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Abstract The architectures of modern embedded systems tend to be highly
application-specific, containing features such as heterogeneousmulticore processors,
non-uniform memory architectures, custom function accelerators and on-chip net-
works. Furthermore, these systems are resource-constrained and are often deployed
as part of safety-related systems. This necessitates the levels of certification and the
use of designs that meet stringent non-functional requirements (such as timing or
power). This chapter focusses upon new tools for the generation of software and
hardware for modern embedded systems implemented using Java. The approach
promotes rapid deployment and design space exploration, and is integrated into a
fully model-driven toolflow that supports existing industrial practices. The presented
approach allows the automatic deployment of architecture-neutral Java code over
complex embedded architectures, with minimal overheads and a run-time support
that is amenable to real-time analysis.

1 Introduction

Due to their application-specific nature, the architectures of modern embedded sys-
tems are commonly very different to that of more general-purpose platforms. Such
systems contain non-standard features that are poorly supported by existing lan-
guages and development flows, which can make embedded design difficult, slow,
and costly.

Good examples of this trend can be observed in recent smartphone devices. The
Apple iPhone 3G, released in 2008, contained twomain heterogenous processors (an
application processor and a baseband processor), four differentmemory technologies
of different speeds and sizes (DDR SDRAM, serial flash, NOR flash and SRAM),
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and a wide range of supplemental processing devices such as touchscreen controllers
and power management controllers [8]. In later versions of the device the application
processor itself became a heterogeneous, multicore, system-on-chip containing two
ARM Cortex-A9 CPUs with a SIMD accelerator, dual core GPU, and dedicated
image processing and audio processing cores. Developing software for such a system
is extremely challenging and requires large amounts of low-level, hardware-specific
software for each part of the system.

The difficulty of software development for complex architectures is compounded
by the observation thatmany embedded systems are deployed in resource-constrained
environments and so the efficiency of the final design is a top priority. Also, many
embedded systems are real-time systems and so are required to be analysed and
certified before deployment to ensure that they are fit for purpose.

This chapter discusses these problems in detail and considers existing solutions
in Sect. 2. An approach is then presented that is part of the MADES project, an EU
7th Framework Project [40]. The MADES project uses model-driven techniques to
seamlessly integrate model transformation (Sect. 3.2), software generation (Sect. 4)
and hardware generation (Sect. 5) flows to promote rapid development, design space
exploration, and increase the quality of the final systems. A case study is then pre-
sented in Sect. 6 to show how these tool flows work in practice. Finally, the chapter
concludes in Sect. 7.

2 Background

This section will discuss the unique challenges of embedded development and some
of the ways that they are currently addressed. Section 2.1 discusses the complex
hardware architectures found in embedded systems, Sect. 2.2 discusses the prob-
lems faced by developers of safety-critical and high-integrity systems, and Sect. 2.3
describes industrial concerns.

2.1 Heterogenous Hardware Platforms

The hardware architectures of embedded systems are becoming increasingly
non-standard and application specific. Large increases in on-chip transistor den-
sity coupled with relatively modest increases in maximum clock rates [20] have
forced the exploration of multi-processor architectures with heterogenous process-
ing components in order to meet increasing application performance requirements.
Consequentially, many modern embedded systems target Multiprocessor Systems-
on-Chip (MPSoCs)-based platforms. These architectures are a significant deviation
from the homogeneous, uniprocessor platforms that have traditionally been the main
component of embedded architectures.
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Embedded architectures frequently contain multiple, heterogeneous processing
elements [25], non-uniformmemory structures [3], and non-standard communication
facilities (e.g Network-on-Chip communications structures are used on the recent
Tilera 64-core TILEPro64 processor [44] and the Intel 48-core Single-Chip Cloud
Computer [26]). Embedded systems also make extensive use of application-specific
hardware, such as DSP cores, function accelerators, or configurable processors [11].
For example, Texas Instruments’ OMAP 5 range of devices [38] contain a dual-core
ARM Cortex A15, two other smaller ARM cores, DSPs, and a GPU core.

The lack of a ‘standard’ architecture means that such systems are not well-
supported by the standard toolchains and languages that have been previously devel-
oped. This is because the abstraction models of existing programming languages
were not developed to cope such variety and variability of heterogeneous platforms.
Early computer architectures were largely uniform and entirely static, consisting of
a single processor with access to one contiguous block of memory. As a result, the
abstraction layers of programming languages hidmany architectural details to aid the
programmer. This approach has been inherited by modern languages, which increas-
ingly rely on the presence of middleware or a distributed operating system to allow
the programmer access to hardware features and architectural mapping. Access to
features such as complex memory or custom hardware can only be achieved though
the use of abstraction-breaking techniques (link scripts, inline assembly, raw point-
ers etc.). These techniques are error-prone, difficult to port to new architectures, and
hard to maintain. Also, on resource-limited embedded systems complex operating
systems or middleware is infeasible.

2.2 Criticality

In addition to the problems described above, embedded systems are frequently
deployed in safety-related (i.e. safety-critical) environments, thereby categorising
them as hard real-time systems [6]. Such systems must be amenable to worst-case
execution time analysis so that theirworst-case timing behaviour can be identified and
accounted for. This requires predictability at all stages of the design, from language
choice (frequently a high-integrity subset such as Ravenscar Ada [5] or Java [24])
through a real-time OS (such as MARTE OS [34]) to real-time hardware features
(such as the CAN bus, or SoCBUS [45]).

The heterogenous hardware of embedded systems can often make guaranteeing
worst-case timing or resource use very difficult. Many hardware features have highly
variable response times. For example, the response time for a cache is relatively low
for a cache hit but very high for a cache miss. Characterising memory accesses as
hits or misses at analysis time is an active area of timing analysis research [16, 33],
made even harder when multi-level or shared caches are considered.

