available either because of the difficulty of the task or
because of inexperienced labelers. Moreover, ELICE is computationally less expensive
and is simple to implement.

This paper is organized as follows: in Section 3, we present our general framework.
We derive in Section 4 a lower bound on the number of expert-labeled instances needed
for ELICE. Section 5 is devoted to a variant of multi-class ELICE. Experiments demon-
strating the efficiency and accuracy of our methodology on benchmarks and real-life
datasets are provided in Section 6. We conclude with a summary and future work.

3 ELICE Framework

In this section ELICE and its cluster-based variant are described.

3.1 ELICE

Let D be a dataset of N unlabeled instances. We assign M crowd labelers to label the
whole dataset; each instance i will receive a label Lij ∈ {±1} from labeler j, where
i ∈ {1, 2, . . . , N} and j ∈ {1, 2, . . . ,M}. To analyze the performance of the labelers,
we get “ground truth” labels for a random sample D′(⊂ D) of cardinality n << N .
Instances of D′ are labeled by one or more experts, which are assumed to be very
knowledgeable and do not make mistakes. Therefore, only one expert label is acquired
for each instance in D′.

a) Expertise of the labeler
We use expert-labeled instances to evaluate the labelers by finding the probability
of getting correct labels. This estimation of labeler’s performance has a factor of
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uncertainty since it is based on a sample. Therefore, entropy can be a natural way to
measure this uncertainty. Entropy is high when the probability is around 0.5 as we
are least certain about such a labeler and it is low when the probability is close to 0
or 1. The formula for the entropy for a worker j is given by:

Ej = −pjlog(pj)− qj log(qj)

such that , pj =
n+
j

n
qj = 1− pj

n+
j = |correctly labeled instances from D′ by labeler j|

Since we are more interested in the reliability of the assessment, we take (1 − Ej).
In order to differentiate between good and bad labelers, we multiply by (pj − qj).
This assigns a negative value to the bad labeler and positive value to the good one.
We define the expertise of the labeler as

αj = (pj − qj)(1− Ej) (1)

where αj ∈ (−1, 1)
Multiplication by (pj − qj) also allows for less variability in αj when the number

of correct and incorrect labels is close, assuming that it can be due to the choice of
the instances in D′. We can use α to categorize the labelers as follows:

– Random guesser is the labeler with α close to zero. This labeler is either a
lazy labeler who randomly assigns the labels without paying any attention to
the instances or an inexperienced labeler.

– Good labeler is the labeler with α close to 1. He does a good job of labeling.
– Adversarial labeler is the labeler with α close to -1. He guesses the correct

label and then flips it.

b) Difficulty of the instance
Similarly, the difficulty of an instance is defined as:

βi = (p′i − q′i)(1− E′
i) + 1 (2)

where p′i =
M+

i

M q′i = 1− p′i
p′i is the probability of getting a correct label for instance i, from the crowd la-

beler, M+
i is the number of correct labels given to the instance i. Also,

E′
i = −p′ilog(p

′
i)− q′ilog(q

′
i)

represents the entropy for the instance i which measures the uncertainty in our as-
sessment of the difficulty of the instance. All these values are calculated using the
expert labeled instances.

We have added 1 to the formula in (2) because we find it more convenient math-
ematically to make the value of β positive. Another reason for adding 1 is that we
cannot assume the difficulty level to be negative, just because the labelers did a bad
job of labeling. We have βi ∈ (0, 2) which is used to categorize the instances as
follows:
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– Easy instance is the one with β close to 2.
– Average difficulty instance is the instance with β around 1.
– Difficult instance is the instance with β close to 0.

To judge the difficulty level of the remaining (N−n) instances, we define temporary
labels Wi as:

Wi = sign(

M∑
j=1

αjLij)

The rest of β’s are estimated by:

βi = (p′′i − q′′i )(1− E′′
i ) + 1 (3)

where p′′i , q
′′
i , E

′′
i are calculated using the temporary labels.

c) Aggregation of labels
The parameters α, β are used to aggregate the labels. As a first step for this aggre-
gation, we calculate the probability of getting a correct label for instance i from the
labeler j defined as

P (Ti = Lij |αj , βi) =
1

(1 + exp(−3αjβi))
,

where Ti is the true but unknown label for the instance i. In this function, 3 is mul-
tiplied to span the values to the range (0,1), otherwise the values only map to a
subinterval of (0,1).

The final approximation of the label is:

Ai = sign(

M∑
j=1

1

(1 + exp(−3αjβi))
Lij)

3.2 ELICE with Clustering

We propose a variation of ELICE called ELICE with clustering. Instead of picking the
instances randomly from the whole dataset D for which we acquire expert labels, clus-
ters of instances in D are first formed by applying k-means clustering using the features
(if available), then equal number of instances are chosen from each cluster and given to
the expert to label. This allows us to have expert labeled instances from different groups
in the data, particularly when the dataset is highly skewed. Another possibility is to use
any other method of clustering for instance K-means++ [2].

4 Bound on the Number of Expert Labels
Expert-labeled instances are used to learn labeler expertise α and difficulty of the in-
stance β. Given that acquiring expert labels can be expensive and scarce, it is desirable
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Table 1. Error distribution of the conjecture about the crowd and dataset. Crowd is categorized as
good, average, and bad. Dataset is categorized as easy, mediocre, and difficult. Error can be high,
medium, and low.

Dataset
Very Difficult Moderate Very Easy

C
ro

w
d

Very Bad
Conjecture about Crowd Bad Bad–Avg. Avg.–Good
Conjecture about Dataset Diff. Diff.–Mod. Diff.– Mod.– Easy

Error Low Medium High

Average
Conjecture about Crowd Bad–Avg. Bad–Avg.–Good Good– Avg.
Conjecture about Dataset Diff.–Mod. Diff.–Mod.–Easy Mod.–Easy

Error Medium Medium Medium

Very Good
Conjecture about Crowd Bad– Avg. Good–Avg. Good
Conjecture about Dataset Diff.–Mod Diff.–Mod. Easy–Mod.

Error High Medium Low

to find the lower bound of the expert labeled instances needed, which can also provide
a good estimate of α and β. This scenario is similar to Probably Approximately Correct
(PAC) learning where the learner has to learn the concept with a minimum number of
examples with a given accuracy and confidence. Therefore, our approach to derive the
bound is inspired by the PAC learning framework. As a prerequisite to this we estimate
the distribution of error in our judgement about the crowd and instances.

The error distribution depends on the overall quality of the crowd and overall diffi-
culty of the dataset, defined as follows:

– Quality of the Crowd (c) : Let pj be the probability of getting a correct label from
labeler j and f be the probability distribution of pj . Then we define the quality of
the crowd c as c = E(P ) =

∑M
j=1 pj f(pj)

Large values of c represent better crowd.

– Difficulty of the Dataset (1 − d) : We define, d = E(Q) =
∑N

i=1 qi h(qi)
where qi is the probability of getting the correct label for instance i and h is the
probability distribution for qi. Higher d represents easier dataset.

In general, c and d are unknown, we make a conjecture about the crowd quality and
dataset difficulty based on the performance of crowd on a given dataset. So the error
depends on how much the conjecture deviates from the true values of c and d. Error is
categorized as follows.

1. High: When the crowd is good and we conjecture it as a bad crowd (or vice versa)
the error is high. This is also true when a dataset is easy and the conjecture is
difficult (or vice versa).

2. Medium: When crowd is mediocre and we conjecture it as bad or good (or vice
versa) then error is considered to be medium. Same is true about the dataset.

3. Low: Error is low when our judgment about the crowd and/or dataset is close to the
true quality.
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Fig. 2. Graph of the normalized error distribution. Quality of the crowd and difficulty of the
dataset versus error.

The intuitive explanation of the error is summarized in Table 1 and described as
follows:

a) Good crowd & difficult instances: When crowd is good and instances are difficult
the performance of the crowd may be average. The conjecture made is that the crowd
is bad to average and/or the dataset is of medium to high difficulty. So the error is
high in this case.

b) Bad crowd & difficult instances: If crowd is very bad and instances are very dif-
ficult, then the performance of the crowd will be poor. Hence the conjecture will be
bad crowd and/or difficult dataset. Therefore, the error is low.

c) Good crowd & easy instances: When crowd is very good and the instances are very
easy our conjecture is good crowd and/or easy instances. Therefore, the error is low.

d) Bad crowd & easy instances: When crowd is bad and dataset is vey easy then the
judgement can be biased and the error can be high.

e) Average crowd OR Moderate instances: When the crowd is of average capability
then for any kind of the instances the judgment may not be very far from the true
value hence the error is medium. This also holds for average difficulty dataset and
any kind of crowd.

We formalize the relationship between the crowd, the dataset quality, and the error
by the function:

e =
1

1 + (c− 1/2)(d− 1/2)

When the crowd is below average i.e. c is less than 1/2, we have (c − 1/2) < 0.
When crowd is above average, we have (c − 1/2) > 0. This is also true for d. When
the values of c and d are close to 1/2, (c − 1/2)(d − 1/2) becomes small and hence e
becomes high. When the values of c and d are close to 0 or 1 (c − 1/2)(d − 1/2) is
relatively larger so e is small. When one of the c or d is less than 1/2 and the other is
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greater than 1/2 then the value of e is average. The graph of the function is shown in
Figure 2.

Theorem: For a given confidence (1− δ) and given values of c and d, the lower bound

on the number of expert labels is given by

n ≥ (b− a)(1 + (c− 1/2)(d− 1/2))

[1− a(1 + (c− 1/2)(d− 1/2))]
log

1

δ

where a and b are the minimum and maximum of the values of the error e respectively.

Proof: The proof of this theorem is straight forward. We know that the number of ex-

amples required by a PAC learning model are given by

n ≥ 1

ε
log

1

δ

where ε is the error and δ is the level of confidence. In our case the error is depending
on c and d hence the error e is here

e =
1

1 + (c− 1/2)(d− 1/2)

We normalize this error as follows

ε =
(e− a)

(b− a)

where a = min(e) & b = max(e) for 0 < c < 1 and 0 < d < 1.
Therefore, we get

ε =
1

(b− a)
[

1

1 + (c− 1/2)(d− 1/2)
− a]

Plugging the values in the PAC learning model we obtain the expression for the bound

n ≥ (b− a)(1 + (c− 1/2)(d− 1/2))

[1− a(1 + (c− 1/2)(d− 1/2))]
log

1

δ

5 ELICE Multi-class

ELICE can be easily extended to a generalized framework to handle multi-class clas-
sification, where we have l > 2 possible classes. Let Lij be the label given to the ith
instance by the jth labeler such that Lij ∈ {1, 2, 3 . . . l}. As described in the previous
section, we assume to have a dataset of N instances labeled by M crowd labelers. We
have n << N expert labeled instances. We proceed by finding αj’s and βi’s using the
formulas in equations (1) and (2). After finding αj’s for all the M crowd labelers and
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βi for n expert-labeled instances, we use these to infer temporary labels Wi for the rest
of (N − n) instances which are not labeled by the expert.

Wi = index of max{S1, S2, . . . , Sl}

where Sk =

{
Sk + αj if Lij = k
Sk if Lij �= k

where j = 1, . . . ,M, k = 1, . . . , l

and Sk’s are initialized with zero.
Temporary labels Wi are used to find βi for the rest of the (N − n) instances using
equation (3). Final labels Ai are inferred using the following formulas.

Ai = index of max{σ1, σ2, . . . , σl}

such that,

σk =

{
σk +

1
(1+exp(−3αjβi))

if Lij = k

σk if Lij �= k
where j = 1, . . . ,M k = 1, . . . , l

Also, σk’s are initialized with zero.

6 Experiments

We have implemented ELICE with its variants along with Majority Voting and the iter-
ative method [9] in Matlab. We acquired the code for GLAD and GLAD with clamping
released by Whitehill et al. [24]. In Section 6.1, we present results of our experiments
on five datasets from the UCI repository [1]. We compare the accuracy and efficiency
of ELICE to GLAD, GLAD with clamping, iterative approach, and majority voting. We
also provide results for ELICE with clustering for the UCI datasets as they have features
available, which are used for clustering. Crowd labels were simulated for different rates
of bad crowd labelers. In Section 6.2 and Section 6.3, we compare the accuracy of our
method to the other state-of-the-art approaches on two real applications for which we
used MTurk to acquire labels from the crowd.

6.1 UCI Datasets

In this experiment, we selected five datasets from the UCI repository: Mushroom,
Chess, Tic-Tac-toe, Breast cancer and IRIS (with this latter restricted to 2 classes).
We simulated 20 crowd labels for each instance in these experiments. The labels were
generated so that a good crowd labeler makes less than 20% mistakes. These were cre-
ated by inverting x% of the original labels in the dataset, where x is a random number
between 0 and 20. Bad crowd labelers were assumed to make more than 80% mistakes
and their labels were generated in a similar way. We randomly selected n number of
instances to play the role of the expert-labeled instances.

We ran ELICE and its variant with clustering, along with the other methods. Table
1 shows a comparison of accuracy of different methods as compared to ELICE across
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Table 2. Accuracy of Majority voting, GLAD (with and without clamping) and ELICE (with and
without clustering) for different datasets and different rates of bad labelers. Given results are the
average of 100 runs.

Bad Labelers
Dataset(D) Mushroom Chess Tic-Tac-Toe Breast Cancer IRIS
Total instances (N ) 8124 3196 958 569 100
+ve/-ve instances 3916/ 4208 1669/1527 626/332 357/212 50/50
Expert labels(n) 20 8 8 8 4

Less than 30%

Majority Voting 0.9963 0.9877 0.994 0.9969 0.9925
GLAD 1.0000 1.0000 1.0000 1.0000 1.0000
GLAD with clamping 1.0000 1.0000 1.0000 1.0000 1.0000
Iterative algorithm 0.9118 0.9300 0.9619 0.9073 0.9300
ELICE 1.0000 0.9996 0.9999 1.0000 1.0000
ELICE with clustering 0.9999 0.9995 0.9999 1.0000 1.0000

30 to 70%

Majority Voting 0.4121 0.3166 0.3907 0.402 0.36
GLAD 0.5001 0.2502 0.5003 0.5004 0.2552
GLAD with clamping 0.5002 0.2502 0.2508 0.5004 0.2552
Iterative algorithm 0.5473 0.2596 0.2873 0.4982 0.2925
ELICE 0.9751 00.9727 0.9574 0.9372 0.986
ELICE with clustering 0.9656 0.9704 0.9526 0.9356 0.9852

More than 70%

Majority Voting 2.46E-04 0.00041 0.001 0.0029 0.01
GLAD 1.23E-04 3.14E-04 0.001 0.0018 0.0104
GLAD with clamping 1.23E-04 3.14E-04 0.001 0.0018 0.0104
Iterative algorithm 0.0681 0.0835 0.1089 0.0463 0.0567
ELICE 0.236 0.1957 0.1952 0.1939 0.2506
ELICE with clustering 0.2005 0.1508 0.1731 0.1699 0.2577

the five datasets for different rates of bad labelers. Note that our methods outperform
majority voting, GLAD, GLAD with clamping [24] and Iterative method [9] even when
the percentage of bad labelers is increased to more than 70%. The graph showing the
accuracy for the Mushroom dataset is presented in Figure 3. The experiments also re-
vealed that ELICE is efficient as compared to the other methods. Figure 4 shows the
runtime for Mushroom for all the methods as we increase the number of instances.

6.2 Race Dataset

To test our approach on a real-life dataset, we considered a race recognition dataset1.
We took three samples of 100 instances each and posted them as race recognition tasks
on Amazon Mechanical Turk. The samples were chosen to guarantee different levels of
difficulty. The tasks were to identify: (1) Black versus Caucasian (50 instances of each
class), (2) Hispanic versus Asian (50 instances of each class), (3) Multiracial versus
other races (40 instances of Multiracial and 60 instances of the other races i.e. Asian,
Black, Caucasian and Hispanic.) Snapshots of the experiment as posted on MTurk are
shown in Figure 5.

1 Available on Stimulus Images; Courtesy of Michael J. Tarr, Center for the Neural Basis of Cog-
nition, Carnegie Mellon University http://tarrlab.cnbc.cmu.edu/face-place.

http://tarrlab.cnbc.cmu.edu/face-place
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Fig. 3. Accuracy vs. percentage of bad labelers. Number of expert labels used for ELICE and
ELICE is 20.

Fig. 4. Time vs. Number of instances. Number of expert labels used for ELICE and ELICE is 20.

For each task, we acquired six crowd labels for all 100 instances. The three tasks
were chosen to guarantee easy to moderate difficulty level. Black versus Caucasian
was the easiest of the tasks. Therefore, most of the labelers performed really well with
only 0% to 25% of mistakes. Identifying Hispanic versus Asian was relatively more
difficult. In this case, good labelers made less than 15% mistakes and bad labelers made
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Fig. 5. Example images from the Race recognition task posted on Amazon Mechanical Turk
(Left to right): (Top) Black, Caucasian, Asian, Hispanic. (Bottom) Multiracial, Hispanic, Asian,
Multiracial.

Table 3. Accuracy of different methods on Amazon Mechanical Turk datasets. Given results are
the average of 10 runs on 100 instances with 6 labels per instance. Randomly chosen 8 instances
are used as expert labeled instances (the instances with ground truth.)

Race Breast Cancer
Black/Caucasian Hispanic/Asian Multiracial/other Malignant/Non-malignant

MajorityVoting 0.95 0.52 0.650 0.62
GLAD 0.8587 0.5 0.663 0.3152
GLAD with Clamping 0.8587 0.5 0.663 0.3043
Iterative 0.5 0.47 0.5573 0.3982
ELICE 0.9562 0.6225 0.667 0.6858

over 48% mistakes. But the most challenging of all was identifying multiracial from
the other races. While most of the labelers did equally bad, surprisingly it was not as
bad as we had expected: the percentage of mistakes ranged between 30% and 50%.
Here also, we ran experiments using the state-of-the-art methodologies along with our
methods. For all variants of ELICE, we used 8 random instances for which we had
ground truth. The results are shown in Table 3. Here again, the experiment revealed that
ELICE outperforms the rest of the methodologies in estimating the right labels.

6.3 Breast Cancer Dataset

Early identification of breast cancer can help in preventing thousands of deaths but iden-
tifying cancer is not an easy task for untrained eyes. We posted 100 mammograms 2 on
Amazon Mechanical Turk. The task was to identify Malignant versus others (Normal,
Benign, Benign without call back.). The following instruction for appropriate identifi-
cation was provided to the labelers: “A breast tumor is a dense mass and will appear
whiter than any tissue around it. Benign masses usually are round or oval in shape,
but a tumor may be partially round, with a spiked or irregular outline as part of its
circumference.”

2 http://marathon.csee.usf.edu/Mammography/Database.html.

http://marathon.csee.usf.edu/Mammography/Database.html
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Fig. 6. Example images of the breast cancer dataset. From left to right: First three are Malignant
and fourth is benign.

This task clearly requires expertise and is very difficult for an untrained person. On
the other hand, an expert person can do really well but is very expensive. In this case,
we had two labelers with less than 33% mistakes and four labelers with more than 55%
mistakes. Results are shown in Table 3 and demonstrate once again the superiority of
ELICE as compared to the other methods when injecting only 8 expert labels in the
labeling process.

7 Conclusion and Future Work

We present a new method, named ELICE, demonstrating the benefit of using “few”
expert labels in a multiple crowd labeling setting, which improves the estimation of
the ground truth. ELICE is efficient and effective in achieving accuracy for any setting
including when crowd quality is heterogeneous. We show through several experiments
on real and synthetic datasets that unlike other state-of-the-art methods, our method is
robust even in the presence of large number of bad labelers. One of the most important
aspect of our method is overcoming the phase transition inherent in other approaches.
We also derive a lower bound on the number of expert labels needed.

So far, we have been dividing the instances into equal-sized subsets and assign a
fixed number of crowd labelers to label these subsets. An equal number of instances is
then drawn from each subset to be labeled by the expert. One can use a more elaborated
approach of instance assignment as done in [9,10]. A bipartite graph is used to model
the instances and labelers. The graph is assumed to be regular but not complete so as
not every instance gets labeled by every labeler. Then a subset can be chosen to get
expert labels such that every crowd labeler is evaluated on equal number of instances.
We propose a variant of ELICE using clustering as one way to achieve this. Another
possibility is to ask the expert to identify and label difficult instances. Also, crowd can
be used to point out the difficult instances to get expert labels [23]. Recently, Ho et al.
[8] used primal dual method for task assignment and label inference. Future work will
apply ELICE to highly imbalanced datasets and to a word-sense annotation task using
multiple annotators [16].
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Abstract. Frequent string mining is the problem of finding frequently
appearing strings in a given string database or large text. It has many
applications to string data analysis on strings such as texts, word se-
quences, and genome sequences. The problem becomes difficult if the
string patterns are allowed to match approximately, i.e., a fixed number
of errors leads to an explosion in the number of small solutions, and a
fixed ratio of errors violates the monotonicity that disables hill climbing
algorithms, and thus makes searching difficult. There would be also a
difficulty on the modeling of the problem; simple mathematical defini-
tions would result explosion of the solutions. To solve this difficulty, we
go back to the motivations to find frequent strings, and propose a new
method for generating string patterns that appear in the input string
many times. In the method, we first compute the similarity between the
strings in the database, and enumerate clusters generated by similarity.
We then compute representative strings for each cluster, and the rep-
resentatives are our frequent strings. Further, by taking majority votes,
we extend the obtained representatives to obtain long frequent strings.
The computational experiments we performed show the efficiency of both
our model and algorithm; we were able to find many string patterns ap-
pearing many times in the data, and that were long but not particularly
numerous. The computation time of our method is practically short, such
as 20 minutes even for a genomic sequence of 100 millions of letters.

1 Introduction

String data is one of the most popular data types, including texts, word se-
quences, genome sequences, and so on. When we analyze string data, we some-
times want to find frequently appearing string patterns, called frequent strings,
in the data. In the bioinformatics field, such frequent strings are called “mo-
tifs”, and many studies have been done on the algorithms for finding motifs.
Frequent string mining is the task to find frequent strings. The problem of find-
ing patterns frequently appearing in a given database is called frequent pattern
mining, and widely studied. The recent development of algorithms enables us to
handle large scale databases, as shown in the implementation competitions[4].

J. Fürnkranz, E. Hüllermeier, and T. Higuchi (Eds.): DS 2013, LNAI 8140, pp. 110–125, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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More structured patterns such as sequences and graphs are also considered, and
many algorithms are proposed [6,10,15].

Actually, there are at most n(n+1)/2 substrings for a string of n letters, thus
frequent strings can be enumerated in polynomial time. Moreover, constructing
a suffix array[7] makes it possible to obtain all the frequent strings in a compact
form in O(n) time. This computational efficiency has enhanced development in
many areas in this field, such as natural language processing.

On the other hand, for application to real-world data, we have to allow ap-
proximate matches, i.e., matches that include errors. In natural languages, many
ambiguities occur in writing, and numerous human errors such as typos also oc-
cur. As a basic principle, genome sequences include errors. Consequently, it is
exceedingly unlikely that long subsequences coming from the same origin will
be exactly identical. In such cases, exact matches can give only short and trivial
patterns. Unfortunately, frequent pattern mining cannot well deal with approx-
imate matching for finding large patterns. For example, if we allow patterns to
have at most θ errors in matching, huge number of short strings become fre-
quent, since any string of θ letters can match anything in the string data. This
disturbs the usual hill climbing algorithms, since they in principle have to explore
all small patterns.For example, the algorithm of Mitasiunaite and Boulicaut[8]
took one hour to one day, to extract frequent strings of length 5 to 10 with 2
or 3 errors, from string data of millions of letters. It would be very hard to find
string patterns of length more than 100 with up to 10 errors by this approach.

On the other hand, if we allow errors according to the pattern length, such
as ρl mismatches for strings of length l with a ratio ρ, hill climbing algorithms
do not work since patterns do not satisfy the anti-monotone property. Funda-
mentally, frequent pattern mining with approximate match (soft occurrence) has
a difficulty on the definition of the problem, since even if we ignore small pat-
terns, there might be huge number of large frequent patterns. For example, when
string “AAAA...AAA” is included in many times in the data, any string with
short distance from it, such as “BBA...AAA” and “BAZ...AA”, can be a frequent
string. We should formulate the problem so that only some representatives of
such strings will be output, however, defining representatives is difficult. Pattern
mining aims to enumerate patterns interesting/valuable to human being, and its
good mathematical definition is hard.

In this paper, we propose a new “method” for generating string patterns that
may appear in the given string data many times. That is, we define our task, but
do not formulate the problem precisely. Instead of that, we propose a process to
generate string patterns from the input string data. Actually, many algorithms in
bioinformatics take this approach (see a survey[13]). This approach is often taken
in areas with mathematically undefined objectives, such as information retrieval,
and web science. In algorithmic area, heuristic algorithms can be considered
as this approach. For example, greedy algorithms have well-defined objectives,
but their output can not be formulated as a simple mathematical terms. The
algorithms are description of the output.
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To design our algorithm, we observe that if a string approximately matches
some substrings in the string data, the substrings are relatively similar to each
other. This observation leads us that clusters of substrings generated by similar-
ity can be regarded as the set of substrings that some frequent patterns match.
On this basis, we enumerate the clusters first and then compute their represen-
tatives. The representatives are our model of frequent strings, and we show its
completeness. We can prove that for any frequent string defined in a usual way,
there is a representative not so different from the pattern. Furthermore, by tak-
ing majority votes, we extend the frequent strings in both directions to obtain
longer frequent strings.

There are actually similar approaches in bioinformatics[5,12,13] However, be-
cause of the computational difficulty, they can deal only with small data, can
find few patterns, or have some heuristics such as removing very frequent small
strings from the data, that loses completeness and disables to deal with other
string data. Moreover, they do not use enumerational approaches, thus the ob-
tained patterns usually do not have the completeness. For example, let us see
HomologMiner[5] that is designed to find clusters of similar substrings. It first
removes all frequently appearing short strings called repeat sequences from the
input genome sequences, by looking at the library of repeat sequences. It then
computes the similarity between all substrings, and cluster the substrings. Be-
cause of the heavy pairwise comparison (even though they avoid heavy DP),
they needed up to ten hours. δ-free pattern mining aims to reduce the number
of patterns by pruning patterns including patterns with similar occurrences[3],
but the reduction ratio is limited, say at most 1/10 in noisy data.

To achieve a high computational performance, we keep our task to be simple.
We address two tasks in this paper; find short string patterns that have Hamming
distances of at most the given threshold d to many substrings of the input string
data, and to find many string patterns that have short edit distances to many
substrings of the input string data. The former can be seen as motifs, and the
latter can be seen as consensus sequences, that have been extensively studied
in bioinformatics. By using Hamming distance as error criterion, we can find
similar substring pairs in a very short time. There are several algorithms for this
task, especially in bioinformatics such as BLAST[1,2] and FASTA[9]. Among
these, we chose the algorithm of [14] because of its high performance. Actually,
the other algorithms basically use exact matches to find approximate matches,
thus they do not fit our purpose; if we use these algorithms, we should use exact
match directly, to make everything clear and simple. The algorithm we chose
can terminate in a few minutes even for 10 million of genome sequences of 30
letters with Hamming distance threshold 2.

Our computational experiments show that our algorithm runs in a practically
short time, say 10 minutes, even for large scale data of up to one million letters,
for many kinds of real world data such as genome sequences, natural language
texts, and word sequences. The patterns found by our method are long, and
their number is quite small compared to those found by usual frequent pattern
mining. The number of patterns found is usually in the order of 100 or 1,000.
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This range is suitable for the practical use of pattern mining, i.e., ten is too small
(it should be solved by optimization approaches), and one million is too much.

2 Preliminaries

LetΣ be an alphabet of letters, and a string be a sequence of letters. The length of
a string S is the number of letters in S and is denoted by |S|. The string of length
zero is also a valid string and is called the empty string. The ith letter of a string
S is written S[i], and i is called the position of S[i]. The substring of S starting
from the ith letter and ending at the jth letter is a string S[i]S[i+1] . . . S[j], and
is denoted by S[i, j]. When i < 1 or i > |S|, S[i] is a special letter ‘$’ that is not
in Σ. For example, when string S is ABCDEFG, S[3] = C, and S[4, 6] = DEF .
When j < i, we define S[i, j] to be the empty string, and when i < 1, the S[i, j]
starts with ‘$’. For two strings S1 and S2, the concatenation of S2 to S1 is a string
S given by appending S2 to the tail of S1, i.e., |S| = |S1| + |S2|, S[i] = S1[i] if
i ≤ |S1|, and S2[i− |S1|] otherwise.

For two strings S1 and S2 of the same length, the Hamming distance of S1

and S2 is defined by the number of positions i satisfying S1[i] �= S2[i]. Such
letters are called the mismatches of S1 and S2, and the positions of mismatches
are called the mismatch positions of S1 and S2. The edit distance (Levenshtein
distance) between S1 and S2 is defined by the minimum number of operations to
transform S1 to S2, where the operations are to change/insert/delete one letter.
Suppose that we are given a distance measure. For a string S, the substrings in
the string data that have a short distance to S are called the occurrences of S.
A set of occurrences of S is called an occurrence set of S.

3 Model and Method

As we discussed in the introduction section, the formulation itself is a difficult
problem. There may be a need for a paradigm shift in the problem formulation,
one that would be mining process based. Since such a new paradigm should come
from observing the real-world applications and the structures of frequent pat-
terns, we begin with discussing the requirements for models of frequent strings.

(1: simplicity) Distance for evaluating the similarity has to be simple.
The definition of “distance” affects the performance of both models and algo-
rithms. Here we suppose to keep it simple, for the computational efficiency and
easy understanding of the models and results. For the use of more sophisticated
distances, we can use the solutions obtained with a simple distance as candi-
dates for the frequent strings, since we can expect if two strings are similar in a
sophisticated distance, they are also similar in a simpler distance.

(2: independence) The output solutions do not have huge patterns similar
to each other.

Pattern mining often outputs many similar solutions. This usually disturbs
the analysis, i.e., it makes the output difficult to understand, and disables fast
post processes.
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(3: completeness) The set of patterns should be complete.
One motivation in carrying out pattern mining is the possibility to find pre-
viously undiscovered knowledge. In such cases, we do not want to miss any
important pattern, but on the other hand we will be satisfied if any important
pattern has some similar patterns in the output. Hence, some completeness of
output solutions is needed, i.e., algorithms should not miss patterns similar to
no output pattern.

(4: representativeness) Patterns have to represent some aspects of data.
Even if a string pattern is frequent, it sometimes is not valuable. For example, if
we allow Hamming distance of two, string AA matches everywhere in the data,
but it makes no sense. Particularly, we usually want to obtain rare patterns that
are hidden in the usual mean-variance analysis, thus patterns have to match not
so many substrings, that compose a local structure.

3Considering condition (1), we presume to use either the edit distance or the
Hamming distance. Since this paper addresses large scale problems, we use the
Hamming distance for purpose of the computational efficiency. Our computa-
tional experiments show that long string patterns can be obtained from short
string patterns found with Hamming distance, and they approximately match
many substrings in the sense of edit distance. HomologMiner also uses Hamming
distance[5], and could find similar genome sequences efficiently.

As mentioned above, it frequently happens that simple mathematical formu-
lations of frequent pattern mining either do not satisfy certain conditions, or
are computationally inefficient. In particular, condition (2) is often violated[4].
When many exactly identical substrings exist in the data, all the strings that are
only a short distance from the substring become frequent strings. This allows
a small number of similar substrings groups can generate numerous patterns,
thus invalidating the “finding all frequent patterns” approach. It is observed
from that the number of frequent patterns drastically increases if approximate
matches are allowed[8]. Heuristic search methods often violate condition (3) (for
example [5]), since it takes much time to obtain one solution, and it is difficult
not to miss any significant solution, by ad hoc repetitions of the search.

These conditions provide certain principles to which frequent strings should
adhere. The first principle comes from the definition of “occurrence”, and the
condition (1).

(α) The occurrences of string S that matches many substrings are relatively
similar to each other, since they all have short distances to S.
(β) Two different frequent substrings should not have the same, or quite similar,
occurrence sets. Rather, an occurrence set should be induced by one pattern.

When the distance measure satisfies the triangle inequality, any two strings
with distances at most d from S satisfy that the distance between them is at
most 2d. Principle (β) comes from conditions (2) and (4); many frequent strings
should not be induced by the same set of occurrences, and existence of similar
occurrence sets would induce unnecessarily many similar frequent strings.
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These principles motivate us to approach the problem from the occurrence
sets; the number of patterns is quite huge, but the possible combinations of oc-
currences are limited and thereby tractable. The principle (α) implies that a set
of substrings similar to each other, which we call a cluster, can be a candidate of
an occurrence set, and (β) implies that a string similar to every substring in the
cluster would be a frequent string. This is a reverse course from the usual mining
process, which first generates patterns and then computes their occurrences. In
our approach the occurrence sets are computed first, and then patterns are in-
duced from the occurrence sets. By enumerating clusters, we can obtain in some
sense completeness of the frequent strings. This enables mining problems to be
formulated as process-based problems.

Problem: Cluster-based Frequent String Mining
input string set D = {S1, . . . , Sm}
1. (Cluster enumeration) Find groups (clusters) of substrings of strings in D such
that the substrings in the group are similar to each other.
2. (Centroid computation) Compute a string similar to all the substrings in a
cluster, for each cluster.

This would involve a computational difficulty on the cluster enumeration step
if the length of strings to be found was long. To cope with this difficulty, we
observe the following principle.

(γ) Long similar strings have a common short string that is similar to substrings
of each long string. In particular, if the long strings are similar in terms of a dis-
tance that allows more general errors, the short string might be similar in terms
of a distance that allows more specific errors.

Here “errors” includes mismatches, insertions, deletions, copies, duplications,
moves, etc. “Specific errors” means a class composed of few of these, and “gen-
eral errors” a class comprising many of these. The latter is observed frequently in
genome sequences; two long genome sequences similar in the edit distance usu-
ally have substrings similar in the Hamming distance. For example, BLAST[1,2]
and FASTA[9] that are de facto standard similarity search tools in bioinformat-
ics, use this principle to find long similar strings; they find a pair of substring
that are exactly the same, and check whether they are a part of similar long
substrings. This principle motivates us to use short frequent substrings as seeds
of long frequent substrings. That is, we first find short frequent substrings and
then extend each short string in both directions until it becomes not similar to
its occurrences. Accordingly, the problem for long strings is formulated as follows.

Problem: Cluster-based Long Frequent String Mining
input string set D = {S1, . . . , Sm}
1. (Seed enumeration) Find groups (clusters) of substrings of short length in the
set of strings such that the substrings in the group are similar to each other.
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2. (Centroid computation) For each cluster, compute a string similar to all the
substrings in a cluster, and extend the string in both directions until it is not
similar to many substrings in the cluster.

If a seed is too short in length, it may be included in many different frequent
string patterns. On the other hand, the seeds have to be shortened as much
as possible to achieve the computational efficiency. This trade-off is a key to
achieving practical efficiency with this model.

4 Algorithm

In this paper, we propose an efficient algorithm for solving these problems. The
key idea is using a multi-sorting algorithm[14] for finding similar short substrings.
This algorithm inputs a set of strings of the same length l, and finds all the string
pairs having a Hamming distance of at most d. Applying this algorithm to all
substrings in the string data gives a graph representation of similarity among all
substrings. A number of clustering algorithms can be used to find clusters, but
here we use a simple method for adapting large-scale data.

Hereafter, we assume that a substring has length l. For a substring of length
l, let N(S) be the set of substrings of length l of a string in the string data
such that the Hamming distances to S is at most d. Note that S is included
in N(S). To make a cluster, we choose a substring S maximizing |N(S)| which
corresponds to a maximum degree vertex in the graph representing the similarity
relation among the substrings. We then make a cluster by N(S). We repeat this
process to find more clusters, after removing the substrings in the cluster from
the candidates of S. The process ends when |N(S)| achieved a value of less than
σ, that is a given threshold value.

For each cluster, we compute its representative string C(N(S)), which we
call centroid, by using a majority voting algorithm described as follows. Here,
v({s1, . . . , sk}, ρ) = c if kρ letters sj in {s1, . . . , sk} are c, and is the wildcard
otherwise.

Algorithm. StringVote ({S1, . . . , Sk}, ρ(> 0.5))
1. for i := 1 to l, set S∗[i] to v({S1[i], . . . , Sk[i]}, ρ)
2. return S∗

The length of C(N(S)) is l, and its ith letter is determined by the voting,
i.e., the letter appearing most often in all the ith letters of strings in N(S). For
example, if the first letters of three strings in a cluster are all A, B, and A, the
majority is A, and the first letter of the centroid C(N(S)) becomes A. For the
case in which the majority letter is not especially significant, we use a threshold
value ρ so that if the majority letter appears less than ρ|N(S)| in the substrings
in N(S), we set the letter to the “wildcard”, instead of the majority letter.

Instead of the voting, we can simply use S itself as the centroid. However,
in some case, S can be different from the common string. For example, S =
BBAAAAAA, and all strings in N(S) are AAAAAAAA except for one,
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BBBBAAAA. The representative of this cluster should be AAAAAAAA, but
S is different from it. However, in the analysis explained in the next section,
choosing S has an advantage. Using the voting algorithm, our algorithm for
Cluster-based Frequent String Mining problem is described as follows.

Algorithm. FreqString (D, l, d, σ, ρ)
D: string set, l: substring length, d: Hamming distance threshold, σ: degree
threshold, ρ: voting threshold

1. S := all substrings of length l in a string in D
2. call multi-sorting algorithm to compute N(S) for all substrings in S
3. choose a substring S in S maximizing |N(S)|
4. if |N(S)| < σ stop
5. compute C(N(S)) by StringVote (N(S), ρ)
6. S := S \N(S)
7. if S �= ∅ go to 3

Let N denote the number of output pairs by the multi-sorting algorithm, i.e.,
N = (

∑
S∈S |N(S)|)/2. In practical terms, the multi-sorting algorithm termi-

nates in O(l(|S| + N)) time if l is sufficiently large and d is sufficiently small,
e.g., in the case where l = 30 and d = 3 for genome sequences[14]. Steps 1,
3, 4 and 7 can be done in O(|S|) time in total. Since step 6 can be done by
removing all pairs including a substring in N(S), and no pair is removed twice,
thus accounting computation time for step 6 results O(N). Step 5 can be done in
O(l |N(S)|) time, thus needs O(lN) time in total. In summary, the computation
time depends on the time for multi-sorting algorithm, and can be expected to
be O(l(|S| + N)) in practice. We can see this by looking at the result of our
experiments; the memory usage that is linear to N and the computation time.

For finding longer frequent substrings, we extend the seeds as follows. Suppose
that we obtain centroid S∗ from a cluster N(S). Then, for all substrings in the
cluster, we compute the majority letter in the same way as given above, among
all letters following the substrings in strings in D. Note that if some substrings
are located at the end of some texts, we consider that any following letter is
a special letter ‘$’ meaning “void”. The majority letter, or the wildcard, is the
l+1 th letter of the extended centroid. We further compute the second following
letter, the third following letter and so on. We want to stop this when the
majority is often not significant. We stop the extension if there are more than
θ wildcards in the last l letters of the extending centroid, where θ is a given
threshold. The stopping criteria, majority threshold, and some other parameters
or methods of the extension can be changed as the user likes, but to make the
similarity of the strings uniform, we propose to use the same setting as that
for the centroid computation and the multi-sorting algorithm. The algorithm is
described as follows.

Algorithm. StringVoteExt (S, {p1, . . . , pk}, l, ρ(> 0.5), θ)
1. i := 0; j := l − 1; S∗ := StringVote ({S[p1, p1 + l − 1], . . . , S[pk, pk + l − 1]},ρ)
2. i := i − 1; set S∗[i+ 1] to v({S[p1 + i], . . . , S[pk + i]}, ρ)
3. if S∗[i+ 1] �= $ and S∗[i+ 1, i+ l] has wildcards of at most θ, go to 2.
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4. j := j + 1; set S∗[j + 1] to v({S[p1 + j], . . . , S[pk + j]}, ρ)
5. if S∗[j + 1] �= $, and S∗[j − l + 1, j + 1] has wildcards of at most θ, go to 4.
6. return S∗[i+ 2, j]

After computing the centroid, we remove all substrings in the cluster N(S)
from S. We further remove the substrings from S that are included in the sub-
string S′ obtained by extending a substring in the cluster in both directions as
the same length as the extent of the centroid. This is because in the next phase,
the substrings removed would make a cluster, and the extension of the seed
obtained by the cluster would be the same as that for the currently obtained
centroid. The algorithm FreqLongString for Cluster-based Long Frequent String
Mining is obtained by modifying steps 5 and 6 of FreqString as follows.

5. compute C(N(S)) by StringVoteExt (D, { positions of N(S) in D}, l, ρ, θ)
6. extend the substrings in N(S) in the same length as for Step 5, and remove
all substrings included in the extended substrings from S.

The additional computation time needed for this process is for the extension
and the removal of the substrings. This needs, roughly, O(Nh) time where h is
the average length of the extension. Thus, not so many centroids are extended
in long lengths, and therefore we may not lose computational efficiency.

To achieve efficiency of the computation, we are motivated to use exact
matches as seeds, i.e., substrings having no mismatches, since finding exactly
the same substrings is much easier than finding similar substrings. However, this
may result in a loss of model efficiency. If we use identical substrings, the cluster
size will be small, and the voting may not work well. If we use much shorter
identical substrings, they are possibly included in other non-similar strings, thus
the voting will be done for non-similar strings. Using similar substrings may
exclude non-similar strings, and increase the cluster size.

5 Completeness of the Model

This section shows a completeness of the model, by stating that any frequently
appearing string is similar to at least one output pattern. Suppose that C is
the set of strings of length l obtained by FreqString, from a string set D =
{S1, . . . , Sm}.

Lemma 1. For any S and N(S), the Hamming distance between S and C(N(S))
is less than d/ρ. In particular, it is less than 2d if ρ > 1/2.

Proof. Let P be the set of mismatch positions of S and C(N(S)). For each p in
P , let Z(p) be the set of S′ ∈ N(S) such that at the position p, S′ has a letter
different from S. We then see that |Z(p)| ≥ ρ(|N(S)|). Since each S′ ∈ N(S) can
have at most d positions mismatching S,

∑
p∈P |Z(p)| ≤ d(|N(S)| − 1). These

imply that

d|N(S)| − d ≥
∑
p∈P

|Z(p)| ≥
∑
p∈P

ρ|N(S)| = |P |ρ|N(S)|,
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thus we have |P | < d/ρ ��

Lemma 2. Suppose that at least σ substrings in strings in D have Hamming
distances at most d/2 to S. If S is a string in S, there is always a string S∗ ∈ C
such that the Hamming distance between S and S∗ is at most (1 + 1/ρ)d.

Proof. From the assumption we have that |N(S)| ≥ σ. Thus, S is included in
N(S′) for some S′ in Step 5 of algorithm FreqString. Since the Hamming distance
between S and S′ is at most d, and from Lemma 1, the Hamming distance between
S′ and C(N(S′)) is at most d/ρ, we have that the Hamming distance from S to
C(N(S′)) is atmost (1+1/ρ)d.C(N(S′)) is amember of C, therefore the statement
holds. ��

Lemma 3. Suppose that d is even and at least σ substrings in strings in D have
Hamming distances at most d/2 to S. There is always a string S∗ ∈ C such that
the Hamming distance between S and S∗ is at most (1.5 + 1/ρ)d.

Proof. Let H be the set of substrings of strings in D such that the Hamming
distance to S is at most d/2. Since |H| ≥ σ and any two strings in H have
Hamming distance of at most d, at least one of H belongs to N(S′) that induces
a string S∗ ∈ C. From Lemma 1, the Hamming distance from S to S∗ is at most
(1.5 + 1/ρ)d. ��

From these lemmas, we can see that the output of our algorithm covers all
frequent strings. When we choose S as the centroid of N(S), the upper bound
in the statement of the lemma can be improved. From the proof of the above
lemma, there is a string S′ such that Hamming distance to S is at most d/2,
and included in some cluster N(S∗). Thus, the Hamming distance from S to S∗

is bounded by d if S is a substring of a string in D, and 1.5d otherwise.

6 Algorithm for Similar Short Substrings

This section is a brief summary of the multi-sorting algorithm[14]. The problem
is formulated as follows.

Problem: Short Hamming Distance String Pair Enumeration
Input: A multiset S of strings of fixed length l, and threshold value d
Output: All pairs of strings S1 and S2 such that Hamming distance of S1 and
S2 is at most d.

We first choose k > d, and then partition each string S ∈ S into k substrings
(blocks) in the same way. The ith substring is called the ith block, and is denoted
by B(S, i). We denote by K the collection of subsets of size k − d of {1, . . . , k},
i.e., K = {K ⊆ {1, . . . , k} | |K| = k− d}. sig(S,K) denotes the concatenation of
blocks B(S, i) of all i ∈ K. Observe that any two strings of Hamming distance at
most d have at least k−d blocks. The algorithm finds pairs of strings having k−d
same blocks as the candidates of the solutions, and the number of candidates is
quite small compared to all possible pairs.
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Table 1. Results for X chromosome; length of 1,000 letters

d 200 400 800 1600 3200 6400 12800 25600 51200 102400 204800 291572

time 0 0.45 0.9 1.84 3.71 7.23 14.9 30 65 141 339 889 1559
(sec) 1 0.51 1.08 2.23 4.63 9.23 19.5 42 99 296 1197

2 0.58 1.3 3.09 7.22 15.4 34 76 203 804
3 0.91 2.05 5.18 13.1 28 66 155 456 2082

memory 0 72 72 72 72 80 112 190 350 659 1284 1983 2705
(MB) 1 72 72 72 72 81 112 190 350 1217 3684

2 72 72 72 72 72 81 112 195 2879
3 72 72 72 72 72 89 126 316 5212

#short 0 7 19 25 25 68 83 178 461 1603 4879 7003 15021
patterns 1 42 101 179 291 471 803 1696 5935 15836 41939

2 53 166 288 433 1168 1820 3770 14874 31193
3 88 415 1022 2537 1978 4239 6945 15879 58460

#long 0 0 1 2 3 4 7 11 26 56 111 273 341
patterns 1 1 5 13 28 45 66 107 234 569 1019

2 2 4 20 38 52 136 229 493 980
3 3 7 29 55 64 130 254 349 398

average 0 0 1123 667 429 301 335 220 218 193 244 304 277
length 1 87 302 205 158 142 142 142 173 180 204

2 106 432 191 167 161 133 130 146 152
3 126 278 161 122 121 130 113 123 219

The framework of the algorithm is simple; for each K ∈ K, we classify the
strings in equivalence classes having the same sig(S,K). This can be done by a
radix sort like algorithm in linear time in the input size. Then, for each equiva-
lence class, we find the pairs with Hamming distance of at most d by comparing
all pairs of strings in the class. If the Hamming distance of S1 and S2 is at most
d, they have at most d mismatches, thus have at least k − d identical blocks.
Thereby sig(S1,K) = sig(S2,K) holds for some K ∈ K. Hence, the pair is
selected for output when the algorithm examines K.

If kCd is small, and each block contains sufficiently many letters so that each
equivalence class is small on average, the computation time will be short. Thus,
practical high performance is for problems with low error rate, such as com-
parisons of genome sequences. The computational experiments reported in [14]
showed that by setting l = 30 and d = 2, strings taken from anywhere within
genome sequences of up to 10 million strings can be processed in few minutes.

7 Experiments

Our implementation is coded in C, and no sophisticated libraries such as binary
trees are used. All experiments were done on a 3.2 GHz Core i7-960 computer with
a Linux operating system having 24GB of RAMmemory. Note that we did not use
multi-cores in the experiment. The codes and the instances we used can be found
available at the author’s website
(http://research.nii.ac.jp/~uno/codes.html).
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Table 2. Results for word sequence; length of 1,000 letters

d 25 50 100 200 400 800 1600 3200 4700

time 0 0.1 0.19 0.46 1.26 2.93 22.9 43 175 267
(sec) 1 0.22 0.6 1.93 7.22 22.4 110 388 2978

2 1.72 6.23 27 120 466 2155

memory 0 36 36 36 36 36 62 99 257 354
(MB) 1 36 36 36 72 52 126 330 1575

2 36 36 43 107 280 885

#short 0 82 145 499 1905 3717 8673 20773 66915 86540
patterns 1 296 949 3660 12639 32825 92408 228485 734335

2 1898 4572 10242 21067 40413 85325

#long 0 36 74 271 696 1409 3128 6417 16526 19665
patterns 1 72 168 339 762 1493 3226 6425 15571

2 89 177 347 715 1455 3224

average 0 13 16 14 17 18 17 17 17 18
length 1 16 15 16 16 16 14 14 15

2 14 14 13 13 13 12

Table 3. Results for change in pattern length (X chromosome); degree is average
number of similar patterns, and deg< 2 is ratio of patterns that have at most two
occurrences

l, d 10,0 15,0 15,1 15,2 20,0 20,1 20,2 30,0 30,1 30,2 30,3 50,0 50,2 50,4 50,6

time(sec) 690 37 192 1391 22 62 174 30 42 76 155 63 82 151 366
memory (MB) 1072 150 439 1551 97 181 340 112 112 112 197 121 124 124 106
#short patterns 2466 512 11915 164853 314 4168 6808 83 834 1975 4743 34 113 586 1404
#long patterns 1388 150 1011 770 86 302 0 27 107 229 254 2 11 88 106
average length 27 141 75 45 167 113 0 220 142 130 113 360 157 69 57
degree 0 5 0 0 11 5 0 8 14 13 9 1 1 90 95
deg< 2 98 37 69 89 22 25 0 72 13 11 17 0 0 0 0

We used a genome sequence and a word sequence as instances. The genome
sequence was the human X chromosome taken from National Center for Biotech-
nology Information (NCBI) database. It was 143,733,266 letters in length, and
comprised 4 kinds of letters and a special letter ’N’ meaning the wildcard (ex-
cept comment lines). The instances we generated from the X chromosome were
doubled by attaching its reverse, since genome sequences are often similar to the
reverse of subsequence of the other sequences. The word sequences were gener-
ated from the benchmark data named “20 Newsgroups”
(http://people.csail.mit.edu
/jrennie/20Newsgroups/). With the exception of dashes and periods, all sym-
bols were removed from the data, and each word was assigned a unique ID. The
word sequence was the sequence of ID’s of the words in the data. The alphabet
size of the word sequence was 132,859, and the length was 5,454,672.

Tables 1 and 2 show the experimental results for the performance in terms
of the changes of the input size and d. Since the computation time and the
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Table 4. Results for change in pattern length; word sequence

l, d 8,0 12,0 12,1 18,0 18,1 18,2 18,3 25,0 25,2 25,4 40,0 40,2 40,4 40,6

time(sec) 2573 43 387 17.6 32 121 872 14 33 148 27 36 65 2731
memory (MB) 1557 110 380 3398 60 138 558 61 62 69 63 63 64 64
#short patterns 9380 6041 5351 6031 2484 3419 3357 3262 1143 2263 3261 428 562 804
#long patterns 6585 6417 6425 2499 3799 3754 3845 983 1696 2277 425 533 731 804
average length 14 17 14 18 20 17 18 15 14 16 17 17 15 13
degree 0 0 0 0 0 0 0 0 0 0 0 0 0 0
deg< 2 100 100 100 98 99 100 100 99 99 97 100 100 96 100

memory usage does not differ much between FreqString and FreqLongString, we
show those of FreqLongString. We set the pattern length l to 30 on Table 1 and
12 on Table 2, σ to 10, ρ to 1/2, θ to 2, and found the extended centroids for the
cases of d = 0, 1, 2, 3, and d = 0, 1, 2, respectively. The instances were generated
by taking substrings starting from the beginning, and were written in length of
1,000 letters. Tables 3 and 4 show the results obtained by the changes of the
seed length l. We use the instances of length 6,400,000 for the X chromosome,
and 1,600,000 for the word sequence.

The computation time was almost linear in the length except for large in-
stances with large d, and even though the length is hundred millions, the com-
putation time was comparatively short. For large scale data, the number of
similar substrings was quite huge, thereby the computation time was long. In
such cases, we should use much larger l and d, for not losing the efficiency as
shown below. The number of patterns did not substantially explode, and the
average pattern length was stable. In testing the appearance of the patterns we
obtained in the genome sequence, we counted the substrings such that the edit
distance to the pattern string was at most the 10% of the pattern length. Few
patterns appeared few times, say 5–10 times, but other patterns appeared more
than 30 times. For the increase of d, the increase in the pattern number and
pattern length appeared to saturate at some point. This implies that in practice
we do not have to care about large d.

We can find much more patterns by increasing d, especially for genome se-
quences, but too large d results in a long computation time. Thus, using small d
would be a good solution. In genome sequences, we found many short patterns
with small l, and few long patterns with large l. This is caused by that for small
l, there are too many similar substrings for a substring. Such many substrings
would be a part of non-similar long strings, thereby we could find only their
common short substrings. For large l, we might not unify the groups, but when
d is small, especially d = 0, we could find only few groups composed of quite
similar substrings, and thus obtained very few patterns. By using slightly large
d and non-short l, we can find many sufficiently long patterns within a quite
short time. This result supports our motivation to use similar short substrings
for frequent string mining. In particular, we can see many copies/quotations in
the word sequences, and consequently we found many groups of copies for the
case of d = 0, and the large average length of patterns. By introducing similarity,
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Table 5. Results with using interleaving sampling; X chromosome

d 3200 6400 12800 25600 51200 102400 204800 291572

time 0 2.53 5.23 10.7 22.6 47 102 246 386
(sec) 1 3.04 6.38 13.7 30 75 216 680 1316

2 3.85 9.46 20.8 51 165 701 2550
3 6.21 13.9 33 92 374 2108

#long 0 1 3 4 37 152 399 995 1313
patterns 1 31 48 72 218 563 1116 2566 3330

2 46 115 193 454 1102 1454 4278
3 104 171 284 614 1052 1929

average 0 1710 977 769 353 378 393 413 386
length 1 189 200 178 234 262 262 293 280

2 160 164 161 215 215 217 227
3 139 135 136 181 193 211

Table 6. Results with using interleaving sampling; X chromosome

d 400 800 1600 3200 4700

time 0 1.21 10.9 18.4 56 93
(sec) 1 6.41 35 108 677

2 125 547 2191

#long 0 777 1733 4881 13409 16655
patterns 1 1351 3095 6182 14798

2 1338 3164 5908

average 0 16 4881 17 17 18
length 1 16 6182 15 15

2 15 5908 14

we could find shorter patterns, that would not come from the groups of “copy
and paste”.

We also tested the similarity between patterns discovered. For each pattern S,
we counted the number of strings S′ similar to it; such that S (or S′) had an edit
distance of at most 0.1|S| to a substring of S′. We tested the output in the second
experiment, and show results in the last two rows of Tables 3 and 4. The first row
shows how many patterns are similar to one pattern on average, and the second
row shows the fraction of patterns having at most two other similar patterns. In
all cases, each pattern is similar to at most 15% of other patterns on average,
and there are several patterns not similar to other patterns. The patterns we
obtained from the data are in some sense independent to each other. In word
sequences, and genome sequences with d = 0, almost all patterns have no similar
pattern. It comes from that we found only groups of quite similar substrings,
and “copy and paste”, thus the strings in different groups are not similar to each
other.

The computation time can be reduced by using “interleave sampling” of sub-
strings proposed in [14]. By using the method, we can find continuous pairs of
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Table 7. Comparison of the performance of the algorithms

algorithm distance errors problem size #patterns CPU time

FreqLongString edit distance 10% 100MB 1000 1000
(hill climbing)[8] edit distance 2 or 3 >10MB huge 1 day
HomologMiner[5] Hamming distance - 30MB few 10 hours
RepeatScout[11] edit distance - 50MB few 2 hours

substrings having small Hamming distance, i.e., we find pairs of substrings S1

and S2 such that S1[i, i+ l] and S2[i, i+ l] have a Hamming distance of at most d
for any i. When we find such string pairs from short string pairs, we never miss
sufficiently long continuously similar substrings, even if we take only 1/c of all
substrings, for some constant c such as c = l1/2. This enables us to fasten the
computation without losing the efficiency. In our experiments shown in Table 5
and Table 6, we could reduce the computation time to 1/5, without decreasing
the number of patterns found, and the length of the patterns.

Comparison with Other Methods
The comparison of the methods for this problem is actually very difficult, since
they share the same task, but the problems formulations are different. For ex-
ample, many algorithms in bioinformatics finds the frequent string from exact
matches. They are faster than those of approximate matches, and the accuracy
and completeness might be less, but no one can be sure about this. Some algo-
rithms reduce the input data by domain specific background knowledge, and/or
some corpus for efficient computation. It is hard to have a good criteria for the
evaluation of algorithms. Instead of a good evaluation criteria, we just show
the results of the computational experiments in Table 7, that are reported in
literature. The numbers are approximations.

8 Conclusion

We considered the need to develop more practical models for frequent strings
with approximate matches. We observed the motivation and the structures of the
problem, and formulated the problem via clustering; first find all the similarity
relations between the substrings of the given database, enumerate all clusters,
and compute a representative string for each cluster. An algorithm we proposed
to extend the short frequent string helps us to obtain much longer frequent
strings in a short time. By using the multi-sorting algorithm proposed by the
authors for the similarity computation, our algorithm could perform quite well
even for large-scale real-world string data. The number of patterns we obtained
in this approach was not excessively large such that the patterns obtained are
tractable. The experimental results showed that by introducing the similarity, we
can obtain much more long patterns or non-trivial patterns without drastically
increasing the computational cost. We used Hamming distance for the similarity
evaluation, but the obtained patterns are actually frequent even in the term of
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the edit distance. It is noteworthy that using simple criteria makes it possible
to find interesting, large patterns with more sophisticated criteria. Interesting
future research is to extend this algorithm to handle more sequence-like string
patterns to accept more ambiguous data such as natural language texts.
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Abstract. In this article, we present an ontology for representing the
knowledge discovery (KD) process based on the CRISP-DM process
model (OntoDM-KDD). OntoDM-KDD defines the most essential en-
tities for describing data mining investigations in the context of KD in
a two-layered ontological structure. The ontology is aligned and reuses
state-of-the-art resources for representing scientific investigations, such
as Information Artifact Ontology (IAO) and Ontology of Biomedical In-
vestigations (OBI). It provides a taxonomy of KD specific actions, pro-
cesses and specifications of inputs and outputs. OntoDM-KDD supports
the annotation of DM investigations in application domains. The ontol-
ogy has been thoroughly assessed following the best practices in ontology
engineering, is fully interoperable with many domain resources and easily
extensible. OntoDM-KDD is available at http://www.ontodm.com.

Keywords: Knowledge Discovery in Databases, CRISP-DM, Data Min-
ing Investigation, Data Mining, Domain Ontology.

1 Introduction

Recent surveys of research challenges for knowledge discovery in databases
(KDD) and data mining (DM) list the mining of different types of structured
data in a uniform fashion, the use of domain knowledge, and the support for
complex KDD processes as the top-most open issues in the domain [1–3]. Much
of the research in recent years has also focused on the automation and overall
support of the KDD process. This involves development of standards for per-
forming the KDD process as well as formal representations of the processes in the
form of workflows [4, 8, 10, 13]. Specific issues addressed include methods that
automate the composition of data mining operations into executable workflows.
Finally, providing a mechanism for recording of results and the experimental
settings of the DM experiments obtained by executing the workflows on sets of
data is becoming important for ensuring the repeatability and reuse of results
[14].

One of the most prominent proposals for standardizing the process of knowl-
edge discovery in the context of representing and performing data mining investi-
gations is the Cross Industry Standard Process for Data Mining (CRISP-DM) [4].

J. Fürnkranz, E. Hüllermeier, and T. Higuchi (Eds.): DS 2013, LNAI 8140, pp. 126–140, 2013.
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It is a process model that describes data mining investigations performed in prac-
tical applications. The CRISP-DM process model is based on commonly used
approaches that expert data miners use to tackle and solve the practical prob-
lems in the domain.

The formalization of scientific investigations has also proved to be a promi-
nent area of research. It includes providing a formal representation of objects
and processes involved in scientific investigations in a knowledge representation
framework, such as terminologies, taxonomies, and ontologies. The largest devel-
opments in this sense have taken place in biological and biomedical domains (e.g.,
the Robot Scientist project[5]). In addition, the state-of-the-art also includes
initiatives to support and unify the representational mechanisms for recording
scientific investigations under a single framework (e.g., the Open Biomedical
Ontologies (OBO) Foundry [6]).

In the domain of KDD and DM, there exist several proposals of domain on-
tologies but the majority of them are light-weight application oriented ontologies
aimed at covering a particular use-case in data mining. Initial systems that in-
clude ontologies are used to systematically describe the processes in machine
learning and DM (e.g., the IDA system [7]). Next, there are ontology develop-
ments aimed to support workflow composition and planing of workflows [7–10],
support of data mining applications on the GRID [11, 12], and support of meta-
learning and meta-mining [13]. Finally, there are ontologies designed to support
machine learning experiments in the context of experiment databases [14].

In our previous work [15, 16], we formally represented and described the com-
plex domain of data mining by developing OntoDM, a general-purpose domain
ontology of DM that takes into account the state-of-the-art developments in the
area of formalization of scientific investigations. In this paper, we present the
OntoDM-KDD ontology, a novel sub-ontology module of OntoDM. OntoDM-
KDD (v.1) introduces the data mining investigations as a representational mech-
anism to describe the complete process of KDD, based on the CRISP-DM process
model. The ontology includes a taxonomy of KD specific processes, actions and
representations of inputs and outputs. Finally, the ontology has been thoroughly
assessed following the best practices in ontology engineering, evaluated and val-
idated by the applications on a use case.

2 Design

The OntoDM-KDD ontology is based on the CRISP-DM process model [4]. Its
main goal is to be general enough to allow the representation of knowledge
discovery processes and data mining investigations performed in practical appli-
cations. Based on this main goal, we identified a list of competency questions
that our ontology is designed to answer.
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Table 1. Examples of OntoDM-KDD competency questions

What is the description of a DM investigation X?
What is the set of publications about the investigation for a DM investigation X?
What is the DM investigation that is reported by a publication X?
What is the set of actions realized by the KD phase X for a DM investigation Y?
What is the set of DM investigations that realize an action X in a KD phase Y?
What is the process that precedes process X in KD phase Y for a DM investigation Z?

Examples of OntoDM-KDD competency questions are listed in Table 1. From
the list of questions, we can see that the ontology need to include basic in-
formation entities for representing data mining investigations, such as action
specifications, reports, and textual entities. Furthermore, the ontology need to
contain processual entities that are parts of the knowledge discovery process.

In order to ensure the interoperability of OntoDM-KDD with other resources,
the OntoDM-KDD ontology follows the OBO Foundry design principles 1. These
include, for example, the use of an upper level ontology, the use of formal on-
tological relations, single inheritance, and the re-use of already existing onto-
logical resources where possible [6]. The use of these design principles enables
cross-domain reasoning, facilitates wide reusability of the developed ontology,
and avoids duplication of ontology development efforts.

