
Combining Superposition and Induction:
A Practical Realization�

Abdelkader Kersani and Nicolas Peltier

University of Grenoble (LIG, CNRS)

Abstract. We consider a proof procedure aiming at refuting clause sets
containing arithmetic constants (or parameters), interpreted as natural
numbers. The superposition calculus is enriched with a loop detection
rule encoding a form of mathematical induction on the natural numbers
(by “descente infinie”). This calculus and its theoretical properties are de-
scribed in [2,16]. In the present paper, we focus on more practical aspects.
We provide algorithms to apply the loop detection rule in an automatic
and efficient way. We describe a research prototype implementing our
technique and provide some preliminary experimental results.

1 Introduction

We consider first-order formulæ built on a language containing constant symbols
interpreted as natural numbers. As an example, consider the formula φ defined
as the conjunction of the following formulæ:

p(0, a)
∀x, y ¬p(x, y) ∨ p(x+ 1, f(y))

∃n∀x¬p(n, x)
The formula φ is satisfiable in the usual sense, but it is unsatisfiable if the sort
of the first argument of p is interpreted as the natural numbers (with the usual
interpretation of 0, 1 and +). Then the existential variable n must be interpreted
as a natural number k, and it is easy to check, by induction on k, that the first
two formulæ entail that p(k, fk(a)) holds, which implies that the formula is un-
satisfiable. Existing resolution or superposition based theorem provers cannot
establish the unsatisfiability of such formulæ since they are based on standard
first-order logic. Proof procedures (based on several different approaches) have
been proposed to handle hybrid formulæ, mixing first-order logic with interpreted
theories such as Presburger arithmetic [4,1,6,12] but they do not handle inductive
theorems. When fed with the previous formula, these approaches will infer the
infinite set of formulæ n �� 0, n �� 1, n �� 2, . . . (where n denotes the Skolem con-
stant derived from the quantification ∃n), but will not detect unsatisfiability in
finite time (since Presburger arithmetic is not compact). The standard approach
� This work has been partly funded by the project ASAP of the French Agence Na-

tionale de la Recherche (ANR-09-BLAN-0407-01).

P. Fontaine, C. Ringeissen, and R.A. Schmidt (Eds.): FroCoS 2013, LNAI 8152, pp. 7–22, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

8 A. Kersani and N. Peltier

for dealing with inductive theorems in the context of first-order theorem proving
is to add explicit induction schemes. For instance, in the previous case, one can
replace the formula ∃n∀x¬p(n, x) by ∃n∀x¬p(n, x)∧∀mm+1 �� n∨∃x p(m,x)
(stating that ∀x¬p(m,x) holds for m = n but not for the predecessor of n)
which can be easily derived by assuming that n is the minimal natural number
satisfying the property ∀x¬p(n, x). Alternatively, one can also add the usual
induction scheme using ∃x p(m,x) as an inductive invariant:

(∃x p(0, x) ∧ ∀m((∃x p(m,x)) ⇒ (∃x p(m+ 1, x)))) ⇒ ∀m∃x p(m,x)
Using these additional axioms, the unsatisfiability of φ can easily be established
by any theorem prover. The inductive rule defined in [15] also relies on the use
of explicit induction schemes.

However, this approach relies on the user to guess the right inductive lemma.
The inductive invariant is not necessarily equivalent to the goal, and is not even
bound to occur in the initial formula (it is well-known that inductive proofs
do not admit cut elimination). For instance, if the third formula is replaced
by: ∃n∀x¬q(n, x) with the additional axiom: ∀x, y q(x, y) ∨ ¬p(x, y), then the
formula cannot be established by using the negation of the goal ∃x q(n, x) as an
inductive invariant: one has to use ∃x p(n, x) instead.

Another approach consists in using inductive theorem provers, which are usu-
ally based on rewriting [7,13,14,20,11]. These approaches allow one to generate
automatically the induction lemmata (in some cases). Intuitively, these proce-
dures work as follows: the goal is rewritten using axioms until it can be reduced to
true or false. Of course only the ground instances of the goal can be normalized
and enumerating those instances does not terminate in general. In order to en-
sure termination in some cases, the previously encountered goals can themselves
be used as derived rewrite rules, provided the considered terms are strictly lower
than the initial ones, according to some reduction ordering, which can be either
fixed a priori or constructed dynamically all along the search. This technique
allows one to simulate the application of inductive hypotheses without having to
state explicitly the inductive invariants (of course additional inductive lemmata
still have to be added by hand in many cases). However, these approaches are
restricted to goals of the form ∀xψ where ψ is a quantifier-free formulæ, thus
they cannot handle formulæ as φ in the previous example, whose goal is of the
form ∀n∃xψ, before negation (the inductive theorem prover SPIKE has been ex-
tended in order to handle existential variables [5], but the use of such variables
is strongly restricted). The “inductionless induction” approach [8], which reduces
inductive theorem proving to a consistency test in first-order logic, suffers from
the same limitation.

In previous work [2,16], we have presented an extension of the superposi-
tion calculus which is tailored to handle formulæ such as the previous one. The
idea is twofold. First, the arithmetic terms are abstracted away and replaced by
variables, in order to allow inferences on them. This allows one to get rid of first-
order symbols in order to derive properties of pure arithmetic terms. Second, the
usual inference rules of the calculus are enriched with a new rule allowing to de-
tect cycles in the derivations. These loops correspond to the inductive invariants

Combining Superposition and Induction: A Practical Realization 9

that are needed to establish the validity of the theorem. A first definition of the
loop detection rule is given in [2] and a more general version is provided in [16]
yielding stronger completeness results (of course the method is not complete in
general, since the logic is not even semi-decidable [16]). Roughly speaking, these
rules apply when a set of clauses S[n] is generated (where n is an arithmetic
constant) such that the set n ≥ k ∧S[n− k] can be derived from S[n] (using the
inference rules of the calculus). By descente infinie, it is clear that this implies
that S is unsatisfiable. The soundness of this approach is proven in [2,16], and
some (partial) completeness results are presented. In the present paper, we tackle
more practical aspects, namely the efficient generation of the sets of clauses on
which the loop detection rule can be applied. The problem consists in finding
efficiently sets of clauses S satisfying the relation above. We present two different
algorithms for performing this task (each with their pros and cons). We describe
an implementation of our method and provide some preliminary experimental
results.