Once a suitable timing model of the hardware can be constructed that allows
analysis, restrictions must be imposed onto the programming model that developers
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can use in order to support timing analysis of the application software. The commonly
used model [6] makes the following assumptions:

• The units of computation in the system are assigned a potentially dynamic priority
level.

• At any given time the executing thread can be determined from the priorities in the
system and the states of the threads. i.e. Earliest Deadline First scheduling states
that the thread with the nearest deadline has the highest priority and should be
executing, unless it is blocked.

• Priority inversion (deviations from the above point) in the final system can be
prevented, or predicted and bounded.

• Threads contain code with bounded execution times. This implies bounds on loop
iterations, predictable paths through functions, restrictions on expected input data,
and limitations on exotic language features like code migration, dynamic dispatch,
or reflection.

• Blocking throughout the system is bounded and deadlock free.

Finally, once predictable hardware and software are developed it is still necessary
for the highest levels of certification (such as the avionics standard DO-178B) to
demonstrate traceability from requirements to software elements. Currently this is
not well supported by existing toolchains.

2.3 Industrial Applicability

Industry is generally reluctant to switch to new programming languages and tool-
chains as this imposes a drastically different development approach with implicit
problems of risk, acceptance and difficulties with legacy systems. In general, exist-
ing industrialmethodologiesmust be supported rather than supplanted.Model-driven
engineering (MDE) is becoming more frequently used in industrial projects [29] and
represents a common way of tackling the higher abstractions of modern embedded
systems [18]. However, as with programming languages it is desirable to remain
with existing modelling standards (such as SysML [43] or MARTE [30]) and tooling
wherever possible. Another parallel with restricted programming languages is that
UML and profiles like MARTE are very complex and there are many different ways
to model the same concept, so restricted and more focussed subsets can help with
productivity.

2.4 Summary

In summary, the following issues are observed:

• Embedded systems employ complex, heterogeneous, non-standard architectures.
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• Such architectures are poorly supported by existing programming methodologies
which tend to assume ‘standard’ hardware architectures.

• Embedded systems are frequently real-time or safety critical systems. This lim-
its the programming model which can be used and the middleware or operating
systems that can be deployed.

• Complex embedded architectures are frequently very difficult to analyse for worst-
case timing behaviour.

• Industrial developers are reluctant to move to new tools or development method-
ologies due to concerns over use of legacy code, certification, trust in existing
tools, and user familiarity.

3 Introduction to Model-Driven Engineering

The approaches introduced in this chapter will leverage Model-Driven Engineering
(MDE) to attempt tomitigate someof the problems previously described. This section
will introduce MDE, metamodels, and model transformations, and then describe the
model transformation framework that is used throughout the work described by this
chapter.

MDE is a software development paradigm,which aims to raise the level of abstrac-
tion in system specification and to increase the level of automation in system devel-
opment. In MDE, models, which describe different aspects of the system at different
levels of abstraction, are promoted to primary artifacts. As such, models “drive” the
development process by being subjected to subsequent transformations until they
reach a final state, where they are made executable, either by code generation or
model interpretation.

MDE relies on two facts [21]. First, any kind of system can be represented by
models and second, any model can be automatically processed by a set of operators.
Since, models need to be understood and processed by machines, they need to con-
form to a metamodel. Metamodels are used as a typing system to provide precise
semantics to the set of models they describe. Therefore, a metamodel is a model,
which defines in a precise and unambiguous way a class of valid models. The meta-
model describes the abstract syntax of a modelling language. The homogeneity of
definition provided by metamodels enables engineers to apply operations on them
such as transformations or comparisons in an automatic and generic way. Figure 1
illustrates the basic relations of conformance and representation between a system,
a model and its corresponding metamodel.

3.1 Model Transformations

Model transformations play a key role in model-driven development. Czarnecki and
Helsen [7] identify the following areas in which they are most applicable:
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Fig. 1 Basic relations of representation and conformance in MDE (adapted from [21])

• Generating lower-level models and code from higher-level, more abstract models;
• Mapping between different models;
• Querying and extracting information from models;
• Refactoring models;
• Reverse engineering of abstract models from concrete ones.

Model transformations are computer programs, which define how one or more
input models can be transformed into one or more output models. A model transfor-
mation is usually specified as a set of relations that must hold for a transformation to
be successful. The input and output models of the transformation have to conform
to a metamodel.

A model transformation is specified at the metamodel level and establishes a
mapping between all themodels, which conform to the input and output metamodels.
Model transformations inMDE follow themodel transformation pattern illustrated in
Fig. 2. The execution of the rules of a transformation program results in the automatic
creation of the target model from the source model. The transformation rules, as well
as the source and target models conform to their corresponding metamodels. The
transformation rules conform to the metamodel of the transformation language (i.e.
its abstract syntax), the sourcemodel conforms to the sourcemetamodel and the target
model conforms to the target metamodel. At the top level of this layered architecture
lies the meta-metamodel, to which all the other metamodels conform.

3.2 Epsilon Model Transformations

Model transformation languages are used to specify model transformations. In gen-
eral, model transformations may be implemented in different ways, for example,
by using a general purpose programming language or by using dedicated, domain
specific model management languages.

In the context of MADES, the model transformation language used is the
Epsilon Generation Language (EGL) [35], which is the model-to-text transformation
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Fig. 2 Model transformation pattern [4]

language of the Epsilon framework [23]. Epsilon (Extensible Platform of Integrated
Languages for mOdel maNagement) is a family of consistent and interoperable,
task-specific, programming languages which can be used to interact with models to
perform common MDE tasks such as code generation, model-to-model transforma-
tion, model validation, comparison, migration, merging and refactoring.

Epsilon consolidates the common features of the various task-specific modelling
languages in onebase language and thendevelops the variousmodelmanagement lan-
guages atop it. The Epsilon Connectivity Layer (EMC) abstracts different modelling
frameworks and enables the Epsilon task-specific languages to uniformly manage
models of those frameworks. The architecture of the Epsilon framework is illustrated
in Fig. 3.

