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Abstract. For some classes of guarded ground assignments for arrays,
we show that accelerations (i.e. transitive closures) are definable in the
theory of arrays via ∃∗∀∗-first order formulae. We apply this result to
model checking of unbounded array programs, where the computation
of such accelerations can be used to prevent divergence of reachability
analysis. To cope with nested quantifiers introduced by acceleration pre-
processing, we use simple instantiation and refinement strategies during
backward search analysis. Our new acceleration technique and abstrac-
tion/refinement loops are mutually beneficial: experiments conducted
with the SMT-based model checker mcmt attest the effectiveness of our
approach where acceleration and abstraction/refinement technologies fail
if applied alone.

1 Introduction

Transitive closure is a logical construct that is far beyond first order logic: either
infinite disjunctions or higher order quantifiers or, at least, fixpoints operators
are required to express it. Indeed, due to the compactness of first order logic,
transitive closure (even modulo the axioms of a first order theory) is first-order
definable only in trivial cases. These general results do not hold if we define
a theory as a class of structures C over a given signature1. Such definition is
different from the “classical” one where a theory is identified as a set of axioms.
By taking a theory as a class of structures the property of compactness breaks,
and it might well happen that transitive closure becomes first-order definable
(the first order definition being valid just inside the class C - which is often
reduced to a single structure).

In this paper we consider the extension of Presburger arithmetic with free
unary function symbols. Inside Presburger arithmetic, various classes of relations
are known to have definable acceleration2 (see related work section below). In our
combined setting, the presence of free function symbols introduces a novel feature
that, for instance, limits decidability to controlled extensions of the quantifier-
free fragment [16,23]. In this paper we show that in such theory some classes of
relations admit a definable acceleration.
1 Such definition is widely adopted in the SMT literature [8].
2 ‘acceleration’ is the name usually adopted in the formal methods literature to denote
transitive closure.
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The theoretical problem of studying the definability of accelerated relations
has an important application in program verification. The theory we focus on
is widely adopted to represent programs handling arrays, where free functions
model arrays of integers. In this application domain, the accelerated counterpart
of relations encoding systems evolution (e.g., loops in programs) allows to com-
pute ‘in one shot’ the reachable set of states after an arbitrary but finite number
of execution steps. This has the great advantage of keeping under control sources
of (possible) divergence arising in the reachability analysis.

The contributions of the paper are many-fold. First, we show that inside the
combined theory of Presburger arithmetic augmented with free function symbols,
the acceleration of some classes of relations – corresponding, in our application
domain, to relations involving arrays and counters – can be expressed in first
order language. This result comes at a price of allowing nested quantifiers. Such
nested quantification can be problematic in practical applications. To address
this complication, as a second contribution of the paper, we show how to take
care of the quantifiers added by the accelerating procedure: the idea is to im-
port in this setting the so-called monotonic abstraction technique [1, 2]. Such
technique has been reinterpreted and analyzed in a declarative context in [5]:
from a logical point of view, it amounts to a restricted form of instantiation
for universal quantifiers. Third, we show that the ability to compute acceler-
ated relations is greatly beneficial in program verification. In particular, one
of the biggest problems in verifying safety properties of array programs is de-
signing procedures for the synthesis of relevant quantified predicates. In typical
sequential programs (like those illustrated in Fig.1), the guarded assignments
used to model the program instructions are ground and, as a consequence, the
formulae representing backward reachable states are ground too. However, the
invariants required to certify the safety of such programs contain quantifiers.
Our acceleration procedure is able to supply the required quantified predicates.
Our experimentation attests that abstraction/refinement-based strategies widely
used in verification benefit from accelerated transitions. In programs with nested
loops, as the allDiff procedure of Fig.1 for example, the ability to accelerate
the inner loop simplifies the structure of the problem, allowing abstraction to
converge during verification of the entire program. For such programs, abstrac-
tion/refinement or acceleration approaches taken in isolation are not sufficient;
reachability analysis converges only if they are combined together.
Related Work. To the best of our knowledge, the only work addressing the
problem of accelerating relations involving arrays is [13]. The approach used
in this paper seems to be unable to handle properties of common interest with
more than one quantified variable (e.g., “sortedness”) and is limited to programs
without nested loops. Our technique is not affected by such limitations and can
successfully handle examples outside the scope of [13].

Inside Presburger arithmetic, various classes of relations are known to have
definable acceleration: these include relations that can be formalized as differ-
ence bounds constraints [15, 20], octagons [12] and finite monoid affine trans-
formations [21] (The paper [14] presents a general approach covering all these
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function allDiff ( int a[N] ) :

1 r = true;

2 for (i = 1; i < N ∧ r; i++)

3 for (j = i-1; j ≥ 0 ∧ r; j--)

4 if (a[i] = a[j]) r = false;

5 assert

(
r →

(
∀x, y(0 ≤ x < y < N)

→ (a[x] �= a[y])

))

(a)

function Reverse ( int I[N + 1]; int O[N+ 1]; int c ) :

1 c = 0;

2 while (c �= N + 1) {O[c] = I[N − c]; c++; }

3 assert

(
∀x ≥ 0, y ≥ 0

(x + y = N → I[x] = O[y] )

)

(b)

Fig. 1. Motivating examples

domains). Acceleration for relations over Presburger arithmetic has been also
plugged into abstraction/refinement loop for verifying integer programs [17,27].

