
Pascal Fontaine
Christophe Ringeissen
Renate A. Schmidt (Eds.)

 123

LN
AI

 8
15

2

9th International Symposium, FroCoS 2013
Nancy, France, September 2013
Proceedings

Frontiers of
Combining Systems

Lecture Notes in Artificial Intelligence 8152

Subseries of Lecture Notes in Computer Science

LNAI Series Editors

Randy Goebel
University of Alberta, Edmonton, Canada

Yuzuru Tanaka
Hokkaido University, Sapporo, Japan

Wolfgang Wahlster
DFKI and Saarland University, Saarbrücken, Germany

LNAI Founding Series Editor

Joerg Siekmann
DFKI and Saarland University, Saarbrücken, Germany

Pascal Fontaine Christophe Ringeissen
Renate A. Schmidt (Eds.)

Frontiers of
Combining Systems

9th International Symposium, FroCoS 2013
Nancy, France, September 18-20, 2013
Proceedings

13

Volume Editors

Pascal Fontaine
LORIA, Inria Nancy Grand Est
Université de Lorraine
615 rue du Jardin Botanique
54602 Villers-les-Nancy, France
E-mail: pascal.fontaine@inria.fr

Christophe Ringeissen
LORIA, Inria Nancy Grand Est
615 rue du Jardin Botanique
54602 Villers-les-Nancy, France
E-mail: christophe.ringeissen@loria.fr

Renate A. Schmidt
The University of Manchester
School of Computer Science
Manchester M13 9PL, UK
E-mail: renate.schmidt@manchester.ac.uk

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-40884-7 e-ISBN 978-3-642-40885-4
DOI 10.1007/978-3-642-40885-4
Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2013947465

CR Subject Classification (1998): I.2.3, I.2, D.3.1, F.4, D.2.4, I.1, F.2

LNCS Sublibrary: SL 7 – Artificial Intelligence

© Springer-Verlag Berlin Heidelberg 2013
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in its current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

This volume collects papers presented at the 9th International Symposium on
Frontiers of Combining Systems (FroCoS 2013), held September 18–20, 2013, in
Nancy, France. Previous FroCoS meetings were organized in Munich (1996), Am-
sterdam (1998), Nancy (2000), Santa Margherita Ligure (2002), Vienna (2005),
Liverpool (2007), Trento (2009) and Saarbrücken (2011). In 2004, 2006, 2008,
2010, and 2012, FroCoS was a constituent of IJCAR, the International Joint Con-
ference on Automated Reasoning. Like its predecessors, FroCoS 2013 offered a
common forum for the presentation and discussion of research in the general area
of combination, modularization, and integration of systems, with emphasis on
logic-based systems and their practical use. This research touches on many areas
of computer science such as logic, symbolic computation, program development
and verification, artificial intelligence, knowledge representation, and automated
reasoning.

This year FroCoS was co-located in Nancy with the 22nd International Con-
ference on Automated Reasoning with Analytic Tableaux and Related Methods
(TABLEAUX 2013) held September 16–19, 2013. This gave the opportunity to
organize both joint scientific and joint social events.

The Program Committee accepted 20 papers out of a total of 33 submis-
sions of overall high quality. In addition to the contributed papers, the program
included four invited lectures:

– “Witness Runs for Counter Machines” by Stéphane Demri (LSV, CNRS &
ENS de Cachan and New York University)

– “From Resolution and DPLL to Solving Arithmetic Constraints” by Kon-
stantin Korovin (The University of Manchester)

– “Specification and Verification of Linear Dynamical Systems: Advances and
Challenges” by Joël Ouaknine (Oxford University)

– “MetiTarski’s Menagerie of Cooperating Systems” by Lawrence C. Paulson
(University of Cambridge)

Stéphane Demri’s presentation was a joint FroCoS-TABLEAUX invited lecture.

For the success of the conference, we want to thank several people and orga-
nizations. First, we would like to thank all authors who submitted papers and
all participants of the conference for their contributions and presentations. We
are grateful to the invited speakers not only for participating and their lectures,
but also for contributing extended abstracts or full papers to the proceedings.
We thank the members of the Program Committee and all the referees for the
time and care spent on reviewing and selecting the papers. We thank the mem-
bers of the FroCoS Steering Committee for their advice and support, and Andrei
Voronkov for his EasyChair conference management system.

VI Preface

Special thanks go to the chairs of TABLEAUX 2013, Didier Galmiche and
Dominique Larchey-Wendling, for the productive collaboration in organizing the
co-location of FroCoS and TABLEAUX. Moreover, we are extremely grateful
to the local team led by Anne-Lise Charbonnier and Louisa Touioui from the
Manifestations Scientifiques service of Inria Nancy-Grand Est for the practical
organization of the conference.

For institutional support, we thank Institut National de Recherche en In-
formatique et Automatique (Inria), Laboratoire Lorrain de Recherche en Infor-
matique et ses Applications (LORIA), and the Formal Methods Department of
LORIA, Centre National de la Recherche Scientifique (CNRS), the Université de
Lorraine, the Communauté Urbaine du Grand Nancy and the Région Lorraine.

July 2013 Pascal Fontaine
Christophe Ringeissen

Renate Schmidt

Conference Organization

Program Chairs

Pascal Fontaine LORIA, Inria Nancy-Grand Est, Université de
Lorraine, France

Renate Schmidt The University of Manchester, UK

Conference Chair

Christophe Ringeissen LORIA, Inria Nancy-Grand Est, France

Program Committee

Carlos Areces Universidad Nacional de Córdoba, Argentina
Alessandro Artale Libera Università Bolzano, Italy
Franz Baader Technische Universität Dresden, Germany
Clark Barrett New York University, USA
Peter Baumgartner NICTA, Canberra, Australia
Christoph Benzmüller Freie Universität Berlin, Germany
Jasmin Christian Blanchette Technische Universität München, Germany
Thomas Bolander Danmarks Tekniske Universitet, Denmark
Clare Dixon University of Liverpool, UK
François Fages Inria Paris-Rocquencourt, France
Pascal Fontaine LORIA, Inria Nancy-Grand Est, Université de

Lorraine, France
Didier Galmiche LORIA, Université de Lorraine, France
Vijay Ganesh University of Waterloo, Canada
Silvio Ghilardi Università degli Studi di Milano, Italy
Guido Governatori NICTA, Queensland, Australia
Bernhard Gramlich Technische Universität Wien, Austria
Katsumi Inoue National Institute of Informatics, Japan
Sava Krstić Intel Corporation, USA
Alessio Lomuscio Imperial College London, UK
Till Mossakowski Deutsches Forschungszentrum für Künstliche

Intelligenz GmbH, Bremen, Germany
Silvio Ranise Fondazione Bruno Kessler, Trento, Italy
Christophe Ringeissen LORIA, Inria Nancy-Grand Est, France
Philipp Rümmer Uppsala Universitet, Sweden
Renate Schmidt The University of Manchester, UK
Roberto Sebastiani Università degli Studi di Trento, Italy
Viorica Sofronie-Stokkermans Universität Koblenz-Landau, Germany

VIII Conference Organization

Andrzej Sza�las Linköpings Universitet, Sweden, Uniwersytetu
Warszawskiego, Poland

René Thiemann Universität Innsbruck, Austria
Ashish Tiwari SRI International, USA
Josef Urban Radboud Universiteit, The Netherlands
Christoph Weidenbach Max-Planck-Institut für Informatik, Germany
Frank Wolter University of Liverpool, UK

External Reviewers

Yohan Boichut
Guillaume Burel
Horatiu Cirstea
Bernardo Cuenca Grau
Stephanie Delaune
Morgan Deters
Alastair Donaldson
Stephan Falke
Arnaud Fietzke
Xiang Fu
Carsten Fuhs
Klaus Frovin Joergensen
Jean Christoph Jung
Miyuki Koshimura
Peter Lammich
Dominique Larchey-Wendling
Vladimir Lifschitz
Michel Ludwig

Morgan Magnin
Pierre Marquis
Thierry Martinez
Aart Middeldorp
Barbara Morawska
Jan Otop
Gian Luca Pozzato
Florian Rabe
Martin Rezk
Agnieszka Rusinowska
Vladislav Ryzhikov
Peter Schneider-Kamp
Ilya Shapirovsky
Martin Suda
Michele Vescovi
Jonathan von Schroeder
Freek Wiedijk
Thomas Wies

Sponsoring Institutions

Institut National de Recherche en Informatique et Automatique (Inria)
Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA)
Formal Methods Department, LORIA
Centre National de la Recherche Scientifique (CNRS)
Université de Lorraine
Communauté Urbaine du Grand Nancy
Région Lorraine

Table of Contents

Invited Talk 1

MetiTarski’s Menagerie of Cooperating Systems . 1
Lawrence C. Paulson

Inductive Theorem Proving

Combining Superposition and Induction: A Practical Realization 7
Abdelkader Kersani and Nicolas Peltier

Arrays and Memory Access Optimization

Definability of Accelerated Relations in a Theory of Arrays and Its
Applications . 23

Francesco Alberti, Silvio Ghilardi, and Natasha Sharygina

Verification of Composed Array-Based Systems with Applications
to Security-Aware Workflows . 40

Clara Bertolissi and Silvio Ranise

Presburger Arithmetic in Memory Access Optimization for
Data-Parallel Languages . 56

Ralf Karrenberg, Marek Košta, and Thomas Sturm

Approximation and Forgetting

Roughening the EL Envelope . 71
Rafael Peñaloza and Tingting Zou

Uniform Interpolation of ALC-Ontologies Using Fixpoints 87
Patrick Koopmann and Renate A. Schmidt

Abduction in Logic Programming as Second-Order Quantifier
Elimination . 103

Christoph Wernhard

Invited Talk 2

Witness Runs for Counter Machines . 120
Clark Barrett, Stéphane Demri, and Morgan Deters

X Table of Contents

Temporal and Description Logic Techniques

Decidability and Complexity via Mosaics of the Temporal Logic
of the Lexicographic Products of Unbounded Dense Linear Orders 151

Philippe Balbiani and Szabolcs Mikulás

Temporal Query Answering in the Description Logic DL-Lite 165
Stefan Borgwardt, Marcel Lippmann, and Veronika Thost

Verification of Golog Programs over Description Logic Actions 181
Franz Baader and Benjamin Zarrieß

Invited Talk 3

Specification and Verification of Linear Dynamical Systems: Advances
and Challenges . 197

Joël Ouaknine

Theorem Proving with Theories and Sorts

Obtaining Finite Local Theory Axiomatizations via Saturation 198
Matthias Horbach and Viorica Sofronie-Stokkermans

Non-cyclic Sorts for First-Order Satisfiability . 214
Konstantin Korovin

Detection of First Order Axiomatic Theories . 229
Guillaume Burel and Simon Cruanes

Mechanizing the Metatheory of Sledgehammer . 245
Jasmin Christian Blanchette and Andrei Popescu

Invited Talk 4

From Resolution and DPLL to Solving Arithmetic Constraints 261
Konstantin Korovin

Modal Logic and Description Logic

Tableaux for Relation-Changing Modal Logics . 263
Carlos Areces, Raul Fervari, and Guillaume Hoffmann

Computing Minimal Models Modulo Subset-Simulation for Modal
Logics . 279

Fabio Papacchini and Renate A. Schmidt

Hybrid Unification in the Description Logic EL . 295
Franz Baader, Oliver Fernández Gil, and Barbara Morawska

Table of Contents XI

Rewriting

Disproving Confluence of Term Rewriting Systems by Interpretation
and Ordering . 311

Takahito Aoto

On Forward Closure and the Finite Variant Property 327
Christopher Bouchard, Kimberly A. Gero, Christopher Lynch, and
Paliath Narendran

Term Rewriting with Logical Constraints . 343
Cynthia Kop and Naoki Nishida

Author Index . 359

MetiTarski’s Menagerie of Cooperating Systems

Lawrence C. Paulson

Computer Laboratory, University of Cambridge, England
lp15@cl.cam.ac.uk

Abstract. MetiTarski, an automatic theorem prover for real-valued spe-
cial functions, is briefly introduced. Its architecture is sketched, with a
focus on the arithmetic reasoning systems that it invokes. Finally, the
paper describes some applications where MetiTarski is itself invoked by
other tools.

1 Introduction

As we all know, connecting systems together is easy; the difficulty lies in getting
them to cooperate productively. Combining theorem proving with computer al-
gebra has long been regarded as a promising idea, but it has been difficult to
realise in practice. MetiTarski is an automatic theorem prover for real-valued
special functions [2]. In its original form it consisted of two separate systems
linked together: Metis [14,15] (a resolution theorem prover) and QEPCAD [5,13]
(a quantifier elimination procedure for real-closed fields). Today, MetiTarski can
invoke three separate reasoning tools (QEPCAD, Mathematica and Z3) and can
itself be invoked by other tools, in particular, KeYmaera and PVS.

2 Architectural Overview

The core idea in MetiTarski is to reduce problems involving special functions (sin,
cos, ln, etc.) to decidable polynomial inequalities, which can then be supplied
to QEPCAD. First-order formulas over polynomial inequalities over the real
numbers admit quantifier elimination [11], and are therefore decidable. This
decision problem is known as RCF, for real closed fields. Dolzmann et al. [10]
have written a useful overview of both the theory and its practical applications.

An early design decision was to adopt an existing theorem prover (namely
Metis), rather than to write a tableau-style theorem prover from scratch, which
was the approach adopted for Analytica [7] and Weierstrass [3], two earlier sys-
tems that combined mathematical software with logic. It seemed clear to us
that the resolution method would turn out to be much more sophisticated and
effective than the naive methods our small group would be able to concoct on
our own. Instead of having to write an entire theorem prover, we would merely
need to write some interface code and modify certain standard aspects of reso-
lution. Arithmetic simplification obviously had to be introduced (for example,
to identify 2x+ y with x+ y+ 0 +x), and the standard mechanisms for selecting

P. Fontaine, C. Ringeissen, and R.A. Schmidt (Eds.): FroCoS 2013, LNAI 8152, pp. 1–6, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

2 L.C. Paulson

the most promising clause and literal were tuned to our application [1,2]. Early
versions of MetiTarski performed well despite having only a modest amount of
specialist code. By now, however, we have extended MetiTarski’s code base ex-
tensively. We introduced case-splitting with backtracking [4], as is found in SMT
solvers. We also included our own code for interval constraint solving, to either
supplement or replace the external decision procedures.

MetiTarski relies on collections of upper and lower bounds (consisting of poly-
nomials or rational functions) for the various special functions. The main effort
in 2009 focused on refining these bounds, in particular through the introduction
of continued fractions. Resolution chooses which axioms to use in a proof au-
tomatically. A single proof may use different axioms to cover different intervals
of the region under consideration. A further benefit of our use of standard res-
olution is that other forms of axioms (concerning the absolute value function,
or the min and max functions) can be written in first-order logic. The absolute
value axioms state the obvious properties:

¬(0 ≤ x) ∨ |x| = x 0 ≤ x ∨ |x| = −x

Resolution performs the appropriate sign reasoning automatically.
Resolution operates on clauses, or disjunctions of literals, which for Meti-

Tarski are typically real inequalities. Under certain circumstances, MetiTarski
can simplify the selected disjunction by formulating a problem that it can submit
to an external decision procedure. Such problems involve a particular inequal-
ity in a disjunction, within its context. This context consists of the remainder
of the disjunction and certain global facts. If the decision procedure finds the
conjunction of these assertions to be inconsistent, then the inequality can be
deleted from the clause. This connection between the basic resolution method
and an external decision procedure is the key idea. Given another application
domain, other decision procedures could probably be substituted for those called
by MetiTarski. The only difficulty is that such a system would probably have to
compete head-on with SMT solvers, which are highly refined and effective.

MetiTarski also uses the decision procedure for a form of redundancy elimina-
tion. As the proof search proceeds, polynomial formulas accumulate, and these
are supplied to every decision procedure call. But if some of these formulas
are redundant, they slow down subsequent calls without providing any benefit.
Therefore, every time a new polynomial formula emerges from the resolution
process, it is tested for redundancy—does it follow in the theory of RCF from
previously known formulas?—and possibly discarded. The poor complexity of
RCF quantifier elimination makes this step necessary.

3 MetiTarski’s Decision Procedures

We adopted QEPCAD originally because it was free and easy to use, dedicated
as it was to the single task of quantifier elimination. Moreover, QEPCAD worked
extremely well in our first experiments. But QEPCAD had a number of limita-
tions, concerning both portability (the code base seems to date from the distant

MetiTarski’s Menagerie of Cooperating Systems 3

past) and performance. Our decision problem is inherently intractable: doubly
exponential in the number of variables in the problem [8]. This caused no difficul-
ties at first, when virtually our entire problem set was univariate, but there are
other ways to settle univariate special-function inequalities, and many important
problems involve multiple variables.

Mathematica, the well-known computer algebra system, was next to be in-
tegrated with MetiTarski, as an alternative to QEPCAD. Though we regret
the reliance on commercial software, many institutions already have Mathe-
matica licences, and its quantifier elimination procedure is much more modern
and powerful than QEPCAD’s. It copes with problems in up to five variables,
where QEPCAD cannot be expected to terminate at all. Mathematica has many
configurable options, leaving us with many possible refinements to investigate.
Mathematica can solve many special-function inequalities itself, and MetiTarski
can take advantage of this capability to solve even harder problems.

The theorem prover Z3 [9], with its new extension for non-linear arithmetic
[17], provides the third of our decision procedures. The great advantage for us
is the possibility of working with its developers. We can tune it to our specific
needs. Where it performs badly, we can send the problems for examination and
know that they will be looked at. In some cases, Z3 has coped with problems in
up to nine variables [21]. Z3 is free to non-commercial users.

Much of the effort needed to integrate different systems concerns overcoming
conceptually trivial but serious obstacles. For many months, our team strug-
gled with mysterious failures involving QEPCAD. These mainly happened dur-
ing lengthy, overnight regression testing, where certain jobs would mysteriously
hang and eventually bring all testing to a halt. Eventually, the problem was
isolated to one of QEPCAD’s peculiarities: unless it is used at a normal ter-
minal, it performs its own echoing of input lines. (This allowed it to produce
a readable output transcript when running in batch mode.) Because the inputs
to QEPCAD can exceed 50K characters, and because MetiTarski never reads
the output of QEPCAD until after it has sent a full problem to it, QEPCAD’s
output buffer would fill up, blocking its execution. Similar difficulties involving
the other decision procedures take a surprising amount of time to diagnose and
fix. Today as I write this, we are struggling with a mysterious problem plaguing
integration with Z3.

Note that the choice among these three decision procedures is not straight-
forward. QEPCAD performs best in many situations.

4 Ongoing Research

We can often get better results if we do not regard the reasoning components
of our system as black boxes. Automatically generated problems tend to be
regular, and should if possible be tailored to the strengths of the component
that will process them, or conversely, that component could itself be modified to
perform better on those automatically generated problems. In the case of Z3, we
were able to find a number of refinements that greatly improved its performance

4 L.C. Paulson

with MetiTarski [20]. One such refinement is to switch off a processing stage
(univariate polynomial factorisation) that we could predict to be unnecessary.
Another refinement, called model sharing, involved Z3 passing counterexamples
to MetiTarski that it could use to eliminate some future Z3 calls.

Choosing which of the arithmetic solvers to call, given a particular problem,
is itself a research question. A Cambridge student, Zongyan Huang, is currently
investigating whether machine learning can be effective here. The basic idea is
that features present in the special-function problem originally given to Meti-
Tarski may be sufficient to predict which decision procedure will perform best on
the polynomial decision problems that MetiTarski will generate for that prob-
lem. Features that we are examining include which special functions are present
and how many variables there are. Zongyan is using Support Vector Machines
(SVMs). This modelling approach, implemented as SVM-Light [16], is a form of
machine learning that offers good results with reasonable efficiency. Her work
is still experimental, but if it is successful, then realising it would involve Meti-
Tarski running some machine learning code near the beginning of its execution.

MetiTarski opens the possibility of verifying dynamical systems using non-
linear models involving transcendental functions. Such models are common in
engineering, for example in problems involving rotation. William Denman is
investigating this area. He uses Mathematica (manually) to derive differential
equations to model a given dynamical system. Such a model is a system of differ-
ential equations. Denman has written a Python program based on the algorithm
implemented in HybridSAL [23], which is a tool for creating discrete models of
hybrid systems. His program transforms the system of differential equations into
a set of MetiTarski problems. MetiTarski is used to identify infeasible states in
the abstract model, thereby simplifying it; the attraction of this approach is that
it does not require MetiTarski to solve all the problems. The outcome of this
procedure is a discrete, finite model suitable for model checking (currently, using
NuSMV [6]).

5 Prospects for Further Integration

KeYmaera is a sophisticated interactive theorem prover designed for verifying
hybrid systems [22]. We have recently joined MetiTarski to KeYmaera as a back-
end, hoping to provide the possibility of verifying systems whose models involve
special functions. PVS is an interactive theorem prover designed for a variety of
application areas, including hardware and hybrid systems [19]. William Denman,
in collaboration with César Muñoz, has created an experimental linkup between
MetiTarski and PVS. In both cases, the calling system invokes MetiTarski and
trusts the result. These experiments should help identify new application areas
for MetiTarski, suggesting areas for further development as well as providing
justification for the effort needed to build a more robust integration. MetiTarski
returns machine-readable proofs that combine standard resolution steps with a
few additional inference rules, reflecting its use of computer algebra computa-
tions steps. These proofs can be used to facilitate the integration of MetiTarski

MetiTarski’s Menagerie of Cooperating Systems 5

with other systems, even if MetiTarski’s conclusions are not trusted. In such
applications, MetiTarski becomes a hub lying at the centre of a network of com-
municating reasoners.

The motivation for this research, years ago, was to equip Isabelle (an interac-
tive theorem prover [18]) with support for reasoning about special functions. The
original idea was to use lightweight methods that could prove relatively easy the-
orems. MetiTarski can prove difficult theorems, but through heavyweight meth-
ods that are difficult to include in an LCF-style theorem prover such as Isabelle.
In such theorem provers, there is a strong preference to use only tools that justify
every step in the proof kernel; so-called oracles that trust an external reasoner
are frowned upon. The PVS community is more accommodating to oracles, and
the present linkup between PVS and MetiTarski will be invaluable for investi-
gating the potential of such combined systems. An integration with Sage [12],
an open-source computer algebra system, is also planned for the near future.

Acknowledgements. Other members of the team include (in Edinburgh) Paul
Jackson, Grant Passmore and Andrew Sogokon, and (in Cambridge) James
Bridge, William Denman and Zongyan Huang. In the text above, “we” refers
to all of us. We are grateful to our outside collaborators such as Eva Navarro,
André Platzer, and many others not listed here.

The research was supported by the Engineering and Physical Sciences Re-
search Council [grant numbers EP/C013409/1, EP/I011005/1, EP/I010335/1].

References

1. Akbarpour, B., Paulson, L.C.: MetiTarski: An automatic prover for the elementary
functions. In: Autexier, S., Campbell, J., Rubio, J., Sorge, V., Suzuki, M., Wiedijk,
F. (eds.) AISC/Calculemus/MKM 2008. LNCS (LNAI), vol. 5144, pp. 217–231.
Springer, Heidelberg (2008)

2. Akbarpour, B., Paulson, L.: MetiTarski: An automatic theorem prover for real-
valued special functions. Journal of Automated Reasoning 44(3), 175–205 (2010)

3. Beeson, M.: Automatic generation of a proof of the irrationality of e. Journal of
Symbolic Computation 32(4), 333–349 (2001)

4. Bridge, J., Paulson, L.: Case splitting in an automatic theorem prover for real-
valued special functions. Journal of Automated Reasoning (2012) (in press),
http://dx.doi.org/10.1007/s10817-012-9245-6

5. Brown, C.W.: QEPCAD B: a program for computing with semi-algebraic sets using
CADs. SIGSAM Bulletin 37(4), 97–108 (2003)

6. Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M., Se-
bastiani, R., Tacchella, A.: NuSMV 2: An openSource tool for symbolic model check-
ing. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 359–364.
Springer, Heidelberg (2002)

7. Clarke, E., Zhao, X.: Analytica: A theorem prover for Mathematica. Mathematica
Journal 3(1), 56–71 (1993)

8. Davenport, J.H., Heintz, J.: Real quantifier elimination is doubly exponential. J.
Symbolic Comp. 5, 29–35 (1988)

http://dx.doi.org/10.1007/s10817-012-9245-6

6 L.C. Paulson

9. de Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

10. Dolzmann, A., Sturm, T., Weispfenning, V.: Real quantifier elimination in practice.
In: Heinrich Matzat, B., Greuel, G.-M., Hiss, G. (eds.) Algorithmic Algebra and
Number Theory, pp. 221–247. Springer (1999)

11. van den Dries, L.: Alfred Tarski’s elimination theory for real closed fields. Journal
of Symbolic Logic 53(1), 7–19 (1988)

12. Gray, M.A.: Sage: A new mathematics software system. Computing in Science
Engineering 10(6), 72–75 (2008)

13. Hong, H.: QEPCAD — quantifier elimination by partial cylindrical algebraic de-
composition, Sources and documentation are on the Internet at
http://www.cs.usna.edu/~qepcad/B/QEPCAD.html

14. Hurd, J.: First-order proof tactics in higher-order logic theorem provers. In: Archer,
M., Di Vito, B., Muñoz, C. (eds) Design and Application of Strategies/Tactics in
Higher OrderLogics, NASA/CP-2003-212448 inNASATechnical Reports, pp. 56–68
(September 2003)

15. Hurd, J.: Metis first order prover (2007), Website at
http://gilith.com/software/metis/

16. Joachims, T.: Making large-scale support vector machine learning practical.
In: Schölkopf, B., Burges, C.J.C., Smola, A.J. (eds.) Advances in Kernel Meth-
ods, pp. 169–184. MIT Press (1999)

17. Jovanović, D., de Moura, L.: Solving non-linear arithmetic. In: Gramlich, B.,
Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS, vol. 7364, pp. 339–354. Springer,
Heidelberg (2012)

18. Nipkow, T., Paulson, L.C., Wenzel, M.T.: Isabelle/HOL. LNCS, vol. 2283. Springer,
Heidelberg (2002)

19. Owre, S., Rajan, S., Rushby, J.M., Shankar, N., Srivas, M.K.: PVS: Combining
specification, proof checking, and model checking. In: Alur, R., Henzinger, T.A.
(eds.) CAV 1996. LNCS, vol. 1102, pp. 411–414. Springer, Heidelberg (1996)

20. Passmore, G.O., Paulson, L.C., de Moura, L.: Real algebraic strategies for Meti-
Tarski proofs. In: Jeuring, J., Campbell, J.A., Carette, J., Dos Reis, G., Sojka, P.,
Wenzel, M., Sorge, V. (eds.) CICM 2012. LNCS, vol. 7362, pp. 358–370. Springer,
Heidelberg (2012)

21. Paulson, L.C.: MetiTarski: Past and future. In: Beringer, L., Felty, A. (eds.) ITP
2012. LNCS, vol. 7406, pp. 1–10. Springer, Heidelberg (2012)

22. Platzer, A., Quesel, J.-D.: KeYmaera: A hybrid theorem prover for hybrid systems
(System description). In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR
2008. LNCS (LNAI), vol. 5195, pp. 171–178. Springer, Heidelberg (2008)

23. Tiwari, A.: HybridSAL relational abstracter. In: Madhusudan, P., Seshia, S.A.
(eds.) CAV 2012. LNCS, vol. 7358, pp. 725–731. Springer, Heidelberg (2012)

http://www.cs.usna.edu/~qepcad/B/QEPCAD.html
http://gilith.com/software/metis/

Combining Superposition and Induction:
A Practical Realization�

Abdelkader Kersani and Nicolas Peltier

University of Grenoble (LIG, CNRS)

Abstract. We consider a proof procedure aiming at refuting clause sets
containing arithmetic constants (or parameters), interpreted as natural
numbers. The superposition calculus is enriched with a loop detection
rule encoding a form of mathematical induction on the natural numbers
(by “descente infinie”). This calculus and its theoretical properties are de-
scribed in [2,16]. In the present paper, we focus on more practical aspects.
We provide algorithms to apply the loop detection rule in an automatic
and efficient way. We describe a research prototype implementing our
technique and provide some preliminary experimental results.

1 Introduction

We consider first-order formulæ built on a language containing constant symbols
interpreted as natural numbers. As an example, consider the formula φ defined
as the conjunction of the following formulæ:

p(0, a)
∀x, y ¬p(x, y) ∨ p(x + 1, f(y))

∃n∀x¬p(n, x)

The formula φ is satisfiable in the usual sense, but it is unsatisfiable if the sort
of the first argument of p is interpreted as the natural numbers (with the usual
interpretation of 0, 1 and +). Then the existential variable n must be interpreted
as a natural number k, and it is easy to check, by induction on k, that the first
two formulæ entail that p(k, fk(a)) holds, which implies that the formula is un-
satisfiable. Existing resolution or superposition based theorem provers cannot
establish the unsatisfiability of such formulæ since they are based on standard
first-order logic. Proof procedures (based on several different approaches) have
been proposed to handle hybrid formulæ, mixing first-order logic with interpreted
theories such as Presburger arithmetic [4,1,6,12] but they do not handle inductive
theorems. When fed with the previous formula, these approaches will infer the
infinite set of formulæ n �� 0, n �� 1, n �� 2, . . . (where n denotes the Skolem con-
stant derived from the quantification ∃n), but will not detect unsatisfiability in
finite time (since Presburger arithmetic is not compact). The standard approach
� This work has been partly funded by the project ASAP of the French Agence Na-

tionale de la Recherche (ANR-09-BLAN-0407-01).

P. Fontaine, C. Ringeissen, and R.A. Schmidt (Eds.): FroCoS 2013, LNAI 8152, pp. 7–22, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

8 A. Kersani and N. Peltier

for dealing with inductive theorems in the context of first-order theorem proving
is to add explicit induction schemes. For instance, in the previous case, one can
replace the formula ∃n∀x¬p(n, x) by ∃n∀x¬p(n, x)∧∀mm+ 1 �� n∨∃x p(m,x)
(stating that ∀x¬p(m,x) holds for m = n but not for the predecessor of n)
which can be easily derived by assuming that n is the minimal natural number
satisfying the property ∀x¬p(n, x). Alternatively, one can also add the usual
induction scheme using ∃x p(m,x) as an inductive invariant:

(∃x p(0, x) ∧ ∀m((∃x p(m,x)) ⇒ (∃x p(m + 1, x)))) ⇒ ∀m∃x p(m,x)

Using these additional axioms, the unsatisfiability of φ can easily be established
by any theorem prover. The inductive rule defined in [15] also relies on the use
of explicit induction schemes.

However, this approach relies on the user to guess the right inductive lemma.
The inductive invariant is not necessarily equivalent to the goal, and is not even
bound to occur in the initial formula (it is well-known that inductive proofs
do not admit cut elimination). For instance, if the third formula is replaced
by: ∃n∀x¬q(n, x) with the additional axiom: ∀x, y q(x, y) ∨ ¬p(x, y), then the
formula cannot be established by using the negation of the goal ∃x q(n, x) as an
inductive invariant: one has to use ∃x p(n, x) instead.

Another approach consists in using inductive theorem provers, which are usu-
ally based on rewriting [7,13,14,20,11]. These approaches allow one to generate
automatically the induction lemmata (in some cases). Intuitively, these proce-
dures work as follows: the goal is rewritten using axioms until it can be reduced to
true or false. Of course only the ground instances of the goal can be normalized
and enumerating those instances does not terminate in general. In order to en-
sure termination in some cases, the previously encountered goals can themselves
be used as derived rewrite rules, provided the considered terms are strictly lower
than the initial ones, according to some reduction ordering, which can be either
fixed a priori or constructed dynamically all along the search. This technique
allows one to simulate the application of inductive hypotheses without having to
state explicitly the inductive invariants (of course additional inductive lemmata
still have to be added by hand in many cases). However, these approaches are
restricted to goals of the form ∀xψ where ψ is a quantifier-free formulæ, thus
they cannot handle formulæ as φ in the previous example, whose goal is of the
form ∀n∃xψ, before negation (the inductive theorem prover SPIKE has been ex-
tended in order to handle existential variables [5], but the use of such variables
is strongly restricted). The “inductionless induction” approach [8], which reduces
inductive theorem proving to a consistency test in first-order logic, suffers from
the same limitation.

In previous work [2,16], we have presented an extension of the superposi-
tion calculus which is tailored to handle formulæ such as the previous one. The
idea is twofold. First, the arithmetic terms are abstracted away and replaced by
variables, in order to allow inferences on them. This allows one to get rid of first-
order symbols in order to derive properties of pure arithmetic terms. Second, the
usual inference rules of the calculus are enriched with a new rule allowing to de-
tect cycles in the derivations. These loops correspond to the inductive invariants

Combining Superposition and Induction: A Practical Realization 9

that are needed to establish the validity of the theorem. A first definition of the
loop detection rule is given in [2] and a more general version is provided in [16]
yielding stronger completeness results (of course the method is not complete in
general, since the logic is not even semi-decidable [16]). Roughly speaking, these
rules apply when a set of clauses S[n] is generated (where n is an arithmetic
constant) such that the set n ≥ k ∧S[n− k] can be derived from S[n] (using the
inference rules of the calculus). By descente infinie, it is clear that this implies
that S is unsatisfiable. The soundness of this approach is proven in [2,16], and
some (partial) completeness results are presented. In the present paper, we tackle
more practical aspects, namely the efficient generation of the sets of clauses on
which the loop detection rule can be applied. The problem consists in finding
efficiently sets of clauses S satisfying the relation above. We present two different
algorithms for performing this task (each with their pros and cons). We describe
an implementation of our method and provide some preliminary experimental
results.

2 Syntax and Semantics

We firstly define the syntax and semantics of the considered logic. We assume
some familiarity with the usual notions in logic and automated deduction (miss-
ing definitions can be found in, e.g., [18]). We consider two distinct sorts: the
sort term of the standard terms, and the sort nat of the natural numbers. The
set of terms is built as usual on a set of function symbols Σ and on a set of
variables X . The signature Σ contains in particular the symbols 0 and succ, of
profile nat and nat → nat respectively. We assume that Σ contains no other
symbol of range nat.

An atom is an equation of the form t � s where t and s are terms of sort term.
A literal is either an atom (positive literal) or the negation of an atom (negative
literal). A clause is a finite set (written as a disjunction) of literals. Let n be a
special symbol, called the parameter, not occurring in Σ (n is intended to denote
a natural number, and can be viewed as a constant symbol of sort nat).

Definition 1. An n-clause is a pair [C |
∧k

i=1 n � ti] where C is a clause and
the ti’s (1 ≤ i ≤ k) are terms of sort nat. It is normalized if k ∈ {0, 1}. If
k = 0,

∧k
i=1 n � ti is equivalent to true by convention and [C |

∧k
i=1 n � ti] is

simply written C. C is the clausal part of the n-clause, and
∧k

i=1 n � ti is the
constraint.

Note that by definition, n can only occur in the constraint part of the n-clause
(since n �∈ Σ). Thus an expression of the form f(n) � a for instance is to be
written as [f(x) � a | n � x], where x is a variable of sort nat.

For every expression e, var(e) denotes the set of variables occurring in e. An
expression is ground if it contains no variable.

A substitution σ is a function mapping every variable to a term of the same
sort. The domain of σ is the set of variables x such that xσ �= x. For every
expression e, eσ denotes as usual the expression obtained from e by replacing

10 A. Kersani and N. Peltier

every occurrence of each variable x by xσ. The substitution σ is ground iff for
every variable x in the domain of σ, xσ is ground.

The terms t1, . . . , tk are unifiable iff there exists a substitution σ such that
t1σ = · · · = tkσ. Any set of unifiable terms has a most general unifier (unique
up to a renaming).

We identify a term succk(0) with the natural number k; thus we write, e.g.,
succk(0) < succl(0) for k < l, or k + t for succk(t).

Interpretations are usually defined as congruences on the set of terms. In our
setting, we also have to specify the value of the symbol n (the symbols 0 and succ
are interpreted as free constructors, note that the clauses contain no equations
between natural numbers). This yields the following:

Definition 2. An interpretation I is defined by a pair (nI ,�I), where nI is
natural number (i.e., a term of the form succk(0)) and �I is a congruence on
the set of ground terms of sort term.

The notion of validity is defined in a very natural way:

Definition 3. An interpretation I validates an expression E (written I |= E)
iff one of the following conditions holds.

– E is a ground literal t � s (resp. t �� s) and t �I s (resp. t ��I s).
– E is a ground clause

∨k
i=1 li and there exists i ∈ [1, k] such that I |= li.

– E is an n-clause [C |
∧k

i=1 n � ti] and for every ground substitution σ of
domain var(E) such that ∀i ∈ [1, k], nI = tiσ, it holds that I |= Cσ.

– E is a set of n-clauses and ∀C ∈ E, I |= C.

An interpretation validating E is a model of E. We write E |= E′ if every model
of E is a model E′. Two expressions E and E′ are equivalent (written E ≡ E′)
if E |= E′ and E′ |= E. A tautology is an expression equivalent to true.

By definition, I |= [� | n � succk(0)] iff nI �= k. Similarly, I |= [� | n �
succk(x)] iff nI < k (where x is a variable). Consequently, an n-clause of the
form [� | n � succk(0)] (resp. [� | n � succk(x)]) will be written n �� k (resp.
n < k).

If I is an interpretation and k is a natural number, we denote by I[k/n] the
interpretation coinciding with I, except that the value of n is set to k.

The following proposition shows that every non-tautological n-clause is equiv-
alent to a normalized n-clause.

Proposition 1. Let C = [C |
∧k

i=1 n � ti] be an n-clause. If t1, . . . , tn are
unifiable, then C is equivalent to [Cσ | n � t1σ], where σ is an m.g.u. of t1, . . . , tn.
Otherwise C is a tautology.

Thanks to Proposition 1 we can safely assume that every n-clause is normalized
(the normalization operation is applied in a systematic way to every generated
n-clause).

The usual relation of subsumption extends straightforwardly to n-clauses:

Combining Superposition and Induction: A Practical Realization 11

Definition 4. Let C = [C |
∧k

i=1 n � ti] and C′ = [C′ |
∧l

i=1 n � t′i] be two
n-clauses. The n-clause C subsumes C′ (written C ≤sub C′) if there exists a
substitution σ such that Cσ ⊆ C′ and {t1, . . . , tk}σ ⊆ {t′1, . . . , t′l}σ.

Proposition 2. If C ≤sub C′ then C |= C′.

The subsumption relation ≤sub can be extended to sets of n-clauses: we write
S ≤sub S′ if for every C′ ∈ S′, there exists C ∈ S such that C ≤sub C′.

By Definition 3, an n-clause [C | n � succi(x)] (with x ∈ X) is equivalent to
an expression of the form n ≥ i ⇒ C[n− i]. The rank of [C | n � succi(x)] is the
number r such that n − r is the maximal expression containing n occurring in
C[n− i]. For instance, consider the n-clause [f(x, succ(y)) � y | n � succi(x)]. It
is equivalent to the expression f(x, succ(n−i)) � n−i, i.e., f(x, n−(i−1)) � n−i,
hence its rank is i − 1. Note that if C contains no occurrence of succ then the
rank of [C | n � succi(x)] is simply i. For every set of n-clauses S and for every
natural number i, we denote by S[i] the set of n-clauses of rank i in S. We denote
by S[�] the set of n-clauses whose constraint is true.

3 Superposition Calculus

The usual superposition calculus can easily be extended to operate on n-clauses.
Let < be a reduction ordering and let sel be a selection function, mapping every
clause C to a subset of C, such that either sel(C) contains a negative literal, or
sel(C) contains all the <-maximal literals in C. The calculus is defined by the
following three rules (the premisses are assumed to be normalized). As usual t|p
is the term occurring at position p in t, and t[s]p is the term obtained from t by
replacing the subterm at position p by s.

Superposition
[C ∨ t �� s | X], [D ∨ u � v | Y]
[C ∨ D ∨ t[v]p �� s | X ∧ Y]σ

If ��∈ {�, ��}, σ = mgu(u, t|p), uσ �≤ vσ, tσ �≤ sσ, t|p is not a variable,
(t �� s)σ ∈ sel((C ∨ t �� s)σ), (u � v)σ ∈ sel((D ∨ u � v)σ).

Reflection

[C ∨ t �� s | X]
[C | X]σ

If σ = mgu(t, s), (t �� s)σ ∈ sel((C ∨ t �� s)σ)

Factorisation
[C ∨ t � s ∨ u � v | X]
[C ∨ s �� v ∨ t � s | X]σ

If σ = mgu(t, u), tσ �< sσ, uσ �< vσ, (t � s)σ ∈ sel((C ∨ t � s ∨ u � v)σ).

12 A. Kersani and N. Peltier

Example 1. The second example of the Introduction is formalized as follows.

1 p(0, a) � true
2 p(x, y) �� true∨ p(succ(x), f(y)) � true
3 [q(x, y) �� true | n � x]
4 q(x, y) � true ∨ p(x, y) �� true

The following n-clauses are generated (for the sake of clarity, the literals of the
form true �� true are removed from the clauses):

5 [p(x, y) �� true | n � x] (superposition, 4, 3)
6 [� | n � 0] (superposition, 1, 5)
7 [p(x, y) �� true | n � succ(x)] (superposition, 2, 5)
8 [� | n � succ(0)] (superposition, 1, 7)
9 [p(x, y) �� true | n � succ(succ(x))] (superposition, 2, 7)

An infinite number of n-clauses of the form [� | n � succk(0)] (i.e. n �� k) can
be generated.

4 Loop Detection

In this section, we define the key part of the proof procedure, namely the loop
detection rule. We provide a simpler and abstract version of the rule (compared
with those in [2,16]) which is sufficient for our purposes (the loop detection rule
provided in [16] is much more general because it handles parameters interpreted
as words instead of natural numbers). In the next section, we will introduce new
definitions and algorithms allowing for an efficient application of the rule. We
first need to introduce some notations.

Definition 5. For every natural number i and for every n-clause C = [C |∧k
j=1 n � tj], we denote by C↓i the n-clause [C |

∧k
j=1 n � succi(tj)]. If S is a

set of n-clauses, then S↓i
def
= {C↓i| C ∈ S}.

Intuitively, S↓i denotes the same formula as S, with n replaced by n − i. This
yields the following:

Proposition 3. Let i, j ∈ N, let S be a set of n-clauses and let I be an inter-
pretation. If I |= S↓j and I(n) = i + j then I[i/n] |= S.

Proof. Let C = [C |
∧k

l=1 n � tl] ∈ S. Let σ be a substitution such that ∀l ∈
[1, k]nI[i/n] = tiσ. This implies that ∀l ∈ [1, k], tlσ = i since nI[i/n] = i by
definition. We have C↓j= [C |

∧k
l=1 n � succj(tl)]. Since tlσ = i and nI = i + j

we have nI = tlσ, for all l ∈ [1, k]. Since I |= S↓j, this entails that I |= Cσ, and
thus I[i/n] |= Cσ (since Cσ contains no occurrence of n).

Definition 6. Let S be a set of clauses. A pair of natural numbers (i, j) (with
j �= 0) is an inductive loop for S if there exists a set S′ ⊆ S such that S′ |= n �� l,
for every l ∈ [i, i + j[and S′ |= S′↓j

Combining Superposition and Induction: A Practical Realization 13

Theorem 1. If (i, j) is an inductive loop for S, then S |= n < i.

Proof. We have I |= S′. Let k be the minimal natural number greater or equal to
i such that S′ has a model I with nI = k. If k < i+ j, then we have S′ |= n �� k,
which is impossible since I �|= n �� k, by definition. Otherwise, we have I |= S′↓j ,
hence by Proposition 3 we deduce that I[k − j/n] |= S′, which is impossible by
minimality of k since i ≤ k − j < k.

5 Practical Application of the Loop Detection Rule

This section contains the main new results of the paper. We define algorithms
to test whether a pair of natural numbers (i, j) is an inductive loop. To this
purpose, we have to check whether there exists a set of n-clauses S′ satisfying
the conditions of Definition 6. In practice, these conditions cannot be tested since
semantic entailment is undecidable. We will thus only check whether the formulæ
n �� l (with i ≤ l < i + j) and S′ ↓j can be derived from S′ using inferences
previously performed by the prover. Furthermore, we will impose the additional
restriction that all the n-clauses in S′ containing n occur in the set S[i]. This
condition greatly decreases the search space and it preserves the completeness
results in [2,16].

We proceed in two steps. First we transform the semantic conditions of Defi-
nition 6 into purely syntactic properties and then we provide algorithms to test
these properties in an effective way. We need to introduce additional notations.

Definition 7. Let S be a set of n-clauses. An inference relation δ for S is a
partial function mapping every n-clause C ∈ S to a set of n-clauses in S such
that C is deducible from δ(C) by one of the inference rules (in exactly one step).

In practice this relation will be obtained from the inferences previously performed
by the prover (D ∈ δ(C) iff D is a parent of C). The n-clauses C such that δ(C) is
not defined are hypotheses, i.e., n-clauses occurring in the initial set. An inference
relation induces a entailment relation �δ between subsets of S. Informally, we
write S′ �δ S′′ if all the n-clauses in S′′ can be derived from n-clauses in S′∪S[�]
using inferences in δ. This is formalized as follows:

Definition 8. Let S be a set of n-clauses and let δ be an inference relation
for S. The relation �δ is the smallest relation between subsets of S such that
S′ �δ S′′ if for every n-clause C ∈ S′′, one of the following conditions holds:

1. C ∈ S′.
2. δ(C) is defined and S′ �δ δ(C).
3. The constraint part of C is true.

The intuition behind Condition 3 is that the n-clauses whose constraints are
true are universal properties, which are valid independently of the value of n.
Thus we assume that such n-clauses (once they have been proven, i.e., if they
occur in S) can be used as hypotheses in any derivation.

14 A. Kersani and N. Peltier

Proposition 4. Let S be a set of n-clauses and let δ be an inference relation
for S. If S′ �δ S′′ then S′ ∪ S[�] |= S′′ ∪ S[�].

In order to test entailment between clause sets, we introduce a notion of
immediate entailment:

Definition 9. An immediate entailment relation is a decidable relation � be-
tween n-clauses such that C � D ⇒ C |= D. The relation � is extended to sets
of n-clauses as follows: S � S′ iff ∀C′ ∈ S′ ∃C ∈ S, C � C′.

In practice, � can be for instance the identity (C = D up to a renaming of
variables), the inclusion (C ⊆ D), or the subsumption relation ≤sub.

We are now in position to define the notion of cycle, which is the syntactic
pendant of the notion of inductive loop of Definition 6. It is defined relatively to
the two relations � and δ.

Definition 10. Let S be a set of clauses, let � be an immediate consequence
relation and let δ be an inference relation on S. A pair of natural numbers (i, j)
(with j �= 0) is a cycle for S w.r.t. � and δ if there exist Sinit, Sloop ⊆ S such that
Sinit ⊆ S[i], Sloop ⊆ S[i + j], Sinit �δ {n �� k | k ∈ [i, i + j − 1]}, Sinit �δ Sloop

and Sloop � Sinit↓j.

Example 2. Consider the derivation of Example 1. Assume that � is the identity
relation. The pair (0, 1) is a cycle, with Sinit = {5} and Sloop = {7}. Indeed,
the clause n �� 0 is derivable from Clause 5 and clauses not containing n, thus
Sinit �δ {n �� 0}. Similarly, Clause 7 can be derived from Clause 5, together
with clauses not containing n. Finally, we have [p(x, y) �� true | n � x] ↓1=
[p(x, y) �� true | n � succ(x)], hence Sloop � Sinit↓1 (assuming that � contains
the identity relation). Similarly, (0, 2) and (1, 2) are also cycles, corresponding
to the sets {5}, {9} and {7}, {9} respectively.

Theorem 2. All cycles are inductive loops.

Proof. Let (i, j) be a cycle for S, w.r.t. two relations � and δ. Let Sinit and
Sloop be the corresponding subsets of S. Let S′ = Sinit ∪S[�]. We have Sinit �δ

{n �� k}, for every k ∈ [i, i + j − 1], thus by Proposition 4, S′ |= n �� k (for
every k ∈ [i, i + j − 1]). Similarly, we have S′ |= Sloop, hence S′ |= Sinit ↓j
(since � is included in |=). But S′↓j= Sinit↓j ∪S[�]↓j= Sinit↓j ∪S[�] (since
the n-clauses whose constraint is true are not affected by the S↓j operation).
Therefore S′ |= S′↓j and (i, j) is an inductive loop.

Theorems 1 and 2 entail the soundness of the following inference rule:

Cycle elimination rule: S
n < i

If (i, j) is a cycle for S w.r.t. some immediate consequence relation �, and the
inference relation δ induced by the previous inferences performed on S.

Theorem 2 gives a syntactic criterion to check whether a couple of fixed nat-
ural numbers defines a loop. We now show how to test efficiently that (i, j) is

Combining Superposition and Induction: A Practical Realization 15

Algorithm 1. Cycle1(S, i, j)

S0 ← {n �� k, k ∈ [i, i+ j[}
if S[i] ��δ S0 then

return false
end if
Choose a minimal set Sinit ⊆ S[i] s.t. Sinit �δ S0

Sloop ← ∅
while ∃C ∈ Sinit | Sloop �
 {C↓j} do

if ∃D ∈ S[i+ j] | D
 C↓j then
Choose D ∈ S[i+ j] such that D
 C↓j
Sloop ← Sloop ∪ {D}
if S[i] ��δ D then

return false
else

Choose a set S′ ∈ S[i] such that S′ �δ {D}
Sinit ← Sinit ∪ S′

end if
else

return false
end if

end while
return true

a cycle. Two distinct algorithms are presented. The algorithm Cycle1 is the
most straightforward and uses a smallest fixpoint algorithm: it starts by con-
sidering the minimal possible set Sinit, namely the set of n-clauses in S[i] that
are necessary to derive all the clauses n �� k for k ∈ [i, i + j[. According to
Definition 10, the condition Sloop � Sinit ↓j must hold. Thus, for each clause
C in Sinit, the algorithm checks whether there exists a n-clause D in S[i + j]
such that D � C ↓j . If this is not the case, then (i, j) cannot be a cycle and
the algorithm stops. Otherwise, all the ancestors of D occurring in S[i] must be
added to Sinit, so that the condition Sinit �δ Sloop (in Definition 10) holds. The
algorithm runs until a fixpoint is reached, in which case a pair of sets of n-clauses
(Sinit, Sloop) satisfying the conditions of Definition 10 has been obtained. The
drawback of this algorithm is that it is non-deterministic. Indeed, for a given
n-clause C, there may exist several n-clauses D satisfying the desired condition
(unless � is the identity relation). Similarly, the ancestors of D in S[i] are not
unique and can be chosen arbitrarily. To ensure completeness all these branches
must be explored, yielding an exponential number of immediate entailment tests
(although the number of iteration steps is polynomial w.r.t. the size of S).

The algorithm Cycle2 is slightly more complex, and is based on a greatest
fixpoint algorithm. The idea is to start by adding to Sinit all the n-clauses in
S[i]. Then Sloop is obtained by considering all the n-clauses in S[i + j] that are
generated from Sinit. In order to ensure that the condition Sloop � Sinit ↓j of
Definition 10 holds, we remove from Sinit the n-clauses C such that there is no
n-clause D in S[i+j] with D � C↓j. If the removed n-clause C is an ancestor of a

16 A. Kersani and N. Peltier

Algorithm 2. Cycle2(S, i, j)

S0 ← {n �� k, k ∈ [i, i+ j[}
Sinit ← S[i]
if Sinit ��δ S0 then

return false
end if
Sloop ← {D ∈ S[i+ j] | Sinit �δ {D}}
while ∃C ∈ Sinit | Sloop �
 {C↓j} do

Sinit ← Sinit \ {C}
if Sinit ��δ S0 then

return false
end if
Remove from Sloop all the n-clauses D s.t. Sinit ��δ {D}

end while
return true

clause n �� k for some i ∈ [i, i+j[then no cycle possibly exists, and the algorithm
stops. Otherwise, the deletion of C from Sinit yields the removal of the n-clauses
in Sloop that are generated from this clause (so that the invariant Sinit �δ Sloop

holds). This algorithm is deterministic and thus involves a polynomial number
of immediate entailment tests (since it is clear that the number of iterations
is polynomially bounded by the size of the initial set S). Its actual complexity
depends of course on the relation �: it is polynomial if � can be tested in
polynomial time (for instance if � is the identity or inclusion relations). If � is the
subsumption relation then it is exponential. The main drawback of Cycle2 w.r.t.
the previous algorithm Cycle1 is that the handled clause sets are usually larger
since the whole set of n-clauses must be considered right from the beginning.
Thus the first algorithm may be more adapted to huge clause sets, or if the
immediate entailment relation is the identity.

Theorem 3. The algorithm Cycle1 and Cycle2 are terminating, sound and
complete, i.e., Cycle1(S, i, j) = true iff Cycle2(S, i, j) = true iff (i, j) is
cycle for S (w.r.t. the relations � and δ)

Proof. We consider the two algorithms separately.
Algorithm Cycle1:
Termination is immediate since at each iteration step, the size of Sinit in-

creases strictly (and it is bounded by the size of the whole set of n-clauses). If
S[i] �|= {n �� k, k ∈ [i, i + j[} then by Definition 10, (i, j) cannot be a cycle.
Otherwise, according again to Definition 10, the set Sinit must contain a set of
n-clauses entailing {n �� k, k ∈ [i, i + j[} (w.r.t. �δ). The end-condition of the
while loop ensures that Sloop � Sinit↓j. Furthermore, the invariant Sinit �δ Sloop

necessarily holds, since each time a clause D is added into Sloop, a set S′ such
that S′ �δ {D} is added to Sinit. Finally, all the n-clauses that are added in Sinit

during the loop are in S[i], thus the invariant Sinit ⊆ S[i] holds. Consequently,
after the while loop, all the conditions of Definition 10 hold, and thus (i, j) must

Combining Superposition and Induction: A Practical Realization 17

be a cycle. Conversely, if (i, j) is a cycle, then it is easy to check that a run of
Algorithm Cycle1 exists in which false is never returned. It suffices to choose
the clauses D and S′ in such a way that D ∈ Sloop and S′ ⊆ Sinit (where Sloop

and Sinit correspond to the sets in Definition 10). This is always possible, since
by definition we must have Sinit �δ Sloop and Sloop � Sinit↓j, with Sinit ⊆ S[i]
and Sloop ⊆ S[i + j].

Algorithm Cycle2:
Termination is immediate since at each iteration step, the size of Sinit de-

creases strictly. Again, if S[i] �|= {n �� k, k ∈ [i, i + j[} then by Definition 10,
(i, j) cannot be a cycle. Otherwise, we must have Sinit ⊆ S[i] and Sloop ⊆ S[i+j].
As for the previous algorithm, the end-condition of the while loop ensures that
Sloop � Sinit↓j . Furthermore, the invariant Sinit �δ Sloop still holds, by defini-
tion of the last instruction in the while-loop. Consequently, after the while loop,
all the conditions of Definition 10 hold, and thus (i, j) must be cycle.

Conversely, if (i, j) is a cycle, then the algorithm returns true. Indeed, the
sets S′

init and S′
loop corresponding to Definition 10 necessarily occur at each

iteration step in the actual sets Sinit and Sloop computed by the algorithm.
By definition, no n-clause C ∈ S′

init can be removed from Sinit, since we have
Sloop � {C↓j}. Similarly, no clause D ∈ S′

loop can be deleted from Sloop since
we must have Sinit �δ {D}. Therefore, the condition Sinit ��δ S0 can never hold
(since S′

init �δ S0).

Example 3. We consider the following clause set:

1 p(x) �� true ∨ p(succ(x)) � true
2 q(x) � true∨ p(succ(x)) � true
3 f(succ(x)) � f(x)
4 p(0) � true
5 [p(x) �� true | n � x]
6 [f(x) � a | n � x]
7 [g(x) � a | n � x]

The following clauses are derived:

8 [� | n � 0] (superposition, 4, 5)
9 [p(x) �� true | n � succ(x)] (superposition, 1,5)
10 [f(x) � a | n � succ(x)] (superposition, 3,6)
11 [q(x) � true | n � succ(x)] (superposition, 2,5)

We illustrate how the two algorithms run on this example. Note that Clauses
1, 4, 5 are sufficient for unsatisfiability (Clause 5 asserts that ¬p(n) holds for
some natural number n, which is impossible since Clauses 1 and 4 entail that
p(succk(0)) holds for every k ∈ N), the other clauses are added only to illustrate
how the algorithms work and to emphasize the differences between them. We
take i = 0, j = 1 and we use the identity as the immediate consequence relation
�. We have S0 = {8}, S[i] = {5, 6, 7}, S[i + j] = {9, 10, 11}, S[⊥] = {1, 2, 3, 4}.

Algorithm Cycle1: The algorithm first chooses a set of clauses Sinit ⊆ S[i]
such that Sinit �δ S0. The parents of Clause 8 are 4 ∈ S[⊥] and 5 ∈ S[i], thus

18 A. Kersani and N. Peltier

according to Definition 8 we have {5} �δ {8}. Therefore, Sinit is set to {5}. Then
Sloop is initialized to ∅. Clause 5 occurs in Sinit and we have 5↓1 �∈ Sloop (since
Sloop = ∅). Thus the algorithm chooses a clause D ∈ S[i+ j] such that D � 5↓1.
Clause 5 is [p(x) �� true | n � x], thus 5↓1 is [p(x) �� true | n � succ(x)], hence
5↓1= 9. Therefore, the only solution is D = 9. This clause is added to Sloop. The
algorithm checks that S[i] �δ D and adds to Sinit a minimal set of clauses S′

such that S′ �δ {D}. Clause 9 is deduced from Clause 1, which occurs in S[⊥],
and Clause 5, which occurs in S[i], thus the only solution is S′ = {5}. Therefore
Sinit is not affected (since it already contains 5). The while-loop ends because
the only clause in Sinit↓1 occurs in Sloop. The pair (0, 1) is a cycle, corresponding
to the sets Sinit = {5} and Sloop = {9}.

Algorithm Cycle2: Sinit is initialized with S[i], i.e. {5, 6, 7}. Then the al-
gorithm checks that Sinit �δ S0, and initializes Sloop with the set of clauses
D ∈ S[i + j] such that Sinit �δ D. All the clauses in S[i + j] are obtained from
clauses in Sinit and S[⊥], thus we have Sloop = {9, 10, 11}. Then the algorithm
checks whether Sinit contains a clause C such that C↓j �∈ Sloop. The only clause
satisfying this condition is Clause 7. Thus this clause is removed from Sinit, yield-
ing {5, 6} and the clauses D such that {5, 6} ��δ D are removed from Sloop. Here
all the clauses in Sloop can be deduced from {5, 6} and clauses in S[⊥] thus Sloop

is not affected. Then the algorithm stops and returns true. The obtained sets are
Sinit = {5, 6} and Sloop = {9, 10}. Note that, compared to the previous case, the
sets contain an additional clause (namely 6/10), which occurs in the generated
inductive invariant, but actually plays no role in the proof (these clauses can be
identified and eliminated afterwards by applying reachability analysis algorithms
on the inference graph).

6 Implementation

Our calculus has been implemented as a research prototype, using the system
Prover9 [17] as an inference engine. While any other superposition-based prover
could be used instead, the system is not used as a mere “black box”: the pro-
cedures and data-structures had to be adapted in order to handle the specific
features of the calculus: arithmetic constraints, normalization of clauses, etc. The
program uses the usual “given clause algorithm” of Prover9, and calls Algorithm
Cycle2 to check whether a given pair (i, j) is a cycle, using the subsumption
relation as an immediate consequence relation. The test is triggered at each it-
eration of the main loop, and only if all the clauses n �� k for k ∈ [0, i + j[have
been generated (thus a cycle is detected only if this leads to an immediate stop).
A refutation is obtained if the system generates a set of n-clauses of the form
{�} or {n �� 0, . . . , n �� k − 1, n < k}, which is obviously unsatisfiable. The last
clause n < k is usually derived by cycle detection (with k = i + j), but it can
also be derived by the superposition calculus alone, in simple cases in which the
theorem can be proven without induction. If the system is fed with an unsatisfi-
able set of standard clauses then the empty clause � can be generated as usual.
Our proof procedure is not complete in general (the logic is not semi-decidable).

Combining Superposition and Induction: A Practical Realization 19

We use heuristics to preserve the partial completeness results in [16]. For in-
stance a greater weight is associated with the symbol succ to ensure that the
literals containing a maximal arithmetic expression are selected with the highest
priority, and some inferences are blocked to ensure that S[i] |= S[i + 1].

Now, let’s prove the theorem:

∀n ∈ N ∀a1, . . . , an a1 × a2 × · · · × an = an × an−1 × · · · × a1 (1)

We show the corresponding input file:

formulas(sos).
N(x) | p(x) != q(x).
p(0)=1.
q(0)=1.
p(s(x)) = p(x)*a(x).
q(s(x)) = a(x)*q(x).
*(x,1)=x.
*(1,x)=x.
x*y= u*v | x!=u | y != v.
x*y = y*x.
end_of_list.

Our tool has almost the same input format than Prover9, we just have to add
the constraints to the clauses, a constraint of the form n �� t (where t is a term
of sort nat) is written N(t) and attached to the clause as a literal. The first
clause of the input file corresponds to [p(x) �� q(x) | n � x], which is also the
negation of (1), p(x) and q(x) encode the terms a1 × . . . × an and an × . . . × a1
respectively. We show the output file generated by our tool:

============================== PROOF =================================
% Proof at 0.02 seconds.
% Given clauses 17.
S_init :
(67: N(v0) | -=(0,1) | -=(1,v0) .

2: N(v0) | -=(q(v0),p(v0)).)
S_loop :
(107: N(s(v0)) | -=(0,1) | -=(1,v0) .

85: N(s(v0)) | -=(q(v0),p(v0)).)
The empty clauses :
(12: N(0).)
============================== end of proof ==========================

The output file contains the running time, the number of given clauses, the
two clause sets Sinit, Sloop and finally the pure constraint clause N(0) which
corresponds to the clause [� | n � 0]. As in Example 3, the obtained inductive
invariant contains an additional clause that plays no role in the derivation.

20 A. Kersani and N. Peltier

7 Experimentation

In this section we provide some examples of application of our work. All the
presented problems require induction and thus are out of the scope of first-
order theorem provers. We first present some examples in propositional logic.
We consider an n-bit sequential adder circuit i.e. a circuit which computes the
sum of two bit-vectors of length n. Such a circuit is built by composing n 1-
bit adders. The ith bits of each operand are written pi and qi. ri is the ith bit
of the result and ci+1 is carried over to the next bit (thus c1 = 0). We set
the notations (⊕ denotes exclusive or): Sumi(p, q, c, r)

def
= ri ⇔ (pi ⊕ qi) ⊕ ci

and Carryi(p, q, c)
def
= ci+1 ⇔ (pi ∧ qi) ∨ (ci ∧ pi) ∨ (ci ∧ qi). Then the for-

mula: Adder(p, q, c, r)
def
=
∧n

i=1 Sumi(p, q, c, r) ∧
∧n

i=1 Carryi(p, q, c) ∧ ¬c1 with
the constraint n ≥ 1, schematises the adder circuit (it states that r encodes the
sum of p and q). In order to test the satisfiability of such schemata of proposi-
tional formulæ, we have implemented an algorithm transforming automatically
(in polynomial time) any propositional schema built on iterated connectives of
the form

∧n+b
i=a φ or

∨n+b
i=a φ (such as the ones modeling the Adder circuit) into a

sat-equivalent set of n-clauses. This algorithm works by introducing a monadic
predicate (of domain nat) for every iteration occurring in the initial formula,
and by adding axioms to specify the interpretation of these predicates by induc-
tion on the natural numbers. For instance, the schema

∨n
i=0 pi can be denoted

by the atom [q(x) � true | n � x], with the axioms: {q(0) �� true ∨ p(0) �
true, q(succ(x)) �� true ∨ p(succ(x)) � true ∨ q(x) � true} (the formal de-
scription of the transformation algorithm is omitted due to space restrictions, it
can be found in [2]). Several properties of the Adder can then be automatically
checked, such as commutativity or associativity. We have encoded two different
versions of the Adder (the carry propagate and ripple-carry adders respectively)
and proved some elementary properties of these circuits.

We have also considered examples coming from an interesting applica-
tion of schemata languages in proof theory, developed in the context of
the ASAP project (see http://membres-lig.imag.fr/peltier/ASAP/). The
method CERES (see for instance [3]) is an algorithm for cut-elimination in first-
order logic that is more efficient that the standard (reductive) approach. It works
by extracting from the considered (non-analytic) proof π an unsatisfiable set of
clauses S(π), called the characteristic set of π, which is defined in such a way that
any resolution proof of S(π) can be automatically transformed into an analytic
proof of S. It has been extended to schemata of first-order proofs in [9,19,10], in
order to handle mathematical proofs using induction (which cannot be expressed
in first-order logic and which, as well-known, do not admit cut elimination al-
gorithms). The obtained characteristic set is then not a set of clauses in the
usual sense, but rather a schema of clause sets, which can be expressed as a set
of n-clauses, and handled using our calculus. We provide the running times for
the characteristic sets obtained from simple proofs (the formal definition of the
schemata is omitted for conciseness, the purely propositional ones can be found
in the RegSTAB webpage at http://regstab.forge.ocamlcore.org/ and the

Combining Superposition and Induction: A Practical Realization 21

first-order one can be found in [19,10]). Finally we consider some simple induc-
tive properties, for instance we prove that if we perform an arbitrary number of
permutations on a sequence containing an element a then the final sequence still
contains a.

The obtained results are depicted below. We provide for each example, the
running time, the number of calls to Cycle2 and the number of generated
clauses.

Example Time (s) # of calls # generated
to Cycle2 clauses

Ripple-carry adder (A + 0 = A) 0.48 336 33833
Ripple-carry adder (commutativity) 0.03 102 2003
Ripple-carry adder (associativity) 0.09 207 10154
Ripple-carry adder (3 + 4 = 7) 0.06 71 9989

Unicity of the result (ripple-carry) 0.7 150 50901
Carry-propagate adder (commutativity) 0.02 14 1980
Carry-propagate adder (associativity) 0.01 20 3972
Equivalence between the ripple-carry

and the carry-propagate adders 0.03 14 1980
CERES ex1 (Propositional) 0.01 40 995
CERES ex2 (Propositional) 0.03 216 4106

CERES (First order) 0.01 23 49
Totality of < (n1 ≥ n2 ∨ n1 < n2) 0.01 47 185∧n

i=1 pi > 0 ⇒ p1 × · · · × pn > 0 0.01 8 59
Permutation (triplet) 0.01 17 280

The results show that the cycle detection algorithm is efficient, even for sets
containing thousands of clauses.

8 Conclusion

We have presented a method to enrich superposition-based theorem proving with
inductive reasoning capabilities. To this purpose, we have devised algorithms to
detect cycles in the superposition derivation in an automatic way. These cycles
correspond to inductive invariants and allow one to prune infinite superposition
derivations. Our method has been implemented and some examples of applica-
tion have been presented. Future work includes the extension of the implemen-
tation, for instance by devising refined criteria for triggering the application of
the cycle detection procedure or by introducing new techniques for performing
this detection in an incremental way.

References
1. Althaus, E., Kruglov, E., Weidenbach, C.: Superposition modulo linear arithmetic

SUP(LA). In: Ghilardi, S., Sebastiani, R. (eds.) FroCoS 2009. LNCS, vol. 5749,
pp. 84–99. Springer, Heidelberg (2009)

22 A. Kersani and N. Peltier

2. Aravantinos, V., Echenim, M., Peltier, N.: A resolution calculus for first-order
schemata. Fundamenta Informaticae (accepted for publication, to appear, 2013)

3. Baaz, M., Leitsch, A.: Towards a clausal analysis of cut-elimination. J. Symb.
Comput. 41(3-4), 381–410 (2006)

4. Bachmair, L., Ganzinger, H., Waldmann, U.: Refutational theorem proving for
hierachic first-order theories. Appl. Algebra Eng. Commun. Comput. 5, 193–212
(1994)

5. Barthe, G., Stratulat, S.: Validation of the javacard platform with implicit induc-
tion techniques. In: Nieuwenhuis, R. (ed.) RTA 2003. LNCS, vol. 2706, pp. 337–351.
Springer, Heidelberg (2003)

6. Baumgartner, P., Tinelli, C.: Model Evolution with Equality Modulo Built-in Theo-
ries. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS, vol. 6803,
pp. 85–100. Springer, Heidelberg (2011)

7. Bouhoula, A., Kounalis, E., Rusinowitch, M.: SPIKE, an automatic theorem prover.
In:Voronkov,A. (ed.) LPAR 1992. LNCS, vol. 624, pp. 460–462. Springer,Heidelberg
(1992)

8. Comon, H.: Inductionless induction. In: Robinson, A., Voronkov, A. (eds.) Hand-
book of Automated Reasoning, ch. 14, pp. 913–962. North-Holland (2001)

9. Dunchev, T.: Automation of cut-elimination in proof schemata. PhD thesis, T.U.
Vienna (2012)

10. Dunchev, T., Leitsch, A., Rukhaia, M., Weller, D.: Ceres for first-order schemata,
Research Report (2013), http://arxiv.org/abs/1303.4257

11. Falke, S., Kapur, D.: Rewriting induction + linear arithmetic = decision procedure.
In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS, vol. 7364,
pp. 241–255. Springer, Heidelberg (2012)

12. Ge, Y., de Moura, L.: Complete instantiation for quantified formulas in satisfi-
abiliby modulo theories. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS,
vol. 5643, pp. 306–320. Springer, Heidelberg (2009)

13. Giesl, J., Kapur, D.: Decidable classes of inductive theorems. In: Goré, R., Leitsch,
A., Nipkow, T. (eds.) IJCAR 2001. LNCS (LNAI), vol. 2083, pp. 469–484. Springer,
Heidelberg (2001)

14. Giesl, J., Kapur, D.: Deciding inductive validity of equations. In: Baader, F. (ed.)
CADE 2003. LNCS (LNAI), vol. 2741, pp. 17–31. Springer, Heidelberg (2003)

15. Horbach, M., Weidenbach, C.: Superposition for fixed domains. ACM Trans. Com-
put. Logic 11(4), 1–35 (2010)

16. Kersani, A., Peltier, N.: Completeness and Decidability Results for First-Order
Clauses with Indices. In: Bonacina, M.P. (ed.) CADE 2013. LNCS, vol. 7898,
pp. 58–75. Springer, Heidelberg (2013)

17. McCune, W.: Prover9 and mace4 (2005–2010),
http://www.cs.unm.edu/~mccune/prover9/

18. Robinson, A., Voronkov, A. (eds.): Handbook of Automated Reasoning. North-
Holland (2001)

19. Rukhaia, M.: CERES in Proof Schemata. PhD thesis, T.U. Vienna (2012)
20. Stratulat, S.: Automatic ‘Descente infinie’ induction reasoning. In: Beckert, B. (ed.)

TABLEAUX 2005. LNCS (LNAI), vol. 3702, pp. 262–276. Springer, Heidelberg
(2005)

http://arxiv.org/abs/1303.4257
http://www.cs.unm.edu/~mccune/prover9/

Definability of Accelerated Relations

in a Theory of Arrays and Its Applications

Francesco Alberti1, Silvio Ghilardi2, and Natasha Sharygina1

1 Formal Verification Lab, University of Lugano, Lugano, Switzerland
2 Università degli Studi di Milano, Milan, Italy

Abstract. For some classes of guarded ground assignments for arrays,
we show that accelerations (i.e. transitive closures) are definable in the
theory of arrays via ∃∗∀∗-first order formulae. We apply this result to
model checking of unbounded array programs, where the computation
of such accelerations can be used to prevent divergence of reachability
analysis. To cope with nested quantifiers introduced by acceleration pre-
processing, we use simple instantiation and refinement strategies during
backward search analysis. Our new acceleration technique and abstrac-
tion/refinement loops are mutually beneficial: experiments conducted
with the SMT-based model checker mcmt attest the effectiveness of our
approach where acceleration and abstraction/refinement technologies fail
if applied alone.

1 Introduction

Transitive closure is a logical construct that is far beyond first order logic: either
infinite disjunctions or higher order quantifiers or, at least, fixpoints operators
are required to express it. Indeed, due to the compactness of first order logic,
transitive closure (even modulo the axioms of a first order theory) is first-order
definable only in trivial cases. These general results do not hold if we define
a theory as a class of structures C over a given signature1. Such definition is
different from the “classical” one where a theory is identified as a set of axioms.
By taking a theory as a class of structures the property of compactness breaks,
and it might well happen that transitive closure becomes first-order definable
(the first order definition being valid just inside the class C - which is often
reduced to a single structure).

In this paper we consider the extension of Presburger arithmetic with free
unary function symbols. Inside Presburger arithmetic, various classes of relations
are known to have definable acceleration2 (see related work section below). In our
combined setting, the presence of free function symbols introduces a novel feature
that, for instance, limits decidability to controlled extensions of the quantifier-
free fragment [16,23]. In this paper we show that in such theory some classes of
relations admit a definable acceleration.
1 Such definition is widely adopted in the SMT literature [8].
2 ‘acceleration’ is the name usually adopted in the formal methods literature to denote
transitive closure.

P. Fontaine, C. Ringeissen, and R.A. Schmidt (Eds.): FroCoS 2013, LNAI 8152, pp. 23–39, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

24 F. Alberti, S. Ghilardi, and N. Sharygina

The theoretical problem of studying the definability of accelerated relations
has an important application in program verification. The theory we focus on
is widely adopted to represent programs handling arrays, where free functions
model arrays of integers. In this application domain, the accelerated counterpart
of relations encoding systems evolution (e.g., loops in programs) allows to com-
pute ‘in one shot’ the reachable set of states after an arbitrary but finite number
of execution steps. This has the great advantage of keeping under control sources
of (possible) divergence arising in the reachability analysis.

The contributions of the paper are many-fold. First, we show that inside the
combined theory of Presburger arithmetic augmented with free function symbols,
the acceleration of some classes of relations – corresponding, in our application
domain, to relations involving arrays and counters – can be expressed in first
order language. This result comes at a price of allowing nested quantifiers. Such
nested quantification can be problematic in practical applications. To address
this complication, as a second contribution of the paper, we show how to take
care of the quantifiers added by the accelerating procedure: the idea is to im-
port in this setting the so-called monotonic abstraction technique [1, 2]. Such
technique has been reinterpreted and analyzed in a declarative context in [5]:
from a logical point of view, it amounts to a restricted form of instantiation
for universal quantifiers. Third, we show that the ability to compute acceler-
ated relations is greatly beneficial in program verification. In particular, one
of the biggest problems in verifying safety properties of array programs is de-
signing procedures for the synthesis of relevant quantified predicates. In typical
sequential programs (like those illustrated in Fig.1), the guarded assignments
used to model the program instructions are ground and, as a consequence, the
formulae representing backward reachable states are ground too. However, the
invariants required to certify the safety of such programs contain quantifiers.
Our acceleration procedure is able to supply the required quantified predicates.
Our experimentation attests that abstraction/refinement-based strategies widely
used in verification benefit from accelerated transitions. In programs with nested
loops, as the allDiff procedure of Fig.1 for example, the ability to accelerate
the inner loop simplifies the structure of the problem, allowing abstraction to
converge during verification of the entire program. For such programs, abstrac-
tion/refinement or acceleration approaches taken in isolation are not sufficient;
reachability analysis converges only if they are combined together.
Related Work. To the best of our knowledge, the only work addressing the
problem of accelerating relations involving arrays is [13]. The approach used
in this paper seems to be unable to handle properties of common interest with
more than one quantified variable (e.g., “sortedness”) and is limited to programs
without nested loops. Our technique is not affected by such limitations and can
successfully handle examples outside the scope of [13].

Inside Presburger arithmetic, various classes of relations are known to have
definable acceleration: these include relations that can be formalized as differ-
ence bounds constraints [15, 20], octagons [12] and finite monoid affine trans-
formations [21] (The paper [14] presents a general approach covering all these

Definability of Accelerated Relations 25

function allDiff (int a[N]) :

1 r = true;

2 for (i = 1; i < N ∧ r; i++)

3 for (j = i-1; j ≥ 0 ∧ r; j--)

4 if (a[i] = a[j]) r = false;

5 assert

(
r →

(
∀x, y(0 ≤ x < y < N)

→ (a[x] 	= a[y])

))

(a)

function Reverse (int I[N + 1]; int O[N+ 1]; int c) :

1 c = 0;

2 while (c 	= N + 1) {O[c] = I[N − c]; c++; }

3 assert

(
∀x ≥ 0, y ≥ 0

(x + y = N → I[x] = O[y])

)

(b)

Fig. 1. Motivating examples

domains). Acceleration for relations over Presburger arithmetic has been also
plugged into abstraction/refinement loop for verifying integer programs [17,27].

We recall that acceleration has also been applied fruitfully in the analysis of
real time systems (e.g., [9,26]), to compactly represent the iterated execution of
cyclic actions (e.g., polling-based systems) and address fragmentation problems.

Our work can be proficiently combined with SMT-based techniques for the
verification of programs, as it helps avoiding the reachability analysis divergence
when it comes to abstraction of programs with arrays of unknown length. Since
the technique mostly operates at pre-processing level (we add to the system ac-
celerated transitions by collapsing branches of loops handling arrays), we believe
that our technique is compatible with most approaches proposed in array-based
software model checking. We summarize some of these approaches below, with-
out pretending of being exhaustive.

The vast majority of software model-checkers implement abstraction-refine-
ment algorithms (e.g., [7,19,25]). Lazy Abstraction with Interpolants [31] is one of
the most effective frameworks for unbounded reachability analysis of programs.
It relies on the availability of interpolation procedures (nowadays efficiently em-
bedded in SMT-Solvers [18]) to generate new predicates as (quantifier-free) in-
terpolants for refining infeasible counterexamples.

For programs with arrays of unknown length the classical interpolation-based
lazy abstraction works only if there is a support to handle quantified predicates [3]
(the approach of [3] is the basis of our experiments below). Effectiveness and per-
formances of abstraction/refinement approaches strongly depend on their ability
in generating the “right” predicates to stop divergence of verification procedures.
In case of programs with arrays, this quest can rely on ghost variables [22] re-
trieved from the post-conditions, on the backward propagation of post-conditions
along spurious counterexamples [34] or can be constraint-based [10,35]. Recently,
constraint-based techniques have been significantly extended to the generation of
loop invariants outside the array property fragment [30]. This solution exploits
recent advances in SMT-Solving, namely those devoted to finding solutions of
constraints over non-linear integer arithmetic [11]. Other ways to generate pred-
icates are by means of saturation-based theorem provers [29, 32] or interpolation
procedures [3, 28].

26 F. Alberti, S. Ghilardi, and N. Sharygina

All the aforementioned techniques suffer from a certain degree of randomness
due to the fact that detecting the “right” predicate is an undecidable problem.
For example, predicate abstraction approaches (i.e., [3, 4, 34]) fail verifying the
procedures in Fig.1, which are commonly considered to be challenging for veri-
fiers because they cause divergence3. Acceleration, on the other side, provides a
precise and systematic way for addressing the verification of programs. Its com-
bination, as a preprocessing procedure, with standard abstraction-refinement
techniques allows to successfully solve challenging problems like the ones in Fig.1.

The paper is structured as follows: Section 2 recalls the background notions
about Presburger arithmetic and extensions. In order to identify the classes of
relations whose acceleration we want to study, we are guided by software model
checking applications. To this end, we provide in Section 3 a classification of
the guarded assignments we are interested in. Section 4 demonstrates the prac-
tical application of the theoretical results. In particular, it presents a backward
reachability procedure and shows how to incorporate acceleration with mono-
tonic abstraction in it. The details of the theoretical results are presented later.
The main definability result for accelerations is in Section 6, while Section 5 in-
troduces the abstract notion of an iterator. Section 7 discusses our experiments
and Section 8 concludes the paper.

2 Preliminaries

We work in Presburger arithmetic enriched with free function symbols and with
definable function symbols (see below); when we speak about validity or satisfia-
bility of a formula, we mean satisfiability and validity in all structures having the
standard structure of natural numbers as reduct. Thus, satisfiability and validity
are decidable if we limit to quantifier-free formulæ (by adapting Nelson-Oppen
combination results [33, 36]), but may become undecidable otherwise (because
of the presence of free function symbols).

We use x, y, z, . . . or i, j, k, . . . for variables; t, u, . . . for terms, c, d, . . . for free
constants, a, b, . . . for free function symbols, φ, ψ, . . . for quantifier-free formulæ.
Bold letters are used for tuples and |−| indicates tuples length; hence for instance
u indicates a tuple of terms u1, . . . , um, where m = |u|. These tuples may contain
repetitions. For variables, we use underlined letters x, y, . . . , i, j, . . . to indicate
tuples without repetitions. Vector notation can also be used for equalities: if
u = u1, . . . , un and v = v1, . . . , vn, we may use u = v to mean the formula∧n

i=1 ui = vi.
If we write t(x1, . . . , xn),u(x1, . . . , xn), φ(x1, . . . , xn) (or t(x),u(x), φ(x), . . . ,

in case x = x1, . . . , xn), we mean that the term t, the tuple of terms u, the
quantifier-free formula φ contain variables only from the tuple x1, . . . , xn. Sim-
ilarly, we may use t(a, c, x), φ(a, c, x), . . . to mean both that the term t or the

3 The procedure Reverse outputs to the array O the reverse of the array I; the
procedure allDiff checks whether the entries of the array a are all different. Many
thanks to Madhusudan Parthasarath and his group for pointing us to challenging
problems with arrays of unknown length, including the allDiff example.

Definability of Accelerated Relations 27

quantifier-free formula φ have free variables included in x and that the free
function, free constants symbols occurring in them are among a, c. Notations
like t(u/x), φ(u/x), . . . or t(u1/x1, . . . , un/xn), φ(u1/x1, . . . , un/xn), . . . - or oc-
casionally just t(u), φ(u), . . . if confusion does not arise - are used for simulta-
neous substitutions within terms and formulæ. For a given natural number n,
we use the standard abbreviations n̄ and n ∗ y to denote the numeral of n (i.e.
the term sn(0), where s is the successor function) and the sum of n addends all
equal to y, respectively. If confusion does not arise, we may write just n for n̄.

By a definable function symbol, we mean the following. Take a quantifier-free
formula φ(j, y) such that ∀j∃!yφ(j, y) is valid (∃!y stands for ‘there is a unique
y such that ...’). Then a definable function symbol F (defined by φ) is a fresh
function symbol, matching the length of j as arity, which is constrained to be
interpreted in such a way that the formula ∀y.F (j) = y ↔ φ(j, y) is true. The
addition of definable function symbols does not affect decidability of quantifier-
free formulæ and can be used for various purposes, for instance in order to
express directly case-defined functions, array updates, etc. For instance, if a is
a unary free function symbol, the term wr(a, i, x) (expressing the update of the
array a at position i by over-writing x) is a definable function; formally, we have
j := i, x, j and φ(j, y) is given by (j = i ∧ y = x) ∨ (j �= i ∧ y = a(j)). This
formula φ(j, y) (and similar ones) is usually written as

y = (if j = i then x else a(j))

to improve readability. Another useful definable function is integer division by
a fixed natural number n: to show that integer division by n is definable, recall
that in Presburger arithmetic we have that ∀x ∃!y

∨n−1
r=0 (x = n ∗ y + r) is valid.

3 Programs Representation

As a first step towards our main definability result, we provide a classification
of the relations we are interested in. Such relations are guarded assignments
required to model programs handling arrays of unknown length.

In our framework a program P is represented by a tuple (v, lI , lE , T). The
tuple v := a, c, pc models system variables. Formally, we have that

- the tuple a = a1, . . . , as contains free unary function symbols, i.e., the arrays
manipulated by the program;

- the tuple c = c1, . . . , ct contains free constants, i.e., the integer data manipu-
lated by the program;

- the additional free constant pc (called program counter) is constrained to range
over a finite set L = {l1, ..., ln} of program locations over which we distinguish
the initial and error locations denoted by lI and lE , respectively.

T is a set of finitely many formulæ {τ1(v,v′), . . . , τr(v,v′)} called transition
formulæ representing the program’s body (here v′ are renamed copies of the
variable tuple v representing the next-state variables). P = (v, lI , lE , T) is safe
iff there is no satisfiable formula like

(pc0 = lI) ∧ τi1(v0,v1) ∧ · · · ∧ τiN (vN−1,vN) ∧ (pcN = lE)

28 F. Alberti, S. Ghilardi, and N. Sharygina

where v0, . . . ,vN are renamed copies of v and each τih belongs to T .
Sentences denoting sets of states reachable by P can be:

- ground sentences, i.e., sentences of the kind φ(a, c, pc);
- Σ0

1 -sentences, i.e., sentences of the form ∃i. φ(i, a, c, pc);
- Σ0

2 -sentences, i.e., sentences of the form ∃i ∀j. φ(i, j, a, c, pc).

We remark that in our context satisfiability can be fully decided only for ground
sentences and Σ0

1 -sentences (by Skolemization, as a consequence of the general
combination results [33,36]), while only subclasses of Σ0

2 -sentences enjoy a deci-
sion procedure [16,23]. Transition formulæ can also be classified in three groups:

- ground assignments, i.e., transitions of the form

pc = l ∧ φL(c, a) ∧ pc′ = l′ ∧ a′ = λj. G(c, a, j) ∧ c′ = H(c, a) (1)

- Σ0
1 -assignments, i.e., transitions of the form

∃k
(

pc = l ∧ φL(c, a, k) ∧ pc′ = l′ ∧
a′ = λj. G(c, a, k, j) ∧ c′ = H(c, a, k)

)
(2)

- Σ0
2 -assignments, i.e., transitions of the form

∃k
(

pc = l ∧ φL(c, a, k) ∧ ∀j ψU (c, a, k, j) ∧
pc′ = l′ ∧ a′ = λj. G(c, a, k, j) ∧ c′ = H(c, a, k)

)
(3)

where G = G1, . . . , Gs, H = H1, . . . , Ht are tuples of definable functions (vectors
of equations like a′ = λj. G(c, a, kj) can be replaced by the corresponding first
order sentences ∀j.

∧s
h=1 a

′
h(j) = Gh(c, a, k, j)).

The composition τ1 ◦ τ2 of two transitions τ1(v,v′) and τ2(v,v′) is expressed
by the formula ∃v1(τ1(v,v1) ∧ τ2(v1,v

′)) (notice that composition may result
in an inconsistent formula, e.g., in case of location mismatch). The preimage
Pre(τ,K) of the set of states satisfying the formula K(v) along the transition
τ(v,v′) is the set of states satisfying the formula ∃v′(τ(v,v′) ∧ K(v′)). The
following proposition is proved by straightforward syntactic manipulations:

Proposition 1. Let τ, τ1, τ2 be transition formulæ and let K(v) be a formula.
We have that: (i) if τ1, τ2, τ,K are ground, then τ1 ◦ τ2 is a ground assignment
and Pre(τ,K) is a ground formula; (ii) if τ1, τ2, τ,K are Σ0

1 , then τ1 ◦ τ2 is a
Σ0

1 -assignment and Pre(τ,K) is a Σ0
1-sentence; (iii) if τ1, τ2, τ,K are Σ0

2 , then
τ1 ◦ τ2 is a Σ0

2 -assignment and Pre(τ,K) is a Σ0
2 -sentence.

4 Backward Search and Acceleration

This section demonstrates the practical applicability of the theoretical results of
the paper in program verification. In particular, it presents the application of
the accelerated transitions during reachability analysis for guarded assignments

Definability of Accelerated Relations 29

representing programs handling arrays. For readability, we first present a basic
reachability procedure. We subsequently analyze the divergence problems and
show how acceleration can be applied to solve them. Acceleration application is
not straightforward, though. The presence of accelerated transitions might gen-
erate undesirable Σ0

2 -sentences. The solution we propose is to over-approximate
such sentences by adopting a selective instantiation schema, known in litera-
ture as monotonic abstraction. An enhanced reachability procedure integrating
acceleration and monotonic abstraction concludes the Section.

The methodology we exploit to check safety of a program P = (v, lI , lE , T)
is backward search: we successively explore, through symbolic representation,
all states leading to the error location lE in one step, then in two steps, in
three steps, etc. until either we find a fixpoint or until we reach lI . To do this
properly, it is convenient to build a tree: the tree has arcs labeled by transi-
tions and nodes labeled by formulæ over v. Leaves of the tree might be marked
‘checked’, ‘unchecked’ or ‘covered’. The tree is built according to the following
non-deterministic rules.

Backward Search

Initialization: a single node tree labeled by pc = lE and is marked ‘unchecked’.
Check: pick an unchecked leaf L labeled with K. If K ∧ pc = lI is satisfiable

(‘safety test’), exit and return unsafe. If it is not satisfiable, check whether
there is a set S of uncovered nodes such that (i) L �∈ S and (ii) K is inconsis-
tent with the conjunction of the negations of the formulæ labeling the nodes
in S (‘fixpoint check’). If it is so, mark L as ‘covered’ (by S). Otherwise,
mark L as ‘checked’.

Expansion: pick a checked leaf L labeled with K. For each transition τi ∈ T ,
add a new leaf below L labeled with Pre(τi, L) and marked as ‘unchecked’.
The arc between L and the new leaf is labeled with τi.

Safety Exit: if all leaves are covered, exit and return safe.

The algorithm may not terminate (this is unavoidable by well-known undecid-
ability results). Its correctness depends on the possibility of discharging safety
tests with complete algorithms. By Proposition 1, if transitions are ground- or
Σ0

1 -assignments, completeness of safety tests arising during the backward reach-
ability procedure is guaranteed by the fact that satisfiability of Σ0

1 -formulæ is
decidable. For fixpoint tests, sound but incomplete algorithms may compromise
termination, but not correctness of the answer; hence for fixpoint tests, we can
adopt incomplete pragmatic algorithms (e.g. if in fixpoint tests we need to test
satisfiability of Σ0

2 -sentences, the obvious strategy is to Skolemize existentially
quantified variables and to instantiate the universally quantified ones over sets
of terms chosen according to suitable heuristics). To sum up, we have:

Proposition 2. The above Backward Search procedure is partially correct
for programs whose transitions are Σ0

1 -assignments, i.e., when the procedure ter-
minates it gives a correct information about the safety of the input program.

Divergence phenomena are usually not due to incomplete algorithms for fixpoint
tests (in fact, divergence persists even in cases where fixpoint tests are precise).

30 F. Alberti, S. Ghilardi, and N. Sharygina

Example 1. Consider the program in Fig. 1(b): it reverses the content of the array I

into O. In our formalism, it is represented by the following transitions4:

τ1 ≡ pc = 1 ∧ pc
′ = 2 ∧ c

′ = 0

τ2 ≡ pc = 2 ∧ c �= N + 1 ∧ c
′ = c+ 1 ∧O′ = wr(O, c, I(N − c))

τ3 ≡ pc = 2 ∧ c = N + 1 ∧ pc
′ = 3

τ4 ≡ pc = 3 ∧ ∃z1 ≥ 0, z2 ≥ 0 (z1 + z2 = N ∧ I(z1) �= O(z2)) ∧ pc
′ = 4.

Notice that τ1, τ2, τ3 all are ground assignments; only τ4 (that translates the error
condition) is a Σ0

1 -assignment. If we apply our tree generation procedure, we get an
infinite branch, whose nodes - after routine simplifications - are labeled as follows

· · ·
(Ki) pc = 2 ∧ ∃z1, z2 ψ(z1, z2) ∧ c = N − i ∧ z2 �= N ∧ · · · ∧ z2 �= N − i

· · ·

where ψ(z1, z2) stands for z1 ≥ 0 ∧ z2 ≥ 0 ∧ z1 + z2 = N ∧ I(z1) �= O(z2). ��

As demonstrated by the above example, a divergence source comes from the fact
that we are unable to represent in one shot the effect of executing finitely many
times a given sequence of transitions. Acceleration can solve this problem.

Definition 1. The n-th composition of a transition τ(v,v′) with itself is re-
cursively defined by τ1 := τ and τn+1 := τ ◦ τn. The acceleration τ+ of τ is∨

n≥1 τ
n.

In general, acceleration requires a logic supporting infinite disjunctions. Notable
exceptions are witnessed by Theorem 1 (Section 6). For now we focus on exam-
ples where accelerations yield Σ0

2 -assignments starting from ground assignments.

Example 2. Recall transition τ2 from the running example.

τ2 ≡ pc = 2 ∧ c �= N + 1 ∧ pc′ = 2 ∧ c
′ = c+ 1 ∧ I ′ = I ∧O′ = wr(O, c, I(N − c))

(here we displayed identical updates for completeness). Notice that the variable pc

is left unchanged in this transition (this is essential, otherwise the acceleration gives
an inconsistent transition that can never fire). If we accelerate it, we get the Σ0

2-
assignment5

∃n > 0

(
pc = 2 ∧ ∀j (c ≤ j < c+ n→ j �= N + 1) ∧ c

′ = c+ n ∧
∧ pc

′ = 2 ∧ O′ = λj (if c ≤ j < c+ n then I(N−j) else O(j))

)
(4)

��
In presence of these accelerated Σ0

2-assignments, Backward Search can
produce problematic Σ0

2-sentences (see Proposition 1 above) which cannot be
handled precisely by existing solvers. As a solution to this problem we propose
applying to such sentences a suitable abstraction, namely monotonic abstraction.

4 For readability, we omit identical updates like I ′ = I , etc. Notice that we have lI = 1
and lE = 4.

5 This Σ0
2 -assignment can be automatically computed using procedures outlined in

the proof of Theorem 1.

Definability of Accelerated Relations 31

Definition 2. Let ψ :≡ ∃i ∀j. φ(i, j, a, c, pc) be a Σ0
2 -sentence and let S be a

finite set of terms of the form t(i,v). The monotonic S-approximation of ψ is
the Σ0

1 -sentence

∃i
∧

σ:j→S
φ(i, jσ/j, a, c, pc) (5)

(here jσ is the tuple of terms σ(j1), . . . , σ(jn), where j = j1, . . . , jn,).

By Definition 2, universally quantified variables are eliminated through instanti-
ation; the larger the set S is, the better approximation you get. In practice, the
natural choices for S are i or the set of terms of the kind t(i,v) occurring in ψ
We adopted the former choice in our implementation. As a result of replacing
Σ0

2 -sentences by their monotonic approximation, spurious unsafe traces might
occur. However, those can be disregarded if accelerated transitions con-
tribute to their generation. This is because if P is unsafe, then unsafety can
be discovered without appealing to accelerated transitions.

To integrate monotonic abstraction, the above Backward Search proce-
dure is modified as follows. In a Preprocessing step, we add some accelerated
transitions of the kind (τ1 ◦ · · · ◦ τn)+ to T . These transitions can be found
by inspecting cycles in the control flow graph of the program and accelerating
them following the procedure described in Sections 5, 6. The natural cycles to
inspect are those corresponding to loop branches in the source code. It should
be noticed, however, that identifying the good cycles to accelerate is subject to
specific heuristics that deserve separate investigation in case the program has
infinitely many cycles (Choosing cycles from branches of innermost loops is the
simplest example of such heuristics and the one we implemented).

After this extra preprocessing step, the remaining instructions are left un-
changed, with the exception of Check that is modified as follows:

Check’: pick an unchecked leaf L labeled by a formula K. If K is a Σ0
2 -

sentence, choose a suitable S and replace K by its monotonic S-abstraction
K ′. If K ′∧pc = lI is inconsistent, mark L as ‘covered’ or ‘checked’ according
to the outcome of the fixpoint check, as was done in the original Check.
If K ′ ∧ pc = lI is satisfiable, analyze the path from the root to L. If no
accelerated transition τ+ is found in it return unsafe, otherwise remove the
sub-tree D from the target of τ+ to the leaves. Each node N covered by a
node in D will be flagged as ‘unchecked’ (to make it eligible in future for the
Expansion instruction).

The new procedure will be referred as Backward Search’. It is quite straight-
forward to see that Proposition 2 still applies to the modified algorithm. Notice
that, although termination cannot be ensured (given well-known undecidability
results), spurious traces containing approximated accelerated transitions cannot
be produced again and again: when the sub-tree D from the target node v of
τ+ is removed by Check’, the node v is not a leaf (the arcs labeled by the
transitions τ are still there), hence it cannot be expanded anymore according to
the Expansion instruction.

32 F. Alberti, S. Ghilardi, and N. Sharygina

Example 3. Let us again consider the running example and demonstrate how accelera-
tion and monotonic abstraction work. In the preprocessing step, we add the accelerated
transition τ+

2 given by (4) to the transitions we already have. After having computed
(K′) ≡ Pre(τ4,K), (K′′) ≡ Pre(τ3,K

′), we compute (K̃) ≡ Pre(τ+
2 ,K′′) and get

∃n > 0∃z1, z2

⎛
⎜⎝

pc = 2 ∧ ∀j (c ≤ j < c+n→ j �= N+1) ∧
∧ c+n = N+1 ∧ z1 ≥ 0 ∧ z2 ≥ 0 ∧ z1 + z2 = N ∧

∧ I(z1) �= λj (if c ≤ j < c+ n then I(N−j) else O(j))(z2)

⎞
⎟⎠

We approximate using the set of terms S = {z1, z2, n}. After simplifications we get

∃z1, z2 (pc = 2 ∧ c ≤ N ∧z1 ≥ 0 ∧ z2 ≥ 0 ∧ z1+z2 = N ∧ O(z2) �= I(z1) ∧ c > z2)

Generating this formula is enough to stop divergence. ��

Notice that in the computations of the above example we eventually succeeded
in eliminating the extra quantifier ∃n introduced by the accelerated transition.
This is not always possible: sometimes in fact, to get the good invariant one needs
more quantified variables than those occurring in the annotated program and
accelerated transitions might be the way of getting such additional quantified
variables.

5 Iterators

This Section introduces iterators and selectors, two main ingredients used to
supply a useful format to compute accelerated transitions. Iterators are meant
to formalize the notion of a counter scanning the indexes of an array: the most
simple iterators are increments and decrements, but one may also build more
complex ones for different scans, like in binary search. We give their formal
definition and then we supply some examples. We need to handle tuples of terms
because we want to consider the case in which we deal with different arrays with
possibly different scanning variables. Given a m-tuple of terms

u(x) := u1(x1, . . . , xm), . . . , um(x1, . . . , xm) (6)

containing the m variables x = x1, . . . , xm, we indicate with un the term express-
ing the n-times composition of (the function denoted by) u with itself. Formally,
we have u0(x) := x and

un+1(x) := u1(un(x)), . . . , um(un(x)) .

Definition 3. A tuple of terms u like (6) is said to be an iterator iff there exists an
m-tuple of m+ 1-ary terms u∗(x, y) := u∗

1(x1, . . . , xm, y), . . . , u∗
m(x1, . . . , xm, y)

such that for any natural number n it happens that the formula

un(x) = u∗(x, n̄) (7)

is valid.6 Given an iterator u as above, we say that an m-ary term κ(x1, . . . , xm)
is a selector for u iff there is an m + 1-ary term ι(x1, . . . , xm, y) yielding the
validity of the formula

z = κ(u∗(x, y)) → y = ι(x, z) . (8)

6 Recall that n̄ is the numeral of n, i.e. it is sn(0).

Definability of Accelerated Relations 33

The meaning of condition (8) is that, once the input x and the selected out-
put z are known, it is possible to identify uniquely (through ι) the number of
iterations y that are needed to get z by applying κ to u∗(x, y). The term κ is
a selector function that selects (and possibly modifies) one of the u; in most
applications (though not always) κ is a projection, represented as a variable xi

(for 1 ≤ i ≤ m), so that κ(u∗(x, y)) is just the i-th component u∗
i (x, y) of the

tuple of terms u∗(x, y). In these cases, the formula (8) reads as

z = u∗
i (x, y) → y = ι(x, z) . (9)

Example 4. The canonical example is when we have m = 1 and u := u1(x1) := x1+1;

this is an iterator with u∗
1(x1, y) := x1 + y; as a selector, we can take κ(x1) := x1 and

ι(x1, z) := z − x1. ��

Example 5. The previous example can be modified, by choosing u to be x1 + n̄, for

some integer n �= 0: then we have u∗(x1, y) := x1 + n ∗ y, κ(x1) := x1, and ι(x1, z) =

(z − x1)//n where // is integer division (recall that integer division by a given n is

definable in Presburger arithmetic). ��

Example 6. If we move to more expressive arithmetic theories, like Primitive Recursive

Arithmetic (where we have a symbol for every primitive recursive function), we can

get much more examples. As an example with m > 1, we can take u := x1 + x2, x2

and get u∗
1(x1, x2, y) = x1 + y ∗ x2, u

∗
2(x1, x2, y) = x2. Here a selector is for instance

κ1(x1, x2) := 7̄ + x1, ι(x1, x2, z) := (z − x1 − 7̄)//x2. ��

6 Accelerating Local Ground Assignments

Back to our program P = (v, lI , lE , T), we look for conditions on transitions from
T allowing to accelerate them via a Σ0

2 -assignment. Given an iterator u(x), a
selector assignment for a := a1, . . . , as (relative to u) is a tuple of selectors
κ := κ1, . . . , κs for u. Intuitively, the components of the tuple are meant to
indicate the scanners of the arrays a and as such might not be distinct (although,
of course, just one selector is assigned to each array). A formula ψ (resp. a term
t) is said to be purely arithmetical over a finite set of terms V iff it is obtained
from a formula (resp. a term) not containing the extra free function symbols
a, c by replacing some free variables in it by terms from V . Let v = v1, . . . , vs
and w = w1, . . . , ws be s-tuples of terms; below wr(a,v,w) and a(v) indicate
the tuples wr(a1, v1, w1), . . . , wr(as, vs, ws) and a1(v1), . . . , as(vs), respectively
(recall from Section 3 that s = |a|).

Definition 4. A local ground assignment is a ground assignment of the form

pc = l ∧ φL(c, a) ∧ pc′ = l ∧ a′ = wr(a, κ(c̃), t(c, a)) ∧ c̃′ = u(c̃) ∧d′ = d (10)

where (i) c = c̃,d; (ii) u = u1, . . . , u|c̃| is an iterator; (iii) the terms κ are a selec-
tor assignment for a relative to u; (iv) the formula φL(c, a) and the terms t(c, a)
are purely arithmetical over the set of terms {c, a(κ(c̃))}∪{ai(dj)}1≤i≤s,1≤j≤|d|;
(v) the guard φL contains the conjuncts κi(c̃) �= dj, for 1 ≤ i ≤ s and 1 ≤ j ≤
|d|.

34 F. Alberti, S. Ghilardi, and N. Sharygina

Thus in a local ground assignment, there are various restrictions: (a) the
numerical variables are split into ‘idle’ variables d and variables c̃ subject to
update via an iterator u; (b) the program counter is not modified; (c) the guard
does not depend on the values of the ai at cells different from κi(c̃),d; (d)
the update of the a are simultaneous writing operations modifying only the
entries κ(c̃). Thus, the assignment is local and the relevant modifications it
makes are determined by the selectors locations. The ‘idle’ variables d are useful
to accelerate branches of nested loops; the inequalities mentioned in (v) are
automatically generated by making case distinctions in assignment guards.

Example 7. For our running example, we show that transition τ2 (the one we want to

accelerate) is a local ground assignment. We have d = ∅ and c̃ = c and a = I,O. The

counter c is incremented by 1 at each application of τ2. Thus, our iterator is u := x1+1

and the selector assignment assigns κ1 := N−x1 to I and κ2 := x1 to O. In this way, I

is modified (identically) at N − c via I ′ = wr(I,N − c, I(N − c)) and O is modified at

c via O′ = wr(O, c, I(N − c)). The guard τ2 is c �= N +1. Since the formula c �= N +1

and the term I(N − c) are purely arithmetical over {c, I(N − c), O(c)}, we conclude

that τ2 is local. ��

Theorem 1. If τ is a local ground assignment, then τ+ is a Σ0
2 -assignment.