Unit Testing Framework (Eunit)

Model-to-Text
Language (EGL)

Refactoring
Language (EWL)

Comparison
Language (ECL)

Merging
Language (EML)

Transformation
Language (ETL)

Validation
Language (EVL) Migration Language (Flock)

Epsilon Object Language (EOL)

Epsilon Model Connectivity (EMC)

EMF (XMI 2.x) MDR (XMI 1.x) Z (CZT) XML

Fig. 3 Epsilon framework architecture
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The approach proposed by this chapter is not dependent on the model manage-
ment framework. However, Epsilon was preferred because of some of its unique
features simplify the implementation activities. Such features include the support
of Epsilon for interactive model transformations, the fine-grained traceability mech-
anism of EGL, as well as the framework’s focus on reusability and modularity.
Moreover, Epsilon is a mature model management framework with an active and
large community.

4 Software Generation Using Compile-Time Virtualisation

Given the problemshighlighted inSect. 2, it canbe seen that software development for
manymodern embedded systems is very challenging. Any solution to these problems
must be industrially-acceptable so from the discussions in Sects. 2.3 and 2.2 the
following requirements can be obtained:

• No new programming languages or tools because of certification requirements.
• No large runtime layers, or complex translated code.
• Integration with model-driven development to aid developers.

The MADES project therefore uses a model-driven approach which integrates a
technique called Compile-Time Virtualisation (CTV) [14, 15]. Section 4.1 describes
CTV and motivates its use while Sect. 4.2.3 describes how CTV is integrated into
MADES.

4.1 Compile Time Virtualisation

Compile Time Virtualisation (CTV) is a source-to-source translation technique that
aims to greatly simplify the development of software for embedded hardware archi-
tectures. It does this by integrating hardware virtualisation to hide the complexities
of the underlying embedded architecture in a unique way that imposes minimal run-
time overheads and is suitable for use in real-time environments. CTV allows the
developer to write software for execution on a ‘standard’ desktop-style environment
without having to consider the target platform. This architecturally-neutral input
software is automatically translated to architecturally-specific output software that
will execute correctly on the target hardware. The output software is supported by
an automatically-generated, minimal-overhead, runtime that avoids the code size
increase of standard middleware technologies (such as CORBA [32]) and run-time
virtualisation-based systems (such as Java). CTV is a language-independent tech-
nique that can be applied to a range of source languages. It has currently been
demonstrated in C [14] and Java [13]. The rest of this chapter will discuss CTV as it
is applied to Java, but the approach is broadly the same in all languages.
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Fig. 4 Compile-time virtualisation introduces a virtual platform to make software development
easier

CTV introduces a virtualisation layer over the target hardware, called the Virtual
Platform (VP). This is shown in Fig. 4. The VP is a high-level view of the underlying
hardware that presents the same programming model as the source language (in this
case Java) to simplify development. For Java, it presents a homogeneous symmet-
ric multiprocessing environment with a single monolithic shared memory, coherent
caching, and a single uniform operating system. This is equivalent to a standard
desktop computer running an operating system like Linux or Windows and is the
environment in which Java’s runtime expects to operate. Therefore, the developer
can write normal, architecture-independent Java code.

As its name implies, the VP is a compile-time only construct, it does not exist
at run-time. This is because the VP’s virtualisation is implemented by a source-
to-source translation layer that is guided by the virtualisation mappings (that map
threads to CPUs and data to memory spaces). This can be seen in Fig. 5. The job of
the source-to-source translation is to translate the architecturally-independent input
software into architecturally-specific output code that will operate correctly on the
target hardware, according to the provided mappings.

Unlike a standard run-time virtual machine, the virtualisation mappings are
exposed to the programmer. This allows the programmer to influence the implemen-
tation of the code and achieve a better mapping onto the architecture. For example,
by placing communicating threads on CPUs that are physically close to each other,
or locating global data in appropriate memory spaces to minimise copying. Such
design space exploration can be performed very rapidly because software can be
moved throughout the target system without recoding.
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Fig. 5 Compile-time virtualisation hides complex hardware, but only at compile-time

Also in contrast to run-time virtual machines, custom hardware can be exported
up to the programmer through the VP at design-time and presented in a form that is
consistent with the source language’s programming model, thereby allowing it to be
effectively exploited by the programmer.

Moving the virtualisation to compile-time rather than run-time helps to reduce
run-time overheads. Such overheads in a CTV system are small because all the
work is done by the refactoring engine at compile-time. However, a consequence of
applying the refactoring at compile-time is that all necessary analysis must be able
to be performed offline. This means that certain aspects of the input language are
restricted. However, as discussed in Sect. 2.2, in a real-time system such restrictions
are already imposed (e.g. in theRavenscar [5, 24] andSPARK[17] real-time language
subsets). For more detail on this, see Sect. 4.2.2. In general, the principle is that:

A systemwhich is implemented usingCompile-TimeVirtualisation trades runtime flexibility
for predictability and vastly reduced overheads.

For examples of how this trade off can reduce overheads, see Sect. 4.2.4.
Some additional benefits of the VP is that its use abstracts hardware changes

from the software developer. The developer only has to target the VP rather than the
actual hardware and if the hardware is changed at a later date, the same software can
be retargeted without any recoding or porting effort. Similarly, because the VP is
implemented to support development in existing languages, developers do not have
to be trained to use a new language and existing legacy code can be more easily
reused. Also, because the architecture-specific output code is still valid Java, no new
compilers or tool need to be written. This is of vital importance to high-integrity
systems that require the use of trusted compilers, linkers, and other tools.

The CTV approach is different to techniques such as Ptolemy II [9] which aim
to provide new higher-level and more appropriate abstractions for programming
complex systems. CTV is instead designed to allow existing languages and legacy
code to be used to effectively target such systems through the use of very low-
overhead virtualisation. The two different approaches can actually be complementary
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and used together, with CTV used as a low-overhead intermediary to bring legacy
code or legacy programming languages into an otherwise Ptolemy-defined system.