We recall that acceleration has also been applied fruitfully in the analysis of
real time systems (e.g., [9,26]), to compactly represent the iterated execution of
cyclic actions (e.g., polling-based systems) and address fragmentation problems.

Our work can be proficiently combined with SMT-based techniques for the
verification of programs, as it helps avoiding the reachability analysis divergence
when it comes to abstraction of programs with arrays of unknown length. Since
the technique mostly operates at pre-processing level (we add to the system ac-
celerated transitions by collapsing branches of loops handling arrays), we believe
that our technique is compatible with most approaches proposed in array-based
software model checking. We summarize some of these approaches below, with-
out pretending of being exhaustive.

The vast majority of software model-checkers implement abstraction-refine-
ment algorithms (e.g., [7,19,25]). Lazy Abstraction with Interpolants [31] is one of
the most effective frameworks for unbounded reachability analysis of programs.
It relies on the availability of interpolation procedures (nowadays efficiently em-
bedded in SMT-Solvers [18]) to generate new predicates as (quantifier-free) in-
terpolants for refining infeasible counterexamples.

For programs with arrays of unknown length the classical interpolation-based
lazy abstraction works only if there is a support to handle quantified predicates [3]
(the approach of [3] is the basis of our experiments below). Effectiveness and per-
formances of abstraction/refinement approaches strongly depend on their ability
in generating the “right” predicates to stop divergence of verification procedures.
In case of programs with arrays, this quest can rely on ghost variables [22] re-
trieved from the post-conditions, on the backward propagation of post-conditions
along spurious counterexamples [34] or can be constraint-based [10,35]. Recently,
constraint-based techniques have been significantly extended to the generation of
loop invariants outside the array property fragment [30]. This solution exploits
recent advances in SMT-Solving, namely those devoted to finding solutions of
constraints over non-linear integer arithmetic [11]. Other ways to generate pred-
icates are by means of saturation-based theorem provers [29, 32] or interpolation
procedures [3, 28].
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All the aforementioned techniques suffer from a certain degree of randomness
due to the fact that detecting the “right” predicate is an undecidable problem.
For example, predicate abstraction approaches (i.e., [3, 4, 34]) fail verifying the
procedures in Fig.1, which are commonly considered to be challenging for veri-
fiers because they cause divergence3. Acceleration, on the other side, provides a
precise and systematic way for addressing the verification of programs. Its com-
bination, as a preprocessing procedure, with standard abstraction-refinement
techniques allows to successfully solve challenging problems like the ones in Fig.1.

The paper is structured as follows: Section 2 recalls the background notions
about Presburger arithmetic and extensions. In order to identify the classes of
relations whose acceleration we want to study, we are guided by software model
checking applications. To this end, we provide in Section 3 a classification of
the guarded assignments we are interested in. Section 4 demonstrates the prac-
tical application of the theoretical results. In particular, it presents a backward
reachability procedure and shows how to incorporate acceleration with mono-
tonic abstraction in it. The details of the theoretical results are presented later.
The main definability result for accelerations is in Section 6, while Section 5 in-
troduces the abstract notion of an iterator. Section 7 discusses our experiments
and Section 8 concludes the paper.

2 Preliminaries

We work in Presburger arithmetic enriched with free function symbols and with
definable function symbols (see below); when we speak about validity or satisfia-
bility of a formula, we mean satisfiability and validity in all structures having the
standard structure of natural numbers as reduct. Thus, satisfiability and validity
are decidable if we limit to quantifier-free formulæ (by adapting Nelson-Oppen
combination results [33, 36]), but may become undecidable otherwise (because
of the presence of free function symbols).

We use x, y, z, . . . or i, j, k, . . . for variables; t, u, . . . for terms, c, d, . . . for free
constants, a, b, . . . for free function symbols, φ, ψ, . . . for quantifier-free formulæ.
Bold letters are used for tuples and |−| indicates tuples length; hence for instance
u indicates a tuple of terms u1, . . . , um, wherem = |u|. These tuples may contain
repetitions. For variables, we use underlined letters x, y, . . . , i, j, . . . to indicate
tuples without repetitions. Vector notation can also be used for equalities: if
u = u1, . . . , un and v = v1, . . . , vn, we may use u = v to mean the formula∧n

i=1 ui = vi.
If we write t(x1, . . . , xn),u(x1, . . . , xn), φ(x1, . . . , xn) (or t(x),u(x), φ(x), . . . ,

in case x = x1, . . . , xn), we mean that the term t, the tuple of terms u, the
quantifier-free formula φ contain variables only from the tuple x1, . . . , xn. Sim-
ilarly, we may use t(a, c, x), φ(a, c, x), . . . to mean both that the term t or the