OntoDM-KDD imports the upper level classes from the Basic Formal Ontol-
ogy (BFO1.1)2 and formal relations from the OBO Relational Ontology (RO)3

[17] and uses an extended set of RO relations. BFO an RO were chosen as they
are widely accepted, especially in the biomedical domain. Following best prac-
tices in ontology development, the OntoDM-KDD ontology reuses appropriate
classes from a set of ontologies, that act as mid-level ontologies. These include
the Ontology for Biomedical Investigations (OBI)4, the Information Artifact On-
tology (IAO)5, and the Software Ontology (SWO)6. Classes that are referenced
and reused in OntoDM-KDD are imported by using the Minimum Information
to Reference an External Ontology Term (MIREOT) principle [18] and extracted
using the OntoFox web service7.

OntoDM-KDD is expressed in OWL-DL8, a de facto standard for represent-
ing ontologies. The ontology is being developed using the Protege9 ontology
editor. The ontology is freely available at http://www.ontodm.com and at Bio
Portal10.

1 OBO Foundry: http://obofoundry.org/crit.shtml
2 BFO: http://www.ifomis.org/bfo
3 RO: http://purl.org/obo/owl/OBO_REL
4 OBI: http://obi-ontology.org/page/Main_Page
5 IAO: http://code.google.com/p/information-artifact-ontology
6 SWO: http://theswo.sourceforge.net
7 OntoFox: http://ontofox.hegroup.org
8 OWL-DL: http://www.w3.org/TR/owl-guide
9 Protege: http://protege.stanford.edu

10 BioPortal: http://bioportal.bioontology.org

http://www.ontodm.com
http://obofoundry.org/crit.shtml
http://www.ifomis.org/bfo
http://purl.org/obo/owl/OBO_REL
http://obi-ontology.org/page/Main_Page
http://code.google.com/p/information-artifact-ontology
http://theswo.sourceforge.net
http://ontofox.hegroup.org
http://www.w3.org/TR/owl-guide
http://protege.stanford.edu
http://bioportal.bioontology.org
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3 The Structure of OntoDM-KDD

The CRISP-DM process model, at the top level, is organized into six phases: busi-
ness understanding phase, data understanding phase, data preparation phase,
modeling phase, evaluation phase, and deployment phase [4]. It defines the out-
puts of each CRISP-DM phase and the second-level generic tasks. For example,
the data understanding phase consists of four generic tasks: collect initial data,
describe data, explore data, and verify data quality. The level of specialized tasks
(third level) describes how the generic tasks should be carried out in specific
situations, in terms of activities. For example, the describe data task includes
activities for volumetric analysis of data, assessment of the attribute types and
values, etc. The fourth level, the level of process instances, describes the actions,
decisions and results of an actual data mining investigation performed in the
domain of interest.

For the purpose of representing data mining investigations, it is very impor-
tant to have the ability to represent entities that deal with information, such as
data, documents, reports, models, algorithms, protocols, etc. We thus incorpo-
rate and further extend some classes of the IAO ontology. The IAO ontology is
a mid-level ontology describing information content entities (e.g., documents),
processes that consume or produce information content entities (e.g., document-
ing), material bearers of information (e.g., journals), and relations in which one
of the relata is an information content entity (e.g., is-about).

Another important representational aspect is representation of processes. In
OntoDM-KDD, we use and further extend classes from the OBI ontology, such as
the OBI process taxonomy, which includes general processes such as document-
ing, planing, validation, etc. The OBI ontology aims to provide a standard for the
representation of biological and biomedical investigations. It supports consistent
annotation of biomedical investigations regardless of the particular field of study
and is fully compliant with the existing formalisms in biomedical domains [19].
In addition, OBI defines an investigation as a process with several parts, includ-
ing the planning of an overall study design, executing the designed study, and
documenting the results. Finally, in OntoDM-KDD we include the SWO class
Information Processing that represents processes in which input information is
analysed or transformed in order to produce an output information.

In OntoDM-KDD we distinguish two description layers based on the mid-level
ontologies that it extends (Fig.1). The first layer is the specification layer, that
deals with information entities needed to describe and represent the DM inves-
tigations. The second layer is the application layer that deals with processual
entities in order to represent processes that occur in a DM investigation.

The specification layer (Fig. 1(a)) consists of classes that are extensions of
the IAO class Information Content Entity. At the top level, it includes classes
such as Data Item, Directive Information Entity, Document , Document Part
and Textual Entity. The Directive Information Entity class is further extended
with Action Specification, Data Format Specification, Objective Specification,
and Plan Specification. In addition, we also reuse the Study Design and Protocol
classes from the OBI ontology.



130 P. Panov, L. Soldatova, and S. Džeroski

(a) Specification layer (b) Application layer

Fig. 1. The structure of the OntoDM-KDD ontology. The imported classes include in
their name the source ontology label (IAO, OBI, SWO, OntoDM) as a prefix, while
the native OntoDM-KDD classes are shown without such a label.
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Fig. 2. KD phase execution and the has-part taxonomy of KD specific processes. The
unlabeled arrows represent is-a relations. Classes represented with green boxes belong
to the specification layer, while the blue boxes belong to the application layer.

The application layer (Fig. 1(b)) consists of classes that are extensions of
the OBI class Planned Process . These include general classes of processes such
as: Validation, Planning, Interpreting Data, Information Processing, Selection,
Identification, Documenting , and Acquisition. Finally, the application layer in-
cludes the OBI Investigation class, which we further extend to define and rep-
resent a Data Mining Investigation.

4 Mapping the CRISP-DM Model to OntoDM-KDD

The phases level from the CRISP-DM model is represented in OntoDM-KDD
with two aspects. In the specification layer, we represent the specification of the
phases with the KD Phase Design class (Fig 2). It is a subclass of OBI Study
Design which is comprised of Protocols . For example, the Data Understanding
Design contains the specification of the data understanding phase.

The KD Phase Design is realized during KD Phase Execution. KD Phase
Execution is represented as a processual entity in the application layer and is
extended with KD specific phases from the CRISP-DM process model (Fig 2).
These include Application Understanding, Data Understanding, Data Prepara-
tion, Modeling, DM Process Evaluation, and Deployment class. For example,
Data Preparation process is a KD Phase Execution and realizes the Data Prepa-
ration Design. In this version of OntoDM-KDD, we can represent a sequential
ordering of the KD phases by using the is-preceded-by relation (Fig.2).

Similar as the phases, the generic tasks from each phase from the CRISP-DM
model are represented in OntoDM-KDD with two aspects. In the specification
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layer, we present specification of the tasks with the KD Protocol Class . For exam-
ple, the Data Understanding Design contains as parts the Data Collecting Pro-
tocol , the Data Describing Protocol , the Data Exploring Protocol and the Data
Quality Verification Protocol .

The executions of the protocols are represented in the application layer, and
are parts of the KD Plase Execution process. For example, Data Understanding
contains as parts sub-processes: Data Collecting, Data Exploration, Data De-
scription Process , and Data Quality Verification. Each of the sub-processes is
a sub-class of a more general processes class. For example, Data Collecting is a
sub-class of Aquisition process.

The activities from the specialized tasks level of the CRISP-DM model are
represented in OntoDM-KDD as actions. One of the most important parts of
the specification layer is the taxonomy of KDD specific actions, represented by
the extension of the Action Specification class. The action specification defines
the actions that are realized in the processes. At the first level, we have the
more general actions such as Analyze Action, Assess Action, Check Action,
Compare Action, Describe Action, Document Action, Interpret Action, Plan
Action, Process Information Action, Revise Action, and Specify Action. At the
second level, the general actions are extended with KDD specific actions. Finally,
each KD Protocol contains a set of action specifications as parts. For example,
the Data Exploring Protocol includes the Explore Data Action and Formulate
Hypothesis Action.

An Investigation is a planned process and includes the Planning, Document-
ing, and Study Design Execution processes (Fig. 3). Furthermore, an investigation
is described with an Investigation Title, Investigation Description, and Investi-
gation Identifier . In addition, the investigation produces as output a Conclusion
Textual Entity. Finally, a Publication About an Investigation is a document about
it and it is an output by the documenting sub-process. OntoDM-KDD defines a
DM Investigation class as an extension of the OBI Investigation class (Fig. 3). A
DM Investigation has as its part the KD Phase Execution process.

Fig. 3. The data mining investigation class in OntoDM-KDD
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Fig. 4. Application understanding process in OntoDM-KDD. The unlabeled arrows
represent is-a relations, while coloured arrows represent is-preceded-by relation.

5 Example: Application Understanding Process

In this section, we present an example of representation of one phase from
CRISP-DM in OntoDM-KDD. The initial phase in a DM investigation focuses on
identifying the objectives and requirements of the investigation, from an appli-
cation (or business) perspective. In CRISP-DM, this phase was named business
understanding, while in OntoDM-KDD we generalize it as application under-
standing. The goal is to convert the knowledge about the application domain
into a data mining problem definition and to generate a plan for achieving the
application objectives.

The Application Understanding class is a sub-class of KD Phase and repre-
sents a planned process (Fig. 4). In the ontological vocabulary, the Application
Understanding process can be defined as a KD Phase that realizes an Application
Understanding Design, achieves the planned objective an Application Under-
standing Objective and has specified output Application Understanding Report .
The Application Understanding Process includes as parts four sub-processes:
Application Objectives Identification, Application Resources Assessment , Iden-
tification of Data Mining Goals and Generation of a Project Plan.

The process of Application Objectives Identification is a sub-class of the more
general class of Identification processes. In this process, a data analyst (active
participant or agent) needs to identify in detail, from the application (or busi-
ness) perspective, what are the objectives to be achieved by applying DM to
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Fig. 5. The process of objective identification in OntoDM-KDD

the application domain at hand. At the end of the process, the analyst needs
to produce as output an Application Background Description, an Application
Objectives Description, and an Application Success Criteria Description.

The process of Application Objective Identification is a realization of an Ap-
plication Objective Identification Protocol (Fig. 5). The protocol, which is a part
of the Application Understanding Design, contains a specification of the actions
that are realized in the process, such as Describe Data Mining Problem, Specify
Application Success Criteria, Identify who Assesses the Success Criteria and oth-
ers. These action specifications are subclasses of general classes of actions, such
as Describe Action, Specify Action and Identify Action. In the OntoDM-KDD,
we represent and provide action specifications for all processes.

The process of Application Resources Assessment is a sub-class of the OBI
Validation process. It involves assessing the information about all resources, con-
straints, assumptions and other factors that need to be considered in order to
determine the data mining goals and the project plan. The outputs of this pro-
cess include: an Inventory of Resources , a Glossary of Terminology, Costs and
Benefits Description, a Requirements Assumptions and Constraints Description,
and a Risks and Contingencies Description.

The process of Identification of Data Mining Goals is a sub-class of the Iden-
tification process. The objective of this process is to produce a specification of
the data mining goals and establish a set of data mining success criteria which
can be used to evaluate the success of the data mining investigation at hand.
The output of this process includes a Data Mining Goals Description and a Data
Mining Success Criteria Description.

The process of Data Mining Project Planning is a sub-class of the OBI Plan-
ning process. The objective of this process is to produce a specification of a
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plan in order to achieve the data mining and application goals. The outputs
of the process include a Project Plan and a Tools and Techniques Assessment
Description.

6 Evaluation

We assess the quality of OntoDM-KDD from three different evaluation aspects.
First, we analyze a set of ontology metrics. Then, we assess how well the ontology
meets a set of predefined design criteria and ontology best practices. Finally, we
assess how the ontology meets a set of predefined competency questions.

A variety of ontology metrics is available for assessing ontologies. We use
the statistical ontology metrics from the Protégé software and the BioPortal
web service (Tab. 2(a)). OntoDM-KDD has 264 classes, 34 relations and 2091
axioms. The size of the ontology is comparable with the average size of the OBO
Foundry ontologies and the complexity (the number of relations and axioms) is
higher than the average.

Table 2. OntoDM-KDD Evaluation

(a) Statistical metrics

Axiom count 2091
Class count 264
Individual count 0
DL expresivity SHI
SubClassOf axiom count 521
DisjointClasses axiom count 53
Relations count 34
Annotation axioms count 1178

(b) An example of a competency question for-
malized in SPARQL-DL

What actions are realized by the KD
phase X for the investigation Y?

Q(act):-Type(?act,action specification),
PropertyValue(?prot,has-part,?act),
Type(?prot,protocol)
PropertyValue(?kddphdesign,has-part,?prot),
Type(?kddphdesign,kdd phase design),
PropertyValue(?kddphplan, is-concretization-
of, ?kddphdesign),
PropertyValue(?x,realizes,?kddphplan),
Type(x,kdd phase execution),
PropertyValue(y,has-part,x),
Type(y,investigation).

The ontology has been constructed following the best in ontology engineering
and design criteria. The set of design principles (in total 29) is divided into four
groups: scope and structural assessment; naming and vocabulary assessment;
documentation and collaboration assessment; and availability, maintenance, and
use assessment. The results of the evaluation are summarized on the ontology
web page (www.ontodm.com). In sum, the design principles were closely followed
during the development of OntoDM-KDD.

Following the recommendations by Gruniger and Fox [20], we first defined the
ontology’s requirements in the form of competency questions that the ontology
must be able to answer (see above). Furthermore, having defined the language

www.ontodm.com
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of the ontology, the competency questions are defined formally as an entailment
with respect to the axioms in the ontology. In this way, one can evaluate the
ontology and claim that it is adequate if the questions can be formulated in the
language of the ontology. For that purpose, we formulated the questions using
SPARQL-DL query language11 [21] for querying OWL-DL ontologies. SPARQL-
DL is a subset of the SPARQL language12. In Tab. 2(b), we show an example of
an OntoDM-KDD competency question formulated in SPARQL-DL.

7 Usecase: Annotation of Data Mining Investigations

In this section, we present an example of how OntoDM-KDD can be used to
annotate DM investigations in application domains. For this purpose, we focus
on a DM investigation titled “Estimating forest properties from remotely sensed
data using DM”, published in a journal article by Stojanova et al. [22].

The DM investigation aimed at modeling forest properties, such as vegetation
height and canopy cover, from remotely sensed data, by using DM algorithms.
The final goal of this investigation was to use the models of the properties to
generate forest maps that can be deployed in forest management and forest
decision support systems. The DM investigation included: the study of the ap-
plication domain; collection of data; preparation of the data; modeling of the
forest properties; evaluation of the modeling process and deciding on the best
model; generation of the forest property maps; and finally deployment of the
generated maps in forest management systems.

In Fig. 6, we present a part of the annotation of this investigation. First,
we define dm investigation13 as an instance of the DM Investigation class that
has as parts instances of the planning, documenting, and a kd phase execution
processes (or their child classes). In addition, ‘Estimating forest properties from
remotely sensed data’ denotes the investigation and represents its title and the
investigation description instance that is-about the investigation.

The documentation process has-specified-output a Publication About An In-
vestigation, which represents an entity that is-about an investigation. An in-
stance of this class is used to represent the journal article. In addition, this
instance has as parts document part instances, such as abstract , author list ,
institution list , introduction to a publication about an investigation, methods
section, results section, discussion section of a publication about an investiga-
tion, conclusion to a publication about an investigation, and references section.
Finally, ‘Estimating vegetation height and canopy cover from remotely sensed
data with machine learning’ denotes the publication’s title.

11 SPARQL-DL: www.w3.org/2001/sw/wiki/SPARQL-DL
12 SPARQL: http://www.w3.org/TR/rdf-sparql-query/
13 Notation: with non-capitalized italics we denote instances of classes.

www.w3.org/2001/sw/wiki/SPARQL-DL
http://www.w3.org/TR/rdf-sparql-query/
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Fig. 6. Part of an annotation of a DM investigation summarized in a journal article
with terms from the OntoDM ontology
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The introduction part of the article, represented by the introduction to a pub-
lication about an investigation instance, is-about the application understanding
process. It has as parts descriptions that are outputs of processes that compose
the application understanding process. For example, the introduction includes
description instances such as application background description, application ob-
jectives description, and application success criteria description. These descrip-
tions are instances of the Textual Entity class and are outputs of the application
objective identification process instance. The same holds also for the other pro-
cess instances that compose the application understanding process.

The methods section, represented by the methods section instance, contains
parts that are about the data understanding process, the data preparation pro-
cess and modeling technique selection (as a sub-process of modeling). More
specifically, it contains description of the study area (the Kras region), data
sources (LiDAR and Landsat), data descriptions (descriptive and output vari-
ables), and description of the DM techniques to be used. These descriptions are
outputs of the the sub-processes of data understanding and data preparation,
and the modeling technique selection process 14.

The results section, represented by the results section instance, contains parts
that are about test design generation process, the model building process, and
the model assessment process. These are all sub-processes of modeling. More
specifically, it contains descriptions of the experimental design, DM algorithms
applied, evaluation procedure and results (best models in terms of predictive
performance and maps of vegetation height and canopy cover for the best model).
These descriptions are outputs of the sub-processes of test design generation,
model building and model assessment.

The discussion section, represented by the discussion section of a publication
about an investigation instance, contains parts that are about a results evalu-
ation process, a sub-process of a DM process evaluation. More specifically, it
contains descriptions of a comparison of the performances of all applied DM
techniques, a comparison to previous work, and a discussion of the produced
maps of vegetation properties.

The conclusion section, represented by the conclusion to a publication about
an investigation instance, contains parts that are about the deployment process
and determining further actions process, a sub-process of DM process evaluation.
More specifically, it contains a summary of contributions, a description of the
deployment of the produced maps, and a description of envisioned future work.

The considered example demonstrates that OntoDM-KDD has the expres-
sivity to annotate the key concepts pertinent to typical DM investigations.
OntoDM-KDD annotations would facilitate machine amenable recording of the
information about how DM investigations have been carried out, enable accurate
comparison of such investigations and reasoning e.g. about what DM methods
work better for what applications. OntoDM-KDD is also an important resource
to facilitate text mining of DM relevant literature.

14 For simplicity/readability reasons, for all other parts Fig. 6 contains only the upper
level processes.
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8 Conclusion and Future Work

In this paper we proposed OntoDM-KDD, an ontology for representing the
knowledge discovery based on the CRISP-DM process model. The OntoDM-
KDD ontology was designed and implemented by following ontology best prac-
tices and design principles. It used an upper-level ontology BFO as a template,
included formally defined relations, and reused classes from other ontologies for
representing scientific investigations.

The ontology introduced a two-layered representation mechanism and pro-
vided a taxonomy of KD specific processes and actions. In addition, it provided
a specification of inputs and outputs of the KD specific processes. Furthermore,
the ontology introduced the data mining investigation entity as representational
mechanism for describing and annotating data mining investigations in applica-
tion domains (e.g., biology, forestry, etc). The OntoDM-KDD ontology has been
applied for annotation of data mining investigations summarized in journal ar-
ticles. In addition, the SWO ontology version 0.4 reused some of the OntoDM-
KDD classes for representing data pre-processing and modeling processes.

In the context of representation of the complete knowledge discovery process,
most of the current ontologies focus only on representing the modeling phase.
Some of the ontologies, such as DMOP [13] and Expose [14], also provide entities
that cover the data preparation phase of a KDD process, but do not provide
ontological support for the complete KDD process. The strength of the OntoDM-
KDD ontology is that it provides support for representation of the complete
knowledge discovery process from application understanding to deployment.

In future developments of the OntoDM-KDD ontology, we plan to align the
ontology to the BFO 2.0 top level ontology that is in final phases of preparations.
Furthermore, we plan to apply the ontology for representation of data mining
investigations in different application domains of data mining.
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1 Jožef Stefan Institute, Ljubljana, Slovenia
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Abstract. This paper describes a propositionalization technique called
wordification. Wordification is inspired by text mining and can be seen
as a transformation of a relational database into a corpus of documents.
Wordification aims at producing simple, easy to understand features,
acting as words in the transformed Bag-Of-Words representation. As
in other propositionalization methods, after the wordification step any
propositional data mining algorithm can be applied. The most notable
advantage of the presented technique is greater scalability: the proposi-
tionalization step is done in time linear to the number of attributes times
the number of examples. The paper presents the wordification method-
ology, implemented in a cloud-based web data mining platform Clowd-
Flows, and describes the experiments in two real-life datasets together
with a critical comparison to the RSD propositionalization approach.

Keywords: relational data mining, propositionalization, text mining,
association rules, classification.

1 Introduction

Traditional data mining algorithms aim at finding models or patterns in a sin-
gle data table (propositional patterns), whereas Inductive Logic Programming
and Relational Data Mining is concerned with learning models or discovering
interesting relational patterns from data stored in multiple tables. Most types of
propositional models/patterns have corresponding relational models/patterns:
relational classification rules, relational regression trees, relational association
rules, etc.

For relational databases, where instances to be mined are clearly identifiable
(so-called individual-centered relational databases, characterized by one-to-many
relationships among data tables) there exist techniques for transforming such a
database into a propositional or single-table format. After performing this trans-
formation, called propositionalization [9, 5], traditional propositional learners can
be used, such as decision tree learners or classification rule learners.
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This paper introduces a propositionalization technique called wordification. As
in other propositionalization methods, after the wordification step any propo-
sitional data mining algorithm can be applied. Unlike other propositionaliza-
tion techniques [9, 5, 7, 17], which first construct complex relational features
as constituents of subsequent propositional representation, wordification aims
at generating simple features with greater scalability. Wordification is inspired
by text mining techniques and can be seen as a transformation of a relational
database into a corpus of documents, where each document is characterized by
a set of properties describing the entries of a relational database. Wordifica-
tion aims at producing simple, easy to understand features, acting as words
in the transformed Bag-Of-Words representation. The feature construction step
in wordification is very efficient, therefore it can scale well for large relational
databases. In fact, the presented methodology transforms the database in time
linear to the number of attributes times the number of examples. Furthermore,
due to the simplicity of features, the generated features are easily interpretable by
domain experts. Additionally, wordification uses Term Frequency-Inverse Doc-
ument Frequency (TF-IDF) weighting [4] to capture the importance of a given
feature (attribute value) of a relation in an aggregate manner.

As indicated in our early research on this topic [12], the wordification method-
ology suffers from loss of information, since the generated features do not capture
existentially quantified variables connecting several relations. The research pre-
sented in this paper extends our previous research [12] by adding the ability of
multiple feature word generation (partly overcoming the above mentioned loss
of information problem), by presenting the methodology in greater detail, by
adding more experimental results and by making the wordification methodology
publicly available through its implementation as a reusable workflow in a cloud-
based web data mining platform ClowdFlows[6], allowing for methodology reuse
and experiment repeatability.

This paper presents the methodology and the results of experiments on two
real-life relational databases: a collection of best and worst movies from the
Internet Movie DataBase (IMDB) and a database of Slovenian traffic accidents.
Furthermore, we provide a critical evaluation of the classification results (on
the mutagenesis database) and running times of the wordification methodology,
compared to another propositionalization technique RSD [17].

The paper is organized as follows. Section 2 presents the wordification method-
ology. The implementation of the methodology is described in Section 3. Sec-
tion 4 presents the experimental results and Section 5 concludes the paper by
presenting the plans for further work.

2 Wordification

This section presents the wordification methodology, and illustrates it with a
simple example.

The transformation from a relational database to a text corpus is performed as
illustrated in Figure 1. One text document represents one individual (i.e., one en-
try of the main table) of the initial relational database and the features (attribute
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Fig. 1. The transformation from a relational database to a text corpus. One text docu-
ment represents one individual (i.e., one entry of the main table) of the initial relational
database and the features (attribute values) are taken as words of this document.

values) are taken as words of this document. One document is constructed simply
as a list of attribute-value pairs: words (or features) constructed as a combination
of a table name and the attribute name with its discrete (or discretized) value:

[table name] [attribute name] [value]. (1)

Such constructs are called word-items or witems in the rest of the paper. Note
that values of every non-discrete attribute need to be discretized beforehand in
order to be able to represent them as word-items. For each individual, the word-
items are first generated for the main table and then for each entry from the
additional tables, and finally joined together according to the relational schema
of the database.

In the described transformation a loss of information occurs as a consequence
of building a “document” for each instance (an individual, i.e., a row in the
main table) by concatenating all word-items from multiple instances (rows) of
the connected tables to a single document. To overcome this loss, we extend
the initial document construction step of our wordification methodology [12] by
concatenating to the document also n-grams of word-items, constructed out of
pairs and triplets of word-items. These concatenations of elementary word-items
represent features that occur together in the instances/rows of the joined tables.
In general, n-gram construction is performed by taking every combination of
length n of word-items from the set of all word-items corresponding to the given
individual, and concatenate them as follows:

[witem1] [witem2] ... [witemn], (2)

where each word-item is a combination of the table’s name, name of the attribute
and its discrete value. We concatenate the witems in a predetermined order.

Because we do not explicitly use existential variables in our new features
(word-items), we instead rely on the Term Frequency-Inverse Document Fre-
quency (TF-IDF) measure to implicitly capture the importance of a word-item
for a given individual. In the context of text mining, TF-IDF value reflects how
representative is a certain word (word-item) for a given document (individual).
In the rest of this section, for simplicity, we refer to individuals as documents,
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and to word-items as witems or words. For a given witem w in document d from
corpus D, the TF-IDF measure is defined as follows:

tfidf(w, d) = tf(w, d) × log
|D|

|{d ∈ D : w ∈ d}| , (3)

where tf(·) represents the number of times w appears in document d. In other
words, a witem with a high TF-IDF value will be considered important for
the given individual provided that it is frequent within this document and not
frequent in the entire corpus. In other words, the weight of a witem gives a
strong indication of how relevant is the word-item for the given document. The
TF-IDF weights can then be used either for filtering out word-items with low
importance or using them directly by a propositional learner.

The technique is illustrated on a simplified version of the well-known East-
West trains domain [10], where the input database consists of two tables shown
in Table 1; we have one east-bound and one west-bound train, each with two
cars with certain properties. The Train table is the main table and the trains
are the individuals. We want to learn a classifier to determine the direction of
an unseen train. For this purpose the direction attribute is not preprocessed and
is only appended to the resulting feature vector (list of word-items).

Table 1. Example input for the standard East-West trains domain

Train

tid direction

1 east
2 west

Car

cid tid shape roof wheels

1 1 rectangle none 2
2 1 rectangle peaked 3
3 2 rectangle none 2
4 2 hexagon flat 2

First, the corresponding two documents (one for each train) are generated,
as shown in Figure 2. After this, the documents are transformed into a Bag-Of-
Words representation by calculating the TF-IDF values for each word of each
document using Equation 3, with the class attribute column appended to the
transformed Bag-Of-Words table. For simplicity, only unigrams are shown in this
example.

1 [car shape rectangle, car roof none, car wheels 2, car shape rectangle,
car roof peaked, car wheels 3], class: east

2 [car shape rectangle, car roof none, car wheels 2, car shape hexagon,
car roof flat, car wheels 2], class: west

Fig. 2. The database from Table 1 in document representation
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3 Implementation

We implemented the wordification methodology in a cloud-based web platform,
named ClowdFlows [6]. ClowdFlows, in contrast to other data mining platforms,
runs in a browser, which in terms of crowdsourcing, provides researchers with an
easy way to expose and share their data, workflows and results. ClowdFlows al-
lows researchers to seamlessly integrate different implementations of algorithms,
tools and web services into a coherent workflow that can be executed in a cloud-
based application. Existing data mining workflow components are separated into
modules (e.g., Orange [2] module, Weka [16] module, NLP module, ILP module,
etc.), which are the sets of components designed for diverse tasks.

The existing ClowdFlows ILP module includes components, such as the pop-
ular ILP system Aleph [14], as well as RSD [17] and SDM [15]. Aleph is an
ILP toolkit by itself with a wide range of uses: from decision tree learning to
feature generation and first-order rule induction. Relational Subgroup Discovery
(RSD) algorithm implements a propositionalization approach. It starts with a
typical relational ILP domain and converts it into a single-table representation;
this is done by generating a set of first-order features which become attributes
of the propositionalized training examples. Although RSD comes with its own
implementation of the CN2-SD [8] subgroup discovery algorithm, the resulting
table can serve an input into any propositional machine learning or data mining
algorithm.

We have extended the ClowdFlows ILP module with the implementation of
the wordification component, which together with the existing components from
different modules of the ClowdFlows platform forms the entire workflow of the
wordification methodology, as can be seen in Figure 3.

3.1 Workflow

This section describes the main components of the wordification workflow, which
is shown on Figure 3. The implementation allows the users to provide as input
a relational database by connecting to a MySQL database server. First, the user
is required to select the target table from the initial relational database, which
will later represent the main table in the Wordification component of the work-
flow. Second, the user is able to discretize each table using one of the various
discretization techniques provided. These discretized tables are used in the last
part of the workflow—the Wordification widget—where the transformation from
the relational tables to a corpus of documents composed of word-items is per-
formed. In the following paragraphs every component of the presented workflow
is described in more detail.

MySQL Connect. Since relational data is often stored in SQL databases, we use
the MySQL package to access the training data by connecting to a MySQL
database server. The MySQL Connect widget is used for entering informa-
tion required to connect to a database (e.g., user credentials, database ad-
dress, database name, etc.) in order to retrieve the training data from a MySQL
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Fig. 3. ClowdFlows implementation of the wordification methodology

database server and automatically construct the background knowledge and the
training examples.

Database Context. This widget enables a selection of tables and columns that will
be used in the next steps of the methodology. The information is carried to the
connected widgets through the so-called database context objects. These objects
also contain the detected table relationships. In case that the input relational
database does not have preset primary and foreign keys between the tables, the
user is given an option for a simple table connection search through the names
of the attributes.

Database to Orange Table. The task of this widget is to transform the given
database context to an Orange dataset, which is a required step for next com-
ponents in the wordification workflow.

Dataset Discretization. This sole task of this widget is to convert continuous
attributes to categorical. In other words, it discretizes the continuous attributes.
The Dataset Discretization widget supports three discretization methods: using
equal-width intervals, using equal-frequency intervals, and class-aware discretiza-
tion of Fayyad and Irani [3] that uses MDL and entropy to find the best cut-off
points. Dataset Discretization widget can take as an input a single data set (Or-
ange dataset) or a list of multiple datasets. In the latter case, discretization of
all continuous attributes of every dataset is performed.

Wordification. The wordification widget transforms the relational database to a
corpus of documents for the main table. As an input it takes three arguments:
the target (main) table, a list of additional tables and a database context, which
contains the relations between the tables. The wordification widget first indexes
the examples of every table by their primary and foreign keys’ values. This step
is required to improve the speed of data retrieval operations, when searching
for connecting instances from different (connected) tables in the word-item con-
catenation step. Next, recursive document construction for every individual is
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Table 2. Document properties after applying the wordification methodology

Domain Individual #examples #words #words after filtering

IMDB movie 166 7,453 3,234
Accidents accident 102,759 186 79

performed. The algorithm starts on every example of the main table: it creates
word-items for its features, which is followed by concatenations of the word-
items and results of the recursive search through the connecting tables. When
searching along the tree of the connected tables the algorithm stores the re-
sults of subtree word-item concatenations for every instance. Consequently, the
algorithm iterates over every subtree only once.

Text analysis. After the wordification step the user can perform various types
of text analysis, depending on the task at hand (e.g,. text categorization, text
clustering, etc.).

4 Experiments

In Section 4.1 we present our association rule learning experiments on two real-
life relational databases: a collection of best and worst movies from the Internet
Movie DataBase (IMDB) and a database of Slovenian traffic accidents. Addi-
tionally, we performed classification experiments on a more complex and better
researched relational database in the ILP comunity: the mutagenesis dataset.
We provide a critical evaluation of the results and running times of the wordi-
fication methodology, compared to another propositionalization technique RSD
in Section 4.2.

4.1 Association Rule Learning

In the following paragraphs we will present the results of the association rule
learning after applying the wordification methodology. We performed association
rule learning in combination with our wordification approach on two real-life
datasets: the best and worst ranked IMDB movies database and the Slovenian
traffic accidents database Table 2 and Table 3 list the characteristics of both
databases.

The preprocessing procedurewas performed on both databases as follows. First,
the wordification step was applied as described in Section 2. Next, irrelevant fea-
tures (which have the same value across all examples) were removed, resulting in
the reduction of the features to less than half of the original (see Table 2). In order
to prepare the data for association rule mining, we also binarized the data: after
experimenting with different TF-IDF thresholds, features with a corresponding
TF-IDF weight were assigned the value true and false otherwise.
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Table 3. Table properties of the experimental data

IMDB #rows #attributes

movies 166 4
roles 7,738 2
actors 7,118 4

movie genres 408 2
movie directors 180 2

directors 130 3
director genres 243 3

Accidents #rows #attributes

accident 102,756 10
person 201,534 10

IMDB Database. The complete IMDB database is publicly available in the
SQL format1. This database contains tables of movies, actors, movie genres,
directors, director genres.

The evaluation database used in our experiments consists only of the movies
whose titles and years of production exist on IMDB’s top 250 and bottom 100
chart2. The database therefore consisted of 166 movies, along with all of their
actors, genres and directors. Movies present in the IMDB’s top 250 chart were
added an additional label goodMovie, while those in the bottom 100 were marked
as badMovie. Additionally, attribute age was discretized; a movie was marked as
old if it was made before 1950, fairlyNew if it was produced between 1950 and
2000 and new otherwise.

goodMovie ← director genre drama, movie genre thriller,
director name AlfredHitchcock. (Support: 5.38% Confidence: 100.00%)

movie genre drama ← goodMovie, actor name RobertDeNiro.
(Support: 3.59% Confidence: 100.00%)

director name AlfredHitchcock ← actor name AlfredHitchcock.
(Support: 4.79% Confidence: 100.00%)

director name StevenSpielberg ← goodMovie, movie genre adventure,
(Support: 1.79% Confidence: 100.00%) actor name TedGrossman.

Fig. 4. Examples of interesting association rules discovered in the IMDB database

After preprocessing the dataset using the wordification methodology, we per-
formed association rule learning. Frequent item sets were generated using Rapid-
Miner’s [11] FP-growth implementation. Next, association rules for the resulting
frequent item sets were produced. Among all the discovered rules, several inter-
esting rules were found. Figure 4 presents some of the interesting rules selected
by the experts. The first rule states that if the movie’s genre is thriller and is
directed by Alfred Hitchcock, who is also known for drama movies, then the

1 http://www.webstepbook.com/supplements/databases/imdb.sql
2 As of July 2, 2012.

http://www.webstepbook.com/supplements/databases/imdb.sql
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movie is considered as good. The second rule we have selected concludes that
if the movie is good and Robert De Niro acts in it, than it must be a drama.
The third interesting rule we present, shows that Alfred Hitchcock acts only in
the movies he also directs. The last rule concludes, that if Ted Grossman acts
in a good adventure movie, then the director is Steven Spielberg. Note that Ted
Grossman usually plays the role of a stunt coordinator or performer.

Traffic Accident Database. The second dataset consists of all accidents that
happened in Slovenia’s capital city Ljubljana between the years 1995 and 2005.
The data is publicly accessible from the national police department website3. The
database contains the information about accidents along with all the accident’s
participants.

noInjuries← accident trafficDensity rare,
accident location parkingLot. (Support: 0.73% Confidence: 97.66%)

person gender male ← person vehicleType motorcycle.
(Support: 0.11% Confidence: 99.12%)

Fig. 5. Examples of interesting association rules discovered in the accidents database

The data already contained discretized attributes, so further discretization
was not needed. Similarly to the IMDB databse, preprocessing using wordifica-
tion methodology, FP-growth itemset mining and association rule mining were
performed. Figure 4.1 presents some of the interesting rules found in the Slove-
nian traffic accidents dataset.

The first rule indicates that if the traffic is rare and the accident happened in
a parking lot, then no injuries occurred. The second rule implies that whenever
a motorcycle is involved in an accident, a male person is involved.

4.2 Classifier Evaluation on Mutagenesis Data

This section presents a critical evaluation of the wordification methodology. First
we provide a description of the well researched relational database in the ILP
comunity: the mutagenesis dataset. Next, we describe the experiments performed
on this real-world dataset and provide a comparison of the wordification and RSD
propositionalization techniques.

Mutagenesis Dataset. The purpose of the mutagenesis dataset is to pre-
dict the mutagenicity of a set of 230 aromatic and heteroaromatic nitro com-
pounds [1]. Predicting the mutagenesis is an important task as it is much relevant
to the prediction of carcinogenesis. The compounds from the data are known to
be more structurally heterogeneous than in any other ILP dataset of chemical

3 http://www.policija.si/index.php/statistika/prometna-varnost

http://www.policija.si/index.php/statistika/prometna-varnost
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Fig. 6. Classification of text data using the Latino module in ClowdFlows

structures. The database contains 230 compounds of which 138 have positive
levels of mutagenicity and are labelled as “active”. Others have class value “in-
active” and are considered to be negative examples.

We took the datasets of the original Debnath paper [1], where the data was
split into two subsets of data: a 188 compound dataset and a smaller dataset
with 42 compounds. In the following paragraph we describe the required steps
compound classification on the two datasets.

As described in Section 3, the first step in our methodologiy is the prepro-
cessing step of the original tables of the relational database. After experimenting
with different discretization settings equi-distance discretization with 3 intervals
of values was used to discretize the continuous attributes of the mutagenesis
dataset. The wordification propositionalization step was tested with three differ-
ent parameter settings: using elementary witems, 2-grams of witems and 3-grams
of witems. After applying the wordification algorithm, we used ClowdFlow’s
module Latino to categorize the documents in order to perform text classifi-
cation (categorization). Figure 6 shows the constructed classification workflow
after applying the wordification propositionalization. First, the BOW Space wid-
get was used to transform the documents into a Bag-Of-Words representation by
calculating the TF-IDF values for each word of each document using Equation 3.
The class attribute column was appended to the transformed Bag-Of-Words ta-
ble. The minimum word frequency was set to 2–words that occurred only once in
all documents were discarded. TF-IDF values were also calculated for bigrams of
words. Stop word removal was not required, as all words were artificially created.

As shown in Figure 7, concurrent evaluation of the RSD propositionalization
step was performed. The RSD widget contstructed features with a specified
maximum length of a feature body of 8. None of the constructed feature were
discarded as the minimum example coverage of the algortihm was set to 1.

To perform the classification on the constructed propositional datasets we
used the standard Naive Bayes classifier. Classification accuracies of the al-
gorithm for the two datasets (the 188 example and 42 example mutagenesis
datasets) were estimated with the leave-one-out validation.

The results (Table 4) of the experiments on the mutagenesis datasets show
that wordification methodology achieved scores comparable to a more complex
propositionalization technique RSD, while the run-time required for transform-
ing the database into its propositional form was much lower. Using 2-grams
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Fig. 7. The evaluation workflow

and 3-gram witems aimed at improving the classification accuracies, though re-
sulting also in longer run-times of the propositionalization step. Similar results
were achieved on the smaller (42 example) mutagenesis dataset, though with a
smaller run-time difference of the propositionalization step when comparing the
two methodologies. We could therefore argue that the added value of the wordifi-
cation methodology would show more drastically on even larger datasets, where
other propositionalization approaches, because of their higher time complexity,
might ran into difficulties when trying to obtain the results in sufficient time.

As shown on Figure 7, the results of Confusion Matrix Computations widgets
(precision, recall, and F-score) are extracted using the Extract Results widget
and stored on the outputs of these widgets in forms of lists. These results are
concatenated in the Create list widget. Next, the VIPER (Visual Performance
Evaluation) [13] widget displays the results as a point in the two dimensional
precision-recall space for the positive examples.

Figure 8 presents the VIPER performance visualization, evaluating the stan-
dard Naive Bayes after applying wordification and RSD as propositionaliza-
ton techniques. The results are presented in the so-called precision-recall space,
where each point represents an evaluation of an algorithm. Points closer to the
upper-right corner have higher precision and recall values. F-measure values are

Table 4. Classifier evaluation on different databases

Database Algorithm CA Precision Recall F-measure Runtime

Mutagenesis 188 Wordification (3-gram witems) 0.723 0.708 1.000 0.829 7.8
Mutagenesis 188 Wordification (2-gram witems) 0.723 0.708 1.000 0.829 7.7
Mutagenesis 188 Wordification (1-gram witems) 0.718 0.702 1.000 0.825 7.4
Mutagenesis 188 RSD 0.745 0.798 0.824 0.811 21.3

Mutagenesis 42 Wordification (3-gram witems) 0.881 1.000 0.615 0.762 5.1
Mutagenesis 42 Wordification (2-gram witems) 0.881 1.000 0.615 0.762 5.1
Mutagenesis 42 Wordification (1-gram witems) 0.881 1.000 0.615 0.762 4.9
Mutagenesis 42 RSD 0.881 0.833 0.769 0.800 5.7
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Fig. 8. The VIPER visualization showing evaluations of the standard Naive Bayes
algorithm after applying wordification and RSD as propositionalizaton techniques on
the 188 example mutagenesis dataset

presented as isolines (contour lines) in the precision-recall space, which allows a
simple comparison of algorithm performances. From the results shown on figure 8
we can conclude that there is not much difference between RSD and wordification
as they are located on the same isoline. Using the wordification methodology a
higher percentage of positive examples were retrieved (higher recall score) com-
pared to the approach using RSD, while the latter correctly classified a slightly
higher percentage of positive examples (higher precision score).

5 Conclusion

This paper presents a novel propositionalization technique called wordification
which aims at producing simple and easy to understand features. This methodol-
ogy is inspired by text mining and can be seen as a transformation of a relational
database into a corpus of documents. As is typical for propositionalization meth-
ods, after the wordification step any propositional data mining algorithm can be
applied.
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We have presented initial results on two real-life databases. Namely, best and
worst movies from the IMDB database and a database of Slovenian traffic ac-
cidents. Using association rule learning on the IMDB data we found interesting
and easily interpretable patterns using our methodology. The results of the ex-
periments on the mutagenesis datasets confirm the most notable advantage of
the presented technique–its greater scalability, as the propositionalization step
is done in time linear to the number of attributes times the number of examples.
The wordification methodology achieves comparable results to more complex
propositionalization techniques with less time required for the propositionaliza-
tion step. We expect that the value of the wordification methodology will prove
to be even more favorable on even larger datasets, where other propositional-
ization approaches may show their limitations when trying to get results in a
limited time constraints.

In future work we plan to apply the methodology on larger databases to
further explore its advantages and potential limitations, and will experimen-
tally compare the proposed methodology with other relational data mining tech-
niques, such as RELF [7] and Aleph [14].
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Abstract. Label Ranking (LR) problems, such as predicting rankings of
financial analysts, are becoming increasingly important in data mining.
While there has been a significant amount of work on the development
of learning algorithms for LR in recent years, pre-processing methods
for LR are still very scarce. However, some methods, like Naive Bayes
for LR and APRIORI-LR, cannot deal with real-valued data directly.
As a make-shift solution, one could consider conventional discretization
methods used in classification, by simply treating each unique ranking
as a separate class. In this paper, we show that such an approach has
several disadvantages. As an alternative, we propose an adaptation of
an existing method, MDLP, specifically for LR problems. We illustrate
the advantages of the new method using synthetic data. Additionally,
we present results obtained on several benchmark datasets. The results
clearly indicate that the discretization is performing as expected and in
some cases improves the results of the learning algorithms.

1 Introduction

A reasonable number of learning algorithms has been created or adapted for
LR in recent years [15,11,7,4,5]. LR studies the problem of learning a mapping
from instances to rankings over a finite number of predefined labels. It can be
considered as a variant of the conventional classification problem [3]. However,
in contrast to a classification setting, where the objective is to assign examples
to a specific class, in LR we are interested in assigning a complete preference
order of the labels to every example. An additional difference is that the true
(possibly partial) ranking of the labels is available for the training examples.

Discretization, from a general point of view, is the process of partitioning a
given interval into a set of discrete sub-intervals. It is usually used to split con-
tinuous intervals into two or more sub-intervals which can be treated as nominal
values. This pre-processing technique enables the application to numerical data
of learning methods that are otherwise unable to process them directly (like
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Bayesian Networks and Rule Learning methods). In theory, a good discretiza-
tion should have a good balance between the loss of information and the number
of partitions [13].

Discretization methods come in two flavors, depending on whether they do, or
do not involve target information. These are usually referred to as supervised and
unsupervised, respectively. Previous research found that the supervised methods
produce more accurate discretization than unsupervised methods [8]. To the best
of our knowledge, there are no supervised discretization methods for LR. Hence,
our proposal for ranking-sensitive discretization is a useful contribution for the
LR community.

We propose an adaptation of a well-known supervised discretization method,
the Minimum Description Length Principle (MDLP) [10], for LR. The method
uses an entropy-like measure for a set of rankings based on a similarity measure
for rankings. Despite this basic heuristic approach, the results observed show
that the method is behaves as expected in an LR setting.

The paper is organized as follows: Section 2 introduces the LR problem and the
task of association rule mining. Section 3 introduces discretization and Section 4
describes the method proposed here. Section 5 presents the experimental setup
and discusses the results. Finally, Section 6 concludes this paper.

2 Label Ranking

The LR task is similar to classification. In classification, given an instance x
from the instance space X, the goal is to predict the label (or class) λ to which
x belongs, from a pre-defined set L = {λ1, . . . , λn}. In LR the goal is to predict
the ranking of the labels in L that are associated with x. We assume that the
ranking is a total order over L defined on the permutation space Ω. A total
order can be seen as a permutation π of the set {1, . . . , n}, such that π(a) is the
position of λa in π.1

As in classification, we do not assume the existence of a deterministic X → Ω
mapping. Instead, every instance is associated with a probability distribution over
Ω. This means that, for each x ∈ X, there exists a probability distribution P (·|x)
such that, for every π ∈ Ω, P (π|x) is the probability that π is the ranking asso-
ciated with x. The goal in LR is to learn the mapping X → Ω. The training data
is a set of instances T = {〈xi, πi〉}, i = 1, . . . , n, where xi are the independent
variables describing instance i and πi is the corresponding target ranking.

Given an instance x with label ranking π, and the ranking π̂ predicted by an
LR model, we need to evaluate the accuracy of the prediction. For that, we need
a loss function on Ω. One such function is the number of discordant label pairs,

D(π, π̂) = #{(i, j)|π(i) > π(j) ∧ π̂(i) < π̂(j)}

which, if normalized to the interval [−1, 1], is equivalent to Kendall’s τ coefficient
[12], which is a correlation measure where D(π, π) = 1 and D(π, π−1) = −1
(here, π−1 denotes the inverse order of π).

1 This assumption may be relaxed [3].
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The accuracy of a model can be estimated by averaging this function over a
set of examples. This measure has been used for evaluation in recent LR studies
[3] and, thus, we will use it here as well. However, other correlation measures,
like Spearman’s rank correlation coefficient [16], can be used equally well, were
one so inclined.

Given the similarities between LR and classification, one could consider
workarounds that treat the label ranking problem essentially as a classification
problem.

Let us define a basic pre-processing method, which replaces the rankings with
classes, as Ranking As Class (RAC).

∀πi ∈ Ω, π → λi

This method has a number of disadvantages, as discussed in the next section, but
it allows the use of all pre-processing and prediction methods for classification
in LR problems. However, as we show in this work, this approach is neither the
most effective nor the most accurate.

2.1 Association Rules for Label Ranking

Label Ranking Association Rules (LRAR) [7] are a straightforward adaptation
of class Association Rules (CAR):

A → π

where A ⊆ desc (X) and π ∈ Ω. Similar to how predictions are made in CBA
(Classification Based on Associations) [14], when an example matches the rule
A → π, the predicted ranking is π.

If the RAC method is used, the number of classes can be extremely large, up
to a maximum of k!, where k is the size of the set of labels, L. This means that
the amount of data required to learn a reasonable mapping X → Ω is too big.

Secondly, this approach does not take into account the differences in nature
between label rankings and classes. In classification, two examples either have
the same class or not, whereas in LR some rankings are more similar than others,
as they only differ in one or two swaps or labels. In this regard, LR is more similar
to regression than to classification. This property can be used in the induction
of prediction models. In regression, a large number of observations with a given
target value, say 5.3, increases the probability of observing similar values, say
5.4 or 5.2, but not so much for very different values, say -3.1 or 100.2. A similar
reasoning was done for LR in [7]. Let us consider the case of a data set in which
ranking πa = {A,B,C,D,E} occurs in 1% of the examples. Treating rankings
as classes would mean that P (πa) = 0.01. Let us further consider that the
rankings πb = {A,B,C,E,D}, πc = {B,A,C,D,E} and πd = {A,C,B,D,E}
occur in 50% of the examples. Taking into account the stochastic nature of these
rankings [3], P (πa) = 0.01 seems to underestimate the probability of observing
πa. In other words it is expected that the observation of πb, πc and πd increases
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the probability of observing πa and vice-versa, because they are similar to each
other.

This affects even rankings which are not observed in the available data. For
example, even though πe = {A,B,D,C,E} is not present in the data set it
would not be entirely unexpected to see it in future data.

Similarity-Based Support and Confidence. Given a measure of similarity
between rankings s(πa, πb), the support of the rule A → π is defined as follows:

suplr(A → π) =

∑
i:A⊆desc(xi)

s(πi, π)

n

This is, essentially, assigning a weight to each target ranking in the training,
πi, data that represents its contribution to the probability that π may be ob-
served. Some instances xi ∈ X give full contribution to the support count (i.e.,
1), while others may give partial or even a null contribution.

Any function that measures the similarity between two rankings or permuta-
tions can be used, such as Kendall’s τ or Spearman’s ρ. The function used here
is of the form:

s(πa, πb) =

{
s′(πa, πb) if s′(πa, πb) ≥ θsup

0 otherwise
(1)

where s′ is a similarity function. This general form assumes that below a given
threshold, θsup, it is not useful to discriminate between different similarity values,
as they are so different from πa. This means that, the support sup of 〈A, πa〉 will
have contributions from all the ruleitems of the form 〈A, πb〉, for all πb where
s′(πa, πb) > θsup.

The confidence of a rule A → π is obtained simply by replacing the measure
of support with the new one.

conflr (A → π) =
suplr (A → π)

sup (A)

Given that the loss function that we aim to minimize is known beforehand, it
makes sense to use it to measure the similarity between rankings. Therefore, we
use Kendall’s τ . In this case, we think that θsup = 0 would be a reasonable value,
given that it separates the negative from the positive contributions. Table 1
shows an example of a label ranking dataset represented following this approach.

To present a more clear interpretation, the example given in Table 1, the
instance

({A1 = L,A2 = XL,A3 = S}) (TID = 1)

contributes 1 to the support count of the ruleitem:

〈{A1 = L,A2 = XL,A3 = S}, π3〉
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Table 1. An example of a label ranking dataset to be processed by the APRIORI-LR
algorithm

π1 π2 π3

TID A1 A2 A3 (1, 3, 2) (2, 1, 3) (2, 3, 1)

1 L XL S 0.33 0.00 1.00
2 XXL XS S 0.00 1.00 0.00
3 L XL XS 1.00 0.00 0.33

The same instance will also give a small contribution of 0.33 to the support
count of the ruleitem

〈{A1 = L,A2 = XL,A3 = S}, π1〉

given their similarity. On the other hand, no contribution is given to the count
used for the support of ruleitem

〈{A1 = L,A2 = XL,A3 = S}, π2〉

which makes sense as they are clearly different.

3 Discretization

Several Data Mining (DM) algorithms can improve their performance by us-
ing discretized versions of continuous-valued attributes [9]. Given that a large
number of algorithms, like the Naive Bayes classifier, cannot work without dis-
cretized data [13] and the majority of real datasets have continuous variables, a
good discretization method can be very relevant for the accuracy of the models.
Discretization methods deal with continuous variables by partitioning them into
intervals or ranges. Then, each of these intervals can be interpreted as a nominal
value by DM algorithms.

The main issue in discretization is the choice of the intervals because a continu-
ous variable can be discretized in an infinite number of ways. An ideal discretiza-
tion method finds a reasonable number2 of cut points that split the data into
meaningful intervals. For classification datasets, a meaningful interval should be
coherent with the class distribution along the variable.

Discretization approaches can be divided into two groups:

Supervised vs Unsupervised. When dealing with classification datasets the dis-
cretization methods can use the values of the target variable or not. These are re-
ferred to as supervised and unsupervised respectively. The unsupervised methods
ignore the classes of the objects and divide the interval into a user-defined num-
ber of bins. Supervised methods take into account the distribution of the class
labels in the discretization process. Previous research states that the supervised
methods tend to produce better discretizations than unsupervised methods [8].

2 An extreme discretization approach would create one nominal value for each contin-
uous value but this is naturally not a reasonable approach.
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Top-down vs Bottom-up. Discretization methods with a Top-down or Bottom-
up approach start by sorting the dataset with respect to the variable which will
be discretized. In the Top-down approach, the method starts with an interval
containing all points. Then, it recursively splits the intervals into sub-intervals,
until a stopping criteria is reached.

In the Bottom-up approach, the method starts with the maximum number of
intervals (i.e., one for each value) and then iteratively merges them recursively
until a stopping criteria is satisfied.

3.1 Entropy Based Methods

Several methods, such as [6,10], perform discretization by optimizing entropy.
In classification, class entropy is a measure of uncertainty in a finite interval
of classes and it can be used in the search of candidate partitions. A good
partition is such that it minimizes the overall entropy in its subsets. Likewise,
in discretization, a good partition of the continuous variable minimizes the class
entropy in the subsets of examples it creates. In [10] it was shown that optimal
cut points must be between instances of distinct classes. In practical terms, for
all possible partitions the class information entropy is calculated and compared
with the entropy without partitions. This can be done recursively until some
stopping criterion is satisfied. The stopping criteria can be defined by a user or
by a heuristic method like MDLP.

4 Discretization for Label Ranking

A supervised discretization method for LR should take into account the prop-
erties of rankings as target variables. In this work, we propose an adaptation of
the Shannon entropy for rankings. This entropy will be used in conjuction with
MDLP as stopping criterion, the same way it is used for classification. First we
describe our adaptation of the entropy for rankings and then we show how to
integrate it with MDLP.

The entropy of classes presented in [10], which derives from the Shannon
entropy, is defined as:

Ent (S) = −
k∑

i=1

P (Ci, S) log (P (Ci, S)) (2)

where P (Ci, S) stands for the proportion of examples with class Ci in a subset
S and k is the total number of classes in S.

P (Ci, S) =
#Ci

N

N is the number of instances in the subset S.
As shown in equation 2 the Shannon entropy of a set of classes depends on

the relative proportion of each class.
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4.1 Entropy of Rankings

In this section, we explain how to adapt the entropy of classes used in [10] for
LR. We start by motivating our approach with a discussion of the use in LR of
the concept of entropy from classification. We then show in detail our heuristic
adaptation of entropy for rankings.

To better motivate and explain our approach, we introduce a very simple
synthetic dataset, Dex, presented in Table 2. In this test dataset we have eight
distinct rankings in the target column π. Even though they are all distinct,
the first five are very similar (the label ranks are mostly ascending), but very
different from the last three (mostly descending ranks). Without any further
considerations, it is natural to assume that an optimal split point for Dex should
lie between values 0.5 and 0.6 (instances 5 and 6).

Table 2. Example dataset Dex: Small artificial dataset with some noise in the rankings

TID Att π λ

1 0.1 (1,2,4,3,5) a
2 0.2 (1,2,3,4,5) b
3 0.3 (2,1,3,4,5) c
4 0.4 (1,3,2,4,5) d
5 0.5 (1,2,3,5,4) e
6 0.6 (5,4,3,1,2) f
7 0.7 (4,5,3,2,1) g
8 0.8 (5,3,4,2,1) h

In the RAC approach, the rankings are transformed into eight distinct classes
as shown in column λ. As the table shows, the natural split point identified
earlier is completely undetectable in column λ.

As shown in equation 2, the entropy of a set of classes depends on the relative
proportion of a class. If we measure the ranking proportion the same way, we
get:

P (πi, S) = 1/8, ∀πi ∈ Dex

We adapt this concept using the same ranking distance-based approach used
to adapt the support for LRAR in APRIORI-LR [7] (equation 3). In fact, a
similar line of reasoning as the one in Section 2.1 can be followed here. The
uncertainty associated with a certain ranking decreases in the presence of similar
– although not equal – rankings. Furthermore, this decrease is proportional to
that distance.

Pπ (πi, S) =

∑N
j=1 s (πi, πj)∑K

i=1

∑N
j=1 s (πi, πj)

(3)

Where K is the number of distinct rankings in S.
As in [7], we use Kendall τ and the negative correlations are ignored (sec-

tion 2.1). Note that a parallel can also be established with the frequentist view
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used in entropy. Since Kendall τ is computed from the proportion of concor-
dant pairs of labels, this can be seen as the proportion of concordant pairwise
comparisons.

However, this approach alone is not enough to give a fair measure for the
entropy of rankings. The entropy of the set of classes {λ1, λ2} is the same as
{λ1, λ3} or {λ2, λ3}. This happens because, λ1 is as different from λ2 as λ2 is
from λ3. However, in LR, distinct rankings can range from completely different
to very similar. Considering these two sets:

1) {(1, 2, 3, 4, 5) , (1, 2, 3, 5, 4)}

2) {(1, 2, 3, 4, 5) , (5, 4, 3, 2, 1)}
and since the ranking proportions will be the same in 1) and 2), the entropy will
be the same. Also, from a pairwise-comparison point of view, the two similar
rankings in set 1) match 14 pairs from a total of 15, while the rankings in 2) do
not match any.

Considering that entropy is a measure of disorder, we believe that it makes
sense to expect lower entropy for sets with similar rankings and bigger entropy
for sets with completely different rankings.

For this reason we propose to add an extra parameter in the formula of entropy
for rankings (equation 4) to force lower values on sets of similar rankings. This
means we have to adapt Shannon entropy for a set of rankings to be more
sensitive to the similarity of the rankings present in the set.

EntLR (S) =

K∑
i=1

P (πi, S) log (P (πi, S)) log (Q (πi, S)) (4)

where Q (πi, S) is the average similarity of the ranking πi with the rankings in
the subset S defined as:

Q (πi, S) =

∑N
j=1 s (πi, πj)

N
(5)

For the same reason we find noise in independent variables, it is expected to
observe the same phenomenon in ranking data. As the number of labels increases,
we expect to observe it with more frequency, since the number of possible com-
binations for k labels grows to k!. As an example, instances 6, 7 and 8 in Dex

can correspond to observations of the same “real” ranking, say (5, 4, 3, 2, 1), but
with some noise.

This measure of entropy for rankings we propose here will make the discretiza-
tion method more robust to noise present in the rankings. In order to support
this statement we provide an analysis of the behavior of the method with induced
and controlled noise.

The results presented do not include an analysis on partial orders. Given that,
Kendall τ is a measure of the proportion of the concordant pairs of labels, this
entropy measure can still work with partial orders, as long as there is at least
one pairwise per instance.
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4.2 MDLP for LR

MDLP [10] is a well known method used to discretize continuous attributes for
classification learning. The method tries to maximize the information gain and
considers all the classes of the data as completely distinct classes. For this reason,
we believe that the latter, as is, is not suitable for datasets which have rankings
instead of classes in the target.

MDLP measures the information gain of a given split point by comparing
the values of entropy. For each split point considered, the entropy of the initial
interval is compared with the weighted sum of the entropy of the two resulting
intervals. Given an interval S:

GainLR (A, T ;S) = EntLR (S)− |S1|
N

EntLR (S1)−
|S2|
N

EntLR (S2)

Where |S1| and |S2| is the number of instances in the left side (S1) and the
number of instances in the right side (S2) of the cut point T , respectively, in the
attribute A.

After the adaptation of entropy for sets of rankings proposed in Section 4.1,
Minimum Description Length Principle for Ranking data (MDLP-R) comes in
a natural way. We only need to replace the entropy for rankings in the MDLP
definition presented in [10], which we transcribe below:

MDLPC Criterion The partition induced by a cut point T for a set S of N
examples is accepted iff

GainLR (A, T ;S) >
log2 (N − 1)

N
+

ΔLR (A, T ;S)

N

and it is rejected otherwise.
Where ΔLR (A, T ;S) is equal to:

log2
(
3K − 2

)
− [KEntLR (S)−K1EntLR (S1)−K2EntLR (S2)]

5 Experimental Results

Since what we are proposing is essentially a pre-processing method, the quality
of its discretization is hard to measure in a direct way. For this reason, the
experimental setup is divided in two parts. In the first part we present the
results obtained from controlled artificial datasets that should give an indication
whether the method is performing as expected. The second part shows results of
the APRIORI-LR algorithm [7] run on datasets from the KEBI Data Repository
at Philipps University of Marburg [3].

Table 3 compares the intervals discretized by the MDLP-R and MDLP in
dataset Dex. As expected, since there are eight distinct rankings, the RAC ap-
proach with MDLP for classification will see eight distinct classes and break the
dataset into eight intervals. MDLP-R, however, can identify the similarities of
rankings, and only breaks the dataset into two intervals.

Table 4 gives a description of the benchmark datasets from KEBI Data Repos-
itory at Philipps University of Marburg [3].
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Table 3. Discretization results using the MDLP and MDLP-R methods

Partitions
TID Att π λ MDLP-R MDLP

1 0.1 (1,2,4,3,5) a 1 1
2 0.2 (1,2,3,4,5) b 1 2
3 0.3 (2,1,3,4,5) c 1 3
4 0.4 (1,3,2,4,5) d 1 4
5 0.5 (1,2,3,5,4) e 1 5
6 0.6 (5,4,3,1,2) f 2 6
7 0.7 (4,5,3,2,1) g 2 7
8 0.8 (5,3,4,2,1) h 2 8

Table 4. Summary of the datasets

Datasets type #examples #labels #attributes

autorship A 841 4 70
bodyfat B 252 7 7
calhousing B 20640 4 4
cpu-small B 8192 5 6
elevators B 16599 9 9
fried B 40769 5 9
glass A 214 6 9
housing B 506 6 6
iris A 150 3 4
segment A 2310 7 18
stock B 950 5 5
vehicle A 846 4 18
vowel A 528 11 10
wine A 178 3 13
wisconsin B 194 16 16

5.1 Results on Artificial Datasets

Results obtained with artificial datasets can give more insight about how the
discretization method performs. The synthetic datasets presented in this sec-
tion are variations of a simple one which has only two initial rankings π1 =
(1, 2, 3, 4, 5, 6, 7, 8, 9, 10) and π2 = (10, 9, 8, 7, 6, 5, 4, 3, 2, 1). To make it as simple
as possible, it has only one independent variable which varies from 1 to 100. The
first 60 instances are variations of π1 and the remaining are variations of π2.

In order to test the advantages of our method in comparison with the RAC
approach, we intentionally introduced noise in the target rankings, by performing
several swaps. Each swap is an inversion of two consecutive ranks in every ranking
of the data. For each ranking the choice of the pairs to invert is random. Swaps
will be done repeatedly, to obtain different levels of noise.
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Fig. 1. Accuracy of the APRIORI-LR
(expressed in terms of Kendall τ ) as a
function of the number of swaps, for
MDLP (black) and MDLP-LR (blue)
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Fig. 2. Standard deviation of the accuracy
of APRIORI-LR (in terms of Kendall τ )
after discretization with MDLP-R (blue)
and MDLP (black)

We performed an experiment which varies the number of swaps from 0 to 100.
The greater the number of consecutive swaps, the more chaotic the dataset will
be, and hence more difficult to discretize.