CTV is the name for the general technique. Section 4.2 will now discuss AnvilJ,
the specific implementation of CTV that is implemented in the MADES project.

4.2 AnvilJ

Section 4.1 gave a broad overview of CTV.However, CTV is a language-independent
technique that can be implemented to work with a range of input languages. In
the MADES project the chosen source development language is Java (and its real-
time variants [12, 24]), therefore MADES uses AnvilJ, a Java-based implementation
of CTV that is described in the rest of this section. The AnvilJ system model is
described in Sect. 4.2.1. Whilst AnvilJ can accept the majority of standard Java,
a few restrictions must be imposed and these are enumerated in Sect. 4.2.2. The
way that MADES integrates AnvilJ into its model-based design flow is discussed in
Sects. 4.2.3 and 4.2.4 concludes with a discussion of how AnvilJ results in a system
which displays minimal runtime overheads.

4.2.1 AnvilJ System Model

AnvilJ is an implementation of CTV for the Java programming language and its
related subsets aimed at ensuring system predictability, such as the RTSJ. The AnvilJ
system model is shown in Fig. 6. Its input is a single Java application modelled as
containing two sets:

• AnvilJ Threads: A set of static final instances or descendants of
java.lang.Thread.

• AnvilJ Shared Instances: A set of static final instances of any other class.

Collectively,AnvilJThreads andShared Instances are describedusing theumbrella
term AnvilJ Instances. AnvilJ Instances are static throughout the lifetime of the sys-
tem; they are created when the system starts and last until system shutdown.

An AnvilJ Instance may communicate with any other AnvilJ Instance, however
the elements it has created may not communicate with the created elements of other
AnvilJ Instances. This restriction allows the communication topology of the system to
be determined at compile-time and the required runtime support to be reduced, as dis-
cussed later. This approach is particularly suited to embedded development because it
mirrors many of the restrictions enforced by high-integrity and certification-focussed
language subsets (such as the Ravenscar subsets of Ada [5] and Java [24] or the
MISRA-C coding guidelines [41]).
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Fig. 6 The AnvilJ system model

In AnvilJ, the main unit of computation in the target hardware is the processing
node. A processing node models a Real-Time Java Virtual Machine (JVM) [31]
in the final system (or a standard JVM with accordingly reduced predictability).
The Java specification does not define whether a multicore system should contain a
single JVM for the entire system [1, 19] or one per core. Therefore AnvilJ models
the JVMs, rather than the processors. The JVMs need not have similar performance
characteristics or features. As with all CTV implementations, every AnvilJ Instance
is mapped to exactly one node. AnvilJ Instances cannot migrate between processing
nodes, but (if supported by the Java implementation) other instances can.

Nodes communicate using channels, which are the communication primitives of
the target architecture. AnvilJ statically routes messages across the nodes of the sys-
tem to present the totally-connected communications assumed by Java. The designer
provides drivers for the channels of the system. Memories represent a contiguous
logical address space and endpoints connect processing nodes to other hardware
elements. Every AnvilJ Shared Instance must be mapped to either exactly one node
(on the heap of the JVM), or exactly one memory where it will be available to all
nodes connected to that memory.

This model is compile-time static—the number of AnvilJ Instances does not
change at runtime. This is consistent with the standard restrictions that are imposed
by most real-time programming models (as discussed in Sect. 2.2. For example,
Ravenscar Ada [5] forbids all dynamic task allocation, whereas AnvilJ only forbids
dynamic AnvilJ Instances. This is in contrast to systems like CORBA which adopt
a “dynamic-default” approach in which runtime behaviour is limited only by the
supported language features. Such systems support a rich runtime model but the
resulting system can be heavyweight as they are forced to support features such as
system-wide cache coherency, thread creation and migration or dynamic message
routing, even if not required by the actual application. The approach of CTV is
“static-default” in which the part of the application modelled is static. The restricted
programming model promises less, but the amount of statically-available mapping
information allows the required runtime support to be significantly reduced.
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Not all instances of java.lang.Thread need to be modelled as an AnvilJ
Instance. Equally, not all shared object instances need to be modelled at all. Enough
should be modelled to fulfill the constraint that program instances created by an
AnvilJ Thread t only communicate with other instances created by t , or another
AnvilJ Instance.

4.2.2 Restrictions on Input Code

In order to be correctly refactored, AnvilJ input programs must be written to con-
form to a small set of restrictions which are detailed in this section. These restrictions
are consistent with those required by existing real-time development processes (i.e.
SPARK [17] or MISRA-C [41], see Sect. 2.2) and in most cases are less restric-
tive. They allow the system to operate with hugely reduced runtime overheads (see
Sect. 4.2.4).

• AnvilJ threads and shared objects must be declared as static final fields.
Thismeans that the refactoring engine can determine at compile-time their location
and number, which is not in general possible otherwise.

• All accesses to an AnvilJ object must directly refer to the field (using dot notation
if the reference is in another class). It is forbidden to ‘leak’ a reference to an
AnvilJ object, for example by returning it from a method, passing it to a method,
or assigning it to a local variable of another class. Any of these actions will be
checked by the refactoring engine and prevented.

• The arguments and return values of shared methods that are exported by an AnvilJ
thread or shared object must implement java.io.Serializable interface.

• Threads on different nodes must only use other AnvilJ objects to communicate.
Threads may perform any action that only affects the local JVM. However, if it
calls methods or accesses fields with an instance on a different node that instance
must be tagged as an AnvilJ Instance.

