Functional and Operational Solutions for Safety
Reconfigurable Embedded Control Systems

Atef Gharbi, Mohamed Khalgui and Mohammad Ayoub Khan

Abstract The chapter deals with run-time automatic reconfigurations of distrib-
uted embedded control systems following component-based approaches. We clas-
sify reconfiguration scenarios into four forms: (1) additions-removals of components,
(2) modifications of their compositions, (3) modifications of implementations, and
finally (4) simple modifications of data. We define a new multi-agent architecture for
reconfigurable systems where a Reconfiguration Agent which is modelled by nested
state machines is affected to each device of the execution environment to apply
local reconfigurations, and a Coordination Agent is proposed for any coordination
between devices in order to guarantee safe and coherent distributed reconfigurations.
We propose technical solutions to implement the whole agent-based architecture, by
defining UML meta-models for agents. In the execution scheme, a task is assumed
to be a set of components having some properties independently from any real-time
operating system. To guarantee safety reconfigurations of tasks at run-time, we define
service and reconfiguration processes for tasks and use the semaphore concept to
ensure safety mutual exclusions. We apply the priority ceiling protocol as a method
to ensure the scheduling between periodic tasks with precedence and mutual exclu-
sion constraints.

A. Gharbi () - M. Khalgui
INSAT, Tunis, Tunisia
e-mail: atef.elgharbi @gmail.com

M. Khalgui
e-mail: khalgui.mohamed @ gmail.com

M. A. Khan
Sharda University, Gr. Noida, India
e-mail: ayoub@ieee.org

M. A. Khan et al. (eds.), Embedded and Real Time System Development: 251
A Software Engineering Perspective, Studies in Computational Intelligence 520,
DOI: 10.1007/978-3-642-40888-5_10, © Springer-Verlag Berlin Heidelberg 2014

252 A. Gharbi et al.

1 Introduction

Nowadays, the new generations of distributed embedded control systems are more
and more sophisticated since they require new forms of properties such as reconfig-
urability, reusability, agility, adaptability and fault-tolerance. The first three proper-
ties are offered by new advanced component-based technologies, whereas the last two
properties are ensured by new technical solutions such as multi-agent architectures.

New generations of component-based technologies have recently gained popular-
ity in industrial software engineering since it is possible to reuse already developed
and deployed software components from rich libraries. A Control Component is
a software unit owning data of the functional scheme of the system. This advan-
tage reduces the time to market and allows minimizations of the design complexity
by supporting the system’s software modularity. This chapter deals with run-time
automatic reconfigurations of component-based applications by using multi-agent
solutions. An agent is assumed to be a software unit allowing the control of the
system as well as its environment before applying automatic reconfigurations. The
reasons for which reconfigurations may be taken are classified into two categories
[33]: (1) corrective reasons: if there is one component which is misbehaving, then
it is automatically substituted by a new one which is assumed to run correctly. The
new component is supposed to have the same functionalities as the old one. (2)
Adaptive reasons: even the component-based application is running well, dynamic
adaptations may be needed as a response to the new environment evolutions, in order
to extend new functionalities or to improve some required functional properties.
Dynamic reconfigurations can cover the following issues: (1) architecture level which
means the set of components to be loaded in memory to constitute the implemented
solution of the assumed system; (2) control level which means the compositions
of components; (3) implementation level which means the behavior of compo-
nents encoded by algorithms; and (4) data level which means the global values. We
define a multi-agent architecture for reconfigurable embedded control systems where
a Reconfiguration Agent is affected to each device of the execution environment to
apply automatic reconfigurations of local components, and a Coordination Agent
which is used for coordination between distributed Reconfiguration Agents in order
to allow coherent distributed reconfigurations. The Coordination Agent is based on
a coordination protocol using coordination matrices which define coherent simulta-
neous reconfigurations of distributed devices. We propose useful meta-models for
Control Components and also for intelligent agents. These meta-models are used
to implement adaptive embedded control systems. As we choose to apply dynamic
scenarios, the system should run even during automatic reconfigurations, while pre-
serving correct executions of functional tasks.

Given that Control Components are defined in general to run sequentially, this
feature is inconvenient for real-time applications which typically handle several
inputs and outputs in a too short time constraint. To meet performance and tim-
ing requirements, a real-time must be designed for concurrency. To do so, we
define at the operational level some sequential program units called real-time tasks.

Functional and Operational Solutions 253

Thus, we define a real-time task as a set of Control Components having some real-
time constraints. We characterize a task by a set of properties independently from
any Real Time Operating System (RTOS). We define service processes as soft-
ware processes for tasks to provide system’s functionalities, and define reconfigura-
tion processes as tasks to apply reconfiguration scenarios at run-time. In fact, service
processes are functional tasks of components to be reconfigured by reconfigura-
tion processes. To guarantee a correct and safety behavior of the system, we use
semaphores to ensure the synchronization between processes. We apply the famous
algorithm of synchronization between reader and writer processes such that execut-
ing a service is considered as a reader and reconfiguring a component is assumed to
be a writer process. The proposed algorithm ensures that many service processes can
be simultaneously executed, whereas reconfiguration processes must have exclusive
access. We study in particular the scheduling of tasks through a Real Time Operating
System. We apply the priority ceiling protocol proposed by Sha et al. [49] to avoid
the problem of priority inversion as well as the deadlock between the different tasks.
The priority ceiling protocol supposes that each semaphore is assigned a priority
ceiling which is equal to the highest priority task using this semaphore. Any task
is only allowed to enter its critical section if its assigned priority is higher than the
priority ceilings of all semaphores currently locked by other tasks.

In this chapter, we continue our research by proposing an original implementation
of this agent-based architecture. We assume that agent controls the plant to ensure the
system running physically. The design and the implementation of such agent under
Real-Time constraints are the scope of this study. The main contributions of this
chapter are the following: (1) a complete study of Safety Reconfigurable Embedded
Control Systems from the functional level (i.e. dynamic reconfiguration system with
a multi-agent system) to the operational level (i.e. decomposition of the system into
a set of tasks with time constraints); (2) a global definition of real-time task with
its necessary parameters independently from any real-time operating system; (3) the
scheduling of these real-time tasks considered as periodic tasks with precedence and
mutual exclusion constraints. To our best of knowledge, there is no research works
which deal with these different points together.

We present in Sect. 2 the state of art about dynamic reconfiguration. Section3
presents the benchmark production systems FESTO and EnAS that we follow as
running examples in the chapter. We define in Sect. 4 a multi-agent architecture
and the communication protocol to ensure safety in a distributed embedded control
systems. Section 5 presents the real-time task model and studies the safety of its
dynamic reconfiguration as well as the scheduling between the different tasks. We
finally conclude the chapter in Sect. 6.

2 Dynamic Reconfiguration

The new generation of industrial control systems is addressing today new crite-
ria as flexibility and agility [43, 48]. We distinguish two reconfiguration policies:
static and dynamic policies such that static reconfigurations are applied off-line to

254 A. Gharbi et al.

apply changes before any system cold start [3], whereas dynamic reconfigurations are
dynamically applied at run-time. Two cases exist in the last policy: manual reconfig-
urations applied by users [47] and automatic reconfigurations applied by intelligent
agents [2]. We are interested in automatic reconfigurations of an agent-based embed-
ded control system when hardware or software faults occur at run-time. The system
is implemented by different complex networks of Control Components. In literature,
there are various studies about dynamic reconfigurations applied to component-based
applications. Each study has its strength and its weakness. In the article [35], the
authors propose to block all nodes involved in transactions (considered as sets of
interactions between components) to realize dynamic reconfigurations. This study
has influenced many research works later. Any reconfiguration should respect the
consistency propriety which is defined as sets of logical constraints. A major dis-
advantage of this approach is the necessity to stop all components involved in a
transaction. In the article [4], problem of dynamic reconfigurations in CORBA is
treated. The authors consider that consistency is related to Remote Procedure Call
Integrity. To ensure this property, they propose to block the incoming before the out-
going links. However, the connection between components must be acyclic in order
to be able to block connections in the right order. A dynamic reconfiguration language
based on features [41] is proposed. The authors use the control language MANIFOLD
where processes are considered as black boxes having ports of communication. In
this case, the communication is anonymous. The processes having access to shared
data are connected in cyclic manners to wait tokens that visit each one at turn (as in
token ring). Although the novelty of this solution, there is a loss of time especially
at waiting until receiving the token to access to the shared data or also to reconfigure
the system. Another study [46] is proposed to apply dynamic updates on graphical
components (for example button, graphical interface, ...) in a .Net framework. To
do so, the authors associate for each graphical component an appropriate running
thread. The synchronization is ensured through the reader-writer-locks. The dynamic
reconfiguration is based on blocking all involved connections. Due to rw-locks,
this solution works only on local applications. In addition, they define [45] a new
reconfiguration algorithm ReDAC (Reconfiguration of Distributed Application with
Cyclic dependencies) ensuring dynamic reconfigurations in distributed systems to
be based on running multi-threads. This algorithm is applied to capsules which are
defined as groups of running components. As disadvantage, the proposed algorithm
uses counter variables to count on-going method calls for threads which lead to
consume further space memory and treatment time.