3 The procedure Reverse outputs to the array O the reverse of the array I; the
procedure allDiff checks whether the entries of the array a are all different. Many
thanks to Madhusudan Parthasarath and his group for pointing us to challenging
problems with arrays of unknown length, including the allDiff example.
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quantifier-free formula φ have free variables included in x and that the free
function, free constants symbols occurring in them are among a, c. Notations
like t(u/x), φ(u/x), . . . or t(u1/x1, . . . , un/xn), φ(u1/x1, . . . , un/xn), . . . - or oc-
casionally just t(u), φ(u), . . . if confusion does not arise - are used for simulta-
neous substitutions within terms and formulæ. For a given natural number n,
we use the standard abbreviations n̄ and n ∗ y to denote the numeral of n (i.e.
the term sn(0), where s is the successor function) and the sum of n addends all
equal to y, respectively. If confusion does not arise, we may write just n for n̄.

By a definable function symbol, we mean the following. Take a quantifier-free
formula φ(j, y) such that ∀j∃!yφ(j, y) is valid (∃!y stands for ‘there is a unique
y such that ...’). Then a definable function symbol F (defined by φ) is a fresh
function symbol, matching the length of j as arity, which is constrained to be
interpreted in such a way that the formula ∀y.F (j) = y ↔ φ(j, y) is true. The
addition of definable function symbols does not affect decidability of quantifier-
free formulæ and can be used for various purposes, for instance in order to
express directly case-defined functions, array updates, etc. For instance, if a is
a unary free function symbol, the term wr(a, i, x) (expressing the update of the
array a at position i by over-writing x) is a definable function; formally, we have
j := i, x, j and φ(j, y) is given by (j = i ∧ y = x) ∨ (j �= i ∧ y = a(j)). This
formula φ(j, y) (and similar ones) is usually written as

y = (if j = i then x else a(j))

to improve readability. Another useful definable function is integer division by
a fixed natural number n: to show that integer division by n is definable, recall
that in Presburger arithmetic we have that ∀x ∃!y ∨n−1

r=0 (x = n ∗ y+ r) is valid.

3 Programs Representation

As a first step towards our main definability result, we provide a classification
of the relations we are interested in. Such relations are guarded assignments
required to model programs handling arrays of unknown length.

In our framework a program P is represented by a tuple (v, lI , lE , T ). The
tuple v := a, c, pc models system variables. Formally, we have that

- the tuple a = a1, . . . , as contains free unary function symbols, i.e., the arrays
manipulated by the program;

- the tuple c = c1, . . . , ct contains free constants, i.e., the integer data manipu-
lated by the program;

- the additional free constant pc (called program counter) is constrained to range
over a finite set L = {l1, ..., ln} of program locations over which we distinguish
the initial and error locations denoted by lI and lE , respectively.

T is a set of finitely many formulæ {τ1(v,v′), . . . , τr(v,v′)} called transition
formulæ representing the program’s body (here v′ are renamed copies of the
variable tuple v representing the next-state variables). P = (v, lI , lE , T ) is safe
iff there is no satisfiable formula like

(pc0 = lI) ∧ τi1(v0,v1) ∧ · · · ∧ τiN (vN−1,vN ) ∧ (pcN = lE)
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where v0, . . . ,vN are renamed copies of v and each τih belongs to T .
Sentences denoting sets of states reachable by P can be:

- ground sentences, i.e., sentences of the kind φ(a, c, pc);
- Σ0

1 -sentences, i.e., sentences of the form ∃i. φ(i, a, c, pc);
- Σ0

2 -sentences, i.e., sentences of the form ∃i ∀j. φ(i, j, a, c, pc).
We remark that in our context satisfiability can be fully decided only for ground
sentences and Σ0

1 -sentences (by Skolemization, as a consequence of the general
combination results [33,36]), while only subclasses of Σ0

2 -sentences enjoy a deci-
sion procedure [16,23]. Transition formulæ can also be classified in three groups:

- ground assignments, i.e., transitions of the form

pc = l ∧ φL(c, a) ∧ pc′ = l′ ∧ a′ = λj. G(c, a, j) ∧ c′ = H(c, a) (1)

- Σ0
1 -assignments, i.e., transitions of the form

∃k
(
pc = l ∧ φL(c, a, k) ∧ pc′ = l′ ∧
a′ = λj. G(c, a, k, j) ∧ c′ = H(c, a, k)

)

(2)

- Σ0
2 -assignments, i.e., transitions of the form

∃k
(

pc = l ∧ φL(c, a, k) ∧ ∀j ψU (c, a, k, j) ∧
pc′ = l′ ∧ a′ = λj. G(c, a, k, j) ∧ c′ = H(c, a, k)

)

(3)

where G = G1, . . . , Gs, H = H1, . . . , Ht are tuples of definable functions (vectors
of equations like a′ = λj. G(c, a, kj) can be replaced by the corresponding first
order sentences ∀j. ∧s

h=1 a
′
h(j) = Gh(c, a, k, j)).