4.2.3 Integration with Model-Driven Engineering

To aid the use of AnvilJ, MADES integrates it directly into the model-driven engi-
neering (MDE) flow of the project. This is not mandatory for AnvilJ, which can be
used independently. In order to integrate AnvilJ it is necessary to provide the designer
with a way of expressing a high-level view of the target hardware (in terms of the
AnvilJ system model) and a high-level view of relevant parts of the input software.
Not all the input software needs to be modelled, only the parts that are to be marked
as AnvilJ Instances (Sect. 4.2.1). Also, the allocation of AnvilJ instances from the
software model to the processing nodes of the hardware model must be provided.

This information is then translated from the designer’s model into the form which
is required by theAnvilJ tool. The translation is implemented using theEpsilonmodel
transformation language, which is described in detail in Sect. 3.2. In the MADES
framework, this information is provided by the designer through the use of 13 stereo-
types which are applied to classes in the system model. These MADES stereotypes
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Table 1 Brief description of the MADES stereotypes

Stereotype Description

«mades_hardwareobject» Superstereotype for all hardware stereotypes
«mades_clock» Connected to «mades_processingnode» instances

and «mades_channel» instances to denote a
logical clock domain

«mades_channel» A communication resource i.e. bus
«mades_ipcore» Additional hardware i.e function accelerator
«mades_memory» A single logical memory device
«mades_processingnode» A computation element of the hardware platform.

Commonly this is a single processor, but as
described in Sect. 4.2.1, this corresponds to a
JVM in the final system

«mades_endpoint» Superstereotype of all endpoint stereotypes.
Endpoints connect processing nodes to other
hardware and provide more information about
the connection. i.e. an ethernet endpoint may
provide a MAC address

«mades_memorymedia» Connects a «mades_processingnode» instance to a
«mades_memory» instance

«mades_devicemedia» Connects a «mades_processingnode» instance to a
«mades_ipcore» instance

«mades_channelmedia» Connects a «mades_processingnode» instance to a
«mades_channel» instance

«mades_softwareobject» Superstereotype for all software stereotypes
«mades_thread» Represents an AnvilJ Thread
«mades_sharedobject» Represents an AnvilJ Shared Instance

are described in Table 1. The modelling tool used in the MADES flow (Modelio
[28]) supports two additional diagram types that use the MADES stereotypes; the
detailed hardware specification and the detailed software specification. Allocations
are performed with a standard allocation diagram. Working with these additional
diagrams aids the designer because the MADES stereotypes can be automatically
applied.

For a more detailed look at how the modelling is performed to integrate AnvilJ,
Sect. 6 presents a case study that shows the development of a subcomponent of an
automotive safety system.

4.2.4 Overheads

AnvilJ’s static system model allows most of the required support to be implemented
at compile-time, resulting in a small runtime support system, especially when com-
pared with much larger (although more powerful) general-purpose frameworks. As
will be shown in this section, the main overhead in an AnvilJ system is that of the
Object Manager (OM). The OM is a microkernel which exists on every processing
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Table 2 Class file sizes for OM features

Feature set Approx. size (kB)

Thread creation and joining 5.7
Remote object locks 4.5
Shared methods 8.4
Sockets-based IComms (debug) 4.29
Full OM 34

node of the system and implements the AnvilJ system model. The OMs use a
message-passing communicationsmodel to implement sharedmemory, locks, remote
method calls etc.

The full versionof theOMcompiles to approximately 34kBof class files including
debugging and error information. However it is also possible to create smaller OMs
which only support a subset of features for when the software mapped to a node
does not require them. For example, if a node contains AnvilJ Shared Instances but
no AnvilJ Threads then 5.7 kB of support for ‘Thread creation and joining’ can be
removed. If none of the shared methods of a node are called then the shared methods
subsection can be removed. The advantage of AnvilJ’s offline analysis is that this can
be done automatically each time, based on the exact input application and hardware
mappings. Table2 shows a breakdown of some of the feature sets of the OM and
their respective code footprint.

Figure 7 compares this size to other similar systems. It should be noted that this
comparison is provided purely to contextualise the size metric and demonstrate that
AnvilJ’s size is small, relative to related embedded frameworks. The other systems
graphed, especially the CORBA ORBs, are built to support general-purpose, unseen
software and consequentially are much more heavyweight.
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Fig. 7 The code footprint of the AnvilJ runtime compared to systems from a similar domains.
Anvil is a C-based implementation of CTV, Perc Pico [2] implements safety-critical Java on systems
without an OS, uClinux is a reduced Linux kernel for microprocessors with MMUs, and TAO [37]
and ZEN [22] are Real-Time CORBA ORBs
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Fig. 8 The hardware generation flow

In addition to the small code size of the OM, its runtime memory footprint is also
modest. The full OM in a desktop Linux-based system uses approximately 648 bytes
of storage when idle, which increases as clients begin to use its features.

5 Hardware Generation Using Model Transformations

The MADES hardware generation flow transforms a detailed hardware specification
diagram into an implementable hardware description. The generated hardware may
be a complex, heterogeneous system with a non-uniform memory architecture but
it is supported and programmed by the software generated by the code generation
transformations described in Sect. 4.

In order to best demonstrate the flexibility of the hardware generation flow, the
translations target Xilinx FPGAs. This is merely an implementation choice and does
not reflect any part of the flow which inherently requires Xilinx devices and tools
(or FPGAs in general). Other implementation structures can also be supported. The
transformation outputs a Microprocessor Hardware Specification (MHS) file [46]
which is passed to Xilinx Platgen, a tool that is part of Xilinx’s Embedded Devel-
opment Kit design tools [47]. Platgen is a tool which reads an MHS file and outputs
VHDL [36] which can then implemented on the target FPGA. This flow is illustrated
in Fig. 8.

The hardware generation flow is implemented using the Epsilon Generation Lan-
guage (EGL) (see Sect. 3.2). There are three main benefits gained from generating
hardware from the system model in this way:
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• Very rapid prototyping and design space exploration can be achieved using this
method due to the fact that hardware architectures can be constructed in the devel-
oper’s modelling environment rather than vendor tools.