To our best of knowledge, there is no research works which treat the problem of
dynamic software reconfigurations of component-based technology with semaphores.
The novelty of this chapter is the study of dynamic reconfiguration with semaphore
ensuring the following points: (1) blocking connections without blocking involved
components; (2) safety and correctness of the proposed solution; (3) independence
of any specific language; (4) verification of consistency (i.e. logical constraints)
delegated to the software agent; (5) suitable for large-scale applications.

Functional and Operational Solutions 255

3 Benchmark Production Systems: FESTO and EnAS

We present two Benchmark Production Systems': FESTO and EnAS available in the
research laboratory at the Martin Luther University in Germany.

3.1 The FESTO System

The FESTO Benchmark Production System is a well-documented demonstrator used
by many universities for research and education purposes, and it is used as a running
example in the context of this chapter. FESTO is composed of three units: Distrib-
ution, Test and Processing units. The Distribution unit is composed of a pneumatic
feeder and a converter to forward cylindrical work pieces from a stack to the testing
unit which is composed of the detector, the tester and the elevator. This unit performs
checks on work pieces for height, material type and color. Work pieces that success-
fully pass this check are forwarded to the rotating disk of the Processing unit, where
the drilling of the work piece is performed. We assume in this research work two
drilling machines Drill_machinel and Drill_machine?2 to drill pieces. The result of
the drilling operation is next checked by the checking machine and the work piece
is forwarded to another mechanical unit. In this research chapter, three production
modes of FESTO are considered according to the rate of input pieces denoted by
number_pieces into the system (i.e. ejected by the feeder).

e Case 1: High production. If number_pieces > Constant1, then the two drilling
machines are used at the same time in order to accelerate the production. In
this case, the Distribution and the Testing units have to forward two succes-
sive pieces to the rotating disc before starting the drilling with Drill_machinel
AND Drill_machine2. For this production mode, the periodicity of input pieces
isp=11s.

e Case 2: Medium production. If Constant2 < number_pieces < Constantl,
then we use Drill_machinel OR Drill_machine2 to drill work pieces. For this
production mode, the periodicity of input pieces is p = 30 s.

e Case 3: Light production. If number_pieces < Constant2, then only the drilling
machine Drill_machinel is used. For this production mode, the periodicity of input
pieces is p = 50 s.

On the other hand, if one of the drilling machines is broken at run-time, then we
have to only use the other one. In this case, we reduce the periodicity of input pieces
to p = 40 s. The system is completely stopped in the worst case if the two drilling
machines are broken.

! Detailed descriptions are available in the website: http://aut.informatik.uni-halle.de.

http://aut.informatik.uni-halle.de

256 A. Gharbi et al.

3.2 The EnAS System

The Benchmark Production System EnAS was designed as a prototype to demon-
strate energy-antarcic actuator/sensor systems. For the sale of this contribution, we
assume that it has the following behavior: it transports pieces from the production
system (i.e. FESTO system) into storing units. The pieces in EnAS shall be placed
inside tins to close with caps afterwards. Two different production strategies can
be applied: we place in each tin one or two pieces according to production rates of
pieces, tins and caps. We denote respectively by nbpjcces, nbyins+caps the production
number of pieces and tins (as well as caps) per hour and by Threshold a variable
(defined in user requirements) to choose the adequate production strategy. The EnAS
system is mainly composed of a belt, two Jack stations (J; and J>) and two Gripper
stations (G and G»). The Jack stations place new produced pieces and close tins
with caps, whereas the Gripper stations remove charged tins from the belt into storing
units. Initially, the belt moves a particular pallet containing a tin and a cap into the
first Jack station Jj.
According to production parameters, we distinguish two cases,

e First production policy: If (nbpjcces/nbrins+caps < Threshold), then the Jack
station J; places from the production station a new piece and closes the tin with
the cap. In this case, the Gripper station G| removes the tin from the belt into the
storing station St;.

e Second production policy: If (nbpjcces/nbiinstcaps > Threshold), then the Jack
station J; places just a piece in the tin which is moved thereafter into the second
Jack station to place a second new piece. Once J, closes the tin with a cap, the belt
moves the pallet into the Gripper station G» to remove the tin (with two pieces)
into the second storing station St,.

4 Multi-agent System

We define a multi-agent architecture for distributed safety systems. Each reconfigu-
ration agent is affected in this architecture to a device of the execution environment
to ensure Functional Safety. Nevertheless, the coordination between agents in this
distributed architecture is inevitable because any individual decision may affect the
performance of the others. To guarantee safe distributed reconfigurations, we define
the concept of Coordination Matrix that defines correct reconfiguration scenarios to
be applied simultaneously in distributed devices and we define the concept of Coor-
dination Agent that handles coordination matrices to coordinate between distributed
agents. We propose a communication protocol between agents to manage concurrent
distributed reconfiguration scenarios.

The communication protocol between agents respects the different following
points: (1) The Reconfiguration agents control the plant constituted by several phys-
ical processes. (2) At the beginning, all the Reconfiguration agents are assigned

Functional and Operational Solutions 257

Table 1 The agent characteristics

Agent type Percepts Actions Goals Environment
Reconfiguration Something needs an Reconfigure the Safe state Physical plant
agent intervention plant
Coordination agent Reconfiguration Contact the other ~ Coordination The whole
request agents between agents system

a specific reconfiguration. (3) The Reconfiguration agent controlling the system
can not apply more than one reconfiguration at any time. (4) The Reconfiguration
agent decides to apply a new reconfiguration if some conditions are verified. (5) The
Reconfiguration may be applied in a local system (in this case, only the associated
Reconfiguration agent is concerned) or in a distributed system (in this case, many
Reconfiguration agents have to coordinate together to put the whole system in a
safe state). (6) The Reconfiguration agent does not know if the other agents will
cooperate to put the system into safe state. (7) At the reception of a reconfigura-
tion request, the agent chooses one action from the available possibilities (accept
or refuse). The Reconfiguration agent may refuse the request if it is not possible to
apply this new reconfiguration. (8) An agent is called cooperative if it always accepts
the reconfiguration request. An agent is called selfish if it always refuses the new
reconfiguration.

Before introducing the communication protocol, we begin with presenting a
Reconfiguration Agent as well as the coordination agent. To resume the charac-
teristics of each one, the Table 1 presents the main information.

4.1 Software Architecture of Reconfiguration Agents

We propose an agent-based architecture to control embedded systems at run-time.
The agent checks the environment’s evolution and reacts when new events occur by
adding, removing or updating Control Components of the system. To describe the
dynamic behavior of an intelligent agent that dynamically controls the plant, we use
nested state machines in which states correspond to finite state machines. A finite
state machine can be defined as a state machine whose states, inputs and outputs are
enumerated. The nested state machine is represented as the following:

NSM = (SM1, SM>, ..., SM,,)
Each state machine (SM;) is a graph of states and transitions. A state machine
treats the several events that may occur by detecting them and responding to each

one appropriately. We define a state machine as the following:

SM; = (S;, Sio, 1;, O;, Pre-cond,;, Post-condi, t;)

258 A. Gharbi et al.
o S; = {si1, ..., sip}: the states;

e S0 the initial state;

e [; ={l, ..., I} the input events;

e 0; ={01, ..., Oj}: the ouput events;

e Pre-cond, : the set of conditions to be verified before the activation of a state;

e Post-cond;: the set of conditions to be verified once a state is activated;

e 1i : S; x I; = S;: the transition function.