Figure 1 compares the accuracy of APRIORI-LR with two different discretiza-
tion methods, MDLP and MDLP-R. The graph, clearly indicates that the dis-
cretization with MDLP-R (blue line) leads to better results for APRIORI-LR,
than with MDLP after a RAC transformation . While for the first cases the
difference is not so evident, as the noise increases, MDLP-R gives a greater
contribution.

However, if we analyze Figure 2 there is extra information in favor of MDLP-
R. The standard deviation of the 10 runs of the 10-fold cross-validation is zero
in the presence of small amounts of noise (until approximately 10 swaps). This
means that, in a scenario with reasonable noise in rankings, if one decides to use
MDLP-R there are more chances to get the best result than with MDLP.

One great advantage of our method in this experiment can be seen in Figure 3.
In particular, for any number of swaps until 20, our method only makes one par-
tition which means that the split point choice is also invariant to a reasonable
amount of noise. This will result in a small number of rules generatedbyAPRIORI-
LR as supported by the graph in Figure 4. In other words, MDLP-R makes
APRIORI-LR much more efficient because it only needs to create approximately
1/10 of the rules to obtain the same accuracy.

In Figure 5 we can see the percentage of instances from the test set that were
not ranked with the default rule. Since the minimum confidence was set to 50%
from this graph we can conclude that ARIORI-LR with MDLP is decreasing
the number of rules with confidence equal or higher than 50%. Thus, MDLP-R
creates more meaningful intervals which lead to higher confidence LRAR.
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0 20 40 60 80 100

10
20

30
40

#Swaps

#P
ar

tit
io

ns

Fig. 3. Comparison of the average number of partitions generated by MDLP-R (blue)
and MDLP (black)

Additionally, in Figure 3 it is clear that, from a certain point, MDLP is no
longer able to make the distinction of the target attributes and so the average
number of partitions stays constant. On the other hand, the number of partitions
by MDLP-R increases as the noise increases too, which is an indicator that our
method is able to perform discretization even in complex situations.

5.2 Results on Benchmark Datasets

The evaluation measure is Kendall’s τ and the performance of the method was
estimated using ten-fold cross-validation. For the generation of Label Ranking
Association Rules (LR-AR) we used CAREN [2].

The similarity parameters used for the experiments are the same as used in
[7]. The minimum support (minsup) was set to 0.1%. However, in some datasets,
namely those with a larger number of attributes, frequent rule generation can
be a very time consuming task. In this case, minsup was set to a larger value,
1% or higher.

When the algorithm cannot find at least one LRAR to rank a new instance, a
default ranking is used. Since the usage of the default rule is only used as a last
resourt, the minimum confidence (minconf ) was adjusted with the same method
used in [7] for parameter tunning. The latter aims to increase the percentage of
test examples ranked without recourse to the default rule. This percentage is
shown in column M in Table 5.

Table 5 shows that both methods obtain similar results in benchmark datasets.
As we observed in the results from artificial datasets, the number of rules
generated after a MDLP-R discretization is higher than with MDLP in more
noisy/complex datasets. This is due to a higher number of partitions. The same
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Fig. 4. Comparison of the number of rules generated by APRIORI-LR after discretiza-
tion with MDLP-R (blue) and MDLP (black)
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Fig. 5. Comparison of the percentage of instances from the test set that were not
ranked with the default rule. MDLP-R (blue) MDLP (black).

phenomenon is also clear in Table 5 where the number of rules is generally higher
with a MDLP-R discretization.

A baseline method uses the default LRAR, which is a rule with the average
ranking, and the accuracy is presented in column τbaseline as show in Table 5
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Table 5. Results obtained with MDLP discretization and with MDLP-R discretization
on bechmark datasets

MDLP MDLP-Ranking
τ τbaseline minsup minconf #rules M τ τbaseline minsup minconf #rules M

authorship .666 .568 15 90 14975 100% .691 -568 1.5 100 6010 100%
bodyfat .063 -.063 0.1 70 17135 100% .066 -.063 0.1 65 23415 100%
calhousing .329 .048 0.1 35 488 100% .304 .048 0.1 30 1315 100%
cpu-small .418 .234 0.1 35 326 100% .458 .234 0.1 40 3888 100%
elevators .648 .288 0.1 60 291 98% .670 .288 0.1 60 5681 98%
fried .802 -.002 0.1 55 8257 97% .735 -.002 0.1 100 10445 100%
glass .817 .684 0.1 80 168 100% .860 .684 0.1 100 1686 100%
housing .779 .053 0.1 65 420 100% .809 .072 0.1 70 1284 100%
iris .962 .089 0.1 85 36 100% .934 .089 0.1 80 41 100%
segment .898 .371 1 85 5110 100% .890 .371 1 80 2888 100%
stock .894 .072 0.1 80 1197 100% .890 .072 0.1 80 2980 100%
vehicle .847 .179 0.1 90 35085 100% .835 .179 0.1 100 140051 100%
vowel .802 .195 0.1 100 7593 100% .632 .195 0.1 100 15606 100%
wine .937 .329 0.1 100 1192 100% .877 .329 0.1 100 3666 100%
wisconsin .321 -.031 0.1 100 18223 100% .271 -.031 0.1 100 16799 100%

6 Conclusions

In his paper we present a simple adaptation of the supervised discretization
method, MDLP, for LR. This work was motivated by the lack of supervised
discretization methods to deal with rankings in the target variable. The results
clearly show that this is a viable LR method.

Our method clearly outperforms MDLP in the experiments with artificial
data. In this work we empirically show that, in simple scenarios, MDLP-R deals
with noisy ranking data accordingly to expected. Hence the latter is more reli-
able, in this kind of situation, than MDLP.

In Section 5.1 there are two sides of the new MDLP-R. In the presence of very
simple LR problems (#swaps ≤ 20), it has less partitions and APRIORI-LR gen-
erates fewer rules thanwithMDLP.On the other hand, inmore complex situations
(#swaps > 20) it has more partitions than MDLP and, consequently, APRIORI-
LR createsmore rules. The latter, in our opinion, cannot be seen as a disadvantage.
The fact that there are more partitions being made means that the method is still
able to identify similar groups of rankings even in very complex cases.

We believe that the measure of entropy for rankings proposed here, despite its
heuristic nature, makes sense and its useful in the LR field. This new measure and
MDLP-R bring new possibilities for processing ranking data and can motivate
the creation of new methods for LR learning that cannot deal with continuous
data. Furthermore, even though it was developed in the context of the LR task,
it can be also applied to other fields such as regression since it is based on a
distance measure such as Kendall τ .

This work uncovered several possibilities that could be better studied in order to
improve the discretization in the LR field. They include: the choice of parameters
in the stopping criterion; the usage of other entropy measures for rankings.

We also believe that it is essential to test the methods on real LR problems
like metalearnig or predicting the rankings of financial analysts [1]. The KEBI
datasets are adapted from UCI classification problems. In terms of real world
applications, these can be adapted to rank analysts, based on their past perfor-
mance and also preferences of radios, based on user’s preferences.
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Abstract. We propose a method to discover a different kind of influential nodes
in a social network, which we call “super-mediators”, i.e., those nodes which
play an important role in receiving the information and passing it to other nodes.
We mathematically formulate this as a difference maximization problem in the
average influence degree with respect to a node removal, i.e., a node that con-
tributes to making the difference large is influential. We further characterize the
property of these super-mediators as having both large influence degree, i.e., ca-
pable of widely spreading information to other recipient nodes, and large reverse-
influence degree, i.e., capable of widely receiving information from other
information source nodes. We conducted extensive experiments using three real
world social networks and confirmed that this property holds. We further investi-
gated how well the conventional centrality measures capture super-mediators. In
short the in-degree centrality is a good measure when the diffusion probability is
small and the betweenness centrality is a good measure when the diffusion prob-
ability is large, but the super-mediators do depend on the value of the diffusion
probability and no single centrality measure works equally well for a wide range
of the diffusion probability.

Keywords: Information diffusion, super-mediator, influence degree, reverse-
influence degree.

1 Introduction

The emergence of Social Media such as Facebook, Digg and Twitter has provided us
with the opportunity to create large social networks, which play a fundamental role in
the spread of information, ideas, and influence. Such effects have been observed in real
life, when an idea or an action gains sudden widespread popularity through “word-of-
mouth” or “viral marketing” effects. This phenomenon has attracted the interest of many
researchers from diverse fields [12], such as sociology, psychology, economy, computer
science, etc.

A substantial amount of work has been devoted to the task of analyzing and
mining information diffusion (i.e., cascading) processes in large social networks
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[16,14,2,1,18,25,3]. Widely used information diffusion models in these studies are inde-
pendent cascade (IC) [4,6,7], linear threshold (LT) [26,27] and their variants
[8,19,5,10,20,21]. These two models focus on different aspects of information diffu-
sion. IC model is sender-centered (information push) and each active node indepen-
dently influences its inactive neighbors with given diffusion probabilities. LT model is
receiver-centered (information pull) and a node is influenced by its active neighbors if
their total weight exceeds the threshold for the node. Basically the former models dif-
fusion process of how a disease spreads and the latter models diffusion process of how
an opinion or innovation spreads.

The main focus of research using these models over the past decade has been on
optimization problems in which the goal is to maximize the spread of information
through a given network, either by selecting a good subset of nodes to initiate the cas-
cade [6,9] or by applying a broader set of intervention strategies such as node and
link additions [17,24]. In particular the former problem is well studied as the influ-
ence maximization problem, i.e., finding a subset of nodes of size K that maximizes the
expected influence degree with K as a parameter. In [23] we proposed a new type of
influence maximization problem which we called “Target selection problem” (to avoid
confusion, we called the original influence maximization problem as “Source selection
problem”). The difference is that the new problem does not assume that the information
is guaranteed to start spreading from the selected target nodes. Rather we send the same
information from outside of the network to the selected targets as a probabilistic pro-
cess. This is closer to a situation in which we send a direct mail to selected customers
expecting that they spread the received information to others. What we found very in-
teresting is that the nodes selected as the solution of the target selection problem were
substantially different from the nodes selected as the solution of the source selection
problem, especially in case of LT model. We attributed the difference to the fact that the
target nodes must not only be able to be influential, i.e., capable of widely spreading
information to other recipients, but also be able to be reverse-influential, i.e., capable of
widely receiving the information from other sources. In a separate context we studied
another type of influential nodes which we called “super-mediators”, i.e., nodes which
play an important role in receiving the information and passing it to other nodes [22].
There, we empirically1 defined the super-mediators to be the nodes that frequently ap-
pear in the long information diffusion sequences that start from a node and are shared
by many of these sequences that starts from different nodes2. The biggest difference of
the present work from [22] is that the present work is model-driven while our previous
work is data-driven, i.e., [22] does not assume any diffusion model but it requires that
abundant observed diffusion sequences are available.

The work in this paper is motivated by these studies. “Source selection problem”
only cares the ability of nodes to spread information. “Target selection problem” cares
also the ability of the nodes to receive information in addition to the ability to spread the
information, but only in the first step of information diffusion chain. Super-mediators
share the same concept as “target selection problem”, but they can be any nodes in the

1 We call it empirical in the sense that the characterization is qualitative and there is no mathe-
matically defined objective function to be optimized.

2 We assume that there are many sequences of different length for each starting node.
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chain of information diffusion process. From this observation, we can mathematically
define the super-mediators as the solution of an optimization problem and rank them.
The influence degree σ(v) of a node v is defined to be the expected number of active
nodes at the end of diffusion process, i.e., nodes that have become influenced due to
information diffusion (see Sec.2 for a more rigorous definition). The average influence
degree of the whole network is defined to be the average ofσ(v) over all nodes in the net-
work. If a node v is a super-mediator, removing this node would substantially decrease
the average influence degree. Thus, the importance of each node as a super-mediator
can be quantified as the difference of the average influence degree with respect to the
node removal.

Here in this paper we use IC model as the information diffusion model and only con-
sider a single node removal, i.e., K = 1, but this optimization problem carries the same
problem of computational complexity of estimating influence degree3. We devised the
bond percolation [9] and pruning [8] algorithms to efficiently estimate the influence de-
gree. In this paper, we further improved these techniques and reduced the computation
time drastically (but this is not our focus in this paper).

We wanted to characterize the property of the super-mediators returned as the solu-
tion of the optimization problem. As mentioned above, there are two important factors:
the ability to spread information and the ability to receive information. The former is
captured by the influence degree. The latter is captured by the reverse-influence degree,
which is a new concept born in this study, i.e., the expected number of initial source
nodes from which the information reaches a node at the end of information diffusion.
Our hypothesis is that the super-mediators should be ranked high in terms of both of
them. We have tested our hypothesis using three real world networks (Enron, Blog and
Wikipedia), and confirmed that this property holds. In case of Enron e-mail network, the
nodes identified as super-mediators are interpretable in the light of open literature. We
further investigated whether the conventional centrality measures can serve as a good
measure to identify the super-mediators. What we found is that the super-mediators de-
pend on the value of the diffusion probability and in short the in-degree centrality is a
good measure when the diffusion probability is small and the betweenness centrality is
a good measure when the diffusion probability is large, and no single centrality measure
works equally well for a wide range of the diffusion probability. It can be said that the
measure we proposed in this paper is a new centrality that can be added to the existing
pool, but the difference is that this measure explicitly considers information diffusion
process while the existing centrality considers only network structure.

The paper is organized as follows. Section 2 gives a brief description of the inde-
pendent cascade model. Section 3 defines super-mediators and gives an algorithm to
find and rank them. Section 4 characterizes the super-mediators and introduces a new
concept “reverse influence degree” and gives an efficient way to compute it. Section 5
reports experimental results and shows that the hypothesis we made holds for the three
networks. Section 6 summarizes what has been achieved in this work and addresses the
future work.

3 If we consider K > 1, the problem becomes more difficult, but we can still use the sub modular
property and the same greedy algorithm as is used in “Source selection problem” with various
tactics, e.g., burnout [19].
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2 Information Diffusion Model

We consider a network represented by a directed graph G = (V, E), where V and E
(⊂ V × V) are the sets of all the nodes and links, respectively. Below we revisit the
definition of IC model according to the literatures [6,11]. The diffusion process proceeds
from an initial active node in discrete time-step t ≥ 0, and it is assumed that nodes can
switch their states only from inactive to active (i.e., the SIR setting, see Section 3).

IC model has a diffusion probability pu,v with 0 < pu,v < 1 for each link (u, v) as a
parameter. Suppose that a node u first becomes active at time-step t, it is given a single
chance to activate each currently inactive child node v, and succeeds with probability
pu,v. If u succeeds, then v will become active at time-step t + 1. If multiple parent nodes
of v first become active at time-step t, then their activation trials are sequenced in an
arbitrary order, but all performed at time-step t. Whether u succeeds or not, it cannot
make any further trials to activate v in subsequent rounds. The process terminates if no
more activations are possible.

For an initial active node v ∈ V , let ϕ(v; G) denote the number of active nodes at the
end of the random diffusion process. It is noted that ϕ(v; G) is a random variable. We
denote the expected value of ϕ(v; G) by σ(v; G), and call it the influence degree of v.

3 Identifying Super-Mediators

As stated earlier, we conjecture that if a node w is a super-mediator, removing this node
would substantially decrease the average influence degree. In order to mathematically
formulate this notion, we first define the following graph G \ {w}, which is constructed
by removing a node w from a directed graph G = (V, E):

G \ {w} = (V \ {w}, E \ {w}), E \ {w} = {(u, v) ∈ E | u � w, v � w}. (1)

Then, we can quantify the super-mediator degree of each node w, denoted by medt(w),
as the difference in the average influence degree with respect to the node removal, i.e.,

medt(w) =
∑

v∈V
σ(v; G)p(v) −

∑

v∈V\{w}
σ(v; G \ {w})p(v), (2)

where p(v) stands for the probability that the node v becomes an information source
node, that is, an initial active node. Of course, we want to identify the nodes that have
large values of super-mediator degree.

We apply our bond percolation technique [9] to efficiently calculate the super-
mediator degree medt(w) for each node w ∈ V . Note first that the IC model on G can
be identified with the so-called susceptible/infective/recovered (SIR) model [15,27] for
the spread of a disease on G, where the nodes that become active at time t in the IC
model correspond to the infective nodes at time t in the SIR model. Recall that in the
SIR model, each individual occupies one of the three states, “susceptible”, “infected”
and “recovered”, where a susceptible individual becomes infected with a certain prob-
ability when it encounters an infected patient, and subsequently recovers at a certain
rate. It is known that the SIR model on a network can be exactly mapped onto a bond
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percolation model on the same network [15,6]. Thus, the IC model on G is equivalent
to a bond percolation model on G, that is, these two models have the same probability
distribution for the final set of active nodes. Our bond percolation technique [9] exploits
this relationship. Here, we present the algorithm for calculating medt(w) based on the
bond percolation technique. A bond percolation process on G is the process in which
each link of G is randomly designated either “occupied ” or “unoccupied” according to
some probability distribution in which the occupation probability over each link (u, v)
is set to the diffusion probability pu,v. Now, we consider M times of bond percolation
processes. Let Em denote the set of occupied links at the m-th bond percolation process
and let Gm denote the graph (V, Em), then for a large M, we can calculate the estimated
influence degree σ̄(u; G) with a reasonable accuracy as follows:

σ̄(u; G) =
1
M

M∑

m=1

|R(u; Gm)|, (3)

where R(u; Gm) stands for a set of reachable nodes from u on Gm such that there is a path
from u to v for v ∈ R(u; Gm), and |R(u; Gm)| is the number of nodes in R(u; Gm). Here
note that our bond percolation technique decomposes each graph Gm into its SCCs,
where SCC (strongly connected component) is a maximal subset C of V such that for
all u, v ∈ C there is a path from u to v. Namely, R(u; Gm) = R(v; Gm) if u, v ∈ C. Thus,
we can obtain R(u; Gm) for any node u ∈ V by calculating R(u; Gm) for only one node u
in each component C.

We obtain the following estimation formula by substituting Equation (3) into Equa-
tion (2):

medt(w) =
1
M

∑

v∈V

M∑

m=1

|R(v; Gm)|p(v) − 1
M

∑

v∈V\{w}

M∑

m=1

|R(v; Gm \ {w})|p(v). (4)

In order to efficiently calculate R(v; Gm\{w}) for each pair of nodes, v and w, we consider
a set of reverse reachable nodes defined by

R−(w; Gm) = {v ∈ V |w ∈ R(v; Gm)}.
Then, we can easily see that

v � R−(w; Gm) =⇒ R(v; Gm \ {w}) = R(v; Gm).

Namely, for the m-th bond percolation process and a fixed node w, we can obtain
R(v; Gm \ {w}) for any node v ∈ V by calculating R(v; Gm \ {w}) only for v ∈ R−(w; Gm).
Here, as described above, we can further improve the efficiency by applying SCC de-
composition for a subgraph consisting of nodes in R−(w; Gm). Below we can summarize
our proposed algorithm for calculating the super-mediator degree medt(w) for each node
w ∈ V .

1. Perform bond percolation process M times (m = 1, · · · ,M);
(a) For the m-th bond percolation process, calculate R(v; Gm) by applying SCC

decomposition;
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(b) For each w ∈ V , compute R−(w; Gm), and for each v ∈ V , set R(v; Gm \ {w}) =
R(v; Gm) if v � R−(w; Gm); otherwise calculate R(v; Gm \ {w}) by applying SCC
decomposition;

2. Calculate the super-mediator degree medt(w) according to Equation (4).

4 Characterizing Super-Mediator

As mentioned earlier, we attempt to characterize the property of the super-mediators
by two important factors for each node v: the influence degree σ(v; G) and the reverse-
influence degree denoted by σ−(v; G). First of all, in order to quantify the relation-
ships between these two factors, we define the probability σ(u, v; G) that the node v
becomes active when u is an information source node. Then, we can calculate σ(v; G)
by
∑

u∈V σ(v, u; G). On the other hand, if we define the reverse-influence degree as the
expected number of initial source nodes from which the information reaches the node v
at the end of information diffusion, we can define σ−(v; G) by

σ−(v; G) =
∑

u∈V
σ(u, v; G).

In order to further quantify the relationships, we consider the following reverse graph
G−, which is constructed by reversing any link (u, v) ∈ E for a directed graph G = (V, E).

G− = (V, E−), E− = {(v, u) | (u, v) ∈ E}. (5)

Then, we can show that the reverse-influence degree of each node v is equal to the
influence degree of node v on the reverse graph G−, i.e.,

σ−(v; G) = σ(v; G−). (6)

To confirm this fact, we introduce a function R(u, v; Gm) of v ∈ V such that R(u, v; Gm) =
1 if there is a path from u to v on Gm, and R(u, v; Gm) = 0 otherwise, where Gm

is the graph obtained by the m-th bond percolation process in Section 3. Noting that
R(u, v; Gm) = R(v, u; G−m), it is straightforward to show that Equation (6) holds as shown
below:

σ̄−(v; G) =
1
M

M∑

m=1

∑

u∈V
R(u, v; Gm)

=
1
M

M∑

m=1

∑

u∈V
R(v, u; G−m)

= σ̄(v; G−), (7)

where G−m is the reverse graph of Gm. As a natural conjecture, we can expect that the
super-mediator nodes are influential on both a given graph G and its associated re-
verse graph G−, which respectively corresponds to the influence degree σ(v; G) and
the reverse-influence degree σ−(v; G). Thus, our hypothesis is that the super-mediators
should be ranked high in terms of both of them. We empirically evaluate this hypothesis
using three real world networks since exploring this analytically seems difficult.
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5 Experiments

5.1 Datasets and Settings

We employed three datasets of large real networks. The first one is the Enron network,
which is derived from the Enron Email Dataset [13]. We regarded each email address
as a node, and constructed a link from email address u to email address v only if u
sent an email to v. The Enron network is a directed network which has 19, 603 nodes
and 210, 950 directed links. The second one is the Blog network, which is a trackback
network of Japanese blogs used by Kimura et al [11]. The Blog network is also a di-
rected network which has 12, 047 nodes and 53, 315 directed links. The third one is
the Wikipedia network, which is a network of people derived from the “list of people”
within Japanese Wikipedia, also used by Kimura et al [11]. The Wikipedia network is a
bidirectional network having 9, 481 nodes and 245, 044 directed links.

Below we explain the parameter settings of IC model. We first assume a generative
model according to the beta distribution with a mean of μ for the diffusion probabil-
ity pv,w for any link (v,w) ∈ E. Note that the beta distribution is the conjugate prior
probability distribution for the Bernoulli distribution corresponding to a single toss of
a coin. We further suppose that each diffusion probability is independently generated
from the beta distribution with respect to each information diffusion process. Then the
average occupied probability of the bond percolation process over each link reduces to
μ. Actually, this formulation is equivalent to assigning a uniform value μ to the diffusion
probability pv,w for any link (v,w) ∈ E, that is, pv,w = μ. According to [6], we set the
value of μ to a value that is less than or equal to 1/d̄, where d̄ is the mean out-degree of
a network. Thus, we investigate μ = r/d̄, where r is a parameter with 0 < r ≤ 1. The
parameter M to estimate the expectation is set to 10,000 for all experiments. The prob-
ability that the node v becomes an information source node was assumed to be uniform,
i.e., p(v) = 1/|V |.

5.2 Centralities

We also investigated whether or not super-mediators can be identified by heuristic meth-
ods based on the three well-known centrality measures, degree centrality, closeness cen-
trality, and betweenness centrality that are commonly used as the influence measure in
sociology. Let G = (V, E) be a directed network for our analysis, and let G− = (V, E−)
be the reverse network of G. For the degree centrality, we consider the out-degree of
node v ∈ V , deg+(v), defined as the number of links from v, and the in-degree of node
v ∈ V , deg−(v), defined as the number of links to v; i.e.,

deg+(v) = |{(v,w) ∈ E}|, deg−(v) = |{(w, v) ∈ E}| = |{(v,w) ∈ E−}|.
For the closeness centrality, we consider the closeness of node v ∈ V , close(v), defined
as

close(v) =
1
|V |
∑

w∈V

1
dist(v,w)

,
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Fig. 1. Distribution of the super-mediator/influence/reverse-influence degree for the Enron net-
work in case of r = 1.0

Table 1. Top 3 email accounts (nodes) in the super-mediator, influence, and reverse-influence
degree ranking for the Enron network (r = 1.0)

account name (ID: ratio to the maximum degree value)
rank super-mediator influence reverse-influence

1 jeff.skilling (642: 1.000) bob.ambrocik (16734: 1.000) tom.alonso (5510: 1.000)
2 kenneth.lay (471: 0.870) technology.enron (17219: 0.979) jeff.richter (1768: 0.999)
3 sally.beck (535: 0.843) outlook.team (10779: 0.978) chris.mallory (5933: 0.999)

and the reverse closeness of node v ∈ V , close−(v), defined as

close−(v) =
1
|V |
∑

w∈V

1
dist−(v,w)

,

where dist(v,w) stands for the graph distance (shortest path length) from node v to
node w in the network G, and dist−(v,w) stands for the graph distance from node v
to node w in the reverse network G−. For the betweenness centrality, we consider the
betweenness of node v ∈ V , betw(v), defined as the total number of shortest paths
between pairs of nodes that pass through v. We consider detecting super-mediators by
ranking the nodes in decreasing order with respect to a centrality measure. We refer
to the detection methods by centrality measures deg(v), deg−(v), close(v), close−(v),
and betw(v) as the out-degree, in-degree, closeness, reverse closeness, and betweenness
methods, respectively.

5.3 Results

Confirmation of Properties of Super-Mediators. First, we investigated the distribu-
tions of the three measures, i.e., the super-mediator, influence, and reverse-influence
degree in the Enron network to see how much they differ to each other in terms of
characterizing each node. In Fig. 1, the values of “ratio to the maximum value” in each
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Table 2. The rank of the top 3 super-mediators for the Enron network in the influence and reverse-
influence degree ranking (r = 1.0)

rank (ratio to the maximum degree value)
ID super-mediator influence reverse-influence
642 1 (1.000) 441 (0.947) 642 (0.999)
471 2 (0.870) 122 (0.970) 374 (0.999)
535 3 (0.843) 126 (0.970) 377 (0.999)

degree are depicted as a function of node rank. Note that node rank is different for each
degree. It can be observed that the curves for the influence and reverse-influence de-
gree are similar to each other, while the curve for the super-mediator degree is quite
different from the other two. Each curve is almost flat for the first two. The one for the
influence degree maintains a relatively high ratio close to 1.0 up to approximately top
300 nodes and the one for the reverse-influence degree up to approximately top 1,000
nodes. This means that there is very little difference among these top ranked nodes as
far as the influence is concerned. On the other hand, the distribution curve rapidly de-
creases to the top 1,000 nodes for the super-mediator degree. We can conclude that the
super-mediator ranking can characterize each node by far clearly than the influence and
reverse-influence ranking.

We further examined the top 3 nodes in each ranking for the Enron network in case
of r = 1.0, and summarized them in Table 1. Again, we can observe that there is a clear
difference in the values of the super-mediator degree among the top 3 email accounts
(nodes), but the difference is not clear for the other two degree, especially the reverse-
influence degree. In addition, these top 3 ranked super-mediators are different from the
top 3 ranked nodes for the other two: the influence degree and the reverse-influence
degree. It is notable that “Jeffrey Skilling” (the top ranked) and “Kenneth Lay” (the
second ranked) in the super-mediator degree are key persons of the Enron scandal:
“Jeffrey Skilling” is the former president of Enron and “Kenneth Lay” was the CEO
of Enron. Both of them do not appear in the top 3 in both the influence and reverse-
influence degree ranking. “Jeffrey Richter”, the second ranked in the reverse-influence
degree, is known as a trader of Enron, but is not as well-known as the former two
executives. These observations suggest the super-mediator degree can be a promising
measure to identify nodes that actually play an important role in a given network.

Next, we investigated how the top 3 super-mediators for the Enron network rank in
terms of the influence and the reverse-influence degree values. Our conjecture is that
the super-mediators should be ranked high in these two measures. The results are sum-
marized in Table 2. It is found that these super-mediators are ranked relatively high,
at least they are in the top 5% nodes. This confirms our conjecture. However, because
their curves are flat, there are many other nodes that are ranked high in these two mea-
sures. This means that the reverse is not necessarily true, i.e., super-mediators have
high values for these two measures but having high values for these two measures are
not necessarily super-mediators as defined in Equation (2). Indeed, we observed the
same tendencies for the Blog and Wikipedia networks. Here, we show only the distri-
butions of the three measures for these networks in case of r = 1.0 in Figs. 2a and 2b,
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(a) Blog network
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(b) Wikipedia network

Fig. 2. Distribution of the super-mediator/influence/reverse-influence degree for the Blog and
Wikipedia networks in case of r = 1.0
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(a) r = 0.5
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(b) r = 0.25

Fig. 3. Distribution of the super-mediator/influence/reverse-influence degree for the Enron net-
work in cases of r = 0.5 and r = 0.25

respectively. Note that since the Wikipedia network is bidirectional, the reverse-influence
degree is equivalent to the influence degree, so it is not shown in Fig. 2b.

Further Analysis. Using the Enron network, we further analyzed the properties of
super-mediators. First, we investigated the effect of diffusion probability by varying the
value of r. Figures 3a and 3b, and Tables 3 and 4 show the results for the case of r = 0.5
and r = 0.25, respectively. Here, each table indicates ranks and the values of “ratio
to the maximum value” with respect to super-mediator, influence and reverse influence
degree for the top 3 super-mediators. It is obvious that the distribution curves shown
in Fig. 3a and 3b share the same tendency as those in Fig. 1. The notable difference is
that the flat region of each curve shrinks for the influence and reverse-influence degree
as the diffusion probability becomes smaller. This is because both σ(v; G) and σ−(v; G)
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Table 3. The rank of the top 3 super-mediators for the Enron network in the influence and reverse-
influence degree ranking (r = 0.5)

rank (ratio to the maximum degree value)
ID super-mediator influence reverse-influence
535 1 (1.000) 66 (0.970) 94 (0.996)
471 2 (0.831) 114 (0.969) 128 (0.995)
642 3 (0.728) 426 (0.742) 341 (0.985)

Table 4. The rank of the top 3 super-mediators for the Enron network in the influence and reverse-
influence degree ranking (r = 0.25)

rank (ratio to the maximum degree value)
ID super-mediator influence reverse-influence
535 1 (1.000) 52 (0.970) 46 (0.979)
6 2 (0.648) 185 (0.734) 1 (1.000)

471 3 (0.639) 154 (0.799) 144 (0.931)

become smaller for every node v in accordance with the decrease of the diffusion proba-
bility. Also from Tables 3 and 4, we can see the same tendency as for the case of r = 1.0
although the top 3 nodes and their rankings for r = 0.5 and r = 0.25 are not exactly the
same as for r = 1.0. Further we notice that all the values for the influence and reverse-
influence degree are not very high due to the aforementioned shrink of the flat region,
i.e., third rank for r = 0.5 and the second and the third rank for r = 0.25, but overall
both the influence degree and the reverse-influence degree are high for the high ranked
super-mediators. Indeed, in the influence and reverse-influence ranking, these nodes are
within the top 3% nodes at r = 0.5, and within the top 1% nodes at r = 0.25.

Next, we investigated whether the conventional centrality measures can serve as a
good measure to identify the super-mediators. Figure 4 displays the values of “ratio to
the maximum value” as a function of node rank with respect to out-degree deg+(v),
in-degree deg−(v), closeness close(v), reverse closeness close−(v), and betweenness
betw(v). We observe that the distributions of out-degree deg+(v), in-degree deg−(v) and
betweenness betw(v) are similar to the distribution of the super-mediator degree, while
the distributions of closeness close(v) and reverse closeness close−(v) are similar to the
distributions of the influence and reverse-influence degree. Here note that the value of
“ratio to the maximum value” of a node with respect to the super-mediator degree is less
than 0.2 for nodes ranked after the top 100. Thus, we focused on the top 100 nodes, and
examined the similarity between the super-mediator ranking and the other ranking, i.e.,
the out-degree, in-degree, closeness, reverse closeness, and betweenness ranking. Here,
we measured the similarity between the top k nodes for one ranking method, denoted as
a set Ak, and those for the other ranking method, denoted as a set A′k, by the F-measure
F(k) defined by

F(k) =
|Ak ∩ A′k |

k
.

Figures 5a, 5b and 5c show the results for the cases of r = 1.0, r = 0.5 and r = 0.25,
respectively. Figure 5d displays the similarities between the super-mediator ranking



Identifying Super-Mediators 181

10
0

10
1

10
2

10
3

10
4

10
5

0

0.2

0.4

0.6

0.8

1

rank

ra
tio

 to
 th

e 
m

ax
im

um
 v

al
ue

super−mediator
out−degree
closeness
betweenness

(a) Out-degree, closeness, and betweenness
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(b) In-degree and reverse closeness

Fig. 4. Distributions of conventional centrality measures for the Enron network
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(a) r = 1

10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

rank

F−
m

ea
su

re

out−degree
in−degree
closeness
reverse closeness
betweenness

(b) r = 0.5
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(c) r = 0.25
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(d) Comparison of super-mediators with r

Fig. 5. Relation between conventional centrality and super-mediator degree for the Enron network

for the case of r = 1.0 and that of r = 0.5 and r = 0.25. We notice that the super-
mediators depend on the value of the diffusion probability from Fig. 5d. We further
notice that the betweenness centrality is best when the diffusion probability is large
(Fig. 5a, 5b) and the in-degree centrality becomes better when the diffusion probability
gets smaller (Fig. 5c). It is interesting that the out-degree centrality is not as good as
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Table 5. Top 3 nodes for conventional centrality measures for the Enron network for r = 1.0

rank out-degree in-degree closeness reverse-closeness betweenness
1 451 6 535 6 6
2 10779 203 10779 203 642
3 535 535 451 684 471

the in-degree centrality. Further investigation is needed to understand this phenomenon.
Table 5 shows the top 3 nodes for the out-degree, in-degree, closeness, reverse-closeness,
and betweenness centrality in case of r = 1.0. These should be compared with the
node IDs in Table 2, i.e., 642, 471 and 535. Two nodes (642, 471) for the betweenness
centrality match them and one node (535) for the out-degree, in-degree and closeness
centrality matches them. This supports the above observation. In summary no single
centrality measure works equally well for a wide range of the diffusion probability. The
betweenness centrality is a good measure when the diffusion probability is large and
in-degree centrality is a good measure when the diffusion probability is small. This is
intuitively understandable. When the diffusion probability is large, there are many long
diffusion sequences, in which case the betweenness plays a key role, whereas the diffu-
sion probability is small, many of the diffusion sequences are short, in which case node
degree plays a key role.

6 Conclusion

We addressed a problem of identifying and characterizing influential nodes in a social
network which we call “super-mediators” (nodes which play a role of mediator), i.e.,
nodes that play an important role in receiving the information and passing it to other
nodes. This notion of influential nodes is different from the conventional one in which
a node is said to be influential if the information starting from that node spreads to
many other nodes. We quantified the degree of importance as a super-mediator degree
and formulated this as the difference of the average influence degree with respect to
the node removal. If a node is a super-mediator, removal of this node from the network
will substantially decrease the average influence degree. Thus finding the most influ-
ential super-mediator is finding a node that maximizes this difference. We can rank the
super-mediators according to the amount of difference. This computation requires to
estimate influence degree of each node, which is defined to be the expected number of
active nodes at the end of information diffusion process, and is very time consuming.
We used our bond percolation approach to simulate an individual diffusion process and
the expectation is approximated by the empirical mean of many trials of diffusion pro-
cess. We conjectured that super-mediators would have both large influence degree, i.e.,
capable of widely spreading information to other recipient nodes, and large reverse-
influence degree, i.e., capable of widely receiving information from other information
source nodes. In fact reverse-influence degree of a node in a graph is the same as the in-
fluence degree of the same node of the graph in which the edge direction is reversed for
all edges. We conducted extensive experiments using three real world social networks
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(Enron, Blog and Wikipedia) with different diffusion probability assuming indepen-
dent cascade model, and confirmed that this conjecture is correct, but the reverse is not
correct, i.e., nodes that have both large influence degree and large reverse-influence de-
gree are not necessarily super-mediators. The performance of super-mediator degree is
tested in the Enron network. The top three super-mediators identified by our method are
confirmed to be actually influential. We further investigated how well the conventional
centrality measures (in-degree, out-degree, closeness, reverse-closeness and between-
ness) capture super-mediators. In short the in-degree centrality is a good measure when
the diffusion probability is small and the betweenness centrality is a good measure when
the diffusion probability is large, but the super-mediators do depend on the value of the
diffusion probability and no single centrality measure works equally well for a wide
range of the diffusion probability. Our immediate future work is to investigate the gen-
erality of the findings reported in this paper for a variety of networks and elucidate why
the out-degree centrality is not as good a measure as the in-degree centrality.
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Abstract. In this paper, we address the problem of flood prediction in
complex situations. We present an original solution in order to achieve
the main goals of accuracy, flexibility and readability. We propose the
SM2D modular data driven approach that provides predictive models
for each sub-process of a global hydrological process. We show that this
solution improves the predictive accuracy regarding a global approach.
The originality of our proposition is threefold: (1) the predictive model is
defined as a set of aggregate variables that act as classifiers, (2) an evo-
lutionary technique is implemented to find best juries of such classifiers
and (3) the flood process complexity problem is addressed by search-
ing for sub-models on sub-processes identified partly by spatial criteria.
The solution has proved to perform well on flash flood phenomena of
tropical areas known to be hardly predictable. It was indeed successfully
applied on a real caribbean river dataset after both preprocessing and
preliminary analysis steps presented in the paper.

1 Introduction

Hydrological forecasting systems that predict water levels or trigger flood alerts
are mostly designed for specific regional watersheds that share common proper-
ties. For instance in Europe, Mediterranean rivers share a typical and well known
hydrological behaviour for which alert systems based on physical models have
been developed. In this paper, we focus on a particular kind of events called flash
floods that occur frequently in tropical regions. They are due to massive and very
sudden rainfalls. We define the SM2D (Spatial Modular Data Driven) approach
to address both efficiency and flexibility issues and to propose a classification
method for discrete class variables.

While meteorological models are expected to provide a complement to hydro-
logical models [3] particularly in the case of very sudden rainfalls like so called
flash events, we show in this paper that observed cumulative rainfalls can be
used to identify sub-processes in a way relevant enough to improve the accuracy
of flash flood prediction in comparison to standard approaches. We meet thus
the goal of efficiency. The flexibility of the SM2D approach is provided by its
modularity: the complex hydrological phenomenon is considered as a collection
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of sub-processes rather than a unique global one and sub-models are elicited on
each sub-process. The concept of sub-process is defined on the basis of various di-
mensions (hydrometeorological, spatial, data-oriented or knowledge-based). The
readability of the SM2D approach remains in the kind of predictive models that
are elicited by the way of an evolutionary data driven technique previously in-
troduced [8,9].

In addition to accuracy, an important feature for hydrological predictive sys-
tem is its lead time. It is expected to give the most accurate information about
future situations at the earliest time for a public authority to take important
decisions for intervention (close roads or open dams for instance). We thus study
performances according to two different lead times.

The paper is organized in 7 sections. Section 2 gives an overview of hydrologi-
cal forecasting systems and particularly data-driven modular techniques. Section
3 presents the source data we used to highlight the approach on the specific case
of the Lezarde river in the french West Indies, preprocessing operations and pre-
liminary analysis that motivated the design of the modular approach. Section
4 introduces the SM2D approach that we propose and the notion of aggregate
variable on which relies the search for best predictive readable solutions. Sec-
tion 5 describes the evolutionary algorithm that we implemented to address the
optimization problem resulting from the objective of accuracy. In section 6, we
present and discuss the results obtained with the modular approach by com-
parison with a non modular option of the same technique and other standard
machine learning techniques such as decision trees and artificial neural networks.
Then we conclude and give some perspectives for future work in Section 7.

2 Related Work

Hydrological forecasting models are often classified according to the way they
represent physical processes underlying rivers or water streams activity. Physi-
cally based models (PBM) typically use differential equations on flows to model
the behaviour of streams with respect to multiple parameters such as soil prop-
erties, topographical features or evapotranspiration rates. They are also called
spatially distributed models since they use grid-based representations of river
basins. Since they are quite complex and their performances strongly depend on
parameters initialization, simpler models have been designed and have proved
to perform better in operational and short term flood forecasting [10,3].

Conceptual or semi-distributed models are mainly “simplifications” of PBM,
they are built on concepts such as the notion of reservoir filling and emptying,
on approximations of parameters and on mathematical or empirical knowledge
to model the hydrological behaviour of a water stream.

Over the last decades, advanced methods and tools borrowed to the machine
learning field have contributed to define a new kind of models, namely data
driven models (DDM). In the domain of hydrological DDMs, most solutions
have used Artificial Neural Networks (ANN), mainly for their ability to model
non-linear relationships [11]. But ANNs are black box systems, thus they are not
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easily interpretable. In most cases, stakeholders are more likely to trust models
that express their predictions explicitly. In our work, the long term objective
is to design a decision making tool able to provide a comprehensible knowledge
representation that explains why a flood or a non-flood is predicted. Thus in this
work, the first strong requirement was the readability of the models provided to
end users that are experts in the hydrological domain.

Modular models (MM) [3,12,13,14] have been proposed to address more pre-
cisely the complexity of natural phenomena that they consider as collections
of sub-processes rather than global unique processes. The main idea of MMs
relies on the notion of sub-model : each sub-process identified is modelled by a
sub-model and all sub-model outputs are supposed to be combined to produce
the global behaviour. Sub-models may be physical, conceptual or data driven.
Recent results on MMs tend to show that they improve the prediction accuracy
[3]. For instance, global hydrological regression techniques may obtain good av-
erage performances over wide time periods but turn to be less accurate during
extreme events (drought or massive floods), while flow regimes based MMs, i.e.
for which sub-processes are identified according to different flow regimes, can of-
ten deal more efficiently with rather different hydrological situations. Solomatine
[12] gives a detailed classification of committee machine modular models essen-
tially based on the input space partitioning. In [13], a flow prediction approach
is defined in which ANNs and M5 model trees are combined on different sub-
processes identified thanks to expert knowledge. In [14], a clustering technique
based on Self-Organising Maps (SOM) is used to identify subsets in the input
data (assimilated to sub-processes) for which different ANNs are then trained.

In this study, we propose an original modular approach based on a spatial
criteria and designed to address the specificity of fast, hardly predictable and
devastating flood events that are typical in the caribbean region.

3 Case Studied

3.1 Source Data

The Lezarde watershed is the most important hydraulic system of the Martinique
island in terms of surface area and instrumentation. A critical economical and
industrial area is located around the downstream region of the river, making the
forecasting of flood events particularly crucial for local authorities. Limnimetric
(height water levels) sensors are set up on eight spots - from up to down Blanche,
Desirade, Gue-Blanche, Pompage, Pont RN1, Scism, Soudon, Spitz - along the
river course and its two major tributaries. Rain gauges are set up at five locations
- from up to down Bois-Lezard, Colson, Bois-Parc, Olive, Cirad - over the whole
surface of the watershed. Figure 1 shows a map of the watershed. The blue lines
represents the river course while the green lines shows the watershed borders.
Level stations are figured with red squares, while rain gauges are figured with
black squares. The up to down length of the area is about thirty kilometers and
the distance between two adjacent level stations along the river course is around
two to six kilometers. Currently these sensors are monitored by technical services
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Fig. 1. Map of the Lezarde watershed. Level stations are figured with red squares and
rain gauges with black squares.

via the regional flood alert system mainly based on alert thresholds. This system
involves physical hydrological streamflow models for simulating the river states.
According to current end users and decision makers in charge of the public
security, this system have two drawbacks: (1) it is not enough explanatory on
forecasts and (2), in order to ensure that no error occurs in predicting effective
floods, it generates too much false positives.

Source data available for this study consist in thirteen files, each containing
the records collected on one sensor during the time period from January 1st

2006 to August 31st 2010. The default record interval, i.e. the default interval
between two measures, is six minutes for level stations and one hour for rain
stations (cumulative rainfalls). However, missing data corresponding to periods
ranging from few hours to several months are quite numerous.

The preprocessing step represents a substantial part in a knowledge dis-
covery in databases process since it involves data transformation, normalisation
and replacement which are often necessary on noisy or raw source data first
to get a better insight in the information they may hide and then to address
specific mining tasks. In this study, we encountered two main issues with source
data, namely the occurrence of (1) erroneous and (2) missing data. Errors (1)
results mostly from technical malfunctions (calibration problems, exposure to
natural elements...), thus it happens that the data recorded by a sensor are
punctually erroneous. In a first step, we eliminated the most obviously wrong
data for each sensor in a semi-automated way thanks to a specific data visual-
ization tool. Missing data (2) are essentially due to the unavailability of sensors
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during periods up to several months. We found an amount of such missing values
ranging from 12.2% to 56.8% depending on the sensor considered. As explained
in previous work [9], we defined several replacement strategies depending on
the hydrological behavior observed in the spatial and/or temporal neighbour-
hood of stations. These strategies include linear interpolation, linear regression,
non-linear regression (polynomial, ANNs,...) or simply no replacement when not
enough information are available on neighbouring stations.

In the following, we call flood event (F) (resp. non-flood event (N)), a threshold
overpassing (resp. non overpassing) recorded by a target sensor at a given time.
Thresholds are those defined in the current forecast system for each sensor. We
call event sensor, the target sensor on which we observe event occurrences and
for which we plan to accomplish F or N class prediction and measure sensor, a
sensor which records are used to predict the event sensor class.

After the preprocessing step, we have searched the whole data set for examples
of such events for each class (F and N). Each event is represented by its initial
time, i.e. the time when the flood alert threshold is reached for class F or the
time when the water level reached a local maximum that stays under the alert
threshold for class N. We focused on clear events of type N i.e. when some
hydrological activity is observed around the critical area. We chose the sensor
Soudon as event sensor since it is the best tradeoff between the proximity
to the critical area and the amount of F and N examples available. We have
identified 50 events (21 in class F and 29 in class N), far enough from each other
to preserve independence between them. Since there is a time lag between the
last value used for prediction and the event time, a same sensor may play both
roles of measure sensor and event sensor at different times. Table 1 details the
global structure of the feature space used for all the experiments of this work.
Except the first (event number, not used) and the last (class label) columns, the
columns corresponds to the values of each level sensor on times t−prec−m× s,
t−prec− (m−1)×s, ..., t−prec, where Lb

a stand for the value observed on level
station b at time a, s is the time step (6 minutes) and m the number of values
considered. The class attribute corresponds to the state of the event sensor taken
at time t.

Table 1. Global structure of the feature space

Event LStation 1
t−m×s−prec LStation 1

t−(m−1)×s−prec ....... LStation 1
t−prec ...... LStation n

t−prec Class F/N (t)

1 321 ? ... 645 ...... 579 N
2 1235 1267 ... 1678 ...... 2319 F

....

....
50 1567 1517 ... ? ...... 3299 F
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Fig. 2. Four typical hydrological events on Soudon, each of one corresponding to in-
stances of the four sub-processes identified for 60 minutes ahead prediction

3.2 Preliminary Analysis

As said before, the hydrological activity observed on the Lezarde watershed is
a quite fast and complex phenomenon. A visual analysis of the levels and rain
stations measurements on available events shows the dynamics of the water ac-
tivity on this catchment. Figures 2 (a), (b), (c) and (d) show typical flood and
non-flood events observed in this watershed for event sensor Soudon. The x-
axis corresponds to the time in hours, while the left y-axis indicates normalized
values of water level and the right up-to-down y-axis indicates hourly cumula-
tive rainfalls in millimeters. The horizontal bolded line represents the flood alert
threshold (Tr) defined by domain experts and used in this work to determine
flood or non-flood events, while the vertical bolded line shows the time 0, i.e.,
the beginning of the event. Each colored curve stands for the values of a water
level station while each colored histogram bar stands for the values of a rainfall
station. We can see on these figures that quite important level rises occur in less
than one or two hours and that they are often shortly shifted respectively to
the up-to-down order of the stations along the river course, suggesting that the
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water travel time between stations may be very short (about 20 minutes to more
than one hour). We can also observe that, as expected, the rain measurements
seem to be good overall predictors of level rises, as they always precede them.
However, as underlined in previous studies [9], the variations between the ob-
served relationships from one event to another seem to be highly non-linear and
thus not easily explainable. For instance, an important rise on a given station
may not be followed on the next station by a proportional rise, the travel time of
the water may be different between two given stations, or the relation between
observed rain and water levels may change.

4 SM2D Approach

The main idea of MMs is to consider the hydrological process of a watershed
as a collection of homogeneous sub-processes each represented by its own sub-
model applied for forecasting. To the best of our knowledge, there is no formal
definition of the sub-process concept in this context, but it appears as something
like a part of a generally complex process. A sub-process is sometimes referred as
local process and conversely a process is then referred as global. It is defined on
the basis of different conditions on dimensions that allow to select a subset of the
global process. Like the latter, it may be represented by a physical, conceptual
or data driven model depending on its kind of dimensions.

In order to give a more formal basis to the approach, we have identified four
dimensions to define an hydrological sub-process:

– hydro-meteorological (H), i.e., based for instance by conditions defined by
water level ranges or flow regime categories,

– spatial (S), i.e., based on geographic portions of the watershed, like sub-
basins for instance,

– data-oriented (D), i.e., based on patterns extracted by machine learning
techniques such as clustering,

– knowledge based (K), i.e., based on a priori expert domain knowledge, such
as seasons characteristics.

In the SM2D approach designed for flash events, sub-processes are defined on
the H, S and K dimensions. They can be considered as combinations of specific
rainfall behaviour observed on spatial sub-basins. In the following, Section 4.1
presents the modularity side of SM2D and Section 4.2 presents the data-driven
solution followed.

4.1 Spatial Modular Approach

A SM2D sub-process is defined by a logical expression C1 op1 C2 op2 ... opnCn

where each Ci is a logical condition defined on the hydro-meteorological (H),
spatial (S) and knowledge-based (K) dimensions and each opj is a logical oper-
ator in {and, or, xor}. A SM2D sub-basin is defined as a geographical portion
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of the whole studied watershed. A SM2D sub-model is a data-driven model de-
signed for a sub-process. For instance, if we consider the sub-basins Up and
Down defined as the upstream and downstream areas of the Lezarde watershed
and represented roughly by black circles on Figure 1, the logical expression:

Sub-basin Up in active rainfall activity
and

Sub-basin Down in inactive rainfall activity

defines the sub-process SP1. As seen in Section 3.2, in the case of tropical short
basins that we consider, the impact of localized rainfalls is identified as one of the
the factors that dramatically defines the hydrological behaviour of the river. We
have indeed considered a priori domain expert knowledge to identify relevant
hydrometorological (H) and spatial (S) conditions: the rainfall behaviour and
the partitioning of the Lezarde watershed into the two sub-basins corresponding
to its upstream and downstream areas. Each of the two areas is associated to a
rainfall station: station Olive for sub-basin Up and station Cirad for sub-basin
Down.The principle was in this case to identify sub-processes based on rainfall
activity and localization. A logical condition Ci within a sub-process represents a
rainfall activity measured by a cumulative station. We used thresholds on cumu-
lative rainfall values to characterize the precipitation activity (active, inactive)
in a sub-basin at a given time. If the threshold is reached (resp. not reached)
for the station associated to a sub-basin, we consider that the corresponding
activity is active (resp. inactive). These threshold values has been provided by
experts on this particular catchment as the knowledge-based (K) dimension of
the SM2D approach. Table 2 gives their values in millimeter for both 60 and 120
minutes ahead prediction.

Table 2. Threshold values used on cumulative rainfalls to determine sub-processes

prec (mins) Olive (mm) Cirad (mm)

60 40 40
120 35 15

Figures 2 (a), (b), (c) and (d) show typical instances of four sub-processes
defined similarly as SP1. On Figure 2 (a), we observe a high level of precipita-
tions on Up sub-basin (station Olive - yellow bars) only while conversely Figure
2 (b) highlights a high level of precipitations on Down sub-basin (station Cirad
- green bars) only. Figure 2 (c) shows important rainfalls on both stations while
Figure 2 (d) illustrates a sub-process defined by low values on precipitations on
both sub-basins. Thus let us assume that:

Cup is defined as the condition Sub-basin Up in active rainfall activity and
Cdown is defined as the condition Sub-basin Down in active rainfall activity.
Figures 2 (a), (b), (c) and (d) illustrates the four sub-processes: Cup and ¬Cdown,
¬Cup and Cdown, Cup and Cdown, ¬Cup and ¬Cdown.
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Since our objective is to conduct a predictive analysis with classification tech-
niques to predict flood and non flood events, we have identified instances of these
sub-processes in situations of flood or non flood event occurring after a given time
period called lead time or precocity following the last rainfall observed measure.
Table 3 gives the distribution of events type according to the four sub-processes
with a precocity of 60 minutes. We can see that for each sub-process one class
is often more represented than the other, suggesting that each sub-process is
particularly subject to one kind of events. For instance, as expected, the last
situation (d) is highly concerned by non-flood events while (b) or (c) situations
are highly concerned by flood events.

One of the common issues in modular approaches is generally to find a way
to combine the sub-models discovered in order to generate final prediction. This
situations occurs when the input data subsets corresponding to the identified
sub-processes overlap. In this approach, we are not concerned by this problem
since data subsets are mutually exclusive: a sub-model is trained and tested for
each sub-process and directly deployed when validated.

Table 3. Distribution of events type according to each identified sub-process for 60
minutes ahead prediction

(a) CUp and ¬CDown (b) ¬CUp and CDown (c) CUp and CDown (d) ¬CUp and ¬CDown

F 3 4 10 4
N 7 0 4 18

Total 10 4 14 22

4.2 Aggregate Variables

The second principle in our approach was to implement the concept of aggregate
variable that contributes to achieve the goal of readability. Sub-models on each
sub-process are sets (or juries) of aggregate variables [8,9]. An aggregate variable
may be seen as a classifier which predicts the class variable state F or N on the
basis of aggregate values of water levels and/or cumulative rainfalls computed
over a time period. Its structure is explanatory itself.

More formally, for a given event sensor es, an aggregate variable (AV) is
defined by a tuple (ms, F, prec, agg, thresh) of parameters which value ranges
are customized for the given watershed and where ms is a measure sensor which
records are considered for aggregation,F is an aggregation function such as mean,
standard deviation, minumum etc. , prec is a precocity period corresponding to
the time interval between the last measure considered and the initial time of the
event on es to predict, agg is an aggregation period over which the aggregate
variable value is computed and thresh is a set of thresholds defined on F values
range and used to determine output predictions. Figure 3 provides a temporal
representation of an AV applied for prediction. For instance, if the event sensor
is Soudon, AV=(Gue-Blanche, average, 132, 96, {500}) represents the average
value computed on Gue-Blanche levels recorded during 96 minutes and with 132
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minutes precocity before an event on Soudon. If this computed value is greater
than 500, then a flood event is predicted, else a non-flood event is predicted.

The spatial modular approach proposed in this work consists in learning pre-
dictive sub-models on sub-processes as juries of such variables. Juries of AVs can
be seen as sets of AVs combined in such a way that the final decision of the jury
corresponds to the majority vote of its AVs. When a precocity pjury is fixed for
a jury, it means that the precocity of its AVs can be superior or equal to pjury . If
an AV is not able to take a decision at a given time because of the unavailabilty
of its measure sensor data, two strategies can be used: the AV is discarded thus
the majority vote is computed on the remaining AVs or a decision is taken for the
AV, for instance arbitrarily or on the basis of neighbouring stations behaviour.

Since each of the parameters in each AV of a jury can take numerous values
(depending on the number of sensors available, the granularity of earliness and
aggregation periods or the variation ranges of hydrological values), the search
for optimal juries of aggregate variables turns to a combinatorial optimization
problem which search space consists of all the possible instances of variables sets,
i.e., |S| =

∏n
i=0 |Si| with |Si| =

∏k
j=0 |Vj | the search space of the ith AV, |Vj |

the size of the value set for the jth parameter and n the number of AVs of a
jury. Obviously, |S| grows quite rapidly with n and |Vj |, becoming impractical.
Thus, to address this problem, we have implemented an evolutionary algorithm
as a stochastic method.

Fig. 3. Schematic temporal representation of an AV

5 Evolutionary Approach

Evolutionary algorithms (EA) [4,1] are global search heuristics inspired by the
main principles of the neo-darwinian theory of evolution. A population of solu-
tions (individuals) undergoes evolution by iteratively applying stochastic opera-
tors such as selection, recombination (crossover) and variation (mutation). These
methods have proved to be efficient to find useful solutions for optimization and
search problems with acceptable execution time comparatively to exhaustive
techniques. In this section, we describe the evolutionary algorithm that we de-
veloped to address the problem of searching the best sets of AVs for prediction.

5.1 Individual Representation and Genetic Operators

An individual is a representation of a jury of AVs. One AV is represented by the
non ordered set of its parameters. It is a simple classifier that can predict an
event sensor class. As seen before, a set of AVs is also a classifier, its answers are
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(a) Individual representation (b) Crossover scheme

Fig. 4. Evolutionary algorithm features

defined as a combination of its AVs answers by a majority vote. The number of
AVs within a set is a constant. Figure 4 (a) shows the structure of an individual
made of n AVs V1, V2, ..., Vn.

The crossover is a genetic operator which main purpose is to bring novelty into
the population by allowing individuals - the parents - to recombine in order to
generate new individuals - the offsprings - made of their parents genetic heritage.
It is generally seen as an exploitation operator since it takes advantage of the
existing population. It can be defined on one or several points. We have defined
a multi-point crossover operator consisting in the one point recombination of
each variable of the set, i.e., each variable of an individual is recombined with
another variable of the other individual at a randomly defined point. Figure 4 (b)
illustrates this operator. In an EA process, the role of the mutation operator is
mainly to prevent the convergence in local optima by allowing to explore rather
different regions of the search space. It is generally applied at very low rates that
favour the exploitation. We have defined a uniform mutation operator consisting
simply in changing the value of one parameter randomly chosen in an individual
by another possible value.

5.2 Objective Function

The essential role of the objective function is to guide the evolutionary process
by assigning a score to each individual of the population evaluating their quality
regarding the problem to solve.

In this context of binary classification (F and N events) in which good true
positive (TP) and true negative (TN) rates should be obtained with a jury of n
AVs, we have considered theMatthews Correlation Coefficient [5] as the objective
function:
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MCC = (TP×TN)−(FP×FN)√
(TP+FP )×(TP+FN)×(TN+FP )×(TN+FN)

with TP, TN, FP, FN re-

spectively the number of true positives, true negatives, false positives and false
negatives. It is widely used in machine learning to evaluate the performances of
a binary classifier. Its major advantage regarding other methods is to be use-
ful even with high class imbalance like in this work. Its value set is [−1; 1]: 1
for perfect classification, 0 for not better than random classification, and -1 for
perfect inverse classification, i.e, all TPs are classified as TN and vice versa.
In a first time we also considered the well known FβMeasure based on preci-
sion and recall. However, unlike MCC, its major drawback is that it does not
take into account TN and thus can be seen as a ”positive evaluator” carry-
ing more about TP. In this work, two values can be considered for the eval-
uation of a jury performances: first the individual performance of each AV in
the jury and then the performances of the jury itself. We combined these two
indicators in the following weighted sum to compute the fitness value of a jury
Fjury = a×MCCjury + b×

∑n
i=1 MCCi, where MCCi the MCC of the ith AV

and a, b > 0.
In order to obtain the experimental results presented in the next section, we

defined the following parameters for the EA: 8000 generations, a population size
of 100, crossover and mutation rates of 0.75 and 0.01 respectively, a stochastic
binary tournament selection and an elitist replacement (i.e., the best individual
of the precedent generation is kept if needed). The stochastic tournament se-
lection results in a low selection pressure avoiding premature convergence and
is a low computational cost schema since it selects the best individual among
two that are uniformly drawn from the population. We also used a Random
Offspring Generation (ROG) [7] strategy in our crossover so that when to iden-
tical individuals are selected to be crossed, the crossover operators is not applied
since it would be useless, but two offspring are returned, one being and exact
copy of its two parents while the other is randomly generated. This technique
allows to introduce diversity into the evolutionary process with the advantage
of not disturbing it as it is typically the case when the mutation rate is simply
increased to high values.

6 Experimental Results

In this section we present and discuss the results obtained with the SM2D ap-
proach applied on data recorded on the Lezarde watershed and we compare
them to (1) the same evolutionary search for optimal aggregate variables as a
global approach, and to (2) machine learning techniques commonly used in data
driven hydrological modelling either as (a) traditional global approaches or as
(b) modular approaches according to the sub-processes identified in Section 4.1.

As said previously in Section 3, the sensor Soudon has been set as the event
sensor, we have found 50 events (21 in class F and 29 in class N) and the four
typical sub-processes Cup and ¬Cdown, ¬Cup and Cdown, Cup and Cdown, ¬Cup

and ¬Cdown have been identified. Each of these sub-processes has been associated
to a subset of the total input data available as explained in Table 3. However,



SM2D: A Modular Knowledge Discovery Approach 197

since the subsets corresponding to sub-processes Cup and ¬Cdown and ¬Cup and
Cdown were too small in comparison to the others, we decided to merge them
in a Cup xor Cdown sub-process defined by the exclusive disjunction of rainfall
activity observed either on the upstream or downstream area.

Moreover, since the size of each subset was quite small in comparison to the
full dataset, we applied a leave one out cross validation (loocv, i.e. k-fold cross
validation with k set as the total number of samples minus one) technique in
order to estimate the performances of each model. However, since this size issue
was less significant for global approaches, we used a typical stratified 10-fold
cross validation technique in this case. An important point to note is that the
performances showed for each k-fold cross validation experiment represents the
average performances of the k models learnt.

Since evolutionary algorithms and some standard techniques (Random-Forest)
that we used are stochastic, i.e. based on random properties (as opposed to
deterministic techniques such as C4.5), each of their associated experiment has
been averaged on 100 runs in order to have statistically significant results. The
standard deviation is given in order to provide a confidence coefficient on each
of these results1.

In the following, we present experiments conducted with two precocity peri-
ods: 60 and 120 minutes. As shown in Figure 1, the input values for each model
consists of all the available measures of each station during the five hour before
the begining of the precocity time, i.e., m = 50.