Proof. (Sketch, see [6] for full details). Let us fix the local ground assignment (10);
let a[d] indicate the s ∗ |d|-tuple of terms {ai(dj)}1≤i≤s,1≤j≤|d|; since φL and
t := t1, . . . , ts are purely arithmetical over {c̃,d, a(κ(c̃)), a[d]}, we have that
they can be written as φ̃L(c̃,d, a(κ(c̃)), a[d]), t̃(c̃,d, a(κ(c̃)), a[d]), respectively,
where φ̃L, t̃ do not contain occurrences of the free function and constant symbols
a, c. The transition τ+ can be expressed as a Σ0

2 -assignment by

∃y > 0

(
∀z (0 ≤z< y→ φ̃L(u∗(c̃, z),d, a(κ(u∗(c, z))), a[d]) ∧ d′ = d∧

∧ pc = l ∧ pc′ = l ∧ c̃′ = u∗(c̃, y) ∧ a′ = λj. F (c, a, y, j)

)

where the tuple F = F1, . . . , Fs of definable functions is given by

Fh(c, a, y, j) = λj. if 0 ≤ ιh(c̃, j) < y ∧ j = κh(u∗(c, ιh(c̃, j))) then

t̃h(u∗(c̃, ιh(c̃, j)),d, a(κ(u∗(c̃, ιh(c̃, j)))), a[d]) else ah[j]

for h = 1, . . . , s (here ι1, . . . , ιs are the terms corresponding to κ1, . . . , κs accord-
ing to the definition of a selector for the iterator u). �

We point out that the effective use of Theorem 1 relies on the implementation
of a repository of iterators and selectors and of algorithms recognizing them. The
larger the repository is, the more possibilities the model checker has to exploit
the full power of acceleration.

In most applications it is sufficient to consider accelerated transitions of the
canonical form of Example 4. Let us examine in details this special case; here
c is a single counter c that is incremented by one (otherwise said, the iterator
is x1 + 1) and the selector assignment is trivial, namely it is just x1. We call

Definability of Accelerated Relations 35

these local ground assignments simple. Thus, a simple local ground assignment
has the form

pc = l ∧ φL(c, a) ∧ pc′ = l ∧ c′ = c + 1 ∧ a′ = wr(a, c, t(c, a)) (11)

where the first occurrence of c in wr(a, c, t(c, a)) stands in fact for an s-tuple of
terms all identical to c, and where φL, t are purely arithmetical over the terms c,
a1[c], . . . , as[c]. The accelerated transition computed in the proof of Theorem 1
for (11) can be rewritten as follows:

∃k
(

k > 0 ∧ pc = l ∧ ∀j (c ≤ j < c + k → φL(j, a)) ∧ pc′ = l ∧
∧ c′ = c + k ∧ a′ = λj. (if c ≤ j < c + k then t(j, a) else a[j])

)
(12)

A slight extension of the notion of a simple assignment leads to a further subclass
of local ground assignments useful to accelerated branches of nested loops (see [6]
for more details).

7 Experimental Evaluation

We implemented the algorithm described in Section 4–6 as a preprocessing mod-
ule inside the mcmt model checker [24]. To perform a feasibility study, we in-
tentionally focused our implementation on simple and simple+ local ground
assignments. For a thorough and unbiased evaluation we compared/combined
the new technique with an abstraction algorithm suited for array programs [3]
implemented in the same tool. This section describes benchmarks and discusses
experimental results. A clear outcome from our experiments is that abstrac-
tion/refinement and acceleration techniques can be gainfully combined.

Benchmarks. We evaluated the new algorithm on 55 programs with arrays,
each annotated with an assertion. We considered only quantifier-free or ∀-as-
sertions. Our set of benchmarks comprises programs used to evaluate the Lazy
Abstraction with Interpolation for Arrays framework [4] and other focused bench-
marks where abstraction diverges. These are problems involving array manipu-
lations such as copying, comparing, searching, sorting, initializing, testing, etc.
About one third of the programs contain bugs.7

Evaluation. Experiments have been run on a machine equipped with a i7@2.66
GHz CPU and 4GB of RAM running OS X. Time limit for each experiment has
been set to 60 seconds. We run mcmt with four different configurations:

– Backward Search - mcmt executes the procedure described at the begin-
ning of Section 4.

– Abstraction - mcmt integrates the backward reachability algorithm with
the abstraction/refinement loop [3].

7 The set of benchmarks can be downloaded from http://www.inf.usi.ch/
phd/alberti/prj/acc; the tool set mcmt is available at http://users.mat.
unimi.it/users/ghilardi/mcmt/.

http://www.inf.usi.ch/phd/alberti/prj/acc
http://www.inf.usi.ch/phd/alberti/prj/acc
http://users.mat.unimi.it/users/ghilardi/mcmt/
http://users.mat.unimi.it/users/ghilardi/mcmt/

36 F. Alberti, S. Ghilardi, and N. Sharygina

0.01

0.1

1

10

0.01 0.1 1 10

A
c
c
e
l
e
r
a
t
io
n

Backward Search

(a)

0.01

0.1

1

10

0.01 0.1 1 10

A
c
c
e
l
e
r
a
t
io
n

Abstraction

(b)

0.01

0.1

1

10

0.01 0.1 1 10

A
c
c
e
l
.
+

A
b
st

r
.

Acceleration

(c)

0.01

0.1

1

10

0.01 0.1 1 10

A
c
c
e
l
.
+

A
b
st

r
.

Abstraction

(d)

Fig. 2. Comparison of time for different options of Backward Search. Stars and
circles represent buggy and correct programs respectively.

– Acceleration - The transition system is pre-processed in order to com-
pute accelerated transitions (when it is possible) and then the Backward
Search’ procedure is executed.

– Accel. + Abstr. - This configuration enables both the preprocessing step
in charge of computing accelerated transitions and the abstraction/refinement
engine on the top of the Backward Search’ procedure.

In summary, the comparative analysis of timings presented in Fig.2 confirms that
acceleration indeed helps to avoid divergence for problematic programs where
abstraction fails. The first comparison (Fig.2(a)) highlights the benefits of using
acceleration: Backward Search diverges on all 39 safe instances. Accelera-
tion stops divergence in 23 cases, and moreover the overhead introduced by the
preprocessing step does not affect unsafe instances. Fig.2(b) shows that acceler-
ation and abstraction are two complementary techniques, since mcmt times out
in both cases but for two different sets of programs. Fig.2(c) and Fig.2(d) attest
that acceleration and abstraction/refinement techniques mutually benefit from
each other: with both techniques mcmt solves all the 55 benchmarks.

Definability of Accelerated Relations 37

8 Conclusion and Future Work

We identified a class of transition relations involving array updates that can
be accelerated, showed how it is possible to compute accelerated transition and
described a solution for dealing with universal quantifiers arising from the ac-
celeration process. Our paper lays theoretical foundations for this interesting
research topic and confirms by our prototype experiments on challenging bench-
marks its advantages over stand-alone verification approaches since it is able to
solve problems on which other techniques fail to converge.

As future directions, a challenging task is to enlarge the definability result of
Theorem 1 to cover classes of transitions modeling more and more loop branches
arising from concrete programs. In addition, one may want to consider more
sophisticated strategies for instantiation in order to support acceleration. In-
creasing the approximation-defining sets S or handling Σ0

2-sentences when they
belong to decidable fragments [16, 23] may lead to further improvements.

Acknowledgements. The work of the first author was supported by the Hasler
Foundation under project 09047 and the one of the second by Italian Ministry of
Education, University and Research (MIUR) under the PRIN 2010-2011 project
“Logical Methods for Information Management”.

References

1. Abdulla, P.A., Delzanno, G., Ben Henda, N., Rezine, A.: Regular model checking
without transducers (On efficient verification of parameterized systems). In: Grum-
berg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 721–736. Springer,
Heidelberg (2007)

2. Abdulla, P.A., Delzanno, G., Rezine, A.: Parameterized verification of infinite-state
processes with global conditions. In: Damm, W., Hermanns, H. (eds.) CAV 2007.
LNCS, vol. 4590, pp. 145–157. Springer, Heidelberg (2007)

3. Alberti, F., Bruttomesso, R., Ghilardi, S., Ranise, S., Sharygina, N.: Lazy Abstrac-
tion with Interpolants for Arrays. In: Bjørner, N., Voronkov, A. (eds.) LPAR-18.
LNCS, vol. 7180, pp. 46–61. Springer, Heidelberg (2012)

4. Alberti, F., Bruttomesso, R., Ghilardi, S., Ranise, S., Sharygina, N.: SAFARI:
SMT-Based Abstraction for Arrays with Interpolants. In: Madhusudan, P., Seshia,
S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 679–685. Springer, Heidelberg (2012)

5. Alberti, F., Ghilardi, S., Pagani, E., Ranise, S., Rossi, G.P.: Universal Guards, Rel-
ativization of Quantifiers, and Failure Models in Model Checking Modulo Theories.
JSAT, 29–61 (2012)

6. Alberti, F., Ghilardi, S., Sharygina, N.: Tackling divergence: abstraction and ac-
celeration in array programs. Technical Report 2012/01, University of Lugano
(October 2012)

7. Ball, T., Rajamani, S.K.: The SLAM toolkit. In: Berry, G., Comon, H., Finkel, A.
(eds.) CAV 2001. LNCS, vol. 2102, pp. 260–264. Springer, Heidelberg (2001)

8. Barrett, C., Stump, A., Tinelli, C.: The SMT-LIB Standard: Version 2.0 (2010),
http://www.smt-lib.org

9. Behrmann, G., Bengtsson, J., David, A., Larsen, K.G., Pettersson, P., Yi, W.:
UPPAAL implementation secrets. In: Damm, W., Olderog, E.-R. (eds.) FTRTFT
2002. LNCS, vol. 2469, pp. 3–22. Springer, Heidelberg (2002)

http://www.smt-lib.org

38 F. Alberti, S. Ghilardi, and N. Sharygina

10. Beyer, D., Henzinger, T.A., Majumdar, R., Rybalchenko, A.: Path invariants. In:
PLDI, pp. 300–309 (2007)

11. Borralleras, C., Lucas, S., Oliveras, A., Rodŕıguez-Carbonell, E., Rubio, A.: SAT
modulo linear arithmetic for solving polynomial constraints. J. Autom. Reason-
ing 48(1), 107–131 (2012)

12. Bozga, M., Ĝırlea, C., Iosif, R.: Iterating octagons. In: Kowalewski, S., Philippou,
A. (eds.) TACAS 2009. LNCS, vol. 5505, pp. 337–351. Springer, Heidelberg (2009)

13. Bozga, M., Habermehl, P., Iosif, R., Konečný, F., Vojnar, T.: Automatic verifi-
cation of integer array programs. In: Bouajjani, A., Maler, O. (eds.) CAV 2009.
LNCS, vol. 5643, pp. 157–172. Springer, Heidelberg (2009)

14. Bozga, M., Iosif, R., Konečný, F.: Fast acceleration of ultimately periodic relations.
In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 227–242.
Springer, Heidelberg (2010)

15. Bozga, M., Iosif, R., Lakhnech, Y.: Flat parametric counter automata. Fundam.
Inform. 91(2), 275–303 (2009)

16. Bradley, A.R., Manna, Z., Sipma, H.B.: What’s decidable about arrays? In: Emer-
son, E.A., Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855, pp. 427–442.
Springer, Heidelberg (2006)

17. Caniart, N., Fleury, E., Leroux, J., Zeitoun, M.: Accelerating interpolation-based
model-checking. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS,
vol. 4963, pp. 428–442. Springer, Heidelberg (2008)

18. Cimatti, A., Griggio, A., Sebastiani, R.: Efficient generation of Craig interpolants
in satisfiability modulo theories. ACM Trans. Comput. Log. 12(1), 7 (2010)

19. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-Guided
Abstraction Refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS,
vol. 1855, pp. 154–169. Springer, Heidelberg (2000)

20. Comon, H., Jurski, Y.: Multiple counters automata, safety analysis and pres-
burger arithmetic. In: Vardi, M.Y. (ed.) CAV 1998. LNCS, vol. 1427, pp. 268–279.
Springer, Heidelberg (1998)

21. Finkel, A., Leroux, J.: How to compose presburger-accelerations: Applications to
broadcast protocols. In: Agrawal, M., Seth, A.K. (eds.) FSTTCS 2002. LNCS,
vol. 2556, pp. 145–156. Springer, Heidelberg (2002)

22. Flanagan, C., Qadeer, S.: Predicate abstraction for software verification. In: POPL,
pp. 191–202 (2002)

23. Ge, Y., de Moura, L.: Complete instantiation for quantified formulas in Satisfi-
abiliby Modulo Theories. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS,
vol. 5643, pp. 306–320. Springer, Heidelberg (2009)

24. Ghilardi, S., Ranise, S.: MCMT: A Model Checker Modulo Theories. In: Giesl, J.,
Hähnle, R. (eds.) IJCAR 2010. LNCS, vol. 6173, pp. 22–29. Springer, Heidelberg
(2010)

25. Graf, S., Säıdi, H.: Construction of Abstract State Graphs with PVS. In: Grumberg,
O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 72–83. Springer, Heidelberg (1997)

26. Hendriks, M., Larsen, K.G.: Exact acceleration of real-time model checking. Electr.
Notes Theor. Comput. Sci. 65(6), 120–139 (2002)

27. Hojjat,H., Iosif,R.,Konečný,F.,Kuncak,V.,Rümmer,P.:Accelerating interpolants.
In: Chakraborty, S., Mukund, M. (eds.) ATVA 2012. LNCS, vol. 7561, pp. 187–202.
Springer, Heidelberg (2012)

28. Jhala, R., McMillan, K.L.: Array Abstractions from Proofs. In: Damm, W.,
Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 193–206. Springer, Heidelberg
(2007)

Definability of Accelerated Relations 39

29. Kovács, L., Voronkov, A.: Interpolation and Symbol Elimination. In: Schmidt, R.A.
(ed.) CADE 2009. LNCS, vol. 5663, pp. 199–213. Springer, Heidelberg (2009)

30. Larraz, D., Rodŕıguez-Carbonell, E., Rubio, A.: SMT-based array invariant gen-
eration. In: Giacobazzi, R., Berdine, J., Mastroeni, I. (eds.) VMCAI 2013. LNCS,
vol. 7737, pp. 169–188. Springer, Heidelberg (2013)

31. McMillan, K.L.: Lazy Abstraction with Interpolants. In: Ball, T., Jones, R.B. (eds.)
CAV 2006. LNCS, vol. 4144, pp. 123–136. Springer, Heidelberg (2006)

32. McMillan, K.L.: Quantified Invariant Generation Using an Interpolating Saturation
Prover. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963,
pp. 413–427. Springer, Heidelberg (2008)

33. Nelson, G., Oppen, D.C.: Simplification by cooperating decision procedures. ACM
Transaction on Programming Languages and Systems 1(2), 245–257 (1979)

34. Seghir, M.N., Podelski, A., Wies, T.: Abstraction Refinement for Quantified Array
Assertions. In: Palsberg, J., Su, Z. (eds.) SAS 2009. LNCS, vol. 5673, pp. 3–18.
Springer, Heidelberg (2009)

35. Srivastava, S., Gulwani, S.: Program Verification using Templates over Predicate
Abstraction. In: PLDI (2009)

36. Tinelli, C., Harandi, M.T.: A new correctness proof of the Nelson-Oppen combi-
nation procedure. In: Proc. of FroCoS 1996, pp. 103–119. Kluwer (1996)

Verification of Composed Array-Based Systems

with Applications to Security-Aware Workflows

Clara Bertolissi1,2 and Silvio Ranise2

1 LIF-CNRS, UMR 7279 & AMU, Marseille, France
2 FBK (Fondazione Bruno Kessler), Trento, Italy

Abstract. We introduce a class of symbolic transition systems capable
of representing collections of security-aware workflows and we study the
verification of reachability properties of such systems. More precisely, we
define composed array-based systems as an extension of array-based sys-
tems in which array variables are indexed over more than one type. For an
application relevant sub-class of these systems we show how to mechanize
a symbolic backward reachability procedure by modularly re-using the
techniques developed for array-based systems. Finally, and most impor-
tantly, we find sufficient conditions for the termination of the procedure
and we apply this result to derive the decidability of the reachability
problems of two important classes of security-aware workflow systems.

1 Introduction

Many E-services, such as business processes, are modelled as workflows, which
often need to comply with authorization policies. A workflow specifies a collec-
tion of tasks to be executed by users, together with a set of causal dependencies
between tasks. The design of E-services is a difficult and error prone activity as a
single service may comprise several, concurrently executing, workflow instances.
Design errors can thus arise from interleaved access over shared data or synchro-
nization between different workflow instances. The situation is complicated by
the presence of authorization constraints such as Bound of Duties (BoD), i.e. the
same user should execute two tasks, or Separation of Duties (SoD), i.e. distinct
users must execute the two tasks. Following [2], we call “security-aware” the
workflows that involve this kind of constraints. This may give rise to situations
in which a user should and, at the same time, is prohibited to execute certain
tasks or that a workflow instance cannot terminate without violating one or more
SoD (or BoD) constraints, despite the fact that the users are entitled to execute
those tasks. When authorization constraints may be imposed not only within a
workflow instance but also among two or more instances (this is useful to reduce
the risk of frauds or for workload or resource re-distribution) [15], understand-
ing the consequences of the interplay between concurrent execution of workflow
instances and authorization constraints becomes very difficult if possible at all.
For these reasons, automated verification techniques for security-aware workflow
systems are of paramount importance to help in the design of E-services.

P. Fontaine, C. Ringeissen, and R.A. Schmidt (Eds.): FroCoS 2013, LNAI 8152, pp. 40–55, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Verification of Composed Array-Based Systems 41

In this paper, we introduce a class of symbolic transition systems capable of
modelling a finite but unknown number of security-aware workflow instances or
of users responsible to execute them and study the verification of reachability
properties of such systems. Our verification technique, based on symbolic back-
ward reachability, is capable of verifying properties for any number of workflow
instances and any number of users. When the technique detects that there is
a sequence of transitions from the initial state to one satisfying the reachabil-
ity property, it returns a concrete configuration—i.e. the numbers of workflow
instances and users—for which this is the case. On the contrary, when the tech-
nique concludes that no such sequence of transitions exists, it does so for any
configuration, i.e. regardless of the number of workflow instances and users.

We develop our results in the framework of Model Checking Modulo Theo-
ries [12]. In particular, we introduce composed array-based systems as an exten-
sion of array-based systems (Section 3). The main difference between the two
notions is in terms of the indexes used to dereference array variables. In array-
based systems, there is only one type for indexes (formalized as a theory) and
it is not possible to express transitions that depend on both workflow instances
and users as it is the case of security-aware workflows. Instead, in composed
array-based systems, indexes may belong to several types. A simple example to
illustrate the adequacy of composed array-based systems for the specification
of a security-aware workflow system adapted from [6] is shown in Section 3.1.
It is also used to motivate the study of a particular class of composed array-
based systems, called n-components array-based systems (Section 3.2), in which
the symbolic representation of a set of states is obtained by a class of formulae,
called component formulae, in which only array variables whose indexes are of
a single type may occur. The symbolic representation of transitions is obtained
by conjoining component formulae.

For n-components array-based systems, we show how to mechanize a sym-
bolic backward reachability procedure by using Satisfiability Modulo Theories
(SMT) solving (Section 4) and modularly re-using the techniques developed for
array-based systems in [12]. More importantly (in Section 5), we find sufficient
conditions for the termination of the backward reachability procedure by lifting
the approach in [12] that uses well-quasi-orderings (wqos) [10]. The idea is to
modularly re-use each wqo that can be defined over a component formula to
define an (extension) ordering over their disjunctions, that is guaranteed to be a
wqo by the same argument that is at the core of the proof of Dickson’s Lemma
(see, e.g., [10]).

Finally (Section 6), we apply our termination result for n-components array-
based systems to show the decidability of two important classes of security-aware
workflow systems.

2 Formal Preliminaries

For making this paper self-contained, we recall some definitions from [12]. We
assume the usual syntactic (e.g., signature, variable, term, atom, literal, and

42 C. Bertolissi and S. Ranise

formula) and semantic (e.g., structure, sub-structure, assignment, truth, satisfi-
ability, and validity) notions of many-sorted first-order logic (see, e.g., [8]). The
equality symbol = is included in all signatures considered below. If M is a struc-
ture for a signature Σ (briefly, a Σ-structure), we denote by SM, fM, PM, . . .
the interpretation in M of the sort S, the function symbol f , the predicate sym-
bol P , etc. If Σ0 is a sub-signature of Σ, the restriction of M to Σ0, denoted
M|Σ0

, is the structure resulting from M by forgetting about the interpretation
of the sorts, function and predicate symbols that are not in Σ0. A Σ-structure
N is a sub-structure of a Σ-structure M iff the domain of N is contained in the
domain of M and the interpretations of the symbols of Σ in N are restrictions
of the interpretations of these symbols in M. A class C of Σ-structures is closed
under sub-structures iff for every structure M ∈ C, if N is a substructure of M
then N ∈ C.

A theory T is a pair (Σ, C), where Σ is a signature and C is a class of Σ-
structures, called the models of T . Below, let T = (Σ, C). A Σ-formula φ is
T -satisfiable if there exists a Σ-structure M in C such that φ is true in M under
a suitable assignment μ to the free variables of φ (in symbols, M, μ |= φ); it
is T -valid (in symbols, T |= ϕ) if its negation is T -unsatisfiable. Two formulae
ϕ1 and ϕ2 are T -equivalent if ϕ1 ⇔ ϕ2 is T -valid. The satisfiability modulo
the theory T (SMT (T)) problem amounts to establishing the T -satisfiability of
quantifier-free Σ-formulae.

A Σ-theory T is locally finite if Σ is finite and, for every set a of constants,
there are finitely many ground terms t1, ..., tka ∈ (Σ ∪ a), called representatives,
such that for every ground (Σ ∪a)-term u, we have T |= u = ti for some i. If the
representatives are effectively computable from a and ti is computable from u,
then T is effectively locally finite. For simplicity, we will often say “locally finite”
to mean “effectively locally finite”. For instance, the pure theory of equality
with no function symbols is locally finite. Another example is the theory of an
enumerated data-type whose signature contains a single sort symbol S with only
n constant symbols of sort S and its class of models is such that the interpretation
of S is a finite set D of cardinality n and the constants are interpreted as distinct
elements of D.

A T -partition is a finite set C1(x), . . . , Cn(x) of quantifier-free formulae (with
free variables contained in the tuple x) such that T |= ∀x

∨n
i=1 Ci(x) and T |=∧

i	=j ∀x¬(Ci(x) ∧ Cj(x)). A case-definable extension T ′ = (Σ′, C′) of a theory
T = (Σ, C) is obtained from T by applying (finitely many times) the follow-
ing procedure: (i) take a T -partition C1(x), . . . , Cn(x) together with Σ-terms
o1(x), . . . , on(x); (ii) let Σ′ be Σ ∪ {F}, where F is a “fresh” function symbol
(i.e. F �∈ Σ) whose arity is equal to the length of x; (iii) take as C′ the class of
Σ′-structures M whose restriction to Σ is a model of T and such that

M |=
n∧

i=1

∀x (Ci(x) ⇒ F (x) = oi(x)) .

Thus a case-definable extension T ′ of a theory T contains finitely many addi-
tional function symbols, called case-defined functions. It is not hard to effectively

Verification of Composed Array-Based Systems 43

translate any SMT (T ′) problem into an equivalent SMT (T)-problem, see [12]
for details. In the following, by abuse of notation, we shall identify a theory T
and its case-definable extensions T ′.

Orderings. A pre-order (P,≤) is the set P endowed with a reflexive and transitive
relation. A pre-order (P,≤) is a well-quasi-ordering (wqo) if it is well-founded
(i.e. there is no infinite sequence p0, p1, ... of elements of P such that pn+1 ≤ pn)
and there is no infinite sequence p0, p1, ... of pairwise incomparable elements (i.e.
pi �≤ pj for all i < j). For example, N with the usual “less-than-or-equal” relation
is a wqo while Z with the same relation is not.

An upward closed set U of the pre-order (P,≤) is such that U ⊆ P and if
p ∈ U and p ≤ q then q ∈ U . A cone is an upward closed set of the form
↑ p = {q ∈ P | p ≤ q}. An upward closed set U is finitely generated iff it is a
finite union of cones.

Property 1 ([12]). Let (P,≤) be a wqo. Every upward closed subset of P is
finitely generated.

Let Pi be a set of elements and ≤i⊆ Pi ×Pi for i = 1, 2. Consider the Cartesian
product P1×P2 and the following relation on pairs: (p1, p2) ≤ (p′1, p

′
2) iff p1 ≤1 p′1

and p2 ≤2 p′2.

Property 2 ([10]). If (P1,≤1) and (P2,≤2) are wqos, then (P1 ×P2,≤) is a wqo.

This can be extended to tuples of n ≥ 2 elements by a standard inductive
argument, i.e. it is possible to show that if (Pi,≤i) is a wqo for i = 1, .., n, then
(P1 × · · ·Pn,≤) is also a wqo where 〈p1, ..., pn〉 ≤ 〈p′1, ..., p′n〉 iff pi ≤i p

′
i for each

i = 1, ..., n. The property can be used to prove Dickson’s lemma stating that
that every set of n-tuples of natural numbers has finitely many minimal (with
respect to the usual “less-than-or-equal” relation) elements; see again [10] for
details.

3 Composed Array-Based Systems

The theory A
〈E1,...,En〉
〈I1,...,In〉 specifies the array data structure manipulated by the

class of transition systems considered in the paper. It is parametric with respect
to the indexes and elements stored in the arrays, whose algebraic structures are
again specified as theories TIk and TEk

, respectively, for k = 1, ..., n. We as-
sume TIk = (ΣIk , CIk) to have only one sort symbol INDEXk. The sorts of the
theory TEk

= (ΣEk
, CEk

) are given names ELEMk,�, where � varies in a given

finite index set. We define the composed theory A
〈E1,...,En〉
〈I1,...,In〉 = (Σ, C) of arrays

with indexes in TI1 , ..., TIn and elements in TE1 , ..., TEn as follows. The signa-

ture of A
〈E1,...,En〉
〈I1,...,In〉 contains the sort symbols of TI1 , ..., TIn , TE1 , ..., TEn , together

with a new sort symbol ARRAYk,� for each ELEMk,� of ΣEk
, and all the func-

tion and predicate symbols in ΣIk ∪ ΣEk
together with a new function symbol

[]k,� : ARRAYk,�, INDEXk −→ ELEMk� for each ELEMk,� of ΣEk
. Intuitively, a[i]k,�

44 C. Bertolissi and S. Ranise

denotes the element of sort ELEMk,� stored in the array a of sort ARRAYk,� at index
i; when the sort ELEMk,� is clear from the context, we simply write a[i]. The class

C of models of A
〈E1,...,En〉
〈I1,...,In〉 contains a multi-sorted structure M iff for each sort

ELEMk,� of ΣEk
, we have that ARRAYMk,� is interpreted as the set of (total) func-

tions from INDEXMk to ELEMMk,�, the function symbol [] is interpreted as function
application, and M|ΣIk

,M|ΣEk
are models of TIk and TEk

, respectively.

A composed array-based (transition) system (for (〈I1, ..., In〉, 〈E1, ..., En〉)) is
a triple S = (〈a1, ..., an〉, 〈I1, ..., In〉, 〈τ1, ..., τn〉) where (i) ak = a1k, . . . , a

sk
k is

a tuple of the array state variables (these arrays encode local data of sorts
ELEMk,1, . . . , ELEMk,sk , respectively); (ii) I(a1, ..., an) is the initial formula; and
(iii) τ(a1, ..., an, a

′
1, ..., a

′
n) is the transition formula, where the prime operator ·′

uniquely renames the state variables in a tuple of arrays. When n = 1, the notion
of composed array-based system reduce to that of array-based system [12].

Given a composed array-based system S = (〈a1, ..., an〉, I, τ〉) and a formula
U(a1, ..., an), called the unsafe or goal formula, (an instance of) the safety prob-
lem is to establish whether there exists a natural number n such that the formula

I(a01, ..., a
0
n) ∧

n−1∧
k=0

τ(ak1 , ..., a
k
n, a

k+1
1 , ..., ak+1

n) ∧ U(an1 , ..., a
n
n) (1)

is A
〈E1,...,En〉
〈I1,...,In〉 -satisfiable, where a0 stands for a and aj for the result of applying

j > 0 times the prime operator ′ to a. If there is no such n, then S is safe (w.r.t.
U); otherwise, it is unsafe and there exists a run (i.e. a sequence of transitions)
of length n leading the system from a state in I to a state in U .

3.1 An Example of Composed Array-Based Systems
���

���������

�������	�

���

�	��
����

�
�

���

�

�

���

���

��

�		 ���

�	�

��

Fig. 1. An example
of a constrained
workflow

We consider the security-aware workflow in Figure 1,
adapted from [6], and show how it can be represented
as a composed array-based system. Figure 1 shows a Petri
net [16] that represents the workflow comprising five tasks
and their causal dependencies. For instance, task t1 be-
comes enabled when a token is in place p0. The result of
executing t1 is to delete the token in p0 and put a token
in p1, p2, and p3. This enables tasks t2, t3, and t4, respec-
tively, and so on. When the last task t5 is executed, result-
ing in a token in p7 while deleting the three tokens in p4,
p5, and p6, all tasks in the workflow have been executed.
For simplicity, we consider just one workflow instance.

SoD authorization constraints are shown in Figure 1 by
means of dashed lines connecting tasks and labelled by
�=, meaning that distinct users are required for executing
tasks t1 and t2, t1 and t4, and so on. BoD constraints can
be formalised similarly, using equality instead of inequality
labels. Authorization constraints specifying if a user can

Verification of Composed Array-Based Systems 45

Table 1. The constrained workflow system in Figure 1 as a 2-components array-based
system (〈a1, a2〉, I(a1, a2), τ (a1, a2, a

′
1, a

′
2))

a1 := p0, ..., p7, d t1, ..., d t5 a2 := a t1, ..., a t5, t1 by , ..., t5 by

I1(a1) ∀x.

⎡
⎢⎢⎢⎢⎣
p0[x] ∧ ¬p1[x] ∧ ¬p2[x]∧
¬p3[x] ∧ ¬p4[x] ∧ ¬p5[x]∧
¬p6[x] ∧ ¬p7[x] ∧ ¬d t1[x]∧
¬d t2[x] ∧ ¬d t3[x]∧
¬d t4[x] ∧ ¬d t5[x]

⎤
⎥⎥⎥⎥⎦ I2(a2) ∀u.(¬t1 by[u] ∧ · · · ∧ ¬t5 by[u])

τ 1
1 (a1, a

′
1) ∃x.

⎡
⎢⎢⎣
p0[x] ∧ ¬d t1[x]∧
p0′ = false ∧ p1′ = true∧
p2′ = true ∧ p3′ = true∧
d t1′ = true

⎤
⎥⎥⎦ τ 2

1 (a2, a
′
2) ∃u.

[
a t1[u]∧
t1 by′ = upd(t1 by, u, true)

]

τ 1
2 (a1, a

′
1) ∃x.

⎡
⎣ p1[x] ∧ ¬d t2[x]∧
p1′ = false ∧ p4′ = true∧
d t2′ = true

⎤
⎦ τ 2

2 (a2, a
′
2) ∃u.

⎡
⎣a t2[u]∧
¬t1 by[u] ∧ ¬t3 by[u]∧
t2 by′ = upd(t2 by, u, true)

⎤
⎦

τ 1
3 (a1, a

′
1) ∃x.

⎡
⎣ p2[x] ∧ ¬d t3[x]∧
p2′ = false ∧ p5′ = true∧
d t3′ = true

⎤
⎦ τ 2

3 (a2, a
′
2) ∃u.

⎡
⎣a t3[u]∧
¬t2 by[u]∧
t3 by′ = upd(t3 by, u, true)

⎤
⎦

τ 1
4 (a1, a

′
1) ∃x.

⎡
⎣ p3[x] ∧ ¬d t4[x]∧
p3′ = false ∧ p6′ = true∧
d t4′ = true

⎤
⎦ τ 2

4 (a2, a
′
2) ∃u.

⎡
⎣a t4[u]∧
¬t1 by[u]∧
t4 by′ = upd(t4 by, u, true)

⎤
⎦

τ 1
5 (a1, a

′
1) ∃x.

⎡
⎢⎢⎢⎢⎣
p4[x] ∧ p5[x] ∧ p6[x]∧
¬d t5[x]∧
p4′ = false ∧ p5′ = false∧
p6′ = false ∧ p7′ = true∧
d t5′ = true

⎤
⎥⎥⎥⎥⎦ τ 2

5 (a2, a
′
2) ∃u.

⎡
⎣a t5[u]∧
¬t2 by[u] ∧ ¬t3 by[u]∧
t5 by′ = upd(t5 by, u, true)

⎤
⎦

Goal formula U

U1(a1) ∃x.

⎡
⎢⎢⎢⎢⎣
¬p0[x] ∧ ¬p1[x] ∧ ¬p2[x]∧
¬p3[x] ∧ ¬p4[x] ∧ ¬p5[x]∧
¬p6[x] ∧ p7[x]∧
d t1[x] ∧ d t2[x] ∧ d t3[x]∧
d t4[x] ∧ d t5[x]

⎤
⎥⎥⎥⎥⎦ U2(a2) true

execute a certain task are not shown in Figure 1. We assume that there exist
sets a t1 , ..., a t5 such that u ∈ a t1 iff u is entitled to execute t1 and similarly
for a t2 , ..., a t5 .

The composed array-based system 〈(a1, a2), I, τ〉 defined in Table 1 formalizes
the security-aware workflow system in Figure 1. All state variables in a1, a2 are
Boolean valued1 arrays, the sort of indexes for array variables in a1 is SI1 , and
the sort of indexes for array variables in a2 is SI2 . In the rest of this section, we
assume that x is a variable of sort I1 and u is a variable of sort I2. The theory
TI1 (TI2) is the theory of equality over the sort I1 (I2, respectively). Since we
consider only one workflow instance, variables in a1 store the same value for

1 Booleans are formalized by an enumerated data-type theory with two distinct ele-
ments true and false. For a Boolean valued array a, we abbreviate a[i] = true and
a[i] = false as a[i] and ¬a[i], respectively.

46 C. Bertolissi and S. Ranise

every index; intuitively, p0, ..., p7 models the presence or absence of a token in
the place with the same name in the Petri net of Figure 1 and d t1, ..., d t5,
record if tasks t1, ..., t5 have been executed or not. Variables in a2 are “real”
arrays indexed over users and a t1[u] holds when user u is entitled to execute t1
(similarly for a t2, ..., a t5) and t1 by [u] records the fact that task t1 has been
executed by user u (similarly for t2 by , ..., t5 by).

The initial state formula I is the conjunction of I1 and I2 that are defined in
Table 1. The universal formula I1(a1) characterizes the situation in which there
is just one token in place p0, places p1, ..., p7 are empty, and no task has yet been
executed. The universal formula I2(a2) says that no user has yet executed any
task. Notice how I1 contains just the states variables in a1 concerning the Petri
net and I2 only the state variables in a2 concerning the authorization constraints
(as a t1, ..., a t5 do not occur in I2, they are left unconstrained).

The transition formula τ is the disjunction of τ1k ∧ τ2k where τ1k and τ2k are
shown in Table 1 (k = 1, ..., 5). For the sake of compactness, we have used
the following abbreviations in writing the formulae: true (false) is the function
returning true (false , respectively) for any input and upd(t by , u, true) is the
function that returns the same value of t by for every user except in u for which
it returns true (t ∈ {t1, ..., t5}). Array variables not occurring in τ1k ∧ τ2k are
updated identically, i.e. the formula τ1k ∧ τ2k abbreviates τ1k ∧ τ2k ∧

∧
a∈A a′ = a

where A contains all those state variables not mentioned in τ1k ∧τ2k . For instance,
τ11 formalizes the enabled condition (there is a token in p0 and t1 has not yet
been executed) and the effect (delete the token in p0, put a token in p1, p2,
and p3, and set to true the fact that t1 has been executed) corresponding to
the execution of task t1 in the Petri net of Figure 1. Instead, τ21 formalizes the
authorization condition for executing task t1: a user u should be entitled to
execute t1 and record the fact that u has executed t1. More interestingly, τ22
besides requiring the user u to be entitled to execute t2, it also requires that u
is not the same user that has executed both t1 and t3: this corresponds to the
two SoD constraints represented in Figure 1 as the two dashed lines between t1
and t2 and between t2 and t3. The intuitive reading of the remaining formulae
can be derived in a similar way.

Two observations are important. First, the variables in a1 are always updated
in such a way to store the same value at all indexes. Second, the variables
a t1, ..., a t5 in a2 are unchanged by τ , i.e. the capability of users to execute
tasks does not change over time. This is not always the case; for instance, users
can delegate permissions to execute certain tasks to other users during workflow
execution (for more on this point, see Section 6 below).

A first sanity check of the design of the security-aware workflow in Figure 1 is
to verify if the situation in which there is just one token in p7 and all tasks have
been executed can be reached. Formally, this amounts to solve the safety problem
involving the composed array-based system 〈(a1, a2), I, τ〉 and the goal formula
U obtained by conjoining the two existential formulae U1(a1) and U2(a2) shown
in Table 1. As it was the case for I1 and I2 above, U1 contains only the state

Verification of Composed Array-Based Systems 47

variables in a1 and U2 only those in a2. In this particular case, U2 holds for any
value of the variables in a2, thereby leaving them unconstrained.

3.2 The Class of n-Components Array-Based Systems

By generalizing the example in Section 3.1, we introduce a sub-class of composed
array-based systems. Preliminary, we need to introduce the following notational
conventions (adopted from [1]). An underlined variable name abbreviates a tuple
of variables of unspecified (but finite) length and, if i := i1, . . . , in, the notation
a[i] abbreviates the s∗n-tuple of terms a1[i1], . . . , a1[in], . . . , as[i1], . . . , as[in]. To
simplify notation, we underline symbols i, e, . . . for tuples of elements and index
variables, whereas we use just a (not underlined) for the tuple a1, . . . , as of array
variables. Possibly sub-/super-scripted expressions of the form φ(i, e), ψ(i, e) de-
note quantifier-free (ΣI∪ΣE)-formulae in which at most the variables i∪e occur.
Also, φ(i, t/e) (or simply φ(i, t)) abbreviates the substitution of the Σ-terms t
for the variables e. Thus, for instance, φ(i, a[i]) denotes the formula obtained
by replacing e with a[i] in the quantifier-free formula φ(i, e). An a-∀I-formula
is a formula of the form ∀i.φ(i, a[i]). An a-∃I-formula is a formula of the form
∃i.φ(i, a[i]). An a-∃I∀I -formula is a formula of the form ∃i ∀j ψ(i, j, a[i], a[j]).

A n-components array-based system 〈(a1, ..., an), I, τ〉 is a composed array-
based system where at is a tuple of array variables of sort ARRAYt,�,

I(a1, ..., an) := I1(a1) ∧ · · · ∧ In(an)

τ(a1, ..., an, a
′
1, ..., a

′
n) :=

∨
k∈K

(τ1k (a1, a
′
1) ∧ · · · ∧ τnk (a1, a

′
1)) ,

K is a finite set, It(at) is an at-∀I -formula, I is called an n-components initial
formula, and τ tk(at, a

′
t) is in functional form, i.e. a formula of the form

∃i (φL(i, at[i]) ∧ ∀j.a′t[j] = F (i, at[i], j, at[j])) , (2)

the quantifier-free formula φL is the guard and F = F1, . . . , Fs is a tuple of
case-defined functions, called the updates (t = 1, ..., n). An n-components unsafe
or goal formula U is of the form U1(a1) ∧ · · · ∧ Un(an) for U t an at-∃I -formula
(t = 1, ..., n).

It is easy to see that the composed array-based system of Section 3.1 is a
2-components array-based systems.

4 Backward Reachability

A general approach to solve instances of the safety problem is based on the
symbolic computation of the set of backward reachable states. For b ≥ 0, the
b-pre-image of a n-components goal formula H(a1, ..., an) is Pre0(τ,H) := H
and Preb+1(τ,H) := Pre(τ, Preb(τ,H)), where

Pre(τ,H) := ∃a′1, ..., a′n.(τ(a1, ..., an, a
′
1, ..., a

′
n) ∧H(a′1, ..., a

′
n)). (3)

48 C. Bertolissi and S. Ranise

Given an n-components array-based system 〈(a1, ..., an), I, τ〉 and an n-com-
ponents goal formula U(a1, ..., an), the formula Preb(τ, U) describes the set of
backward reachable states in b steps (for b ≥ 0).

The procedure to establish if the n-components goal formula U is reach-
able is based on iteratively computing the symbolic representations of the set
BR(a1, ..., an) of states from which it is possible to reach U , by applying—finitely
many times—the transition τ . Formally, we define BRb(τ, U) to be the disjunc-
tion of Prei(τ, U) for i = 0, ..., b with b ≥ 0. BRb(τ, U) represents the set of
states which are backward reachable from the states in U in at most b steps.
In order to stop computing formulae in the sequence BRb(τ, U), there are two

criteria. (C1) check whether BRb(τ, U)∧I is A
〈E1,...,En〉
〈I1,...,In〉 -satisfiable: in this case,

there exists a finite sequence of transitions in τ that leads the system from an
initial state in I to a state in U . (C2) check whether BRb+1(τ, U) ⇒ BRb(τ, U)

is A
〈E1,...,En〉
〈I1,...,In〉 -valid or, by refutation, if BRb+1(τ, U)∧¬BRb(τ, U) is A

〈E1,...,En〉
〈I1,...,In〉 -

unsatisfiable: in this case, BRb is the fix-point of the sequence of BRi’s.
To ensure that formulae to be checked for criteria (C1) and (C2) have the

same shape at each iteration, the class of formulae used to represent goal states
must be closed under pre-image computation.

From now on, we fix a n-components array-based system S =
〈(a1, ..., an), I, τ〉 where τ =

∨
k∈K

∧n
t=1 τ

t
k(at, a

′
t) and τ tk is in functional

form (2) together with an n-components goal formula H(a1, ..., an) of the
form

∧n
t=1 H

t(at) with Ht an at-∃I -formula (t = 1, ..., n).

Proposition 1. The pre-image Pre(τ,H) of H with respect to τ is logically
equivalent to

∨
k∈K

n∧
t=1

Pre(τ tk, H
t) , (4)

where Pre(τ tk, H
t) is logically equivalent to an (effectively computable) at-∃I-

formula for t = 1, ..., n.

The proof consists of simple logical manipulations. An important consequence
of this property is the possibility of manipulating each component formula sep-
arately and then form the overall pre-image by Boolean combination. Another
consequence is that the symbolic representation BRb(τ, U) of the set of backward
reachable states is logically equivalent to (an effectively computable) disjunction
of n-components goal formulae for b ≥ 0, i.e. a formula of the form

∨
j∈J

n∧
t=1

Ht
j(at) (5)

for J a finite set and Ht
j an at-∃I -formula for j ∈ J and t = 1, ..., n. For efficiency,

it is important to delete unsatisfiable disjuncts in (5) that result from the fact
that a disjunct of the transition is not applicable. We give sufficient conditions
for the decidability of the satisfiability of a-∃I∀I -formulae that, in turn, implies

Verification of Composed Array-Based Systems 49

the decidability of the satisfiability of any disjunct in (5) since at-∃I -formulae
are also at-∃I∀I -formulae for t = 1, ..., n.

Proposition 2. Assume that (TH1) the SMT (TIt) and SMT (TEt) problems
are decidable, and (TH2) TIt is locally finite and its class of models is closed
under sub-structures, for t = 1, ..., n. Furthermore, let AE be a formula of the
form

∧n
t=1 AE

t(at) with AE t(at) a ∃I∀I-sentence for t = 1, ..., n. Then

1. AE is A
〈E1,...,En〉
〈I1,...,In〉 -satisfiable iff AE t(at) is A

Et

It
-satisfiable for each t = 1, ..., n,

2. the AEt

It
-satisfiability of AE t(at) is decidable for any t ∈ {1, ..., n}.

After showing closure under pre-image computation, we must ensure that
criteria (C1) and (C2) above are decidable.

From now on, without loss of generality, we assume that BRb(τ, U) stands

for a formula of the form (5) in which all disjuncts are A
〈E1,...,En〉
〈I1,...,In〉 -

satisfiable.

Proposition 3. Assume (TH1) and (TH2) as in Proposition 2. Then

1. BRb(τ,H) is logically equivalent to a formula of the form
∨

j∈J

∧n
t=1 H

t
j(at)

with Ht
j(at) an AEt

It
-satisfiable at-∃I-formula for j ∈ J and t = 1, ..., n,

2. BRb(τ,H)∧I is A
〈E1,...,En〉
〈I1,...,In〉 -satisfiable iff there exists j ∈ J such that Ht

j(at)∧
It(at) is AEt

It
-satisfiable for each t = 1, ..., n.

3. BRb+1(τ,H) ∧ ¬BRb(τ,H) is A
〈E1,...,En〉
〈I1,...,In〉 -unsatisfiable iff for each disjunct∧n

t=1 L
t(at) of BRb+1(τ,H), we have that Lt(at) ∧

∧
j∈J ¬Ht

j(at) is AEt

It
-

unsatisfiable for each t = 1, ..., n, where Lt(at) is an AEt

It
-satisfiable at-∃I-

formula for t = 1, ..., n, and
4. the AEt

It
-satisfiability of both Ht

j(at) ∧ It(at) and Lt(at) ∧
∧

j∈J ¬Ht
j(at) is

decidable (t = 1, ..., n).

This proposition allows us to reduce criteria (C1) and (C2) above to finitely
many satisfiability checks involving only component formulae.

Figure 2 presents the backward reachability algorithm as the function BReach
based on the propositions above. First, we briefly describe the auxiliary func-
tions Pre, simplify, emptyint?, and entail?. The fact that Pre computes disjunc-
tions of n-components goal formulae is guaranteed by Proposition 1. The func-
tion simplify preserves this by taking a formula of the form

∨
j∈J

∧n
t=1 H

t
j(at)

and returning
∨

j∈J′
∧n

t=1 H
t
j(at) such that J ′ ⊆ J with with Ht

j(at) an AEt

It
-

satisfiable at-∃I-formula, for each j ∈ J ′ and t = 1, ..., n. The function emptyint?
returns true iff the conjunction of the initial formula I and a formula of the form
(5) representing (an approximation of) the set of backward reachable states is

A
〈E1,...,En〉
〈I1,...,In〉 -unsatisfiable by using point 2 of Proposition 3. The function entail?

returns true iff the formula of the form (5) passed as the first argument implies

the formula of the same form passed as the second modulo A
〈E1,...,En〉
〈I1,...,In〉 by using

50 C. Bertolissi and S. Ranise

function BReach(S , U)
1 P ←− U ; B ←− ⊥;
2 while not entail?(P,B) do
3 if not emptyint?(I, P) then return unsafe;
4 B ←− P ∨ B;
5 P ←− simplify(Pre(τ, P));
6 end
7 return (safe, B);

Assuming S = 〈(a1, ..., an), I, τ 〉 is an n-components array-based system where

I(a1, ..., an) :=

n∧
t=1

It(at) and τ (a1, ..., an, a
′
1, ..., a

′
n) :=

∨
k∈K

n∧
t=1

τ t
k(at, a

′
t)

with It an at-∀I-formula, τ t
k(at, a

′
t) a transition formula in functional form (2),

and U(a1, ..., an) is an n-components goal formula of the form
∧

t U
t(at) in which

U t is an at-∃I -formula (for t = 1, ..., n).
Conditions (TH1) and (TH2) of Proposition 2 on TIt and TEt hold for t = 1, ..., n.

Fig. 2. Symbolic backward reachability for n-components array-based systems

point 3 of Proposition 3. By point 4 of the same proposition, we derive the decid-
ability of the satisfiability checks—under assumptions (TH1) and (TH2)—in
emptyint? and entail? and thus also their effectiveness. In turn, this ensures the
effectiveness of BReach, that can be described as follows.

At the b-th iteration of the loop, BReach stores in the variable B the formula
BRb(τ, U) representing the set of states which are backward reachable from the
states inU in at most b steps (whereas the variableP stores the formulaPreb(τ, U)).
While computing BRb(τ, U),BReach also checks whether (line 3) the system is un-
safe by invoking empty? on I andPreb(τ, U), or (line 2) a fix-point has been reached
by by invoking entail? on BRb(τ, U) and BRb−1(τ, U). When BReach returns the
safety of the system (line 7), the variable B stores the formula describing the set of
states which are backward reachable from U which is also a fix-point.

5 Termination of Backward Reachability

As observed in Section 3, 1-component array-based systems are the same as
the array-based systems of [12]. The undecidability of safety problems for the
latter—even when assumptions (TH1) and (TH2) of Proposition 2 hold (see [12]
for a proof of this by a reduction to the halting problem of a Minsky machine)—
implies that BReach may non terminate. Fortunately, it is possible to identify
sufficient conditions to guarantee the decidability of the safety problem that are
also useful in applications. The idea is to introduce a suitable model-theoretic
notion of configurations to be the semantic counter-part of n-components goal
formulae, and then show that a wqo (recall the definition in Section 2) can
be defined on them, which implies the termination of BReach (see Theorem 1
below) and thus the decidability of the safety problem. The partial ordering !

Verification of Composed Array-Based Systems 51

on configurations is defined by modularly reusing those !1, ...,!n defined on the
n-components. If each !t is a wqo, then also ! is so by Property 2 (in Section 2).

A state of an n-components array-based systems S is a tuple 〈(s1,M1), ...,
(sn,Mn)〉 where Mt is a model of AEt

It
and st ∈ ARRAYMt

t,� for t = 1, ..., n.
The t-component of a state 〈(s1,M1), ..., (sn,Mn)〉 is the pair (st,Mt) for t ∈
{1, ..., n}. A configuration is a tuple 〈(s1,M1), ..., (sn,Mn)〉 of pairs such that st
is an array of a finite index model Mt (i.e. a structure in which the interpretation
of the sort of index is a finite set) of AEt

It
; Mt is omitted whenever it is clear

from the context (t = 1, ..., n). Notice that the set of configurations is a sub-set
of the set of states. We associate a ΣIt -structure sIt and a ΣEt-structure sEt

with the t-component (st,Mt) of an A
〈E1,...,En〉
〈I1,...,In〉 -configuration as follows: the

ΣIt -structure sIt is simply the finite structure MIt whereas sEt is the smallest
ΣEt-substructure of MEt containing the image of st. Intuitively, a configuration
is a finite representation of a possibly infinite set of states that “contains at least
the part mentioned in the configuration.” This can be formalized by defining a
pre-order ! over configurations as follows. Preliminary, recall that an embedding
is a homomorphism that preserves and reflects relations and operations (see,
e.g., [14] for a formal definition).

For each t-component of a configuration (t = 1, ..., n), define a pre-order !t

as follows: st ! s′t iff there exist a ΣIt -embedding μt : s′It −→ sIt and a ΣEt-
embedding νt : s′Et

−→ sEt such that the set-theoretical compositions of μt with
st and of s′t with νt are equal, for each t = 1, ..., n. For every pair of configurations
〈s1, ..., sn〉 and 〈s′1, ..., s′n〉, we say that 〈s′1, ..., s′n〉 ! 〈s1, ..., sn〉 iff st !t s′t for
each t = 1, ..., n.

Define the set [[H]] of states denoted by the formula H as

{〈(s1,M1), ..., (sn,Mn)〉 | Mt, st |= Ht for each t = 1, ..., n} .
Theorem 1. BReach(S, H) terminates if (i) assumptions (TH1) and (TH2)
hold (as in Proposition 2), (ii) TEt is locally finite, and (iii) the pre-order !t

on the t-component of A
〈E1,...,En〉
〈I1,...,In〉 -configurations is a wqo (for t = 1, ..., n).

Proof. Assumptions (TH1) and (TH2)—together with the particular shape of
the formulae in the n-components array-based system S—are needed for Breach
to be a semi-algorithm according to Proposition 3. For termination, we distin-
guish two cases according to the fact that S is either safe or unsafe w.r.t. H .
When S is unsafe with respect to H , we know that BReach terminates because
it returns at line 3 of Figure 2. We now consider the case in which S is safe
with respect to H . Here, the crux is to show that it is possible to compute
an n-components goal formula that represent the set B(τ,H) of configurations
that are backward reachable from the configurations satisfying H . Under the
assumption that TEt is locally finite for each t = 1, ..., n, we can show that

(*) the termination of BReach(S, H) is equivalent to the fact that the set
B(τ,H) of configurations is a finitely generated upset.

A sufficient condition to guarantee that B(τ,H) is a finitely generated upset is

that the pre-order ! on A
〈E1,...,En〉
〈I1,...,In〉 -configurations is a wqo. This is guaranteed

52 C. Bertolissi and S. Ranise

Table 2. Wqos on t-components of n-components array-based systems

TIt TEt �t is a wqo by

Pure equality Enumerated data-type Dickson lemma

Total order Enumerated data-type Higman lemma

Pure equality Rationals with < Kruskal theorem

by the assumption that each pre-order !t on AEt

It
-configurations is a wqo and

by the observation after Property 2 at the end of Section 2.
We are then left with the task of showing (*). For this, we preliminary observe

that the following three claims hold:

(Claim 1) for every n-components goal formula H , the set [[H]] is upward
closed;

(Claim 2) for every pair H1, H2 of n-components goal formulae, we have that

[[H1]] ⊆ [[H2]] iff (H1 ⇒ H2) is A
〈E1,...,En〉
〈I1,...,In〉 -valid;

(Claim 3) finitely generated upsets of A
〈E1,...,En〉
〈I1,...,In〉 -configurations coincide with

sets of A
〈E1,...,En〉
〈I1,...,In〉 -configurations of the form [[H]], for some n-components

goal formula H .

These claims are extensions of similar results in [12] for array-based systems.
We now consider the two sides of the bi-conditional (*). Preliminary, we ob-

serve that B(τ,H) =
⋃

b≥0[[BRb(τ,H)]] by Claim 3.
B(τ,H) is finitely generated implies the termination of BReach(S, H). B(τ,H)
is an upward closed set since B(τ,K) is the union of upward closed sets and
[[H]] is so by (Claim 1). Because of (Claim 2), we have that

[[BR0(τ,H)]] ⊆ [[BR1(τ,H)]] ⊆ · · · ⊆ [[BRb(τ,H)]] ⊆ [[BRb+1(τ,H)]] ⊆ · · ·

Since B(τ,H) is finitely generated, there exists b such that [[BRb(τ,H)]] =
[[BRb+1(τ,H)]] and, again by (Claim 2), we derive that BRb(τ,H) ⇔
BRb+1(τ,H) is A

〈E1,...,En〉
〈I1,...,In〉 -valid, i.e. BReach terminates.

The termination of BReach(S, H) implies that B(τ,H) is finitely generated. The

termination of BReach(S, H) is equivalent to have the A
〈E1,...,En〉
〈I1,...,In〉 -validity of

BRb(τ,H) ⇔ BRb+1(τ,H). This is equivalent to [[BRb(τ,H)]] = [[BRb+1(τ,H)]]
by (Claim 2), for some b ≥ 0. ��

The difficulty in applying Theorem 1 is to show that !t is a wqo. Table 2
provides some help in this respect. It is possible to show that all the theories in
the table satisfy assumptions (TH1) and (TH2) of Proposition 2 and that the
TEt ’s are locally finite (see, e.g., [12]). The last column of the table reports that
it is possible to prove that the pre-order !t on the t-component of configurations
is a wqo by well-known results (see [10] for a survey). These observations and
Theorem 1 implies the following result.

Corollary 1. If TIt and TEt are in Table 2 for each t = 1, ..., n, then the safety
problem for S and H is decidable.

Verification of Composed Array-Based Systems 53

Even in case of termination, the complexity of BReach may be non-primitive
recursive; this is inherited from the backward reachability array-based systems
in [12]. Since safety and fix-point checks can be reduced to sequences of sat-
isfiability checks of component formulae, most of the heuristics developed for
mcmt [13] or Cubicle [5] (two model checkers for array-based systems), can be
re-used to implement BReach that can terminate in reasonable time on problems
relevant to applications. This is left as future work.

6 Application to Security-Aware Workflow Systems

We can apply Corollary 1 to show the decidability of the safety problem for
the 2-components array-based system of Section 3.1. Along the lines of Sec-
tion 3.2, this can be generalized by defining a constrained workflow system as
a 2-components array-based system in which TIt is the pure theory of equality
and TEt is the enumerated data-type theory of the Booleans, for t = 1, 2. With
this notion of constrained workflow systems, SoD or BoD constraints can be im-
posed on tasks in different instances of a workflow and not only to tasks in the
same instance, called inter-instance and intra-instance constraints, respectively,
in [15]. Inter-instance constraints are crucial to limit frauds by, e.g., preventing
coalitions among malevolent users. Moreover, we can express delegation, i.e. a
user can transfer part of its permissions to execute tasks to another user. In our
framework, this is achieved by considering authorizations as state variables. In
the constrained workflow system of Section 3.1, we can specify the situation in
which user u1 with the permission to execute t3 can delegate this capability to
user u2 capable of executing t2 as follows: ∃u1, u2.(a t3[u1]∧¬a t3[u2]∧a t2[u2]∧
a t3′ = upd(a t3, u2, true)). By Corollary 1, we can derive the following result.

Theorem 2. The safety problem for constrained workflow systems is decidable.

A natural extension of the above notion of constrained workflow systems, ad-
vocated in [2], consists of taking into account conditions involving the data
processed by the tasks in the workflow. The advantage of adopting this ex-
tended model is to reduce the non-determinism introduced by abstracting away
the dependencies of the control-flow from data values and, ultimately, to design
more precise analysis techniques, i.e. returning fewer spurious error traces. In-
terestingly, it is possible to accommodate this extension in our framework while
retaining the decidability of the safety problem. A constrained workflow system
with numerical data-flow is a 3-components array-based system where TIt is the
pure theory of equality (t = 1, 2, 3), TEt is the enumerated data-type theory of
the Booleans (t = 1, 2), and TE3 is the theory of rationals with the standard or-
dering relation < (recall Table 2). Although abstract, this class of systems allows
us to express situations in which a task can only be executed when the value of a
numeric variable is, e.g., lower (or greater) than a given threshold. For example,
in a bank workflow handling loans, there can be two types of evaluation of the
economic situation of a client: short (t1) and comprehensive (t2). If the requested
amount of the loan is below 10,000 Euro then t1 is executed; otherwise, t2 is
performed. By Corollary 1, we can also derive the following result.

54 C. Bertolissi and S. Ranise

Theorem 3. The safety problem for constrained workflow systems with numer-
ical data-flow is decidable.

7 Conclusions and Related Work

We have introduced the class of composed array-based systems and studied the
decidability of the (parametric) safety problem for the sub-class of n-components
array-based systems. For this, we have designed a backward reachability proce-
dure that lift that for array-based systems in [12] by modularly re-using SMT
solving. We have applied our results to prove the decidability of the safety prob-
lems for two classes of security-aware workflow systems.

Constrained workflow systems have been the subject of a long line of research
in security; see, e.g., [7] for very recent work and pointers to the literature. Our
notion of constrained workflow system generalizes that in [7] in several respects.
We describe systems with a finite (but unknown) number of workflow instances
or users, we handle loops (i.e. a certain set of tasks can be repeated a finite but
unknown number of times) and delegation. All these are not considered in [7]. As a
consequence, the scope of applicability of Theorem 2 is much wider than the corre-
sponding result in [7]. However, [7] focuses on the problem of guaranteeing the ter-
mination of the workflow while satisfying authorization constraints (at run-time),
called the workflow satisfiability problem (WSP). In this context, it is shown that
the knowledge acquired by solving certain safety problems can be used to simplify
the solution of WSPs. An interesting line of future work is to take advantage of
the generality of our approach to solve WSPs. In particular, the use of the formula
representing the fix-point (of the set of reachable states) returned by BReach may
be used to build an algorithm solving the WSP on top of an SMT solver.

The work in [2] describes a model checking technique to check temporal prop-
erties of security-aware workflows. Decidability is not discussed and the verifi-
cation technique considers a single workflow instance and a bounded number
of users. In contrast, Theorem 3 guarantees the decidability of the safety prob-
lem for constrained workflow systems with numerical data-flow regardless of the
number of users or the number of workflow instances. However, [2] allows for the
verification of arbitrary temporal properties. As future work, we plan to extend
to n-components array-based systems the decidability result in [11] for a class
of liveness (progress) properties of array-based systems.

The decidability result in [3] can be seen as an instance of Theorem 3. In fact,
[3] considers only a sub-class of the transitions that can be specified with the
notion of n-components array-based system introduced in this paper.

The “pid quantified constraints” introduced in [9] can be seen as 1-composed
array-based systems. Theorem 1 is an answer to the open problem (stated in [9])
of finding conditions to guarantee the termination of fix-point computations for
n-components array-based systems. However, the model checking technique in [9]
aims to prove temporal properties expressed in Computation Tree Logic.

With [4], we share the goal of modularly re-using techniques to handle sym-
bolic constraints for infinite state model checking. The main difference is that

Verification of Composed Array-Based Systems 55

we exploit SMT solving whereas [4] adopts a combination of Boolean reasoning
and a decision procedure for Pressburger Arithmetic.

Acknowledgments. The work of the first author is supported by the RE-
STATE Programme, co-funded by the European Union under the FP7 COFUND
Marie Curie Action—Grant agreement no. 267224, and that of the second au-
thor is partially supported by the “Automated Security Analysis of Identity and
Access Management Systems (SIAM)” project funded by Provincia Autonoma
di Trento in the context of the “team 2009 - Incoming” COFUND action of the
European Commission (FP7).

References

1. Alberti, F., Ghilardi, S., Pagani, E., Ranise, S., Rossi, G.P.: Universal Guards, Rel-
ativization of Quantifiers, and Failure Models in Model Checking Modulo Theories.
J. on Satisfiability, Boolean Modeling and Comp. (JSAT) 8, 29–61 (2012)

2. Armando, A., Ponta, S.E.: Model Checking of Security-Sensitive Business Processes.
In: Degano, P., Guttman, J.D. (eds.) FAST 2009. LNCS, vol. 5983, pp. 66–80.
Springer, Heidelberg (2010)

3. Armando, A., Ranise, S.: Automated Analysis of Infinite State Workflows with
Access Control Policies. In: Meadows, C., Fernandez-Gago, C. (eds.) STM 2011.
LNCS, vol. 7170, pp. 157–174. Springer, Heidelberg (2012)

4. Bultan, T., Gerber, R., League, C.: Composite Model Checking: Verification with
Type-Specific Symbolic Representations. ACM TOSEM 9(1), 3–50 (2000)

5. Conchon, S., Goel, A., Krstić, S., Mebsout, A., Zäıdi, F.: Cubicle: A Parallel SMT-
Based Model Checker for Parameterized Systems. In: Madhusudan, P., Seshia, S.A.
(eds.) CAV 2012. LNCS, vol. 7358, pp. 718–724. Springer, Heidelberg (2012)

6. Crampton, J.: A reference monitor for workflow systems with constrained task
execution. In: 10th ACM SACMAT, pp. 38–47. ACM (2005)

7. Crampton, J., Gutin, G.: Constraint expressions and workflow satisfiability. In:
18th ACM SACMAT. ACM (2013)

8. Enderton, H.B.: A Mathematical Introduction to Logic. Academic Press, New York
(1972)

9. Fu, X., Bultan, T., Su, J.: Formal Verification of e-Services and Workflows. In:
Bussler, C.J., McIlraith, S.A., Orlowska, M.E., Pernici, B., Yang, J. (eds.) WES
2002. LNCS, vol. 2512, pp. 188–202. Springer, Heidelberg (2002)

10. Gallier, J.H.: What’s So Special About Kruskal’s Theorem and the Ordinal Γ0? A
Survey of Some Results in Proof Theory. APAL 53(3), 199–260 (1991)

11. Ghilardi, S., Nicolini, E., Ranise, S., Zucchelli, D.: Towards SMT Model Checking
of Array-Based Systems. In: Armando, A., Baumgartner, P., Dowek, G. (eds.)
IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 67–82. Springer, Heidelberg (2008)

12. Ghilardi, S., Ranise, S.: Backward reachability of array-based systems by SMT
solving: Termination and invariant synthesis. In: LMCS, vol. 6(4) (2010)

13. Ghilardi, S., Ranise, S.: MCMT: A Model Checker Modulo Theories. In: Giesl, J.,
Hähnle, R. (eds.) IJCAR 2010. LNCS, vol. 6173, pp. 22–29. Springer, Heidelberg
(2010)

14. Hodges, W.: Model Theory. Cambridge University Press (1993)
15. Warner, J., Atluri, V.: Inter-Instance Authorization Constraints for Secure Work-

flow Managment. In: SACMAT, pp. 190–199. ACM (2006)
16. Murata, T.: Petri nets: properties, analysis and applications. Proc. of the

IEEE 77(4), 541–580 (1989)

Presburger Arithmetic in Memory Access

Optimization for Data-Parallel Languages

Ralf Karrenberg1, Marek Košta2, and Thomas Sturm2

1 Saarland University, 66123 Saarbrücken, Germany
karrenberg@cs.uni-saarland.de

2 Max-Planck-Institut für Informatik, 66123 Saarbrücken, Germany
{mkosta,sturm}@mpi-inf.mpg.de

Abstract. Data-parallel languages like OpenCL and CUDA are an im-
portant means to exploit the computational power of today’s computing
devices. We consider the compilation of such languages for CPUs with
SIMD instruction sets. To generate efficient code, one wants to statically
decide whether or not certain memory operations access consecutive ad-
dresses. We formalize the notion of consecutivity and algorithmically
reduce the static decision to satisfiability problems in Presburger Arith-
metic. We introduce a preprocessing technique on these SMT problems,
which makes it feasible to apply an off-the-shelf SMT solver. We show
that a prototypical OpenCL CPU driver based on our approach generates
more efficient code than any other state-of-the-art driver.

1 Introduction

Data-parallel languages like OpenCL and CUDA are ubiquitous in today’s com-
puting landscape. They follow the so-called SPMD (Single Program, Multiple
Data) paradigm, where the technical details of parallelization are abstracted
away: The programmer writes a scalar function, called the kernel. The kernel is
executed in multiple work items (sometimes ambiguously called threads) by a
runtime system. To make every work item perform an individual task, e.g. writ-
ing to different elements of an array, special primitives are built into the language
to query the ID of a work item.

Due to these semantics, the runtime system may choose to execute work items
in parallel. On GPUs, this boils down to scheduling each work item to one of the
hardware-managed threads via the device driver. On CPUs, the same scheme
can be used by employing well-known libraries like pthreads, OpenMP, or MPI
to exploit all available cores. In addition, today’s CPUs offer another level of par-
allelism per core in the form of SIMD instructions. These are instructions that
perform the same operation on multiple input values at once (Single Instruc-
tion, Multiple Data). This saves both execution time and power consumption.
Fig. 1 depicts variants of how the runtime system could choose to execute a
2-dimensional grid of work items.

The historical development of data-parallel languages stemming from GPUs
plays a crucial role when compiling them for a SIMD CPU: On the CPU, one has

P. Fontaine, C. Ringeissen, and R.A. Schmidt (Eds.): FroCoS 2013, LNAI 8152, pp. 56–70, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Presburger Arithmetic in Memory Access Optimization 57

Fig. 1. The OpenCL execution model and examples how a driver could choose to exe-
cute work items in parallel (work items marked blue). Left: sequential execution. Mid-
dle: multi-threaded execution (4 cores). Right: multi-threaded execution with “Whole-
Function Vectorization” (4 cores, SIMD width 4, details in Sect. 2).1

to emulate dynamic features that on GPUs are implemented in hardware. The
interesting feature for this paper is that GPUs determine at runtime whether
or not all work items access memory at consecutive addresses. In the positive
case, a faster operation is issued. This behavior can be emulated by a CPU
compiler that exploits SIMD instructions. To this end, it would introduce code
that does the same runtime check, but the cost of this usually outweighs the
performance gain. Thus, static analysis has been used to prove at compile time
that a memory operation always accesses consecutive addresses [10]. This ap-
proach generally covers fewer cases than a dynamic runtime check but is still
applicable often enough to be of interest. Until now, however, it could only han-
dle very simple address computations such as linear translations by constants.
In this paper, we generalize this to more interesting linear arithmetic transfor-
mations, in particular including integer division and modulo by constants. Our
approach can—to a certain degree—also handle non-constant inputs. Our key
idea is to convert the central question “Do consecutive work items access con-
secutive memory addresses or not?” to a finite set of satisfiability problems in
Presburger Arithmetic.

Presburger Arithmetic originally refers to the first-order theory of the inte-
gers over a countably infinite language L comprising 0, 1, +, −, <, and infinitely
many congruences ≡k for k ∈ N \ {0}. This, of course, allows to tacitly use
also ≤, �=, >, ≥. For this setting, Presburger proved completeness by giving a
decision procedure [16]. His decision procedure was based on effective quanti-
fier elimination in combination with the fact that variable-free atomic formulas
can be effectively evaluated to either “true” or “false.” As a consequence of us-
ing quantifier elimination, Presburger required ≡k to be a formal part of the
language.

1 Graphics modified from the official Khronos OpenCL specification.

58 R. Karrenberg, M. Košta, and T. Sturm

In the context of programming languages, Presburger’s congruence relations
have a counterpart in the binary modulo function, which is naturally paired
with integer division. For fixed integer second argument k ∈ N \ {0}, both can
be encoded in L, e.g., as follows:

Z |= modk(x) = y ←→ 0 ≤ y ≤ k − 1 ∧ x ≡k y,

Z |= divk(x) = y ←→ k # y ≤ x < k # (y + 1).

These defining formulas can be generalized to k ∈ Z \ {0} and can be used
to systematically translate formulas containing modk and divk to the original
Presburger language L. This requires, in general, the introduction of quantifiers
with variables that represent sub-terms. Similarly, for decision procedures not
based on quantifier elimination, the congruences can be eliminated:

Z |= t ≡k 0 ←→ ∃x(k # x = t).

Note that admitting arbitrary terms as second arguments in modulo operations
or integer division would lead to an undecidable theory:

Z |= s �= 0 −→ t mod s = t − (t/s)s, Z |= s | t ←→ t mod s = 0,

and (Z, 0, 1,+,−, |) is known to be undecidable [17].
There is a variety of decision procedures and complexity results available for

Presburger Arithmetic [20, and the references given there]. Our input considered
here is limited to the existential fragment, for which SMT solvers, in spite of their
possible incompleteness, are an interesting choice. For our practical computations
we chose Z3 [5], which has the advantage to directly accept modk and divk in
the input.

The original contributions of this paper are the following:

1. We formalize in Presburger Arithmetic the notion of consecutivity and all
relevant conditions that have to be decided for static optimization of memory
operations.

2. Our formalization allows to consider address computations that involve divk

and modk and limited occurrences of non-constant inputs.
3. We introduce modulo elimination as a general preprocessing technique for

Presburger terms. This makes it feasible to decide our formalizations using
an off-the-shelf SMT solver.

4. The feasibility of our approach is documented by comprehensive, systematic
computations.

5. Our computations establish new benchmarks based on current research prob-
lems in compiler construction. In this capacity, they are of general interest
for the SMT community.

6. We show that a prototypical OpenCL CPU driver based on our approach
generates more efficient code than any other state-of-the-art driver, including
Intel and AMD.

Presburger Arithmetic in Memory Access Optimization 59

__kernel void
simple(float* in,

float* out) {
int tid = get_global_id();
out[tid] = in[tid];

}

__kernel void
fastWalshTransform(float* tArray,

int step) {
int tid = get_global_id();
int group = tid % step;
int pair = 2*step*(tid/step)

+ group;
int match = pair + step;
float T1 = tArray[pair];
float T2 = tArray[match];
tArray[pair] = T1 + T2;
tArray[match] = T1 - T2;

}

Fig. 2. OpenCL kernels with simple (left) and complex (right) memory address com-
putations: tid, pair, and match. The function get global id() returns the work
item ID, which allows each work item to access different array positions.

The structure of the paper is as follows: In Sect. 2, we summarize the rele-
vant notions from data-parallel languages and compilers and make precise the
problem addressed in this paper. In Sect. 3, we formalize this problem as a set of
Presburger satisfiability problems and perform first computational experiments.
Sect. 4 details how modulo elimination significantly improves performance of the
SMT solver. In Sect. 5, we discuss possibilities for code generation. Sect. 6 ex-
perimentally evaluates the achieved performance gain. Sect. 7 discusses related
work. In Sect. 8, we summarize our results and discuss possible future work.

2 Memory Access Optimization for Data-Parallel
Languages

We want the compiler of a language like CUDA or OpenCL to prove for as many
memory access operations as possible that the addresses that are accessed by
consecutive work items are contiguous in memory. If this property can be proven,
CPU compilers for these languages can generate faster code. Recall from the
introduction that our target architecture are CPUs with SIMD instruction sets,
to which we are going to simply refer to as CPUs. We generally consider load
and store operations, for which array accesses are the most prominent example.

Consider the two OpenCL kernels in Fig. 2. The kernel on the right-hand
side, fastWalshTransform, is taken from the AMD APP SDK v2.8.2 In
this code, the array accesses depend on the value tid obtained from calls to
get global id(). These calls return different values for different work items
and consecutive values for consecutive work items. It is easy to see that the
simple kernel always accesses contiguous memory locations due to the direct

2 developer.amd.com/sdks/AMDAPPSDK

developer.amd.com/sdks/AMDAPPSDK

60 R. Karrenberg, M. Košta, and T. Sturm

__kernel void
fastWalshTransform(float* tArray,

int step)
{

int tid = get_global_id();
if (tid % 2 != 0) return;
int2 tidV = (int2)(tid,tid+1);
int2 stepV = step;
int2 group = tidV % stepV;
int2 pair = 2*step*(tidV/stepV)

+ group;
int2 match = pair + stepV;
float2 T1 = (float2)(tArray[pair.x],

tArray[pair.y]);
float2 T2 = (float2)(tArray[match.x],

tArray[match.y]);
float2 X = T1 + T2;
float2 Y = T1 - T2;
tArray[pair.x] = X.x;
tArray[pair.y] = X.y;
tArray[match.x] = Y.x;
tArray[match.y] = Y.y;

}

__kernel void
fastWalshTransform(float* tArray,

int step)
{
if (step <= 0 || step % 2 != 0) {

// Omitted code:
// Execute kernel as on the left.
return;

}
int tid = get_global_id();
if (tid % 2 != 0) return;
int group = tid % step;
int pair = 2*step*(tid/step)

+ group;
int match = pair + step;
float2 T1 = *((float2*)(tArray+pair));
float2 T2 = *((float2*)(tArray+match));

((float2)(tArray+pair)) = T1 + T2;
((float2)(tArray+match)) = T1 - T2;

}

Fig. 3. Result of WFV manually applied at source level to the fastWalshTransform
kernel of Fig. 2 (w = 2). Left: Conservative WFV requires sequential execution. Right:
WFV with our approach proves consecutivity of the memory addresses for certain
values of step, which allows to generate a variant with more efficient code.

use of tid. In contrast, the access pattern of fastWalshTransform is not
obvious. Experimentally, one would observe that, depending on step, there is a
considerable number of accesses that actually are consecutive. At this point, it
is important to understand a fundamental difference between GPUs and CPUs:
In GPUs, there is dedicated hardware to dynamically coalesce to a single access
all memory accesses of work items running in parallel whenever possible. This
yields significant speedup by preventing sequential execution of the accesses. On
CPUs, there is no such hardware support. Therefore, without compiler optimiza-
tion, the memory operations considered here would be executed sequentially.

Modern compilers apply a technique called Whole-Function Vectorization
(WFV) [10]. WFV transforms a kernel to execute w work items at once, where w
is usually the SIMD width. The SIMD width of a CPU is the number of single-
precision values that fit into a vector register. Typical values for w are 4 for
the SSE, AltiVec, and NEON instruction sets, 8 for AVX, or 16 for LRBni. An
interesting recent development is AMDs introduction of the Sea Islands series
of GPUs which have a vector instruction set with a SIMD width of 64. In the
context of WFV, a vectorized kernel executes w work items at once for every
single hardware thread. The values of each work item are kept in one cell of a
vector register instead of a scalar register. Thus, WFV can increase performance
of applications by a factor as large as w.

Unfortunately, WFV has drawbacks which can significantly reduce this theo-
retical speedup or even result in slowdowns [11]. In this paper, we focus on one

Presburger Arithmetic in Memory Access Optimization 61

specific drawback, which arises in presence of memory access operations: In order
to have the kernel compute w work items at once, accesses to tid are trans-
formed to return a vector of w consecutive values. Accordingly, each dependent
operation has to be transformed into its vector counterpart, e.g. a scalar addition
becomes a vector addition. Unfortunately, the vector counterparts for memory
operations available in most of today’s SIMD instruction sets only support ac-
cessing consecutive addresses. Therefore, if the addresses are non-consecutive, w
sequential operations have to be used, reducing the overall gain of WFV com-
pared to the theoretical factor w. This is exemplified by the left-hand side kernel
in Fig. 3, where tidV is the above-mentioned, vector-valued tid. To make use of
a vector load or store, the compiler has to automatically prove that the address
computation will never produce non-consecutive values.3 However, the expres-
sion tree that corresponds to this address computation may consist of arbitrary
code. This will, in general, lead to undecidable problems. Current approaches
are limited to expressions with linear translations by constants [10]. Our new
approach extends the class of expressions that can be analyzed to Presburger
Arithmetic and functions definable therein. This covers in particular integer divi-
sion and modulo operations by constants as well as certain occurrences of input
variables.

To this end, our compiler translates the expression tree that yields the memory
address to a term that depends on tid and a possible input parameter. For
example, the address of the second load operation of the FastWalshTransform
kernel in Fig. 2 is given by tArray[match], where the term obtained for match
is

2*step * (tid / step) + (tid % step) + step. (1)

Notice that step is an input value that is constant for all work items during
one execution of the kernel.

3 Translation to Presburger Arithmetic

We are now going to switch to a more mathematical notation: The variable t is
going to denote the tid and a is going to denote the input. For integer division
and modulo, we introduce unary functions divk and modk for k ∈ Z\{0}, which
emphasizes the fact that the divisors and moduli are limited to numbers. For
our example term (1), we obtain

e(t, a) = 2a # diva(t) + moda(t) + a. (2)

At this point, let us give the precise definitions of modk and divk:

x = k # divk(x) + modk(x), where | modk(x)| < |k|. (3)

3 In addition, a store must be proven to be always executed by all work items to not
produce false side effects. To keep things simple, we consider this out of the scope
of this paper.

62 R. Karrenberg, M. Košta, and T. Sturm

It is well-known that this definition does not uniquely specify divk(x) and
modk(x). SMT-LIB Version 2 resolves this issue by making the convention that
modk(x) ≥ 0.4 As long as both k and x are non-negative, common program-
ming languages agree with this convention. However, when negative numbers
are involved, OpenCL follows the C99 standard, which in contrast to SMT-LIB
requires that sign(modk(x)) = sign(x). In our setting, we observe that the ar-
guments of modk generally are positive expressions involving the tid such that
both conventions happen to coincide.

Let us analyze a single memory access with respect to the following consecutiv-
ity question: “Do w consecutive work items access consecutive memory addresses
when doing this memory access or not?” Using the corresponding term e(t, a),
the following equation holds if and only if the work items t and t + 1 access
consecutive memory locations for input a:

e(t, a) + 1 = e(t + 1, a).

The following conjunction generalizes this equation to w consecutive work items t,
. . . , t + w − 1:

w−2∧
i=0

e(t + i, a) + 1 = e(t + i + 1, a).

Recall from the previous section that these groups of w work items naturally
start at 0 so that only conjunctions are relevant where t is divisible by w. The
following Presburger formula formally adds this constraint:

ϕ(w, a) = ∀t
(
t ≥ 0 ∧ t ≡w 0 −→

w−2∧
i=0

e(t + i, a) + 1 = e(t + i + 1, a)
)
.

For given w ∈ N and α, β ∈ Z with α ≤ β−1, the answer to our consecutivity
question for w and a ∈ {α, . . . , β − 1} is given by the set

Aw,α,β = { a ∈ Z | Z |= ϕ(w, a) ∧ α ≤ a < β }.

We essentially compute Aw,α,β by at most (w− 1)(β −α− 1) many applications
of an SMT solver to the w−1 disjuncts of ¬ϕ(w, a) for a ∈ {α, . . . , β−1}, where

¬ϕ(w, a) =
w−2∨
i=0

∃t
(
t ≥ 0 ∧ t ≡w 0 ∧ e(t + i, a) + 1 �= e(t + i + 1, a)

)
.

Notice that, when obtaining “sat” for some i ∈ {0, . . . , w − 2}, the remaining
problems of the disjunction need not be computed.

Our answer Aw,α,β consists of those a for which the SMT solver yields “unsat.”
Note that besides “sat” or “unsat,” the solver can also yield “unknown,” which
we treat like “sat.” This underapproximation does not affect the correctness of
our approach. We only miss optimization opportunities when generating code

4 smtlib.cs.uiowa.edu/theories/Ints.smt2

smtlib.cs.uiowa.edu/theories/Ints.smt2

Presburger Arithmetic in Memory Access Optimization 63

Table 1. Running times of Z3 applied to ¬ϕ(w, a) for e(t, a) as in (2). In all three
cases, α = 1 and β = 216 so that a ∈ {1, . . . , 216 − 1} with a time limit of one minute
per call.

FastWalshTransform Problem Set using Z3

w Sat Unsat Unknown Timeouts CPU Time

4 16,243 48,931 0 361 14 h
8 7,694 54,510 0 3,331 97 h

16 2,773 52,468 0 10,294 256 h

later on. The same holds for possible timeouts when imposing reasonable time
limits on the single solver calls. Later in Sect. 5, we are going to discuss how
compact representations for Aw,α,β can be obtained.

Table 1 shows running times and results for the application of Z3 version
4.3.1 [5] to the consecutivity question for our FastWalshTransform kernel.5 Al-
ternatives to Z3 include CVC4 [1] and MathSAT5 [3]. These SMT solvers, how-
ever, do not directly support divk and modk, which makes them less interesting
for our application here.

Obviously, our obtained running times are too high to be of any practical in-
terest. We suspect that the diva and moda operators occurring in (2), which have
to be resolved into the classical Presburger language, significantly contribute to
that complexity.

4 Modulo Elimination as a Preprocessing Step

We are now going to considerably improve the running times observed in the
previous section. The basic idea is to eliminate, in a preprocessing step, all
occurrences of modk in favor of divk. To this end, we use the definition (3) of
divk and modk as a rewrite rule:

modk(x) → x − k # divk(x).

The validity of this modulo elimination rule is not affected by the discussion after
the statement of definition (3). After finitely many applications of the rule to
¬ϕ(w, a), we arrive at equivalent input to the SMT solver that does not contain
any modulo operations.

Applying modulo elimination to e(t, a) from (2) results in a+ t+ a# diva(t).
Using this reduced term instead of the original one inside ¬ϕ(w, a) makes a
significant difference in performance for the benchmarks from Table 1. The im-
proved results are collected in Table 2. Notice that the CPU times related by the
respective speedup factors refer to different subsets of finished computations due
to timeouts. Nevertheless, for practical purposes, these speedups are exactly the

5 All our SMT computations have been performed on a 2.4 GHz Intel Xeon E5-4640
running Debian Linux 64 bit.

64 R. Karrenberg, M. Košta, and T. Sturm

Table 2. Running times of Z3 applied to ¬ϕ(w, a) for e(t, a) obtained by applying
modulo elimination to the term in (2). In all three cases, α = 1 and β = 216 so that
a ∈ {1, . . . , 216 − 1} with a time limit of one minute per call.

FastWalshTransform Problem Set with Modulo Elimination using Z3

w Sat Unsat Unknown Timeouts CPU Time Speedup

4 16,383 49,152 0 0 4 min 210×
8 8,191 57,344 0 0 5 min 1164×

16 4,095 61,128 0 312 334 min 46×

interesting information. We have verified that our modulo elimination causes at
least 50 percent of the reported speedups.

These running times are not suitable for just-in-time compilation. For offline
release compilation, however, they are fine. Note that the computations can
be perfectly parallelized such that the use of, say, 64 virtual cores will result
in a corresponding speedup factor. We estimate that on such a system, the
FastWalshTransform problem set for w = 4 could be computed in less than
seventy hours even for α = −231 and β = 231 covering the full range of signed
32 bit integers. In general, there are situations where an optimization for a
subset of the range will result in a good tradeoff between compilation time and
performance gain.

Let us understand why modulo elimination is so successful on our types of ex-
amples: The relevant equation e(t+1, a)−e(t, a)−1 = 0 for FastWalshTransform
with e(t, a) taken from (2) is given by

2a # diva(t + 1) − 2a # diva(t) + moda(t + 1) − moda(t) − 1 = 0.

Modulo elimination yields:

2a# diva(t+ 1)− 2a# diva(t) + t+ 1 − a# diva(t + 1) − t+ a# diva(t) − 1 = 0,

which simplifies to a # diva(t + 1) − a # diva(t) = 0. Such patterns do not
occur accidentally: Programmers using data-parallel languages try hard to access
memory only consecutively to get the best performance. This leads to specific
patterns within address computation expressions. Using particularly divk and
modk, consecutivity can hardly be achieved without patterns similar to the one
discussed above.

To conclude this section, we are now going to discuss an additional example,
for which our approach turns out to be suitable even for just-in-time compilation.
This is a kernel, called bitonicSort, also taken from the AMD APP SDK.
The expression we are interested in here is

e(t, a) = 2a+1 # div2a(t) + mod2a(t) + 2a. (4)

The input parameter a occurs exclusively as an exponent. This restricts the
reasonable range of values to consider to {0, . . . , 62} on a 64 bit architecture.

Presburger Arithmetic in Memory Access Optimization 65

Table 3. Running times of Z3 applied to ¬ϕ(w, a) for e(t, a) as in (4). In all three
cases, α = 0 and β = 63 so that a ∈ {0, . . . , 62} with a time limit of one minute per
call.

BitonicSort Problem Set using Z3

w Sat Unsat Unknown Timeouts CPU Time

4 54 2 0 7 8 min
8 52 3 0 8 16 min

16 40 4 0 19 41 min

Table 4. Running times of Z3 applied to ¬ϕ(w, a) for e(t, a) obtained by applying
modulo elimination to the term in (4). In all three cases, α = 0 and β = 63 so that
a ∈ {0, . . . , 62} with a time limit of one minute per call.

BitonicSort Problem Set with Modulo Elimination using Z3

w Sat Unsat Unknown Timeouts CPU Time Speedup

4 61 2 0 0 0.7 s 686×
8 60 3 0 0 1.5 s 640×

16 59 4 0 0 3.7 s 665×

Table 4 shows the relevant running times. Noticing the similarities between (4)
and (2), it is clear that modulo elimination leads to similar simplifications in the
corresponding equation. The timings in Table 3 confirm this: The speedups are
similar to FastWalshTransform.

5 From SMT Solving Results to Code

Recall from Sect. 3 that the answer obtained there to our consecutivity question
“Do w consecutive work items access consecutive memory addresses when doing
this memory access or not?” is the set Aw,α,β of inputs a ∈ {α, . . . , β − 1} for
which the answer is affirmative. The respective sets Aw,α,β for all our problem
sets are collected in Table 5.

Our goal is now to produce during code generation a case distinction such
that for input contained in Aw,α,β, more efficient code including vector memory
operations will be executed. The right-hand side of Fig. 3 shows the automati-
cally generated code for the fastWalshTransform kernel for w = 2 without
imposing bounds α and β. For readability reasons, we use OpenCL notation
instead of the LLVM intermediate representation [13], which we actually use at
that stage of compilation. The corresponding condition

step <= 0 || step % 2 != 0 (5)

in the first if-statement describes the complement of the set Aw,α,β obtained
from our SMT solving step.

66 R. Karrenberg, M. Košta, and T. Sturm

Table 5. Output from the SMT solving step for all our problem sets. We have X ⊆
{ a ∈ Z | 1 ≤ a < 216 ∧ a ≡16 0 } with |X| = 312, i.e., timeouts occur only for input a
with a ≡16 0.

SMT Solving Step Output

Problem Set w α β Aw,α,β

FastWalshTransform 4 1 216 { a ∈ Z | 1 ≤ a < 216 ∧ a ≡4 0 }
FastWalshTransform 8 1 216 { a ∈ Z | 1 ≤ a < 216 ∧ a ≡8 0 }
FastWalshTransform 16 1 216 { a ∈ Z | 1 ≤ a < 216 ∧ a ≡16 0 } \X
BitonicSort 4 0 63 {0, . . . , 62} \ {0, 1}
BitonicSort 8 0 63 {0, . . . , 62} \ {0, 1, 2}
BitonicSort 16 0 63 {0, . . . , 62} \ {0, 1, 2, 3}

Due to our independent runs of the SMT solver for all possible choices of a,
the sets Aw,α,β are obtained explicitly as lists of elements. From these, we have to
generate implicit descriptions like (5). One approach for this is to represent the
characteristic functions of the sets Aw,α,β as bit strings and to use incremental
finite automata minimization to obtain minimal regular expressions. These are
finally transformed into quantifier-free Presburger conditions. Alternatively, one
could apply automatic synthesis techniques as suggested by Gulwani et al. [7].
At present, this step is not automated yet.

6 Evaluation: OpenCL Performance

We evaluate the effect of our improved code generation for memory accesses
for the applications that contain the kernels we discussed throughout the paper:
FastWalshTransform and BitonicSort. To this end, we have hooked into the WFV
OpenCL driver [11], employing our SMT-based approach to generate machine
code.

In each respective kernel, there are actually several memory operations, which
happen to lead to the same satisfiability problems ¬ϕ(w, a). It is worth noting
that for the majority of kernels that we found in the AMD APP SDK, the mem-
ory address computations are so simple that the relevant equations are decided
already via term simplification, i.e. without any non-trivial SMT solving. Never-
theless, our technique is to our knowledge the first one that enables the compiler
to generate better code in less simple cases such as FastWalshTransform and
BitonicSort. Hence, if maximum performance of a kernel with complex memory
operations is desired, our approach is the only currently available option.

In Table 6, we report kernel execution times of our SMT-enhanced driver in
different configurations.6 Each measurement shows the median of 1000 individual

6 These experiments were conducted on a Core 2 Quad at 2.8 GHz with 8 GB of RAM
running Ubuntu Linux 64 bit. The vector instruction set is Intel’s SSE 4.2, yielding
a SIMD width of four 32 bit values.

Presburger Arithmetic in Memory Access Optimization 67

Table 6. Median of kernel execution times for 1000 executions of various OpenCL CPU
drivers: Non-vectorized (Scalar), vectorized (WFV), and vectorized with our SMT-
based optimization (WFV+SMT). As a reference, we also include the performance of
the latest Intel and AMD implementations.7 The Speedup column shows the effect of
our SMT-based memory access optimization, comparing WFV+SMT to WFV.

OpenCL Kernel Performance (milliseconds)

Application Array Size AMD Intel Scalar WFV WFV+SMT Speedup

FastWalshTransform 16,777,216 413 313 303 309 299 1.03×
BitonicSort 1,048,576 894 680 236 121 58 2.09×

runs per configuration per benchmark without warm-up. Although the machine
was not rebooted after every run, the numbers reported here are as realistic as
possible for one cold-started, arbitrary run of the application.

The results clearly demonstrate the applicability of our approach. For Fast-
WalshTransform, this is the first time that we were able to beat the scalar
implementation with the WFV-based one [11]. It turns out, however, that the
optimized code can be executed in only one out of w cases, which limits the
performance gain. The situation is different for BitonicSort. Here, the optimized
code is executed in the majority of cases. The factor of 2.09 for BitonicSort is
huge, and also the 3 percent speedup for FastWalshTransform is relevant.

It is remarkable that in spite of including a WFV implementation, the Intel
driver refuses to vectorize either of the two kernels. This means that Intel’s
heuristics deem the code to not benefit from vectorization. The reasons are
probably that they consider the memory operations to dominate the runtime
and that the heuristics have to assume that these operations are not consecutive.
The AMD CPU driver does not use WFV.

7 Related Work

The basic analysis of memory address computations for linear translations by
constants, which we extend, was introduced as part of the vectorization analysis
of WFV [10,11]. Coutinho et al. [4] proposed a similar divergence analysis, which
identifies values that remain the same for all work items but does not analyze
consecutivity.

An increasing number of OpenCL drivers is being developed by different soft-
ware vendors for all kinds of platforms from GPUs to mobile devices. For com-
parison purposes, the x86 CPU compiler from Intel is most interesting, although
most details about the underlying implementation are not disclosed. According
to our experimental results, its analyses are not as advanced as ours. The Port-
land Group implemented an x86 CPU driver for CUDA, which also makes use of

7 software.intel.com/en-us/vcsource/tools/opencl, the Intel SDK for
OpenCL Applications XE 2013 Beta.

software.intel.com/en-us/vcsource/tools/opencl

68 R. Karrenberg, M. Košta, and T. Sturm

both multi-threading and WFV.8 Again, no details are publicly available. The
AMD driver, the POCL project [9], TwinPeaks [8], MCUDA [18], and Ocelot [6]
are other notable CPU implementations of the OpenCL and CUDA APIs, but
none of them employ WFV.

For GPUs, various approaches exist to analyze memory access patterns for coa-
lescing. However, none of the static approaches can handle integer division, mod-
ulo by constants, or non-constant inputs. CuMAPz [12] and the official CUDA
Visual Profiler perform dynamic analyses of memory access patterns and report
non-coalesced operations to the programmer. Yang et al. [21] implemented a static
compiler optimization to improve non-coalesced accesses using shared memory. Li
et al. [14] proposed an SMT-based approach for verification of GPU kernels. This
was extended by Lv et al. [15] to also profile coalescing. Tripakis et al. [19] use an
SMT solver to prove non-interference of SPMD programs. GPUVerify [2] is a tool
that uses Z3 to prove OpenCL and CUDA kernels to be free from race-conditions
and barrier divergence. None of these SMT-based techniques is concerned with
automatic code optimization but only with verification.

8 Conclusions and Future Work

We have improved the state-of-the art in CPU code generation for memory ac-
cess operations in data-parallel languages. The key idea is to prove at compile
time that certain memory operations access consecutive addresses. This task is
automatically translated to sets of formal problems that can be processed by an
off-the-shelf SMT solver. We have introduced modulo elimination, a preprocess-
ing technique on those formal problems which makes the approach practically
feasible. The SMT output admits to construct case distinctions that are crucial
for generating efficient code. Our performance measurements have demonstrated
that our generated code is more efficient than all previous approaches including
proprietary implementations by Intel and AMD.

To turn our prototypical environment into one integrated software system, a
few gaps have to be closed: The compiler has to be linked with the SMT solver
to minimize communication overhead. The code generation via finite automata
or automatic synthesis as suggested in Sect. 5 has not yet been implemented.

On the other hand, the results achieved here open up interesting perspectives
for future work in the areas combined in this paper: Modulo elimination should
be included in SMT solvers with appropriate heuristics. More generally, sophisti-
cated translation of integer division and modulo operations in special cases might
boost performance also in other application areas. It appears promising to gen-
erate from the final SMT input ¬ϕ(w, a) equivalent integer linear programs and
to compare the performance of corresponding software. On the compiler side, a
next step would be to automatically deduce tight ranges for the input values,
e.g., from their data types or even from their usage. It is quite clear that our
approach can be adapted to GPUs with SIMD instruction sets that have recently
entered the market, e.g., the latest AMD Sea Islands series.

8 The Portland Group, Inc. PGI CUDA-x86.

Presburger Arithmetic in Memory Access Optimization 69

Acknowledgements. We would like to thank Sebastian Hack for helpful dis-
cussions. This research was supported in part by the German Transregional
Collaborative Research Center SFB/TR 14 AVACS and in part by the German
Federal Ministry of Education and Research (BMBF).

References

1. Barrett, C., Conway, C.L., Deters, M., Hadarean, L., Jovanović, D., King, T.,
Reynolds, A., Tinelli, C.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV
2011. LNCS, vol. 6806, pp. 171–177. Springer, Heidelberg (2011)

2. Betts, A., Chong, N., Donaldson, A., Qadeer, S., Thomson, P.: Gpuverify: a verifier
for gpu kernels. In: Proceedings of the ACM International Conference on Object
Oriented Programming Systems Languages and Applications, OOPSLA 2012, pp.
113–132. ACM, New York (2012)

3. Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: The MathSAT5 SMT
Solver. In: Piterman, N., Smolka, S. (eds.) TACAS 2013. LNCS, vol. 7795,
pp. 93–107. Springer, Heidelberg (2013)

4. Coutinho, B., Sampaio, D., Pereira, F.M.Q., Meira, W.: Divergence analysis and
optimizations. In: 2011 International Conference on Parallel Architectures and
Compilation Techniques (PACT), pp. 320–329 (2011)

5. de Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

6. Diamos, G.F., Kerr, A.R., Yalamanchili, S., Clark, N.: Ocelot: a dynamic opti-
mization framework for bulk-synchronous applications in heterogeneous systems.
In: Proceedings of the 19th International Conference on Parallel Architectures and
Compilation Techniques, PACT 2010, pp. 353–364. ACM, New York (2010)

7. Gulwani, S., Jha, S., Tiwari, A., Venkatesan, R.: Synthesis of loop-free programs.
In: Proceedings of the 32nd ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, PLDI 2011, pp. 62–73. ACM, New York (2011)

8. Gummaraju, J., Morichetti, L., Houston, M., Sander, B., Gaster, B.R., Zheng, B.:
Twin peaks: a software platform for heterogeneous computing on general-purpose
and graphics processors. In: PACT, pp. 205–216. ACM, New York (2010)

9. Jaskelainen, P.O., de La Lama, C.S., Huerta, P., Takala, J.: OpenCL-based Design
Methodology for Application-Specific Processors. In: SAMOS 2010, pp. 223–230
(July 2010)

10. Karrenberg, R., Hack, S.: Whole function vectorization. In: CGO, pp. 141–150
(2011)

11. Karrenberg, R., Hack, S.: Improving Performance of OpenCL on CPUs. In:
O’Boyle, M. (ed.) CC 2012. LNCS, vol. 7210, pp. 1–20. Springer, Heidelberg (2012)

12. Kim, Y., Shrivastava, A.: Cumapz: a tool to analyze memory access patterns in
CUDA. In: Proceedings of the 48th Design Automation Conference, DAC 2011,
pp. 128–133. ACM, New York (2011)

13. Lattner, C., Adve, V.: LLVM: A Compilation Framework for Lifelong Program
Analysis & Transformation. In: CGO (March 2004)

14. Li, G., Gopalakrishnan, G.: Scalable smt-based verification of GPU kernel func-
tions. In: Proceedings of the Eighteenth ACM SIGSOFT International Symposium
on Foundations of Software Engineering, FSE 2010, pp. 187–196. ACM, New York
(2010)

70 R. Karrenberg, M. Košta, and T. Sturm

15. Lv, J., Li, G., Humphrey, A., Gopalakrishnan, G.: Performance degradation anal-
ysis of gpu kernels. In: Proceedings of the Workshop on Exploiting Concurrency
Efficiently and Correctly 2011, EC2 2011 (2011)

16. Presburger, M.: Über die Vollständigkeit eines gewissen Systems der Arithmetik
ganzer Zahlen, in welchem die Addition als einzige Operation hervortritt. In:
Comptes Rendus du Premier Congres de Mathematiciens des Pays Slaves, Warsaw,
Poland, pp. 92–101 (1929)

17. Robinson, J.: Definability and decision problems in arithmetic. J. Symb. Log. 14(2),
98–114 (1949)

18. Stratton, J.A., Stone, S.S., Hwu, W.-M.W.: MCUDA: An efficient implementation
of CUDA kernels for multi-core CPUs. In: Amaral, J.N. (ed.) LCPC 2008. LNCS,
vol. 5335, pp. 16–30. Springer, Heidelberg (2008)

19. Tripakis, S., Stergiou, C., Lublinerman, R.: Checking equivalence of spmd programs
using non-interference. Technical Report UCB/EECS-2010-11, EECS Department,
University of California, Berkeley (January 2010)

20. Weispfenning, V.: The complexity of almost linear Diophantine problems. Journal
of Symbolic Computation 10(5), 395–403 (1990)

21. Yang, Y., Xiang, P., Kong, J., Zhou, H.: A GPGPU compiler for memory optimiza-
tion and parallelism management. In: Proceedings of the 2010 ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI 2010,
pp. 86–97. ACM, New York (2010)

Roughening the EL Envelope

Rafael Peñaloza1,� and Tingting Zou2

1 Theoretical Computer Science, TU Dresden
Center for Advancing Electronics Dresden, Germany

penaloza@tcs.inf.tu-dresden.de
2 College of Computer Science and Technology, Jilin University, China

zoutingt@163.com

Abstract. The EL family of description logics (DLs) has been success-
fully applied for representing the knowledge of several domains, specially
from the bio-medical fields. One of its principal characteristics is that its
reasoning tasks have polynomial complexity, which makes them suitable
for large-scale knowledge bases. In their classical form, description logics
cannot handle imprecise concepts in a satisfactory manner. Rough sets
have been studied as a method for describing imprecise notions, by pro-
viding a lower and an upper approximation, which are defined through
classes of indiscernible elements.

In this paper we study the combination of the EL family of DLs
with the notion of rough sets, thus obtaining a family of rough DLs. We
show that the rough extension of these DLs maintains the polynomial-
time complexity enjoyed by its classical counterpart. We also present a
completion-based algorithm that is a strict generalization of the known
method for the DL EL++.

1 Introduction

Description Logics (DLs) [3] are a family of knowledge representation formalisms
designed for expressing terminological knowledge in an unambiguous and well-
understood manner. They have been successfully applied to modelling and rea-
soning with real-world knowledge domains, but arguably its largest success so
far is the designation of the DL-based language OWL as the standard ontology
language for the semantic web, by the W3C.1

The DL EL is a lightweight logic that allows only for conjunction and ex-
istential restrictions as constructors. As it cannot express negations, EL is not
propositionally closed. Despite its low expressivity, this logic and small exten-
sions of it have been successfully used for representing knowledge from several
domains, most prominently from the medical and biological fields. In fact, mi-
nor extensions of EL are the basic logics underlying large-scale ontologies like
Snomed CT2 or the Gene Ontology.3 A prominent feature of these logics is
� Partly supported by DFG within the Cluster of Excellence ‘cfAED’.
1 http://www.w3.org/TR/owl2-overview/
2 http://www.ihtsdo.org/snomed-ct/
3 http://www.geneontology.org

P. Fontaine, C. Ringeissen, and R.A. Schmidt (Eds.): FroCoS 2013, LNAI 8152, pp. 71–86, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://www.w3.org/TR/owl2-overview/
http://www.ihtsdo.org/snomed-ct/
http://www.geneontology.org

72 R. Peñaloza and T. Zou

their polynomial-time complexity of reasoning, which enables effective reasoning
procedures. In fact, modern reasoners are capable of classifying Snomed CT,
which has approximately 300,000 axioms, in less than seven seconds [16].

In their classical form the members of the EL family, as all other classical DLs,
lack the capacity of modelling and reasoning with imprecise knowledge. This
is in no way a small drawback, as imprecision is almost unavoidable in several
knowledge domains, like those from the bio-medical fields. For example, even the
notion of species, one of the mayor taxonomic ranks from biological classification
is far from precise, or even being well-understood. Consider for instance the case
of the Ensatina salamanders from North America. When seen independently, the
Monterey Ensatina and the Large Blotched Ensatina form two different species,
with their own characteristic traits; they can be easily distinguished as the former
is completely brown in color, while the latter is black with large yellow blotches.
Moreover, these two groups of individuals are uncapable to interbreed, which
is the minimal requirement for distinguishing elements of a species. However,
there also exists a group of intermediate individuals, that mix the traits of both
species, forming a gradual bridge between them; e.g., dark brown with lighter-
brown blotches. These intermediate individuals form also a chain of interbreeding
relations that goes from the Monterey to the Large Blotched Ensatinas. It is thus
unclear at which point these intermediate individuals stop being members of one
species and start belonging to the other. Indeed, providing a satisfactory notion
of when two individuals belong to the same species is a prominent problem in
biology [11].