2 Syntax and Semantics

We firstly define the syntax and semantics of the considered logic. We assume
some familiarity with the usual notions in logic and automated deduction (miss-
ing definitions can be found in, e.g., [18]). We consider two distinct sorts: the
sort term of the standard terms, and the sort nat of the natural numbers. The
set of terms is built as usual on a set of function symbols Σ and on a set of
variables X . The signature Σ contains in particular the symbols 0 and succ, of
profile nat and nat → nat respectively. We assume that Σ contains no other
symbol of range nat.

An atom is an equation of the form t � s where t and s are terms of sort term.
A literal is either an atom (positive literal) or the negation of an atom (negative
literal). A clause is a finite set (written as a disjunction) of literals. Let n be a
special symbol, called the parameter, not occurring in Σ (n is intended to denote
a natural number, and can be viewed as a constant symbol of sort nat).

Definition 1. An n-clause is a pair [C | ∧k
i=1 n � ti] where C is a clause and

the ti’s (1 ≤ i ≤ k) are terms of sort nat. It is normalized if k ∈ {0, 1}. If
k = 0,

∧k
i=1 n � ti is equivalent to true by convention and [C | ∧k

i=1 n � ti] is
simply written C. C is the clausal part of the n-clause, and

∧k
i=1 n � ti is the

constraint.

Note that by definition, n can only occur in the constraint part of the n-clause
(since n �∈ Σ). Thus an expression of the form f(n) � a for instance is to be
written as [f(x) � a | n � x], where x is a variable of sort nat.

For every expression e, var(e) denotes the set of variables occurring in e. An
expression is ground if it contains no variable.

A substitution σ is a function mapping every variable to a term of the same
sort. The domain of σ is the set of variables x such that xσ �= x. For every
expression e, eσ denotes as usual the expression obtained from e by replacing

10 A. Kersani and N. Peltier

every occurrence of each variable x by xσ. The substitution σ is ground iff for
every variable x in the domain of σ, xσ is ground.

The terms t1, . . . , tk are unifiable iff there exists a substitution σ such that
t1σ = · · · = tkσ. Any set of unifiable terms has a most general unifier (unique
up to a renaming).

We identify a term succk(0) with the natural number k; thus we write, e.g.,
succk(0) < succl(0) for k < l, or k + t for succk(t).

Interpretations are usually defined as congruences on the set of terms. In our
setting, we also have to specify the value of the symbol n (the symbols 0 and succ
are interpreted as free constructors, note that the clauses contain no equations
between natural numbers). This yields the following:

Definition 2. An interpretation I is defined by a pair (nI ,�I), where nI is
natural number (i.e., a term of the form succk(0)) and �I is a congruence on
the set of ground terms of sort term.

The notion of validity is defined in a very natural way:

Definition 3. An interpretation I validates an expression E (written I |= E)
iff one of the following conditions holds.

– E is a ground literal t � s (resp. t �� s) and t �I s (resp. t ��I s).
– E is a ground clause

∨k
i=1 li and there exists i ∈ [1, k] such that I |= li.

– E is an n-clause [C | ∧k
i=1 n � ti] and for every ground substitution σ of

domain var(E) such that ∀i ∈ [1, k], nI = tiσ, it holds that I |= Cσ.
– E is a set of n-clauses and ∀C ∈ E, I |= C.

An interpretation validating E is a model of E. We write E |= E′ if every model
of E is a model E′. Two expressions E and E′ are equivalent (written E ≡ E′)
if E |= E′ and E′ |= E. A tautology is an expression equivalent to true.

By definition, I |= [� | n � succk(0)] iff nI �= k. Similarly, I |= [� | n �
succk(x)] iff nI < k (where x is a variable). Consequently, an n-clause of the
form [� | n � succk(0)] (resp. [� | n � succk(x)]) will be written n �� k (resp.
n < k).

If I is an interpretation and k is a natural number, we denote by I[k/n] the
interpretation coinciding with I, except that the value of n is set to k.

The following proposition shows that every non-tautological n-clause is equiv-
alent to a normalized n-clause.

Proposition 1. Let C = [C | ∧k
i=1 n � ti] be an n-clause. If t1, . . . , tn are

unifiable, then C is equivalent to [Cσ | n � t1σ], where σ is an m.g.u. of t1, . . . , tn.
Otherwise C is a tautology.

Thanks to Proposition 1 we can safely assume that every n-clause is normalized
(the normalization operation is applied in a systematic way to every generated
n-clause).

The usual relation of subsumption extends straightforwardly to n-clauses:

Combining Superposition and Induction: A Practical Realization 11

Definition 4. Let C = [C | ∧k
i=1 n � ti] and C′ = [C′ | ∧l

i=1 n � t′i] be two
n-clauses. The n-clause C subsumes C′ (written C ≤sub C′) if there exists a
substitution σ such that Cσ ⊆ C′ and {t1, . . . , tk}σ ⊆ {t′1, . . . , t′l}σ.
Proposition 2. If C ≤sub C′ then C |= C′.