• MDE allows a vendor-neutral way of modelling and generating architectures. The
same models could be used to target a wide range of FPGAs, ASICs, or even other
hardware description languages like SystemC, however such an approach would
not support the full flexibility of these systems.

• The same model is used as a source for both the software generation and hard-
ware generation flows. These models share a consistent meta-model and so have
related semantics. This gives confidence in the final design, because the software
generation flow is refactoring code according to the same hardware model used
by the hardware generation flow. In essence, the two flows ‘meet in the middle’
and support each other.

When creating the detailed hardware specification diagram, the hardware only
needs to be modelled at a high level of abstraction. The platform is modelled as a
class stereotyped with the stereotype «mades_architecture». Each detailed hardware
specification contains exactly one such class. Properties in the «mades_architecture»
stereotype are used to guide the software generation process by denoting the entry
point class of the input application and allocating the initial Main thread to a process-
ing node.

The details of the architecture are modelled with the MADES hardware stereo-
types. Processing nodes («mades_processingnode») are the elements of compu-
tation in the platform. Each node supports a logical JVM. They communicate
with other nodes through the use of channels. Nodes connect to channels using
the «mades_channelmedia» endpoint stereotype. Memories («mades_memory») are
data-storage elements and are connected to channels using «mades_memorymedia».
Other hardware elements («mades_ipcore») are connected to channels through the
use of the «mades_devicemedia» endpoint stereotype.

The top-level hardware stereotype «mades_hardwareobject» defines a property
called iptype. This is passed to the hardware generation transformation to specify
the type of hardware which should be instantiated. Further properties can also be
passed depending on the value of iptype. For an example of this see the case study
in Sect. 6.5.

Clock domains are modelled by classes stereotyped with the «mades_clock»
stereotype. Clock synthesis is restricted by the capabilities of the implementation
target and the IP cores used. A set of design rules are first checked using model
verification to ensure that the design can be realised. These are:

• The total number of clock domains is not higher than the limit for the target FPGA.
• All communications across clock boundaries use an IP core that is capable of
asynchronous signalling (such as a mailbox).

• All IP cores that require a clock are assigned one.

Each clock has a target frequency in the model and is implemented using the
clock manager cores of the target FPGA. As with all FPGA design, the described
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constraints are necessary but not sufficient conditions. During synthesis the design
may use more clock routing resources than are available on the device, in which case
the designer will have to use a more powerful FPGA or reduce the clock complexity
of the design.

Currently, interfaces (IO with the outside world) have to be taken from the IP
library or manually defined in VHDL or Verilog. It is not the aim of this approach to
provide high-level synthesis of hardware description languages such as in Catapult-C
[27] or Spec-C [10], although such approaches can be integrated by wrapping the
generated core as an IP core for the Xilinx tools.

6 Case Study: Image Processing Subsystem

This section will present a case study to illustrate the benefits of the MADES Code
Generation approach and show how CTV/AnvilJ is integrated into the design flow.
This case study will detail the development of a subsection of an automotive safety
systemcalled theCarCollisionAvoidance System (CCAS). TheCCASdetects obsta-
cles in front of the vehicle to which it is mounted and, if an imminent collision is
detected, applies the brakes to slow the vehicle. In this case study we focus on a small
part of the detection subsystem and show how the MADES code generation allows
architecture-independent software to be generated to process the radar images with-
out concern for the target platform. Multiple hardware architectures can be modelled
and the software automatically deployed over auto-generated hardware.

Section 6.1 gives a block-level overview of the developed component and Sect. 6.2
discusses how the initial software is developed. The generation of the software and
hardware models is covered in Sects. 6.3 and 6.4. The generation of the target hard-
ware is detailed in Sect. 6.5 and finally Sect. 6.6 discusses deploying the software to
the generated hardware.

6.1 Subsystem Overview

The developed subsystem takes images from the radar (or camera) and applies JPEG-
style compression to reduce the size of the image and therefore reduce the demand
on on-chip communications. Once reduced in size, the images are passed on to other
parts of the system for feature extraction and similar algorithms. The block diagram
of the subsystem is given in Fig. 9. The main stages of the subsystem are as follows:

• Read Image: Periodically reads images from the input to the system from a radar
or camera.

• DCT: A Discrete Cosine Transformation moves the representation of the image
from the spatial domain into the frequency domain.



Development of Embedded Systems Using MDE and CTV 41

Read Image DCT Quantization
Image input

(Radar / Camera)

Rest of the 
system

Monitoring 
output

Display

Inverse DCT

Fig. 9 Block diagram of the implemented subsystem. A monitoring output stage is included to
allow verification of the subsystem during system development

• Quantization: Data in the frequency domain is selectively discarded to compress
the image.

• Inverse DCT: Moves the image back into the spatial domain. The result is a
(compressed) image that can be passed to the rest of the system, or optionally fed
to a monitoring output stage.

• Display: Used for monitoring and debugging, the output stage uses a graphical
user interface to display the image to the user.

6.2 Software Development

Developing the software for this subsystem is very simplewhen usingAnvilJ because
the developer can develop as if the code will execute on a standard desktop Java envi-
ronment. However, the developermust observe the restrictions detailed in Sect. 4.2.2.
Also it is not possible to develop the low-level drivers for the radar/camera input
through AnvilJ directly, so for the purpose of testing and initial development stub
drivers should be used that operate on the development platform. Final hardware
interfacing must be done once deployment is underway as is normal practice.

The main restriction imposed by AnvilJ is that AnvilJ Instances must be static
and only communicate through other AnvilJ Instances. This forces the developer
to consider the structure of their code carefully, as is the case with all embedded
development. The refactoring engine of AnvilJ allows the entire operation of the
subsystem to be detailed using a single Java program, even though the final hardware
platform may involve multiple heterogeneous processing elements. The code was
structured as follows:

• Each block of the subsystem (see Fig. 9) is implemented as a static final
thread. The threads are declared and started by a Main class that is responsible
for initialising the system.