The best-known approach for handling imprecision formally is through fuzzy
logic [13]. Fuzzy extensions of DLs have been thoroughly studied during the last
decade as a formalism for representing vague terminological knowledge [19,23].
However, it was recently shown that reasoning in expressive fuzzy DLs is either
undecidable [6,9], or must ignore the truth degrees [5]. Even for the inexpres-
sive DL EL, the extension to general fuzzy-set based semantics usually yields
intractable reasoning problems [8]. It can be argued that these negative com-
plexity results arise from the high level of granularity provided by fuzzy seman-
tics, where every number from the interval [0, 1] can be used as a truth degree.
In other words, it is possible to make arbitrarily small distinctions between ele-
ments of the domain. One can partially alleviate this problem by restricting to
finitely many truth degrees [4,7]. In this case, the resources needed for reasoning
are directly correlated with the size of the truth value space. This idea, however,
adds the burden of deciding a priori the amount of degrees that will be needed
and their relevant operations. It is thus desirable to obtain an intermediate for-
malism that allows for imprecise limitations of concepts, while avoiding the level
of detail of fuzzy logics.

Rough sets were introduced in [20] as an alternative to fuzzy set theory [26]
for dealing with imprecise notions. The main idea behind this formalism is to
describe imprecise sets by allowing a class of boundary elements that can neither
be stated to belong, nor to be outside, the set. More precisely, a set X without
a clear distinction on its limits, is approximated using a set X of elements that

Roughening the EL Envelope 73

are guaranteed to belong to X , and a set X of elements that might be members
of X ; this latter set is called the upper approximation of X . These sets are for-
mally defined with the help of an indiscernibility relation that clusters together
individuals sharing the same properties. The difference X \X are the boundary
elements, which cannot be ensured to belong to X , nor to its complement.

For example, the problem with the different species of Ensatina salamanders
can be solved by stating that the intermediate individuals belong to the upper
bounds of the sets of both species. This representation allows us to state prop-
erties of the intermediate individuals (e.g. that they have mixed traits from the
border species) without providing a clear-cut division of these individuals into
the two species.

In this paper we study rough EL++, a logic that combines the DL EL++

(without concrete domains) and rough set semantics. Although the combination
of rough set theory with DLs is far from new (see e.g. [18] for some early work),
interest in it has grown in the last few years [10,14,17,22]. Most of the work in this
direction so far focuses on rough extensions of expressive DLs. The approach is to
extend a description logic with two new constructors that describe the upper and
lower approximations of concepts. The semantics of these constructors are based
on equivalence relations that provide the indiscernibility relation from rough set
theory. In [22] it was shown that these constructors can be modelled in classical
DLs with the help of existential and value restrictions over a new transitive,
symmetric and reflexive role ρ. Briefly, the role ρ describes the indiscernibility
relation, and the value and existential restrictions can be used to describe the
lower and upper approximations, respectively. This construction is useful for
showing that the rough constructors do not increase the complexity of standard
reasoning for expressive DLs.

The reduction from [22], when applied to rough EL++, requires to extend the
set of constructors to include value restrictions and inverse roles, among oth-
ers. The extensions of EL++ with any of these constructors are known to be
ExpTime-complete [1,2]. Thus, this approach yields an exponential-time upper
bound for reasoning in rough EL++, in contrast to the polynomial-time complex-
ity for classical EL++. In this paper we show that subsumption in rough EL++ is
in fact PTime-complete, matching the known complexity for its classical logic.

The paper is divided as follows. We first provide a very brief introduction
to the theory of rough sets, which will be useful for defining the syntax and
semantics of rough EL++ in Section 3, where we also prove some basic properties
of this logic. In Section 4, we describe a completion-based algorithm for deciding
subsumption of rough EL++ concepts. As an added benefit, we obtain that
classifying the full ontology needs only polynomial time. This paper extends the
results from [21].

2 Rough Sets

Rough sets were introduced in [20] as an alternative to fuzzy set theory [26] for
dealing with imprecise notions. The main motivation in this formalism is to be

74 R. Peñaloza and T. Zou

able to approximate terms that defy a precise characterisation, with the help
of an equivalence relation ∼, called the indiscernibility relation. Formally, the
equivalence relation ∼ divides the universe into its equivalence classes, which
form clusters, or granules of indiscernible elements. Intuitively, elements belong-
ing to the same equivalence class cannot be distinguished through their perceiv-
able characteristics, and hence cannot be divided by a given set. Rough sets are
also sometimes called granular sets in the literature and are one of the basis for
granular computing [25].

Given a set X , and an equivalence relation ∼, we can define its best lower ap-
proximation, denoted by X, as the greatest union of equivalence classes contained
in X ; i.e., X :=

⋃
[x]∼⊆X [x]∼. Likewise, its best upper approximation is the union

of the equivalence classes of all elements of X ; X :=
⋃

x∈X [x]∼. Equivalently, we
have

X = {x | [x]∼ ⊆ X}, X = {x | [x]∼ ∩ X �= ∅}.

The elements in X are those that can be clearly distinguished from any ele-
ment not belonging to X , and hence are said to surely belong to X . The members
of X, on the other hand, are those indistinguishable from some element of X ,
and said to possibly belong to X . The elements in the boundary X \X of X are
those for which the notion of belonging to X cannot be made precise, as they are
indistinguishable from both, members X and members of the complement of X .

From an informal point of view, it is possible to see rough sets as a three-valued
membership function, where members of X strongly belong to X , the boundary
elements weakly belong to X , and those in the complement of X do not belong to
X . However, this description is overly simplistic, as the three-valued semantics
are incapable of fully characterising the properties of the indiscernibility relation.
In particular, the desired properties relating a three-valued conjunction with
its three-valued implication cannot be enforced through the conjunction and
implication of rough sets.

In the next section, we describe the combination of the description logic EL
with the lower and upper-approximation constructors, whose semantics is based
on rough sets. Afterwards, we describe a completion algorithm for deciding (clas-
sical) subsumption between rough EL concepts.

3 Rough EL++

The logic rough EL++ extends classical EL++ by allowing the lower approxima-
tion and upper approximation constructors · and · for expressing rough concepts.
Formally, from three mutually disjoint sets NC, NR, and NI of concept, role, and
individual names, rough EL++ concepts are constructed using the following syn-
tactic rule:

C ::= A | C1 � C2 | ∃r.C | C | C | {a} | � | ⊥,

Roughening the EL Envelope 75

where A ∈ NC, r ∈ NR, and a ∈ NI.4
The semantics of this logic is based on interpretations that map concept names

to subsets of a non-empty domain Δ, and role names to binary relations over
Δ. To handle the rough concept constructors, these interpretations additionally
require an indiscernibility relation.

Definition 1. A rough interpretation is a tuple I = (ΔI , ·I ,∼I), where ΔI is
a non-empty set called the domain, ∼I is an equivalence relation on ΔI , called
the indiscernibility relation, and ·I is the interpretation function mapping every
concept name A to a subset AI ⊆ ΔI, every role name r to a binary relation
rI ⊆ ΔI × ΔI , and every individual name a to an element aI ∈ ΔI.

As usual, we denote the equivalence class of an element x ∈ ΔI w.r.t. the
relation ∼I by [x]∼I . The interpretation function is extended to general rough
EL++ concepts by setting:

– (C1 � C2)I = CI
1 ∩ CI

2 ,
– (∃r.C)I = {x ∈ ΔI | ∃y ∈ ΔI . (x, y) ∈ rI ∧ y ∈ CI},
– C

I
= {x ∈ ΔI | [x]∼I ∩ CI �= ∅},

– CI = {x ∈ ΔI | [x]∼I ⊆ CI},
– {a}I = {aI},
– �I = ΔI , and ⊥I = ∅.

Intuitively, the indiscernibility relation groups the elements of the domain
that cannot be distinguished from each other, at the considered level of detail.
The upper approximation C of a given concept C describes those individuals
that cannot be excluded from belonging to C, as they are indistinguishable from
some element belonging to this concept. Dually, the individuals C are those that
are discernible (i.e., can be detached) from every element not belonging to C.
Clearly, for every interpretation I and concept C it holds that CI ⊆ CI ⊆ C

I .
The borderline cases, those elements belonging to C

I \ CI , cannot be ensured
to be, nor excluded from being instances of C through the equivalence relation.

The domain knowledge is described using a TBox : a finite set of GCIs of the
form C & D, where C,D are rough EL++ concepts, and role inclusion axioms
(RIs) of the form r ◦ s & t or r & t, where r, s, t ∈ NR. Their semantics is defined
as follows. The interpretation I satisfies the GCI C & D if and only if CI ⊆ DI

holds. It satisfies the RI r ◦ s & t (resp., r & t) if rI ◦ sI ⊆ tI (resp., rI ⊆ tI).
I is a model of the TBox T if it satisfies all the GCIs and RIs in T .

Contrary to less expressive DLs such as EL, it is possible to build inconsis-
tent rough EL++ TBoxes, due to the presence of the bottom concept ⊥. As
a simple example, consider the GCI {a} & ⊥ that cannot be satisfied by any
interpretation I. Despite this situation, we still focus our attention to the prob-
lem of deciding subsumption between concepts, which can be used to solve all
4 The logic EL++ allows also for concrete domains. In this paper we decided to exclude

concrete domains to reduce the number of completion rules, and simplify the proofs.
Including this constructor in the logic should not affect our complexity results.

76 R. Peñaloza and T. Zou

other standard reasoning problems like concept satisfiability, or the instance
problem [1].

Definition 2. Let T be a TBox and C,D two rough EL++ concepts. We say
that C is subsumed by D w.r.t. T , denoted by C &T D, if for every model I
of T it holds that CI ⊆ DI . Classification is the problem of deciding, for every
pair of concept names A,B, whether A &T B holds or not.

Example 3. Consider once again the Ensatina salamanders and the TBox

MontereyE � LargeBlotchedE & ⊥
∃interbreed.MontereyE & MontereyE

∃interbreed.LargeBlotchedE & LargeBlotchedE

that describes usual desired properties of the notion of species; namely, that no
individual may belong to two different species (first axiom), and that belonging
to a species is characterized by the capacity of interbreeding with elements of
that species (last two axioms). Consider now three salamanders a, b, c such that
a and c belong to each of the limit species, and b can interbreed with both; i.e.,

{a} & MontereyE

{c} & LargeBlotchedE

{b} & ∃interbreed.{a} � ∃interbreed.{c}.

From all these axioms, we can deduce that the salamander b belongs to the upper
approximation of both limit species, and hence is an intermediate salamander.
We could then deduce some further properties of {b} in the presence of other
axioms in the TBox.

If we had restricted the description to the classical definition of species through
interbreeding, i.e., used the axioms ∃interbreed.MontereyE & MontereyE and
∃interbreed.LargeBlotchedE & LargeBlotchedE in place of the upper approxima-
tions as above, the TBox would be inconsistent as b would be a member of both
species, which are specified to be disjoint. In this case, rough concepts provide
a (partial) solution to the species problem.

As shown in [22], reasoning in rough DLs can be reduced to reasoning in a
classical DL that allows value restrictions, inverse, and reflexive roles, and role
inclusion axioms. Let ρ be a new role that does not appear in T . If we restrict
ρ to be reflexive, and include the role inclusion axioms ρ ◦ ρ & ρ (transitivity),
and ρ−1 & ρ (symmetry), then the concepts C and C are equivalent to the con-
cepts ∃ρ.C and ∀ρ.C, respectively (see [22] for full details). However, although
transitive roles are a feature of EL++, it is well known that extensions of classi-
cal EL++ with either value restrictions or inverse roles are already intractable;
in fact reasoning in these extensions is ExpTime-complete [1,2,24]. Applying
this reduction directly, yields an ExpTime upper bound for the complexity of
deciding subsumption of rough EL++ concepts. On the other hand, only one

Roughening the EL Envelope 77

role name, namely ρ, is used in any of the possibly expensive constructors intro-
duced by this reduction. As we will see in the following section, this limited use
does help in improving the complexity, as the problem of deciding subsumption
between concepts is decidable in polynomial time.

Clearly, the subsumption relation &T is transitive; that is, if C &T D and
D &T E, then also C &T E holds. Due to the properties of lower and upper ap-
proximations, some additional subsumption relations can sometimes be deduced,
as shown next.

Theorem 4. For all rough EL++ concepts C,D,E,D1, D2, the following prop-
erties hold:

1. C &T D iff C &T D
2. if C &T D and D &T E, then C &T E
3. if C &T D and D &T E, then C &T E
4. if C &T D1 and C &T D2 (respectively, C &T D2, or C &T D2), then

C &T D1 � D2 (resp., C &T D1 � D2, or C &T D1 � D2).

Proof. Let I = (ΔI , ·I ,∼I) be a model of T , and x ∈ ΔI .

1. (⇐) If x ∈ C
I
, then there exists a y ∈ [x]∼I ∩ CI . By assumption, y ∈ DI .

Thus, x ∈ [y]∼I ⊆ DI .
(⇒) Let x ∈ CI . We must prove that [x]∼I ⊆ DI . Let y ∼I x. Then, y ∈ C

I ,
and thus, by assumption, y ∈ DI .

2. Let x ∈ CI . By assumption, we know that there exists z ∈ [x]∼I ∩ DI , and
thus z ∈ EI ; i.e., [x]∼I = [z]∼I ⊆ EI . Hence x ∈ EI .

3. If x ∈ CI , then by assumption it holds that [x]∼I ⊆ DI . Let y ∼I x. Then
[y]∼I = [x]∼I ⊆ DI , and hence y ∈ DI , and by assumption y ∈ EI .

4. If x ∈ CI , then [x]∼I ⊆ DI
1 . For the case where C &T D2, it then follows

that [x]∼I ⊆ DI
1 ∩DI

2 = (D1�D2)I , and hence x ∈ (D1 � D2)I . If C &T D2,
then x ∈ DI

2 , and since x ∈ [x]∼I , it follows that x ∈ (D1 � D2)I . Finally,
if C &T D2, then [x]∼I ∩ DI

2 �= ∅ and since [x]∼I ⊆ DI
1 , it holds that

[x]∼I ∩ DI
1 = [x]∼I . Thus, [x]∼I ∩ (D1 � D2)I �= ∅. �

In the following section we will exploit these properties to build a completion-
based algorithm that classifies a TBox and can be used to decide which sub-
sumption relations hold.

4 A Completion Algorithm

In this section, we describe an algorithm for deciding subsumption relations
between concepts. To simplify the description, we will focus exclusively on sub-
sumption between concept names. Notice that subsumption between complex
rough EL++ concepts C,D can be reduced to this problem by adding the two
axioms A & C and D & B, where A,B are two new concept names, to T
and then deciding whether A &T B holds. Thus, restricting to concept name
subsumption results in no loss of generality.

78 R. Peñaloza and T. Zou

Table 1. Normalisation rules, where A ∈ BC, C,D /∈ BC and X is a new concept name

NF1 A � C � E −→ {C � X,A �X � E}
NF2 ∃r.C � E −→ {C � X, ∃r.X � E}
NF3 C � E −→ {C � X,X � E}
NF4 C � E −→ {C � E}
NF5 C � D −→ {C � X,X � D}
NF6 A � E � F −→ {A � E,A � F}
NF7 A � ∃r.C −→ {A � ∃r.X,X � C}
NF8 A � C −→ {A � X,X � C}
NF9 A � C −→ {A � X,X � C}
NF10 ⊥ � E −→ ∅

As a preprocessing step for the algorithm, we transform the TBox into an
adequate normal form. We define the set BC of basic concepts as the smallest
set containing all concept names, all nominal concepts, and the top concept; i.e.,
BC := NC ∪ {�}∪ {{a} | a ∈ NI}. The TBox T is in normal form, if all its GCIs
are of one of the following forms:

A & ∃r.B, ∃r.A & C, A � A′ & C, A & C, A & B, or A & B, 5

where A,A′, B ∈ BC, C ∈ BC∪{⊥}, and r ∈ NR. The normalisation rules shown
in Table 1 can be used to transform any TBox T into a TBox in normal form that
preserves all the subsumption relations from T . It is possible to show that these
normalisation rules yield a normalised TBox in linear time. Notice in particular
rule NF4, which takes advantage of the first property described in Theorem 4.

Our completion algorithm extends the methods described in [1], to appropri-
ately handle the lower and upper approximations of concepts. The idea is to
store the information of the subsumption relations using a collection of com-
pletion sets. The main difference with the classical approach is that we need
to maintain special completion sets for the lower and upper approximations, in
order to handle the special properties of these constructors. Moreover, as shown
in [15], a correct handling of nominals requires to keep track of additional de-
pendencies between basic concepts. This is done through a reachability relation
�R, where A�RB intuitively expresses that if A has a non-empty interpreta-
tion, then B must also be non-empty. This relation is built in parallel to the
completion sets during the execution of the algorithm.

The algorithm uses a family of completion sets as data structure. In the follow-
ing we will denote as BCT the set of all basic concepts that appear in the TBox T ,
and analogously for NCT , NRT , and NIT . For every basic concept A ∈ BCT and
every concept name G ∈ NCT , we store three completion sets SG(A), SG(A), and
S
G

(A), and additionally a completion set SG(A, r) for every role name r ∈ NRT .
5 To simplify the description, we use the expression ��A � B to represent axioms of

the form A � B.

Roughening the EL Envelope 79

The members of the completion sets are all basic concepts or ⊥. These sets will
maintain the following invariants during the whole execution of the algorithm:

i1 if B ∈ SG(A), and G�RA, then A &T B

i2 if B ∈ S
G

(A), and G�RA, then A &T B
i3 if B ∈ SG(A), and G�RA, then A &T B
i4 if B ∈ SG(A, r), and G�RA, then A &T ∃r.B
i5 if G�RA, then for every model I of T , GI �= ∅ implies AI �= ∅.

The completion sets are initialised as

SG(A) = S
G

(A) := {A,�}, SG(A) := {�}, SG(A, r) := ∅

for basic concepts A ∈ BCT , concept names G ∈ NCT , and role names r ∈ NRT .
The reachability relation initially states only that G�RG and G�R{a} for every
G ∈ NCT and every a ∈ NIT . Obviously, this initialisation preserves all the
invariants described above.

The completion rules from Table 2 are then applied to extend these sets.
Before continuing to show correctness of this algorithm, we briefly explain these
rules. The rules up to cr7 correspond to the completion rules for classical EL++

from [1] with the correct treatment of nominals adapted from [15]. The following
rules up to cr15 consider the axioms containing rough concepts, as well as the
consequences of crisp axioms when applied to rough concepts. The first two of
those rules are a simple consequence of the properties of intersections of rough
sets. We discuss the rule cr12 in more detail. Under the assumption that G
is not empty, G�RA2 states that A2 must also be non-empty. Additionally,
{a} ∈ SG(A2) in particular implies that every member of A2 must also belong
to {a}, and hence A2 must be equivalent to {a}. Consider now some element
of A1. {a} ∈ S

G
(A1) states that this element must be indiscernible from a and

hence is indiscernible from an element of A2. Thus, A2 must be added to SG(A1).
The rule cr11 follows from a similar but simpler argument.

The next six rules consider a cross-population of of the completion sets, fol-
lowing the properties of rough sets described in the previous section. Finally,
the last two rules extend the reachability relation to keep information on which
concept names should be interpreted as non-empty under the assumption that
G is non-empty.

To ensure termination, a rule is only applied if it adds new information; that
is, if the basic concepts to be added to the completion sets by such rule applica-
tion are not already in them. These rules are applied until the completion sets
are saturated ; i.e., until no rule is applicable anymore. We first show that this
procedure terminates in polynomial time.

Lemma 5. The rules from Table 2 can only be applied a polynomial number of
times, and each rule application needs polynomial time.

80 R. Peñaloza and T. Zou

Table 2. Completion rules for rough EL++

cr1 if B1 ∈ SG(A), B2 ∈ SG(A), and B1 � B2 � C ∈ T , then add C to SG(A)

cr2 if B ∈ SG(A) and B � ∃r.C ∈ T , then add C to SG(A, r)

cr3 if B ∈ SG(A, r), C ∈ SG(B), and ∃r.C � D ∈ T , then add D to SG(A)

cr4 if B ∈ SG(A, r) and ⊥ ∈ SG(B), then add ⊥ to SG(A)

cr5 if B ∈ SG(A, r) and r � t ∈ T , then add B to SG(A, t)

cr6 if B ∈ SG(A, r), C ∈ SG(B, s), and r ◦ s � t ∈ T , then add C to SG(A, t)

cr7 if {a} ∈ SG(A1) ∩ SG(A2) and G�RA2, then add A2 to SG(A1)

cr8 if B1 ∈ SG(A), B2 ∈ SG(A), and B1 � B2 � C ∈ T , then add C to SG(A)

cr9 if B1 ∈ SG(A), B2 ∈ S
G
(A), and B1 � B2 � C ∈ T , then add C to S

G
(A)

cr10 if B ∈ S
G
(A) and ⊥ ∈ S

G
(B), then add ⊥ to SG(A)

cr11 if {a} ∈ S
G
(A1) ∩ S

G
(A2) and G�RA2, then add A2 to S

G
(A1)

cr12 if {a} ∈ S
G
(A1) ∩ SG(A2) and G�RA2, then add A2 to SG(A1)

cr13 if B ∈ SG(A) and B � C ∈ T , then add C to SG(A)

cr14 if B ∈ S
G
(A), and B � C ∈ T , then add C to SG(A)

cr15 if B ∈ S
G
(A), and B � C ∈ T , then add C to S

G
(A)

cr16 if B ∈ SG(A) then add B to SG(A)

cr17 if B ∈ SG(A) then add B to S
G
(A)

cr18 if B ∈ SG(A) and C ∈ SG(B) then add C to SG(A)

cr19 if B ∈ S
G
(A) and C ∈ S

G
(B) then add C to S

G
(A)

cr20 if B ∈ S
G
(A) and C ∈ SG(B) then add C to SG(A)

cr21 if ⊥ ∈ S
G
(A) then add ⊥ to SG(A)

cr22 if G�RA and B ∈ SG(A, r), then G�RB

cr23 if G�RA and B ∈ S
G
(A), then G�RB

Proof. Each of the completion sets contains only basic concepts that appear in
T . Thus, the size of each of these sets is linear on T . For each concept name
in T there are three such completion sets for every basic concept, plus one
additional completion set for each basic concept and role name. Thus, the number
of completion sets is quadratic on the size of T . Each application of a completion
rule cr1–cr21 adds one concept name to one completion set, and never removes
any. This means that there can be at most polynomially many rule applications,
before no new concept name can be added to any completion set. The reachability
relation �R maps basic concepts, so it can have at most quadratically many
elements. Each application of one of the last two rules adds a pair to this relation,
and hence only quadratically many rule applications are possible.

Roughening the EL Envelope 81

For testing the pre-condition of a rule application, we can simply explore all
the completion sets, at most twice, and the set of axioms T . This exploration
needs in total polynomial time. ��

When the algorithm terminates, we can read all the subsumption relations
between concept names appearing in the TBox T , by simply considering the
elements appearing in the subsumption sets. More precisely, the subsumption
relation A &T B holds iff (i) {B,⊥} ∩ SA(A) �= ∅, or (ii) there exists a ∈ NIT
such that ⊥ ∈ SA({a}). We prove first that the method is sound, by showing
that rule applications preserve the invariants i1 to i5 described before.

Lemma 6. The invariants i1 to i5 are preserved through all rule applications.

Proof. As said before, the invariants are satisfied by the initialisation of the
completion sets. Soundness of the first seven rules has been shown in [1,15].
For the remaining rules, we take advantage of the properties of rough concepts.
Recall that for every concept name A, it holds that A &T A &T A. This shows
soundness of the rules cr16 and cr17.

For the rule cr8, let A &T B1 and A &T B2. Then for every interpretation
I and every x ∈ I if x ∈ AI , then [x]∼I ⊆ BI

1 ∩ BI
2 . Thus, [x]∼I ⊆ CI , which

implies that A & C. Rule cr9 can be treated analogously. Soundness of the rules
treating nominals has been argued before, and of the remaining concept rules is
a direct consequence of Theorem 4.

The last two rules simply transfer the assumption of non-emptiness to all
existential successors, in the first case, and to all weak subsumers in the second
case. This transfer preserves the invariant i5. ��

Since A�RA, the first invariant entails that whenever B ∈ SA(A), the sub-
sumption relation A &T B holds. Likewise, if ⊥ ∈ SA(A) ∪ SA({a}), the same
invariant together with i5 yield that A must be interpreted as empty by every
model of T . If this is the case, then A is trivially subsumed by B.

It remains only to show completeness; i.e., that once the algorithm has termi-
nated, all the subsumption relations are explicitly stated in the completion sets,
as described before. As usual, we show this by building, given concept names
A,B ∈ NCT not satisfying the conditions (i) nor (ii) above, a countermodel for
the subsumption relation between A and B. The main idea is to have one domain
element for each basic concept C appearing in T , which can be reached from A
through the relation�R (and thus, must have a non-empty interpretation in the
countermodel). The interpretation function will include this element in every ba-
sic concept D that subsumes C w.r.t. T . However, we need to create additional
auxiliary individuals to correctly deal with the upper and lower approximations
of each of these concept names. We thus add an element Cu that will be inter-
preted to belong to all concept names D such that D subsumes C. For dealing
with the upper approximations, the construction is slightly more complex, as
different elements might be needed to witness the existence of an indiscernible

82 R. Peñaloza and T. Zou

element belonging to different concept names: from C &T D1 and C &T D2,
and x ∈ CI , we can only deduce that there exist y1 and y2 such that x∼Iyi and
yi ∈ DI

i holds for i ∈ {1, 2}. If we enforce y1 = y2, then it would follow that
x ∈ (D1 �D2)I , but this is not a consequence of the two subsumptions. Thus,
we need to treat the witnesses for C being subsumed by D1 and by D2 indepen-
dently. Moreover, since nominals must be interpreted as singleton sets, we also
need to identify all basic concepts that are subsumed by the same nominal. We
also need to identify the auxiliary domain elements introduced for dealing with
rough constructors, if they refer to the same nominal, or if they were generated
by a conjunction of lower and upper approximations. We formalize these ideas
next.

Lemma 7. Let A,B be two concept names appearing in T , and SA the class
completion sets for A obtained after the application of the completion rules has
terminated. If {B,⊥} ∩ SA(A) = ∅ and ⊥ /∈ SA({a}), for all a ∈ NIT , then
A �&T B.

Proof. We need to build a model I of T such that AI �⊆ BI . We start by defining
the set of relevant concepts

C := {C,Cu, CD | C,D ∈ BCT , A�RC,D ∈ S
A

(C)}.

Let �� be the relation on C where x �� y iff any of the following conditions hold:

1. exist a ∈ NIT , C,D ∈ BCT with x = C, y = D, and {a} ∈ SA(C) ∩ SA(D),
2. exist a ∈ NIT and C ∈ BCT with x = {a} and y = C{a},
3. exists C ∈ BCT with x = C, y = Cu and C ∈ SA(C), or
4. exist C,D1, D2, E ∈ BCT with x = CD1 y = CE , D2 ∈ SA(C), D1 ∈ S

A
(C),

and D1 � D2 & E ∈ T .

Let �C� denote the equivalence class of C on the transitive, reflexive and sym-
metric closure of ��. These equivalence classes form the interpretation domain;
that is, ΔI := {�C� | C ∈ C}.

The idea is to use the class �C� as a prototype individual belonging to the
concept C. Recall that we have assumed that ⊥ /∈ SA(A) ∪

⋃
a∈NIT

SA({a}).
From this assumption it follows that ⊥ does not appear in any equivalence class.

The indiscernibility relation ∼I is the transitive, reflexive and symmetric clo-
sure of {(�C�, �Cu�), (�C�, �CD�) | C,D ∈ BCT , A�RC}; thus, the indiscerni-
bility class defined by a basic concept C is

[C]∼I := {�C�, �Cu�} ∪ {�CD� | D ∈ S
A

(C)}.

It remains only to define the interpretation function ·I . For a concept name
C ∈ NCT , role name r ∈ NRT and individual name a ∈ NIT , we set

Roughening the EL Envelope 83

CI := {�D� | C ∈ SA(D)} ∪ {�Du� | C ∈ SA(D)} ∪

{�DX� | C ∈ SA(X), X ∈ S
A

(D)} ∪ {�DX� | C ∈ SA(D), DX ∈ C},
rI := {(�C�, �D�) | D ∈ S(C, r)} ∪ {(�Cu�, �D�) | D ∈ S(X, r), X ∈ S(C)} ∪

{(�CX�, �D�) | D ∈ S(X, r), X ∈ S(C)} ∪
{(�CX�, �D�) | D ∈ S(Y, r), Y ∈ S(C), CX ∈ C}, and

aI := �{a}�.

It can be seen that this interpretation function is well defined. It is a simple case
analysis to show that, for every C ∈ BCT , and every D ∈ BCT ∪ {⊥} it holds
that �C� ∈ DI iff D ∈ SA(C). Hence, we have that �A� ∈ AI but �A� /∈ BI . It
only remains to be shown that I is indeed a model of T . The proof is by case
analysis, on the shape of the axiom, and the domain element.
[C & D] Let x ∈ CI ; i.e., [x]∼I ⊆ CI and let E ∈ BCT such that [E]∼I = [x]∼I .
Then �Eu� ∈ CI . By definition, this means that C ∈ S(E). Since the rule cr13 is
not applicable, D ∈ S(E), and by rule cr16, D ∈ S(E). Let now �EF � ∈ [E]∼I .
Since D ∈ S(E), by definition �EF � ∈ DI . It thus follows that [E]∼I ⊆ DI and
since x ∈ [E]∼I , x ∈ DI .
[C & D] Let x ∈ CI and E ∈ BCT with [x]∼I = [E]∼I . Then, x is one of
�Eu�, �E�, or �EF � for some F ∈ BCT . Since x ∈ CI , by definition we know
that either C ∈ SA(E), C ∈ SA(E), or C ∈ SA(F) and F ∈ S

A
(E), depending

on the shape of x. In any of the three cases, saturation of the rules cr16, cr17,
and cr19, implies that C ∈ S(E). By rule cr14, it the follows that D ∈ S(E)
and hence also D ∈ S(E) ∩ S(E). This implies that [x]∼I = [E]∼I ⊆ DI , and
thus x ∈ DI .
[C & D] Let x ∈ CI and [x]∼I = [E]∼I . As in the previous case, we know that
C ∈ S(E), and from rule cr15 it follows that D ∈ S(E). Thus, �ED� ∈ DI .
Since �ED� ∈ [x]∼I , this implies that [x]∼I ∩ DI �= ∅, and hence x ∈ D

I
.

[C1 � C2 & D] Let x ∈ CI
1 ∩ CI

2 and E ∈ BCT such that [x]∼I = [E]∼I . If
x = �E�, then by definition {C1, C2} ⊆ SA(E), and from rule cr1 it follows
that D ∈ SA(E) and hence x = �E� ∈ DI . The case for x = �Eu� can be shown
analogously using rule cr8. If x = �EF � for some F ∈ S

A
(E), then for each

i ∈ {1, 2} it holds that Ci ∈ SA(F)∪SA(E). The cases where both Cis belong to
the same set are analogous to the cases for �E� and �Eu� shown before. For the
remaining two cases assume w.l.o.g. that C1 ∈ SA(F) and C2 ∈ SA(E). Then,
by rule cr17 C1 ∈ S

A
(F). The definition of the relation �� then implies that

�EF � = �ED�. From rules cr19 and cr9 it also follows that D ∈ S
A

(E). These
two facts together imply that x = �ED� ∈ DI .

The remaining cases can be treated in a similar way, following the arguments
for the classical setting from [1,15]. The only additional difficulty arises in a

84 R. Peñaloza and T. Zou

case analysis for the shape of the domain elements, as the classes for Cu and CD

depend on the completion sets S and S, which have a slightly different behaviour
than S. ��

This lemma shows that the algorithm is complete. In order to decide whether
a concept name A is subsumed by B ∈ NCT , one needs only analyse the sets
SA(A) and SA({a}) for all a ∈ NIT . If the goal is to classify the TBox T , then
this analysis has to be repeated for all concept names A, however, there is no
need to recompute the completion sets; one run of the completion algorithm
provides information on all the subsumption relations between concept names.
We thus obtain the following result.

Theorem 8. Subsumption of rough EL++ concept names w.r.t. TBoxes can be
decided in polynomial time. Moreover, the TBox T can be classified in polynomial
time.

Since subsumption is already PTime-hard for classical EL [12], this theorem
proves that the problem is PTime-complete.

5 Conclusions

We have studied rough EL++, a description logic that extends the lightweight DL
EL++ to allow for lower and upper approximations from rough set theory. Rough
DLs are presented as an alternative to fuzzy DLs for dealing with imprecise
knowledge, in face to the recent negative complexity results for fuzzy description
logics. Rough DLs allow for a less fine-grained treatment of vagueness, which
reflects in a lower complexity of reasoning.

The logic we studied covers the logical basis for the OWL 2 EL profile of
the standard ontology language for the semantic web OWL 2, except for the
expression of concrete domains. We have shown that subsumption of concept
names w.r.t. rough EL++ TBoxes can be decided in polynomial time. This result
was obtained by providing a completion-based algorithm capable of classifying
the TBox in polynomial time. As an added benefit, our approach does not require
including expensive constructors that damage the efficiency of EL++ reasoners.
We do not expect that adding p-admissible concrete domains to this formalism
would negatively affect these complexity results.

Our algorithm is a direct extension from the one presented in [1] in that,
when no rough constructors appear in the TBox, the algorithm behaves simi-
larly. The only difference is in the handling of nominals, where we adapt the
method from [15] to obtain completeness. Unfortunately, the cost of handling
potential rough concepts is to double the space needed.6 This unnecessary cost
can be easily avoided by disallowing applications of rules cr8 to cr21 and rule
cr23 whenever the TBox uses only classical EL++ constructors. Our algorithm
requires maintaining a higher number of completion sets and dealing with a

6 Without the lower approximation constructor, the sets S are never populated.

Roughening the EL Envelope 85

larger variety of rules. Despite this, the structure of these completion sets and
rules is very similar to the ones used in current implementations of EL++ reason-
ers. Thus, we do not expect that implementing them into a rough EL++ system
would cause much trouble.

These polynomial-time complexity results give strength to the observation
from [22] that rough constructors can be added to classical DLs with no addi-
tional cost in terms of complexity.

We should emphasize that in this paper we have considered only classical sub-
sumption in a rough description logic. There exist other non-standard reasoning
services that consider rough concepts in higher detail, as described in [17]. As
presented in this paper, our completion algorithm is incapable of solving those
reasoning tasks.

As part of our future work, we intend to study the complexity of rough-
set-specific reasoning problems for rough EL++ and, if possible, extend our
completion algorithm to handle them adequately. We also intend to extend our
algorithm to deal with concrete domains, hence covering the whole OWL 2 EL
profile. Finally, we intend to implement the system and use it for applications
that require the representation of imprecise knowledge.

References

1. Baader, F., Brandt, S., Lutz, C.: Pushing the EL envelope. In: Proc. 19th Int. Joint
Conf. on Artif. Intel. (IJCAI 2005), Edinburgh, UK. Morgan-Kaufmann Publishers
(2005)

2. Baader, F., Brandt, S., Lutz, C.: Pushing the el envelope further. In: Clark, K.,
Patel-Schneider, P.F. (eds.) Proceedings of the OWLED 2008 DC Workshop on
OWL: Experiences and Directions (2008)

3. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.
(eds.): The Description Logic Handbook: Theory, Implementation, and Applica-
tions, 2nd edn. Cambridge University Press (2007)

4. Bobillo, F., Straccia, U.: Finite fuzzy description logics and crisp representations.
In: Bobillo, F., Costa, P.C.G., d’Amato, C., Fanizzi, N., Laskey, K.B., Laskey, K.J.,
Lukasiewicz, T., Nickles, M., Pool, M. (eds.) URSW 2008-2010/UniDL 2010. LNCS
(LNAI), vol. 7123, pp. 99–118. Springer, Heidelberg (2013)

5. Borgwardt, S., Distel, F., Peñaloza, R.: How fuzzy is my fuzzy description logic? In:
Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS (LNAI), vol. 7364,
pp. 82–96. Springer, Heidelberg (2012)

6. Borgwardt, S., Peñaloza, R.: Undecidability of fuzzy description logics. In: Brewka,
G., Eiter, T., McIlraith, S.A. (eds.) Proceedings of the 13th International Confer-
ence on Principles of Knowledge Representation and Reasoning (KR 2012), Rome,
Italy, pp. 232–242. AAAI Press (2012)

7. Borgwardt, S., Peñaloza, R.: The complexity of lattice-based fuzzy description
logics. Journal on Data Semantics 2(1), 1–19 (2013)

8. Borgwardt, S., Peñaloza, B.: Positive subsumption in fuzzy EL with general t-
norms. In: Proceedings of the 23rd International Joint Conference on Artificial
Intelligence (IJCAI 2013), Beijing, China. AAAI Press (to appear, 2013)

9. Cerami, M., Straccia, U.: On the (un)decidability of fuzzy description logics under
Łukasiewicz t-norm. Information Sciences 227, 1–21 (2013)

86 R. Peñaloza and T. Zou

10. d’Amato, C., Fanizzi, N., Esposito, F., Lukasiewicz, T.: Representing uncertain
concepts in rough description logics via contextual indiscernibility relations. In:
Bobillo, F., et al. (eds.) URSW 2008-2010/UniDL 2010. LNCS (LNAI), vol. 7123,
pp. 300–314. Springer, Heidelberg (2013)

11. de Queiroz, K.: Different species problems and their resolution. BioEssays 27(12),
1263–1269 (2005)

12. Haase, C.: Complexity of subsumption in extensions of EL. Master’s thesis, Dresden
University of Technology, Germany (2007)

13. Hájek, P.: Metamathematics of Fuzzy Logic (Trends in Logic). Springer (2001)
14. Jiang, Y., Wang, J., Tang, S., Xiao, B.: Reasoning with rough description logics:

An approximate concepts approach. Information Sciences 179(5), 600–612 (2009)
15. Kazakov, Y., Kroetzsch, M., Simancik, F.: Practical reasoning with nominals in

the el family of description logics. In: Brewka, G., Eiter, T., McIlraith, S.A. (eds.)
Proceedings of the 13th International Conference on Principles of Knowledge Rep-
resentation and Reasoning (KR 2012), pp. 264–274. AAAI Press (2012)

16. Kazakov, Y., Krötzsch, M., Simančík, F.: ELK reasoner: Architecture and eval-
uation. In: Proceedings of the OWL Reasoner Evaluation Workshop 2012 (ORE
2012). CEUR Workshop Proceedings, vol. 858. CEUR-WS.org (2012)

17. Maria Keet, C.: Rough subsumption reasoning with rowl. In: Brown, I., Sewchur-
ran, K., Suleman, H. (eds.) Proc. of the 2011 Annual Conf. of the South African
Inst. of Comp. Scientists and Inform. Tech. (SAICSIT 2011), pp. 133–140. ACM
(2011)

18. Liau, C.-J.: On rough terminological logics. In: Proc. of the 4th Intern. Workshop
on Rough Sets, Fuzzy Sets and Machine Discovery, pp. 47–54 (1996)

19. Lukasiewicz, T., Straccia, U.: Managing uncertainty and vagueness in description
logics for the semantic web. Journal of Web Semantics 6(4), 291–308 (2008)

20. Pawlak, Z.: Rough sets. International Journal of Parallel Programming 11(5),
341–356 (1982)

21. Peñaloza, R., Zou, T.: Rough EL classification. In: Proceedings of the 2013 Inter-
national Workshop on Description Logics (DL 2013). CEUR-WS, Ulm, Germany
(to appear, 2013)

22. Schlobach, S., Klein, M.C.A., Peelen, L.: Description logics with approximate defi-
nitions - precise modeling of vague concepts. In: Veloso, M.M. (ed.) Proc. 20th Int.
Joint Conf. on Artif. Intel. (IJCAI 2007), pp. 557–562 (2007)

23. Straccia, U.: Reasoning within fuzzy description logics. J. Artif. Intell. Res. 14,
137–166 (2001)

24. Toman, D., Weddell, G.: On reasoning about structural equality in xml: a descrip-
tion logic approach. Theor. Comput. Sci. 336(1), 181–203 (2005)

25. Yao, Y.: Perspectives of granular computing. In: Proceeding of the 2005 IEEE
International Conference on Granular Computing, vol. 1, pp. 85–90 (2005)

26. Zadeh, L.A.: Fuzzy sets. Information and Control 8(3), 338–353 (1965)

Uniform Interpolation of ALC-Ontologies

Using Fixpoints

Patrick Koopmann� and Renate A. Schmidt

The University of Manchester, UK
{koopmanp,schmidt}@cs.man.ac.uk

Abstract. We present a method to compute uniform interpolants with
fixpoints for ontologies specified in the description logic ALC. The aim
of uniform interpolation is to reformulate an ontology such that it only
uses a specified set of symbols, while preserving consequences that involve
these symbols. It is known that in ALC uniform interpolants cannot al-
ways be finitely represented. Our method computes uniform interpolants
for the target language ALCμ, which is ALC enriched with fixpoint op-
erators, and always computes a finite representation. If the result does
not involve fixpoint operators, it is the uniform interpolant in ALC. The
method focuses on eliminating concept symbols and combines resolution-
based reasoning with an approach known from the area of second-order
quantifier elimination to introduce fixpoint operators when needed. If
fixpoint operators are not desired, it is possible to approximate the
interpolant.

1 Introduction

Ontologies represent information about concepts and relations (roles) using de-
scription logics, fragments of first-order logic, to allow reasoning systems to de-
rive implicit information automatically. There are situations where it is useful to
restrict an ontology to a subset of the vocabulary without affecting the meaning
of the remaining concepts. When reusing parts from a general ontology for a spe-
cific domain, this can be done by restricting the ontology to the concepts that
are known and interesting in this domain. Instead of restricting an ontology to
a more specific domain, another application is restricting the ontology to a set
of higher level concepts to create a summary of the ontology. Another example
is hiding confidential concepts, which is useful when an ontology is shared or
published, but some information should be kept secret [9].

In uniform interpolation, the ontology is reformulated in such a way that
only symbols from a specified set are used, while logical consequences over the
remaining symbols are preserved [4]. This paper describes a method for uniform
interpolation of ontologies represented in the description logic ALC.

Uniform interpolation for ALC is not a new topic. In [18], a method based
on tableaux reasoning was published. In [12] theoretical properties of uniform

� Patrick Koopmann is supported by an EPSRC EU Doctoral Training Award.

P. Fontaine, C. Ringeissen, and R.A. Schmidt (Eds.): FroCoS 2013, LNAI 8152, pp. 87–102, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

88 P. Koopmann and R.A. Schmidt

interpolation were presented, among them that uniform interpolants can in the
worst case be of size triple exponential in the size of the original ontology.

A problem of uniform interpolation in ALC is that the interpolants cannot
always be represented using a finite number of finite ALC-axioms. We offer a
solution to this problem by using ALCμ, which is ALC enriched with fixpoint
operators [11], to represent interpolants. This way we show how to always com-
pute a finitely represented interpolant. Since fixpoint operators are not common
in the description logic community yet, we also describe ways of approximating
the result, in case no adequate representation without fixpoints is possible.

Our method combines two approaches known from the context of second-order
quantifier elimination [7]. First, we use a resolution-based calculus to eliminate
symbols in a focused way. Resolution-based methods have been used for elimi-
nating symbols in different logics, like first order logic [6] or modal logic [10], but
these logics are not expressive enough if the result requires fixpoint operators.
We use a clausal form based on structural transformation, where new concept
symbols are introduced dynamically, in order to deal with this. Afterwards we
use a variation of the generalised Ackermann’s Lemma [14] to eliminate these
introduced symbols and add fixpoint operators when necessary.

2 Preliminaries

Let Nc, Nr be two disjoint sets of concept symbols and role symbols. Concepts
in ALC are of the following form:

⊥ | � | A | ¬C | C � D | C � D | ∃r.C | ∀r.C,

where A ∈ Nc, r ∈ Nr and C and D are arbitrary concepts. �, C �D and ∀r.C
are defined as abbreviations: � stands for ¬⊥, C �D for ¬(¬C �¬D) and ∀r.C
for ¬∃r.¬C.

A TBox is a set of axioms of the forms C & D and C ≡ D, where C and D
are concepts. C ≡ D is a short-hand for the two axioms C & D and D & C.
Since we are only dealing with the TBox part of an ontology, we will use the
terms ‘ontology’ and ‘TBox’ interchangeably.

The semantics of ALC is defined as follows. An interpretation is a pair
I = 〈ΔI , ·I〉, where the domain ΔI is a nonempty set and the interpretation
function ·I assigns to each concept symbol A ∈ Nc a subset of ΔI and to each
role symbol r ∈ Nr a subset of ΔI ×ΔI . The interpretation function is extended
to concepts as follows:

⊥I := ∅ (¬C)I := ΔI \ CI (C � D)I := CI ∪ DI

(∃r.C)I := {x ∈ ΔI | ∃y : (x, y) ∈ rI ∧ y ∈ CI}.

C & D is true in an interpretation I iff CI ⊆ DI . I is model of a TBox T if
all axioms in T are true in I. A TBox T is satisfiable if there exists a model
for T , otherwise it is unsatisfiable. T |= C & D holds iff in every model of T we

Uniform Interpolation of ALC-Ontologies Using Fixpoints 89

have CI ⊆ DI . Two TBoxes T1 and T2 are equi-satisfiable if every model of T1

can be extended to a model of T2, and vice versa.
In order to define ALCμ, we extend the language with a set Nv of con-

cept variables. ALCμ extends ALC with concepts of the form μX.C and νX.C,
where X ∈ Nv, and C is a concept in which X occurs as a concept symbol only
positively (under an even number of negations). μX.C is the least fixpoint of C
on X and νX.C the greatest fixpoint.

A concept variable X is bound if it occurs in the scope C of a fixpoint ex-
pression μX.C or νX.C. Otherwise it is free. A concept is closed if it does not
contain any free variables. Axioms in ALCμ are of the form C & D and C ≡ D,
where C and D are closed concepts.

Following [3], we define the semantics of fixpoint expressions. Let V be an as-
signment function that maps concept variables to subsets of ΔI . V [X (→ W]
denotes V modified by setting V(X) = W . CI,V is the interpretation of C
taking into account this assignment, and when V is defined for all variables
in C, CI,V = CI . The semantics of fixpoint concepts is defined as follows:

(μX.C)I,V :=
⋂

{W ⊆ ΔI | CI,V[X �→W] ⊆ W}

(νX.C)I,V :=
⋃

{W ⊆ ΔI | W ⊆ CI,V[X �→W]}.

3 Overview of the Method

We are interested in computing uniform interpolants of TBoxes. Let sig(C) de-
note the set of concept symbols occurring in the concept C and sig(T) the set
of concept symbols occurring in the TBox T .

Definition 1. Given a TBox T and a set Σ of concept symbols, the TBox T ′ is
a uniform interpolant of T over Σ iff (i) sig(T ′) ⊆ Σ, and (ii) for every C & D
with sig(C � D) ⊆ Σ: T ′ |= C & D iff T |= C & D.

Observe that from this definition follows that uniform interpolants of a TBox
over a given set of concept symbols are unique modulo logical equivalence. Fig-
ure 1 gives an outline of our method for computing uniform interpolants. In
Phase 1, the ontology is transformed into a set of clauses. In Phase 2, we process
each concept symbol A that occurs in the TBox but not in the set Σ one after
another. We saturate the set of clauses with respect to A using a set of rules
and eliminate clauses containing A. This is described in more detail in Section 4.
Both phases may introduce new symbols, which are eliminated Phase 3, which is
described in more detail in Section 5. This phase may involve the use of fixpoint
operators, if these symbols are cyclic. After this phase, the uniform interpolant
is already computed, but we add a fourth phase that applies simplifications and
converts resulting axioms to proper subsumption relations.

The order in which symbols are processed in Phase 2 and 3 is not crucial, since
we can prove that the result is always the correct uniform interpolant. Different
orders of symbol elimination may lead to different syntactic representations, but
these are logically equivalent. The following theorem states the correctness of
our method and is proven in Section 7.

90 P. Koopmann and R.A. Schmidt

1. Compute the clausal representation N := clauses(T) of T .
2. For every A ∈ sig(T) \Σ:

– eliminate A by setting N := ELIMRes(N,A). ELIMRes uses a resolution
based procedure described in Section 4. This step introduces definer sym-
bols.

3. Set T = N . For every definer D in the resulting clause set:
– eliminate D by setting T := ELIMAck(T , D). ELIMAck uses Ackermann’s

Lemma and may introduce fixpoints. This is described in Section 5.
4. Apply further simplifications to T if possible and return the resulting ontology.

Fig. 1. The complete method for computing uniform interpolants

Theorem 1. For any ALC TBox T and any signature Σ, our method termi-
nates and returns a finite representation of the uniform interpolant of T over Σ
in the description logic ALCμ. If the result does not make use of the greatest
fixpoint operator, the result is the uniform interpolant of T over Σ in ALC.

4 Resolution-Based Symbol Elimination

In this section we describe the first two phases of our method in more detail,
that is, transformation to clausal form and elimination of symbols. The latter is
based on a new resolution calculus for deciding satisfiability in ALC, which we
describe as well.

Let ND ⊆ Nc be a set of designated concept symbols called definers, which
do not occur in the input ontology.

Definition 2. An ALC-literal is a concept description of the form A, ¬A, ∀r.D
or ∃r.D, where A is a concept symbol, r is a role symbol and D is a definer.

A TBox is in ALC-conjunctive normal form if every axiom is of the form
� & L1 � ... � Ln, where each Li is an ALC-literal. The right part of such a
subsumption is called ALC-clause. In the following we assume ALC-clauses are
represented as sets of literals (this means no clause contains the same literal more
than once). The empty clause is denoted by ⊥ and represents a contradiction.

Every ALC TBox can be transformed into an equi-satisfiable TBox in ALC-
conjunctive normal form using structural transformation. This can be achieved
by first transforming the input TBox into negation normal form, incrementally
replacing every concept C that occurs immediately below a role restriction by a
definer D and adding the axiom D & C for each such subconcept. The resulting
TBox does not contain any nested role restrictions and can be brought into ALC-
conjunctive normal form by applying standard CNF-transformation techniques.
It is crucial for our method of computing uniform interpolants that the structural
transformation is performed in this way.

For a TBox T , let clauses(T) refer to the set of clauses generated in this way.
The set clauses(T) is produced by Phase 1.

Uniform Interpolation of ALC-Ontologies Using Fixpoints 91

Resolution:
C1 �A C2 � ¬A

C1 � C2

provided C1 ∪ C2 does not contain more than one negative definer-literal.

Role Propagation:
C1 � ∀r.D1 C2 �Qr.D2

C1 � C2 �Qr.D3

where Q ∈ {∃,∀} and D3 is a (possibly new) definer representing D1 � D2,
provided C1 ∪ C2 does not contain more than one negative definer-literal.

Existential Role Restriction Elimination:

C � ∃R.D ¬D
C

Fig. 2. Rules of decision procedure RESALC

Example 1. Consider the following TBox T :

A & B � C B & ∃r.B C & ∀r.¬B

The obtained clause set clauses(T) is the following:

1. ¬A � B � C 3. ¬D1 � B 5. ¬D2 � ¬B
2. ¬B � ∃r.D1 4. ¬C � ∀r.D2

where D1 and D2 are definers introduced during the structural transformation.

The resolution method used to eliminate symbols in Phase 2 is based on a new
resolution-based decision procedure, RESALC , which we describe next. RESALC
uses the rules shown in Figure 2. The resolution rule is a variation of the clas-
sical resolution rule for propositional logic. Its side condition ensures that every
derived clause contains at most one negative definer literal, a property needed
for the successful elimination of the introduced definer symbols in Phase 3. An-
other motivation for this side condition is that clauses with different negative
definer literals represent concepts occurring under different role restrictions. A
combination of these only makes sense if the contexts of these role restrictions
get combined as well. This is performed by the role propagation rule: it propa-
gates the conceptual information under a universal role restriction into concepts
occurring under other role restrictions, and creates a clause that represents the
combined contexts of the definers. The role propagation rule is based on the
logical entailment |= ((A � B) � (C � D)) & (A � C � (B �D)).

Since the normal form has to be preserved, the role propagation rule may
require the introduction of a new definer symbol D3 representing the conjunction

92 P. Koopmann and R.A. Schmidt

of the definers D1 and D2 occurring in the premises. This is done by adding new
clauses ¬D3�D1 and ¬D3�D2 to the clause set. We refer to this as combining D1

and D2 into a new definer D3. Observe that the resolution rule also applies to
definer-literals. This way for each pair of clauses ¬D1 � C1 and ¬D2 � C2 we
derive the clauses ¬D3 �C1 and ¬D3 �C2, for which the side conditions of the
rules are satisfied.

In order to avoid the infinite introduction of new definers, we keep track
of introduced definers and reuse them when possible. Let ND∗ denote the de-
finer symbols that were introduced by the initial normal form transformation in
Phase 1, which we call base definers. The mapping conj : ND (→ 2ND∗ maps
each definer to the set of base definers it represents. If a definer represent-
ing D1 � D2 is needed, we check whether the mapping already maps a definer
to conj(D1) ∪ conj(D2). If it does, we reuse it; if not, we add a new definer to-
gether with the required axioms. This way the number of introduced symbols is
bounded by 2|ND∗|.

It is not hard to see that the rules in Figure 2 are sound. This means saturating
a set of clauses always produces an equi-satisfiable set of clauses. The existential
role restriction elimination rule is sound, because the clause ¬D represents the
axiom D & ⊥. Since the introduction of definers preserves equi-satisfiability, we
can state soundness of the calculus:

Lemma 1. The calculus RESALC is sound, that is, for any TBox T , the satu-
ration of clauses(T) using the rules of RESALC is equi-satisfiable with T , and if
the empty clause can be derived, T is unsatisfiable.

We can also prove refutational completeness and termination. The proof is
given Section 6.

Theorem 2. RESALC is sound and refutationally complete, and provides a de-
cision procedure for TBox satisfiability in ALC.

This result is used in Section 7 to prove the correctness of our method to compute
uniform interpolants.

The rules of RESALC are used in Phase 2 for saturating and eliminating sym-
bols. In particular, in order to eliminate a concept symbol A from a set N of ALC-
clauses, we restrict the rules to be applied only on the literals ¬A, A, ¬D, D, ∀r.D
and ∃r.D, where A is the symbol we want to eliminate and D is a definer con-
nected to A. A definer D is connected to a concept symbol A if D either co-occurs
with A in a clause or if D co-occurs in a clause with another definer D′ that is
connected to A. After N is saturated using these restricted rules, we remove all
clauses containing A and all clauses of the form ¬D � D′, where D and D′ is
any definer, since they are not required anymore. We call this method ELIMRes

and denote the resulting set of clauses by ELIMRes(N,A).

Theorem 3. Given the clausal representation N of a TBox T and a concept
symbol A, ELIMRes(N,A) is computed in finitely bounded time, does not con-
tain A and preserves all consequences over Σ = sig(T) \ {A}.

Uniform Interpolation of ALC-Ontologies Using Fixpoints 93

It is worth mentioning that both RESALC and ELIMRes can make use of
standard redundancy elimination techniques used in resolution-based theorem
proving, including tautology and subsumption deletion, which we omit here for
space reasons.

Example 2. We demonstrate the application of RESALC on the clause set gener-
ated in the last example. Suppose we want to compute the uniform interpolant
over Σ = {A,C}, which means B is the only concept symbol we have to elim-
inate. Resolution on the B-literals in clauses 3 and 5 would produce a clause
with two different negative definer-literals, thus violating the side condition of
the resolution rule (see Figure 2). But we can combine the definers D1 and D2

by applying the role propagation rule. Note that both are connected to B, and
that the role propagation rule is applicable to clauses 2 and 4. This leads to the
introduction of the definer D3 representing D1 � D2, and the clauses captur-
ing D3 & D1 � D2.

6. ¬B � ¬C � ∃r.D3 (role prop. between 2 and 4)

7. ¬D3 � D1 (D3 & D1)

8. ¬D3 � D2 (D3 & D2)

Observe that an additional application of the role propagation rule on the same
clauses does not result in new clauses, since a definer representing D1 � D2 has
already been introduced. The new clauses 7 and 8 can now be resolved on the
positive definer literals.

9. ¬D3 � B (resolution between 3 and 7)

10. ¬D3 � ¬B (resolution between 5 and 8)

Now we have two clauses that allow resolving on B, resulting in a clause that
makes the existential role restriction elimination rule applicable:

11. ¬D3 (resolution between 9 and 10)

12. ¬B � ¬C (exist. elim. between 6 and 11)

The last clause expresses the disjointness of the concepts B and C, which is a
consequence of the last two axioms of the sample TBox. Further applications of
the resolution rule are possible, which we omit for space reasons.

5 Eliminating Definers Using Ackermann’s Lemma

In Phase 3, the definers that have been introduced in Phase 2 are eliminated.
This may involve the introduction of fixpoint operators. We also describe how
to approximate the uniform interpolant in ALC.

The main idea of this phase is captured in the following theorem:

94 P. Koopmann and R.A. Schmidt

Theorem 4. Let T be a TBox which contains an axiom of the form A & C,
where A is a concept symbol that occurs only positively in the rest of T .

(i) If C does not contain A, the uniform interpolant of T over sig(T) \ {A}
is obtained by removing that axiom and replacing every other occurrence of A in
the rest of the ontology by C.

(ii) If C contains A positively, the interpolant is obtained by removing that
axiom and replacing every occurrence of A with νX.C′, where C′ is acquired
from C by replacing every A with the fresh concept variable X.

This theorem is a translation of Ackermann’s Lemma, which was first pub-
lished in [1] and generalised for the fixpoint case in [14], to description logic
syntax. Ackermann’s Lemma and its generalisation have been used in the con-
text of second-order quantifier elimination to eliminate existentially quantified
predicate variables in second-order logic expressions [14,7].

The underlying idea of the theorem is that if there is a definition of A in the
ontology, we can use this definition to replace all occurrences of A in order to
eliminate A. If the definition is cyclic, we have to use a fixpoint operator.

We use this theorem in Phase 3 to eliminate the introduced definer symbols.
The method to compute ELIMAck(T , D) consists of the following steps:

1. Group all axioms of the form � & ¬D � Ci into a single axiom of the form
D & CD, where CD =

�
i Ci. If there is no such clause, set CD = �.

2. Remove the axiom D & CD from T .
3. If D does not occur in CD, replace every occurrence of D in T with CD.
4. If D occurs in CD, replace every occurrence of D in T with νX.C′

D, where C′
D

is acquired from CD by replacing D with X , where X is a fresh concept
variable not used in T .

If the output of the algorithm contains fixpoints there are two ways in which
we can approximate the result in ALC: signature approximation and semantic ap-
proximation. In signature approximation, we return a finite TBox equi-satisfiable
with the uniform interpolant which approximates the signature Σ and therefore
may contain additional concept symbols. This is done by not eliminating definers
which would lead to the use of fixpoint operators.

In contrast, using semantic approximation, we return a result that is com-
pletely in the specified signature Σ, but approximates the interpolant seman-
tically. For this, we omit Step 3 and apply Step 2 above incrementally for a
specified number of times even if D occurs in CD, and replace it afterwards
by �. This way the semantics of the greatest fixpoint operator is approximated
in the result. This solution is similar to the one offered in [18].

Example 3. We continue on the last example. The result of ELIMRes(N,B) is
equivalent to the following ontology.1

1. � & ¬A � C � ∃r.D1 3. D1 & ¬C � ∃r.D1 5. D3 & ⊥
2. � & ¬C � ∀r.D2 4. D2 & ¬A �C

1 To simplify the example, we left out redundant and tautological clauses, which would
otherwise be removed in Phase 4 by the described method.

Uniform Interpolation of ALC-Ontologies Using Fixpoints 95

Axiom 5 can be ignored since D3 does not occur in the rest of the ontology. D2

can be eliminated by replacing it with ¬A � C. The elimination of D1 leads to
the introduction of a fixpoint operator. After applying simplifications (Phase 4),
we obtain the following ontology, which is the uniform interpolant of our sample
TBox for Σ = {A,C}:

6. A & C � ∃r.νX.(¬C � ∃r.X) 7. C & ∀r.(¬A � C)

We cannot express this uniform interpolant in a finite way in ALC, but we can
approximate it signature-wise and semantically. The signature approximation is
acquired by not eliminating D1 and including Axiom 3 in the result. For the
semantic approximation, we would replace D1 n times by C � ∃r.D1, and then
replace it by �. For n = 2, Axiom 6 would be approximated as follows:

6′. A & C � ∃r.(¬C � ∃r.(¬C � ∃r.�)).

6 Correctness of the Decision Procedure

In this section we prove termination and refutational completeness of RESALC .
This result is needed in the next section to prove the correctness of ELIMRes.

Lemma 2. RESALC always terminates and produces at most 22nc+(2+2nr)·2nd

clauses, where nc is the number of concept symbols in the input ontology, nr the
number of role symbols and nd the number of base definers introduced by the
normal form transformation.

Proof. Because of how we keep track of newly introduced definers, we have
maximally 2nd many definers in the result. Each definer D can occur in the
forms D, ¬D, ∃r.D and ∀r.D, and each concept symbol A can occur in a positive
or a negative literal, which means there are 2nc + (2 + 2nr) · 2nd many possible
literals. Every literal can only occur once in a clause (clauses are represented as
sets), which gives us the worst case upper bound of 22nc+(2+2nr)·2nd . ��

In order to prove completeness of RESALC , we use a candidate model con-
struction approach similar to the one used to prove refutational completeness
for ordered resolution [2] and refutational completeness for consequence-driven
reasoners for description logics [16]. We show that for each set of clauses satu-
rated using the rules of our calculus and not containing the empty clause, we
can construct a candidate model which is actually a model for the set.

The construction is done in the following way. For each satisfiable definer
concept D, we create a set ID of literals that have to be satisfied by a domain
element in order to satisfy the definer. A special definer ε is used to represent
concepts that do not occur under a role restriction. We then create a domain
element xD for each definer D and construct an interpretation in such a way that
every atomic concept and every existential restriction in each ID is satisfied. We
show that the resulting interpretation is indeed a model for our saturated set of
clauses.

96 P. Koopmann and R.A. Schmidt

Let Ns denote a set of clauses saturated using the rules of RESALC . The set D
consists of all definers used in Ns and the special symbol ε. Ns is partitioned
into a set of definition sets : the function d : D −→ 2Ns maps each definer D ∈ D
to the subset of clauses in Ns which have ¬D as a literal, and ε to all remaining
clauses. Because of the side conditions of the rules (every derived clause can have
at most one negative definer-literal), such a partitioning is always possible. d(D)
contains all clauses that make up the definition of D, in the sense that they can
be represented in an axiom of the form D & ..., hence we use the terminology
definition set for d(D). d(ε) contains all the remaining clauses, which are not
related to the definition of any definer. Let de(D) = d(D)∪d(ε) be the definition
set extended with these clauses. If a domain element satisfies D, it also has to
satisfy all clauses in de(D), and it suffices to check the clauses in de(D) to check
whether an instance satisfies D or not.

We define a partial ordering &D on definers in the following way: D1 &D D2

iff conj(D2) ⊆ conj(D1) (see Section 4 for the definition of conj). This ordering
represents the subsumption hierarchy between the respective conjunctions of
base-definers, because |=

�
conj(D1) &

�
conj(D2) if conj(D2) ⊆ conj(D1).

We define an ordering ≺L on literals that satisfies the following constraints:

– D ≺L ¬D ≺L A ≺L ¬A ≺L ∃r.D′ ≺L ∀r.D′′ for all atomic concepts A that
are not definers, for all roles r and for all definers D,D′, D′′.

– If D1 &D D2, then D1 ≺L D2, ∃r.D1 ≺L ∃r.D2 and ∀r.D1 ≺L ∀r.D2 for all
roles r. (From this follows that if D represents D1�D2, then ∃r.D ≺L ∃r.D1

and ∀r.D ≺L ∀r.D2.)

It can be shown that an ordering with these constraints always exists. ≺L is ex-
tended to an ordering ≺C between clauses using the multiset-extension (≺L)mul

of ≺L. Using ≺C , the clauses in each de(D) are enumerated: CD
i denotes the ith

clause in de(D) according to ≺C , starting from the smallest clause.
Following this enumeration, we define a set ID of positive literals for each ele-

ment D ∈ D (including ε), such that if a domain element x satisfies every literal
in ID, it also satisfies de(D). For a set of positive literals I, we say I satisfies a
literal L, taking into account the subsumption hierarchy on D, written I |=D L,
iff (i) L is a positive literal of the form A and A ∈ I, (ii) L is a negative literal
of the form ¬A and A �∈ I, (iii) L is of the form ∃r.D and there is a ∃r.D′ ∈ I
with D′ &D D or (iv) L is of the form ∀r.D and for every literal of the form
∃r.D′ ∈ I we have D′ &D D. We say I satisfies a clause C, written I |=D C, if
there is a literal L ∈ C such that I |=D L.

We define ID formally in five steps:

1. If ¬D ∈ d(D), set ID = ∅. Otherwise, let
2. ID0 = {D} if D �= ε and ID0 = ∅ if D = ε.
3. IDi = IDi−1 ∪ {L}, if IDi−1 �|=D CD

i−1 and the maximal literal L of CD
i−1 is a

positive literal of the form A or ∃r.D′, and
4. IDi = IDi−1 otherwise.
5. ID = IDn , where n is the number of clauses in de(D).

Lemma 3. If ID is nonempty, then ID |=D CD
i for all clauses CD

i in de(D).

Uniform Interpolation of ALC-Ontologies Using Fixpoints 97

Proof. We validate that for each CD
i we have ID |=D CD

i . Observe that because
of how de(D) is defined, every clause in de(D) contains either no negative definer
literal or ¬D is the only negative definer literal (no clauses with more than
one negative definer literal can be derived). This means, for any two clauses
CD

i , CD
j ∈ de(D), the side conditions of the rules are satisfied (the union never

has more than one negative definer literal). We do the proof by contradiction.
Assume i is the smallest i with ID �|=D CD

i .

1. If the maximal literal in CD
i is of the form A or ∃r.D′, then the clause

is satisfied due to Step 3 in the construction of ID, which contradicts our
assumption.

2. If the maximal literal in CD
i is of the form ¬A, we have ID �|= ¬A and

therefore ID |= A. This means there must be a clause CD
j where A is maximal

in CD
j and IDj �|= CD

j \{A}, otherwise A is not added to ID. But then, due to

the resolution rule, we also have a clause C = (CD
i ∪ CD

j) \ {A,¬A}, which
is also in de(D). Since ≺C is the multiset extension of the ordering between
literals, C is smaller than CD

i , since ¬A ∈ CD
i and ¬A is larger than all

elements in C (¬A is maximal in CD
i).

Since both ID �|=D CD
j \ {A} and ID �|=D CD

i \ {¬A}, we have ID �|=D C.

Because C belongs to de(D) and is smaller than CD
i , there is a k < i with

C = CD
k , which contradicts our initial assumption that i is the smallest i

with ID �|=D CD
i .

3. If the maximal literal in CD
i is of the form ∀r.D′, we have ID �|=D CD

i \
{∀r.D′} and ID �|=D ∀r.D′. The only way the latter can be true is due to a
literal ∃r.D2 ∈ ID with D2 �&D D′. If D2 is not subsumed by D′, ∃r.D2 is a
counter-example for ∀r.D′.

If ∃r.D2 ∈ ID, there must be a clause CD
j such that the maximal literal in

CD
j is ∃r.D2 and IDj �|=D CD

j . Because of the role propagation rule, we then

also have a clause CD
k = (CD

i ∪CD
j ∪{∃r.D3})\{∀r.D′, ∃r.D2}, where D3 rep-

resents D′�D2. In our ordering, ∃r.D3 is smaller than both ∀r.D′ and ∃r.D2,
and therefore CD

k ≺C CD
j , CD

k ≺C CD
i and k < j < i. We obtain that

ID �|=D CD
k because (i) ID �|=D CD

i \ {∀r.D′}, (ii) ID �|=D CD
j \ {∃r.D2}, and

(iii) ID �|=D ∃r.D3 (for else IDj |=D ∃r.D2 as D3 &D D2 and CD
k ≺C CD

j ,

and ∃r.D3 cannot be maximal in any clause larger than CD
j). However,

ID �|=D CD
k contradicts our initial assumption. ��

Based on ID, we construct the candidate model Ic = 〈ΔIc , ·Ic〉 with:

– ΔIc = {xD | D ∈ D and ID is not empty},
– for every atomic concept A, AIc = {xD | A ∈ ID}, and
– for every role r, rIc = {(xD1 , xD2) | ∃r.D2 ∈ ID1and ID2 is nonempty}.

Lemma 4. If ⊥ �∈ Ns, then Ic is a model of Ns.

Proof. We already established that ID contains all literal concepts that have
to hold in order to satisfy the set of clauses de(D). All other clauses in Ns are

98 P. Koopmann and R.A. Schmidt

satisfied by ID as well, since they are all of the form ¬D′�C, and either D′ �∈ ID,
or ¬D � D′ ∈ de(D), and resolution on D′ results in ¬D � C ∈ de(D).

Observe that ID only contains literals of the form A or ∃r.D, which means
we do not have to check satisfaction of literals of the form ∀r.D. The candidate
model is constructed in such a way that for each nonempty ID, we have a domain
element xD that satisfies all atomic concepts A in ID. If ID is empty, it means
that we have a unit clause ¬D which is equivalent to D & ⊥, and DIc should be
empty, which is also ensured by the model construction. Therefore we only have
to show that, if ID is nonempty, every existential role restriction ∃r.D′ ∈ ID

holds in Ic for xD as well.

– If ID
′

is not empty, there is a domain element xD′ and (xD, xD′) ∈ rIc .
Therefore ∃r.D′ is satisfied for xD.

– If ID
′

is empty, there is no domain element xD′ , and ∃r.D′ is not satisfied
by xD. This can only be the case if ¬D′ ∈ Ns. Since we assume ∃r.D′ ∈ ID,
there is a clause CD

i , where ∃r.D′ is the maximal literal and IDi �|=D CD
i . But

then, due to the existential role elimination rule and because ¬D′ ∈ Ns, there
is also the smaller clause C = CD

i \ {∃r.D′}. But if ID |= C, then ∃r.D′ is
not in ID, which contradicts our assumption that ∃r.D′ ∈ ID. ��

We can now prove refutational soundness and completeness of the decision pro-
cedure, i.e. Theorem 2.

Proof. Soundness was already established in Lemma 1. Therefore if N � ⊥,
N is unsatisfiable. Suppose N �� ⊥. Then we can construct a model for Ns

(N saturated by RESALC) using the method described above (Lemma 4), and
since Ns is equi-satisfiable with N (Lemma 1), N is satisfiable. ��

7 Correctness of the Uniform Interpolation Method

In order to prove the correctness of our uniform interpolation method, we have
to show that every consequence C & D in the desired signature is preserved by
the uniform interpolant. For Phase 2, we use our decision procedure to show that
these consequences are preserved by ELIMRes(N,A). This is done by generating
a set of clauses M for each consequence C & D, such that N |= C & D iff
N ∪M is unsatisfiable. We first show that for any clause set M over the desired
signature, N ∪M is satisfiable iff ELIMRes(N,A) ∪ M is satisfiable.

Lemma 5. For any concept symbol A and any sets of clauses N and M , such
that A �∈ sig(M), let Ns be the result of saturating N ∪M and N ′

s be the result of
saturating ELIMRes(N,A)∪M using RESALC . It is possible to create a candidate
model for N ′

s iff it is possible to create a candidate model for Ns.

Proof. We define the orderings ≺L and ≺C as in the last section with the ad-
ditional constraint that ¬B ≺L A for any concept symbol B �= A, A being the
concept symbol eliminated in N ′

s.

Uniform Interpolation of ALC-Ontologies Using Fixpoints 99

We first point out the following properties of clause sets N saturated using
RESALC regarding definer symbols D: (i) If |conj(D)| > 1 (D is an introduced
definer), we have ¬D �Di ∈ N for every Di ∈ conj(D) (due to role propagation
and possibly subsequent resolution steps). Due to further resolution applica-
tions, this implies (ii) for every Di &D D, we have de(D) ⊆ de(Di)

Di �→D, where
de(Di)

Di �→D denotes the result of replacing every Di in de(Di) with D. (iii) There
is maximally one definer in conj(D) that occurs under an existential role restric-
tion, and every pair of definers in conj(D) occurs under contexts that allow for
their combination via the role propagation rule (role propagation is only applied
if at least one literal is a universal role restriction and if the side conditions are
not violated). (iv) Every nonempty subset of conj(D) is represented by a definer
(this is a consequence of (iii)).

Now, observe that in the proof for Lemma 3 only rule applications on maximal
literals and definer literals are needed. Resolution on definer literals is assumed
indirectly in the proof by how we define satisfaction for literal sets ID taking
into account &D. This means it is sufficient to perform inferences on maximal
literals or definer literals.

A difference between Ns and N ′
s is that N ′

s does not contain any clauses us-
ing A. If we can show that nevertheless conclusions of resolving on A literals
occurring in Ns also occur in N ′

s, we are done, since in RESALC rules are ap-
plied unrestricted and in ELIMRES(N,A) only clauses containing A are removed.
If A is not crucial in deriving the empty clause, it is safe to remove clauses con-
taining it. If A is crucial, the only derivations we lose when removing clauses
containing A are conclusions of inference steps involving A.

For pairs of clauses that do not contain any definers, or that only contain
definers that are also in ELIMRES(N,A), their resolvents on A are in N ′

s since
they are in ELIMRES(N,A). Assume we have a clause C = ¬D � C1 � C2 ∈ Ns

that is the resolvent of two clauses ¬D � C1 � A,¬D � C2 � ¬A ∈ Ns, such
that C �∈ N ′

s, and assume further that C is the largest clause according to ≺C

with this property. As already mentioned, D cannot be in ELIMRES(N,A), since
otherwise C is also in ELIMRES(N,A). Hence, D can only co-occur with A due to
resolution on clauses of the form ¬D�Di, where Di co-occurs with A. This means
there are two clauses ¬D�D1,¬D�D2 ∈ Ns, where at least one of D1 and D2 co-
occurs with A in a clause (observe that D &D D1 and D &D D2). We have two
cases:

1. ¬D1 �C1 �A,¬D1 �C2 � ¬A ∈ Ns. Then ¬D1 �C1 �C2 ∈ N ′
s (due to our

assumption that C is the largest resolvent not in N ′
s), and due to resolution

on D1 we have C ∈ N ′
s, which contradicts our assumption that C �∈ N ′

s.
2. ¬D1 � C1 � A,¬D2 � C2 � ¬A ∈ Ns. Since at least one definer is not in

ELIMRES(N,A) (otherwise D would be in ELIMRES(N,A) as well), there
must be clauses ¬D′

1�C1�A and ¬D1�D′
1. But then, due to (iv), we also have

a definer D′ representing D′
1 � D2, and D &D D′. Due to our assumption,

¬D′ �C1 �C2 ∈ N ′
s. Due to (ii), we also have ¬D � C1 � C2 = C ∈ N ′

s, thus
contradicting our assumption that C �∈ N ′

s. ��

100 P. Koopmann and R.A. Schmidt

Now we can prove Theorem 3, which states that for any concept symbol A
and clause set N , ELIMRes(N,A) can be computed in finitely bounded time and
preserves all consequences over sig(N) \ {A}.

Proof. The fact that ELIMRes(N,A) can always be computed in finitely bounded
time follows from Lemma 2. Since in ELIMRes(N,A) all clauses containing A are
removed, all symbols in ELIMRes(N,A) are either definers or in sig(N) \ {A}.
Hence we only have to check the second condition of the definition of uniform
interpolants: ELIMRes(N,A) |= C & D iff N |= C & D, for any ALC concept
subsumption not containing A.

N |= C & D can be proven by showing that C � ¬D is unsatisfiable in N , or
by showing that N ′ = N ∪{� & ∃r∗.(C �¬D)} |= ⊥, where r∗ is a new role not
occurring in N . Set M = clauses({� & ∃r∗.(C � ¬D)}. Since A �∈ sig(M) and
due to Lemma 5, we have N ∪M |= ⊥ iff ELIMRes(N,A) ∪M |= ⊥. ��

We can now prove the correctness of our method (Theorem 1):

Proof. Because of Theorem 3, Phase 2 of the method computes the clausal rep-
resentation of the uniform interpolant in finite time, independent of the order
in which symbols are processed. The correctness of Phase 3 follows from Theo-
rem 4, which can be proved by easy adaptions of the proofs in [1] and [14]. ��

8 Related Work

A different method for computing uniform interpolants involving fixpoint op-
erators is presented in [13]. This method is based on computing most general
and most specific concepts for the concept symbols to be eliminated. In order
to avoid infinite derivations, the derivation graph of this process is checked for
cycles and fixpoint operators are introduced where necessary. This method ex-
ploits the properties of normalised EL-TBoxes and is therefore not immediately
applicable for ALC-TBoxes.

A different approach for the description logic ALC was published in [18].
In this approach a tableaux calculus is used to incrementally add logical conse-
quences from the input ontology. The uniform interpolant is approximated by re-
placing symbols outside of the signature by �. Adding more consequences before
this replacement approximates the result better, which leads to an incremental
approximation of the uniform interpolant. If two succeeding approximations are
logically equivalent, the uniform interpolant has been computed. This requires
periodically checking for TBox equivalence, which can be expensive if the input
ontology is large. Using resolution provides a way to make the computation more
goal-oriented, and our definer-based representation of nested formulae facilitates
the detection of cyclic structures.

Our approach was influenced by a method for uniform interpolation for modal
logic K presented in [10]. Formulae in modal logic K are syntactic variants of ALC
concepts, for which uniform interpolants are always finite. As in our approach,
their method is based on a resolution calculus, but no structural transformation

Uniform Interpolation of ALC-Ontologies Using Fixpoints 101

is used. For this reason, it uses a more complex resolution framework, which is
able to perform inferences on nested formulae. The same method can be used
to compute uniform interpolants of ALC concepts, but cannot be extended to
TBoxes without affecting termination.

ALCμ concepts are syntactic variants of formulae in the modal μ-calculus,
which is multi-modal logic K extended with fixpoint operators. Existence of
uniform interpolants in the modal μ-calculus was proven in [4], and in [5] a
method to compute uniform interpolants is presented. We have not investigated
yet whether this calculus can be used in the context of TBox interpolation.

The method we developed is closely related to two methods developed in the
context of second-order quantifier elimination [7]. In second-order quantifier elim-
ination, the aim is to eliminate existentially quantified predicate symbols in order
to translate second-order formulae into equivalent formulae in first-order logic.
In uniform interpolation the aim is to eliminate symbols as well, even though it is
not required that the result is logically equivalent to the corresponding formula
in second-order logic. The generalised Ackermann’s Lemma is used in the second-
order quantifier elimination system DLS [14]. Our resolution-procedure follows
a similar principle as the second-order quantifier elimination method SCAN [6].
The idea to use the generalised version of Ackermann’s Lemma for quantifier-
elimination in description logics was first presented in [17]. There has been some
work on second-order quantifier elimination for modal logics [8,15], but it has
not yet been investigated how these methods relate to uniform interpolation in
description logics.

9 Conclusion and Future Work

We presented a method for computing uniform interpolants of ALC-ontologies.
Since uniform interpolants are not always finitely representable in ALC, our
method uses fixpoint operators and expresses interpolants in the description
logic ALCμ. If no fixpoint operators are introduced by our method, the result
is actually the uniform interpolant in ALC. In the other cases, we offer ways to
approximate the result in ALC. Our method mainly consists of two parts. The
first part is based on a set of rules influenced by classical resolution to eliminate
concept symbols incrementally. This step introduces new symbols, which are
eliminated in the second part of our method exploiting the generalised version
of Ackermann’s Lemma.

We have a first implementation of our method, using further optimisations
like standard redundancy elimination techniques, which we did not present here
for space reasons. First experiments with available ontologies look promising in
the sense that uniform interpolants can be computed in the majority of cases.

One optimisation we are currently working on is optimal use of fixpoint oper-
ators. It is possible to create examples where there is a finite uniform interpolant
in ALC, even though our method returns a result with fixpoint operators. This is
for example the case if the fixpoint expression is redundant because of a cyclic re-
lation between other concepts in the ontology. Investigating several techniques to

102 P. Koopmann and R.A. Schmidt

deal with this problem is the topic of ongoing research. In the future it would be
useful to have a method that only introduces fixpoints if they are strictly necessary,
that is, if there is no equivalent representation of the interpolant in pure ALC.

Apart from that, we are currently investigating how further description logic
constructs such as inverse roles or nominals can be incorporated into our method.
We believe that our method can serve as a basis for uniform interpolation in more
expressive description logics, such as for example ALCHI.

References

1. Ackermann, W.: Untersuchungen über das Eliminationsproblem der mathemati-
schen Logik. Mathematische Annalen 110(1), 390–413 (1935)

2. Bachmair, L., Ganzinger, H.: Resolution theorem proving. In: Handbook of Auto-
mated Reasoning, pp. 19–99. Elsevier, MIT Press (2001)

3. Calvanese, D., Giacomo, G.D., Lenzerini, M.: Reasoning in expressive description
logics with fixpoints based on automata on infinite trees. In: Proc. IJCAI 1999,
pp. 84–89. Morgan Kaufmann (1999)

4. D’Agonstino, G., Hollenberg, M.: Uniform interpolation, automata and the modal
μ-calculus. In: AiML, vol. 1, pp. 73–84. CSLI Pub. (1998)

5. D’Agostino, G., Lenzi, G.: On modal μ-calculus with explicit interpolants. J. Ap-
plied Logic 4(3), 256–278 (2006)

6. Gabbay, D., Ohlbach, H.J.: Quantifier elimination in second-order predicate logic.
In: Proc. KR 1992, pp. 425–435. Morgan Kaufmann (1992)

7. Gabbay, D.M., Schmidt, R.A., Sza�las, A.: Second Order Quantifier Elimination:
Foundations, Computational Aspects and Applications. College Publ. (2008)

8. Goranko, V., Hustadt, U., Schmidt, R.A., Vakarelov, D.: SCAN is complete for
all Sahlqvist formulae. In: Berghammer, R., Möller, B., Struth, G. (eds.) RelMiCS
2003. LNCS, vol. 3051, pp. 149–162. Springer, Heidelberg (2004)

9. Grau, B.C., Motik, B.: Reasoning over ontologies with hidden content: The import-
by-query approach. J. Artificial Intelligence Research 45, 197–255 (2012)

10. Herzig, A., Mengin, J.: Uniform interpolation by resolution in modal logic. In:
Hölldobler, S., Lutz, C., Wansing, H. (eds.) JELIA 2008. LNCS (LNAI), vol. 5293,
pp. 219–231. Springer, Heidelberg (2008)

11. Lutz, C., Piro, R., Wolter, F.: EL-concepts go second-order: Greatest fixpoints and
simulation quantifiers. In: Proc. DL 2010, pp. 43–54. CEUR-WS.org (2010)

12. Lutz, C., Wolter, F.: Foundations for uniform interpolation and forgetting in ex-
pressive description logics. In: Proc. IJCAI 2011, pp. 989–995. AAAI Press (2011)

13. Nikitina, N.: Forgetting in General EL Terminologies. In: Description Logics. Proc.
DL 2011. CEUR-WS.org (2011)

14. Nonnengart, A., Sza�las, A.: A fixpoint approach to second-order quantifier elimi-
nation with applications to correspondence theory. In: Logic at Work, pp. 307–328.
Springer (1999)

15. Schmidt, R.A.: The Ackermann approach for modal logic, correspondence theory
and second-order reduction. J. Appl. Logic 10(1), 52–74 (2012)

16. Simancik, F., Kazakov, Y., Horrocks, I.: Consequence-based reasoning beyond Horn
ontologies. In: Proc. IJCAI 2011, pp. 1093–1098. AAAI Press (2011)

17. Sza�las, A.: Second-order reasoning in description logics. J. Appl. Non-Classical
Logics 16(3-4), 517–530 (2006)

18. Wang, Z., Wang, K., Topor, R., Zhang, X.: Tableau-based forgetting in ALC on-
tologies. In: Proc. ECAI 2010, pp. 47–52. IOS Press (2010)

Abduction in Logic Programming

as Second-Order Quantifier Elimination

Christoph Wernhard

Technische Universität Dresden

Abstract. It is known that skeptical abductive explanations with re-
spect to classical logic can be characterized semantically in a natural
way as formulas with second-order quantifiers. Computing explanations
is then just elimination of the second-order quantifiers. By using appli-
cation patterns and generalizations of second-order quantification, like
literal projection, the globally weakest sufficient condition and circum-
scription, we transfer these principles in a unifying framework to ab-
duction with three non-classical semantics of logic programming: stable
model, partial stable model and well-founded semantics. New insights
are revealed about abduction with the partial stable model semantics.

1 Introduction

An abductive explanation is basically a formula X such that for given formu-
las F , the “background knowledge base”, and G, the “observation”, it holds
that F and X together entail G and, in addition, X satisfies application specific
further properties, for example, that it only contains symbols from a given vo-
cabulary and that it is as weak as possible. For classical logic, the semantics of
an abductive explanation in this sense can be characterized by a second-order
formula as follows:

X ≡ ∀SymbolsNotAllowedInTheExplanation (F → G). (i)

An explanation X can then be computed by performing second-order quantifier
elimination on the second-order formula, that is, computing a formula which is
equivalent to the given second-order formula but does not involve second-order
quantifiers. If explanations are constrained to be minimal conjunctions of lit-
erals, this scheme also applies, but indirectly: the actual explanations are then
obtained as the prime implicants of X . Variants of this understanding of ab-
ductive explanations are present in a number of works, e.g., [13, p312ff.],[22,7],
but the relationship to second-order quantifier elimination seems to have been
made explicit first in [5]. Abduction plays several important roles in logic pro-
gramming, an area where it has been investigated extensively between the late
80s and the early 2000s [17,3]. Many of these approaches are oriented at de-
riving methods for computing explanations from methods for evaluating logic
programs. Semantic characterizations, e.g., [18,8,23,1], are usually placed aside
of methods, related to them by correctness properties and complexity results.

P. Fontaine, C. Ringeissen, and R.A. Schmidt (Eds.): FroCoS 2013, LNAI 8152, pp. 103–119, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

104 C. Wernhard

In contrast, the objective of the present work is to combine the second-order
elimination approach with non-monotonic semantics of logic programming, re-
sulting in a characterization of abductive explanations for logic programming
semantics that is “constructive” in the sense that it maps the computation of
explanations to problems of second-order quantifier elimination. As logic pro-
gramming semantics we consider the popular stable model semantics and two
related three-valued semantics, the well-founded and the partial stable model se-
mantics1. We work with representations of these logic programming semantics in
classical logic extended by second-order operators, based on known translations
[21, Section 3.4.1][16]. Under this view, the stable model semantics appears as
circumscription that is applied only to certain occurrences of predicates – those
that are not subjected to negation as failure. Accordingly, a logic program can
be represented by a classical formula where these occurrences are distinguished
by special predicate names. A logic programming semantics then corresponds to
a logical operator sem that is wrapped around a classical representation F of a
program, such that sem(F) expands into a formula of classical logic extended
by second-order operators. The discrimination between different logic program-
ming semantics is expressed by different such wrapping operators, allowing to
embed programs considered under different semantics within a single classical
formula. With respect to abduction, only a single entailment relation – classical
entailment – is required, in contrast to other generic formalizations such as [8],
where the discrimination is done “globally” by specific inference operators.

The link between the inherently classical second-order characterization of ab-
ductive explanations displayed above as (i) and the non-classical logic program-
ming semantics will be provided by a lemma that states requirements under
which the operators sem expressing non-monotonic context are “transparent” for
explanations E, that is, it holds that sem(F)∧E ≡ sem(F∧E). In the case of the
investigated three-valued semantics, two related versions E,E′ of the explanation
are required, such that the established relationship is sem(F)∧E ≡ sem(F ∧E′).
To determine explanations with respect to a logic program, the abducibles, that
is, the atoms that are allowed in explanations should not be submitted to the
closed-world assumption, since, unless they occur in rule heads, they would then
be just set to false by the non-monotonic semantics. We take this into account
by using generalizations of the considered logic programming semantics that
allow to specify a set of ground atoms as open, that is, not subjected to the
closed-world assumption. These generalizations are quite straightforward: In the
underlying representations of these semantics by circumscription, the open atoms
just correspond to fixed – in contrast to minimized – predicate instances.

The entailment based notion of abductive explanation sketched at the begin-
ning is called skeptical or cautious. In contrast, credulous or brave explanations,
are constrained by the requirement that the background knowledge base com-
bined with the explanation is consistent with observation. For the well-founded
semantics every normal logic program has exactly a single model and thus both

1 In the sense of [24,16], in contrast to contemporary work by Saccà and Zaniolo where
partial stable model has been used for a related semantics. See [26, Introduction].

Abduction in Logic Programming as Second-Order Quantifier Elimination 105

notions coincide. In this paper, we focus on the skeptical view for the other se-
mantics. We consider finite normal ground programs, but the material should
generalize to programs with disjunctive heads, negation as failure in the head,
and first-order quantification, as indicated in [31,33].

As basic second-order operator we use literal projection [29], a generaliza-
tion of predicate quantification. Its arguments make those symbols explicit that
are “not quantified” and it allows, so-to-speak, to quantify just upon predicate
occurrences with a specific polarity. The latter feature is used to model the con-
sidered three-valued logic programming semantics. The application pattern of
second-order quantification in (i) is called globally weakest sufficient condition
(GWSC) and specified in terms of projection. It is closely related to weakest suf-
ficient condition [22,5]. Predicate quantification can be applied to express predi-
cate circumscription [4]. We express circumscription by a dedicated second-order
operator with a syntax analogous to projection [33]. We will develop the “con-
structive” characterizations of abductive explanations for the three considered
logic programming semantics in parallel. This framework leads to clear formal
conceptualizations of various subtle issues in abduction, such as notions of min-
imality and handling of negative facts in explanations. For abduction with the
partial stable model semantics, the author is not aware of another thorough
formal treatment. A distinguishing feature of that semantics is that it can be
applied to deliver meaningful explanations for facts being observed as undefined.

The rest of this paper is organized as follows: In Sect. 2 the background frame-
work of classical propositional logic extended by certain second-order operators
is specified. This is applied in Sect. 3 to characterize the considered logic pro-
gramming semantics. In Sect. 4 definitions of abductive explanation and related
concepts are given and in Sect. 5 the central concept of globally weakest suf-
ficient condition is summarized. On this basis, the main results of the paper
are developed in Sect. 6: Characterizations of abductive explanations and re-
lated concepts with respect to logic programming semantics as formulas with
second-order operators. Related works are reviewed in Sect. 7 and possible ways
to realize the approach in practice are sketched in the conclusion, Sect. 8. Proofs
of the results in the paper and further investigations are provided in [34].

2 Notation and Semantic Framework

Formulas, Literals, Scopes and Predicate Groups. We consider formulas
of classical propositional logic, extended by operators for projection and circum-
scription. They are constructed from propositional atoms, truth value constants
�,⊥, the unary connective ¬, binary connectives ∧,∨,→,←,↔, as usual, and
the two operators project and circ to express projection and circumscription. As
meta-level notation we use n-ary versions of ∧ and ∨. Based on the premise
that the material developed here does in principle generalize to a first-order set-
ting, we speak of propositional atoms, or synonymously Boolean variables, also
as 0-ary predicates. A literal is a pair of an atom and a sign, where we write
the positive (negative) literal with atom A as +A (−A). The complement of a

106 C. Wernhard

literal L is denoted by L. If S is a set of literals, then S denotes the set of
the complements of the members of S. We call a formula that is an atom or a
negated atom a literal formula, or, if no ambiguity arises, also briefly a literal.
A scope is a set of literals. We assume a fixed propositional signature whose
set of atoms is denoted by ATOMS. The sets of all literals, all positive literals,
and all negative literals w.r.t. ATOMS are denoted by ALL, POS, NEG, respec-
tively. An atom scope S is a scope such that S = S. Since a literal is a member
of an atom scope if and only if its complement is a member, as a shorthand,
we represent an atom scope also just by the set of atoms of its members. To
express logic programs and three-valued formulas by classical formulas we use
a signature where each “original” predicate is available in different “copies”,
indicating whether an occurrence is subject to negation as failure or how it
contributes to the three-valued reading. These “copies” are gathered into so-
called predicate groups : In addition to the set of propositional atoms ATOMS,
we assume a set of source atoms that play the role of atoms in other logics
that we will represent in our classical framework. Each source atom A is as-
sociated with a number of corresponding atoms A0, . . . , An ∈ ATOMS, where
the superscripts indicate their predicate group. More precisely: We assume that
ATOMS can be arranged as {A0

1, A
1
1, . . . , A

n
1 , A

0
2, A

1
2, . . . , A

n
2 , A

1
3, . . . , A

n
3 , . . .} for

some n ≥ 1. For k ∈ {0, . . . , n}, we call the set of all literals whose atom
has superscript k the predicate group k, written just as the number k. An
atom Ak

i is called the correspondent from group k of any atom Aj
i . Analo-

gously we speak of correspondents of literals. An ungrouped scope is a scope
that contains for each of its members all their correspondents. If no ambiguity
arises, we write an ungrouped scope like a scope but with omitting the predicate
group superscripts. For example, let ATOMS = {p0, p1, q0, q1, r0, r1}. Then 1 =
{+p1,+q1,+r1,−p1,−q1,−r1} is a predicate group, and 1∩POS = {+p1,+q1,+r1}.
The correspondent of p1 from group 0 is p0. An example for an ungrouped atom
scope is {+p0,+q0,+p1,+q1,−p0,−q0,−p1,−q1}, which can be written as {p, q}.
The atom scope {+p1,+q1,−p1,−q1} can be written as 1 ∩ {p, q}.

Classical Semantics, Projection and Circumscription. An interpretation
is a set of literals that contains for all atoms A ∈ ATOMS exactly one of +A or
−A. The satisfaction relation |= between interpretations and formulas is defined
with a clause for atoms and for each logical operator. For instance, for all in-
terpretations I, scopes S, atoms A, and formulas F,G it holds that: I |= A iff
+A ∈ I; I |= ¬F iff I �|= F ; I |= F ∧G iff I |= F and I |= G; I |= projectS(F) iff
there is an interpretation J s.t. J |= F and J ∩ S ⊆ I; I |= circS(F) iff I |= F
and there is no interpretation J s.t. J |= F and J ∩ S ⊂ I ∩ S. Entailment and
equivalence are then defined as usual: F |= G iff for all interpretations I it holds
that if I |= F then I |= G; F ≡ G iff F |= G and G |= F .

The formula projectS(F) whose semantics has just been defined with the |=
relationship is called the literal projection, or briefly projection, of formula F
onto scope S. The forgetting in F about S is a notational variant where the
scope is considered complementary [29,19]:

forgetS(F) def= projectALL−S(F). (ii)

Abduction in Logic Programming as Second-Order Quantifier Elimination 107

Combined with first-order logic, projection generalizes second-order quantifica-
tion, with respect to propositional logic quantified Boolean formulas (QBFs):
A QBF ∃pF can be expressed as forget{+p,−p}(F) or as projectALL−{+p,−p}(F).
If S is an atom scope, the semantic definition of projection is equivalent to:
I |= projectS(F) iff there is an interpretation J s.t. J |= F and J ∩ S = I ∩ S.
Literal projection also allows to express, so-to-speak, quantification upon just
the positive or negative occurrences of a Boolean variable in a formula. Intu-
itively, the projection of a formula F onto scope S is a formula that expresses
about members of S the same as F , but expresses nothing about other literals.
A projection of a propositional formula is equivalent to a formula in negation
normal form in which only literals in the projection scope do occur. The lat-
ter formula is a uniform interpolant of the original formula with respect to the
scope. A naive way to construct such a uniform interpolant – or to eliminate the
projection operator – is indicated by the following equivalences, where F [p\�]
(F [p\⊥]) denotes formula F with all occurrences of atom p replaced by � (⊥):
(1.) forget{+p,−p}(F) ≡ F [p\�]∨F [p\⊥]. (2.) forget{+p}(F) ≡ F [p\�]∨ (¬p∧F).

(3.) forget{−p}(F) ≡ (p ∧ F) ∨ F [p\⊥]. For formulas F and scopes S we define

F � S iff F ≡ projectS(F). (iii)

We use the symbol � also when introducing variables, e.g., “let F � S be
a formula” for “let F be a formula such that F � S”. Projection provides
a semantic account for systematically replacing atoms from a given predicate
group to their correspondents from another one. Let i, j be different predicate
groups. We define

renamei\j(F) def= forgeti(F ∧
∧

Ai∈ATOMS(Aj ↔ Ai)). (iv)

If F is a propositional formula, then renamei\j(F) is equivalent to F with all oc-
currences of atoms from group i replaced by their correspondents from j. We de-
fine rename[i1\j1, ..., in\jn](F) as shorthand for renamein\jn(...(renamei1\j1(F))...).

The circ operator has the same argument types as project and has also been
semantically defined above. It allows to express variants of parallel predicate
circumscription where the effects on each atom are controlled by a scope argu-
ment [33]. Atoms that occur just in a positive literal in the scope are minimized,
atoms that occur just in a negative literal are maximized, atoms that occur in
both polarities are fixed and atoms that do not at all occur in the scope are
varying. Thus, if F is a formula whose atoms are in disjoint sets P , Q and Z,
then the parallel predicate circumscription of P in F with fixed Q and varied Z,
traditionally written as CIRC[F ;P ;Z], can be expressed as circ(P∩POS)∪Q(F).

3 Classically Represented Logic Programming Semantics

We consider finite normal logic programs that are ground, that is, finite sets of
rules of the form

p � q1, . . . , qm, not r1, . . . , not rn, (v)

108 C. Wernhard

where m,n ≥ 0 and p, qi, ri are source atoms. The classical representation of
a normal logic program is a classical propositional sentence, obtained from the
program by forming the conjunction of its members and replacing each atom by
its representative from the indicated group as well as replacing the connectives
with classical ones, according to the following schema:

p0 ← q01 ∧ . . . ∧ q0m ∧ ¬r11 ∧ . . . ∧ ¬r1n. (vi)

Information that was expressed in (v) by the positioning of an atom in a rule
head versus the negative body is now captured instead by the predicate group.

Stable Model Semantics. For abductive reasoning we consider generalizations
of the established logic programming semantics that allow to specify atoms as
open, that is, not subjected to the closed world assumption. To this end, the
operators that express the logic programming semantics have aside of a classical
representation of a logic program also an ungrouped atom scope as argument
that specifies the open atoms.2 The logical operator stable renders the stable
model semantics: For ungrouped atom scopes O and formulas F define

stableO(F) def= rename1\0(circ(0∩POS)∪1∪O(F)). (vii)

The circumscription scope in this definition specifies that all atoms from group 1
as well as all open atoms are fixed, while the remaining atoms from group 0 are
minimized. This characterization of stable models in terms of circumscription
originates from [21, Section 3.4.1] (see also [20,31]). It is expressed here not as
a formula transformation but as a logical operator that expands into a classical
formula with projection (for the renaming) and circumscription. The stable op-
erator represents the stable model semantics in the following sense: If F is the
classical representation of a normal logic program and O is an ungrouped atom
scope, then the stable models of the program w.r.t. O are exactly the sets of
atoms obtained by taking the set of the positive literals that are from group 0
in some model of stableO(F), followed by dropping their signs and group super-
scripts. For example, the program {p � not q} has {p} as its single stable model,
which can be obtained from the models of stable{}(p0 ← ¬q1) ≡ (p0 ∧ ¬q0) as
described. With respect to O = {q}, the program has the two stable models {p}
and {q}, corresponding to stable{q}(p0 ← ¬q1) ≡ (p0 ∧ ¬q0) ∨ (¬p0 ∧ q0).

Partial Stable Model Semantics. Partial stable model and well-founded se-
mantics associate three-valued models with a logic program. Predicate groups
can be applied to express the three truth values F,U,T in terms of two truth
values: An interpretation I over at least all atoms of groups 0 and 1 is said to
assign to a source atom p the three-valued truth value F iff I |= (¬p0∧¬p1), U iff
I |= (¬p0∧p1), and T iff I |= (p0∧p1). The remaining possibility I |= (p0∧¬p1)
does not correspond to a three-valued truth value and models with this combi-
nation can be excluded with the axiom

cons def=
∧

A0∈ATOMS(A1 ← A0), (viii)

2 It is well-know that specifying atoms as open in this sense can also be encoded in
the standard versions of these semantics (see discussion of [15] in Sect. 7).

Abduction in Logic Programming as Second-Order Quantifier Elimination 109

assuming ATOMS is finite. The logical operator pstable defined below renders
the partial stable model semantics [25] by combining the translation of [16] into
programs with stable models semantics with the translation of the stable model
semantics shown above. Each of the two translations involves discrimination be-
tween two predicate groups, yielding four groups 0, 1, 2, 3 in combination, which
are reduced in the final value of pstable by renaming to groups 0 and 1. The mod-
els of pstableO(F) represent the three-valued partial stable models by combining
the values of atoms for predicate groups 0 and 1. In the definition of pstable we
write the numbers denoting predicate groups in binary notation to indicate how
the two involved translations are combined: The right digit corresponds to the
group discrimination required by the translation into stable models, the left digit
to the discrimination required by expressing the stable model semantics with cir-
cumscription. The arguments of pstable are like those of stable. For ungrouped
atom scopes O and formulas F define

pstableO(F) def= rename[10\00,11\01](circM (cons ∧ rename[01\11](F) ∧
rename[01\10,00\01](F))),

(ix)

where M = ((00∪01)∩POS)∪10∪11∪O. To represent values of pstable, we write a
conjunction C of literal formulas that contains for each atom p ∈ ATOMS∩(0∪1)
either p or ¬p as conjunct and is consistent with cons as pair 〈T ,F〉 of two sets
of source atoms, analogous to common notation for three-valued interpretations:
T is the set of all p such that p0 is a conjunct in C, and F is the set of all p such
that ¬p1 is a conjunct in C. For example, (p0 ∧ p1 ∧¬q0 ∧¬q1 ∧¬r0 ∧ r1) would
be written as 〈{p}, {q}〉. Compared to the stable model semantics, the partial
stable model semantics yields additional models, caused, e.g., by atoms that are
“undefined” since they are exempt from the closed world assumption or since
they occur “paradoxically” in the head and negated in the body of some rule.

Example 1 (Partial Stable Model Semantics). Let F = (p0 ← q0) and let
O = {q}. Then (1) stableO(F) ≡ (p0 ∧ q0) ∨ (¬p0 ∧ ¬q0) and (2) pstableO(F) ≡
〈{}, {}〉 ∨ 〈{p, q}, {}〉 ∨ 〈{}, {p, q}〉. The first disjunct in (2), that is, 〈{}, {}〉,
does not correspond to any disjunct in (1). As an example for a “paradoxical”
occurrence consider F ′ = (p0 ← ¬p1 ∧ ¬q1). Then stable{}(F ′) ≡ ⊥, that is, F ′

has no stable model. However, pstable{}(F ′) ≡ 〈{}, {q}〉.

Well-Founded Semantics. An interpretation is called informationally less-or-
equal-than a second one if and only if each atom assigned to one of the three-
valued truth values T or F by the first interpretation is assigned to the same
value by the second. Models that are minimal with respect to this relation can
be characterized by circumscription upon the scope

imin-scope def= (0 ∩ POS) ∪ (1 ∩ NEG). (x)

If the models of a formula F satisfy cons, then the informationally minimal
models of F are the models of circimin-scope(F). If cons is used together with
circumscription upon imin-scope, it can equivalently be placed inside or outside

110 C. Wernhard

of the circumscription operator: circimin-scope(cons ∧ F) ≡ cons ∧ circimin-scope(F).
Now, well-founded models are exactly the informationally minimal partial stable
models [24], allowing to characterize the well-founded semantics as

wfO(F) def= circimin-scope(pstableO(F)). (xi)

An attractive feature of the well-founded semantics is that each normal logic
program has exactly a single model. This property applies also to the general-
ized variant wfO with specified open atoms. By the following proposition, the
consequences G for which it holds that G � imin-scope are for the well-founded
semantics exactly the same as for the partial stable model semantics:

Proposition 2 (Consequences under Well-Founded and Partial Stable
Model Semantics). If O is a set of ungrouped atoms, and F,G are formulas
such that G � imin-scope, then wfO(F) |= G if and only if pstableO(F) |= G.