The subsumption relation ≤sub can be extended to sets of n-clauses: we write
S ≤sub S

′ if for every C′ ∈ S′, there exists C ∈ S such that C ≤sub C′.
By Definition 3, an n-clause [C | n � succi(x)] (with x ∈ X) is equivalent to

an expression of the form n ≥ i⇒ C[n− i]. The rank of [C | n � succi(x)] is the
number r such that n − r is the maximal expression containing n occurring in
C[n− i]. For instance, consider the n-clause [f(x, succ(y)) � y | n � succi(x)]. It
is equivalent to the expression f(x, succ(n−i)) � n−i, i.e., f(x, n−(i−1)) � n−i,
hence its rank is i − 1. Note that if C contains no occurrence of succ then the
rank of [C | n � succi(x)] is simply i. For every set of n-clauses S and for every
natural number i, we denote by S[i] the set of n-clauses of rank i in S. We denote
by S[�] the set of n-clauses whose constraint is true.

3 Superposition Calculus

The usual superposition calculus can easily be extended to operate on n-clauses.
Let < be a reduction ordering and let sel be a selection function, mapping every
clause C to a subset of C, such that either sel(C) contains a negative literal, or
sel(C) contains all the <-maximal literals in C. The calculus is defined by the
following three rules (the premisses are assumed to be normalized). As usual t|p
is the term occurring at position p in t, and t[s]p is the term obtained from t by
replacing the subterm at position p by s.

Superposition
[C ∨ t �� s | X], [D ∨ u � v | Y]
[C ∨D ∨ t[v]p �� s | X ∧ Y]σ

If ��∈ {�, ��}, σ = mgu(u, t|p), uσ �≤ vσ, tσ �≤ sσ, t|p is not a variable,
(t �� s)σ ∈ sel((C ∨ t �� s)σ), (u � v)σ ∈ sel((D ∨ u � v)σ).

Reflection

[C ∨ t �� s | X]
[C | X]σ

If σ = mgu(t, s), (t �� s)σ ∈ sel((C ∨ t �� s)σ)

Factorisation
[C ∨ t � s ∨ u � v | X]
[C ∨ s �� v ∨ t � s | X]σ

If σ = mgu(t, u), tσ �< sσ, uσ �< vσ, (t � s)σ ∈ sel((C ∨ t � s ∨ u � v)σ).

12 A. Kersani and N. Peltier

Example 1. The second example of the Introduction is formalized as follows.

1 p(0, a) � true
2 p(x, y) �� true∨ p(succ(x), f(y)) � true
3 [q(x, y) �� true | n � x]
4 q(x, y) � true ∨ p(x, y) �� true

The following n-clauses are generated (for the sake of clarity, the literals of the
form true �� true are removed from the clauses):

5 [p(x, y) �� true | n � x] (superposition, 4, 3)
6 [� | n � 0] (superposition, 1, 5)
7 [p(x, y) �� true | n � succ(x)] (superposition, 2, 5)
8 [� | n � succ(0)] (superposition, 1, 7)
9 [p(x, y) �� true | n � succ(succ(x))] (superposition, 2, 7)

An infinite number of n-clauses of the form [� | n � succk(0)] (i.e. n �� k) can
be generated.

4 Loop Detection

In this section, we define the key part of the proof procedure, namely the loop
detection rule. We provide a simpler and abstract version of the rule (compared
with those in [2,16]) which is sufficient for our purposes (the loop detection rule
provided in [16] is much more general because it handles parameters interpreted
as words instead of natural numbers). In the next section, we will introduce new
definitions and algorithms allowing for an efficient application of the rule. We
first need to introduce some notations.

Definition 5. For every natural number i and for every n-clause C = [C |
∧k

j=1 n � tj], we denote by C↓i the n-clause [C | ∧k
j=1 n � succi(tj)]. If S is a

set of n-clauses, then S↓idef= {C↓i| C ∈ S}.
Intuitively, S↓i denotes the same formula as S, with n replaced by n − i. This
yields the following:

Proposition 3. Let i, j ∈ N, let S be a set of n-clauses and let I be an inter-
pretation. If I |= S↓j and I(n) = i+ j then I[i/n] |= S.

Proof. Let C = [C | ∧k
l=1 n � tl] ∈ S. Let σ be a substitution such that ∀l ∈

[1, k]nI[i/n] = tiσ. This implies that ∀l ∈ [1, k], tlσ = i since nI[i/n] = i by
definition. We have C↓j= [C | ∧k

l=1 n � succj(tl)]. Since tlσ = i and nI = i+ j
we have nI = tlσ, for all l ∈ [1, k]. Since I |= S↓j, this entails that I |= Cσ, and
thus I[i/n] |= Cσ (since Cσ contains no occurrence of n).

Definition 6. Let S be a set of clauses. A pair of natural numbers (i, j) (with
j �= 0) is an inductive loop for S if there exists a set S′ ⊆ S such that S′ |= n �� l,
for every l ∈ [i, i+ j[and S′ |= S′↓j

Combining Superposition and Induction: A Practical Realization 13

Theorem 1. If (i, j) is an inductive loop for S, then S |= n < i.

Proof. We have I |= S′. Let k be the minimal natural number greater or equal to
i such that S′ has a model I with nI = k. If k < i+ j, then we have S′ |= n �� k,
which is impossible since I �|= n �� k, by definition. Otherwise, we have I |= S′↓j ,
hence by Proposition 3 we deduce that I[k − j/n] |= S′, which is impossible by
minimality of k since i ≤ k − j < k.