Table 4 gives the main parameters that we used for each standard technique.
An important parameter of our approach is the size of the juries searched, i.e., the

Table 4. Parameters used for each standard technique

Technique Parameters

MLP
# hidden layers: 1, # nodes:(|attributes|+ |classes|)/2 = 202

learning rate: 0.3, momentum 0.2

C4.5
minimum instances per leaf: 2, pruning: yes

confidence factor for pruning: 0.25

RF
maximum depth: unlimited,# of tree generated:10

# of feature used in random selection:log(|attributes+ 1|)

number of aggregate variables. Obviously, the more numerous are the aggregate
variables in a jury, the more accurate can be the fit to the problem addressed.
However the main drawback of this situation is that the size of the search space,
and thus the complexity of the search process, increases dramatically with the
jury size. As we showed in [9], for this particular flood classification problem,

1 10-fold cross validation experiments with deterministic techniques have also been
averaged on 100 experiments since the repartition of samples into folds is done
randomly. However the averaging was not necessary for leave one out cross validation
experiments since in this particular case the repartition into folds is deterministic
thus no standard deviation is given in this case.
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Table 5. Performances of sub-models on sub-processes for standard techniques and
SM2D

prec (mins) Technique
CUp and CDown CUp xor CDown ¬CUp and ¬CDown

TN TP W.Avg TN TP W.Avg TN TP W.Avg

60

C4.5
Avg 50.00 80.00 71.40 57.10 71.40 64.30 94.40 50.00 86.40

Std Dev - - - - - - - - -

RF
Avg 56.25 89.00 79.64 78.69 76.98 77.86 98.10 33.25 86.33

Std Dev 18.49 3.00 5.74 13.64 9.67 8.67 2.65 17.70 3.99

MLP
Avg 48.00 83.00 72.99 85.70 56.24 70.97 93.74 50.00 85.85

Std Dev 6.78 4.58 3.87 0.00 3.37 1.68 1.79 0.00 1.49

SM2D
Avg 68.00 68.40 68.28 99.42 62.28 90.85 99.88 72.50 94.90

Std Dev 15.03 6.74 7.44 2.80 6.10 3.21 0.77 7.50 1.48

120

C4.5
Avg 50.00 0.00 25.00 90.00 80.00 86.70 76.90 60.00 69.60

Std Dev - - - - - - - - -

RF
Avg 63.35 46.66 54.99 91.20 32.80 71.73 90.45 62.80 78.45

Std Dev 9.43 16.33 10.26 8.16 17.32 7.25 4.50 9.60 5.06

MLP
Avg 66.70 45.99 56.31 68.60 33.20 56.78 66.12 47.80 58.18

Std Dev 0.00 7.13 3.54 4.90 9.47 3.84 5.55 6.41 4.25

SM2D
Avg 66.66 58.33 62.50 99.60 71.20 90.13 94.92 62.20 80.69

Std Dev 11.05 18.33 10.03 1.96 9.93 3.59 3.95 10.06 4.93

very reduced sets of variables can obtain better or equivalent performances than
higher ones with the advantage of requiring less computational power. Thus all
the results that we present in the following has been obtained with juries of 3
aggregate variables.

Table 5 shows a comparison between the performances obtained by three com-
monly used data driven techniques, namely C4.5 [6], Random Forest (RF) [2],
a Multi-Layer Perceptron (MLP) (Artifial Neural Network), and the proposed
SM2D approach applied on the data corresponding to each sub-process sepa-
rately. The first column gives the precocity time, the second column gives the
technique used while next columns gives the true positive rate (TP, i.e, percent-
age of flood samples correctly classified as flood), true negative rate (TN, i.e.,
percentage of non-flood samples correctly classified as non-flood) and weighted

average (W.Avg, i.e., |F |×TP+|N |×TN
|F |+|N | ) performances for each sub-process. We

can see that for both 60 and 120 prec time, the best W.Avg performances for
the sub-processes Cup xor Cdown and ¬Cup and ¬Cdown have been provided by
aggregate variables (90.85 and 94.90 for 60 mins, and 90.13 and 80.69 for 120
mins). The best performances are also provided by AVs with 120 mins of pre-
cocity for the Cup and Cdown sub-process (62.50). Table 6 shows a comparison
between the global performances and the averaged modular approach perfor-
mances, i.e. a weighted average of the performances of each sub-model, for each
standard technique used. We can observe that for 60 minutes prediction, the
modular approach with aggregate variables is better either than each global ap-
proach or other modular approach with common data driven techniques. For 120
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Table 6. Comparison of global and modular approaches performances for standard
techniques and SM2D

prec (mins) Technique
Global W.Avg Mod.

TN TP W.Avg TN TP W.Avg

60

C4.5
Avg 78.81 71.19 75.60 79.27 71.41 76.01

Std Dev 3.82 5.57 3.06 - - -

RF
Avg 92.09 63.19 79.94 87.64 74.37 82.08

Std Dev 3.18 4.68 2.69 7.49 8.02 5.79

MLP
Avg 80.43 60.71 72.14 85.49 67.79 78.08

Std Dev 4.73 5.20 2.94 2.70 3.30 2.20

SM2D
Avg 97.93 61.33 82.56 95.37 67.14 86.31

Std Dev 1.82 4.22 1.96 3.22 6.67 3.63

120

C4.5
Avg 79.74 58.98 71.44 75.85 47.62 64.16

Std Dev 4.89 3.51 2.98 - - -

RF
Avg 86.46 66.43 78.04 85.10 51.04 70.80

Std Dev 3.10 6.08 3.03 6.78 13.36 6.96

MLP
Avg 88.23 54.46 74.04 67.09 43.80 57.31

Std Dev 4.76 4.52 3.38 4.18 7.34 3.96

SM2D
Avg 98.41 62.76 83.44 90.46 63.23 79.15

Std Dev 2.09 3.89 1.96 4.73 12.39 5.75

minutes prediction, the modular approach with aggregate variables is still bet-
ter than other DDM techniques (either global or modular). We observe however
that it seems under the global approach with AVs.

These results are quite promising and tend to confirm our first assumption
that flash flood event classification can be addressed effectively by both aggregate
variables and an hydrometeorological based modular approach, particularly for
very short term prediction (60 minutes). However, since the number of events
available for this study was quite small, these results should be confirmed on
more numerous data.

7 Conclusion

In this paper we proposed a knowledge discovery approach relying on a typical
data mining flow made of pre-processing, classification, data aggregation and a
stochastic method to achieve accurate forecasts. Data from two types of mea-
sures - water levels and cumulative rainfalls - were considered. We proposed an
original rainfall based modular approach in order to address the complexity of
the hydrological process leading eventually to disastrous flash flood phenom-
ena that are not well modelized particularly in the caribbean region. With this
proposition, we aim at providing an alternative to standard hydrological systems
that do not perform well on very fast and massive phenomena known as flash
foods. In the field of data-driven hydrological modelling systems, this approach is
quite original. We have obtained first encouraging results and our further works
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will consist in scaling them up, for instance by using more numerous data or
other performance metrics such as the area under ROC curve analysis. We also
plan to investigate fuzzy approaches for the modelling of sub-processes which
boundaries are not always crisp.
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for Learning Chain Event Graphs
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Abstract. Chain event graphs are a model family particularly suited
for asymmetric causal discrete domains. This paper describes a dynamic
programming algorithm for exact learning of chain event graphs from
multivariate data. While the exact algorithm is slow, it allows reasonably
fast approximations and provides clues for implementing more scalable
heuristic algorithms.

Keywords: chain event graphs, structure learning, model selection.

1 Introduction

Chain event graphs (CEGs) [1] have recently gained popularity for representing
asymmetric causal domains in which some statistical independences hold in some
contexts but not in others [2]. Evaluating the structures of these models based
on data has been briefly addressed earlier by Freeman and Smith [3]. However,
to our knowledge, the only work on actually learning these models from data
appears in the 2010 PhD thesis of Guy Freeman [4]. In this work he proposes
and demonstrates an agglomerative hierarchical clustering heuristic (AHC) for
learning maximum a posterior (MAP) CEG structures from data.

The AHC algorithm leaves much to hope for as discussed in Freeman’s thesis.
The algorithm relies on the fixed variable ordering which is not always available.
Even for a fixed ordering AHC does not scale well with the size of data.

In this paper we propose adapting the dynamic programming approaches used
for exact structure learning of Bayesian networks [5,6] for learning structures
of chain event graphs. The resulting method learns CEG structures without
requiring predetermined ordering of the variables. When approximated with a
fast clustering heuristic, the algorithm can also scale up to about 30 variables and
we will demonstrate the algorithm using 21 different data sets. We also suggest
using factorized normalized maximum likelihood [7] as a scoring function since
this avoids the problem of Bayesian structure learning being very sensitive to
Dirichlet priors [8,9].

We will next introduce chain event graphs in a form that is useful for explain-
ing our structure learning algorithm. We will then discuss the decomposability
properties of structure evaluation criteria that are required for our algorithm
to work. In Sect. 4 we will first represent the exact structure learning algorithm
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for a fixed variable ordering, and then generalize this to the case in which the
ordering of variables is not known beforehand. Before concluding, we will dis-
cuss more scalable approximations of the exact algorithm and demonstrate their
practicality with an experiment on real data sets.

2 Chain Event Graphs

Chain event graphs are a model family for multivariate discrete data. CEGs
encode regularities in probability trees [10], and due to their heavy reliance on
variable ordering, they are claimed to be particularly suitable for representing
causal domains [2]. They allow representing asymmetric independence relations
where independence statements are conditioned on particular configurations of
a subset of random variables [1] unlike in Bayesian networks in which indepen-
dences must hold given any configuration of some random variables [11]. In the
following, we will present a formulation for so called n-homogeneous chain event
graphs [1] that are a natural choice when learning CEGs from data without much
prior knowledge.

2.1 Data

The data used for learning chain event graphs consists of N independent in-
stantiations of an n-dimensional random vector V = (V1, . . . , Vn), where each
discrete random variable Vi takes (without loss of generality) one of the values
in dom(Vi) = {1, . . . , ri}. We will be using vectors and their prefixes extensively,
so we denote the ith component of the vector X by Xi and the vector consisting
of the first i coordinates of the vector X by X:i. For example, using this notation
we have dom(V:i) =

∏i
l=1 dom(Vl). We assume the data to contain no missing

values.

2.2 Model

The following introduction to CEG models aims at allowing us to express the
likelihood function for the data which is later needed to present the structure
learning problem as an optimization problem. For a more general introduction,
one may consult a paper by Smith and Anderson [1]. We will first describe the
graphical structure of CEGs as networks with nodes and arcs, and then populate
the structure with parameters that turn the structure into a statistical model
that defines the likelihood of a data vector.

CEG Structure. To represent a CEG we have to first fix the (total) order
of variables. A CEG structure G for n-dimensional data is a layered directed
acyclic graph with n + 1 layers (see Fig. 1). The first n layers of G correspond
to the variables in the given ordering. The last layer has only one node and it does
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not correspond to any variable. To keep the mathematical notation simple, we
assume that the variables have been renamed (reordered) so that the layer i ∈
{1, . . . , n} in CEG corresponds to the variable Vi in the data. We will separately
consider different orderings later in Sect. 5. Each layer i ≤ n consists of nodes
(often called positions in the CEG literature) and from each node there leave
exactly ri arcs each of which points to a node in the next layer i+1. The ri arcs
from any node at layer i are all labelled by different values of Vi. All the nodes
except the single first one at layer 1 must have at least one arc pointing to them.
We say that arcs starting from the nodes at layer i belong to the layer i.

Nodes of CEG Layer as Data Partitions. By following consecutive labels,
a CEG structure defines a unique path from the start node at layer 1 to the end
node at layer n + 1 for any given complete data vector d. We notice that the
nodes at layer i > 1 partition the domain dom(V:i−1), i.e., for each node t at
layer i we can assign the set dom(t) = {d:i−1 | d ∈ dom(V ) : d traverses t} of
possible data vector prefixes that lead to the node t. Similarly, the arcs at layer
i partition the domain dom(V:i), i.e., the arc a = (t, v) from node t labeled by v
can be associated with the set dom(a) = {d:i | d ∈ dom(V ) : d traverses a} of
data vector prefixes. We denote the unique node in which the vector prefix d:i−1

leads to by t(d:i−1), and the unique last arc in the path of d:i by a(d:i).

1

2
11

2

1

21

2

1

2

3 2

t2

t3t1

t6

t7

t4

t5

layer 1 layer 2 layer 3 layer 4

Fig. 1. A CEG structure for three variable domain V in which V1 has three values and
the other variables two. The nodes t2 and t3 belong to the same stage, while all the
other nodes form stages of their own. The path of data vector (2, 1, 2) traverses nodes
t1, t3, t5, t7, and for node t6 at layer 3 we have dom(t6) = {(2, 2), (3, 1), (3, 2)}.
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CEG as a Statistical Model. A CEG structure can be turned into a mul-
tivariate probability distribution by assigning discrete probability distributions
to the nodes. More specifically, let Vi be any variable and t a node at layer i.
We then attach a conditional probability defining parameter θa = θt,v = P (Vi =
v|V:i−1 ∈ dom(t)) to the arc leaving the node t that is labeled by the value v.
Since each data vector d defines a unique path in CEG, it is easy to see (by
applying the chain rule) that multiplying the parameters (conditional probabili-
ties) on the path of d defines a probability for the data vector d. Assuming that
the data vectors in D are generated independently from the CEG model gives
the likelihood function for the data D as a product of likelihoods of individual
data vectors.

Introducing Stages for Parameter Sharing. While the model described
above does indeed define a valid joint probability distribution, CEGs try to cap-
ture even more regularity by allowing different nodes at the same layer to share
distributions thus reducing the number of parameters in the model. To formal-
ize this parameter sharing, the nodes in one layer are partitioned into stages and
each stage is assigned a single distribution, thus each node in a stage has the same
distribution. Notice that nothing in the likelihood function really changes, but in
order to be a valid CEG model, the conditional probability distributions assigned
to the nodes of the same stage must be equal.

Since a node corresponds to the set of paths that lead to the node, the stages
can be associated with sets of these sets. We denote the stage to which the
node t belongs as s(t) = {dom(u)|u ∼ t}, where the node partition induced
equivalence relation ’∼’ denotes “belonging to the same stage”. We also define
a shorthand notation s(d:i) ≡ s(t(d:i)) for the stage the data-vector prefix d:i
leads into. Accommodating the stages, we will now denote the parameter for the
arc labelled v that starts from a node t by θs(t),v. We denote the set of stages
partitioning the nodes of layer i by Li, and write the likelihood function as

P (D|G, θ) =
∏
d∈D

n∏
i=1

θs(d:i−1),di
=

n∏
i=1

∏
s∈Li

ri∏
v=1

θNs,v
s,v , (1)

where Ns,v denotes the total number of data vectors in D that traverse any
node in stage s and any arc labeled with value v of Vi. Indeed, the frequencies
Ns,v form the sufficient statistics for the CEG G, and the histograms Ns =
(Ns,1,, . . . , Ns,ri) in layer Li are the key entities involved in learning the CEG
structures.

From this formulation it is easy to see that the maximum likelihood parame-
ters are just the relative frequencies of data vectors that traverse the arcs, i.e.,
in layer i we have

θ̂s,v =
Ns,v∑ri

v′=1 Ns,v′
=

Ns,v

Ns
, (2)

whenever the denominator Ns is non-zero. In case none of the data vectors
traverse the stage s, the maximum likelihood parameters are not identifiable,
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and we may choose to set them to (say) r−1
i . The actual maximal likelihood for

the data is naturally independent of this choice.
Introduction of stages separates the node sequence based conditioning struc-

ture from the stage sequence based structure that defines the likelihood function.
This important property will be later exploited in our exact structure learning
algorithm.

3 Scoring CEG Structures

Probabilistic models aim at being good summaries of the data or the data gen-
erating process. Measuring the extent to which a model succeeds in this task
for a particular data is often done by using some evaluation criterion or scoring
function. The structure learning task is then cast as an optimization problem in
which we try to find the highest scoring structure G from the structure space
for the given data D. We will next review some of the popular scoring functions
and present their forms for the CEG structures.

The algorithms in Sects. 4 and 5 rely on the additive structure of the scoring
function that the algorithm maximizes. The scoring function SC should decom-
pose the same way the likelihood function does, i.e., it should be a sum of scores
SCs for individual stages s:

SC(G;D) =

n∑
i=1

SCLi(G;D) =

n∑
i=1

∑
s∈Li

SCs(G;D) . (3)

It is easy to see that the common model selection criteria such as the Bayesian
information criterion (BIC) [12], the Akaike information criterion (AIC) [13],
the Bayesian Dirichlet score (BD) [3], and the factorized normalized maximum
likelihood (fNML) score [7] decompose conveniently this way. For all penalized
maximum likelihood scores, the stage scores in layer i can be expressed in a
common form SCs(G;D) =

∑ri
v=1 Ns,v log θ̂s,v −C, where the complexity terms

C for different scores are CAIC = ri − 1, CBIC = ri−1
2 logN , and CfNML =

log
∑

D′
i
P (D′

i|θ̂(D′
i)), where D

′
i goes over all the possible datasets of size Ns for

a discrete variable having ri values. The terms CfNML can be quickly computed
with methods developed by Kontkanen et al. [14].

For the BD score, the stage score may be expressed as

SCs(G;D) = log
Γ (

∑ri
v=1 αs,v)

Γ (
∑ri

v=1 αs,v +Ns,v)
+

ri∑
v=1

log
Γ (αs,v +Ns,v)

Γ (αs,v)
, (4)

where αs = (αs,1, . . . , αs,ri) are the Dirichlet distribution hyperparameters for
independent parameters θs = (θs,1. . . . , θs,ri) [3]. Since specifying informative
parameter priors for large CEG structures is often tedious, it is customary, espe-
cially for data mining purposes, to set the prior by assuming uniform “pseudo-
data”, i.e., that we had seen all the possible data vectors N ′ times. Even under
this simple prior the MAP structure is likely to be very sensitive to the choice
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of N ′ [3,9]. Silander et al. suggest avoiding this problem by using the fNML
score [7].

The scores above are designed to be used for observational data. Analogous
decomposable scores for a mixture of experimental and observational data may
also be derived as demonstrated by Cooper and Yoo [15].

4 Algorithm for Fixed Variable Order

We will now present an algorithm that learns a globally optimal CEG structure
for the given decomposable score and the data D when the order of variables
is fixed. For simplicity, we again assume that this order matches the order of
variables in the data. Somewhat surprisingly, it turns out that the layers of a
CEG structure can be optimized independently without taking into account the
structure of the other layers, since the two consecutive individually optimized
layers can always be linked together without affecting the score of the graph.

4.1 Optimal Partitions for Layers

As discussed earlier, for the decomposable scoring functions considered in this
paper, the layer score SCLi depends on the goodness of its stages. The first layer
always consists of a single node thus it is necessarily optimal. The stages of the
layer Li, 1 < i ≤ n + 1 define a unique partitioning of the domain dom(V:i−1).
In reverse, for all i, (1 < i ≤ n), any partition of the domain dom(V:i−1) =⋃m

s=1 Ss, (x �= y ⇒ Sx ∩ Sy = ∅), suggests a layer Li which can be scored since
it defines values Ns,v =

∑
d∈D I(d:i−1 ∈ Ss ∧ di = v), where I is the indicator

function. The partition into m parts will introduce m(ri − 1) parameters and
each part Ss can also be associated with a ri-dimensional vector αs of Dirichlet
hyperparameters.

Since domain dom(V:i−1) is finite, it has a finite number of possible partitions.
(The number of these partitions is called the |dom(V:i−1)|th Bell-number [16].)
Since all the partitions can be scored using the data D, we suggest a procedure
bestLayer(Vi, V:i, D) that goes through all the partitions of dom(V:i−1) and re-
turns one with a maximal score. The optimal partition is seldom unique, but
it is trivial to see that the layer score SLi of any valid CEG structure cannot
exceed the highest partition score of dom(V:i−1). The sequence of Bell-numbers
grows very rapidly, thus the proposed brute-force algorithm is not practical; we
will address this issue later in Sect. 6.

For future development, we notice that the values Ns,v in layer i count the
frequencies of certain variable assignments to variables {V1, . . . , Vi} in data D.
The number of these assignments does not really depend on the order of vari-
ables, thus instead of partitioning the subsequence space dom(Vi−1), we might as
well partition the space of possible assignments to the variables {V1, . . . , Vi−1}.
Therefore, we may take the second argument to the BestLayer-procedure to be
a set of variables rather than a sequence of them.
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Algorithm 1. Compacting layers

Require: an array of layers L

# one layer is a set of stages
# one stage is a set of nodes
# one node is a set of data vector prefixes

# Reserve space for compacted layers
Lnew ← array of |L| empty sets
Lnew [|L|] ← {{dom(V )}}
# Compact stages of each layer starting from the last layer
for i ← |L| − 1 downto 1 do

for S ∈ L[i] do
nodes ← an empty hashtable from layer i+ 1 node-vectors to prefix sets
for {pfx} ∈ S do

targets ← (tnew(pfx+ 1), tnew(pfx+ 2), . . . , tnew(pfx+ ri))
if targets /∈ keys(nodes) then

nodes[targets] ← ∅
end if
nodes[targets] ← nodes[targets]∪ {pfx}

end for
Snew ← {nodes[k] | k ∈ keys(nodes)}
Lnew [i] ← Lnew [i] ∪ {Snew}

end for
end for

return Lnew

4.2 Binding Layers Together

We will next argue that the optimal partitions of domains dom(V:i−1) can be
turned into optimal layers Li of a valid CEG structure. We do that by building
the layer Ln+1 first and then working backwards all the way down to L1.

The last layer is easy to build since it always has just one stage with one
node tend with dom(tend) = dom(V ). Working backwards to build a layer Li,
(i ≤ n), we may now assume that the nodes of layer Li+1 have already been
built. We then go through parts Ss in an optimal partition of dom(V:i−1), and
turn each Ss into a stage with a separate node for each member of the set Ss.
For each member d:i−1 of dom(V:i−1) and for all values v of Vi, we then draw an
arc labelled with v from node t(d:i−1) to the node t(di:−1, v) in the next layer.
The construction guarantees that the result is a valid CEG structure and that
its score equals the sum of scores of optimal partitions for separate layers.

4.3 Compacting CEG

The construction above yields an unwieldy CEG structure with layer Li having
|dom(V:i−1)| nodes. Undeniably, this is somewhat disappointing development for
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the quest for learning a parsimonious model for the data. We therefore suggest
a cleaning phase that is carried out for each layer Li as soon as it is constructed.
We first notice that we may merge those nodes that belong to the same stage and
whose similarly labeled arcs point to same nodes in the next layer. For example,
in the layer Ln this rule yields just one node per stage, and due to this, the layer
Ln−1 is also likely to be considerably pruned, and so on. The pseudocode for
compacting the stages of the maximal CEG is presented in Alg. 1.

Searching for a compact representation of the optimal CEG structure is com-
plicated by the existence of nodes and arcs that have no support in data. For
AIC and BIC the optimal partitions do not contain parts without any data sup-
port since such parts do not affect the likelihood but they add parameters to the
model. However, unsupported nodes in the layer may be arbitrarily merged and
distributed into stages without affecting the score which creates a huge source
of non-identifiability. The fNML score is not affected by unsupported parts in
the partition, but again the unsupported nodes may be arbitrarily merged and
distributed to the stages. For the BD score the situation is actually more difficult
since the score affecting hyperparameters αs are attached to the stages that may
contain data prefixes not occurring in the data D. We find this an additional
reason to prefer the fNML score over BD score.

A possible solution to the non-identifiability dilemma could be to merge all
the unsupported nodes of a layer Li into a “gutter” node and place that into
its own stage that is associated with a fixed uniform-distribution for Vi. This
way the number of free parameters in the model does not change, and the score
of the model, for other than the BD score, would still be optimal. Such a gut-
ter gathers the unsupported data vectors, and the resulting model still defines
the probability of any possible data vector after the free parameters have been
estimated (or marginalized out).

5 General CEG Structure Learning Algorithm

This far we have assumed that the variable ordering is given to us beforehand.
While this may sometimes be the case in causal and/or temporal domains, in
general we do not necessarily have such prior information. In some cases, finding
a good ordering of variables may be the very problem we are trying to solve. Some
variable orderings may indeed allow higher scoring models than other orderings.

5.1 Dynamic Programming

The most naive algorithm would go through all the n! variable orderings of
the variable set V and apply the algorithm for fixed order learning to each of
them. However, one quickly realizes that, due to the decomposability of scores,
common prefixes of such orderings need to be studied only once. This suggests
a solution very similar to the dynamic programming solutions for the exact
learning of Bayesian network structures [5,6]. The score of any globally optimal
CEG structure G∗ can be expressed as a sum of the last layer’s score and the



A Dynamic Programming Algorithm for Learning Chain Event Graphs 209

Algorithm 2. Exact learning of an optimal CEG

Require: Variable set V , data D
Require: functions layerScore, and bestLayer

# Reserve space for arrays
ls ← array for at most |V | best last layer scores
lastV ar ← empty table of 2|V | variables
gs ← empty table of 2|V | global scores

# Find last variables of best CEGs for all variable subsets
gs[∅] = 0
for all non-empty U ⊂ V in order of increasing size do

for all Vi ∈ U do
ls[Vi] ← layerScore(bestLayer(Vi, U,D))

end for
lastV ar[U ] ← argmaxVi∈U (ls[Vi] + gs[U \ {Vi}])
gs[U ] ← ls[lastV ar[U ]] + gs[U \ {lastV ar[U ]}]

end for

# Gather layers in reverse order
L∗ ← initially empty array of n layers
while V �= ∅ do

L∗[|V |] ← bestLayer(lastV ar[V ], V,D)
V ← V \ {lastV ar[V ]}

end while

return L∗

score of the preceding n− 1 layers. Consequently, if we have computed the best
CEG structures for all variable subsets of size n − 1 and the last layer scores
for all the n variables, we can choose the last layer (variable) that maximises
the sum of scores of the last layer and the score of the best CEG for the rest of
the variables. This reasoning can then be recursively applied for finding the best
CEG for any set of n− 1 variables.

When reversing the recursion described above into a dynamic programming
algorithm, we may first find the best CEGs for all the variable subsets of size 1,
then try to augment these with the last layers to find the best CEGs for all the
variable subsets of size 2, then try to augment these with last layers again, and
so on, until we reach the subset of size n. The pseudo-code for this strategy is
presented in Alg. 2. The algorithm takes the variable set V and the data D as
an input, and it also uses the functions bestLayer and layerScore to find and
score the best last layer in CEG for variable set S in which the last variable is
Vi.

5.2 Time and Space Complexity

We notice that the function bestLayer and the summation under arg max
are called once for each possible (Vi, S \ {Vi}) combination thus n2n−1 times.
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This determines the computational complexity of this level of the algorithm.
The total complexity is naturally affected by the possibly huge complexity of
the bestLayer-search.

The required space for storing last variables for subsets to the table lastV ar
is clearly 2n− 1 (bytes), but in implementation these may be written to the disk
as soon as they are computed. Assuming a deterministic scheme for going over
the variable subsets, n of the last variables can then be later fetched from disk
when gathering layers into the sequence L∗ of optimal layers. Storing the

scores of best CEGs for all subsets of V to gs clearly requires storing 2n

floating point values. We notice that when going through subsets in order of
increasing size, only the scores for subsets of two consecutive sizes are required
to be held in memory. This reduces the maximum number of floating point values
we need to keep in memory to

(
n

�0.5n	
)
+
(

n
�0.5n	+1

)
= 2n!

�0.5n	!(�0.5n	+1)! .

6 Scalable Approximations

Bell-numbers grow super-exponentially. In order to find a maximally good parti-
tioning of the 6th layer for binary data, the brute first algorithm has to go through
B32 = 128064670049908713818925644 different partitions and score them all.
While the calculations can be done in parallel (for all layers) this is clearly pro-
hibitive. The problem is slightly alleviated by noticing that, for other scores than
BD, only the partitioning of the data supported part of the domains matters,
thus in effect we are actually trying to find the good partition of the set of ob-
served data prefixes D:i−1. Still, having 32 different data prefixes in our data
would lead to studying all B32 possible partitions of them.

6.1 Avoiding Brute Force Search

To avoid studying all the partitions of the layer, Freeman suggests starting from
the finest clustering of the data prefixes and then using agglomerative clustering
that greedily combines the partitions that yield frequency histograms that lead
to the best improvement to the score of the layer [4]. In our experiments (see
Table 1) this AHC (agglomerative hierarchical clustering) method produced good
results, but due to its cubic time complexity, it was rather slow so we were not
able to use it for all of our experiments.

In order to devise a faster clustering heuristic, we first note that the quality
of the partition is related to the entropy of the distributions entailed by the
maximum-likelihood (or expected) parameters θ̂f of the stages and the amount
of support the parameters have in the data. Ideally one would like to have a
small number of low-entropy distributions with strong support.

Prefixes d:i−1 in dom(V:i−1) that occur in data induce frequency histograms
Ns(d:i−1). Clustering prefixes with similar shape low-entropy histograms together
tend to create partitions of data that yield high scores. In our experiments we
used K-means clustering of normalized histograms with Euclidean distance ini-
tializing the cluster centers to low-entropy distributions. Figure 2 shows how the
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residual sum of squares, the measure optimized by K-means, correlates with the
scores of the last layer partitions in the Symptoms-data used by Freeman and
Smith [3] to demonstrate the CEG learning. This heuristic is hardly optimal,
but it is relatively fast (see Table 1).

Fig. 2. Partition scores as a function of the K-means objective function

One could also first use a quick clustering heuristic with a modified Alg. 2
that learns k best orderings of variables as suggested by Tian et al. [17], and
then evaluate these orderings using more accurate but slower layer optimizing
algorithm like AHC.

6.2 Tapping into Bayesian Network Learning

A possible method to quicken the learning is to just consider partitions induced
by some short sub-sequences of V:i. This corresponds to selecting “parents”
among predecessors in a K2-like fashion [18] which connects the CEG learning
directly to the Bayesian network structure learning (with local structure) [19].
Doing so also imports a well developed pack of tricks for Bayesian network
structure learning such as the ability to quickly learn CEG-”trees” by maximum
spanning tree algorithms [20], caching sufficient statistics into the AD trees for
quick retrieval [21] etc. However, it also biases search towards domains excluding
conditioning contexts that consist of particular configurations of many variables.
This bias is undesirable since catching the variable length contexts is the bravura
of CEGs. A more CEG-spirited way would be to constrain the maximum width
of the layers by limiting the maximum number of parts in a sub-domain parti-
tion. For example, in our K-means implementation we have allowed the layer for
variable Vi to be partitioned into at most to 2ri − 1 parts.
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Table 1. Comparison of CEG structure learning and BN structure learning using
fNML score

Data n N SB SCK SCA TB TCK TCA

symptom 3 100 -202.9 -200.2 -200.2 0.00 0.00 0.0
balance 5 625 -4478.4 -4086.7 -4086.7 0.00 0.00 2.3
iris 5 150 -450.9 -440.4 -440.2 0.00 0.00 0.0

thyroid 6 215 -572.4 -559.4 -557.8 0.00 0.00 0.0
liver 7 345 -1299.4 -1231.8 -1227.8 0.00 0.00 0.1
ecoli 8 336 -1643.6 -1508.4 -1496.3 0.00 0.01 0.4

diabetes 9 768 -3654.0 -3447.9 -3393.0 0.02 0.02 2.5
post operative 9 90 -639.9 -481.4 -478.7 0.00 0.02 0.7

yeast 9 1484 -7849.0 -7488.7 -7407.7 0.02 0.20 10.8
breast cancer 10 286 -2739.3 -1897.6 -1864.7 0.04 0.42 95.1
tic tac toe 10 958 -9162.4 -6871.5 -6840.0 0.08 0.26 1203.6

bc wisconsin 11 699 -3239.6 -2507.0 -2489.1 0.07 0.21 100.4
glass 11 214 -1233.2 -1016.7 -1004.5 0.04 0.11 5.7

heart cleveland 14 303 -3352.3 -1988.2 -1969.2 0.98 3.83 3122.2
heart hungarian 14 294 -2343.6 -1787.1 -1766.5 0.56 1.68 630.5
heart statlog 14 270 -2814.3 -1733.7 -1714.1 0.82 2.74 1887.2

wine 14 178 -1808.7 -1148.2 -1140.0 0.62 1.81 713.3
australian 15 690 -4953.0 -4296.0 -4196.1 1.30 4.03 2420.7

credit screening 16 690 -6035.7 -4756.1 -4641.7 5.27 89.78 36883.6
voting 17 435 -3122.8 -2423.5 -2377.8 5.38 10.45 7622.2

primary tumor 18 339 -3074.9 -2105.4 -2056.4 13.77 32.29 25007.2

6.3 An Experiment

It is possible to transform any Bayesian network structure GB to a CEG struc-
ture GC with exactly the same value of decomposable scoring function. Con-
sequently, a possible “CEG-learning” algorithm would be to actually learn a
Bayesian network, and then convert that to a CEG. To demonstrate that the
Alg. 2 actually beats trivial turning of a Bayesian network into a CEG, we con-
ducted an experiment in which we took 20 UCI datasets1 [22] and the Symptoms
data by Freeman et al. [3], and used the fNML score to first learn a best Bayesian
network for each dataset using exact structure learning, and then learned CEG
structures using the Alg. 2. The results are collected to the Table 1 that also lists
the number N of data vectors and the number n of variables for all datasets.
In all datasets our CEG-learning algorithm was able to find a higher scoring
CEG structure than the one converted from the highest scoring (SB) Bayesian
network. Using the AHC algorithm as a BestLayer-search yielded the highest
score (SCA), but since it is very slow (TCA , measured in seconds)2 for higher

1 Continuous values were discretized into 4 equal with bins and the missing values
were randomly imputed.

2 All the experiments were run using a single 3.4Ghz CPU of a Dell Optiplex 990
desktop computer with 8GB of memory (a small fraction of which was actually
needed).
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dimensional datasets, we also included the faster (TCK ) K-means heuristic de-
scribed above.While K-means as a BestLayer-search never yielded better results
than AHC, its score (SCK ) was always better than the one given by the Bayesian
network.

We take these results as a demonstration of the usefulness of our algorithm.
However, the complexity still heavily depends on dimensions of the data set.
Even after distributing the Alg. 2 with the K-means heuristic to 16 processors,
it took almost 5 days to run it for the 28-variable Wisconsin diagnostic breast
cancer data that has 569 cases.

7 Future Work

Equipped now with a practical algorithm to learn CEGs, we conducted a 10-fold
cross-validation study in which we first learned the Bayesian network and CEG
structures, calculated the factorized sequential normalized maximum likelihood
(fsNML) parameters [7] for these models, and then observed the log-probability
of the test-fold in these two models. For each data the cross-validation was re-
peated 100 times with different foldings. The amount of model learning required
made us to use the K-means heuristic as a layer optimizer.

This predictive task forces us to decide what to do with parameters that
have no support in the training data. In Bayesian networks, the unseen parent
configurations usually yield uniform distributions for the children. For CEGs we
therefore implemented a “gutter” as discussed earlier. If a path defined by a test
vector turns unsupported, all the remaining variables are predicted with uniform
distributions.

As we can see from the results in Table 2, even if the CEG models achieved
higher training scores than Bayesian networks (train SCK vs. train SB with
standard deviations), their ability to predict future UCI-data was worse than
Bayesian networks’ (test SCK vs. test SB). However, for the Symptoms-data [2]
that features strong contextual independences that cannot be captured by any
Bayesian network structure, the optimal CEGs predict test data better than the
optimal BNs do.

We cautiously hypothesize that the “marginal likelihood” is not enough for
predictive model selection in this way nested model families. CEG’s ability to fit
the structure into particular value configurations allows higher likelihoods, but
it also seemingly yields wider “gutter”, i.e., the number of variables that has to
be predicted with uniform distribution increases. This is also reflected with very
high standard deviations of the CEG test scores. For example, the huge standard
deviation in the credit screening data is mostly caused by an attribute that has
14 different discrete values which causes the test data to contain many variable
configurations that do not appear in the training data.

It is worth emphasizing that the cross-validation study above was mainly
conducted to demonstrate that our algorithm is practical in a way that it can
be used to investigate interesting questions such as model selection of CEGs.
The actual problem of model selection remains an interesting topic for future
research.
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Table 2. Results from 100 10-fold cross-validations

Data n N train SB train SCK test SB test SCK

symptom 3 100 -1829 ± 2 -1810 ± 3 -202±5 -196 ± 5
balance 5 625 -40373 ± 3 -36792 ± 98 -4413±14 -6348 ± 730
iris 5 150 -4093 ± 1 -3996 ± 7 -419±11 -429 ± 21

thyroid 6 215 -5186 ± 5 -5066 ± 5 -543±16 -559 ± 67
liver 7 345 -11718 ± 9 -11122 ± 20 -1290±38 -1372 ± 126
ecoli 8 336 -14869 ± 7 -13587 ± 29 -1578±29 -1681 ± 268

diabetes 9 768 -32940 ± 17 -30953 ± 114 -3625±66 -3868 ± 442
post operative 9 90 -5762 ± 13 -4312 ± 8 -664±65 -871 ± 107

yeast 9 1484 -70783 ± 25 -67364 ± 178 -7720±56 -8021 ± 788
breast cancer 10 286 -24710 ± 13 -16971 ± 90 -2705±82 -3909 ± 832
tic tac toe 10 958 -82626 ± 158 -61137 ± 50 -9032±367 -13611 ± 1705

bc wisconsin 11 699 -29208 ± 44 -22460 ± 43 -3250±204 -3979 ± 1928
glass 11 214 -11186 ± 18 -9185 ± 31 -1176±124 -1325 ± 332

heart cleveland 14 303 -30243 ± 26 -17781 ± 44 -3340±223 -4714 ± 960
heart hungarian 14 294 -21145 ± 15 -15988 ± 39 -2323±78 -3291 ± 1158
heart statlog 14 270 -25396 ± 24 -15465 ± 34 -2806±222 -4004 ± 890

wine 14 178 -16372 ± 33 -10289 ± 17 -1769±200 -2613 ± 665
australian 15 690 -44648 ± 25 -38440 ± 113 -4949±122 -6302 ± 7727

credit screening 16 690 -54470 ± 59 -42516 ± 165 -5958±171 -9681 ± 18879
voting 17 435 -28123 ± 55 -21649 ± 43 -3254±363 -4048 ± 894

primary tumor 18 339 -27701 ± 72 -18742 ± 51 -3202±405 -4244 ± 1493

8 Conclusion

We have presented an exact structure learning algorithm for the CEG model
family, and suggested approximations that make it applicable in practice. The
algorithm learns CEG structures without requiring the predetermined ordering
of variables. The approximations still have much room for study and improve-
ment. The exponential nature of even the approximate version of the algorithm
ensures that this will not be the general solution for larger CEG structure learn-
ing problems. We, however, hope that the work will inspire the community to
build on these ideas to come up with better algorithms with possible approxima-
tion bounds as well as more general heuristics that scale up to a larger number
of variables. We feel that results of data clustering research may well provide
ideas to come up with good algorithms for the CEG structure learning in the
future.
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Abstract. We present a novel method for mining local patterns from
multi-relational data in which relationships can be of any arity. More
specifically, we define a new pattern syntax for such data, develop an
efficient algorithm for mining it, and define a suitable interestingness
measure that is able to take into account prior information of the data
miner. Our approach is a strict generalisation of prior work on multi-
relational data in which relationships were restricted to be binary, as well
as of prior work on local pattern mining from a single n-ary relationship.
Remarkably, despite being more general our algorithm is comparably fast
or faster than the state-of-the-art in these less general problem settings.

1 Introduction

Pattern mining research has mostly focused on mining itemsets or association
rules on one binary table representing transactions and items. Real world data
is often more complex, commonly stored in a relational database that allows to
capture the relations that exist among the different entity types in the data.

Mining multi-relational data has for a long time been approached by Inductive
Logic Programming (ILP) methods where the goal is to mine frequent rules
about the data [5,12]. More recently, there have also been generalisations of
itemset mining to more complex settings.

Itemset mining has been generalised to mining local patterns in a (single)
relationship that involves several entity types. Such a relationship is known as n-
ary relationship [3,8,9]. An example of a 3-ary relationship is a shop transaction
record containing the item sold, the customer, as well as the mode of payment
used (e.g. cash/debit card/credit card). The definition of a closed itemset can be
generalised fairly directly to n-ary relationships. Algorithms designed to mine
such patterns typically require choosing a frequency threshold for each entity
type, and do not define an interestingness to rank the patterns found.

Another strand of research has generalised itemset mining to multi-relational
data. Think for example of a retail database which contains customers, items
they bought as well as characteristics of customers and characteristics of items.
The most common strategy has been to essentially apply frequent itemset mining
on the join of all tables of the database [11,7,10]. Although this strategy seems
sensible, in previous work [13,14] we argued that it has significant disadvantages.
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We thus proposed the so-called Maximal Complete Connected Subset (MCCS)
pattern syntax as an alternative, which is a natural generalisation of closed
itemsets and their supporting transactions. We also proposed a global measure of
subjective interestingness. While we were able to demonstrate promising results,
a restriction is that the method can be applied to multi-relational data only if
all relationships in the database are binary.

Contributions in this paper. Although both research strands have remained
largely independent, real data is often multi-relational while also involving rela-
tionships of arity larger than 2. To the best of our knowledge no local pattern
mining method exists targeting this case, and we aim to fill this gap in the cur-
rent paper. In doing this, we wanted to ensure backward compatibility of the
newly introduced notions with both these strands of research, ideally without
sacrificing computational tractability. More specifically, we introduce a novel
pattern syntax called N-MCCSs and show that it is a generalisation of pattern
syntaxes defined for simpler settings; namely of MCCSs for multi-relational data
with binary relationships [13,14], as well as of n-Sets for data represented by a
single n-ary relationship [3].

Developing an algorithm to mine N-MCCSs proved non-trivial owing to the
differences in algorithmic approaches for both strands of research. Nonetheless,
our experiments show that the proposed algorithm performs similarly to the al-
gorithm for mining MCCSs from multi-relational data with binary relationships
only [14], and on n-ary data it considerably outperforms Data-Peeler [3], the
state-of-the-art algorithm for mining data containing a single n-ary relationship.
Thus, our contributions simultaneously generalize and unify important previous
data mining methods and approximately match or even improve on them in terms
of computation times.

2 Definitions and Concepts

Here we formalize multi-relational data as considered in this paper and define
the concepts needed to introduce the pattern syntax we propose.

2.1 Multi-relational Data

Our formalization of multi-relational data follows the Entity-Relationship (ER)
model [6], with the difference that we treat every attribute as an entity type of
its own. This unified treatment of entity types and attributes leads to a simple
formalization which still captures all the associations in the data.

We formalize multi-relational data as D = (E, t,R,R). E is a finite set of
entities which is partitioned into k entity types. We formalize this by defining
a mapping from the entity set onto an index set for the types: t : E → T =
{1 . . . , k}. Thus, the set of entities is the union of the sets of entities for each
type: E = E1

.
∪ . . .

.
∪ Ek with Ei = {e ∈ E | t(e) = i}. Slightly abusively, we

will also apply t to sets of entities, to yield a set with their entity types.
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We also define a relationship type R as a set of entity types, such that the
set of all relationship types R is a subset of the power set of T , i.e.: R ⊆ P(T ).
For each R ∈ R there is an |R|-ary relationship RR ⊆ {{e1, . . . , en} : R =
{t(e1), . . . , t(en)}}, containing all sets of entities of the types in R that are indeed
related with each other. We say that a set {e1, . . . , en} ∈ RR is a relationship
instance. The set R is the union of all relationships, i.e., R =

⋃
R∈R RR.

Figure 1 shows a toy example of some multi-relational data highlighting the
notions we just introduced.

user tag paper
U1 algorithms P1

U1 large graphs P2

U1 algorithms P2

U2 large graphs P1

U2 large graphs P2

paper author
P1 Jure Lescovec

P1 Christos Faloutsos

P2 Jure Lescovec

P2 Christos Faloutsos

Bibliographic multi-relational data

tagged_by_user

authored_by

Fig. 1. Bibliographic multi-relational data containing four entity types (“user”, “tag”,
“paper”, “author”) and two relationship types. One 3-ary between “user”, “tag” and
“paper” and one binary between “paper” and “author”.

2.2 The Pattern Syntax of N-MCCSs

The pattern syntax proposed in this paper is called N-MCCS and builds upon two
previously considered ones: the pattern syntax of MCCSs, which was proposed
for the case of multi-relational data with many binary relationships and is a
generalisation of closed itemsets or maximal tiles [13,14], and the pattern syntax
of n-Sets, which was proposed for the case of data with one n-ary relationship
only [3]. In this section we define N-MCCSs and in the next section we show
that it is indeed a generalisation of MCCSs and n-Sets.

Intuitively, N-MCCSs capture associations between entities of different entity
types. In the example of Fig. 1, an N-MCCS could correspond to a group of
users that have tagged the same group of papers of the same authors or a group
of users that have tagged the same group of papers with the same tags.

The definition of N-MCCSs is based on the notions of connectedness and
completeness. A set of entities is connected if any pair of entities in it is connected
through a sequence of entities that are pairwise related. Formally:
Definition 1. We call a set of entities F ⊆ E connected if for all distinct
e, e′ ∈ F there is a sequence e = e1 . . . el = e′ with {e1..el} ⊆ F such that for
i ∈ {1, . . . , l− 1} it holds that there is an F ′ ⊇ {ei, ei+1} such that F ′ ∈ R.

Example 1. In the toy data example of Fig. 1 the set of entities {U1, U2, large
graphs, P2, Christos Faloutsos} is connected whereas the set of entities {U1,
U2, large graphs, Christos Faloutsos} is not connected because for none of the
pairs {U1, Christos Faloutsos}, {U2, Christos Faloutsos}, {large graphs, Christos
Faloutsos} is there a superset which is a subset of any relationship.
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A set of entities is complete if every subset containing entities of different en-
tity types that belong to the same relationship type, is a subset of a relationship
instance. One might expect that for completeness we would require all entity
types of a relationship type to be present in a pattern. However our definition
of completeness is more flexible. In the example of Fig. 1 for instance it allows
patterns containing only a set of papers and their tags without containing the
users. We formally define completeness using the notion of a critical subset.

Definition 2. Given some relational data D = (E, t,R,R), and a set of entities
F ⊆ E, a set F ′ ⊆ F , with |t(F ′)| = |F ′| and t(F ′) ⊆ R ∈ R is called a critical
subset of F with respect to R. We say that a critical subset, F ′ of F , is covered
in R if for all R ∈ R with respect to which it is critical, there exists an F ′′ ⊇ F ′

such that F ′′ ∈ RR.

Definition 3. Given some relational data D = (E, t,R,R), we call a set of
entities F ⊆ E complete iff all critical subsets of F are covered in R.

Example 2. Considering again the data toy example of Fig. 1 the set{U1, U2,
large graphs, Christos Faloutsos} is complete but not connected.

A set of entities F ⊆ E is called a Complete Connected Subset and abbrevi-
ated as N-CCS if it satisfies both completeness and connectedness as defined
here for multi-relational data of n-ary relationships. Like in other pattern min-
ing tasks the set of N-CCSs is typically exponentially larger than the input size.
For reasons of efficiency of the mining algorithm, we focus on a smaller subset
of the N-CCSs namely the maximal N-CCSs. A maximal N-CCS, abbreviated
as N-MCCS, is an N-CCS to which no entity can be added without violating
connectedness or completeness.

Example 3. Two examples of N-MCCSs from the toy data of Fig. 1 are: {U1, U2,
large graphs, P2, Christos Faloutsos, Jure Lescovec} and {P1, P2, large graphs,
algorithms, Christos Faloutsos, Jure Lescovec}.

2.3 From MCCSs and n-Sets to N-MCCSs

Here we show that the proposed pattern syntax of N-MCCSs is a generalisation
of MCCSs [13,14], as well as n-Sets [3]. We do this by translating the definition
of MCCSs and n-Sets using the concepts of this paper.

MCCSs are Maximal Complete Connected Subsets where completeness and
connectedness are defined as follows. For D = (E, t,R,R) where ∀R ∈ R, |R| =
2, a set F ⊆ E is complete if ∀F ′ ⊆ F with t(F ′) ∈ R and |F ′| = 2 it holds
that F ′ ∈ Rt(F ′). A set F ⊆ E is connected if for all e, e′ ∈ F there is a
sequence e = e1, . . . , el = e′ with {e1, . . . , el} ⊆ F such that for i ∈ {1, . . . , l−1}
it holds that {ei, ei+1} ∈ R. Clearly both completeness and connectedness are
special cases of completeness and connectedness as defined in Def. 3 and Def. 2
respectively.

n-Sets are defined as follows. For some multi-relational data D = (E, t,R,R)
where |R| = 1 and for R ∈ R, |R| = n, a set F ⊆ E with |t(F )| = n is an
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n-Set if ∀F ′ ⊆ F with |t(F ′)| = |F ′| = n, F ′ ∈ RR and it is maximal under this
condition. Since |R| = 1, and for every n-Set F , |t(F )| = n, if F is complete
it will be connected as well. Therefore the pattern syntax of N-MCCSs is a
generalisation of the pattern syntax of n-Sets.

3 Mining Algorithm

In Sec. 2.2 we argued that for efficiency reasons we focus on mining maximal
patterns. An efficient algorithm to mine all N-MCCSs should avoid enumerat-
ing most N-CCSs that are not maximal. The algorithm proposed here, is an
instantiation of the fixpoint listing algorithmic framework [2] which is used to
enumerate all N-CCSs that are fixpoints of a closure operator and to which we
refer as closed N-CCSs. In Sec. 3.1 we establish the applicability of this frame-
work for mining N-MCCSs. Then, in Sec. 3.2 we describe the fixpoint listing
framework and in Sec. 3.3 we instantiate it for our setting by defining a suitable
closure operator. In Sec. 3.4 we also show that this operator is a generalisation of
the closure operator which was defined within the same algorithmic framework
for the case of MCCSs [14] and in Sec. 3.5 we discuss implementation details.

3.1 The Applicability of the Fixpoint Listing Framework

The divide-and-conquer fixpoint listing algorithm enumerates all closed sets of
a closure operator from a given set system. A set system is a family of subsets
F ⊆ P(A) over some ground set A, where P(A) the power set of A. A set F ∈ F
is called closed if it is a fixpoint of some closure operator ρ : F → F , i.e.,
ρ(F ) = F . For the operator ρ to be a closure operator it must satisfy three
properties: extensivity (F ⊆ ρ(F ) for all F ∈ F); monotonicity (ρ(F ) ⊆ ρ(F ′)
for all F, F ′ ∈ F with F ⊆ F ′); and idempotence (ρ(ρ(F )) = ρ(F ) for all F ∈ F).

In order for the fixpoint algorithmic framework to be applicable for mining N-
MCCSs, the set of closed N-CCSs needs to be a superset of the set of N-MCCSs.
This is guaranteed by the properties of the closure operator. If an N-CCSs F
is maximal it means that it cannot be extended by any other entity. From the
extensivity of the closure operator and from the fact that ρ(F ) ∈ F , if follows
that ρ(F ) = F . Which means that F is a closed N-CCS.

In order for the framework to be applicable for mining the closed sets of a set
system, this set system must satisfy a particular property called strong accessi-
bility [2]. We now prove that independent of the input data D = (E, t,R,R) the
corresponding set system of N-CCSs, defined as

FD = {F ⊆ E | F connected ∧ F complete}

is always strongly accessible. For a set system F ⊆ P(A) and a set F ∈ F , let
us denote by Aug(F ) = {a ∈ A | F ∪ {a} ∈ F} the set of valid augmentation
elements of F . Then F is called strongly accessible if for all X ⊂ Y ⊆ A
with X,Y ∈ F there is an element e ∈ (Aug(X) \X) ∩ Y .
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Theorem 1. For all relational data D = (E, t,R,R), the set system FD of N-
CCSs is strongly accessible.

In [14] we showed that for multi-relational data containing just binary relation-
ships the set system of Complete Connected Subsets (CCSs) is strongly accessi-
ble. The same argumentation line can be used to prove Theorem 1 as well.

3.2 N-RMiner

As we have already established that the divide and conquer fixpoint listing al-
gorithmic framework of [2] is applicable to the case of N-CCSs, we now describe
the instantiation of the framework for this setting.

Algorithm 1. N-RMiner: List all N-MCCSs

N-RMiner(F,B)

1: Select e ∈ Aug(F ) \ (F ∪B)
2: F ′ = g(F ∪ {e})
3: if F ′ ∩B = ∅ then
4: if F ′ = Aug(F ′) then
5: Output F ′

6: else
7: N-RMiner(F ′, B)
8: end if
9: end if
10: N-RMiner(F , B ∪ {e})

The general structure of this divide-and-conquer algorithm is shown in Algo-
rithm 1. In each recursive call, the algorithm selects an element e from the set
of valid augmentation elements, Aug(F ), of the current solution F (line 1), and
splits the search space into two subtrees: one subtree in which all N-CCSs include
the element e (lines 3-9) and another subtree in which all N-CCSs exclude e (line
10). This is achieved by adding it to B, which represents the set of elements al-
ready considered as extensions to F (line 10). The fact that only closed patterns
are sought is ensured in line 2, where the expanded set F ∪ {e} is potentially
further expanded by applying the operator g (see bellow for a definition).

As N-RMiner enumerates all closed N-CCSs, we added lines 4-5 to ensure it
outputs N-MCCSs only, i.e., N-CCSs F for which there are no augmentation
elements not yet in F . Formally this is verified by checking if F = Aug(F ).

As defined in Sec. 3.1, the set of augmentation elements Aug(F ) of a set
F ∈ FD from a set system is the set of all elements that can be individually
added to F to yield another set from the same set system. Specifically for the
set system FD of N-CCSs, and given a relational database D = (E, t,R,R),
the set Aug(F ) corresponds to the following set: Aug(F ) = {e ∈ E | F ∪
{e} is complete and connected}.
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In [14] we presented a useful additional feature of the algorithm which gives the
option of focusing on a smaller set of patterns by defining additional constraints
on the pattern syntax. We defined constraints on the minimum number of entities
per entity type (minimum coverage constraint) as well as an upper bound which
can safely be used for pruning as the set system still remains strongly accessible.
The same type of constraints can be used here exactly in the same way.

3.3 The Closure Operator

Since Algorithm 1 is based on adding elements from Aug(F ) one by one, it is
important to introduce the notion of compatibility of an element with a set,
upon which the definition of the closure operator g is based.

Definition 4. For some relational data D = (E, t,R,R), we say that an entity
e is compatible with a set G ⊆ E and denote e ‖G, iff all critical sets F ′ ⊆
(G ∪ {e}) with e ∈ F ′, are covered in R.

We call the set of all e ∈ E that are compatible with a set F ∈ FD the set of
compatible entities of F and denote it as Comp(F ). We note here that the
compatibility property is anti-monotone. This means that for F, F ′ ⊆ E with
F ⊆ F ′, if for e ∈ E it holds that e‖F ′ then e‖F . Therefore also for F, F ′ ∈ FD

with F ⊆ F ′, Comp(F ′) ⊆ Comp(F ).
We would like to note here that for entities of type i �∈ t(Aug(F )) there are

no critical sets between them and F and therefore by definition of compatibility
Comp(F ) ∩ Ei = Ei.

Lemma 1. Let D = (E, t,R,R) some relational data. A set F ⊆ E is complete
if and only if for all e ∈ F it holds that e‖F .

Proof. If an F ⊆ E is complete then all the critical subsets of F are covered in
R. Since e ∈ F , we have that all critical subsets of F ∪ {e} are covered, and
therefore e ‖F . Conversely, for an F ⊆ E such that for all e ∈ F it holds that
e ‖F , we have that for all e ∈ F all critical subsets containing e are covered in
R, which means that all critical subsets of F are covered. Thus F is complete.

It follows from Lemma 1 that for a set F ∈ FD, F ⊆ Comp(F ). It also follows
that Aug(F ) ⊆ Comp(F ), because for every element e ∈ Aug(F ), e ‖F always
holds. Therefore F ⊆ Aug(F ) ⊆ Comp(F ).

From Lemma 1 it also follows that for F ∈ FD, Comp(F ) can equivalently be
defined as the set of all e ∈ E such that F ∪ {e} is complete.

We are now able to define the operator g. The definition of g requires that
every element in the closure of F is compatible with all the compatible elements
of F . Formally:

g(F ) = F ∪ {e ∈ Aug(F ) \ F : e‖Comp(F )}, F ∈ FD.

Before we show that g is a closure operator by proving each of the essential
properties, we give an example of applying g to a set.
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Example 4. Let us consider again the toy dataset of Fig. 1. Let us also consider
that F = {P2, Christos Faloutsos}. Then Aug(F ) \ F = {P1, U1, U2, large
graphs, algorithms, Jure Lescovec} and Comp(F ) = {P1, P2, U1, U2, large
graphs, algorithms, Jure Lescovec, Christos Faloutsos} and g(F ) = {P2, Christos
Faloutsos, Jure Lescovec}. We see that from all the elements of Aug(F )\F only
“Jure Lescovec” is compatible with Comp(F ) because all critical sets, namely
{P1,Jure Lescovec} and {P2,Jure Lescovec}, are covered.

Proposition 1. For all D = (E, t,R,R) the codomain of g is the set system
FD of N-CCSs, i.e., for all F ∈ FD it holds that g(F ) ∈ FD.

Proof. We need to show that for every F ∈ FD, g(F ) is complete and connected.
When F = ∅ then g(F ) = ∅ and therefore it is complete and connected. We
show this is the case as well for all F �= ∅, F ∈ FD.

We have that g(F ) ⊆ Aug(F ). From the definition of the set Aug(F ) this
means that for every e ∈ g(F ), F ∪ e is connected. This means that there is a
sequence of pairwise related entities between every pair e, f ∈ g(F ). Therefore
g(F ) is connected.

To show completeness let us assume that g(F ) is not complete. This means
that there is a critical subset F ′ ⊆ g(F ), that is not covered. We have that F
is complete since F ∈ FD. This means that F ′ �⊆ F and therefore there must
be at least one e′ ∈ F ′ such that e′ ∈ {e ∈ Aug(F ) \ F : e ‖ Comp(F )}. We
therefore have that all critical subsets of Comp(F ) that contain e′ are covered.
Since F ′ ⊆ g(F ) ⊆ Comp(F ), the fact that F ′ is not covered is a contradiction.
Therefore g(F ) is complete.

It is trivial to see that g is extensive, as it does not remove any elements
from the set it is applied to. Next we will prove that g is also monotone and
idempotent (as long as the data satisfies some properties).

Proposition 2. For all D = (E, t,R,R) the operator g is monotone.

Proof. Assume the operator is not monotone, i.e., there are F ′, F ∈ FD with F ⊆
F ′ such that g(F ) �⊆ g(F ′). Hence, there is an e ∈ g(F )\g(F ′). We also have e ∈
g(F )\F because g is extensive. From the definition of g it follows e‖Comp(F ). By
anti-monotonicity of compatibility, F ⊆ F ′ implies that Comp(F ) ⊇ Comp(F ′).
Applying once again the monotonicity of compatibility, e‖Comp(F ) also implies
e‖Comp(F ′). Since F ′ ⊆ Comp(F ′) we have that e‖F ′. Also e ∈ (Aug(F ) \ F )
and since F ′ is a connected superset of F , e is connected to F ′, and thus e ∈
Aug(F ′). Hence e �∈ g(F ′) is a contradiction.

Before we give the proposition about idempotence, we define a class of multi-
relational data called acyclic multi-relational data as all D = (E, t,R,R)
such that there does not exist a sequence of entity types {i1 . . . il} such that for
j = 1 . . . l− 1, {ij, ij+1} ⊆ R ∈ R and i1 = il.

Proposition 3. For all acyclic D = (E, t,R,R) with the property that �e ∈ E
such that ∃R ∈ R with e‖(∪i∈REi), the operator g is idempotent.
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Proof. Assume that for an acyclic D = (E, t,R,R), such that �e ∈ E such that
∃R ∈ R with e ‖ (∪i∈REi), the operator g is not idempotent. This means that
∃f ∈ g(g(F )) such that f �∈ g(F ). This can happen if:

(a) f ∦ Comp(F ). Since f ∈ g(g(F )), f ‖ Comp(g(F )). For all e ∈ g(F ) we
have that e‖Comp(F ). This means that e is compatible with all the compatible
elements of F including F itself. Therefore adding e to F does not change this
set which means that for every e ∈ g(F ), Comp(F ∪{e}) = Comp(F ). Therefore
Comp(g(F )) = Comp(F ) and as a result f ‖Comp(F ). A contradiction.

(b) f �∈ Aug(F ). From the anti-monotonicity of compatibility and f ‖Comp(F ),
it holds that f ‖F . Therefore for f �∈ Aug(F ) it must be that f is not connected to
F . Therefore t(f) �∈ t(Aug(F )) which means that t(f) belongs to a relationship
type R of which no entity types are in F . However, t(f) ∈ t(Aug(g(F ))). There-
fore there must be an e ∈ g(F ) such that there is a set F ′, with t(F ′) ⊆ R ∈ R,
e, f ∈ F ′ andF ′ ∈ R. Since e ∈ g(F ) we have that e‖Comp(F ). SinceD is acyclic,
no entity type of R except t(e) belongs to Aug(F ). Therefore we have that for ev-
ery i ∈ R, i �= t(e), Comp(F ) ∩ Ei = Ei. Therefore, for e ‖Comp(F ) it must be
that e ‖ (∪i∈REi) (since e is compatible to the entities of the same type as well).
A contradiction.

From the above propositions we have the following corollary:

Corollary 1. For all acyclic multi-relational data D = (E, t,R,R) with the
property that �e ∈ E such that ∃R ∈ R with e ‖ (∪i∈REi), the operator g is a
closure operator.

We note here that even though the idempotency of the operator g holds for
acyclic multi-relational data that do not contain any entity belonging to all the
relationship instances of a relationship, our method can still be applied to any
multi-relational data by introducing an operator applying g to a set F as many
times as required until the mapped set does not increase any more.

3.4 The Generality of the Closure Operator

The fixpoint listing algorithmic framework has also been used for mining MCCSs
in multi-relational data with binary relationships. The instantiated algorithm for
this setting is called RMiner [14]. Here we are going to show that the closure
operator g is more general than the closure g2 defined in R-Miner as:

g2(F ) = {e ∈ Aug(F ) : Comp′(F ∪ {e}) = Comp′(F )}

The set of compatible elements for a setF ∈ FD is defined in [14] asComp′(F ) =
{e ∈ E | F ∪ {e} is complete}. In the conclusions of Lemma 1 we said that this is
an equivalent definition for the set Comp that we defined in this paper. Therefore
Comp and Comp′ map to the same set.

Following from that the pattern syntax of N-MCCSs is a generalisation of the
pattern syntax of MCCSs it also holds that the codomain of the two closure
operators is the same. We can now state the following theorem.
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Theorem 2. For all relational data D = (E, t,R,R), such that ∀R ∈ R, |R| =
2, the closure operator g : FD → FD is a generalisation of the closure operator
g2 : FD → FD [14], i.e., ∀F ∈ FD, g(F ) = g2(F ).

Proof. We are first going to prove that g(F ) ⊇ g2(F ). Let us assume the opposite,
i.e., ∃e ∈ g2(F ) such that e �∈ g(F ). e �∈ g(F ) means that e �∈ F and e∦Comp(F ).
Therefore there is at least one e′ ∈ Comp(F ) such that {e, e′} �∈ R which means
that Comp(F ∪ {e}) ⊂ Comp(F ). Contradiction.