The precondition G � imin-scope of Prop. 2 characterizes exactly those formu-
las G that involve just truth and falsehood, in contrast to “undefinedness”, that
is, each three-valued model of G which respects the axiom cons assigns T or F
to atoms in the signature, but it never assigns U. This can be proven by con-
sidering disjunctive normal forms of formulas G � imin-scope and relating their
conjunctive clauses to models.

4 Basic Concepts of Abduction

An abductive setting gathers the parameters of abductive reasoning problems:

Definition 3 (Abductive Setting). An abductive setting is a tuple A=〈sem ,
O, S, F,G〉 of (1.) a logical operator sem with two arguments (an ungrouped
atom scope and a formula), the programming semantics, (2.) an ungrouped atom
scope O, the open scope, (3.) an ungrouped scope S ⊆ O, the explanation scope,
(4.) a formula F , the background, and (5.) a formula G, the observation.

This is similar to abductive framework [17], but here also the observation is
included. The programming semantics is an operator like stable that specifies
the logic programming semantics to be used. The open scope specifies the atoms
that are to be considered open with respect to the logic programming semantics.
The explanation scope specifies the vocabulary along with associated polarities
that is available for explanations. It is equal to or a subset of the open scope, and
thus must not necessarily be an atom scope, that is, it can contain literals but
not their complements. Background and observation are formulas representing
the background theory presentation and the observation, respectively.

Since we will focus on explanations that are conjunctions of literals, we provide
convenient notation for these: A conjunctive clause is a consistent conjunction
of literal formulas, with the empty conjunction � as special case. Let C,D be
conjunctive clauses. We write C |= D as D ⊆ C, and (C |= D and C �≡ D) as
D ⊂ C. A conjunctive clause C is called positive (negative, resp.) if and only if
C � POS (C � NEG, resp.). In this paper we adhere to the skeptical view of
explanations, rendered in the following definition:

Abduction in Logic Programming as Second-Order Quantifier Elimination 111

Definition 4 (Explanation, Factual Explanation). Let A=〈sem ,O,S,F,G〉
be an abductive setting. An explanation for A is a formula H � S ∩ 0 such that
semO(F ∧H) |= G. An explanation that is a conjunctive clause is called factual.

A positive factual explanation can be combined in a particularly simple way with
a logic program: If F is the classical representation of a normal logic program
and C is a positive explanation, then (F ∧C) is again a classical representation
of a normal logic program, the original program with the positive literals of the
explanation added as facts. Different ways to combine negative literals in expla-
nations with programs are discussed in [34, Sect. D]. Certain abductive settings
have the property that conjunctive clauses which extend a factual explanation
and are in the explanation scope are also explanations, formally:

Definition 5 (Factual Explanation Monotonicity). An abductive setting
A = 〈sem , O, S, F,G〉 is called factual explanation monotonic if and only if when-
ever C is a factual explanation for A, then any conjunctive clause D � S ∩ 0
such that C ⊆ D is also a factual explanation for A.

The following property justifies to represent all factual explanations of some ab-
ductive setting compactly just by the set of minimal factual explanations, that is,
those factual explanations that do not properly extend some other explanation:

Definition 6 (Minimal Factual Explanation). Let A be an abductive set-
ting. A minimal factual explanation for A is a factual explanation C for A such
that there does not exist another factual explanation D for A with D ⊂ C.

A further notion of “minimality” for factual explanations is obtained by con-
sidering just complete explanations, explanations that contain for each atom A0

occurring in of the explanation scope either A0 or ¬A0, and compare them
with respect to their positive member literals: C ≤ D iff projectPOS(D) |=
projectPOS(C). We call factual explanations that are minimal in this sense small-
est. There is a one-one correspondence of the smallest explanations to a certain
subset of the minimal explanations [34, Prop. C27]. Smallest explanations can be
combined with the background by adding their positive literals as facts, which
yields a normal logic program, and removing from the open scope all members
whose atom occurs in the explanation scope, independently of the particular
explanation [34, Sect. C,D].

In the literature, it is often required that the combination of explanation and
background is consistent. For reasons explicated in [34, Sect. B] this is specified
here as a separate property:

Definition 7 (Background Consistent Explanation). An explanation H
for an abductive setting with semantics sem, open scope O and background F
is called background consistent if and only if semO(F ∧ H) is satisfiable.

Integrity constraints, that is, rules with empty head, are in the literature on
abduction in logic programming often assigned a special role. We consider here
just normal logic programs, which, however, allow to encode constraints with
respect to the consistency view [17] by rules with a head atom that indicates
failure and is added negated to the observation [8, Sect. 3].

112 C. Wernhard

5 The Globally Weakest Sufficient Condition

The globally weakest sufficient condition (GWSC) [33] is the application pattern
of second-order quantification by which explanations with respect to classical
logic are characterized as in (i) in the introduction. We specify it formally in
terms of literal projection, such that also polarity can be constrained:

Definition 8 (Globally Weakest Sufficient Condition). The globally weak-
est sufficient condition (GWSC) of formula G on scope S within formula F , in
symbols gwscS(F,G), is defined as gwscS(F,G) def= ¬projectS(F ∧ ¬G).

The following alternate characterization provides intuition on the relationship to
abductive explanations: The GWSC of G on S within F is the weakest formula
H � S such that F ∧ H |= G. More precisely:

Proposition 9 (Alternate Characterization of the GWSC). For all for-
mulas F,G,H and scopes S it holds that H ≡ gwscS(F,G) if and only if: (1.)
H � S, (2.) H |= G, and (3.) for all formulas H ′ � S such that F ∧ H ′ |= G it
holds that H ′ |= H.

The following property implies that a GWSC on scope S can be expressed as a
propositional formula in negation normal form that only involves literals from S:

Proposition 10 (Scope Closedness of the GWSC). For all formulas F,G
and scopes S it holds that gwscS(F,G)�S.

The GWSC is closely related to weakest sufficient conditions (WSCs), devised
in [22] for propositional logic and adapted to first-order logic in [5]. Aside of the
consideration of polarity, GWSCs differ from WSCs in the sense of [22] in that
for a given formula and scope only GWSCs are unique up to equivalence [33].

6 Abduction with Logic Programming Semantics

The GWSC basically relates to classical semantics. How can it be applied with
non-classical logic programming semantics? Lemma 11 below, about “extension
transparency”, provides the required link. It states requirements that allow a
formula to be moved between the context of the non-classical semantics in the
argument of the sem operator – where the formula “extends” a logic program –
and a classical context outside the sem operator. Based on this lemma, we then
develop characterizations of abductive explanations in terms of the GWSC for
the considered logic programming semantics.

The involved lemma, theorem and propositions will be expressed in a generic
way, where the differences relating to the particular semantics are factorized out
into three auxiliary concepts that expand differently, depending on the semantics
indicated by their first argument. The first of these concepts, CF, represents the
circumscribed formulas in the definitions of stable and pstable. It is thus defined for
formulas F as CF(stable, F) def= F and CF(pstable, F) def= (cons∧ rename[01\11](F)∧

Abduction in Logic Programming as Second-Order Quantifier Elimination 113

rename[01\11,00\01](F)). The second concept, IG, is used to project intermediate

results onto specific predicate groups and is defined as IG(stable) def= 0 and
IG(pstable) def= imin-scope = (0 ∩ POS) ∪ (1 ∩ NEG). The third concept, IC, is
required for three-valued semantics to express a polarity dependent mapping be-
tween the predicate groups in conjunctive clauses of explanations and of interme-
diate results. For stable the value of IC is the unaltered argument, for pstable it is
obtained by switching the group of all negative literals to 1: IC is defined for con-
junctive clauses C = (

∧m
i=1 A

0
i ∧

∧n
i=1 ¬B0

i), where m,n ≥ 0 and C � 0, as
IC(stable, C) def= C and IC(pstable, C) def= (

∧m
i=1 A

0
i ∧
∧n

i=1 ¬B1
i).

Lemma 11 (Extension Transparency). Let sem ∈ {stable, pstable}, let F
be a formula, let O be an atom scope, and let G be a formula such that G �
(0 ∩ (O ∪ NEG)) ∪ 1. Then semO(F ∧ G) ≡ semO(F) ∧ CF(sem , G).

We apply this lemma mostly to formulas G satisfying the stronger condition G �
0∩O, which means that G can be expressed in terms of open atoms from group 0.
The weaker precondition in the lemma results in the course of the proof [34]. It
will be used in Sect. 8 to justify a way in which stable model computation invoked
on the background combined with the negated observation can be applied to
compute explanations. Based on Lemma 11, Theorem 12 below can be proven.
It shows for the stable model and the partial stable model semantics that factual
explanations are – modulo conversion by IC – exactly the conjunctive clauses
in the explanation scope that imply the GWSC of the program representation
wrapped in the semantics operator and of the observation. For the well-founded
semantics, the equivalence to the partial stable model semantics with respect to
explanations for “defined” observations is stated, which follows from Prop. 2.

Theorem 12 (Factual Explanation in Terms of GWSC). Let A = 〈sem , O,
S, F,G〉 be an abductive setting. Let C � 0 be a conjunctive clause. If sem ∈
{stable, pstable}, then the following two statements are equivalent:
1. C is a factual explanation for A.
2. C � S and IC(sem , C) |= gwscS∩IG(sem)(semO(F), G).

If sem = wf and G � imin-scope, then (1.) is equivalent to:
3. C is a factual explanation for 〈pstable, O, S, F,G〉.

Since gwscS(pstable(F), G) ≡ gwscS(pstable(F), cons ∧ G), in abductive settings
with pstable the observation G can be equivalently replaced by any formula G′

such that (cons ∧ G′) ≡ (cons ∧ G). In particular, an observation (p0 ∧ p1),
which expresses that p is T, can be replaced by just p0, and (¬p0 ∧ ¬p1), which
expresses that p is F, by just ¬p1. The following example illustrates a case where
the factual explanations with stable differ from those with pstable and wf.

Example 13 (Abduction with Different Semantics I). Let A = 〈sem , O,
S, F,G〉 be an abductive setting, where O = S = {a, b}, F = (p0 ← a0 ∧
b0) ∧ (p0 ← a0 ∧ ¬b1), and G = p0. If sem = stable, there is a single minimal
factual explanation for A, namely a0. If sem ∈ {pstable,wf}, there are two: First,
(a0 ∧ b0), second (a0 ∧ ¬b0). To see that a0 is then not an explanation, consider
that pstable{a,b}(F ∧ a0) ≡ 〈{a}, {}〉 ∨ 〈{a, b, p}, {}〉 ∨ 〈{a, p}, {b}〉.

114 C. Wernhard

The following comprehensive example demonstrates further differences of the
three considered logic programming semantics with respect to abduction, in
particular a case where a meaningful explanation for a fact being observed as
undefined is only obtained with the partial stable model semantics.

Example 14 (Abduction with Different Semantics II). Assume a domain
with two persons a, b, one of them, b, being “the barber”. For x, y ∈ {a, b} let sxy
stand for “x shaves y”, let mx , fx stand for “x is male” and “x is female”, respec-
tively. In addition let ss stand for “barbers are self-shavers”. The following pro-
gram F expresses: “a person that is male and does not shave himself is shaved by
b”, “if barbers are self-shavers, then b shaves himself”, and “all persons are either
female or male”: F = (sba0 ← ma0 ∧ ¬saa1) ∧ (sbb0 ← mb0 ∧ ¬sbb1) ∧ (sbb0 ←
ss0) ∧ (fa0 ← ¬ma1) ∧ (ma0 ← ¬fa1) ∧ (fb0 ← ¬mb1) ∧ (mb0 ← ¬fb1). Let
A = 〈sem , O, S, F,G〉 be an abductive setting, where O = S = {ma,mb, ss}. Let
us first consider the partial stable model semantics, i.e., assume sem = pstable.
A distinguishing feature of this semantics is that it allows to compute expla-
nations for the undefinedness of observations: Let G = (¬sbb0 ∧ sbb1). Then
G �� imin-scope and G expresses that “sbb is U”. As the single minimal factual
explanation for A we then obtain (mb0 ∧¬ss0). Since the well-founded model is
a partial stable model, this is also an explanation w.r.t. the well-founded seman-
tics. However, there are explanations w.r.t. the well-founded semantics that are
not explanations w.r.t. the partial stable model semantics. Here for example the
“empty” explanation �, since the well-founded model of F is 〈{}, {saa, ss}〉 in
which the value of sbb is U. Notice that in the example only the explanation w.r.t.
the partial stable model semantics provides the desired information about the
reasons for sbb being undefined, i.e., that the barber is male and that “barbers
are self-shavers” is false. For “defined” observations G, i.e., if G � imin-scope,
explanations w.r.t. the partial stable model semantics and the well-founded se-
mantics coincide. In the case G = sbb0, expressing that the value of sbb is T,
we obtain ss0 as single minimal factual explanation. In the case G = ¬sbb1,
expressing that the value of sbb is F, we obtain (¬mb0 ∧ ¬ss0). Let us now con-
sider the stable model semantics, i.e., assume sem = stable. For the observation
G = sbb0, the only background consistent minimal factual explanation then is
ss0, coinciding with the partial stable model semantics. However, for the ob-
servation G = ¬sbb0, the only minimal factual explanation is just ¬ss0. The
dependency of ¬mb0 in the explanation obtained for the partial stable model
semantics, introduced through the “paradoxical” rule (sbb0 ← mb0 ∧ ¬sbb1), is
not taken into account by the stable model semantics.

All the three considered logic programming semantics are factual explanation
monotonic, which follows from Theorem 12:

Proposition 15 (Factual ExplanationMonotonicity ofConsideredLogic
Programming Semantics). An abductive setting A = 〈sem, O, S, F,G〉 where
sem ∈ {stable, pstable,wf} is factual explanation monotonic.

Theorem 12 gives a characterization of factual explanations in terms of conjunc-
tive clausal implicants of some particular GWSC. A straightforward consequence

Abduction in Logic Programming as Second-Order Quantifier Elimination 115

is that minimal factual explanations correspond to prime implicants of that
GWSC, as stated in the following proposition. Recall that a prime implicant of
a formula F is a conjunctive clause C such that C |= F and there does not exist
another conjunctive clause D such that D |= F and D ⊂ C.

Proposition 16 (Minimal Factual Explanations and Prime Implicants).
LetA = 〈sem , O, S, F,G〉 be an abductive setting. LetC � 0 be a conjunctive clause.
Then the following two statements are equivalent for sem ∈ {stable, pstable}:
1. C is a minimal factual explanation for A.
2. IC(sem, C) is a prime implicant of gwscS∩IG(sem)(semO(F), G).

If sem = wf and G � imin-scope, then (1.) is equivalent to:
3. C is a minimal factual explanation for 〈pstable, O, S, F,G〉.

From Prop. 10 it follows that gwscS∩IG(sem)(semO(F), G) � S ∩ IG(sem), and

thus, if sem = pstable, then gwscS∩IG(sem)(semO(F), G) is equivalent to a for-
mula in DNF with only consistent disjuncts, where the positive literal formulas
are from group 0 and the negative ones from group 1. To convert such a DNF into
prime implicants form, i.e., the disjunction of all its prime implicants, it suffices
to remove subsumed conjunctive clauses. The following example illustrates the
relationship of prime implicants and minimal explanations for the partial stable
model semantics.

Example 17 (Prime Implicants Form with Partial Stable Models).
Consider the setting of Examp. 13. Then gwscS∩IG(pstable)(pstableO(F), G) ≡
(a0∧b0)∨(a0 ∧¬a1)∨(a0 ∧¬b1)∨(b0∧¬b1), where the latter formula is in prime
implicants form. To obtain the minimal factual explanations, we remove the two
disjuncts (a0 ∧ ¬a1) and (b0 ∧ ¬b1), which would become inconsistent after re-
naming from group 1 to group 0. This requirement of consistency is implicit in
Prop. 16 with the precondition that C � 0 is a conjunctive clause.

7 Related Work

As indicated in the introduction in the context of the second-order characteriza-
tion (i) of classical abductive explanations, similar characterizations have been
formulated in a number of works. With respect to non-monotonic semantics, the
author is only aware of a second-order characterization for default logic in [28],
where a translation of default abduction problems into QBFs is specified such
that the models of the resulting QBF correspond to the explanations. The rela-
tionship to second-order quantifier elimination is not made explicit there. In [7] a
QBF characterization of the existence of consistent abductive explanations with
respect to classical propositional logic is shown. Only positive explanations, that
is, sets of atoms, are permitted. To achieve this, literal projection is encoded as
Boolean quantification in [7]. Otherwise, the presented schema is essentially (i)
conjoined with a condition that ensures background consistency. In [7] also a
QBF representation of the stable model semantics is given, but its interplay
with abduction is not considered there. In [8] abduction for stable model and

116 C. Wernhard

well-founded semantics is formalized and complexity results for associated de-
cision problems are given. The role of QBFs there is that hardness results are
proven with translations from decision problems for QBFs with certain quantifier
prefixes into the abductive decision problems. Negative literals in explanations
are not considered in [8].

Several works on computing credulous abductive explanations with respect to
the stable model semantics are based on the approach of [18]. Similarities to the
present work include the consideration of open abducibles and the relationship
of minimal explanations to prime implicants. Computation of skeptical explana-
tions can be performed with the credulous approach in a trivial way: Computing
all stable models of the background and possible explanations, independently
of the observation, and inspecting these afterwards. In [15] it is shown how the
computation of credulous explanations with respect to the stable model seman-
tics can be expressed as computation of stable models of programs with integrity
rules. The knowledge base is a normal logic program. To encode that abducibles
are open, for each abducible p rules (p � not p′) and (p′ � not p) are added,
where p′ is a fresh symbol. Finally, the observation q is added as an integrity
constraint (⊥ � q). There is a one-one correspondence between stable models of
the resulting program and explanations of q. As noted in [23], a major drawback
of this method is that it involves the actual computation of all explanations,
not taking into account that the minimal ones provide a succinct representa-
tion of them. A variant of [15] is described in [14], where a generalization of
the stable model semantics to rules with literals instead of just atoms, as well as
disjunctive heads and negation as failure in the head is considered. Computation
of explanations is there encoded similarly to [15], except that the openness of
abducibles p is expressed by rules (p | not p � �). Minimality with respect to
the set of abducibles is taken into account [14, Corollary 3.3], but in a way that
just suggests to compute first the models and only afterwards extract explana-
tions and compare them with respect to minimality. In [23], the approach of [18]
is improved by discerning redundant explanations. Explanations correspond to
sets of literals. It is shown that the set of all explanations can be represented by
the set of minimal explanations, and that minimal explanations to correspond
to prime implicants. Again, only credulous explanations are considered.

A characterization of stable models in terms of circumscription is presented
in [10] as a transformation SM(F) on classical formulas F . In contrast to the
stable operator, based on [21], the predicate occurrences that are affected by cir-
cumscription are identified in [10] by their syntactic position within the formula,
such that classically equivalent formulas are not necessarily equivalent with re-
spect to the logic programming semantics. Interestingly, an analog to Lemma 11
is shown in [10, Sect. 5.1]: SM(F ∧G) ≡ SM(F) ∧G whenever G has no strictly
positive occurrences [read: each occurrence is negative, i.e. is in NEG, or is sub-
jected to negation as failure, i.e., is from group 1] of intensional predicates [read:
predicates that are not open, i.e., are not in O]. Observe that if 0 and 1 are the
only predicate groups, then NEG∪1∪O = (0∩ (O∪NEG))∪1, matching exactly
the precondition upon G of Lemma 11.

Abduction in Logic Programming as Second-Order Quantifier Elimination 117

Abduction with respect the well-founded semantics has been elaborated in
[1] for programs with a second type of negation, so-called explicit negation, and
integrity constraints. A semantic characterization of explanations is specified,
and a computation method is described and proven correct. Explicit negation
and “coherency” in [1] at least superficially correspond to predicate group 1
and the cons axiom, although a detailed comparison still needs to be done.
Concerning abduction with respect to the partial stable model semantics, the
present author is not aware of a thorough previous investigation.

8 Conclusion

We have seen that abductive explanations with respect to different logic pro-
gramming semantics can be characterized semantically as formulas with second-
order operators. This provides a solid basis for subtle issues such as abduction
with the partial stable model semantics, and, as further described in [34], al-
ternate kinds of minimality, the handling of negative facts in explanations, and
abductive consequences. A distinguishing feature of such characterizations is
that they can be directly processed by elimination of the second-order opera-
tors, that is, computing for a given formula with these operators an equivalent
formula without them. Approaches to second-order quantifier elimination in-
clude, with respect to first-order and modal logics, the resolution-based SCAN
and the direct methods [11]. Of course, with respect to full first-order logic,
these methods are inherently incomplete. Further relevant techniques stem from
knowledge compilation [30] and SAT solving, where Boolean variable elimination
is an important preprocessing technique [6].

From an algorithmic point of view, the elimination approach suggests two pos-
sible ways to divide the computation of explanations into subtasks. Consider the
computation of all minimal background consistent factual explanations with re-
spect to the stable model semantics. According to Prop. 16, the core expression
then is gwscS∩0(stableO(F), G). Explanations can be computed by expanding
the gwsc and stable operators, eliminating the resulting second-order quanti-
fiers, and postprocessing the result by computing prime implicants and remov-
ing explanations that are not background consistent. A naive implementation
that proceeds in this way and allows small experiments is provided with [32]3.
The second way to divide the computation begins with computing stableO(F)
with a dedicated system for stable models. Lemma 11 justifies to take posi-
tive observations into account at this stage: If G contains only positive atoms
from group 0, then gwscS∩0(stableO(F), G) ≡ ¬projectS∩0(stableO(F) ∧ ¬G) ≡
¬projectS∩0(stableO(F ∧ ¬G)). Combinations of stable model computation with
second-order quantifier elimination have been developed [9,12], but it needs to
be investigated whether they can be used for the computations suggested here.

On the agenda for future work are also further applications of the semantic
aspects of the characterizations. For example, relationships to concepts of equiv-
alence of logic programs, in particular abductive equivalence [27] and uniform

3 Available at http://cs.christophwernhard.com/toyelim/

http://cs.christophwernhard.com/toyelim/

118 C. Wernhard

equivalence. Can complexity results be read-off from the characterizations? Are
there useful relationships between abduction with respect to non-monotonic se-
mantics and the many other applications of GWSC and WSCs [22,5,33] as well
as the further similar concept of perfect rewriting [2]?

Acknowledgments. The author wishes to thank anonymous reviewers for
bringing related work to attention.

References

1. Alferes, J.J., Pereira, L.M., Swift, T.: Abduction in well-founded semantics and
generalized stable models via tabled dual programs. Theory and Pract. Log. Pro-
gram. 4(4), 383–428 (2004)

2. Calvanese, D., Giacomo, G.D., Lenzerini, M., Vardi, M.Y.: View-based query pro-
cessing: On the relationship between rewriting, answering and losslessness. Theor.
Comp. Sci. 371(3), 169–182 (2007)

3. Denecker, M., Kakas, A.C.: Abduction in logic programming. In: Kakas, A.C.,
Sadri, F. (eds.) Computat. Logic (Kowalski Festschrift). LNCS (LNAI), vol. 2407,
pp. 402–436. Springer, Heidelberg (2002)

4. Doherty, P., �Lukaszewicz, W., Sza�las, A.: Computing circumscription revisited: A
reduction algorithm. J. Autom. Reasoning 18(3), 297–338 (1997)

5. Doherty, P., �Lukaszewicz, W., Sza�las, A.: Computing strongest necessary and
weakest sufficient conditions of first-order formulas. In: IJCAI 2001, pp. 145–151.
Morgan Kaufmann (2001)

6. Eén, N., Biere, A.: Effective preprocessing in SAT through variable and clause elim-
ination. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 61–75.
Springer, Heidelberg (2005)

7. Egly, U., Eiter, T., Tompits, H., Woltran, S.: Solving advanced reasoning tasks
using quantified Boolean formulas. In: AAAI 2000, pp. 417–422. AAAI Press (2000)

8. Eiter, T., Gottlob, G., Leone, N.: Abduction from logic programs: Semantics and
complexity. Theor. Comp. Sci. 189(1-2), 129–177 (1997)

9. Eiter, T., Wang, K.: Semantic forgetting in answer set programming. Artif. In-
tell. 172(14), 1644–1672 (2008)

10. Ferraris, P., Lee, J., Lifschitz, V.: Stable models and circumscription. Artif. In-
tell. 175(1), 236–263 (2011)

11. Gabbay, D.M., Schmidt, R.A., Sza�las, A.: Second-Order Quantifier Elimination:
Foundations, Computational Aspects and Applications. College Publications
(2008)

12. Gebser, M., Kaufmann, B., Schaub, T.: Solution enumeration for projected boolean
search problems. In: van Hoeve, W.-J., Hooker, J.N. (eds.) CPAIOR 2009. LNCS,
vol. 5547, pp. 71–86. Springer, Heidelberg (2009)

13. Inoue, K.: Linear resolution for consequence finding. Artif. Intell. 56(2-3), 301–353
(1992)

14. Inoue, K., Sakama, C.: Negation as failure in the head. J. Log. Program. 35(1),
39–78 (1998)

15. Iwayama, N., Satoh, K.: Computing abduction by using TMS with top-down ex-
pectation. J. Log. Program. 44, 179–206 (2000)

16. Janhunen, T., Niemelä, I., Seipel, D., Simons, P., You, J.H.: Unfolding partiality
and disjunctions in stable model semantics. ACM Trans. Comput. Log. 7(1), 1–37
(2006)

Abduction in Logic Programming as Second-Order Quantifier Elimination 119

17. Kakas, A.C., Kowalski, R.A., Toni, F.: The role of abduction in logic program-
ming. In: Gabbay, D.M., Hogger, C.J., Robinson, J.A. (eds.) Handbook of Logic
in Artifical Intelligence, vol. 5, pp. 235–324. Oxford University Press (1998)

18. Kakas, A.C., Mancarella, P.: Generalized stable models: A semantics for abduction.
In: ECAI 1990, pp. 385–391. Pitman (1990)

19. Lang, J., Liberatore, P., Marquis, P.: Propositional independence – formula-
variable independence and forgetting. J. of Artif. Intell. Res. 18, 391–443 (2003)

20. Lifschitz, V.: Twelve definitions of a stable model. In: Garcia de la Banda, M.,
Pontelli, E. (eds.) ICLP 2008. LNCS, vol. 5366, pp. 37–51. Springer, Heidelberg
(2008)

21. Lin, F.: A Study of Nonmonotonic Reasoning. Ph.D. thesis, Stanford Univ. (1991)
22. Lin, F.: On strongest necessary and weakest sufficient conditions. Artif. In-

tell. 128(1-2), 143–159 (2001)
23. Lin, F., You, J.H.: Abduction in logic programming: A new definition and an

abductive procedure based on rewriting. Artif. Intell. 140(1/2), 175–205 (2002)
24. Przymusinski, T.: Well-founded semantics coincides with three-valued stable se-

mantics. Fundam. Inform. 13(4), 445–464 (1990)
25. Przymusinski, T.: Stable semantics for disjunctive programs. New Gen. Com-

put. 9(3/4), 401–424 (1991)
26. Saccá, D., Zaniolo, C.: Deterministic and non-deterministic stable models. J. Log.

Comput. 7(5), 555–579 (1997)
27. Sakama, C., Inoue, K.: Equivalence issues in abduction and induction. J. Applied

Logic 7(3), 318–328 (2009)
28. Tompits, H.: Expressing default abduction problems as quantified Boolean formu-

las. AI Commun. 16(2), 89–105 (2003)
29. Wernhard, C.: Literal projection for first-order logic. In: Hölldobler, S., Lutz, C.,

Wansing, H. (eds.) JELIA 2008. LNCS (LNAI), vol. 5293, pp. 389–402. Springer,
Heidelberg (2008)

30. Wernhard, C.: Tableaux for projection computation and knowledge compilation.
In: Giese, M., Waaler, A. (eds.) TABLEAUX 2009. LNCS (LNAI), vol. 5607,
pp. 325–340. Springer, Heidelberg (2009)

31. Wernhard, C.: Circumscription and projection as primitives of logic programming.
In: Tech. Comm. ICLP 2010. LIPIcs, vol. 7, pp. 202–211 (2010)

32. Wernhard, C.: Computing with logic as operator elimination: The ToyElim system.
In: WLP 2011, pp. 94–98. Infsys Res. Rep. 1843-11-06, TU Wien (2011)

33. Wernhard, C.: Projection and scope-determined circumscription. J. Symb. Com-
put. 47(9), 1089–1108 (2012)

34. Wernhard, C.: Abduction in logic programming as second-order quantifier elimi-
nation (extended version). Tech. Rep. KRR 13-05, TU Dresden (2013)

Witness Runs for Counter Machines�

Clark Barrett1, Stéphane Demri1,2, and Morgan Deters1

1 New York University, USA
2 LSV, CNRS, France

Abstract. In this paper, we present recent results about the verifica-
tion of counter machines by using decision procedures for Presburger
arithmetic. We recall several known classes of counter machines for which
the reachability sets are Presburger-definable as well as temporal logics
with arithmetical constraints. We discuss issues related to flat counter
machines, path schema enumeration, and the use of SMT solvers.

1 Introduction

Infinite-state systems. Model-checking is a standard approach to verifying prop-
erties of computing systems [CGP00] and it is known that dealing with infinity
or unboundedness of computational structures leads easily to undecidable verifi-
cation problems. Such problems include testing boundedness (checking whether
a counter in a counter machine takes a finite amount of values) and those deal-
ing with model-checking temporal formulae in which atomic formulae can state
properties about unbounded values (e.g., arithmetical constraints about counter
values). Roughly speaking, techniques for the verification of infinite-state sys-
tems stem from exact methods in which potentially infinite sets of configurations
are finitely represented symbolically to semi-algorithms that are designed to be-
have well in practice. When exact methods can produce decision procedures,
this is because an underlying finite structure can be identified in the verifica-
tion problem. For instance, the set of reachable configurations can be effectively
represented symbolically, typically by a formula in Presburger arithmetic, for
which satisfiability is known to be decidable [Pre29]. The use of Presburger
arithmetic for formal verification has been advocated in [SJ80]. Finiteness can
also occur in a more subtle way, as in well-structured transition systems [FS01],
for which termination is guaranteed thanks to underlying well-quasi-orderings,
see e.g. [Kos82, OW05].

Counter machines. Counter machines are well-known infinite-state systems that
have many applications in formal verification. Their ubiquity stems from their
use as operational models for several purposes, including for instance for broad-
cast protocols [FL02], for programs with pointer variables (see [BBH+06]) and
for logics for data words, see e.g. [BL10]. However, numerous model-checking

� Work partially supported by the EU Seventh Framework Programme under grant
agreement No. PIOF-GA-2011-301166 (DATAVERIF).

P. Fontaine, C. Ringeissen, and R.A. Schmidt (Eds.): FroCoS 2013, LNAI 8152, pp. 120–150, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Witness Runs for Counter Machines 121

problems for counter machines, such as reachability, are known to be unde-
cidable. Many subclasses of counter machines admit a decidable reachability
problem, such as reversal-bounded counter automata [Iba78] and flat counter
automata [CJ98, Boi99, FL02]. These two classes of machines admit reachabil-
ity sets effectively definable in Presburger arithmetic (assuming some additional
conditions, unspecified herein). In general, computing the transitive closures of
integer relations is a key step to solve verification problems on counter machines,
see e.g. [BW94, CJ98, Fri00, FL02, BIK09].

Flatness. Flat counter machines are counter machines in which each control
state belongs to at most one simple cycle (i.e., a cycle without any repetition
of edges). Several classes of such flat operational devices have been identified
and reachability sets have been shown effectively Presburger-definable for many
of them, see e.g. [FO97, CJ98, Boi99, FL02, BIK09]. This provides a decision
procedure for the reachability problem, given a prover for Presburger arithmetic
validity. Effective semilinearity boils down to check that the effect of a loop
can be characterized by a formula in Presburger arithmetic (or in any decidable
fragment of first-order arithmetic). The results for flat counter machines can be
then obtained by adequately composing formulae for loops and for finite paths.
However, this approach, briefly described in this paper, suffers from at least
two drastic limitations. First, flatness in counter machines remains a strong
restriction on the control graph, though this has been relaxed by considering
flattable counter machines, see e.g. [BFLS05, LS05, Ler13] and Section 3.5, where
a machine may not itself be flat, but is known to have a flat unfolding with the
same reachability set. The second limitation is due to the fact that reachability
questions are not the only interesting ones and the verification of properties
expressed in dedicated temporal logics is often desirable, see e.g. [DFGvD10].

In this paper, we present a selection of results about the verification of counter
machines, at times assuming flatness, from reachability problems to model-
checking problems with temporal logics. We follow an approach similar to [Fri00]
to translate verification problems into Presburger arithmetic satisfiability. We
focus on flattable counter machines and how to compute flat unfoldings by enu-
merating path schemas while invoking SMT solvers to optimize this enumeration.
This part of the paper presents preliminary results, and it will be the subject of
a dedicated paper.

Satisfiability Modulo Theories. Deciding Presburger arithmetic fragments is es-
sential to verify properties of programs; see e.g. [Sho79] and [SJ80] for an early
use of Presburger arithmetic for formal verification. Most well-known SMT
solvers deal with quantifier-free linear integer formulae, also known as quantifier-
free linear integer arithmetic (‘QF_LIA’ in the parlance of SMT-LIB [BST12]).
For instance, this includes Z3 [dMB08], CVC4 [BCD+11] and Alt-Ergo [Con12],
to cite a few of them. However, dealing with quantifiers is usually a difficult
task for SMT solvers that are better tailored to theory reasoning. Many general-
purpose SMT solvers (including CVC3, CVC4, Z3, Yices, Alt-Ergo) do accept
formulas with quantifiers and they handle them in roughly the same way, through

122 C. Barrett, S. Demri, and M. Deters

heuristic instantiation. Z3 is unique in that it implements several quantifier-
elimination procedures as preprocessing steps, including a procedure for Pres-
burger arithmetic (‘LIA’ in SMT-LIB). It is worth also mentioning automata-
based tools dealing with satisfiability such as MONA [BKR96], LASH [BJW01]
or TAPAS [LP09]. Even though Presburger arithmetic admits quantifier elimina-
tion, it is known that eliminating quantifiers can be computationally expensive
(see e.g., [RL78, Grä88]). Recent developments propose a promising, lazy ap-
proach for quantifier elimination [Mon10].

2 Machines with Registers

In this section, we briefly present Presburger arithmetic (PA), the class of Pres-
burger counter systems, and standard subclasses.

2.1 Presburger Arithmetic in a Nutshell

Presburger arithmetic (PA) has been introduced by M. Presburger in [Pre29]
where it is shown decidable by quantifier elimination. This decidability result on
the theory of addition is regarded today as a key result in theoretical computer
science.

Let VAR = {x, y, z, . . .} be a countably infinite set of variables. Terms are
expressions of the form a1x1 + · · · + anxn + k where a1, . . . , an are constant
coefficients in N, k is in N and the xi’s are variables. Variables and terms come
with their interpretations when the variables are interpreted by natural numbers.
A valuation v is a map VAR → N and it can be extended to the set of all terms
as follows: v(k) = k, v(ax) = a × v(x) and v(t + t′) = v(t) + v(t′) for all terms
t and t′. Formulae are defined by the grammar below:

φ ::= t ≤ t′ | ¬φ | φ ∧ φ | ∃ x φ

where t and t′ are terms and x ∈ VAR. A formula φ is in the linear fragment def⇔
φ is a Boolean combination of atomic formulae of the form t ≤ t′. The semantics
for formulae in (PA) is defined with the help of the satisfaction relation |= that
determines the conditions for the satisfaction of a formula under a given valuation
(we omit the Boolean clauses):

– v |= t ≤ t′
def⇔ v(t) ≤ v(t′),

– v |= ∃ x φ
def⇔ there is n ∈ N such that v[x (→ n] |= φ where v[x (→ n] is equal

to v except that x is mapped to n.

Any formula φ(x1, . . . , xn) whose free variables are among x1, . . . , xn, with
n ≥ 1, defines a set of n-tuples �φ(x1, . . . , xn)� def

= {〈v(x1), . . . , v(xn)〉 ∈ Nn :
v |= φ} which contains all the tuples that make true the formula φ by ignoring
the irrelevant interpretation of the bound variables and by fixing an arbitrary
ordering between the variables. For instance, �x1 < x2� = {〈n, n′〉 ∈ N2 : n < n′}.
Let φ be a formula φ(x1, . . . , xn) with n ≥ 1 free variables x1, . . . , xn. We say that

Witness Runs for Counter Machines 123

�φ� is a Presburger set. The satisfiability problem for (PA) is a decision problem
that takes as input a formula φ and asks whether there is a valuation v such
that v |= φ. If such a valuation exists, we say that φ is satisfiable.

Theorem 1 (Presburger Arithmetic Decidability). [Pre29] The satisfia-
bility problem for (PA) is decidable.

The satisfiability problem can be solved in triple exponential time [Opp78]
by analyzing the quantifier elimination procedure described in [Coo72]. It was
shown 2ExpTime-hard in [FR74] and to be in 2ExpSpace in [FR79]. An exact
complexity characterization is provided in [Ber80] (double exponential time on
alternating Turing machines with linear amounts of alternations).

2.2 Presburger Counter Systems

The systems introduced below are finite-state automata augmented with
registers, also known as counters (variables interpreted as natural numbers).
Transitions are labelled by arithmetical constraints on counters defined in (PA).
A Presburger counter system C = 〈Q,n, δ〉 is a structure (see e.g. [DFGvD10,
Ler12]) such that

– Q is a nonempty finite set of control states,
– n ≥ 1 is the dimension of the system, i.e. the number of counters, we assume

that the counters are represented by the variables x1, . . . , xn,
– δ is the transition relation defined as a finite set of triples of the form 〈q, φ, q′〉,

where q, q′ are control states and φ is a Presburger formula whose free vari-
ables are among x1, . . . , xn, x

′
1, . . . , x

′
n. Prime variables are intended to be

interpreted as the next values of the unprimed variables.

Figure 1 contains a Presburger counter system C such that inc(i) [resp. dec(i)]
stands for the formula that increments [resp. decrements] the counter xi and
keeps unchanged the other counters. Formulae zero(i) tests if counter xi is equal
to zero but it has no effect on the counters.

Elements t = 〈q, φ, q′〉 ∈ δ are called transitions and are often represented
by q

φ−→ q′. A configuration of the Presburger counter system C = 〈Q,n, δ〉 is a
pair 〈q,x〉 ∈ Q × Nn. Given two configurations 〈q,x〉, 〈q′,x′〉 and a transition
t = q

φ−→ q′, we write 〈q,x〉 t−→ 〈q′,x′〉 whenever v |= φ (in (PA)) and for every
i ∈ [1, n], v(xi)

def
= x(i) and v(x′i)

def
= x′(i). Given a Presburger counter system C,

its transition system T(C) = 〈S,−→〉 is a graph with S = Q×Nn and −→⊆ S×S

such that 〈〈q,x〉, 〈q′,x′〉〉 ∈−→ def⇔ there exists a transition t ∈ δ such that
〈q,x〉 t−→ 〈q′,x′〉. As usual, ∗−→ denotes the reflexive and transitive closure of the
binary relation −→. The binary relation ∗−→ is also called the reachability relation
of C and it is sometimes written ReachC. Similarly, we write ReachC(〈q,x〉) to
denote the reachability set {〈q′,x′〉 ∈ S : 〈q,x〉 ∗−→ 〈q′,x′〉}. A run ρ is a non-
empty (possibly infinite) sequence ρ = 〈q0,x0〉, . . . , 〈qk,xk〉, . . . of configurations
such that two consecutive configurations are in the relation −→ from T(C).

124 C. Barrett, S. Demri, and M. Deters

q1

q2

q3

q4

q5

q6

q7

q8 q9q11q10

inc(1)

inc(2)

inc(2) zero(1)

inc(1) zero(2)

inc(1) dec(1) inc(2)

inc(2) dec(2) inc(1)

inc(1)

inc(2)

dec(1)

inc(1)

zero(2) inc(1)

zero(1)

inc(2)

Fig. 1. A Presburger counter system

Most verification problems on Presburger counter systems are known to
be undecidable since they include Minsky machines [Min67, Chapter 11] (see
also [Min61, Section 3]) that are Turing-complete, even if restricted to two coun-
ters [Min67, Chapter 14]. The introduction of program machines with registers
in [Min67], nowadays best known as Minsky machines, has been motivated by
proposing an alternative to Turing machines that is closely related to programs.

2.3 Decision Problems

In this section, we recall several standard decision problems about Presburger
counter systems. They are mainly related to reachability questions (problems
related to temporal logics are introduced in Section 4).

Reachability problem:

Input: a Presburger counter system C and configurations 〈q0,x0〉 and 〈qf ,xf 〉.
Question: is there a finite run from 〈q0,x0〉 to 〈qf ,xf 〉?

Control state reachability problem:

Input: a Presburger counter system C, a configuration 〈q0,x0〉 and a state qf .
Question: is there a finite run with initial configuration 〈q0,x0〉 and whose

final configuration has control state qf?

Other verification problems on Presburger counter systems are worth mention,
though not discussed herein, including the control state repeated reachability
problem and the termination problem.

2.4 Some Classes of Presburger Counter Systems

In this section, we introduce classes of Presburger counter systems by restrict-
ing the general definition provided above. Additional requirements can be of

Witness Runs for Counter Machines 125

distinct nature: restriction on syntactic resources (number of counters, etc.), re-
striction on the control graph (e.g., flatness) and semantical restrictions (reversal-
boundedness, etc.).

Counter systems. A counter system C = 〈Q,n, δ〉 is a Presburger counter system
such that for each transition t = q

φ−→ q′ ∈ δ, φ can be written as φg∧φu, where φg

(guard) is a Boolean combination of atomic formulae of the form t ≤ t′ built over
x1, . . . , xn and φu (update) is a formula of the form

∧
i∈[1,n] x

′
i = xi + b(i) where

b ∈ Zn. The transition t is also written q
〈φg,b〉−−−→ q′. Minsky machines [Min67] are

counter systems such that each update can change at most one counter and the
guards are restricted to � and to zero-tests. The Presburger counter system in
Figure 1 is indeed a counter system with the above meaning.

A vector addition system with states [KM69] (VASS for short) is a counter

system such that all the transitions are of the form q
〈�,b〉−−→ q′. So, a VASS can

be represented by a tuple V = 〈Q,n, δ〉 where Q is the finite set of control
states and δ is a finite subset of Q × Zn × Q. A famous result states that the
reachability problem for VASS is decidable [May84, Kos82, Ler09]. It has been
the subject of the book [Reu90] and its proof requires many non-trivial steps
involving graph theory, logic and theory of well-quasi-orderings. Nevertheless, the
exact complexity of the reachability problem is open: we know it is ExpSpace-
hard [Lip76] and no primitive recursive upper bound exists. In [Ler09], existence
of semilinear separators in case of non-reachability in VASS leads to promising
developments.

A Note to the Reader. Counter systems are the main class of Presburger
counter systems considered in this document. However, we are aware that the
current term might be confusing: when we really want to mean the full class of
systems, we will use the more general term ‘Presburger counter system.’

Reversal-bounded counter systems. In this section, we consider counter systems
for which the atomic formulae in guards are of the form t ≤ k or t ≥ k with
k ∈ Z and t is of the form

∑
i aixi with the ai’s in Z. There is no real restriction

with the class introduced earlier except that we require that atomic formulae
occur in a certain way.

A reversal for a counter occurs in the run of some counter system when there
is an alternation from nonincreasing mode to nondecreasing mode and vice-
versa. Below, we propose a slight generalization from [BD11] that captures
the notion of reversal-boundedness from [Iba78]; reversal-boundedness applies
to counters but also to terms occurring in guards. Let C = 〈Q,n, δ〉 be a counter
system and T be a finite set of terms including {x1, . . . , xn}. From a run ρ =
〈q0,x0〉, 〈q1,x1〉, . . . of C, in order to describe the behavior of counters and terms
varying along ρ, we define a sequence of mode vectors md0,md1, . . . (of the same
length as ρ) such that each mdi has profile T → {↗,↘}. Intuitively, each value
in a mode vector records whether a term is currently in an increasing phase
or in an decreasing phase (this includes the counters themselves as in standard
reversal-boundedness). Given t =

∑
i aixi and a counter vector x, we write

126 C. Barrett, S. Demri, and M. Deters

x(t) to denote the integer
∑

aix(i). We are now ready to define the sequence
md0,md1, . . . By convention, md0 is the constant map ↗. For every j ≥ 0 and
t ∈ T, we have mdj+1(t)

def
= mdj(t) when xj(t) = xj+1(t), mdj+1(t)

def
=↗ when

xj+1(t) − xj(t) > 0 and mdj+1(t)
def
=↘ when xj+1(t) − xj(t) < 0. Let Revt =

{j ∈ [0, len(ρ)−1] : mdj(t) �= mdj+1(t)}; we say that ρ is r-T-reversal-bounded for
some r ≥ 0

def⇔ for all t ∈ T, card(Revt) ≤ r. Given a counter system C, we write
TC to denote the set of terms t occurring in atomic formulae of the form t ∼ k
with ∼∈ {≤,≥} augmented with the counters in {x1, . . . , xn}. An initialized
counter system 〈C, 〈q,x〉〉 is reversal-bounded def⇔ there is r ≥ 0 such that every
run from 〈q,x〉 is r-TC-reversal-bounded. When T is reduced to {x1, . . . , xn}, T-
reversal-boundedness is equivalent to reversal-boundedness from [Iba78]. Note
that the counter system in Figure 1 is {x1, x2}-reversal-bounded from any initial
configuration of the form 〈q1,x0〉.

Compared to the subclasses considered so far, reversal-bounded counter sys-
tems are augmented with an initial configuration so that existence of the bound
r is relative to the initial configuration. Secondly, this class is not defined from
the class of counter systems by imposing syntactic restrictions but rather se-
mantically. The main property related to reversal-bounded counter systems is
the result below.

Theorem 2. [Iba78, BD11] Given a counter system C, r ≥ 0 and control states
q, q′, one can effectively compute a Presburger formula φq,q′ (x1, . . . , xn, y1, . . . , yn)
such that for all valuations v, we have v |= φ iff there is an r-TC-reversal-bounded
run from 〈q, 〈v(x1), . . . , v(xn)〉〉 to 〈q′, 〈v(y1), . . . , v(yn)〉〉.

So, bounding the number of reversals in runs allows to characterize the reach-
ability sets by computing Presburger formulae. This approach can be generalized
to richer models, see e.g., [HR87, FS08, HL11].

Affine Presburger counter systems. Now, we present the class of affine Pres-
burger counter systems that substantially extends the class of counter systems
by allowing any guard that can be defined in (PA) and by giving the possibility
to have affine updates. A partial function f from Nn to Nn is affine def⇔ there
exist a matrix A ∈ Zn×n and b ∈ Zn such that for every a ∈ dom(f), we have
f(a) = Aa + b. f is Presburger-definable def⇔ the graph of f is a Presburger set
(binary relation).

A Presburger counter system C = 〈Q,n, δ〉 is affine when for every transition
q

φ−→ q′ ∈ δ, �φ� is affine and there is a triple 〈φg , A, b〉 such that φg (guard)
is a formula in (PA) with free variables among x1, . . . , xn and �φ� = {〈x,x′〉 ∈
N2n : x′ = Ax + b and x ∈ �φg�}. The formula φg represents the guard of
the transition and the pair 〈A, b〉 is the deterministic update function. Such a
triple 〈φg, A, b〉 is called an affine update and we also write �〈φg , A, b〉� to denote
�φ�. Observe that one can decide whether a Presburger formula φ satisfies that
�φ� is affine [DFGvD10, Proposition 3]. Furthermore, counter systems are affine
counter systems in which the only matrix is identity. This class of Presburger
counter systems has been introduced in [FL02].

Witness Runs for Counter Machines 127

Observe that given t = q
〈φg,A,b〉−−−−→ q′, there is a Presburger formula ϕ(x, x′) such

that for every v, we have v |= ϕ iff 〈q, 〈v(x1), . . . , v(xn)〉〉 t−→ 〈q′, 〈v(x′1), . . . , v(x′n)〉〉.
Here is the witness formula that encodes the one-step relation:

φg(x) ∧
∧

i∈[1,n]

(x′i =
∑
j

A(i, j)xj + b(i))

Note that the composition of affine updates is still an affine update.

Presburger counter systems with octagonal constraints. A Presburger counter
systems with octagonal constraints is such that for each transition q

φ−→ q′ ∈ δ,
the formula φ is a conjunction of atomic formulae of the form ±y± z ≤ k where
y, z are variables among x1, . . . , xn, x

′
1, . . . , x

′
n, k ∈ Z and ±y stands for either y or

−y (same applies for ±z). Constraints of the form ±y±z ≤ k are called octagons
and have been considered in [BGI09]. Note that octagons include constraints of
the form y ≤ z + k or y ≤ k considered in [CJ98]. Unlike the counter systems,
in Presburger counter systems with octagonal constraints the transitions do not
necessarily lead to functional updates. Here is an example of formula labelling
a transition: φ = (x1 + 1 < x′1) ∧ (x2 − 3 = x′2). In [CJ98], Presburger counter
systems with octagonal constraints with only constraints of the form y ≤ z + k
or y ≤ k have been studied and a major result established in [CJ98] states that
the effect of any loop can be effectively defined in (PA).

Imperfect counter automata. Counter automata are defined as VASS except that
we accept also zero-tests on counters as guards. Below, we briefly consider vari-
ants of counter automata in which counter values can be decremented without
notification (a loss) or counter values can be incremented without notification (a
gain) – but not the two possibilities in the same model. A lossy counter automa-

ton is a counter automaton such that for all q ∈ Q and for all i ∈ [1, n], q
dec(i)−−−→ q

(which allows us to simulate losses). The control state reachability problem for
lossy counter automata is decidable and actually lossy counter automata form a
subclass of lossy channel systems, see e.g. [Sch02] and the reachability problem
for lossy channel systems is decidable [AJ96, FS01]. For instance, they can be
used to model lossy channel systems for which the ordering of the messages is
not relevant. In that case, each counter can store how many messages of a given
type are present in the channel. Lossy counter automata have been introduced
in [May03]. Similarly, a gainy counter automaton is a counter automaton such

that for all q ∈ Q and for all i ∈ [1, n], q
inc(i)−−→ q ∈ δ (which allows us to simulate

gains). The control state reachability problem for gainy counter automata can be
shown decidable by making a correspondence with reset VASS (VASS in which
it is possible to reset counter values) but the problem is nonprimitive recursive,
see e.g. [Sch02, Sch10]. Even though Presburger counter systems with imperfect
computations are not further discussed in the paper, they form an interesting
class of systems related to many other verification problems.

128 C. Barrett, S. Demri, and M. Deters

In order to conclude this section, it is worth noting that there exist plenty
of other classes of Presburger counter systems for which reachability problems
can be solved by using (PA) (see e.g., subclasses of Petri nets). However, since
Presburger counter systems are Turing-complete, designing new (tractable) sub-
classes remains an ongoing process. In the next sections, we focus on presenting
proof techniques to solve reachability problems for some of the classes.

3 Loops, Path Schemas and Flatness

3.1 Computing Loop Effects in (PA)

Let C = 〈Q,n, δ〉 be a Presburger counter system. A path p of C is a finite
sequence of transitions from δ corresponding to a path in its control graph.
We write first(p) [resp. last(p)] to denote the first [resp. last] control state of a
path. A loop l is a non-empty path p such that first(p) = last(p) and we write
effect(l) to denote the effect of the loop l defined as below:

{〈x,x′〉 ∈ Nn × Nn : 〈first(l),x〉 l−→ 〈last(l),x′〉}

Similarly, we write effect<ω(l) to denote the repeated effect of the loop l:

{〈x,x′〉 ∈ Nn × Nn : 〈first(l),x〉 li−→ 〈last(l),x′〉, i ≥ 0}

The reachability problem for loops can be then defined as follows: given a loop
l from a Presburger counter system C of dimension n and two counter value
vectors x0, xf in Nn, is 〈x0,xf 〉 ∈ effect<ω(l)? Repeated effect is simply
called acceleration in [FL02, Section 3].

Note that even though effect(l) can be defined by a Presburger formula, this
does not imply that it is the case for effect<ω(l) too. Indeed, if the binary rela-
tion R is Presburger set, then this does not imply that its reflexive and transitive
closure R∗ is a Presburger set too. For instance, if R = {〈α, 2α〉 ∈ N2 : α ∈ N}
then R∗ = {〈α, 2βα〉 ∈ N2 : α, β ∈ N} is not Presburger-definable. By contrast,
if S = {〈α, α + 1〉 ∈ N2 : α ∈ N} then S∗ = {〈α, β〉 ∈ N2 : α < β, α, β ∈ N}
is a Presburger set. The question of deciding whether the reflexive and tran-
sitive closure of a Presburger-definable binary relation is Presburger-definable
is known to be intimately related to the fact that reachability relations from
Presburger counter systems are Presburger-definable, which leads to decidabil-
ity when effectiveness is guaranteed too. Indeed, consider the following loop with
q1 = qk:

q1
φ1(x1,...,x

′
n)−−−−−−−→ q2

φ2(x1,...,x
′
n)−−−−−−−→ · · · φk−1(x1,...,x

′
n)−−−−−−−−→ qk−1

φk(x1,...,x
′
n)−−−−−−−→ qk.

The effect of the loop can be represented by the Presburger formula below:

ψ(x̄, x̄′)
def
= ∃ ȳ1, . . . , ȳk φ1(x̄, ȳ1) ∧ φ2(ȳ1, ȳ2) ∧ · · · ∧ φk(ȳk, x̄′)

where x̄, x̄′, ȳ1, . . . , ȳk are sequences of variables of length n.

Witness Runs for Counter Machines 129

In order to decide the reachability problem on the loop, it is essential to rep-
resent symbolically effect<ω(l). The best we can hope for is that effect<ω(l)
is a Presburger set. This motivates the definition below.

Definition 3. Given R ⊆ N2n, we define the counting iteration of R as the
relation RCI ⊆ Nn × N × Nn such that 〈x, i,y〉 ∈ RCI

def⇔ 〈x,y〉 ∈ Ri (i
compositions of R). R has a Presburger counting iteration if RCI is a Presburger
set.

If R has a Presburger counting iteration, then there exists a Presburger for-
mula ϕ(x̄, z, ȳ) such that �ϕ� = RCI. Consequently, the relation R∗ is Presburger-
definable since �∃ z ϕ� = R∗. Observe that {〈α, α + 1〉 ∈ N2 : α ∈ N} has
a Presburger counter iteration witnessed by a Presburger formula of the form
x′ = x + y.

Definition 4 (The property (�) of Presburger counter systems). A class
of Presburger counter systems is said to satisfy the property (�) when, for ev-
ery loop l, effect(l) has the Presburger counting iteration and its Presburger
formula is computable.

Note in particular that this means that for every loop l, the set {〈x, i,x′〉 :

〈first(l),x〉 li−→ 〈last(l),x′〉, i ≥ 0} is effectively definable by a Presburger for-
mula ϕ�

l (with 2n + 1 free variables).

3.2 Finitary Path Schemas

A path schema P is a regular expression built over the alphabet of transitions
such that its language represents an overapproximation of the set of labels ob-
tained from finite runs following the transitions of P (counter values are ignored).
This notion has been extensively used since [FO97, Fri00, FL02] and this pro-
vides a natural transition since path schemas are made of loops and paths. More
precisely, a finitary path schema P is of the form p1l

∗
2p3l

∗
4 . . . l

∗
k−1pk where (1)

l2, . . . , lk−1 are loops and (2) p1l2p3l4 . . . pk is a path. The length of a path
schema, written len(P), is defined as the number of letter occurrences in the reg-
ular expression defining the path schema (no substructure sharing). Let Lan(P)
denote the set of finite words in δ∗ which belong to the language defined by
P. Note that some elements of Lan(P) may not correspond to any actual run
because of constraints on counter values. Finally, we say that a run ρ starting in
a configuration 〈q0,x0〉 respects a path schema P if the sequence of transitions
generating ρ belongs to Lan(P).

Path schemas are used as a means to encode the structure of a potentially infi-
nite set of runs. That is why, we will pay a special attention to avoid considering
distinct path schemas P and P′ such that Lan(P) ⊆ Lan(P′). Containment prob-
lem for regular expressions is PSpace-complete but co-NP-complete for regular
expressions defining bounded languages, see e.g. [HRS76]. Any set Lan(P) defines
a bounded language.

130 C. Barrett, S. Demri, and M. Deters

That is why, in the following we only consider path schemas such that the
loops l are not multiples of smaller loops (i.e., l = (l′)i with i ≥ 2) and no path
p contains a loop as a factor (which bounds the length of such paths). Such loops
are called simple loops. In the following, such path schemas are called good. It is
easy to see that every finite run respects a good path schema.

Lemma 5. When (�) holds, {〈x,x′〉 : 〈q,x〉 ∗−→ 〈q′,x′〉 respects P} is effectively
definable by a Presburger formula ϕP (with 2n free variables).

Effective semilinearity boils down to check that the effect of a loop can be char-
acterized by a formula in Presburger arithmetic (or in any decidable fragment
of first-order arithmetic). The above result can be then obtained by adequately
composing formulae for the loops and for the finite paths.

By way of example, note that the effect of the self-loop q
x′=2x−−→ q is not definable

in Presburger arithmetic since {2i : i ≥ 0} is not Presburger-definable. By
contrast, the effect of the self-loop

q
x′1=x1+2∧x′2=x2+3∧φ(x1,x2)−−−−−−−−−−−−−−−−−→ q

for any Presburger formula φ(x1, x2) is Presburger-definable since {〈x, i,x′〉 :

〈q,x〉 li−→ 〈q,x′〉} can be defined with the formula below:

ϕ(x1, x2, i, x
′
1, x

′
2)

def
= x′1 = x1+2i∧x′2 = x2+3i∧∀ y (0 ≤ y < i) ⇒ φ(x1+2y, x2+3y)

Here are concrete classes to apply Lemma 5.

Theorem 6

(I) Presburger counter systems with octagonal constraints enjoy (�) [BGI09]
(see also [CJ98] for a substantial result on a subclass).

(II) Counter systems enjoy (�) (folklore result, see e.g. [Fri00, DDS12]).

An implementation of the transitive closure of octagonal relations is done in the
tool FLATA, see e.g., [BGI09].

3.3 Flat Presburger Counter Systems

A Presburger counter system C is flat def⇔ every control state belongs to at most
one simple cycle (i.e., a loop in which each transition occurs at most once). As
far as we can judge, the term ‘flat’ in that sense has been introduced in [FO97,
CJ98, Fri00]. The Presburger counter system in Figure 1 is flat.

Lemma 7. Every flat Presburger counter system has a finite number of good
path schemas that is at most exponential in its size.

Of course, this is not the only way to get a finite amount of path schemas, for
instance when from an initial configuration, termination is guaranteed but here
the finite number of path schemas is structurally guaranteed.

Witness Runs for Counter Machines 131

Theorem 8. Let C be a class of Presburger counters that enjoys (�). Then, for
every flat Presburger counter system from C, the reachability relation ReachC is
Presburger-definable.

This is at the heart of the decidability results for verifying safety and reach-
ability properties on flat Presburger counter systems from [CJ98, FL02, BIK09]
whereas for the verification of temporal properties, it is much more difficult to
get sharp complexity characterization, see e.g. [DDS12].

Corollary 9. Let C be a class of Presburger counters that enjoys (�). The reach-
ability problem for C is decidable.

The corollary can be obtained as follows. Consider the instance C, 〈q0,x0〉
and 〈qf ,xf 〉. We have seen that we can compute the Presburger formula φ that
encodes the reachability relation in C. It remains to check satisfiability of the
formula (

∧i=n
i=1 (xi = x0(i) ∧ x′i = xf (i))) ∧ φ assuming free variables in φ are

x1, . . . , xn, x
′
1, . . . , x

′
n. This can be done thanks to Theorem 1.

3.4 Finite Monoid Property in Affine Presburger Counter Systems

Below, we present a class of affine Presburger counter systems with Presburger-
definable loop effects even though the class does not necessarily enjoy the prop-
erty (�). Given A ∈ Zn×n, let A∗ be the monoid generated from A with A∗ =
{Ai : i ∈ N}. The identity element is naturally the identity matrix A0 = I. Given
a matrix A ∈ Zn×n, checking whether the monoid generated by A is finite, is

decidable [MS77]. By way of example, with A =

(
1 0
1 1

)
, we have

A2 =

(
1 0
1 1

)(
1 0
1 1

)
=

(
1 0
2 1

)
A3 =

(
1 0
3 1

)
. . . Am =

(
1 0
m 1

)
So A∗ is not finite. Finiteness of the monoid generated from A is interesting
because of the lemma below.

Lemma 10. [BW98, Boi99, FL02] Let R ⊆ Nn × Nn be a binary relation of
dimension n defined by the triple 〈φg, A, b〉 such that R = {〈x,x′〉 ∈ N2n : x′ =
Ax+b and x ∈ �φg�}. If A∗ is finite, then R has a Presburger counting iteration.

It is worth adding that one can also effectively compute the Presburger formula
encoding the relation R∗. A recent work unifying [CJ98, FL02, BGI09, BIL09] by
considering all the families of formulae labelling transitions from these works can
be found in [BIK09].

A loop in an affine counter system has the finite monoid property def⇔ its
corresponding affine update 〈φg, A, b〉, possibly obtained by composition of sev-
eral affine updates, satisfies that A∗ is finite. Let us introduce below the class of
admissible counter systems.

Definition 11. An affine Presburger counter system C is admissible iff

132 C. Barrett, S. Demri, and M. Deters

1. there is at most one transition between two control states (always possible as
soon as disjunction is allowed in guards),

2. its control graph is flat,
3. each simple loop has the finite monoid property.

The restriction to admissible counter systems mainly takes advantage of
Lemma 10 as shown below.

Theorem 12. [FL02] Let C be an admissible Presburger counter system and
q, q′ ∈ Q. One can effectively compute a Presburger formula φ such that for every
valuation v, we have v |= φ iff 〈q, 〈v(x1), . . . , v(xn)〉〉 ∗−→ 〈q′, 〈v(x′1), . . . , v(x′n)〉〉.

3.5 Flattable Presburger Counter Systems

As observed in [CJ98, FL02, Ler03, BIL09], flatness is very often essential to
get effective semilinear reachability sets (but of course this is not a necessary
condition, see e.g. [HP79]). However, flat Presburger counter systems are seldom
natural in real-life applications. That is why, a relaxed version of flatness has been
considered in [FO97, Fri00, LS05, DFGvD10] so that an initialized Presburger
counter system 〈C, 〈q0,x0〉〉 is flattable whenever there is a partial unfolding of
〈C, 〈q0,x0〉〉 that is flat and has the same reachability set as 〈C, 〈q0,x0〉〉. In that
way, reachability questions on 〈C, 〈q0,x0〉〉 can still be decided even in the absence
of flatness. 〈C, 〈q0,x0〉〉 is initially flattable [LS05] iff there is a a finite set of path
schemas such that the configurations reachable from 〈q0,x0〉 are those reachable
by firing the sequences of transitions from one of those path schemas (not every
such sequence leads to a run). For instance, reversal-bounded initialized counter
systems are initially flattable [LS05]. The fact that 〈C, 〈q0,x0〉〉 is flattable means
that as far as reachability is concerned, a finite set of path schemas captures
the full reachability relation. Note that flat counter systems are (structurally)
flattable but in general it is non-trivial to compute such a finite set of path
schemas, see also Section 5. This problem is also known as the problem of finite
good accelerations [FL02, Section 5].

4 Verifying Temporal Properties

Reachability problems asks for the existence of runs reaching some configuration
or control state in some specific way. Often, it is desirable to check how events are
temporally organized along a run and to specify such properties temporal logics
have been advocated since [Pnu77]. Furthermore, we wish to include in the logical
language the possibility to express directly constraints between variables of the
program, whence giving up the standard abstraction made with propositional
variables. When the variables are typed, they may be interpreted in some specific
domain like integers, real numbers, strings and so on; reasoning in such theories
can be performed thanks to satisfiability modulo theories proof techniques, see
e.g., [BSST08] and [GNRZ07] in which SMT solvers are used for model-checking
infinite-state systems. Hence, a proposition like “x is greater than the next value

Witness Runs for Counter Machines 133

of y” can be encoded in such extended temporal logics by x > Xy but this
time the models are sequences of configurations. This means that each position
comes with a control state and a valuation for variables. Hence, the basic idea
behind the design of the logic Presburger LTL is to refine the language of atomic
formulae and to allow the possibility to compare counter values at successive
positions of the run of the counter systems. Similar motivations can be found in
the introduction of concrete domains in description logics, that are logic-based
formalisms for knowledge representation, see e.g. [Lut04].

4.1 Presburger LTL

We define below a version of linear-time temporal logic LTL dedicated to Pres-
burger counter systems in which the atomic formulae are Presburger formulae
about counter values, the temporal operators are those of LTL and first-order
quantification over natural numbers is allowed, although we shall use it in a re-
stricted way. Similarly, in [MP95], a mixture of first-order logic and LTL is shown
sufficient to precisely state verification problems for the class of reactive systems.

We introduce a countable set of integer variables, say VARp = {y1, y2, . . .},
for quantification over natural numbers. Elements of VARp are distinct from the
counter variables in VAR = {x1, x2, . . .} that are free variables, only interpreted
by the counter values on configurations. We also consider a countably infinite
set Q = {q1, q2, . . .} of control state symbols. The Presburger LTL formulae are
defined as follows: φ ::= ψ | q | φ∧φ | ¬φ | Xφ | φUφ | ∃ y φ, where ψ is a
Presburger formula with free variables in VARp ∪VAR from the linear fragment
of (PA) and q ∈ Q. The symbols X and U are respectively the classical operators
next-time and until from LTL.

The models of Presburger LTL formulae are infinite runs from Presburger
counter systems whose set of control states is included in the countable set Q.
A model ρ of dimension n for Presburger LTL is an element of (Q × Nn)ω for
some finite subset Q ⊆ Q. An environment E is a partial map VARp → N. The
empty environment is denoted by ∅. The satisfiability relation |= is defined as
follows between a model ρ of dimension n, a position i ≥ 0, an environment E
and a formula in which the free variables are among VARp ∪ {x1, . . . , xn}.

The relation |=E is defined on runs ρ = 〈q0,x0〉, . . . , 〈qk,xk〉, . . . such that:

– ρ, i |=E q
def⇔ q = qi,

– When ψ is a Presburger formula from the linear fragment with free variables
included in VARp∪{x1, . . . , xn}, we have ρ, i |=E ψ

def⇔ vi |= ψ in Presburger
arithmetic where vi is a conservative extension of E such that for every
j ∈ [1, n], vi(xj) = xi(j),

– ρ, i |=E ¬φ def⇔ ρ, i �|=E φ,
– ρ, i |=E φ1 ∧ φ2

def⇔ ρ, i |=E φ1 and ρ, i |=E φ2,
– ρ, i |=E Xφ

def⇔ ρ, i + 1 |=E φ,
– ρ, i |=E φ1Uφ2

def⇔ there is j ≥ i such that ρ, j |=E φ2 and ρ, k |=E φ1 for all
i ≤ k < j.

– ρ, i |=E ∃ y φ iff there is a natural number m ∈ N such that ρ, i |=E[y �→m] φ.

134 C. Barrett, S. Demri, and M. Deters

As usual, we pose Fφ
def
= �Uφ and Gφ

def
= ¬F¬φ. Semantics with finite runs

instead of infinite runs can be defined similarly. A semi-closed formula is an
Presburger LTL formula such that no integer variable from VARp is free. By
construction, the counter variables x1, . . . , xn are always free and are inter-
preted as the current counter values. In the decision problems defined below, we
only consider semi-closed formulae and therefore there is no need to specify an
environment in the statements.

For instance, one can express that the first counter strictly increases at every
step: G ∃ y (y = x1 ∧X(x1 > y)). Similarly, the first counter takes a finite number
of values along the run can be expressed by ∃ y G(x1 ≤ y).

Let us start by presenting the satisfiability problem for Presburger LTL:

Input: A Presburger LTL semi-closed formula φ with free counter variables x1,
. . . , xn.

Question: Is there a model ρ ∈ (Q × Nn) of dimension n such that ρ, 0 |=∅ φ?

Observe that for satisfiability checking, it is not necessary that the model
is derived from a Presburger counter system. Let us turn to existential model-
checking problem for Presburger LTL:

Input: A Presburger counter system C = 〈Q,n, δ〉, an initial configuration
〈q0,x0〉 and a semi-closed formula φ in Presburger LTL.

Question: Is there an infinite run ρ starting at 〈q0,x0〉 such that ρ, 0 |=∅ φ?

Temporal logics with Presburger constraints has been developed, for in-
stance, in [BEH95, CC00, BDR03]. Some of them have quite expressive de-
cidable fragments. Undecidability of the existential model-checking problem for
Presburger LTL can be shown using the undecidability of the halting problem
for Minsky machines, see e.g., [CC00]. Still, using SMT solvers can be done for
checking bounded reachability problems, see e.g., [BFM+10].

In the rest of this section, we present fragments of Presburger LTL obtained by
restricting first-order quantification over natural numbers. First, let us observe
that if we restrict ourselves to formulae in which temporal operators are not in
the scope of first-order quantification, then we get a fragment of Presburger LTL
that is very similar to plain LTL. Indeed, atomic formulae are arithmetical con-
straints between counter values and they can be understood as high-level propo-
sitional variables; whence the automata-based approach for LTL can be easily
adapted to this fragment. In that fragment, the arithmetical constraints are only
local and in the construction of Büchi automata, the existence of transitions be-
tween states depends on the satisfiability status of Presburger formulae. Below,
we provide restrictions in which the temporal operators may occur in the scope
of first-order quantification.

Comparing successive counter values. Given a Presburger formula ψ(z1, . . . , zk),
we shall write ψ(Xi1xj1 , . . . , X

ikxjk) to denote the formula below

(∃ y1, . . . , yk Xi1(y1 = xj1) ∧ · · · ∧ Xik(yk = xjk) ∧ ψ(y1, . . . , yk),

Witness Runs for Counter Machines 135

where y1, . . . , yk are new variables distinct from the free variables that are present
in ψ(z1, . . . , zk). It is easy to see that ψ(Xi1xj1 , . . . , X

ikxjk) is interpreted as the
formula ψ(z1, . . . , zk) in which each variable za takes the value of xja at the iath
next configuration. For instance, x1 = Xx2 specifies that the next value of x2 is
equal to the current value of x1. Similarly, G(x1 = Xx1) states that counter 1 has
a constant value along the model. In Section 4.2, we present a simple fragment
of Presburger LTL by allowing first-order quantification only for formulae of
the form ψ(Xi1xj1 , . . . , X

ikxjk) and Presburger formulae (at the atomic level) are
quantifier-free too. It is worth observing that we use ’X’ as the next-time temporal
operator whereas ’Xx’ refers to the value of x at the next position.

Freeze operator. In order to verify properties on Presburger counter systems,
we want also to be able to compare counter values. For that, it is possible to
define the so-called ‘freeze operator’ with formulae of the form ↓jr φ interpreted
as ∃ yr (yr = xj ∧ φ) that store counter values. There are counterpart formulae
of the form ↑jr interpreted as yr = xj that perform equality tests. Intuitively,
the modality ↓jr is used to store the value of the counter j into the register r;
the atomic formula ↑jr holds true if the value stored in the register r is equal
to the current value of the counter j. The formula G(↓11 XG¬ ↑11) states that
the first counter has distinct values at distinct positions. Freeze operator has
been introduced in numerous works, sometimes with different motivations, see
e.g. [Hen90, Gor94, Fit02, LP05]. It is also sometimes used implicitly as for the
temporal semantics for imperative programs that may use first-order temporal
logics, see e.g. [MP92]. For instance, the statement that the program variable
x never decreases below its initial value can be expressed by the formula below
that uses a form of freeze operator: ∃y (x = y) ∧ G(x ≥ y). Recent results on
satisfiability and model-checking problems can be found in [FS09, DLS10].

4.2 The Logic CLTL with Finite Window

As mentioned earlier, we shall define the logic CLTL as a strict fragment of
Presburger LTL such that first-order quantification at the level of temporal for-
mulae is restricted to macro formulae of the form ψ(Xi1xj1 , . . . , X

ikxjk). Conse-
quently, there is no more quantification over integer variables from VARp and
no variable in VARp occurs in CLTL formulae. The logic CLTL has atomic for-
mulae from the linear fragment of (PA) except that variables are replaced by
expressions of the form Xix where x ∈ VAR is a variable and Xi is understood as
a sequence of i consecutive symbols X. The expression Xix is interpreted as the
value of x at the ith next state. Given a CLTL formula φ, we define its X-length
len(φ)X as the maximal number i such that an expression of the form Xix occurs
in φ. Intuitively, the X-length defines the size of a frame/window of consecu-
tive states that can be compared. The models of CLTL are pairs of sequences
σ = 〈σ1, σ2〉 such that σ1 : N → (VAR → N), σ2 : N → Q for a finite subset
Q ⊆ Q. The satisfaction relation is defined as for LTL except at the atomic level:

136 C. Barrett, S. Demri, and M. Deters

– σ, i |= q iff σ2(i) = q,
– σ, i |= ψ(Xl1x1, . . . , X

lnxn) iff 〈σ1(i + l1)(x1), . . . , σ1(i + ln)(xn)〉 ∈ �ψ�.
– σ, i |= Xφ iff σ, i + 1 |= φ,
– σ, i |= φUφ′ iff there is j ≥ i such that σ, j |= φ′ and for every i ≤ l < j, we

have σ, l |= φ.

As usual, a formula φ ∈ CLTL is satisfiable whenever there exists a model
σ such that σ, 0 |= φ. We write CLTLl

n to denote the restriction of CLTL to
formulae with at most n variables and X-length less or equal to l (below the value
ω is used for some syntactic resource when there is no restriction). CLTL0 denote
the fragment in which the arithmetical constraints deal only with current counter
values. Note that there is a logspace reduction from the satisfiability problem
for CLTL to the satisfiability problem for CLTLω restricted to formulae of X-
length at most 1 (CLTL1

ω), see e.g. [DLN07]. The proof is done by renaming
terms and requires an unbounded amount of variables in CLTL1

ω. For instance,
the expressions x1, . . . , X3x1 are encoded by G(x′′ = Xx′ ∧ x′ = Xx ∧ x = Xx1)
(assuming that x, x′ and x′′ are new variables) and each occurrence of Xx1 [resp.
X2x1, X3x1] is replaced by x [resp. x′, x′′]. For reductions between satisfiability
problems, the introduction of new variables is harmless.

The halting problem for Minsky machines can be easily reduced to the sat-
isfiability problem for CLTL or to the existential model-checking problem for
CLTL, leading to simple undecidability proofs. In the sequel, we show how to
restrict the class of counter systems or the logical language in order to regain
decidability.

Given a fragment F of (PA) (not necessarily restricted to the linear fragment
as for CLTL), we write CLTL(F) to denote the variant of CLTL in which atomic
formulae built over the quantifier-free linear fragment of (PA) are replaced by
formulae from F (the definition of the satisfaction relation is update accordingly
without significant changes). Similarly, we write CLTLl

n(F) (n ≥ 1, l ≥ 0) to
denote the restriction of CLTL(F) to formulae such that the variables are among
{x1, . . . , xn} and the X-length is bounded by l.

Fragment F0 is defined as follows:

F0 - φ ::= xi < xj | xi = xj | xi ≤ k

where k ∈ N. Fragment F1 is defined as follows:

F1 - φ ::= xi ∼ xj + d | xi ∼ d

where d ∈ Z and ∼∈ {<,>,≤,≥,=}. For instance, x1 = X8x2 + 1 ∈ CLTL8
2(F1)

and XXX(Xx1 ≥ 27) ∈ CLTL1
1(F0). The logic CLTL defined in [CC00] is precisely

CLTL1
ω(F1). By way of example, let us quote a few interesting results.

Theorem 13. (I) Satisfiability problem for CLTL(F0) is PSpace-complete, see
e.g. [DD07, DG08, ST11]. (II) Satisfiability problem for CLTL1

1(F1) is PSpace-
complete [DG09]. (III) Satisfiability problem for CLTL2

1(F1) or for CLTL1
2(F1)

is undecidable [DG09], see also [CC00].

Witness Runs for Counter Machines 137

4.3 Model-Checking Linear-Time Properties

Flat counter systems. Below, we state several recent results about model-check-
ing problems for subclasses of counter systems for which the complexity is rela-
tively low. We recall that guards in counter systems belong to the linear fragment
and the updates are in Zn.

Theorem 14. [DDS12] Model-checking flat counter systems with CLTL0 is NP-
complete (also holds with past-time temporal operators).

The NP upper bound is obtained as follows given a flat counter system with
initial configuration 〈q0,x0〉 and a formula φ in CLTL0:

– Guess a good infinitary path schema P from 〈q0,x0〉. Infinitary path schemas
are of the form p1l

∗
2p3l

∗
4 . . . l

∗
k−1pkl

ω
k .

– Guess an unfolded path schema P′ from P by eliminating disjunctions in
guards and counter values (but at the cost of adding new atomic proposi-
tions). Unfolding a path schema amounts to copying loops a (polynomial)
number of times while adding atomic propositions or constraints in guards
to guarantee that each visit in a new loop satisfies the same guards.

– Build an existential Presburger formula that encodes all the runs respecting
P′ from 〈q0,x0〉 (all the quantified variables are loop counters).

– Guess a run respecting P′ and check whether it satisfies φ symbolically. Each
loop may be visited an exponential number of times, but a stuttering theorem
allows the symbolic model-checking algorithm to perform efficiently.

Efficient solvers for quantifier-free (PA) are required to make feasible the above
algorithm. By contrast, we get a little higher complexity with linear μ-calculus
or first-order logic (FOL).

Theorem 15. [DDS13] Model-checking flat counter systems with linear μ-cal-
culus or with FOL both with arithmetical constraints is PSpace-complete.

It is unclear what are the counterpart results for flat Presburger counter sys-
tems with octagonal constraints.

LTL on VASS. Structural restrictions seem more efficient to reduce the compu-
tational complexity of temporal model-checking. By way of comparison, model-
checking vector addition systems with states with linear μ-linear calculus (with-
out arithmetical constraints) is already ExpSpace-complete [Hab97].

Let us present a fragment of Presburger LTL introduced in [Jan90] such that
the atomic formulae are either control states or atomic formulae of the form
xi ≥ k or ¬(xi ≥ k) with k ∈ N. The temporal logic with fairness TLF is
defined as a logic on VASS for which formulae are defined by the grammar
q | xi ≥ k | ¬(xi ≥ k) | φ∨φ | φ∧φ | GFφ, where q ∈ Q and k ∈ N. Observe
that TLF formulae are not closed under negations and the temporal proper-
ties are intersection or union of fairness conditions. Decidability of (existential)
model-checking problem for TLF restricted to VASS is established in [Jan90] by

138 C. Barrett, S. Demri, and M. Deters

reduction into the reachability problem for VASS. Fairness conditions on VASS
can be also found in [GS92]. Moreover, it is worth noting that the operator
F cannot be expressed in TLF, otherwise undecidability would hold. Indeed,
in [HR89] a linear-time temporal logic (on Petri nets) is shown undecidable with
the temporal operator F, Boolean connectives and atomic formulae of the form
xi ≥ k and “transition t is the next one in the run.” Finally, other logical for-
malisms interpreted on VASS runs can be found in [Esp94, AH11, BS11] where
complexity/decidability results are established.

Bounding the number of reversals. Results about model-checking reversal-boun-
ded counter systems with LTL equipped with arithmetical constraints can be
found in [BD11, HL11]. Below, we recall the definition for the reversal-bounded
model-checking problem (RBMC). Its peculiarity is that the input initialized
counter systems are not necessarily reversal-bounded but the input contains an
explicit bound r about the maximal number of reversals within a run. Moreover,
given a formula φ in CLTL, we write Tφ to denote the terms of the form t ∼ k
occurring in it. The problem RBMC is defined as follows:

Input: a counter system C, an initial configuration 〈q0,x0〉, a formula CLTL φ
(with atomic formulae of the form t ∼ k), a bound r ∈ N (in binary),

Question: Is there an infinite run ρ from 〈q,x〉 such that ρ, 0 |= φ and ρ is
r-T-reversal-bounded with T = TC ∪ Tφ?

The computational complexity for RBMC can be precisely characterized; the
upper bound can be obtained by a refined analysis on runs, see e.g. [GI81, BD11].

Theorem 16. [BD11, HL11] RBMC is NExpTime-complete.

Actually, one can also establish that global model-checking is possible
for RBMC [BD11], i.e., the set of initial configurations for which there is a
reversal-bounded run satisfying a given temporal formula from CLTL is effectively
Presburger-definable.

4.4 A Quick Look at a Branching-Time Extension

The logic Presburger LTL is interpreted on linear runs but it is possible to extend
it to its CTL� version by interpreting the formulae on the underlying transition
systems of the Presburger counter systems and by adding quantifications over
paths, see e.g. [BG06, DFGvD10]. The formulae for Presburger CTL� are defined
as follows: φ ::= ψ | q | φ ∧ φ | ¬φ | Xφ | φUφ | A φ | ∃ y φ where ψ is a
Presburger formula with free variables included in VARp ∪ VAR from the linear
fragment and q ∈ Q. Semantics for Presburger CTL� is provided via models that
are transition systems obtained from Presburger counter systems. Again, the sat-
isfaction relation |= is parameterized by an environment E . Given a Presburger
counter system C = 〈Q,n, δ〉 with transition system T(C) = 〈S,−→〉, the satisfac-
tion relation |=E is defined at position i of the run as for Presburger LTL except
for quantifications over paths: ρ, i |=E A φ

def⇔ for all infinite runs ρ′ starting

Witness Runs for Counter Machines 139

at configuration ρ(i), we have ρ′, 0 |=E φ. First-order quantification over counter
values allows us to state many interesting properties in Presburger CTL� such as
determinism (for all the configurations reachable from the initial configuration,
there is at most one successor configuration):

A G(
∧

i∈[1,n]

¬∃y(E X(xi = y) ∧ E X(xi �= y))) ∧ (
∧
q∈Q

¬(E Xq ∧ E X¬q)).

Similarly, boundedness (the set of configurations reachable from the initial con-
figuration is finite) can be stated with ∃y, y′ A G

∧
i∈[1,n] y ≤ xi ≤ y′.

Model-checking problem for Presburger CTL� is defined as follows: given a
Presburger counter system C with transition system T(C) = 〈S,−→〉, an initial
configuration 〈q0,x0〉, and a semi-closed formula φ from Presburger CTL�, de-
termine whether for every run ρ from 〈q0,x0〉, we have ρ, 0 |= φ.

Theorem 17. [DFGvD10] Model-checking admissible Presburger counter sys-
tems with Presburger CTL� is decidable.

The proof provides a reduction into satisfiability in (PA) by encoding the
runs by tuples of natural numbers. Indeed, every admissible Presburger counter
system is flat and therefore it has a finite amount of good path schemas. Runs re-
specting a path schema can be encoded as tuples of natural numbers by counting
how many times the loops are visited. Temporal formulae are then encoded by
internalizing the semantics into (PA) itself. Other decidability and complexity
results can be found in [BP12, CKL13]. Nevertheless, it remains open whether
modal μ-calculus (with atomic arithmetical constraints on counter values) can
be shown decidable on admissible Presburger counter systems.

5 Path Schema Enumeration

In this section, we explain the interest of designing algorithms for the enumera-
tion of finitary path schemas and how to prune the search space by subsumption.
We present a preliminary version of an algorithm for enumerating path schemas.
More details and developments will be provided in a forthcoming paper. Only
finitary path schemas are discussed in this section but infinitary ones could be
generated in a similar way. Moreover, we assume that we are dealing with a class
of Presburger counter systems satisfying the property (�), recalling Definition 4
on page 129, such as the class of counter systems where the guards are Boolean
combinations of linear constraints and the updates in Zn are those from VASS.

5.1 Why Path Schema Enumeration?

As is well-known, Presburger counter systems are Turing-complete and it is
undecidable to check the existence of a run satisfying a given property (even
for very basic ones). However, approximating the Presburger counter systems
by looking at a subclass of runs provides a means to produce answers in some

140 C. Barrett, S. Demri, and M. Deters

cases. For example, a finite set of path schemas is a simple way to represent
a (potentially) infinite set of runs. Being able to generate path schemas in a
structured and controlled fashion while using structural properties of the control
graph as well as arithmetical constraints of counter values will be helpful to test
the existence of runs satisfying some property.

A wish list for generating path schemas. Even though it is not difficult to gen-
erate path schemas in a fair and complete way by tracing the transitions, the
details of the enumeration are quite important but often underestimated, see
e.g.. [BFLS05, DFGvD10] (see some exception in [Ler03]). First, we want an
enumeration strategy that is efficient in practice. Previous work has left open
the question of efficient enumeration of path schemas, as the results have been
of a theoretical nature, and path schemas didn’t have to be enumerated explic-
itly. Second, we want an enumeration strategy that will find a finite set of path
schemas that fully captures the behavior of a Presburger counter system, if pos-
sible. As noted earlier, some classes of Presburger counter systems are known to
have a finite number of good path schemas. For flat Presburger counter systems,
the number of good path schemas is exponential in the size of the control graph
whereas for flattable initialized Presburger counter systems, the number of path
schemas is finite but with no specific bound on this number. Finally, we want
an enumeration strategy in which we have a clear way of detecting whether we
have enumerated sufficiently many path schemas to capture the behavior of the
Presburger counter system.

Enumerating path schemas can also be viewed as a way to underapproximate
the set of runs; this is similar to a standard approach to consider subclasses of
runs by bounding some features and to search for ‘bounded runs’ that may satisfy
a desirable or undesirable property. Examples include reversal-bounded counter
machines (which have a bound on the number of reversals) [HR87, BD11, HL11],
context-bounded model-checking (where there is a bound on the number of con-
text switches) [QR05], and of course bounded model-checking (BMC) (where
there is a bound on the distance of the reached positions), see e.g. [BCC+03].

5.2 Pruning the Search Space: Path Schema Subsumption

Let C = 〈Q,n, δ〉 be a Presburger counter system and P1, . . . , PN , P be finitary
path schemas such that first(P1) = · · · = first(PN) = first(P) and last(P1) =
· · · = last(PN) = last(P), i.e., all the path schemas start and end by the same
control states. One can think of P1, . . . , PN as the path schemas already in our
database whereas P is a new path schema for which we have to decide whether
we keep it or not. Such a path schema P must be consistent, i.e., there exists a
finite run that respects it. The path schema P is consistent w.r.t. the initial con-
dition φinit(y1, . . . , yn) iff the formula ∃ x1, . . . , xn ∃ x′1, . . . , x

′
n φinit(x1, . . . , xn) ∧

ϕP(x1, . . . , xn, x
′
1, . . . , x

′
n) is valid. Then, comes subsumption. The set {P1, . . . , PN}

subsumes P w.r.t. the initial condition φinit(y1, . . . , yn) (and with respect to
reachability) def⇔ the formula below is valid:

Witness Runs for Counter Machines 141

∀ x1, . . . , xn ∀ x′1, . . . , x
′
n (φinit(x1, . . . , xn) ∧ ϕP(x1, . . . , xn, x

′
1, . . . , x

′
n)) ⇒∨

i∈[1,N]

∃ z1, . . . , zn φinit(z1, . . . , zn) ∧ ϕPi(z1, . . . , zn, x
′
1, . . . , x

′
n)

For the class of counter systems, the consistency problem is NP-complete,
and the subsumption problem can be expressed in the fragment of (PA) with
at most one quantifier alternation. The above subsumption notion can be also
formulated as follows. A path schema P enriched with φinit(y1, . . . , yn) defines a
set of finite runs such that the initial counter values satisfy φinit(y1, . . . , yn) and
the run respects P. Moreover, such a pair defines a set of counter values—those
that have been reached at the end of the runs, say [P]φinit

def
= {xf : 〈q0,x0〉 ∗−→

〈qf ,xf 〉 respects P and φinit(x0)}. Counter values are therefore extracted from
runs. Now, subsumption can be formulated as follows: [P]φinit ⊆ [P1]φinit ∪ · · · ∪
[PN]φinit . There exist other means to extract witness counter values from runs. A
pattern φpat is a formula from Presburger LTL without first-order quantification
(see Section 4) and with free occurrences of the integer variables y1, yα that
are therefore interpreted rigidly. By way of example, we consider the version of
Presburger LTL on finite runs. Let us define the set of tuples [P]φpat,φinit obtained
by extracting the parameter values from runs respecting P and whose initial
configuration satisfies φinit (see the semantics in Section 4):

[P]φpat,φinit

def
= {E : ρ = 〈q0,x0〉 ∗−→ 〈qf ,xf 〉 respects P, φinit(x0) & ρ, 0 |=E φpat}

Note that [P]φinit above corresponds to [P]φpat,φinit with

φpat
def
= F(x1 = y1 ∧ · · · ∧ xn = yn ∧ ¬X�)

Let us define the generalized path schema subsumption problem: {P1, . . . , PN}
subsumes P with respect to the initial condition φinit(y1, . . . , yn) and the prop-
erty/pattern φpat

def⇔ [P]φpat,φinit ⊆ [P1]φpat,φinit ∪ · · · ∪ [PN]φpat,φinit (of course, a
Presburger counter system is also part of the instance).

Lemma 18. For any class of Presburger counter systems satisfying (�), there is
a reduction from the generalized path schema subsumption problem to the validity
problem for (PA).

The proof consists in encoding the runs satisfying a path schema by tuples
and then to use the standard translation from LTL to first-order logic. The initial
condition φinit and atomic formulae in PLTL formulae are already Presburger
formulae, so do not require special treatment in the translation process.

5.3 How to Deal with Quantifiers

Note that Presburger formulae built to perform subsumption tests contain quan-
tifiers. Most well-known Satisfiability Modulo Theories (SMT) solvers can deal

142 C. Barrett, S. Demri, and M. Deters

with quantifier-free formulae, also known as linear arithmetic (LIA). For in-
stance, this includes Z3 [dMB08], CVC4 [BCD+11], and Alt-Ergo [Con12], to
cite a few of them; see also Pugh’s Omega test [Pug92].

However, as observed earlier, dealing with quantifiers is usually a difficult
task for SMT solvers. Fortunately, quantifiers can be eliminated but this may
be expensive computationally. Cooper’s elimination procedure [Coo72], when
considering ∃ x ψ with quantifier-free ψ, does not assume that ψ is in disjunctive
normal form (a disjunction of conjuncts, with conjuncts made of literals). This is
a remarkable difference with the original algorithm presented in [Pre29]. Indeed,
transforming a propositional formula into an equivalent formula in disjunctive
normal form may cause an exponential blow-up. A more advanced improvement
of Cooper’s procedure can be found in [RL78]; recent developments propose a
lazy approach to quantifier elimination [Mon10].

5.4 An Algorithm that Builds Cycle Schemas and Path Schemas

In this section, we present an algorithm to generate path schemas from a Pres-
burger counter system. It proceeds by building path schemas of larger and larger
sizes. An outer loop ensures that all path schemas of some constant size k − 1
have been built before the generation of path schemas of size k is attempted.
The algorithm is inherently iterative, and its first k iterations enumerate all path
schemas of size less than or equal to k.

Path schemas are generated by building upon smaller path schemas. Given
a path schema of size k − 1, the algorithm extends it by adding a transition;
the result is a new path schema of size k. Path schemas may also be extended
by cycles, and for this, the algorithm detects and maintains cycle schemas (see
below). These cycle schemas are detected by using smaller path schemas.

Preliminary definitions: cycle schemas and suffixes. A cycle schema L is a path
schema starting and ending by the same control state. The set of cycles generated
by a cycle schema L is precisely Lan(L). We write Lan�(L) to denote the smallest
set of paths such that Lan(L) ⊆ Lan�(L) and if t1 · · · tα ∈ Lan�(L), then
t2 · · · tαt1 ∈ Lan�(L). The set Lan�(L) can be also obtained from Lan(L) by
considering all possible rotations of loops.

Path schemas can be concatenated assuming that constraints on control states
are respected. Let P = P1 · P2 be a path schema obtained by concatenating two
path schemas such that (1) P2 starts by q′ and is of length at least one, (2) P2

ends by q, (3) there is a transition t = q
φ−→ q′. Obviously, P2 · t is a cycle schema.

P2 is called a suffix of P. Similarly, let P = P1 · (l)∗ · P2 be a path schema with
l = p1 · p2, such that (1) p2 starts by q′, (2) P2 ends by q, (3) there is a transition
t = q

φ−→ q′. Obviously, p2 · (l)∗ ·P2 · t is another cycle schema. p2 · (l)∗ ·P2 is called
an augmented suffix of P. By definition, an augmented suffix is any suffix obtained
in one of the two above-mentioned ways. A simple suffix is a suffix without a loop,
i.e., a non-empty sequence of transitions being the suffix of a path schema.

ps-complexity. A path p ∈ δ∗ has ps-complexity k
def⇔ there is a path schema

P of length k such that p ∈ Lan(P) and no path schema P′ of strictly smaller

Witness Runs for Counter Machines 143

size verifies p ∈ Lan(P′). In a sense, the ps-complexity of a path measures how
concisely the path can be represented with the help of path schemas generated
from the Presburger counter system. Similarly, a run ρ has ps-complexity k

def⇔
there is a path schema P of length k such that ρ respects P and for no path
schema P′ of strictly smaller size, ρ respects P′. The relative length of a loop
l with respect to control state q0 is equal to the length of l plus the minimal
distance between the initial control state q0 and a control state occurring in l

(can be infinite, can be equal to the length of l if q0 occurs in l). Again, no
constraints about counter values are involved at this stage.

Subsumption test. Our algorithm is parameterized by a subsumption test. When
a path schema is subsumed by the set of path schemas previously discovered, it
is not itself enumerated. This leads to less redundant results, and to less work
being done by the algorithm at larger k. It also leads to an easy termination test:
during a level k, if no new path schemas are enumerated, then the algorithm has
already enumerated a finite set of path schemas that “capture” the behavior of
the system (w.r.t. the subsumption test).

The algorithm. Below, we present the algorithm in which PS (k) is the set of path
schemas of size k discovered. CS (k) is the set of cycle schemas discovered with rel-
ative length k. We write PS+(k)

def
=
⋃

k′≤k PS (k′) and CS+(k)
def
=
⋃

k′≤k CS (k′).
The input is a Presburger counter system C, with initial state q0 and initial con-
dition φinit(x1, . . . , xn). The input contains a path schema eligibility test (called
test) so that PS (k)

test←− P is a shorthand for: if test(φinit, P,PS+(k)) then

PS (k) ←− PS (k) ∪ {P}. When the test returns true, a new path schema is in-
cluded in PS (k) (typically by performing a subsumption check). The output of
the algorithm is PS+(k).

1. PS (0) is initialized to the empty path schema starting at control state q0
2. k ←− 1
3. while PS+(k − 1) �= ∅ do

(a) for each P ∈ PS+(k − 1) and t ∈ δ s.t. first(t) = last(P) do
{ look for path schemas ending with a transition }
i. if there exists no simple suffix S of P · t s.t. first(S) = last(S) then

PS(k)
test←− P · t { add path schema P · t to level k }

ii. for each augmented suffix S of P s.t. first(S · t) = last(S · t) do
{ add cycle schema S · t to level len(S · t) }
CS(len(S · t)) ←− CS (len(S · t)) ∪ {S · t}

(b) { add path schemas ending with a cycle }
for each L ∈ CS+(k) and prime cycle l ∈ Lan�(L) s.t. len(l) ≤ k do

for each P ∈ PS (k − len(l)) s.t. last(P) = first(l) do

PS (k)
test←− P · l { add P · l to level k }

(c) k ←− k + 1; endwhile
4. return PS+(k)

144 C. Barrett, S. Demri, and M. Deters

Properties of the algorithm. The algorithm has several nice properties such as be-
ing parameterized by an eligibility test and it produces only good path schemas
(see line 3(a)(i)). It is natural to wonder about the purpose of the eligibility test.
Whenever a new path schema is built by the algorithm, we do not systematically
insert it in the working set of path schemas (represented by PS (k) or PS+(k)).
Indeed, it may happen that there is no run that respects it when starting by
the initial control state q0 and when satisfying the initial constraint on counter
values. In that case, there is no point to include it in the working set of path
schemas. When path schemas are generated with the purpose to abstract a po-
tentially infinite set of runs, only consistent path schemas are inserted. Similarly,
a new path schema may be subsumed by the working set of path schemas and if
the property to be checked on runs can be safely pruned, such a new path schema
can be discarded. The eligibility test allows to parameterize the algorithm by any
kind of Boolean function to test whether a new path schema can be inserted or
not. On the other hand, it might be useful to enumerate path schemas regardless
the arithmetical constraints on counter values, which corresponds to consider the
algorithm when the test always returns true. Consequently, the eligibility test
provides a means to eliminate new path schemas depending on the purpose of
the path schema generation.

Theorem 19 below states that the algorithm generates all the cycle schemas
and path schemas when constraints on counter values are ignored. A nice way to
ignore such values is to assume that the test returns always true, which amounts
also to view the counter system as a standard labelled transition system.

Theorem 19 (Completeness). Consider the algorithm in which the main test
returns true. After completing the kth step of the main while loop:

(†) For every loop l of relative length at most k, there is a cycle schema L ∈
CS+(k) such that l ∈ Lan�(L).

(††) For every path p starting at control state q0 of ps-complexity at most k,
there is a path schema P ∈ PS+(k) such that p ∈ Lan(P).

With subsumption on counter values, a complete version of the algorithm can
be obtained if cycles are generated independently of cycle schemas. At the time
of writing this paper, we have designed such an algorithm, based on the one
presented above. If cycle schemas are used to generate cycles during the course
of the algorithm, then the enumeration procedure is known to be incomplete in
the sense of case (††) in Theorem 19; that is, some path schemas may be missed
at step k that are necessary to describe a path of ps-complexity k. However,
this does not prevent us from using this algorithm for certain applications where
completeness is less important, as useful path schemas might still be generated.
Implementation and tests will be part of future work.

6 Conclusion

In this paper, we have recalled several classes of Presburger counter systems
for which reachability sets are computable Presburger sets. Though this is a

Witness Runs for Counter Machines 145

desirable property to provide decision procedures on such machines, it is not
sufficient if model-checking temporal properties are required; indeed, we may
need to specify how intermediate configurations occur (see e.g. [DDS12]). For
instance, the exact complexity of model-checking temporal properties for flat
admissible Presburger counter systems is still open.

We have recalled several results from the literature and we emphasize that the
generation of path schemas is a key problem for formal verification of Presburger
counter systems. This is not really new (see e.g. [FO97, Boi99, Ler03, LS05]) but
it is becoming an important issue, at least as important as the design of optimal
decision procedures as far as worst-case complexity is concerned. The paper has
been designed to put some light on this problem. However, an efficient generation
of path schemas means that redundant path schemas should be eliminated as
early as possible in the enumeration process. A comparison with the algorithm
for acceleration technique in FAST [Ler03] or LASH [Boi99] will be in order.

We have introduced the notion of subsumption to take care of redundancy
and again subsumption can be checked by testing the satisfiability of a quantified
Presburger formula. This is a real challenge to deal with such quantified formulae
in the framework of path schemas enumeration since most SMT solvers do not
behave so nicely with quantified formulae, see e.g. [dMB08, BCD+11]. Part of
our future work is dedicated to design a path schema generation algorithm that
invokes SMT solvers for quantified Presburger formulae.

Acknowledgements. The second author thanks the colleagues involved in
fruitful collaborations about Presburger counter systems along the years; includ-
ing members of the ANR Project REACHARD, R. Lazić (Warwick University),
A. Dhar and A. Sangnier (LIAFA), and members of the ACSys group at NYU.