5 Practical Application of the Loop Detection Rule

This section contains the main new results of the paper. We define algorithms
to test whether a pair of natural numbers (i, j) is an inductive loop. To this
purpose, we have to check whether there exists a set of n-clauses S′ satisfying
the conditions of Definition 6. In practice, these conditions cannot be tested since
semantic entailment is undecidable. We will thus only check whether the formulæ
n �� l (with i ≤ l < i + j) and S′ ↓j can be derived from S′ using inferences
previously performed by the prover. Furthermore, we will impose the additional
restriction that all the n-clauses in S′ containing n occur in the set S[i]. This
condition greatly decreases the search space and it preserves the completeness
results in [2,16].

We proceed in two steps. First we transform the semantic conditions of Defi-
nition 6 into purely syntactic properties and then we provide algorithms to test
these properties in an effective way. We need to introduce additional notations.

Definition 7. Let S be a set of n-clauses. An inference relation δ for S is a
partial function mapping every n-clause C ∈ S to a set of n-clauses in S such
that C is deducible from δ(C) by one of the inference rules (in exactly one step).

In practice this relation will be obtained from the inferences previously performed
by the prover (D ∈ δ(C) iff D is a parent of C). The n-clauses C such that δ(C) is
not defined are hypotheses, i.e., n-clauses occurring in the initial set. An inference
relation induces a entailment relation �δ between subsets of S. Informally, we
write S′ �δ S

′′ if all the n-clauses in S′′ can be derived from n-clauses in S′∪S[�]
using inferences in δ. This is formalized as follows:

Definition 8. Let S be a set of n-clauses and let δ be an inference relation
for S. The relation �δ is the smallest relation between subsets of S such that
S′ �δ S

′′ if for every n-clause C ∈ S′′, one of the following conditions holds:

1. C ∈ S′.
2. δ(C) is defined and S′ �δ δ(C).
3. The constraint part of C is true.

The intuition behind Condition 3 is that the n-clauses whose constraints are
true are universal properties, which are valid independently of the value of n.
Thus we assume that such n-clauses (once they have been proven, i.e., if they
occur in S) can be used as hypotheses in any derivation.

14 A. Kersani and N. Peltier

Proposition 4. Let S be a set of n-clauses and let δ be an inference relation
for S. If S′ �δ S

′′ then S′ ∪ S[�] |= S′′ ∪ S[�].

In order to test entailment between clause sets, we introduce a notion of
immediate entailment:

Definition 9. An immediate entailment relation is a decidable relation � be-
tween n-clauses such that C � D ⇒ C |= D. The relation � is extended to sets
of n-clauses as follows: S � S′ iff ∀C′ ∈ S′ ∃C ∈ S, C � C′.

In practice, � can be for instance the identity (C = D up to a renaming of
variables), the inclusion (C ⊆ D), or the subsumption relation ≤sub.

We are now in position to define the notion of cycle, which is the syntactic
pendant of the notion of inductive loop of Definition 6. It is defined relatively to
the two relations � and δ.

Definition 10. Let S be a set of clauses, let � be an immediate consequence
relation and let δ be an inference relation on S. A pair of natural numbers (i, j)
(with j �= 0) is a cycle for S w.r.t. � and δ if there exist Sinit, Sloop ⊆ S such that
Sinit ⊆ S[i], Sloop ⊆ S[i + j], Sinit �δ {n �� k | k ∈ [i, i + j − 1]}, Sinit �δ Sloop

and Sloop � Sinit↓j.
Example 2. Consider the derivation of Example 1. Assume that � is the identity
relation. The pair (0, 1) is a cycle, with Sinit = {5} and Sloop = {7}. Indeed,
the clause n �� 0 is derivable from Clause 5 and clauses not containing n, thus
Sinit �δ {n �� 0}. Similarly, Clause 7 can be derived from Clause 5, together
with clauses not containing n. Finally, we have [p(x, y) �� true | n � x] ↓1=
[p(x, y) �� true | n � succ(x)], hence Sloop � Sinit↓1 (assuming that � contains
the identity relation). Similarly, (0, 2) and (1, 2) are also cycles, corresponding
to the sets {5}, {9} and {7}, {9} respectively.

Theorem 2. All cycles are inductive loops.

Proof. Let (i, j) be a cycle for S, w.r.t. two relations � and δ. Let Sinit and
Sloop be the corresponding subsets of S. Let S′ = Sinit ∪S[�]. We have Sinit �δ

{n �� k}, for every k ∈ [i, i + j − 1], thus by Proposition 4, S′ |= n �� k (for
every k ∈ [i, i + j − 1]). Similarly, we have S′ |= Sloop, hence S′ |= Sinit ↓j
(since � is included in |=). But S′↓j= Sinit↓j ∪S[�]↓j= Sinit↓j ∪S[�] (since
the n-clauses whose constraint is true are not affected by the S↓j operation).
Therefore S′ |= S′↓j and (i, j) is an inductive loop.

Theorems 1 and 2 entail the soundness of the following inference rule:

Cycle elimination rule: S
n < i

If (i, j) is a cycle for S w.r.t. some immediate consequence relation �, and the
inference relation δ induced by the previous inferences performed on S.