• Each thread contains internal state that holds images passed into it from the previ-
ous stage, and methods that allow the previous stage to pass in images to process.
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Fig. 10 Example of the architecturally-neutral software operating in the development environment
on a test image. The right-hand image is after processing

The thread processes images in its work queue, and passes completed images to
the next thread.

• Each thread is designated as an AnvilJ Thread. This ensures that all communica-
tions in the system go through AnvilJ Instances.

• The output stage is designated an AnvilJ Shared Instance.
• Standard implementations of the DCT and Quantize stages are used from open
source, freely-available code. This is one of the great advantages of AnvilJ in that
often legacy code can be integrated easily.

Having created the software, its functionality can be verified immediately simply
by executing the code in the development environment. It is not necessary to use
simulators, cross-compilation or similar. The result of the software operating on a
test image is shown in Fig. 10 and a listing of the Main class can be found in Fig. 11.
Note that the listing is standard Java code, no extra-linguistic features are required.

6.3 Software Modelling

In a model-driven development flow, the architecture-independent software will be
developed based on a software model. This model must be extended with a MADES
‘DetailedSoftwareSpecification’ diagram (detailed in the previous chapter) to inform
the AnvilJ tool of the AnvilJ Instances that are present in the input software. This
diagram links elements of the software model with the input software, using the
concept of ‘bindings’.

Bindings are a way of uniquely identifying source code elements (classes,
instances, fields, methods etc.) and are defined by the Eclipse JDT project [39].
The developer obtains the binding for an AnvilJ Instance from the AnvilJ GUI and
adds it to the binding property of the «mades_softwareobject» stereotype in the
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Fig. 11 Listing of the Main class that initialises the implemented subsystem

softwaremodel. This links the instance in the detailed software specification diagram
to the source code.

Figure 12 shows the completed detailed software specification diagram. The dia-
gram is very simple as its only purpose is to add AnvilJ Elements to the software
model and link them to the source code with binding keys. Note that the use of the
«mades_thread» and «mades_sharedobject» stereotypes.

Fig. 12 The detailed software specification diagram for the case study subsystem
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Fig. 13 The detailed hardware specification diagram for the case study target architecture. Not
shown are properties in the classes that describe each hardware element in greater detail

6.4 Hardware Modelling

Havingmodelled the software, this sectionwill now describe how the target hardware
platform ismodelled forAnvilJ integration.Recall that according to theAnvilJ system
model from Sect. 4.2.1, it is only necessary for the hardware model to cover a high-
level view of the capabilities of the target platform; in terms of processing nodes,
memories, channels, and application-specific IP cores.

In this case study we will describe two target platforms and show how the same
input software can be automatically deployed without recoding. The first presented
architecture is a dual-processor system with a non-uniform memory architecture,
shown in Fig. 13.

Once the detailed hardware model is complete, the hardware generation flow can
be initiated.

6.5 Hardware Generation

The designer uses the MADES model transformations of Sect. 3.2 to transform
the architecture modelled in Sect. 6.4 into an implementable hardware description.
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Fig. 14 Fragment of the MHS generated by transforming the case study architecture of Fig. 13

As discussed previously in Sect. 5, the hardware generation flow targets Xilinx
FPGAs and uses the Xilinx IP libraries from Xilinx Embedded Development Kit
[47]. Accordingly, the hardware model must be augmented to include enough details
to instantiate these IP cores. This is done by adding properties to the classes of the
detailed hardware specification diagram. Full details of these properties are outside
the scope of this chapter and are given in the MADES documentation [40].

Each of the MADES hardware stereotypes has a mandatory property called
iptype. This is used by the Epsilon model transformation to inform it which Xil-
inx IP should be instantiated. Each supported IP has a set of attributes that may
be also set from the model. For example, the xps_uartlite IP core is a serial
transceiver and includes attributes such as C_BAUDRATE to set the expected baud
rate and C_USE_PARITY to switch on or off the use of parity bits. The hardware
generation flow checks for the presence of any mandatory attributes and warns the
user if they are not present.

Once the model is completed with the required information, the user runs the
hardware transformation to produce a Xilinx MHS file. A fragment of the MHS
generated by transforming the case study architecture of Fig. 13 is shown in Fig. 14.
This MHS file must be then converted into VHDL using the Xilinx design tools. For
the purpose of this case study, the target will be a Xilinx Virtex 5 FPGA [48]. At
the end of the implementation, an FPGA bitfile will be created which can then be
programmed to the device for testing.

6.6 Code Deployment

After modelling the software and hardware, a deployment diagram can be created
that maps instances from the detailed software specification to the detailed hardware
specification. For this case study, the initial allocation will locate the image reading
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Fig. 15 An allocation diagram that deploys software from the detailed software specification dia-
gram of Fig. 12 to the detailed hardware specification of Fig. 13

thread to CPU1 and all other threads to CPU2. The diagram that performs this
allocation can be seen in Fig. 13 .

With the addition of the allocation diagram the is model is now complete, so it
is exported in XMI format for use in the Eclipse IDE. Once imported to Eclipse, an
Epsilon model transformation is used to create an AnvilJ architecture description.
This file is created from the hardware, software, and allocation diagrams and is the
input to the AnvilJ refactoring engine. It tells AnvilJ what the structure of the input
software will be, which elements are AnvilJ Instances, the topology of the target
platform, and how to place the AnvilJ Instances throughout the platform. Figure 16
shows the architecture description for the case study (Fig. 15).