We propose a conceptual model for a nested state machine in Fig. 1 where we
define the classes Nested State Machine, State machine, State, Transition, Event
and Condition. The Nested State Machine class contains a certain number of State
machine classes. This relation is represented by a composition. The Transition class
is double linked to the State class because a transition is considered as an association
between two states. Each transition has an event that is considered as a trigger to fire
it and a set of conditions to be verified. This association between the Transition class
and Event and Condition classes exists and is modeled by the aggregation relation.

Nested State
machine

listSM
initialSM
inputEvent
outputEvent

* H H R

nextSM ()
setSM ()
setinputEvt ()
setOutputEvt ()
setlnitialSM ()
addSM ()
removeSM ()
linkSM ()
unlinkSM ()

o+ o+

1 Event
eventlD
immediate
State machine State Transition + setDescription ()
* + getDescription ()

listStates # transitionlD

PR, # statelD # eventlD
b inoEvon # listEvents ! from *} L ConditioniD

inputven # listConditions 1 .| # initiaStatelD
outputEvent to M InitialState! >

targ *
+ nextState ()
1 «| + setinputEvt () + setEvent () s
+ seisuates ¢ + setOutputEvt () + setCondition () Condition
M setgptu tE (t) + setinputCond () + addEvent()
M se“ l'jt'pIUSt‘; 0 + setOutputCond () + removeEvent () # conditionID
: :zdglt::e ()a =0 + addEvent () + addCondition ()
Stat + removeEvent () + entry ()

: ::Zr:r‘:‘elztsfa:e(()) + addCondition () + exit () + setDescription ()

. + removeCond () "
+ disconnectState () + getDescription ()

Fig

. 1 The Meta-model nested state machine

Functional and Operational Solutions 259

Input Event

Execution context
Current state

Current state
machine

\i

List of events

Execute ()

NextState ()

NextStateMachine ()

Information about
Component base current state

Agent description

Fig. 2 The internal agent behavior

We propose a generic architecture for intelligent agents depicted in Fig. 2. This
architecture consists of the following parts: (1) the Event Queue to save different
input events that may take place in the system, (2) the intelligent software agent
that reads an input event from the Event Queue and reacts as soon as possible, (3)
the set of state machines such that each one is composed of a set of states, (4) each
state represents a specific information about the system. The agent, based on nested
state machines, determines the new system’s state to execute according to event inputs
and also conditions to be satisfied. This solution has the following characteristics: (1)
The control agent design is general enough to cope with various kinds of embedded-
software based-component application. Therefore, the agent is uncoupled from the
application and from its Control Components. (2) The agent is independent of nested
state machines: it permits to change the structure of nested state machines (add state
machines, change connections, change input events, and so on) without having to
change the implementation of the agent. This ensures that the agent continues to
work correctly even in case of modification of state machines. (3) The agent is not
supposed to know components that it has to add or remove in a reconfiguration case.

260 A. Gharbi et al.

In the following algorithm, the symbol Q is an event queue which holds incoming
event instances, ev refers to an event input, S; represents a State Machine, and s; j a
state related to a State Machine S;. The internal behavior of the agent is defined as
follow:

1. the agent reads the first event ev from the queue Q;

2. searches from the top to the bottom in the different state machines;

3. within the state machine SM;, the agent verifies if ev is considered as an event
input to the current state s;; (i.e. ev € I related to s; ;). In this case, the agent
searches the states considered as successor for the state s; ; (states in the same
state machine SM; or in another state machine SM;);

4. the agent executes the operations related to the different states;

5. repeats the same steps (1-4) until no more event exists in the queue to be treated.

Algorithm 1: GenericBehavior

begin
while (Q.length() > 0) do
ev < Q.Head()
For each state machine SM; do
sij < currentState;
If ev € I(s; ;) then
For each state s; x € next(s; ;)
such that s; ; related to S; do
If execute(s; ;) then
currentState; <— s; i
break
end if
end for
For each state 5, x € next(s;)
such that s; ; related to S; do
If execute(s; ;) then
currentState; <— S
break
end if
end for
end if
end for
end while
end.

First of all, the agent evaluates the pre-condition of the state s; ;. If it is false, then
the agent exits, Else the agent determines the list of Control Components concerned
by this reconfiguration, before applies the required reconfiguration for each one.
Finally, it evaluates the post-condition of the state s; ; and generates errors whenever
it is false.

Functional and Operational Solutions 261

Function execute(s; ;) : boolean
begin
If —s; j.PreCondition then
return false
else
listCC <« getInfo(s; j.info)
For each CC € listCC do
CC.reconfigure()
end for
If —s; j.PostCondition then
Generate error
end if
return true
end if
end.

4.2 Communication Protocol

To guarantee safe distributed reconfigurations, we define the concept of Coordination
Matrix that defines correct reconfiguration scenarios to be applied simultaneously
in distributed devices and we define the concept of Coordination Agent that handles
coordination matrices to coordinate between distributed agents.

Let Sys be a distributed safe system of n devices, and let Agy,...,Ag, be n
agents to handle automatic distributed reconfiguration scenarios of these devices.
We denote in the following by Reconfiguration arkahe & reconfiguration scenario
applied by Ag, (a € [1, n]) as follows: (1) the correspondlng ASM state machine is
in the state ASM;,. Let cond“ be the set of conditions to reach this state, (2) the CSM
state machine is in the state CSM;, j, Let cond be the set of conditions to reach
this state, (3) the DSM state machine is in the state DSMy, p,- Let cond,fav hy be the
set of conditions to reach this state. To handle coherent distributed reconfigurations
that guarantee safe behaviors of the whole system Sys, we define the concept of
Coordination Matrix of size (n, 4) that defines coherent scenarios to be simultane-
ously applied by different agents. Let CM be such a matrix that we characterize as
follows: each line a (a € [1, n]) corresponds to a reconfiguration scenario
Reconfiguration? oo kasha © be applied by Ag, as follows:

CMla, 1] =i, CMla,2] =j,; CMla,3]l=kys; CMla,4] = h,

According to this definition: If an agent Ag, applies the reconfiguration scenario
Reconfiguration® cmia,1].cM[a.2].CM[a.3].CM[a,4], Then each other agent Ag, (b €
[1, n]\{a}) has to apply the scenario Reconﬁgurationb CM[b,11,CM[b,2],CM[b,3],CM[b,4]
(Fig. 3). We denote in the following by idle agent each agent Ag;, (b € [1, n]) which
is not required to apply any reconfiguration when others perform scenarios defined
in CM. In this case:

262 A. Gharbi et al.

1 2 3 4 Reconfigurations to be
applied simultaneously

Ags| 1 | | | i
| | | |
| ! | !