The composition τ1 ◦ τ2 of two transitions τ1(v,v
′) and τ2(v,v′) is expressed

by the formula ∃v1(τ1(v,v1) ∧ τ2(v1,v
′)) (notice that composition may result

in an inconsistent formula, e.g., in case of location mismatch). The preimage
Pre(τ,K) of the set of states satisfying the formula K(v) along the transition
τ(v,v′) is the set of states satisfying the formula ∃v′(τ(v,v′) ∧ K(v′)). The
following proposition is proved by straightforward syntactic manipulations:

Proposition 1. Let τ, τ1, τ2 be transition formulæ and let K(v) be a formula.
We have that: (i) if τ1, τ2, τ,K are ground, then τ1 ◦ τ2 is a ground assignment
and Pre(τ,K) is a ground formula; (ii) if τ1, τ2, τ,K are Σ0

1 , then τ1 ◦ τ2 is a
Σ0

1 -assignment and Pre(τ,K) is a Σ0
1-sentence; (iii) if τ1, τ2, τ,K are Σ0

2 , then
τ1 ◦ τ2 is a Σ0

2 -assignment and Pre(τ,K) is a Σ0
2 -sentence.

4 Backward Search and Acceleration

This section demonstrates the practical applicability of the theoretical results of
the paper in program verification. In particular, it presents the application of
the accelerated transitions during reachability analysis for guarded assignments
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representing programs handling arrays. For readability, we first present a basic
reachability procedure. We subsequently analyze the divergence problems and
show how acceleration can be applied to solve them. Acceleration application is
not straightforward, though. The presence of accelerated transitions might gen-
erate undesirable Σ0

2 -sentences. The solution we propose is to over-approximate
such sentences by adopting a selective instantiation schema, known in litera-
ture as monotonic abstraction. An enhanced reachability procedure integrating
acceleration and monotonic abstraction concludes the Section.

The methodology we exploit to check safety of a program P = (v, lI , lE , T )
is backward search: we successively explore, through symbolic representation,
all states leading to the error location lE in one step, then in two steps, in
three steps, etc. until either we find a fixpoint or until we reach lI . To do this
properly, it is convenient to build a tree: the tree has arcs labeled by transi-
tions and nodes labeled by formulæ over v. Leaves of the tree might be marked
‘checked’, ‘unchecked’ or ‘covered’. The tree is built according to the following
non-deterministic rules.

Backward Search

Initialization: a single node tree labeled by pc = lE and is marked ‘unchecked’.
Check: pick an unchecked leaf L labeled with K. If K ∧ pc = lI is satisfiable

(‘safety test’), exit and return unsafe. If it is not satisfiable, check whether
there is a set S of uncovered nodes such that (i) L �∈ S and (ii) K is inconsis-
tent with the conjunction of the negations of the formulæ labeling the nodes
in S (‘fixpoint check’). If it is so, mark L as ‘covered’ (by S). Otherwise,
mark L as ‘checked’.

Expansion: pick a checked leaf L labeled with K. For each transition τi ∈ T ,
add a new leaf below L labeled with Pre(τi, L) and marked as ‘unchecked’.
The arc between L and the new leaf is labeled with τi.

Safety Exit: if all leaves are covered, exit and return safe.

The algorithm may not terminate (this is unavoidable by well-known undecid-
ability results). Its correctness depends on the possibility of discharging safety
tests with complete algorithms. By Proposition 1, if transitions are ground- or
Σ0

1 -assignments, completeness of safety tests arising during the backward reach-
ability procedure is guaranteed by the fact that satisfiability of Σ0

1 -formulæ is
decidable. For fixpoint tests, sound but incomplete algorithms may compromise
termination, but not correctness of the answer; hence for fixpoint tests, we can
adopt incomplete pragmatic algorithms (e.g. if in fixpoint tests we need to test
satisfiability of Σ0

2 -sentences, the obvious strategy is to Skolemize existentially
quantified variables and to instantiate the universally quantified ones over sets
of terms chosen according to suitable heuristics). To sum up, we have:

Proposition 2. The above Backward Search procedure is partially correct
for programs whose transitions are Σ0

1 -assignments, i.e., when the procedure ter-
minates it gives a correct information about the safety of the input program.

Divergence phenomena are usually not due to incomplete algorithms for fixpoint
tests (in fact, divergence persists even in cases where fixpoint tests are precise).
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Example 1. Consider the program in Fig. 1(b): it reverses the content of the array I

into O. In our formalism, it is represented by the following transitions4:

τ1 ≡ pc = 1 ∧ pc
′ = 2 ∧ c

′ = 0

τ2 ≡ pc = 2 ∧ c �= N + 1 ∧ c
′ = c+ 1 ∧O′ = wr(O, c, I(N − c))

τ3 ≡ pc = 2 ∧ c = N + 1 ∧ pc
′ = 3

τ4 ≡ pc = 3 ∧ ∃z1 ≥ 0, z2 ≥ 0 (z1 + z2 = N ∧ I(z1) �= O(z2) ) ∧ pc
′ = 4.