Once an architecture description is created, the AnvilJ refactoring engine can
be invoked at any time to refactor the architecturally-neutral Java application (an
Eclipse project) into a set of architecturally-specific output programs, one for each
processing node of the target platform as described in the hardware diagram. As
the case study architecture has two processing nodes, two output projects will be
created. AnvilJ is fully-integrated into the Eclipse Development Environment. After
refactoring is complete, the output applications can be verified by executing both.
AnvilJ’s default implementation uses TCP sockets for inter-node communications,
with the intent that developers replace this with the actual communications drivers
of the target platform. However, this default allows immediate testing on standard
networks. In this case, the two output projects coordinate as expected. The node with
ReadThread reads example radar images and passes them to the other node now
running in a separate JVM onwhich quantizeThread and dctThread process
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Fig. 16 The AnvilJ architecture description for the case study. Note the binding keys correlate with
those of the software diagram in Fig. 12

them. outputStage displays the processed images. The two output binaries can
be placed on separate networked computers with the same functional behaviour. The
single input program has been automatically converted into a networked program
according to the allocation diagram in the system model.

6.7 Analysis of Deployed Code

During refactoring, AnvilJ constructs a minimal runtime to support each output
project and refactors the code to use this runtime. The refactoring engine reports all
changes it is making to the input code for each output project so that the generated
code can be traced back to the input code. These changes are very small and only
occur at well-defined points. For example, these lines appear at the start of the run()
method of the Main class of the input software:
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After refactoring this becomes:

This code sets up and initialises the Object Manager (OM, AnvilJ’s runtime
support) for the current node. The implementation of the OM is automatically gener-
ated in the anvilj.refactored package and is unique to each processing node
of the final system. For example, the AnvilJ Routing object contains routes to the
other nodes of the system with which this OM will need to communicate. Nodes
that it does not communicate with are not detailed. If the code is updated then more
or fewer routes may be added, but this will always be a minimal size. Routes are
planned offline according to the detailed hardware specification diagram.

Note that two of the calls to Thread.start() have been rewritten by the
refactoring engine to calls into the OM. This is because the threads dctThread
and quantizeThread are allocated to another processing node, so they are started
by calling into the AnvilJ runtime. The runtime sends a ‘start thread’ message to the
processing node that hosts the given thread. The call to start thread readThread
has not been translated, however, because it is allocated to the current node. If the
allocation diagram is altered and AnvilJ is rerun, the refactored calls will change.

6.8 Retargeting for New Platforms

Retargeting the case study for a new architecture is simply a case of preparing a
new detailed hardware specification diagram and amending the allocation diagram.
Figure 17 shows a revised target architecture. This is the same as the original case
study architecture (shown in Fig. 13) however a third processor has been added.
The revised allocation diagram allocates the threads more evenly and can be seen in
Fig. 18.

Once the model has been updated, it is re-exported as XMI and AnvilJ re-run.
As the hardware diagram now contains three processing nodes, this produces three
output projects with the AnvilJ Instances distributed as described by the allocation
diagram.Once again, initial functional verification can be performed by executing the
three output projects and observing that the functional behaviour is again identical.
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Fig. 17 Revised hardware specification diagram for the case study target architecture

Fig. 18 Revised allocation diagram for the case study

7 Conclusions

This chapter has presented some of the major problems encountered when devel-
oping complex embedded systems. The hardware architectures of such systems are
characterised by the use of non-standard, application-specific features, such as mul-
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tiple heterogeneous processing units, non-uniform memory architectures, complex
interconnect, on-chip networks, and custom function accelerators. These features
are poorly supported by the programming languages most commonly used by indus-
try for embedded development (such as C, C++ and Java) because these languages
assume a ‘standard’ architecture with a simple programming model. Furthermore,
many embedded systems are real-time or safety-critical systems and so are subject to
many additional restrictions that affect the development process. Existing approaches
to solve these problems tend to lack industrial support; either because they compli-
cate certification through the use of new languages and tools; because they prevent
the use of legacy code; or because they are not integrated well enough into existing
development processes.

The chapter then described AnvilJ, a novel approach for the development of
embedded Java. Unlike most virtualisation systems that operate primarily at run-
time, AnvilJ operates primarily at compile-time and uses a restricted programming
model based on a technique called Compile-Time Virtualisation. This restricted
model allows AnvilJ to operate with vastly reduced runtime support that is pre-
dictable and bounded. In addition, whilst the CTVmodel imposes restrictions on the
programmer, these are shown to be less than is imposed by most real-time develop-
ment processes.

In order to aid industrial acceptance, AnvilJ is integrated into a model-based
engineering tool flow as part of the MADES project using traceable model trans-
formations implemented in the Epsilon framework. MADES’ modelling language
is augmented with a small set of stereotypes to provide the additional modelling
information required. The use of these transformations allows AnvilJ to be used by
modellers and designers without manual intervention.

The use of model-driven engineering also allows the presented approach to auto-
mate the process of hardware development. An approach is shown which translates
the hardware diagrams from the system model into VHDL, a hardware description
language suitable for implementation on FPGAs.Whilst this does not expose the full
flexibility of VHDL or the chosen implementation fabric, it can be used for rapid pro-
totyping, functional verification, and design-space exploration. Due to the fact that
the hardware generation transformation and the software generation transformation
are described by the same metamodel, the generated software will execute correctly
on the generated hardware.

To demonstrate the approach, the chapter showed a case study based on the vision
subsystem of an automotive safety system. The required models are developed and
passed to AnvilJ, which refactors the input code to target two different complex
architectures without any code writing.

The use of AnvilJ does not make an unpredictable system predictable, however
when used in an otherwise real-time development process it will not make the sys-
tem less predictable. In general, worst-case execution time (WCET) analysis for
complex embedded architectures is a significant open problem. Almost all of the
schedulability and WCET analysis performed for uniprocessor systems no longer
applies to multiprocessor systems and many worst-case analytical models of com-
plex embedded hardware are still too pessimistic for real-world use. These issues
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are being considered within the T-CREST [42] project which aims to build a time
predictable NoC based multiprocessor architecture, with supporting compiler and
WCET analysis.
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