Ada ia ja Ka ha Reconfiguration to
| | | | be applied by Ag,
| | | |
| | | |
' : : . Agent does not

Ag, '|b= 0 l'b =0 'kb= 0 :1.,: 0 |« react
| | | |
! P !

f f Reconfiguration to

A i k h

% | ° |Ic | ¢ | © be applied by Ag.
[[[:
Ag,| ! ' ' :

Fig. 3 The coordination matrix

CM[b, 1] = CM[b, 2] = CM[b,3] = CM[b,4] =0

a — a — a —
condeyq 1) = condeya,n) = €Ondeyia 3),cmia,a) = True

We propose a communication protocol between agents to manage concurrent
distributed reconfiguration scenarios. We guarantee a coherent behavior of the whole
distributed system by defining a Coordination Agent (denoted by CA(£(Sys))) which
handles the Coordination Matrices of £(Sys) to control the rest of agents (i.e. Agq,,
a € [1, n)) as follows:

e When a particular agent Ag, (a € [1, n]) should apply a reconfiguration scenario
Reconfiguration! o ;. (i.e. under well-defined conditions), it sends the follow-
ing request to CA(S (Sys)) to obtain its authorization:

request(Agq, CA(5(Sys)), Reconﬁgurationfa Jorkasha).

e When CA(&(Sys)) receives this request that corresponds to a particular coordina-
tion matrix CM € &(Sys) and if CM has the highest priority between all matrices
of Concur(CM)U{CM}, then CA(&(Sys)) informs the agents that have simultane-
ously to react with Ag, as defined in CM. The following information is sent from
CA(§(Sys)):

For each Agp, b € [1,n] \ {a} and CM[b,i] # 0,Vi € [1,4]: reconfiguration
(CA(E(Sys)), Agp, Reconﬁgumtionl&M[b’lLCM[b’2]’CM[b’3]’CM[b’4])

e According to well-defined conditions in the device of each Agj, the CA(&(Sys))

request can be accepted or refused by sending one of the following answers:

- If Conaff7 = cond’? = condfb h, = True
then the following reply is sent from Agy, to CA(£(Sys)): possible_reconfig
(Agp, CA(%(Sys.)), Recogﬁgurationl&M[b’IJ’CM[b‘ZJ,CM[b’3J,CM[b’4J).

— Else the following reply is sent from Ag,, to CA(§(Sys)): not_possible_reconfig
(Agp, CA(5(Sys)), ReconﬁgumtionléM[b’ 1],CM[b,Z],CM[b,3],CM[h,4])'

Functional and Operational Solutions 263

Reconfiguration Coordination Reconfiguration
agent i agent agent j

request for reconfiguration] |
Search the

)coordinalion matrix J_

*[j:=1..nbR, j <> i] Ask for reconfiguration

\

b —

refuse

Cancel the new reconfiguration

-t
]

)[anesp = nbR-1]

| T
I accept |
D . Apply the new reconfiguration *[i:=1..nbR, j <> i] apply the new reconfiguration ‘L_J

Fig. 4 The communication scenario

e If CA(£(Sys)) receives positive answers from all agents, then it authorizes recon-
figurations in the concerned devices: For each Agp, b € [1, n] and CM[b, i] # 0,

Vi € [1, 4], apply (ReconﬁgurationZM[b’1]‘CM[b’Z]’CM[bj]’CM[bA]) in devicey,. Else
If CA(£(Sys)) receives a negative answer from a particular agent, then

— If the reconfiguration scenario Reconﬁgumtionf’a o kasha allows optimizations of
the whole system behavior, then CA (£ (Sys)) refuses the request of Ag,, by send-
ing the following reply: refused_reconfiguration(CA(E(Sys)), Agq,

Rec""ﬁg”m’ion%ma, 1],CM[a,2J,CM[u,3],CM[a,4J))’

When a Reconfiguration Agent (denoted by RA;) needs to apply a new recon-
figuration, it sends a request to the Coordination Agent. The Coordination Agent
asks all the known Reconfiguration Agents (denoted by RA;, Vj € [1..NbR],j <> i
where NDR represents the number of Reconfiguration Agents) if it is possible to
apply the new reconfiguration introduced as parameter. The Reconfiguration Agent
(RA;) studies this proposition and sends its response which may be accept or
refuse the new reconfiguration (depending on its related state). Whenever the
Coordination Agent receives positive responses from all the Reconfiguration Agents
(RA;Vj € [1..NbR], j <> i)(i.e. the number of positives answers is equal to NbR—1),
then it decides to apply the new reconfiguration for all Reconfiguration Agents
RA; (Vj € [1..NbR]) by sending a confirmation message. Whenever the Coordi-
nation Agent receives only one negative response from a Reconfiguration Agents

264 A. Gharbi et al.

System

SystemID
listAgent

+ addAgent ()
+ deleteAgent ()
+ searchAgent ()

Message

content

perfomative
receiver

sender

time

Control Agent

AgentlD

nameAgent Send/receive

+ setContent ()
+ getContent ()

+ setPerformative ()

+ subscribe ()
+ unsubscribe ()
+ communicate ()

Coordination
Agent

listAgent
matrices
actualMatrix

+ searchAgents ()
+ setMatrices ()

+ decideMatrix ()
+ setMatrix ()

+ communicate ()

+ getPerformative ()
+ setReceiver ()

+ getSender ()

+ getTime ()

+ setTime ()

Reconfiguration
Agent

CoordinatorlD
actualReconfig

+ searchCoordinator ()
+ searchReconfig ()

+ decideReconfig ()

+ setReconfig ()

+ communicate ()

Fig. 5 The agent-based control in a distributed system

(RA;,j € [1..NbR],j <> i), it decides to cancel this reconfiguration and informs
the corresponding agent by its decision (i.e RA;). Figure 4 depicts the interaction
between Reconfiguration and Coordination agents to ensure dynamic reconfigura-
tion in a distributed system.

Before sending or receiving a message, the Reconfiguration Agent searches
the Coordination Agent with the method searchCoordinator(). The Coordination
Agent in its turn searches also the list of Reconfiguration Agents with the method
searchAgents().

The method receive() used by both Coordination Agent and Reconfiguration
Agent permits to receive a message sent by another agent. Whenever receive() is

Functional and Operational Solutions 265

invoked through CA_Communicate() and RA_Communicate() methods, if the agent
does not receive a message, it is blocked (but without blocking the other activities of
the same agent).

A message is defined by the following data: (1) content: the subject of the message
(such as the reconfiguration to be applied); (2) performative: the performative indi-
cates what the sender wants to achieve (for example ACCEPT, REFUSE, CANCEL,
CONFIRM); (3) time: it is necessary to treat messages ordered by time; (4) sender:
the agent emitting the message; and (5) receiver: the agent receiving the message.
Figure 5 depicts the different classes such as ControlAgent, CoordinationAgent,
ReconfigurationAgent, Message and System.

In the following, we present the Communicate method defined for both Recon-
figuration and Coordination Agent. The CA_Communicate method defined for the
Coordination Agent has as variables: (1) i representing the reconfiguration agent
which initiates the request of reconfiguration; (2) j which corresponds to the recon-
figuration agent receiving the request of reconfiguration from the coordination agent;
(3) NbR which represents the total number of reconfiguration agents; (4) NbResp con-
sidered as the current number of responses approving the new reconfiguration by the
reconfiguration agents; (5) matrix representing the new matrix to be applied if all the
reconfiguration agents accept.

Algorithm CA_Communicate()

begin
switch (step)
case 0:
/I Wait a request from a Reconfiguration Agent
reply < receive();
if (reply != null)
if (reply.getPerformative() = REQUEST)
i < reply.getSender();
Matrix < decideMatrix(reply.getContent());
step++;
else
block();
break;

case 1:
/I Send the proposition to all Reconfiguration Agents
for j =1 to NbR do
if <>1)

msg.addReceiver(reconfigurationAgents[j]);
msg.setContent(Matrix[j]);
msg.setPerformative(PROPOSE);
msg.setTime(currentTime());
send(msg);

step++;

break;

266

A. Gharbi et al.

case 2:

/I Receive all accept/refusals from Reconfiguration Agents reply < receive();

if (reply != null)
if (reply.getPerformative() = ACCEPT)
nbResp++;
if (nbResp = nbR-1)
step++;
else
if (reply.getPerformative() = REFUSE)
step < 4;
else
block();
break;

case 3:
// Send accept response to all Reconfiguration Agents

for j =1 to NbR do
msg.addReceiver(reconfigurationAgents[j]);
msg.setPerformative(CONFIRM);
msg.setTime(currentTime());
msg.setContent(Matrix[j]);
send(msg);
setMatrix(Matrix);

step < 0;

break;

case 4:

/I Send refuse response to the Reconfiguration Agent i
msg.addReceiver(reconfigurationAgents[i]);
msg.setPerformative(CANCEL);
msg.setTime(currentTime());
send(msg);
step < 0;
break;

end

The RA_Communicate method defines the Reconfiguration Agent behavior as
follows: (1) whenever the Reconfiguration Agent receives a request to apply a new
reconfiguration by the Coordination Agent, it evaluates this proposition and decides
whether to accept or to refuse it. The Reconfiguration Agent sends its response.
(2) whenever the Reconfiguration Agent receives a confirmation to apply the new

reconfiguration from the Coordination Agent, then it applies it.