Notice that τ1, τ2, τ3 all are ground assignments; only τ4 (that translates the error
condition) is a Σ0

1 -assignment. If we apply our tree generation procedure, we get an
infinite branch, whose nodes - after routine simplifications - are labeled as follows

· · ·
(Ki) pc = 2 ∧ ∃z1, z2 ψ(z1, z2) ∧ c = N − i ∧ z2 �= N ∧ · · · ∧ z2 �= N − i

· · ·

where ψ(z1, z2) stands for z1 ≥ 0 ∧ z2 ≥ 0 ∧ z1 + z2 = N ∧ I(z1) �= O(z2). �
As demonstrated by the above example, a divergence source comes from the fact
that we are unable to represent in one shot the effect of executing finitely many
times a given sequence of transitions. Acceleration can solve this problem.

Definition 1. The n-th composition of a transition τ(v,v′) with itself is re-
cursively defined by τ1 := τ and τn+1 := τ ◦ τn. The acceleration τ+ of τ is∨

n≥1 τ
n.

In general, acceleration requires a logic supporting infinite disjunctions. Notable
exceptions are witnessed by Theorem 1 (Section 6). For now we focus on exam-
ples where accelerations yield Σ0

2 -assignments starting from ground assignments.

Example 2. Recall transition τ2 from the running example.

τ2 ≡ pc = 2 ∧ c �= N + 1 ∧ pc′ = 2 ∧ c
′ = c+ 1 ∧ I ′ = I ∧O′ = wr(O, c, I(N − c))

(here we displayed identical updates for completeness). Notice that the variable pc

is left unchanged in this transition (this is essential, otherwise the acceleration gives
an inconsistent transition that can never fire). If we accelerate it, we get the Σ0

2-
assignment5

∃n > 0

(
pc = 2 ∧ ∀j (c ≤ j < c+ n→ j �= N + 1) ∧ c

′ = c+ n ∧
∧ pc

′ = 2 ∧ O′ = λj (if c ≤ j < c+ n then I(N−j) else O(j))

)
(4)


�
In presence of these accelerated Σ0

2-assignments, Backward Search can
produce problematic Σ0

2-sentences (see Proposition 1 above) which cannot be
handled precisely by existing solvers. As a solution to this problem we propose
applying to such sentences a suitable abstraction, namely monotonic abstraction.

4 For readability, we omit identical updates like I ′ = I , etc. Notice that we have lI = 1
and lE = 4.

5 This Σ0
2 -assignment can be automatically computed using procedures outlined in

the proof of Theorem 1.
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Definition 2. Let ψ :≡ ∃i ∀j. φ(i, j, a, c, pc) be a Σ0
2 -sentence and let S be a

finite set of terms of the form t(i,v). The monotonic S-approximation of ψ is
the Σ0

1 -sentence

∃i
∧

σ:j→S
φ(i, jσ/j, a, c, pc) (5)

(here jσ is the tuple of terms σ(j1), . . . , σ(jn), where j = j1, . . . , jn,).

By Definition 2, universally quantified variables are eliminated through instanti-
ation; the larger the set S is, the better approximation you get. In practice, the
natural choices for S are i or the set of terms of the kind t(i,v) occurring in ψ
We adopted the former choice in our implementation. As a result of replacing
Σ0

2 -sentences by their monotonic approximation, spurious unsafe traces might
occur. However, those can be disregarded if accelerated transitions con-
tribute to their generation. This is because if P is unsafe, then unsafety can
be discovered without appealing to accelerated transitions.

To integrate monotonic abstraction, the above Backward Search proce-
dure is modified as follows. In a Preprocessing step, we add some accelerated
transitions of the kind (τ1 ◦ · · · ◦ τn)+ to T . These transitions can be found
by inspecting cycles in the control flow graph of the program and accelerating
them following the procedure described in Sections 5, 6. The natural cycles to
inspect are those corresponding to loop branches in the source code. It should
be noticed, however, that identifying the good cycles to accelerate is subject to
specific heuristics that deserve separate investigation in case the program has
infinitely many cycles (Choosing cycles from branches of innermost loops is the
simplest example of such heuristics and the one we implemented).

After this extra preprocessing step, the remaining instructions are left un-
changed, with the exception of Check that is modified as follows:

Check’: pick an unchecked leaf L labeled by a formula K. If K is a Σ0
2 -

sentence, choose a suitable S and replace K by its monotonic S-abstraction
K ′. If K ′∧pc = lI is inconsistent, mark L as ‘covered’ or ‘checked’ according
to the outcome of the fixpoint check, as was done in the original Check.
If K ′ ∧ pc = lI is satisfiable, analyze the path from the root to L. If no
accelerated transition τ+ is found in it return unsafe, otherwise remove the
sub-tree D from the target of τ+ to the leaves. Each node N covered by a
node in D will be flagged as ‘unchecked’ (to make it eligible in future for the
Expansion instruction).