Now we are going to prove that g(F ) ⊆ g2(F ). Let us assume the opposite,
i.e., that ∃e ∈ g(F ) such that e �∈ g2(F ). e �∈ g2(F ) means that Comp(F ∪
{e}) ⊂ Comp(F ) and therefore there exists at least one e′ ∈ Comp(F ) such that
{e, e′} �∈ R. This means that e∦Comp(F ) which is a contradiction since we have
assumed that e ∈ g(F ). Therefore g(F ) = g2(F ).

The result presented in Theorem 2 is very important as it means that when
N-RMiner is applied to data with binary relationships only, it enumerates exactly
the same set of patterns as RMiner which is using the operator g2.

3.5 Implementation Details

Our implementation is based on giving an id to every relationship instance and
storing the relationship instance ids, in a global structure containing for every
entity and every relationship type, a list of relationship instance ids. Then the
coverage of a critical subset can easily be checked by checking whether the inter-
section of the relationship instance ids of the entities it contains is non-empty.
Although to check the compatibility of an element with a set all critical sets
need to be checked for coverage, it can be done more efficiently as it suffices for
one critical set not to be covered in order for the compatibility not to hold.

The choice of the next element to extend the current partial solution is im-
plemented with a for loop using an ordering of the entities in terms of increasing
Aug(e). This way the number of closure checks is reduced.

4 Assessment of Patterns

We assess the quality of a pattern based on a subjective interestingness measure
which formalises how interesting a pattern is based on the prior information of
the user. We adopt a definition of interestingness which was proposed for binary
tables and adapted for binary related multi-relational data as well in our previous
work [4,13]. According to this definition interestingness is defined as unexpected-
ness with respect to a Maximum Entropy model of the prior information of the
user. In what follows we describe the type of prior information we consider in this
paper and formalize and derive the Maximum Entropy optimization problem.
We then give the definition of the interestingness measure.
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4.1 The Maximum Entropy Model

In this paper we consider as prior information the number of relationship in-
stances an entity participates in. This intuitively means that a pattern containing
entities that appear less frequently in relationship instances will be deemed more
interesting by our measure. As an example consider a movie database consisting
of three entity types, “person”, “role” and “movie” and a 3-ary relationship be-
tween them. According to this prior information, a pattern containing persons
that appear in many films under any role will be rendered less interesting than a
pattern containing people that appear less often as the later is more unexpected.

We formalize this prior information by fitting the Maximum Entropy (Max-
Ent) distribution P on the data, with constraints on the expected sum of the
relationship instances every entity participates in, being equal to the actual sum
of relationship instances it participates in. Without details, we point out that a
similar reasoning as in [13,14] establishes that this MaxEnt model P is a product
distribution, with a factor PR for each relationship type—so here we focus on
how to obtain a MaxEnt model for just one n-ary relationship type.

For convenience, let us represent each n-ary relationship RR (with |R| = n)
of some multi-relational data D = (E, t,R,R) by means of an n-dimensional
binary valued tensor DR. The dimensions of DR are indexed by the entity types
t ∈ R, and each dimension itself is indexed by an index it running over all entities
of type t ∈ R. We denote as eit the i’th entity of type t. The relationship RR

is encoded in DR by ensuring that DR(i1, . . . , in) = 1 iff {ei1 , . . . , ein} ∈ RR.
Then the prior information on the relationship type R can be expressed as:∑

DR

PR(DR)
∑

(i1...in):it=k

DR(i1, . . . , it, . . . , in) = dt,kR , (∀t ∈ R)

where dt,kR is the sum of all elements in DR for which it = k or in other words
the number of relationship instances that the kth entity participates in. Finally,
being a probability distribution, PR needs to be normalised:

∑
DR

PR(DR) = 1.
The MaxEnt optimization problem maximizes

∑
DR

−PR(DR) log(PR(DR)),
the entropy, with respect to PR, subject to the above constraints. Computing
the Karush Kuhn Tucker optimality conditions, similar to [4], shows that the
optimal solution is of the form:

PR(DR) =
∏

i1...,in

P
{i1,...,in}
R (DR(i1, . . . , in)),

where P
{i1,...,in}
R (d) =

exp
(
d ·

∑
t λ

t,it
R

)
1 + exp

(∑
t λ

t,it
R

) .
Here, λt,it

R is a Lagrange multiplier corresponding to the constraint for entity
it of type t. Thus, every factor PR of the distribution P , is itself a product of
independent Bernoulli distributions for the elements of the tensor. The optimal
value of the Lagrange multipliers can be found by solving the convex Lagrange
dual optimization problem ([4] gives details for the binary case).
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4.2 The Interestingness of a Pattern

The proposed interestingness measure is a trade-off between the self-information
of a pattern, which measures how much information a pattern carries, and the
description length of a pattern, which measures how concisely it conveys this
information. Intuitively an end user wants to see patterns that convey as much
information as possible, as concisely as possible. Thus, interestingness of an N-
MCCS F ∈ FD is defined as follows:

Interestingness(F ) =
SelfInformation(F )

DescriptionLength(F )
.

Let us define the set of maximal critical subsets of F , denoted as M(F ), as
the set of all F ′ ⊆ F such that |t(F ′)| = |F ′| and t(F ′) ⊆ R ∈ R and �F ′′ ⊆ F
with t(F ′) ⊂ t(F ′′) ⊆ R. The self-information of a pattern F is given by:

SelfInformation(F ) = −
∑
R∈R

∑
F ′∈M(F )

log(PR(F
′)).

where PR(F
′) signifies the probability that the entities in F ′ are related in R.

For the terms with t(F ′) = R, the probability PR(F
′) can be computed

directly using the MaxEnt model as PR(F
′) = PF ′

R (1), i.e. the probability that
the relationship instance specified by the entities in F ′ is present in RR.

For the terms with t(F ′) ⊂ R, the probability that there exists at least one
relationship instance of type R involving all entities from F ′ is computed as

PR(F
′) = 1 −

∏
I={it}t∈R\t(F ′)

(
1− PF ′∪I

R (1)
)
. This follows directly from the

independence of the different entries in the tensor DR, under the MaxEnt model.
We define the description length of a pattern F ∈ FD by specifying for each

entity whether it does or it does not belong to the pattern. We use −log(p) bits
to specify that an entity belongs to the pattern and −log(1− p) bits to specify
that it does not, where p is a probability parameter. The description length of a
pattern is given by the following equation:

DescriptionLength(F ) = −
∑
i�∈F

log(1− p)−
∑
i∈F

log(p).

5 Experiments

In this section we present a qualitative evaluation of our method, by discussing
some of the top ranked patterns on real-world data sets and a quantitative
evaluation by showing scalability results and comparisons with other methods.
For all the experiments we used parameter p equal to the density of the dataset.

5.1 Qualitative Evaluation

Here we show the highest ranked patterns found in real world datasets. We per-
formed experiments on two real world datasets, one created from Bibsonomy [1]
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(bibsonomy-journals) and another one created from IMDB1(imdb-3years).
Figure 2 depicts the diagrams of these datasets showing how different entity
types are related as well as the number of instances for every relationship type
and every entity type. To create the bibsonomy-journals dataset we selected the
bibtex entries that corresponded to journal papers, along with their authors,
users and tags. To create the imdb-3years dataset we created a view of the
IMDB database containing person names and roles, as well as genres of movies
produced from year 2008 to year 2010 and are not of the genre “Short”. The
role of a person in a movie can be actor, actress, producer, director etc.

movie
(28564 instances)

genre
(27 instances)

person
(537165 instances)

role
(11 instances)

3-ary relationship type
(594496 instances)

binary relationship type
(44503 instances)

paper
(206823 instances)

author
(296734 instances)

user
(2840 instances)

tag
(65657 instances)

3-ary relationship type
(594496 instances)

binary relationship type
(489853 instances)

Fig. 2. Diagrams of the imdb-3years (top) and bibsonomy-journals datasets

We run experiments on both these datasets using different constraints. The re-
sults were ranked based on the interestingness measure we introduced in Sec. 4.2.
In order to avoid redundancy we iteratively output the top ranked pattern and
then re-rank the pattern set by taking into account in the interestingness of a
pattern only relationship instances that have not been presented before.

The first ranked pattern on the imdb-3years dataset when requiring at least 2
papers, 2 titles, 2 roles and 1 genre, contains as entities: 2 persons: Joel Coen;
Ethan Coen; 4 titles: The Yiddish Policemen’s Union; True Grit; A Serious
Man; Burn After Reading; 2 roles: Director; Producer; 1 genre: Drama. This
pattern ranks first as it contains a lot of information (20 of relationship instances)
conveyed in a concise way (9 entities). Recall here that our measure of self-
information is an additive measure over the number of relationship instances
and our measure of description length is an additive measure over the entities.
The second pattern contains 18 relationship instances conveyed with 9 entities.

In the first experiment on bibsonomy-journals we required at least 2 enti-
ties from each entity type. The top pattern contains: 3 users: 650753; 594907;
576800; 5 tags: meningococcal; meningitidis; infections; neisseria; human; 6
papers: (not shown here due to space constraints); 2 authors: Heike Claus;
Matthias Frosch. This pattern ranks highly as it conveys a lot of information

1 See http://www.imdb.com/
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(102 relationship instances) in a concise way (16 entities). The second pattern,
in comparison, contains 48 relationship instances and 12 entities. We also run
an experiment not necessarily requiring any entities of the entity type user, but
at the same time requiring at least 5 tags, 5 papers and 2 authors. The most
interesting pattern remains the same as in the previous experiment.

5.2 Quantitative Evaluation

In this subsection we show the performance of N-RMiner by presenting scalability
results as well as results comparing N-RMiner with other algorithms on special
cases of multi-relational data. All the experiments were run on a CentOS Linux
machine with Intel Xeon@2.6GHz and 24GB of RAM.

In order to test the scalability we used the bibsonomy-journals dataset, of
which we got five snapshots of increasing size. The first four snapshots were pro-
duced by randomly picking 0.01%, 0.1%, 1% and 10% of the entities of the type
“paper” and selecting the entities of the other types that correspond to them.
The final snapshot contains all of the bibsonomy-journals dataset. The results
are shown in Table 1. The “-”s mean that the particular run did not finish within
2 days. As with most local pattern mining algorithms, time scales exponentially
to the input size. However, when using constraints of at least 2 entities per entity
type N-RMiner runs within a few hours for data sizes of approximately 5× 105.
The space that N-RMiner consumes also increases exponentially to the input
size. However it only grows up to 1.5 GB for the largest dataset. As we are un-
aware of any other local pattern mining method that considers the general case
of multi-relational data, where there can be any number of relationships of any
arity, we compare N-RMiner with methods for specific cases of multi-relational

Table 1. Scalability testing of N-RMiner for increasing subsets of bibsonomy-journals

Constraints #Entities #N-MCCSs Time (sec) Space (MB) Depth Size of max N-MCCS

(0,0,0,0) 63 17 0 1.42 3 13
1,167 295 2.17 3.63 5 100
9,643 4,177 2599.22 28.32 14 800
77,452 - - - - -
567,416 - - - - -

(1,1,1,1) 63 12 0 1.40 1 13
1,167 206 0.11 3.24 4 100
9,643 2,186 8.52 18.99 5 83
77,452 22,267 1,055.14 175.68 11 107
567,416 - - - - -

(2,2,2,2) 63 0 0 1.37 0 0
1,167 0 0.01 3.01 0 0
9,643 0 0.6 16.98 0 0
77,452 3 118.36 151.25 5 14
567,416 359 13,121.4 1,502.95 16 27
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data, namely Data-Peeler that mines n-Sets in one n-ary relationship (n > 2) [3]
and RMiner which mines MCCSs in multi-relational data with binary relation-
ships [14]. As we have shown in Sec. 2.3, both these pattern syntaxes constitute
special cases of N-MCCSs and therefore the comparison of the algorithms is fair.

Table 2 (left) shows the time comparison between N-RMiner and Data-Peeler
on random snapshots of increasing sizes of the 3-ary relationship of the bibsonomy-
journals dataset. Data-Peeler offers the opportunity to use constraints on the
minimum number of entities per entity type, like ours. However n-Sets are not
as flexible as N-MCCSs in the sense that all entity types of the relationship need
to be present in a pattern. We therefore compare the two algorithms in the sim-
plest common setting of requiring at least one entity per entity type. The results
show that N-RMiner outperforms Data-Peeler by at least one order of magnitude
most of the times. Also for the dataset of 36,367 entities Data-Peeler could not run
as it was crashing due to high memory requirements. This is because Data-Peeler
uses a dense representation to store the dataset.

Table 2. Comparing N-RMiner w. Data-Peeler (left) and N-RMiner w. RMiner (right).

Cons- #Entities N-RMiner Data-Peeler
traints time (sec) time (sec)

(1,1,1) 39 0 0
774 0.28 2.39
5,405 97.75 2960.73
36,367 182,156 -

Cons- #Entities N-RMiner RMiner
traints time (sec) time (sec)

(1,1,1) 3,291 2.81 1.65
8,686 21.41 12.01
51,203 1,296 610
111,320 7,456 2,813

Table 2 (right) compares running times between N-RMiner and RMiner on
increasing subsets from IMDB containing two binary relationships: between di-
rectors and titles, and between titles and genres. Since both algorithms use the
same algorithmic framework [2] and the closure operator of N-RMiner is a gener-
alisation of RMiner’s (see Sec 3.2), it should be no surprise that they are similarly
efficient, with a small slowdown of N-RMiner owing to its greater generality.

6 Conclusion

In this paper we took an important step towards the development of local pat-
tern mining algorithms that can be directly applied to data as it often presents
itself in real-life: represented in a relational database. More specifically, the N-
MCCS pattern syntax and associated mining algorithm N-RMiner are applicable
to multi-relational data with categorical attributes and n-ary relationships. Our
approach is a strict generalisation of two less general problem settings [13,14,3],
and it matches or even outperforms algorithms that were designed for these spe-
cial cases. Additionally, we introduced a subjective interestingness measure for
ranking the N-MCCSs found. An interesting research direction further increasing
generality would be the extension of our results to ordinal and numerical data.
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Abstract. We present an algorithm for hierarchical multi-label classifi-
cation (HMC) in a network context. It is able to classify instances that
may belong to multiple classes at the same time and consider the hierar-
chical organization of the classes. It assumes that the instances are placed
in a network and uses information on the network connections during the
learning of the predictive model. Many real world prediction problems
have classes that are organized hierarchically and instances that can have
pairwise connections. One example is web document classification, where
topics (classes) are typically organized into a hierarchy and documents
are connected by hyperlinks. Another example, which is considered in
this paper, is gene/protein function prediction, where genes/proteins are
connected and form protein-to-protein interaction (PPI) networks. Net-
work datasets are characterized by a form of autocorrelation, where the
value of a variable at a given node depends on the values of variables at
the nodes it is connected with. Combining the hierarchical multi-label
classification task with network prediction is thus not trivial and re-
quires the introduction of the new concept of network autocorrelation
for HMC. The proposed algorithm is able to profitably exploit network
autocorrelation when learning a tree-based prediction model for HMC.
The learned model is in the form of a Predictive Clustering Tree (PCT)
and predicts multiple (hierarchically organized) labels at the leaves. Ex-
periments show the effectiveness of the proposed approach for different
problems of gene function prediction, considering different PPI networks.
The results show that different networks introduce different benefits in
different problems of gene function prediction.

1 Introduction

Hierarchical multi-label classification (HMC) is a variant of the classification task
where instances may belong to multiple classes at the same time and classes are
organized in a hierarchy. Due to the large number of applications (e.g., com-
putational biology [31] and text categorization [7]) this particular classification
setting has recently attracted the attention of many researchers.

J. Fürnkranz, E. Hüllermeier, and T. Higuchi (Eds.): DS 2013, LNAI 8140, pp. 233–248, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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Another variant of the classification task which, due to the large number of
applications, has attracted the attention of researchers over the last few years is
that of learning predictive models from network data. This is due to the ubiquity
of networks, which can be found in in several social, economical and scientific
fields. As recently recognized [29], this problem is not trivial, mainly because the
network introduces some form of autocorrelation which is a direct violation of
the assumption that data are independently and identically distributed (i.i.d.).
However, autocorrelation also offers a unique opportunity to improve the per-
formance of predictive models on network data, as inferences about one entity
can be used to improve inferences about related entities.

A. METABOLISM
A.1 amino acid metabolism
A.2 nitrogen, sulfur, selenium met.
A.1.3 assimilation of ammonia
A.1.3.1 metabolism of glutamine
A.1.3.1.1 biosynthesis of glutamine
A.1.3.1.2 degradation of glutamine
...
B. ENERGY
B.1 glycolysis and gluconeogenesis
C. CELL CYCLE and DNA PROCESSING
D. TRANSCRIPTION
D.1 RNA synthesis
D.2 RNA processing
D.3 transcriptional control

(b)

(a) (c)

Fig. 1. An illustration of the task of HMC. (a) A part of the FUN hierarchy [21]. (b)
An example of hierarchial labeling of instances (subset) of the hierarchy. (c) The class
vector (top) and the attribute vector (bottom) of the instance.

The combination of these two research directions paves the way to solving
prediction problems where instances may belong to multiple classes at the same
time, classes are organized in a hierarchy and instances may be connected ac-
cording to a network structure. One of the main cases where this combination
turns out to be beneficial is in gene function prediction, where the goal is to
discover the biological functions of the genes/proteins. In fact, in this case, on-
tologies and catalogs of functions of genes/proteins such as the Gene Ontology
(GO) and MIPS-FUN assume that functional classes are organized hierarchically
and that general functions include more specific functions.

Besides these relationships among classes, it is also possible to identify re-
lationships among examples. An example is that of protein-protein interaction
(PPI) networks which represent correlations between genes/proteins. Indeed, the
topic of using protein-protein interaction (PPI) networks in the identification and
prediction of protein functions has attracted increasing attention in recent years.
The motivation for this stream of research is best summarized by the statement
that ”when two proteins are found to interact in a high throughput assay, we
also tend to use this as evidence of functional linkage“ [17].
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This paper demonstrates the benefits (in terms of predictive accuracy) of
considering network information in multi-label gene function prediction. In par-
ticular, during the learning process, we identify and take into account network
autocorrelation, that is, the statistical relationships between the same variable
(e.g., protein function) on different but related (dependent) objects (e.g., inter-
acting proteins) [29]. We present a tree-based algorithm which extends and re-
vises the system CLUS-HMC [31] that learns Predictive Clustering Trees (PCTs)
by considering network autocorrelation in the setting of Hierarchical Multi-label
Classification.

The paper is organized as follows. In the next section, we present some re-
lated work. In Sections 3 and 4, we formally introduce the learning setting we
intend to solve and present the proposed approach, namely NHMC (Network Hi-
erarchical Multi-label Classification). In Section 5, we empirically evaluate the
proposed algorithm on 12 yeast datasets using each of the MIPS-FUN and GO
annotation schemes and exploiting 3 different PPI networks. Finally, we draw
some conclusions and outline some directions for future work.

2 Related Work

Many machine learning approaches tackle the problem of multi-label classifi-
cation on hierarchically-structured categories. A simple solution is to allow a
classifier for a particular node to predict positive only if the classifier of its par-
ent also predicts positive [3] [8]. A different approach is to construct a training
set for each category such that it only consists of samples belonging to its parent
[10]. Alternatively, large margin methods for structured output prediction can
also be used [25]. In the work by Vens et al. [31] the algorithm CLUS-HMC is
proposed. CLUS-HMC learns Predictive Clustering Trees (PCTs) for hierarchi-
cal multilabel classification. A similar approach is presented in Astikainen et al.
[2], where a structured output kernel-based approach for enzyme function pre-
diction is proposed. In [5], the authors propose to formulate the search for the
optimal consistent multi-label as the finding (according to a greedy search) of
the best subgraph in a tree/DAG.

As concerns the problem of learning predictive models from network data, nu-
merous approaches have been designed for modeling a partially labeled network
and providing accurate estimates of unknown labels associated with the unla-
beled nodes. These approaches have been mainly studied in the research fields of
collective inference. In collective inference, interrelated values are inferred simul-
taneously and estimates of neighboring labels influence one another [19,14,27].
In general, one of the major advantages of collective inference lies in its powerful
ability to learn various kinds of dependency structures (e.g., different degrees of
correlation [16]). However, as pointed out in [22], when the labeled data are very
sparse, the performance of collective classification might be largely degraded
due to the insufficient number of neighbors. This is overcome by incorporating
informative “ghost edges” into the network to deal with sparsity issues [20,22].
An alternative solution to the sparsity of labels is provided by [6], where the
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authors resort to an active learning approach in order to judiciously select nodes
for which a manual labeling is required from the domain expert. Finally, in [29]
the authors exploit the concept of network autocorrelation as a heuristic to be
used when learning PCTs.

Unfortunately, there are only few initial works that combine these two research
directions and most of them are developed in the context of protein function
annotation and prediction. In this context, some studies use PPI networks as
one of the data sources. For example, Valentini [30] developed the true-path rule
ensemble learner for genome-wide gene function prediction. In these ensembles,
positive (negative) probabilistic predictions for a node transitively influence the
ancestors (descendants) of the node. An empirical evaluation of both this method
and Hierarchical Bayes [24], which operates in the same way by approximating
the Bayesian-optimal predictor with respect to the H-loss, proved that the usage
of hierarchical prediction methods results in a consistently improved performance
as compared to methods which do not consider the structure of the reference
ontology on protein functions. Information from PPI networks considered in this
work is limited to binary (input) attributes which express the generic interaction
of a gene with others. Outside the context of protein function prediction, in [18],
the authors propose a multi-label collective classifier, which, however, does not
consider the hierarchical organization of class labels.

3 Autocorrelation in Network HMC Tasks

In this Section, we first define the task of hierarchical multi-label classification
(HMC). We next discuss the network setting that we consider in this paper.

3.1 The Task of HMC

For the HMC task, the input is a dataset consisting of example pairs (xi, yi) ∈
X× 2C , where X = X1 ×X2 . . .×Xm is the space spanned by m attributes or
features, while 2C is the power set of C = {c1, . . . , cK}, the set of all possible
class labels. C is hierarchically organized with respect to a partial order " which
represents the superclass relationship. Note that each yi satisfies the hierarchical
constraint :

c ∈ yi ⇒ ∀c′ " c : c′ ∈ yi. (1)

3.2 Network HMC

Following Steinhaeuser et al. [28], we view a training set as a single network of
labeled nodes. Formally, the network is defined as an undirected edge-weighted
graph G=(V,E), where V is the set of labeled nodes, while E ⊆ {〈u, v, w〉|u, v ∈
V,w ∈ R+} is the set of edges, such that to each edge u ↔ v is assigned a non-
negative real number w, called the weight of the edge. It can be represented by
a symmetric adjacency matrix W, whose entries are positive (wij > 0) if there
is an edge connecting i to j in G, and zero (wij = 0) otherwise. Edge weights
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can, for example express the strength of the interactions between proteins. Al-
though the proposed method works with any non-negative weight values, we
anticipate that in our experiments only binary (0/1) weights could be used, due
to limitations of available data.

Each node of the network is associated with an example pair (xi, yi) ∈ X×2C ,
where yi = (yi1 , yi2 , ..., yiq ), q ≤ K, is subject to the hierarchical constraint.
Given a network G = (V,E) and a function η : V $−→ (X × 2C) which asso-
ciates each node with the corresponding example pair, we interpret the task of
HMC as building a PCT which represents a multi-dimensional predictive func-
tion f : X $−→ 2C whose prediction satisfies the hierarchical constraint (Formula
(1)). When learning f , we take into account (e.g., maximize) the autocorrelation
of the observed (hierarchically organized) classes yi for the network G, and min-
imizes the predictive error f on the training data η(V ). It is noteworthy that,
although f is learned by taking the network structure into account, it does not
take as input the network structure. This is due to our network setting, which
is very much different from existing approaches to network classification and
regression, where typically the descriptive information is in a tight connection
to the network structure. The connections (edges in the network) between the
data in the training/testing set are predefined for a particular instance, and
are used to generate the descriptive information associated to the nodes of the
network (as in [28]). Therefore, in order to predict the value of the response
variable(s), besides the descriptive information one needs the connections (edges
in the network) to the related/similar entities.

3.3 Autocorrelation in NHMC Tasks

Network autocorrelation for HMC is a special case of network autocorrelation
[13]. It can be defined as the statistical relationship between observations of
a variable (e.g., protein function) on distinct but related (connected) nodes in
a network (e.g., interacting proteins). Autocorrelation is typically defined for
real-world variables. In HMC, domain values of the variable form a hierarchy,
such as the GO hierarchy for protein functions. Therefore, it is possible to define
network autocorrelation at various levels of the hierarchy. The network (e.g., PPI
network) can provide useful (and diversified) information for different classes
(e.g., different protein functions) at different levels of the hierarchy.

To better explain this concept, we refer to Fig. 2 which shows the DIP Yeast
network. Fig. 2 (a) represents the network so that the examples that are not
connected are randomly arranged along the ellipse border. To show the density of
the PPI interactions, Fig. 2 (b) represents the same network so that all examples
are arranged along the ellipse border. Fig. 2 (c) and Fig. 2 (d) provide us a
different view of Fig. 2 (b), where examples are grouped according to the first
(Fig. 2 (c)) and second level (Fig. 2 (d)) of the FUN hierarchy.

Keeping in mind that all these graphs represent the same number of edges,
from the comparison of Fig. 2 (b) and Fig. 2 (c) we can see that the edges
“move” from the center of the ellipse towards the border. This is clearly due to
autocorrelation, since the number of interactions between genes of the same class
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(a) (b)

(c) (d)

Fig. 2. DIP Yeast network. Different colors correspond to different classes of the FUN
hierarchy. (a) Examples that are not connected are arranged along the ellipse’s border;
(b) Examples are arranged along the ellipse’s border to show the density of the PPI
interactions; (c) Examples are arranged along the ellipse’s border and grouped accord-
ing to the first level of the FUN hierarchy (not considering the root); d) Examples are
arranged along the ellipse’s border and grouped according to the second level of FUN.
The networks are drawn by using the Pajek Software by Batagelj and Mrvar [4].

at the same level of the hierarchy is much larger than the number of interactions
between genes of different classes. Moreover, by comparing Fig. 2 (c) and Fig. 2
(d) we notice that the autocorrelation effect is more localized at the second level
of the hierarchy then at the first. Indeed, in Fig. 2 (d), we observe a reduction of
the density of edges in the center of the ellipse (most of the edges overlap with
(are hidden by) the examples arranged along the ellipse border).

4 NHMC

In this Section, we introduce the method NHMC (Network CLUS-HMC), which
builds autocorrelation-aware HMC models. We shall start with a brief descrip-
tion of the algorithm CLUS-HMC which is at the base of NHMC. Moreover,
before describing the NHMC method, we propose a new network autocorrela-
tion measure for HMC tasks.

4.1 CLUS-HMC

The CLUS-HMC [31] algorithm builds HMC trees. These are very similar to
classification trees, but each leaf predicts a hierarchy of class labels rather than
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a single class label. CLUS-HMC builds the trees in a top-down fashion as in
classical tree induction algorithms, with a key difference in the search heuristics.

To select the best test in an internal node of the tree, the algorithm scores the
tests according to the reduction in variance (defined below) induced on the set
U of examples associated to the node. In CLUS-HMC, the variance is defined
as follows: Var(U) = 1

|U| ·
∑

ui∈U

d(Li, L)
2, where d(·, ·) is a distance function on

vectors associated to class labels of examples in U . Class labels associated to an
example (xi, yi) in U are represented as a binary vector Li of size |C|, such that
Li,k = 1 if ck ∈ yi, Li,k = 0 otherwise. Obviously, each Li has to satisfy the
hierarchical constraint (Formula (1)). Finally, L is the average vector of {Li}i.

In the HMC context, class labels at higher levels of the annotation hierar-
chy are more important than class labels at lower levels. This is reflected in the
distance measure used in the above formula, which is a weighted Euclidean dis-

tance: d(L1, L2) =

√
K∑

k=1

ω(ck) · (L1,k − L2,k)
2, where Li,k is the k-th component

of the class vector Li and the class weights ω(ck) decrease with the depth of the
class in the hierarchy. More precisely, ω(c) = ω0 · avgj {ω(pj(c))}, where pj(c)
denotes the j-th parent of class c and 0 < ω0 < 1). This definition of the weights
allows us to take the label hierarchy into account: The hierarchy can be either
a tree or a DAG, where we can have multiple parents of a single label.

For instance, consider the small hierarchy in Fig. 1(b), and two examples
(x1, y1) and (x2, y2), where

1:

y1 = {all, B,B.1, C,D,D.2, D.3} and y2 = {all, A,D,D.2, D.3}
The vectors for y1 and y2 are: L1 = [1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1] and L2 =

[1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1]. The distance between the two is:

d([1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1], [1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1]) =
√
3 · w2

0 + 4 · w3
0 (2)

At each node of the tree, the test that maximizes the variance reduction is
selected. This hopefully results in maximizing cluster homogeneity with respect
to the target variable, as well as in improving the predictive performance of the
tree. If no test can be found that significantly reduces variance (as measured
by a statistical F-test), then the algorithm creates a leaf and labels it with a
prediction, which can consist of multiple hierarchically organized labels.

We can now proceed to describe the top-down induction algorithm for building
Network HMC trees. The search space is exactly the same as for CLUS-HMC,
while the heuristics is different. The network is considered as background knowl-
edge to exploit only in the learning phase.

4.2 Outline of the NHMC Algorithm

The top-down induction algorithm for building PCTs from network data is
given below (Algorithm 1). It takes as input the network G = (V,E) and the

1 “all” indicates the root of the hierarchy.
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corresponding HMC dataset U defined by applying η:V $→ X×2C to the vertices
of the network. It then recursively partitions U until a stopping criterion is satis-
fied (Algorithm 1 line 2). Since the implementation of this algorithm is based on
the implementation of the CLUS-HMC algorithm, we call this algorithm NHMC
(Network CLUS-HMC).

Algorithm 1. Top-down induction of NHMC

1: procedure NHMC(G,U) returns tree
2: if stop(U) then
3: return leaf(Prototype(U))
4: else
5: (t∗, h∗,P∗) = (null , 0, ∅)
6: for each possible Boolean test t according to the values of X in U do
7: P = {U1, U2} partition induced by t on U

8: h = α ·
( |U1| ·AY (U1) + |U2| ·AY (U2)

|U |
)

+ (1 − α) ·(
V ar′(U)− |U1| · V ar′(U1) + |U2| · V ar′(U2)

|U |
)

9: if (h > h∗) then
10: (t∗, h∗,P∗) = (t, h,P)
11: end if
12: end for
13: tree1 = NHMC(G,U1)
14: tree2 = NHMC(G,U2)
15: return node(t∗, tree1, tree2)
16: end if

Geary’s C for HMC. In order to measure the autocorrelation of the response
variable Y in the network setting for HMC, we propose a new statistics, named
AY (U), whose definition draws inspiration from Global Geary’s C [15], originally
defined for spatial data analysis.

Let (xi, yi) ∈ U ⊆ X × 2C be an example pair in a training set U of N
examples. Let K be the number of classes in C, possibly defining a hierarchy.
Let d(Li, Lj) be a distance measure defined for two binary vectors associated to
two example pairs (xi, yi), (xj , yj). It can be any distance which can take the
class-label hierarchy into account. We will use the distance defined above.

The autocorrelation measure AY (U) is defined as follows:

AY (U) = 1−
(N − 1) ·

∑
i

∑
j wij · d(Li, Lj)

2

4 ·
∑

i

∑
j wij ·

∑
p d(Lp, L)2

(3)

The constant 4 in the denominator is included for scaling purposes. The
new autocorrelation measure AY (U) takes values in the unit interval [0, 1],
where 1 (0) means strong positive (negative) autocorrelation and 0.5 means no
autocorrelation.
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Heuristics. The major difference between NHMC and CLUS-HMC is in the
heuristics we use for the evaluation of each possible split. The variance reduction
heuristics employed in CLUS-HMC aims at finding accurate models, since it
considers the homogeneity in the values of the target variables and reduces the
error on the training data. However, it does not consider the dependencies of
the target variables values between related examples and therefore neglects the
possible presence of autocorrelation in the training data. To address this issue,
we introduced network autocorrelation in the search heuristic and combined it
with the variance in a new heuristics.

More formally, the NHMC heuristics is a linear combination of the average
autocorrelation measure AY (·) (first term) (Algorithm 1 line 8) and the variance
reduction V ar(·) (second term):

V ar′(U) =
V ar(U) − δmin

δmax − δmin
, (4)

where V ar′(U) is the min-max normalization of V ar(U) required to keep the
values of the linear combination in the unit interval [0, 1], with δmax and δmin

being the maximum and the minimum values of V ar(U) over all tests.
We point out that the heuristics in NHMC combines information on both

the network structure, which affects AY (·), and the hierarchical structure of
the class, which is embedded in the computation of the distance d(·, ·) used in
Formula (3) and Algorithm 1 line 8). We also note that the tree structure of the
NHMC model makes it possible to consider different effects of the autocorrelation
phenomenon at different levels of the tree model, as well as at different levels
of the hierarchy (non-stationary autocorrelation). In fact, the effect of the class
weights ω(cj) is that higher levels of the tree will likely capture the regularities
at higher levels of the hierarchy.

In NHMC, the time complexity of selecting a splitting test represents the main
cost of the algorithm. The cost is O(m·(N ·logN+N ·s)·K)+O(m·d·(N+N ·s)·K),
that is O(m ·N · (logN + d · s) ·K), where N is the number of examples in the
training set, m is the number of descriptive variables, s is the average number
of edges for each node in the network and K is the number of classes. This
complexity is similar to that of CLUS-HMC, except for the s factor which equals
N in the worst case, although such worst-case is unlikely.

The relative influence of the two parts of the linear combination in Algorithm
1, line 8 is determined by a user-defined coefficient α that falls in the interval
[0,1]. When α = 0, NHMC uses only autocorrelation and when α = 0.5, it
weights equally variance reduction and autocorrelation. When α = 1 NHMC
just works as the original CLUS-HMC algorithm.

If autocorrelation is present, examples with high autocorrelation will fall in
the same cluster and will have similar values of the response variable. In this way,
we are able to keep together connected examples without forcing splits on the
network structure (which can result in losing generality of the induced models).

Finally, note that the linear combination that we use in this article (Algorithm
1, line 8) was selected as a results of our previous work on learning from autocor-
related data [29]. The variance and autocorrelation can also be combined in some
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other way (e.g., as a cross-product). Investigating different ways of combining
them is one of the directions for our future work.

5 Empirical Evaluation

In this Section, we present the evaluation of the system NHMC on several
datasets related to predicting gene function in yeast. Before we proceed to pre-
senting the empirical results, we provide a description of the datasets used and
the experimental settings.

5.1 Data

We use 12 yeast (Saccharomyces cerevisiae) datasets as considered by Clare and
King [11], but with new and updated class labels [31]. The datasets describe
different aspects of the genes in the yeast genome. They include five types of
bioinformatics data: sequence statistics, phenotype, secondary structure, homol-
ogy and expression. The different sources of data highlight different aspects of
gene function.

We construct two versions of each dataset. The values of the descriptive at-
tributes are identical in both versions, but the classes are taken from two dif-
ferent classification schemes. In the first version, they are from FUN2, a scheme
for classifying the functions of gene products, developed by MIPS [26]. FUN is a
tree-structured class hierarchy; a small part is shown in Fig. 1(a). In the second
version of the data sets, the genes are annotated with terms from the Gene On-
tology (GO) [1]3, which forms a directed acyclic graph instead of a tree: Each
term can have multiple parents (we use GO’s “is-a” relationship between terms).
Only annotations from the first six GO levels are taken. Note that GO has an
order of magnitude more classes than FUN for our datasets. The 24 resulting
datasets can be found at the webpage4.

In addition, we use several protein-protein interaction networks (PPIs) for
yeast genes as in Rahmani et al. [23]. In particular, the networks DIP [12], VM
[32] and MIPS [21] are used, which contain 51233, 65982 and 38845 interactions
among 7716, 2399 and 40374 proteins, respectively. DIP (Database of Interacting
Proteins) stores and organizes information on binary protein-protein interactions
that are retrieved from individual research articles. VM stores protein-protein
interactions that are retrieved from numerous sources, including experimental
data, computational prediction methods and public text collections. Finally,
MIPS represents interactions between proteins determined on the basis of their
signal transduction.

The basic properties of the datasets and of the networks are given in Table 1.
Columns 6-8 (% of connected genes) show the percentage of proteins that are
covered by each of the PPI networks. On average, only a half of the proteins

2 http://www.helmholtz-muenchen.de/en/mips/projects/funcat
3 http://www.geneontology.org
4 http://kt.ijs.si/daniela_stojanova/NHMC/

http://www.helmholtz-muenchen.de/en/mips/projects/funcat
http://www.geneontology.org
http://kt.ijs.si/daniela_stojanova/NHMC/
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Table 1. Basic properties of the datasets and the PPI networks when predicting gene
function in yeast. We use 12 yeast (Saccharomyces cerevisiae) datasets (as consid-
ered by [11]) grouped by their functional (FUN and GO) annotation and 3 different
PPI networks (DIP [12], VM [32] and MIPS [21]). In addition, the percentage of con-
nected genes and the percentage of function related genes are presented for each of the
networks.

Annotation Dataset #Instan- #Attri- #Classes % of connected genes % of function related genes
ces butes DIP VM MIPS DIP VM MIPS

FUN seq 3932 476 499 46 43 46 8 11 7
pheno 1592 67 455 46 34 46 6 6 7
struc 3838 19629 499 13 43 13 7 10 6
hom 3848 47035 499 45 43 45 7 10 6
cellcycle 3757 77 499 72 44 72 2 10 6
church 3779 550 499 46 44 46 15 9 5
derisi 2424 63 499 72 69 72 7 10 6
eisen 3725 79 461 35 31 35 9 10 7
gasch1 3764 172 499 47 44 47 9 10 6
gasch2 3779 51 499 47 44 47 7 10 6
spo 3703 79 499 48 44 48 3 4 3
exp 3782 550 499 46 44 46 15 9 5

GO seq 3900 476 4133 46 43 46 15 22 13
pheno 1587 67 3127 46 34 46 16 18 3
struc 3822 19629 4132 59 42 59 14 19 12
hom 3567 47035 4126 48 47 48 14 22 12
cellcycle 3751 77 4125 47 44 47 17 26 14
church 3774 550 4131 46 44 46 13 23 13
derisi 2418 63 3573 73 69 73 11 18 9
eisen 3719 79 4119 35 31 35 19 25 15
gasch1 3758 172 4125 47 44 47 19 26 14
gasch2 3758 51 4131 47 44 47 17 26 14
spo 3698 79 4119 48 44 48 17 25 14
exp 3773 550 4131 46 44 46 39 23 13

are known to interact with other proteins. DIP covers the highest percentage of
proteins. However, this percentage is not much different from that of the other
two networks, especially from MIPS.

In addition, Table 1 shows the percentage of function-relevant interactions.
An interaction is considered to be function-relevant if the two proteins involved
in the interaction have at least one function in common (with respect to a given
hierarchy). As it is possible to see, 6%-23% observed interactions are relevant.
However, a closer look at the statistics reveals that the connections are more
function-relevant with respect to GO annotations (for all networks) than with
respect to FUN annotations. This is expected, as GO contains a much larger
number of functions.

5.2 Experimental Setup

In order to evaluate the performance of the proposed NHMC algorithm, we
compare it to CLUS-HMC (NHMC works just as CLUS-HMC when α = 1).
Moreover, we report the results of NHMC with α = 0, when it uses only auto-
correlation, and with α = 0.5, when it equally weights variance reduction and
autocorrelation. The performance of the methods is investigated across a range
of experimenters.
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In the experiments, we deal with several dimensions: different descriptions of
the genes, different descriptions of gene functions, and different gene interaction
networks. We have 12 different descriptions of the genes from the Clare and King’
datasets [11] and 2 class hierarchies (FUN and GO), resulting in 24 datasets with
several hundreds of classes each. Furthermore, we use 3 different PPI networks
(DIP, VM and MIPS) for each of those.

As suggested by Vens et al. [31], we build models trained on 2/3 of each data
set and test on the remaining 1/3. We use the same splitting in order to allow
a direct comparison with their work. To prevent over-fitting, we use two pre-
pruning methods: minimal number of examples in a leaf (set to 5) and F-test
pruning. The latter uses the F-test to check whether the variance reduction is
statistically significant at a given level (0.001, 0.005, 0.01, 0.05, 0.1, 0.125).

Following Vens et al. [31], we evaluate the proposed algorithm by using the Av-
erage Area Under the Precision-Recall Curve (AUPRC), i.e., the (weighted) av-
erage of the areas under the individual (per class) Precision-Recall (PR) curves,
where all weights are set to 1/|C|, with C the set of classes. The closer the
AUPRC is to 1.0, the better the model is. In the considered datasets, the posi-
tive examples for a given class are rare as compared to the negative ones. A PR
curve plots the precision of a classifier as a function of its recall. The points in
the PR space are obtained by varying the value for a threshold τ . In the case of
NHMC, the threshold ranges from 0 to 1 with a step of 0.02. The evaluation by
using PR curves (and the area under them), is the most suitable in this context,
because we are more interested in correctly predicting the positive instances (i.e.,
that a gene has a given function), rather than correctly predicting the negative
ones.

5.3 Results

For each of the datasets, the AUPRC of CLUS-HMC (which does not consider
network information) and NHMC, which uses the DIP, VM and MIPS PPI net-
works is shown in Table 2. For each algorithm and dataset, both FUN and GO
annotations are considered.

The best results are obtained by using CLUS-HMC for FUN annotations and
NHMC with α = 0.5 for GO annotations (In the latter case, the average good
results are mainly due to the results obtained on the cellcycle dataset). This
can be explained by the fact that only a half of the genes have at least one
connection to other genes in the PPI networks and this is not enough to improve
the predictive accuracy of the global predictive HMC model that is constructed
using NHMC (over the model constructed by using CLUS-HMC).

NHMC shows competitive results with respect to CLUS-HMC when using
FUN annotations. The situation is different in the case of GO annotations, where
NHMC outperforms (in almost all the cases) CLUS-HMC. This is mainly due
to the the larger percentage of functionally relevant connections (see Table 1)
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Table 2. The AUPRC of CLUS-HMC (α = 1) and NHMC (α = 0.5 and α = 0) when
predicting gene function in yeast. We use 12 yeast (Saccharomyces cerevisiae) datasets
(as considered by [11]) with 2 different functional annotation schemes (FUN and GO)
and 3 networks (DIP, VM and MIPS).

Dataset FUN annotated datasets GO annotated datasets
DIP VM MIPS DIP VM MIPS

α = 1 α = 0.5 α = 0 α = 0.5 α = 0 α = 0.5 α = 0 α = 1 α = 0.5 α = 0 α = 0.5 α = 0 α = 0.5 α = 0
seq .059 .054 .053 .054 .054 .043 .043 .023 .032 .030 .028 .028 .033 .033
pheno .036 .035 .028 .036 .036 .035 .035 .019 .016 .016 .083 .083 .051 .051
struc .030 .020 .020 .020 .020 .030 .030 .018 .012 .012 .066 .066 .066 .066
homo .073 .020 .023 .020 .020 .073 .073 .040 .013 .013 .041 .041 .049 .049
cellcycle .032 .030 .037 .032 .032 .032 .032 .019 .287 .288 .036 .036 .027 .027
church .029 .020 .020 .029 .029 .027 .027 .014 .015 .012 .036 .036 .030 .030
derisi .027 .028 .025 .028 .028 .027 .027 .017 .015 .017 .041 .041 .030 .030
eisen .047 .042 .025 .036 .036 .037 .037 .030 .024 .024 .052 .052 .046 .046
gasch1 .036 .040 .032 .047 .047 .030 .045 .024 .018 .019 .031 .031 .040 .040
gasch2 .034 .034 .027 .029 .029 .028 .030 .020 .021 .021 .050 .050 .031 .031
spo .030 .029 .025 .030 .030 .028 .029 .019 .018 .015 .031 .031 .041 .041
exp .040 .030 .025 .033 .033 .045 .045 .023 .017 .016 .065 .065 .041 .041
Average: .039 .032 .028 .033 .033 .036 .038 .022 .041 .040 .047 .047 .041 .041

which indicates that DIP; VM and MIPS networks present some form of auto-
correlation on the GO labels. Moreover, the results obtained on GO annotated
datasets by using NHMC with α = 0.5 and α = 0 are similar, indicating that
the autocorrelation in some cases, dominates the heuristics.

Comparing the results obtained with the use of different PPI networks, it
can be seen that there is no clear indication that one network is better than
others. In particular, the best network to be included seems to be related to
the specific dataset. This means that some networks provide more information
for the classification of examples in some datasets than for the classification of
other datasets. In this perspective, NHMC can be used in the evaluation of the
contribution of single networks for a given classification problem.

We also compare the results of NHMC to the results of recent bio-inspired
strategies, which work in the HMC setting, but do not consider network informa-
tion. These include Artificial Neural Networks (HMC-LMLP), Ant Colony Op-
timization (hmAnt-Miner), as well as a genetic algorithm for HMC (HMC-GA)
[9]. While the first algorithm is a 1-vs-all (it solves several binary classification
problems) method based on artificial neural networks trained with the Back-
propagation algorithm, the latter two are methods that discover HMC rules.

The algorithms are evaluated on 7 yeast FUN annotated datasets [11] using
the same experimental setup as for CLUS-HMC and NHMC. In Table 3, we
present the AUPRC results obtained by using HMC-GA, HMC-LMLP, hmAnt-
Miner and NHMC (α = 0.5) on several FUN annotated datasets. NHMC out-
performs all other methods by a great margin. An exception is only the church
dataset, for which NHMC performs worse than hmAnt-Miner. As in Table 2,
CLUS-HMC and NHMC results are comparable (we remind that these results
are obtained with the FUN annotation schema and not with the GO annotation
schema, where NHMC ouperforms CLUS-HMC of a great margin). Note that
AUPRC [9] is similar to AUPRC, but uses weights that consider the number of
examples in each class - AUPRC is used here to make results easily comparable
to results obtained with the other competitive methods.
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Table 3. Comparison with other methods.The AUPRC of HMC-GA, HMC-LMLP,
hmAnt-Miner and NHMC (using α = 0.5 and the DIP PPI network), for 7 FUN
annotated yeast datasets, as used in Cerri at al. [9].

Dataset HMC-GA HMC-LMLP hmAnt-Miner CLUS-HMC NHMC 05
pheno 0.148 0.085 0.162 0.239 0.241
cellcycle 0.150 0.144 0.154 0.172 0.173
church 0.149 0.140 0.168 0.171 0.152
derisi 0.152 0.138 0.161 0.175 0.172
eisen 0.165 0.173 0.180 0.205 0.196
gasch2 0.151 0.132 0.163 0.195 0.186
spo 0.151 0.139 0.174 0.186 0.181

6 Conclusion

In this work, we tackle the problem of multi-label prediction when relationships
among the classes (instances may belong to multiple classes and classes are orga-
nized into a hierarchy), as well as relationships among the instances (instances
may be connected in network data) exist. The use of the latter relationships
between the instances introduces autocorrelation and lead to violate the as-
sumption that instances are independently and identically distributed (i.i.d.),
which underlines most machine learning algorithms. The main contribution of
this work is in the consideration of network autocorrelation in hierarchical multi-
label classification (HMC). Specifically, in this work, we presented a definition of
network autocorrelation in the HMC setting, introduced an appropriate autocor-
relation measure for autocorrelation in such setting and developed the method
NHMC for hierarchical multi-label classification from network data.

NHMC has been evaluated in the context of hierarchical gene function pre-
diction in a PPI network context. Given a set of genes with known functions,
NHMC learns to predict multiple gene functions when gene classes are hierarchi-
cally organized (and, possibly, in the form of DAGs), according to a hierarchical
classification scheme (such as the MIPS-FUN and the Gene Ontology) and ex-
ploiting a given PPI network (such as DIP, VM and MIPS).

Due to the tree structure of the learned models, NHMC is able to consider
the non-stationary effect of autocorrelation i.e., different effects of network au-
tocorrelation at different levels of granularity. However, NHMC does not need
the PPI network in the prediction phase, which is beneficial, especially in cases
where the prediction needs to be made for new examples (genes) for which con-
nections/interactions to other examples (genes) are not known or still need to
be confirmed.

Empirical evidence shows that explicitly taking network autocorrelation into
account increases the predictive capability of the models, especially when net-
work interactions express information on the class labels. In future work, we
intend to evaluate our approach by using additional datasets and networks, pos-
sibly considering new evaluation measures. Moreover, we intend to study a dif-
ferent mechanism to balance variance reduction and autocorrelation. Finally, we
intend to evaluate how the sparseness of network information affects predictive
capabilities of NHMC.
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Abstract. While significant work in data mining has been dedicated to
the detection of single outliers in the data, less research has approached
the problem of isolating a group of outliers, i.e. rare events represent-
ing micro-clusters of less – or significantly less – than 1% of the whole
dataset. This research issue is critical for example in medical applica-
tions. The problem is difficult to handle as it lies at the frontier between
outlier detection and clustering and distinguishes by a clear challenge
to avoid missing true positives. We address this challenge and propose
a novel two-stage framework, based on a backward approach, to isolate
abnormal groups of events in large datasets. The key of our backward
approach is to first identify the core of the dense regions and then gradu-
ally augments them based on a density-driven condition. The framework
outputs a small subset of the dataset containing both rare events and
outliers. We tested our framework on a biomedical application to find
micro-clusters of pathological cells. The comparison against two common
clustering (DBSCAN) and outlier detection (LOF) algorithms show that
our approach is a very efficient alternative to the detection of rare events
– generally a recall of 100% and a higher precision, positively correlated
wih the size of the rare event – while also providing a O(N) solution to
the existing algorithms dominated by a O(N2) complexity.

Keywords: rare events, outlier/anomaly detection, large scale, k-means.

1 Introduction

”An outlier is an observation which deviates so much from the other observa-
tions as to arouse suspicions that it was generated by a different mechanism”
[9]. Similarly, a rare event – cluster of outliers [18], clustered anomaly [13,14],
anomaly collection [6], micro-cluster [2] – is a group of observations which devi-
ates so much from the other groups of observations as to arouse suspicions that
it was generated by a different mechanism.
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(a) Original Data (b) RARE

Fig. 1. Detection of rare events with RARE on artificially generated data. The dataset
contains two normal populations and two rare events: one sparse and global and one
dense and local.

The detection of rare events with a high recall, i.e. no false negatives, is
intrinsic to those domains where the cost of missing rare events is significantly
high. The most representative example is the medical domain where, for example,
the cost of missing a pathological group of cells in a blood sample is significantly
higher than the cost of classifying a healthy group of cells as pathological, i.e.
favouring false positives over false negatives. Disease outbreaks in biosurveillance
[19], bursts of clustered attacks [13] or groups of spammers/fraudulent reviewers
in social media [6] are other examples of scenarios where the detection of rare
events is prevailing over the cost of detecting them.

An anomaly – single or clustered – is an event considered as not normal
with respect to a normal behaviour [4]. With any type of anomaly, the open
issue is to define normality. For single outliers, normality is defined in terms
of distance, distribution or neighbourhood similarity with other data instances.
For spatial anomalies, it is their occurence in a specific region of the space that
makes them abnormal. For collective anomalies, individual instances are normal
but it is their co-occurence that makes them anomalies. For rare events, it is
their small relative size with respect to other data subpopulations that makes
them anomalies. Contrary to collective anomalies, every instance contained in
a rare event is an anomaly. We consider an example of rare events detection in
Figure 1. The data distribution contains two normal populations of 10,000 points
and two rare events: a sparser one of 10 points far from the normal populations,
i.e. a global anomaly, and a denser one of 20 points close to one of the normal
populations, i.e. a local anomaly. Figure 1(b) shows the output of our approach,
RARE, isolating the rare events from the rest of the data.

Sharing common characteristics with both outliers and clusters, the detection
of rare events lies at the frontier between outlier detection and strongly imbal-
anced/unbalanced clustering. Both clustering and outlier detection algorithms,
by their construction, are generally prone at misclassifying positive examples,
i.e. rare events, as negative. Algorithms for unbalanced data have been mainly
proposed in supervised scenarios [20] for classification problems in the pres-
ence of unbalanced training data where the problem is generally handled using
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resampling, cost-sensitive or one-class learning methods [5]. In unsupervised sce-
narios the lack of ground truth information makes the problem even more difficult
to handle. One of the main causes is the size balancing effect, as for example in
k-means, which tends to reduce the variation in cluster sizes as a trade-off for
a better accuracy [21]. In spectral clustering, both RatioCut and Ncut [15] put
more emphasis on balancing clusters than on minimizing cut values. Both algo-
rithms propose through the balancing constraints introduced to handle the out-
lier sensitivity of the initial MinCut solution. On the other hand, outlier/anomaly
detection algorithms [1] are very effective at discovering single anomalies. Dif-
ferent approaches (density-based, distance-based, distribution-based) have been
proposed in the literature. The most common outlier detection algorithm, LOF
[3], Local Outlier Factor, outputs a list of top-k outliers according to an outlier-
ness score obtained by comparing the local density of each point against the local
density of the points in its neighbourhood. The performance of LOF depends
mainly on the construction of the local neighbourhood (parameter MinPts).

In this paper we address this gap between outlier detection and clustering
methods. Given our main challenge to avoid false negatives, i.e. avoid missing
true positives, we propose a density-based backward or bottom-up approach,
i.e. going from the most dense regions to the least dense ones. Common outlier
detection methods use a forward or top-down approach, i.e. they take the top-k
outliers according to an outlierness threshold score. The paper is organized as
follows. Section 2 is dedicated to a literature review for finding rare events in
large datasets. Section 3 introduces our RARE framework. We first perform
a clustering using DenseKMeans, a modified variant of k-means, designed to
find and cluster only points that lie in dense regions of the space. In the second
step, we gradually augment the dense regions found by DenseKMeans using
a density-based sliding region. As soon as the density inside the sliding region
fails to fullfill a density condition, we consider to have reached the border of the
dense regions. Rare events lie outside these borders. In section 4 experiments on
a biomedical data benchmark show that RARE is capable of isolating the rare
events with a higher precision than both DBSCAN and LOF. We discuss the
advantages and limitations of RARE in Section 5.

2 Related Work

Different approaches [4,7,8,10,13,14,17,22] in the literature have been proposed
for the detection of rare events in large datasets. A few techniques approach
it as cluster-based anomaly detection [4]: normal instances belong to large and
dense clusters, while anomalies either belong to small or sparse clusters. Such
methods rely on the output of a clustering algorithm. CBLOF [10] first performs
a clustering, using any clustering method, and subsequently separates small from
large clusters based on a predefined threshold. Using this threshold, it defines a
Cluster-Based Local Outlier Factor (CBLOF) outlierness score by taking into
account both the size of the cluster and the distance to the closest cluster center.
Overall, the performance of such techniques relies strongly on the choice and
quality of the initial clustering.
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Employing explicit cluster size constraints is another solution [22] that can
be used to handle the detection of rare events in datasets. While the tendency
in the literature is to concentrate on balancing clusters, this approach allows to
generate a partitioning with different cluster sizes. It can be very helpful when
an a priori knowledge on the size of each cluster in the data is known in advance.
Still, only a few applications benefit from such a faithful information.

A third approach is to use or adapt single outlier detection algorithms and
make them suitable for detecting micro-clusters of outliers. In LOF [3] the de-
tection of outlying clusters depends on the choice of the number of nearest neigh-
bours MinPts that define the local neighbourhood. The detection of very small
clusters requires a MinPts large enough to contain all the points in a cluster, i.e.
larger than the size of the cluster. LOCI [17] defines a multi-granularity devia-
tion factor (MDEF) and identifies outliers as those points whose neighbourhood
size is significantly different than the neighbourhood size of their neighbours.
Similarly to LOF, LOCI relies on an appropriate choice of the neighbourhood
size, except that, contrary to LOF, it requires the maximum radius of the neigh-
bourhood as input parameter.

Another different direction is to consider that normal instances belong to a
cluster in the data, while outliers do not belong to any cluster [4]. This approach
requires the use of methods (DBSCAN [8], SNN-based clustering [7]) that do
not force every point to belong to one of the clusters. DBSCAN [8] is the
most common density-based clustering algorithm. Its novel notion of density
reachability allows the detection of clusters of arbitrary sizes ans shapes, but it
cannot handle clusters of different densities. Both the run time complexity and
memory requirements of the original alorithm are high O(N2). Using efficient
indexing structures like k-d trees to find the nearest neighbours, the run time
complexity can be reduced to O(N logN). However such indexing structures are
not suitable for high-dimensional data.

A relatively recent concept – isolation – was proposed [12,13,14] as an alter-
native to the concepts of distance and density used in most outlier detection
methods. The notion of isolation relies on the property of anomalies of being
’few and different’. The two methods, iForest [12,14] and SCiForest [13], that
rely on this concept build in the training phase forests of t binary trees using
sub-samplings of the data and compute in an evaluation step an anomaly score
based on the path length of each point, defined as the path from the root of
the tree to the node. While both methods are effective at discovering global
clustered anomalies, i.e. clusters far apart from normal populations, only SCi-
Forest is able to detect local clustered anomalies [14], i.e. clusters close to normal
populations (we presented both types of clustered anomalies in our example in
Figure 1). However the high complexity of SCiForest in both training and eval-
uation stages, respectively O(tτψ(qψ + logψ + ψ)) and O(qNtψ), where ψ is
the sampling size for building the iTrees and t the number of trees to build
in the training phase, makes it suitable only in the presence of local clustered
anomalies.
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(a) X (b) DenseKMeans (c) Rare events

Fig. 2. Illustrative example: a) Original data: the rare event contains 1% of the entire
data collection. b) The data subset after eliminating the core of the dense regions with
DenseKMeans. c) Rare events after DenseSlide.

The RARE framework that we propose in this paper proposes: 1) a backward
approach to the detection of rare events by first identifying the normal/dense
regions; 2) an approach designed to avoid false negatives and therefore accepting
false positives, favouring recall over precision; 3) a low complexity due to the
use of a variant of k-means (linear, scalable); 4) a lower bound density-driven
approach in both steps of the framework that allow the detection of rare events.

3 The RARE Framework

We describe in this section our two-stage framework for the detection of rare
events in large datasets. Given a dataset X with N data points, we consider a
rare event as a micro-cluster of size NR, where NR is significantly smaller than
the total size of the dataset (NR � N).

When expressed in terms of the ratio ε = NR

N between the number of points
in the rare event and the total number of points in the dataset, the above rare
event condition becomes ε � 1. Very small values of ε, i.e. ε < 10−2, place the
problem of abnormal events detection at the frontier between outlier detection
and strongly imbalanced clustering.

3.1 The Backward Approach: An Illustrative Example

We illustrate the backward approach of RARE by means of an example in
Figure 2. We consider a dataset X with two normal subpopulations and a rare
event representing 1% of the whole dataset.

First, we want to identify the core of the dense regions while handling twomajor
issues at this stage: the scalability and the density. We have no a priori knowledge
on the number of subpopulations in the data. To handle the scalability issue we
choose to cluster the dataset using k-means [16] due to both its linear complex-
ity and parallelization power. The density problem is then handled by modifying
k-means so that only points that lie in dense regions are clustered. We do this by
changing in the re-assignement phase of k-means the way cluster centers are esti-
mated, i.e. only points that lie within a maximum radius around cluster centers
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contribute to the reestimation of the centers. This radius-limited approach does
not force all points to belong to one of the clusters, i.e. some points will be left
unclustered. As the actual number of clusters in the dataset is unknown, we use
a large initial number of clusters KI and let each population be modelled using
multiple clusters. Figure 2(b) illustrates this first step of the analysis after the
convergence of the centers to the core of the dense regions. We use KI = 6 cluster
centers in this example and plot the output of DenseKMeans, i.e. the points left
unclustered after the first step, XKEEP .

In the second stage (Figure 2(c)) the clusters that belong to the same pop-
ulation, i.e. they are adjacent as will be defined in Section 3.3, are merged to
form connected components. In our example each group of 3 clusters forms a
connected component. The two components are then gradually augmented, by
means of a density-based Gaussian sliding region (DenseSlide), to reach the
border of the dense regions. Everything that is outside these borders, XRARE ,
is considered a rare event. The framework retrieves both true positives, i.e. the
rare event, and false positives, i.e. points that lie close to the border of the dense
regions or outliers.

3.2 Dense Regions Clustering

The principle behind k-means relies on the minimization of a distance-based
objective function that clusters the dataset X around K cluster centers. But
this distance-based approach leaves k-means sensitive to density-related issues
and to the presence of outliers and noise. To adress this density problem and
cluster only points that lie in dense regions we propose a density-based radius-
limited variant of k-means – DenseKMeans – by bringing two modifications to
the original algorithm:

min

K∑
k=1

∑
xi∈Ck

‖ xi − CCk ‖2 (1)

s.t. | Ck |> NI

dist(xi, CCk) < DMAX , ∀xi ∈ Ck
where Ck denotes the clusters, CCk their corresponding centers, NI the min-

imum cluster density and DMAX the maximum radius around each cluster cen-
ter that constraints center positioning in the initialization phase and limits the
points considered by k-means in the reestimation of cluster centers. Thus the
two phases of k-means are modified as in the following:

1. initialization : choose cluster centers iteratively so that each new center is
positioned at a minimum of DMAX distance from all the other centers and
that each cluster center is assigned at least NI data points.

2. re-assignement : reestimate cluster centers using only points that are at a
maximum ofDMAX distance from one of the cluster centers and remove clus-
ter centers that fall below the initial NI threshold during the re-assignement
phase.
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Table 1. DenseKMeans

Algorithm 1: DenseKMeans

Input: X = {xi}, i = 1..N , xi ∈ R
D

KI - initial number of clusters
NI - minimum number of points (density)
DMAX - radius

Output: CC = {CCk}, k = 1..KF - final cluster centers
XKEEP - the subset of points left unclustered
XRMV - the subset of points clustered

Initialization:
1’: Choose cluster centers CC iteratively so that they are further than DMAX one from each
other:

‖CCk, CCl‖2 > DMAX , ∀k, l = 1..KI

2’: Check the density condition: | Ck |> NI

3’: Repeat steps 1’ and 2’ until convergence: all KI centers are assigned at least NI points.
DenseKMeans:
1”: Select all points XKEEP that are further than DMAX from all centers:

min(xi, CCk) > DMAX

2”: Reestimate cluster centers using XRMV = X \ XKEEP

3”: If a cluster center falls under the initial density threshold (| Ck |< NI) remove it.
4”: Repeat steps 1”-3” until convergence: a maximum number of iterations is reached or centers
do not change significantly.

DenseKMeans is summarized in Table 1. The reestimation of cluster centers
using only points that are at a maximum of DMAX distance from one of the
cluster centers eliminates k-means’ sensitivity to outliers – in our case to rare
events – as long as the radius DMAX is smaller than the distance to outliers.
Moreover clusters Ck that are not dense enough, | Ck |< NI , are discarded in the
re-assignement phase.