Algorithm RA_Communicate()

begin

switch (step)

case 0:

// ' Wait a request from a Coordination Agent

Functional and Operational Solutions 267

reply < receive();
if (reply !=null)
if (reply.getPerformative() = REQUEST)
newReconfig < reply.getContent();
response.setReceiver(CoordinatorID);
if (decideReconfig(newReconfig))
response.setPerformative(ACCEPT);
else
response.setPerformative(REFUSE);
send(response)
step++;
else
block();
break;

case 1:
/I Wait the response from a Coordination Agent
reply < receive();
if (reply != null)
if (reply.getPerformative() = CONFIRM)
setReconfig(newReconfig);
step < 0;
break;
end

We developed a complete tool “ProtocolReconf™, to verify the communication
protocol. The tool “ProtocolReconf™ offers the possibility to create the Reconfigura-
tion and Coordination Agents by introducing the necessary parameters. It is required
to define the different scenarios that the Reconfiguration Agent can support so that
when a modification occurs in the system, it should look for the convenient reconfig-
uration. For the Coordination Agent, it is necessary to define the set of Coordination
Matrices to apply to the whole system [21].

5 Real-Time Task: Definition, Dynamic Reconfiguration
and Scheduling

In this section, we present a Real-Time Task as a general concept independently from
any real-time operating system, its dynamic reconfiguration, the scheduling between
several tasks and the implementation in a specific real-time operating system (which
is RTLinux).

268 A. Gharbi et al.

Fig. 6 Real time task Real-Time Task
CC, CC, CC,
Method>, Method,, ... Method,

5.1 Real Time Task Definition

A real time task is considered as a process (or a thread depending on the Operating
System) having its own data (such as registers, stack, ...) which is in competition
with other tasks to have the processor execution. A task is handled by a Real-Time
Operating System (RTOS) which is a system satisfying explicitly response-time con-
straints by supporting a scheduling method that guarantees response time especially
to critical tasks.

In this paragraph, we aim to present a real-time task as a general concept inde-
pendently from any real-time operating system.

To be independent from any Real-Time Operating System and to be related to our
research work, we define a task 7; as a sequence of Control Components, where a
Control Component is ready when its preceding Control Component completes its
execution. 7; ; denotes the j-th Control Component of 7; (Fig. 6). Thus, our application
consists of a set of periodic tasks T = (1, 12, ..., T,,). All the tasks are considered as
periodic this is not a limitation since non-periodic task can be handled by introducing
a periodic server.

Running Example. In the FESTO Benchmark Production System, the tasks t1 to
19 execute the following functions:

e (11) Feeder pushes out cylinder and moves backward/back;

e (12) Converter pneumatic sucker moves right/left;

e (13) Detection Module detects workpiece, height, color and material;

e (t4) Shift out cylinder moves backward/forward;

e (t5) Elevator elevating cylinder moves down/up;

e (76) Rotating disc workpiece present in position and rotary indexing table has
finished a 90 rotation;

e (17) Driller 1 machine drills workpiece;

e (tg) Driller 2 machine drills workpiece;

e (19) WarehouseCylinder removes piece from table.

In the following paragraphs, we introduce the meta-model of a task. We study also
the dynamic reconfiguration of tasks. After that, we introduce the task scheduling.

Functional and Operational Solutions 269

Finally, we present the task implementation within RTLinux as a Real-Time Oper-
ating System.

5.2 A Meta-model Task

In this chapter, we extend the work presented in [42] by studying both a task and a
scheduler in a general real-time operating system where each task is characterized
by:

identifer: each task 7; has a name and an identifier.

temporal properties: each task t; is described by a deadline D; (which corresponds
to the maximal delay allowed between the release and the completion of any
instance of the task), a period T;, a worst-case execution time C;. It is released
every T; seconds and must be able to consume at most C; seconds of CPU time
before reaching its deadline D; seconds after release (C; < D; < T;). We assume
that these attributes are known, and given as constants (Table2).

constraints: resources specification p;, precedence constraints and/or QoS proper-
ties to be verified.

state: A Real-Time Operating System implements a finite state machine for each
task and ensures its transition. The state of a task may be in one of the following
possible states Ready, Running, Blocked or Terminated. Every task is in one of a
few different states at any given time:
Ready The task is ready to run but waits for allocation of the processor. The
scheduler decides which ready task will be executed next based on priority crite-
rion (i.e. the task having the highest priority will be assigned to the processor).
Blocked A task cannot continue execution because it has to wait (there are many
reasons such that waiting for event, waiting on semaphore or a simple delay).
Running In the running state, the processor is assigned to the task, so that its
instructions can be executed. Only one task can be in this state at any time, while
all the other tasks can be simultaneously in other states.
Terminated When a task terminates its execution, the task allocator deletes it
and releases the resources taken by this task (Fig. 7).

priority: eachtaskis assigned a priority value which may be used in the scheduling.

1 = (Dy; Ci; Ti; I;; O3 pi; (CCY, ..., CCMY);

a deadline D;;

an execution time C;;
a period Tj;

a set of inputs I;;

a set of outputs O;;

270 A. Gharbi et al.

Table 2 A task set example

Task Comp. time C; Period T; Deadline D;
71 20 70 50
12 20 80 80
) 35 200 100
T4 62 90 81

Task created

Task having the
highest priority

Unblocked but it ig
not the highest
priority
Unblocked and it is
the highest priori

blocked

Task finishes
its execution

Waiting for
unavailbale resource

terminated

Fig. 7 Task states

e a sct of constraints p;;
e a set of n; Control Components (n; > 1) such that the task 7; is constituted by
ccl,cc, ... ccr.

One of the core components of an RTOS is the task scheduler which aims to
determine which of the ready tasks should be executing. If there are no ready tasks
at a given time, then no task can be executed, and the system remains idle until a task
becomes ready (Fig. 8).

Running Example. In the FESTO Benchmark Production System, when the task
11 is created, it is automatically marked as Ready task. At the instant t1,it is executed
by the processor (i.e. it is in the Running state). When the task t| needs a resource
at the instant t2, it becomes blocked. Whenever the resource is available at the

Functional and Operational Solutions 271

Scheduler

Blocked tasks Ready tasks
Fig. 8 Scheduling task
State
A
Blocked —
| I
| |
Running — | —
I I I
: L
Ready [1 L :
|
I
Terminated e
» Time
t1 t2 3 t4 t5

Fig. 9 The variation of states related to the task t;

instant t3, the task t is transformed into ready state. Finally, it is executed again
since the time t4. It is terminated at the instant t5 (Fig. 9).
A scheduler related to a real-time operating system is characterized by (Fig. 10):

readyTask: a queue maintaining the set of tasks in ready state.

executingTask: a queue maintaining the set of tasks in executing state.

minPriority: the minimum priority assigned to a task.

maxPriority: the maximum priority assigned to a task.

timeSlice: the threshold of preempting a task (the quantity of time assigned to a
task before its preemption).

Several tasks may be in the ready or blocked states. The system therefore maintains a
queue of blocked tasks and another queue for ready tasks. The latter is maintained in
a priority order, keeping the task with the highest priority at the top of the list. When
a task that has been in the ready state is allocated the processor, it makes a state
transition from ready state to running state. This assignment of the processor is called
dispatching and it is executed by the dispatcher which is a part of the scheduler.
Running Example. In the FESTO Benchmark Production System, we consider
three tasks t1, 12 and t3. having as priority pl, p2 and p3 such that pl < p2 < p3.