References

[AH11] Atig, M.F., Habermehl, P.: On Yen’s path logic for Petri nets. IJFCS 22(4),
783–799 (2011)

[AJ96] Abdulla, P., Jonsson, B.: Verifying programs with unreliable channels. I
& C 127(2), 91–101 (1996)

[BBH+06] Bouajjani, A., Bozga, M., Habermehl, P., Iosif, R., Moro, P., Vojnar, T.:
Programs with Lists Are Counter Automata. In: Ball, T., Jones, R.B.
(eds.) CAV 2006. LNCS, vol. 4144, pp. 517–531. Springer, Heidelberg
(2006)

[BCC+03] Biere, A., Cimatti, A., Clarke, E.M., Strichman, O., Zhu, Y.: Bounded
model checking. Advances in Computers 58, 118–149 (2003)

[BCD+11] Barrett, C., Conway, C.L., Deters, M., Hadarean, L., Jovanović, D., King,
T., Reynolds, A., Tinelli, C.: CVC4. In: Gopalakrishnan, G., Qadeer, S.
(eds.) CAV 2011. LNCS, vol. 6806, pp. 171–177. Springer, Heidelberg
(2011)

[BD11] Bersani, M.M., Demri, S.: The complexity of reversal-bounded model-
checking. In: Tinelli, C., Sofronie-Stokkermans, V. (eds.) FroCoS 2011.
LNCS (LNAI), vol. 6989, pp. 71–86. Springer, Heidelberg (2011)

146 C. Barrett, S. Demri, and M. Deters

[BDR03] Bruyère, V., Dall’Olio, E., Raskin, J.-F.: Durations, parametric model-
checking in timed automata with Presburger arithmetic. In: Alt, H., Habib,
M. (eds.) STACS 2003. LNCS, vol. 2607, pp. 687–698. Springer, Heidelberg
(2003)

[BEH95] Bouajjani, A., Echahed, R., Habermehl, P.: On the verification problem of
nonregular properties for nonregular processes. In: LICS 1995, pp. 123–133
(1995)

[Ber80] Berman, L.: The complexity of logical theories. TCS 11, 71–78 (1980)
[BFLS05] Bardin, S., Finkel, A., Leroux, J., Schnoebelen, P.: Flat acceleration in

symbolic model checking. In: Peled, D.A., Tsay, Y.-K. (eds.) ATVA 2005.
LNCS, vol. 3707, pp. 474–488. Springer, Heidelberg (2005)

[BFM+10] Bersani, M.M., Frigeri, A., Morzenti, A., Pradella, M., Rossi, M., San Pietro,
P.: Bounded reachability for temporal logic over constraint systems. In:
TIME 2010, pp. 43–50. IEEE (2010)

[BG06] Bozzelli, L., Gascon, R.: Branching-time temporal logic extended with
qualitative Presburger constraints. In: Hermann, M., Voronkov, A. (eds.)
LPAR 2006. LNCS (LNAI), vol. 4246, pp. 197–211. Springer, Heidelberg
(2006)

[BGI09] Bozga, M., Gîrlea, C., Iosif, R.: Iterating octagons. In: Kowalewski, S.,
Philippou, A. (eds.) TACAS 2009. LNCS, vol. 5505, pp. 337–351. Springer,
Heidelberg (2009)

[BIK09] Bozga, M., Iosif, R., Konečný, F.: Fast acceleration of ultimately periodic
relations. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS,
vol. 6174, pp. 227–242. Springer, Heidelberg (2010)

[BIL09] Bozga, M., Iosif, R., Lakhnech, Y.: Flat parametric counter automata.
FI 91(2), 275–303 (2009)

[BJW01] Boigelot, B., Jodogne, S., Wolper, P.: On the use of weak automata for
deciding linear arithmetic with integer and real variables. In: Goré, R.P.,
Leitsch, A., Nipkow, T. (eds.) IJCAR 2001. LNCS (LNAI), vol. 2083, pp.
611–625. Springer, Heidelberg (2001)

[BKR96] Biehl, M., Klarlund, N., Rauhe, T.: MONA: Decidable arithmetic in prac-
tice. In: Jonsson, B., Parrow, J. (eds.) FTRTFT 1996. LNCS, vol. 1135,
pp. 459–462. Springer, Heidelberg (1996)

[BL10] Bojańczyk, M., Lasota, S.: An extension of data automata that captures
XPath. In: LICS 2010, pp. 243–252. IEEE (2010)

[Boi99] Boigelot, B.: Symbolic methods for exploring infinite state spaces. PhD
thesis, Université de Liège (1999)

[BP12] Bozzelli, L., Pinchinat, S.: Verification of gap-order constraint abstractions
of counter systems. In: Kuncak, V., Rybalchenko, A. (eds.) VMCAI 2012.
LNCS, vol. 7148, pp. 88–103. Springer, Heidelberg (2012)

[BS11] Blockelet, M., Schmitz, S.: Model checking coverability graphs of vector
addition systems. In: Murlak, F., Sankowski, P. (eds.) MFCS 2011. LNCS,
vol. 6907, pp. 108–119. Springer, Heidelberg (2011)

[BSST08] Barrett, C., Sebastiani, R., Seshia, S., Tinelli, C.: Satisfiability Modulo
Theories. Frontiers in Artificial Intelligence and Applications, vol. 185, ch.
26, pp. 825–885. IOS Press (2008)

[BST12] Barrett, C., Stump, A., Tinelli, C.: The SMT-LIB standard: Version 2.0
(September 2012), http://smtlib.cs.uiowa.edu/papers/
smt-lib-reference-v2.0-r12.09.09.pdf

[BW94] Boigelot, B., Wolper, P.: Verification with Periodic Sets. In: Dill, D.L. (ed.)
CAV 1994. LNCS, vol. 818, pp. 55–67. Springer, Heidelberg (1994)

http://smtlib.cs.uiowa.edu/papers/smt-lib-reference-v2.0-r12.09.09.pdf
http://smtlib.cs.uiowa.edu/papers/smt-lib-reference-v2.0-r12.09.09.pdf

Witness Runs for Counter Machines 147

[BW98] Boigelot, B., Wolper, P.: Verifying systems with infinite but regular state
spaces. In: Vardi, M.Y. (ed.) CAV 1998. LNCS, vol. 1427, pp. 88–97.
Springer, Heidelberg (1998)

[CC00] Comon, H., Cortier, V.: Flatness is not a weakness. In: Clote, P.G.,
Schwichtenberg, H. (eds.) CSL 2000. LNCS, vol. 1862, pp. 262–276.
Springer, Heidelberg (2000)

[CGP00] Clarke, E., Grumberg, O., Peled, D.: Model checking. MIT Press (2000)
[CJ98] Comon, H., Jurski, Y.: Multiple counter automata, safety analysis and

Presburger Arithmetic. In: Vardi, M.Y. (ed.) CAV 1998. LNCS, vol. 1427,
pp. 268–279. Springer, Heidelberg (1998)

[CKL13] Carapelle, C., Kartzow, A., Lohrey, M.: Satisfiability of CTL∗ with con-
straints. In: D’Argenio, P.R., Melgratti, H. (eds.) CONCUR 2013. LNCS,
vol. 8052, pp. 455–469. Springer, Heidelberg (2013)

[Con12] Conchon, S.: SMT Techniques and their Applications: from Alt-Ergo to
Cubicle. Habilitation à Diriger des Recherches, Université Paris-Sud (2012)

[Coo72] Cooper, D.: Theorem proving in arithmetic without multiplication. Ma-
chine Learning 7, 91–99 (1972)

[DD07] Demri, S., D’Souza, D.: An automata-theoretic approach to constraint
LTL. I & C 205(3), 380–415 (2007)

[DDS12] Demri, S., Dhar, A.K., Sangnier, A.: Taming Past LTL and Flat Counter
Systems. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS
(LNAI), vol. 7364, pp. 179–193. Springer, Heidelberg (2012)

[DDS13] Demri, S., Dhar, A.K., Sangnier, A.: On the complexity of verifying reg-
ular properties on flat counter systems, In: Fomin, F.V., Freivalds, R.,
Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013, Part II. LNCS, vol. 7966,
pp. 162–173. Springer, Heidelberg (2013)

[DFGvD10] Demri, S., Finkel, A., Goranko, V., van Drimmelen, G.: Model-checking
CTL∗ over flat Presburger counter systems. JANCL 20(4), 313–344 (2010)

[DG08] Demri, S., Gascon, R.: Verification of qualitative Z constraints.
TCS 409(1), 24–40 (2008)

[DG09] Demri, S., Gascon, R.: The effects of bounding syntactic resources on
Presburger LTL. JLC 19(6), 1541–1575 (2009)

[DLN07] Demri, S., Lazić, R., Nowak, D.: On the freeze quantifier in constraint
LTL: decidability and complexity. I & C 205(1), 2–24 (2007)

[DLS10] Demri, S., Lazić, R., Sangnier, A.: Model checking memoryful linear-time
logics over one-counter automata. TCS 411(22-24), 2298–2316 (2010)

[dMB08] de Moura, L., Bjørner, N.S.: Z3: An Efficient SMT Solver. In: Ramakrish-
nan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340.
Springer, Heidelberg (2008)

[Esp94] Esparza, J.: On the decidability of model checking for several μ-calculi and
Petri nets. In: Tison, S. (ed.) CAAP 1994. LNCS, vol. 787, pp. 115–129.
Springer, Heidelberg (1994)

[Fit02] Fitting, M.: Modal logic between propositional and first-order. JLC 12(6),
1017–1026 (2002)

[FL02] Finkel, A., Leroux, J.: How to compose Presburger-accelerations: Appli-
cations to broadcast protocols. In: Agrawal, M., Seth, A. (eds.) FSTTCS
2002. LNCS, vol. 2556, pp. 145–156. Springer, Heidelberg (2002)

[FO97] Fribourg, L., Olsén, H.: Proving safety properties of infinite state sys-
tems by compilation into Presburger arithmetic. In: Mazurkiewicz, A.,
Winkowski, J. (eds.) CONCUR 1997. LNCS, vol. 1243, pp. 213–227.
Springer, Heidelberg (1997)

148 C. Barrett, S. Demri, and M. Deters

[FR74] Fischer, M., Rabin, M.: Super-exponential complexity of Presburger arith-
metic. In: Complexity of Computation. SIAM-AMS proceedings, vol. 7, pp.
27–42. AMS (1974)

[FR79] Ferrante, J., Rackoff, C.: The Computational Complexity of Logical The-
ories. Lecture Notes in Mathematics, vol. 718. Springer (1979)

[Fri00] Fribourg, L.: Petri nets, flat languages and linear arithmetic. In: 9th Work-
shop on Functional and Logic Programming (WFLP), pp. 344–365 (2000)

[FS01] Finkel, A., Schnoebelen, P.: Well-structured transitions systems every-
where! TCS 256(1-2), 63–92 (2001)

[FS08] Finkel, A., Sangnier, A.: Reversal-bounded counter machines revisited. In:
Ochmański, E., Tyszkiewicz, J. (eds.) MFCS 2008. LNCS, vol. 5162, pp.
323–334. Springer, Heidelberg (2008)

[FS09] Figueira, D., Segoufin, L.: Future-looking logics on data words and trees.
In: Královič, R., Niwiński, D. (eds.) MFCS 2009. LNCS, vol. 5734, pp.
331–343. Springer, Heidelberg (2009)

[GI81] Gurari, E., Ibarra, O.: The complexity of decision problems for finite-turn
multicounter machines. In: Even, S., Kariv, O. (eds.) ICALP 1981. LNCS,
vol. 115, pp. 495–505. Springer, Heidelberg (1981)

[GNRZ07] Ghilardi, S., Nicolini, E., Ranise, S., Zucchelli, D.: Combination methods
for satisfiability and model-checking of infinite-state systems. In: Pfenning,
F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 362–378. Springer,
Heidelberg (2007)

[Gor94] Goranko, V.: Temporal logic with reference pointers. In: Gabbay, D.M.,
Ohlbach, H.J. (eds.) ICTL 1994. LNCS (LNAI), vol. 827, pp. 133–148.
Springer, Heidelberg (1994)

[Grä88] Grädel, E.: Subclasses of Presburger arithmetic and the polynomial-time
hierarchy. TCS 56, 289–301 (1988)

[GS92] German, S., Sistla, P.: Reasoning about systems with many processes.
JACM 39(3), 675–735 (1992)

[Hab97] Habermehl, P.: On the complexity of the linear-time mu-calculus for Petri
nets. In: Azéma, P., Balbo, G. (eds.) ICATPN 1997. LNCS, vol. 1248, pp.
102–116. Springer, Heidelberg (1997)

[Hen90] Henzinger, T.: Half-order modal logic: how to prove real-time properties.
In: PODC 1990, pp. 281–296. ACM Press (1990)

[HL11] Hague, M., Lin, A.W.: Model checking recursive programs with numeric
data types. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 743–759. Springer, Heidelberg (2011)

[HP79] Hopcroft, J., Pansiot, J.J.: On the reachability problem for 5-dimensional
vector addition systems. TCS 8, 135–159 (1979)

[HR87] Howell, R.R., Rosier, L.E.: An analysis of the nonemptiness problem for
classes of reversal-bounded multicounter machines. JCSS 34(1), 55–74
(1987)

[HR89] Howell, R.R., Rosier, L.E.: Problems concerning fairness and temporal
logic for conflict-free petri nets. TCS 64, 305–329 (1989)

[HRS76] Hunt, H., Rosenkrantz, D., Szymanski, T.: On the equivalence, contain-
ment, and covering problems for the regular and context-free languages.
JCSS 12, 222–268 (1976)

[Iba78] Ibarra, O.: Reversal-bounded multicounter machines and their decision
problems. JACM 25(1), 116–133 (1978)

[Jan90] Jančar, P.: Decidability of a temporal logic problem for Petri nets.
TCS 74(1), 71–93 (1990)

Witness Runs for Counter Machines 149

[KM69] Karp, R.M., Miller, R.E.: Parallel program schemata. JCSS 3(2), 147–195
(1969)

[Kos82] Kosaraju, R.: Decidability of reachability in vector addition systems. In:
STOC 1982, pp. 267–281 (1982)

[Ler03] Leroux, J.: Algorithmique de la vérification des systèmes à compteurs. Ap-
proximation et accélération. Implémentation de l’outil FAST. PhD thesis,
ENS de Cachan, France (2003)

[Ler09] Leroux, J.: The general vector addition system reachability problem by
Presburger inductive invariants. In: LICS 2009, pp. 4–13. IEEE (2009)

[Ler12] Leroux, J.: Presburger counter machines. Habilitation à Diriger des
Recherches, Université Bordeaux (2012)

[Ler13] Leroux, J.: Presburger Vector Addition Systems. In: LICS 2013, pp. 23–32.
IEEE (2013)

[Lip76] Lipton, R.J.: The reachability problem requires exponential space. Tech-
nical Report 62, Department of Computer Science, Yale University (1976)

[LP05] Lisitsa, A., Potapov, I.: Temporal logic with predicate λ-abstraction. In:
TIME 2005, pp. 147–155. IEEE (2005)

[LP09] Leroux, J., Point, G.: TaPAS: The Talence Presburger Arithmetic Suite.
In: Kowalewski, S., Philippou, A. (eds.) TACAS 2009. LNCS, vol. 5505,
pp. 182–185. Springer, Heidelberg (2009)

[LS05] Leroux, J., Sutre, G.: Flat counter automata almost everywhere! In: Peled,
D.A., Tsay, Y.-K. (eds.) ATVA 2005. LNCS, vol. 3707, pp. 489–503.
Springer, Heidelberg (2005)

[Lut04] Lutz, C.: NEXPTIME-complete description logics with concrete domains.
ACM ToCL 5(4), 669–705 (2004)

[May84] Mayr, E.: An algorithm for the general Petri net reachability problem.
SIAM Journal of Computing 13(3), 441–460 (1984)

[May03] Mayr, R.: Undecidable problems in unreliable computations. TCS 297(1-
3), 337–354 (2003)

[Min61] Minsky, M.: Recursive unsolvability of Post’s problems of ‘tag’ and other
topics in theory of Turing machines. Annals of Mathematics 74(3), 437–
455 (1961)

[Min67] Minsky, M.: Computation, Finite and Infinite Machines. Prentice Hall
(1967)

[Mon10] Monniaux, D.: Quantifier elimination by lazy model enumeration. In:
Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp.
585–599. Springer, Heidelberg (2010)

[MP92] Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and Concurrent
Systems: Specification. Springer (1992)

[MP95] Manna, Z., Pnueli, A.: Temporal verification of reative systems: safety.
Springer (1995)

[MS77] Mandel, A., Simon, I.: On finite semigroups of matrices. TCS 5(2), 101–111
(1977)

[Opp78] Oppen, D.: A 22
2pn

upper bound on the complexity of Presburger arith-
metic. JCSS 16(3), 323–332 (1978)

[OW05] Ouaknine, J., Worrell, J.: On the Decidability of Metric Temporal Logic.
In: LICS 2005, pp. 188–197. IEEE (2005)

[Pnu77] Pnueli, A.: The temporal logic of programs. In: FOCS 1977, pp. 46–57.
IEEE (1977)

150 C. Barrett, S. Demri, and M. Deters

[Pre29] Presburger, M.: Über die Vollständigkeit eines gewissen Systems der Arith-
metik ganzer Zahlen, in welchem die Addition als einzige Operation her-
vortritt. In: Comptes Rendus du Premier Congrès de Mathématiciens des
Pays Slaves, Warszawa, pp. 92–101 (1929)

[Pug92] Pugh, W.: A practical algorithm for exact array dependence analysis. Com-
munications of the ACM 35(8), 102–114 (1992)

[QR05] Qadeer, S., Rehof, J.: Context-bounded model checking of concurrent soft-
ware. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440,
pp. 93–107. Springer, Heidelberg (2005)

[Reu90] Reutenauer, C.: The mathematics of Petri nets. Masson and Prentice
(1990)

[RL78] Reddy, C., Loveland, W.: Presburger arithmetic with bounded quantifier
alternation. In: STOC 1978, pp. 320–325. ACM Press (1978)

[Sch02] Schnoebelen, P.: Verifying lossy channel systems has nonprimitive recur-
sive complexity. IPL 83, 251–261 (2002)

[Sch10] Schnoebelen, P.: Revisiting Ackermann-hardness for lossy counter ma-
chines and reset Petri nets. In: Hliněný, P., Kučera, A. (eds.) MFCS 2010.
LNCS, vol. 6281, pp. 616–628. Springer, Heidelberg (2010)

[Sho79] Shostak, R.: A practical decision procedure for arithmetic with function
symbols. JACM 26(2), 351–360 (1979)

[SJ80] Suzuki, N., Jefferson, D.: Verification Decidability of Presburger Array
Programs. JACM 27(1), 191–205 (1980)

[ST11] Segoufin, L., Torunczyk, S.: Automata based verification over linearly or-
dered data domains. In: STACS 2011, pp. 81–92 (2011)

Decidability and Complexity via Mosaics

of the Temporal Logic of the Lexicographic
Products of Unbounded Dense Linear Orders

Philippe Balbiani1 and Szabolcs Mikulás2

1 Institut de recherche en informatique de Toulouse, CNRS — University
of Toulouse, 118 Route de Narbonne, 31062 Toulouse CEDEX 9, France

balbiani@irit.fr
2 Department of Computer Science and Information Systems, Birbeck — University

of London, Malet Street, London WC1E 7HX, UK
szabolcs@dcs.bbk.ac.uk

Abstract. This article considers the temporal logic of the lexicographic
products of unbounded dense linear orders and provides via mosaics a
complete decision procedure in nondeterministic polynomial time for the
satisfiability problem it gives rise to.

Keywords: Linear temporal logic, lexicographic product, satisfiability
problem, decidability, complexity, mosaic method, decision procedure.

1 Introduction

The mosaic method originates in algebraic logic, see [19], where the existence
of a model is proved to be equivalent to the existence of a finite set of partial
models verifying some conditions. It has also been applied for proving complete-
ness and decidability of temporal logics over linear flows of time. See [5, section
6.4], or [7, 16, 17, 20]. For their use, specialized systems such as temporal logics
must be combined with each other. This has led to the development of tech-
niques for the combination of linear flows of time such as the classical operation
of Cartesian product [10, 11, 14, 21]. Within the context of modal logic, the
operation of lexicographic product of Kripke frames has been introduced as a
variant of the operation of Cartesian product. It has also been used for defining
the semantical basis of different languages designed for time representation and
temporal reasoning from the perspective of non-standard analysis. See [1–3].

In [3], the temporal logic of the lexicographic products of unbounded dense lin-
ear orders has been considered and its complete axiomatization has been given.
The purpose of this paper is to apply the mosaic method for providing a com-
plete decision procedure in nondeterministic polynomial time for the satisfiability
problem this temporal logic gives rise to. Its section-by-section breakdown is as
follows. Section 2 formally introduces the lexicographic products of unbounded
dense linear orders and presents the syntax and the semantics of the tempo-
ral logic we will be working with. Sections 3 defines mosaics and collections

P. Fontaine, C. Ringeissen, and R.A. Schmidt (Eds.): FroCoS 2013, LNAI 8152, pp. 151–164, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

152 P. Balbiani and S. Mikulás

of mosaics satisfying saturation properties. In Section 4 and 5, we prove the
completeness and soundness, respectively, of the mosaic method. Applying these
result we prove in Section 6 that the satisfiability problem for our temporal logic
is decidable in nondeterministic polynomial time.

2 Products of Unbounded Dense Linear Orders

Let F1 = (T1, <1) and F2 = (T2, <2) be linear orders. Their lexicographic prod-
uct is the structure F = (T,≺1,≺2) where

– T = T1 × T2,
– ≺1 and ≺2 are binary relations on T defined by (s1, s2) ≺1 (t1, t2) iff s1 <1 t1

and (s1, s2) ≺2 (t1, t2) iff s1 = t1 and s2 <2 t2.

We define the binary relation ≺ on T by (s1, s2) ≺ (t1, t2) iff (s1, s2) ≺1 (t1, t2)
or (s1, s2) ≺ (t1, t2). The effect of the operation of lexicographic product may be
described informally as follows: given two linear orders, their lexicographic prod-
uct is the structure obtained by replacing each point of the first one by a copy of
the second one. The global intuitions underlying such an operation is based upon
the fact that, depending on the accuracy required or the available knowledge,
one can describe a temporal situation at different levels of abstraction. See [4,
section I.2.2], or [8] for details. In Fig. 1 below, we have s1 <1 t1 and s2 <2 t2.
As a result, we have (s1, s2) ≺2 (s1, t2), (s1, s2) ≺1 (t1, s2), (s1, s2) ≺1 (t1, t2),
(s1, t2) ≺1 (t1, s2), (s1, t2) ≺1 (t1, t2) and (t1, s2) ≺2 (t1, t2). It is now time to
meet the temporal language we will be working with. Let At be a countable set
of atomic formulas (with typical members denoted p, q, etc). We define the set
Lt of formulas of our temporal language (with typical members denoted ϕ, ψ,
etc.) as follows:

– ϕ := p | ⊥ | ¬ϕ | (ϕ ∨ ψ) | G1ϕ | G2ϕ | H1ϕ | H2ϕ,

�F1

�
F2

�

s1
�

t1

�

s2

�

t2

�

(s1, s2)
�

(t1, s2)

�

(s1, t2)
�

(t1, t2)

Fig. 1. Illustration of ≺1 and ≺2

Lexicographic Products of Unbounded Dense Linear Orders 153

the formulas G1ϕ, G2ϕ, H1ϕ and H2ϕ being read “ϕ will be true at each point
within the future of but not infinitely close to the present point”, “ϕ will be true
at each instant within the future of and infinitely close to the present instant”,
“ϕ has been true at each point within the past of but not infinitely close to
the present point” and “ϕ has been true at each point within the past of and
infinitely close to the present point”. We adopt the standard definitions for the
remaining Boolean connectives. As usual, we define for all i ∈ {1, 2},

– Fiϕ := ¬Gi¬ϕ,
– Piϕ := ¬Hi¬ϕ,
– �iϕ := ϕ ∨ Fiϕ ∨ Piϕ.

The notion of a subformula is standard. It is usual to omit parentheses if this does
not lead to any ambiguity. The size of a formula ϕ, in symbols |ϕ|, is the number
of symbols of ϕ. A model is a structure M = (F1,F2, V) where F1 = (T1, <1)
and F2 = (T2, <2) are linear orders and V : At → ℘(T1 × T2) is a valuation.
Satisfaction is a ternary relation |= between a model M = (F1,F2, V), a pair
(s1, s2) ∈ T1 × T2 and a formula ϕ. It is defined by induction on ϕ as usual. In
particular, for all i ∈ {1, 2},

– M, (s1, s2) |= Giϕ iff M, (t1, t2) |= ϕ for every (t1, t2) ∈ T1 × T2 such that
(s1, s2) ≺i (t1, t2),

– M, (s1, s2) |= Hiϕ iff M, (t1, t2) |= ϕ for every (t1, t2) ∈ T1 × T2 such that
(t1, t2) ≺i (s1, s2).

As a result, for all i ∈ {1, 2},

– M, (s1, s2) |= Fiϕ iff M, (t1, t2) |= ϕ for some (t1, t2) ∈ T1 × T2 such that
(s1, s2) ≺i (t1, t2),

– M, (s1, s2) |= Piϕ iff M, (t1, t2) |= ϕ for some (t1, t2) ∈ T1 × T2 such that
(t1, t2) ≺i (s1, s2),

– M, (s1, s2) |= �2ϕ iff M, (s1, t) |= ϕ for some t ∈ T2.

M is said to be a model for ϕ iff there exists (s1, s2) ∈ T1 × T2 such that
M, (s1, s2) |= ϕ. In this case, we shall also say that ϕ is satisfied in M. Let
C1 and C2 be classes of linear orders. We shall say that a formula ϕ is satis-
fiable with respect to (C1, C2) iff there exists a linear order F1 = (T1, <1) in
C1, there exists a linear order F2 = (T2, <2) in C2 and there exists a valuation
V : At → ℘(T1×T2) such that (F1,F2, V) is a model for ϕ. The temporal logic of
(C1, C2) is the set of all formulas ϕ such that ¬ϕ is not satisfiable with respect to
(C1, C2). The class of all unbounded dense linear orders will be denoted Cud. [3]
considers the temporal logic of (Cud, Cud) and gives its complete axiomatization.
The satisfiability problem of this temporal logic is to

– determine whether a given formula ϕ is satisfiable with respect to (Cud, Cud).

In order to provide a complete decision procedure in nondeterministic polynomial
time for it, we use mosaics.

154 P. Balbiani and S. Mikulás

3 Mosaics

Until the end of this paper, ξ will denote a fixed formula and Γ will denote
the least set of formulas such that �2ξ ∈ Γ (recall that �2ϕ is defined as
ϕ ∨ F2ϕ ∨ P2ϕ) and � ∈ Γ , Γ is closed under subformulas and single negations
(we identify ¬¬γ with γ) and

– if G1ϕ ∈ Γ or H1ϕ ∈ Γ , then G2ϕ,H2ϕ ∈ Γ ,
– if F1ϕ ∈ Γ or P1ϕ ∈ Γ , then �2ϕ ∈ Γ .

Recall that ξ has at most |ξ| subformulas. Closing this set under single nega-
tions gives us at most 2 × |ξ| formulas. Then �2ξ yields 2 × |ξ| + 10 formu-
las (subformulas and their negations). The first requirement above introduces
at most 2 new formulas plus their negations, and the last requirement intro-
duces at most 10 new formulas (with negations), for every ϕ. Thus we get that
|Γ | ≤ 14 × (2 × |ξ| + 10) + 2 (the 2 is for � and ⊥).

Let λ be a function such that dom(λ) ⊆ Γ is closed under single negations
and ran(λ) ⊆ {0, 1}. We say that λ is adequate if

– � ∈ dom(λ) and λ(�) = 1,
– for every γ ∈ dom(λ), we have λ(¬γ) = 1 − λ(γ),
– for every γ∨ρ ∈ dom(λ), we have λ(γ∨ρ) ≥ λ(γ) provided that γ ∈ dom(λ),

λ(γ ∨ ρ) ≥ λ(ρ) provided that ρ ∈ dom(λ), and λ(γ ∨ ρ) = max{λ(γ), λ(ρ)}
if both γ, ρ ∈ dom(λ).

The reason for the complicated form of the last condition is that generally we do
not require that dom(λ) is closed under subformulas. However, when we state a
requirement that λ(γ) ∈ {0, 1}, then we implicitly require that γ ∈ dom(λ).

Definition 1. Let i ∈ {1, 2} and (σ, τ) be a pair of adequate functions. We
define the following coherence properties.

Gi-coherence σ(Giϕ) = 1 implies τ(Giϕ) = τ(ϕ) = 1.
Hi-coherence τ(Hiϕ) = 1 implies σ(Hiϕ) = σ(ϕ) = 1.

1. A 1-mosaic is a pair (σ, τ) such that σ and τ are adequate functions, (σ, τ)
satisfies G1- and H1-coherence and the following transfer conditions.

G-transfer σ(G1ϕ) = 1 implies τ(G2ϕ) = τ(H2ϕ) = 1.
H-transfer τ(H1ϕ) = 1 implies σ(G2ϕ) = σ(H2ϕ) = 1.

2. A 2-mosaic is a pair (σ, τ) such that σ and τ are adequate functions with full
domain dom(σ) = dom(τ) = Γ , (σ, τ) satisfies G2- and H2-coherence and
the following uniformity conditions.

G1-uniformity σ(G1ϕ) = τ(G1ϕ).
H1-uniformity σ(H1ϕ) = τ(H1ϕ).

As an example of mosaics take a model M = (F1,F2, V) with unbounded,
dense linear orders F1 = (T1, <1) and F2 = (T2, <2) and a valuation V : At →

Lexicographic Products of Unbounded Dense Linear Orders 155

℘(T1 × T2). Denote T := T1 × T2. Define for every (s, t) ∈ T , λ(s,t) : Γ → {0, 1}
by

λ(s,t)(γ) :=

{
1 if M, (s, t) |= γ

0 otherwise
(1)

for every γ ∈ Γ . It is straightforward to check that

– for every (s, t), (u, v) ∈ T with s <1 u, the pair (λ(s,t), λ(u,v)) is a 1-mosaic
(with full domain)

– for every (s, t), (s, u) ∈ T with t <2 u, the pair (λ(s,t), λ(s,u)) is a 2-mosaic.

For every s ∈ T1, define κs as follows:

κs(γ) :=

⎧⎪⎨⎪⎩
1 if λ(s,u)(γ) = 1 for every u ∈ T2

0 if λ(s,u)(γ) = 0 for every u ∈ T2

undefined otherwise

(2)

for every γ ∈ Γ . Then κs is an adequate function and (κs, κt) is a 1-mosaic
whenever s <1 t. An i-SSM will correspond to a flow of time in dimension i.

Definition 2. Let i ∈ {1, 2}. An i-saturated set of mosaics, an i-SSM, is a
collection M of i-mosaics such that M satisfies the Density, No-endpoints and
the corresponding i-saturation conditions below.

Density If (σ, τ) ∈ M , then there is μ such that (σ, μ), (μ, τ) ∈ M .
No-endpoints If (σ, τ) ∈ M , then there are μ, ν such that (μ, σ) ∈ M and

(τ, ν) ∈ M .
F1-saturation—insertion If (σ, τ) ∈ M , σ(F1ϕ) = 1 and τ(F1ϕ) = τ(�2ϕ) =

0, then there is μ such that μ(�2ϕ) = 1 and (σ, μ), (μ, τ) ∈ M .
F2-saturation—insertion If (σ, τ) ∈ M , σ(F2ϕ) = 1 and τ(F2ϕ) = τ(ϕ) = 0,

then there is μ such that μ(ϕ) = 1 and (σ, μ), (μ, τ) ∈ M .
P1-saturation—insertion If (σ, τ) ∈ M , τ(P1ϕ) = 1 and σ(P1ϕ) = σ(�2ϕ) =

0, then there is μ such that μ(�2ϕ) = 1 and (σ, μ), (μ, τ) ∈ M .
P2-saturation—insertion If (σ, τ) ∈ M , τ(P2ϕ) = 1 and σ(P2ϕ) = σ(ϕ) = 0,

then there is μ such that μ(ϕ) = 1 and (σ, μ), (μ, τ) ∈ M .
F1-saturation—expansion If (σ, τ) ∈ M and τ(F1ϕ) = 1, then there is μ

such that μ(�2ϕ) = 1 and (τ, μ) ∈ M .
F2-saturation—expansion If (σ, τ) ∈ M and τ(F2ϕ) = 1, then there is μ

such that μ(ϕ) = 1 and (τ, μ) ∈ M .
P1-saturation—expansion If (σ, τ) ∈ M and σ(P1ϕ) = 1, then there is μ

such that μ(�2ϕ) = 1 and (μ, σ) ∈ M .
P2-saturation—expansion If (σ, τ) ∈ M and σ(P2ϕ) = 1, then there is μ

such that μ(ϕ) = 1 and (μ, σ) ∈ M .

That is, besides the Density and No-endpoint conditions, a 1-SSM should satisfy
the F1-saturation and P1-saturation conditions and a 2-SSM should satisfy the
F2-saturation and P2-saturation conditions. We say that M is an i-SSM for ϕ if

156 P. Balbiani and S. Mikulás

there is (μ, ν) ∈ M such that μ(ϕ) = 1 or ν(ϕ) = 1. Let us continue with our
example. The collections

{(λ(s,t), λ(u,v)) : (s, t) ≺1 (u, v)} and {(κs, κu) : s <1 u}

of 1-mosaics are 1-SSMs. Fix s ∈ T1 and consider the set Ms of 2-mosaics defined
by

Ms := {(λ(s,t), λ(s,u)) : t, u ∈ T2, t <2 u}.
It is easy to check that Ms is a 2-SSM for every s ∈ T1. A 1-supermosaic will be
a 1-mosaic of two 2-SSMs.

Definition 3. Let M be a 2-SSM. We define λM by

λM (γ) :=

⎧⎪⎨⎪⎩
1 if μ(γ) = ν(γ) = 1 for every (μ, ν) ∈ M

0 if μ(γ) = ν(γ) = 0 for every (μ, ν) ∈ M

undefined otherwise

(3)

for every γ ∈ Γ . Observe that λM is an adequate function.
A 1-supermosaic is a pair (M,N) of 2-SSMs such that (λM , λN) is a 1-mosaic.

In our example, for every s, t ∈ T1 such that s <1 t, the pair (Ms,Mt) is a
1-supermosaic. A saturated set of 1-supermosaics will correspond to a flow (in
dimension 1) of flows (in dimension 2).

Definition 4. A saturated set of 1-supermosaics, a 1-SSS, is a collection Σ of
1-supermosaics such that {(λM , λN) : (M,N) ∈ Σ} is a 1-SSM.

We say that Σ is a 1-SSS for ϕ if there is (M,N) ∈ Σ such that λM (�2ϕ) = 1
or λN (�2ϕ) = 1. Observe that then there is a 2-mosaic (σ, τ) in one of the 2-
SSMs in one of the 1-supermosaics of Σ such that σ(ϕ) = 1 or τ(ϕ) = 1. In our
example the set

ΣM := {(Ms,Mt) : s, t ∈ T1, s <1 t}
is a 1-SSS and in fact a 1-SSS for ξ if there is (s, t) ∈ T1×T2 such that M, (s, t) |=
ξ. Our running example should convince the reader that satisfiability of ξ implies
the existence of a 1-SSS for ξ. But we want to be more economical in creating the
1-SSS; we will describe the procedure for creating a smaller 1-SSS in Section 5.
First we show how to create a model from a 1-SSS, though.

4 Completeness

In this section we show the completeness of the mosaic approach. We will need
the following.

Definition 5. Let i ∈ {1, 2} and W = (W,<, λ) be a structure such that (W,<)
is a linear order and λq is an adequate function for every q ∈ W . We say that
W is i-consistent if it satisfies for every q ∈ W , the corresponding i-completness
and i-soundness conditions below.

Lexicographic Products of Unbounded Dense Linear Orders 157

Gi-soundness If λq(Giγ) = 1, then λp(Giγ) = λp(γ) = 1 for every p ∈ W such
that q < p.

Hi-soundness If λq(Hiρ) = 1, then λp(Hiρ) = λp(ρ) = 1 for every p ∈ W such
that p < q.

F1-completeness If λq(F1γ) = 1, then there is p ∈ W such that q < p and
λp(�2γ) = 1.

F2-completeness If λq(F2γ) = 1, then there is p ∈ W such that q < p and
λp(γ) = 1.

P1-completeness If λq(P1ρ) = 1, then there is p ∈ W such that p < q and
λp(�2γ) = 1.

P2-completeness If λq(P2ρ) = 1, then there is p ∈ W such that p < q and
λp(γ) = 1.

That is, a 1-consistent structure must satisfy the G1-soundness, H1-soundness,
F1-completeness and P1-completeness conditions, and a 2-consistent structure
satisfies the G2-soundness, H2-soundness, F2-completeness and P2-completeness
conditions.

Let W = (W,<, λ) be a structure such that (W,<) is a linear order and λq is
an adequate function for every q ∈ W . A future defect of W is a pair (q, γ) such
that λq(Fiγ) = 1 but there is no p > q such that λp satisfies the requirements in
the Fi-completeness condition above. Past defects are defined similarly. Below
we will construct a i-complete (i.e., without defects) and i-sound structure from
an i-SSM, see Case 1 and 2 in the proof of Lemma 1 below, where we construct
the required future and past witnesses for the defects. In addition, we need that
the constructed structure is dense and without endpoints. That is why we will
need Case 3 and 4, where we construct new successors and predecessors for each
point in the linear order, which in the limit of the construction yields a dense
linear order without endpoints.

Lemma 1. Let i ∈ {1, 2}. Assume that M is an i-SSM for ϕ. Then there is an
i-consistent structure QM = (QM , <, λ) such that (QM , <) is isomorphic to the
rationals Q and λq(ϕ) = 1 for some q ∈ QM .

Proof. We will define the order (QM , <) and the adequate functions λq by in-
duction. To this end let us have a countable enumeration D of potential defects
{(q, γ, k) : q ∈ Q, γ ∈ Γ, k ∈ {1, 2, 3, 4}} such that every item appears infinitely
often. The value of k will indicate the type of the potential defect: future, past,
successor, predecessor.

By assumption there is an i-mosaic (μ, ν) ∈ M such that μ(ϕ) = 1 or ν(ϕ) = 1.
In the base step of the construction we define the finite order Q1 = {0, 1} with
0 < 1 and functions λ0 = μ and λ1 = ν. Obviously the soundness conditions
restricted to Q1 hold.

For the inductive step assume that we constructed a sound structure
Qn consisting of a finite order (Qn, <) = (q0 < q1 < . . . < qn) and ade-
quate functions λq for q ∈ Qn such that (λqj , λqj+1) ∈ M for every j < n.
Let D(n) = (q, γ, k). If q /∈ Qn, then we define Qn+1 := Qn. Otherwise we con-
sider the following four cases. If none of the four cases below holds, then we let
Qn+1 := Qn.

158 P. Balbiani and S. Mikulás

Case 1 k = 1, λq(Fiγ) = 1 and for every r ∈ Qn with q < r, we have λr(�2γ) =
0 in case i = 1, or λr(γ) = 0 in case i = 2.
We will construct the required witness in the future of q. First assume that
for every r with q < r, we have λr(Fiγ) = 1 (note that this includes the case
q = qn). The i-mosaic (λqn−1 , λqn) ∈ M . By Fi-saturation—expansion there
is an i-mosaic (λqn , μ) ∈ M such that
– μ(�2γ) = 1 if i = 1
– μ(γ) = 1 if i = 2.

In this case we define (Qn+1, <) := (q0 < q1 < . . . < qn < p) for some p ∈ Q

such that qn < p and let λp := μ. Next assume that there is r with q < r such
that λr(Fiγ) = 0. Let m be such that qm is minimal in Qn with respect to
this property. Consider the i-mosaic (λqm−1 , λqm) ∈ M . By Fi-saturation—
insertion there is an adequate function μ such that (λqn−1 , μ), (μ, λqn) ∈ M
and
– μ(�2γ) = 1 if i = 1
– μ(γ) = 1 if i = 2.

Then we let (Qn+1, <) := (q0 < . . . < qm−1 < p < qm < . . . < qn) for some
p ∈ Q such that qm−1 < p < qm and define λp := μ.

Case 2 k = 2, λq(Piγ) = 1 and for every r ∈ Qn with r < q we have λr(�2γ) =
0 if i = 1, or λr(γ) = 0 if i = 2.
A completely analogous construction to Case 1 provides the required witness
in the past of q.

Case 3 k = 3.
We will construct a new successor for q. In the case q = qn, consider
(λqn−1 , λqn) ∈ M . By the No-endpoints condition, we have an i-mosaic
(λqn , μ) ∈ M . We define (Qn+1, <) := (q0 < q1 < . . . < qn < p) for some
p ∈ Q such that qn < p and let λp := μ. Now assume that q = qm < qn.
Consider the i-mosaic (λqm , λqm+1) ∈ M . Then there is an adequate function
μ such that (λqm , μ), (μ, λqm+1) ∈ M , by the Density condition. Then we let
(Qn+1, <) := (q0 < . . . < qm < p < qm+1 < . . . < qn) for some p ∈ Q such
that qm−1 < p < qm and define λp := μ.

Case 4 k = 4.
A completely analogous construction to Case 3 provides a new predecessor
of q.

It is easy to check that Qn+1 is sound in every case, since it consists of elements
of M . Let QM = (QM , <) :=

⋃
n∈ω Qn (recall that we defined λq in the step we

created q for every q ∈ QM). It is easy to see that (QM , <) is a countable linear
order which is dense and does not have endpoints (by Case 3 and 4), hence
isomorphic to Q. Since we considered every potential defects infinitely often,
it follows that QM does not contain any future or past defect in dimension i.
That is, if i = 1 and λq(F1γ) = 1, then there is p ∈ QM such that q < p and
λp(�2γ) = 1, and if i = 2 and λq(F2γ) = 1, then there is p ∈ QM such that q < p
and λp(γ) = 1 (and similarly for past formulas). Hence QM is i-consistent. ��

Next we apply Lemma 1 in both dimensions to construct a model from a 1-SSS.

Lexicographic Products of Unbounded Dense Linear Orders 159

Lemma 2. If there is a 1-SSS for ξ, then there is a model M for ξ. Further-
more, M can be chosen to be the lexicographic product of the rationals with some
valuation V : M = (Q,Q, V).

Proof. Let Σ be a 1-SSS for ξ. Thus Σ is a collection of 1-supermosaics (M,N)
such that {(λM , λN) : (M,N) ∈ Σ} is a 1-SSM. Furthermore, there is (M,N) ∈
Σ such that λM (�2ξ) = 1 or λN (�2ξ) = 1.

We apply Lemma 1 to get the 1-consistent structure QΣ = (QΣ , <1, λ) such
that (QΣ , <1) is isomorphic to Q and λq(�2ξ) = 1 for some q ∈ QΣ . By the
construction of QΣ, for every q ∈ QΣ, there is a 2-SSM M such that λq = λM .
Thus we can assume that there is a function f : q (→ M with domain QΣ . For
every q ∈ QΣ, we apply Lemma 1 to f(q) = M . Hence, we get a 2-consistent
structure Qf(q) = (Qf(q), <2, λ) such that (Qf(q), <2) is isomorphic to Q, and for
every rq ∈ Qf(q), the adequate function λrq has full domain Γ (since f(q) = M
is a 2-SSM).

Let us replace every q ∈ QΣ with the copy (Qf(q), <2) of Q (say, mapping q to
0). Thus we get a grid Q×Q such that the elements (q, r) have the property that
r = rq ∈ Qf(q). Hence to every (q, r) ∈ Q × Q we can associate a full adequate
function λ(q,r) := λrq .

Let M = (Q,Q, V) be the model defined by the valuation V :

V (p) := {(q, r) ∈ Q × Q : λ(q,r)(p) = 1}

for every atomic proposition p. An easy formula-induction, using 1-consistency
of (QΣ , <1, λ) and 2-consistency of (Qf(q), <2), establishes that

M, (q, r) |= ϕ iff λ(q,r)(ϕ) = 1

for every ϕ ∈ Γ . Since we have λq(�2ξ) = 1 for some q ∈ QΣ, we also get that
λ(q, r)(ξ) = 1 for some r ∈ Qf(q) by F2/P2-completeness. Hence M, (q, r) |= ξ,
that is, M is a model satisfying ξ. ��

5 Soundness

For the reverse direction we also compute an upper bound on the size of the
required 1-SSS.

Definition 6. Let Wi = (Wi, <i, λ) be an i-consistent structure. For i = 1 we
define the following transfer conditions: for every p, q ∈ W1 such that p <1 q,

G-transfer λp(G1ϕ) = 1 implies λq(G2ϕ) = λq(H2ϕ) = 1,
H-transfer λq(H1ϕ) = 1 implies λp(G2ϕ) = λp(H2ϕ) = 1.

For i = 2 we define the following uniformity conditions: for every p, q ∈ W2,

G1-uniformity λp(G1ϕ) = λq(G1ϕ),
H1-uniformity λp(H1ϕ) = λq(H1ϕ).

We will need the following technical lemma.

160 P. Balbiani and S. Mikulás

Lemma 3. Fix i ∈ {1, 2}. Let Wi = (Wi, <i, λ) be an i-consistent structure such
that (Wi, <i) is a dense, linear order without endpoints. Assume that Wi satis-
fies the G- and H-transfer conditions if i = 1, and the G1- and H1-uniformity
conditions if i = 2.

Let u ∈ Wi and γ ∈ Γ such that λu(γ) = 1. Then there is an i-SSM Mi for γ
of size at most (4× |Γ |)2. In fact, Mi can be chosen such that for some Ui ⊆ Wi

with |Ui| ≤ 4 × |Γ |

Mi = {(λu, λv) : u, v ∈ Ui, (∃u′ ∈ Wi)(∃v′ ∈ Wi)u ≡ u′ & v ≡ v′ & u′ <i v
′}

where w ≡ w′ iff λw = λw′ .

Proof. For every w,w′ ∈ Wi, we let w ≡ w′ iff λw = λw′ . Note that there are
finitely many equivalence classes, since Γ is finite. For every formula ϕ ∈ Γ ,
let Wi(ϕ) := {w ∈ Wi : λw(ϕ) = 1}. Let wϕ be a maximal element of Wi(ϕ)
(provided that Wi(ϕ) is not empty) in the following sense:

(∀w′ ∈ Wi(ϕ))(∃w′′ ∈ Wi(ϕ))w′ ≤i w
′′ & w′′ ≡ wϕ.

The existence of a maximal element can be easily shown. For every ϕ ∈ Γ choose
a maximal element wϕ from Wϕ. Similarly, for every ϕ ∈ Γ , choose a minimal
element wϕ from Wi(ϕ). Let

W−
i = {wϕ, wϕ : ϕ ∈ Γ}.

Note that |W−
i | ≤ 2 × |Γ |.

The problem with W−
i is that it may not contain “enough” points to cure

density defects. Indeed, consider the unique points in W−
i , i.e., those w ∈ W−

i

such that for every w′ �= w, λw �= λw′ . Note that the set X of unique points
can be linearly ordered: x1 <i x2 <i . . . <i xm. Now consider two unique points
xj , xj+1 ∈ W−

i such that there is no z ∈ Wi with xj <i z <i xj+1 in Wi and
z ≡ z′ ∈ W−

i for some z′. Then we would not be able to insert a point into the
mosaic (λxj , λxj+1).

So let us expand W−
i with the required witnesses for density defects. Take the

enumeration x0 <i x1 <i . . . <i xm of unique points. Since <i is a dense order,
there are infinitely many points in each open interval]xj , xj+1[= {x : xj <i x <i

xj+1}. Thus, we can choose a point s ∈]xj , xj+1[such that there are infinitely
many points t in]xj , xj+1[with λs = λt. Let us denote such a chosen s by sj for
every 0 ≤ j < m. Define Ui := W−

i ∪ {sj : 0 ≤ j < m}. Note that |Ui| ≤ 4 × |Γ |.
We claim that

Mi := {(λu, λv) : u, v ∈ Ui, (∃u′ ∈ Wi)(∃v′ ∈ Wi)u ≡ u′ & v ≡ v′ & u′ <i v
′}

is the required i-SSM. Clearly, |Mi| ≤ (4 × |Γ |)2. The elements of Mi are Gi-
and Hi-coherent because Wi is sound. The transfer (for i = 1) and uniformity
(for i = 2) conditions also hold, since Wi has the corresponding properties. Thus
every element of Mi is an i-mosaic. It remains to show the saturation conditions.

For the Fi-saturation—expansion requirement assume that (λu, λv) ∈ M and
λv(Fiϕ) = 1. Let v′ ∈ W such that v ≡ v′. Since λv′ (Fiϕ) = 1 and Wi is
Fi-complete, there is z ∈ Wi such that v′ <i z and

Lexicographic Products of Unbounded Dense Linear Orders 161

– λz(�2ϕ) = 1 in case i = 1,

– λz(ϕ) = 1 in case i = 2.

Let w be the maximal element in W1(�2ϕ) or W2(ϕ) (depending on the value of
i) that we put in Ui. By the maximality of w, there is z′ ∈ Wi such that z ≤i z

′

and z′ ≡ w. By this observation, we get that (λv, λw) ∈ Mi as required.
For the Fi-saturation—insertion requirement we work out only the case i = 2,

since the case i = 1 is completely analogous. So assume that (λu, λv) ∈ M2,
λu(F2ϕ) = 1 and λv(F2ϕ) = λv(ϕ) = 0. Let u′, v′ ∈ W2 such that u ≡ u′,
v ≡ v′ and u′ <2 v′. Since W2 is F2-complete, there is z ∈ W2 such that u′ <2 z
and λz(ϕ) = 1. Let w be the maximal element of W2(ϕ) that we put in U2.
Then there is z′ ∈ W2 such that z ≤2 z′ and z′ ≡ w. Hence (λu, λw) ∈ M2.
Furthermore, z′ <2 v′, since λv′(F2ϕ) = λv′(ϕ) = 0 and W2 is G2-sound. That
is, (λw, λv) ∈ M2 as well. Thus we can insert the appropriate mosaics into
(λu, λv).

Checking the saturation conditions for past formulas is completely analogous.
The No-endpoints requirement follows from the fact that (Wi, <i) is an un-
bounded linear order. Indeed, let (λu, λv) ∈ Mi and v′ ∈ Wi such that v ≡ v′.
Then there is w ∈ Wi such that v′ <i w and λw(�) = 1. Let w be the be the
maximal element of Wi(�). Then (λv, λw) ∈ Mi as required.

It remains to show the Density condition. Let (λu, λv) ∈ Mi be an arbitrary
mosaic and u′, v′ ∈ Wi such that u′ <i v′, u ≡ u′ and v ≡ v′. If either u′ or
v′ is not unique, then we can insert either (λu, λu) or (λv , λv) into (λu, λv). So
assume that both u′ and v′ are unique, say u′ = xj and v′ = xj+k. But we
defined sj ∈]xj , xj+1[in this case, and we have (λu, λsj) and (λsj , λv) in Mi.
Hence we can insert the required mosaics into (λu, λv) in this case as well.

Finally note that we chose a representative from the equivalence class Wi(γ),
hence Mi is indeed an i-SSM for γ. ��

We are ready to state the reverse of Lemma 2. In the proof, we will apply
Lemma 3 in both the “vertical” and “horizontal” dimensions.

Lemma 4. If ξ is satisfiable, then there is a 1-SSS Σ1 for ξ of size polynomial
in terms of the size of ξ. In fact, the number of elements in Σ1 is bounded by
(4 × |Γ |)4.

Proof. Assume that ξ is satisfied in a model, say, M = ((T1, <1), (T2, <2), V) and
M,(s, t) |= ξ. We recall the definition of λ(p,q) from (1): for every (p, q) ∈ T1×T2,

λ(p,q)(γ) =

{
1 if M, (p, q) |= γ

0 otherwise

for every γ ∈ Γ . In particular, λ(s,t)(ξ) = 1.
For every p ∈ T1, consider Wp

2 = ({p} × T2,≺2, λ) (where (p, q) ≺2 (p, r)
iff q <2 r). Observe that (p, q) |= G1ϕ iff (p, r) |= G1ϕ (and (p, q) |= H1ϕ iff
(p, r) |= H1ϕ) for every q, r ∈ T2. Hence Wp

2 is a 2-consistent structure that

162 P. Balbiani and S. Mikulás

satisfies G1- and H1-uniformity. By applying Lemma 3 we get a 2-SSM Mp
2 for

ξ (and in fact for �2ξ) such that

Mp
2 = {(λ(p,q), λ(p,r)) : q, r ∈ Up

2 , (∃q′ ∈ T2)(∃r′ ∈ T2)q ≡ q′ & r ≡ r′ & q′ <2 r′}

where u ≡ v iff λ(p,u) = λ(p,v), and Up
2 ⊆ T2 such that |Up

2 | ≤ 4 × |Γ |.
Next we recall the definition λM for 2-mosaics M from (3):

λM (γ) :=

⎧⎪⎨⎪⎩
1 if μ(γ) = ν(γ) = 1 for every (μ, ν) ∈ M

0 if μ(γ) = ν(γ) = 0 for every (μ, ν) ∈ M

undefined otherwise

for every γ ∈ Γ . Note that λN (�2ξ) = 1 for N = M s
2 . We define λp := λN

with N = Mp
2 for every p ∈ T1. It is straightforward to verify that (T1, <1, λ)

is a 1-consistent structure that satisfies G- and H-transfer. Hence we can apply
Lemma 3. Thus there is a 1-SSM Σ1 for �2ξ such that

Σ1 = {(λp, λq) : p, q ∈ U1, (∃p′ ∈ T1)(∃q′ ∈ T1)p ≡ p′ & q ≡ q′ & p′ <1 q′}

where u ≡ v iff λu = λv and U1 ⊆ T1 such that |U1| ≤ 4×|Γ |. Since every Mp
2 is a

2-SSM, we get that (Mp
2 ,M

q
2) is indeed a 1-supermosaic for every (λp, λq) ∈ Σ1,

whence Σ1 is a 1-SSS for ξ.
Finally, let us compute an upper bound on the size of Σ1. Recall that |U1| ≤

4 × |Γ |, whence there are at most (4 × |Γ |)2 many 1-supermosaics in Σ1. The
size of the 1-supermosaics is also bounded by (4 × |Γ |)2, since |Up

2 | ≤ 4 × |Γ |.
Thus the size of Σ1 is bounded by (4 × |Γ |)4. ��

6 Complexity

We are ready to provide a complete decision procedure in nondeterministic poly-
nomial time for the satisfiability problem of the temporal logic of the lexico-
graphic products of unbounded dense linear orders.

Theorem 1. The satisfiability problem with respect to (Cud, Cud) is decidable in
nondeterministic polynomial time.

Proof. Given a formula ξ, let us proceed as follows.

1. Compute the least full domain Γ of formulas containing ξ; recall that |Γ | ≤
14 × (2 × |ξ| + 10) + 2.

2. nondeterministically choose a collection Σ1 of 1-mosaics consisting of 2-
mosaics of cardinality bounded by (4 × |Γ |)4 ≤ (4 × 14× (2 × |ξ| + 10) + 2)4.

3. Check whether Σ is indeed a 1-SSS for ξ.

By Lemma 2 and 4 the above decision procedure is complete. ��
Recall that in Lemma 2 we constructed a model (Q,Q, V) for ξ based on the

rationals from a 1-SSS for ξ, the existence of which is equivalent to satisfiability
of ξ by Lemma 4. Thus we have the following.

Theorem 2. The logic of (Cud, Cud) coincides with the logic of the lexicographic
product (Q,Q) of the rationals with the standard ordering.

Lexicographic Products of Unbounded Dense Linear Orders 163

7 Conclusion

Temporal logics in which one can assign a proper meaning to the association
of statements about different grained temporal domains have been considered.
See [8, 12, 18] for details. Nevertheless, it seems that the results concerning
the issues of axiomatization/completeness and decidability/complexity presented
in [3] and in this paper constitute the first steps towards a temporal logic based
on different levels of abstraction. Much remains to be done.

For example, one may consider the lexicographic products of special linear
flows of time like Z, Q and R. Concerning the issues of axiomatization and com-
pleteness, could transfer results for completeness similar to the ones obtained
by Kracht and Wolter [13] within the context of independently axiomatizable
bimodal logics be obtained in our lexicographic setting? Concerning the issues
of decidability and complexity, all normal extensions of S4.3, as proved in [6, 9],
possess the finite model property and all finitely axiomatizable normal exten-
sions of K4.3, as proved in [23], are decidable. Moreover, it follows from [15]
that actually all finitely axiomatizable temporal logics of linear time flows are
CoNP -complete. Is it possible to obtain similar results in our lexicographic set-
ting? Or could undecidability results similar to the ones obtained by Reynolds
and Zakharyaschev [21] within the context of the products of the modal logics
determined by arbitrarily long linear orders be obtained in our lexicographic
setting?

There is also the question of associating with <1 and <2 the until-like connec-
tives U1 and U2 and the since-like connectives S1 and S2, the formulas ϕU1ψ,
ϕU2ψ, ϕS1ψ and ϕS2ψ being read as one reads the formulas ϕUψ and ϕSψ
in classical temporal logic, this time with <1 and <2. As yet, nothing has
been done concerning the issues of axiomatization/completeness and decidabil-
ity/complexity these new temporal connectives give rise to.

References

1. Balbiani, P.: Time representation and temporal reasoning from the perspective of
non-standard analysis. In: Brewka, G., Lang, J. (eds.) Eleventh International Con-
ference on Principles of Knowledge Representation and Reasoning, pp. 695–704.
AAAI (2008)

2. Balbiani, P.: Axiomatization and completeness of lexicographic products of modal
logics. In: Ghilardi, S., Sebastiani, R. (eds.) FroCoS 2009. LNCS, vol. 5749,
pp. 165–180. Springer, Heidelberg (2009)

3. Balbiani, P.: Axiomatizing the temporal logic defined over the class of all lexico-
graphic products of dense linear orders without endpoints. In: Markey, N., Wijsen,
J. (eds.) Temporal Representation and Reasoning, pp. 19–26. IEEE (2010)

4. Van Benthem, J.: The Logic of Time. Kluwer (1991)
5. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge University Press

(2001)
6. Bull, R.: That all normal extensions of S4.3 have the finite model property.

Zeitschrift für mathematische Logik und Grundlagen der Mathematik 12, 314–344
(1966)

164 P. Balbiani and S. Mikulás

7. Caleiro, C., Viganò, L., Volpe, M.: On the mosaic method for many-dimensional
modal logics: a case study combining tense and modal operators. Logica Univer-
salis 7, 33–69 (2013)

8. Euzenat, J., Montanari, A.: Time granularity. In: Fisher, M., Gabbay, D., Vila,
L. (eds.) Handbook of Temporal Reasoning in Artificial Intelligence, pp. 59–118.
Elsevier (2005)

9. Fine, K.: The logics containing S4.3. Zeitschrift für Mathematische Logik und
Grundlagen der Mathematik 17, 371–376 (1971)

10. Gabbay, D., Kurucz, A., Wolter, F., Zakharyaschev, M.: Many-Dimensional Modal
Logics: Theory and Applications. Elsevier (2003)

11. Gabbay, D., Shehtman, V.: Products of modal logics, part 1. Logic Journal of the
IGPL 6, 73–146 (1998)

12. Gagné, J.-R., Plaice, J.: A nonstandard temporal deductive database system. Jour-
nal of Symbolic Computation 22, 649–664 (1996)

13. Kracht, M., Wolter, F.: Properties of independently axiomatizable bimodal logics.
Journal of Symbolic Logic 56, 1469–1485 (1991)

14. Kurucz, A.: Combining modal logics. In: Blackburn, P., van Benthem, J., Wolter,
F. (eds.) Handbook of Modal Logic, pp. 869–924. Elsevier (2007)

15. Litak, T., Wolter, F.: All finitely axiomatizable tense logics of linear time flows are
CoNP -complete. Studia Logica 81, 153–165 (2005)

16. Marx, M., Mikulás, S., Reynolds, M.: The mosaic method for temporal logics.
In: Dyckhoff, R. (ed.) TABLEAUX 2000. LNCS (LNAI), vol. 1847, pp. 324–340.
Springer, Heidelberg (2000)

17. Marx, M., Venema, Y.: Local variations on a loose theme: modal logic and de-
cidability. In: Grädel, E., Kolaitis, P., Libkin, L., Marx, M., Spencer, J., Vardi,
M., Venema, Y., Weinstein, S. (eds.) Finite Model Theory and its Applications,
pp. 371–429. Springer (2007)

18. Nakamura, K., Fusaoka, A.: Reasoning about hybrid systems based on a nonstan-
dard model. In: Orgun, M.A., Thornton, J. (eds.) AI 2007. LNCS (LNAI), vol. 4830,
pp. 749–754. Springer, Heidelberg (2007)

19. Németi, I.: Decidable versions of first order logic and cylindric-relativized set al-
gebras. In: Csirmaz, L., Gabbay, D., de Rijke, M. (eds.) Logic Colloquium 1992,
pp. 171–241. CSLI Publications (1995)

20. Reynolds, M.: A decidable temporal logic of parallelism. Notre Dame Journal of
Formal Logic 38, 419–436 (1997)

21. Reynolds, M., Zakharyaschev, M.: On the products of linear modal logics. Journal
of Logic and Compution 11, 909–931 (2001)

22. Wolter, F.: Fusions of modal logics revisited. In: Kracht, M., de Rijke, M., Wans-
ing, H., Zakharyaschev, M. (eds.) Advances in Modal Logic, pp. 361–379. CSLI
Publications (1998)

23. Zakharyaschev, M., Alekseev, A.: All finitely axiomatizable normal extensions of
K4.3 are decidable. Mathematical Logic Quarterly 41, 15–23 (1995)

Temporal Query Answering in the Description
Logic DL-Lite∗

Stefan Borgwardt, Marcel Lippmann, and Veronika Thost

Theoretical Computer Science, TU Dresden, Germany
{stefborg,lippmann,thost}@tcs.inf.tu-dresden.de

Abstract. Ontology-based data access (OBDA) generalizes query an-
swering in relational databases. It allows to query a database by using
the language of an ontology, abstracting from the actual relations of the
database. For ontologies formulated in Description Logics of the DL-Lite
family, OBDA can be realized by rewriting the query into a classical
first-order query, e.g. an SQL query, by compiling the information of
the ontology into the query. The query is then answered using classical
database techniques.

In this paper, we consider a temporal version of OBDA. We pro-
pose a temporal query language that combines a linear temporal logic
with queries over DL-Litecore-ontologies. This language is well-suited
to express temporal properties of dynamical systems and is useful in
context-aware applications that need to detect specific situations. Using a
first-order rewriting approach, we transform our temporal queries into
queries over a temporal database. We then present three approaches
to answering the resulting queries, all having different advantages and
drawbacks.

1 Introduction

Context-aware applications try to detect specific situations within a changing
environment (e.g. a computer system or air traffic observed by radar) to be able
to react accordingly. To gain information, the environment is observed by sensors
(for a computer system, data about its resources is gathered by the operating
system), and the results of sensing are stored in a database. A context-aware
application then detects specific predefined situations based on this data (e.g. a
high system load) and reacts accordingly (e.g. by increasing the CPU frequency).

In a simple setting, such an application can be realized by using standard
database techniques: the sensor information is stored in a database, and the
situations to be recognized are specified as database queries [1]. In general, we
cannot assume, however, that the sensors provide a complete description of the
current state of the environment. For example, a sensor for certain information
might not be available for a moment or not even exist. Thus, the closed world
assumption employed by database systems (i.e. facts not present in the database
are assumed to be false) is not appropriate since there may be facts of which it
is unknown whether they hold or not.
∗ Partially supported by DFG SFB 912 (HAEC) and GRK 1763 (QuantLA).

P. Fontaine, C. Ringeissen, and R.A. Schmidt (Eds.): FroCoS 2013, LNAI 8152, pp. 165–180, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

{stefborg,lippmann,thost}@tcs.inf.tu-dresden.de

166 S. Borgwardt, M. Lippmann, and V. Thost

In addition, though a complete specification of the environment usually does
not exist, often some knowledge about its behavior is available. This knowledge
can be used to formulate constraints on the interpretation of the predicates used
in the queries, to detect more complex situations. In ontology-based data access
(OBDA) [10], domain knowledge is encoded in ontologies using a Description
Logic (DL). In this paper, we consider logics of the DL-Lite family, which are
light-weight DLs with a low complexity for many reasoning problems [10]. This
low complexity is due to the fact that reasoning problems in DL-Lite can often
be reduced to answering a first-order query over a relational database.

In order to recognize situations that evolve over time, we propose to add a
temporal logical component to the queries. We use the operators of the temporal
logic LTL, which allows to reason about a linear and discrete flow of time [20].
Usual temporal operators include next (�φ), which asserts that a property φ is
true at the next point in time, eventually (�φ), which asks for φ to be satisfied
at some point in the future, and always (�φ), which forces φ to be true at all
time points in the future. We also use the corresponding past operators �−, �−,
and �−.

Consider, for example, a collection of servers providing several services. An
important task is to migrate services between servers to balance the load. To
decide when to migrate, we want to detect certain critical situations. We consider
a process to be critical if it has an increasing workload, and at the same time the
server it is running on is almost overloaded. Suppose that we want to detect those
processes and servers that were in a critical situation at least twice within the
past ten time units. This can be expressed by the query �−10(�(Critical(x, y) ∧��Critical(x, y))), where

Critical(x, y) := Server(x) ∧ Process(y) ∧ executes(x, y) ∧ Running(y) ∧
IncreasingWorkload(y) ∧ AlmostOverloaded(x).

In this example, it is essential that future and past operators can be nested arbi-
trarily. One might argue that, as we are looking at the time line from the point
of view of the current time point, and nothing is known about the future, it is
sufficient to have only past operators. We will even show that in our setting it
is indeed always possible to construct an equivalent query using only past oper-
ators. However, the resulting query is not very concise and it is not easy to see
the situation that is to be recognized. Indeed, for propositional LTL eliminating
the past operators from a query results in a blowup that is at least exponential
and no constructions of size less than triply exponential are known [18].

Temporal extensions of DL-Lite [11] have been considered in the context of
conceptual modeling [2,3,4], where the focus lies on checking concept satisfi-
ability instead of query answering. Investigations of temporalized OBDA, the
second major use case of DL-Lite, with temporal query answering as the most
important reasoning problem [10], have started only quite recently. In [16], a
framework is developed that combines conjunctive queries in an arbitrary DL
and the temporal logic LTL. The algorithm for query answering in this setting
is an LTL-satisfiability test using a sub-procedure to answer (atemporal) CQs.

Temporal Query Answering in the Description Logic DL-Lite 167

In [6], a similar query language, a combination of LTL and CQs over the DL ALC,
is proposed. In contrast to [16], its temporal component is allowed to influence
the DL queries via the notion of rigid names, which are names whose interpreta-
tion does not change over time. The complexity increases depending on whether
only rigid concept names or also rigid role names are allowed. Additionally, the
latter paper also studies the so-called data complexity, where the complexity is
measured only w.r.t. the size of the sensor data, i.e. the observations, but not
w.r.t. the size of the query or the ontology. Another recent paper [5] examines
temporal query answering in an extension of DL-Lite in which linear tempo-
ral operators are allowed to occur inside DL concepts, and proves first-order
rewritability for query answering in this logic.

In this paper, we follow an approach suggested in [16] to combine the first-
order rewriting techniques for atemporal query answering in logics of the DL-Lite
family with a temporal component. The main idea is to use optimized database
techniques to answer the actual queries. However, the existing techniques for
answering temporal queries over temporal databases do not perfectly suit our
purposes. In [14], the authors describe a temporal extension of the SQL query
language that can answer temporal queries over a complete temporal database.
However, in our setting the database containing all previous observations may
grow huge very fast, but not all past observations are relevant for a particular
query. In [13], an approach is described that reduces the amount of space needed;
but the query language considered there allows only for past operators. In ad-
dition to describing how these approaches can be applied to our problem, we
propose a new algorithm that extends the one from [13] and can also deal with
future operators. All three approaches have different advantages and drawbacks.

Additionally, we show how the new algorithm can be extended to deal with
rigid concept names for a specific subclass of queries. Unfortunately, there seems
to be no simple way to adapt the algorithm to deal with rigid role names.

This paper is an extension of the recently appeared workshop paper [8]. The
formal proofs of our results can be found in the technical report [9].

2 Preliminaries

We first describe the DL component, and then the temporal component of our
query language. The DL-Lite family consists of various DLs that are tailored
towards conceptual modeling and allow to realize query answering using classical
database techniques. We only consider DL-Litecore as a prototypical example.

Definition 1. Let NC, NR, and NI be non-empty, pairwise disjoint sets of con-
cept, role, and individual names, respectively. A role expression is either a role
name P1 ∈ NR or an inverse role P −

2 with P2 ∈ NR. A basic concept is of the
form A or ∃R, where A ∈ NC and R is a role expression. A general concept is
of the form B or ¬B, where B is a basic concept.

A concept inclusion is of the form B � C, where B is a basic concept and C
is a general concept. An assertion is of the form A(a) or P (a, b), where A ∈ NC,

168 S. Borgwardt, M. Lippmann, and V. Thost

P ∈ NR, and a, b ∈ NI. A TBox (or ontology) is a finite set of concept inclusions,
and an ABox is finite set of assertions.

The semantics of DL-Litecore is defined through the notion of an interpretation.

Definition 2. An interpretation is a pair I = (ΔI , ·I), where ΔI is a non-
empty set (called domain) and ·I is a function that assigns to every A ∈ NC
a set AI ⊆ ΔI , to every P ∈ NR a binary relation P I ⊆ ΔI × ΔI , and to
every a ∈ NI an element aI ∈ ΔI . This function is extended to role expressions,
basic concepts, and general concepts as follows: (P −)I := {(e, d) | (d, e) ∈ P I},
(∃R)I := {d | there is an e ∈ ΔI such that (d, e) ∈ RI}, and (¬C)I := ΔI \CI.

I is a model of B � C if BI ⊆ CI, of A(a) if aI ∈ AI, and of P (a, b) if
(aI , bI) ∈ P I . We write I |= T if I is a model of all concept inclusions in the
TBox T , and I |= A if I is a model of all assertions in the ABox A. An ABox
A is consistent (w.r.t. a TBox T) if there is an I with I |= A and I |= T .

We assume that all interpretations I satisfy the unique name assumption (UNA),
i.e. for all a, b ∈ NI with a �= b, we have aI �= bI .

We now introduce the notion of temporal knowledge bases. Intuitively, they
contain sensor data (ABoxes) for all previous time points, and a global TBox.

Definition 3. A temporal knowledge base (TKB) K = 〈(Ai)0≤i≤n, T 〉 consists
of a finite sequence of ABoxes Ai and a TBox T , where the ABoxes Ai can only
contain concept names that also occur in T . Let I = (Ii)0≤i≤n be a sequence
of interpretations Ii = (Δ, ·Ii) over a fixed non-empty domain Δ. Then I is a
model of K (written I |= K) if Ii |= Ai and Ii |= T for all i, 0 ≤ i ≤ n.

Similar to what was done in [6,16], our temporal query language is based on con-
junctive queries [1,12]. The main difference is that we do not allow for negation,
as in DL-Lite arbitrary negation is disallowed. In contrast to [5], we also do not
allow temporal operators inside concepts. These restrictions allow us to apply
first-order rewritability of (atemporal) conjunctive queries in a black-box fashion
to obtain a similar result for our temporal query language (see Section 3).

Definition 4. Let NV be a set of variables. A conjunctive query (CQ) is of the
form φ = ∃y1, . . . , ym.ψ, where y1, . . . , ym ∈ NV and ψ is a (possibly empty)
finite conjunction of atoms of the form A(z) for A ∈ NC and z ∈ NV ∪ NI
(concept atom); or r(z1, z2) for r ∈ NR and z1, z2 ∈ NV ∪ NI (role atom). The
empty conjunction is denoted by true.

Temporal conjunctive queries (TCQs) are built from CQs as follows: each
CQ is a TCQ, and if φ1 and φ2 are TCQs, then so are φ1 ∧ φ2 (conjunction),
φ1 ∨ φ2 (disjunction), �φ1 (strong next), •φ1 (weak next), �−φ1 (strong previ-
ous), •−φ1 (weak previous), φ1 U φ2 (until), and φ1 S φ2 (since).

The symbols �−, •−, and S are called past operators, the symbols �, • , and
U are future operators. All results also hold in the presence of the additional
temporal operators � (always), �− (always in the past), � (eventually), and�− (some time in the past) [9], but we omit them here for space reasons.

Temporal Query Answering in the Description Logic DL-Lite 169

We denote the set of individuals occurring in a TCQ φ by Ind(φ), the set of
variables occurring in φ by Var(φ), the set of free variables in φ by FVar(φ), and
the set of atoms occurring in φ by At(φ). A TCQ φ is called Boolean if FVar(φ) =
∅. We further denote by Sub(φ) the set of all TCQs occurring as subqueries in
φ (including φ itself). A union of conjunctive queries (UCQ) is a disjunction of
CQs. For our purposes, it is sufficient to define the semantics for Boolean CQs
and TCQs. As usual, it is given using the notion of a homomorphism [12].
Definition 5. Let I = (Δ, ·I) be an interpretation and ψ be a Boolean CQ. A
mapping π : Var(ψ) ∪ NI → Δ is a homomorphism of ψ into I if π(a) = aI for
all a ∈ NI, π(z) ∈ AI for all concept atoms A(z) in ψ, and (π(z1), π(z2)) ∈ rI

for all role atoms r(z1, z2) in ψ. We say that I is a model of ψ (written I |= ψ)
if there is such a homomorphism.

Let now φ be a Boolean TCQ. For a sequence of interpretations I = (Ii)0≤i≤n

and i with 0 ≤ i ≤ n, we define I, i |= φ by induction on the structure of φ:

I, i |= ∃y1, . . . , ym.ψ iff Ii |= ∃y1, . . . , ym.ψ
I, i |= φ1 ∧ φ2 iff I, i |= φ1 and I, i |= φ2
I, i |= φ1 ∨ φ2 iff I, i |= φ1 or I, i |= φ2
I, i |= �φ1 iff i < n and I, i + 1 |= φ1
I, i |= •φ1 iff i < n implies I, i + 1 |= φ1
I, i |= �−φ1 iff i > 0 and I, i − 1 |= φ1
I, i |= •−φ1 iff i > 0 implies I, i − 1 |= φ1
I, i |= φ1 U φ2 iff there is some k, i ≤ k ≤ n such that I, k |= φ2

and I, j |= φ1 for all j, i ≤ j < k
I, i |= φ1 S φ2 iff there is some k, 0 ≤ k ≤ i such that I, k |= φ2

and I, j |= φ1 for all j, k < j ≤ i.
Here we assume that there is no time point before 0 or after n, similar to the
temporal semantics used for LTL in [23] or for temporal query languages for
databases [13,17,21]. As in classical LTL, one can show that φ1 S φ2 is equivalent
to φ2 ∨ (φ1 ∧ �−(φ1 S φ2)), and a similar equivalence holds for U.

We are now ready to introduce the central reasoning problem of this paper,
namely to find certain answers to TCQs.
Definition 6. Let φ be a TCQ, I = (Ii)0≤i≤n a sequence of interpretations,
and i ≥ 0. The mapping a : FVar(φ) → NI is an answer to φ w.r.t. I at time
point i if I, i |= a(φ), where a(φ) denotes the Boolean TCQ that is obtained from
φ by replacing the free variables according to a. Let further K = 〈(Ai)0≤i≤n, T 〉
be a TKB. A mapping a : FVar(φ) → NI is a certain answer to φ w.r.t. K at time
point i if for every J |= K, we have J, i |= a(φ).
The set of all answers to φ w.r.t. I at time point i is denoted by Ans(φ, I, i), and
the set of all certain answers to φ w.r.t. K is denoted by Cert(φ, K, i). Recall that
our main interest lies in finding answers to queries at the current time point, i.e.
computing the sets Ans(φ, I) := Ans(φ, I, n) or Cert(φ, K) := Cert(φ, K, n).

We will sometimes use the abbreviation false := A(x)∧A′(x), where A, A′ are
new concept names for which we assume that the concept inclusion A � ¬A′ is
contained in the global TBox T .

170 S. Borgwardt, M. Lippmann, and V. Thost

3 Answering Temporal Conjunctive Queries

For computing the set of certain answers for a conjunctive query, the rewrit-
ing approach [10] can be employed. It compiles the information contained in
the TBox into the query and evaluates the query w.r.t. the ABox (viewed as
database) using classical database techniques. A similar approach is possible for
TCQs.

Definition 7. For an ABox A, the interpretation DB(A) := (NI, ·DB(A)) is de-
fined as follows:

– aDB(A) := a for all a ∈ NI;
– ADB(A) := {a | A(a) ∈ A} for all A ∈ NC; and
– P DB(A) := {(a, b) | P (a, b) ∈ A} for all P ∈ NR.

As shown in [10], this interpretation is the smallest model of A. In order to
employ database techniques, we must assume DB(A), and thus NI, to be finite.

Proposition 8 ([10]). Let ψ be a CQ, A be an ABox, and T be a TBox. There
is a canonical model IA,T of A and T and a UCQ ψT such that

Cert(ψ, 〈A, T 〉) = Ans(ψ, IA,T) = Ans(ψT , DB(A)).

We now use this proposition to show a similar result for TCQs. Let φ be a TCQ
and K = 〈(Ai)0≤i≤n, T 〉 be a TKB. The TCQ φT is obtained by replacing each
CQ ψ occurring in φ by ψT . Note that φT is again a TCQ since ψT is always a
UCQ. Let furthermore IK := (IAi,T)0≤i≤n and DB(K) := (DB(Ai))0≤i≤n. The
following theorem can be shown by a straightforward induction on the structure
of φ.

Theorem 9. For every TCQ φ, TKB K = 〈(Ai)0≤i≤n, T 〉, and i ≥ 0, we have
Cert(φ, K, i) = Ans(φ, IK, i) = Ans(φT , DB(K), i).

More importantly, for every TCQ φ and TKB K = 〈(Ai)0≤i≤n, T 〉, it holds
that Cert(φ, K) = Ans(φT , DB(K)). It thus remains to show how to compute the
set Ans(φ, I) for a TCQ φ and a sequence I = (Ii)0≤i≤n of interpretations
over a finite domain. A first possibility is to view I as a temporal database
and rewrite φ into an ATSQL query [14]. However, since our goal is to monitor
processes that produce new data in very short time intervals, storing all the data
for all previous time points is not feasible. Therefore, we describe two different
approaches that reduce the amount of space necessary to compute Ans(φ, I).
Since we are interested in the answers at the last time point, the idea is to keep
only the past information necessary to answer the query φ.

In the first approach (Section 4), we rewrite φ into a TCQ φ′ without fu-
ture operators, employing a construction described in [15]. We then compute
Ans(φ′, I) using an algorithm described in [13,22] that uses a so-called bounded
history encoding, which means that the space required by the algorithm is con-
stant w.r.t. the number n of previous time points. Only the current state of the
database and some auxiliary relations have to be stored.

Temporal Query Answering in the Description Logic DL-Lite 171

In Section 5, we generalize the algorithm from [13] to directly deal with the
future operators. The main difference is that we do not consider negation or
arbitrary first-order queries. Unfortunately, the space required by this algorithm
is in general exponential in n and thus does not constitute a bounded history
encoding in the sense of [13,22]. However, it allows us to circumvent the non-
elementary blow-up of the formula resulting from the reduction in [15].

4 Eliminating Future Operators

To rewrite a TCQ φ into an equivalent TCQ that does not contain future opera-
tors, we employ the separation theorem for propositional LTL [15]. We describe
here only the general idea, details can be found in the technical report [9].

The separation theorem cannot be applied directly since our temporal se-
mantics differs from that in [15]: the only temporal operators in [15] are strict
versions of U and S, and the semantics is defined w.r.t. bounded past and un-
bounded future. To apply this theorem, we replace the CQs in φ by propositional
variables, rewrite U and S into their restrict counterparts, and use an additional
propositional variable to delimit the time interval from 0 to n.

We can then apply the separation theorem to the resulting LTL-formula ̂φ.
We obtain an equivalent LTL-formula ̂φ′ with negation which is a Boolean com-
bination of temporal subformulae that either contain only strict S operators or
only strict U operators. In this construction, subformulae of ̂φ are copied and
rearranged, but no additional propositional variables are introduced.

Since we are interested in evaluating φ at n, we can replace all variables
in ̂φ′ that are in the scope of a strict U by false. The reason for this is that
such variables are only evaluated at time points after n, where all variables are
false. The resulting formula is then simplified to eliminate all strict U operators,
and then translated back into a Boolean TCQ φ′ by replacing the propositional
variables by the corresponding CQs. Note that φ′ contains no future operators.

We then apply the algorithm described in [13] to iteratively compute the an-
swers to φ′ at each time point.1 The main advantage of this approach is that
we can compute this set iteratively and such that the required memory is inde-
pendent of the length of the sequence I. More formally, let I = (Ii)i≥0 be an
infinite sequence of interpretations representing the observations over all time
points. In our setting, these interpretations are generated from an infinite se-
quence of ABoxes that represent the observed sensor data using the construc-
tion of Section 3. At each time point i ≥ 0, we only have access to the finite
prefix I(i) := (Ij)0≤j≤i of I of length i + 1. Let Δ be the shared domain of the
interpretations in I.

The algorithm from [13] works on φ′ as follows. On input I0, it computes a
first-order interpretation I′

0 of several auxiliary predicates. Intuitively, for each
subformula ψ of φ′ beginning with a past operator, the algorithm stores the
answers Ans(ψ, I(0)) ⊆ ΔFVar(ψ) for ψ in a new relation A

I′
0

ψ of arity |FVar(ψ)|.
1 Before we can use the algorithm presented in [13], we need another rewriting step

since in that paper the semantics of S is slightly different (see [9] for details).

172 S. Borgwardt, M. Lippmann, and V. Thost

The set Ans(φ′, I(0)) can then easily be computed from I0 and I ′
0. Afterwards,

the algorithm disregards I0 and keeps only the information computed in I ′
0.

On input I1, it then updates I ′
0 to a new interpretation I ′

1, which allows it to
compute Ans(φ′, I(1)), and so on.

The memory requirements of this algorithm are bounded polynomially in the
size of Δ, in the number of concept and role names, and in the number of past
operators occurring in φ′, and exponentially in the number of free variables
occurring below past operators. However, the memory requirements do not de-
pend on the length of the sequence of interpretations seen so far. This is called
a bounded history encoding in [13].

Overall, the presented approach has, however, several drawbacks. First, the
rewritings from φ to ̂φ and from ̂φ′ to φ′ may duplicate subformulae, which can
cause exponential blowups in the size of φ. This could be avoided by applying a
reduction similar to the one for propositional LTL in [15] directly to φ. However,
since the reduction in [15] is already non-elementary in the size of the formula,
this is not much more efficient. Hence, the presented approach is best suited for
answering simple, small queries φ over large databases.

5 A New Algorithm

In this section, we present an algorithm that computes the set Ans(φ, I) without
the need to eliminate the future operators beforehand, thereby avoiding the
non-elementary blowup of the construction described in the previous section.
However, the memory requirements of this new algorithm are not independent
of the number of previous time points. From now on, let φ be a fixed TCQ and
I = (Ii)i≥0 be a fixed infinite sequence of interpretations over the same finite
domain Δ. For i ≥ 0, we denote by I(i) := (Ij)0≤j≤i the finite prefix of I of
length i + 1. Our algorithm iteratively computes the sets Ans(φ, I(i)). It uses as
data structure so-called answer formulae, which represent TCQs in which some
parts have already been evaluated. In particular, they do not contain CQs any
more, but sets of already computed answers to subqueries. Additionally, they
may contain variables (different from those in NV) that serve as place-holders
for subqueries that have to be evaluated at the next time point.

For ease of presentation, we assume in the following that NV is finite and that
answers are of the form a : NV → Δ instead of a : FVar(φ) → Δ. Thus, when we
talk about answers, we mean mappings a : NV → Δ, and in particular Ans(. . .)
refers to a set of such mappings, i.e. a subset of ΔNV .2

Definition 10. Let FSub(φ) denote the set of all subqueries of φ of the form
�ψ1, •ψ1, or ψ1 U ψ2. For j ≥ 0, we denote by Varφ

j the set of all variables of
the form xψ

j for ψ ∈ FSub(φ). The set AFi
φ of all answer formulae for φ at i ≥ 0

is the smallest set satisfying the following conditions:
2 In an implementation, one should restrict the intermediate computations of answers

for subqueries ψ to FVar(ψ). But then one has to be more careful when combining
answers to different subqueries.

Temporal Query Answering in the Description Logic DL-Lite 173

Table 1. Computing answer formulae for a TCQ

φ Φ0(φ) Φ0
i (φ)

CQ ψ1 Ans(ψ1, I(0)) Ans(ψ1, I(i))
ψ1 ∧ ψ2 Φ0(ψ1) ∩ Φ0(ψ2) Φ0

i (ψ1) ∩ Φ0
i (ψ2)

ψ1 ∨ ψ2 Φ0(ψ1) ∪ Φ0(ψ2) Φ0
i (ψ1) ∪ Φ0

i (ψ2)
�ψ1 x�ψ1

0 x�ψ1
i�−ψ1 ∅ Φi−1(ψ1)

•ψ1 x•ψ1
0 x•ψ1

i•−ψ1 ΔNV Φi−1(ψ1)
ψ1 U ψ2 Φ0(ψ2) ∪ (Φ0(ψ1) ∩ xψ1 U ψ2

0) Φ0(ψ2) ∪ (Φ0
i (ψ1) ∩ xψ1 U ψ2

i)
ψ1 S ψ2 Φ0(ψ2) Φ0

i (ψ2) ∪ (Φ0
i (ψ1) ∩ Φi−1(ψ1 S ψ2))

– Every set A ⊆ ΔNV is an answer formula for φ at i.
– Every xψ

j ∈ Varφ
j with j ≤ i is an answer formula for φ at i.

– If α1 and α2 are answer formulae for φ at i, then so are α1 ∩α2 and α1 ∪α2.

In order to evaluate these answer formulae, we introduce the notion of correct-
ness. Intuitively, an answer formula α for φ at i is correct for i if we obtain the
set Ans(φ, I(i)) by replacing the variables xψ

j in α by appropriate sets of answers
and evaluating ∩ and ∪ as set intersection and union, respectively.

Definition 11. We define the function evaln : AFn
φ → 2ΔNV , n ≥ 0, as follows:

– evaln(A) := A if A ⊆ ΔNV ;

– evaln(xψ
j) :=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

Ans(ψ1, I(n), j + 1) if j < n and ψ = �ψ1 or ψ = •ψ1;
Ans(ψ, I(n), j + 1) if j < n and ψ = ψ1 U ψ2;
∅ if j = n and ψ = �ψ1 or ψ = ψ1 U ψ2;
ΔNV if j = n and ψ = •ψ1;

– evaln(α1 ∩ α2) := evaln(α1) ∩ evaln(α2); and
– evaln(α1 ∪ α2) := evaln(α1) ∪ evaln(α2).

We say that a mapping Φ : Sub(φ) → AFi
φ is correct for i ≥ 0 if for all n ≥ i

and for all ψ ∈ Sub(φ), we have evaln(Φ(ψ)) = Ans(ψ, I(n), i).

In particular, if Φ : Sub(φ) → AFi
φ is correct for i, then evali(Φ(φ)) = Ans(φ, I(i)),

which is the set we want to compute. Note that xψ1 U ψ2
j is actually a place-

holder for �(ψ1 U ψ2) since we evaluate the U operator according to the recursive
equivalence ψ1 U ψ2 ≡ ψ2 ∨ (ψ1 ∧ �(ψ1 U ψ2)) (cf. Table 1).

The algorithm works as follows. It first computes a mapping Φ0 that is correct
for 0, which is used to compute the next mapping Φ1 when the interpretation I1
becomes available. This mapping is correct for 1 and can be used to compute the
next mapping Φ2, and so on. In each step, to compute Φi+1, we only need Φi and
the interpretation Ii+1. We recursively define the mapping Φ0 : Sub(φ) → AF0

φ

as shown in the second column of Table 1. Here, CQs are answered, e.g. by
evaluating them as first-order queries over the database I0 [1].

174 S. Borgwardt, M. Lippmann, and V. Thost

Table 2. An example computation

φ ψ1 ψ2 ψ1 S ψ2

Φ0(φ) xψ1
0 B0 ∪ (A0 ∩ xψ2

0) B0 ∪ (A0 ∩ xψ2
0)

Ans(φ, I(0)) ΔNV B0 B0

Φ0
1(φ) xψ1

1 B1 ∪ (A1 ∩ xψ2
1) Φ0

1(ψ2) ∪ (xψ1
1 ∩ (B0 ∪ (A0 ∩ xψ2

0)))
Φ1(φ) xψ1

1 B1 ∪ (A1 ∩ xψ2
1) Φ1(ψ2) ∪ (xψ1

1 ∩ (B0 ∪ (A0 ∩ Φ1(ψ2))))
≡ ((xψ1

1 ∩ B0) ∪ B1) ∪ (A1 ∩ xψ2
1)

Ans(φ, I(1)) ΔNV B1 B0 ∪ B1

Φ2(φ) xψ1
2 B2 ∪ (A2 ∩ xψ2

2) Φ2(ψ2) ∪ (xψ1
2 ∩ (((xψ1

1 ∩ B0) ∪ B1) ∪ (A1 ∩ xψ2
1)))

≡ ((xψ1
2 ∩ ((C1 ∩ B0) ∪ B1)) ∪ B2) ∪ (A1 ∩ xψ2

2)
Ans(φ, I(2)) ΔNV B2 (C1 ∩ B0) ∪ B1 ∪ B2

Assume now that Φi−1 : Sub(φ) → AFi−1
φ is a function containing only vari-

ables with index i − 1. We proceed as follows to construct a new function
that contains only variables with index i. We recursively define the mapping
Φ0

i : Sub(φ) → AFi
φ similarly to Φ0 as given in the third column of Table 1.

Example 12. Consider the TCQ ψ1 S ψ2 with two subqueries referring to the
future, ψ1 := •C(x) and ψ2 := A(x) U B(x), and let A0 := Ans(A(x), I(0)), and
similarly for the other CQs and time points. The answer formulae Φ0 and Φ0

1 are
listed in Table 2.

The difference to the definition of Φ0 is that the answer formulae for past oper-
ators are computed using the answer formulae for the previous time point. This
means that Φ0

i may still contain variables with index i−1. We now remove these
old variables by substituting them appropriately. For example, since x�ψ

i−1 is a
place-holder for the answers to ψ w.r.t. I(n) at i, we can now replace it by Φ0

i (ψ).
However, this formula may itself contain another old variable, and thus we have
to be careful about the order in which we do these substitutions. Since each
Φ0

i (ψ) can contain only variables that refer to subqueries of ψ, by replacing the
variables for “smaller” subqueries first, we ensure that all variables with index
i − 1 are eliminated. The details of this construction can be found in [9]. We
obtain a mapping Φi : Sub(φ) → AFi

φ that is correct for i.

Lemma 13. For each i ≥ 0, the mapping Φi is correct for i.

Example 14. Consider again the query ψ1 S ψ2 from Example 12. Since Φ0
1(ψ1)

and Φ0
1(ψ2) do not contain variables with index 0, the value of Φ1 is the same

as that of Φ0
1 for both of these subqueries. We only have to replace xψ2

0 within
Φ0

1(ψ1 S ψ2) by Φ1(ψ2) to obtain Φ1(ψ1 S ψ2) as listed in Table 2. To obtain the
answers at time point 1, we can now replace the remaining variables in according
to eval1, which yields Ans(ψ1 S ψ2, I(1)) = B0 ∪ B1.

Temporal Query Answering in the Description Logic DL-Lite 175

Consider now the algorithm, which, on input φ and I, computes the mappings Φi

as described above, and outputs evali(Φi(φ)) for each i ≥ 0. The following is a
trivial consequence of the correctness of these mappings.

Theorem 15. Given a TCQ φ and an infinite sequence I = (Ii)i≥0 of inter-
pretations, the algorithm outputs Ans(φ, I(i)) for each i ≥ 0.

It is easy to compute the sets evali(Φi(φ)) = Ans(φ, I(i)) for i ≥ 0 since each
of the variables xψ

i in Φi(φ) simply has to be replaced by either ∅ or ΔNV (see
Definition 11). However, as mentioned earlier, the size of the formula Φi(φ) may
depend exponentially on the length i of the current sequence of interpretations.

Example 16. Consider again the query ψ1 S ψ2 from Example 12. After replac-
ing xψ2

0 by Φ1(ψ2), the variable xψ2
1 occurs twice in Φ1(ψ1 S ψ2). In general,

Φi(ψ1 S ψ2) will contain 2i occurrences of the variable xψ2
i . However, applying

the associativity, commutativity, distributivity, and absorption laws for ∩ and ∪
does not affect the semantics of answer formulae (given by eval), and hence

Φ1(φ) = Φ1(ψ2) ∪ (xψ1
1 ∩ (B0 ∪ (A0 ∩ Φ1(ψ2))))

≡ Φ1(ψ2) ∪ (xψ1
1 ∩ B0) ∪ (xψ1

1 ∩ A0 ∩ Φ1(ψ2))
≡ Φ1(ψ2) ∪ (xψ1

1 ∩ B0)
= (B1 ∪ (A1 ∩ xψ2

1)) ∪ (xψ1
1 ∩ B0)

≡ ((xψ1
1 ∩ B0) ∪ B1) ∪ (A1 ∩ xψ2

1)

The resulting formula contains xψ2
1 only once. In general, the formula Φi(φ) is

equivalent to ((xψ1
i ∩ Di) ∪ Bi) ∪ (Ai ∩ xψ2

i), where D0 := ∅ and for i > 0, we
set Di+1 := (Ci+1 ∩ Di) ∪ Bi. Thus, the algorithm only has to store the sets
Ai, Bi, Di ⊆ ΔNV at each time point, i.e. we achieve a bounded history encoding
as in [13].

If the formula φ contains no future operators, then the answer formulae contain
no variables and can always be fully evaluated to a subset of ΔNV . In this special
case, our algorithm can be seen as a variant of the one from [13] for less expressive
queries. Example 16 demonstrates that it is important that the computed answer
formulae are simplified at each step, while preserving their semantics under eval.
However, this does not guarantee a bounded history encoding as in [13].

6 Rigid Names

We now extend our temporal query language by designating certain concept
names as being rigid, which means that their interpretation is not allowed to
change over time. This especially makes sense regarding our application. For
example, if the concept name Server describes the set of all severs, then it should
be rigid since an application scenario with a server that stops being a server
at some point in time would make no sense. The notion of rigidity has been
explored for other temporal formalisms before [6,7].

176 S. Borgwardt, M. Lippmann, and V. Thost

For this purpose, we assume in this section that there is a set NRC ⊆ NC of
rigid concept names. In this setting, a finite sequence I = (Ii)0≤i≤n can only be
a model of a TKB K if it fulfills the conditions of Definition 3 and additionally
respects the rigid concept names, i.e. it satisfies AIi = AIj for every rigid concept
name A and all indices i, j between 0 and n.

For the remainder of this section, we restrict the query language to only allow
so-called rooted CQs [19]. Intuitively, these are CQs that refer to at least one
named individual.

Definition 17. A CQ φ is called rooted if (i) it contains at least one free vari-
able or individual name, and (ii) it is connected, i.e. for all x, y ∈ Var(φ)∪Ind(φ)
there is a sequence x1, . . . , xn ∈ Var(φ) ∪ Ind(φ) such that x1 = x, xn = y, and
for all i, 1 ≤ i ≤ n, there is an r ∈ NR such that either r(xi, xi+1) ∈ At(φ) or
r(xi+1, xi) ∈ At(φ). A TCQ is rooted if it contains only rooted CQs.

This makes sense from an application point of view since one usually does not
ask if there is some object with certain properties, but actually wants to know
the names of all objects with these properties. This restriction is not without
loss of generality, but it is needed in the proof of Lemma 19. We have so far not
been able to treat non-rooted TCQs in the presence of rigid concept names.

If we take the approach mentioned in Section 3 of viewing the input ABoxes
as a temporal database and rewriting the TCQ into an ATSQL-query as in [14],
then the additional rigidity constraints can simply be enforced by triggers that
ensure that new knowledge about rigid names is added to the database at all
previous time points.

However, the presence of rigid names poses a bigger problem for the incre-
mental algorithm of [13] and that described in Section 5, both of which do not
retain the data for all previous time points. For example, if the ABox at the next
time point includes the assertion A(a), where A is rigid, then this retroactively
also changes the answers to the query A(x) at previous time points. But the
aforementioned algorithms assume that the answers at previous time points do
not change.

Before we consider how to modify the algorithms for temporal query answering
over databases, we have to show that we can still employ the rewriting approach
and answer atemporal queries over a TKB K by directly querying the database
DB(K). This means that we have to reconsider the proof of Theorem 9 regarding
the interpretation of rigid names. The main problem we have to solve is that the
sequence IK of canonical models does not necessarily respect the rigid concept
names. In the following, let K = 〈(Ai)i≥0, T 〉 be an infinite TKB. Similar to
Section 5, we denote by K(n) := 〈(Ai)0≤i≤n, T 〉 the finite prefix of K of length
n + 1. We show how to construct modified sequences of interpretations (similar
to IK(n) from Theorem 9) that respect rigid names.

The first step is to find a set R ⊆ {A(a) | A ∈ NRC, a ∈ NI} that specifies the
rigid concept names that the individual names are allowed to satisfy. Of course,
we have to ensure that the assertions in R are not contradicted by any of the
ABoxes Ai, i ≥ 0. We construct R iteratively, starting from R0 := ∅, as follows.
In each step, we add to Rj , j ≥ 0, all assertions A(a) with A ∈ NRC and a ∈ NI

Temporal Query Answering in the Description Logic DL-Lite 177

that are implied by Ai ∪Rj w.r.t. T for some i ≥ 0. This reasoning task is called
instance checking and can be done in polynomial time in DL-Litecore [10]. This
results in a new set Rj+1. We iterate this process until no new assertions are
added. Since there are only polynomially many assertions of the form A(a) as
above, this is possible in polynomial time. We denote by R the final set com-
puted by this procedure. The next lemma shows that, in order to answer TCQs
over K(n), we can equivalently consider the TKB K(n)

R := 〈(Ai ∪ R)0≤i≤n, T 〉.

Lemma 18. Let φ be a TCQ and K = 〈(Ai)i≥0, T 〉 be an infinite TKB. Then
there is a set R as above such that, for all i and n with 0 ≤ i ≤ n, we have

Cert(φ, K(n), i) = Cert(φ, K(n)
R , i).

Note that, if R is not consistent w.r.t. T , this means that the TKB K is not
consistent, i.e. there is no model of K that respects the rigid concept names.

Once we have computed R, we can construct the desired sequence of canonical
models that respects the rigid concept names, using an idea from [6]. We start
with the original sequence IK(n)

R
= (IAi∪R,T)0≤i≤n that was used in Theorem 9

(but now with K(n)
R instead of K(n)). It is important to note that these canonical

models, as constructed in [10], are all countable. We define the set D ⊆ 2NRC of
subsets of NRC that contains exactly the sets

ρ(IAi∪R,T , x) := {A ∈ NRC | x ∈ AIAi∪R,T }

for all i, 0 ≤ i ≤ n, and x ∈ ΔIAi∪R,T . We will now modify each IAi∪R,T into
a new interpretation Ii such that for each Y ∈ D there are countably infinitely
many individuals x ∈ ΔIi with Y = ρ(Ii, x).

To this end, consider i, n, 0 ≤ i ≤ n, and Y ∈ D. If IAi∪R,T does not
contain any such individual, then we first have to add one. Fortunately, from the
definition of D we know that there must be a j, 0 ≤ j ≤ n, and x ∈ ΔIAj ∪R,T

such that Y = ρ(IAj ∪R,T , x). To be on the safe side, we therefore construct
the disjoint union I ′

i of all interpretations in IK(n)
R

. More formally, the domain
of I ′

i is the disjoint union of the domains of IAj∪R,T , 0 ≤ j ≤ n. The concept
and role names are interpreted as the (disjoint!) union of the interpretations of
these names under all IAj∪R,T , while the individual names are interpreted as
in IAi∪R,T . Note that the components of I ′

i are not connected by any roles.
This implies in particular that any homomorphism of a rooted CQ into I′

i must
actually be a homomorphism into the original canonical model IAi∪R,T . This
fact is essential to prove Lemma 19 below (see [9] for details).

To ensure that there are even countably infinitely many such individuals, we
now define I ′′

i as the countably infinite disjoint union of I ′
i with itself, where

again the interpretation of the individual names remains unchanged. Finally, we
ensure that all models have the same domain Δ := NI ∪(D×N) and interpret the
individual names by the same domain elements by applying a bijection between
the domain of each I ′′

i and Δ. In particular, each aI′′
i for a ∈ NI is simply mapped

to a, and every other element x ∈ ΔI′′
i is mapped to some (ρ(I ′′

i , x), �) with � ∈ N.
We denote the resulting interpretation by Ii and define IK(n),R := (Ii)0≤i≤n.

178 S. Borgwardt, M. Lippmann, and V. Thost

Algorithm 1. Compute certain answers to a rooted TCQ w.r.t. rigid names
Input : A rooted TCQ φ and an infinite TKB K = 〈(Ai)i≥0, T 〉
Output : Cert(φ, K(i)) for each i ≥ 0
for R ∈ R do

initialize an instance AR of the algorithm of Section 5 with φT

end
for i ← 0, 1, . . . do

for R ∈ R do
run AR on input DB(Ai ∪ R) to compute Cert(φ, K(i)

R)
end
output

⋂

R∈Active

Cert(φ, K(i)
R)

end

Lemma 19. The sequence IK(n),R is a model of K(n)
R . Furthermore, for all

rooted CQs φ and every i, 0 ≤ i ≤ n, we have

Ans(φ, IK(n),R, i) = Ans(φ, IK(n)
R

, i).

We can now finally state the variant of Theorem 9 that can deal with rigid
concept names.

Theorem 20. Let φ be a rooted TCQ and K = 〈(Ai)i≥0, T 〉 be an infinite TKB.
Then there is a set R as above such that, for all i and n with 0 ≤ i ≤ n, we have

Cert(φ, K(n)
R , i) = Ans(φ, IK(n),R, i) = Ans(φT , DB(K(n)

R), i).

Note that DB(K(n)
R) is independent of the construction of IK(n),R, and we can

now simply apply the algorithm of Section 5 to the modified sequence of inter-
pretations DB(K(n)

R) instead of DB(K(n)). More formally, let R denote the set of
all sets R of the form described above. Algorithm 1 describes the steps necessary
to compute the certain answers to a TCQ in the presence of rigid names.

For each R ∈ R, we start an instance AR of the algorithm presented in
Section 5. All these instances are run in parallel, with the only difference between
them being that each instance has a fixed set R of assumptions about the rigid
names. In each step, every instance AR computes the certain answers to φ relative
to R, and the actual set of certain answers to φ is then computed by taking
the intersection over all these sets. Note that we could in each step terminate
those instances AR for which Ai ∪ R is inconsistent w.r.t. T since this implies
that K(i)

R has no models, and thus Cert(φ, K(i)
R) = ΔNV does not contribute to

the computation of the intersection in Algorithm 1. However, we leave out this
simple optimization to make the presentation of the algorithm clearer.

Theorem 21. Given a rooted TCQ φ and an infinite TKB K = 〈(Ai)i≥0, T 〉,
Algorithm 1 outputs Cert(φ, K(i)) for each i ≥ 0.

Temporal Query Answering in the Description Logic DL-Lite 179

We have thus extended the algorithm in Section 5—and by extension also the
algorithm described in [13]—to deal with rigid concept names in rooted TCQs.

7 Conclusions

We have introduced the reasoning task of temporal OBDA over DL-Lite knowl-
edge bases and shown how to reduce this task to answering queries over temporal
databases, similar to what was done for the atemporal case [10]. We then pre-
sented three approaches to solve the latter problem. The first involves storing
the whole history of the database and re-evaluating the query at each time point
using a temporal database query language like ATSQL [14].

The second approach works by eliminating the future operators and evaluating
the resulting query using the algorithm of [13], which achieves a bounded history
encoding. Although independent of the length of the history, this involves a non-
elementary blow-up in the size of the query. Then, we presented an algorithm
that works directly with the future operators. We showed that the algorithm
computes exactly the desired answers, but its space requirements are in general
not independent of the length of the history. In future work, we will try to
achieve a bounded history encoding for certain classes of TCQs, and compare
the performance of all three approaches on temporal databases.

Finally, we also described an approach to extend the proposed algorithm to
deal with rigid concept names if only rooted CQs are allowed. We plan to inves-
tigate how to adapt the algorithm to deal also with rigid role names.