The new procedure will be referred as Backward Search’. It is quite straight-
forward to see that Proposition 2 still applies to the modified algorithm. Notice
that, although termination cannot be ensured (given well-known undecidability
results), spurious traces containing approximated accelerated transitions cannot
be produced again and again: when the sub-tree D from the target node v of
τ+ is removed by Check’, the node v is not a leaf (the arcs labeled by the
transitions τ are still there), hence it cannot be expanded anymore according to
the Expansion instruction.
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Example 3. Let us again consider the running example and demonstrate how accelera-
tion and monotonic abstraction work. In the preprocessing step, we add the accelerated
transition τ+2 given by (4) to the transitions we already have. After having computed
(K′) ≡ Pre(τ4,K), (K′′) ≡ Pre(τ3,K

′), we compute (K̃) ≡ Pre(τ+2 ,K
′′) and get

∃n > 0∃z1, z2

⎛
⎜⎝

pc = 2 ∧ ∀j (c ≤ j < c+n→ j �= N+1) ∧
∧ c+n = N+1 ∧ z1 ≥ 0 ∧ z2 ≥ 0 ∧ z1 + z2 = N ∧

∧ I(z1) �= λj (if c ≤ j < c+ n then I(N−j) else O(j))(z2)

⎞
⎟⎠

We approximate using the set of terms S = {z1, z2, n}. After simplifications we get

∃z1, z2 (pc = 2 ∧ c ≤ N ∧z1 ≥ 0 ∧ z2 ≥ 0 ∧ z1+z2 = N ∧ O(z2) �= I(z1) ∧ c > z2)

Generating this formula is enough to stop divergence. 
�
Notice that in the computations of the above example we eventually succeeded

in eliminating the extra quantifier ∃n introduced by the accelerated transition.
This is not always possible: sometimes in fact, to get the good invariant one needs
more quantified variables than those occurring in the annotated program and
accelerated transitions might be the way of getting such additional quantified
variables.

5 Iterators

This Section introduces iterators and selectors, two main ingredients used to
supply a useful format to compute accelerated transitions. Iterators are meant
to formalize the notion of a counter scanning the indexes of an array: the most
simple iterators are increments and decrements, but one may also build more
complex ones for different scans, like in binary search. We give their formal
definition and then we supply some examples. We need to handle tuples of terms
because we want to consider the case in which we deal with different arrays with
possibly different scanning variables. Given a m-tuple of terms

u(x) := u1(x1, . . . , xm), . . . , um(x1, . . . , xm) (6)

containing them variables x = x1, . . . , xm, we indicate with un the term express-
ing the n-times composition of (the function denoted by) u with itself. Formally,
we have u0(x) := x and

un+1(x) := u1(u
n(x)), . . . , um(un(x)) .

Definition 3. A tuple of terms u like (6) is said to be an iterator iff there exists an
m-tuple of m+1-ary terms u∗(x, y) := u∗1(x1, . . . , xm, y), . . . , u

∗
m(x1, . . . , xm, y)

such that for any natural number n it happens that the formula

un(x) = u∗(x, n̄) (7)

is valid.6 Given an iterator u as above, we say that an m-ary term κ(x1, . . . , xm)
is a selector for u iff there is an m + 1-ary term ι(x1, . . . , xm, y) yielding the
validity of the formula

z = κ(u∗(x, y)) → y = ι(x, z) . (8)

6 Recall that n̄ is the numeral of n, i.e. it is sn(0).
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The meaning of condition (8) is that, once the input x and the selected out-
put z are known, it is possible to identify uniquely (through ι) the number of
iterations y that are needed to get z by applying κ to u∗(x, y). The term κ is
a selector function that selects (and possibly modifies) one of the u; in most
applications (though not always) κ is a projection, represented as a variable xi
(for 1 ≤ i ≤ m), so that κ(u∗(x, y)) is just the i-th component u∗i (x, y) of the
tuple of terms u∗(x, y). In these cases, the formula (8) reads as

z = u∗i (x, y) → y = ι(x, z) . (9)

Example 4. The canonical example is when we havem = 1 and u := u1(x1) := x1+1;

this is an iterator with u∗
1(x1, y) := x1 + y; as a selector, we can take κ(x1) := x1 and

ι(x1, z) := z − x1. �
Example 5. The previous example can be modified, by choosing u to be x1 + n̄, for

some integer n �= 0: then we have u∗(x1, y) := x1 + n ∗ y, κ(x1) := x1, and ι(x1, z) =

(z − x1)//n where // is integer division (recall that integer division by a given n is

definable in Presburger arithmetic). �
Example 6. If we move to more expressive arithmetic theories, like Primitive Recursive

Arithmetic (where we have a symbol for every primitive recursive function), we can

get much more examples. As an example with m > 1, we can take u := x1 + x2, x2

and get u∗
1(x1, x2, y) = x1 + y ∗ x2, u

∗
2(x1, x2, y) = x2. Here a selector is for instance

κ1(x1, x2) := 7̄ + x1, ι(x1, x2, z) := (z − x1 − 7̄)//x2. �

6 Accelerating Local Ground Assignments

Back to our program P = (v, lI , lE , T ), we look for conditions on transitions from
T allowing to accelerate them via a Σ0