272

A. Gharbi et al.

Task
Scheduler

Task-name
readyTask Task-d :
executingTask Task-Perlot_l
minPriority I:z:-ev?g-ll!ne
maxPriority Queue]
timeSlice Task-Pred
runningTask Task-Qth :
Scheduler-State Task-Priority
criterla Task-State

Initialize ()

T Prop 0 enqueue () getinfo()

verifyTemporalProp L dequeue () getPriority ()
verifyQoSProp () maintain_| isEmpty () 1 *| setPriority ()
chooseTask () Length () addPred ()
Create () setPred ()
Syspend () getState ()
Kill _() setState ()
Actlvate_() setTemporal ()
preemptionLock () addComponent ()
preemptionUnlock () removeComponent ()

setQoS ()

Fig. 10

The real time operating system

Priority
Context
e ot
-
A
Context
switch Task 3
=

Task 1

t1

» Time

Fig. 11 The context switch between tasks

We suppose that the task t1 is running when the task 7> is created at the instant t1. As
a consequence, there is a context switch so that the task t| stays in a ready state and
the other task 1) begins its execution as it has higher priority. At the instant t2, the
task t3 which was already blocked waiting a resource, gets the resource. As the task
T3 is the highest priority, the task t) turns into ready state and T3 executes its routine.

The task t3 continues processing until it has completed, the scheduler enables T to
become running (Fig. 11).

Functional and Operational Solutions 273

5.3 Feasible and Safety Dynamic Reconfiguration of Tasks

We want to study the system’s safety during reconfiguration scenarios. In fact, we
want to keep tasks running while dynamically reconfiguring them. We assume for
such system’s task several software processes which provide functional services,
and assume also reconfiguration processes that apply required modifications such as
adapting connections, data or internal behaviors of the component. The execution of
these different tasks is usually critical and can lead to incorrect behaviors of the whole
system. In this case, we should schedule which process should be firstly activated
to avoid any conflict between processes. Consequently, we propose in this section
to synchronize processes for coherent dynamic reconfigurations applied to several
tasks.

5.3.1 Reconfiguration and Service Processes

We want in this section to synchronize service and reconfiguration processes of a
task according to the following constraints: (1) whenever a reconfiguration process is
running, any new service process must wait until its termination; (2) a reconfiguration
process must wait until the termination of all service processes before it begins its
execution; (3) it is not possible to execute many reconfiguration processes in parallel;
(4) several service processes can be executed at the same time. To do that, we use
semaphores and also the famous synchronization algorithm between readers and
writer processes such that executing a service plays the role of a reader process and
reconfiguring a task plays the role of a writer process. In the following algorithm,
we define serv and reconfig as semaphores to be initialized to 1. The shared variable
Nb represents the number of current service processes associated to a specific task.
Before the execution of a service related to a task, the service process increments
the number Nb (which represents the number of service processes). It tests if it is the
first process (i.e. Nb is equal to one). In this case, the operation P(reconfig) ensures
that it is not possible to begin the execution if there is a reconfiguration process.

P(serv)
Nb <~ NB+1
if (NB = 1) then
P(reconfig)
end if
V(serv)

After the execution of a service related to a task, the corresponding process decre-
ments the number Nb and tests if there is no service process (i.e. Nb is equal to zero).
In this case, the operation V (reconfig) authorizes the execution of a reconfiguration
process.

P(serv)
Nb <~ NB — 1

274 A. Gharbi et al.

if (NB =0) then
V(reconfig)
end if
V(serv)

Consequently, each service process related to a task does the following instructions:

Algorithm 2: execute a service related to a task

begin service
P(serv)
Nb < NB + 1
if (NB = 1) then
P(reconfig)
end if
V(serv)

execute the service

P(serv)
Nb < NB-1
if (NB =0) then
V(reconfig)
end if
V(serv)
end service

Running Example. Let us take as a running example the task Test related to the
EnAS system. To test a piece before elevating it, this component permits to launch
the Test Service Process. Figure 12 displays the interaction between the objects
Test Service Process,Service semaphore and Reconfiguration semaphore. The flow
of events from the point of view of Test Service Process is the following: (1) the
operation P(serv) leads to enter in critical section for Service semaphore; (2) the
number of services is incremented by one; (3) if it is the first service, then the operation
P(reconfig) permits to enter in critical section for Reconfiguration semaphore; (4)
the operation V (serv) leads to exit from critical section for Service semaphore; (5)
the Test Service Process executes the corresponding service; (6) before modifying
the number of service, the operation P(serv) leads to enter in critical section for
Service semaphore; (7) the number of services is decremented by one; (8) if there
is no service processes, then the operation V (reconfig) permits to exit from critical
section for Reconfiguration semaphore; (9) the operation V (serv) leads to liberate
Service semaphore from its critical section.

With the operation P(reconfig), a reconfiguration process verifies that there is
no reconfiguration processes nor service processes which are running at the same
time. After that, the reconfiguration process executes the necessary steps and runs
the operation V (reconfig) in order to push other processes to begin their execution.
Each reconfiguration process specific to a task realizes the following instructions:

Functional and Operational Solutions

275

Algorithm 3: reconfigure a task

begin reconfiguration
P(reconfig)

execute the reconfiguration
V(reconfig)
end reconfiguration

Running Example. Let us take as example the task Elevate related to EnAS
system. The agent needs to reconfigure this task which permits to launch the Elevate
Reconfiguration Process. Figure 13 displays the interaction between the following
objects Elevate Reconfiguration Process and Reconfiguration semaphore. The flow
of events from the point of view of Elevate Reconfiguration Process is the follow-
ing: (1) the operation P(reconfig) leads to enter in critical section for Reconfigura-

Test Service
Process

P(serv)

Service
semaphore

1

Reconfiguration

semaphore

|
|
|
L

Critical
Nb < Nb + 1 section
[Nb =1] P(reconfig) _
D V(serv)
Execute Critical
service | section
P(serv) _
Critical
section

Nb < Nb -1

[Nb =0] V(reconfig)

V(serv)

\d

-—O 1Tt

Fig. 12 The service process scenario

- ——

276 A. Gharbi et al.

Elevate Reconfiguration Reconfiguration
Process semaphore

1

P(reconfig)

\

Critical

Execute section

reconfiguration

V(reconfig)

A

- —C 31— {1

Fig. 13 The reconfiguration process scenario

tion semaphore; (2) the Elevate Reconfiguration Process executes the correspond-
ing reconfiguration; (3) the operation V (reconfig) leads to liberate Reconfiguration
semaphore from its critical section.

5.3.2 Verification of Safety of the Synchronization

To verify the safety of the synchronization, we should verify if the different con-
straints mentioned above are respected.

First property: whenever a reconfiguration process is running, any service
processes must wait until the termination of the reconfiguration. Let us suppose
that there is a reconfiguration process (so the integer reconfig is equal to zero and
the number of current services is zero). When a service related to this component is
called, the number of current services is incremented (i.e. it is equal to 1) therefore
the operation P(reconfig) leads the process to be in a blocked state (as the integer
reconfig is equal to zero). When the reconfiguration process terminates the reconfig-
uration, the operation V (reconfig) permits to liberate the first process waiting in the
semaphore queue. In conclusion, this property is validated.

Second property: whenever a service process is running, any reconfiguration
processes must wait until the termination of the service. Let us suppose that there
is a service process related to a component (so the number of services is greater or
equal to one which means that the operation P(reconfig) is executed and reconfig is
equal to zero). When a reconfiguration is applied, the operation P(reconfig) leads
this process to be in a blocked state (as the reconfig is equal to zero). Whenever
the number of service processes becomes equal to zero, the operation V (reconfig)
allows to liberate the first reconfiguration process waiting in the semaphore queue.
As a conclusion, this property is verified.

Functional and Operational Solutions 277

Third property: whenever a reconfiguration process is running, it is not possible
to apply a new reconfiguration process until the termination of the first one. Let
us suppose that a reconfiguration process is running (so reconfig is equal to zero).
Whenever, a new reconfiguration process tries to execute, the operation P(reconfig)
puts it into a waiting state. After the reconfiguration process which is running is ter-
minated, the operation V (reconfig) allows to liberate the first reconfiguration waiting
process. Consequently, this property is respected.