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley
(1995)

2. Artale, A., Kontchakov, R., Ryzhikov, V., Zakharyaschev, M.: DL-Lite with tem-
poralised concepts, rigid axioms and roles. In: Ghilardi, S., Sebastiani, R. (eds.)
FroCoS 2009. LNCS, vol. 5749, pp. 133–148. Springer, Heidelberg (2009)

3. Artale, A., Kontchakov, R., Ryzhikov, V., Zakharyaschev, M.: Temporal conceptual
modelling with DL-Lite. In: Proc. of the 2010 Int. Workshop on Description Logics
(DL 2010). CEUR Workshop Proceedings, vol. 573. CEUR-WS.org (2010)

4. Artale, A., Kontchakov, R., Ryzhikov, V., Zakharyaschev, M.: A cookbook for
temporal conceptual data modelling with description logics. CoRR abs/1209.5571
(2012), http://arxiv.org/abs/1209.5571

5. Artale, A., Kontchakov, R., Wolter, F., Zakharyaschev, M.: Temporal description
logic for ontology-based data access. In: Proc. of the 23rd Int. Joint Conf. on
Artificial Intelligence (IJCAI 2013). AAAI Press (2013)

6. Baader, F., Borgwardt, S., Lippmann, M.: Temporalizing ontology-based data ac-
cess. In: Bonacina, M.P. (ed.) CADE 2013. LNCS, vol. 7898, pp. 330–344. Springer,
Heidelberg (2013)

7. Baader, F., Ghilardi, S., Lutz, C.: LTL over description logic axioms. ACM Trans-
actions on Computational Logic 13(3), 21:1–21:32 (2012)

http://arxiv.org/abs/1209.5571

180 S. Borgwardt, M. Lippmann, and V. Thost

8. Borgwardt, S., Lippmann, M., Thost, V.: Temporal query answering in DL-Lite. In:
Proc. of the 26th Int. Workshop on Description Logics (DL 2013). CEUR Workshop
Proceedings. CEUR-WS.org (2013)

9. Borgwardt, S., Lippmann, M., Thost, V.: Temporal query answering w.r.t. DL-Lite-
ontologies. LTCS-Report 13-05, Chair of Automata Theory, TU Dresden, Dresden,
Germany (2013), see, http://lat.inf.tu-dresden.de/research/reports.html

10. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Poggi, A.,
Rodriguez-Muro, M., Rosati, R.: Ontologies and databases: The DL-Lite approach.
In: Tessaris, S., Franconi, E., Eiter, T., Gutierrez, C., Handschuh, S., Rousset,
M.-C., Schmidt, R.A. (eds.) Reasoning Web 2009. LNCS, vol. 5689, pp. 255–356.
Springer, Heidelberg (2009)

11. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: DL-Lite:
Tractable description logics for ontologies. In: Proc. of the 20th Nat. Conf. on
Artificial Intelligence (AAAI 2005), pp. 602–607. AAAI Press (2005)

12. Chandra, A.K., Merlin, P.M.: Optimal implementation of conjunctive queries in
relational data bases. In: Hopcroft, J.E., Friedman, E.P., Harrison, M.A. (eds.)
Proc. of the 9th Annual ACM Symp. on Theory of Computing (STOC 1977), pp.
77–90. ACM Press (1977)

13. Chomicki, J.: Efficient checking of temporal integrity constraints using bounded
history encoding. ACM Transactions on Database Systems 20(2), 148–186 (1995)

14. Chomicki, J., Toman, D., Böhlen, M.H.: Querying ATSQL databases with temporal
logic. ACM Transactions on Database Systems 26(2), 145–178 (2001)

15. Gabbay, D.: The declarative past and imperative future. In: Banieqbal, B., Bar-
ringer, H., Pnueli, A. (eds.) Temporal Logic in Specification. LNCS, vol. 398, pp.
409–448. Springer, Heidelberg (1989)

16. Gutiérrez-Basulto, V., Klarman, S.: Towards a unifying approach to representing
and querying temporal data in description logics. In: Krötzsch, M., Straccia, U.
(eds.) RR 2012. LNCS, vol. 7497, pp. 90–105. Springer, Heidelberg (2012)

17. Hülsmann, K., Saake, G.: Theoretical foundations of handling large substitution
sets in temporal integrity monitoring. Acta Informatica 28(4), 365–407 (1991)

18. Laroussinie, F., Markey, N., Schnoebelen, P.: Temporal logic with forgettable past.
In: Proc. of the 17th Annual IEEE Symp. on Logic in Computer Science (LICS
2002), pp. 383–392. IEEE Press (2002)

19. Lutz, C.: The complexity of conjunctive query answering in expressive description
logics. In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS
(LNAI), vol. 5195, pp. 179–193. Springer, Heidelberg (2008)

20. Pnueli, A.: The temporal logic of programs. In: Proc. of the 18th Annual Symp.
on Foundations of Computer Science (SFCS 1977), pp. 46–57 (1977)

21. Saake, G., Lipeck, U.W.: Using finite-linear temporal logic for specifying database
dynamics. In: Börger, E., Büning, H.K., Richter, M.M. (eds.) CSL 1988. LNCS,
vol. 385, pp. 288–300. Springer, Heidelberg (1989)

22. Toman, D.: Logical data expiration. In: Chomicki, J., van der Meyden, R., Saake, G.
(eds.) Logics for Emerging Applications of Databases, ch. 6, pp. 203–238. Springer
(2004)

23. Wilke, T.: Classifying discrete temporal properties. In: Meinel, C., Tison, S. (eds.)
STACS 1999. LNCS, vol. 1563, pp. 32–46. Springer, Heidelberg (1999)

http://lat.inf.tu-dresden.de/research/reports.html

Verification of Golog Programs
over Description Logic Actions

Franz Baader and Benjamin Zarrieß�

Theoretical Computer Science, TU Dresden, Germany
{baader,zarriess}@tcs.inf.tu-dresden.de

Abstract. High-level action programming languages such as Golog have
successfully been used to model the behavior of autonomous agents. In
addition to a logic-based action formalism for describing the environment
and the effects of basic actions, they enable the construction of complex
actions using typical programming language constructs. To ensure that
the execution of such complex actions leads to the desired behavior of the
agent, one needs to specify the required properties in a formal way, and
then verify that these requirements are met by any execution of the pro-
gram. Due to the expressiveness of the action formalism underlying Golog
(Situation Calculus), the verification problem for Golog programs is in
general undecidable. Action formalisms based on Description Logic (DL)
try to achieve decidability of inference problems such as the projection
problem by restricting the expressiveness of the underlying base logic.
However, until now these formalisms have not been used within Golog
programs. In the present paper, we introduce a variant of Golog where
basic actions are defined using such a DL-based formalism, and show
that the verification problem for such programs is decidable. This im-
proves on our previous work on verifying properties of infinite sequences
of DL actions in that it considers (finite and infinite) sequences of DL
actions that correspond to (terminating and non-terminating) runs of a
Golog program rather than just infinite sequences accepted by a Büchi
automaton abstracting the program.

1 Introduction

Action programming languages like Golog [8,11] can be used to control the be-
havior of autonomous agents and mobile robots. In this setting, the program-
ming language provides the user with typical programming language constructs
such as loops and tests. These constructs can be used to build complex actions
from atomic ones. The semantics of the atomic actions and of the programming
language constructs is formally specified using an appropriate logical calculus
(Situation Calculus in the case of Golog). To ensure that a complex action spec-
ified in this way actually shows the desired behavior, one needs to specify the
required properties in a formal way, and then verify that these requirements are
met by any run of the program defining this action. In principle, this verification
� Supported by DFG Research Unit FOR 1513, project A1.

P. Fontaine, C. Ringeissen, and R.A. Schmidt (Eds.): FroCoS 2013, LNAI 8152, pp. 181–196, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

182 F. Baader and B. Zarrieß

problem boils down to a deduction problem in the underlying logical calculus,
but due to the expressiveness of the situation calculus, the deduction problem
is in general undecidable. For instance, the first work that aims at the fully
automated verification of (non-terminating) Golog programs [7] specifies prop-
erties in an extension of the situation calculus by constructs of the temporal
logic CTL∗. Similar to CTL∗ model checking, the approach tries to compute an
appropriate fixpoint, but in contrast to the case of model checking the fixpoint
iteration need not terminate. If it does terminates, then the proof that the de-
sired property holds is reduced to a deduction problem in the underlying logic
(i.e., situation calculus), which is in general not decidable.

In order to overcome the problems caused by an undecidable base logic, ac-
tion theories based on decidable Description Logics [2] have been proposed in the
literature [1,10,4]. The decidability and complexity results obtained in these pa-
pers were mainly concerned with the projection problem: given a finite sequence
of atomic actions and a (possibly incomplete) description of the initial world,
decide whether a certain property is guaranteed to hold after the execution of
this sequence. The papers differ w.r.t. what kind of domain constraints (i.e.,
constraints that are guaranteed to hold in every world) can be used. Whereas [1]
restricts the attention to acyclic TBoxes, the other two papers allow for general
TBoxes, i.e., finite sets of general concept inclusions (GCIs). In the presence of
GCIs, one has to deal with the so-called ramification problem, i.e., the fact that
the direct effects of an action may violate the domain constraints, and thus also
indirect effects need to be considered. Whereas the authors of [10] deal with this
problem by introducing so-called occlusions, the approach described in [4] uses
so-called causal relationships to specify indirect effects of actions.

The first attempt to extend the decidability results for projection in [1] to
the verification problem can be found in [5]. However, instead of examining the
actual execution sequences of a given Golog program, this approach considers in-
finite sequences of actions that are accepted by a given Büchi automaton B. If B
is an upper approximation of the program, i.e. all possible execution sequences of
the program are accepted by B, then any property that holds in all the sequences
accepted by B is also a property that is satisfied by any execution of the pro-
gram. As logic for specifying properties of infinite sequences of DL actions, the
approach uses the temporalized DL ALC-LTL [3], which extends the well-known
propositional linear temporal logic (LTL) [12] by allowing for the use of axioms
(i.e., TBox and ABox statements) of the basic DL ALC in place of propositional
letters.1 Recently, other restrictions on action theories based on the situation
calculus that guarantee decidability of the verification problem were considered
[9]. However, instead of considering execution sequences of programs, this work
looks at all possible infinite sequences of actions. For a more detailed discussion
of related work see [6].

In the present paper, we improve on the results in [5] in several respects. First,
instead of using Büchi automata to approximate programs, we directly consider

1 More precisely, [5] uses the extension of ALC-LTL to the more expressive DL ALCO,
but disallows TBox statements.

Verification of Golog Programs over Description Logic Actions 183

Golog programs. Second, we deal with terminating and non-terminating runs of
programs in a uniform way. Finally, our approach works not only for the action
formalism introduced in [1], but also for the one considered in [4]. Regarding the
underlying DL, our result applies to all DLs considered in [1], but for the sake
of simplicity we restrict the attention to the DL ALCO.

In the next section, we introduce the relevant notions concerning DL and
action languages based on DLs. Then we define syntax and semantics of Golog
programs over DL actions and prove some auxiliary results for such programs.
In the subsequent section, we define the verification problem and show that it
is decidable. Because of space constraints, detailed proofs of our results have to
be omitted. They can be found in [6].

2 Preliminaries

Description Logics. The DL ALCO extends the basic DL ALC by nominals,
i.e., singleton concepts. Starting with sets NC of concept names, NR of role
names, and NI of individual names, ALCO-concept descriptions (concepts for
short) are built from concept names using the constructors shown in Table 1.

Table 1. Syntax and semantics of ALCO

DL Name Syntax Semantics

ALC

top-concept � ΔI

negation ¬C ΔI \ CI

conjunction C � D CI ∩ DI

disjunction C � D CI ∪ DI

existential restriction ∃r.C {x | ∃y : (x, y) ∈ rI ∧ y ∈ CI}
value restriction ∀r.C {x | ∀y : (x, y) ∈ rI → y ∈ CI}

O nominal {a} {aI}

In the following, we often use A,B to denote concept names, r, s for role
names, a, b for individual names (individuals for short), and C,D for possibly
complex concepts.

An ABox is a finite set of concept assertions C(a) and positive and negated
role assertions of the form r(a, b) and ¬r(a, b), respectively. Assertions of the
form A(a),¬A(a), r(a, b),¬r(a, b) for concept names A and role names r are
called literals.

A concept definition is of the form A ≡ C and a general concept inclusion
(GCI) is of the form C & D. An acyclic TBox is a finite set of concept definitions
with unique left-hand sides. Additionally, it is required that there are no cyclic
dependencies between the definitions. A general TBox is a finite set of GCIs.

The semantics of concepts is defined in terms of interpretations. An inter-
pretation I = (ΔI , ·I) consists of a non-empty domain ΔI and a mapping ·I ,

184 F. Baader and B. Zarrieß

which maps each concept name A to a set AI ⊆ ΔI , each role name r to a
binary relation rI ⊆ ΔI ×ΔI , and each individual a to an element aI ∈ ΔI . We
assume that aI �= bI for any two distinct individuals a, b (unique name assump-
tion). The extension of ·I to complex concepts is defined inductively as shown in
Table 1.

An interpretation I satisfies an ABox assertion C(a) if aI ∈ CI , r(a, b) if
(aI , bI) ∈ rI , and ¬r(a, b) if (aI , bI) /∈ rI . It is a model of an ABox A (written
as I |= A) if I satisfies all assertions in A. An interpretation I satisfies a concept
definition A ≡ C if AI = CI and a GCI C & D if CI ⊆ DI . It is a model of
a TBox T (written I |= T) if it satisfies each definition or GCI, respectively,
in T . The ABox A is consistent w.r.t. the TBox T if there exists a model of A
that is also a model of T . The set of models of A and T is denoted by M(A)
and M(T), respectively. The assertion ϕ is entailed by A and T (written as
T ,A |= ϕ) if every model of A and T (i.e., element of M(A) ∩ M(T)) satisfies
ϕ.

For ALCO, the consistency and the entailment problem are PSpace-complete
w.r.t. an acyclic TBox and ExpTime-complete w.r.t. a general TBox [2].

DL-Based Action Formalism. Instead of introducing a specific DL-based
action formalism, we take a more abstract point of view and describe a whole
class of DL-based action formalisms. This class has the formalisms introduced
in [1] (without occlusions) and in [4] as instances, but not the one of [10] (since
there occlusions are a key ingredient of the formalism). Basically, we abstract
from the concrete way the formalism determines the effect of applying an action
to a world, and assume that there is an appropriate function that provides us
with the effect. Later on, we need to impose additional restrictions in order to
obtain our decidability results.

A DL-based action theory consists of the following components:

– the domain constraints, given as a TBox T ;
– an incomplete description of the initial world given by an ABox A;
– a finite set Σ of action names ;
– a finite set of relevant ABox assertions, denoted by D.

In the following we use the (possibly indexed) letters α, β to denote action names
and ϕ to denote ABox assertions (or assertions for short). The set of literals
contained in D is denoted by Lit . We require that the assertions contained in
the description of the initial world are also contained in D, and that D is closed
under negation (modulo elimination of double negation). For the formalism in
[1], the elements of D are the assertions occurring in the initial ABox and in the
pre- and post-conditions of action descriptions.

Instead of introducing the syntactic form of action descriptions and then defin-
ing the effects of actions by providing these descriptions with an appropriate
semantics, we define the semantics of action names directly using an effect func-
tion. The literals in D are used to specify how an action changes the actual
world. An interpretation I completely describes the current state of the world.
The semantics of actions is thus defined by specifying how they transform a

Verification of Golog Programs over Description Logic Actions 185

given interpretation into a successor interpretation. First, we have to determine
whether an action α is applicable to an interpretation I. Then, if α is applicable
to I, we define the effects of α on I as a set of literals.

Definition 1. Let Σ be the set of action names, D the set of relevant assertions
with Lit ⊆ D the set of literals occurring in D, and T the TBox specifying the
domain constraints. An effect function E w.r.t. Σ, D, and T is a partial function
E : Σ × M(T) → 2Lit . If E is defined for a pair (α, I) ∈ Σ × M(T), then we
say that α is applicable to I. Otherwise, α is not applicable to I.

For the action formalism in [1], E(α, I) consists of the literals of the conditional
post-conditions whose condition is satisfied by I. For the action formalism in
[10], in addition to such direct effects, the set E(α, I) also contains indirect
effects generated by the causal relationships.

For every α ∈ Σ, the effect function induces a binary relation =⇒E
α on M(T):

Definition 2. Let E be an effect function w.r.t. Σ, D, and T . Then I =⇒E
α I ′

if the following conditions are satisfied:

1. α is applicable to I,
2. there exists no L ∈ Lit such that {L,¬L} ⊆ E(α, I),
3. ΔI = ΔI′

and aI = aI
′
for all a ∈ NI ,

4. AI′
:= (AI ∪{aI | A(a) ∈ E(α, I)})\{aI | ¬A(a) ∈ E(α, I)} for all A ∈ NC,

5. rI
′

:= (rI ∪ {(aI , bI) | r(a, b) ∈ E(α, I)}) \ {(aI , bI) | ¬r(a, b) ∈ E(α, I)} for
all r ∈ NR.

If I =⇒E
α I ′ then we say: α transforms the model I into the model I ′.

Note that, for a given action α ∈ Σ and a model I ∈ M(T), there is at most
one I ′ such that I =⇒E

α I ′, i.e., the actions that we consider are deterministic.2
There are several possible reasons why such an I ′ may not exist at all. First,
the action may not be applicable to I. In the formalism of [1], this corresponds
to the fact that I does not satisfy the preconditions of the action. Second, the
action may be applicable, but Condition 2 may not be satisfied. In [1], the action
is then called inconsistent w.r.t. I. Finally, it may be the case that Conditions 1
and 2 are satisfied, but the interpretation I ′ defined by the last three conditions
is not a model of T . In [10], actions for which this case occurs are also considered
to be inconsistent.

Definition 3. An action α is called consistent if, for every I ∈ M(T) to which
α is applicable, there is an I ′ ∈ M(T) such that I =⇒E

α I ′.

In the following, we will only consider action theories for which all actions are
consistent.
2 However, the complex actions that we will build from these deterministic atomic

actions in Section 3 can well be non-deterministic due to the non-deterministic nature
of the programming constructs used in Golog programs.

186 F. Baader and B. Zarrieß

3 Golog Programs over DL Actions

In this section we define the syntax and semantics of a fragment of the ac-
tion programming language Golog [8,11] that uses DL-based action theories as
introduced in the previous section. Golog program expressions describe how a
complex action is constructed from atomic actions using programming constructs
and tests.

Definition 4. Let Σ be a set of action names, α ∈ Σ and ψ a test that is built
according to the following grammar:

ψ ::= ϕ | ¬ψ | ψ1 ∧ ψ2 | ψ1 ∨ ψ2

where ϕ is an assertion. A program expression is defined inductively as follows.

– A single action α ∈ Σ is a program expression.
– The empty program 〈〉 is a program expression.
– If δ is a program expression, then the non-deterministic iteration of δ, de-

noted by (δ)∗, is a program expression.
– If δ1 and δ2 are program expressions, then the sequence of δ1 and δ2, denoted

by (δ1; δ2), is a program expression.
– If ψ is a test and δ a program expression, then ψ?; δ is a program expression.
– If δ1 and δ2 are program expressions, then the non-deterministic choice be-

tween δ1 and δ2, denoted by (δ1|δ2), is a program expression.
– If δ1 and δ2 are program expressions, then the interleaving of δ1 and δ2,

denoted by (δ1‖δ2), is a program expression.

A DL-Golog program P = (A, T , Σ,D, E , δ) consists of a DL-based action theory
(A, T , Σ,D, E) and a program expression δ such that every action occurring in
δ belongs to Σ and every assertion occurring in a test in δ belongs to D.

The length of program expressions, denoted by |δ|, is defined to be the number
of symbols (more precisely, the number of action names, tests, and constructors
∗, ;, |, ‖) occurring in δ.

Note that the tests in the program expression can be used to model the
control flow of a program whereas preconditions of actions (which in our setting
are realized implicitly by the domain of the function E) can be used to ensure
that a single action is only applicable if it leads to a successor model. Together
with the other constructs, tests can for example be used to express while-loops
and if-then-else statements:

while ψ do δ endWhile := (ψ?; δ)∗; (¬ψ?; 〈〉)
if ψ then δ1 else δ2 endIf := ψ?; δ1 | ¬ψ?; δ2

Our notion of tests differs from the one in [8] in that tests are not viewed to
be actions, and thus a test ψ? alone is not a valid program expressions. In
fact, viewing tests as actions creates problems when combined with interleav-
ing since it may happen that a test is successfully executed, but then is fol-
lowed by an interleaved action from another part of the program, which may

Verification of Golog Programs over Description Logic Actions 187

in turn destroy the condition checked by the test. For example, consider the
program expression obtained by interleaving of the two if-then-else statements
if A(a) then α−B(a) else 〈〉 endIf and if B(a) then α−A(a) else 〈〉 endIf:

(A(a)?;α−B(a) | ¬A(a)?; 〈〉) ‖ (B(a)?;α−A(a) | ¬B(a)?; 〈〉), (1)

where α−B(a) and α−A(a) are actions such that, for all models I, E(α−A(a), I) =
{¬A(a)} and E(α−B(a), I) = {¬B(a)}, respectively. Let us also assume that the
TBox describing the domain constraints is empty. Starting with a model I in
which a belongs both to A and B, the program (1) should have two possible
outcomes, depending on which if-then-else statement is executed first: either a
belongs to A and not to B or a belongs to B and not to A. However, if tests are
viewed as actions, then one could first successfully execute the test A(a)?, then
the whole second if-then-else statement, and then the action α−B(a), resulting
in the unintended model in which a is contained neither in A nor in B. To
avoid such unintended interactions between interleaving and tests, we consider
a sequence of tests followed by an action as a unit, called guarded action, which
must be executed in one atomic step.

Definition 5. A guarded action is a program expression of the form

ψ1?; . . . ;ψn?;α,

where n ≥ 0, ψi for i = 1, . . . , n are tests, and α ∈ Σ.

We will often use the symbol a to denote a guarded action.3.
In order to deal with terminating and non-terminating programs in a uniform

way, we introduce an auxiliary action name ε, a fresh individual name p, and
a fresh concept name Term to indicate that the program has terminated. We
assume that these symbols do not occur in the input program, with the only
exception that ¬Term(p) belongs to the initial ABox. The effect of the action
ε is predefined such that ε is applicable to all models of the domain constraints
T , and E(ε, I) = {Term(p)} holds for all models I of T .

To define the semantics of DL-Golog programs, we introduce the functions
head(·) and tail(·, ·). Intuitively, head(δ) contains those guarded actions that can
be executed first when executing the program expression δ. For a ∈ head(δ),
tail(a, δ,) yields the remainder of the program, i.e., the part that still needs to be
executed after a has been executed. Due to the non-deterministic nature of Golog
programs, tail(a, δ,) is also a set of program expressions rather than a single one.

Definition 6. The function head(·) maps a program expression to a set of guard-
ed actions. It is defined by induction on the structure of program expressions:

head(〈〉) := {ε};

head(α) := {α} for all α ∈ Σ;

head(ψ?; δ) := {ψ?; a | a ∈ head(δ)};

3 If n = 0, then the guarded action is actually an ordinary action, and thus a may
also denote an ordinary action.

188 F. Baader and B. Zarrieß

head(δ∗) := {ε} ∪ head(δ);

head(δ1; δ2) := {a | a = ψ1?; ...;ψn?;α ∈ head(δ1) ∧ α �= ε} ∪
{ψ1?; . . . ;ψn?;ψ′

1?; ...;ψ′
m?;α | ψ1?; ...;ψn?; ε ∈ head(δ1) ∧

ψ′
1?; . . . ;ψ′

m?;α ∈ head(δ2)};

head(δ1|δ2) := head(δ1) ∪ head(δ2);

head(δ1‖δ2) := {a | a = ψ1?; . . . ;ψn?;α ∈ head(δi) ∧ i ∈ {1, 2} ∧ α �= ε} ∪
{ψ1?; . . . ;ψn?;ψ′

1?; . . . ;ψ′
m?;α | ψ1?; . . . ;ψn?; ε ∈ head(δi) ∧

ψ′
1?; . . . ;ψ′

m?;α ∈ head(δj) ∧
{1, 2} = {i, j}}.

Consider the definition of head(δ1; δ2). In this case, we first have to execute the
program δ1. Therefore, the first guarded action to be executed for the sequence is
one of the heads of δ1. However, if ψ1?; . . . ;ψn?; ε is contained in the head of δ1,
then δ1 can terminate successfully if the tests are satisfied. But in this case the
subsequent program δ2 still needs to be executed. Therefore, we must continue
with a head of δ2. This is achieved by replacing ε in ψ1?; . . . ;ψn?; ε with a head
of δ2. Our definition of head(δ1‖δ2) can be explained in a similar way, and the
other cases should be obvious.

Example 7. As an example, consider the following program expression

δ = (ψ?;α)∗;
(
(¬ψ)?; 〈〉

)
,

which corresponds to a while-loop with condition ψ and body α. It is easy to
see that head((ψ?;α)∗) = {ψ?;α, ε}. This means that, if we want to execute
(ψ?;α)∗, then in the first step we can execute α if ψ is satisfied, or we can ter-
minate (indicated by the action ε). For the subsequent expression in δ we obtain
head((¬ψ)?; 〈〉) = {(¬ψ)?; ε}. To determine head(δ), we apply the definition of
head(δ1; δ2), which yields head(δ) = {ψ?;α, (¬ψ)?; ε}.

Thus, when starting to execute the while-loop, we can either execute α if ψ is
satisfied, or terminate if ψ is not satisfied. Now consider the program expression
ρ, which describes the interleaving of two while-loops:

ρ =
(
(ψ0?;α0)∗; (¬ψ0?; 〈〉)

)
‖
(
(ψ1?;α1)∗; (¬ψ1?; 〈〉)

)
We have

head(ρ) = {ψ0?;α0, ψ1?;α1, ¬ψ0?;ψ1?;α1, ¬ψ1?;ψ0?;α0, ¬ψ0?; ¬ψ1?; ε}.

First, we have the choice to execute α0 if ψ0 is satisfied or α1 if ψ1 is satisfied.
Furthermore, if ψ0 is not satisfied and ψ1 is satisfied, then it is possible to
terminate the first while-loop since ¬ψ0; ε ∈ head((ψ0?;α0)∗; (¬ψ0?; 〈〉)). But we
then have to consider the parallel while-loop. Since ψ1 is satisfied we cannot
terminate the whole program, but must continue with the second while-loop.
This case is reflected by ¬ψ0?;ψ1?;α1 ∈ head(ρ). In case neither ψ0 nor ψ1 is
satisfied, the program terminates, which explains ¬ψ0?; ¬ψ1?; ε ∈ head(ρ).

Verification of Golog Programs over Description Logic Actions 189

Next, we need to define the program(s) that remain to be executed once a
guarded action from the head has been executed.

Definition 8. The function tail(·, ·) maps a guarded action and a program ex-
pression to a set of program expressions.

– If a /∈ head(δ), then tail(a, δ) = ∅.
– If a ∈ head(δ) and a = ψ1?; ...;ψn?; ε, then tail(a, δ) = {〈〉}.
– If a ∈ head(δ) and a = ψ1?; ...;ψn?;α for α ∈ Σ \{ε}, then tail(a, δ) is defined

by induction on the combined size of a and δ:

tail(a, 〈〉) := {〈〉};

tail(a, β) := {〈〉} for β ∈ Σ; 4

tail(a, δ∗) := {δ′; (δ)∗ | δ′ ∈ tail(a, δ)};

tail(a, ψ?; δ) := tail(ψ2?; . . . ;ψn?;α, δ); 5

tail(a, δ1; δ2) := {δ′; δ2 | δ′ ∈ tail(a, δ1)} ∪
{δ′′ | ∃j, 0 ≤ j ≤ n s.t. ψ1?; ...;ψj?; ε ∈ head(δ1) ∧

ψj+1?; ...;ψn?;α ∈ head(δ2) ∧
δ′′ ∈ tail(ψj+1?; ...;ψn?;α, δ2)};

tail(a, δ1|δ2) := tail(a, δ1) ∪ tail(a, δ2);

tail(a, δ1‖δ2) := {δ′‖δ2 | δ′ ∈ tail(a, δ1)} ∪ {δ1‖δ′ | δ′ ∈ tail(a, δ2)} ∪
{δ′′ | ∃j, 0 ≤ j ≤ n s.t. ψ1?; ...;ψj?; ε ∈ head(δi) ∧

ψj+1?; ...;ψn?;α ∈ head(δi′) ∧
δ′′ ∈ tail(ψj+1?; ...;ψn?;α, δi′) ∧ {1, 2} = {i, i′}}.

In the definitions of tail(a, δ∗), tail(a, δ1; δ2), and tail(a, δ1‖δ2), we omit δ′ if
δ′ = 〈〉.

An example illustrating the definition of the tail function can be found in [6].
Intuitively, executing a program δ means first executing a guarded action of

its head, then a guarded action of the head of its tail, etc. We call a program
expression that can be reached by a sequence of such head and tail applications
a reachable subprogram.

Definition 9. Let δ be a program expression. The program expression ρ is a
reachable subprogram of δ if there is an n ≥ 0 and program expressions δ0, δ1, ...,
δn such that δ0 = δ, δn = ρ, and for all i = 0, . . . , n− 1 there exists ai ∈ head(δi)
such that δi+1 ∈ tail(ai, δi). We denote the set of all reachable subprograms of δ
by sub(δ).

The following lemma is vital for our proof of decidability of the verification
problem since it shows that there are only finitely many reachable subprograms
of a given program expression.
4 Note that a ∈ head(β) implies a = β.
5 Note that a = ψ1?; ...;ψn?;α ∈ head(ψ?; δ) implies ψ = ψ1.

190 F. Baader and B. Zarrieß

Lemma 10. Let δ be a program expression.

1. The cardinality of sub(δ) is exponentially bounded in the size |δ| of δ.
2. If δ does not contain the interleaving constructor, then the size of sub(δ) is

polynomially bounded in the size |δ| of δ.

A proof of this lemma can be found in [6]. Note that, in the presence of the
interleaving operator, the exponential bound is actually reached. In fact, consider
the program expression δ = α1 ‖ (α2 ‖ . . . (αn−1 ‖ αn) . . .). We claim that sub(δ)
contains at least 2n many reachable subprograms. In fact, it is easy to see that
for every subset {i1, . . . , ik} ⊆ {1, . . . , n} with i1 ≤ . . . ≤ ik the expression
αi1 ‖ (αi2 ‖ . . . (αik−1

‖ αik) . . .) is a reachable subprogram of δ.
Now we are ready to define the semantics of a DL-Golog program. Similar to

the semantics introduced in [7], a program induces an infinite transition system.
The states of this transition system are program configurations, which are pairs
consisting of a program expression and a model of the TBox. To make a transition
from one configuration to another, we pick an applicable guarded action from the
head of the program expression, and then transform the model and the program
expression using the semantics of actions and the tail function.

Definition 11. Let a = ψ1?; . . . ;ψn?;α be a guarded action and I an interpre-
tation. We say that a is applicable to I iff I |= ψi holds for all i ∈ {1, . . . , n}
and the action α is applicable to I.6

A program configuration of the form (I, δ) is called a failing configuration
if no a ∈ head(δ) is applicable to I. To indicate such a crash of the program
execution, we add another predefined action f to Σ. The action f is applicable
to all models of T , and we set E(f, I) := {Fail(p)} where Fail is a fresh concept
name. In addition we require that ¬Fail (p) ∈ A for the initial ABox A.

Definition 12 (program semantics). Let P = (A, T , Σ,D, E , δ) be a DL-
Golog program. The transition system TP = (Q,→, I) induced by P consists of
the set of program configurations Q := M(T) × sub(δ) as well as a transition
relation → ⊆ Q × Σ × Q and a set of initial configurations I ⊆ Q, which are
defined as follows:

– The initial configurations are defined as I := {(I, δ) | I ∈ M(A) ∩ M(T)}.
– We have

(
(I, ρ), α, (I ′, ρ′)

)
∈ → (written as (I, ρ)

α→ (I ′, ρ′)) if one of the
following conditions is satisfied:
1. There exists a = ψ1?, . . . , ψn?;α ∈ head(ρ) such that a is applicable to I

and it holds that I =⇒E
α I ′ and ρ′ ∈ tail(a, ρ).

2. There is no a ∈ head(ρ) such that a is applicable to I and it holds that
α = f, ρ = ρ′ and I =⇒E

f I ′.

6 Recall that tests are Boolean combinations of assertions. The notion of satisfaction
in an interpretation is extended in the obvious way from assertions to such Boolean
combinations.

Verification of Golog Programs over Description Logic Actions 191

Since we assume that all actions are consistent, there always exists a successor
configuration I ′ in Case 1 of the definition of α→. This fact, together with the
presence of the predefined actions ε and f, ensures that every configuration in Q
has at least one successor configuration. In particular, every initial configuration
(I0, δ0) ∈ I is the starting point of an infinite path in the transition system TP :

π = (I0, δ0)
α0→ (I1, δ1)

α1→ (I2, δ2)
α3→ (I3, δ3)

α4→ . . .

We call such a path a run of the DL-Golog program P = (A, T , Σ,D, E , δ).
The action trace of the run π is an infinite word w(π) over Σ with w(π) =
α0α1α2α3 The infinite sequence of interpretations I0, I1, I2, I3, . . . occurring
in the configurations in π is denoted by I(π). By the definition of α→ we have
Ii =⇒E

αi
Ii+1 for all i ≥ 0.

The introduction of the predefined actions ε and f allows us to treat non-
terminating, terminating, and failing runs of a given program in a uniform way.
Let Δ := Σ \ {ε, f} denote the set of proper actions. A run π of a program P is
called

– a terminating run if w(π) ∈ Δ∗ · {ε}ω,7

– a failing run if w(π) ∈ Δ∗ · {f}ω,
– a non-terminating run if w(π) ∈ Δω.

It is easy to show that, according to this definition, every run of a program is
either terminating, non-terminating, or failing.

4 Verifying Temporal Properties of DL-Golog Programs

First, we need to introduce the temporal logic used to specify properties of runs
of a program. As in [5], we use a variant of the temporalized DL ALC-LTL [3],
which we call ALCO-LTL since it is based on the more expressive DL ALCO.
The syntax is the same as for propositional linear time logic (LTL), but in place
of propositions, assertions are used.8 More precisely, ALCO-LTL formulas are
built according to the following grammar:

Φ ::= ϕ | ¬Φ | Φ1 ∧ Φ2 | Φ1 ∨ Φ2 | XΦ | Φ1 U Φ2

where ϕ stands for assertions. As usual, ♦Φ (eventually) and �Φ (always) are
used as abbreviations for �(a) U Φ and ¬♦¬Φ, respectively. Moreover, Φ1 → Φ2

abbreviates ¬Φ1 ∨ Φ2.
The semantics of ALCO-LTL is based on the notion of an ALCO-LTL struc-

ture, which is an infinite sequence of interpretations I = (Ii)i=0,1,2,··· over a

7 i.e., a finite sequence of proper actions followed by an infinite sequence using only
the action ε.

8 In ALC-LTL, also GCIs can occur in place of propositions, but this is not needed
in the context of this paper. The domain constraints constitute a global TBox that
must hold at every time point.

192 F. Baader and B. Zarrieß

common domain Δ such that aIi = aIj is satisfied for all a ∈ NI and all
i, j ∈ {0, 1, 2, . . .}. Let Φ be an ALCO-LTL formula, I an ALCO-LTL struc-
ture, and i ∈ {0, 1, 2, . . .} a time point. Validity of Φ in I at time i, denoted by
I, i |= Φ, is defined as follows:

I, i |= ϕ iff Ii |= ϕ,
I, i |= ¬Φ iff I, i �|= Φ,
I, i |= Φ1 ∧ Φ2 iff I, i |= Φ1 and I, i |= Φ2,
I, i |= Φ1 ∨ Φ2 iff I, i |= Φ1 or I, i |= Φ2,
I, i |= XΦ iff I, i + 1 |= Φ,
I, i |= Φ1 U Φ2 iff ∃k ≥ i : I, k |= Φ2 and ∀j, i ≤ j < k : I, j |= Φ1

We can use ALCO-LTL formulas to specify desired or unwanted properties of
(runs of) DL-Golog programs.

Definition 13 (verification problem). Let P = (A, T , Σ,D, E , δ) be a DL-
Golog program and Φ an ALCO-LTL formula such that Φ contain only assertions
from the set D. The formula Φ is valid in P, written as P |= Φ, if for all runs π
of P it holds that I(π), 0 |= Φ. The formula Φ is satisfiable in P if there exists
a run π of P such that I(π), 0 |= Φ.

Using the literals Term(p) and Fail(p), we can encode variants of the verification
problem into the formula. For example, we can check whether there is a failing
run by testing satisfiability of the formula ♦Fail (p). The fact that all runs of the
program are terminating corresponds to the validity of the formula ♦Term(p).
In order to verify that all infinite runs of the program satisfy Φ, we can test
validity of the formula �(¬Fail (p) ∧ ¬Term(p)) → Φ.

Clearly, Φ is valid in P iff ¬Φ is unsatisfiable in P . Therefore, it is sufficient to
focus on showing decidability of the satisfiability problem. To obtain decidability,
we need to impose additional restrictions on our action theories. Basically, we
need to ensure that the effect function is computable and that we can construct
a finite abstraction of the infinite transition system TP that contains enough
information on the runs of the program to enable verification based on this
abstraction.

In order to obtain this finite abstraction, we use the notion of a static type to
partition the infinite set of models of the TBox into finitely many equivalence
classes of elements of the same type.

Definition 14. Given a DL-based action theory (A, T , Σ,D, E), a static type
for this theory is a set t ⊆ D such that the ABox t is consistent w.r.t. T and
for all ¬ϕ ∈ D we have ϕ ∈ t iff ¬ϕ /∈ t. The static type of a model I of T is
defined as s-type(I) := {ϕ ∈ D | I |= ϕ}.

Obviously, given a model I of T , the set s-type(I) is indeed a static type. Con-
versely, for every static type t, there is a model I of T such that t = s-type(I).
Intuitively, models of the same static type cannot be distinguished by an asser-
tion occurring in D.

We are now ready to formulate conditions on DL-based action theories that
ensure decidability of the satisfiability problem.

Verification of Golog Programs over Description Logic Actions 193

Definition 15 (admissibility). The DL-based action theory (A, T , Σ,D, E) is
called admissible if all its actions are consistent and the conditions (A1), (A2),
(A3) are satisfied for models I and J of T :

(A1) If s-type(I) = s-type(J), then α is applicable to I iff α is applicable to J
(A2) If s-type(I) = s-type(J) and α is applicable to I, then E(α, I) = E(α,J).

If (A1) and (A2) are satisfied and t is a static type, then we define E(α, t) :=
E(α, I), where I is an arbitrary model of T with t = s-type(I).

(A3) For a given static type t, it is decidable whether E(α, t) is defined. If it is
defined, then this set can be effectively computed.

It is easy to see that the action theories introduced in [1,4] are indeed admissible
(if all actions are required to be consistent). For example, in both formalisms
applicability of an action α to a model I depends on whether the preconditions
of α are satisfied in I. Since these preconditions are assertions in D, (A1) is
obviously satisfied.

Unfortunately, given two models of the same static type and an action that
is applicable to these models, the models obtained by applying the action need
not have the same static type. This is illustrated by the following example.

Example 16. Assume that A = {B(b), r(a, b), ∃r.B(a)},

D = {B(b),¬B(b), r(a, b),¬r(a, b), ∃r.B(a),¬∃r.B(a)},

and T = ∅, and consider an action α with the effect function

E(α, I) = {¬B(b)} if I |= ∃r.B(a).

Otherwise, E(α, I) is undefined. Intuitively, ∃r.B(a) is the precondition of α and
¬B(b) the effect. It is easy to see that this action theory is admissible.

Consider two models I1 and I2 of A over the same domain with

ΔI1 = ΔI2 = {a, b, d}, rI1 = {(a, b)}, rI2 = {(a, b), (a, d)}, BI1 = BI2 = {b, d},

such that aIi = a, bIi = b (i = 1, 2) and d /∈ {a, b}. Clearly, we have s-type(I1) =
s-type(I2) and E(α, I1) = E(α, I2) = {¬B(b)}. However, for the interpretations
I ′
1, I ′

2 with I1 =⇒{¬B(b)}
α I ′

1 and I2 =⇒{¬B(b)}
α I ′

2, it holds that I ′
1 �|= ∃r.B(a)

and I ′
2 |= ∃r.B(a). Therefore, I ′

1 and I ′
2 do not have the same static type. Also

note that α is applicable to I ′
2, but not to I ′

1.

This example shows that in general the mapping of models to their static types
does not preserve the transition relation =⇒E

α on models for an action α. There-
fore, the transition relation cannot be lifted to a transition relation on static
types. To overcome this problem, we define an extended notion of types, called
dynamic types. This requires the introduction of some more notation. Let I be
an interpretation and E ⊆ Lit a non-contradictory set of literals i.e., a set such
that there is no L such that {L,¬L} ⊆ E. The updated interpretation IE w.r.t.
E is defined as follows:

194 F. Baader and B. Zarrieß

– AIE

:= (AI ∪ {aI | A(a) ∈ E}) \ {aI | ¬A(a) ∈ E} for all A ∈ NC and
– rI

E

:= (rI ∪ {(aI , bI) | r(a, b) ∈ E}) \ {(aI , bI) | ¬r(a, b) ∈ E} for all
r ∈ NR.

Note that I =⇒E
α I ′ implies I ′ = IE(α,I). Using the notation ¬E := {¬L |

L ∈ E} (modulo elimination of double negation), we can reduce iterated update
operations to a single one: For two non-contradictory sets of literals E and E′

we have
(IE)E

′
= I((E\¬E′)∪E′). (2)

Given a DL-Golog program P = (A, T , Σ,D, E , δ), we call a pair (ϕ,E) con-
sisting of an assertion ϕ ∈ D and a non-contradictory set of literals E ⊆ Lit a
type element for P . The set of all type elements for P is denoted by TE (P).

Definition 17 (dynamic types). Let P = (A, T , Σ,D, E , δ) be a DL-Golog
program and I a model of T . The dynamic type of I is defined as

d-type(I) := {(ϕ,E) ∈ TE (P) | IE |= ϕ}.

A set t ⊆ TE (P) is called a dynamic type if there is an interpretation I such
that t = d-type(I).

Since (ϕ, ∅) ∈ d-type(I) iff I |= ϕ iff ϕ ∈ s-type(I), models with the same dy-
namic type also have the same static type. Given a dynamic type t, we denote
the corresponding static type by A(t), i.e., A(t) := {ϕ | (ϕ, ∅) ∈ t}. The next
lemma shows that dynamic types have the desired property that the execution
of an action transforms models of the same type again into models of the same
type. The dynamic type of the successor models can easily be computed using
the identity (2).

Lemma 18. Let I,J be models of T and α an action such that I =⇒E
α I ′ and

J =⇒E
α J ′.

1. If d-type(I) = d-type(J), then d-type(I ′) = d-type(J ′).
2. If E(α, I) = E′ and (ϕ,E) ∈ TE (P), then

(ϕ,E) ∈ d-type(I ′) iff (ϕ, (E′ \ ¬E) ∪E) ∈ d-type(I).

Given a subset t of D, DL reasoning can obviously be used to decide whether t
is a static type or not. Given a subset t of TE (P), it is also possible to reduce
the check whether it is a dynamic type to DL reasoning, but how to do this is
less obvious. In [6] we show how to adapt the reduction approach developed in
[1] for deciding the projection problem to this purpose. The idea is to encode
the model I and the updated interpretations IE into one single model of an
appropriate TBox and ABox. Basically, for every non-contradictory set of literals
E we introduce renamed copies of all concept and role names, which also yield
renamed copies ϕ(E) of all assertion ϕ ∈ D. The reduction TBox Tred and the
reduction ABox Ared(t) are then constructed such that the following lemma
holds.

Verification of Golog Programs over Description Logic Actions 195

Lemma 19. Let t ⊆ TE (P). Then t is a dynamic type iff the following two
properties are satisfied:

1. For all (¬ϕ,E) ∈ TE (P) it holds that (ϕ,E) ∈ t iff (¬ϕ,E) /∈ t.
2. There exists a model J of Ared(t) and Tred such that J |= ϕ(E) holds for all

(ϕ,E) ∈ t.

Basically, our the decision procedure for the satisfiability of an ALCO-LTL
formula Φ in a DL-Golog program P works as follows. Instead of the transition
system TP we consider the quotient system T̂P that is obtained from TP by
replacing models by their dynamic types. Since there are only finitely many
dynamic types and reachable subprograms, this quotient transition system is
finite. Similar to the well-known construction for propositional LTL, the formula
Φ can be translated into a Büchi automaton BΦ such that Φ is satisfiable iff BΦ

accepts a non-empty language. In order to test satisfiability in P , we consider
the Büchi automaton obtained by building the product of BΦ and T̂P , and test
it for non-emptiness. In principle, this test boils down to a reachability problem
(is there a final state that can be reached from an initial state and from itself).
To solve this problem, we guess a dynamic type that satisfies the initial ABox
(using the decision procedure for dynamic types obtained from Lemma 18) and
pair it with an appropriate initial state of the Büchi automaton. Then we make
transitions in the product automaton, where the transitions in the component
corresponding to T̂P are realized using the head and tail function for computing
the new program expression and 2. of Lemma 18 for computing the new dynamic
type. More details on how this decision procedure works can be found in [6].

Theorem 20. For DL-Golog programs P whose underlying action theory is ad-
missible, satisfiability of an ALCO-LTL formula in P is decidable.

The exact complexity of this decision procedure depends, of course, also on
the complexity of computing the effect function E . For the action formalisms
in [1,4], this is the same complexity as reasoning in ALCO (i.e., ExpTime if
the TBox contains GCIs, and PSpace if the TBox is empty or acyclic). In this
case, the overall complexity of deciding satisfiability in a DL-Golog program is
majorized by the complexity of testing whether a set t ⊆ TE (P) is a dynamic
type or not. Due to the fact that there are exponentially many type elements,
the reduction TBox and ABox are of exponential size, and thus the complexity
of this test is 2ExpTime if the TBox contains GCIs, and ExpSpace if the TBox
is empty or acyclic.

5 Conclusion

We have shown first results on how to verify temporal properties of Golog pro-
grams that use Description Logic actions. The two main contributions of this
paper are the following. First, we have defined a semantics for DL-Golog pro-
grams that is similar to the semantics of Golog program introduced in [7], but

196 F. Baader and B. Zarrieß

treats non-terminating, terminating, and failing runs of a given program in a uni-
form way. Second, we have introduced the new notion of a dynamic type, and
have shown that it allows us to obtain a finite, semantics-preserving abstraction
of the infinite transition system induced by a program. This is the main reason
why the verification problem turns out to be decidable.

In our future work, we intend to extend our results both to more expressive ac-
tion theories (e.g. ones with non-deterministic atomic actions) and to additional
program construct. Regarding the temporal logic used to specify properties, we
will also look at CTL and CTL∗ in place of LTL.

References

1. Baader, F., Lutz, C., Milicic, M., Sattler, U., Wolter, F.: Integrating description
logics and action formalisms: First results. In: Proc. AAAI 2005 (2005)

2. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.
(eds.): The Description Logic Handbook: Theory, Implementation, and Applica-
tions. Cambridge University Press (2003)

3. Baader, F., Ghilardi, S., Lutz, C.: LTL over description logic axioms. ACM Trans.
Comput. Log. 13(3) (2012)

4. Baader, F., Lippmann, M., Liu, H.: Using causal relationships to deal with
the ramification problem in action formalisms based on description logics. In:
Fermüller, C.G., Voronkov, A. (eds.) LPAR-17. LNCS, vol. 6397, pp. 82–96.
Springer, Heidelberg (2010)

5. Baader, F., Liu, H., ul Mehdi, A.: Verifying properties of infinite sequences of
description logic actions. In: Proc. ECAI 2010 (2010)

6. Baader, F., Zarrieß, B.: Verification of golog programs over description logic ac-
tions. LTCS-Report 13-08, Chair of Automata Theory, TU Dresden, Dresden, Ger-
many (2013), http://lat.inf.tu-dresden.de/research/reports.html

7. Claßen, J., Lakemeyer, G.: A logic for non-terminating golog programs. In: Proc.
KR 2008 (2008)

8. De Giacomo, G., Lespérance, Y., Levesque, H.J.: Congolog, a concurrent program-
ming language based on the situation calculus. Artif. Intell. 121(1-2), 109–169
(2000)

9. De Giacomo, G., Lespérance, Y., Patrizi, F.: Bounded situation calculus action
theories and decidable verification. In: Proc. KR 2012 (2012)

10. Liu, H., Lutz, C., Miličić, M., Wolter, F.: Reasoning about actions using description
logics with general TBoxes. In: Fisher, M., van der Hoek, W., Konev, B., Lisitsa,
A. (eds.) JELIA 2006. LNCS (LNAI), vol. 4160, pp. 266–279. Springer, Heidelberg
(2006)

11. Levesque, H.J., Reiter, R., Lespérance, Y., Lin, F., Scherl, R.B.: Golog: A logic pro-
gramming language for dynamic domains. J. Log. Program. 31(1-3), 59–83 (1997)

12. Pnueli, A.: The temporal logic of programs. In: Proc. FOCS 1977 (1977)

http://lat.inf.tu-dresden.de/research/reports.html

Specification and Verification of Linear

Dynamical Systems: Advances and Challenges

Joël Ouaknine

Department of Computer Science, Oxford University, UK
joel@cs.ox.ac.uk

Abstract. Dynamical systems are mathematical models in which the
state of a system at any point in time is represented by a vector of vari-
ables, with a fixed rule determining the evolution of these variables over
time. Continuous linear dynamical systems are governed by a multivari-
ate linear differential equation, whereas discrete-time linear dynamical
systems are governed by a linear transformation. In both cases, given
initial values for the variables, the rule uniquely determines the evolu-
tion of the system over time.

Particular instances of such systems have been studied for decades in
various areas of science and engineering, often either through simulations
or in terms of long-run behaviour: existence and uniqueness of attrac-
tors, fixed points, or periodic points, sensitivity to initial conditions, etc.
From the point of view of computer science, it is somewhat surprising to
note the relative scarcity of literature on decision problems concerning
linear dynamical systems, e.g., whether a fixed point or a particular re-
gion will actually be reached in finite time, whether a variable will assume
negative values infinitely often, etc. Such questions, in turn, have numer-
ous applications in a wide array of scientific areas, such as theoretical
biology (analysis of L-systems, population dynamics), microeconomics
(stability of supply-and-demand equilibria in cyclical markets), software
verification (termination of linear programs), probabilistic model check-
ing (reachability and approximation in Markov chains, stochastic logics),
quantum computing (threshold problems for quantum automata), as well
as combinatorics, formal languages, statistical physics, etc.

In this talk, I will describe recent advances in decision problems for
linear dynamical systems, and discuss various open problems, both al-
gorithmic in nature and in terms of defining suitable—i.e., expressive as
well as tractable, or at least decidable—formalisms and frameworks for
formulating requirements on linear dynamical systems.

P. Fontaine, C. Ringeissen, and R.A. Schmidt (Eds.): FroCoS 2013, LNAI 8152, p. 197, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Obtaining Finite Local Theory Axiomatizations

via Saturation

Matthias Horbach and Viorica Sofronie-Stokkermans

University Koblenz-Landau and Max-Planck-Institut für Informatik Saarbrücken

Abstract. In this paper we present a method for obtaining local sets
of clauses from possibly non-local ones. For this, we follow the work
of Basin and Ganzinger and use saturation under a version of ordered
resolution. In order to address the fact that saturation can generate
infinite sets of clauses, we use constrained clauses and show that a link
can be established between saturation and locality also for constrained
clauses: This often allows us to give a finite representation of possibly
infinite saturated sets of clauses.

1 Introduction

Many problems in mathematics and computer science can be reduced to proving
the satisfiability of conjunctions of literals in a background theory. It is therefore
very important to identify situations where reasoning in extensions and combi-
nations of theories can be done efficiently and accurately. The most important
issues which need to be addressed in this context are:

(i) finding possibilities of reducing the search space without losing completeness,
(ii) making modular or hierarchical reasoning possible.

In [18], we introduced a class of theory extensions (which we named local) for
which both aspects above can be addressed: (i) complete instantiation schemes
exist, and (ii) hierarchical and modular reasoning is possible. However, locality
is a property of an axiomatization of a theory rather than of the theory itself.
Therefore, it is very important to recognize locality of a set of clauses, and to ob-
tain local axiomatizations – for instance by transforming non-local sets of clauses
into local ones. In [4, 5], Basin and Ganzinger presented a link between (order)-
locality and saturation under ordered (hyper)resolution. Their result allows to
obtain, by saturation, local axiomatizations for a theory from non-local ones. The
drawback is that the size of the saturated sets of clauses is often very large and
sometimes the saturation process may not terminate. The main contributions of
this paper are:

– In order to obtain finite representations of possibly infinite sets of clauses we
use constrained clauses.

– We use a sound and complete ordered resolution and superposition calculus
for constrained clauses. In cases when a classical saturation process might
not terminate, the use of constrained clauses allows us to give a finite rep-
resentation for possibly infinite sets of clauses.

P. Fontaine, C. Ringeissen, and R.A. Schmidt (Eds.): FroCoS 2013, LNAI 8152, pp. 198–213, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Obtaining Finite Local Theory Axiomatizations via Saturation 199

– We show that for certain types of constrained clauses a link can be estab-
lished between saturation in our calculus and order locality.

– We indicate the limitations of our approach.

In [13] we identified situations in which the combination of two local theory
extensions of a base theory T0 is a local extension of T0. The assumptions on the
component theories are syntactic, so can be easily checked. Together with the
results presented in this paper, this allows to prove the locality of combinations
of theories, or to obtain local axiomatizations for combinations of theories.

We briefly discuss the relationships between our results and existing work.

Ordered resolution and superposition are often used to devise decision procedures
for various theories, cf. e.g. [2, 14, 1]. Our approach allows us to consider, in
addition, situations in which the saturated sets are not finite, by giving finite
representations for them.

The connection between saturation under ordered resolution and (order) locality
was studied by Basin and Ganzinger in [4, 5]. It is however relatively easy to
see that no link between saturation under superposition and (order) locality can
be established in general. Therefore, if we start with a set N of clauses in first-
order logic with equality, then in order to use the results in [4, 5] for proving
the locality of N (or for constructing an equivalent local axiomatization) we
usually need to saturate N ∪EQ under ordered resolution (where EQ is the set
of congruence axioms). The results presented in this paper allow us to identify a
class of clauses in first-order logic with equality for which we can prove locality
(or construct equivalent local axiomatizations) using superposition – without
having to explicitly take into account the congruence axioms.

Constrained clauses are often used in automated theorem proving in order to
restrict the number of instances to be considered or for defining a notion of
schematic saturation (cf. e.g. [17, 15, 16, 20]). In contrast with this type of results,
the constraints we use here are formulae, equalities between variables (to which
substitutions are applied) or more general so-called regular constraints. These
constraints generalize regular expressions and allow infinite sets of clauses with a
repeating structure to be captured by a single constrained clause. The use of the
s+ operation for reasoning about integer offsets in [20] is similar. The difference
is that whereas in our work the regular expressions occur in constraints, in [20]
they occur in the main clauses, and the constraints only ensure that some of the
variables can only be instantiated with constants.

Structure of the paper. The paper is structured as follows: In Sect. 2 we introduce
the terminology used in the paper and present the main results on local theory
extensions. In Sect. 3 we give ways of recognizing locality and prove a locality
transfer result for order-local theory extensions; then explain the problem we
address in this paper and the idea of our solution. In Sect. 4 we define a constraint
inference calculus which we use in Sect. 5 for giving finite saturations of infinite
sets of clauses (where we also discuss the limitations of this approach). The full
proofs are included in the extended version of this paper [8].

200 M. Horbach and V. Sofronie-Stokkermans

2 Preliminaries

In this section we introduce the terminology and main results used in the paper.

2.1 General Definitions

We build on the notions of [3, 21, 11] and shortly recall here the most important
concepts concerning terms and orderings and the specific extensions (concerning
constrained clauses) needed in this article. To keep the presentation concise,
we restrict ourselves to single-sorted signatures. The many-sorted case works
similarly, and it is explicitly taken into account in the later sections.

Terms and Clauses. Let Π = (Σ,Pred) be a signature consisting of a set Σ
of function symbols of fixed arity and a set Pred of predicate symbols of fixed
arity, and let X be an infinite set of variables such that X and Σ are disjoint.

We denote by TΣ(X) the set of all terms over Σ and X and by TΣ the set
of all ground terms over Σ. To improve readability, term tuples (t1, . . . , tn) will
often be denoted by �t. The variables occurring in a term t or a term tuple �t are
denoted by vars(t) or vars(�t), respectively.

An equation is a multiset of two terms t1, t2 ∈ TΣ(X), usually written t1≈t2.
A predicative atom is an expression of the form P (t1, . . . , tn), where P ∈ Pred is
a predicate symbol of arity n and t1, . . . , tn ∈ TΣ(X) are terms. An atom is an
equation or a predicative atom. A clause is a pair of multisets of atoms, written
Γ → Δ, interpreted as the conjunction of all atoms in the antecedent Γ implying
the disjunction of all atoms in the succedent Δ. A clause is Horn if Δ contains at
most one atom. If C = A1, . . . , An → B1, . . . , Bm is a ground clause, we denote
by ¬C the set of unit Horn clauses → Ai and Bj →.

Substitution Expressions. A (basic) substitution σ is a map from a finite set
X ′ ⊆ X of variables to TΣ(X). The application of σ to a term t or a term tuple
�t is denoted by tσ or �tσ, respectively. The substitution σ is linear if no variable
occurs twice in the term set {xσ | x ∈ X ′}. The most general unifier of two
terms s, t is denoted by mgu(s, t).

Substitution expressions are built over substitutions and constructors ◦ (com-
position), | (disjunction), and ∗ (loop) of arity 2, 2 and 1, respectively. Substi-
tution expressions are denoted as σ̄, τ̄ . The symbols ◦ and | are written in infix
notation, and ∗ is written in postfix notation. We will often write σ̄ ◦ τ̄ as σ̄τ̄ .

The domain dom(σ̄) and the variable range VRan(σ̄) of a substitution ex-
pression are defined as follows: For a substitution σ : {x1, . . . , xn} → TΣ(X), we
define dom(σ) = {x1, . . . , xn} and VRan(σ) = vars(x1σ, . . . , xnσ). For complex
expressions, we have

dom(σ̄ ◦ τ̄) = dom(σ̄) VRan(σ̄ ◦ τ̄) = VRan(τ̄)
dom(σ̄1|σ̄2) = dom(σ̄1) ∪ dom(σ̄2) VRan(σ̄1|σ̄2) = VRan(σ̄1) ∩ VRan(σ̄2)

dom(σ̄∗) = dom(σ̄) VRan(σ̄∗) = dom(σ̄) ∪ VRan(σ̄)
A substitution expression σ̄ is well-formed, if (i) for each subexpression τ̄1 ◦ τ̄2
of σ̄, it holds that VRan(τ̄1) = dom(τ̄2), (ii) for each subexpression τ̄1|τ̄2 of σ̄,
it holds that dom(τ̄1) = dom(τ̄2) and VRan(τ̄1) = VRan(τ̄2), and (iii) for each
subexpression τ̄∗ of σ̄, it holds that VRan(τ̄) = dom(τ̄).

Obtaining Finite Local Theory Axiomatizations via Saturation 201

Constrained Clauses. A constrained clause α ‖C consists of a clause C and a
regular constraint α of the form (x1≈y1, . . . , xn≈yn)σ̄, also written as (�x≈�y)σ̄,
such that xi, yi are variables and σ̄ is a well-formed substitution expression
with domain {x1, y1, . . . , xn, yn}. If a regular constraint α does not contain any
equations, we call α ‖C unconstrained and identify it with its clausal part C.

The application (α ‖C)σ of a substitution to a constrained clause is defined as
ασ ‖Cσ. If α = (�x≈�y)τ̄ is a regular constraint, then ασ is defined as (�x≈�y)τ̄σ′,
where σ′ : VRan(τ̄) → T (Σ,X) maps z to zσ if z ∈ dom(σ) and to z otherwise.

The set of ground instances of a constrained clause α ‖C consists of all ground
clauses D for which there is a substitution σ such that Cσ = D and ασ is a
satisfiable ground constraint. This means that regular constraints are interpreted
syntactically.

Orderings. A (strict partial) ordering ≺ on a set S is a transitive and irreflexive
binary relation on S. It is total if s ≺ t or t ≺ s whenever s �= t. It is well-founded
if there is no infinite descending chain s1 0 s2 0 . . . of elements of S.

An ordering ≺ on TΣ(X) has the subterm property if t 0 t′ whenever t contains
t′ as a strict subterm. It is stable under substitutions if t ≺ t′ implies tσ ≺ t′σ
for all t, t′ and all substitutions σ. It is a reduction ordering if it is well-founded,
has the subterm property, and is stable under substitutions.

Let ≺T be an ordering on TΣ(X) and let ≺ be an ordering on atoms over
TΣ(X). Then ≺ is compatible with ≺T if for all atoms A1, A2 it holds that
A1 ≺ A2 if every term in A1 is bounded by a term in A2, i.e. if for each term t1
in A1 there is a term t2 in A2 such that t1 ≺T t2. Note that for finite signatures
of predicate symbols, any total ordering on atoms that is compatible with a total
and well-founded term ordering is well-founded.

Any ordering ≺ on atoms can be extended to clauses in the following way.
We consider clauses as multisets of occurrences of atoms. The occurrence of an
atom A in the antecedent is identified with the multiset {A,A}; the occurrence
of an atom A in the succedent is identified with the multiset {A}. Now we lift
≺ to atom occurrences as its multiset extension, and to clauses as the multiset
extension of this ordering on atom occurrences.

An occurrence of an atom A in a clause C is maximal if there is no occurrence
of an atom in C that is strictly greater with respect to ≺ than the occurrence
of A. It is strictly maximal if there is no other occurrence of an atom in C that
is greater than or equal to the occurrence of A w.r.t. ≺.

An (unconstrained) ground clause is reductive (w.r.t. ≺) if all of its ≺-maximal
terms appear in the maximal atoms. A constrained clause is reductive (w.r.t. ≺)
if all its ground instances are reductive (cf. [5]).

Denotations and Models. We define the denotation [[σ̄]] of a substitution
expression σ̄ inductively as follows:

[[σ]] = {σ} [[σ̄τ̄]] = {στ | σ ∈ [[σ̄]], τ ∈ [[τ̄]]}
[[σ̄1|σ̄2]] = [[σ̄1]] ∪ [[σ̄2]] [[σ̄∗]] =

⋃
n≥0[[σ̄n]]

Here σ̄0 denotes the substitution {x (→ x | x ∈ dom σ̄}, and σ̄n+1 = σ̄ ◦ σ̄n.
The semantics of the application of substitution expressions to terms and

clauses and the semantics of constrained clause sets are defined just as one

202 M. Horbach and V. Sofronie-Stokkermans

would expect by identifying a substitution expression with its denotation and
by identifying a constrained clause (�x≈�y)σ̄ ‖C with the (potentially infinite)
clause set {�xσ≈�yσ → C | σ ∈ [[σ̄]]} (cf. [11] for details). An interpretation I is
said to model a constrained clause set N , written I |= N , if and only if I |= C
for each C in the denotation of a constrained clause in N . In this case, I is called
a model of N . A constrained clause set is satisfiable if it has a model.

Inferences and Redundancy. An inference rule is a relation on constrained
clauses. Its elements are called inferences and written as

α1 ‖C1 . . . αk ‖Ck

α ‖C .
The constrained clauses α1 ‖C1, . . . , αk ‖Ck are called the premises and α ‖C
the conclusion of the inference. An inference calculus is a set of inference rules.

A constrained clause (�x≈�y)σ̄ ‖C is redundant w.r.t. a constrained clause set
N if C is a tautology or if there is a variant (�x≈�y)τ̄ ‖C of a constrained clause in
N such that [[σ̄]] ⊆ [[τ̄]]. An inference is called redundant w.r.t. N if its conclusion
is redundant w.r.t. N or if a premise C is redundant w.r.t. N \{C}. A constrained
clause set N is saturated (w.r.t. a given inference calculus) if each inference with
premises in N is redundant w.r.t. N .

A derivation is a finite or infinite sequence N0, N1, . . . such that for each i,
there is an inference with premises in Ni and conclusion (�x≈�y)σ̄ ‖C that is not
redundant w.r.t. Ni, such that Ni+1 = Ni ∪ {(�x≈�y)σ̄ ‖C}.

2.2 Local Theory Extensions

Let Π0=(Σ0,Pred) be a signature, and T0 be a theory with signature Π0. We
here consider extensions T := T0 ∪K of T0 with new function symbols Σ (called
extension functions) whose properties are axiomatized using a set K of (univer-
sally closed) clauses in the extended signature Π = (Σ0 ∪ Σ,Pred).

Example 1. Let T0 be a theory of integers with signature containing the unary
function s and the predicate symbol ≤. Let Σ = {f} where f is a new function
symbol. Let K1

f = {∀x, y (x≤y → f(x)≤f(y))} and K2
f = {∀x(f(x)≤f(s(x)))}

(axiomatizations for the monotonicity of f). For i = 1, 2, Ti := T0 ∪ Ki
f is an

extension of T0 with function f satisfying the set Ki
f of clauses.

Our goal is to address proof tasks of the form G |=T0∪K ⊥ (written also: T0∪K∪
G |=⊥) where G is a set of ground clauses with additional (fresh) constants (in
a countable set C), i.e. in the signature ΠC = (Π0 ∪Σ)C = (Σ0 ∪Σ ∪C,Pred).

Locality Conditions. Let T0 be an arbitrary theory with signature Π0 =
(Σ0,Pred), where the set of function symbols is Σ0. Let Π = (Σ0∪Σ,Pred) ⊇ Π0

be an extension by a non-empty set Σ of new function symbols and K be a set
of (implicitly universally closed) clauses in the extended signature. Let C be a
fixed countable set of fresh constants.

Notation: Let T be a set of ground terms in the signature ΠC . We denote by
K[T] the set of all instances of K in which the terms starting with a function
symbol in Σ are in T . Formally:

Obtaining Finite Local Theory Axiomatizations via Saturation 203

K[T] := {ϕσ | ∀x̄. ϕ(x̄) ∈ K, where (i) if f ∈ Σ and t = f(t1, ..., tn) occurs in
ϕσ then t ∈ T ; (ii) if x is a variable that does not appear below
some Σ-function in ϕ then σ(x) = x}.

An extension T0 ∪ K of T0 is local if it satisfies the following condition1:

(Loc) For every set G of ground clauses in ΠC it holds that
T0 ∪ K ∪ G |= ⊥ if and only if T0 ∪ K[G] ∪ G |= ⊥

where K[G] = K[est(K, G)] consists of those instances of K in which the terms
starting with extension functions are in the set est(K, G) of extension ground
terms (i.e. terms starting with a function in Σ) which already occur in G or K.
In [12] we generalized condition (Loc) by considering closure operators on ground
terms. Let Ψ be a closure operator associating with every set T of ground terms a
set Ψ(T) of ground terms. For any set G of ground ΠC -clauses we write K[ΨK(G)]
for K[Ψ(est(K, G))]. We define versions of locality in which the set of terms used
in the instances of the axioms is described using the map Ψ :

(Loc
Ψ

) For every set G of ground clauses in ΠC it holds that
T0 ∪ K ∪ G |= ⊥ if and only if T0 ∪ K[ΨK(G)] ∪ G |= ⊥.

Extensions satisfying condition (Loc
Ψ

) are called Ψ -local. A finite locality con-
ditions (LocΨf) is defined by restricting the locality conditions to hold for finite
sets G of ground clauses.

Local theory extensions are Ψ -local, where Ψ=id (the identity operator). The
order-local theories introduced in [5] satisfy a Ψ -locality condition, where T is a
set of ground clauses Ψ(T)={s | s ground term and s!t for some t ∈ T }, where
≺ is an ordering on ground terms [5]. In this case we write also K[!T] for
K[Ψ(T)]. If T = st(G) is the set of all ground terms occurring in G, we also use
the notation K[! G].

Hierarchical Reasoning. Let T0 ⊆ T = T0∪K be a theory extension satisfying
condition (LocΨ). To check the satisfiability w.r.t. T of a set G of ground ΠC -
clauses, we proceed as follows: By locality, T ∪G |=⊥ iff T0∪K[ΨK(G)]∪G |=⊥.
We purify K[ΨK(G)]∪G by introducing, in a bottom-up manner, new constants ct
for subterms t = f(g1, . . . , gn) with f ∈ Σ, gi ground (Σ0 ∪ C)-terms, together
with their definitions ct ≈ t. The set of formulae thus obtained has the form
K0∪G0 ∪D, where D consists of definitions of the form c ≈ f(g1, . . . , gn), where
f ∈ Σ, c is a constant, g1, . . . , gn are ground (Σ0 ∪ C)-terms, and K0, G0 are
ΠC

0 -formulae. We reduce the problem to testing satisfiability in T0 as follows:

Theorem 2 ([18]). Let K and G be as specified above. Assume that T0 ⊆ T0 ∪K
satisfies condition (LocΨ). Let K0 ∪G0 ∪D be obtained from K[ΨK(G)] ∪ G as
explained above. Then T0∪K∪G |=⊥ if and only if T0 ∪ K0 ∪ G0 ∪ Con0 |=⊥

(where Con0 = {
n∧

i=1

ci ≈ di → c = d | c ≈ f(c1, . . . , cn) ∈ D,
d ≈ f(d1, . . . , dn) ∈ D

}).

If K[ΨK(G)] is finite and K0 ∪ G0 ∪ Con0 belongs to a decidable fragment of T0

then we can effectively check the decidability of G.

1 It is easy to check that the formulation we give here and that in [18] are equivalent.

204 M. Horbach and V. Sofronie-Stokkermans

3 Recognizing Ψ -local Theory Extensions

We present several ways of recognizing local and Ψ -local theory extensions.

3.1 Locality and Embedability

Links between locality of a theory and embeddability of partial models into total
ones were established in [6]. Similar results can also be obtained for local the-
ory extensions. When establishing links between locality and embeddability, we
require that the extension clauses in K are flat and linear w.r.t. Σ-functions:

A (non-ground) extension clause D is Σ-flat when all symbols below a Σ-
function symbol in D are variables. D is Σ-linear if, whenever a variable occurs
in two terms of D which start with Σ-functions, the terms are identical, and no
such term contains two occurrences of a variable.

Let Π = (Σ,Pred) be a first-order signature with set of function symbols Σ
and set of predicate symbols Pred. A partial Π-structure is a structure A =
(A, {fA}f∈Σ, {PA}P∈Pred), where A is a non-empty set, for every f ∈ Σ with
arity n, fA is a partial function from An to A, and for every P ∈ Pred, PA ⊆
An. We consider constants (0-ary functions) to be always defined. A is called
a total structure if the functions fA are all total. Given a (total or partial) Π-
structure A and Π0 ⊆ Π we denote the reduct of A to Π0 by A|Π0 . (For the
precise definition of a weak partial model for a set of clauses see e.g. [18, 13].)
If T = T0 ∪ K is an extension of a Π0-theory T0 with new function symbols in
Σ and clauses K, we denote by PModΨw(Σ, T) the set of weak partial models A
of T whose Σ0-functions are total, and all terms in Ψ(est(K) ∪ {f(a1, . . . , an) |
f ∈ Σ, fA(a1, . . . , an) is defined} are defined – in the extended structure AA

with constants from A. In [18, 12, 13] we considered embeddability properties
of partial algebras, e.g. (EmbΨw) and (EmbΨw,f).

(EmbΨw) Every A ∈ PModΨw(Σ, T) weakly embeds into a total model of T .

Condition (EmbΨw,f) requires embeddability only for partial algebras where the
extension functions have a finite domain of definition. We proved that if K is
a set of Σ-flat and Σ-linear clauses in the signature Π and all weak partial
models of an extension T0 ∪ K of a base theory T0 with total Σ0-functions can
be embedded into a total model of the extension, then the extension is local (i.e.
that (EmbΨw) implies (LocΨ)) [18, 12, 13]. Conversely, we showed that if K is a
set of Σ-flat clauses in the signature Π then if T0 is a first-order theory and
the extension T0 ⊆ T =T0∪K satisfies (LocΨ) then every model in PModΨw(Σ, T)
weakly embeds into a total model of T .

Example 3. Let T0 be the theory of integers with successor (s) and ordering ≤
described by the model (N, s,≤). Let f be a new function symbol.

– K1
f = {x ≤ y → f(x) ≤ f(y)} satisfies condition Embidw hence defines a

local theory extension.

Obtaining Finite Local Theory Axiomatizations via Saturation 205

– NeitherK2
f = {f(x)≤f(s(x))} nor its flattened version {y≈s(x)→f(x)≤f(y)}

satisfy Embidw (there are weak partial models of this axiom which cannot be ex-
tended to total ones – for instance the partial model A with support N for which
fA(2) = 4, fA(4) = 2 and f is undefined everywhere else).

3.2 Locality and Saturation

In [4, 5], Basin and Ganzinger defined the notion of order locality, established
a link between peak saturation and order locality, and used these results for
automated complexity analysis. Given a term ordering ≺, we say that a set K
of clauses entails a clause C bounded by ≺ (notation: K |=� C), if and only if
there is a proof of K |= C from those ground instances of clauses in K in which
(under ≺) each term is smaller than or equal to some term in C.

We can also consider an ordered hyperresolution calculus for Horn clauses with
a selection function which selects in every clause C the set of all negative atoms of
C which contain a term which is maximal in C w.r.t. ≺ [5]. In [4, 5] the following
terminology is used in this case: Negative (resp. positive) premises are premises
in which the literal resolved upon is negative (resp. positive). Peak inferences
are inferences with the property that for every term t in the conclusion there is
a larger term t′ 0 t in the negative premise. Plateau inferences are inferences
for which in the succedent of a negative premise there exists an occurrence of a
maximal term. A set of Horn clauses K is peak saturated if all peak inferences
are redundant for which (i) the second, negative premise is in K, and (ii) the
first, positive premise’s antecedent does not contain a maximal term, and (iii)
the positive premise is in K or generated from K using plateau inferences.

A set of clauses K is called order local w.r.t. ≺ if whenever K |= C for a ground
clause C, then K |=� C.

Theorem 4 ([4, 5]). Let ≺T be a well-founded (possibly partial) term ordering
and ≺ a compatible and total atom ordering in first-order logic without equality.
Let K be a set of clauses which is reductive w.r.t. ≺T .

– If K is saturated w.r.t. ≺-ordered resolution, then K is order local w.r.t. ≺.
– Let K be a set of Horn clauses. K is peak saturated w.r.t. ≺-ordered hyper-

resolution with selection (cf. [5]) if and only if K is order local w.r.t. ≺.

We now consider a set of clauses of the form N = N0 ∪ K, where N0 is a set of
clauses over a signature Π0 – an axiomatization of a base theory T0 – and K is a
set of Π0 ∪ Σ-clauses, all containing additional extension functions in a set Σ.

Theorem 5. Assume that N = N0 ∪ K is a set of clauses where N0 consists of
Π0-clauses and K consists of Π0 ∪ Σ-clauses which contain extension functions
in Σ. Let ≺ be an ordering with the property that terms starting with a Σ-symbol
are larger than all other terms. Assume that N = N0 ∪ K is order local. Then:

(1) N0 is order local.
(2) The extension N0 ⊆ N0 ∪ K is Ψ -local for a suitable Ψ .

206 M. Horbach and V. Sofronie-Stokkermans

(3) Assume that T1 is a definitional extension of the theory axiomatized by N0

(i.e. obtained by extending the signature with new predicate symbols in a set
Pred′ with properties axiomatized by formulae of the form R(x1, . . . , xn) ↔
φR(x1, . . . , xn), where φR is a Π0-formula). Then the extension T1 ⊆ T1 ∪K
satisfies a Ψ ′-locality condition for all sets of clauses in the signature Π0∪Σ.

Proof. (1) follows from the locality of N0∪K and the fact that if C is a Π0-clause
then N0 ∪ K |=� C iff N0 |=� C. (2) By locality, the following are equivalent:
(i) N0 ∪ K |= C, (ii) (N0 ∪ K)[! C] |= C, (iii) (N0 ∪ K)[!Σ C] |= C (where
K[!Σ C] is the set of instances of K in which the terms starting with a symbol
in Σ are instantiated with ground terms smaller than some ground term of C).
(3) is proved using the link between embeddability and locality; the result holds
for all theories T1 with the property that on every model P of N0 interpretations
of the relations in Pred′ can be defined such that P becomes a model of T1. �

Theorem 4 allows us to obtain, by saturation, local axiomatizations from non-
local ones. We can saturate K under peak redundancy by first adding all clauses
obtained by plateau inferences between clauses in this set (obtaining a set P),
and then the conclusions of all peak inferences with negative premise in K and
positive premises of the corresponding form which are in K or P . One drawback
is that equality cannot be used as a built-in predicate: If the clauses contain
the equality predicate then the congruence axioms have to be added explicitly,
which can be inefficient. Another drawback is that the size of the saturated sets
of clauses can be very large. Often, in fact, infinitely many clauses are generated.

Example 6. Consider Pre∪{f(x)≤f(s(x))}, where Pre = {x≤x, x≤y∧y≤z →
x≤z}. By saturation we obtain the infinite set2: {f(x) ≤ f(sn(x)) | n ≥ 0}∪Pre.
In such cases, a usual resolution-based theorem prover will not be able to detect
saturation, because the set of clauses which are generated is infinite.

Our goal is to obtain finite representations of possibly infinite sets of clauses. For
this, we will use constrained clauses. As a by-product, the form of the constraints
will allow us to (conservatively) extend the language – e.g. by defining new
predicates – in order to obtain local presentations

4 A Constrained Inference Calculus

We use the standard inference rules for constrained ordered resolution and su-
perposition (cf. [11]). The ordered resolution rule, for example, is:

Ordered Resolution:

α1 ‖Γ1 → Δ1, A1 α2 ‖Γ2, A2 → Δ2

(α1, α2 ‖Γ1, Γ2 → Δ1, Δ2)σ

where (1) σ is the most general unifier of A1 and A2, (2) A1σ is strictly
maximal in (Γ1 → Δ1, A1)σ and (3) A2σ is maximal in (Γ2, A2 → Δ2)σ.

2 Similarly if we consider the flattened version of K2
f : {y = s(x)→ f(x) ≤ f(y)}.

Obtaining Finite Local Theory Axiomatizations via Saturation 207

This inference system can as usual be restricted by means of a literal selection
function. It is sound and complete as a slight variation of [10, 9], provided that
constraint satisfiability is decidable. As an example, this is the case when the
constraints are increasing (cf. Theorem 8 below).

We now extend the calculus to an inference system including a melting rule
[11], which serves as a limited form of induction. To define melting, we need
the notion of an ancestor. In any of the usual inferences, the ancestors of the
conclusion are the rightmost premise and all of its ancestors.

Melting:
(�x≈�y)σ̄ ‖C (�x≈�y)σ̄τ̄ ′ ‖C′

(�x≈�y)σ̄′′ ‖C
where (1) (�x≈�y)σ̄ ‖C is an ancestor of (�x≈�y)σ̄τ̄ ′ ‖C′, and (2) (�x≈�y)σ̄τ̄ ′ ‖C′

is a variant of (�x≈�y)σ̄τ̄ ‖C, and either (3.i) σ̄ is of the form σ̄ = σ̄1σ̄
∗
2 and

σ̄′′ = σ̄1(σ̄2|τ̄)∗, or (3.ii) σ̄ is not of this form and σ̄′′ = σ̄τ̄∗.

The ancestors of the conclusion of a melting inference are defined as the ancestors
of the leftmost premise.

Intuitively, the melting rule states: if it is possible to derive ατ̄ ‖C from α ‖C,
then it is also possible to repeat this process to derive ατ̄ τ̄ ‖C and so on. This
is not always true, but it does hold whenever there are no inferences where both
premises are constrained (except for melting inferences). Cf. [11, 7] for more
details.

Melting is important because it allows us in many cases to saturate clause
sets much faster, or even to turn an infinite saturation into a finite one.

Example 7. Consider the clause set {x≈y ‖P (x) → Q(y), P (x) → P (s(x))},
where the ordering is chosen such that P (t1) 0 Q(t2) for all ground terms t1, t2.
When saturating this clause set, we successively derive all clauses of the form
sn(x)≈y ‖P (x) → Q(y) by iterating the following inference step:

P (x) → P (s(x)) sn(x)≈y ‖P (x) → Q(y)

sn+1(x)≈y ‖P (x) → Q(y)

This derivation does not terminate. With melting however, we can make make
one such inference to derive s(x)≈y ‖P (x) → Q(y) and directly follow up with
a melting inference:

x≈y ‖P (x) → Q(y) s(x)≈y ‖P (x) → Q(y)

s∗(x)≈y ‖P (x) → Q(y)

(where s∗(x)≈y stands for (x≈y){x (→ s(x), y (→ y}∗). After this inference, the
clause set is already saturated.

However, note that Melting does not make the inference system terminating
in general. In [11], we presented conditions under which termination results for
saturation on unconstrained nonequational clauses carry over to constrained
clauses. Extending these results to clauses containing equational literals will be
the subject of further work.

208 M. Horbach and V. Sofronie-Stokkermans

5 Locality and Melting Constraints

In many settings, the regular constraints that appear just stack increments on
both sides of an equation. This is for example the case with the strict mono-
tonicity3 axiom s(x)≈y → s(f(x)) ≤ f(y), which gives rise to clauses of the form
sn(x)≈y → sn(f(x)) ≤ f(y) for each n ≥ 0, or to the constrained clause

(x≈y, v≈w)σ∗ ‖ v≈f(x) → w ≤ f(y)

for σ = {x (→ s(x), y (→ y, v (→ s(v), w (→ w}. If f : S1 → S2 is a function symbol
that connects two different sorts (which have different successor functions s1, s2),
then σ would be σ = {x (→ s1(x), y (→ y, v (→ s2(v), w (→ w}.

Let σ̄ be a substitution expression over Σ. Let Σ contain for each sort S of
a domain element of σ̄ a unique unary function symbol sS : S → S. Then σ̄
is increasing for Σ if, for each basic substitution τ in σ and each variable x,
either τ(x) is a constant or τ(x) = skS(x) for some k ≥ 0, where S is the sort
of x. A regular constraint is increasing for Σ if it is empty or if its substitution
expression is of the form σ̄1 ◦ · · · ◦ σ̄n such that each σ̄i is increasing for some
Σi ⊆ Σ, and Σi ∩ Σj contains only constants for i �= j.

We use a shorthand notation for increasing substitution expressions and in-
creasing constraints: For example, if σ = {x (→ s(s(x)), y (→ y} and τ = {x (→
0, y (→ 0}, we write σ∗τ as (s2, s0)∗(0, 0), and we write the constraint (x≈y)σ∗τ
as (x≈y)(s2, s0)∗(0, 0). With this notation, the constrained clause describing
strict monotonicity becomes (x≈y, v≈w)(s1, s0, s1, s0)∗ ‖ v≈f(x) → w ≤ f(y), or

(x≈y, v≈w)(s11, s
0
1, s

1
2, s

0
2)∗ ‖ v≈f(x) → w ≤ f(y)

if the domain and range of f have different sorts and we have two successor
functions. If in addition the substitution operates independently on the different
variables of the constraint, we simplify the notation even more and write, for
example, x≈s∗(s(y)) for (x≈y){x (→ x, y (→ s(y)}{x (→ x, y (→ s(y)}∗.

Increasing constraints are one class where the constrained calculus is applicable:

Theorem 8. Let Σ be a set of function symbols and α an increasing regular
constraint for Σ. The satisfiability of α is decidable.

Proof. The proof proceeds by rewriting the substitution expression of α until the
only remaining loops are of the form (sk1 , s

0
2, . . . , s

0
n)∗ and loops over the same

unary function symbols cannot interact. At this point, satisfiability reduces to
an easy unification problem. �

Example 9. Examples of clause sets where the use of constraints comes in
handy:

– Let all function symbols si be unary. For subterm locality, N [! G] is equiv-
alent to the set of clauses of the form

(s1| . . . |sn)∗(x1)≈t1, . . . , (s1| . . . |sn)∗(xm)≈tm, α ‖C ,

3 Similar considerations also hold for the monotonicity axiom s(x)≈y → f(x) ≤ f(y).

Obtaining Finite Local Theory Axiomatizations via Saturation 209

where α ‖C ∈ N has the free variables x1, . . . , xm and t1, . . . , tm are maximal
terms in G (w.r.t. the subterm ordering). That will be much more concise
than writing down all of N [! G] because the number of instances goes down
from |st(G)|m to |maxst(G)|m (maxst(G) are the maximal subterms of G).

– The standard ordering over the naturals is completely described by the satu-
rated set {y≈s+(x) ‖ x < y, y≈s+(x) ‖ y �< x}.

– Cycle-free lists can be characterized without a reachability predicate just by
the clause y≈p∗(p(x)) ‖ x≈y → x≈nil. More generally, a similar clause char-
acterizes absolutely free unary constructors.

As mentioned before, Theorem 4, a result by Basin and Ganzinger [5], does
not hold for full superposition instead of ordered resolution. Theorem 10 below
shows how a slightly restricted form of superposition allows to recover locality,
and that this is even true for clauses with regular constraints. Our proof extends
the one from [5].

In the following, saturation can always be interpreted as saturation with or
without melting, because (due to the definition of ground clauses) the constraints
do not affect the proofs.

Theorem 10. Let ≺T be a reduction ordering and ≺ a compatible and total
atom ordering. Let N be a set of constrained clauses that is reductive w.r.t. ≺T
and saturated w.r.t. ≺. Let each constrained clause in N with positive equational
atoms contain either a unique positive equation which is also maximal, or a
negative equation which is maximal. Let C be a ground clause whose succedent
does not contain any equations. Then N |= C iff N |=� C.

Proof. The direction N |=� C =⇒ N |= C is obvious and independent of
the properties of N and C. For the opposite direction, we prove by induction
on the length of this proof that (i) all clauses that are used in the proof are
! C, (ii) all clauses that are derived in the proof contain equational atoms only
negatively, and (iii) all clauses that are derived in the proof are unconstrained
ground clauses. This implies the statement of the theorem. �

In some cases, saturation is still too strong a requirement to arrive at finite
local axiomatizations.

Example 11. Consider the theory of a strictly monotone function f as de-
scribed in the beginning of this section, together with the theory of preorders:

N≤,f = {x ≤ x, x ≤ y ∧ y ≤ z → x ≤ z, α ‖ v≈f(x) → w ≤ f(y)}

For now, we ignore the exact shape of the constraint α. The axiomatization N≤,f

is local, but we cannot show this using the previous theorem, because inferences
between the clauses for transitivity and monotonicity allow the derivation of
additional clauses of the form

α ‖ v≈f(x), w1 ≤ w2 ≤ . . . ≤ w → w1 ≤ f(y) .

210 M. Horbach and V. Sofronie-Stokkermans

When the theory does not contain equality literals, this can be remedied by
considering a straightforward extension of peak saturation to constrained clauses:

An inference α1 ‖C1, α2 ‖C2 � α ‖C between constrained clauses is called a
peak inference (resp. plateau inference) if the unconstrained inference C1, C2 � C
is a peak inference (resp. plateau inference). A set of constrained Horn clauses
N is peak saturated if all peak inferences are redundant for which (i) the second,
negative premise is in N and (ii) the first, positive premise’s antecedent does
not contain a maximal term, and (iii) the positive premise is in N or generated
from N using plateau inferences.

Theorem 12. Let ≺T be a well-founded term ordering and ≺ a compatible and
total atom ordering. Let N be a set of constrained Horn clauses without equality
that is reductive w.r.t. ≺T and peak saturated w.r.t. ≺. Let C be a ground clause
without equality. Then N |= C iff N |=� C.

Proof. The proof of the respective theorem for unconstrained clauses in [5] only
makes use of properties of ground inferences. Because the ground instances of
constrained clauses are defined in such a way that they are unconstrained, that
proof carries over to constrained clause sets word by word. Note that for con-
strained clauses without equality literals, the only applicable rules are ordered
resolution and factoring. �

Example 13. In our running example of strict monotonicity, the only nonre-
dundant inference that is enabled for N≤,f is between the constrained clause for
monotonicity and an instance of transitivity:

α ‖ v≈f(x) → w ≤ f(y) ‖w′ ≤ w ∧ w ≤ f(y) → w′ ≤ f(y)

α ‖ v≈f(x), w′ ≤ w → w′ ≤ f(y)

(There is also an inference into the other antecedent literal of the transitivity
clause, for which the situation is similar.) It is a plateau inference because f(y)
appears in the succedent of the right premise. The inferences from this clause
and transitivity are again plateau inferences, and the same holds for all fur-
ther inferences. Since no peak inferences are possible, N≤,f is peak-saturated. By
Theorem 12, N≤,f is also order local.

Example 14. Other examples where the theorem directly proves locality because
the constrained clause sets are (peak) saturated:

– The theory axiomatized by: { x≈s∗(0) ‖P (x)}
– The theory of even and odd numbers axiomatized as follows:

x≈(ss)∗(0) ‖Even(x), x≈(ss)∗(s(0)) ‖Odd(x) }

– The theory of number pairs with an even sum (cf. [5]):

{x≈(ss)∗(0) , y≈(ss)∗(0) ‖Evensum(x, y),

x≈(ss)∗(s(0)), y≈(ss)∗(s(0)) ‖Evensum(x, y) }

Obtaining Finite Local Theory Axiomatizations via Saturation 211

– Monotonicity on intervals {ai, . . . , bi}, i ∈ I, where the ai and bi are concrete
natural numbers:

N≤ ∪
⋃
i∈I

{ s∗(ai)≈x, s∗(x)≈y, s∗(y)≈bi ‖ f(x) ≤ f(y) }

– Monotonicity on unbounded intervals like {a, . . .} and {. . . , b} (similar).

Example 15. Consider the theory axiomatized by N = N0∪{ x≈s∗(0) ‖P (x)},
where N0 is the axiomatization of natural numbers consisting of the absolutely
free constructor axioms for s and 0 (a set of Horn clauses which is local [19] and
can be proved to be order local also using Theorem 12). Let C = P (a), where a
is a new constant such that 0 ≺ a ≺ s(0). By locality, we know that N |= C iff
N [! C] |= C. Then N [! C] = {P (0)}, so N [! C]∪¬C is satisfiable. This shows
that N �|= C. (This is explained by the fact that we do not consider satisfiability
in the initial model of the natural numbers, but in some model of N .)

Often the axiomatizations have the form N = N0 ∪K, where N0 is an axiomati-
zation of a base theory and K defines properties of additional functions. The con-
straints in the saturated form may suggest ways of defining new predicates which
would allow to use a finite clause notation. Assume f has sort i → o. The clause
s∗(x)≈y ‖ f(x) ≤ f(y) can be replaced for instance with x ≤′ y → f(x) ≤ f(y),
where ≤′ is a new predicate. The form of the constraint guides in giving a (pos-
sibly recursive) definition for ≤′. If the extension T1 obtained this way has one
of the properties in Theorem 5(3), then the extension T1 ⊆ T1 ∪ K satisfies a
suitable Ψ ′-locality property.

Limitations. For computing finite saturations (or peak saturations) of sets of
constrained clauses it is very important to have a decision procedure for checking
satisfiability of the constraints. In Theorem 8 we showed that if the constraints
only contain unary constructors, then checking satisfiability is decidable. How-
ever, satisfiability is undecidable for most extensions of the presented fragment
of regular constraints. This can usually be proven by a reduction of the Post
correspondence problem.

Theorem 16. Satisfiability of regular constraints with substitution expression σ
is undecidable, even if all function symbols are at most unary and σ satisfies all
conditions of an increasing substitution expression except the first.

Proof. We show that with every Post correspondence problem P we can asso-
ciate a regular constraint α with substitution expression σ (which satisfies all
conditions of an increasing substitution expression except the first) such that P
has a solution if, and only if, α is satisfiable. �

6 Conclusion

In this paper we presented a method for obtaining finite representations of local
sets of clauses from possibly non-local ones. We extended the work of Basin

212 M. Horbach and V. Sofronie-Stokkermans

and Ganzinger [4, 5]: In order to address the fact that saturation can generate
infinite sets of clauses, we used constrained clauses, which allow us to give a
finite representation for possibly infinite saturated sets of clauses and defined an
ordered resolution and superposition calculus for such constrained clauses. We
established links between locality and saturation for constrained clauses. The
form of the constraints suggests definitions for new predicates which would yield
saturated – hence local – theory axiomatizations.

In future work we would like to analyze possibilities of reasoning in the initial
model (not investigated here), and ways of defining new predicate symbols, e.g.
using recursive definitions; we hope that some of the results in [19] could prove
useful for this. We plan to study the applicability of our results to reasoning in
various data structures.

Acknowledgments. This work was partly supported by the German Research Coun-

cil (DFG) as part of the Transregional Collaborative Research Center “Automatic Ver-

ification and Analysis of Complex Systems” (SFB/TR 14 AVACS). See www.avacs.org

for more information.

References

[1] Armando, A., Bonacina, M.P., Ranise, S., Schulz, S.: New results on rewrite-based
satisfiability procedures. ACM Trans. Comput. Log. 10(1) (2009)

[2] Armando, A., Ranise, S., Rusinowitch, M.: A rewriting approach to satisfiability
procedures. Inf. Comput. 183(2), 140–164 (2003)

[3] Bachmair, L., Ganzinger, H.: Rewrite-based equational theorem proving with se-
lection and simplification. J. of Logic and Computation 4(3), 217–247 (1994)

[4] Basin, D., Ganzinger, H.: Complexity analysis based on ordered resolution. In:
Proc. 11th IEEE Symposium on Logic in Computer Science (LICS 1996), pp.
456–465. IEEE Computer Society Press (1996)

[5] Basin, D.A., Ganzinger, H.: Automated complexity analysis based on ordered
resolution. Journal of the ACM 48(1), 70–109 (2001)

[6] Ganzinger, H.: Relating semantic and proof-theoretic concepts for polynomial time
decidability of uniform word problems. In: Proc. 16th IEEE Symposium on Logic
in Computer Science (LICS 2001), pp. 81–92. IEEE Computer Society Press (2001)

[7] Horbach, M.: Superposition-based Decision Procedures for Fixed Domain and
Minimal Model Semantics. PhD thesis, Max Planck Institute for Computer Sci-
ence and Saarland University (2010)

[8] Horbach, M., Sofronie-Stokkermans, V.: Obtaining finite local theory axiom-
atizations via saturation. Technical Report ATR 93, Sonderforschungsbere-
ich/Transregio 14 AVACS (2013)

[9] Horbach, M., Weidenbach, C.: Superposition for fixed domains. In: Kaminski, M.,
Martini, S. (eds.) CSL 2008. LNCS, vol. 5213, pp. 293–307. Springer, Heidelberg
(2008)

[10] Horbach,M.,Weidenbach,C.: Decidability results for saturation-basedmodel build-
ing. In: Schmidt, R.A. (ed.) CADE 2009. LNCS (LNAI), vol. 5663, pp. 404–420.
Springer, Heidelberg (2009)

[11] Horbach, M., Weidenbach, C.: Deciding the inductive validity of ∀∃∗ queries. In:
Grädel, E., Kahle, R. (eds.) CSL 2009. LNCS, vol. 5771, pp. 332–347. Springer,
Heidelberg (2009)

Obtaining Finite Local Theory Axiomatizations via Saturation 213

[12] Ihlemann, C., Jacobs, S., Sofronie-Stokkermans, V.: On local reasoning in verifi-
cation. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963,
pp. 265–281. Springer, Heidelberg (2008)

[13] Ihlemann, C., Sofronie-Stokkermans, V.: On hierarchical reasoning in combina-
tions of theories. In: Giesl, J., Hähnle, R. (eds.) IJCAR 2010. LNCS (LNAI),
vol. 6173, pp. 30–45. Springer, Heidelberg (2010)

[14] Kirchner, H., Ranise, S., Ringeissen, C., Tran, D.-K.: On superposition-based sat-
isfiability procedures and their combination. In: Van Hung, D., Wirsing, M. (eds.)
ICTAC 2005. LNCS, vol. 3722, pp. 594–608. Springer, Heidelberg (2005)

[15] Lynch, C., Morawska, B.: Automatic decidability. In: 17th IEEE Symposium on
Logic in Computer Science (LICS 2002), pp. 7–16. IEEE Comp. Soc. (2002)

[16] Lynch, C., Ranise, S., Ringeissen, C., Tran, D.-K.: Automatic decidability and
combinability. Inf. Comput. 209(7), 1026–1047 (2011)

[17] Nieuwenhuis, R., Rubio, A.: Theorem proving with ordering constrained clauses.
In: Kapur, D. (ed.) CADE 1992. LNCS, vol. 607, pp. 477–491. Springer, Heidelberg
(1992)

[18] Sofronie-Stokkermans, V.: Hierarchic reasoning in local theory extensions. In:
Nieuwenhuis, R. (ed.) CADE 2005. LNCS (LNAI), vol. 3632, pp. 219–234.
Springer, Heidelberg (2005)

[19] Sofronie-Stokkermans, V.: Locality results for certain extensions of theories with
bridging functions. In: Schmidt, R.A. (ed.) CADE-22. LNCS (LNAI), vol. 5663,
pp. 67–83. Springer, Heidelberg (2009)

[20] Tushkanova, E., Ringeissen, C., Giorgetti, A., Kouchnarenko, O.: Automatic decid-
ability: A schematic calculus for theories with counting operators. In: Proceedings
the RTA 2013 (to appear, 2013)

[21] Weidenbach, C.: Combining superposition, sorts and splitting. In: Robinson,
A., Voronkov, A. (eds.) Handbook of Automated Reasoning, vol. 2, ch. 27,
pp. 1965–2012. Elsevier (2001)

Non-cyclic Sorts for First-Order Satisfiability

Konstantin Korovin�

School of Computer Science
The University of Manchester

United Kingdom
korovin@cs.man.ac.uk

Abstract. In this paper we investigate the finite satisfiability problem for first-
order logic. We show that the finite satisfiability problem can be represented as a
sequence of satisfiability problems in a fragment of many-sorted logic, which we
call the non-cyclic fragment. The non-cyclic fragment can be seen as a generali-
sation of the effectively propositional fragment (EPR) in the many-sorted setting.
We show that the non-cyclic fragment is decidable by instantiation-based meth-
ods and present a linear time algorithm for checking whether a given clause set
is in this fragment. One of the distinctive features of our finite satisfiability trans-
lation is that it avoids unnecessary flattening of terms, which can be crucial for
efficiency. We implemented our finite model finding translation in iProver and
evaluated it over the TPTP library. Using our translation it was possible solve a
large class of problems which could not be solved by other systems.

1 Introduction

Currently, the most successful methods for finite model finding in first-order logic are
based on exhaustive flattening of function terms [3, 10]. We argue that flattening can
have a detrimental effect on efficiency and present a new translation of the finite model
finding problem into a fragment of many-sorted logic, which we call the non-cyclic
fragment.

One of the main properties of the non-cyclic fragment is that it has a finite Herbrand
universe and therefore can be seen as a natural generalisation of the EPR fragment
(or Bernays-Shönfinkel-Ramsey fragment) in the many-sorted setting. The non-cyclic
fragment is defined by imposing a condition on the signature, which prohibits cyclic
dependencies between functions. When this condition is satisfied we call the signa-
ture non-cyclic. Variants of this fragment have been investigated in a different con-
text in [1, 12, 14]. In this paper we take an algorithmic point of view. First, we argue
that instantiation-based reasoning methods such as Inst-Gen [15, 20] and Model Evo-
lution [6] are decision procedures for the non-cyclic fragment. Second, we present a
linear time algorithm for checking whether a many-sorted signature is non-cyclic and
more generally for classifying sorts into cyclic and non-cyclic sorts. Let us note that
in a number of applications such as hardware verification and knowledge representa-
tion, signatures can contain many thousands of symbols and hence we need efficient
algorithms for checking whether a signature is non-cyclic.

� Supported by a Royal Society University Fellowship.

P. Fontaine, C. Ringeissen, and R.A. Schmidt (Eds.): FroCoS 2013, LNAI 8152, pp. 214–228, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Non-cyclic Sorts for First-Order Satisfiability 215

We observe that in many cases problems do not fall completely into the EPR or more
generally non-cyclic fragment, but rather contain combinations of EPR/non-cyclic sorts
with cyclic sorts. We propose to take advantage of this sort separation in the setting of
finite model finding. For this we extended a framework of the EPR-based finite model
finding developed in [3]. The translation in [3] is based on exhaustive flattening of terms
which allows one to replace functions with predicates. Exhaustive flattening of terms is
necessary when searching for minimal models with respect to the number of elements.
However, flattening can also be detrimental for performance of reasoning methods due
to weakening the role of unification. In this paper we propose to reduce the amount of
flattening without compromising completeness with respect to finite satisfiability. Our
main idea is to use cyclic/non-cyclic sort separation to restrict flattening to a subset
of sorts, which we call the sort-restricted flattening. In this way we avoid flattening
of certain terms and translate the problem of finite model finding into a sequence of
satisfiability problems in the non-cyclic fragment. Our sort-restricted transformation is
complete for finite satisfiability but the minimality requirement on the obtained models
is relaxed: only flattened sorts will be minimal. Since the non-cyclic fragment can be
decided by instantiation-based methods it is natural to to use instantiation based reason-
ing systems such as iProver [19], Darwin [4] or Equinox [8].

We implemented our sort classification algorithm in iProver and evaluated it over
the TPTP library [28] which is the largest available collection of first-order problems.
Since most of the problems in TPTP are unsorted we use a sort inference algorithm to
automatically annotate first-order problems with sorts, which is similar to one used by
Paradox [10]. Our experiments show interesting results. We observe that many problems
in domains ranging from verification to knowledge representation contain combinations
of EPR, non-cyclic and cyclic sorts. Therefore it seems promising to advance reasoning
methods which can benefit from a such combination. Second, we show that using our
sort-restricted transformation it was possible to solve a large class of problems with the
rating 1 from TPTP v5.3 (54 in total), which could not be solved by any other known
system. The sort-restricted transformation helped iProver to win the FNT (First-order
Non-Theorems) division at CASC@Turing 2012.

Related work. In [3], an EPR-based translation of finite satisfiability was developed
based on exhaustive flattening of terms. In this paper we provide a translation into
the non-cyclic fragment of many-sorted logic which allows one to avoid unnecessary
flattening. Many-sorted logic has been intensively used in the SMT community and its
advantage for first-order modelling has been advocated in e.g., [1, 12, 14]. The non-
cyclic fragment can be shown to be equivalent to the St0 fragment in [1]. In this paper
we present a linear-time algorithm for checking whether the formula is in the non-cyclic
fragment, propose a separation of sorts into cyclic and non-cyclic with applications to
finite satisfiability, and argue that instantiation-based methods are decision procedures
for this fragment. An interesting method for satisfiability of quantified formulas in the
SMT setting was presented in [17], which is based on representing relevant domains
using set constraints. This approach can be also applied to first-order logic, but unlike
our method, is not necessarily complete with respect to finite satisfiability. It would be
interesting to investigate how our method can be combined with [17], and a very recent
approach to finite model finding in the SMT setting presented in [24, 25].

216 K. Korovin

2 Preliminaries

In this paper we consider many-sorted first-order logic with equality. A signature is a
tuple Σ = 〈S,F ,P , arityF , arityP〉 consisting of a non-empty set of sorts S, a set of
function symbols F , a set of predicate symbols P , arity functions arityF : F → S∗×S
and arityP : P → S∗, where S∗ denotes the set of finite sequences of sorts. For a
function symbol f with arity arityF (f) = 〈〈s0, . . . , sn−1〉, sn〉, we call s0, . . . , sn−1

argument sorts and sn the value sort of f . A constant is a function with the empty
sequence of arguments. We assume that there is at least one constant of each sort. In
this paper we consider only finite signatures. For each sort s we consider a countable set
of variables of this sort denoted as Vs. Equality over a sort s will be denoted by �s and
is assumed to be a logical symbol (not included in Σ), defining equality over elements
of the same sort. We will omit index s in �s when the sort is clear from the context.
Well-sorted terms and atoms are built from variables and sort-respecting applications
of function and predicate symbols in the usual way. We say that a term t is of sort s,
denoted as sort(t) = s, if either t is a variable of sort s or the top function symbol of
t has the value sort s. A literal is an atom or its negation and a clause is a multi-set of
literals. We will not distinguish clauses equivalent up to renaming of variables.

A many-sorted interpretation (structure) A (overΣ) consists of 1) a domain dom(A)
which is a disjoint union of non-empty sets ∪s∈SAs indexed by sorts, 2) a collection of
functions fA : As0 × · · · × Asn−1 (→ Asn where arityF(f) = 〈〈s0, . . . , sn−1〉, sn〉,
for each f ∈ F , and 3) a collection of relations PA : As0 × · · · × Asn−1 where
arityP(P) = 〈s0, . . . , sn−1〉 for each P ∈ P .

Unsorted first-order logic can be seen as an instance of sorted logic with a single
sort.

An expression is ground if it does not contain variables. A Herbrand universe over
a signature Σ is the set of all ground terms. It is folklore knowledge that automated
reasoning methods such as resolution, superposition and instantiation can be straight-
forwardly adapted from unsorted logic to many-sorted by changing the unification al-
gorithm to sort-aware unification.

3 Non-cyclic Sorts and Finite Herbrand Universe

First we consider the EPR fragment of first-order logic in clausal form, which can be
defined as follows. An EPR signature is a finite signature which does not contain func-
tion symbols other than constants. The EPR fragment in clausal form consists of sets
of clauses over an EPR signature. One of the main properties of EPR signatures is that
the set of all ground terms (the Herbrand universe) over such a signature is finite. This
implies that the set of all (not necessarily ground) instances of any finite set of EPR
clauses is also finite. A direct consequence of this is that reasoning methods such as
Inst-Gen [15, 20], Model Evolution [6], Equinox [8], BUMG [5] and DPLL(SX) [23]
are decision procedures for the EPR fragment.

In unsorted first-order logic EPR signatures are exactly the signatures with a finite
Herbrand universe. As noted in [1, 14], in the presence of sorts, signatures different
from EPR can also have a finite Herbrand universe. We characterise them below.

Non-cyclic Sorts for First-Order Satisfiability 217

Definition 1. Consider a signature Σ = 〈S,F ,P , arityF , arityP〉. A sort dependency
graph of Σ is a directed graph SD(Σ) = 〈S, SR〉 with the set of vertices S and the
edge relation SR such that SR(s1, s2) if and only if there is a function symbol f ∈ F
with an argument sort s1 and the value sort s2.

A path (of length n) in a graph G is a sequence of vertices v0, . . . , vn such that each
pair (vi, vi+1) is in the edge relation of G, where 0 ≤ n and 0 ≤ i < n. Note that we
allow a path to be of the zero length, i.e., consist of a single vertex. A path is non-trivial
if its length is strictly greater than 0.