Theorem 2 gives a syntactic criterion to check whether a couple of fixed nat-
ural numbers defines a loop. We now show how to test efficiently that (i, j) is

Combining Superposition and Induction: A Practical Realization 15

Algorithm 1. Cycle1(S, i, j)

S0 ← {n �� k, k ∈ [i, i+ j[}
if S[i] ��δ S0 then

return false
end if
Choose a minimal set Sinit ⊆ S[i] s.t. Sinit �δ S0

Sloop ← ∅
while ∃C ∈ Sinit | Sloop �
 {C↓j} do

if ∃D ∈ S[i+ j] | D
 C↓j then
Choose D ∈ S[i+ j] such that D
 C↓j
Sloop ← Sloop ∪ {D}
if S[i] ��δ D then

return false
else

Choose a set S′ ∈ S[i] such that S′ �δ {D}
Sinit ← Sinit ∪ S′

end if
else

return false
end if

end while
return true

a cycle. Two distinct algorithms are presented. The algorithm Cycle1 is the
most straightforward and uses a smallest fixpoint algorithm: it starts by con-
sidering the minimal possible set Sinit, namely the set of n-clauses in S[i] that
are necessary to derive all the clauses n �� k for k ∈ [i, i + j[. According to
Definition 10, the condition Sloop � Sinit ↓j must hold. Thus, for each clause
C in Sinit, the algorithm checks whether there exists a n-clause D in S[i + j]
such that D � C ↓j . If this is not the case, then (i, j) cannot be a cycle and
the algorithm stops. Otherwise, all the ancestors of D occurring in S[i] must be
added to Sinit, so that the condition Sinit �δ Sloop (in Definition 10) holds. The
algorithm runs until a fixpoint is reached, in which case a pair of sets of n-clauses
(Sinit, Sloop) satisfying the conditions of Definition 10 has been obtained. The
drawback of this algorithm is that it is non-deterministic. Indeed, for a given
n-clause C, there may exist several n-clauses D satisfying the desired condition
(unless � is the identity relation). Similarly, the ancestors of D in S[i] are not
unique and can be chosen arbitrarily. To ensure completeness all these branches
must be explored, yielding an exponential number of immediate entailment tests
(although the number of iteration steps is polynomial w.r.t. the size of S).

The algorithm Cycle2 is slightly more complex, and is based on a greatest
fixpoint algorithm. The idea is to start by adding to Sinit all the n-clauses in
S[i]. Then Sloop is obtained by considering all the n-clauses in S[i+ j] that are
generated from Sinit. In order to ensure that the condition Sloop � Sinit ↓j of
Definition 10 holds, we remove from Sinit the n-clauses C such that there is no
n-clause D in S[i+j] with D � C↓j. If the removed n-clause C is an ancestor of a

16 A. Kersani and N. Peltier

Algorithm 2. Cycle2(S, i, j)

S0 ← {n �� k, k ∈ [i, i+ j[}
Sinit ← S[i]
if Sinit ��δ S0 then

return false
end if
Sloop ← {D ∈ S[i+ j] | Sinit �δ {D}}
while ∃C ∈ Sinit | Sloop �
 {C↓j} do

Sinit ← Sinit \ {C}
if Sinit ��δ S0 then

return false
end if
Remove from Sloop all the n-clauses D s.t. Sinit ��δ {D}

end while
return true

clause n �� k for some i ∈ [i, i+j[then no cycle possibly exists, and the algorithm
stops. Otherwise, the deletion of C from Sinit yields the removal of the n-clauses
in Sloop that are generated from this clause (so that the invariant Sinit �δ Sloop

holds). This algorithm is deterministic and thus involves a polynomial number
of immediate entailment tests (since it is clear that the number of iterations
is polynomially bounded by the size of the initial set S). Its actual complexity
depends of course on the relation �: it is polynomial if � can be tested in
polynomial time (for instance if � is the identity or inclusion relations). If � is the
subsumption relation then it is exponential. The main drawback of Cycle2 w.r.t.
the previous algorithm Cycle1 is that the handled clause sets are usually larger
since the whole set of n-clauses must be considered right from the beginning.
Thus the first algorithm may be more adapted to huge clause sets, or if the
immediate entailment relation is the identity.

Theorem 3. The algorithm Cycle1 and Cycle2 are terminating, sound and
complete, i.e., Cycle1(S, i, j) = true iff Cycle2(S, i, j) = true iff (i, j) is
cycle for S (w.r.t. the relations � and δ)

Proof. We consider the two algorithms separately.
Algorithm Cycle1:
Termination is immediate since at each iteration step, the size of Sinit in-

creases strictly (and it is bounded by the size of the whole set of n-clauses). If
S[i] �|= {n �� k, k ∈ [i, i + j[} then by Definition 10, (i, j) cannot be a cycle.
Otherwise, according again to Definition 10, the set Sinit must contain a set of
n-clauses entailing {n �� k, k ∈ [i, i + j[} (w.r.t. �δ). The end-condition of the
while loop ensures that Sloop � Sinit↓j. Furthermore, the invariant Sinit �δ Sloop

necessarily holds, since each time a clause D is added into Sloop, a set S′ such
that S′ �δ {D} is added to Sinit. Finally, all the n-clauses that are added in Sinit

during the loop are in S[i], thus the invariant Sinit ⊆ S[i] holds. Consequently,
after the while loop, all the conditions of Definition 10 hold, and thus (i, j) must

Combining Superposition and Induction: A Practical Realization 17

be a cycle. Conversely, if (i, j) is a cycle, then it is easy to check that a run of
Algorithm Cycle1 exists in which false is never returned. It suffices to choose
the clauses D and S′ in such a way that D ∈ Sloop and S′ ⊆ Sinit (where Sloop

and Sinit correspond to the sets in Definition 10). This is always possible, since
by definition we must have Sinit �δ Sloop and Sloop � Sinit↓j, with Sinit ⊆ S[i]
and Sloop ⊆ S[i+ j].

Algorithm Cycle2:
Termination is immediate since at each iteration step, the size of Sinit de-

creases strictly. Again, if S[i] �|= {n �� k, k ∈ [i, i + j[} then by Definition 10,
(i, j) cannot be a cycle. Otherwise, we must have Sinit ⊆ S[i] and Sloop ⊆ S[i+j].
As for the previous algorithm, the end-condition of the while loop ensures that
Sloop � Sinit↓j . Furthermore, the invariant Sinit �δ Sloop still holds, by defini-
tion of the last instruction in the while-loop. Consequently, after the while loop,
all the conditions of Definition 10 hold, and thus (i, j) must be cycle.