Fourth property: whenever a service process is running, it is possible to apply
another process service. Let us suppose that a service process P1 is running. When-
ever, a new service process P2 tries to begin the execution, the state of P2 (activated
or blocked) depends basically on the process P1:

e if P1 is testing the shared data Nb, then the operation P(serv) by the process
P2 leads it to a blocking state. When the process P1 terminates the test of the
shared data Nb, the operation V (serv) allows to launch the process waiting in the
semaphore’s queue.

e if P1 is executing its service, then the operation P(serv) by the process P2 allows
to execute normally.

Thus, this property is validated.

5.4 Task Scheduling with Priority Ceiling Protocol

How to schedule periodic tasks with precedence and mutual exclusion constraints is
considered as important as how to represent a task in a general real-time operating
system. In our context, we choose the priority-driven preemptive scheduling used
in the most real-time operating systems. The semaphore solution can lead to the
problem of priority inversion which consists that a high priority task can be blocked
by a lower priority task. To avoid such problem, we propose to apply the priority
inheritance protocol proposed by Sha et al. [49].

The priority inheritance protocol can be used to schedule a set of periodic tasks
having exclusive access to common resources protected by semaphores. To do so,
each semaphore is assigned a priority ceiling which is equal to the highest priority
task using this semaphore. A task t; is allowed to enter its critical section only if
its assigned priority is higher than the priority ceilings of all semaphores currently
locked by tasks other than t;.

Schedulability test for the priority ceiling protocol: a set of n periodic tasks using
the priority ceiling protocol can be scheduled by the rate-monotonic algorithm if the
following inequalities hold, Vi, 1 <i <n,

Ci/Ti + Co/To + -+ Ci/T; + Bi)T; < i(2"" = 1)

where B; denotes the worst-case blocking time of a task 7; by lower priority tasks.

278 A. Gharbi et al.
Task
Execute End
R1 reconfiguration P(R) reconfiguration V(R) reconfiguration
Begin Execute End
1 service P(S) P(R) V(S) service P(S) V(R) V(S) _service
Begin Execute End
service P(S) P(R) V(S) service P(S) V(R) V(S) service
S2
2 B 4 5 t6 7 8 t9 t10 H1 2 13 114 t15 16 t17 t8 t19 t20 t21 22 23 time

[Critical section guarded by S [l Critical section guarded by R

Fig. 14 The priority ceiling protocol applied to three tasks R1, S1 and S2

Table 3 The event and its corresponding action in Fig. 14

Event Action

t0 S2 begins execution

tl S2 locks S. The task S2 inherits the priority of S

t2 The task S1 is created. As it has more priority than S2, it begins its execution

t3 The task S1 fails to lock S as its priority is not higher than the priority ceiling of the
locked S. The task S2 resumes the execution with the inherited priority of S

t4 The task S2 locks R. The task S2 inherits the priority of R. The task R1 is created and
preempts the execution of S2 as it has the highest priority

t5 The task R1 fails to lock R as its priority is not higher than the priority ceiling of the
locked R. The task S2 resumes the execution of the critical section

t6 The task S2 unlocks S

t7 The task S2 executes a service

t8 The task S2 locks S

t9 The task S2 unlocks R and therefore has as priority the same as S. The task R1 becomes
having the highest priority. As it has more priority than S2, it resumes its execution

t10 The task R1 locks R

tll The task R1 executes the reconfiguration

t12 The task R1 unlocks R

t13 The task R1 terminates its execution

t14 The task S2 unlocks S (thus S2 becomes having the lowest priority). Therefore, the task
S1 resumes its execution

t15 The task S1 locks S

t16 The task S1 locks R

t17 The task S1 unlocks S

t18 The task S1 executes its service

t19 The task S1 locks S

20 The task S1 unlocks R

21 The task S1 unlocks S

22 The task S1 achieves its execution

23 The task S2 resumes the execution and terminates its service

Running Example. In the FESTO Benchmark Production System, we consider
three tasks R1 (a reconfiguration task), S1 and S2 (service tasks) having as priority

Functional and Operational Solutions 279

pl, p2 and p3 such that pl > p2 > p3. The sequence of processing steps for each
task is as defined in the section previous paragraph where S (resp. R) denotes the
service (resp. reconfiguration) semaphore:

R1 = {... P(R) execute reconfiguration V(R) . . .}
S1={...PS)...P(R)...V(S) execute service P(S) ... V(R)...V(S)...}
S2={...P(S)...P(R)...V(S) execute service P(S) ... V(R)...V(S)...}

Therefore, the priority ceiling of the semaphore R is equal to the task RI (because
the semaphore R is used by the tasks R1, SI and S2 and we know that the task R1 is
the highest priority) and the priority ceiling of the semaphore S is equal to the task
S1 (because the semaphore S is used by the tasks S1 and S2 and the priority task of
S1 is higher). We suppose that the task S2 is running when the task S1 is created at
the instant t3. We suppose also that the task R1 is created at the instant t5. Fig. 14, a
line in a high level indicates that the task is executing, a line in a low level indicates
that the the task is blocked or preempted by another task. Table 3 explains more in
details the example.

6 Conclusion

This chapter deals with Safety Reconfigurable Embedded Control Systems. We pro-
pose conceptual models for the whole component-based architecture. We define a
multi-agent architecture where a Reconfiguration Agent is affected to each device of
the execution environment to handle local automatic reconfigurations, and a Coor-
dination Agent is defined to guarantee safe distributed reconfigurations. To deploy
a Control Component in a Real-Time Operating System, we define the concept of
real-time task in general (especially its characteristics). The dynamic reconfiguration
of tasks is ensured through a synchronization between service and reconfiguration
processes to be applied. We propose to use the semaphore concept for this syn-
chronization such that we consider service processes as readers and reconfiguration
processes as writers. We propose to use the priority ceiling protocol as a method
to ensure the scheduling between periodic tasks with precedence and mutual exclu-
sion constraints. The main contributions presented through this work are: the study
of Safety Reconfigurable Embedded Control Systems from the functional to the
operational level and the definition of a real-time task independently from any real-
time operating system as well as the scheduling of these real-time tasks considered
as periodic tasks with precedence and mutual exclusion constraints. The chapter’s
contribution is applied to two Benchmark Production Systems FESTO and EnAS
available at Martin Luther University in Germany.

280 A. Gharbi et al.

R

1
2

10.

11.

12.

16.

17.

18.
19.

20.

21.

22.

23.

eferences

. M. Akerholm, J. Fredriksson, A Sample of Component Technologies for Embedded Systems

. Y. Al-Safi, V. Vyatkin, An ontology-based reconfiguration agent for intelligent mechatronic
systems (Springer, New York, 2007). Third International Conference on Industrial Applications
of Holonic and Multi-Agent Systems

. C. Angelov, K. Sierszecki, N. Marian, Design models for reusable and reconfigurable state
machines, in EUC 2005, LNCS 3824 eds. by L.T. Yang et al., International Federation for
Information Processing (2005), pp. 152-163

. C. Bidan, V. Issarny, T. Saridakis, A. Zarras, A dynamic reconfiguration service for CORBA,
in CDS 98: Proceedings of the International Conference on Configurable Distributed Systems
(IEEE Computer Society, 1998)

. K.-J. Cho, et al., A study on the classified model and the agent collaboration model for network
configuration fault management. Knowl. Based Syst., 177-190 (2003)

. M. Colnaric, D. Verber, W.A. Halang, A data-centric approach to composing embedded, real-
time software components. J. Syst. Softw. 74, 25-34 (2005)

. F. Cottet, J. Delacroix, C. Kaiser, Z. Mammeri, Scheduling in Real-Time Systems (Wiley, New
York, 2002)

. L. Crnkovic, Component-based Approach for Embedded Systems (2003)

. L. Crnkovic, M. Larsson, Building Reliable Component-based Software Systems (Artech House,

2002)

I. Crnkovic, M. Larsson, Grid Information Services for Distributed Resource Sharing (Artech

House, UK, 2002). Building reliable component-based software systems

M. de Jonge, Developing Product Lines with Third-Party Components. Electronic Notes in

Theoretical Computer Science (2009), pp. 63-80

ENS50126, Railway Applications the Specification and Demonstration of Dependability, Reli-

ability, Availability, Maintainability and Safety (RAMS) (Comite Europeen de Nomalisation