Definition 2. A sort s is called cyclic in Σ if there exists a non-trivial path in the sort
dependency graph from s to s, otherwise it is called non-cyclic. A signature Σ is called
cyclic if there is a cyclic sort in Σ and otherwise it is called non-cyclic.

Non-cyclic signatures can be seen as a natural generalisation of the EPR signatures
preserving the property of having a finite Herbrand universe.

Proposition 1. The Herbrand universe over any non-cyclic signature is finite. Con-
versely, if a Herbrand universe over a signature is finite then the signature is non-cyclic.

Proof. It is easy to see that the depth of any term is bounded from above by the longest
path in the sort dependency graph which in the case of non-cyclic signatures is bounded
by the number of function symbols. In the case when a signature is cyclic we can con-
struct terms of unbounded depth. From this proposition follows.

We define the non-cyclic clausal fragment of first-order logic to consist of sets of
clauses over a non-cyclic signature. In a similar way as for the EPR fragment it is
easy to see that instance based methods are also decision procedures for the non-cyclic
fragment. We formulate this as a theorem for Inst-Gen [15,20] and Inst-Gen-Eq [16,22]
but it also holds for other instantiation based methods such as Model Evolution. Inst-
Gen is an instantiation-based method, complete for first-order logic and Inst-Gen-Eq is
its extension with superposition-based equational reasoning. In a nutshell, Inst-Gen and
Inst-Gen-Eq combine efficient ground reasoning with gradual instantiations of clauses,
based on first-order reasoning.

Theorem 1. Inst-Gen and Inst-Gen-Eq are decisions procedures for the non-cyclic
fragment with equality.

Proof. (Sketch) Consider a set of clauses over a non-cyclic signature Σ. From Propo-
sition 1 it follows that the Herbrand universe over Σ is finite. Therefore the maximal
depth of terms (including non-ground terms) is also bounded. The Inst-Gen calculus
only generates instances of the original clauses and since the depth of terms is bounded
there are only finitely many such instances. The Inst-Gen calculus treats equality ax-
iomatically. Let us note that adding axioms of equality does not change the non-cyclicity
of a clause set.

Inst-Gen-Eq replaces axiomatic equality with superposition-based equational rea-
soning. Inst-Gen-Eq uses substitutions extracted from unit superposition proofs for in-
stantiating the original clauses. Since the term depth is bounded, there are only finitely

218 K. Korovin

many such superposition proofs and only finitely many instances of clauses can be
generated.

After analysing problems from the TPTP library we observed that in many cases
problems do not fall completely into the EPR or more generally non-cyclic fragment
but rather contain combinations of EPR/non-cyclic sorts with cyclic sorts. We refer to
Section 7 for details. Our next goal is to partition the signature into cyclic and non-cyclic
parts and extend finite model finding methods to gain from this partition.

A strongly connected component (SCC) of a directed graph G is a maximal induced
subgraph G′ of G such that for each pair of vertices in G′ there is a path connecting
them in G′. A vertex v in a graph G is called looping if there is an edge from v to v.
An SCC of a graph is called trivial if it consists of a non-looping vertex, otherwise it is
called non-trivial.

Proposition 2. Consider a signature Σ. A sort s is cyclic in Σ if and only if s belongs
to a non-trivial SCC of the sort dependency graph of Σ.

Proof. If a sort s belongs to a non-trivial SCC then either: 1) s is looping and hence s
is cyclic, or 2) there is another sort s′ in the same SCC. In the latter case there is a path
from s to s′ and a path from s′ to s and therefore s is also cyclic. For the other direction
it is easy to see that if there is a non-trivial path from s to s then this path belongs to the
same SCC and therefore this SCC is non-trivial.

The set of all SCCs of the sort dependency graph of a signature Σ will be denoted by
SCC (Σ). Define the set of cyclic sorts over Σ as CS(Σ) and the set of non-cyclic sorts
as NCS(Σ). For any signature Σ, the set of sorts of this signature S can be partitioned
into cyclic and non-cyclic sorts, i.e., S = CS(Σ) ∪ NCS(Σ).

Next we use Tarjan’s linear-time algorithm for finding strongly connected compo-
nents of directed graphs [29] for partitioning a signature into cyclic and non-cyclic
sorts.

Theorem 2. There is a linear-time algorithm that given a signature Σ partitions sorts
of Σ into cyclic and non-cyclic sorts.

Proof. The required algorithm can proceed as follows.

1. Construct the sort dependency graph SD(Σ) from Σ.
2. Apply Tarjan’s linear time algorithm [29] to obtain the set of all strongly connected

components SCC (Σ) of SD(Σ).
3. The set of all sorts that occur in trivial components of SCC (Σ) will be the set

of all non-cyclic sorts NCS(Σ) and the set of all sorts that occur in non-trivial
components is the set of all cyclic sorts CS(Σ).

It is easy to see that all three steps can be done in time linear in the size of the signature.

Theorem 2 also provides us with a linear time algorithm for checking whether a given
signature is cyclic: partition the sort dependency graph into SCC and check whether
there is a non-trivial component.

Non-cyclic Sorts for First-Order Satisfiability 219

Example 1. Consider a signature Σ = 〈S,F ,P , arityF , arityP〉 where S =
{s0, s1, s2}, F = {f, g, h, c0, c1, c2} and arity(f) = 〈〈s0, s1〉, s2〉, arity(g) =
〈〈s0〉, s0〉, arity(h) = 〈〈s0〉, s1〉 and arity(ci) = 〈〈〉, si〉 for 0 ≤ i ≤ 2. An exam-
ple of a well-formed term in this signature can be t = f(g(x), h(g(g(x)))), where x
is a variable of sort s0. The sort dependency graph SD(Σ) and its strongly connected
components SCC (Σ) are shown on Figure 1. From this we can see that the set of cyclic
sorts is CS(Σ) = {s0} and the set of non-cyclic sorts is NCS(Σ) = {s1, s2}. We can
see that the term t is of a non-cyclic sort but contains subterms of cyclic and non-cyclic
sorts.

s0

s1s2

s0

s1s2

Fig. 1. The sort dependency graph SD(Σ) and its strongly connected components SCC (Σ)

4 EPR-Based Finite Model Finding

In this section we overview a translation of the finite satisfiability problem into the
EPR fragment on which we will base our translation into the non-cyclic fragment. Our
presentation follows [3] with a slight adaptation to the sorted setting. Let us recapture
several notions from [3]. An atom is called (completely) flat if it has one of the following
forms: 1) p(x0, . . . , xn−1) where p is a predicate, 2) x �� f(x0, . . . , xn−1), where f is
a function symbol, or 3) x � y. Let us note that function symbols can occur only in flat
atoms of the from x �� f(x0, . . . , xn−1). A literal is flat if its atom is flat. A clause is
flat if all its literals are flat. Consider a clause C[t]. A flattening transformation applied
to C[t] wrt. t produces a clause x �� t∨C[x] where x is a fresh variable. By applying the
flattening transformation we can transform any set of clauses into an equivalent set of
flat clauses [2,3,7]. Let FT (S) denote a set of flat clauses obtained from S by applying
the flattening transformation.

Consider a set of flat clauses S over a signature Σ. For each function symbol in Σ
with arity arity(f) = 〈〈s0, . . . , sn−1〉, sn〉 we introduce a new predicate symbol Pf

with arity arity(Pf) = 〈s0, . . . , sn−1, sn〉. Informally, the predicate Pf will be used to
represent the function f with the last argument representing the value of f . We call these
introduced predicates as function predicates. Now we can eliminate functions from our
clause set by applying the following function elimination transformation:

y �� f(x0, . . . , xn−1) ∨ C ⇒ ¬Pf (x0, . . . , xn−1, y) ∨ C.

Let FE(S) denote the set of clauses obtained by exhaustive applications of func-
tion elimination to S. In order to ensure that a function predicate Pf represents a graph
of a function we need to require Pf to be left-total and right-unique, as defined be-
low. Consider an interpretation I with a relation P of arity(P) = 〈s0, . . . , sn−1, sn〉,

220 K. Korovin

where 0 ≤ n. The relation P is called left-total in I if for every sequence of elements
a0, . . . , an−1 in I , of the respective sorts s0, . . . , sn−1, there exists an element an ∈ I
of sort sn such that P (a0, . . . , an) holds in I . The relation P is called right-unique in I
if whenever I � P (a0, . . . , an−1, an) and I � P (a0, . . . , an−1, a

′
n) then I � an � a′n.

It is shown in [3] that we can drop the right-uniqueness requirement when we consider
flat clauses, preserving finite satisfiability. When we consider finite domains we can
express left-totality in the EPR fragment as shown below.

Let us consider finite satisfiability of flat clauses. For each sort s we fix a finite set
of constants ds1, . . . , d

s
k, called domain constants, representing all elements of this sort.

Collection of all domain constants will be called a constant domain and denoted by D.
Then left-totality of a function predicate Pf over a constant domain can be expressed

using the following totality axiom:

Pf (x0, . . . , xn−1, d
s
1) ∨ · · · ∨ Pf (x0, . . . , xn−1, d

s
k),

where ds1, . . . , d
s
k are all domain constants of the sort s.

For a constant domain D, let TAx (D) denote the set of all totality axioms of function
predicates in the signature. For a set of clauses S and a constant domain D we call the
set of clauses BFM (S,D) = FE(FT (S)) ∪ TAx(D) the basic finite model finding
translation of S with respect to D.

Theorem 3. [3] A set of clauses S is satisfiable over a finite constant domain D if and
only if BFM (S,D) is satisfiable.

As shown in [3], due to flattening it is also possible to eliminate the equality predicate
altogether by introducing axioms stating disequality of the domain constants: E(D) =
{dsi ��s dsj | i �= j, dsi , d

s
j ∈ D}. After adding the disequality axioms one can replace

the equality predicate �s by a fresh binary predicate Es for each sort s, preserving
satisfiability. We denote this translation as BFME (S,D).

Let us note that the result of applying any of the translations BFM , or BFME is
always an EPR set of clauses, and therefore instantiation-based methods can be used
for checking satisfiability of BFM (S,D) and BFME (S,D).

Without loss of generality we can restrict ourselves to the Herbrand interpretations
which in this case are built over the domain constants. The search for finite satisfiability
then starts with a constant domain consisting of a single constant in each sort and then
proceeds by iteratively adding new constants until BFME (S,D) becomes satisfiable.
One of the properties of this approach is that if a set of clauses is finitely satisfiable then
we obtain a minimal model with respect to the number of domain elements.

5 Flattening and Finite Model Finding

As we have seen, flattening is essential for the basic finite model finding translation.
Unfortunately, it also can have a detrimental effect on reasoning methods.

Example 2. Consider an unsorted signature consisting of n unary predicates P1, . . . Pn

and n constants c1, . . . , cn. Consider the following set of ground unit clauses:

S =
⋃

1≤i≤n

{Pi(ci)}
⋃ ⋃

1≤i<j≤n

{¬Pi(cj)}.

Non-cyclic Sorts for First-Order Satisfiability 221

Satisfiability of S can be trivially shown by propositional reasoning, (considering
Pi(cj) as propositional atoms). Let us consider the basic finite model translation applied
to S. After flattening and introduction of function predicates Pci for each constant ci,
1 ≤ i ≤ n we obtain the following set of clauses:

FE(FT (S)) =
⋃

1≤i≤n

{¬Pci(x) ∨ Pi(x)}
⋃ ⋃

1≤i<j≤n

{¬Pcj (x) ∨ ¬Pi(x)}.

It is easy to see that any satisfying interpretation for this set of clauses will have the
domain size at least n. Therefore the finite model finding procedure will iteratively
increase the domain size, by adding domain axioms until n is reached. Moreover rea-
soning with intermediate domain sizes can be nontrivial due to introduced symmetries.

Example 2 is deliberately simple. Let us slightly modify this example by adding a
“dummy” argument to each predicate Pi and replace Pi(cj) with Pi(cj , f(x)). Then,
although this change obviously does not affect satisfiability, the resulting set is chal-
lenging for instantiation-based systems.

We can see that even for simple problems flattening can introduce variables into the
problem and increase the search space. Our approach aims at reducing the amount of
unnecessary flattening. First we can observe that if our problem is EPR as in Example 2,
then we can apply instantiation-based methods directly to such a problem without ap-
plying the flattening transformation. In the next section we restrict flattening further to
terms of cyclic sorts.

6 Sort-Restricted Flattening

Our approach is to restrict flattening to specified sorts and at the same time keep the
resulting translation in the non-cyclic fragment.

Consider a signature Σ with the set of sorts S. Consider a subset of S ′ ⊆ S. We
say that an interpretation I is S ′-finite if each sort in S ′ has a finite domain in I . A
formula is S ′-finitely satisfiable if it is satisfied in an S ′-finite interpretation. S ′-finite
satisfiability generalises finite satisfiability, that is if a formula is finitely satisfiable then
it is also S ′-finitely satisfiable for any S ′ ⊆ S, but the converse in general does not hold.

The sort-restricted flattening transformation with respect to S ′ is defined as follows:

L[t] ∨ C ⇒ x �� t ∨ L[x] ∨ C,

where:

1. t is not a variable,
2. sort(t) ∈ S ′,
3. L[t] has one of the forms: t � s, s � t, t �� s, or (¬)P [t] for a predicate P , and
4. x does not occur in L[t] ∨C.

The result of exhaustive application of the sort-restricted flattening transformation to a
set of clauses S, is denoted as FT R(S ′, S).

We sort-restrict other ingredients of the finite satisfiability transformation:

222 K. Korovin

1. function elimination is restricted to functions with value sorts in S ′, denoted by
FER(S ′, S);

2. a sort-restricted finite constant domain (or just sort-restricted constant domain) is a
collection of constants d̄s1 , . . . , d̄sm , denoted by DR(S ′), where S ′ = {s1, . . . , sm}
and each d̄si is a non-empty sequence of constants of sort si. We assume that do-
main constants are fresh for the signature Σ;

3. totality axioms for function predicates over a sort-restricted constant domainDR(S′)
are defined as in Section 4 and will be denoted as TAx(DR).

Consider a set of clauses S over signature Σ. We say that S is satisfiable in a sort-
restricted constant domain DR(S ′) (or DR(S ′) satisfiable) if there is a model I of S
which can be expanded with constants from DR(S ′) so that each element in I of a sort
s ∈ S ′ is named by a constant in DR(S ′). It is easy to see that S is S ′-finitely satisfiable
if and only if there is a sort-restricted constant domain DR(S ′) such that S is DR(S ′)
satisfiable.

For a set of clauses S, a subset of sorts S ′ ⊆ S and a sort-restricted constant domain
DR(S ′) we call the set of clauses BFMR(S ′, S,DR) = FER(S ′,FT R(S ′, S)) ∪
TAx(DR) the sort-restricted finite model finding translation (or just the sort-restricted
translation) of S with respect to S ′ and DR(S ′).

Theorem 4. Consider a signature Σ with a set of sorts S, a subset of sorts S ′ ⊆ S
and a sort-restricted constant domain DR(S ′). A set of clauses S over Σ is DR(S ′)
satisfiable if and only if the sort-restricted translation BFMR(S ′, S,DR) is satisfiable.

Proof. Adaptation of results from [3].

Similar to the basic case we can eliminate equality predicate over sorts in S ′ by first
adding axioms stating disequality of the domain constants:

E(DR) = {dsi ��s dsj | i �= j, dsi , d
s
j ∈ DR}

and then replacing �s by a fresh binary predicate Es for each sort s ∈ S ′. We denote this
translation asBFMER(S ′, S,DR). Let us note that after applyingBFMER(S ′, S,DR),
equality can still remain between terms of sorts which are not in S ′.

In order to keep BFMER(S ′, S,DR) in a decidable fragment we propose to restrict
flattening to a superset of cyclic sorts. For this, we define a set of sorts to which we
do not apply flattening to be any subset of non-cyclic sorts NCS(Σ), which we call
non-flattening sorts and denote by NFS(Σ). Then, the set of sorts to which we apply
flattening will be S \ NFS(Σ), which we call flattening sorts and denote by FS(Σ).
Examples of non-flattening sorts include the empty set of sorts, the set of EPR sorts and
the set of all non-cyclic sorts.

Proposition 3. Consider a signature Σ, a set of flattening sorts FS(Σ) and a sort-
restricted constant domain DR(FS). Then, for any set of clauses S the sort-restricted
translation BFMER(FS, S,DR) is in the non-cyclic fragment.

The search for finite satisfiability then starts with a sort-restricted constant domain
consisting of a single constant in each flattening sort and then proceeds by iteratively

Non-cyclic Sorts for First-Order Satisfiability 223

adding new constants into the sort-restricted domain until BFMER(FS, S,D) be-
comes satisfiable. From Theorem 4 and our remarks above it follows that this method
is complete with respect to finite model finding and more generally with respect to
FS(Σ)-finite model finding. In particular, if a set of clauses has a finite model then the
procedure will find a sort-restricted constant domain which satisfies this set of clauses.

Let us note an essential difference between basic and sort-restricted translations: in
the basic case the finite model finding is restricted to minimal models (with respect to
the number of elements), whereas in the sort-restricted case this requirement is relaxed
so that only domains of flattening sorts will be minimal but domains of non-flattening
sorts can be arbitrary interpretations.

Example 3. Consider the problem from Example 2. Since all sorts in this example are
EPR we can take them as the set of non-flattening sorts NFS(Σ). In this case the
sort-restricted finite model finding transformation will not change the set of clauses.

Example 4. Let us consider the signature Σ from Example 1 and a clause C:

f(x, h(g(x))) � f(x, c1) ∨ h(x) � c1.

Let us apply sort-restricted finite model finding transformation to C with the set of non-
flattening sorts to be the set of all non-cyclic sorts: NFS = {s1, s2}. The result of
exhaustive application of sort-restricted flattening to C is:

y �� g(x) ∨ f(x, h(y)) � f(x, c1) ∨ h(x) � c1.

The result of sort-restricted function elimination is:

¬Pg(x, y) ∨ f(x, h(y)) � f(x, c1) ∨ h(x) � c1.

And the domain axioms are of the form:

Pg(x, ds01) ∨ . . . ∨ Pg(x, ds0k),

where ds01 , . . . , ds0k are domain constants of sort s0.
Let us compare this to the case when NFS is the empty set, which reduces the

sort-restricted transformation to the basic transformation.
After applying flattening to C we obtain a much longer clause:

y1 �� g(x) ∨ y2 �� h(y1) ∨ y3 �� c1 ∨ y4 �� f(x, y2) ∨ y5 �� f(x, y3) ∨ y6 �� h(x)
∨

y4 � y5 ∨ y6 � y3.

We can also note that in this example basic flattening introduces positive equations
between variables like y4 � y5 and y6 � y3 which can be problematic for reasoning
methods.

After function elimination we obtain:

¬Pg(x, y1) ∨ ¬Ph(y1, y2) ∨ ¬Pc1(y3) ∨ ¬Pf (x, y2, y4) ∨ ¬Pf (x, y3, y5) ∨ ¬Ph(x, y6)
∨

y4 � y5 ∨ y6 � y3.

224 K. Korovin

And domain axioms are of the form:

Pg(x0, d
s0
1) ∨ . . . ∨ Pg(x0, d

s0
k0

)
Ph(x0, d

s1
1) ∨ . . . ∨ Ph(x0, d

s1
k1

)
Pc1(ds11) ∨ . . . ∨ Pc1(ds1k1

)
Pf (x0, x1, d

s2
1) ∨ . . . ∨ Pf (x0, x1, d

s2
k2

).

As we can see from this example, basic transformation can result in a considerably
larger set of clauses. Moreover positive equations between variables can be introduced
which can be avoided when the sort-restriction transformation is applied.

Iterative flattening. Let us briefly discuss an extension of our method which further
refines flattening applications. This is based on the following observation. Consider a
signature Σ with the set of sorts S. If we apply the sort-restricted flattening to a single
sort s ∈ S, then all function symbols with the value sort s will be replaced by predicate
symbols, resulting in a new signature Σ′. It is easy to see that the sort dependency graph
for Σ′ can be obtained from the sort dependency graph of Σ by removing edges adja-
cent to s. In particular, if we pick s from a non-trivial strongly connected component,
after eliminating all edges adjacent to s we may be able to decompose this strongly
connected component further into smaller components. The process of flattening sorts
one by one and decomposing the corresponding strongly connected components can be
repeated until only trivial components remain. The advantage of this approach is that
we can reduce the number of sorts that require flattening even further. As an example let
as consider a signature Σ with the set of sorts S = {s0, . . . , sn}, forming a single cycle
s0, . . . , sn, s0 in the sort dependency graph. There is only one strongly connected com-
ponent in this sort dependency graph, which is this cycle itself. After flattening only
one sort, say s0, the sort dependency graph can be completely decomposed into triv-
ial strongly connected components. This allows us to avoid flattening of the remaining
sorts {s1, . . . , sn}.

7 Implementation and Evaluation

Our implementation is based on the iProver system [19]. iProver is based on the
Inst-Gen calculus which is complete for first-order logic. As we argued in Section 3,
Inst-Gen is also a decision procedure for the non-cyclic fragment. iProver accepts first-
order problems in CNF form. For problems in full first-order syntax (FOF) we used
Vampire [18, 26] as an external clausifier, optionally E prover [27] can also be used as
a clausifier.

For our evaluation we used the TPTP library v5.3 [28], which contains 15,550 FOF
and CNF problems. Our experiments were run on a cluster of Linux machines with
memory limit 2GB and 2.33GHz CPU. We separate our experimental results into two
classes. The first class is related to sort inference and the second class is related to
experiments with sort-restricted finite model finding.

Sort inference. iProver implements a sort inference algorithm similar to one imple-
mented in Paradox [10] which transforms unsorted first-order clauses into a set of sorted

Non-cyclic Sorts for First-Order Satisfiability 225

clauses. This algorithm first assigns different sorts to all predicate arguments, function
arguments and values, then it applies a union-find algorithm to merge sorts forced to be
equal due to variable dependencies, or occurrences of the equality predicate. Extracted
sorts are monotone in the sense of [9], which means that for any model satisfying a set
of clauses we can extend domain of any sort with new elements without affecting satis-
fiability. The overall sort inference resulted in 4,090 problems with non-trivial sorts. We
implemented an algorithm for classifying sorts into cyclic, EPR and non-cyclic sorts as
described in Section 3. Our implementation uses an OCaml library ocamlgraph [11] for
computing strongly connected components of directed graphs.

There are 1,383 problems which were recognised by iProver as being pure EPR prob-
lems (after clausification). For clarity we exclude pure EPR problems from experiments
below. Of course, all discussed methods are trivially applicable to them. We found that
after removing pure EPR problems, 1,195 remaining problems have at least one non-
cyclic sort, which is around 1/3 of all problems with non-trivial sorts; 1,077 problems
have at least one EPR sort. Collectively over all problems there are 56,679 sorts, 18,502
non-cyclic sorts and among them 9,569 EPR sorts . From this we can see that the num-
ber of EPR sorts is approximately the same as non-EPR non-cyclic sorts. Also, we can
see that most problems with non-cyclic sorts combine EPR and non-EPR non-cyclic
sorts.

Problems with non-cyclic sorts are spreading over many domains of TPTP (even af-
ter excluding pure EPR problems), most notably software and hardware verification:
SWV, SWW, HWV; knowledge representation SWB, KRS, CSR; algebra: TOP, GEO,
SET, SEU, RNG; natural language processing: NLP; planning: PLA; and other do-
mains: PUZ, MGT, MSC, SYN. This indicates that non-cyclic sorts occur naturally in
many applications and we believe reasoning methods can be tuned to benefit from this.
We also believe that if problems were sorted by domain experts rather than by using
automatic sort inference, considerably more problems would be identified to have sorts
and non-cyclic sorts in particular.

Sort-restricted finite model finding. We implemented our sort-restricted finite model
finding translation BFMER, as described in Section 6. Our implementation also fea-
tures symmetry breaking based on sorts similar as it is done in Paradox. Using sort-
restricted finite model finding we were able to solve 54 problems in TPTP v5.3 with
the rating 1, all from the KRS domain. We also found a bug in TPTP v5.3 where a
problem with the rating 1 (KRS264+1), was stated to be a “Theorem” but our ex-
periments showed it to be satisfiable. We thank Geoff Sutcliffe for helping to debug
this problem which resulted in fixing an axiomatisation in the most recent version of
TPTP v5.4. iProver with the sort-restricted finite model finding participated in the lat-
est CASC competition, and these enhancements helped iProver to win the FNT (First-
order Non-Theorems) division at CASC@Turing 2012. iProver also participated in the
evaluation of TPTP v5.4. As the result, some satisfiable problems with the rating 1 in
TPTP v5.3 are of a lower rating in TPTP v5.4. In total, iProver solved 72% of problems
which are classified as Satisfiable or CounterSatisfiable in TPTP v5.3. We experimented
with two cases of non-flattening sorts: 1) all EPR sorts, and 2) all non-cyclic sorts. We
observed that most problems are solved in the first case (72%). In the second case,
there are a number of problems which could not be solved by the first case, but overall

226 K. Korovin

performance is a bit worse: only 69% of problems were solved. One possible explana-
tion can be that flattening can still be beneficial in some cases due to axiomatic treatment
of equality in iProver. We expect that this can be amended by using iProver-Eq [21]
which integrates equality using superposition-based reasoning. Another explanation can
be that in some cases searching for minimal models can still be quicker. Our method
gives flexibility on which sorts to flatten, we can choose any superset of cyclic sorts
or apply even more fine-grained flattening based on iterative flattening as discussed in
Section 6. We leave it for the future work to find best strategies for selecting sorts for
flattening.

8 Conclusion and Future Work

In this paper we investigated the non-cyclic fragment of many-sorted first-order logic
with equality. We showed that the non-cyclic fragment is decidable by instantiation-
based methods. We presented a linear time algorithm for checking whether a given sig-
nature is non-cyclic and more generally for classifying sorts into non-cyclic, EPR and
cyclic. We presented a translation of finite model finding into a sequence of satisfia-
bility problems in the non-cyclic fragment, which avoids flattening terms of non-cyclic
sorts. We implemented our sort classification and finite model finding translation in
iProver. Experimental results are encouraging and we were able to solve a large class
of problems which could not be solved by other systems.

For the future work we are planning to integrate sort-restricted finite model finding
into iProver-Eq. We will also investigate how reasoning methods can benefit from our
sort classification in the refutation setting. It is interesting to investigate combinations
of the non-cyclic fragment with other theories in the spirit of [13]. We are planning to
investigated combinations of our approach to finite satisfiability with resent SMT-based
approaches [17, 24, 25].

iProver with implemented features for sort classification and sort-restricted
finite model finding is available at: http://www.cs.man.ac.uk/˜korovink/
iprover/

Acknowledgments. The author is grateful to anonymous reviewers for providing de-
tailed comments which helped to improve this paper.

References

1. Abadi, A., Rabinovich, A., Sagiv, M.: Decidable fragments of many-sorted logic. J. Symb.
Comput. 45(2), 153–172 (2010)

2. Bachmair, L., Ganzinger, H., Voronkov, A.: Elimination of equality via transformation with
ordering constraints. In: Kirchner, C., Kirchner, H. (eds.) CADE 1998. LNCS (LNAI),
vol. 1421, pp. 175–190. Springer, Heidelberg (1998)

3. Baumgartner, P., Fuchs, A., de Nivelle, H., Tinelli, C.: Computing finite models by reduction
to function-free clause logic. J. Applied Logic 7(1), 58–74 (2009)

4. Baumgartner, P., Fuchs, A., Tinelli, C.: Implementing the model evolution calculus. Interna-
tional Journal on Artificial Intelligence Tools 15(1), 21–52 (2006)

http://www.cs.man.ac.uk/~korovink/iprover/
http://www.cs.man.ac.uk/~korovink/iprover/

Non-cyclic Sorts for First-Order Satisfiability 227

5. Baumgartner, P., Schmidt, R.A.: Blocking and other enhancements for bottom-up model gen-
eration methods. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130,
pp. 125–139. Springer, Heidelberg (2006)

6. Baumgartner, P., Tinelli, C.: The model evolution calculus. In: Baader, F. (ed.) CADE 2003.
LNCS (LNAI), vol. 2741, pp. 350–364. Springer, Heidelberg (2003)

7. Brand, D.: Proving theorems with the modification method. SIAM J. Comput. 4(4), 412–430
(1975)

8. Claessen, K.: The anatomy of Equinox - an extensible automated reasoning tool for first-
order logic and beyond - (talk abstract). In: Bjørner, N., Sofronie-Stokkermans, V. (eds.)
CADE 2011. LNCS, vol. 6803, pp. 1–3. Springer, Heidelberg (2011)

9. Claessen, K., Lillieström, A., Smallbone, N.: Sort it out with monotonicity - translating be-
tween many-sorted and unsorted first-order logic. In: Bjørner, N., Sofronie-Stokkermans, V.
(eds.) CADE 2011. LNCS, vol. 6803, pp. 207–221. Springer, Heidelberg (2011)

10. Claessen, K., Sörensson, N.: New techniques that improve MACE-style model finding. In:
Baumgartner, P., Fermüller, C. (eds.) CADE-19 Workshop: Model Computation Principles,
Algorithms, Applications, pp. 11–27 (2003)

11. Conchon, S., Filliâtre, J.-C., Signoles, J.: ocamlgraph, http://ocamlgraph.lri.fr
12. Fontaine, P.: Techniques for verification of concurrent systems with invariants. PhD thesis,

Institut Montefiore, Université de Liège, Belgium (2004)
13. Fontaine, P.: Combinations of theories and the Bernays-Schönfinkel-Ramsey class. In: VER-

IFY 2007. CEUR Workshop Proceedings. CEUR-WS.org (2007)
14. Fontaine, P., Gribomont, E.P.: Decidability of invariant validation for paramaterized systems.

In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS, vol. 2619, pp. 97–112. Springer,
Heidelberg (2003)

15. Ganzinger, H., Korovin, K.: New directions in instantiation-based theorem proving. In: Proc.
18th IEEE Symposium on LICS, pp. 55–64. IEEE (2003)

16. Ganzinger, H., Korovin, K.: Integrating equational reasoning into instantiation-based the-
orem proving. In: Marcinkowski, J., Tarlecki, A. (eds.) CSL 2004. LNCS, vol. 3210, pp.
71–84. Springer, Heidelberg (2004)

17. Ge, Y., de Moura, L.: Complete instantiation for quantified formulas in satisfiabiliby mod-
ulo theories. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 306–320.
Springer, Heidelberg (2009)

18. Hoder, K., Khasidashvili, Z., Korovin, K., Voronkov, A.: Preprocessing techniques for first-
order clausification. In: Cabodi, G., Singh, S. (eds.) Formal Methods in Computer-Aided
Design (FMCAD 2012), pp. 44–51. IEEE (2012)

19. Korovin, K.: iProver – an instantiation-based theorem prover for first-order logic (System de-
scription). In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI),
vol. 5195, pp. 292–298. Springer, Heidelberg (2008)

20. Korovin, K.: Inst-Gen - A modular approach to instantiation-based automated reasoning. In:
Voronkov, A., Weidenbach, C. (eds.) Programming Logics. LNCS, vol. 7797, pp. 239–270.
Springer, Heidelberg (2013)

21. Korovin, K., Sticksel, C.: iProver-Eq: An instantiation-based theorem prover with equal-
ity. In: Giesl, J., Hähnle, R. (eds.) IJCAR 2010. LNCS, vol. 6173, pp. 196–202. Springer,
Heidelberg (2010)

22. Korovin, K., Sticksel, C.: Labelled unit superposition calculi for instantiation-based rea-
soning. In: Fermüller, C.G., Voronkov, A. (eds.) LPAR-17. LNCS, vol. 6397, pp. 459–473.
Springer, Heidelberg (2010)

23. Piskac, R., de Moura, L., Bjørner, N.: Deciding effectively propositional logic using DPLL
and substitution sets. J. Autom. Reasoning 44(4), 401–424 (2010)

24. Reynolds, A., Tinelli, C., Goel, A., Krstić, S.: Finite model finding in SMT. In: Sharygina,
N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 640–655. Springer, Heidelberg (2013)

http://ocamlgraph.lri.fr

228 K. Korovin

25. Reynolds, A., Tinelli, C., Goel, A., Krstić, S., Deters, M., Barrett, C.: Quantifier instantiation
techniques for finite model finding in SMT. In: Bonacina, M.P. (ed.) CADE 2013. LNCS
(LNAI), vol. 7898, pp. 377–391. Springer, Heidelberg (2013)

26. Riazanov, A., Voronkov, A.: The design and implementation of VAMPIRE. AI Communica-
tions 15(2-3), 91–110 (2002)

27. Schulz, S.: System description: E 0.81. In: Basin, D., Rusinowitch, M. (eds.) IJCAR 2004.
LNCS (LNAI), vol. 3097, pp. 223–228. Springer, Heidelberg (2004)

28. Sutcliffe, G.: The TPTP Problem Library and Associated Infrastructure: The FOF and CNF
Parts, v3.5.0. Journal of Automated Reasoning 43(4), 337–362 (2009)

29. Tarjan, R.E.: Depth-first search and linear graph algorithms. SIAM J. Comput. 1(2), 146–160
(1972)

Detection of First Order Axiomatic Theories

Guillaume Burel1 and Simon Cruanes2

1 ÉNSIIE/Cédric, 1 square de la résistance, 91025 Évry cedex, France
guillaume.burel@ensiie.fr

http://www.ensiie.fr/~guillaume.burel/
2 École polytechnique and INRIA, 23 Avenue d’Italie, 75013 Paris, France

simon.cruanes@inria.fr

https://who.rocq.inria.fr/Simon.Cruanes/

Abstract. Automated theorem provers for first-order logic with equal-
ity have become very powerful and useful, thanks to both advanced
calculi — such as superposition and its refinements — and mature imple-
mentation techniques. Nevertheless, dealing with some axiomatic
theories remains a challenge because it gives rise to a search space explo-
sion. Most attempts to deal with this problem have focused on specific
theories, like AC (associative commutative symbols) or ACU (AC with
neutral element). Even detecting the presence of a theory in a problem is
generally solved in an ad-hoc fashion. We present here a generic way of
describing and recognizing axiomatic theories in clausal form first-order
logic with equality. Subsequently, we show some use cases for it, including
a redundancy criterion that can be applied to some equational theories,
extending some work that has been done by Avenhaus, Hillenbrand and
Löchner.

1 Introduction

Automated theorem proving for first order logic has lead to many successful
techniques to tackle problems from a lot of application domains. Among the
most prominent techniques lies resolution[10]. Superposition[8] appeared later
to handle the difficult issue of equality reasoning, that would otherwise drown
most provers in a huge search space.

Many theorem provers for first-order logic with equality contain an ad-hoc en-
gine to recognize instances of Associative Commutative (AC) symbols, composed
of the two following axioms:

Associativity: ∀x∀y∀z x + (y + z) = (x + y) + z,
Commutativity: ∀x∀y x + y = y + x.

Once the automated prover has recognized that some symbol has the AC prop-
erty, it can use some technique to deal with it. However, if similar techniques
can be applied to other axiomatic theories — theories that can be defined in

P. Fontaine, C. Ringeissen, and R.A. Schmidt (Eds.): FroCoS 2013, LNAI 8152, pp. 229–244, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://www.ensiie.fr/~guillaume.burel/
https://who.rocq.inria.fr/Simon.Cruanes/

230 G. Burel and S. Cruanes

terms of a finite set of axioms — code would need to be written for those provers
to handle each new theory. We propose here a system that can recognize the
presence of theories in a generic and incremental way. The system is based on
the use of a second theorem prover, based on Datalog[1], that reasons about the
properties that the problem exhibits, rather than trying to solve the problem
itself. In some limited sense, this is similar to what a human mathematician
does: she would try to use equations and hypotheses on the problem itself, but
at the same time she would recognize already met patterns and specific structures
(for instance, a group structure, a linear field, or an isomorphism to some other
part of the mathematics) and use this meta knowledge to apply theorems and
lemmas she knows.

We implemented this technique in our experimental theorem prover Zipper-
position. Zipperposition is free software, available under the GPL license at
https://www.rocq.inria.fr/deducteam/Zipperposition/index.html. It is
written in OCaml and implements ordered superposition, with lazy reduction
to CNF and automatic selection of a precedence. An embedded Datalog engine
is used to reason on properties of the problems, including which known theo-
ries and axioms are present; both systems interact by exchanging clauses on the
one hand, deduced properties on the other. The superposition prover can use
the additional information to infer new clauses thanks to lemmas or to activate
theory-specific redundancy criteria.

Then, we expose two possible applications. The first is a powerful lemma
that allows theorem provers that deal well with equality to discover that some
relations represent the graph of a function, and to replace instances of the relation
by equations. For instance, in the TPTP[13] archive, many algebraic problems
on groups (or extensions thereof) are encoded using sum(X,Y, Z) instead of
Z = add(X,Y). This complicates the axiomatization (many more axioms, that
are big Horn clauses, etc.) compared to an equational view of the problem. Our
lemma, fed to the prover in a simple declarative language as:

functional(r) is axiom ~r(X,Y,Z) | ~r(X,Y,Z2) | Z=Z2.

total(r, f) is axiom r(X,Y,f(X,Y)).

lemma r(X,Y,Z) <=> Z = f(X,Y) if functional(r) and total(r, f).

allows to recover an equational (boolean) definition from this encoding, which
can then be unfolded to simplify clauses.

The second application is the per-theory activation of an equational redun-
dancy criterion. If we know a saturated, ground convergent system of equations
for some theory [2], literals that are tautological or absurd in this theory can be
removed while retaining completeness. Our framework allows us to know when
such a theory occurs in a problem, so we can use the corresponding redundancy
criterion.

We first expose some basic definitions and notations, then successively expose
techniques for recognizing individual axioms and whole theories. Then, after
some examples of how to use knowledge about axiomatic theories, we present
some experimental results and conclude.

https://www.rocq.inria.fr/deducteam/Zipperposition/index.html
http://caml.inria.fr/

Detection of First Order Axiomatic Theories 231

2 Notations and Definitions

The first step toward recognizing theories, is recognizing instances of individ-
ual axioms. More complex algebraic theories, like group theory, involve several
symbols. We present here a general framework for representing axiom schemas,
axiom instances, and for finding instances of the former among the latter. We
start with some basic notations.

A signature Σ = (S, V) is the combination of a finite set of symbols S (with
an arity function arity : S → N), with a countable set of variables V . Terms in
a signature Σ = (S, V) are defined recursively by t = X | f(t1, . . . , tn), where
X ∈ V and f ∈ S, with arity(f) = n. We give a type to each term, in a simple-
type system with base types ι for individuals and o for propositions; a function
type is written (τ1 ×· · ·× τn) → τ . The statement “t has type τ” is written t : τ .
The set of variables of a term, vars(t), is recursively defined as

vars(X) = {X}

vars(f(t1, . . . , tn)) =
n⋃

i=1

vars(ti)

From now on, f , g, h will be symbols, t, t′, ti will be terms, uppercase letters
like X , Y , Z will denote variables and τ will be a type.

A clause is a disjunction of literals l1 ∨ · · · ∨ ln, each literal being an equation
s = t, or the negation of an equation s �= t (s and t must have the same type).
A literal of any sign is written s =̇ t. Following [11], we represent propositions p
by boolean-typed equations p = �, where � : o is a special constant for truth.

A substitution σ is a finite mapping from variables to terms. The result of
applying a substitution to a term t is noted tσ. If σ and θ are substitutions, then
σ is more general than θ if there exists η such that ∀t. tθ = tση. Usual notions
for most general unifiers and most general matcher are employed:

unifier: The most general unifier of two terms t1 and t2, if it exists, is the
most general substitution σ such that t1σ = t2σ. Terms for which such a
substitution exists are said to be unifiable.

matcher: The most general matcher of two terms t1 and t2, if it exists, is the
most general substitution σ such that t1σ = t2. Similarly, it is not always
defined.

Equality of two terms modulo a theory E is written t1 =E t2, short for E �
t1 = t2. We extend the definitions of unification and matching to unification
modulo AC and matching modulo AC, respectively defined by t1σ =AC t2σ and
t1σ =AC t2.

232 G. Burel and S. Cruanes

Let the local signature of a term or clause, noted ls(t), be defined as follow:

ls(X) = ∅

ls(f(t1, . . . , tn)) = {f} ∪
n⋃

i=1

ls(ti)

ls(s=̇t) = ls(s) ∪ ls(t)

ls(l1 ∨ · · · ∨ ln) =

n⋃
i=1

ls(li)

A few special symbols (disjoint from any signature) will be used:

– A symbol marker, s, used to prefix function symbols;
– A variable marker, v, used to prefix variables.

For the meta-prover, we encode properties of the problem at hand in higher-
order logic, where the definition of terms is extended with binders (here, only λ).
Well-formed terms for the meta-prover are defined by t = X | f | t t | λX.t where
f ∈ S ∪ {s, v}, X ∈ V and t a term. Term application t t is curried and left-
associative. We call lambda terms terms in which some variables are bound by a
lambda-abstraction. We will assume that the reader knows about basic simply-
typed lambda-calculus, but recall that β-reduction is the rule (λX.t) t′ →β

[t′/X]t and we will work modulo alpha-equivalence in order to prevent variable
captures. In the rest of the paper, t ↓β denotes the normal form of a term t
w.r.t. β-reduction, i.e., the unique term t′ such that t →∗

β t′ and ¬∃t′′ t′ → t′′

(it always exists because simply-typed lambda calculus is convergent).

3 Detecting Axioms

The first step toward recognizing theories, is recognizing instances of individual
axioms of first-order theories. We will see, in the next section, how to recog-
nize full theories. Many theorem provers contain an ad-hoc system to recognize
instances of Associative Commutative (AC) symbols, composed of two axioms:

Associativity: ∀x∀y∀z x + (y + z) = (x + y) + z,
Commutativity: ∀x∀y x + y = y + x.

More complex algebraic theories, like group theory, involve several symbols.
We present here a general framework for representing axiom schemas, axiom
instances, and for finding instances of the former among the latter. Recognizing
axioms in any signature is a higher order problem, but we are going to use
currying to stay in a first-order setting. We start with some basic notations.

We call pattern a clause c parametrized by ls(c). This notion of pattern is
central in our approach, since it allows us to reason over axioms and theories
regardless of the actual signature of the problem (a given axiom or theory might
have several distinct instances within the same proof). A pattern p is represented

Detection of First Order Axiomatic Theories 233

as a higher-order curried term t ≡ λX1 : τ1.λX2 : τ2. . . . λXn : τn.c, or more
compactly Λn

i=1Xi : τi.c. We need to curry the term because we cannot replace a
function symbol by a variable in first-order terms. c is the core of the pattern, and
s1, . . . , sn the input types or types of the pattern. Note that although patterns
are higher-order terms (because of the lambda abstractions), we still reason over
first-order problems, and any instantiation of a pattern must yield a first-order
clause.

Patterns are an extension of the representative patterns defined in [4], but
are more general because they are curried and deal with non-unit clauses, which
explains our use of AC-matching. In addition to that, our technique is concerned
with which set of symbols instantiates a given pattern. On the other hand,
representative patterns are indexed by an AVL tree, which makes the matching
process very efficient.

The point in using curried terms to represent patterns is that we can leverage
many well-known techniques, such as AC-matching or term indexing modulo
AC1. Also, this system is quite easy to adapt to some similar tasks, like matching
a pattern p = ΛiXi : τi.c against a subset of a clause c′: we can match ΛiXi :
τi.(c ∨ y) against c′ ∨ �, where y : o is a fresh variable to be matched against
the rest of c′. Matching a pattern against a subset of a clause could be useful
if the subset is an instance of the negation of the conclusion of a lemma, for
instance, because instantiating the lemma would then simplify the clause. The
lambda-abstraction is used to have a canonical representation of a pattern (using
De Bruijn indexes would also work), so that it can be considered as a constant
by Datalog (see section 4). More powerful matching algorithms (e.g., restricted
forms of higher-order matching) can be used to find more elaborate instances.

The following property always holds for patterns: if p = Λn
i=1Xi : τi c, and

a1 : τ1, . . . , an : τn are terms (in particular, constants), then p a1 a2 . . . an is a
well-typed term, that is isomorphic to a concrete first-order clause.

Pattern abstraction allows us to abstract a clause from its concrete local sig-
nature. Pattern instantiation applies a pattern to a tuple of symbols, returning
a concrete clause. Figure 1 describes the following operations (the variable F
used for abstraction is assumed to be a fresh variable uniquely associated with
the symbol f):

encoding a term or clause into a curried term, noted enc(t);
decoding a curried term into a term or clause, noted dec(t);
abstracting a symbol f out of a curried term t, by a variableF , noted abs(t, f, F);
applying a curried term t to a term a, noted app(t, a), extended into the n-ary

application app(t, a1, . . . , an).

Encoding is a two steps operation: currying, then prefixing variables with v
and symbols with s to force the matching algorithm to bind abstracted symbols
(resp. first-order variables) of the pattern only with symbols (resp. variables) of
the clause. Decoding is the exact inverse of encoding.

1 Our experimental implementation does not implement AC indexing, though.

234 G. Burel and S. Cruanes

enc(X) = v X

enc(f(t1, . . . , tn)) = s f enc(t1) enc(t2) . . . enc(tn)

enc(t1 =̇ t2) = enc(t1) =̇ enc(t2)

enc(l1 ∨ . . . ∨ ln) = enc(l1) ∨ . . . ∨ enc(ln)

dec(v X) = X

dec(s f t1 . . . tn) = f(dec(t1), . . . ,dec(tn))

dec(t1 =̇ t2) = dec(t1) =̇ dec(t2)

dec(l1 ∨ . . . ∨ ln) = dec(l1) ∨ . . . ∨ dec(ln)

abs(s f, f, F) = s F

abs(v X, f, F) = v X

abs(t1 t2, f, F) = abs(t1, f, F) abs(t2, f, F)

abs(t1 =̇ t2, f, F) = abs(t1, f, F) =̇ abs(t2, f, F)

abs(l1 ∨ . . . ∨ ln, f, F) = λF.(abs(l1, f, F) ∨ . . . ∨ abs(ln, f, F))

app(p, a1, . . . , an) = (p a1 a2 . . . an) ↓β

Fig. 1. Rules for patterns

Example: let us consider the theory of commutative monoids ACU with op-
erator f and neutral element e. Its axioms are (last one is unit, or U) :

f(X,Y) = f(Y,X)

f(X, f(Y, Z)) = f(f(X,Y), Z)

f(X, e) = X

The corresponding patterns, after currying and abstraction, are:

– λF.(s F (v X) (v Y) = s F (v Y) (v X))
– λF.(s F (s F (v X) (v Y)) (v Z) = s F (v X) (s F (v Y) (v Z)))
– λF.λE.(s F (v X) (s E) = v X))

Once we have a set of patterns P = {p1, . . . , pn}, we can match those patterns
against clauses of the problem we are trying to solve. Matching a pattern p
against a clause c amounts to:

1. choose fresh variables X1 : s1, . . . , Xn : τn, where (τi)i are the input types
of the pattern p;

2. compute t ≡ app(p,X1, . . . , Xn);
3. use a matching algorithm modulo AC (= is commutative, and ∨ is AC) to

match t against enc(c);
4. for each such matcher σ, its restriction σ′ ≡ σ|{X1,...,Xn} is an instance of p

equivalent to c (i.e., dec(app(p,X1σ
′, . . . , Xnσ

′)) =AC c).

Example: let us match the pattern for an identity value, λF.λE.(s F (s E) =
s E) with zero = minus(zero, zero). We first apply the pattern to fresh variables

Detection of First Order Axiomatic Theories 235

F ′ and E′, obtaining after beta-reduction the HO term s F ′ (s E′) = s E′.
The clause is then encoded into s zero = s minus (s zero) (s zero); a solution,
obtained by AC-matching the equations, is σ = {F ′ (→ minus zero, E′ (→ zero}.
This (first-order) instance can only be found thanks to currying.

The next step is to aggregate several pattern instances into an instance of a
theory, that is, a set of clauses.

4 Meta-Reasoning with Datalog

4.1 Description of an Axiomatic Theory

An equational theory is a set of related axioms. Therefore, a theory pattern is a
set of related clause patterns. We adapt and generalize the mechanism used by
Waldmeister[6] for choosing term orderings. In Figure 2, we show a fragment of
the file that defines some basic axioms and theories for our prover2.

associative(f) is axiom f(X,f(Y,Z)) = f(f(X,Y), Z).

commutative(f) is axiom f(X,Y) = f(Y,X).

theory ac(f) is associative(f) and commutative(f).

theory aci(f,e) is ac(f) and axiom f(X,e) = X.

Fig. 2. Description of Theories

This simple file shows us what is needed to define a theory like AC or the
theory of commutative monoids. We need to define some axioms, possibly named,
to abstract their symbol out, and to constraint symbols of the axioms to be the
same. Indeed, the two clauses f(f(X,Y), Z) = f(X, f(Y, Z)) and g(X,Y) =
g(Y,X) can be matched, respectively, against the axioms associative(f) and
commutative(g), but that does not mean that the theory of AC symbols is
present. Those axioms are parametrized by symbols f and g.

To be able to constraint symbols in the axioms to be the same, we use the
Datalog fragment of first-order logic[1]. Datalog only allows function-free Horn
clauses, but shows very good computational properties, and a set of Datalog
clauses always has exactly one minimal model. We are going to have a Datalog
reasoner work on properties of the problem, and communicate with the regular
superposition prover.

A Datalog atom is of the form p(t1, . . . , tn) where p is a predicate symbol and
for all i, ti is either a Datalog constant or a Datalog variable. A Datalog clause
is a Horn clause, noted a :- b1, . . . bn. where a is the conclusion, and bi are the
premises We will write a. for unit clauses. We point out that Datalog constants
and variables are nothing like the first-order problem’s constants and variables.
The trick is that the Datalog reasoner will not “see” what is inside the patterns

2 The axioms, theories, lemmas and redundancy criteria are defined in a file loaded
when the theorem prover starts. The format of the file is defined by a simple grammar
that is easy to edit and read, as demonstrated in Figure 2.

236 G. Burel and S. Cruanes

it manipulates (such objects are not expressible in Datalog), but it will consider
them as blackboxes (constants).

Let us define the black-boxing of patterns, that embeds first-order objects
into Datalog constants. Given a pattern p, we write 2p3 for the boxed version
of p; given such a black box b, we define 4b5 its content, obtained by unboxing.
Obviously, 42p35 = p must hold. Equality over boxes is defined by 2p3 = 2q3 ⇔
p = q. The boxing and unboxing functions are trivially extended to any term.

We can now encode properties about the current problem into Datalog atoms,
and their definitions into Datalog clauses. Detecting theories requires a few basic
properties, which are the following ones:

– Presence of an instance of a pattern, with the corresponding symbols, such
as app(p, plus) where p ≡ λF.(s F (v X) (v Y) = s F (v Y) (v X)). It is
needed for recognizing the constituting axioms of a theory;

– Presence of a named pattern, for instance commutative(plus) (which cor-
responds to the previous pattern). This is used mainly for the user to attach
a meaningful name (“associative”) to a pattern;

– Presence of an instance of a theory, with the corresponding symbols, for
instance monoid(plus, zero);

– Other properties can be encoded (see Sections 4.4 and 5) for more advanced
uses of the Datalog reasoner. This makes the detection mechanism quite
generic and modular since it allows to define additional properties based on
the previously defined ones.

4.2 Encoding of Properties

Such properties are encoded using a distinct Datalog predicate symbol for each
kind of property. This way, new properties can be encoded just by reserving a
new predicate symbol for them. The basic properties are encoded by:

pattern: A pattern instance app(p, a1, . . . , an), is encoded using the predicate
“pattern”, into pattern(2p3, 2a13, . . . , 2an3)

theory: A theory is a name, parametrized by a set of function symbols; A
theory instance “name”(a1, . . . , an) is encoded using the predicate “theory”
into theory(2“name”3, 2a13, . . . , 2an3);

named pattern: It is similar to a theory with a single axiom, but using the
predicate “axiom”; so, for instance, associative(f) is encoded into
axiom(2“associative”3, 2f3).

4.3 Encoding of Definitions

It is also necessary to define theories and named patterns, by Datalog clauses that
will trigger a property when the constitutive patterns of the theory (respectively
named patterns) are present. This requires Datalog variables; if a theory (named
N) is defined by N (f1, . . . , fn) ≡ p1, . . . , pm (with m premises), its definition will
be a Datalog clause with m Datalog atoms as premises. Let us map f1, . . . , fn
to fresh Datalog variables F1, . . . , Fn. The premises pi are translated to Datalog
atoms qi as follows:

Detection of First Order Axiomatic Theories 237

– If pi expresses the presence of a named pattern or a theory N ′(fσ(1), . . . , fσ(k))
parametrized by k symbols, then qi = axiom(2N ′3, Fσ(1), . . . , Fσ(k)) or qi =
theory(2N ′3, Fσ(1), . . . , Fσ(k))

– If pi expresses the presence of a pattern instance app(p, fσ(1), . . . , fσ(k)), with
k symbols as parameters, then qi = pattern(2p3, Fσ(1), . . . , Fσ(k))

The definition is simply theory(2N3, F1, . . . , Fn) :- q1, . . . , qm. (easily adapted
for named patterns).

4.4 Encoding of Other Properties

Other properties, depending on how the prover uses knowledge about theories,
can be encoded the same way. For instance, if we want to gather information
specifically about AC symbols, we can use a fresh Datalog predicate “ac” and
the following clause:

ac(F) :- theory(2“ac”3, F)

Then, whenever a Datalog fact ac(a) is found by the Datalog reasoner, we
know that 4a5 is an associative commutative symbols in the current problem
(and we can activate a special strategy to deal with it in the refutational theorem
prover, like superposition modulo AC). We will see more detailed examples in
Section 5.

4.5 Incremental Computation

When an automated theorem prover tries to solve a given problem, some prop-
erties of this problem may not be readily available for recognition. Instead, it
may take some time to reach some axioms that are part of a theory’s definition.
Therefore, incrementality, i.e. the ability to discover properties and deduce other
properties during the process of solving the problem, is crucial.

Our implementation of the Datalog reasoner therefore does not provide a
query interface, but rather an incremental interface; clauses can be added one by
one, each time updating the current set of clauses (saturated under the immediate
consequence operator). The immediate consequence operator adds aσ to the set
of facts, if a :- b1, . . . , bn. is a clause and for all i ∈ {1 . . . n}, biσ belongs to
the set of facts. Because we only work with safe clauses, i.e., clauses in which
vars(a) ⊆

⋃n
i=1 vars(bi), we are sure that aσ is ground.

To achieve incremental computation, the Datalog reasoner is based on unit
resolution with selection. Every non-unit clause, of the form a :- b1, b2, . . . , bn.
with n > 0, gets its first body literal selected (the underlined literal). Only one
inference rule is needed to ensure completeness:

a :- b1, b2, . . . , bn. c. b1σ = cσ

aσ :- b2σ, b3σ, . . . , bnσ.

238 G. Burel and S. Cruanes

Every time we add a clause to the Datalog reasoner, the resolution rule is
applied between clauses of the current fixpoint, and the new clause. Callbacks
can be attached to the Datalog reasoner, to be called whenever a new fact is
deduced by this inference rule; the new facts are then added to the reasoner one
by one – with their own chance to trigger inferences. A non-perfect discrimination
tree is used to index selected literals and facts, in order to make this inference
reasonably efficient.

4.6 Backward Chaining

In some cases, the underlying first-order calculus used by the theorem prover may
never discover some axioms (like associativity). This is the case, for instance, for
refutational provers based on resolution or superposition, because they may not
need to infer the axiom to remain complete, in case it is deducible from the
initial problem but redundant. In this case, if, for instance, out of the 10 axioms
that are necessary for an instance of a theory to hold, 9 are present, the Datalog
prover may pro-actively spawn a sub-prover to try to show this axiom.

The Datalog reasoner can use prolog-like backward chaining to find which
literals may help finding new facts. Assuming we keep a set G of goals – a goal
being a literal whose instances may help solving already existing goals – the
following rule updates the set of goals:

a :- b1, b2, . . . , bn. g ∈ G aσ = gσ

b1σ ∈ G

We did not implement a system that spawns sub-provers that attempt to
show missing axioms, but it would be quite simple by finding which of the cur-
rent goals of the Datalog reasoner belong to the category of totally instantiated
patterns (where all parameters of the pattern are constants, not Datalog vari-
ables). However, goals are already important in our implementation, because
we only try to match against concrete clauses, the patterns which are currently
goals in the Datalog reasoner. In other words, clause patterns we want to match
with concrete clauses are {p | pattern(2p3, F1, . . . , Fn) ∈ G}. The initial set of
goals is the set of conclusions of clauses, that is, G0 = {a | a :- b1, b2, . . . , bn.},
but we could choose a different (restricted) set of goals; for instance, if some
lemmas hold only when arithmetic symbols are present, their conclusion shall
not be goals until an arithmetic formula is detected, not to clutter the pattern
recognition mechanisms.

5 Why Recognize Theories?

In previous sections, we explained how to recognize individual axioms and the-
ories during a saturation proof search. We will now give some ways to use this
knowledge about the problem at hand. Of course, because the coupling with the
Datalog reasoner is modular, one can make any use she wants from the output of

Detection of First Order Axiomatic Theories 239

the Datalog reasoner, and even add whichever clauses and predicates she judges
useful. For most uses of the Datalog reasoner, we use a dedicated predicate,
and some clauses whose premises are theories or individual axioms. We will call
Knowledge Base the set of definitions and facts that is given to the theorem
prover when it starts; it should contain definitions of axioms, theories, and other
data that is specific to how we use knowledge about the problem.

5.1 Lemmas

Let us call lemma an already proven logic statement of the form “clause a is true
if clauses b1, . . . , bn are”. Such a lemma may be a mathematical result that the
user makes available to the theorem prover, or some previously proven theorem;
all we need to know is that this statement is already known to be proven. It
can be encoded in Datalog by abstracting symbols from the conclusion and the
premises (see section 4.3).

Our current Knowledge Base contains only one lemma that we added by
hand, but it has shown to be quite useful. We call this lemma un-mangling of
functional relations. Given the two properties about a ternary relation symbol r
and a binary function symbol f :

– functional(r) ≡ r(X,Y, Z) ∧ r(X,Y, Z ′) ⇒ Z = Z ′;
– total(r, f) ≡ r(X,Y, f(X,Y)).

We know that r encodes the graph of the function f . Hence the following lemma,
that states r(X,Y, Z) ⇔ (f(X,Y) = Z). Its definition is shown in Figure 3. Such
a lemma, if applied during the preprocessing phase, allows one to unfold the
definition of r, removing it from the problem (our prover uses the calculus of [5],
which allows one to use such equivalences for rewriting). After unfolding of r,
the problem is “more equational”: axioms such as the commutativity of f , that
were encoded by r(X,Y, Z) ∧ r(Y,X,Z ′) ⇒ Z = Z ′, become f(X,Y) = f(Y,X)
after simplifications. An equational theorem prover such as E[11] will be able to
use more rewriting-based simplification rules.

functional(r) is axiom ~r(X,Y,Z) | ~r(X,Y,Z2) | Z=Z2.

total(r, f) is axiom r(X,Y,f(X,Y)).

lemma r(X,Y,Z) <=> Z = f(X,Y) if functional(r) and total(r, f).

Fig. 3. Un-mangling of Functional Relations Lemma

Before we developed the general theory detection system, specific code was
dedicated to recognizing instances of this lemma in Zipperposition. The code
took around 85 lines of OCaml and would only work on initial axioms. We
emphasize the fact that detecting instances of this lemma require many features,
like detecting non-unit clauses with several abstracted symbols (f and r), and
then joining the multi-symbol axioms together. Now, to add similar lemmas,
we only need a few lines in the previously mentioned declarative syntax. Each
lemma is encoded as exactly one Datalog clause, whose conclusion is a pattern
instance.

240 G. Burel and S. Cruanes

5.2 Equational Redundancy Criteria

As the authors of [2] point out, superposition-based theorem provers such as
SPASS[14], E[11] or Vampire[9] can quickly become overwhelmed by the amount
of clauses that are generated in the presence of equational theories such as AC,
ACI or other algebraic structures. This is exacerbated by the fact that superpos-
ing with commutativity is very often possible in both ways, since the axiom is
not oriented by the usual KBO and RPO term orderings. A lot of efforts [12] [3]
have been devoted in extending the superposition calculus to work modulo AC,
or modulo theories that encompass AC; however it is usually delicate both to
implement and prove complete each instance of superposition modulo a theory.
We expose here a way of using some knowledge about equational theories to
prune the search space of such theorem provers. We will use some definitions
and theorems from [2].

Redundancy Criterion. Let use consider the section 5 of [2]. A ground con-
vergent system of equations R0 ∪E0 is used to decide of the AC theory for some
symbol f . The Theorem 5.1 states that any equation s = t, not part of the
system R0 ∪ E0, where s =AC(f) t, is redundant and can be disposed of during
the proof search process. Let us examine how this theorem is proved:

R0(E0) (the set of orientable instances of the equations) is terminating by
construction. For every critical pair, all of its ground instances are joinable.
Hence R0(E0) is confluent on Term(F e). Consequently, if s =R0∪E0 , then sσ ↓ tσ
for any ground substitution σ, and therefore s ⇓� t.

We can adapt this proof, for a given reduction ordering 0, to any set of
equations E that is ground convergent. Indeed, with the trivial rewriting system
R = ∅, R(E) is ground convergent and terminating (included in the well-founded
reduction ordering 0). Let us consider an equation s = t, and write s′ = t′

the same equation where variables x0, . . . , xn are replaced by fresh constants
c0, . . . , cn; let us extend the ordering 0 to a reduction ordering 0′ that contains
0 ([2] explains how to do it for LPO and KBO, respectively, in lemmas 5.2 and

5.3). Then, if s′ ↓R(E)�
′
t′, every ground instance of s = t is joinable by E�, and

s = t is redundant.
In other words, E provides us with a redundancy criterion for any equation

s = t, by checking whether s′ and t′ have the same normal form. In practice,
we just have to consider variables in s and t as constants, extend 0 with those
new constants, and compute the normal form of both terms w.r.t. orientable
equations of E. The resulting simplification rules are exposed in Figure 4. The
double bar indicates that the clause above is replaced by the clause below. The
operation const replaces variables in s and t by fresh constants; ground joinability
of s and t is then implied by joinability of const(s) and const(t).

Theory Combination. If several theories T1, . . . , Tn occur in a single problem,
then we can combine several ground confluent systems E1, . . . , En. The combi-
nation will always be terminating (because included in 0), but not necessarily
ground-convergent any more. However, if the theories have disjoint signatures,

Detection of First Order Axiomatic Theories 241

Tautology Deletion modulo T :

s = t ∨ C
if const(s) ↓T const(t)

Equality Resolution modulo T :

s �= t ∨ C
if const(s) ↓T const(t)

C

Fig. 4. Simplification Rules for the Redundancy Criterion on a Theory T

the combination is still a decision procedure on terms that are exclusively com-
posed of free symbols and symbols from Ti for some i. On mixed term, we may
want to purify terms by introducing fresh constants for subterms that belong to
a different theory.

Interaction with Datalog. Now that we have a redundancy criterion for some
theories, we can encode it, regardless of the concrete signature, into Datalog
clauses. The encoding is more complicated than previous ones — it involves
boxing several patterns, keeping track of a relationship between Datalog variables
and the symbols of each equation of a ground joinable system — but it follows
the same principles. Then, such a redundancy criterion can be triggered when
the theory it decides is detected; the equational theorem prover can then use it,
if its ordering is compatible. The E[11] prover does exactly this, for the specific
case of AC symbols (with the same rules as in Figure 4 where T is replaced by
AC for a set of symbols).

Computing Criteria for a Theory. If we want to compute such a ground
convergent system of equations E for a given theory E0 (for instance, AC or
a formulation of Group theory), a possibility is to use the syntactic criterion
described in Theorem 5.2 of [2] in order to saturate E0 (in a given ordering
0), while discarding ground joinable equations. If this process terminates, it
yields a set E that must be ground convergent (otherwise there would be a non
ground-joinable equation in E).

Given an equational theory E0 that has symbols f1, . . . , fn, we can try to
compute such ground convergent systems by saturation for a finite set of LPO
and KBO orderings on those symbols. Whenever a saturation succeeds for some
ordering 0, it yields a decision procedure E for E0 in 0. If we later meet a
problem where the axioms contain E0, and the ordering is compatible with 0,
we add E to the set of clauses and remove any clause c �∈ E that is ground-
joinable by E�.

5.3 Term Orderings

In [6], the authors describe a system, quite similar to ours, used by Waldmeister
during the preprocessing phase to detect some theories and heuristically choose

242 G. Burel and S. Cruanes

a term ordering that experience has shown to be efficient for those theories. This
kind of analysis of the problem is feasible with our approach as well. However,
since theories can be detected during the proof search, information on the or-
dering may come too late; in this case, restarting the prover with a different
ordering, chosen with more information about the problem — maybe keeping
some useful deduced clauses, like rewriting rules — can be relevant.

6 Experimental Results

We compared our experimental implementation3 (version 0.2) with SPASS[14]
and E[11] on categories RNG and GRP of the TPTP[13] base of problems.
Benchmarks include both zipperposition — our theorem prover with theory
detection, relational un-mangling lemma, and redundancy criteria (for AC, com-
mutative monoids and abelian groups) — zipperposition-lemma, with the re-
lational lemma but no redundancy criteria, and zipperposition-no-theories,
in which all theory handling is disabled. The results are exposed in Figure 5.
Overall, on 1434 problems, zipperposition proves 7 problems that are not
proven by SPASS nor E within the 120s timeout. Zipperposition is able to de-
tect at least one theory in 594 problems out of 1434, and triggers the lemma in
68 problems. Among the 594 problems with theories, 31 are solved by zipperpo-
sition or zipperposition-lemma, but not by zipperposition-no-theories, and 7 are
solved by the latter but not by the former (because the prover was slower or it
pruned the wrong part of the search space). This ratio becomes 7 to 2 on the
problems in which the lemma is applied.

We can already see that the redundancy criterion, with its quite naive imple-
mentation, already brings benefits. The un-mangling lemma makes a significant
difference on the set of problems in which it applies. On individual problems,
the difference can be striking: some problems that would not terminate within
2 minutes become trivial enough to get solved in 0.5s when lemma detection is
enabled. Those results are encouraging, and we believe that using a meta-prover
may find more uses in automated theorem proving. Profiling shows that the Dat-
alog reasoner represents a negligible fraction of the run-time (less than 1%). On
the other hand, our implementation is more naive and less efficient than SPASS
or E (which have a more powerful calculus, better heuristics, or a more efficient
implementation), which can explain why they still solve more problems. Our
technique could be integrated in other theorem provers to discover lemmas or
usable redundancy criteria — especially for scheduling provers (like iProver[7])
because meta-level facts that are discovered during a time slice can be used for
the next ones (using a suitable term ordering, etc.).

Three problems are solved only by the versions of Zipperposition that use
lemma detection: GRP392-1.p, GRP393-1.p and GRP394-1.p. Interestingly, all
three are satisfiable problems in relational form where the un-mangling lemma

3 We point out that our implementation of superposition is not nearly as good as
SPASS or E, which are the result of years of work.

Detection of First Order Axiomatic Theories 243

Prover Proved success rate(%) proved /594 % proved /68 %

E 1047 73.0 430 72.4 59 86
SPASS 863 60.1 376 63.3 50 73
zipperposition 531 37.0 202 34.0 56 82
zipperposition-lemma 527 36.7 199 33.5 57 83
zipperposition-no-theories 504 35.1 191 32.1 52 76

Fig. 5. Benchmark Results: Number of Solved Problems

transforms into easily saturated sets of equations. This is only possible because
the calculus of [5] turns some equivalences into rewrite rules.

Conclusion and Possible Extensions

We have shown a generic and flexible way to detect instances of axioms and
theories during the search for a (clausal) proof. The use of a Datalog incre-
mental inference system, which manipulates assertions about the problem itself,
makes the meta-level reasoning flexible, modular and allows to have one’s own
meta-facts (properties) triggered by new meta-assertions. This technique already
shows very promising results, and can be improved further with more sophisti-
cated uses of the detected theories. We believe that this kind of combination,
although still quite simple, bears some resemblance with the way real mathe-
maticians solve problems. Using several levels of description and proof may also
help making automated proofs more understandable, saturation proofs being
often blamed for being very unintuitive to human users. Further development
includes:

– making the reasoner more proactive by having it spawning subprocesses to
try to prove missing axioms;

– computing redundancy criteria for equational theories off-line. Theories could
be extracted from axiom files, before a redundancy criterion is looked for by
saturating the axioms;

– automatically extract lemma from successful proofs in order to help solving
similar problems;

– implementing this technique in a state of the art prover.

Acknowledgements. We would like to thank Gilles Dowek for his help, and
the anonymous reviewers for their detailed and helpful comments.

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley
(1995)

2. Avenhaus, J., Hillenbrand, T., Löchner, B.: On using ground joinable equations in
equational theorem proving. Journal of Symbolic Computation 36(1-2), 217–233
(2003)

244 G. Burel and S. Cruanes

3. Bachmair, L., Ganzinger, H.: Associative-commutative superposition. In: Der-
showitz, N., Lindenstrauss, N. (eds.) CTRS 1994. LNCS, vol. 968, pp. 1–14. Springer,
Heidelberg (1995)

4. Denzinger, J., Schulz, S.: Learning domain knowledge to improve theorem proving.
In: McRobbie, M.A., Slaney, J.K. (eds.) CADE 1996. LNCS, vol. 1104, pp. 62–76.
Springer, Heidelberg (1996)

5. Ganzinger, H., Stuber, J.: Superposition with equivalence reasoning and delayed
clause normal form transformation. In: Baader, F. (ed.) CADE 2003. LNCS
(LNAI), vol. 2741, pp. 335–349. Springer, Heidelberg (2003)

6. Hillenbrand, T., Jaeger, A., Löchner, B.: System description: Waldmeister – im-
provements in performance and ease of use. In: Ganzinger, H. (ed.) CADE 1999.
LNCS (LNAI), vol. 1632, pp. 232–236. Springer, Heidelberg (1999)

7. Korovin, K.: iProver – An Instantiation-Based Theorem Prover for First-Order
Logic (System Description). In: Armando, A., Baumgartner, P., Dowek, G. (eds.)
IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 292–298. Springer, Heidelberg (2008)

8. Nieuwenhuis, R., Rubio, A.: Paramodulation-based theorem proving. In: Robinson,
J.A., Voronkov, A. (eds.) Handbook of Automated Reasoning. Elsevier, MIT Press
(1999)

9. Riazanov, A., Voronkov, A.: Vampire 1.1 (System description). In: Goré, R.P.,
Leitsch, A., Nipkow, T. (eds.) IJCAR 2001. LNCS (LNAI), vol. 2083, pp. 376–380.
Springer, Heidelberg (2001)

10. Robinson, J.A.: A Machine-Oriented Logic Based on the Resolution Principle. J.
ACM 12(1), 23–41 (1965)

11. Schulz, S.: E - a brainiac theorem prover. AI Commun. 15(2,3), 111–126 (2002)
12. Stuber, J.: Superposition theorem proving for abelian groups represented as integer

modules. In: Ganzinger, H. (ed.) RTA 1996. LNCS, vol. 1103, pp. 33–47. Springer,
Heidelberg (1996)

13. Sutcliffe, G.: The TPTP Problem Library and Associated Infrastructure: The FOF
and CNF Parts, v3.5.0. Journal of Automated Reasoning 43(4), 337–362 (2009)

14. Weidenbach, C., Schmidt, R.A., Hillenbrand, T., Rusev, R., Topic, D.: System
Description: Spass Version 3.0. In: Pfenning, F. (ed.) CADE 2007. LNCS (LNAI),
vol. 4603, pp. 514–520. Springer, Heidelberg (2007)

Mechanizing the Metatheory of Sledgehammer

Jasmin Christian Blanchette and Andrei Popescu

Fakultät für Informatik, Technische Universität München, Germany

Abstract. This paper presents an Isabelle/HOL formalization of recent research
in automated reasoning: efficient encodings of sorts in unsorted first-order logic,
as implemented in Isabelle’s Sledgehammer proof tool. The formalization pro-
vides the general-purpose machinery to reason about formulas and models, emu-
lating the theory of institutions. Quantifiers are represented using a nominal-like
approach designed for interpreting syntax in semantic domains.

1 Introduction

Despite steady progress in the usability of proof assistants, paper proofs reign supreme
in the automated reasoning community. Myreen and Davis’s verification of an ACL2-
like prover in HOL4 [17] and Harrison’s partial self-verification of HOL Light [13]
are exceptions rather than the rule. Important metamathematical results have been for-
malized (e.g., Shankar’s Gödel proof [26]), but new research is still carried out almost
exclusively on paper, with all the risks this entails.

This paper presents a formalization in Isabelle/HOL [18] of the proofs for transla-
tions from many-sorted to unsorted first-order logic (FOL). Claessen et al. [10] designed
lightweight encodings that eliminate much of the clutter associated with traditional
schemes. Blanchette et al. [3, 4] introduced even lighter encodings in a sequel. Central
to these new encodings is the notion of monotonicity. Informally, a sort is monotonic
if its domain can be extended with new elements without compromising satisfiabil-
ity. Nonmonotonic sorts can be made monotonic by introducing protector functions or
predicates, and monotonic sorts can be merged into a single sort.

Sorts are trivially monotonic in FOL without equality. The addition of interpreted
equality makes it possible to encode upper cardinality bounds on the models, breaking
monotonicity. Like other interesting semantic properties, monotonicity is undecidable
but can often be inferred in practice. Monotonicity has many applications in theorem
provers and model finders [5,10]. It is also roughly equivalent to smoothness, a criterion
that arises when combining decision procedures in SMT solvers [28].

The Sledgehammer [19] proof tool for Isabelle/HOL relies on the monotonicity-
based encodings to apply state-of-the-art unsorted provers to sorted problems. The tool
translates interactive proof goals along with relevant lemmas and invokes the external
automatic theorem provers to find proofs, which are reconstructed through Isabelle’s
inference kernel. Early versions of Sledgehammer relied on unsound sort encodings;
as a result, they would often find spurious, unreconstructable proofs, which annoyed
users and could conceal sound proofs. Whereas Sledgehammer reconstructs the external
proofs, tools such as Monotonox [10] and the fully-automatic competition version of
Isabelle [27] do not perform such checks; soundness is crucial for them.

P. Fontaine, C. Ringeissen, and R.A. Schmidt (Eds.): FroCoS 2013, LNAI 8152, pp. 245–260, 2013.
© Springer-Verlag Berlin Heidelberg 2013

246 J.C. Blanchette and A. Popescu

The mechanization of the sort encodings fully covers the correctness proofs from
Claessen et al. [10] and the monomorphic half of its sequel [3, 4], as well as a theorem
by Bouillaguet et al. [9]. This formalization work arose from a desire to provide more
solid assurance to this recent research. Even if the intuition is clear, a paper proof offers
many opportunities for flaws, especially because of the variety of encodings.

The mechanization effort partly coincided with the development of the informal
proofs [4]. The two proofs largely follow the same conventions, with one major dif-
ference: The core of the formal proof (Sections 3 to 5) assumes quantifier-free clausal
normal form (CNF) rather than negation normal form (NNF). This reduces the exposure
to name binders, which are notoriously difficult to reason about. The results are lifted to
NNF using a clausification theorem (Sections 6 to 8). This organization is reminiscent
of the architecture of automatic reasoners that combine a clausifier and a CNF core.

Isabelle’s higher-order logic (HOL) might not be as expressive as set or type theory,
but it can cope with the statements and proofs of classical metatheorems (as shown by
Harrison and others [2, 12, 25]) and practical results. The proof assistant offers many
conveniences; two features have been particularly useful:

• Locales [1,15] parameterize theories over constants and assumptions, with the usual
benefits associated with modularity. Locales are particularly suited to expressing
logic translations abstractly as in the theory of institutions [11].

• A framework for syntax with bindings [23,24] eases reasoning about quantified for-
mulas. It lies at the intersection of first-order nominal approaches [21] and higher-
order abstract syntax [20]. The framework is designed specifically for interpreting
syntax in semantic domains.

Locales have been part of Isabelle for many years and are widely used. The syntax with
bindings is a newer addition; the current application is among the first case studies that
feature it. The formal proofs are available online [6, 7].

Although sort encodings are the focus of this paper, our infrastructure is designed to
be reusable for other applications of many-sorted FOL. Many important metatheories
are awaiting formalization, such as the completeness of paramodulation and tableaux.

2 An Isabelle View of Logic Translations

The formalization covers a variety of translations, including not only the sort encod-
ings but also clausification. The guiding principles, described below, originate from the
theory of institutions; their Isabelle materialization relies on locales.

Institutions. A logic L provides a category of signatures Sig and, for each signature
Σ ∈ Sig, a set of sentences Sen(Σ), a class of structures (interpretations) Str(Σ), and a
satisfaction relation �Σ between structures and sentences. A signature morphism k : Σ →
Σ′ is equipped with a forward sentence translation k : Sen(Σ) → Sen(Σ′) and a backward
structure translation 	k : Str(Σ′) → Str(Σ). An institution is a logic whose signature
morphisms enjoy the property that “truth is invariant under change of notation”: M ′ �Σ′

k ϕ ←→ M ′	k �Σ ϕ for all k : Σ → Σ′, M ′ ∈ Str(Σ′), and ϕ ∈ Sen(Σ).

Mechanizing the Metatheory of Sledgehammer 247

A translation of L -problems (sets of sentences) into L ′-problems consists of a func-
tion $ between L ’s and L ′’s signature classes and, for each Σ ∈ dom($) and Σ-problem
Φ, a sentence translation encΦ : Sen(Σ) → Sen(Σ$) and a set of axioms AxΦ ⊆ Sen(Σ$).
The translation of Φ is defined as enc Φ = {encΦ ϕ | ϕ ∈ Φ}∪AxΦ. Thus, L -problems
are mapped to L ′-problems by joining an elementwise translation and additional ax-
ioms. Given a class C of L -problems, the translation is sound w.r.t. C if satisfiability
of Φ implies satisfiability of enc Φ for all Φ ∈ C , and complete if the converse holds.

The institution literature focuses on “uniform” encodings. For these, the sentence
translation depends only on Φ’s signature Σ, and there exists a backward translation
dec : Str(Σ$) → Str(Σ) for which an inter-institution version of the institutional condi-
tion holds: M ′ �Σ$ encΣ ϕ ←→ dec M ′ �Σ ϕ. This condition implies completeness.

The source logic L for all the translations considered in this paper is many-sorted
FOL; the target logic L ′ is either many-sorted or unsorted FOL. Sentences are either
CNF clauses or NNF formulas. Most of the translations are nonuniform.

Isabelle. Isabelle/HOL is based on polymorphic HOL, which can be thought of as
a fragment of Standard ML enriched with logical constructs and a proof system. Type
variables are identified by a leading prime (e.g., ′a). The type σ→ τ is interpreted as the
set of (total) functions from σ to τ. Propositions are terms of type bool, and predicates
are functions to bool. Function applications are written without parentheses (e.g., f x y)
or in infix notation (e.g., x + y). Constants and variables can be functions.

The type ′a list of finite lists over ′a is generated freely from the empty list [] and
the infix constructor # : ′a → ′a list → ′a list. The notation [x1, x2, . . . , xn] abbreviates
x1 #(x2 #(· · ·#(xn # []) · · ·)). The higher-order constant map : (′a → ′b) → ′a list→ ′b list
applies a unary function to each element in a list, and set : ′a list → ′a set returns the
set of elements in a list. Sets are written using traditional mathematical notation. Type
parameters of polymorphic types are sometimes omitted (e.g., set for ′a set).

Locales. Isabelle locales are a structuring mechanism provided on top of basic HOL.
They fix types, constants, and assumptions, as in the following schematic examples:

locale X = fixes ′a fixes c : σ′a assumes P ′a,c
locale Y = fixes ′b fixes d : τ′b assumes Q′b,d

The definition of locale X fixes a type ′a and a constant c whose type σ′a may depend on
′a, and states an assumption P ′a,c : bool over ′a and c. Lemmas proved within the locales
can rely on them. In general, a single locale can introduce several types, constants, and
assumptions. The definition of X also produces a polymorphic locale predicate X =
(λc. P ′a,c). Seen from outside the locale, the lemmas proved in locale X are polymorphic
in type variable ′a, universally quantified over variable c, and conditional on X c.

Locales support inheritance, union, and embedding. To embed X into Y, one needs
to indicate how an arbitrary instance of X can be regarded as an instance of Y, by
providing, in the context of X, definitions of the types and constants of Y together with
proofs of Y’s assumptions. The command

sublocale X < Y where ′b = υ and d = t

emits the goal Qυ,t, where υ and t may depend on types and constants from X. After the
proof, all the lemmas proved in the Y become available in X, with υ and t in place of ′b
and d. Homonymous constants d in X and Y are instantiated as d = d by default.

248 J.C. Blanchette and A. Popescu

The sublocale relationship is sometimes abbreviated to X ′a,c < Yυ, t or X < Y.
Locales provide a shallow realization of institutions in Isabelle. The institutional

methodology serves as an inspiration and guidance to formulate results about specific
logic translations in a consistent style. Given a logic L , its signatures Sig are captured
by a locale L .Signature, which fixes Isabelle constants for the signature components
(e.g., sorts and symbols) and defines a notion of sentence (e.g., clauses or formulas). A
locale L .Problem extends L .Signature with a fixed set of sentences Φ. Structures M
are represented by a locale L .Structure that also defines a notion of satisfaction. Finally,
satisfiable problems are represented by a locale L .Model that joins L .Problem and
L .Structure and further requires satisfaction between Φ and M .

In this setting, translations between logics L and L ′ and their properties are captured
via locale embedding mechanisms in four steps.

SIG: Define $ as a sublocale relationship L .Signature < L ′.Signature with suitable
parameter instantiations reflecting the definition of Σ$ in terms of Σ.

TRANS: Define encΦ inside L .Problem (where Σ and the Σ-problem Φ are fixed).

SOUND: To prove soundness, define a Σ$-structure M ′ inside L .Model (where the sig-
nature Σ, the Σ-problem Φ, and the structure M such that Φ �Σ M are fixed) and show
L .ModelM < L ′.ModelM ′ .

COMPLETE: To prove completeness, define a locale Problem_Model′ = L .Problem+
L ′.Model that joins a Σ-problem Φ and a Σ$-model M ′of enc Φ, define inside Problem_

Model′ a Σ-structure M , and show Problem_Model′M ′ < L .ModelM .

3 Clausal First-Order Logic

The terms, atoms, and literals of (quantifier-free) CNF are represented in HOL by ML-
style free datatypes, parameterized by types ′f and ′p of function and predicate symbols:

datatype ′f tm =
Var var |
Fn ′f (′f tm list)

datatype (′f , ′p) atm =
Pr ′p (′f tm list) |
Eq (′f tm) (′f tm)

datatype (′f , ′p) lit =
Pos ((′f , ′p) atm) |
Neg ((′f , ′p) atm)

The type var is countably infinite. An atom is either an applied predicate (e.g., p(t))
or equality (e.g., t ≈ u). A clause is a list of literals (interpreted disjunctively), and
a problem is a set of clauses (interpreted conjunctively). Formally, (′f , ′p) clause =
(′f , ′p) lit list and (′f , ′p) problem = (′f , ′p) clause set. The CNF representation involves
no name binders, unlike (quantified) NNF (Section 6).

Many-sorted signatures (for CNF and NNF) are captured by the following locale:

locale Signature =
fixes ′s and ′f and ′p
fixes arityF : ′f → ′s list and res : ′f → ′s and arityP : ′p → ′s list
assumes countable UNIV′s and countable UNIV′f and countable UNIV′p

The locale is parameterized by types for sorts (′s), function symbols (′f), and predicate
symbols (′p), all required to be countable (i.e. finite or countably infinite). The locale
attaches to each symbol a sort arity (arityF or arityP) and, for functions, a result sort
(res). The sort arity can be empty. Symbols cannot be overloaded. The polymorphic
constant UNIV′a : ′a set is predefined in Isabelle as the set of all values of type ′a.

Mechanizing the Metatheory of Sledgehammer 249

The Signature locale defines an underspecified function sort : var→ ′s that arbitrarily
assigns sorts to variables. Whereas the formalization consistently refers to FOL’s sorts
as types (in view of a possible extension to n-ary type constructors and polymorphism),
in this paper they are more precisely called sorts. Wellsortedness and wellformedness
of terms and the other syntactic categories are defined in the usual way. Wellformedness
is a precondition to many operations, but such details are omitted here.

The Problem locale joins a signature Σ and a CNF Σ-problem Φ. The Structure
locale combines a signature, a universe ′u, and a triple of functions (intS, intF, intP)
that interpret sorts, function symbols, and predicate symbols:

locale Problem = Signature ′s,′f ,′p arityF res arityP +
fixes Φ : (′f , ′p) problem

locale Structure = Signature ′s,′f ,′p arityF res arityP +
fixes ′u
fixes intS : ′s → ′u → bool and intF : ′f → ′u list → ′u and

intP : ′p → ′u list → bool

A few wellformedness assumptions are made on the triple (intS, intF, intP), such as
inhabitation of all sorts (∀σ. ∃d. intS σ d). The Structure locale also defines the in-
terpretation of terms and satisfaction of clauses. A related locale, Model, represents
satisfiable CNF problems by combining a Problem and a Structure it satisfies.

4 Monotonicity and Its Inference

This section focuses on monotonicity in its own right; Section 5 discusses the associated
sort encodings. To simplify the monotonicity arguments, both sections assume a fixed
infinitely countable type ω as the universe ′u of structures, thus working implicitly with
the instances Structureω and Modelω. This limitation is lifted in Section 8 by appealing
to the downward Löwenheim–Skolem theorem.

Claessen et al. [10, §2] define monotonicity on single sorts. Blanchette et al. [3, §3]
generalized the notion to sets of sorts S, making it more useful. The sorts S are collec-
tively monotonic in the problem Φ if for all models M of Φ, there exists a model M ′

such that for all sorts σ, M ′ interpretsσ by an infinite domain if σ ∈ S and by a domain
of the same cardinality as in M otherwise.

In the formalization, the Mono_Problem locale enriches Problem with a monotonic-
ity assumption on all sorts, expressed using locale predicates:(

∃intS intF intP. Model arityF res arityP Φ intS intF intP
)
−→

∃intS intF intP. Infinite_Model arityF res arityP Φ intS intF intP

The Infinite_Model locale is itself an enrichment of Model with the assumption that for
each sort σ, the expression intS σ d is true for infinitely many elements d.

First Criterion. Claessen et al. designed two syntactic criteria to infer monotonicity.
The first one is defined as a predicate
 that checks the absence of naked variables of a
given sort σ in a clause c or a problem Φ:

σ
 c ←→ ∀x∈nv c. sort x �= σ σ
Φ ←→ ∀c∈Φ. σ
 c

250 J.C. Blanchette and A. Popescu

A naked variable is a variable that occurs directly on either side of a positive equality,
such as X in the literal X ≈ f(Y). Formally:

nv (Var x) = {x} nv (Eq t1 t2) = nv t1 ∪ nv t2 nv (Pos a) = nv a
nv (Fn f ts) = /0 nv (Pr p ts) = /0 nv (Neg a) = /0

with nv c =
⋃

set (map nv c) for clauses. The criterion
 soundly infers monotonicity.
This is expressed as a sublocale inclusion Problem_Crit1 < Mono_Problem, where
Problem_Crit1 enriches Problem with the assumption ∀σ. σ
Φ. The inclusion holds
because a model of a problem whose sorts pass
 can be extended into an infinite model
by replicating elements. For each finite sort σ, the extended model contains infinitely
many copies of some element pick σ, all interpreted as in the original model.

Blanchette et al. strengthened the criterion by injecting “infinity knowledge”: Any
sort that is interpreted by an infinite domain in all models is monotonic, regardless of
naked variables [3, §3]. This aspect is part of the formalization but omitted here.

Second Criterion. The improved criterion is parameterized by an assignment of a per-
sort extension policy—which may be true, false, or copy—to each predicate symbol.
In the model construction, the true-extended (resp. false-extended) predicates are in-
terpreted as true (resp. false) for new domain elements of the given sort, whereas the
copy-extended predicates are treated as in the simple criterion.

Implementations can enumerate the possible policy combinations (e.g., using a SAT
solver). In the formalization, the policies are supplied along with the problem as a cur-
ried function policy that maps pairs σ, p to T, F, or C. A function guard associates each
variable x in need of protection with its guarding literal. The criterion is defined as

σ� c ←→ ∀l x. l∈ set c ∧ x∈nv l ∧ sort x = σ −→ isGuard x (guard c l x)
σ�Φ ←→ ∀c∈Φ. σ� c

where isGuard determines whether the given literal actually protects the variable x:

isGuard x (Pos (Eq t1 t2)) ←→ False
isGuard x (Neg (Eq t1 t2)) ←→ ∨2

i=1 ti = Var x ∧ ∃ f ts. t3−i = Fn f ts
isGuard x (Pos (Pr p ts)) ←→ x ∈ ⋃ set (map nv ts) ∧ policy (sort x) p = T
isGuard x (Neg (Pr p ts)) ←→ x ∈ ⋃ set (map nv ts) ∧ policy (sort x) p = F

The notion of naked variables is generalized to account for ill-polarized predicates:

nv (Pos (Pr p ts)) = {x ∈ ⋃ set (map nv ts) | policy (sort x) p = F}
nv (Neg (Pr p ts)) = {x ∈ ⋃ set (map nv ts) | policy (sort x) p = T}

Theorem 1. Let Φ be a Σ-problem and σ be a Σ-sort.
(1) If σ
Φ, then σ�Φ for a copy-extended policy.
(2) Given some extension policies, if σ�Φ for all Σ-sorts σ, then the set of all Σ-sorts

is monotonic in Φ.

This theorem is expressed in Isabelle as a pair of sublocale inclusions. The where clause
below instantiates Problem_Policy_Crit2’s policy parameter with λσ p. C to enforce
the copy policy for all sorts and predicate symbols:

sublocale Problem_Crit1 < Problem_Policy_Crit2 where policy = (λσ p. C)
sublocale Problem_Policy_Crit2 < Mono_Problem

Mechanizing the Metatheory of Sledgehammer 251

5 Sort Encodings

A naive, unsound way to translate a many-sorted FOL problem to unsorted FOL is to
erase all the sorts and otherwise leave the problem unchanged. There are two main
sound alternatives that encode the sort information. Sort tags are functions tσ(X) that
directly associate a term X with its sort σ. Sort guards are predicates gσ(X) that check
whether X has sort σ in the original problem. The formalized versions of these encod-
ings follow the four steps sketched in Section 2.

Full Erasure. Full sort erasure is unsound but complete. What makes it interesting
is that it is sound for the class of monotonic problems. By way of composition, it lies
at the heart of the tag- and guard-based encodings. The theory prefix U distinguishes
unsorted entities from their many-sorted counterparts.

SIG: The signature of the target unsorted problem has the same function and predicate
symbols as the original signature but collapses the sorts into a single, implicit sort.

TRANS: The translation function e is the identity except that it forgets the sorts.

SOUND: For the soundness proof, a model of a monotonic problem is extended into a
model that interprets all sorts infinitely, which in turn is transformed into an isomorphic
“full” model that interprets all the sorts uniformly as λd.True (i.e., ∀σ. ∀d. intS σ d),
from which it is easy to build an unsorted model for the e-translated problem:

Mono_Model < Infinite_Model < Full_Model < U.Model

The last step corresponds to Theorem 1 in Bouillaguet et al. [9] and, more approxi-
mately, to Lemma 1 in Claessen et al. [10]. Incidentally, the formalization revealed a
flaw in Claessen et al.: Their main result holds, but not their Lemma 3.1

COMPLETE: The locale Problem_UModel combines a many-sorted problem and an
unsorted model with domain D of the problem’s e translation. The unsorted model can
be regarded as a many-sorted model in which every sort is interpreted as D.

Protector-Based Encodings. Claessen et al. observe that protectors, whether tags or
guards, are not needed for terms with monotonic sorts. The sequel [3] advocates pro-
tecting only those variables that cause the monotonicity check to fail, to reduce clutter.
Thus, for both tags and guards, three schemes are available: the traditional encoding,
the lightweight version due to Claessen et al., and the “featherweight” version from the
sequel. These are called t̃, t̃?, and t̃?? for tags and g̃, g̃?, and g̃?? for guards.

Consider the following fragment of a many-sorted problem, where S has sort st:

S ≈ on ∨ S ≈ off flip(S) �≈ S

1 The flawed lemma states that whenever there exists a model M where a monotonic sort σ is
interpreted with a given cardinality, there exists for any larger cardinality k a model where σ
has cardinality k and the other sorts have the same cardinalities as in M . This proposition is
invalid for k >ℵ0 because FOL problems can encode the constraint that there exists a bijection
between two infinite, and hence monotonic, sorts σ and τ, making it impossible to increase
σ’s cardinality without also increasing τ’s. This issue is independent of which of the two
definitions of monotonicity is used. We discovered it at an early stage of the formalization as
we were looking for a correct formulation of Löwenheim–Skolem for many-sorted FOL.

252 J.C. Blanchette and A. Popescu

The traditional t̃ encoding inserts tags around every subterm:

tst(S) ≈ tst(on) ∨ tst(S) ≈ tst(off) tst(flip(tst(S))) �≈ tst(S)

Since the sort st is not monotonic (its only models have cardinality 2), the t̃? encoding
coincides with t̃. In contrast, the featherweight t̃?? encoding tags only naked variables:

tst(S) ≈ on ∨ tst(S) ≈ off flip(S) �≈ S

The t̃??-encoded problem is complemented by typing axioms that repair mismatches
between tagged and untagged occurrences of well-sorted terms:

tst(on) ≈ on tst(off) ≈ off tst(flip(S)) ≈ flip(S)

For guards, the traditional and lightweight encodings g̃ and g̃? protect each variable:

¬g st(S) ∨ S ≈ on ∨ S ≈ off ¬gst(S) ∨ flip(S) �≈ S

The featherweight encoding g̃?? guards only naked variables:

¬g st(S) ∨ S ≈ on ∨ S ≈ off flip(S) �≈ S

The guard encodings are completed by the axioms g st(on), gst(off), and gst(flip(S)).

General Encoding Procedure. The full sort erasure encoding e is part of a two-stage
procedure to encode any many-sorted FOL problem into unsorted FOL. The first stage
makes the problem monotonic by introducing protectors (tags or guards). This corre-
sponds to a sound and complete encoding of many-sorted FOL into itself; the soundness
proofs rely on the monotonicity criteria. The second stage merges all the sorts using e,
which is sound and complete for monotonic problems.

Tags and guards are formalized separately, but for a protector kind, the traditional,
lightweight, and featherweight encodings are treated as instances of a single generalized
encoding. Both generalized encodings are parameterized by a partition of sorts by level
of protection, via disjoint predicates prot, protFw, unprot : ′s → bool indicating whether
terms of a sort should be fully protected, protected in a featherweight fashion, or left
unprotected. The last option is available only for sorts inferred monotonic by
.

Tags. The tag encoding builds on a datatype of extended function symbols containing
the old symbols as well as a tag for each sort:

datatype (′f , ′s) efsym = Old ′f | Tag ′s

SIG: Signatures over the extended symbols treat the old function symbols as before.
The new symbols Tag σ are unary operations of sort arity [σ] and result sort σ.

TRANS: The encoding function is specified as follows:

t (Var x) =

{
Var x if unprot (sort x)
Fn (Tag (sort x)) [Var x] otherwise

t (Fn f ts) = t′ (Fn f ts)
t (Pos (Eq t1 t2)) = Pos (Eq (t t1) (t t2))
t (Neg (Eq t1 t2)) = Neg (Eq (t′ t1) (t′ t2))
t (Pos (Pr p ts)) = Pos (Pr p (map t′ ts))
t (Neg (Pr p ts)) = Neg (Pr p (map t′ ts))

Mechanizing the Metatheory of Sledgehammer 253

t′ (Var x) =

{
Fn (Tag (sort x)) [Var x] if prot (sort x)
Var x otherwise

t′ (Fn f ts) =

{
Fn (Tag (res f)) [Fn (Old f) (map t′ ts)] if prot (res f)
Fn (Old f) (map t′ ts) otherwise

The t function tags naked variables unless they are of an unprotected sort. The auxiliary
function t′ adds tags only for fully protected sorts; it is invoked on all subterms except
naked variables.

The tag axioms AxΦ—needed to repair mismatches between tagged and untagged
terms in the featherweight encoding t̃??—have the form Pos(Eq(Fn(Tag(res f)[t])) t),
where t = Fn (Old f) (map Var xs) and xs is a list of distinct variables of sorts arityF f ,
for all function symbols f such that protFw (res f). The encoding of a problem is
t Φ = {map t c | c ∈ Φ} ∪ AxΦ.

SOUND: Given a model of the fixed problem Φ, a model of t Φ is obtained by extending
it with interpreting tags as the identity functions.

COMPLETE: Completeness is more difficult. To convey a sense of the complexity, let
us quote the informal proof, in which x stands for t̃? or t̃?? (t̃ is analogous to t̃?) and
�Φ�x denotes the x-encoding of the NNF problem Φ [4, §4.4]:

A model of �Φ�x is canonical if all tag functions tσ are interpreted as the
identity. From a canonical model, we obtain a model of Φ by leaving out tσ.
It then suffices to prove that whenever there exists a model M of �Φ�x , there
exists a canonical model M ′.

For t̃?, values of a tagged type σ are systematically accessed through tσ.
Hence, we can safely permute the entries of the function table of each tσ so
that it is the identity for the values in its range. We then construct M ′ by re-
moving the domain elements for which tσ is not the identity. It is a model by
Lemma 4.13 [which states that substructures of NNF models are models if they
preserve existential witnesses].

For t̃??, the construction must take possibly nonmonotonic types into ac-
count. No permutation is necessary for these thanks to the typing axioms,
which ensure that the tag functions are the identity for well-typed terms. For
each σ �
 Φ, we remove the model elements for which tσ is not the identity.
The typing axioms ensure that the substructure is well-defined: each tag func-
tion is the identity for at least one element and also for each element within the
range of a non-tag function. The equations tσ(X) ≈ X generated for existential
variables ensure that witnesses are preserved, as required by Lemma 4.13.

Relying on permutations is intuitive on paper, but in the proof assistant it is simpler to
combine the permutation and the reduction to a canonical model:

intF f as =

{
eintF (Tag (res f)) [eintF (Old f) (map2 q (arityF f) as)] if prot (res f)
eintF (Old f) (map2 q (arityF f) as) otherwise

Here, eintF denotes the intF component of the fixed model of t Φ, and map2 applies
a binary function elementwise on parallel lists. The auxiliary function q maps a sort σ

254 J.C. Blanchette and A. Popescu

and an element d to d if either unprotσ or d is in the range of eintF (Tag σ); otherwise,
it maps σ, d to eintF (Tag σ) d. The proof that the resulting structure is a model of
the original problem Φ involves defining suitable back-and-forth functions between the
two structures. Finally, proving monotonicity of t Φ is reduced to showing that the first
criterion always succeeds on the translated problem: ProblemΦ < Problem_Crit1tΦ.

Guards. The guard encoding requires extending the signature with guard predicates:

datatype (′p, ′s) epsym = Old ′p | Guard ′s

Each symbol Guard σ has arity [σ] and contributes axioms to the translated problem.
The soundness proof extends models of Φ into models of g Φ by interpreting the

guard predicates as true everywhere. The completeness part is easier for guards than
for tags. A canonical model is one where all guard predicates are interpreted as true
everywhere. The proof handles the three levels of protection uniformly, reflecting the
more uniform nature of g̃??—there are no counterparts to the “typing axioms that repair
mismatches between tagged and untagged occurrences of well-sorted terms” of t̃??.

Monotonicity is proved using the second criterion, with the extension policy C for
the predicates Old p and F for the distinguished symbols Guard σ. This is a departure
from the informal proof, which inlines the model extension argument without appealing
to the monotonicity criterion.

6 First-Order Logic with Quantifiers

This and the next two sections are concerned with lifting the results presented in the
previous sections to negation normal form and structures with arbitrarily large domains.

The locales for quantified FOL formulas in NNF are either the same or similar to
those for CNF; the theory prefix Q is used for disambiguation (e.g., Q.Model). No
cardinality assumption is made about the universe. Terms and atoms are as for CNF, but
formulas can nest positive connectives and quantifiers arbitrarily.

The following declaration gives an approximation of the syntactic category of for-
mulas. The actual type identifies them modulo α-equivalence (variable renaming):

datatype (′s, ′f , ′p) fm =
Pos ((′f , ′p) atm) | Conj ((′s, ′f , ′p) fm) ((′s, ′f , ′p) fm) | All ′s var ((′s, ′f , ′p) fm) |
Neg ((′f , ′p) atm) | Disj ((′s, ′f , ′p) fm) ((′s, ′f , ′p) fm) | Ex ′s var ((′s, ′f , ′p) fm)

The proper formal management of binding syntax moduloα-equivalence is a topic of
extensive research in λ-calculus and programming languages. FOL syntax poses similar
challenges. In particular, substitution and its interplay with the semantics is difficult to
handle rigorously; for example, a standard textbook [16] dedicates dozens of lemmas
to these preliminaries, with rough proof sketches. Many of these refer to properties
of any syntax with static bindings, falling under the scope of a general metatheory of
syntax formalized by Popescu et al. [23, 24]. A prominent feature of this framework—
distinguishing it from the more established Nominal Isabelle [14], based on nominal
logic [21]—is that it is centered around the notion of substitution:

• The framework defines substitution, including parallel and unary variants, and pro-
vides a large collection of basic facts about the interaction of substitution with free
variables and the other operators.

Mechanizing the Metatheory of Sledgehammer 255

• It provides a recursor for defining operators that are directly compositional with
substitution. (In contrast, the nominal logic recursor targets compositionality with
permutations, a less useful concept.)

This unconventional focus is appropriate: Substitution is without doubt the central syn-
tactic operator in logics and type systems.

Another main feature is the facilitation of semantic interpretation of syntax, which
is problematic in frameworks optimized for manipulating finitary syntax. For example,
Pitts encounters “a really nontrivial freshness condition on binders” [22, §6.3] he needs
to discharge in the context of applying the nominal recursor to interpret the λ-calculus
in a semantic domain. This feature is illustrated below for interpreting FOL syntax.

The framework requires the user to provide semantic domains—for FOL, types T ,
A , and F for interpreting terms, atoms, and formulas—as well as first-order opera-
tions corresponding to the non-binding constructors other than for variables (e.g., FN :
′f → T list → T) and second-order operations corresponding to the binders: ALL : ′s →
(T → F) → F and EX : ′s → (T → F) → F.