These two modifications allow to restrict the region of the space consid-
ered by k-means to only dense regions and iteratively move cluster centers to-
wards the core of the dense regions. Figure 3 illustrates a few examples with
different parameter combinations DMAX vs. K: 1) DMAX = 1.4, KI = 4
(Figure 3(a, b, c)); 2) DMAX = 1.2, KI = 6 (Figure 3(d, e, f);) 3) DMAX = 1,
KI = 8 (Figure 3(g, h, i)). The output of this first stage of the algorithm divides
the original dataset into two disjoint subsets X = XRMV ∪XKEEP : 1) XRMV

= points falling within a maximum of DMAX distance from the final cluster
centers, 2) XKEEP = points falling outside the region defined by the maximum
DMAX distance from the final cluster centers. Using this approach, only points
that are in dense regions are clustered.

3.3 Dense Regions Augmentation

DenseKMeans identifies the core of the dense regions using an initial number of
clusters KI larger than the actual number of clusters/data subpopulations. The
radius-limited approach of DenseKMeans allows to define the cluster adjacency
property as in the following:
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(a) X (initialization) (b) XKEEP (interme-
diary step)

(c) XKEEP (final)

(d) X (initialization) (e) XKEEP (intermedi-
ary step)

(f) XKEEP (final)

(g) X (initialization) (h) XKEEP (interme-
diary step)

(i) XKEEP (final)

Fig. 3. Varying DMAX and KI in DenseKMeans considering the original data from
Figure 2: (a,b,c) DMAX = 1.4, KI = 4; (d,e,f) DMAX = 1.2, KI = 6; (g,h,i) DMAX =
1, KI = 8. Red points represent cluster centers. The initial, intermediary and final step
for each case illustrate the convergence of cluster centers towards the core of the dense
regions, eliminating the sensitivity of the original k-means to outliers.

Definition 1. Two clusters defined by centers CCk and CCl and maximum
radius DMAX are adjacent if they are overlapping, i.e. the Euclidean distance
between the centers CCk and CCl is less than 2×DMAX :

‖CCk, CCl‖2 < 2×DMAX

Among the final KF dense clusters found by DenseKMeans, adjacent clus-
ters are merged to build connected components and provide a more faithful
representation of the real data subpopulations.
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A spherical model like the one used by k-means andDenseKMeans considers
that the intrinsic dimensionality of the data is equal to the original dimensional-
ity. However in real scenarios the intrinsic dimensionality of the data - especially
locally, i.e. one data subpopulation/cluster - is rarely equal to the original di-
mensionality [11]. To address this challenge, we treat the output of the spherical
model by means of a model that is better adapted to handle the intrinsic di-
mensionality of the data. The most common is the Gaussian model. In the first
step of the analysis, the spherical approach was preferred due to the scalability
advantage of k-means. The use of the Gaussian mixture model in the first step
would have required the estimation of K(D2+D+1) parameters for every value
of K – as K is not known in advance. Even if parsimonius models, e.g. diagonal,
can replace the full Gaussian model, the challenge to detect rare events is too
sensitive and requires the use of a full model.

(a) DMAX = 1.4, KI = 4 (b) DMAX = 1.2, KI = 6 (c) DMAX = 1, KI = 8

Fig. 4. Points in green are eliminated through DenseSlide. The same combinations
of DMAX and KI as in Figure 3 are used. c) Only 7 out of 8 clusters are left, one was
eliminated because it did not fullfill the density condition (| Ck |< NI) in DenseK-
Means.

The subset XRMV allows to quickly estimate both the means μj and covari-
ance matrices Σj of the core dense regions defined by the connected components.
These dense regions are augmented using a sliding region SR defined based on
the Mahalanobis distance DM and an increase parameter εS. The sliding regions
approach the border of the dense regions gradually and the process is repeated
as long as a density condition is fullfilled, nbPoints(SR) > NS, i.e. the number
of points inside the sliding region is larger than a predefined threshold NS . When
the density inside the sliding region drops below this threshold, we consider to
have reached the border of the dense regions. The algorithm for dense regions
augmentation, DenseSlide, is summarized in Table 2 and a few examples for
various combinations of parameters DMAX and KI are shown in Figure 4. The
parameters for DenseSlide were εS = 0.1 and NS = 10. The output of the
algorithm returns the subset XRARE of positive examples.
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Table 2. DenseSlide

Algorithm 2: DenseSlide
Input: XKEEP , XRMV , CC - output of DenseKMeans

εS - increase parameter for the sliding region
NS - number of points in the sliding region

Output: XRARE - output of RARE
Connected components:
1’: Build the graph G = (CC, E) using the cluster adjacency property.
2’: Find connected components Gj in G.
3’: Use XRMV to model Gj as N (μj , Σj).
Sliding Region:
1”: Initialize XRARE=XKEEP .
2”: For each Gj compute the Mahalanobis distance:

Dj
M =

√
(XRARE − μj)TΣ−1

j (XRARE − μj)

3”: Eliminate points from XRARE that are closer to one of the component centers than the

farthest point from XRMV : Dj
M (xi) > Dj

max.
4”: Create a moving sliding region SR(Dj

max, εS) around each component N (μj , Σj).
5”: Eliminate points from XRARE inside SR.
6”: Repeat steps 4” and 5” as long as the density condition is respected: nbPoints(SR) > NS.

4 Experimental Results

In this section we test RARE on a large-scale biomedical application in a di-
agnosis purpose, to isolate pathological group of cells in flow cytometry. We
perform experiments on multiple data sets with varying sizes of the rare event.
A practical analysis of the influence of parameter values is also performed on
the benchmark data. Finally we compare RARE against both clustering – DB-
SCAN – and outlier detection – LOF – algorithms1. We experiment with various
parameter values to illustrate the behaviour of each of the above methods.

We use Precision and Recall to evaluate the performance of the algorithms.
RARE is an unsupervised method and ground-truth information on positive
and negative examples is used only in the evaluation phase. Given our main
challenge to avoid missing true positives, it is Recall that becomes the most
important evaluation measure in this scenario.

P =
TP

TP + FP
=

TP

|XRARE |
, R =

TP

TP + FN
=

TP

NRS
(2)

where |XRARE | = the number of data points retrieved by RARE and NRS =
the number of positives in the data, i.e. the size of the rare event.

4.1 A Real Case: Flow Cytometry

In flow cytometry each cell is characterised by fluorescence levels in response to
cell markers, i.e. attributes. Nowadays flow cytometers can count up to tens of

1 We used the ELKI implementation available at: http://elki.dbs.ifi.lmu.de/.

http://elki.dbs.ifi.lmu.de/
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Fig. 5. Initialization of DMAX and KI for the flow cytometry dataset

millions of cells representing normal cell populations found in any healthy
patient, such as lymphocytes or monocytes. In patients presenting a blood pathol-
ogy, the blood samples also contain micro-clusters of cells with abnormal signa-
tures, i.e. abnormal combinations of cell marker fluorescence levels. The human
detection of these rare events is performed visually by sequentially inspecting
two-dimensional spaces, i.e. combinations of two markers.

Experiment 1. DMAX and KI . We first estimate the percentage of data cov-
ered by DenseKMeans in the first step of the algorithm for various values of
the parameters DMAX and KI (Figure 5). We fixed NI = N

100×KI
because we

know that the rare event is significantly smaller that the total size of the dataset.
Those combinations of values for DMAX and KI – closely related – covering ap-
proximately 80− 90% of the dataset in DenseKMeans (XRMV ) generally led
to very good final results in the experiments. This is due to the fact that the
rare events represent significantly less than the rest of 10 − 20% of the whole
dataset, allowing in the meantime the detection of the core dense regions by
DenseKMeans.

Throughout our evaluation, we experimented with different values of the pa-
rameters and observed that the choice of the parameter values was consistent
across different datasets for a given application.

Experiment 2: Varying NR. We now wish to test the performance of RARE
for varying levels of unbalancedness. In this purpose we will keep the total size of
the dataset fixed and vary the size of the rare event - which is an indicator of the
phase of the pathology. On the biological side, this experiment was performed
by injecting grown cells from a blood pathology into a cell sampling of a healthy
patient. The size of the rare population injected was of {5, 10, 20, 50, 100, 500}.
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Due to flow cytometers machine error, a difference appears between the number
of injected cells and the actual size NRS of the rare cell population found in the
blood samples, i.e. positive examples (corresponding to a pathology signature
in flow cytometry). The whole dataset contained N = NH + NRS cells, where
NH ≈ 700.000 cells. In this experiment the free parameters DMAX and KI in

DenseKMeans were chosen to guarantee the ratio |XKEEP |
N ≈ 10− 20% across

the different blood samples (as discussed in Experiment 1). Here we choose
DMAX = 8000 and KI = 40, but other value combinations that respect the
above ratio are also valid (as will be seen in Experiment 3). The parameters for
DenseSlide were chosen: εS = 0.1 and NS = 10.

Table 3. RARE on three samples for each of the varying NR = {5, 10, 20, 50, 100, 500}

NR N |XRARE | TP FP P R NRS

0 151,388 64 5 59 7.8% 100% 5
5 646,149 42 4 38 9.5% 100% 4
10 780,988 54 13 39 24% 92.8% 14
20 757,234 70 17 53 24.2% 100% 17
50 752,987 65 30 35 46.1% 96.7% 31
100 760,842 132 80 52 60.6% 97.5% 82
500 718,743 415 358 57 86.2% 99.7% 359

0 696,465 102 14 88 13.7% 100% 14
5 731,576 98 9 89 9.1% 75% 12
10 720,945 114 14 100 12.2% 100% 14
20 484,285 129 25 104 19.3% 96.1% 26
50 630,341 40 35 5 87.5% 97.2% 36
100 676,745 142 69 77 48.5% 98.5% 70
500 516,981 541 366 175 67.6% 98.6% 371

0 671,582 94 8 86 8.5% 100% 8
5 707,535 100 7 93 7% 100% 7
10 714,081 135 13 122 9.6% 100% 13
20 621,155 155 11 144 7% 100% 11
50 599,851 144 26 118 18% 100% 26
100 711,801 204 84 120 41.1% 100% 84
500 993,671 552 312 240 56.5% 100% 312

The results in Table 3 show an excellent performance for RARE which finds
almost all positive examples, i.e. true positives TP (column 3), among the posi-
tive examplesNRS found with the signature provided by domain experts (column
5). The size of the false positives FP returned by RARE (column 4) depends
mainly on the size and structure of the original dataset, i.e. FP remains rela-
tively constant with increasing TP . We also observe that the recall is relatively
high and the precision increases with the size of the rare event.
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Experiment 3. Comparison with DBSCAN and LOF. A comparison of
the parameters required by the three methods is presented in Table 4. While
LOF requires only one parameter – MinPts – in the construction phase, DB-
SCAN and RARE both require two parameters, thus adding more flexibil-
ity but also more complexity to the model. Both RARE and LOF require a
stopping criteria while DBSCAN considers all points left unclustered as noise.
Rare events will often fall in the noise category with DBSCAN (as shown in
the next experiment). RARE uses two parameters – εS and NS , the growing
rate of the sliding region and the minimal density (εS is generally fixed to ei-
ther 10−1 or 10−2) – to define the stopping criteria. Their influence is equiva-
lent to the cutting threshold in LOF, but it is the approach that is different:
LOF has a top-down approach while RARE has a bottom-up approach. The
bottom-up approach is preferred in scenarios where avoiding false negatives is the
priority.

Table 4. Parameters in RARE, DBSCAN and LOF

Method Model parameters Stopping criteria Approach

RARE (DMAX ,KI) (εS, NS) Bottom-up (backward)

DBSCAN (ε,MinPts) – Bottom-up

LOF MinPts Threshold or top-k Top-down (forward)

In Table 5 we analysed a data sample chosen at random from the second
experiment with a medium rare event (752987 samples and 31 positive examples)
using various parameter values for the three methods. We compute the number
of true positives (TP) and false positives (FP) retrieved by the algorithms. Both
RARE and DBSCAN have a high recall (generally 100%) while RARE has a
significantly higher precision than DBSCAN. In DBSCAN for most parameter
values the rare event is left unclustered and belongs to the subset classified
as noise2 – except in the two cases where a fraction of the rare event clusters
separately in a small cluster (14 and 25 points). While DBSCAN requires the
MinPts parameter to be lower than the size of the rare event for a relatively
good performance, LOF on the contrary requires the MinPts parameter higher
than the size of the rare event, i.e. this is necessary for the detection of micro-
clusters in LOF. While DBSCAN requires no stopping criteria, in LOF we need
to choose either the cutting threshold value or the number of outliers. We use
here two cutting threshold values for each value of MinPts in LOF and indicate
the number of false positives in each case. The two values were chosen so that
the vast majority of the rare event has an LOF outlierness score in the range
bounded by the two values.

2 Here TP + FP equals the size of the noise subset in DBSCAN.
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Table 5. Comparison between RARE, DBSCAN and LOF. The parameter values in
the second column correspond to the respective parameters of each method from the
first column.

Method Parameters TP FP P R

RARE(DMAX ,KI , εS , NS)

(6000, 80, 0.1, 10) 31 193 13.8% 100%
(6000, 100, 0.1, 10) 31 48 39.2% 100%
(7000, 40, 0.1, 10) 31 43 41.8% 100%
(7000, 60, 0.1, 10) 31 60 34% 100%
(7000, 80, 0.1, 10) 31 57 35.2% 100%
(7000, 100, 0.1, 10) 30 40 42.8% 96.7%
(8000, 20, 0.1, 10) 31 184 14.4% 100%
(8000, 40, 0.1, 10) 31 60 34% 100%
(8000, 60, 0.1, 10) 31 22 58.4% 100%
(9000, 10, 0.1, 10) 31 284 9.8% 100%
(9000, 30, 0.1, 10) 31 48 39.2% 100%
(9000, 50, 0.1, 10) 31 35 46.9% 100%
(10000, 10, 0.1, 10) 31 51 37.8% 100%
(10000, 30, 0.1, 10) 31 35 46.9% 100%

DBSCAN(ε,MinPts)

(5000, 10) 31 1286 2.3% 100%
(5000, 20) 31 1998 1.5% 100%
(5000, 30) 31 2703 1.1% 100%
(6000, 10) 31 457(14) 6.1% 100%
(6000, 20) 31 699 4.2% 100%
(6000, 30) 31 934 3.2% 100%
(7000, 10) 31 197(25) 12.2% 100%
(7000, 20) 31 331 8.5% 100%
(7000, 30) 31 396 7.2% 100%

LOF(MinPts, Threshold)

(30, 1) 31 589039 5 × 10−3% 100%
(30, 1.1) 3 132890 2 × 10−3% 9.6%
(50, 1.5) 31 2133 1.4% 100%
(50, 1.6) 8 945 8 × 10−3% 25%
(100, 2) 31 230 11.8% 100%
(100, 2.5) 3 54 5.2% 9.6%
(150, 2.1) 31 206 13% 100%
(150, 2.7) 3 43 6.5% 9.6%

5 Discussion and Conclusion

We proposed in this paper a two-stage framework to isolate rare events in large
datasets. The size of these events makes their detection difficult by both cluster-
ing and outlier detection algorithms as both tend to missclasify true positives as
false negatives. We have shown that RARE has a good performance and also the
advantage of the linear complexity, largely dominated by the complexity of k-
means and low memory requirements O(NKI). The new variant of k-means was
proposed to handle the scalability and density issues in this type of problems and
the sliding region was designed in a backward/bottom-up approach to avoid false
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negatives. Overall, the RARE framework targets applications where recall pre-
vails over precision. We did not approach here complexity improvements. Both
DBSCAN and LOF have a O(N2) memory requirement and runtime complex-
ity – that can be improved to O(N logN) using indexing structures such as k-d
trees for low-dimensional data. In its current stage RARE has a O(N) complex-
ity and DenseKMeans is easily parallelizable – it is the most time consuming
in RARE. We consider these complexity improvements as a next step for future
work.
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Abstract. Inductive process modeling (IPM) is an approach to equa-
tion discovery that can be used to induce comprehensible models of dy-
namical systems from observed data and domain knowledge. We apply
IPM to the task of modeling the conversion of Rab5 domain proteins to
Rab7 domain proteins, a key process in endocytosis. Endocytosis, and
in particular its specific form phagocytosis, is a major mechanism of the
immune system, used to remove pathogens. We first introduce a for-
mal representation of the domain knowledge for modeling this process.
We then present the design of the IPM experiments using the domain
knowledge and measured data and the results obtained from these ex-
periments. We finally compare our results with results already published
in the literature.

1 Introduction

Equation discovery is an area of machine learning concerned with the discovery
of scientific laws and models in the form of equations from observations [8,5].
Inductive process modeling (IPM) is an approach to equation discovery [1,4].
IPM combines domain specific knowledge, describing constituent entities and
interactions between them (processes) in a formal language, and observations in
the form of time-series data in order to induce explanatory models of dynamic
systems. Process models correspond to (ordinary) differential equation (ODE)
models. The IPM approach performs both identification of the structure and
estimation of the parameter values of ODEs by using the provided knowledge
and data. In this paper, we apply the IPM approach to modeling a dynamical
system in the domain of systems biology.
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A recent paper by del Conte-Zerial et al. [2] presents a mathematical model
of the dynamics of a part of the immune response, i.e., the process of endo-
cytosis. More specifically, they model the conversion of Rab5 domain proteins
to Rab7 domain proteins, which occurs during endosome maturation. The au-
thors propose a Rab5-Rab7 conversion model based on an extensive comparative
analysis of a number of model structures and different kinetic laws for individual
reactions. In a follow-up paper, Tashkova et al. [9] address the task of parameter
estimation in a single Rab5-Rab7 conversion model structure and explore the use
of several parameter estimation methods under a range of observation scenarios
involving data of different completeness and accuracy of interpretation.

In this paper, we generalize the results of Tashkova et al. [9] by integrating
the proposed parameter estimation methods within IPM, i.e., within the recently
developed IPM tool ProBMoT [10]. The IPM paradigm allows us to consider a
whole range of candidate structures considered in del Conte-Zerial et al. [2] in
an automated manner. We conjecture that IPM can reproduce their results,
i.e. select the model structure obtained by following the results of their manual
comparative analysis.

We first give an overview of the process of automated modeling using ProB-
MoT as a specific IPM approach (Section 2). We then formulate the domain
knowledge (Section 3) for the modeling task at hand. We next run ProBMoT
on this domain knowledge and the data used by del Conte-Zerial et al. [2] and
Tashkova et al. [9]. We present the obtained results and compare them with the
results of the manual modeling experiment in Section 4. We give a summary of
our work and propose directions for further work in Section 5.

2 Inductive Process Modeling and ProBMoT

Inductive Process Modeling (IPM) is a data and knowledge driven machine learn-
ing approach to inducing explanatory process-based models of dynamic systems
in the form of equations. One process-based model describes a dynamic system
as a set of entities and processes which govern the interactions between the en-
tities. Each process model takes the form of a differential or algebraic equation,
which describes one specific interaction between entities. Taken together, these
processes and models thereof are combined into a system of differential equations
that can be used to simulate the dynamic behavior of the observed system.

The ProBMoT [10] tool is a recently developed IPM tool for automated mod-
eling of dynamical systems. A graphical description of the process of automated
modeling using ProBMoT is presented in Figure 1. ProBMoT takes as input
time-series data about the dynamic behavior of the observed system. It also
takes as input modeling knowledge about the studied domain, represented as a
library of template model components - entities and processes. Finally, it takes
as input an incompletely specified, partial model, described by components from
the library.
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The library of domain knowledge is a collection of model fragments that can
be used in the process of generation of candidate model structures. In the for-
malism of ProBMoT, the library consists of template entities and processes. The
templates give general description of the properties of the entities and the form
of the interactions between them.

The conceptual model is a high level general description of the modeled sys-
tem. It determines which parts of the library will be taken into account in the
process of generation of candidate model structures and in which manner.

Model structure 
generation

Library

Incomplete
model

Candidate model 
structures

Candidate 
models

Settings

Parameter estimationParameter estimationParameter estimationParameter estimation

MeasurementsOutput 
specification

f(x,y,z)

1
2

3
4

1
2

3
4

Model ranking

3
1

4
2

Ranked 
models

Fig. 1. The process of automated modeling with ProBMoT

Given the library of domain knowledge, ProBMoT performs exhaustive search
of the space of candidate model structures by enumerating all possible structures
stemming from the conceptual model and the library. Each resulting candidate
model structure at this point has the form of a specific set of differential equations
with known structure and unknown parameter values. These unknown parameter
values are estimated in the next step of the process.

Parameter estimation is performed for each candidate model structure to ob-
tain a set of point estimates of each unknown parameter that most adequately
explains the measured behaviour. The parameter estimation task is guided by
an objective function which takes into account the error between the measured
data and the model simulation resulting from a given set of candidate parameter
values for the model. Since all variable properties of the entities that constitute
the model might not be observed and present in the measurements data, an
output specification, which describes the mapping between the measured and
simulated values, can be provided.

ProBMoT uses the jMetal framework [3] for parameter estimation. The jMetal
framework contains a collection of state-of-the-art single and multi-objective op-
timization algorithms. ProBMoT allows the selection of suitable optimization
algorithm for the task at hand. The SUNDIALS suite [7] is used for the simula-
tion of the models.

The output of the parameter estimation task is a complete candidate model.
After the parameter values for all candidate model structures have been es-
timated, the resulting candidate models are ranked by their error or by other
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defined criterion. Finally, the ordered set of candidate models is the output of
the process of automated modeling with ProBMoT.

3 Process-Based Knowledge for Modeling Endocytosis

In the library of domain knowledge for modeling endocytosis, entities corre-
spond to protein domains, while processes refer to interactions among the pro-
tein domains. In order to develop the library of knowledge for this area of study
we used the modular formulation of the Rab5-Rab7 conversion model from del
Conte-Zerial et al. [2]. The latter can be represented by the system of ordinary
differential equations (ODEs) given below (Equation 1).

dr5
dt

= K1 − (k1 +GEF5(R5, R7))r5 +GAP5(R5, R7)R5

dR5

dt
= GEF5(R5, R7)r5 −GAP5(R5, R7)R5

dr7
dt

= K2 − (k2 +GEF7(R5, R7))r7 +GAP7(R5, R7)R7

dR7

dt
= GEF7(R5, R7)r7 −GAP7(R5, R7)R7

(1)

In Equation 1, the variables r5 and r7 represent the concentrations of GDP-
bound (passive state) Rab5 and Rab7 domain proteins, while R5 and R7 repre-
sent the concentrations of GTP-bound (active state) proteins. The parameters
Ki and ki represent GDP Dissociation Inhibitor (GDI) association rates and GDI
dissociation fluxes. The Rab5-Rab7 interactions labelled with GEF represent ac-
tivating reactions which catalyse the GDP/GTP exchange by guanine nucleotide
exchange factors, while the GAP interactions represent reactions which catalyse
the GTP hydrolysis by means of GTPase-activating proteins. Both GEF and
GAP interactions are functions of the GTP-bound state concentrations of Rab5
and Rab7.

Del Conte-Zerial et al. [2] considered different functional forms for modeling
the GEF and GAP interactions. The combinations of the different functional
forms result in different model structures. Figure 2 provides a graphical repre-
sentation of the general modular model structure considered by del Conte-Zerial
et al. [2].

The dashed lines represent different individual optional interactions between
the Rab5 and Rab7 protein domains, while the solid lines represent non-optional
(mandatory) interactions. The green arrow lines correspond to activation reac-
tions which increase the conversion from GDP-bound (passive) to GTP-bound
(active) states. The red arrow lines correspond to the increase of hydrolysis
from GTP-bound to GDP-bound states. Finally, the blue line with a diamond
ending represents an inhibitory reaction which decreases the conversion from
GDP-bound to GTP-bound states of the corresponding Rab domain proteins.
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Fig. 2. A graphical representation of the Rab5-Rab7 interaction model structure
as considered by del Conte-Zerial et al. [2]

Table 1. Part of the developed library of domain knowledge. Definition of the
template entity Protein and the template root process.
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Table 1 presents a fragment of the ProBMoT library for inductive process
modeling of endocytosis. It contains a single template entity protein that cor-
responds to both of the protein domains of Rab5 and Rab7. The variables of
the protein template correspond to the concentrations of the active-state and
passive-state proteins. Furthermore, the root process template specifies the gen-
eral form of the conversion model from Equation 1, where the interaction pro-
cesses correspond to the interactions from Figure 2. Finally, the library contains
specifications of all kinetic rate law alternatives considered for modeling individ-
ual reactions (interactions in Figure 2) that del Conte-Zerial et al. [2] considered
in their work.

Note the presence of a time dependent term t
t+td in the root process equations

which is not present in Equation 1. In this term t corresponds to the model time
and td is a parameter that needs to be fitted. Under the assumption that the
model which describes the Rab5-Rab7 conversion switch is bistable, a change
in a parameter is needed in order for a switch between the stable states of the
model to happen. This term modifies the ke parameter of the GEF5 interaction
in a similar fashion as reported in del Conte-Zerial et al. [2].

Table 2. Part of the developed library of domain knowledge. Definition of in-
teraction processes with alternative forms.

template process GEFProcess(p1: Protein, p2: Protein){
consts: ke{range:<0.001,4>},kf{range:<0.001,4>},kg{range:<0.001,4>},
km{range:<0.001,4>},ki{range:<0.001,4>};

}
template process MMKinetics : GEFProcess {
equations:
p1.GEF = ke*p1.GTP_bound_state_conc/(kg + p1.GTP_bound_state_conc);

}
template process Sigmoidal_response : GEFProcess {
equations:
p1.GEF = ke/(1 + exp(kg - p1.GTP_bound_state_conc)*kf);

}
template process Exchange_inhibition : GEFProcess {
equations:
p1.GEF = ke*p1.GTP_bound_state_conc/(km*(1+p2.GTP_bound_state_conc/ki)

+ p1.GTP_bound_state_conc);
}
template process GEFCombined(p1: Protein, p2: Protein){
consts: ke{range:<0.001,4>},kf{range:<0.001,4>},kg{range:<0.001,4>},
km{range:<0.001,4>},ki{range:<0.001,4>},kE{range:<0.001,4>};

}
//..
template process GAPProcessPlus(p1: Protein, p2: Protein){
consts: kh{range:<0.001,4>},kH{range:<0.001,4>},ky{range:<0.001,4>};

}
//..
template process GAPProcess : GAPProcessPlus{}
//..
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Table 3. The incomplete model given to ProBMoT

incomplete model EndocytosisModel:EndocytosisLibrary;
entity rab5 : Protein {
vars:
GDP_bound_state_conc{role:endogenous; initial:null;},
GTP_bound_state_conc{role:endogenous; initial:null;},
GEF{role:endogenous}, GAP{role:endogenous}, t{role:exogenous};

consts: GDI_dissociation_flux, GDI_association_rate;
}
entity rab7 : Protein {
vars:
GDP_bound_state_conc{role:endogenous; initial:null;},
GTP_bound_state_conc{role: endogenous; initial: null;},
GEF{role:endogenous}, GAP{role:endogenous},t{role:exogenous};

consts: GDI_dissociation_flux, GDI_association_rate;
}
process root(rab5, rab7) : Root {
processes:
GDI_GDP_membrane_interaction5, GDI_GDP_membrane_interaction7,
GEF5Process, GEF7Process, GAP5Process,GAP7Process;

}
process GDI_GDP_membrane_interaction5(rab5):GDI_GDP_membrane_interaction{
processes: Dissociation_from_GDI5, Association_with_GDI5;

}
process GDI_GDP_membrane_interaction7(rab7):GDI_GDP_membrane_interaction{
processes: Dissociation_from_GDI7, Association_with_GDI7;

}
process Dissociation_from_GDI5(rab5):Dissociation_from_GDI{}
process Association_with_GDI5(rab5):Association_with_GDI{}
process Dissociation_from_GDI7(rab7):Dissociation_from_GDI{}
process Association_with_GDI7(rab7):Association_with_GDI{}
process GEF5Process(rab5,rab7):GEFProcess{
consts: ke,kf,kg,km,ki;

}
process GEF7Process(rab5,rab7):GEFCombined{
consts: ke,kf,kg,km,ki;

}
process GAP5Process(rab5,rab7):GAPProcessPlus{
consts: kh,kH,ky;

}
process GAP5Process(rab7,rab5):GAPProcess{
consts: kh,kH,ky;

}

Table 2 presents an additional fragment of the library in which all possi-
ble alternative modeling choices for the GEF5 interaction (GEFProcess inter-
action) are described with their corresponding equation fragments. All other
processes in the library are described in a similar hierarchical manner. Only the
top level processes are presented in Table 2 while the alternatives are omitted.
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The GEFCombined interaction process contains the possible alternatives for the
GEF7 interaction. The GAPProcess interaction process contains the possible al-
ternatives for the GAP7 interaction and the GAPProcessPlus interaction process
contains the possible alternatives for the GAP5 interaction. The additional pro-
cesses that are not listed in Table 2, namely the GDI_GDP_membrane_interaction
contains the kinetic laws of the interaction between the protein domains and GDI
which include association and dissociation, represented with black solid lines in
Figure 2. Table 3 presents the incomplete (conceptual) model for the problem of
modeling the Rab5-Rab7 conversion switch.

4 Modeling Endocytosis with ProBMoT

The process-based knowledge in the form of library of template entities and
processes provides alternatives for modeling individual endocytosis processes.
ProBMoT also takes as input an incomplete model which provides a general
specification of the entities and processes involved in the Rab5-Rab7 conversion.
Using the library ant the incomplete model from Table 3 ProBMoT enumerates
all candidate model structures. The enumeration results in 126 candidate struc-
tures. Del Conte-Zerial et al. [2], consider only a subset of 54 structures and
omit others. Note that ProBMoT automates the structure identification task
and allows us to perform a complete experiment, where all 126 structures are
considered.

Obtaining a complete model from the enumerated structure requires estima-
tion of the parameter values. To this end, we use Differential Evolution as a pa-
rameter fitting method, which was configured according to the settings reported
by Tashkova et al. [9]. The parameter ranges were set to the interval [0, 2] for
the initial values of the system variables (r5, R5, r7, and R7), to [50, 150] for the
td parameter in the root process, to [10−3, 4] for all the other model parameters,
and to [103, 105] for the output scaling parameter (see below).

Each model for each candidate parameter set in the process of parameter
estimation is evaluated using the available data and the output of the model
simulation. The parameter estimation is guided by an objective function based
on root mean squared error (RMSE). The objective function for evaluating a
model m is defined as in equation 2.

RMSEObjective(m) =

2∑
i=1

√√√√ 1

N

N∑
j=1

(xi[j]− yi[j])2, (2)

where xi[j] and yi[j] denote the simulated and measured (respectively) value
of the observed variable i at time point j, and N denotes the number of the
measurement time points in the dataset.

Depending on the candidate structure the total number of parameters that need
to be estimated (initial values, model parameters and output scaling parameters)



Inductive Process Modeling of Rab5-Rab7 Conversion in Endocytosis 273

is different and varies between 17 and 25. The parameter fitting method was set
to perform 20000 evaluations per unknown parameter. This resulted in 340000 to
500000 evaluations per model depending on the total number of unknown
parameters.

The data provided for the experiment comprises of two time-series of measure-
ments from del Conte-Zerial et al. [2]. The data was collected from three inde-
pendent experiments (28 time courses), scaled and averaged. The data consist of
10,571 time points on the interval [−5, 330] seconds. The measured time-series for
Rab5 and Rab7 concentrations were manually aligned, so the conversion switch
point is at time point 0.

Due to the limitation of the measurement equipment, only the total concen-
tration of the Rab5 and Rab7 domain proteins can be observed. Therefore, the
observed values at each time point correspond to r5 +R5 and r7 +R7. To deal
with the limited observations and their scale, we define the model output as
K ∗ (r5+R5) and K ∗ (r7+R7), where K denotes a scaling parameter. Addition-
ally, we used the transformation t ← t+828.56 on the time points from the data,
shifting the conversion point to the real time so that our model simulations can
be directly compared to the measured data [2,9].

4.1 Experimental Results and Discussion

The range of error for the obtained models is narrow. Many models have errors
only slightly higher than the best model. The errors of all models have a mean
equal to 3841.65 and a deviation equal to 1022.12. Additionally, the mean of the
first 100 models is 3411 with a deviation of only 201.34.

Figure 3a provides a graphical representation of the best ranking model struc-
ture according to its RMSEObjective value after fitting to the data. It has an
error of 3040.08.

Although the range of errors is narrow, the models differ by their structural
complexity. We define the structural complexity of the model by the number
of interactions (represented as arrows in Figures 2 and 3) present in the model.

(a) (b) (c)

Fig. 3. (a) The best model structure according to the RMSEObjective. (b) The
best model structure according to the BIC. (c) The model structure reported by
del Conte-Zerial et al. [2].
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Structurally, our best model (according to the RMSEObjective value) has similar
complexity with the one reported by del Conte-Zerial et al. [2] (shown in Figure
3c). Given the narrow range of errors, we were interested in finding the best
model with the lowest structural complexity that has a good fit to the data. In
the literature [6], a function (Equation 3) based on the BIC (Bayesian Informa-
tion Criterion) is commonly used to combine the complexity and the fit of the
models.

BIC(m) = N ln(MSE(m)) + k ln(N) (3)

In Equation 3, N represents the number of points in the data, k represents
the complexity of the model and MSE(m) represents the mean squared error of
the model simulation given the measured data.

Figure 3b presents the structure of the best ranked model using this func-
tion. This model structure has lower complexity than the best ranking model
according to the RMSEObjective value, its error is 3145.05, and it was ranked
as 13th by the RMSEObjective value. The cut-out switch structure reported by
del Conte-Zerial et al. [2] (Figure 3c) has an error of 3735.98 and ranks 93rd
according to the RMSEObjective value and 94th according to the BIC value.
Structurally, the model ranked as best according to the BIC is more similar
to the cut-out-switch structure than the model ranked as best according to the
RMSEObjective. The only difference between the two is in the missing inhibitory
feedback from Rab7 to Rab5.

Despite the observed error and rank difference, the best ranking models ac-
cording to the used criteria and the model reported in [2], lead to similar sim-
ulated dynamics of the total density. The simulations fit well to the measured
data as shown in Figure 4, where Model 3A denotes the best ranked model found
by ProBMoT according to the RMSEObjective value, Model 3B denotes the best
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Fig. 4. Simulations of the total density of Rab5 and Rab7 in Model 3A, Model
3B and Model 3C, compared to the measured data
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ranked model according to the BIC value, while Model 3C denotes the model
reported in [2]. The structures of the models 3A, 3B and 3C correspond with
the structures shown in Figures 3a, 3b and 3c.

Let us now examine in detail the simulated dynamics of the specific protein
domains. The best model according to the RMSEObjective value does not prop-
erly model the expected switch in the R5 and R7 trajectories (see Figure 5). This
is due to the missing triggering interaction between Rab5 and Rab7, which will
activate Rab7. In the case of the best ranked model according to the BIC value,
there is no mechanism of Rab5 removal catalysed by Rab7. The removal of Rab5
is only due to intrinsic hydrolysis. Although we observe switching behavior, the
dynamics of the switch, and the time at which it happens, does not correspond
to the ones observed in the data.
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Fig. 5. Simulation of the dynamics of Rab-GTP concentrations of (a) Model 3A,
(b) Model 3B and (c) Model 3C
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Inspecting the model produced by ProBMoT, we noted that the fitted value of
the td parameter in many of the models was on the lower or the upper bound of
the fitting range. We thus performed another set of experiments using the same
setup with only one change. We extended the fitting range of the parameter
td in the time dependent term responsible for parameter perturbation from the
initial range [50, 150] to [5, 195], thus increasing the space of possible parameter
perturbations.

The range of errors for the obtained models remained narrow. The change in
the setup resulted in a decrease of the error values of all models. The errors of
all models in the new setup have a mean equal to 3327.06 and a deviation equal
to 607.49. The mean of the first 100 models is 3113.56 with deviation equal to
148.

Fig. 6. The best ranked model structure according to both RMSEObjective and
BIC values

The ranking of the models significantly changed and the new best model
according to the RMSEObjective value is also the new best model according to
the BIC value. Figure 6 presents the structure of the newly obtained best model
(Model 6). The complete model expressed in the ProBMoT formalism is given in
table 4. It contains the specific processes (reactions), their kinetics and the kinetic
rate constants. It has an error of 2800.22. Structurally, although the model lacks
the mechanism for sustaining the Rab7 concentration after Rab5 is removed
from the system, the model is capable of producing switch like behaviour as it
contains mechanisms for triggering activation of Rab7 and disposal of Rab5, as
opposed to the previously obtained best models. It is also important to mention
than according to the new rankings, the structure reported in the literature
(Figure 3c) was fitted so its rank according to its RMSEObjective value (3072.01)
improved to 46, while its rank according to its BIC value improved to 39.

As was the case in the previous experiments the best ranking model according
to the used criteria and the model reported in the literature lead to similar
simulated behaviour of the total density of the proteins. Again, the simulated
behaviour fits well to the measured data (Figure 7). In Figure 7, Model 6 denotes
the best ranking model, while Model 3C denotes the model reported by del
Conte-Zerial et al. [2].
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Table 4. The complete model 6 with fitted parameter values represented in the
ProBMoT formalism

model EndocytosisModel : EndocytosisLibrary;
entity rab5:Protein{
vars:
GDP_bound_state_conc {role:endogenous; initial:1.9791404058513797;},
GTP_bound_state_conc {role:endogenous; initial:1.3140551623312862;},
GEF {role:endogenous;},GAP{role:endogenous;},t {role:exogenous;};

consts:
GDI_dissociation_flux = 0.05910840467192948,
GDI_association_rate = 0.08397972050684883;

}
entity rab7:Protein{
vars:
GDP_bound_state_conc {role:endogenous; initial:0.20768919791767312;},
GTP_bound_state_conc {role:endogenous; initial:0.15427162958067459;},
GEF{role:endogenous;},GAP{role:endogenous;},t{role:exogenous;};

consts:
GDI_dissociation_flux = 0.1835340494246706,
GDI_association_rate = 1.1655169518991926;

}
process root(rab5, rab7):Root{
consts: td = 179.94021940272;
processes:
GDI_GDP_membrane_interaction5, GDI_GDP_membrane_interaction7,
GEF5Process, GEF7Process, GAP5Process, GAP7Process;

}
process GDI_GDP_membrane_interaction5(rab5):GDI_GDP_membrane_interaction{
processes: Dissociation_from_GDI5, Association_with_GDI5;

}
process GDI_GDP_membrane_interaction7(rab7):GDI_GDP_membrane_interaction{
processes: Dissociation_from_GDI7, Association_with_GDI7;

}
process Dissociation_from_GDI5(rab5) : Dissociation_from_GDI {}
process Association_with_GDI5(rab5) : Association_with_GDI {}
process Dissociation_from_GDI7(rab7) : Dissociation_from_GDI {}
process Association_with_GDI7(rab7) : Association_with_GDI {}
process GEF5Process(rab5, rab7):MMKinetics{
consts: ke=0.001, kg=2.3957792873725934,

}
process GEF7Process(rab5, rab7):NoAct_MM{
consts:
ke=0.06870234939183612,kg=0.11081576860190387,kE=3.5647410609632955;

}
process GAP5Process(rab5, rab7):MM{
consts: kH=0.010407865344899033,ky=3.824554413479251;
processes: intrinsic_Hydrolysis547;

}
process GAP7Process(rab7, rab5):MM{
consts: kH=0.5475865295310145, ky=4.0;
processes: intrinsic_Hydrolysis311;

}
process intrinsic_Hydrolysis311(rab7, rab5):Intrinsic_Hydrolysis{
consts: kh=0.06910969838766903;

}
process intrinsic_Hydrolysis547(rab5, rab7):Intrinsic_Hydrolysis{
consts: kh=0.003723987022345545;

}
// RMSEObjective=2800.22793923356 // K=8545.043326240191
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Fig. 7. Simulations of the total density of Rab5 and Rab7 in Model 6 and Model
3C, compared to the measured data

Looking at the dynamics of the Rab-GTP concentrations, we observe a switch-
like behaviour in both the best model and the model reported in the literature
(Figure 8).
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Fig. 8. Simulation of the dynamics of Rab-GTP concentrations of (a) Model 6
and (b) Model 3C

4.2 Conclusions

Using a function based on the sum of squared error as a single and only objec-
tive function guiding the parameter estimation may lead to a situation where
discriminating between model structures can be a difficult task. The additional
model selection criterion, based on the complexity of the models, can be used
for better model discrimination given a narrow error range of the models.
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In the case of modeling the Rab5-Rab7 switch in endocytosis using both of the
considered criteria at first resulted in top ranked models which did not have a
structure that can produce the desired switch-like behaviour. Due to the number
of parameters that have to be fitted for one model, and the limited observability
of the measured data the models can be overfitted to the data, and a meaningful
model selection in this situation becomes a virtually impossible task.

In the second round of experiments, we allowed a larger range for only one
parameter which is responsible for the parameter perturbation needed for achiev-
ing switching behaviour. The error range of the obtained models became even
narrower, but both selection criteria ranked one model as the best. Structurally,
the newly obtained model was able to reproduce switch like behaviour.

However, the nature of the objective function does not allow proper detection
of complex dynamical behavior. Additional criteria which complement the in-
formation about the fit to the measured data gained by this objective function
should be also considered. One such criterion is based on performing bifurcation
and phase plane analysis [2]. Only after the model structure passes certain cri-
teria related to these analyses, the comparison with the measured data is to be
made for the final model selection.

5 Summary and Further Work

We encoded process-based knowledge for modeling endocytosis and used the
IPM-based tool ProBMoT to model the endocytosis process. In particular, we
focused on the process of Rab5-Rab7 protein domain conversion. We compared
the obtained models with the results from manual modeling experiments [2].

We used different selection criteria in order to select the best model. The best
obtained models with the automated approach differ from the model reported in
the manual experiments. We found out that range of errors obtained for different
model structures is narrow and we performed additional model selection based
on criteria which take into account both the fit of the model to the data and its
complexity. Due to the complex representation of the processes, the number of
parameters that need to be fitted for each model and the limited observability
of the measured data, some models which might not fulfil the structural require-
ments for the desired behavior can be overfitted to the data and be preferred by
the model selection criteria. These findings give direction to further work in the
process of automated modeling of endocytosis and the further development of
the IPM approach.

Additional apriori filtering of the explored model structures is needed, based
on the structural properties of the models, resulting in a reduced number of can-
didates to be fitted to the measured data. Note that also the objective function
based on squared error, used for parameter estimation, might not be sufficient for
discriminating among the model structures when modeling endocytosis. Going
beyond the use of this kind of error measures as the only criterion for optimiza-
tion is one possible direction for further work. The integration of information
gained by performing bifurcation and phase plane analysis on the candidate
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models in the IPM approach, among the lines of del Conte-Zerial et al. [2],
might improve our method and result in better discrimination among model
structures.

Finally, the Rab5-Rab7 conversion, although important, is only one phase
of the whole endocytosis process. The IPM approach can be also used to gain
knowledge about the dynamics of other parts of the endocytic pathway. This
knowledge can contribute to the development of a complete explanatory model
of endocytosis.
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Abstract. We present a fast algorithm to compress hypergraphs into
the data structure ZDDs. We furthermore analyze the computational
complexity. Our algorithm uses multikey Quicksort given by Bentley
and Sedgewick. By conducting experiments with various datasets, we
show that our algorithm is significantly faster and requires much smaller
memory than an existing method.

Keywords: hypergraph, binary decision diagram, data compression,
sort, data mining, combinatorial problem.

1 Introduction

A hypergraph is a set family over a ground set, where each set is called a hy-
peredge. A hypergraph can represent a wide variety of information and thereby
appears various areas in computer science. In data mining or knowledge dis-
covery in databases, one of important tasks is to find all interesting patterns
from databases. Mannila and Toivonen [1] presented a general framework for
this problem. One of their results was to identify the class of problems in which
patterns are representable as sets. In this class, patterns form a hypergraph.

A zero-suppressed binary decision diagram (ZDD) is a compressed data
structure for hypergraphs. This was introduced by Minato [2] for solving com-
binatorial problems concerning hypergraphs. In many cases a ZDD has high
compression efficiency, and furthermore many operations to manipulate hyper-
graphs such as intersection, union and difference are available. Since the time
required for such set-theoretical operations is only related to ZDD sizes [3], a
method to solve problems by using ZDDs is efficient especially when high com-
pression efficiency is achieved. Although the use of ZDDs is not always a better
approach, many results including [4–6] support that a ZDD-based method can be
useful for some large-scale problems that are difficult to compute in a reasonable
amount of time.

In the context above, Minato et al. [7] applied ZDDs to itemset mining prob-
lems by combining one of the most efficient frequent itemset generation algo-
rithm, called LCM, and ZDDs. More specifically, this method LCM over ZDD
constructs a ZDD in a bottom up fashion while receiving itemsets successively

J. Fürnkranz, E. Hüllermeier, and T. Higuchi (Eds.): DS 2013, LNAI 8140, pp. 281–293, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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Fig. 1. The time comparison of the compression part and the remaining part in the
transversal hypergraph computation. Each dataset consists of the complements of max-
imal frequent itemsets with support thresholds, generated from the real-life datasets
“BMS-WebView2”.

generated by LCM. Since a very large number of itemsets can be generated,
storing and indexing them as a ZDD becomes useful in a data analysis phase to
find some structural information underlying databases. Such analysis problems
over ZDDs have been studied in [8–11].

ZDDs are not only useful in the post-process of LCM. Since there are many
important computational problems concerning hypergraphs, ZDDs would be also
useful for solving such problems. One of the most important problems is to com-
pute the transversal hypergraph Tr(H) for a given hypergraph H, where Tr(H)
is a hypergraph which has the same ground set as H and which consists of all
sets that can intersect every member of H. This problem has many equivalent
problems in various areas such as data mining, logic, artificial intelligence, etc.
Hence, it has been extensively studied for years (see [12–16]). Recently, practi-
cally fast algorithms have been developed by many researchers. Among them,
the algorithm given by Murakami and Uno [17] is known to be the fastest. In
the previous study [6], we presented an algorithm to compute transversal hy-
pergraphs with binary decision diagrams and experimentally showed that our
ZDD-based algorithm is highly competitive with Murakami-Uno method. How-
ever, there is a drawback. As shown in Fig. 1, the compression of some datasets
spent almost all time, although our algorithm was still significantly faster than
the Murakami-Uno method. This implies that even if operations on ZDDs can
be done quickly, the compression part can be a critical bottleneck. In order to
overcome this situation, an efficient compression method is necessary.

In this paper, we present a fast algorithm to compress hypergraphs into ZDDs.
A usual method is to construct a ZDD by repeating the union operation provided
in a usual ZDD library (see for example [6, 18, 19]). Although it is easy to im-
plement, unfortunately there are some drawbacks on performance. Yet another
method was used in the LCM over ZDDs. As mentioned earlier, this method con-
structs a ZDD in a bottom up fashion while receiving sets successively generated
by LCM. Since the focus of their work was a combination of LCM and ZDD, a
compression procedure in a general setting was not treated and hence any per-
formance on the bottom-up construction was not clarified. We would thus like
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to study a general construction problem. The basic idea of our algorithm is as
follows. Like LCM over ZDDs, our algorithm constructs ZDDs in a bottom up
fashion, and furthermore we accelerate it in cooperation with multikey Quicksort,
which is a sort algorithm for strings given by Bentley and Sedgewick [20]. The
performance of multikey Quicksort is well-analyzed. Thus we analyze only the
computational complexity for the construction part. Furthermore, by conduct-
ing experimental comparison with many datasets, we show that our algorithm
is significantly faster and requires much smaller memory than the usual method
based on union operation.

This paper is organized as follows. In Section 2 we introduce the data structure
ZDDs. In Section 3 we present an algorithm and analyze the computational
complexity. Section 4 provides experimental results. We conclude in the final
section.

2 A Compressed Data Structure for Hypergraphs

Since we use a special data structure for hypergraphs, we provide necessary
notions and results in this section. On detailed description of this data structure,
the reader is referred to [21, 22]. We identify hypergraphs with set families if the
ground set is clear from the context.

2.1 Introduction to ZDDs

A zero-suppressed binary decision diagram (ZDD) is a graph-representation for
hypergraphs. Figure 2 shows an example of ZDD. The node at the top is called
the root. Each internal node has the three fields V, LO, HI. The field V holds
an element in a ground set, where for simplicity we suppose that a ground set
consists of positive numbers. The fields LO and HI point to other nodes, which
are called LO and HI children, respectively. The arc to a LO child is called a LO
arc and illustrated by a dashed arrow, while the arc to a HI child is called a HI
arc and illustrated by a solid arrow. There are only two terminal nodes % and
⊥.

For efficient compression, ZDDs satisfy the following two conditions. They
must be ordered : if a node u points to an internal node v, then V (u) < V (v).
They must be reduced : the following two reduction operations can not be applied.

1. For each internal node u whose HI arc points to ⊥, redirect all the incoming
arcs of u to the LO child, and then eliminate u (Fig. 3(a)).

2. For any nodes u and v, if the subgraphs rooted by u and v are equivalent,
then share the two subgraphs (Fig. 3(b)).

We can understand ZDDs as follows. Given a ZDD, each path from the root
to % corresponds to a set in such a way that an element k is included in the set
if a path contains the HI arc of a node with label k; otherwise, k is excluded.
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Fig. 3. Reduction rules on ZDDs

For example, in Fig. 2, the paths 1© ��� 2© → 3© → %, 1© → 2© ��� 3© → %,
and 1© → 2© → % correspond to {2, 3}, {1, 3} and {1, 2}, respectively. Note that
although the node 3© does not appear in the last path, the node elimination rule
implies that the HI arc of 3© points to ⊥, and thus 3 is excluded.

It is known (see for example [2, 21]) that for any ground set V , every hyper-
graph on V corresponds to a unique ZDD if the order of elements in V is fixed.
ZDD nodes are maintained by a hash table, called a uniquetable, so that for a
triple (k, l, h) of a node label and two ZDD nodes, there is a unique ZDD node p
with V (p) = k, LO (p) = l, and HI (p) = h. Given a triple (k, l, h), the function
zdd unique returns an associated node in the uniquetable if exists; otherwise,
create a new node p such that V (p) = k, LO (p) = l, and HI (p) = h; register
p to the uniquetable and return p. A uniquetable guarantees that two nodes
are different if and only if the subgraphs rooted by them represent different set
families. Thus, for example, equivalence checking of set families can be done in
constant time.

2.2 An Existing Construction Method

An existing method to construct ZDDs is described below. Let V be a ground
set and let E := {U1, . . . , Um} be a set family on V . We denote by Z(S) the
ZDD for a set family S. For each set Ui, we construct Z({Ui}). We then obtain
Z({U1, . . . , Ui}) by applying union operation to Z({U1, . . . , Ui−1}) and Z({Ui})
(see Fig. 4). As argued in [6], this construction method requires O(|E| · |V |) time.
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Fig. 4. Examples of union operation, where A = {{1, 2}}, B = {{1, 3}}, C = {{2, 3}}.
The ZDD for A ∪B ∪ C is given in Fig. 2.
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Since union operation is provided in a usual ZDD library, this method is easy
to implement, however there are some drawbacks.

– A practical efficiency depends on the order in which sets are added.
– The worst-case time depends on the size of a ground set even if the size of a

set tends to be much smaller than the size of a ground set.
– Many ZDD nodes created during the computation may not appear in an

output ZDD, which can cause an explosion of the size of uniquetable.

We remark that a method for constructing minimal, deterministic, acyclic
finite-state automata from sorted data was studied in [23]. Although this method
treats a different data structure from ZDDs, it is similar to the method based on
union operation described above except that strings are added in lexicographic
order.

3 Algorithm

In this section, we first observe that ZDDs are isomorphic to processes of sorting
sets and then present our algorithm.

Figure 5 shows an example of such a correspondence. Suppose that we are
given hypergraph (V, E), where V consists of positive numbers. Each hyperedge
U ∈ E is represented as the array of numbers in U , ordered in increasing order.
The d-th value of U always means the d-th smallest number in U . For the sake of
simplicity, we assume that every hyperedge contains +∞. We sort all hyperedges
in lexicographic order by recursively partitioning E into the equal part E= and
the greater part E> for the minimum value v at position d of hyperedges. Note
that the following procedure should be initially started with d = 1.

function sort(E , d)
if |E| ≤ 1 then

return;
end if
v ← the minimum value among the d-th values of sets in E ;
if v = +∞ then

return;
end if
E= ← the set of hyperedges with the d-th values equal to v;
E> ← E \ E=;
sort(E=, d+ 1); sort(E>, d);

end function

The sorting process can then be represented as an ordered binary tree such that
each node holds a partitioning value v; the left and the right children of a node
correspond to sort(E>, d) and sort(E=, d + 1), respectively. When we consider
the left and the right children of a node as the LO and the HI children, this
binary tree satisfies the order condition for ZDD nodes, and furthermore it has
an irreducible form with respect to the node elimination rule, because v < +∞
implies E= �= ∅. By sharing equivalent subgraphs, we obtain the corresponding
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Fig. 5. The process of sorting s[1], . . . , s[5] and the corresponding ZDD

ZDD. Note that this reduction does not make distinct trees the same ZDD.
Therefore if two binary trees represent different sorting processes, then they
must correspond to different hypergraphs, thus different ZDDs. Furthermore,
every ZDD on V corresponds to a hypergraph on V . In this sense, if a ground
set V is fixed, there is a bijective correspondence between ZDDs on V and binary
trees representing sorting processes of hypergraphs on V .

This sort algorithm has a close relation to the ternary partitioning algorithm,
called multikey Quicksort, given by Bentley and Sedgewick [20]. Their algorithm
sorts multikey data in a similar way, but there are two different points. Firstly, a
partitioning value v need not be minimum and there are many ways, from com-
puting the true median to choosing a random value. Secondly, it partitions E
into the three parts E<, E= and E>, where E<, E= and E> consists of hyperedges
with the d-th values smaller than, equal to and greater than v, respectively. An
efficient partitioning method is important. The performance of multikey Quick-
sort is well-analyzed. For the sake of convenience, we extract the following two
theorems from [20], where c denotes a constant. A worst-case and an expected-
time algorithms that establish c = 3 and c = 3/2 are given in [24] and [25],
respectively.

Theorem 1. If multikey Quicksort partitions around a median computed in cn
comparisons, it sorts n k-vectors in at most cn(logn+ k) scalar comparisons.

Let Hn denote the harmonic numbers, given as Hn =
∑

1≤i≤n 1/i.

Theorem 2. A multikey Quicksort that partitions around the median of 2t+ 1
randomly selected elements sorts n k-vectors in at most 2nHn/(H2t+2−Ht+1)+
O(kn) expected scalar comparisons.
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When we sort sets by using multikey Quicksort, the number of comparisons
does not depend on the size of a ground set. Thus it is effective especially when a
set family is sparse. Since multikey Quicksort is based on a ternary partitioning
method, unfortunately it is isomorphic to ternary search trees and does not
generate a ZDD directly. For this, our approach consists of the following two
parts.

1. We sort sets by using multikey Quicksort.

2. We then construct a ZDD, based on the binary partitioning method above.

Algorithm 1 shows the construction part.

Algorithm 1. Compute the ZDD for a set family E
function zcomp(E , d)

if E = ∅ then
return ⊥;

end if
v ← the minimum value among the d-th values of sets in E ;
if v = +∞ then

return �;
end if
E= ← the set of hyperedges with the d-th values equal to v;
E> ← E \ E=;
hi ← zcomp(E=, d+ 1); lo ← zcomp(E>, d);
return zdd unique(v, lo, hi);

end function

Theorem 3. Suppose that an input set family E is given as an array of hyper-
edges sorted in lexicographic order. Algorithm 1 can be implemented to run in
time proportional to |E| log(

∑
U∈E |U |/|E|) + N , where N denotes the number

of recursive calls (equivalently, the number of nodes in the binary partitioning
process). The required space is proportional to the size of an output ZDD.

Proof. Since E is already sorted, in order to partition E to E= and E>, it is
sufficient to find the last hyperedge whose d-th values equal v. This can be
efficiently done by skipping as many hyperedges as possible. To do this, consider
the following procedure.

1. Let i := 0.

2. If the last hyperedge has v at position d, then return it.
3. While 2i ≤ |E| and the d-th value equals v, search the 2i-th hyperedge and

then increment i by one.

4. Let j := |E| if the first condition breaks; otherwise, let j := 2i.

5. Find a desired hyperedge U in the range from the 1st to the j-th hyperedges
by using binary search; return U .
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If all hyperedges have v at position d, then by the 2nd step the procedure above
requires only constant time. Otherwise, since the 3rd and the 5th steps are over in
O((log |E=|)) steps, the whole procedure requires O(log |E=|) time. Let M be the
total time for the latter case over the whole computation. Since the d-th values
equal to v are not examined in later recursive calls, it follows that the sum of all
sizes |E=| in the latter case is at most the sum of all hyperedge sizes

∑
U∈E |U |.

Furthermore, the number of times the latter case occurs is |E| − 1. Indeed, since
binary partitioning process corresponds to a binary tree and the latter case in
the above procedure corresponds to a node with two children1, the number of
times the latter case occurs is at most the number of leaves minus 1. From
Jensen’s inequality, we can easily derive M ≤ (|E| − 1) log(

∑
U∈E |U |/(|E| − 1)),

where without loss of generality we can assume |E| > 1. On the other hand,
the number of times the former case occurs is at most the number of recursive
calls N . Therefore, we conclude that our algorithm requires time proportional
to |E| log(

∑
U∈E |U |/|E|) +N .

Since Algorithm 1 constructs an output ZDD in a bottom up fashion, all
nodes requested by zdd unique appear in the output ZDD. Note that since the
maximum depth of a recursive function call corresponds to the maximum length
of a path in an output ZDD, it is clear that the space required to keep track of
the recursive function calls is dominated by an output ZDD size. ��

In the construction algorithm given above, since we access only entries that
are necessary to construct an output ZDD, in many cases our algorithm would
be efficient. However there is a case in which the number of recursive calls N
equals the sum of all hyperedge sizes

∑
U∈E |U |, as illustrated in Fig 6. For such

an input, our algorithm requires as the same time as for accessing all entries
of input hyperedges. Thus, since |E| log(

∑
U∈E |U |/|E|) ≤

∑
U∈E |U |, the worst-

case time can be also given as
∑

U∈E |U |. This has a simpler form than the one
that we gave in the theorem. However, it only expresses the time for quite nasty
hypergraphs, which seems rare to be given. Since we want to emphasize that not
all entries need to be accessed if N is not so large, we used N as a parameter in
the theorem.

As variants of the ZDD construction method above, changing sort algorithm
or executing the sort part and the construction part simultaneously would be
interesting.

4 Experiment

Implementation and Environment. We implemented our algorithm and the naive
method based on union operation (presented in Section 2.2) in C. Although we
implemented the competitor (the naive method) by ourselves, the algorithm
is so simple that there seem almost no differences between implementations.
In our programs, we used the BDD Package Sapporo-Edition-1.0 developed by
Minato, in which ZDDs are available and various basic operations for ZDDs

1 The former case corresponds in turn to a node with only one child.
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Fig. 6. A binary tree which has drooping linear lists

are provided. Our code is released in [26]. The (non-tuned) implementation of
multikey Quicksort was obtained from [27]. All experiments were performed on
a 2.67GHz Xeon R©E7-8837 with 1.5TB RAM, running SUSE Linux Enterprise
Server 11. We compiled our code with version 4.3.4 of the gcc compiler.

Problem Instances. We used many kinds of instances from different areas. We
included very large instances, because high-performance machines with hundreds
of GB of RAM are recently available and large-scale datasets have increasingly
come into use [28].

The following two types of instances were obtained from the Hypergraph
Dualization Repository [29], where n denotes an instance parameter. These in-
stances have been commonly used in the experimental evaluation of hypergraph
transversal computation (see for example [17]).

– BMS-WebView-2 (bms(n)): a hypergraph such that the size of a ground set
is 3,341 and each hyperedge is the complement of a set of maximal frequent
itemsets with support threshold n, of real-life datasets “BMS-WebView2”
taken from the Frequent Itemset Mining Dataset Repository.

– Uniform random (rand(n)): a hypergraph such that the size of a ground set
is 50 and the number of hyperedges is 1,024,000 and each vertex is included
in a hyperedge in the probability n/10, generated by Prof. Alain Bretto.

Many other instances are available in that repository, however we do not present
their experimental results because it took little time to compress.

The following three types of instances were obtained from the Frequent Item-
set Mining Dataset Repository. These instances have been extensively used in
data mining community.

– T40I10D100K: this data set was generated using the generator from the IBM
Almaden Quest research group.

– retail: this dataset contains the (anonymized) retail market basket data from
an anonymous Belgian retail store, donated by Tom Brijs.

– accidents: this dataset contains (anonymized) traffic accident data, donated
by Karolien Geurts.
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Table 1. Comparison of running time and maximum memory usage

time (sec) memory (G byte)
naive sort+naive zcomp naive sort+naive zcomp

T40I10D100K 7.32 7.53 2.53 2.00 2.07 0.63
retail 15.59 18.85 0.34 4.18 4.42 0.16
accidents 19.36 18.43 3.84 4.19 4.39 1.19
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We furthermore generated instances of the following type.

– Threshold function (TH(n)): a hypergraph whose hyperedges correspond to
prime conjunctive normal forms of the threshold function with 30 variables
that returns 1 if at least n variables are 1. The number of hyperedges is(

30
n−1

)
.

Threshold functions are known as a familiar example of a monotone Boolean
function. In particular, if the parameter n is half of the number of variables,
then they are known to be majority functions. We made these instances because
we need very large-scale hypergraphs which takes much time even to read.

Data Format. All instances are given as data files with the following format:
each row corresponds to a hyperedge, and entries are non-zero positive numbers
(and less than or equal to the maximum number allowed in a BDD package); the
entries in a row are sorted in increasing order and separated by a white space.
Some data sets obtained from the Frequent Itemset Mining Dataset Repository
were formated, since they did not have a correct form.

Comparison of Algorithms. We compared our algorithm (zcomp), the naive
method based on union operation (naive), and the combination of multikey
Quicksort and the naive method (sort+naive). Note that zcomp means the com-
bination of multikey Quicksort and Algorithm 1. The results are shown in Fig. 7
and Table 1. All these results contain the cost required to read input datasets.
In this experiment, the rows in data files were rearranged at random. The exper-
iment shows that our algorithm is significantly faster and requires much smaller
memory than the naive method.

5 Conclusion and Future Work

We have presented a new algorithm for constructing ZDDs for hypergraphs. The
basic idea is to sort hyperedges by using multikey Quicksort and then construct
a ZDD in a bottom up fashion. Since the performance of multikey Quicksort has
been well-analyzed, we have analyzed only the computational complexity of the
construction part. We have conducted experiments with various datasets, and
the experiments have shown that our algorithm is significantly faster and requires
much smaller memory than an existing method based on union operation. As
demonstrated in previous studies, a ZDD-based framework can be considered
as one of the most efficient approach to handle large-scale hypergraphs. Our
algorithm would accelerate computations based on this framework.