Conversely, if (i, j) is a cycle, then the algorithm returns true. Indeed, the
sets S′

init and S′
loop corresponding to Definition 10 necessarily occur at each

iteration step in the actual sets Sinit and Sloop computed by the algorithm.
By definition, no n-clause C ∈ S′

init can be removed from Sinit, since we have
Sloop � {C↓j}. Similarly, no clause D ∈ S′

loop can be deleted from Sloop since
we must have Sinit �δ {D}. Therefore, the condition Sinit ��δ S0 can never hold
(since S′

init �δ S0).

Example 3. We consider the following clause set:

1 p(x) �� true ∨ p(succ(x)) � true
2 q(x) � true∨ p(succ(x)) � true
3 f(succ(x)) � f(x)
4 p(0) � true
5 [p(x) �� true | n � x]
6 [f(x) � a | n � x]
7 [g(x) � a | n � x]

The following clauses are derived:

8 [� | n � 0] (superposition, 4, 5)
9 [p(x) �� true | n � succ(x)] (superposition, 1,5)
10 [f(x) � a | n � succ(x)] (superposition, 3,6)
11 [q(x) � true | n � succ(x)] (superposition, 2,5)

We illustrate how the two algorithms run on this example. Note that Clauses
1, 4, 5 are sufficient for unsatisfiability (Clause 5 asserts that ¬p(n) holds for
some natural number n, which is impossible since Clauses 1 and 4 entail that
p(succk(0)) holds for every k ∈ N), the other clauses are added only to illustrate
how the algorithms work and to emphasize the differences between them. We
take i = 0, j = 1 and we use the identity as the immediate consequence relation
�. We have S0 = {8}, S[i] = {5, 6, 7}, S[i+ j] = {9, 10, 11}, S[⊥] = {1, 2, 3, 4}.

Algorithm Cycle1: The algorithm first chooses a set of clauses Sinit ⊆ S[i]
such that Sinit �δ S0. The parents of Clause 8 are 4 ∈ S[⊥] and 5 ∈ S[i], thus

18 A. Kersani and N. Peltier

according to Definition 8 we have {5} �δ {8}. Therefore, Sinit is set to {5}. Then
Sloop is initialized to ∅. Clause 5 occurs in Sinit and we have 5↓1 �∈ Sloop (since
Sloop = ∅). Thus the algorithm chooses a clause D ∈ S[i+ j] such that D � 5↓1.
Clause 5 is [p(x) �� true | n � x], thus 5↓1 is [p(x) �� true | n � succ(x)], hence
5↓1= 9. Therefore, the only solution is D = 9. This clause is added to Sloop. The
algorithm checks that S[i] �δ D and adds to Sinit a minimal set of clauses S′

such that S′ �δ {D}. Clause 9 is deduced from Clause 1, which occurs in S[⊥],
and Clause 5, which occurs in S[i], thus the only solution is S′ = {5}. Therefore
Sinit is not affected (since it already contains 5). The while-loop ends because
the only clause in Sinit↓1 occurs in Sloop. The pair (0, 1) is a cycle, corresponding
to the sets Sinit = {5} and Sloop = {9}.

Algorithm Cycle2: Sinit is initialized with S[i], i.e. {5, 6, 7}. Then the al-
gorithm checks that Sinit �δ S0, and initializes Sloop with the set of clauses
D ∈ S[i+ j] such that Sinit �δ D. All the clauses in S[i+ j] are obtained from
clauses in Sinit and S[⊥], thus we have Sloop = {9, 10, 11}. Then the algorithm
checks whether Sinit contains a clause C such that C↓j �∈ Sloop. The only clause
satisfying this condition is Clause 7. Thus this clause is removed from Sinit, yield-
ing {5, 6} and the clauses D such that {5, 6} ��δ D are removed from Sloop. Here
all the clauses in Sloop can be deduced from {5, 6} and clauses in S[⊥] thus Sloop

is not affected. Then the algorithm stops and returns true. The obtained sets are
Sinit = {5, 6} and Sloop = {9, 10}. Note that, compared to the previous case, the
sets contain an additional clause (namely 6/10), which occurs in the generated
inductive invariant, but actually plays no role in the proof (these clauses can be
identified and eliminated afterwards by applying reachability analysis algorithms
on the inference graph).

6 Implementation

Our calculus has been implemented as a research prototype, using the system
Prover9 [17] as an inference engine. While any other superposition-based prover
could be used instead, the system is not used as a mere “black box”: the pro-
cedures and data-structures had to be adapted in order to handle the specific
features of the calculus: arithmetic constraints, normalization of clauses, etc. The
program uses the usual “given clause algorithm” of Prover9, and calls Algorithm
Cycle2 to check whether a given pair (i, j) is a cycle, using the subsumption
relation as an immediate consequence relation. The test is triggered at each it-
eration of the main loop, and only if all the clauses n �� k for k ∈ [0, i+ j[have
been generated (thus a cycle is detected only if this leads to an immediate stop).
A refutation is obtained if the system generates a set of n-clauses of the form
{�} or {n �� 0, . . . , n �� k − 1, n < k}, which is obviously unsatisfiable. The last
clause n < k is usually derived by cycle detection (with k = i + j), but it can
also be derived by the superposition calculus alone, in simple cases in which the
theorem can be proven without induction. If the system is fed with an unsatisfi-
able set of standard clauses then the empty clause � can be generated as usual.
Our proof procedure is not complete in general (the logic is not semi-decidable).

Combining Superposition and Induction: A Practical Realization 19

We use heuristics to preserve the partial completeness results in [16]. For in-
stance a greater weight is associated with the symbol succ to ensure that the
literals containing a maximal arithmetic expression are selected with the highest
priority, and some inferences are blocked to ensure that S[i] |= S[i+ 1].