2 -assignment. Given an iterator u(x), a
selector assignment for a := a1, . . . , as (relative to u) is a tuple of selectors
κ := κ1, . . . , κs for u. Intuitively, the components of the tuple are meant to
indicate the scanners of the arrays a and as such might not be distinct (although,
of course, just one selector is assigned to each array). A formula ψ (resp. a term
t) is said to be purely arithmetical over a finite set of terms V iff it is obtained
from a formula (resp. a term) not containing the extra free function symbols
a, c by replacing some free variables in it by terms from V . Let v = v1, . . . , vs
and w = w1, . . . , ws be s-tuples of terms; below wr(a,v,w) and a(v) indicate
the tuples wr(a1, v1, w1), . . . , wr(as, vs, ws) and a1(v1), . . . , as(vs), respectively
(recall from Section 3 that s = |a|).
Definition 4. A local ground assignment is a ground assignment of the form

pc = l ∧ φL(c, a) ∧ pc′ = l ∧ a′ = wr(a, κ(c̃), t(c, a)) ∧ c̃′ = u(c̃) ∧d′ = d (10)

where (i) c = c̃,d; (ii) u = u1, . . . , u|c̃| is an iterator; (iii) the terms κ are a selec-
tor assignment for a relative to u; (iv) the formula φL(c, a) and the terms t(c, a)
are purely arithmetical over the set of terms {c, a(κ(c̃))}∪{ai(dj)}1≤i≤s,1≤j≤|d|;
(v) the guard φL contains the conjuncts κi(c̃) �= dj, for 1 ≤ i ≤ s and 1 ≤ j ≤
|d|.



34 F. Alberti, S. Ghilardi, and N. Sharygina

Thus in a local ground assignment, there are various restrictions: (a) the
numerical variables are split into ‘idle’ variables d and variables c̃ subject to
update via an iterator u; (b) the program counter is not modified; (c) the guard
does not depend on the values of the ai at cells different from κi(c̃),d; (d)
the update of the a are simultaneous writing operations modifying only the
entries κ(c̃). Thus, the assignment is local and the relevant modifications it
makes are determined by the selectors locations. The ‘idle’ variables d are useful
to accelerate branches of nested loops; the inequalities mentioned in (v) are
automatically generated by making case distinctions in assignment guards.

Example 7. For our running example, we show that transition τ2 (the one we want to

accelerate) is a local ground assignment. We have d = ∅ and c̃ = c and a = I,O. The

counter c is incremented by 1 at each application of τ2. Thus, our iterator is u := x1+1

and the selector assignment assigns κ1 := N−x1 to I and κ2 := x1 to O. In this way, I

is modified (identically) at N − c via I ′ = wr(I,N − c, I(N − c)) and O is modified at

c via O′ = wr(O, c, I(N − c)). The guard τ2 is c �= N +1. Since the formula c �= N +1

and the term I(N − c) are purely arithmetical over {c, I(N − c), O(c)}, we conclude

that τ2 is local. �
Theorem 1. If τ is a local ground assignment, then τ+ is a Σ0

2 -assignment.

Proof. (Sketch, see [6] for full details). Let us fix the local ground assignment (10);
let a[d] indicate the s ∗ |d|-tuple of terms {ai(dj)}1≤i≤s,1≤j≤|d|; since φL and
t := t1, . . . , ts are purely arithmetical over {c̃,d, a(κ(c̃)), a[d]}, we have that
they can be written as φ̃L(c̃,d, a(κ(c̃)), a[d]), t̃(c̃,d, a(κ(c̃)), a[d]), respectively,
where φ̃L, t̃ do not contain occurrences of the free function and constant symbols
a, c. The transition τ+ can be expressed as a Σ0

2 -assignment by

∃y > 0

(
∀z (0 ≤z< y→ φ̃L(u

∗(c̃, z),d, a(κ(u∗(c, z))), a[d]) ∧ d′ = d∧
∧ pc = l ∧ pc′ = l ∧ c̃′ = u∗(c̃, y) ∧ a′ = λj. F (c, a, y, j)

)

where the tuple F = F1, . . . , Fs of definable functions is given by

Fh(c, a, y, j) = λj. if 0 ≤ ιh(c̃, j) < y ∧ j = κh(u
∗(c, ιh(c̃, j))) then

t̃h(u
∗(c̃, ιh(c̃, j)),d, a(κ(u∗(c̃, ιh(c̃, j)))), a[d]) else ah[j]

for h = 1, . . . , s (here ι1, . . . , ιs are the terms corresponding to κ1, . . . , κs accord-
ing to the definition of a selector for the iterator u). �

We point out that the effective use of Theorem 1 relies on the implementation
of a repository of iterators and selectors and of algorithms recognizing them. The
larger the repository is, the more possibilities the model checker has to exploit
the full power of acceleration.