A future work is to compare our compression with other techniques based
on prefix-tree structure. In order to accelerate our algorithm further, it is also
interesting to parallelize our algorithm by parallel sorting. For this, it is nec-
essary to develop a parallel ZDD library. This paper only deals with families
without duplicate sets. Since transaction databases generally contain duplicate
transactions, it is also interesting to extend our algorithm so that it can com-
press families of sets with repetition into ZDD vectors [18] or algebraic decision
diagrams [30].
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Abstract. Subgroup discovery aims at constructing symbolic rules that
describe statistically interesting subsets of instances with a chosen
property of interest. Semantic subgroup discovery extends standard sub-
group discovery approaches by exploiting ontological concepts in rule
construction. Compared to previously developed semantic data mining
systems SDM-SEGS and SDM-Aleph, this paper presents a general pur-
pose semantic subgroup discovery system Hedwig that takes as input the
training examples encoded in RDF, and constructs relational rules by ef-
fective top-down search of ontologies, also encoded as RDF triples. The
effectiveness of the system is demonstrated through an application in a
financial domain with the goal to analyze financial news in search for
interesting vocabulary patterns that reflect credit default swap (CDS)
trend reversal for financially troubled countries. The approach is show-
cased by analyzing over 8 million news articles collected in the period
of eighteen months. The paper exemplifies the results by showing rules
reflecting interesting news topics characterizing Portugal CDS trend re-
versal in terms of conjunctions of terms describing concepts at different
levels of the concept hierarchy.

Keywords: semantic data mining, subgroup discovery, ontology, credit
default swap, financial crisis.

1 Introduction

This paper addresses the task of subgroup discovery, first defined by Klösgen [1]
and Wrobel [2]. The goal of SD is to find subgroups of instances that are statis-
tically interesting according to some property of interest for a given population
of instances. SD is commonly described as being in the intersection of predictive
and descriptive data mining as it is used for descriptive rule learning although
the rules are induced from class-labeled data. Patterns discovered by subgroup
discovery methods (called subgroup descriptions) are rules of the form Class

← Conditions, where the condition part of the rule is a logical conjunction
of features (items, attribute values) or a conjunction of logical literals that are
characteristic for a selected class of instances.
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It is well known from the literature on inductive logic programming (ILP)
[3, 4] and relational data mining (RDM) [5] that the performance of data mining
methods can be significantly improved if additional relations among the data
objects are taken into account. In other words, the knowledge discovery process
can significantly benefit from the domain (background) knowledge.

A special form of background knowledge, which has not been exploited in
the original ILP and RDM literature, are ontologies. Ontologies are consensu-
ally developed domain models that formally define the semantic descriptors and
can act as means of providing additional information to machine learning (data
mining) algorithms by attaching semantic descriptors to the data. Such domain
knowledge is usually represented in a standard format which encourages knowl-
edge reuse. Two popular formats are the Web Ontology Language (OWL) for
ontologies and the Resource Description Framework (RDF) triplets for other
structured data. The RDF data model is simple, yet powerful. A representation
of the form subject-predicate-object ensures the flexibility of the data structures,
and enables the integration of heterogeneous data sources. Data can be directly
represented in RDF or (semi-)automatically translated from propositional rep-
resentations to RDF as graph data. Consequently, more and more data from
public relational databases are now being translated into RDF as linked data.
In this way, data items from various databases can be easily linked and queried
over multiple data repositories through the use of semantic descriptors provided
by the supporting ontologies encoding the domain models and knowledge.

The process of exploiting formal ontologies within the process of data mining,
called Semantic Data Mining (SDM), was formalized by Vavpetič and Lavrač [6].
Early work in using ontologies in machine learning and data mining is due to
Kietz [7] who extended the standard learning bias used in ILP with description
logic (DL) in his CLARIN-DL system. More recently, Lehmann and Haase [8]
defined a refinement operator in a variant of DL, but considered only the con-
struction of consistent and complete hypotheses. Lawrynowicz and Potoniec [9]
introduced an algorithm for frequent concept mining in another variant of DL.
Combining web mining and the semantic web was proposed by Berendt et al. [10].
Early work on this topic is due to Lisi et al. [11, 12], proposing an approach to
mining the semantic web by using a hybrid language AL-log, used for mining
multi-level association rules.

In this paper, we present a new semantic subgroup discovery system named
Hedwig, which searches for subgroups with descriptions constructed from the
given ontological vocabulary (including any provided binary relations). The
traversal of the search space is effectively guided by the hierarchical structure of
the ontology. The most relevant related work in exploiting ontologies in real-life
data mining tasks is by Trajkovski et al. [13] who used the gene ontology to
find enriched gene sets from microarray data, and by akova et al. [14] who used
an ontology of Computer Aided Design elements and structures to find frequent
design patterns.

In this paper, we present the results of applying the Hedwig system to get
insight into a vast amount of news articles collected in last two years as part
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of the 7FP EU projects FIRST and FOC. We seek for insight in the financial
domain; more specifically we investigate the vocabulary related to the European
sovereign debt crisis used in news articles and financial blogs. We investigate the
relationship between the financial market perception of a financial entity and
the articles mentioning the financial entity. As a measure of market perception,
we use the credit default swap (CDS) price. In essence, CDS is insurance for
country bonds and reflects the market expectation that the issuer will default.
The higher the CDS price, the more likely it is that that country will be unable
to repay its debt [15]. Portugal is the focus of our investigation as an example
of a financially troubled country.

Gamberger et al. [16] employed SD techniques on a related problem. They
have induced indicators of systemic banking crises by looking at past crises in
the period 1976-2007. Rather than looking at news articles and relating them to
the CDS prices, they used 105 publicly available financial indicators. Their main
result is that demographic indicators are the most important: the percentage of
the active population in connection to the annual percentage of money growth
and the male life expectancy are especially crucial.

The main contributions of this paper are the new semantic data mining system
named Hedwig, which is presented with its premiere application in understanding
financial news, and the extensive data acquisition pipeline that was used for
collecting the data. Another contribution is the first insights into the relationship
between the European sovereign debt crisis vocabulary and the CDS price trends.

The paper is structured as follows. Section 2 describes the developed Hed-
wig semantic SD system. Section 3 describes the data acquisition and cleaning
pipeline, while Section 4 describes the data preparation stage, the experimental
setup and the results. Section 5 gives directions for further work and concludes
the paper.

2 Methodology

This section describes the newly developed semantic subgroup discovery system
Hedwig. Compared to standard subgroup discovery algorithms, Hedwig uses do-
main ontologies to guide the search space and formulate generalized hypothesis.
Existing semantic subgroup discovery algorithms are either specialized for a spe-
cific domain [13] or adapted from systems that do not take into the account the
hierarchical structure of background knowledge [6]. Hedwig overcomes these lim-
itations as it is designed to be a general purpose semantic subgroup discovery
system.

Semantic subgroup discovery, as addressed by the Hedwig system, results in
relational descriptive rules, using training examples in RDF triples form and
using several ontologies as background knowledge used. As an illustration, take
three simplified ontologies illustrated in Figure 1, as sample ontologies which
could be used in mining financial data.
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Fig. 1. The ontologies of banking services, locations and occupations. Concepts with
omitted sub-concepts are drawn with a dashed line.

Formally, the semantic data mining task addressed in this paper is defined as
follows.

Given:

– The empirical data in the form of a set of training examples expressed as
RDF triples,

– Domain knowledge in the form of ontologies (one or more), and
– An object-to-ontology mapping which associates each object from the RDF

triplets with appropriate ontological concepts.

Find:

– A hypothesis (a predictive model or a set of descriptive patterns), expressed
by domain ontology terms, explaining the given empirical data.

Subgroup describing rules are first-order logical expressions. Take the follow-
ing rule, used to explain the format of induced subgroup describing rules.

Max(X) ← Country(X), Before(X,Y), comp NESTLE S A(Y). [50, 10]

where variables X, Y represent sets of input instances. Note the convention
that lowercase predicates (e.g., comp NESTLE S A) represent specific instances
(appearing in the leaves of the ontology), while capitalized predicates represent
classes (appearing at higher hierarchy levels of the ontology), i.e., sets of spe-
cific instances (e.g., predicate Country subsumes instances like cou Portugal or
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function induce():
rules = [default rule]
while improvement(rules):

foreach rule in rules:
rules.extend(specialize(rule))

rules = best(rules, N)
return rules

function specialize(rule):
specializations = []
foreach predicate in eligible(rule.predicates):

# Specialize by traversing the subClassOf hierarchy
for subclass in subclasses(predicate):

new rule = rule.swap(predicate, subclass)
if can specialize(new rule):

specializations = specializations.add(new rule)
if rule != default rule:

# Specialize by adding a new unary predicate to the rule
new predicate = next non ancestor(eligible(rule.predicates))
new rule = rule.append(new predicate)
if can specialize(new rule):

specializations.add(new rule)
if rule.predicates.last().arity == 1:

# Specialize by adding new binary predicates
specializations.extend(add binary predicate(rule))

return specializations

Fig. 2. Pseudo code of the Hedwig semantic SD algorithm

cou Slovenia). The above rule is interpreted as follows. Let Max(X) denote a
local maximum of credit default swap (CDS), which needs to be related with the
information available in the extracted features of news articles at time point X.
The countries Country(X), which were frequently mentioned in articles on day
X that is followed by Y in which the Nestle company was frequently mentioned.
This rule condition is true for 50 input instances, 10 of which are of target class
Max. The two numbers refer to coverage (the number of instances for which the
rule body is true) and support (the number of instances for which both the rule
head and body are true), respectively.

In order to search for interesting subgroups, we employed the algorithm de-
scribed in Figure 2. The Hedwig system, which implements this algorithm, sup-
ports ontologies and examples to be loaded as a collection of RDF triples (a
graph). The system automatically parses the RDF graph for the subClassOf hi-
erarchy, as well as any other user-defined binary relations. Hedwig also defines a
namespace of classes and relations for specifying the training examples to which
the input must adhere.
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The algorithm uses beam search, where the beam contains the best N rules
found so far. The search starts with the default rule which covers all input
examples. In every iteration of the search, each rule from the beam is specialized
via one of the three operations:

1. Replace the rules predicate with a predicate that is a sub-class of the previous
one, e.g., City(X) is specialized to Capital(X).

2. Append a new unary predicate to the rule, e.g., Max(X) ← City(X) is spe-
cialized to Max(X) ← City(X), Company(X).

3. Append a new binary predicate, thus introducing a new existentially quanti-
fied variable, e.g.: Max(X) ← City(X) is specialized to Max(X) ← City(X),

Before(X,Y).1

Rule induction via specializations is a well-established way of inducing rules,
since every specialization either maintains or reduces the current number of
covered examples. A rule will not be specialized once its coverage is zero or falls
below some predetermined threshold. After the specialization step is applied to
each rule in the beam, a new selection of the best scoring N rules is made. If no
improvement is made to the collection of rules, the search is stopped. In principle,
our procedure supports any rule scoring function. Currently we implemented the
popular SD scoring functions WRAcc [17], χ2 for discrete target classes [18], and
Z-score for ranked examples [19].

3 Data Acquisition and Cleaning

In this section, we present the data acquisition pipeline by describing each of its
components.

The pipeline consists of several technologies that interoperate to achieve the
desired goal, i.e., preparing the data for further analysis. It is responsible for ac-
quiring unstructured data from several data sources, preparing it for the analysis,
and brokering it to the appropriate analytical components. Our data acquisition
pipeline is running continuously (since October 24, 2011), polling the Web and
proprietary APIs for recent content, turning it into a stream of preprocessed text
documents.

The news articles and web blogs are collected from 175 web sites and 2,600
RSS feeds, intentionally selected to have a strong bias for finance. We collect data
from the main news providers and aggregators (like yahoo.com, dailymail.co.uk,
nytimes.com, bbc.co.uk, wsj.com) and also from the main financial blogs (like
zerohedge.com). The hundred most productive web sites account for 85% of
collected documents. The fifty most productive domains with their average doc-
ument production per day are displayed in Figure 3.

In the period from October 24, 2011 to March 31, 2013, 8,703,895 documents
were collected and processed. On an average work day, about 18,000 articles are

1 Note that variable Y needs to be ‘consumed’ by a literal to be conjunctively added
to this clause in the next step of rule refinement.



300 A. Vavpetič et al.

Fig. 3. The average number of acquired documents per domain per day for the fifty
most productive domains. The hundred most productive web sites account for 85% of
our acquired documents.

collected. The number of collected articles is substantially lower during week-
ends; around 10,000 per weekend day. Holidays are also characterized by a lower
number of documents. The number of collected documents per day is presented
in Figure 4.

When dealing with official news streams, some pre-processing steps can be
avoid-ed. Official news is provided in a semi-structured fashion such that ti-
tles, publication dates, and other metadata are clearly indicated. Furthermore,
named entities (i.e., company names and stock symbols) are identified in texts
and article bodies are provided in a raw textual format without any boilerplate
(i.e., undesired content such as advertisements, copyright notices, navigation
elements, and recommendations).

Content from blogs, forums, and other Web content, however, is not immedi-
ately ready to be processed by the text analysis methods. Web pages contain a lot
of noise that needs to be identified and removed before the content can be ana-
lyzed. For this reason, we have developed DacqPipe (or Dacq), a data acquisition
and pre-processing pipeline. Dacq consists of (i) data acquisition components,
(ii) data clean-ing components, (iii) natural-language preprocessing components,
(iv) semantic anno-tation components, and (v) ZeroMQ emitter components.

The data acquisition components are mainly RSS readers that poll for data in
parallel. One RSS reader is instantiated for each Web site of interest. The RSS
sources, corresponding to a particular Web site, are polled one after another by
the same RSS reader to prevent the servers from rejecting requests due to concur-
rency. An RSS reader, after it has collected a new set of documents from an RSS
source, dispatches the data to one of several processing pipelines. The pipeline is
chosen according to its current load size (load balancing). A processing pipeline
consists of a boilerplate remover, duplicate detector, language detector, sentence
splitter, tokenizer, part-of-speech tagger, lemmatizer, stop-word detector and a
semantic annotator. Some of the components are custom-made while other use
the functionality available from the OpenNLP library . Each pipeline component
is described in more detail below.
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Fig. 4. The number of acquired documents per day. The top line represents the number
of all acquired documents. The bottom line represents the documents that our system
sees for the first time and the middle line represents the revisions of already acquired
documents.

– Boilerplate Remover. Extractingmeaningful content fromWeb pages presents
a challenging problem. Our setting focuses on content extraction from streams
of HTML documents. The developed infrastructure converts continuously
acquired HTML documents into a stream of plain text documents. Our
novel content extraction algorithm is efficient, unsupervised, and language-
independent. The information extraction approach is based on the observa-
tion that HTML documents from the same source normally share a common
template. The core of the proposed content extraction algorithm is a simple
data structure called URL Tree. The performance of the algorithm was eval-
uated in a stream setting on a time-stamped semi-automatically annotated
dataset which was made publicly available.

– Duplicate Detector. News aggregators are websites that aggregate web con-
tent such as news articles in one location for easy viewing. They cause articles
to appear on the web with many different URLs pointing to it. To have a
concise dataset of unique articles, we developed a duplicate detector that is
able to see if the document was already acquired or not.

– Language Detector. By using a machine learning model, it detects the lan-
guage and discards all the documents that are detected to be non-English.
The model is trained on a large multilingual set of documents. The basic
features for the model are frequencies of two consecutive words.

– Sentence Splitter. Splits the text into sentences. The result is the input to the
part-of-speech tagger. We use the OpenNLP implementation of the Sentence
splitter.
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– Tokenizer. Tokenization is the process of breaking a stream of text up into
words, phrases, symbols, or other meaningful elements called tokens. In our
pipeline, we use our own implementation of the tokenizer, which supports
the Unicode character set and is based on rules.

– Part-of-speech Tagger. The Part of Speech (POS) Tagger marks tokens with
their corresponding word type (e.g., noun, verb, proposition) based on the
token itself and the context of the token. A token might have multiple POS
tags depending on the token and the context. The part-of-speech tagger from
the OpenNLP library is used.

– Lemmatizer. Lemmatization is the process of finding the normalized forms
of words appearing in text. It is a useful preprocessing step for a number
of language engineering and text mining tasks, and especially important for
languages with rich inflectional morphology. In our data acquisition pipeline,
we use LemmaGen [20] for lemmatization, which is the most efficient publicly
available lemmatizer trained on large lexicons of multiple languages, whose
learning engine can be retrained to effectively generate lemmatizers of other
languages. We lemmatize to English.

– Stop-word detector. In automated text processing, stop words are words that
do not carry semantic meaning. In our data acquisition pipeline, stop words
are detected and annotated.

– Semantic annotator. Each entity has associated gazetteers; gazetteers are
rules describing the entity in text. For example, “The United States of Amer-
ica” can appear in text as “USA”, “US”, “The United States”, and so on.
The rules include capitalization, lemmatization, POS tag constraints, must-
contain constraints (another gazetteer must be detected in the document or
in the sentence) and followed-by constraints.

4 Financial Use Case

First, this section presents the data and the data preparation stage needed to ap-
ply the proposed methodology. Three sources of data were used: texts from news
and blogs, CDS prices and a domain ontology. Finally, this section present the
experimental results achieved by applying subgroup discovery on the prepared
data.

We started from a large database of annotated news articles (over 8 million),
which were acquired using the data acquisition pipeline presented in the previ-
ous section. We considered articles collected over eighteen months period from
October 24, 2011 to January 13, 2013. Among other properties of each article
(e.g., title and URL), the most important ones for our task are the information
about which entities from a pre-defined European Sovereign Debt vocabulary
appear in the given article (e.g., entities like “Portugal” or “Angela Merkel” or
“austerity”). These entities (counting over 6,000) are part of a larger domain on-
tology which consists of several class hierarchies, e.g., the Euro crisis vocabulary,
companies and banks, and geographical data.
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Fig. 5. Portugal CDS prices and trend reversals between October 2011 and January
2013. Upward spikes indicate local maxima, while downward spikes indicate local
minima.

We decided to focus our experiments on Portugal, as it is representative and
was a financially troubled country in the analyzed period. Therefore the news
articles were filtered to include only the articles mentioning Portugal. The prepa-
ration stage consisted of two steps. The first step involved counting the number
of times Portugal occurs together with every other entity of interest for each day
of the collected history of articles. The second step involved selecting only the
significant co-occurrences as example features. Each day represents one learning
example and each example is described by the presence or absence of a certain
entity that co-occurred with Portugal on that day. To filter out uninformative
entities, we kept only the entities with a co-occurrence frequency at least 1.5
times greater than the average co-occurrence frequency over all days.

The target attribute for each example (day) was computed from the CDS
prices of Portugal and has three possible values that indicate the significant
local extremes in the CDS price timelines: ‘max’ or ‘min’ if the local extreme was
reached, respectively, or ‘steady’ if there was no change in the trend (Figure 5).
These steps yielded a dataset of 337 examples, each with an average of 282
features (ranging between 35 and 761).

The processed news and blogs articles, the CDS local extremes and the domain
ontology were encoded as a set of RDF triples which were input to the Hedwig
system.

The financial ontology which we actually used in the experiments is illustrated
in Figure 6. The ontology has three main branches: financial entities, geograph-
ical entities and a specialized vocabulary of the European sovereign debt crisis.
Some parts of the ontology were automatically induced by reusing various data
sources, while other parts, like the vocabulary, were constructed manually.
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Fig. 6. The ontology that conceptualizes
the European financial crisis vocabulary

Each entity in the ontology is
equipped with a gazetteer. The
gazetteer contains lexical knowledge
about the possible forms in which the
entity occurs in texts. This knowl-
edge is used by the entity recogni-
tion engine which is attached to the
data acquisition pipeline. Note that
the gazetteers are initially built auto-
matically in the ontology construction
process. This approach to entity
recognition is prone to errors due
to homographs, i.e., words that are
spelled the same but have differ-
ent meanings. This is especially
prominent for acronyms and stock
symbols. To improve the entity recog-
nition process and to reduce the
noise in the stream of discovered
entities, we have performed several
semi-automated ontology refinement
iterations.

We used the IDMS database and
MSN Money2 to grow the ontology
from a list of seed stock indices to
its constituents (stocks) and further
on to the companies that issue these
stocks. This resulted in to 2019 finan-
cial entities (like banks, companies, investment funds, stocks and stock indexes).
The geographical part of the ontology was generated from GeoNames3 (coun-
tries, cities, regions, etc). We selected 598 most important geographical entities
and included them into the ontology. The specialized vocabulary of the European
financial crisis (166 terms) was developed manually by using expert knowledge
(Figure 6). The main protagonists of the crisis were taken from Wikipedia4.

In our experiment, we focused on finding subgroups for two target classes
which represent trend reversals: the local maximum (‘max’) represents the date
when the CDS price started to decrease and the local minimum (‘min’) the
opposite. In both cases, we used the WRAcc subgroup discovery rule score, a
beam width of 100, minimum coverage of 5 examples and the maximum number
of predicates per rule of 6.

2 http://money.msn.com/
3 http://www.geonames.org/
4 http://en.wikipedia.org/wiki/List of protagonists: European

sovereign-debt crisis

http://money.msn.com/
http://www.geonames.org/
http://en.wikipedia.org/wiki/List_of_protagonists:_European_sovereign-debt_crisis
http://en.wikipedia.org/wiki/List_of_protagonists:_European_sovereign-debt_crisis
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For the case of CDS price reaching the maximum (target class ‘max’), the
best scoring subgroup was:

Max(X) ← reg Western Europe(X), Angela Merkel(X),

glo austerity(X), glo recession(X). [28, 7]

For the case of CDS price reaching the minimum (target class ‘min’), the best
scoring subgroup was:

Min(X) ← Index(X), comp GALP ENERGIA(X), Loan Term(X),

glo fiscal stimulus(X). [43, 8]

The first rule indicates that Portugal CDS prices reaching a local maximum
are characterized by increased frequency of the following entities co-occurring
with Portugal: the Western Europe region, Angela Merkel, and the terms ‘aus-
terity’ and ‘recession’. We should point out that a local maximum in a country’s
CDS price indicates that from that day on, the market expectation that the
country will default decreased. Conversely, the second rule tells us that when
the CDS price reach a local minimum, we can notice an increased frequency
of (stock) index terms, Portugal’s corporation of natural and renewable energy
companies (Galp Energia), loan terms and ‘fiscal stimulus’. These results show
that the higher the CDS prices, the more the sovereign debt vocabulary is used.
When CDS prices are low, a more general financial terminology is used.

5 Conclusions

The newly developed semantic subgroup discovery system Hedwig was presented,
which overcomes the limitations of existing semantic subgroup discovery sys-
tems. Compared to standard subgroup discovery, novelties of this paper are the
exploitation of the ontology to generalize over the entities, while also using of
the user-provided binary relations and using the subClassOf relation to guide
the search procedure. We are currently performing a comprehensive study which
should result in a comparison of the new system with the related work.

We employed Hedwig for analyzing news articles about Portugal during the
last year and a half. Using co-occurrence frequencies of entities appearing to-
gether with Portugal, a domain ontology linking the entities into a formal hier-
archy, and a history of Credit Default Swap (CDS) prices, we induced subgroups
describing prominent entities appearing at times of CDS trend reversals (either
upward or downward). The extracted subgroup descriptions give us a clear in-
dication that news articles content indeed reflects the CDS prices. Having this
information, we are encouraged to proceed with building a model for CDS trend
reversal prediction. For this purpose, we plan to include additional information
about the entities (e.g., TF-IDF weights) and extra-textual information (not
only the pre-defined ontological entities) into the input data. Additionally, we
will employ several classification algorithms and compare them.
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Abstract. In this paper, we study the problem of finding all tree-like
substructure contained in a hypergraph, with potential applications
to substructure mining from relational data. We employ the class of
connected and Berge acyclic sub-hypergraphs as definition of tree-like
substructures, which is the most restricted notion of acyclicities for hy-
pergraphs. Then, we present an efficient depth-first algorithm that finds
all connected and Berge acyclic sub-hypergraphs S in a hypergraph H
with m hyperedges and n vertices in O(nm2) time per solution (de-
lay) using O(N) space, where N = ||H|| is the total input size. To
achieve efficient enumeration, we use the notion of the maximum border
set. This result gives the first polynomial delay and time algorithm for
enumeration of connected and Berge-acyclic sub-hypergraphs. We also
present an incremental enumeration algorithm that finds all solutions S
in O(ΔMB(S)τ (m)) = O(rd ·τ (m)) delay using O(N) space and prepro-
cessing, whose delay depends only on the difference of solutions, where
S is the enumerated sub-hypergraph, ΔMB(S) is the number of newly
added hyperedges to the maximum border of S, r and d are the rank
and degree of H, respectively, and τ (m) = ((log logm)2/log log logm).

1 Introduction

In data mining, it is a well-studied problem to discover all interesting sub-
structures of a given discrete structure under various notions of substructures.
Particularly, examples of such substructure discovery are frequent itemset min-
ing [25, 28, 29], sequence mining [1, 2, 19], trees and graph mining [3, 13, 14, 27],
and kernel-like similarity computation [16] to name a few.

In this paper, we study the problem of enumerating all connected and acyclic
sub-hypergraphs contained in an input hypergraph for the notions of acyclicity,
called Berge-acyclicity [6], which is at the bottom of hierarchy of acyclicities
given by Fagin [9]. A hypergraph is a pair H = (V , E) of a collection V of vertices
and a collection E of hyperedges (See Fig. 1 for example), where a hyperedge is
any finite set e ⊆ V of vertices. Essentially, a hypergraph is a representation of

J. Fürnkranz, E. Hüllermeier, and T. Higuchi (Eds.): DS 2013, LNAI 8140, pp. 308–323, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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Fig. 1. An example of a hypergraph H1 = (V1, E1) with the vertex set V1 =
{p, q, r, . . . , x, y, z} and the hyperedge set E1 = {1, 2, 3, 4, 5, 6, 7}

a set collection E consisting of groups of objects taken from a common universe
V . For example, the followings are examples of such set collections: transaction
databases, author groups in bibliographic data, co-citation networks in social
networks, and interaction graphs for genes and proteins in bioinformatics [17].
In such networks, discovery of substructures such as connected components,
connected subtrees, cliques, quasi-cliques, and dense subgraphs have been ex-
tensively studied in the context of network mining [17, 21, 24].

Recently, discovery of subtrees in a graph, which are connected and acyclic
edge subsets, attract much attention [10,26]. By generalizing the notion of sub-
trees in a graph to a hypergraph, we consider discovery of the class of connected
acyclic sub-hypergraphs appearing in a hypergraph. Particularly, among several
definitions of acyclicities in a hypergraph, we employ the most restricted one,
called Berge-acyclicity [6], where a hypergraph is Berge-acyclic if and only if
it contains no cycle of hyperedges. For example, in the example of Fig. 1, the
hyperedge subset S = {1, 3, 4, 7} is connected Berge-acyclic sub-hypergraph.
It is known that Berge-acyclicity locates the bottom of the degrees among α-,
β-, and γ-acyclicities [9]. Now, our goal is to devise an efficient algorithm for
the connected, Berge-acyclic sub-hypergraph mining problem in polynomial de-
lay (time per solution) and polynomial space, which means that the algorithm
achieves high-throughput and small memory footprint computation in large scale
applications.

Main results : Let H = (V , E) be an input hypergraph consisting of n vertices
and m hyperedges. Then, we present efficient depth-first algorithms BergeM-
ine that finds all connected Berge-acyclic sub-hypergraphs S contained in H
without duplicates in O(m2n) delay and O(N) words of space (Theorem 1). To
achieve polynomial delay and space complexity, our algorithm searches for all
solutions in the depth-first manner on a tree-shaped search space without using
any extra memory for table-lookup. This search space is designed based on a
characterization of Berge-acyclic sub-hypergraphs given by us, with which we
proposed an efficient and complete pruning strategy.
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Next, we present the modified algorithm, called FastBergeMine, that finds
all S in O(ΔMB(S)τ(m)) = O(rd · τ(m)) delay using O(N) space and prepro-
cessing, where S is the enumerated sub-hypergraph, ΔMB(S) is the number of
newly added hyperedges to the maximum border of S, r and d are the rank and
degree ofH, respectively, and τ(m) = ((log logm)2/log log logm). The algorithm
uses incremental computation of the maximum border set. Since it has the de-
lay that depends only on the size of each discovered subset S and its neighbors
N(S), it will be more efficient for the large inputs in the real world.

Related work : For the class of α-acyclic sub-hypergraphs [9], Hirata et al. [12]
presented an efficient algorithm that finds one of the maximal connected and
acyclic sub-hypergraphs in an input hypergraph in linear time in the total input
size. Extending this work, Daigo and Hirata [8] presented a polynomial delay
and space algorithm that finds all connected and acyclic sub-hypergraphs in an
input hypergraph. For the class of Berge-acyclic sub-hypergraphs, Lovász [18]
showed a polynomial time algorithm that finds one of the maximal connected
and Berge-acyclic sub-hypergraphs in an input hypergraph.

As closely related work, Ferreira et al. [11] presented an efficient algorithm for
finding all distinct subtrees of size k in an input graph in O(k) time (time per
solution) and space, and Wasa et al. [26] the improved version in constant delay
when an input is a tree. However, their approaches cannot be directly applicable
to our problem.

In the case that the maximum size of hyperedges, the rank , is restricted to
two, the problem coincides to the well-known spanning tree problem for undi-
rected graphs. For the problem, Tarjan and Read [23] first presented an O(ns)
time and O(n) space algorithm in 1960’s, where n is the number of edges in G.
Recently, Shioura, Tamura, and Uno [20] presented O(n+s) time and O(n) space
algorithm. Unfortunately, it is not easy to extend the algorithms for spanning
tree enumeration to subtree enumeration.

Organization of this paper : In Sec. 2, we give basic definitions and notations
on hypergraphs and our data mining problem. In Sec. 3, we present the basic
depth-first algorithm BergeMine for the problem. in Sec. 4, we present the
modified version of the algorithm, FastBergeMine, using incremental compu-
tation. Finally, in Sec. 5, we conclude.

2 Preliminaries

In this section, we give the definitions and notations for hypergraphs. For the
definitions not found here, please consult appropriate textbooks (e.g., [6,7]). For
a set A, we denote by |A| the cardinality of A. For a collection X ⊆ 2A of subsets
of A, ||X || =

∑
S∈X |S| denotes the total size of X .
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2.1 Hypergraphs

Intuitively, a hyper graph is a structure defined by a set collection E ⊆ 2V over
some finite domain V of objects. Formally, a hypergraph over a set of vertices V
is any pair H = (V , E) consists of the following components:

– A set of vertices V = V(H) = {1, . . . , n}, n ≥ 0, and
– A set of hyperedges E = E(H) = {e1, . . . , em}, m ≥ 0,

where for every 1 ≤ i ≤ m, ei is a subset of V , called a hyperedge, and its
index i is called the edge ID of ei. Since E ⊆ 2V , the number m of hyperedges
can be exponential in n. The total size of H, denoted by ||H|| = N , is the sum
of the sizes of its hyperedges, that is, ||H|| = ||E|| =

∑
e∈E |e|. By definition,

||E|| ≤ O(mn).
For vertex x and hyperedges e, f , we say that e is incident to x (or e contains

x) if x ∈ e holds, and that e is a neighbor of f if f ∩ e �= ∅ holds. Then,
N(x) = { f ∈ E |x ∈ f } is the set of all hyperedges incident to x, and NE(e) =
{f ∈ E | e∩f �= ∅}. Then, the rank of H, denoted by r = rank(H) = maxf∈E |f |,
is the maximum size of its hyperedges. The degree ofH, denoted by d = deg(H) =
maxx∈V |N(x)|, is the maximum number of incident edges. The hyperedge degree
of H, denoted by D = hyperedge-deg(H) = maxe∈E |NE(e)|, is the maximum
number of the neighbors. Clearly, we see that r = rank(H) ≤ n, d = deg(H) ≤ m,
and D = hyperedge-deg(H) ≤ min{m, rd}.

In this paper, a sub-hypergraph of H is just a subset S = {ei1 , . . . , eik} ⊆
E (k ≤ m) of hyperedges of H.1 We use the terms a hyperedge subset and a sub-
hypergraphs interchangeability in what follows. Actually, a subset S induces a
hypergraph H[S] = (S, E [S]), where E [S] = { e ∈ E | e ⊆ S }. The neighbor set of
S is N(S) = {f ∈ E \S | e ∈ S, e∩f �= ∅}. Clearly, ||S+N(S)|| ≤ ||E|| = O(mn).

In what follows, we refer to vertices as x, y, . . ., hyperedges as e, f, . . ., and
hyperedge subsets as S, T, . . ., possibly subscripted. For convenience, we often
represent a set of elements {a, b, c} by a juxtaposition abc if it is clear from
context.

Example 1. In Fig. 1, we show an example of a hypergraph H1 = (V1, E1)
consisting of eleven vertices V1 = {p, q, r, . . . , x, y, z} and seven hyperedges
E1 = {e1, e2, . . . , e7} such that e1 = qrs, e2 = uv, e3 = tu, e4 = vw, e5 =
qxy, e6 = xyz, and e7 = stwx.

2.2 Connected and Berge-Acyclic Sub-hypergraphs

A path between hyperedges e and f ∈ E in S ⊆ E is a sequence π = (e1 =
e, e2, . . . , ek = f) (k ≥ 1) of hyperedges that satisfies the condition ei ∩ ei+1 �= ∅
for every 1 ≤ i ≤ k − 1.

Definition 1. A hyperedge subset S is connected if any pair of hyperedges e
and f has some path between them in S.

1 The definition of a sub-hypergraph in this paper is also referred to as a partial
hypergraph in literatures.



312 K. Wasa et al.

By definition, the empty set and singleton set of hyperedges are connected.
We can easily test the connectivity of a given subset S in O(||S||) time.

Example 2. In the hypergraph H1 in Example 1, the subsets S1 = 1567 =
{1, 5, 6, 7} and S2 = 1347 are connected. On the other hand, the subset S3 = 135
is not connected since there is no path between the edges 1 and 3, and also the
edges 5 and 3.

Definition 2 ( [6]). In a hypergraph H, a Berge-cycle (or simply a cycle) of
length k is a sequence π = (e1, x1, . . . , ek, xk) (k ≥ 2) that satisfies the following
conditions (i)–(iii):

(i) e1, . . . , ek are mutually distinct hyperedges.
(ii) x1, . . . , xk are mutually distinct vertices.
(iii) For each 1 ≤ i ≤ k − 1, xi ∈ ei ∩ ei+1 holds, and xk ∈ ek ∩ e1 holds.

In the above definition, we say that the set {e1, . . . , ek} of hyperedges forms
a Berge-cycle Intuitively, a Berge-cycle is a path of length more than or equal
to two that starts from some hyperedge and returns to the start.

Example 3. In the hypergraph H1 in Example 1, the hyperedge subset S4 = 157
forms a Berge-cycle π4 = (1, q, 5, x, 7, s) of length three. From Lemma 1, we also
see that the pair of hyperedges S5 = 56 forms a Berge-cycle π5 = 〈5, x, 6, y〉 of
length two since hyperedges 5 and 6 share common vertices x and y.

From the construction of minimum length cycle S5 in the above example, we
have the following lemma, which is well-known providing a fundamental property
of Berge-acyclicity.

Lemma 1 (Berge [6]). If two hyperedges e and f contain mutually distinct
vertices x and y in common, i.e., x, y ∈ e ∩ f , then they form a Berge-cycle.

Proof. Take a path π = (e, x, f, y) as a Berge-cycle.

Definition 3 (Berge-acyclic subgraph [6]). A sub-hypergraph S is Berge-
acyclic if it contains no Berge-cycles.

By definition, the empty set and any singleton sets of hyperedges are Berge-
acyclic. From the next lemma, Berge-acyclicity is closed under subsets.

Lemma 2. If a non-empty subset S is Berge-acyclic, then any subset S′ (S′ ⊆
S) is also Berge-acyclic.

From Lemma 1 above, we see that Berge-acyclicity has strong restriction com-
pared to other notions of hypergraph acyclicities. Actually, there is a hierarchy
of acyclicities for hypergraphs, called the degrees of acyclicities of Fagin [9], that
consists of α-acyclicity, β-acyclicity, γ-acyclicity, and Berge-acyclicities. In this
hierarchy, α-acyclicity is most general, while Berge-acyclicity is most restricted.

In what follows, we denote by AC = AC(H) the class of all connected, and
Berge-acyclic sub-hypergraphs in an input hypergraphH. Now, we state our data
mining problem.
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A1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

q r s t u v w x y z

1 1 1 1 0 0 0 0 0 0 0
2 0 0 0 0 1 1 0 0 0 0
3 0 0 0 1 1 0 0 0 0 0
4 0 0 0 0 0 1 1 0 0 0
5 1 0 0 0 0 0 0 1 1 0
6 0 0 0 0 0 0 0 1 1 1
7 0 0 1 1 0 0 1 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Fig. 2. The incident matrix A1 of the hypergraph H1 in Fig. 1, where each row
indicates a hyperedge and each column a vertex

Definition 4 (Connected and Berge-acyclic sub-hypergraph mining
problem in a hypergraph). Given an input hypergraph H = (V , E), the task
is to find all connected, and Berge-acyclic sub-hypergraphs S ⊆ E in H belonging
to the class AC(H) without duplicates.

Example 4. Consider the hypergraph H1 in Example 1 again. Then, the subset
S1 = 1567 is not a connected and Berge-acyclic subset in AC(H1) because it is
connected but cyclic. On the other hand, the subset S2 = 1347 is a connected
and Berge-acyclic subset in AC(H1).

The model of computation: An enumeration algorithm A receives an instance
of size n and outputs all of m solutions without duplicates (See, e.g. [4]). For
polynomials p(·, ·), q(·), r(·), A is of output O(p(n,m))-time if the total time of A
is bounded by polynomial in n and m. A is of O(q(n))-delay using preprocessing
r(n) if the delay, which is the maximum computation time between two consec-
utive outputs, is bounded by q(n) after preprocessing in r(n) time. Clearly, if A
is polynomial delay, A is also output polynomial time. A is of polynomial space
if the maximum size of its working space is bounded by some polynomial p(n).

2.3 Other Definitions and Properties

Leaves and connection counts : Let S ⊆ E be a subset of hyperedges, or a sub-
hypergraph of H. A hyperedge e connects S if the intersection e ∩ V (S) is not
empty. Any vertex x in the intersection is called a connection point . Then, the
connection count of e relative to S is defined by cnt(e, S) = |e ∩ V (S)| ≥ 0.
In the next section, we give a characterization of connected and Berge-acyclic
sub-hypergraphs using the connection count.

A leaf of a subset S is a hyperedge e ∈ S such that cnt(e, S − e) = 1, that is,
that has a single connection point in S except itself. Clearly, the empty subset
∅ has no leaf at all, and any singleton S = {e} has the hyperedge e as its only
leaf. We denote by L(S) the set of all leaves of S. Actually, L(S) = { e ∈
S | cnt(e, S \ {e}) = 1 }.
Representation of hypergraphs : Using the incident relation x ∈ e, a hypergraph
H with n vertices andm hyperedges can be represented as an n×m binary matrix
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A = (ai,j) ∈ {0, 1}m×n, called the incident matrix of H. For every 1 ≤ i ≤ n and
1 ≤ j ≤ m, ai,j = 1 if and only if xi ∈ ej holds. In an incident matrix A = (ai,j),
each row 1 ≤ i ≤ n represents the incident set N(xi) ⊆ E , while each column
1 ≤ j ≤ m represents the corresponding hyperedge ej ⊆ V . In Fig. 2, we show
an example of an incident matrix.

Data structure: In our algorithms in Sec. 3 and Sec. 4, we use a dynamic data
structure D similar to the DLX (also known as “Dancing Links”) data struc-
ture by Knuth [15] for dynamically maintaining a hyperedge subset S. Our data
structure D stores the incident matrix of a set collection D ⊆ E in linear words
of space in ||D|| supporting the following operations: (i) retrieval of a hyper-
edge e = ei by an edge ID i, (ii) retrieval of the neighbor N(x,D) by a vertex
x, and (ii) insert/delete of elements to/from an edge or a neighbor set. Using
dynamic predecessor dictionaries [7] (such as the hash table or the map collec-
tion of C++/STL or Java), we can execute the above operations in sublinear
time t = τ(k), where we have τ(k) = log k if we use ordinary binary tree, and
τ(k) = O(((log log k)2/log log log k)) for k = max{n,m} if we use the dynamic
data structure of Beame and Fich [5]. The details are omitted here.

3 The Basic Algorithm

In this section, we show the basic version of our DFS mining algorithmBergeM-
ine that finds all connected, and Berge-acyclic sub-hypergraphs in H in polyno-
mial delay and space. In what follows, we write S − e for S′ \ {e}.

To devise efficient depth-first search algorithm, we need a systematic way
to reduce the search for larger subsets to smaller subsets. The next lemma is
essential to our algorithm.

Lemma 3. Let S′ ⊆ E is a subset such that |S′| ≥ 2. If S′ is connected and
Berge-acyclic, then cnt(e, S′ − e) = 1 holds for some e ∈ S′. Furthermore, S =
S′ − e is connected and Berge-acyclic, too, and has size |S| < |S′|.

Proof. We can show the lemma by induction on |S′|. If |S′| = 2, the claim is
obvious since S′ consists of two edges. Otherwise, assume that |S′| > 2. Since
S′ is connected, cnt(e, S − e) ≥ 1 always holds for any e ∈ S′. Furthermore, if
cnt(e, S− e) ≤ 1 holds for some e ∈ S′, then we are done. Therefore, we assume
that cnt(e, S − e) ≥ 2 holds for any e ∈ S′. Consider this case. Then, we split
S′ by removing e, and consider the connected components S1, . . . , Sk of S′ − e,
where k ≥ 1. There are two cases. (i) If e connects to some Si at at least two
points, then Si ∪ {e}, and thus S′, immediately has a cycle, and we are done
(ii) Otherwise, using induction hypothesis, we can show that there exists an
edge f in some component, say S1, such that {e, f} ∪R forms a cycle for some
R ∈ {{e}, S1 − f, S2, . . . , Sk} (details are omitted), and we are done. Hence, by
contradiction, the lemma follows.

From Lemma 3 above, Starting from any connected and Berge-acyclic subhy-
pergraph S with more than one edges, we can obtain a series of sub-hypergraphs
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Algorithm 1. A basic algorithm BergeMine for mining all connected, Berge-
acyclic sub-hypergraphs based on the reverse search

1: procedure BergeMine(H = (V, E): input hypergraph )
2: BasicRec(∅,H);

3: procedure BasicRec(S: sub-hypergraph, H: input hypergraph)
4: Output S;
5: Border(S) ← { f ∈ (E(H) \ S) | cnt(f, S) = 1 };
6: for each f ∈ Border (S) do 	 Generation of children
7: S′ ← S ∪ {f};
8: if f = max L(S′) then
9: BasicRec(S′,H);

R = S0 = S ⊃ S1 ⊃ · · · ⊃ S� = {e} of length � = |S| − 1 ≥ 0. Our DFS algo-
rithm reverses this process by starting from any singleton set {e}, e ∈ E , and
by iteratively expanding the current subset S ⊆ E by adding new hyperedge
e ∈ E \ S in a systematic manner using backtracking.

However, there is one problem with this approach. The above DFS search pro-
cess may generate the same subset by exponentially many different paths. One
easy way to avoid this duplication is to use table-lookup. When we discovered
a new subset S, we lookup a hash table H to decide if S ∈ H . If so, we skip
S, and otherwise, we output S and register it to H . This modification yields a
polynomial delay, but exponential space mining algorithm.

We solve this problem by pruning of redundant path by careful design of the
tree-shaped search space described as follows. Recall the previous key lemma,
Lemma 3. In the lemma, the possible source of redundancy is more than one
choice of a leaf e ∈ S of S to delete. An idea to solve this is to restrict the
deletion in reduction (and the addition in generation) to the maximum leaf of S.
This ensures the reduction sequence R = S0, . . . , S� for S to be unique to each
S. We call such a unique sequence the maximum elimination sequence for a
sub-hypergraph S, and denote by MES(S).

Lemma 4. MES(S) is the unique signature of each connected and Berge-acyclic
sub-hypergraph S ⊆ E.

From this lemma, we can generate S in a unique way by generating MES(S)
instead. Now, we describe our algorithm.

Definition 5. Let S′ be any connected and Berge-acyclic subhypergraph S′

such that |S′| ≥ 2. Then, the parent of S′ is the set P(S′) = S′ − f , where f is
the leaf of S such that cnt(f, S′ − f) = 1 having the maximum edge ID among
all leaves, that is, f = max(L(S)). This condition is called the maximum leaf
condition. In this case, we call S′ a child of S = P(S′).
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Fig. 3. The family tree for H1 in Fig. 1

Then, we define our tree-shaped search space. Let H be an input hypergraph.
The family tree for the class CA of connected, and Berge-acyclic sub-hypergraphs
of H is a multi-rooted DAG T = (CA,P , I), where
– CA is the vertex set of T that consists of all connected, and Berge-acyclic

sub-hypergraphs in an input hypergraph H.
– P defines the set of reverse edges of T that assign the parent P(S′) to a

child S′.
– I is the set of all single subsets as the root nodes of T .

The next lemma says that the family tree is actually a tree-shaped search
root.

Lemma 5. For any input hypergraph H, the family tree for CA on H is a span-
ning forest that contains all connected and Berge-acyclic subsets in CA as its
nodes.

Proof. From Lemma 3, it immediately follows that P(S′) is always connected,
and Berge-acyclic, and has size strictly smaller than S′. Since each path of T is
a MES for some element of CA, T is connected at some root in I. On the other
hand, since each reverse edge strictly reduces the size of S, T contains no cycle.
Hence, the lemma is proved.

Example 5. In Fig. 3, we show the family tree for H1 in Fig. 1. For example,
the parent P(S2) of S2 is P(P2) = 137. Then, there exists the reverse edge from
P(S2) to its child S2. P(S2) has other children S6 = 1237 and S7 = 1367. Edges
(P(S2), S6) and (P(S2), S7) are also the members of the set of reverse edge in
the family tree.

In Algorithm 1, we show our basic DFS algorithm BergeMine and its
recursive subprocedure BasicRec that finds all connected, and Berge-acyclic
sub-hypergraphs inH in depth-first manner. This algorithm is a simple backtrack-
ing algorithm, working as follows. Starting from each singleton subset {e} in I,
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Algorithm 2. The algorithm for computing the border set of a sub-hypergraph

1: procedure ComputeBorder(S: sub-hypergraph, V, E)
2: Output : Border(S) = { f ∈ (E \ S) | cnt(f, S) = 1 }.
3: Mark all vertices of V(S);
4: Border ← ∅;
5: for each e ∈ E(S) do
6: Count the number cnt(e, S) of all marked vertices in e;
7: if cnt(e, S) = 1 then
8: Border ← Border ∪ {e};
9: return Border ;

the algorithm searches the family tree T for connected, and Berge-acyclic subsets
by expanding the parent subset S by adding a new leaf f to obtain a child
S′ = S∪{f}. In the expansion, it apply pruning for redundant subsets using the
definition of a correct child based on the maximum leaf condition of the child.
If expansion is no longer possible, it backtrack to the parent.

To compute the border set, we use the procedure ComputeBorder in
Algorithm 2.

Lemma 6. The algorithm ComputeBorder in Fig. 2 computes the border set
of an hyperedge subset S O(||S||) = O(nm) time using O(n) additional space.

We give the time and space complexity of the basic algorithm below.

Theorem 1 (main result). The algorithm BergeMine of Fig. 1 finds all
connected Berge-acyclic sub-hypergraphs contained in an input hypergraph H =
(V , E) without duplicates in O(Nm) = O(nm2) delay and O(N) words of space,
where n = |V|, m = |E|, and N = ||E|| are the numbers of vertices and hyper-
edges, and the total size of the hyperedges in H.

From the theorem, we have the following corollary.

Corollary 1. The class of all connected Berge-acyclic sub-hypergraphs contained
in an input hypergraph H can be enumerated in polynomial delay and polynomial
space in the size of input H.

4 The Modified Algorithm

In this section, we show a modified version of our depth-first mining algorithm
that finds all connected and Berge-acyclic sub-hypergraphs in an input hyper-
graph H in O(|f |τ(m) + |B|) time using O(N) space and preprocessing, where
N = ||E(H)||. This algorithm is adaptive since its time complexity only depends
on the size of the discovered sub-hypergraph S, rather than the whole input.
This adaptively is quite important in mining a large hypergraph. In what fol-
lows, we use the dynamic data structure of Beame and Fich [5] with operation
time τ(m) = O(((log logm)2/log log logm)).
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The basic idea of our modified algorithm is an incremental maintenance of
the subset MaxBorder (S) of hyperedge candidates to insert, called the maximal
border hyperedges.

Definition 6. The maximal border of a sub-hypergraph S is the set of hyper-
edges defined by:

MaxBorder (S) = { e ∈ E \ S | cnt(e, S) = 1, e = maxL(S ∪ {e}) }, (1)

that is, MaxBorder (S) consists of all hyperedges e of H satisfying the next
conditions: (i) e is a border of S (i.e., cnt(e, S) = 1), and (ii) e is the maximum
leaf of S′ = S ∪ {e} among all leaves when it is added to S.

In Algorithm 4, we show our modified depth-first algorithm FastBergeMine
as well as its recursive subprocedure FastRec for mining all connected, Berge-
acyclic sub-hypergraphs in incrementally. By using MaxBorder (S), in our depth-
first mining algorithm FastBergeMine, we can generate any children S′ =
S ∪ {f} from a parent S by just selecting any hyperedge e ∈ MaxBorder (S)
without testing the pruning condition for duplication because the condition is
already included by the definition of the maximal border set. In other words, we
are eager to make selection of border candidates and test for duplication at the
same time in advance.

Therefore, it remains how to efficiently compute the maximal border set. Sur-
prisingly, we can show that this is done in almost optimal time complexity in
amortized analysis using a procedure similar to the α-acyclicity test by (Tarjan
and Yannakakis [22]). The key to the algorithm is the following recurrence rela-
tion for the maximum and the second maximum leaves when we update a parent
S by adding a new maximum border f ∈ MaxBorder (S) to generate a children
S′ = S ∪ {f}.

Lemma 7. Let us denote by max (S) and 2max (S) the maximum and the second
maximum leaves of a parent set S ⊆ E. Then, the maximum and the second
maximum leaves max(S′) and 2max (S′) of a child S′ = S ∪ {f} satisfy the
following recurrence:

– If f connects �max = maxLeaf (S):
• If f > 2max (S), then max (S′) ← f and 2max (S′) ← max (S) hold.
• Otherwise, max (S′) ← max (S) and 2max (S′) ← 2max (S) hold.

– Otherwise:
• If f > max(S), then max (S′) ← f and 2max (S′) ← max (S) hold.
• Otherwise, max (S′) ← max (S) and 2max (S′) ← 2max (S).

Proof. In each ease, the proof immediately follows from the case analysis using
the definitions of max , 2max , and the maximal border set.

From Lemma 7 above, we can update max(S) and 2max (S) incrementally
in constant time. Now, we show the algorithm UpdateMaxBorder in Algo-
rithm 3 that incrementally updates the new border estMaxBorder (S∪{f}) from
the older one given the border edge f to add, S, and MB = MaxBorder (S).
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Algorithm 3. The algorithm for computing the border set of a sub-hypergraph

1: procedure UpdateMaxBorder(f : hyperedge, S,B,R: hyperedge subsets, H: hy-
pergraph )
Pre-conditions: S′ = S ∪ {f}, f ∈ R, B = MB(S), and R = E(H) \ S.
Output : MB(S′) = { f ∈ (E \ S′) | cnt(f, S′) = 1, f = maxL(S′) }.
Global variable: A dynamic data structure D for storing a hyperedge subset in
linear space supporting membership, insert, and delete in sublinear time t = τ (m).
//Step 1: Update the maximum leaves.

2: S′ = S ∪ {f};
3: Update the maximum leaves max(S′) and 2max (S′)

from f , max (S′), and 2max (S′) according to Lemma 7. 	 in O(1) time
//Step 2: Update the maximum border set.

4: MB(S′) ← ∅;
5: //Step 2.1: Existing borders other than f
6: for each e in MB(S) \ {f} do 	 O(|MB(S)|) times
7: Add e to MB(S′) if e = maxL(S′ ∪ {e}).
8: //Step 2.2: New borders connecting to f
9: for each vertex x ∈ f do 	 O(|f |) times to S′

10: for each hyperedge id e ∈ N(x,D) do 	 Charge O(1) time to e in D
11: cnt[e] ← cnt[e] + 1;
12: if cnt[e] = 1 then 	 cnt increased from 0 to 1
13: Add e to the candidate set D; 	 Charge O(τ (m)) time to e
14: Add e to MB(S′) if e = maxL(S′ ∪ {e}).
15: else if cnt[e] = 2 then 	 cnt increased from 1 to 2
16: Remove e from candidate set D; 	 Charge O(τ (m)) time to e

17: //Note: each hyperedge is processed at most twice overall

18: end for
19: return MB ;

For efficient update, the algorithm uses a dynamic data structure D for storing
a set D of candidate hyperedges, which is similar to the DLX (also known as
“Dancing Links”) data structure by Knuth [15] as described in Sec. 2. Then, we
have the next lemma.

Lemma 8. Let S ⊆ E be a sub-hypergraph and f ∈ R = (E \ S) be a maximum
border hyperedge of S. Given f , B, and R, the algorithm UpdateMaxBorder
in Algorithm 3 computes the set MaxBorder (S ∪ {f}) of all maximum border
hyperedges of S′ = S∪{f} in O(ΔMB(S)τ(m)+|B|) time using O(N) space and
O(N) preprocessing (at once in the initialization), where ΔMB(S) is the number
of newly added hyperedges to the maximum border of S, N = ||E(H)||, τ(m) =
((log logm)2/log log logm), r and d are the rank and degree of H, respectively,
and B = MaxBorder (S) is the set of all maximum borders of S.

Proof. Consider Algorithm 3. During the computation of the recursive mining
procedure, we maintain the pointers max (S), 2max (S), and the dynamic data
structure D. From Lemma 7, Step 1 correctly updates the maximum and 2nd
maximum leaves in S in constant time. When a new border f is added to S, the
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Algorithm 4. The modified algorithm FastBergeMine for mining all con-
nected, Berge-acyclic sub-hypergraphs based on the reverse search

1: procedure FastBergeMine(H = (V, E): input hypergraph )
2: for each hyperedge e ∈ E(H) do
3: MBe ← { f ∈ E(H) | (|f ∩ e| = 1) };
4: Re ← E(H) \ {e};
5: FastRec({e},MBe, Re,H);

6: procedure FastRec(S,MB , R ⊆ E(H), H: hypergraph)
7: Invariant : MB = MaxBorder (S) and R = E(H) \ S hold.
8: Output S;
9: for each border hyperedge f ∈ MB do 	 Generation of children
10: S′ ← S ∪ {f};
11: R′ ← R \ {f};
12: Incrementally compute MB ′ = MaxBorder (S′,H) from f , MB , and R;
13: FastRec(S′,MB ′, R′,H);
14: Restore the changes on MB ′;

only borders to be changed are (i) f is removed, and (ii) all neighboring hyper-
edges of f , and (ii) all existing border edges that has a non-empty intersection
to f other than its connection point to S. Step 2 handles these cases correctly.
For time analysis of Step 2, we observe that during computation from the root
hypothesis ∅ to the current set S, any hyperedge e in H will be processed at
most twice after initialization, that is, it is incremented to cnt(e) = 1 at the
first time, and it is incremented to cnt(e) = 2 the second time. Then, it is re-
moved from D forever (otherwise a back tracking occurs). We can show that the
amortized cost for Step 2 to obtain each the maximum border of S′ is at most
O(ΔMB(S)τ(m) + |B|), where τ(m) = ((log logm)2/log log logm).

From Lemma 8, we show the main theorem of this paper.

Theorem 2 (The adaptive delay by the modified mining algorithm).
The algorithm FastBergeMine of Fig. 4 finds all connected Berge-acyclic
sub-hypergraphs contained in an input hypergraph H = (V , E) without dupli-
cates in t = O(ΔMB(S)τ(m)) = O(rd · τ(m)) amortized delay (amortized
time per solution) using O(N) space and O(N) preprocessing, where f is the
added edge, B is the maximum border of S, N = ||E|| is the total size of
the hyperedges in H, r and d are the rank and degree of H, respectively, and
τ(m) = ((log logm)2/log log logm).

Proof. The correctness of the algorithm FastBergeMine is obvious from that
of the basic algorithm and the definition of MaxBorder . From Lemma 8, at
each iteration for solution, the computation time of the maximum border is
t = O(ΔMB(S)τ(m) + |B|) = O(rd · τ(m) + |B|). By using appropriate charg-
ing scheme to each child of S′, we can remove the cost O(|B|) since the addi-
tion of any maximum border hyperedge to S′ always yields a proper solution.
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Moreover, we have ΔMB(S) = O(|f |
∑

x∈f |N(x)|) = O(rd). Therefore, the
time complexity becomes t = O(ΔMB(S)τ(m)) = O(rd · τ(m)) as claimed.

From the theorem, we have the following corollary.

Corollary 2. The class of all connected Berge-acyclic sub-hypergraphs contained
in an input hypergraph H can be enumerated in amortized delay that depends only
on the number of newly added maximum border hyperedges of a discovered subset
S using polynomial space and preprocessing in the input size ||E(H)||.

It is an open question whether there exists some enumeration algorithm whose
amortized delay depends only on the number of difference of a discovered subset.

5 Conclusion

In this paper, we considered the problem of finding all all connected Berge-
acyclic sub-hypergraphs contained in an input hypergraph H = (V , E) without
duplicate with applications to generalization of itemset mining from transaction
databases and also discovering connected substructures from datasets in the
form of sets of sets. As main results, we presented an efficient DFS algorithm
for the problem that achieves polynomial delay and space complexity. We also
presented an improved algorithm that has adaptive delay depending only on the
size of discovered sub-hypergraph.

In this paper, we focused on only the theoretical aspect of the problem. One
of the most important future researches is implementation and empirical eval-
uation of the proposed algorithms on artificial and real datasets. It is also an
important problem to find suitable application of this problem in knowledge dis-
covery problems in the real world including knowledge discovery from mobility
data or social networks. We want to study these problems in future.
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Polynomial Delay. In: Nielsen, M., Kučera, A., Miltersen, P.B., Palamidessi, C.,
Tůma, P., Valencia, F. (eds.) SOFSEM 2009. LNCS, vol. 5404, pp. 181–192.
Springer, Heidelberg (2009)

9. Fagin, R.: Degrees of acyclicity for hypergraphs and relational database schemes.
Journal of the ACM 30(3), 514–550 (1983)

10. Ferreira, R., Grossi, R., Marino, A., Pisanti, N.: Optimal Listing of Cycles and
st-Paths in Undirected Graphs (2012)

11. Ferreira, R., Grossi, R., Rizzi, R.: Output-sensitive listing of bounded-size trees in
undirected graphs. In: Demetrescu, C., Halldórsson, M.M. (eds.) ESA 2011. LNCS,
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Abstract. Predicting the existence of links between pairwise objects in
networks is a key problem in the study of social networks. However, re-
lationships among objects are often more complex than simple pairwise
relations. By restricting attention to dyads, it is possible that information
valuable for many learning tasks can be lost. The hypernetwork relaxes
the assumption that only two nodes can participate in a link, permitting
instead an arbitrary number of nodes to participate in so-called hyper-
links or hyperedges, which is a more natural representation for complex,
multi-party relations. However, the hyperlink prediction problem has yet
to be studied. In this paper, we propose HPLSF (Hyperlink Prediction
using Latent Social Features), a hyperlink prediction algorithm for hy-
pernetworks. By exploiting the homophily property of social networks,
HPLSF explores social features for hyperlink prediction. To handle the
problem that social features are not always observable, a latent social
feature learning scheme is developed. To cope with the arbitrary cardi-
nality hyperlink issue in hypernetworks, we design a feature-embedding
scheme to map the a priori arbitrarily-sized feature set associated with
each hyperlink into a uniformly-sized auxiliary space. To address the
fact that observed features and latent features may be not independent,
we generalize a structural SVM to learn using both observed features
and latent features. In experiments, we evaluate the proposed HPLSF
framework on three large-scale hypernetwork datasets. Our results on
the three diverse datasets demonstrate the effectiveness of the HPLSF
algorithm. Although developed in the context of social networks, HPLSF
is a general methodology and applies to arbitrary hypernetworks.
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1 Introduction

Networks provide a powerful framework for modeling real world relationships
in which vertices represent objects and links between pairs of vertices indicate
their interaction [29]. Nevertheless, in many real world problems, the natural re-
lationships encoding the phenomenon may exist among more than two objects or
actors. Examples include buyer-broker-seller triads in a market relationship [3],
or subsets of co-expressed genes in a genetic network [16]. In such cases limiting
the relationships to dyads may obscure valuable information for learning tasks.
The hypernetwork is a combinatorial structure in which hyperlinks or hyperedges
represent a relationship that can exist among more than three objects (see e.g.,
[42]) and thus can provide representation for complex relationships (a hyperlink
relating only two actors would simply be a link in the usual network sense).
Due to its powerful modeling ability, the hypernetwork framework has attracted
attention in a variety of application domains, including scene classification[34],
bioinformatics[16], finance[3], and sociology[5].

Link prediction techniques [21,22,8,1] aim to predict the existence of links
between vertices in a network. It is an important task in many areas, especially
social networks. Thus, it is then natural and as useful to consider the analogous
hyperlink prediction problem in the hypernetwork setting. A significant difference
and challenge in the hypernetwork setting is the a priori arbitrary cardinality
of each hyperlink (i.e., the number of nodes associated with the hyperlink).
To the best of our knowledge, hyperlink prediction remains untouched in the
hypernetwork scenario.

In this paper we address the hyperlink prediction problem in the context of
social networks. Social networks often exhibit homophily [25], wherein people
with similar social affiliations or properties show a preference for interacting
with each other. For example, in a college, connections are more likely to exist
among students who co-enroll in a class or join in the same sports team or
group. A few works [12,27] indicate that considering these social affiliations or
features can improve the accuracy for link prediction tasks. Unfortunately, these
social affiliations or features are not always observable. By ignoring the “latent”
social features (as is done in a few current link prediction algorithms [37,22]),
it is possible to lose important information for link predictions. Therefore, it
is desirable to utilize these latent social features in link prediction methods.
However, finding a means of exploring the “latent” social features is a thorny
issue and there is limited research on this in the link prediction literature, let
alone hyperlink prediction.

In this paper, we propose HPLSF (Hyperlink Prediction using Latent Social
Features), a link prediction algorithm for hypernetworks. Although developed
in the context of social networks, HPLSF is a general methodology is readily
generalized to arbitrary hypernetworks. Following the homophily property of so-
cial networks, we utilize social features for hyperlink prediction. To cope with
the problem that social features are often unobservable, we design a scheme to
learn latent social features for each individual vertex, each dimension of which
is indicative of a plausible social affiliation for the vertex. This transforms the
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hyperlink prediction problem into a classification task, where latent social fea-
tures and observed features (if available) are utilized together for hyperlink pre-
diction. The fact that hyperlinks can have arbitrary size (given by the number
of actors connected in the hyperlink) raises an additional challenge. We attack
this by designing a feature embedding method to map the feature set of the
nodes associated with each potential hyperlink into an auxiliary space. In this
case, uniformly-sized feature sets are learned from the a priori arbitrarily-sized
feature sets. In the last step a structural SVM classifier is generalized under the
observed features and latent features after feature embedding because interde-
pendent relationships may exist between observed features and latent features.