Now, let’s prove the theorem:

∀n ∈ N ∀a1, . . . , an a1 × a2 × · · · × an = an × an−1 × · · · × a1 (1)

We show the corresponding input file:

formulas(sos).
N(x) | p(x) != q(x).
p(0)=1.
q(0)=1.
p(s(x)) = p(x)*a(x).
q(s(x)) = a(x)*q(x).
*(x,1)=x.
*(1,x)=x.
x*y= u*v | x!=u | y != v.
x*y = y*x.
end_of_list.

Our tool has almost the same input format than Prover9, we just have to add
the constraints to the clauses, a constraint of the form n �� t (where t is a term
of sort nat) is written N(t) and attached to the clause as a literal. The first
clause of the input file corresponds to [p(x) �� q(x) | n � x], which is also the
negation of (1), p(x) and q(x) encode the terms a1 × . . .× an and an × . . .× a1
respectively. We show the output file generated by our tool:

============================== PROOF =================================
% Proof at 0.02 seconds.
% Given clauses 17.
S_init :
(67: N(v0) | -=(0,1) | -=(1,v0) .

2: N(v0) | -=(q(v0),p(v0)).)
S_loop :
(107: N(s(v0)) | -=(0,1) | -=(1,v0) .

85: N(s(v0)) | -=(q(v0),p(v0)).)
The empty clauses :
(12: N(0).)
============================== end of proof ==========================

The output file contains the running time, the number of given clauses, the
two clause sets Sinit, Sloop and finally the pure constraint clause N(0) which
corresponds to the clause [� | n � 0]. As in Example 3, the obtained inductive
invariant contains an additional clause that plays no role in the derivation.

20 A. Kersani and N. Peltier

7 Experimentation

In this section we provide some examples of application of our work. All the
presented problems require induction and thus are out of the scope of first-
order theorem provers. We first present some examples in propositional logic.
We consider an n-bit sequential adder circuit i.e. a circuit which computes the
sum of two bit-vectors of length n. Such a circuit is built by composing n 1-
bit adders. The ith bits of each operand are written pi and qi. ri is the ith bit
of the result and ci+1 is carried over to the next bit (thus c1 = 0). We set
the notations (⊕ denotes exclusive or): Sumi(p, q, c, r)

def
= ri ⇔ (pi ⊕ qi) ⊕ ci

and Carryi(p, q, c)
def
= ci+1 ⇔ (pi ∧ qi) ∨ (ci ∧ pi) ∨ (ci ∧ qi). Then the for-

mula: Adder(p, q, c, r) def
=

∧n
i=1 Sumi(p, q, c, r) ∧

∧n
i=1 Carryi(p, q, c) ∧ ¬c1 with

the constraint n ≥ 1, schematises the adder circuit (it states that r encodes the
sum of p and q). In order to test the satisfiability of such schemata of proposi-
tional formulæ, we have implemented an algorithm transforming automatically
(in polynomial time) any propositional schema built on iterated connectives of
the form

∧n+b
i=a φ or

∨n+b
i=a φ (such as the ones modeling the Adder circuit) into a

sat-equivalent set of n-clauses. This algorithm works by introducing a monadic
predicate (of domain nat) for every iteration occurring in the initial formula,
and by adding axioms to specify the interpretation of these predicates by induc-
tion on the natural numbers. For instance, the schema

∨n
i=0 pi can be denoted

by the atom [q(x) � true | n � x], with the axioms: {q(0) �� true ∨ p(0) �
true, q(succ(x)) �� true ∨ p(succ(x)) � true ∨ q(x) � true} (the formal de-
scription of the transformation algorithm is omitted due to space restrictions, it
can be found in [2]). Several properties of the Adder can then be automatically
checked, such as commutativity or associativity. We have encoded two different
versions of the Adder (the carry propagate and ripple-carry adders respectively)
and proved some elementary properties of these circuits.

We have also considered examples coming from an interesting applica-
tion of schemata languages in proof theory, developed in the context of
the ASAP project (see http://membres-lig.imag.fr/peltier/ASAP/). The
method CERES (see for instance [3]) is an algorithm for cut-elimination in first-
order logic that is more efficient that the standard (reductive) approach. It works
by extracting from the considered (non-analytic) proof π an unsatisfiable set of
clauses S(π), called the characteristic set of π, which is defined in such a way that
any resolution proof of S(π) can be automatically transformed into an analytic
proof of S. It has been extended to schemata of first-order proofs in [9,19,10], in
order to handle mathematical proofs using induction (which cannot be expressed
in first-order logic and which, as well-known, do not admit cut elimination al-
gorithms). The obtained characteristic set is then not a set of clauses in the
usual sense, but rather a schema of clause sets, which can be expressed as a set
of n-clauses, and handled using our calculus. We provide the running times for
the characteristic sets obtained from simple proofs (the formal definition of the
schemata is omitted for conciseness, the purely propositional ones can be found
in the RegSTAB webpage at http://regstab.forge.ocamlcore.org/ and the

Combining Superposition and Induction: A Practical Realization 21

first-order one can be found in [19,10]). Finally we consider some simple induc-
tive properties, for instance we prove that if we perform an arbitrary number of
permutations on a sequence containing an element a then the final sequence still
contains a.

The obtained results are depicted below. We provide for each example, the
running time, the number of calls to Cycle2 and the number of generated
clauses.