In most applications it is sufficient to consider accelerated transitions of the
canonical form of Example 4. Let us examine in details this special case; here
c is a single counter c that is incremented by one (otherwise said, the iterator
is x1 + 1) and the selector assignment is trivial, namely it is just x1. We call
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these local ground assignments simple. Thus, a simple local ground assignment
has the form

pc = l ∧ φL(c, a) ∧ pc′ = l ∧ c′ = c+ 1 ∧ a′ = wr(a, c, t(c, a)) (11)

where the first occurrence of c in wr(a, c, t(c, a)) stands in fact for an s-tuple of
terms all identical to c, and where φL, t are purely arithmetical over the terms c,
a1[c], . . . , as[c]. The accelerated transition computed in the proof of Theorem 1
for (11) can be rewritten as follows:

∃k
(

k > 0 ∧ pc = l ∧ ∀j (c ≤ j < c+ k → φL(j, a)) ∧ pc′ = l ∧
∧ c′ = c+ k ∧ a′ = λj. (if c ≤ j < c+ k then t(j, a) else a[j])

)

(12)

A slight extension of the notion of a simple assignment leads to a further subclass
of local ground assignments useful to accelerated branches of nested loops (see [6]
for more details).

7 Experimental Evaluation

We implemented the algorithm described in Section 4–6 as a preprocessing mod-
ule inside the mcmt model checker [24]. To perform a feasibility study, we in-
tentionally focused our implementation on simple and simple+ local ground
assignments. For a thorough and unbiased evaluation we compared/combined
the new technique with an abstraction algorithm suited for array programs [3]
implemented in the same tool. This section describes benchmarks and discusses
experimental results. A clear outcome from our experiments is that abstrac-
tion/refinement and acceleration techniques can be gainfully combined.

Benchmarks. We evaluated the new algorithm on 55 programs with arrays,
each annotated with an assertion. We considered only quantifier-free or ∀-as-
sertions. Our set of benchmarks comprises programs used to evaluate the Lazy
Abstraction with Interpolation for Arrays framework [4] and other focused bench-
marks where abstraction diverges. These are problems involving array manipu-
lations such as copying, comparing, searching, sorting, initializing, testing, etc.
About one third of the programs contain bugs.7

Evaluation. Experiments have been run on a machine equipped with a i7@2.66
GHz CPU and 4GB of RAM running OS X. Time limit for each experiment has
been set to 60 seconds. We run mcmt with four different configurations:

– Backward Search - mcmt executes the procedure described at the begin-
ning of Section 4.

– Abstraction - mcmt integrates the backward reachability algorithm with
the abstraction/refinement loop [3].

7 The set of benchmarks can be downloaded from http://www.inf.usi.ch/
phd/alberti/prj/acc; the tool set mcmt is available at http://users.mat.
unimi.it/users/ghilardi/mcmt/.

http://www.inf.usi.ch/phd/alberti/prj/acc
http://www.inf.usi.ch/phd/alberti/prj/acc
http://users.mat.unimi.it/users/ghilardi/mcmt/
http://users.mat.unimi.it/users/ghilardi/mcmt/
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Fig. 2. Comparison of time for different options of Backward Search. Stars and
circles represent buggy and correct programs respectively.

– Acceleration - The transition system is pre-processed in order to com-
pute accelerated transitions (when it is possible) and then the Backward
Search’ procedure is executed.

– Accel. + Abstr. - This configuration enables both the preprocessing step
in charge of computing accelerated transitions and the abstraction/refinement
engine on the top of the Backward Search’ procedure.

In summary, the comparative analysis of timings presented in Fig.2 confirms that
acceleration indeed helps to avoid divergence for problematic programs where
abstraction fails. The first comparison (Fig.2(a)) highlights the benefits of using
acceleration: Backward Search diverges on all 39 safe instances. Accelera-
tion stops divergence in 23 cases, and moreover the overhead introduced by the
preprocessing step does not affect unsafe instances. Fig.2(b) shows that acceler-
ation and abstraction are two complementary techniques, since mcmt times out
in both cases but for two different sets of programs. Fig.2(c) and Fig.2(d) attest
that acceleration and abstraction/refinement techniques mutually benefit from
each other: with both techniques mcmt solves all the 55 benchmarks.
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8 Conclusion and Future Work

We identified a class of transition relations involving array updates that can
be accelerated, showed how it is possible to compute accelerated transition and
described a solution for dealing with universal quantifiers arising from the ac-
celeration process. Our paper lays theoretical foundations for this interesting
research topic and confirms by our prototype experiments on challenging bench-
marks its advantages over stand-alone verification approaches since it is able to
solve problems on which other techniques fail to converge.

As future directions, a challenging task is to enlarge the definability result of
Theorem 1 to cover classes of transitions modeling more and more loop branches
arising from concrete programs. In addition, one may want to consider more
sophisticated strategies for instantiation in order to support acceleration. In-
creasing the approximation-defining sets S or handling Σ0

2-sentences when they
belong to decidable fragments [16, 23] may lead to further improvements.
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Foundation under project 09047 and the one of the second by Italian Ministry of
Education, University and Research (MIUR) under the PRIN 2010-2011 project
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Hähnle, R. (eds.) IJCAR 2010. LNCS, vol. 6173, pp. 22–29. Springer, Heidelberg
(2010)
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