In summary, the contributions of this paper are as follows: (1) We design an
algorithm to predict the existence of hyperlinks in hypernetworks. As far as we
know, HPLSF is the first hyperlink prediction work for hypernetworks. HPLSF
can be generalized into any type of hyperneworks although in this paper, we em-
ploy email hypernetworks for evaluation. (2)We develop a scheme to learn latent
social features for each individual vertex in the hypernetwork. In this way, the
homophily property of social networks can be fully utilized when considering hy-
perlink prediction for hypernetworks. (3) We propose a novel feature-embedding
strategy to cope with the arbitrarily-sized hyperlink cardinality challenge. Con-
trary to traditional link prediction work [22], we do not consider the feature set
extracted from the group of nodes associated with one potential link/hyperlink
directly. Instead, we design a scheme to map this feature set into an embed-
ding space, and each dimension of the embedding space reflects the interaction
strength of the group of nodes. In this case, the arbitrarily-sized feature extracted
from each hyperlink is mapped into a uniformly-sized feature. (4) We propose
to employ structural SVM to learn with both observed features and latent fea-
tures after feature-embedding in case that observed features and latent features
are not necessarily independent. (5) We deploy these ideas on three large-scale
email hypernetwork datasets from diverse sources: a large university, an urban-
centered hospital, and a large IT corporation. It is the first time that these three
datasets are considered in the hypernetwork setting. The heterogeneity of these
contexts validate the effectiveness of the proposed HPLSF.

The rest of the paper is organized as follows. In Section 2, we briefly introduce
related work. The detailed HPLSF framework is proposed in Section 3. In Section
4 we report experimental results. Finally in Section 5, we conclude the paper.

2 Related Work

Hypernetworks (see e.g.,[42]) have drawn significant attention in various do-
mains. For instance, in [10] hypernetworks are used to model DNA interactions
wherein they achieve better disease detection accuracy as compared with us-
ing traditional networks. In [3], the hypernetwork is employed to model the
correlations of daily stock prices, thereby improving the stock price prediction
accuracy. Sun et al. [34] model the set of multiple labels along with the labels’
correlations under the multi-instance setting via hypernetworks. Because the
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high-order relations in multi-labels [15] can be captured by hyperlinks, the clas-
sification performance is competitive. However, all existing works in the current
hypernetwork literature assume constant cardinality for the hyperlinks over the
whole hypernetwork. Additionally, these previous researches focus on utilizing
the hyperlink relationships to infer the labels of individual nodes in hypernet-
works, rather than doing hyperlink predictions in hypernetworks. In our paper,
we consider the problem of hyperlink prediction for hypernetworks, and allow
for arbitrary (and varying) cardinality of the hyperlink over the hypernetwork.

Our work also relates to social feature learning. Hopcroft et al. [13] indicate
that social features reflect the homophily property and play an important role
in social networks. However, social features are not always observable. There
have been various efforts exploring methods to learn the “latent” social features.
Neville and Jensen [28] utilize a clustering scheme to achieve a membership vec-
tor of each person in the network. In [35], a set of social features is learned using
a graph cutting method to help classify relational data in networks. It is worth
noting that these works all take advantage of social features to improve the clas-
sification performance under the relational learning setting [23], i.e., classifying
each individual datum (vertex) in a network where data are no longer assumed to
be independently and identically distributed. Our work however, aims to utilize
the latent social features to predict the existence of hyperlinks in hypernetworks.

Recently, there are a few link prediction models proposed for traditional net-
works that use “latent” social features [12,11,27,43]. These latent feature models
assume that each object (vertex) in the network belongs to a set of latent classes.
Thus, the latent class membership of each individual object is useful for predict-
ing pairwise links between objects in networks. Note that these works model
latent features according to pairwise relations between vertices in the network.
Statistical methods such as variational inference or sampling are used in training
and inference. These are time-consuming and prone to suffering from the local
maxima problem. By contrast, our paper explores the “latent” social features
for vertices based on the distance information conveyed in hypernetworks, and
employs a simple clustering technique.

Feature embedding [19], which maps a fixed set data into a feature space, is a
powerful tool in machine learning. Previous feature embedding techniques were
designed for a few particular learning tasks. For example, Kondor [19] developed
a feature embedding algorithm for image classification. Grangier [9] employed
feature embedding to deal with incomplete data in the original dataset. In our
work, we design a feature embedding method to address the arbitrary-sized hy-
perlink cardinality issue in hypernetwork. As far as we known, it is the first
time feature embedding techniques have been used in the network/hypernetwork
scenario.

Another line of related work is community detection [30]. Community
detection focuses on dividing the vertices in a network into several groups by
only using the information encoded in the network topology. It is a hot topic in
network study and a few methods have been proposed [31,30]. However, there
are fundamental differences between community detection and link/hyperlink
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prediction algorithms. Almost all community detection algorithms only consider
topological information from networks, while our proposed hyperlink prediction
method aims to utilize both observed and latent social features from nodes (ob-
jects) within the network.

3 Hyperlink Prediction Using Latent Social Features

In what follows, we give the description of HPLSF framework, which takes ad-
vantage of the observed information as well as the latent social features from
each individual vertex in the hypernetwork.

3.1 Hyperlink Prediction Problem

Before presenting the hyperlink prediction problem in detail, we give the formal
description of hypernetworks as follows. A hypernetwork is formalized as an
ordered pair H = (V,E), where V = {v1,v2, ...,vn} is the set of vertices, and
E = {e1, e2, ..., em} is the set of hyperlinks (hyperedges). Therein, if ei =
{vi1 ,vi2 , ...,vik} is a hyperlink with k > 2, it is then different from a link (edge)
in the traditional network setting because the number of associated vertices
could be more than 2. An example of hypernetwork [42] is given in Fig.1.

If all the hyperlinks in the hypernetwork H have the same cardinality k,
then the H is a k-uniform hypernetwork, otherwise, H is an arbitrary-sized
hypernetwork. Although most hypernetwork applications [10,34] can only han-
dle k-uniform hypernetworks, in this paper, we propose a hyperlink predic-
tion framework on arbitrary-sized hypernetworks. The task of link prediction
for hypernetworks can thus be formulated as follows: Given a training dataset
S = {(e1, y1), (e2, y2), ..., (et, yt)}, where ei represents a possible relation among
several vertices, and yi ∈ {−1,+1} represents the label of the ei (i.e., if yi = +1,
there exists a hyperlink among the set of vertices; if yi = −1, there is no hyper-
link.), the goal is to learn the labels in the test set T = {et+1, et+2, ..., et+u}.

3.2 Exploring Latent Social Features

As we have mentioned, homophily (the idea that people with similar attributes
are more likely to interact with each other) is an important characteristic in social
networks. Several relational learning works (see e.g., [35]) show that utilizing the
homophily property of social networks in the course of learning social features can
improve the classification accuracy for network data. A few researchers [12,27]
suggest that social features also play a significant role in predicting pairwise
links for traditional networks. In hypernetwork scenarios, it is then also natural
to consider the homophily property, and thus to take advantage of social features
for hyperlink prediction.

Unfortunately, social features are often unobservable. Thus it is not trivial to
obtain “latent” social features. In hypernetworks, each social feature indicates
(to some extent) a particular property or affiliation for objects. Note that objects
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Fig. 1. An example of hypernerwork. The hypernetwork H consists of seven ver-
tices and five hyperlinks. Specifically, H = (V,E), where V = {x1,x2, ...x7} and
E = {e1,e2,e3,e4}. Each of the hyperlink could be associated with more than 2
vertices, namely, e1 = {x1,x2,x3,x4}, e2 = {x1,x4,x6}, e3 = {x4,x5,x7}, and
e5 = {x6,x7}. Because the number of vertices associated with e1 is 4, we say that the
cardinality of hyperlink e1 is equal to 4.

(vertices) sharing similar properties or affiliations in hypernetworks interact at
a higher rate than dissimilar objects, and are likely to form groups with more
frequent within-group interactions. This is naturally associated with graph par-
tition [4], a basic task in graph theory [32] which focuses on clustering vertices
into groups such that within-group interactions are more frequent than between-
group interactions. In this way, the description of affiliation in each particular
group is considered as one dimension of social features. Many algorithms [4,33]
have been investigated for graph partition, among which clustering-based meth-
ods play an important role. Based on the intuition that objects that are similar in
group affiliations are very likely to be close in a geometric representation, these
clustering-based methods construct a geometric embedding to indicate group
affiliations for objects. Therefore, in our work, we employ multidimensional scal-
ing (MDS) [6], a typical geometric embedding learner to explore latent social
features based on hypernetwork distance.
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Multidimensional scaling (MDS) constructs a geometric embedding (feature
vector) preserving as best as possible the original distance among data (objects).
Each dimension of the MDS embedding indicates the strength of a certain group
affiliation [6] and can be regarded as one social feature. Specifically, for a hy-
pernetwork with N vertices, MDS finds the embedding matrix Z ∈ RN×p (p
is the dimensionality of latent features) whose row vectors are group affiliation
descriptions (and thus are treated as latent social features) for the corresponding
object in the network as follows,

argmin
Z

‖D − ZZT ‖F . (1)

Therein, ‖·‖F denotes the Frobenius norm, andD is the distance matrix obtained
from the hypernetwork (Dij is the length of the shortest path from vertex i to
j in the hypernetwork H).

As per [6] we can solve (1) as follows: Let Σ be the matrix of the eigenvectors
of D , and Λ be a diagonal matrix with the corresponding eigenvalues. The
matrix of the p top eigenvalues is denoted by Λp and the corresponding columns
of Σ is denoted by Σp. Then we can obtain the solution of (1) by,

Z = ΣpΛ
2
p (2)

It deserves mentioning that when computingD, we set a shortest path maximum
length of five hops in order to avoid the full N2 computation of all-shortest paths.
[6] indicates that this approximation scheme can achieve close result compared
with full computation.

3.3 Embedding Features into Uniform-Sized Space

Most existing hypernetwork applications [42,10,34], if not all, simply assume
that the cardinality of all hyperlinks in hypernetworks is uniform. Obviously
this assumption does not hold under many scenarios and thus limits the ap-
plication scopes of hypernetworks in real-world. In our work, to address this
arbitrary-sized hyperlink cardinality challenge, we propose a feature embedding
technique to map feature set from all nodes associated with one potential hyper-
link into an embedding space. The dimension of the embedding space is uniform
and independent of the cardinality of each particular hyperlink. Therefore, it is
convenient to train classifiers under the embedded features for hyperlinks with
various cardinality.

Our paper focuses on hyperlink predictions by leveraging social features,
where each dimension represents one particular social affiliation for the per-
son(node) in the hypernetwork. We aim to learn a feature embedding from the
original social feature set of all persons associated with a potential hyperlink,
and the mapped feature in the embedding space is supposed to reflect the dis-
criminability of interaction strength among the group of persons. In this work,
we employ entropy impurity to measure the similarity strength among a group
of people based on the values of each dimension of their social features. If all the
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group people share similar/close value over one particular social feature, it indi-
cates that those persons are similar over the particular social characteristic and
the entropy score would be small. On the contrary, if the values of the particular
social feature are diverse, the similarity strength of these people are weak and
the entropy score would be large.

In particular, given the social feature set {z1, z2, ..., zk} (i.e., features calcu-
lated by Eq.(2)) from all nodes associated with one potential hyperlink (zi ∈
RM), we construct a map f : RM·k → RM as follows,

f(z1, z2, ..., zk) = [−
k∑

j=1

p(zj1)logp(zj1), ...,−
k∑

j=1

p(zjM )logp(zjM )] (3)

Here, p(zji) is the fraction of feature values at the ith social feature that belong

to category zji, and −
∑k

j=1 p(zji)logp(zji) is the entropy score over the total k

associated people in the potential hyperlink for the ith social feature.
The designed feature embedding scheme offers great flexibility. First, it can ac-

commodate the hypernetworks with arbitrary-sized hyperlink cardinality. After
feature embedding, potential hyperlink features in different dimensionality can
be mapped into uniform-sized features (in RM ). Second, the embedding tech-
nique accommodates both discrete and continuous social features. When the
original feature set contains a mix of discrete and continuous values, the entropy
score computing scheme naturally handles both of the two types of values. [2]
(For continuous values, we can use a threshold based method when calculating
the entropy.)

3.4 Learning with Observed and Latent Features

HPLSF aims to conduct hyperlink prediction by leveraging not only observed
features but also latent features. In this subsection, we introduce the details of
learning with observed and latent features.

After obtaining the embedded latent features (via the method discussed in
last subsection) and the observed features1, we predict whether a hyperlink ex-
ists among a set of vertices. The observed features and latent features are not
necessarily independent of each other. Therefore, simply combining the observed-
features-based classifier and latent-features-based classifier ignores the potential
dependence between the output spaces of the two classifiers and might lead to
inaccurate prediction results. Different from classic SVM addressing indepen-
dent output applications [39,40,38], the structural SVM [36] was designed for
learning problems involving dependent outputs. Therefore, in our work, a struc-
tural SVM based classifier is generalized to capture the potential interdependent
relationship between the outputs of the two classifiers.

1 We assume that the observed features – metadata – are available for vertices in the
network.
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Structural SVM employs margins between the true structure y� and other
possible structures y:

∀y ∈ Y : w�φ(x,y�) ≥ w�φ(x,y) +Δ(y�,y)− ξ (4)

Therein, ξ > 0 is a slack variable that controls the tradeoff between satisfying
the constraints and optimizing the objectives. φ(x,y) is a joint feature map
that characterizes the relation between an input x and an output structure y.
The loss function Δ(y�,y) quantifies the loss associated with the prediction y�

when the true output is y. In structural SVM, two different structures (y,y�)
could exhibit similar accuracy, which is reflected in the margin constraint. The
violation of margin constraints with high loss Δ(y�,y) should be penalized more
severely than the violation involving the output value with smaller loss.

In our hypernetwork scenario, we denote eo as the embedded observed fea-
tures of the potential hyperlink e (i.e., set of vertices), and el as the embedded
latent features of the potential hyperlink e. Here, eo = f(xo

1,x
o
2, ...,x

o
k) is the

embedding of observed features from each individual vertex belonging to the
vertices set e, and el = f(xl

1,x
l
2, ...,x

l
k) is the embedding of latent features

from each individual vertex. Meanwhile, we define y = [yo, yl] where yo is the
output corresponding to embedded observed features eo and yl is the output
corresponding to embedded latent features el.2 We define the loss function of
form

Δ(y�,y) =
1

2
(1(y	o �= yo) + 1(y	l �= yl)) (5)

where 1(S) = 1 if S is true; otherwise, 1(S) = 0. The defined Δ(y�,y) is
non-negative and bounded in [0, 1]. This loss function supports flexible notions
of structural correctness and has been widely used in many structural SVM
work [14,24].

Thus the joint feature map for the structural SVM can be written as follows:

Φ(e,y) = [φo(e
o, yo), φl(e

l, yl)] (6)

where φo(e
o, yo) is the feature map describing the relation between observed fea-

tures of a potential hyperlink and its corresponding output, and φl(e
l, yl) is the

feature map describing the relation between latent features and its corresponding
output.

Using the joint feature map defined in Eq.(6), the constraints for the HPLSF
can be formulated as the similar form as Eq.(4). By adding the objective function
which minimizes the combination of the regularization term and the penalty term
for slack variables, the optimization problem can be written as follows:

minw,ξ
1
2‖w‖2 + C

N

∑N
i=1 ξi (7)

∀i, ∀y ∈ Y\yi : w
�Φ(ei,y) ≥ w�Φ(ei,yi) +Δ′(y,yi)− ξi (8)

2 In our work, for each ei, we use 1-Nearest Neighbor Classifier (1-NNC) as the
observed-features-based classifier and the latent-features-based classifier to compute
yo
i and yl

i respectively.
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where C is the parameter controlling the tradeoff between satisfying the con-
straints and minimizing the regularization term. In all our experiments, we set
up C = 1. The optimization method discussed in [14] is employed to solve the
problem (8).

3.5 Summary of the Proposed Algorithm

1: Input: Hypernetwork H = (V,E), where V is the vertex set and E is the set
of hyperlinks.

2: Construct distance matrix D from H , where Dij indicates the length of the
shortest path from vertex i to j in the hypernetwork.

3: Calculate latent features for each object in the hypernetwork using Eq.(2).
4: Embed the observed feature set and the latent feature set for each hyperlink

respectively using Eq.(3).
5: Construct the joint feature maps as Eq.(6) using embedded latent features

and embedded observed features.
6: Solve the problem (8) via the SVMstruct.

Algorithm 1. Hyperlink Prediction Using Latent Social Features

In this section, we present the detailed HPLSF in Algorithm 1. First, we con-
struct the distance matrix D whose element Dij gives the length of the shortest
path between two vertices in the hypernetwork. Then we apply MDS algorithm
to calculate the embedding matrix, where each row vector represents the latent
feature for the corresponding vertex (object). After obtaining the embedded la-
tent features, we can use them together with the embedded observed features
to construct the constraints of the optimization problem (8). Lastly, SVMstruct

[14] is employed to train the classifier. Note that the proposed prediction frame-
work can be generalized into any other type of hypernetworks although in the
experiments we only evaluate it using email hypernetworks.

4 Experiments

In what follows, we introduce three real-world hypernetwork datasets to evaluate
the proposed HPLSF framework. The first dataset was collected in a major urban
hospital over one year [7]. The second dataset was collected in a large university
over 6 semesters (three years) [20,41]. The last dataset was collected from a large
IT corporation over three years [18,17]. Because there is no other hyperlink pre-
diction algorithm for hypernetworks with which we can compare our results, we
compare HPLSFwith three baselinemethods. Ob-Model (the classifier trained us-
ing embedded observed features) is used as the baseline to demonstrate the impor-
tance and necessity of exploring latent social features for hyperlink prediction.We
also execute Ex-Model-MDS (the classifier trained using embedded latent features
that are learned by the same MDS procedure as HPLSF) and Ex-Model-LFRM
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Table 1. The overview of the hospital collaborative hypernetwork datasets

Hyperlink Cardinality #Hyperlinks

3 735

4 510

5 341

6 245

Arbitrary-Sized 1831

Table 2. The hyperlink prediction accuracy (%) using HPLSF and Ex-Model-LFRM
under the hospital collaborative hypernetwork datasets

Hyperlink Cardinality HPLSF Ex-Model-LFRM

3 90.6± 0.4 86.2± 1.1

4 88.9± 0.9 81.5± 2.3

5 84.3± 2.2 74.3± 3.5

6 85.6± 0.4 73.7± 0.4

Arbitrary-Sized 80.6± 1.3 71.2± 1.8

(the classifier trained using embedded latent features that are learned by the La-
tent Feature Relational Model (LFRM) proposed in [27]) in order to validate the
effectiveness of the designed latent social feature learning scheme in HPLSF. Note
that LFRM was designed to model latent features under the traditional “two-
vertex-link” setting. Thus in our experiments, we transform the hypernetwork into
the traditional “two-vertex-link” network (linking all pairs of vertices contained
in a particular hyperlink) when using LFRM.

4.1 Hospital Message Hypernetwork Dataset

In this subsection, we consider HPLSF in the context of an email dataset de-
rived from communications in an urban hospital [7]. The hypernetwork contains
message communications among patients, their family members, clinicians, and
researchers who work on coming up with a cure for particular diseases in the
hospital. The messages are collected among 11,944 people over one year via
an internal message system in the hospital. The people involved in the mes-
sage system are treated as the vertex set and all persons that appear in one
message are regarded as the set of vertices of a hyperlink. Most hyperlinks in
the dataset has a cardinality no larger than 6. In this experiment, we respec-
tively consider 3−cardinality, 4−cardinality, 5−cardinality, 6−cardinality, and
arbitrary-sized cardinality when constructing the hypernetwork. In other word,
in the k−cardinality hypernetwork, the messages containing exactly k people
are considered and others are discarded, while in the arbitrary-sized cardinality
hypernetwork, we consider all hyperlinks with any cardinality value. Meanwhile,
we randomly sample sets of nodes to form negative hyperlinks. The detailed
information about this dataset can be found in Table 1.
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Due to the strict privacy regulations in the hospital, the content of each mes-
sage is discarded. Additionally, any personal information for each person (vertex)
in the message system can not be accessed. Therefore, in this dataset, HPLSF
only applies latent features to predict hyperlinks. (In this case, HPLSF is equiv-
alent to Ex-Model-MDS.) To demonstrate the effectiveness of the latent feature
learning of HPLSF, we execute Ex-Model-LFRM under the hospital collabora-
tive hypernetwork dataset. In this experiment, the latent feature dimension p
is determined by this: we use five times 10-fold cross validation to tune this
parameter for Ex-Model-LFRM. Then for HPLSF, we use the same value of p
as in Ex-Model-LFRM. After obtaining the latent features, SVMstruct [14] is
employed for training and testing. The 10-fold cross validation scheme is used
to achieve the average prediction accuracy, which is listed in Table 2.

The results in Table 2 indicates that HPLSF is able to obtain higher prediction
accuracy than Ex-Model-LFRM under all the conditions. Note that as the hyper-
link cardinality k increases, the difference between the accuracy of two methods
grows. This fact implies that the proposed latent feature learning scheme in
HPLSF outperforms LFRM [27] under the hyperlink prediction scenario. It is
because that LFRM was designed for the traditional networks and may fail in
modeling hyperlink relations. As for the arbitrary-sized hypernetwork, the dif-
ference between our HPLSF and the baseline is also significant. Pairwise t-tests
at 95% significance level demonstrate the validity of the experiments.

4.2 University Email Hypernetwork Dataset

In what follows, we use a university email hypernetwork dataset [20,41]. The
dataset contains email messages delivered to users via the university email sys-
tem over six separate semesters. The email user population is a mix of students,
faculty members, staff, and “affiliates” (a category including postdocs, visiting
scholars, and alumni) in the university. Every email record is composed of date,
time, sender, and list of recipients. Out of privacy and security concerns, the
contents of email messages are discarded and the email addresses are encrypted.
However, in this email system, we are allowed to access an email user table that
describes the personal information of each user, namely occupation, birth, gen-
der, home country, postal code, years at the university, academic department
(for student and faculty), division (for student only), and dormitory building
(for student only). Email messages from each of the six semesters are treated as
a separate dataset. Each person is treated as a vertex in the hypernetwork, and
all the persons that appear in one email are regarded as a set of vertices in a hy-
perlink. The personal information from every email user is regarded as observed
features for each vertex. The average number of nodes for each dataset is 67,736,
and the average number of hyperlinks is 253,469. We obtain positive data and
negative data using similar scheme as last subsection. Detailed information of
the six datasets is listed in Table 3.

We execute HPLSF under each of the six datasets respectively. Ob-Model, Ex-
Model-MDS, and Ex-Model-LFRM are used for comparison. In Ob-Model, we
use all the accessible user information as observed features. In Ex-Model-LFRM,
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Table 3. The overview of the university email hypernetwork datasets

Time #Vertices #Hyperlinks

Semester1 57,328 340,717

Semester2 61,451 248,009

Semester3 65,946 131,448

Semester4 73,040 458,273

Semester5 77,256 163,930

Semester6 71,396 178,435

Table 4. The hyperlink prediction accuracy (%) using HPLSF, Ob-Model, Ex-Model-
MDS, and Ex-Model-LFRM under the university email hypernetwork datasets

Time HPLSF Ob-Model Ex-Model-MDS Ex-Model-LFRM

Semester1 88.7 ± 0.9 82.8± 1.1 79.2 ± 1.8 72.5 ± 1.3

Semester2 89.4 ± 0.6 81.2± 2.0 78.7 ± 1.0 73.2 ± 3.0

Semester3 92.4 ± 1.0 83.2± 0.9 83.6 ± 1.4 77.6 ± 3.3

Semester4 89.7 ± 1.8 80.4± 1.7 74.3 ± 2.2 67.7 ± 1.8

Semester5 90.1 ± 1.2 81.3± 1.3 82.3 ± 1.8 79.6 ± 1.1

Semester6 87.1 ± 1.2 79.4± 2.2 83.0 ± 1.5 79.6 ± 1.3

variational inference is used to learn the parameter in the latent feature relational
model as described in [26]. The latent feature dimension p is determined using
the same scheme as last subsection. SVMstruct [14] is applied for training and
prediction. In all the methods, we employ the 10-fold cross validation scheme
to achieve the average prediction accuracy and list them in Table 4. Table 4
indicates that the prediction accuracy of HPLSF outperforms all the baselines
under all the datasets. HPLSF achieves significantly higher accuracy than Ob-
Model, which demonstrates that exploring “latent” social features are helpful
and necessary for hyperlink predictions because social features are not always
observable. Meanwhile, the accuracy of Ex-Model-MDS is much higher than Ex-
Model-LFRM under almost all datasets, which implies that HPLSF designs a
better way to explore latent features in hypernetworks. Pairwise t-tests at 95%
significance level demonstrate the validity of the experiments.

4.3 IT Company Email Hypernetwork Dataset

In what follows, an email hypernetwork dataset collected from a large infor-
mation technology and electronics company [18,17] is employed to evaluate the
proposed HPLSF framework. The dataset contains the complete record, as drawn
from the company’s servers, of email communications among 30,328 employees
from 2006 to 2008.The employees in the company are located in 289 different
offices around 50 states in United States and collectively comprise about one
quarter of the company’s employee population. Each email record comprises the
timestamp, sender, lists of receipients, and the size of the message. Privacy laws
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and corresponding company policies preclude the collection of the content of
messages. However, some personal information for each employee is accessible
from the HR department of the company, namely work years in the company,
employee’s job function, office location code, the state of the office, and em-
ployee’s group ID. Email messages from each of the three years are treated as a
separate dataset. Each person is regarded as a vertex in the hypernetwork while
all people appearing in one email message are regarded as vertices associated
with the hyperlink. The personal information for each employee obtained from
HR department is treated as observed features. Detailed information of the three
datasets is shown in Table 5.

Table 5. The overview of the IT company email hypernetwork datasets

Year #Vertices #Hyperlinks

2006 30,328 992,382

2007 27,134 1,074,507

2008 27,134 473,756

Table 6. The hyperlink prediction accuracy (%) using HPLSF, Ob-Model, Ex-Model-
MDS, and Ex-Model-LFRM under the IT company email hypernetwork datasets

Year HPLSF Ob-Model Ex-Model-MDS Ex-Model-LFRM

2006 87.4± 0.8 74.8± 0.2 76.5 ± 2.2 73.7 ± 0.9

2007 85.1± 0.6 81.3± 1.3 78.4 ± 2.4 75.3 ± 2.0

2008 86.7± 1.1 77.5± 1.3 81.4 ± 1.7 76.8 ± 1.3

We run HPLSF on each of the three datasets sequentially and obtain the hy-
perlink prediction results. To compare with the proposed algorithm, the three
baselines are used as in last section. In Ob-Model, all available personal infor-
mation from the HR department is used as each employee’s observed features.
In Ex-Model-LFRM, we still use variational inference to learn the parameter for
the LFRM. For all the methods, 10-fold cross validation scheme is employed to
calculate the average prediction accuracy.

The results listed in Table 6 show that the proposed HPLSF achieves higher
accuracy than any other baseline methods. HPLSF performs much better than
Ob-Model, establishing that “latent” social features are helpful for hyperlink pre-
dictions. Meanwhile, Ex-Model-MDS still performs better than Ex-Model-LFRM
on all the three datasets, which demonstrates again that the latent feature learn-
ing scheme designed in HPLSF is better than LFRM under the hypernetwork
scenario. Pairwise t-tests at 95% significance level demonstrate the validity of
the experiments.

5 Conclusion

In this paper, we propose a link prediction framework for hypernetworks, which is,
to the best of our knowledge, the first hyperlink prediction work. The framework,
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named HPLSF, aims to predict whether a hyperlink exists among a set of vertices
in a hypernetworkby leveragingnot only observed features but also latent features.
By designing a feature-embedding technique, we address the artbitrary-sized hy-
perlink cardinality challenge in hypernetwork setting. Because observed features
and latent features are not necessarily independent of each other, we generalize
a structural SVM rather than simply combining the results obtained from classi-
fiers using each of the two types of features. The experimental results under three
large email hypernetworks from diverse sources demonstrates the effectiveness of
HPLSF.
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Abstract. We propose a stream mining method that learns opinion-
ated product features from a stream of reviews. Monitoring the attitude
of customers towards products is a field of much interest, but the prod-
ucts themselves may come in and out of the market. We rather inves-
tigate which (implicit) features of the products are important for the
customers, and monitor how customer attitude towards such features
evolves. To this purpose, we use a two-level stream clustering algorithm
that extracts features and subfeatures from an opinionated stream, and
couple it with dedicated feature-specific classifiers that assess the polar-
ity of each extracted (sub)feature. We evaluate our method on a stream
of reviews and we elaborate on how changes in the arrival rate of features
(drift) affects algorithm performance.

Keywords: stream mining, product feature extraction, opinion mining.

1 Introduction

We investigate the problem of monitoring sentiment in product reviews. Opinion
mining on products is widespread. We rather focus on identifying and monitor-
ing the product features, which are frequently mentioned by the consumers. We
propose a stream mining method that learns the features and assesses the polar-
ity mostly associated with each feature. As the stream progresses, our method
adjusts the features, forgetting unpopular ones and recognizing emerging ones,
and monitors the change of their polarity over time - and thus the attitude of
the consumers towards product features.

Opinion monitoring over streams of reviews has gained momentum in the last
years. Stream learners have been proposed to extract opinions from streams,
detecting drifts and bursts [3,4,15]. Opinion monitoring responds to the fact
that the attitude of people may change over time. Hence, learning from a stream
of opinionated reviews contributes to better decision making for the customers
and to better estimation of product popularity for the product owner.

One thread of opinion mining concentrates on identifying product features
and assessing the sentiment associated to them [9,16]. A feature is an implicit
property, as e.g. in “This camera lens is cheap” (lens as property of the camera).
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Monitoring of product features is a natural extension of static learning; it is useful
for two reasons. First, products enter and exit the market, but the popularity of
some features remains, e.g. the lens of any camera, the battery lifetime for any
laptop. Second, features that suddenly become popular call for the producers’
attention: if many reviews on the “charge device” of different cameras emerge,
this indicates that customers have become interested in that feature.

In this work, we study opinion monitoring for features of products 1. Our
stream mining approach encompasses (a) product feature extraction and adap-
tion to new features, (b) feature polarity learning and (c) filtering of unimpor-
tant reviews. For product feature extraction (item a) we define a hierarchy of
polarized (sub)features, so that different levels of granularity on the product
properties are found. We adapt this feature hierarchy over time, incorporating
new features and eliminating unpopular ones, so that changes in the emphasis
paid to features by customers is captured in the model. For feature polarity
learning (item b), we train one sentiment classifier per feature, so that effects of
polysemous words can be minimized (“heavy” is negative for a laptop but may
be positive for a lens). Finally, (item c) we introduce the notion of important
review, as review that is similar to many others and can serve as representative.
We consider only important reviews, so that we capture general trends and omit
outliers, while we gain also in efficiency. For feature extraction from important
reviews we extend our earlier method TStream [18], which monitors topics on
streams and detects novel topics.

The rest of the paper is organized as follows: In Section 2, we discuss related
work. In Section 3, we describe the basic concepts, and then we introduce our ap-
proach. Section 4 contains our experiments on a real dataset, where we simulate
drifts and bursts. The last Section concludes our study.

2 Related Work

Relevant to our work are studies on sentiment analysis over streams, on feature
extraction from a stream of opinionated documents and on stream clustering.

Sentiment Analysis over Streams. One of the first approaches on sentiment
analysis over a stream was proposed by Silva et al. [15]: stream learning starts
with a small seed of labeled documents, upon which a classification rules learner
is trained. The seed is gradually expanded with new relevant documents. We
also use a small seed for learning, but we train a classifier for each feature.

Bifet and Frank [3] investigate sentiment classification on a stream of tweets;
they consider unbalanced classes with drifts and shifts in the class distribution,
under the requirement of quick response under memory constraints. Closest to
our approach is their follow-up framework [4] that consists of (i) a twitter filter
to convert tweets into TF-IDF vectors, (ii) an adaptive frequent itemset miner
that stores the frequency of the most frequent terms and (iii) a change detector

1 We use the terms ‘feature’ and ‘property’ as synonyms, to denote an implicit property
that must be extracted from the reviews with text (stream) mining methods.
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that explores changes in the frequency distribution of the items. The framework
monitors changes in the frequency of words. We also propose a framework for
stream learning over opinionated documents, but our objective is to first identify
the features and subfeatures of the products we study, and then to assess the
polarity of the features (using a classifier for each (sub)feature), thereby taking
feature specific words into account and also consider that features may emerge
and disappear as the stream progresses.

Feature Extraction from Reviews. Feature extraction and monitoring from
a stream is a new subject. For feature extraction on a static set of reviews,
Liu identifies four research subtopics [10], of which the identification of frequent
nouns and of noun phrases are closest to our research.

Long et al. [11] extract core words for an aspect, compute their frequencies,
estimate their distance to other words and use it to acquire further words related
to the aspect. Zhu at al. [17] consider the frequency of terms that contain other
terms. Mukherjee et al. [13] extract features and relationships among them: for
feature extraction, they consider all nouns. In contrast, we suppress very frequent
nouns with the help of TF-IDF weighting. Moghaddam and Ester [12] want to
find multi-part noun phrases like “LCD display”; they use TF-IDF weighting
of nouns with non-stopword stems at document- and paragraph level and they
apply Apriori to find frequent noun combinations. We also aim to find multi-
word terms, but use two-level clustering instead; this allows us to identify also
refinements of features. All above methods are static; our approach also captures
emerging features and gradually forgets features that are no longer important.

Stream Clustering. We can distinguish two types of stream clustering meth-
ods. Methods of the first type summarize the stream and maintain summaries
online; clustering is an offline step. An early approach of this type is Clus-
tream [1], more recent ones include DenStream [5]. We adhere to the second
type of stream clustering, where the clusters are updated as new data instances
arrive. An early approach of this type appeared in [7], the text stream clustering
algorithm in [2] adheres to this type. For text stream clustering in the current
work, we build upon our earlier method TStream [18], which is specialized in
detecting new topics from bursts of news and in accumulating them to a fixed
set of clusters.

3 Extracting and Maintaining Polarized Features

We monitor a stream of product reviews, from which we extract a two-level
hierarchy of product features, assess the polarity assigned to the features by the
people who write the reviews, and identify changes in feature polarity over time.

Our approach is designed for streams of product reviews, where each review
refers to a single feature of the product. The stream itself, though, covers a
variety of features of the different products. The requirement of one feature per
review may look a bit restrictive at first. However, we are mainly interested in the
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few dominant products features that customers focus on, especially when they
decide to write only brief reviews. Long appraisals of content (e.g. for books) are
beyond our scope. Long reviews that address many features of the same product
can be split into short sentences. Our framework would currently consider these
sentences as independent; exploiting their correlations is issue for future work.

Briefly, our framework works as follows. We process the stream in batches
of fixed size at timepoints t0, t1, · · · , ti, · · ·. Since the batch size is fixed (to a
constant we denote as streamSpeed), the timepoints are not equidistant. On
this stream, we perform text stream clustering, by building upon our algorithm
TStreams that derives topics and subtopics from a stream of news [18]. TStreams
partitions the first batch of reviews into Kg clusters at the first hierarchy level –
from these clusters we extract the product features. It then partitions each global
cluster into Kl local clusters –from these we extract the product subfeatures. As
new batches arrive, TStreams pushes reviews down the hierarchy, while keeping
reviews that do not fit any cluster into containers. When containers are filled, the
hierarchy is rebuilt. We extend TStreams to detect and process only “important”
reviews, which are, informally, similar to many other reviews and can thus serve
as representatives. For each global and local cluster, we learn a polarity classifier.
All classifiers are initialized on a first batch of labeled reviews and then extended
through label propagation. When a cluster is rebuilt, its dedicated classifier is
also re-learned. The framework is depicted in Algorithm 1 and described in detail
in subsections 3.2 and 3.3, after introducing definitions and notation.

3.1 Definitions and Notation

The objective of our framework is to learn features and their polarity. To do so,
we first extract from each batch of the reviews’ stream the “important” reviews.

Definition 1 (Review Importance). Let r be a review and R a dataset con-
taining it. We define the “importance of r with respect to R” as the number of
reviews in R that have r among their k nearest neighbors, whereby the reviews
are weighted on their “age” (cf. Def. 2 below).

importance(r, R) =
∑
ri∈R

age(ri) · isRevNeighbour(r, ri, R)

where: isRevNeighbour(r, ri, R) =

{
1, r ∈ NN(k, ri, R)
0, otherwise

and NN(k, ri, R) is the set of k-nearest neighbors of ri in R; we use cosine
similarity as similarity function.

Hence, a review is important with respect to some dataset R. This dataset is a
cluster of the two-level hierarchy. Within R, r is imporant if it appears among
the k nearest neighbors of many recent reviews and can thus serve as their
representative. Recency is regulated by the concept of age:
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Definition 2 (Review Age). The age of a review r is the average age of all
words wi contained in r: age(r) = 1

|r|
∑

wi∈r
exp (−λ · (t− twi))

where t is the current timepoint, twi is the time of the most recent review that
contains wi and λ ∈ + is a decay factor.

On the basis of Defs. 1 & 2, we rank reviews on importance and apply a review
importance threshold β to select the most important ones. These constitute a
dataset R, from which we derive a feature space of nouns FR. We use the feature
space to vectorize the reviews (with TF-IDF) and then perform clustering on R.
Then, extending the definition of “topic” in [18], we define a “polarized feature”
as a cluster centroid with an associated polarity:

Definition 3 (Polarized Feature). Let R be a dataset of reviews labeled on
polarity, and let FR be the vector space learned upon R (through TF-IDF). Let
c ⊂ R be a cluster. The “polarized feature” represented by c consists of:

– the centroid ĉ =≺ w1, w2, . . . , w|FR| -, where wi is the average TF-IDF
weight of keyword noun ki ∈ FR, i = 1 . . . |FR|.

– the polarity label cpolarity, defined as the majority class label within c

TStreams builds a two-level hierarchy [18]. We extend it by learning the clus-
ters of the 1st level from the important reviews only. The same is done at the
2nd hierarchy level: within each “global cluster”, the unimportant reviews are
removed, the local feature space is computed and the cluster is partitioned into
subclusters (“local clusters”). The centroid of a local cluster, associated with the
majority class label in it is then a polarized sub-feature (by Def. 3).

Not all arriving reviews can fit into the existing hierarchy. We inherit from
[18] the notion of novelty for a document with respect to the existing clusters:

Definition 4 (Review Novelty). Let r be a new review. Let θ be a set of
clusters extracted from a dataset R. Let FR be the vector space derived from R
(through TF-IDF). Given a similarity threshold δ ∈ [0, 1], r is novel with respect
to θ if its cosine similarity to the closest cluster centroid is less than δ, where
the cosine similarity depends on the feature space (cosineFR).

Novel reviews are maintained separately in containers. As in [18], we associate
the 1st hierarchy level with a global container, which accommodates reviews that
are too far from all centroids of all global clusters. Each such cluster is further
associated with a local container, which accommodates reviews that are close
to its centroid but far from all centroids of its subclusters (local clusters). To
decide when to re-cluster the contents of one global cluster only or the whole
set of global clusters, we monitor the novelty degree of the stream, which we
implement on the basis of the size of the containers (Def. 5 comes from [18]):

Definition 5 (Stream Novelty). Let θ be a set of clusters. and let Z be the
container associated with θ; it contains all those reviews that are novel with
respect to θ, according to Def. 4. Given a size threshold parameter σ, Z exhibits
novelty towards θ if: |Z| ≥ σ.
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When enough novel reviews have arrived, the model is updated through reclus-
tering at the first or second level. In-between the updates, the model is adapted
by incorporating the non-novel reviews. For the adaption, we take the impor-
tance of the reviews into account, as defined in Def. 1, subject to the review
importance threshold β. For our experiments, we have set β = 0.6.

3.2 Extracting an Initial Hierarchy of Polarized (Sub)Features

To extract the hierarchy of (sub)features from an initial set of opinionated re-
views R (line 1) we build upon TStreams [18]. Global clusters (features) are
extracted by applying clustering over the entire initial set of reviews; a total of
Kg global clusters is extracted. To derive the local clusters (subfeatures), cluster-
ing is applied again over the sets of reviews corresponding to each of the global
clusters. This way, a unique TF-IDF feature space is built for each global clus-
ter and the corresponding local clusters are extracted from this feature space. A
total of Kl local clusters are extracted for each global cluster.

To learn the polarity of the derived (sub)features, as expected for Def. 3, we
train a Multinomial Naive Bayes (MNB) classifier Δ for each global and local
cluster of the hierarchy (line 1), based on the initial reviews that are in these
clusters and thus support the corresponding (sub)features (polarized centroids,
cf. Def. 3). The choice for MNB is motivated by the good performance reported
in [14]. However, rather than training one global classifier (as in [14]) on reviews
that may be heterogeneous in content, we train local classifiers on the homo-
geneous reviews inside each cluster. Note that the hierarchy of (sub)features
evolves over time based on the new coming reviews and the ageing of the old
ones, the maintenance of the hierarchy is discussed in Section 3.3.

To vectorize the reviews, we use the Bag-of-Words model, but we consider
only adjectives and adverbs, because, according to [10], these parts of speech
express best the subjective opinions of the authors.

3.3 Adapting the Evolving Feature Hierarchy and the Feature
Polarities

New reviews might cause smooth or drastic changes at both the hierarchy
(sub)features and their associated classifiers. Smooth changes call for adapta-
tion whereas drastic changes require re-building of (part of) the hierarchy. The
decision depends upon the novelty of the incoming reviews.

More specifically, upon the arrival of a new review r (line 6-20) from the
stream, our method works as follows:

(a) Review novelty check and novelty accumulation. We first check whether the
new review r is novel (line 9) w.r.t. the global clusters (features) of the hierarchy
(cf. Def. 4). If so, r is propagated to the global container Z (line 19) where
novel reviews are stored. Otherwise, r fits to an existing global cluster cg, i.e. it
supports the cluster’s polarized feature. Then, either r fits to some local cluster
under cg (line 12-14) or it is assigned to the local container Zcg (line 16) [18].
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Algorithm 1: Feature-Sentiment Extraction

Input : initial seed R, stream S, set of parameters L
1 t ← 0; Θ ← extractPolarizedHierarchyAndClassifiers(R,L)
2 importanceBookKeepingOfReviews(Θ, t, λ, k)
3 batch ← first streamSpeed reviews from S
4 while batch do
5 t ← t +1
6 for i=1 to |batch| do
7 currentReview ← ith position in batch
8 Cg ← findMostProximalGlobalCluster(currentReview, δg, Θ)
9 if Cg is not null then

10 updateCentroid(currentReview,Cg)
11 Cl ← findMostProximalLocalCluster(currentReview, δl, Cg)
12 if Cl is not null then
13 updateCentroid(currentReview,Cl)
14 assignLabel(currentReview,ΔCl)

15 else
16 assignToContainer(ZCg, currentReview)
17 assignLabel(currentReview,ΔCg)

18 else
19 assignToContainer(ZΘ, currentReview)

20 assignLabel(currentReview,ΔΘ
default)

21 if |ZΘ | > σg then

22 ZΘ ← add n latest important reviews

23 Θ ← extractPolarizedHierarchyAndClassifiers(ZΘ,L)
24 else
25 for i=1 to Kg do
26 if |ZΘ

Cgi
| > σl then

27 ZΘ
Cgi

← add n latest important reviews of CgΘi
28 relearnClusters(CgΘi ,ZΘ

Cgi
,L)

29 relearnClassifiers(ΔΘ
Cgi

,L)

30 importanceBookKeepingOfReviews(Θ, t, λ, k)
31 removeUnimportantReviews(Θ,β)
32 updateClusterCentroids(Θ)
33 storePolarizedHierarchy(Θ, t)
34 batch ← replace content of batch by the next streamSpeed reviews from S
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Table 1. Set of Parameters L
Parameter Definition

Kg,Kl number of global, respec-
tively local clusters

σg, σl global, resp. local nov-
elty threshold

δg, δl global, resp. local simil-
iarity threshold

Parameter Definition

λ decay constant

β importance threshold

n # important reviews to re-
learn

streamSpeed # reviews per batch

k # nearest neighbors

(b) Review assignment. A new review r that is not novel is assigned to its
most proximal global and then local cluster (line 8 & 11). This means that r
is associated with the feature and subfeature described by these clusters. The
centroids of the associated clusters are updated by the content of r (line 10 &
13). We assess the polarity of r by invoking the classifier for the local cluster, to
which r is assigned (line 14).

If r is assigned to a global cluster but not to a local one, the classifier of the
global cluster is invoked (line 17). In case r is novel and it does not fit to the
existing hierarchy, the default classifier is applied which is learned upon the whole
dataset (line 20). The default classifier is the most generic one, whereas as we
traverse the hierarchy the classifiers become more specific and thus, intuitively,
better capture the sentiment of the associated reviews.

(c) Importance book-keeping. The importance score of each review (cf. Def. 1)
is updated (line 30), since the score is affected by ageing of the words and by
changes in the neighborhoods (due to the arrival and ageing of other reviews).
Reviews that are not (no more) important are removed (line 31). Moreover, the
updating of the importance of reviews implies updates in the centroids of the
(sub)features (line 32) (cf. Def. 3), since old important reviews might be removed
whereas new reviews might now be considered important.

Note that there is no need to update the importance of all the reviews in the
hierarchy after the arrival of a new review. We do need to update the importance
of the reviews for the cluster where this review has been assigned to since the
inverse kNNs might change due to the addition of the new review. For the rest of
the reviews though, change in the importance can be triggered only due to the
natural ageing of the keywords and we need to update them once per timepoint.
Recall that more than one review might arrive per timepoint, described by the
streamSpeed parameter.

To facilitate the ageing computations in the importance formula (cf. Def. 1),
we maintain for each cluster in the hierarchy a hashmap containing the words
that appear in the cluster reviews, their frequency in the cluster and the last
timestamp where each word has been observed in the cluster. This information
is adequate for computing the ageing of each keyword in the cluster, while the
hashmap entries are easily maintained as new reviews are assigned to the cluster
and old anymore non-important reviews are removed as outdated. The inverse
kNN queries are also not a bottleneck since they are restricted within each cluster



348 M. Zimmermann, E. Ntoutsi, and M. Spiliopoulou

and moreover, only the important reviews within a cluster contribute to their
computation. As already mentioned, non-important reviews are removed from
the cluster. In the experiments, we show that the consideration of only important
reviews has a big effect on the runtime of our method (cf. Figure 6).

(d) Stream novelty check and model updating. When enough novel reviews have
been accumulated in the containers, the hierarchy is rebuilt totally or partially
(line 23 & 28) so as to discover new (sub)features and forget outdated ones. In
particular, we rebuild the complete hierarchy if the size of the global container
Z exceeds the novelty threshold σ (cf. Def. 5) (line 21). If only a local container
is filled, only the corresponding global cluster is re-partitioned (line 26-28). For
reclustering, we use the novel reviews and the n most recent of the old important
reviews (line 22 & 27). Thus, we ensure that both new words and still popular
old words are incorporated to the updated (sub)features. This step builds upon
model updating in TStreams [18], extending it with the maintenance of the most
important reviews.

(e) Updating the classifiers. When a set of reviews is re-clustered, a new classifier
must be trained for each new cluster. We have the option of using only the initial
seed for training, and the option of considering all reviews in the clusters but
with the derived polarity labels. In our experiments, we use the latter option.

When the whole hierarchy is re-built (line 23), except for the new classifiers
for the global and local clusters, the default classifier must also be trained. To
this end, all the reviews in the hierarchy are considered.

4 Experiments

To evaluate our feature extraction method we use a real dataset of product
reviews [8], from which we generate through instance permutation three streams
with different properties. For polarity learning, we compare our one-classifier-
per-cluster method to a static classifier learned once on an initial part of the
stream and to an adaptive classifier that updates the model after each batch.

We selected all parameters experimentally. The similarity thresholds used
for review importance are set to δg = 0.6, δl = 0.8 (similarity at 2nd level is
more restrictive), while β = 0.6. The novelty thresholds for the containers are
σg = 100, σl = 15, enforcing reclusterings inside a global cluster instead of
rebuilding the whole hierarchy. The ageing factor λ is set to 0.5, the number of
nearest neighbors k = 4. Batch size (streamSpeed) is equal to 50 reviews; the
initialization batch contains 100 reviews. The number of reviews to relearn is
n = 2× streamSpeed. All results are the average of 10 runs of our algorithm.

4.1 Datasets

The product reviews dataset of [8] contains 540 reviews on 9 products, where
each review refers to one (implicit) product feature, from a total of 38 features.
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Fig. 1. # observed features per batch

Setting stream1 stream2 stream3

Kg Kl a b c a b c a b c

2 2 3 0 250 3 0 250 3 0 250
4 6 2 0 350 2 1 350 2 1 350
4 9 2 0 350 2 1 350 2 1 350
6 4 2 1 400 2 1 450 1 1 400
6 6 2 1 450 1 1 450 1 1 400
7 2 1 1 400 1 1 450 1 1 500
8 8 1 0 500 1 1 500 1 0 500

Fig. 2. a: # full reclusterings, b: # partial
reclusterings, c: # seen reviews when first
full reclustering was invoked

Most features are mentioned in 9 to 30 reviews. From this dataset we derived
three streams (cf. Figure 1) by sorting the reviews regarding their related fea-
tures as described bellow; also we filter reviews which are associated to features
that occur less than 9 times accross the dataset. Stream 1 (solid line) delivers
all 38 features to the learner within the first 220 reviews. Stream 2 (dashed line)
delivers only 6 features in the first 100 reviews, 8 further features are in the
reviews 101 - 200 and so on; the last feature is seen around review 520. Stream
3 goes like Stream 2 but delivers a different selection of features per batch. The
exact number of observed features per batch is depicted in Figure 1. Stream 1
covers a larger number of features per batch compared to streams 2 & 3. Since
a feature corresponds to a (sub)cluster, we expect that the feature extraction
method will achieve better results on stream 1 if the number of (sub)clusters is
high. For streams 2 & 3, we expect a better performance since the number of
features per batch is almost constant over time. Although the dataset is small,
it allows us to experiment with different forms of evolution.

Figure 2 shows how the arrival of reviews triggers reclusterings. The first col-
umn contains the number of global clusters Kg and of subclusters below each
global one, Kl . For each stream, column a depicts the number of reclusterings at
the 1st-level of the hierarchy (full reclusterings: they affect all clusters); column
b counts the reclusterings at the 2nd-level (partial reclusterings: they affect one
global cluster each time). Column c depicts the number of reviews seen before
the first full reclustering. A late first full reclustering and a low number of full
reclusterings are indicators of good adaption to change and also of a good per-
formance of our algorithm. similarity thresholds δg, δl remain constant. As we
can see, our algorithm performs better for settings with more clusters in total
(6 4 vs 2 2) or with many global clusters, even if the number of local clusters is
low (7 2 vs 4 6).

4.2 Evaluating the Feature Extraction Method

We evaluate the feature extraction method on the “purity” of the (sub)features
it extracts: purity is high if the number of features covered by each cluster is
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low. We first define the purity of a local cluster cl inside a global cluster cg as
the percentage of the reviews supporting the most frequent feature in cl w.r.t.
all reviews in the cluster, weighting the reviews on importance (cf. Def. 1):

localPurity(cl) =

∑
r∈dfcl

importance(r, cg)∑
r∈cl

importance(r, cg)
(1)

where where dfcl is the set of reviews in cl that are related to the majority feature
w.r.t. all reviews in cl.

Next, we aggregate the localPurity() values of all subclusters of global cluster
cg into globalPurity() – a normalized sum, weighted by the number of features
covered by each subcluster cl and by the number of reviews contained in cl:

globalPurity(cg) =

∑
cl
localPurity(cl) · coveredFeatures(cl) · |cl|

coveredFeatures(cg) · |cg|
(2)

Finally, we aggregate into the average weighted purity of a clustering Θ:

avgWPurity(Θ) =
1

|Θ|
∑
c∈Θ

globalPurity(c) (3)

In Figure 3, we study how the average weighted purity changes with the arrival
of reviews for streams 1 (left) & 3 (right) under different number of global and
local clusters; we skip stream 2, because all values are very similar to stream
3. Note that the arrival of reviews affects the number of features known and
remembered at each timepoint (cf. Figure 1). Therefore, it affects the number of
features described by each subcluster and consequently the cluster purity. Each
curve corresponds to a different number of global clusters (first number: 2, 4, 6,
7, 8) and local clusters (second number: 2, 4, 6, 8); for example, the solid line
with circles at the junctions is labeled 7 2 and corresponds to 7 global clusters,
each one containing 2 subclusters. The points at each curve do not correspond
to exact avgWPurity values but to averages over the batch size; for example, the
first point corresponds to the average of avgWPurity over the first 100 reviews.

Figure 3 shows that purity increases with the number of global clusters. For
all streams, the purity decreases after clustering the initial set of 100 reviews,
but then stabilizes and slightly increases again. We also see that the ratio of
global-to-local clusters has different effects for the different streams. For example,
the purity of the setting 2 2 is better for stream 2 & 3 than for stream 1. An
explanation is that streams 2 & 3 see less features at the arriving batches in
comparison to stream 1 (cf. Figure 1). So, some of the features seen at the
beginning of streams 2 & 3 are later forgotten, hence the clusters accommodating
them are used to describe new, emerging features. Thus, under streams 2 & 3,
the full set of features can be described with less clusters since at each timepoint
not all features are present.

We juxtapose the peaks of the curves (between 300 and 400 reviews for streams
2 & 3, between 200 and 300 for stream 1) in Figure 3 with the number of
reclusterings shown in Figure 2. We see that the Stream 1 curves with early peaks
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Fig. 3. avgWPurity for streams 1 and 3: higher values are better. Each curve cgcl
corresponds to a configuration of cg global and cl local clusters. Each point in the
curve corresponds to the average over the avgWP() values for the reviews seen within
the interval depicted in the horizontal axis.

(6 4,6 6 and 7 2) correspond to partial reclusterings. So, partial reclusterings
lead to peaks on purity and thus improve model quality.

For the setting 6 4 on stream 3, we show in Table 2 the labels of the subclusters
and how they change over time. The first column is the identifier of the global
cluster, the rest of the columns correspond to batches. We use the notation c
(C) to denote a local cluster c occurring within a global cluster C. The upper
part of the table contains the first seven batches, whereas the remaining three
batches are depicted in the lower part of the table. As the stream progresses,
there are subclusters with empty labels (e.g. , c:1 (C:0) at batch 200). These
correspond to obsolete features, i.e. features that have not received any new
reviews from the stream in the recent past; the old reviews supporting them
aged and vanished. We see that some clusters, as c:4 (C:0), are very stable,
covering the same feature (for c:4 (C:0) it is “support”) throughout. According
to [8], this feature is mentioned only for three products, hence c:4 (C:0) nicely
extracts the feature independently of the products. A different example is the
feature “odor” that is supported by reviews from only one product, which is very
different from the others. This feature is not a global one; it is accommodated
in local cluster c:21 (C:20). Thus, the two-level hierarchy captures the semantics
of the features in the reviews, whereby it is better to allow for many clusters at
the 1st level; this comes at no cost, since clusters remain empty if there are no
features to be covered.

4.3 Evaluation of the Polarity Learning Method

For the evaluation of our one-classifier-per-cluster method we use accuracy, tak-
ing as ground truth the actual scores given to each review by the users. There
are six scores: -3 (most negative polarity),- 2, -1, 1, 2, 3 (most positive polarity).
We compare our method to two baselines, the StaticBaseline and the Dynam-
icBaseline. The StaticBaseline is a single global classifier trained over the first
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Table 2. Stream 3, setting 6 4: labels of the local clusters (c : x) within global clusters
(C : y) for each batch

Name 100 150 200 250 300 350 400

C:0 c:1/size;
c:2/install;
c:3/price;
c:4/support;

c:1/size;
c:2/install;
c:3/price;
c:4/look;

c:1/;
c:2/; c:3/;
c:4/support;

c:1/;
c:2/; c:3/;
c:4/support;

c:1/;
c:2/; c:3/;
c:4/support;

c:1/;
c:2/; c:3/;
c:4/support;

c:1/;
c:2/; c:3/;
c:4/support;

C:5 c:6/power;
c:7/power;
c:8/battery;
c:9/working;

c:6/power;
c:7/power;
c: 8/sound;
c:9/ work-
ing;

c:6/power;
c:7/power;
c:8/sound;
c:9/working;

c:6/software;
c:7/power;
c:8/sound;
c:9/working;

c:6/software;
c:7/;
c:8/sound;
c:9/;

c:6/software;
c:7/;
c:8/control;
c:9/;

c:6/software;
c:7/;
c:8/control;
c:9/;

C:10 c:11/use;
c:12/sound;
c:13/ head-
phones;
c:14/ head-
phones;

c:11/screen;
c:12/sound;
c:13/quality;
c:14/ head-
phones;

c:11/use;
c:12/sound;
c:13/ head-
phones;
c:14/ head-
phones;

c:11/use;
c:12/sound;
c:13/ head-
phones;
c:14/ head-
phones;

c:11/use;
c:12/;
c:13/look;
c:14/ head-
phones;

c:11/use;
c:12/;
c:13/look;
c:14/ instal-
lation;

c:30/install;
c:31/use;
c:32/setup;
c:33/software;

C:15 c:16/screen;
c:17/sound
quality;
c:18/battery;
c:19/quality;

c:16/screen;
c:17/sound
quality;
c:18/battery;
c:19/quality;

c:16/screen;
c:17/sound
quality;
c:18/battery;
c:19/;

c:16/screen;
c:17/diaper
pail; c:18/
installation;
c:19/;

c:16/screen;
c:17/diaper
pail; c:18/
installation;
c:19/;

C:20 c:21/odor;
c:22/screen;
c:23/diaper
pail;
c:24/control;

c:21/odor;
c:22/screen;
c:23/sound;
c:24/control;

c:21/odor;
c:22/LCD;
c:23/sound;
c:24/control;

c:21/odor;
c:22/ in-
stallation;
c:23/sound;
c:24/control;

c:21/works;
c:22/ in-
stallation;
c:23/sound;
c:24/control;

c:21/size;
c:22/ in-
stallation;
c:23/sound;
c:24/control;

c:21/size;
c:22/ in-
stallation;
c:23/size;
c:24/control;

C:25 c:26/works;
c:27/ ad-
justment;
c:28/works;
c:29/ ad-
justment;

c:26/ bat-
tery life;
c:27/ ad-
justment;
c:28/works;
c:29/ ad-
justment;

c:26/ bat-
tery life;
c:27/ ad-
justment;
c:28/works;
c:29/ ad-
justment;

Name 450 500 540

C:39 c:40/interface; c:41/;
c:42/control; c:43/;

C:44 c:45/battery; c:46/iTunes;
c:47/battery; c:48/;

c:45/install; c:46/software;
c:47/setup; c:48/;

c:64/install; c:65/bluetooth; c:66/control;
c:67/screen;

C:54 c:55/; c:56/storage;
c:57/price; c:58/;

c:55/; c:56/sound; c:57/;
c:58/;

c:55/; c:56/sound; c:57/; c:58/;

C:59 c:60/; c:61/battery; c:62/;
c:63/;

100 reviews from the stream. The DynamicBaseline trains an initial classifier
over the first 100 reviews. Then, as in prequential evaluation [6], the next batch
of reviews is used first to evaluate the classifier and then for learning based on
the true review labels. The accuracy values are shown in Figure 4 for stream 3.

In Figure 4, we see that in the early phases of the stream, our approach out-
performs the baselines for most of the settings. This indicates that the use of
dedicated feature-specific classifiers is a good alternative to a global, generic clas-
sifier as long as the features are well-separated.Towards the end of the stream,
the accuracy of our approach deteriorates, although it never drops much below
the baselines. An explanation is that the last batches of stream 3 contain many
more features than can be accommodated in the clusters, thus affecting also the
performance of the dedicated classifiers.

What polarity values are depicted for the extracted features? In Figure 5,
we show the feature names and polarities (setting 4 4) under stream 1. The
polarity is captured as a shade of gray (dark stands for positive). We see the
evolution of the features across the vertical axis (time) and from left to right,
since larger cluster identifiers correspond to later clusters. For example, observe
cluster C:35, which first describes the feature “interface” (a positively perceived
product property). Its polarity changes at the next timepoint, indicating that this
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Fig. 4. Accuracy over time for stream 3 settings of our method

feature is not perceived positively anymore. Then, the feature becomes obsolete
and is replaced by another one, “price”, which is also perceived rather negatively
in this dataset. The cluster C:35 dies out at timepoint 7.

Fig. 5. Label & Polarity evolution per cluster on Stream 1 for 4 global clusters and 4
local ones: The polarity is captured as a shade of gray, where dark stands for positive

Finally, we studied how the filtering of unimportant reviews affects the run-
time of our approach. In Figure 6, we vary the threshold β that determines how
many reviews will be considered as important. As expected, the more selective
the importance filter is (higher β values), the lower the execution time. Thus,
the runtime of our algorithm is regulated by the value of β rather than the size
of the stream.
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Fig. 6. Execution time of our method for different β values

5 Conclusion

We presented a method for the discovery of opinionated product features in a
stream of product reviews. We use a stream clustering algorithm to extract and
maintain a two-level hierarchy of product features. For each feature, we learn a
dedicated classifier that predicts and monitors feature polarity over time. Our
method can capture new features in the data and forget obsolete ones, whereupon
it rebuilds the model in a parsimonious way, re-learning only locally (within
some clusters) whenever possible. To avoid noise and decrease execution time,
we concentrate only on “important” reviews for learning, i.e. we sample the
arriving reviews, selecting those that are similar to many others and can thus
serve as representatives for them.

We evaluated our approach on a stream of product reviews with respect to
the quality of the extracted features and to the accuracy of the dedicated classi-
fiers. Our experiments show that our method performs well, especially when the
number of clusters in the two-level hierarchy is large enough to accommodate all
features. Clusters that accommodate no features remain empty, hence specify-
ing a large number of clusters does not incur substantial overhead. Further, the
execution time of our method is governed by the number of important reviews
it considers and not by the size of the whole stream.

As a next step, we want to investigate the interplay between cluster purity
(how many features are covered by a cluster) and classifier performance, so that
classifiers for features with very few and possibly heterogeneous reviews are
avoided. Moreover, we want to evaluate our method on reviews that cover more
than one feature, where there is one feature per sentence. Also we want to study
heuristics to adapt the number of global/local clusters dynamically based on the
heterogeneity of the reviews which are detected as novel. Further, we want to
investigate ways of making the classifiers adaptive, instead of re-learning them
from scratch whenever some global cluster is re-built.
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