Example Time (s) # of calls # generated
to Cycle2 clauses

Ripple-carry adder (A+ 0 = A) 0.48 336 33833
Ripple-carry adder (commutativity) 0.03 102 2003
Ripple-carry adder (associativity) 0.09 207 10154
Ripple-carry adder (3 + 4 = 7) 0.06 71 9989

Unicity of the result (ripple-carry) 0.7 150 50901
Carry-propagate adder (commutativity) 0.02 14 1980
Carry-propagate adder (associativity) 0.01 20 3972
Equivalence between the ripple-carry

and the carry-propagate adders 0.03 14 1980
CERES ex1 (Propositional) 0.01 40 995
CERES ex2 (Propositional) 0.03 216 4106

CERES (First order) 0.01 23 49
Totality of < (n1 ≥ n2 ∨ n1 < n2) 0.01 47 185∧n

i=1 pi > 0 ⇒ p1 × · · · × pn > 0 0.01 8 59
Permutation (triplet) 0.01 17 280

The results show that the cycle detection algorithm is efficient, even for sets
containing thousands of clauses.

8 Conclusion

We have presented a method to enrich superposition-based theorem proving with
inductive reasoning capabilities. To this purpose, we have devised algorithms to
detect cycles in the superposition derivation in an automatic way. These cycles
correspond to inductive invariants and allow one to prune infinite superposition
derivations. Our method has been implemented and some examples of applica-
tion have been presented. Future work includes the extension of the implemen-
tation, for instance by devising refined criteria for triggering the application of
the cycle detection procedure or by introducing new techniques for performing
this detection in an incremental way.

References
1. Althaus, E., Kruglov, E., Weidenbach, C.: Superposition modulo linear arithmetic

SUP(LA). In: Ghilardi, S., Sebastiani, R. (eds.) FroCoS 2009. LNCS, vol. 5749,
pp. 84–99. Springer, Heidelberg (2009)

22 A. Kersani and N. Peltier

2. Aravantinos, V., Echenim, M., Peltier, N.: A resolution calculus for first-order
schemata. Fundamenta Informaticae (accepted for publication, to appear, 2013)

3. Baaz, M., Leitsch, A.: Towards a clausal analysis of cut-elimination. J. Symb.
Comput. 41(3-4), 381–410 (2006)

4. Bachmair, L., Ganzinger, H., Waldmann, U.: Refutational theorem proving for
hierachic first-order theories. Appl. Algebra Eng. Commun. Comput. 5, 193–212
(1994)

5. Barthe, G., Stratulat, S.: Validation of the javacard platform with implicit induc-
tion techniques. In: Nieuwenhuis, R. (ed.) RTA 2003. LNCS, vol. 2706, pp. 337–351.
Springer, Heidelberg (2003)

6. Baumgartner, P., Tinelli, C.: Model Evolution with Equality Modulo Built-in Theo-
ries. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS, vol. 6803,
pp. 85–100. Springer, Heidelberg (2011)

7. Bouhoula, A., Kounalis, E., Rusinowitch, M.: SPIKE, an automatic theorem prover.
In:Voronkov,A. (ed.) LPAR 1992. LNCS, vol. 624, pp. 460–462. Springer,Heidelberg
(1992)

8. Comon, H.: Inductionless induction. In: Robinson, A., Voronkov, A. (eds.) Hand-
book of Automated Reasoning, ch. 14, pp. 913–962. North-Holland (2001)

9. Dunchev, T.: Automation of cut-elimination in proof schemata. PhD thesis, T.U.
Vienna (2012)

10. Dunchev, T., Leitsch, A., Rukhaia, M., Weller, D.: Ceres for first-order schemata,
Research Report (2013), http://arxiv.org/abs/1303.4257

11. Falke, S., Kapur, D.: Rewriting induction + linear arithmetic = decision procedure.
In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS, vol. 7364,
pp. 241–255. Springer, Heidelberg (2012)

12. Ge, Y., de Moura, L.: Complete instantiation for quantified formulas in satisfi-
abiliby modulo theories. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS,
vol. 5643, pp. 306–320. Springer, Heidelberg (2009)

13. Giesl, J., Kapur, D.: Decidable classes of inductive theorems. In: Goré, R., Leitsch,
A., Nipkow, T. (eds.) IJCAR 2001. LNCS (LNAI), vol. 2083, pp. 469–484. Springer,
Heidelberg (2001)

14. Giesl, J., Kapur, D.: Deciding inductive validity of equations. In: Baader, F. (ed.)
CADE 2003. LNCS (LNAI), vol. 2741, pp. 17–31. Springer, Heidelberg (2003)

15. Horbach, M., Weidenbach, C.: Superposition for fixed domains. ACM Trans. Com-
put. Logic 11(4), 1–35 (2010)

16. Kersani, A., Peltier, N.: Completeness and Decidability Results for First-Order
Clauses with Indices. In: Bonacina, M.P. (ed.) CADE 2013. LNCS, vol. 7898,
pp. 58–75. Springer, Heidelberg (2013)

17. McCune, W.: Prover9 and mace4 (2005–2010),
http://www.cs.unm.edu/~mccune/prover9/

18. Robinson, A., Voronkov, A. (eds.): Handbook of Automated Reasoning. North-
Holland (2001)

19. Rukhaia, M.: CERES in Proof Schemata. PhD thesis, T.U. Vienna (2012)
20. Stratulat, S.: Automatic ‘Descente infinie’ induction reasoning. In: Beckert, B. (ed.)

TABLEAUX 2005. LNCS (LNAI), vol. 3702, pp. 262–276. Springer, Heidelberg
(2005)

http://arxiv.org/abs/1303.4257
http://www.cs.unm.edu/~mccune/prover9/

	Combining Superposition and Induction: A Practical Realization
	1 Introduction
	2 Syntax and Semantics
	3 Superposition Calculus
	4 Loop Detection
	5 Practical Application of the Loop Detection Rule
	6 Implementation
	7 Experimentation
	8 Conclusion
	References