Electrotechnique, 1999)

. EN50128, Railway Applications Software for Railway Control and Protection Systems (Comite
Europeen de Nomalisation Electrotechnique, 2002)

. EN50129, Railway Applications Safety Related Electronic Systems for Signalling (Comite
Europeen de Nomalisation Electrotechnique, 2002)

. ENO954, Safety of Machinery Safety-related Parts of Control Systems (Comite Europeen de

Nomalisation Electrotechnique, 1996)

R. Faller, Project experience with IEC 61508 and its consequences. Saf. Sci. 42, 405-422

(2004)

T. Genler, O. Nierstrasz, B. Schonhage, Components for Embedded Software The PECOS

Approach

T. Genssler, et al., PECOS in a Nutshell (2002)

A. Gharbi, H. Gharsellaoui, M. Khalgui, S. Ben Ahmed, Functional safety of distributed embed-

ded control systems, in Handbook of Research on Industrial Informatics and Manufacturing

Intelligence: Innovations and Solutions, eds. by M.A. Khan, A.Q. Ansari (2011)

A. Gharbi, M. Khalgui, S. Ben Ahmed, Functional safety of discrete event systems. First

Workshop of Discrete Event Systems (2011)

A. Gharbi, M. Khalgui, S. Ben Ahmed, Inter-agents communication protocol for distributed

reconfigurable control software components. The International Conference on Ambient Sys-

tems Networks and Technologies (ANT), 8—10 Nov 2010

A. Gharbi, M. Khalgui, S. Ben Ahmed, Model checking optimization of safe control embed-

ded components with refinement. 5th International conference on Design and Technology of

Integrated Systems in Nanoscale Era (2010)

A. Gharbi, M. Khalgui, S. Ben Ahmed, Optimal model checking of safe control embedded

software components. 15th IEEE International Conference on Emerging Technologies and

Factory Automation (2010)

Functional and Operational Solutions 281

24.

25.
26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.
39.

40.

41.

42.

43.

44,
45.

46.

47.

48.

49.

A. Gharbi, M. Khalgui, H.M. Hanisch, Functional safety of component-based embedded control
systems. 2nd IFAC Workshop on Dependable Control of Discrete Systems (2009)
http://www.program-Transformation.org/Tools/KoalaCompiler. Last accessed on 11 July 2010
IEC 1131-3, Programmable Controllers, Part 3: Programming Languages (International Elec-
trotechnical Commission, Geneva, 1992)

IEC 61508, Functional Safety of Electrical/Electronic Programmable Electronic Systems:
Generic Aspects. Part 1: General requirements (International Electrotechnical Commission,
Geneva, 1992)

IEC60880, Software for Computers in the Safety Systems of Nuclear Power Stations (Interna-
tional Electrotechnical Commission, 1987)

IEC61511, Functional Safety: Safety Instrumented Systems for the Process Industry Sector
(International Electrotechnical Commission, Geneva, 2003)

IEC61513, Nuclear Power Plants Instrumentation and Control for Systems Important to Safety
General Requirements for Systems (International Electrotechnical Commission, Geneva, 2002)
G. Jiroveanu, R.K. Boel, A distributed approach for fault detection and diagnosis based on
Time Petri Nets. Math. Comput. Simul., 287-313 (2006)

M. Kalech, M. Linder, G.A. Kaminka, Matrix-based representation for coordination fault detec-
tion: a formal approach. Comput. Vis. Image Underst.

A. Ketfi, N. Belkhatir, P.Y. Cunin, Automatic Adaptation of Component-based Software Issues
and Experiences (2002)

M. Khalgui, H.M. Hanisch, A. Gharbi, Model-checking for the functional safety of control
component-based heterogeneous embedded systems. 14th IEEE International conference on
Emerging Technology and Factory Automation (2009)

J. Kramer, J. Magee, The evolving Philosophers problem: dynamic change management. IEEE
Trans. Softw. Eng. 16 (1990)

P. Leitao, Agent-based distributed manufacturing control: A state-of-the-art survey. Eng. Appl.
Artif. Intell. (2008)

A.J. Massa, Embedded Software Development with eCos, 1st edn (Prentice Hall, Upper Saddle
River, NJ, USA, 2002)

S. Merchant, K. Dedhia, Performance Comparison of RTOS (2001)

C. Muench, The Windows CE Technology Tutorial: Windows Powered Solutions for the Devel-
oper (Addison Wesley, Reading, 2000)

S. Olsen, J. Wang, A. Ramirez-Serrano, R.W. Brennan, Contingencies-based reconfiguration
of distributed factory automation. Robot. Comput. Integr. Manuf., 379-390 (2005) (Safety
Reconfigurable Embedded Control Systems 31)

G.A. Papadopoulos, F. Arbab, Configuration and Dynamic Reconfiguration of Components
Using the Coordination Paradigm (2000)

P. Pedreiras, L. Almeida, Task Management for Soft Real-Time Applications based on General
Purpose Operating, System (2007)

G. Pratl, D. Dietrich, G. Hancke, W. Penzhorn, A new model for autonomous, networked
control systems. IEEE Trans. Ind. Inform. 3(1) (2007)

QNX Neutrino, Real Time Operating System User Manual Guide (2007)

A.Rasche, A. Polze, ReDAC—Dynamic Reconfiguration of distributed component-based appli-
cations with cyclic dependencies (2008)

A. Rasche, W. Schult, Dynamic updates of graphical components in the .NET Framework, in
Proceedings of SAKSO7 Workshop eds. by A. Gharbi, M. Khalgui, M.A. Khan, vol. 30 (2007)
M.N. Rooker, C. Sunder, T. Strasser, A. Zoitl, O. Hummer, G. Ebenhofer, Zero Downtime
Reconfiguration of Distributed Automation Systems : The eCEDAC Approach (Springer, New
York, 2007). Third International Conference on Industrial Applications of Holonic and Multi-
Agent Systems

G. Satheesh Kumar, T. Nagarajan, Experimental investigations on the contour generation of a
reconfigurable Stewart platform. IJIMR 1(4), 87-99 (2011)

L. Sha, R. Rajkumar, J.P. Lehoczky, Priority inheritence protocols: an approach to real-time
synchronization. IEEE Trans. Comput. 39(9), 1175-1185 (1990)

http://www.program-Transformation.org/Tools/KoalaCompiler

282 A. Gharbi et al.

50. D.D. Souza, A.C. Wills, Objects, Components and Frameworks: The Catalysis Approach
(Addison-Wesley, Reading, MA, 1998)

51. D.B. Stewart, R.A. Volpe, P.K. Khosla, Design of dynamically reconfigurable real-time soft-
ware using port-based objects. IEEE Trans. Softw. Eng. 23, 592-600 (1997)

52. C. Szyperski, D. Gruntz, S. Murer, Component Software Beyond Object- Oriented Program-
ming (The Addison-Wesley Component Software Series, 2002)

53. R. van Ommering, F. van der Linden, J. Kramer, J. Magee, The Koala Component Model for
Consumer Electronics Software (IEEE Computer, Germany, 2000), pp. 78-85

54. M. Winter, Components for Embedded Software—The PECOS Approach

55. R. Wuyts, S. Ducasse, O. Nierstrasz, A data-centric approach to composing embedded, real-
time software components. J. Syst. Softw. (74), 25-34 (2005)

	10 Functional and Operational Solutions for Safety Reconfigurable Embedded Control Systems
	1 Introduction
	2 Dynamic Reconfiguration
	3 Benchmark Production Systems: FESTO and EnAS
	3.1 The FESTO System
	3.2 The EnAS System

	4 Multi-agent System
	4.1 Software Architecture of Reconfiguration Agents
	4.2 Communication Protocol

	5 Real-Time Task: Definition, Dynamic Reconfiguration and Scheduling
	5.1 Real Time Task Definition
	5.2 A Meta-model Task
	5.3 Feasible and Safety Dynamic Reconfiguration of Tasks
	5.4 Task Scheduling with Priority Ceiling Protocol

	6 Conclusion
	References