In exchange, the framework produces the functions intTm : tm → (var → T) → T ,
intAt : atm → (var → T) → A , and intFm : fm → (var → T) → F that interpret syntax
in the semantic domains. They map variables according to a valuation ξ. They map the
action of non-binding constructors to that of the corresponding semantic operators, and
similarly for binding constructors but in a valuation-sensitive way. For example:

intTm (Var x) ξ = ξ x
intTm (Fn f ts) ξ = FN f (map (λt. intTm t ξ) ts)
intAt (Eq t1 t2) ξ = EQ (intTm t1 ξ) (intTm t2 ξ)

intFm (Conj ϕ1 ϕ2) ξ = CONJ (intFm ϕ1 ξ) (intFm ϕ2 ξ)
intFm (All σ x ϕ) ξ = ALL σ (λd. intFm ϕ ξ[x (→ d])

where ξ[x (→ d] denotes the function that maps x to d and otherwise coincides with ξ. So
far, this looks like the standard interpretation of binding syntax in a semantic domain,
except that here the recursive definition is modulo α-equivalence (which is a priori
difficult to achieve in a proof assistant). The framework also derives compositionality
of substitution w.r.t. valuation update and obliviousness of the interpretation w.r.t. fresh
variables in a systematic, FOL-agnostic way:

intFm ϕ[t/x] ξ = intFm ϕ ξ[x (→ intTm t ξ]
intFm ϕ ξ = intFm ϕ ξ

′ if ξ and ξ′ differ only on variables fresh for ϕ

In the first equation, ϕ[t/x] denotes capture-free substitution of t for x in ϕ.
A many-sorted structure (intS, intF, intP) can be organized as a semantic domain

by taking T =ω, A = F = bool, FN = intF, EQ = (=), CONJ = (∧), ALL σ P =
(∀d. intS σ d −→ P d), and so on. This yields the recursive equations

�Var x�ξ = ξ x
�Fn f ts�ξ = intF f (map (λt. �t�ξ) ts)
�ξ Eq t1 t2 ←→ �t1�ξ = �t2�ξ

�ξ Conj ϕ1 ϕ2 ←→ �ξ ϕ1 ∧ �ξ ϕ2

�ξ All σ x ϕ ←→ ∀d. intS σ d −→ �ξ[x (→d] ϕ

256 J.C. Blanchette and A. Popescu

which characterize term interpretation (with �t�ξ = intTm t ξ), atom satisfaction (�ξ a =
intAt a ξ), and formula satisfaction (�ξ ϕ= intFm ϕ ξ). These functions are defined in the
Q.Structure locale. The framework also produces the substitution lemma �ξ ϕ[t/x] ←→
�ξ[x (→�t�ξ] ϕ. In the next section, the notations � ϕ and � Φ abbreviate ∀ξ. �ξ ϕ and
∀ϕ∈Φ. � ϕ. The structure can also be made explicit—e.g., (intS, intF, intP) �ξ ϕ.

If the orientation toward substitution is the main strength of the framework, its main
weakness is the lack of automation. For each desired binding syntax type, users must
currently instantiate the general theorems manually, much like mathematicians do rou-
tinely when applying universal algebra to groups or rings. The instantiation is tedious
due to the large number of theorems. Despite the availability of “template files,” this
process can take days and thousands of lines of proof text. Automation in the form of a
definitional package, which would provide the basic convenience expected by users of
Nominal Isabelle (while supporting substitution natively), remains for future work.

7 Classical Metatheorems

The lifting argument from countable CNF structures to unbounded NNF structures
(Section 8) relies on clausification and Löwenheim–Skolem for many-sorted FOL with
equality. Earlier formalizations focus on unsorted FOL without equality [2,12,25]. Sorts
and equality are tedious to formalize, and they often fail to reward the formalizer with
deep logical insight, but they are central to monotonicity and sort encodings.

Clausification. The translation of a finite quantified problem into clausal form involves
skolemizing all the existentially quantified variables into function symbols that take the
universally quantified variables in scope as arguments. Skolemization is surprisingly
difficult to treat formally; for example, Harrison [12] claims that it poses greater chal-
lenges than completeness. On the positive side, clausification can be seen as an instance
of the general semantic interpretation principle introduced in Section 6.

The definition of clausification and its soundness and completeness proof follow the
four-step institutional approach.

SIG: Skolemization introduces new function symbols Skoσs x, built from a list of sorts
σs (specifying the arity) and a variable name x, while preserving the sorts of Σ-symbols:

datatype ′f efsym = Old ′f | Sko (′s list) var

TRANS: The clausification function cls takes a Σ-formula ϕ, an environment ρ : var →
tm, a list of universal variables vs, and a set of fresh variables V as arguments. In
addition to massaging the connectives, it replaces existential variables by new symbols
that depend on vs, replaces bound universal variables by fresh variables from V , and
substitutes free variables according to ρ to produce a Σ′-clause.

The characteristic equations for cls are obtained by instantiating the semantic inter-
pretation principle with T = tm, A = atm, and F = var list → var set → fm, taking
suitable operators on these domains, and letting cls be intFm. The interesting cases are

cls (All σ x ϕ) ρ vs V = cls ϕ ρ[x (→ Var v] (v # vs) (V \ {v})
cls (Ex σ x ϕ) ρ vs V = cls ϕ ρ[x (→ Fn f (map Var vs)] vs (V \ {v})

Mechanizing the Metatheory of Sledgehammer 257

where v ∈ V is some variable of sort σ and f = Sko (map sort vs) v is the Skolem
function symbol, which is applied to the universal variables vs. For closed formulas,
clausification is defined as clausify ϕ= cls ϕ ρ [] UNIV for some irrelevant choice of ρ.

As a simple example, let ϕ = All σ x (Ex τ y (Eq (Var x) (Var y))), let v1, v2 be the
variables picked from UNIV and UNIV\ {v1}, and let f = Sko [σ] v2. Then

clausify ϕ
= cls ϕ ρ [] UNIV
= cls (Ex τ y (Eq (Var x) (Var y))) ρ[x (→ Var v1] [v1] (UNIV\ {v1})
= cls (Eq (Var x) (Var y)) ρ[x (→ Var v1, y (→ Fn f [Var v1]] [v1] (UNIV\ {v1,v2})
= Eq (Var v1) (Fn f [Var v1])

SOUND: Soundness is proved in the Structure locale, which fixes a Σ-structure (intS,
intF, intP). The “Skolem model” predicate skmod ϕ ρ vs V eintF eint′F transforms, for
each valuation ξ : var → ′u, an extended structure eintF such that �ξ cls ϕ ρ vs V into an
extended structure eint′F such that �ξ8ρ ϕ, where 8 composes valuations with environ-
ments. The introduction rules of skmod emulate cls’s equations; for example,

skmod ϕ ρ[x (→ Fn f (map Var vs)] vs (V \ {v}) eintF[f (→ F] eint′F

skmod (Ex σ x ϕ) ρ vs V eintF eint′F

where v ∈ V and F : ′u list → ′u is a suitable interpretation for the Skolem symbol f ,
defined so that F us gives an arbitrary u such that (intS, intF, intP)�ξ8ρ[x (→u] ϕ, where ξ
maps vs to us elementwise. The skmod relation is total on the last argument. For closed
formulas ϕ such that (intS, intF, intP) � ϕ, starting with an extension eintF of intF,
skmod yields eint ′F such that (intS,eint ′

F, intP) � clausify ϕ. Thus, if ϕ has a model,
then clausify ϕ also has a model.

For problems, we define clausify Φ = clausify (
∧

Φ), where
∧

Φ is the conjunction
of all formulas in Φ, which must be finite. The locale Q.Model fixes Φ and a model,
which is also a model of the formula

∧
Φ. By soundness of clausify on closed formulas,

this yields a model of clausify Φ.

COMPLETE: For completeness, it suffices to show that the backward structure transla-
tion of a model of clausify Φ is a model of Φ. This is straightforward.

Löwenheim–Skolem. The proof of the downward Löwenheim–Skolem theorem is
based on a formalization of a complete inference system, described in a separate pa-
per [8]. In the Q.Model locale, which fixes a problem and model, it constructs a syntac-
tic Henkin model. Since this model has a countable universe, there exists an isomorphic
copy on ω (the countably infinite universe fixed throughout Sections 4 and 5). This
yields Q.Model ′u < Q.Modelω.

Using the obvious sound and complete embedding embed of CNF problems into
NNF problems, it is possible to transfer the Löwenheim–Skolem theorem to CNF:

Model ′u,Φ < Q.Model ′u, embed Φ < Q.Modelω, embedΦ < Modelω,Φ

To summarize the results of this section:

Theorem 2. An NNF problem Φ has a model iff clausify Φ has a model.

Theorem 3. An NNF problem has a model iff it has a countable model.

258 J.C. Blanchette and A. Popescu

8 Lifting to Arbitrary Structures and Formulas with Binders

The focus on clausal form and countable structures is a useful simplification, but it is not
faithful to the NNF-based paper proof [3] (or to the implementation in Sledgehammer).
Thanks to a lifting argument that relies on clausification and Löwenheim–Skolem, the
final results are free of such restrictions.

Figure 1 shows how the results are connected. Starting at the top with a satisfiable
quantified problem Φ, the problem is first clausified, then by Löwenheim–Skolem it is
countably satisfiable (by taking ′u =ω). On the left-hand side, the clausified problem is
further encoded using tags or guards (x ∈ {t,g}) and shown to pass one of the mono-
tonicity criteria (i = 1 for t and 2 for g), meaning it is monotonic. On the right-hand
side, the encoded problem is satisfiable. Merging the two branches yields a monotonic
satisfiable problem, whose erasure is a satisfiable unsorted problem. Since every trans-
lation step is also shown complete, the right-hand side can also be traversed bottom-up,
producing a model of the original problem from a model of the translated unsorted
problem. The overall translation is thus sound and complete.

Theorem 4. Given x ∈ {t,g} and a finite many-sorted NNF problem Φ, let Φ′ be the
unsorted CNF problem e(x (clausify Φ)), i.e., the sort-erased x-translated clausified Φ.
(1) For each model M of Φ (forming together with Φ an instance of Q.ModelΦ), there

exists a model M ′ of Φ′ (forming together with Φ′ an instance of U.ModelΦ′).
(2) Conversely, for every model of Φ′, there exists a model of Φ.

The formal proof puts together many constructions and results of independent interest,
notably soundness of the monotonicity criteria (Theorem 1), soundness and complete-
ness of clausification (Theorem 2), and downward Löwenheim–Skolem (Theorem 3).

Q.Model ′u,Φ

Model ′u, clausifyΦ

Modelω, clausifyΦ

Problemω, clausifyΦ

���������

Problem_Critiω, x (clausifyΦ) Modelω, x (clausifyΦ)

���������������

Mono_Problemω, x (clausifyΦ)

Mono_Modelω, x (clausifyΦ)

������

���������������

U.Modelω, e (x (clausifyΦ))

U.Model ′u, e(x (clausifyΦ))

Fig. 1. The verified translation pipeline

Mechanizing the Metatheory of Sledgehammer 259

9 Conclusion

This paper describes a framework and a methodology for formalizing applications of
many-sorted first-order logic while acting as a companion to recent papers on sort en-
codings [3, 9, 10]. To readers from the proof assistant community, it also provides a
contribution to the ongoing binder representation debate. And to readers rooted in alge-
braic methods, it shows a practical application of the theory of institutions in a context
where the translation functions cannot be assumed to be uniform.

The formalization widely reaffirmed already proved results. On one occasion, it re-
vealed a flaw in a published lemma (Lemma 3 of Claessen et al. [10]). It also helped
detect mistakes in a subsequent paper proof [4] before it reached any readers. The work
provided the opportunity to rethink the proof; for example, the generalized monotonic-
ity concept, in terms of sets of sorts, arose during the formalization.

A potential practical benefit of this work is connected to step-by-step proof recon-
struction. Although the encodings are sound, the inferences in a machine-generated
proof may violate the sort discipline, resulting in failures in Sledgehammer’s proof re-
play. In future work, we want to investigate the feasibility of connecting the soundness
proofs of the encodings with a verified checker for unsorted FOL proofs.

The advantages of machine-checked metatheory are well known from programming
language research, where papers are often accompanied by formal developments and
proof assistants have made it into the classroom. Paradoxically, in the automated rea-
soning community, we have not been very enthusiastic about formalizing our own re-
sults. This paper reported on some steps we have taken to address this.

Acknowledgement. We thank Tobias Nipkow for making this work possible. Jesper
Bengtson, Nicholas Smallbone, Mark Summerfield, Dmitriy Traytel, and several anony-
mous reviewers suggested improvements to earlier versions of this paper. The research
was supported by the Deutsche Forschungsgemeinschaft (DFG) projects Security Type
Systems and Deduction (grant Ni 491/13-1), part of the program Reliably Secure Soft-
ware Systems (RS3, Priority Program 1496), and Hardening the Hammer (grant Ni 491/
14-1). The authors are listed in alphabetical order.

References

[1] Ballarin, C.: Locales: A module system for mathematical theories. J. Autom. Reasoning (to
appear)

[2] Berghofer, S.: First-order logic according to Fitting. In: Klein, G., Nipkow, T., Paulson, L.
(eds.) Archive of Formal Proofs (2007),
http://afp.sf.net/entries/FOL-Fitting.shtml

[3] Blanchette, J.C., Böhme, S., Popescu, A., Smallbone, N.: Encoding monomorphic and poly-
morphic types. In: Piterman, N., Smolka, S. (eds.) TACAS 2013. LNCS, vol. 7795, pp.
493–507. Springer, Heidelberg (2013)

[4] Blanchette, J.C., Böhme, S., Popescu, A., Smallbone, N.: Encoding monomorphic
and polymorphic types. Tech. report associated with TACAS 2013 paper [3] (2013),
http://www21.in.tum.de/~blanchet/enc_types_report.pdf

[5] Blanchette, J.C., Krauss, A.: Monotonicity inference for higher-order formulas. J. Autom.
Reasoning 47(4), 369–398 (2011)

http://afp.sf.net/entries/FOL-Fitting.shtml
http://www21.in.tum.de/~blanchet/enc_types_report.pdf

260 J.C. Blanchette and A. Popescu

[6] Blanchette, J.C., Popescu, A.: Formal development associated with this paper (2013),
http://www21.in.tum.de/~popescua/fol_devel.zip

[7] Blanchette, J.C., Popescu, A.: Sound and complete sort encodings for first-order logic. In:
Klein, G., Nipkow, T., Paulson, L. (eds.) Archive of Formal Proofs (2013),
http://afp.sourceforge.net/entries/Sort_Encodings.shtml

[8] Blanchette, J.C., Popescu, A., Traytel, D.: Coinductive pearl: Modular first-order logic com-
pleteness (submitted), http://www21.in.tum.de/~blanchet/compl.pdf

[9] Bouillaguet, C., Kuncak, V., Wies, T., Zee, K., Rinard, M.: Using first-order theorem provers
in the Jahob data structure verification system. In: Cook, B., Podelski, A. (eds.) VMCAI
2007. LNCS, vol. 4349, pp. 74–88. Springer, Heidelberg (2007)

[10] Claessen, K., Lillieström, A., Smallbone, N.: Sort it out with monotonicity—Translating
between many-sorted and unsorted first-order logic. In: Bjørner, N., Sofronie-Stokkermans,
V. (eds.) CADE 2011. LNCS (LNAI), vol. 6803, pp. 207–221. Springer, Heidelberg (2011)

[11] Goguen, J.A., Burstall, R.M.: Institutions: Abstract model theory for specification and pro-
gramming. J. ACM 39(1), 95–146 (1992)

[12] Harrison, J.: Formalizing basic first order model theory. In: Grundy, J., Newey, M. (eds.)
TPHOLs 1998. LNCS, vol. 1479, pp. 153–170. Springer, Heidelberg (1998)

[13] Harrison, J.: Towards self-verification of HOL Light. In: Furbach, U., Shankar, N. (eds.)
IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 177–191. Springer, Heidelberg (2006)

[14] Huffman, B., Urban, C.: A new foundation for Nominal Isabelle. In: Kaufmann, M., Paul-
son, L.C. (eds.) ITP 2010. LNCS, vol. 6172, pp. 35–50. Springer, Heidelberg (2010)

[15] Kammüller, F., Wenzel, M.T., Paulson, L.C.: Locales - A sectioning concept for Isabelle. In:
Bertot, Y., Dowek, G., Hirschowitz, A., Paulin, C., Théry, L. (eds.) TPHOLs 1999. LNCS,
vol. 1690, pp. 149–166. Springer, Heidelberg (1999)

[16] Monk, J.D.: Mathematical Logic. Springer (1976)
[17] Myreen, M.O., Davis, J.: A verified runtime for a verified theorem prover. In: van Eekelen,

M., Geuvers, H., Schmaltz, J., Wiedijk, F. (eds.) ITP 2011. LNCS, vol. 6898, pp. 265–280.
Springer, Heidelberg (2011)

[18] Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL: A Proof Assistant for Higher-Order
Logic. LNCS, vol. 2283. Springer, Heidelberg (2002)

[19] Paulson, L.C., Blanchette, J.C.: Three years of experience with Sledgehammer, a practical
link between automatic and interactive theorem provers. In: Sutcliffe, G., Ternovska, E.,
Schulz, S. (eds.) IWIL 2010 (2010)

[20] Pfenning, F., Elliott, C.: Higher-order abstract syntax. In: Wexelblat, R.L. (ed.) PLDI 1988,
pp. 199–208. ACM (1988)

[21] Pitts, A.M.: Nominal logic, a first order theory of names and binding. Inf. Comput. 186(2),
165–193 (2003)

[22] Pitts, A.M.: Alpha-structural recursion and induction. J. ACM 53(3), 459–506 (2006)
[23] Popescu, A., Gunter, E.L.: Recursion principles for syntax with bindings and substitution.

In: Chakravarty, M.M.T., Hu, Z., Danvy, O. (eds.) ICFP 2011, pp. 346–358. ACM (2011)
[24] Popescu, A., Gunter, E.L., Osborn, C.J.: Strong normalization of System F by HOAS on

top of FOAS. In: LICS 2010, pp. 31–40. IEEE (2010)
[25] Ridge, T., Margetson, J.: A mechanically verified, sound and complete theorem prover

for first order logic. In: Hurd, J., Melham, T. (eds.) TPHOLs 2005. LNCS, vol. 3603,
pp. 294–309. Springer, Heidelberg (2005)

[26] Shankar, N.: Metamathematics, Machines, and Gödel’s Proof. Cambridge Tracts in Theo-
retical Computer Science, vol. 38. Cambridge University Press (1994)

[27] Sutcliffe, G.: The 6th IJCAR automated theorem proving system competition—CASC-J6.
AI Comm. 26(2), 211–223 (2013)

[28] Tinelli, C., Zarba, C.G.: Combining decision procedures for sorted theories. In: Alferes, J.J.,
Leite, J. (eds.) JELIA 2004. LNCS (LNAI), vol. 3229, pp. 641–653. Springer, Heidelberg
(2004)

http://www21.in.tum.de/~popescua/fol_devel.zip
http://afp.sourceforge.net/entries/Sort_Encodings.shtml
http://www21.in.tum.de/~blanchet/compl.pdf

From Resolution and DPLL

to Solving Arithmetic Constraints

Konstantin Korovin�

School of Computer Science
The University of Manchester, UK

korovin@cs.man.ac.uk

Abstract. Reasoning methods based on resolution and DPLL have en-
joyed many success stories in real-life applications. One of the challenges
is whether we can go beyond and extend this technology to other domains
such as arithmetic. In our recent work we introduced twomethods for solv-
ing systems of linear inequalities called conflict resolution (CR) [6, 7] and
bound propagation (BP) [3,8] which aim to address this challenge. In par-
ticular, conflict resolution can be seen as a refinement of resolution and
bound propagation is analogous to DPLL with constraint propagation,
backjumping and lemma learning. There are non-trivial issues when con-
sidering arithmetic constraints such as termination, dynamic variable or-
dering and dealing with large coefficients. In this talk I will overview our
approach and some related work [1,2,4,5,9]. This is a joint work with Ioan
Dragan, Laura Kovács, Nestan Tsiskaridze and Andrei Voronkov.

References

1. Bobot, F., Conchon, S., Contejean, E., Iguernelala, M., Mahboubi, A., Mebsout,
A., Melquiond, G.: A simplex-based extension of Fourier-Motzkin for solving linear
integer arithmetic. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012.
LNCS, vol. 7364, pp. 67–81. Springer, Heidelberg (2012)

2. Cotton, S.: Natural Domain SMT: A Preliminary Assessment. In: Chatterjee, K.,
Henzinger, T.A. (eds.) FORMATS 2010. LNCS, vol. 6246, pp. 77–91. Springer,
Heidelberg (2010)

3. Dragan, I., Korovin, K., Kovács, L., Voronkov A.: Bound propagation for arithmetic
reasoning in Vampire (submitted, 2013)

4. Jovanović, D., de Moura, L.: Cutting to the Chase Solving Linear Integer Arithmetic.
In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS, vol. 6803, pp.
338–353. Springer, Heidelberg (2011)

5. Jovanović, D., de Moura, L.: Solving non-linear arithmetic. In: Gramlich, B., Miller,
D., Sattler, U. (eds.) IJCAR 2012. LNCS, vol. 7364, pp. 339–354. Springer, Heidel-
berg (2012)

6. Korovin, K., Tsiskaridze, N., Voronkov, A.: Conflict Resolution. In: Gent, I.P. (ed.)
CP 2009. LNCS, vol. 5732, pp. 509–523. Springer, Heidelberg (2009)

7. Korovin, K., Tsiskaridze, N., Voronkov, A.: Implementing conflict resolution. In:
Clarke, E., Virbitskaite, I., Voronkov, A. (eds.) PSI 2011. LNCS, vol. 7162, pp.
362–376. Springer, Heidelberg (2012)

� Supported by a Royal Society University Fellowship.

P. Fontaine, C. Ringeissen, and R.A. Schmidt (Eds.): FroCoS 2013, LNAI 8152, pp. 261–262, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

262 K. Korovin

8. Korovin, K., Voronkov, A.: Solving Systems of Linear Inequalities by Bound Prop-
agation. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS,
vol. 6803, pp. 369–383. Springer, Heidelberg (2011)

9. McMillan, K.L., Kuehlmann, A., Sagiv, M.: Generalizing DPLL to Richer Logics. In:
Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 462–476. Springer,
Heidelberg (2009)

Tableaux for Relation-Changing Modal Logics

Carlos Areces1,2, Raul Fervari1, and Guillaume Hoffmann1

1 FaMAF, Universidad Nacional de Córdoba, Argentina
{areces,fervari,hoffmann}@famaf.unc.edu.ar

2 CONICET, Argentina

Abstract. We consider dynamic modal operators that can change the
relation of a model during the evaluation of a formula. In this paper, we
extend the basic modal language with modalities that are able to delete,
add or swap pairs of related elements of the domain; and explore tableau
calculi as satisfiability procedures for these logics.

1 Relation-Changing Modal Logics

We investigate modal operators that are suitable for reasoning about dynamic
aspects of a given situation, e.g., how relations involving a set of elements evolve
through time or through the application of certain operations. Instead of mo-
deling the whole space of possible evolutions of the system as a graph, we use
dynamic operators whose semantics directly correspond to the model evolutions
that interest us. One example of such operators is sabotage introduced by Johan
van Benthem in [8]. In the modal logic equipped with the sabotage operator, a
formula can indicate that evaluation should continue in a model identical to the
current one except that some edge has been removed from its relation.

In this article we present tableau methods for various relation-changing modal
logics. We consider the basic modal logic ML [4] extended with the following
operators: the local variant of sabotage 〈sb〉 deletes an arrow while traversing
it; the bridge modality 〈br 〉 adds an arrow from the current state of evaluation
to a non-accessible state and continues the evaluation there; the swap modality
〈sw〉 inverts the direction of an arrow while traversing it. The swap modality
was introduced in [3], and the local sabotage and bridge modalities in [2].

Definition 1 (Syntax). Let PROP be a countable, infinite set of propositional
symbols. The set FORM of formulas over PROP is defined as:

FORM ::= ⊥ | p | ¬ϕ | ϕ ∧ ψ | �ϕ,

where p ∈ PROP, � ∈ {♦, 〈sb〉, 〈br 〉, 〈sw〉} and ϕ, ψ ∈ FORM. Other operators
are defined as usual. In particular, ϕ is defined as ¬�¬ϕ.

Formulas of the basic modal language ML contains only ♦ besides the Boolean
operators. We call ML(�) the extension of ML allowing also the � operator,
for � ∈ {〈sb〉, 〈br 〉, 〈sw 〉}.

P. Fontaine, C. Ringeissen, and R.A. Schmidt (Eds.): FroCoS 2013, LNAI 8152, pp. 263–278, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

264 C. Areces, R. Fervari, and G. Hoffmann

Semantically, formulas are evaluated in standard relational models, and the
meaning of the basic modal operators is unchanged. When we evaluate formulas
containing dynamic operators, we need to keep track of the edges that have been
modified. To that end, let us define precisely the models that we use.

Definition 2 (Models and Model Variants). A model is a triple M =
〈W,R, V 〉, where W is a non-empty set whose elements are called states; R ⊆
W×W is the accessibility relation; and V : PROP (→ P(W) is a valuation.

Given a model M = 〈W,R, V 〉 we define the following notation:

(sabotaging) M−
S = 〈W,R−

S , V 〉, with R−
S = R\S, S ⊆ R.

(bridging) M+
S = 〈W,R+

S , V 〉, with R+
S = R ∪ S, S ⊆ (W×W)\R.

(swapping) M∗
S = 〈W,R∗

S , V 〉, with R∗
S = (R\S−1)∪S, S ⊆ W × W .

Let w be a state in M, the pair (M, w) is called a pointed model; we will
usually drop parenthesis and call M, w a pointed model. A model variant of M
is a model obtained from M by some of the above operations.

In the rest of this article we will use wv as a shorthand for {(w, v)} or (w, v).

Definition 3 (Semantics). Given a pointed model M, w and a formula ϕ we
say that M, w satisfies ϕ, and write M, w |= ϕ, when

M, w |= p iff w ∈ V (p)
M, w |= ¬ϕ iff M, w �|= ϕ
M, w |= ϕ ∧ ψ iff M, w |= ϕ and M, w |= ψ
M, w |= ♦ϕ iff for some v ∈ W s.t. Rwv, M, v |= ϕ
M, w |= 〈sb〉ϕ iff for some v ∈ W s.t. Rwv, M−

wv, v |= ϕ
M, w |= 〈br〉ϕ iff for some v ∈ W s.t. ¬Rwv, M+

wv, v |= ϕ
M, w |= 〈sw〉ϕ iff for some v ∈ W s.t. Rwv, M∗

vw, v |= ϕ

ϕ is satisfiable if for some pointed model M, w we have M, w |= ϕ.

Adding any of the previous operators to the basic modal logic increases its
expressive power. A basic result for ML [4] shows that it has the tree model
property: every satisfiable formula of ML can be satisfied at the root of a model
where the accessibility relation defines a tree. In [2] we introduced formulas using
the operators above that cannot be satisfied at the root of a tree:

1. ϕ = ♦♦� ∧ [sb]�⊥ is true at a state w, only if w is reflexive.
Suppose we evaluate ϕ at some state w of an arbitrary model. On one

hand, the ‘static’ part of the formula ♦♦� ensures it is possible to take two
steps using the accessibility relation. On the other hand, the ‘dynamic’ part
of the formula [sb]�⊥ tells us that after traversing any edge and eliminating
it we arrive to a dead-end. This can only happen if the state w is reflexive
and does not have any other outgoing links.

2. ϕ = �⊥∧〈br 〉〈br〉� is only satisfiable in models where the root is a dead-end
and there is a second, unreachable state.

Tableaux for Relation-Changing Modal Logics 265

3. ϕ = p∧(
∧

1≤i≤3�i¬p)∧〈sw 〉♦♦p is true at a state w, only if w has a reflexive
successor.

Suppose we evaluate ϕ at a state w in a model. The ‘static’ part of the
formula p ∧ (

∧
1≤i≤3�i¬p) makes p true in w and ensures that no p state

is reachable within three steps from w (also w cannot be reflexive). Because
〈sw〉♦♦p is true at w, there is an R-successor v where ♦♦p holds once the
accessibility relation has been updated to R∗

vw. That is, v has to reach a p-
state in exactly two R∗

vw-steps. The only p-state sufficiently close is w which
is reachable in one step. As w is not reflexive, v has to be reflexive so that
we can linger at v for one loop and reach p in the correct number of steps.

With respect to computational complexity, satisfiability of ML(〈sw 〉) is known
to be undecidable [3], and we conjecture that the same holds for the other two
logics. The finite model property fails for the three logics. For this reason, and as
we will not introduce control mechanism like loop checks, the tableau procedures
we will define not necessarily terminate on all inputs.

In Section 2 we will introduce complete and sound tableau calculi for these
logics. In Section 3 we extend the results to the global counterparts of the ope-
rators. In Section 4 we discuss a few final issues.

2 Tableau Calculi

We present basic definitions for different tableau algorithms for the relation-
changing modal logics we introduced in the previous section. These algorithms
will rely on the same data structures and will only differ in some of their rules.

Definition 4 (Tableau formulas). Let NOM be an infinite, well ordered set
of symbols we call nominals. A tableau formula is either a prefixed formula, an
equational formula or a relational formula. A prefixed formula is of the form
(n,X) : ϕ, with n ∈ NOM, X ⊆ NOM2, and ϕ a formula of the considered object
language. An equational formula is a Boolean combination of formulas of the
form n=̇m or n ˙�=m for n,m ∈ NOM. We also use the following notation:

nm=̇xy := n=̇x ∧ m=̇y

nm ˙�=xy := n ˙�=x ∨ m ˙�=y

nm∈̇X :=
∨

xy∈X

nm=̇xy

nm/̇∈X :=
∧

xy∈X

nm ˙�=xy.

In particular nm∈̇∅ is a notation for ⊥ and nm/̇∈∅ is a notation for �. A
relational formula is of the form Ṙnm or ¬Ṙnm, with n,m ∈ NOM.

The set X of a prefixed formula (n,X) : ϕ is used to describe the model
variant in which the formula ϕ is to be interpreted. According to the logic we
are in this set is to be interpreted differently. This is done by fixing a function
f that, out of a relation R,S ⊆ W × W yields another relation R′ = f(R,S).

266 C. Areces, R. Fervari, and G. Hoffmann

Definition 5 (Branches and interpretations). A branch is a non-empty
set of tableau formulas. Let M = 〈W,R, V 〉 be a model, f : W 2 × W 2 (→ W 2

a relation-changing function and σ : NOM (→ W a mapping from nominals to
states of M. Let Xσ = {σ(a)σ(b) | ab ∈ X}, for X ⊆ NOM2.

Given M = 〈W,R, V 〉, let Mf
Xσ = 〈W, f(R,Xσ), V 〉. That is, Mf

Xσ is the
model M updated by the relation-changing function f according to a set of pairs
of nominals X under mapping σ.

A branch Θ is satisfiable if there exists a model M = 〈W,R, V 〉 and a mapping
σ such that all the formulas of Θ are satisfiable under model M and mapping
σ. That is, they should satisfy the following conditions:

– if (n,X) : ϕ ∈ Θ then Mf
Xσ , σ(n) |= ϕ,

– if n=̇m ∈ Θ then σ(n) = σ(m),
– if n ˙�=m ∈ Θ then σ(n) �= σ(m),
– Boolean combinations of equational formulas are interpreted as expected,
– if Ṙnm ∈ Θ then Rσ(n)σ(m),
– if ¬Ṙnm ∈ Θ then ¬Rσ(n)σ(m).

A branch is unsatisfiable if it is not satisfiable.

A tableau calculus is a set of rules such that each rule applies to a branch
and yields one or more branches, under certain conditions. These conditions are
called saturation conditions, and stipulate that no rule can be applied twice on
the same premises, and that no formula can be introduced twice in a branch.

A tableau is a tree in which each node defines a tableau branch, and edges
represent applications of tableau rules. A tableau is expanded as much as possible
by the rules of the system (i.e., rules are applied whenever possible according to
the saturation condition). A fully expanded branch is called saturated.

A tableau branch is closed if it contains ⊥, otherwise it is open. A tableau is
closed if all branches are closed, otherwise it is open.

Given a branch Θ, ∼Θ denotes the equivalence closure of the relation {nm |
n=̇m ∈ Θ}, and we write n̄ for the smallest nominal x such that x ∼Θ n. For
X ⊆ NOM2 we write X̄ = {n̄m̄ | nm ∈ X}. Figure 1 presents the rules common
to all the tableau calculus of this work. They are the Boolean rules (∧) and (∨),
the clashing rules (⊥atom) and (⊥ 	=), the equational rules (R∼) and (Id), and
the unrestricted blocking rule (ub) [7]. We use the unrestricted blocking rule as a
way to saturate branches with equational formulas. These formulas can appear
as premises of tableau rules in the calculi we introduce later.

This result follows easily from the tableau rules:

Lemma 6. Let Θ be a saturated open branch. If nm∈̇S is in Θ then n̄m̄ ∈ S̄.
If nm/̇∈S is in Θ then n̄m̄ /∈ S̄.

When it comes to adequacy of a tableau calculus, we have to consider two
properties: completeness and soundness. Given a tableau calculus T , let us write
T (ϕ) to refer to a tableau obtained by running T on the input formula (n0, ∅) : ϕ,
where n0 is the smallest nominal in NOM. Then we define:

Tableaux for Relation-Changing Modal Logics 267

(n,X) : ϕ ∧ ψ
(∧)

(n,X) : ϕ
(n,X) : ψ

(n,X) : ϕ ∨ ψ
(∨)

(n,X) : ϕ (n,X) : ψ

(n,X1) : p
(n,X2) : ¬p

(⊥atom)1

⊥

n ∼Θ m
n ˙�=m

(⊥ �=)
⊥

Ṙnm
(R∼)

Ṙn̄m̄

(n,X) : ϕ
(Id)

(n̄,X) : ϕ

(ub)2

n=̇m | n ˙�=m

1 p ∈ PROP
2 n and m are two different nominals in the branch

Fig. 1. Common tableau rules

Definition 7 (Completeness). A tableau calculus T is complete if for any
formula ϕ, if T (ϕ) is open then ϕ is satisfiable.

Definition 8 (Soundness). A tableau calculus T is sound if for any formula
ϕ, if ϕ is satisfiable then T (ϕ) is open.

We define models induced from open branches.

Definition 9 (Induced Models). Let Θ be an open branch. We define MΘ =
〈WΘ, RΘ, V Θ〉, the induced model for Θ, as:

WΘ = {n̄ | n ∈ Θ}
RΘ = {(n̄, m̄) | Ṙnm ∈ Θ}
V Θ(p) = {n̄ | n : p ∈ Θ}.

We want to show that a tableau system is sound and complete, i.e., that for
any formula ϕ, T (ϕ) is open if, and only if, ϕ is satisfiable. Moreover, if T (ϕ)
has an open branch Θ then MΘ is a model that satisfies ϕ. We present tableau
calculi for ML(〈sb〉), ML(〈br 〉) and ML(〈sw〉) in the next sections.

2.1 Sabotage

Figure 2 introduces rules that, in combination with those in Figure 1, form a
complete and sound tableau calculus for ML(〈sb〉). In this calculus, a formula
(n, S) : ϕ is understood as “ϕ holds at the state referred to by n in the model
variant described by the set of sabotaged pairs S”.

We interpret branches of this tableau calculus with the following relation-
changing function: f : (R,S) (→ R \ S. This means that a formula (n, S) : ϕ in
a branch Θ should hold in the induced model variant MΘ

S defined as MΘ
S =

〈WΘ, RΘ
S , V Θ〉, where RΘ

S = RΘ \ S̄.

268 C. Areces, R. Fervari, and G. Hoffmann

(n, S) : ♦ϕ
(♦)1

Ṙnm
nm/̇∈S

(m,S) : ϕ

(n, S) : �ϕ
Ṙnm
nm/̇∈S

(�)
(m,S) : ϕ

(n, S) : 〈sb〉ϕ
(〈sb〉)1

Ṙnm
nm/̇∈S

(m,S ∪ nm) : ϕ

(n, S) : [sb]ϕ
Ṙnm
nm/̇∈S

([sb])
(m,S ∪ nm) : ϕ

1 m is new.

Fig. 2. Tableau rules for ML(〈sb〉)

The rules involve the notation nm/̇∈S. nm/̇∈S specifies that the edge referred
to by the pair of nominals (n,m) should not be deleted in the model variant
described by S. When present as premise of a rule, this condition requires that
one of the disjuncts in nm/̇∈S is present in the branch, which in turn means that
either n ˙�=x or m ˙�=y is in the branch for all xy ∈ S.

The (♦) rule captures the standard meaning of the ♦ connector, but adds
a new constraint that specifies that the successor has not been deleted at this
point of the branch. (�) should also take this into account. For each successor
m of n in the initial model (Ṙnm), and only if it the edge between n and m has

not been sabotaged (nm/̇∈S), ϕ must hold at m in the same model variant. Rule
([sb]) is similar to (�), but ϕ must hold at m in the model variant where the
edge nm is sabotaged. Rule (〈sb〉) corresponds similarly to (♦).

Figure 3 presents an example with a satisfiable formula of ML(〈sb〉).
We will now prove completeness and soundness of the calculus for ML(〈sb〉).

Lemma 10. Let Θ be a saturated, open branch and ϕ an ML(〈sb〉)-formula. If
(n, S) : ϕ ∈ Θ then MΘ

S , n̄ |= ϕ.

Proof. Let (n, S) : ϕ ∈ Θ. Proceed by structural induction on ϕ.

� p: By definition, n̄ ∈ V Θ(p), then MΘ, n̄ |= p and MΘ
S , n̄ |= p.

� ¬p: By saturation of (Id), n̄ : ¬p ∈ Θ. Since Θ is open, n̄ : p /∈ Θ. By
definition, n̄ /∈ V Θ(p), then MΘ, n̄ �|= p and MΘ

S , n̄ �|= p.
� ψ ∧ χ and ψ ∨ χ : Trivial by inductive hypothesis.
� ♦ψ: By (♦), Θ contains Ṙnm, nm/̇∈S and (m,S) : ψ. We want to show that

n̄m̄ ∈ RΘ
S . We verify the following:

1. n̄m̄ ∈ RΘ: this is true since Ṙnm ∈ Θ.
2. n̄m̄ /∈ S̄: this is true since (nm/̇∈S) ∈ Θ by Lemma 6.

Since n̄m̄ ∈ RΘ
S , and (by (Id)) (m̄, S) : ψ ∈ Θ, we have MΘ

S , n̄ |= ♦ψ.
� 〈sb〉ψ: We need to show that MΘ

S , n̄ |= 〈sb〉ψ, i.e., there exists x ∈ V Θ s.t
MΘ

S∪pq, x |= ψ, where p̄ = n̄ and q̄ = x. This can be checked considering
(〈sb〉) instead of (♦) as for the previous case.

Tableaux for Relation-Changing Modal Logics 269

Example: A tableau for ♦♦� ∧ [sb]�⊥ follows:

(1) (n0, ∅) : ♦♦� ∧ [sb]�⊥ initial node
(2) (n0, ∅) : ♦♦� (∧) on (1)
(3) (n0, ∅) : [sb]�⊥
(4) Ṙn0n1 (♦) on (2)

(5) n0n1 /̇∈∅
(6) (n1, ∅) : ♦�
(7) Ṙn1n2 (♦) on (6)

(8) n1n2 /̇∈∅
(9) (n2, ∅) : �
(10) (n1, {n0n1}) : �⊥ ([sb]) on (3) and (4) with trivial

condition n0n1 /̇∈∅
(11) n0=̇n1 | n0

˙�=n1 (ub)

The right branch soon closes since (�) applies on (10) and (7) with condition

n1n2 /̇∈{n0, n1} fulfilled by n0
˙�=n1, and introduces ⊥. Let us expand the left branch:

(12) n1=̇n2 | n1
˙�=n2 (ub)

Again the right branch closes by application of (�) with condition n1n2 /̇∈{n0, n1}
fulfilled by n1

˙�=n2. We expand the left branch:

(13) n0=̇n2 | n0
˙�=n2 (ub)

The right branch above closes by rule (⊥ �=). Left branch is saturated and open, with
the following induced model:

n0

Fig. 3. Tableau example for ML(〈sb〉)

� �ψ: We only consider states x ∈ WΘ such that n̄x ∈ RΘ
S . That is, there exists

a, b such that Ṙab ∈ Θ and n̄x = āb̄, and n̄x /∈ S̄. The condition of rule (�)

(nm/̇∈S) does not prevent it from being applied on such pair of nominals.
By (Id), (n̄, S) : �ψ ∈ Θ, i.e., (ā, S) : �ψ ∈ Θ, and also by (R∼), Ṙāb̄ ∈ Θ.
By (�) we have (b̄, S) : ψ ∈ Θ. Now, b̄ = x, so MΘ

S , x |= ψ. Hence for all
x ∈ V Θ such that n̄x ∈ RΘ

S , MΘ
S , x |= ψ, i.e., MΘ

S , n̄ |= �ψ.
� [sb]ψ: We need to show that MΘ

S , n̄ |= [sb]ψ, i.e., for all x ∈ WΘ such that
(n̄, x) ∈ RΘ

S , MΘ
S∪pq, x |= ψ, where p̄q̄ = n̄x. This can be checked considering

rule ([sb]) instead of (�) as for the previous case. ��

By the previous lemma we get:

Theorem 11 (Completeness). If T (ϕ) is open, then ϕ is satisfiable.

We now show soundness of the calculus for ML(〈sb〉).

Lemma 12. Let Γ be a set of satisfiable tableau formulas, and ϕ ∈ ML(〈sb〉).
If there is a closed tableau T (Γ ′) for Γ ′ = (Γ ∪ {¬ϕ}), then ϕ is satisfiable.

270 C. Areces, R. Fervari, and G. Hoffmann

Proof. Let Θ be a satisfiable branch. Following Definition 5, Θ is satisfied by a
model M = 〈W,R, V 〉 and a mapping σ : NOM (→ W . We write σ[m (→ v] to
refer to the mapping equal to σ except, perhaps, σ(m) = v.

Assume that there is a closed tableau T (Γ ′) such that Γ ′ = (Γ ∪ {¬ϕ}). We
will prove Γ ′ unsatisfiable, by induction on the tableau structure.

� (⊥atom): If this rule applies, then n : a ∈ Γ ′ and n : ¬a ∈ Γ ′, for some n, a.
Then Γ ′ is trivially unsatisfiable.

� Common rules (⊥ 	=), (∧), (∨), (R∼), (Id) and (ub) are easy to check.

It remains to verify, for each remaining rule, that their application to a sat-
isfiable branch generates at least one satisfiable branch. In the present calculus,
all remaining rules are non-branching.

� (♦): Suppose (n, S) : ♦ϕ ∈ T (Γ ′). We know that (n, S) : ♦ϕ is satisfiable,
then there is a model M = 〈W,R, V 〉, and a mapping σ : NOM (→ W ′ s.t.
M−

Sσ , σ(n) |= ♦ϕ. By definition of |=, there exists v ∈ W s.t. σ(n)v ∈ R \Sσ

and M−
Sσ , v |= ϕ. The (♦) rule generates Ṙnm, nm/̇∈S and (m,S) : ϕ, with

m new in the branch. We need to check that the branch containing these
three new formulas is satisfiable. That is, there exists a model and a mapping
satisfying them. Let us consider the mapping σ′ = σ[m (→ v] and check that
the interpretation M, σ′ satisfies the new branch:

– Ṙnm is satisfied since Rσ′(n)σ′(m), i.e., Rσ(n)v, holds.

– Consider nm/̇∈S. It suffices to check that for all xy ∈ S, σ′(n)σ′(m) �=
σ′(x)σ′(y), i.e., σ(n)v �= σ′(x)σ′(y). But σ(n)v = σ′(x)σ′(y) would con-
tradict σ(n)v ∈ R \ Sσ.

– M, σ′ satisfies (m,S) : ϕ since M−
Sσ′ , σ′(m) |= ϕ holds.

� (〈sb〉): This case is similar to (♦), except that we need to check that the new
tableau formula (m,S ∪ nm) : ϕ is satisfied. This is done considering the
new mapping σ′ = σ[m (→ v] and observing that M−

S∪nmσ′ , σ′(m) |= ϕ.

� (�): Suppose (n, S) : �ϕ and Ṙnm are in Θ, and the condition nm/̇∈S holds.
This implies that there exists M = 〈W,R, V 〉 and a mapping σ such that
M−

Sσ , σ(n) |= �ϕ, and Rσ(n)σ(m), and there is no pair of nominals xy ∈ S
such that nm = xy. This means that for all v ∈ W s.t. σ(n)v ∈ (R \ Sσ),
M−

Sσ , v |= ϕ and there exists v ∈ W s.t. Rσ(n)v. We verify that (m,S) : ϕ is
satisfied by M, σ. Since σ(n)σ(m) ∈ (R \ Sσ), then M−

Sσ , σ(m) |= ϕ. Hence
(m,S) : ϕ is satisfied by M, σ.

� ([sb]): This is similar to the (�) case, but we have to show that (m,S∪nm) : ϕ
is satisfied by M, σ . This is done by observing that if M−

Sσ , σ(n) |= [sb]ϕ
and Rσ(n)σ(m) then M−

S∪nmσ , σ(m) |= ϕ. ��

From the previous lemma we get the following result:

Theorem 13 (Soundness). If ϕ is satisfiable, then T (ϕ) is open.

Tableaux for Relation-Changing Modal Logics 271

(n,B) : ♦ϕ
(♦)1

Ṙnm nm∈̇B
(m,B) : ϕ (m,B) : ϕ

(n,B) : �ϕ
Ṙnm

(�)
(m,B) : ϕ

(n,B) : �ϕ
nm∈̇B

(�2)
(m,B) : ϕ

Ṙnm
(a,B) : ϕ
nm∈̇B

(R⊥)
⊥

(n,B) : 〈br〉ϕ
(〈br〉)1

nm/̇∈B
(m,B ∪ nm) : ϕ

(n,B) : [br]ϕ

nm/̇∈B
([br])2

(m,B ∪ nm) : ϕ | Ṙnm

1 m is new.
2 m is already in the branch.

Fig. 4. Tableau rules for ML(〈br〉)

2.2 Bridge

Figure 4 presents rules for the tableau calculus corresponding to ML(〈br 〉) which
should be combined with the common rules of Figure 1. The main difference with
rules for sabotage is that they use as prefix a set of pairs of nominals B to keep
track of edges that have been added to the relation of the original model.

The interpretation function will be f : (R,B) (→ R ∪ B. This means that a
formula (n,B) : ϕ in a branch Θ should hold in the induced model variant MΘ

B

defined as MΘ
B = 〈WΘ, RΘ

B , V Θ〉, where RΘ
B = RΘ ∪ B̄. The notation nm∈̇B

means that the edge represented by the nominals n and m is one of the edges
added since the initial model in the model variant described by B. When used as
a premise of a rule, the condition nm∈̇B requires that there exists some xy ∈ B
such that n=̇x and m=̇y are present in the branch. nm/̇∈B means that the edge
(n,m) has not been added since the initial model in the variant described by B.

Some rules are more involved in this calculus. The rule (♦), when applied on
a formula (n,B) : ♦ϕ, has to ensure that in the model variant described by B,
the state referred to by the nominal n has a successor where ϕ holds. This model
variant has a relation that is the union of the relation in the initial model and
B. This is why (♦) is a branching rule that either chooses that the edge (n,m)
belongs to the initial relation or to B.

The rule (�) is the standard box rule for the basic modal logic. It is completed
by a (�2) rule that ensures new edges of model variants are taken into account.

The new clash rule (R⊥) ensures that whenever some edge nm is present in
a set of new edges B representing some model variant, the same edge is not
present in the original model, i.e., Ṙnm is forbidden to occur in the branch.

The rule (〈br〉) differs from (♦). This is because the 〈br〉 operator jumps to a
state that should not be accessible from the current state, hence the introduction
of nm/̇∈B and (m,B ∪ nm) : ϕ to the branch. This last formula, together with
rule (R⊥), ensures that the edge nm is not in the original model.

The rule ([br]) branches when applied to a formula (n,B) : [br]ϕ. It decides,

for every nominal m such that nm/̇∈B, whether (m,R ∪ nm) : ϕ holds, or Ṙnm

272 C. Areces, R. Fervari, and G. Hoffmann

holds. In the first case, together with rule (R⊥), it ensures that the edge nm is
not in the original model. In the second case, it ensures the contrary, hence no
bridging to m is possible and ϕ does not need to hold at m.

Completeness and soundness of this tableau calculus can be proved as in the
previous section. Figure 5 shows an example of how the rules are used.

Example: Consider the satisfiable formula p∧♦¬p∧ [br]p. In the following tableau
we hide the branches that directly close by vacuity of quantification:

(1) (n0, ∅) : p ∧ ♦¬p ∧ [br]p initial node
(2) (n0, ∅) : p (∧) on (1)
(3) (n0, ∅) : ♦¬p
(4) (n0, ∅) : [br]p
(5) Ṙn0n1, (n1, ∅) : ¬p (♦) on (3)

(6) n0=̇n1 | n0
˙�=n1 (ub)

Left branch closes due to (Id) and (⊥atom). Right branch:

(7) (n1, {n0n1}) : p | Ṙn0n1 ([br]) on (3), n1

Left branch closes by (⊥atom) on (n1, {n0n1}) : p and (n1, ∅) : ¬p. Right branch:

(8) (n0, {n0n0}) : p | Ṙn0n0 ([br]) on (4), n0

Both branches are open and saturated. We have the following two induced models:

n0

p

n1 n0

p

n1

Fig. 5. Tableau example for ML(〈br〉)

2.3 Swap

Rules for the swap calculus are given in Figure 6, to be used in combination with
the rules in Figure 1.

These rules have to handle the fact that swapping edges in a model can make
some edges of the original model no longer usable (as when using the sabotage
modality), and can make new edges usable (as with bridge). The set S that
prefixes formulas of the calculus has to be understood as the pairs of states that
no longer are part of the relation of the model variant. S−1 contains the edges
that should be added to the model.

The interpretation function for this calculus is f : (R,S) (→ (R\S)∪S−1. This
means that a formula (n, S) : ϕ in a branch Θ should hold in the induced model
variant MΘ

S defined as MΘ
S = 〈WΘ, RΘ

S , V Θ〉, where RΘ
S = (RΘ \ S̄) ∪ S̄−1.

In this calculus, S is kept irreflexive and asymmetric. Moreover, it will not
contain two different pairs of nominals that refer to the same edge in the induced
model. This guarantees that the names in S can be manipulated by the calculus
as expected, in particular when a swapped edge must be swapped again. nm∈̇S

Tableaux for Relation-Changing Modal Logics 273

(n, S) : ♦ϕ
(♦)1

Ṙnm nm∈̇S−1

nm/̇∈S (m,S) : ϕ
(m,S) : ϕ

(n, S) : �ϕ
Ṙnm
nm/̇∈S

(�)
(m,S) : ϕ

(n, S) : �ϕ
nm∈̇S−1

(�2)
(m,S) : ϕ

(n, S) : [sw]ϕ
Ṙnn

([sw])
(n, S) : ϕ

(n, S) : [sw]ϕ
Ṙnm
n ˙�=m

nm/̇∈(S ∪ S−1)
([sw]2)

(m,S∪nm) : ϕ

(n, S) : [sw]ϕ
xy ∈ S
n=̇y

([sw]3)
(x, S\xy∪yx) : ϕ

(n, S) : 〈sw〉ϕ
(〈sw〉)1

Ṙnn Ṙnm
∨

xy∈S(n=̇y ∧ (x,S\xy∪yx):ϕ)
(n, S) : ϕ n ˙�=m

nm/̇∈(S∪S−1)
(m,S∪nm) : ϕ

1 m is new.

Fig. 6. Tableau rules for ML(〈sw〉)

means that nm is no longer present in the model variant represented by S.
nm∈̇S−1 means that nm has been added to the S model variant.

Let us examine the rules. (♦) is a combination of the (♦) rules for sabotage
and bridge. It satisfies the formula (n, S) : ϕ in a state that is either accessible
through the initial relation or through a new swapped edge (as in the bridge
calculus). In the case of being accessible through the initial relation, the rule
ensures that the edge used has not been deleted in the current model variant
(as in the sabotage calculus). The (�) rule, as in the sabotage calculus, works
with all states accessible from n in the initial model variant, except when they
have been made inaccessible in the current model variant. The (�2) rule, as in
the bridge calculus, ensures that newly accessible states receive the formula ϕ.

The remaining (swapping) rules deserve more careful explanation. The three
rules that handle formulas of the form [sw]ϕ handle the case of swapping a
reflexive edge, swapping an irreflexive edge that has never been swapped (nor
its inverse), and swapping again an edge. ([sw]) swaps reflexive edges, for which
the S set does not need to be modified since swapping a reflexive edge leaves it
unchanged. ([sw]2) swaps irreflexive edges that have never been swapped before,
i.e., usable edges (not in S) that are not in S−1. This rule ensures that S is

irreflexive (n ˙�=m), asymmetric (nm/̇∈S−1) and that it does not contain two pairs

of nominals that refer to the same edge in the induced model (nm/̇∈S). Finally,
([sw]3) traverses and swaps around edges of S−1. If n=̇y is in the branch and
xy ∈ S then we swap again the link yx and end up at x. Hence it removes xy

274 C. Areces, R. Fervari, and G. Hoffmann

from S and adds yx. This preserves the three properties of the set S (irreflexivity,
asymmetry and no-redundant-names).

There is only one (〈sw〉) rule but it handles three possibilities of satisfying a
swap-diamond formula similarly to the rules for swap-box formulas. The (〈sw〉)
rule can satisfy a formula (n, S) : 〈sw〉ϕ in three possible ways. First, through
a reflexive edge, having ϕ true at n in the same model variant. In that case S
remains unchanged. Or it satisfies it by adding an irreflexive edge to the initial
relation (Ṙnm, n ˙�=m), specifying that in the model variant S it is not removed

nor is a new edge added by swapping (nm/̇∈(S∪S−1)), and then satisfying ϕ at
m in the model variant S ∪ nm. Finally, it can satisfy the antecedent formula
by swapping again a swapped edge, updating S appropriately. The meaning of
the last branch of this rule is to properly maintain the set S when an edge is
swapped more than once. When an edge xy ∈ S is swapped again, we update S
by removing xy and adding yx, instead of adding a new pair of nominals.

Figure 7 shows the use of the tableau rules in an example.
Now we are going to prove completeness for the ML(〈sw〉) calculus. Sound-

ness can be shown similarly as for sabotage.

Lemma 14. Let Θ be a saturated, open branch and ϕ a ML(〈sw 〉)-formula. If
(n, S) : ϕ ∈ Θ then MΘ

S , n̄ |= ϕ.

Proof. Let (n, S) : ϕ ∈ Θ, we proceed by structural induction on ϕ. Propositional
and Boolean cases are exactly the same that for ML(〈sb〉).
� ♦ψ: We have two cases:

1. Ṙnm ∈ Θ, nm/̇∈S ∈ Θ and (m,S) : ψ ∈ Θ. Since Ṙnm ∈ Θ, we have

(n̄, m̄) ∈ RΘ. On the other hand, since nm/̇∈S ∈ Θ and the branch is
saturated and open, by Lemma 6, n̄m̄ /∈ S̄. Then n̄m̄ ∈ RΘ

S and (by
(Id)) (m̄, S) : ψ ∈ Θ. Hence, MΘ

S , n̄ |= ♦ψ.
2. nm∈̇S−1 ∈ Θ and (m,S) : ψ ∈ Θ. From the fist sentence, by Lemma 6,

we have n̄m̄ ∈ S̄, hence n̄m̄ ∈ RΘ
S . With the same argument that the

previous item, we have MΘ
S , n̄ |= ♦ψ.

� 〈sw〉ψ: (〈sw〉) rule has three branches:
1. Ṙnn ∈ Θ and (n, S) ∈ Θ. In this case n̄n̄ ∈ RΘ

S , and by (Id) (n̄, S) : ψ ∈
Θ, so we have MΘ

S , n̄ |= 〈sw〉ψ.
2. In the second branch, the following formulas belong to Θ: a) Ṙnm,

b) n ˙�=m, c) nm/̇∈(S ∪ S−1) and d) (m,S ∪ nm) : ψ. b) holds since
we are not in the previous case. By a) and c) (and Lemma 6), we have
n̄m̄ ∈ RΘ

S . By (Id) and d), (m̄, S∪nm) : ψ ∈ Θ. Hence, MΘ
S , n̄ |= 〈sw〉ψ.

3. In the third branch, there are x, y ∈ WΘ, such that y=̇n ∈ Θ and
(x, S \ xy ∪ yx) ∈ Θ.. Then ȳ=̇n̄ ∈ Θ and by definition ȳx̄ ∈ RΘ

S ⊗. But,
(x̄, S \ xy ∪ yx) : ψ ∈ Θ, therefore MΘ

S\xy∪yx, x̄ |= ψ. Then, since this

last condition and ⊗, we have MΘ
S , n̄ |= 〈sw〉ψ.

� �ψ: for all m ∈ WΘ such that Ṙnm and nm/̇∈S ∈ Θ, we have (m,S) : ψ ∈ Θ.
Because Θ is open and saturated, by Lemma 6 it holds that n̄m̄ /∈ S̄, which
implies n̄m̄ ∈ RΘ

S . Otherwise, if nm ∈ S−1, then also (by definition) n̄m̄ ∈
RΘ

S . In both cases, we have (m̄, S) : ψ ∈ Θ. Hence, MΘ
S , n̄ |= �ψ.

Tableaux for Relation-Changing Modal Logics 275

Example: Consider the formula ¬p ∧ 〈sw 〉♦p.

(1) (n0, ∅) : ¬p ∧ 〈sw〉♦p initial node
(2) (n0, ∅) : ¬p (∧) on (1)
(3) (n0, ∅) : 〈sw〉♦p
(4) Ṙn0n0, (n0, ∅) : ♦p | Ṙn0n1, n0

˙�=n1, (n1, {n0n1}) : ♦p (〈sw〉) on (3)

Let us expand the left branch:

(5a) Ṙn0n1, n0n1 /̇∈∅, (n1, ∅) : p (♦) on (4)

(6a) n0=̇n1 | n0
˙�=n1 (ub)

The left branch closes by (Id) and (⊥atom), while the right branch is fully expanded
and open, with the following induced model:

n0 n1

p

Let us go back to line (4) and expand the right branch:

(5b) Ṙn1n2, n1n2 /̇∈{n0n1} | n1n2∈̇{n1n0} (♦) on (4)
(6b) (n2, {n0n1}) : p | (n2, {n0n1}) : p

In the right branch, by n1n2∈̇{n1n0} we have n2=̇n0. Then by (Id) and (⊥atom), we

have a clash. The left branch is open, and n1n2 /̇∈{n0n1} is a notation for n0
˙�=n1 ∨

n1
˙�=n2, with n0

˙�=n1 already occurring in the branch (line (4), right branch).

(7b) n0=̇n2 | n0
˙�=n2 (ub)

Left branch closes by (Id) and (⊥atom). Right branch:

(8b) n1=̇n2 | n1
˙�=n2 (ub)

Both branch are open and saturated and produce the following induced models:

n0 n1

p

n0 n1 n2

p

Fig. 7. Tableau example for ML(〈sw〉)

� [sw]ψ: the reflexive case is the same as for �. If we have in Θ that Ṙnm, n ˙�=m

and nm/̇∈(S ∪ S−1), then n̄m̄ ∈ RΘ
S . Also we have (m̄, S ∪ nm) : ψ ∈ Θ. On

the other hand, if xy∈̇S and n=̇y are both in Θ, (by definition) ȳx̄ ∈ RΘ
S ,

and (x̄, S\xy∪yx):ψ ∈ Θ. With the three cases, we get MΘ
S , n̄ |= [sw]ψ. ��

By the previous lemma we get:

Theorem 15 (Completeness). If T (ϕ) is open, then ϕ is satisfiable.

3 Global Relation-Changing Operators

In previous sections we considered only local operators that modify the model
relation from the current state of evaluation. In particular, the sabotage and swap

276 C. Areces, R. Fervari, and G. Hoffmann

modalities traverse an existing accessibility relation from the current state. The
bridge modality is local in the sense that it creates a new link also from the
current state.

We now consider the global counterparts of these three modalities. These
new versions can change the accessibility relation in any part of the model,
and leave the evaluation state unchanged. One motivation to consider these
global operators is, again, van Benthem’s original sabotage operator [8], which
is actually global.

The semantics of the three global operators is formally defined as follows:

M, w |= 〈gsb〉ϕ iff for some u, v ∈ W, s.t. Ruv, M−
uv, w |= ϕ

M, w |= 〈gbr 〉ϕ iff for some u, v ∈ W s.t. ¬Ruv, M+
uv, w |= ϕ

M, w |= 〈gsw〉ϕ iff for some u, v ∈ W s.t. Ruv, M∗
vu, w |= ϕ.

Adapting the calculi presented in Section 2, we can obtain tableau
methods for the global operations. For each logic, the corresponding (♦) and
(�) rules are the same ones as for its local version. One can easily verify that
the rules for ML(〈gsb〉) and ML(〈gbr 〉) in Figure 8 are direct adaptations of
the rules for ML(〈sb〉) and ML(〈br 〉). The rules for ML(〈gsw 〉) are shown in
Figure 9). Notice that ([gsw]3) and (the last branch produced by) (〈gsw 〉) are
simpler than ([sw]3) and (〈sw 〉). This is because swapping an already swapped
edge in any place is a generalization of doing it only from the evaluation state.

(n, S) : 〈gsb〉ϕ
(〈gsb〉)1

Ṙpq
pq /̇∈S

(n, S ∪ pq) : ϕ

(n,B) : 〈gbr〉ϕ
(〈gbr〉)1

pq /̇∈B
(n,B ∪ pq) : ϕ

(n, S) : [gsb]ϕ
Ṙpq
pq /̇∈S

([gsb])
(n, S ∪ pq) : ϕ

(n,B) : [gbr]ϕ

pq /̇∈B
([gbr])

(n,B ∪ pq) : ϕ | Ṙpq

1 p and q are new to the branch.

Fig. 8. Tableau rules for ML(〈gsb〉) and ML(〈gbr〉)

The resulting calculi are sound and complete. The complexity for the satisfia-
bility of these logics is still open but we conjecture they are undecidable (a close
variant of ML(〈gsb〉) is undecidable [6]). Applying similar arguments as for the
local operators, it is possible to at least enforce infinite models.

Tableaux for Relation-Changing Modal Logics 277

(n, S) : [gsw]ϕ
Ṙpp

([gsw])
(n, S) : ϕ

(n, S) : [gsw]ϕ
Ṙpq
p ˙�=q

pq /̇∈(S ∪ S−1)
([gsw]2)

(n, S∪pq) : ϕ

(n, S) : [gsw]ϕ
xy ∈ S

([gsw]3)
(n, S\xy∪yx) : ϕ

(n, S) : 〈gsw 〉ϕ
(〈gsw〉)1

Ṙpp Ṙpq
∨

xy∈S(n, S\xy∪yx):ϕ
(n, S) : ϕ p ˙�=q

pq /̇∈(S∪S−1)
(n, S∪pq) : ϕ

1 p and q are new to the branch.

Fig. 9. Tableau rules for ML(〈gsw〉)

4 Ending Remarks

In this article we considered a number of dynamic operators which can add,
delete and swap edges in the accessibility relation, both locally and globally.
We introduced sound and complete tableau procedures for all of them to check
satisfiability.

A natural question is whether it is possible to combine these calculi into
a unique calculus that would support modal logic equipped with all the dy-
namic operators at once. We can easily obtain local-global combinations of
calculi for operators of the same kind: ML(〈sb〉, 〈gsb〉), ML(〈br 〉, 〈gbr 〉) and
ML(〈sw〉, 〈gsw 〉), by combining the corresponding rules from Section 2 and Sec-
tion 3. However, further combination seems to require deep changes since every
kind of dynamic logic (sabotage, bridge, swap) requires distinct rules for the
connectors ♦ and �.

As can be seen from their corresponding calculi, the logics presented here
involve equality reasoning on named states. They are actually related to hybrid
logics [5,1]. In particular ML(〈sw〉) is strictly less expressive than H(:, ↓) [3].
The same can be shown about ML(〈sb〉) and H(:, ↓). Let S ⊆ NOM2 and x′, y′ ∈
NOM. Define ()′S , a translation from formulas of ML(〈sb〉) to formulas of H(:, ↓)
as (for the non-trivial cases):

(♦ϕ)′S = ↓x′.♦↓y′.(¬
∨

xy∈S

(x′:x∧y′:y) ∧ (ϕ)′S)

(〈sb〉ϕ)′S = ↓x′.♦↓y′.(¬
∨

xy∈S

(x′:x∧y′:y) ∧ (ϕ)′S∪x′y′)

where x′ and y′ are nominals that do not appear in S. With this translation it
holds that for any formula ϕ of ML(〈sb〉) and pointed model M, w, we have
M, w |= ϕ iff M, w |= (ϕ)′S . On the other hand, translation for the four
remaining logics involve the global modality E.

278 C. Areces, R. Fervari, and G. Hoffmann

All of the logics we considered can force infinite models. As a result, the
tableau calculi not necessarily terminate on all inputs, given that they do not
implement any kind of loop checking. Our ongoing research aims to establish the
undecidability of all the presented logics using techniques from [3], showing in
this way that non-termination is unavoidable.

As future work, we plan to investigate constructive interpolation results in
hybrid versions of the logics we presented here.

Acknowledgments. This work was partially supported by grants ANPCyT-
PICT-2008-306, ANPCyT-PICT-2010-688, the FP7-PEOPLE-2011-IRSES
Project “Mobility between Europe and Argentina applying Logics to Systems”
(MEALS) and the Laboratoire International Associé “INFINIS”.

References

1. Areces, C., ten Cate, B.: Hybrid logics. In: Blackburn, P., Wolter, F., van Benthem,
J. (eds.) Handbook of Modal Logics, pp. 821–868. Elsevier (2006)

2. Areces, C., Fervari, R., Hoffmann, G.: Moving arrows and four model checking
results. In: Ong, L., de Queiroz, R. (eds.) WoLLIC 2012. LNCS, vol. 7456, pp.
142–153. Springer, Heidelberg (2012)

3. Areces, C., Fervari, R., Hoffmann, G.: Swap logic. To appear in the Logic Journal
of IGPL (2013)

4. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic, Cambridge Tracts in Theo-
retical Computer Science, vol. 53. Cambridge University Press, Cambridge (2001)

5. Blackburn, P., Seligman, J.: Hybrid languages. Journal of Logic, Language and
Information 4, 251–272 (1995)

6. Löding, C., Rohde, P.: Model checking and satisfiability for sabotage modal logic.
In: Pandya, P.K., Radhakrishnan, J. (eds.) FSTTCS 2003. LNCS, vol. 2914, pp.
302–313. Springer, Heidelberg (2003)

7. Schmidt, R.A., Tishkovsky, D.: Using tableau to decide expressive description
logics with role negation. In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D.,
Lee,K.-I., Nixon,L.J.B., Golbeck, J.,Mika, P.,Maynard,D.,Mizoguchi, R., Schreiber,
G., Cudré-Mauroux, P. (eds.) ASWC 2007 and ISWC 2007. LNCS, vol. 4825,
pp. 438–451. Springer, Heidelberg (2007)

8. van Benthem, J.: An essay on sabotage and obstruction. In: Hutter, D., Stephan, W.
(eds.) Mechanizing Mathematical Reasoning. LNCS (LNAI), vol. 2605, pp. 268–276.
Springer, Heidelberg (2005)

Computing Minimal Models Modulo

Subset-Simulation for Modal Logics�

Fabio Papacchini and Renate A. Schmidt

The University of Manchester, UK
{papacchf,schmidt}@cs.man.ac.uk

Abstract. In this paper we propose a novel minimality criterion for
models of modal logics based on a variation of the notion of simula-
tion, called subset-simulation. We present a minimal model sound and
complete tableau calculus for the generation of this new kind of mini-
mal models for the multi-modal logic K(m), and we discuss extensions
to cover more expressive logics. The generation of minimal models is
performed incrementally by using a minimality test to close branches
representing non-minimal models, or to update the set of minimal mod-
els. Subset-simulation minimal models have the advantage that they are
semantically more natural than models obtained by using syntactic min-
imality criteria.

1 Introduction

For fault analysis, verification of systems and validation of the logical formalisa-
tion of an application, model generation methods are useful for finding counter-
examples as a means of debugging [14]. Models can be generated using tableau
methods. For example, Smullyan-type labelled tableau calculi can be used to gen-
erate the essential parts of any model. However, even for the most well-behaved,
decidable logics, in general, there are uncountably many different models for sat-
isfiable formulae and models can be very large. The import of Herbrand’s the-
orem is that we can restrict attention to the class of Herbrand models, because
they are kinds of canonical models sufficient for showing soundness and com-
pleteness of many deductive systems. For the purposes of model generation, the
class of Herbrand models has the advantage that it can be ordered by the subset
relation. It is thus possible to focus on generating models minimal under this or-
dering. Generating minimal Herbrand models for classical logics has been studied
in [4,12] and for modal logics in [13]. For the modal logics K, KT, KB, KTB it
has been shown minimal Herbrand models are finite [13], but for other extensions
of K minimal Herbrand models are in general infinite.

By contrast, domain minimal models are finite for all logics with the finite
model property. Another possibility therefore is to focus on the generation of
models with minimised domains. Domain minimal models, however, tend to
be counter-intuitive for verification and debugging purposes because too many

� The first author is supported by an EPSRC EU Doctoral Training Award.

P. Fontaine, C. Ringeissen, and R.A. Schmidt (Eds.): FroCoS 2013, LNAI 8152, pp. 279–294, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

280 F. Papacchini and R.A. Schmidt

Table 1. Modalities and their corresponding frame conditions

[Ri] Axiom Frame condition

K

T [Ri]p→ p reflexivity

B p→ [Ri]〈Ri〉p symmetry

D [Ri]p→ 〈Ri〉p seriality

4 [Ri]p→ [Ri][Ri]p transitivity

5 〈Ri〉p→ [Ri]〈Ri〉p Euclideanness

worlds are collapsed to a single world. For instance, in a modal logic with doxastic
modalities there are models in which belief states (those in the image of the
belief relation) are identified and reflexive loops created. In most formalisations
the belief relation is however not reflexive. This means there is a need to find
classes of models better suited for debugging purposes.

As Herbrand models are too large and domain minimal models are too small,
in this paper we study subset-simulation minimal models as a middle ground
between the two. Subset-simulation is a relationship between models based on
a variation of the notion of simulation [5,7,8]. Being applied directly on the
graph representation of models means subset-simulation minimality preserves
the semantics in minimal models, and is suitable for a large number of non-
classical logics. It also results in more natural and intuitive minimal models
than minimal Herbrand models and domain minimal models (Section 3).

We present a tableau calculus designed to generate subset-simulation mini-
mal models for the multi-modal logic K(m) in Section 5. The tableau is minimal
model complete, but it is not minimal model sound. That is, it generates all mini-
mal models, but also non-minimal models are generated. Section 6 shows how the
calculus can be extended with a minimality test, called subset-simulation test,
in order to generate only minimal models and achieve minimal model soundness.
The resulting approach iteratively computes exactly the models minimal mod-
ulo subset-simulation by updating the set of minimal models as the derivation
proceeds. Although the calculus we present is for the multi-modal logic K(m),
extensions to cover more expressive logics are easy to obtain. We conclude the
paper with a discussion of possible extensions of the calculus and remarks on
implementation (Section 7).

2 Preliminaries

We work with modal formulae of propositional multi-modal logic K(m) pos-
sibly extended with universal modalities or a subset of the well-known ax-
ioms T, B, D, 4, and 5. Table 1 lists the axioms and their semantic meaning.

A modal formula is a formula of the form �, ⊥, pi, ¬φ, φ1 ∧ φ2, φ1 ∨ φ2,
〈Ri〉φ, [Ri]φ, [U]φ, 〈U〉φ, where � and ⊥ are two nullary logical operators for,
respectively, true and false; pi is a propositional symbol; ¬, ∧, ∨, 〈Ri〉, [Ri] are,

Computing Minimal Models Modulo Subset-Simulation for Modal Logics 281

respectively, the logical operators negation, conjunction, disjunction, diamond
and box; [U] and 〈U〉 are universal modalities; and φ1, φ2, φ are modal formulae.

We adopt the standard semantics of modal formulae known as Kripke seman-
tics. A frame for multi-modal logics is a tuple (W,R), where W is a non-empty
set of worlds and R = {R1, . . . , Rn} is a set of accessibility relations over W . An
interpretation I is a tuple (W,R, V) composed of a frame and an interpretation
function V that assigns to each world u ∈ W a set propositional symbols meaning
that such propositional symbols hold in u. Given an interpretation I = (W,R, V)
and a world u ∈ W , truth of a modal formula φ is inductively defined as follows.

I, u �|= ⊥ I, u |= �
I, u |= pi iff pi ∈ V (u)

I, u |= ¬φ iff I, u �|= φ

I, u |= φ1 ∨ φ2 iff I, u |= φ1 or I, u |= φ2

I, u |= φ1 ∧ φ2 iff I, u |= φ1 and I, u |= φ2

I, u |= [Ri]φ iff for every v ∈ W if (u, v) ∈ Ri then I, v |= φ

I, u |= 〈Ri〉φ iff there is a v ∈ W such that (u, v) ∈ Ri and I, v |= φ

I, u |= [U]φ iff for every v ∈ W I, v |= φ

I, u |= 〈U〉φ iff there is a v ∈ W such that I, v |= φ

Given an interpretation I, a world u and a modal formula φ, if I, u |= φ holds,
then I is a model of φ.

3 Subset-Simulation as Minimality Criterion

Subset-simulation is a variation of the notion of simulation [8,7,5], and is known
from [1,11], where it is used for the description logic EL and is simply called
simulation. As we use both simulation and its variation, we decided to call the
latter subset-simulation.

Let M = (W,R, V) and M ′ = (W ′,R′, V ′) be two models of a modal for-
mula φ. A simulation is a binary relation S ⊆ W × W ′ such that for any two
worlds u ∈ W and u′ ∈ W ′, if uSu′ then the following hold.

– V (u) = V ′(u′) and
– if uRv for some R ∈ R, then there exists a v′ ∈ W ′ such that R ∈ R′, u′Rv′,

and vSv′.

Let M = (W,R, V) and M ′ = (W ′,R′, V ′) be two models of a modal for-
mula φ. A subset-simulation is a binary relation S⊆ ⊆ W ×W ′ such that for any
two worlds u ∈ W and u′ ∈ W ′, if uS⊆u′ then the following hold.

– V (u) ⊆ V ′(u′) and
– if uRv for some R ∈ R, then there exists a v′ ∈ W ′ such that R ∈ R′, u′Rv′

and vS⊆v′.

282 F. Papacchini and R.A. Schmidt

{p, q} {p}

{p, q} {p}

{p}

∅

{p}

Fig. 1. Simulations between symmetric models modulo subset-simulation

If S is such that for all u ∈ W there is at least one u′ ∈ W ′ such that uSu′,
then we call S a full (subset-)simulation from M to M ′. We say a (subset-)sim-
ulation S is a maximal (subset-)simulation if there is no other (subset-)simu-
lation S′ �= S such that S ⊂ S′. Given two models M and M ′, if there is a
full (subset-)simulation S from M to M ′, we say that M ′ (subset-)simulates M ,
or M is (subset-)simulated by M ′.

In this paper we are only interested in full and maximal (subset-)simula-
tions. For this reason, when we refer to (subset-)simulations we mean full and
maximal (subset-)simulations. Where ambiguous, we explicitly state what kind
of (subset-)simulation we mean.

Subset-simulation has properties that allow us to use it to define a minimality
criterion for modal logic models. Specifically, subset-simulation is a reflexive and
transitive relation on models. Hence, it forms a preorder on models. This means
that we can consider as minimal models all the models that are minimal with
respect to subset-simulation. As subset-simulation is not anti-symmetric (which
means it is not a partial order), it is possible for models to form a symmetry
class. A symmetry class is a set of models that subset-simulate each other. This
may result in minimal models belonging to large symmetry classes, and therefore
also a large number of minimal models. To overcome this problem, we aim to be
more restrictive by using also the notion of simulation within a symmetry class
of minimal models.

Let M be a model of a modal formula φ. M is minimal modulo subset-
simulation iff for any other model M ′ of φ, if M subset-simulates M ′, then M ′

subset-simulates M and either there is no simulation relationship between M
and M ′, or M ′ simulates M .

The use of a simulation check within a symmetry class allows us to recognise
bisimilar models, models that are embedded in other models, and to impose an
extra ordering over symmetric models. Figure 1 shows two examples of what
kinds of minimal models are excluded due to the use of simulation. The two
models on the right belong to a symmetry class, and the two models on the left
belong to a different symmetry class (that is, the models on the right subset-
simulate each other, and the models on the left subset-simulate each other).
The dashed lines in the figure represent the simulation relationships between

Computing Minimal Models Modulo Subset-Simulation for Modal Logics 283

∅

{p}

∅

{q} {p}

Fig. 2. Minimality modulo subset-simulation vs. minimal Herbrand models

the models. As the models at the bottom simulates the models at the top, only
the two models at the top are minimal modulo subset-simulation.

Models minimal modulo subset-simulation have interesting properties. First,
the interpretation function is minimal with respect to a given frame. This means
that given a set of worlds and the accessibility relations between them, the in-
terpretation function assigns to each world the minimal number of propositional
variables such that the resulting interpretation is a model for a given formula.
Second, as subset-simulation is directly based on the graph structure of models,
the minimality criterion is able to discern models semantically, thus avoiding
semantically redundant minimal models (in opposition to the minimal Herbrand
models criterion). In other words, the criterion is able to compare models having
distinct domains by comparing directly the labelling functions and the accessi-
bility relations. Being based on the graph structure of models makes minimality
modulo subset-simulation a criterion suitable for a large number of modal logics.
Finally, subset-simulation gives priority to finite loop-free models, meaning that
usually models minimal modulo subset-simulation are not domain minimal.

We conclude this section with two examples of models minimal modulo subset-
simulation in order to compare the notion with other minimality criteria. The
first example shows that the new minimality criterion does not suffer the syn-
tactic restriction that affects Herbrand models. For lack of space we cannot give
the formal definition of modal Herbrand models for which we refer to [13]. Even
though there are a few differences, it might help to think of them as the Herbrand
models of the translation of a modal formula into a first-order formula. Let us
consider the modal formula φ = 〈R1〉p∨〈R1〉(p∧〈R1〉q). The minimal Herbrand
models of φ are shown in Figure 2. As can be seen, the model on the right is
completely embedded in the model on the left. Due to the syntactic restrictions
of Herbrand models, however, it is not possible to recognise this relation between
models, and the method proposed in [13] would consider both the as being mini-
mal models. By contrast, subset-simulation minimality considers only the model
on the right as minimal because it is subset-simulated by the other model, but
not the other way around.

The second example shows that models minimal modulo subset-simulation
are more natural than domain minimal models. Consider the formula φ =
〈has father〉doctor. Figure 3 shows two models that satisfy φ. The left model
in the figure is the domain minimal model, and the right model is the model
minimal modulo subset-simulation. In the domain minimal model φ is satisfied

284 F. Papacchini and R.A. Schmidt

∅

{doctor}
has father

{doctor}

has father

Fig. 3. Minimality modulo subset-simulation vs. domain minimality

by creating a loop, meaning that there is a person who is their own father and
who is a doctor. Even though such a model satisfies φ, it does not reflect our
intuition of the has father relation. This problem is avoided in the model mini-
mal modulo subset-simulation, where a new successor is required, thus ensuring
that a person is not their own father. Admittedly this is a simple example, but
it illustrates problems avoided for relations where reflexivity is counter-intuitive.
Our main point is avoiding loops in models if they are not necessary for the
finiteness of the model, and we only create loops containing the least positive
information by minimising the interpretation function when necessary.

4 Computing Subset-Simulation between Models

Even though not concerned with modal logic models, the paper [8] presents
algorithms for computing simulations between graphs. One of the algorithms
presented in [8] computes maximal self-simulation, which is the maximal simu-
lation between a graph and itself. This algorithm can be modified for computing
full and maximal subset-simulation between two models of a modal formula φ.

Figure 4 shows the pseudo-code of the algorithm that takes as input two
models M = (W,R, V) and M ′ = (W ′,R′, V ′), and returns the full and maximal
subset-simulation from M to M ′ or the empty set, if there is no full subset-
simulation. The following variables and functions are used in the algorithm.

– outrel(u) returns the set of outgoing accessibility relations from u.
– sim(u) represents the set of worlds in W ′ that are subset-similar to u.
– post(Ri, u) returns all the Ri-successors of u.
– pre(Ri, u) returns all the Ri-predecessors of u.
– pre(Ri,W) is the union of the sets resulting by the application of the pre

function with respect to the relation Ri to all the elements of W , that
is, pre(Ri,W) =

⋃
u∈W pre(Ri, u).

The basic idea behind the algorithm is that subset-simulation is computed by
overestimating the possible subset-simulation, and then pruning false guesses by
checking the second property of subset-simulation. To obtain the algorithm in
Figure 4 from the algorithm presented in [8], the following must be taken into
consideration. First, if a full subset-simulation does not exist, then the empty
set is returned. Second, the input is composed of two different models, this is
because we are not interested in self subset-simulations. Reflexive edges need to
be correctly handled. The two graphs have more than one accessibility relation.

Computing Minimal Models Modulo Subset-Simulation for Modal Logics 285

1: for all v ∈W do
2: sim(v)← {u ∈ W ′ | V (v) ⊆ V ′(u) and outrel(v) ⊆ outrel(u)}
3: if sim(v) = ∅ then
4: return ∅
5: for all Ri ∈ R do
6: for all v ∈W do
7: remove(v)← pre(Ri,W

′) \ pre(Ri, sim(v))

8: while there is a vertex v ∈W s.t. remove(v) �= ∅ do
9: aux remove v ← ∅
10: for all u ∈ pre(Ri, v) do
11: for all w ∈ remove(v) do
12: if w ∈ sim(u) then
13: sim(u)← sim(u) \ {w}
14: for all w′ ∈ pre(Ri, w) do
15: if post(Ri, w

′) ∩ sim(u) = ∅ then
16: if u = v then
17: aux remove v ← aux remove v ∪ {w′}
18: else
19: remove(u)← remove(u) ∪ {w′}
20: if sim(u) = ∅ then
21: return ∅
22: remove(v)← aux remove v

23: return {(u, v) | u ∈ W and v ∈ sim(u)}

Fig. 4. Pseudo-code for computing full, maximal subset-simulation between two models

This last point is the reason why the algorithm loops over the set of accessibility
relations and refines the subset-simulation by incrementally computing the in-
tersection of the subset-simulation with respect to a single accessibility relation.
For reason of space we omit a more detailed description of the algorithm.

Soundness of computing the subset-simulation in this way is a consequence of
the following theorem.

Theorem 1. Let M = (W,R, V) and M ′ = (W ′,R′, V ′) be two models of a
modal formula φ such that M is subset-simulated by M ′. The full and maximal
subset simulation S⊆ can be computed as the intersection of all the full and max-
imal subset-simulations with respect to each single accessibility relation R ∈ R.

5 Tableau Calculus

We present a generic tableau calculus for the generation of minimal models
modulo subset-simulation for the multi-modal logic K(m). The calculus is generic
in the sense that it can be easily extended to more expressive modal logics. Such
extensions are discussed in Section 7.

The input of the calculus is a modal formula in negation normal form labelled
by an initial world u. Transformation to negation normal form is not essential,

286 F. Papacchini and R.A. Schmidt

Table 2. Rules of the basic tableau calculus

(α)
u : (φ1 ∧ . . . ∧ φn) ∨ Φ+

α

u : φ1 ∨ Φ+
α

...
u : φn ∨ Φ+

α

(�) (u, v) : Ri u : [Ri]φ

v : φ

(β)
u : A∨ Φ+

u : A u : Φ+

u : neg(Φ+)
where A is of the form 〈Ri〉φ, [Ri]φ, or pi, and
neg(Φ+) = ¬p1 ∧ . . . ∧ ¬pn, where each pi is a disjunct of Φ+.

(♦) u : 〈Ri〉φ
(u, u1) : Ri . . . (u, un) : Ri (u, v) : Ri

u1 : φ un : φ v : φ
where each ui appears on the branch, and v is fresh.

(SBR)
u : p1, . . . , u : pn u : ¬p1 ∨ . . . ∨ ¬pn ∨ Φ+

α

u : Φ+
α

but it simplifies the presentation. It also means that there is no need for prepro-
cessing before applying the calculus, and it allows us to reduce the number of
rules in the calculus.

In the calculus, disjunctions and conjunctions are assumed to be flattened
for example, we write φ1 ∨ φ2 ∨ φ3 instead of φ1 ∨ (φ2 ∨ φ3). By A we mean a
modal formula of the form pi, 〈Ri〉φ or [Ri]φ. We use Φ+ to denote a non-empty
disjunction, where all disjuncts are of the form A, and Φ+

α to denote a possibly
empty disjunction where all disjuncts are of the form A or are conjunctions.
By neg(Φ+) we mean the conjunction ¬p1 ∧ . . . ∧ ¬pn, where the pi are all the
positive propositional variables appearing as disjuncts of Φ+. If Φ+ does not
contain any pi, then neg(Φ+) = �.

Table 2 presents the rules of the calculus for the multi-modal logic K(m).
A branch B of the tableau is a sequence N0, N1, . . . , Ni of sets of formulae of
the form u : φ or (u, v) : R, where N0 = {u : φ} and φ is the input formula.
Given an input formula u : φ, the rules of the calculus are exhaustively applied.
At most one rule is applied to any formula appearing as the main premise,
where the main premise of multi-premises rules is the premise on the right. For
fairness, each instance of a rule application is applied exactly once. Each rule
application extends the current branch. That is, a rule applied to a formula in the
set Ni extends the branch with the set Ni+1, where Ni+1 is the set Ni plus the
conclusions of the applied rule. Given an open branch B, a model M = (W,R, V)
can be extracted from B as follows. The domain W is the set of all the labels
in B, the accessibility relations are composed of all the instances (u, v) ∈ Ri

in B, the interpretation function V is such that V (u) = {pi | u : pi ∈ B}.

Computing Minimal Models Modulo Subset-Simulation for Modal Logics 287

Even though the input formula is in negation normal form, the calculus can
be thought of as a calculus for formulae in clausal form. This is achieved by
the (α) rule that not only deals with conjunctions, but also performs lazy
clausification. If such a lazy clausification is performed in a clever way, for
example, by using a good heuristic for choosing the right conjunction to ex-
pand, it can result in the reduction of inferences due to the implicit restriction
of Φ+

α in the premise of the rule. For instance, let us assume that the premise
is u : (p1 ∧ p2)∨ (¬p3 ∧¬p4). If the (α) rule is applied to the first conjunction, it
results in the two modal formulae u : p1 ∨ (¬p3 ∧ ¬p4) and u : p2 ∨ (¬p3 ∧ ¬p4).
The (α) rule is again applicable to both of them. If instead, the (α) rule is ap-
plied to the other conjunction first, the resulting formulae are u : ¬p3 ∨ (p1 ∧ p2)
and u : ¬p4 ∨ (p1 ∧ p2), and the (α) rule is not applicable to any of them.

The (�) rule is the common rule for box formulae, and simply expands formu-
lae in the scope of a box modality as required by the semantics of box formulae.

The (β) rule is one of the two branching rules of the calculus. Its purpose is
to branch over disjunctions without any negated propositional variables, and to
close the left branch if it is not minimal. This latter point is achieved by the use
of a limited form of complement splitting (a more common use of complement
splitting can be found in [4]). The reason why complement splitting is applied
only on positive propositional variables is that the negation of diamond formulae
or box formulae would result in new modal formulae (specifically, box formulae
and diamond formulae) that can compromise the minimality of the resulting
model. For example, let us assume that the (β) rule is applied to u : p∨ [R1]q. If
the complement 〈R1〉¬q of [R1]q would have been added to the left branch, the
left branch would still be open, and the resulting model would still be a model for
the original formula, but the newly introduced diamond formula would generate
unnecessary information. The resulting model would not be minimal. A similar
example can be given for the case of the negation of diamond formulae.

The (♦) rule is the expansion rule for diamond formulae. As it can lead to
the expansion of a diamond formula in all possible worlds plus a fresh one, it
is an expensive rule. It is, however, required to achieve minimal model com-
pleteness. This rule is known from literature, for example [9,10,3]. It is worth
pointing out that the (♦) rule in general does not guarantee termination for the
purpose of minimal model generation, but it ensures termination in case we are
only interested in checking the satisfiability of a modal formula belonging to a
logic with the finite model property. The termination issue for minimal model
generation does not affect the multi-modal logic K(m), but it has to be taken
into consideration when generalising to more expressive logics.

Finally, the (SBR) rule is a selection-based resolution rule. It can be seen as
a weaker version of the (SBR) rule in [13], the PUHR rule in [4], or the hyper-
tableau rule in [2]. The aim of this rule is twofold. First, it provides the closure
rule of the calculus, because atomic closure is sufficient. Second, it allows to
remove negative information (that is, all negative propositional variables) from
a disjunction. The reason behind the (SBR) rule is that if a disjunction contains
negative information (that is, at least one negated propositional variable) that

288 F. Papacchini and R.A. Schmidt

is not in conflict with any formula on the branch, then any expansion of such
a disjunction results in either the minimal model, where the disjunction is true
due to the negative information, or in a non-minimal model. Hence, there is no
advantage in expanding a disjunction as long as it is not possible to remove all
the negative information from it. The (SBR) rule is the reason why other rules,
specifically the (β) rule and the (α) rule, can be applied only to disjunctions of
the form Φ+ or Φ+

α . This decreases the number of required inferences.
The calculus presented so far does not yet constitute the full method for the

generation of models minimal modulo subset-simulation, but is a starting point
for it.

Theorem 2. The tableau calculus is refutationally sound and complete for K(m).

For lack of space we do not provide a formal proof, but the calculus does not
differ much from known calculi. All the rules have already been applied in other
calculi, or are sound variations of common rules. The main differences are due
to variations of rules in order to not expand formulae that are already minimally
satisfied, for example, the restrictions due to Φ+ or Φ+

α .

Theorem 3. The tableau calculus is subset-simulation minimal model complete.
That is, it generates all models minimal modulo subset-simulation.

Proof. Suppose M,u |= φ, where M = (W,R, V) is a model minimal mod-
ulo subset-simulation, u ∈ W and φ is a modal formula. We first show that
the tableau having as input u : φ has an open, fully expanded branch B =
N0, . . . , Ni, . . ., where N0 = {u : φ} and for all i ≥ 0 the following holds: M |=
Ni implies M |= Ni+1, where M |= Ni means that for each formula u : φ ∈ Ni

we have that M,h(u) |= φ, where h is a function mapping labels in Ni to do-
main elements in M such that h(u) = u for the starting label u. Suppose Ni+1

is obtained from Ni by the application of a rule ρ. We consider several cases.
ρ is the (�) rule. This means the expanded formula is a labelled box formula u :

[Ri]φ
′, and (u, v) : Ri is in Ni for some v. As M |= Ni, we have that M,h(u) |=

[Ri]φ
′ and (h(u), h(v)) ∈ Ri. This implies M,h(v) |= φ′. That is, M is a model

for the conclusion of the application of the (�) rule.
ρ is the (α) rule. This means that the expanded formula is a labelled dis-

junction, where at least one disjunct φα is a conjunction. As M |= Ni, we have
that M,h(u) |= φ. This implies that M,h(u) |= φ′

α, where φ′
α is the result of

distributing the conjunction of φα over φ. Hence, M is a model for all the con-
juncts of φ′

α. That is, M is a model for the conclusions of the application of
the (α) rule.

ρ is the (♦) rule. This means that the expanded formula is a labelled diamond
formula, let us say u : 〈Ri〉φ′. As M |= Ni, we have that M,h(u) |= 〈Ri〉φ′. This
implies that there exists an Ri-successor v of h(u) such that M, v |= φ′. If there
is no w in Ni such that h(w) = v, then we choose the right-most conclusion
of the (♦) rule and let h(w) = v. If there is already a world w in Ni such
that h(w) = v, then choose the conclusion where w is used as witness.

ρ is the (β) rule. This means that the expanded formula is a labelled disjunc-
tion where the disjuncts are propositional variables, diamond formulae or box

Computing Minimal Models Modulo Subset-Simulation for Modal Logics 289

formulae. As M |= Ni, we have that M,h(u) |= φ. This implies that M satisfies
at least one of the disjuncts. Suppose A is one such disjunct and Φ+ is the re-
maining part of the disjunction. Assume A is expanded in the left branch, then
two cases are possible. First, M,h(u) |= neg(Φ+), that is, M is a model for all the
conclusions in the left branch. Second, M,h(u) �|= neg(Φ+). That is, there is a
propositional variable pi that appears as disjunct in Φ+ such that M,h(u) |= pi.
This means that u : φ is already satisfied because pi is satisfied, that is, one of
the disjunct of Φ+ is satisfied. Hence, M,h(u) |= Φ+ and the correct expansion
of Ni is the right branch of the (β) rule.

ρ is the (SBR) rule. This means that the expanded formula u : φ is of the
form u : ¬p1∨. . .∨¬pn∨φ′ and that u : p1, . . . , u : pn appear in Ni. As M |= Ni,
we have that M,h(u) |= φ and M,h(u) |= pi for all i within 1 ≤ i ≤ n. This
implies that M,h(u) |= φ iff M,h(u) |= φ′. That is, M is a model for the
conclusion of the (SBR) rule.

This proves by induction that there is a branch B validated by M .
It remains to show that the model M ′ = (W ′,R′, V ′) extracted from B is

equivalent to M . From the construction of the branch, the domain of M ′ is
such that W ′

h ⊆ W , where W ′
h = {v | h(u) = v for all u ∈ W ′}. This is,

because the starting node u belongs to both W ′ and W , only applications of
the (♦) rule create worlds, and these are mapped by following what holds in
the minimal model M . The same reasoning is also applicable for the set of
accessibility relations.

The interpretation function V ′ is such that for all u : pi ∈ B, pi ∈ V ′(u). This
implies that for all u ∈ W ′ we have that V ′(u) ⊆ V (h(u)). This is because M |=
Ni for all i and, specifically, M,h(u) |= pi for all u : pi ∈ B.

From these observations it follows that M ′ is either smaller (containing fewer
worlds, fewer relational links, or there is some world for which the interpretation
function is a subset of the interpretation function of M) or equal to M .

Assume that the frame of M ′ is smaller than the frame of M ′. This implies
M is not minimal because either M subset-simulates M ′ (when for some u ∈ W ′

we have that V ′(u) ⊂ V (h(u))) or M simulates M ′ (when for all u ∈ W ′ we have
that V ′(u) = V (h(u))). The (subset-)simulation is simply the set {(u, h(u)) | u ∈
W ′}. This contradicts the minimality of M . Hence, M ′ and M are based on the
same frame.

Assume that for some u ∈ W ′ we have that V ′(u) ⊂ V (h(u)). This contradicts
the assumption that M is a model minimal modulo subset-simulation because M ′

is subset-simulated by M (the subset-simulation is as in the previous case). This
implies that for all u ∈ W ′, V ′(u) = V (h(u)).

As the frames and the interpretation functions of M and M ′ are the same,
M and M ′ are the same model. This completes the proof. ��

6 Minimal Model Soundness

Although the calculus is minimal model complete as presented up to now, it
is not yet minimal model sound. This means, although among all the gener-
ated models there are all the minimal ones, the calculus does not generate only

290 F. Papacchini and R.A. Schmidt

minimal models. However, as the calculus is minimal model complete, minimal
model soundness can be achieved by closing all the branches of the tableau from
which non-minimal models can be extracted. In order to prune properly the
search space, we introduce a minimality test called subset-simulation test. This
test allows us either to detect non-minimal models before they are completely
computed, or to refine the minimal models found so far (that is, updating the
set of minimal models by deleting models and inserting a new one).

Following an idea in [4,13], the aim of the minimal model test is to use previ-
ously extracted models to judge the minimality of the partial model that can be
extracted from the currently selected branch. A crucial difference with [4,13] is
that we cannot guarantee that the first extracted model is minimal. Our solution
is to compute minimal models incrementally, meaning it is only known at the
end of the complete derivation whether a model is minimal. The incremental
generation of minimal models is achieved in the calculus by always selecting the
left-most branch with the least number of worlds for further expansion first. This
means, the calculus generates first all the models with the smallest domain, and
then incrementally increases the domain size of the generated models. This ex-
pansion strategy alone is not enough to make the calculus minimal model sound
because domain minimal models have good chances of not being minimal. Nev-
ertheless, we think this is a good heuristic, because the minimality test can only
be performed by comparing already extracted models with one (partial) model,
and because the complexity of the algorithm presented in Section 4 depends on
the number of worlds in the two models. Hence, finding domain minimal models
first is likely to speed up the incremental generation of minimal models.

The subset-simulation test is divided into two cases. First, M is the partial
model extracted from an open but not fully expanded branch. If there exists
an already extracted model M ′ that is subset-simulated by M and M is not
subset-simulated by M ′, then M is not minimal and the branch from which it
was extracted is closed.

Second, M is the model extracted from an open and fully expanded branch.
Then M is compared with the already extracted models and branches are closed
accordingly. The closure of branches involves consideration of these three cases.

– M subset-simulates some minimal model M ′, but M ′ does not subset-sim-
ulate M . This means M is not minimal, and the branch from which M was
extracted must be closed.

– M does not subset-simulate any minimal model M ′, but M ′ subset-simu-
lates M . This means M ′ and all the models belonging to the symmetry class
of M ′ are not minimal, and the branches from which those models were
extracted must be closed.

– Some minimal model M ′ subset-simulates M , and M subset-simulates M ′.
This means M belongs to the same symmetry class of M ′. Hence, simulation
relationships between M and the models of the symmetry class need to be
checked in order to refine the symmetry class. All the branches from models
of the symmetry class which are no longer minimal must be closed.

Computing Minimal Models Modulo Subset-Simulation for Modal Logics 291

The first case of the subset-simulation test allows us to prune the tree deriva-
tion before a branch is fully expanded. This is possible because if a partial model
is already non-minimal, none of its possible extensions can be minimal. Hence,
the branch can be closed without compromising minimal model completeness of
the calculus.

As it is not always possible to recognise a non-minimal model before the
branch is fully expanded, and because minimal models are computed incremen-
tally by continuously refining the set of minimal models, the first case of the
subset-simulation test is clearly not enough. The second case performs the re-
finement step of the current set of minimal models, meaning that even previously
open and fully expanded branches can be closed. In other words, the second case
requires checking subset-simulation relationships between M and representative
models of all the symmetry classes of minimal models. This is because if M is
subset-simulated by one model of a symmetry class, then it is subset-simulated
by all of them due to subset-simulation being transitive.

From a theoretical perspective, it is not important when the minimality test is
applied as long as it is always applied to open and full expanded branches (that
is, as long as the second case of the minimality test is extensively performed). In
order to avoid complex subset-simulation tests and to prune the derivation tree
as soon as possible, heuristics can be used to fix the order of application of the
rules and when the minimality test is performed. Our suggestion is to apply the
rules in the following order: (SBR) rule, (α) rule, (�) rule, (β) rule, and (♦) rule.
The idea behind this order is to close a branch as soon as a contradiction occurs
on the branch, and to delay the application of branching rules. Given this order
of rule application, a sensible heuristic for the application of the minimality
test is to perform it just before the application of the (♦) rule. This is because
the (♦) rule has the highest branching factor, and the complexity of the subset-
simulation test gradually increases after each application of this rule.

Using the proposed branch selection strategy and the minimality test, the
calculus in Table 2 becomes minimal model sound.

Theorem 4. Augmenting the tableau calculus with the subset-simulation test
provides an approach that is minimal model sound when a fair expansion strategy
is used. That is, it generates only models minimal modulo subset-simulation.

7 Discussion

In the minimal model soundness theorem we required the expansion strategy
of the calculus to be fair. The proposed expansion strategy to select the left-
most branch with the least number of worlds can be seen as a variation of the
common depth-first iterative deepening expansion strategy, where the weight
used to select a branch is the number of worlds appearing on the branch. This
strategy is not the only possible fair expansion strategy that can be applied to
the calculus. Other variations of the depth-first iterative deepening strategy or
a breadth-first strategy can also be used, and the resulting procedure is still
minimal model sound and complete. Among the common strategies, depth-first

292 F. Papacchini and R.A. Schmidt

Table 3. Structural rules for extending the calculus. Note: all worlds in the conclusion
of a rule with empty premises must already appear on the branch.

(T)
(u, u) : Ri

(B)
(u, v) : Ri

(v, u) : Ri

(4)
(u, v) : Ri (v, w) : Ri

(u,w) : Ri
(5)

(u, v) : Ri (u,w) : Ri

(v, w) : Ri

(D)
(u, u1) : Ri . . . (u, un) : Ri (u, v) : Ri

where u does not have an Ri-successor, each ui appears on
the branch, and v is fresh.

(〈U〉) u : 〈U〉φ
u1 : φ . . . un : φ v : φ

where each ui appears on the branch, and v is fresh.

([U]) u : [U]φ
v : φ

where v appears on the branch.

expansion is probably the only one that cannot be applied. This is because it
is possible to have infinitely long branches, and depth-first expansion would not
result in a complete tree derivation. As we have already pointed out, this is not
the case for the multi-modal logic K(m).

Even though the idea for the subset-simulation test is inspired by the model
constraint propagation rule in [13,4], there are differences to that minimality test.
The main difference is that we need the complete tree derivation for establishing
which models are minimal, while in [13,4] this is not the case; the reason being
that [13,4] are concerned with the generation of minimal Herbrand models, which
means a subset (the set of minimal models) of a subset (the set of Herbrand
models) of all possible models. Minimality modulo subset-simulation, instead,
needs to evaluate many more models. It is interesting to note that if minimality
modulo subset-simulation is applied only to Herbrand models, then the resulting
set of minimal models is a refinement of the set of minimal Herbrand models.

The calculus in Table 2 can be extended easily to cover extensions of modal
logic K(m) by introducing rules that properly deal with such extensions. Table 3
shows the rules that allow the expansion of the tableau calculus to modal logics
enriched with universal modalities, or to extensions in which the accessibility
relations satisfy frame conditions from Table 1. Any extended version of the
calculus results in a minimal model sound and complete tableau calculus as long
as the minimality test and the described expansion strategy are used. A property
that could be lost is termination of the calculus. We have already pointed out that
the (♦) rule does not guarantee termination for the purpose of subset-simulation
minimal model generation.

Computing Minimal Models Modulo Subset-Simulation for Modal Logics 293

The extensions allowed by the rules in Table 3 are not the only possible
extensions. One of the advantages of using minimality modulo subset-simulation
is that the minimality criterion is applied to the graph representation of models.
This means that the minimality criterion can be applied to all non-classical
logics defined by a Kripke semantics. This includes logics such as modal logics,
description logics, and temporal logics (even those that are not translatable to
fragments of first-order logic). It is known from the literature, for example [6],
that bisimulation needs to be extended depending on the expressivity of the logic.
This is because bisimulation, like simulation and subset-simulation, is a local
definition. It is however not required to extend the notion of subset-simulation for
minimality modulo subset-simulation because the criterion requires full subset-
simulation, changing the scope of the definition from local to global.

From the point of view of implementation, the calculus presents several chal-
lenges. Many well-known optimisation techniques such as backjumping or unit
propagation, or a variation of them can be applied to speed up the implemen-
tation. The main problem, depending on the logic under consideration, is the
possibility that the computation does not terminate. In this case, it might be
sensible to impose a termination strategy at the cost of losing minimal model
soundness and completeness, but preserving at least refutational soundness and
completeness. This means not to stop the computation before the first model is
found. After the first model has been found an early termination strategy can
be used. This produces the best minimal models computed so far. As we are
able to establish minimality of a model only in the complete derivation tree,
stopping the computation at an early point does not guarantee the minimality
of the models obtained so far. The idea of stopping the computation at a certain
point can be seen as a branch and bound strategy, that is, the returned minimal
models are the best minimal models extracted from the tableau up to this point.
When to stop the derivation requires a new heuristic in the implementation,
which one would probably make dependant on the domain of application. An
alternative might be the use of a blocking mechanism such that the resulting
procedure is strongly terminating. We are currently investigating blocking tech-
niques to achieve strong termination while preserving minimal model soundness
and completeness for logics with the finite model property. An appropriate block-
ing technique or a simplification of the (♦) rule might result in a more efficient
tableau calculus.

8 Conclusion

We presented minimality modulo subset-simulation as a novel minimality crite-
rion for modal logics. The minimal models obtained following this new minimal-
ity criterion have the benefit that they reflect the semantics of a modal formula in
a more faithful way than other minimality criteria. Although we emphasised the
application of the criterion to the multi-modal logic K(m), its semantic nature
makes it applicable to a large number of non-classical logics.

We presented a minimal model complete tableau calculus for the multi-modal
logic K(m), and discussed how to achieve minimal model soundness through

294 F. Papacchini and R.A. Schmidt

the use of the subset-simulation test. The resulting minimal model sound and
complete calculus can easily be expanded to cover extensions of the multi-modal
logic K(m).

Even though the expansion rule for diamond formulae is expensive and ter-
mination is not always guaranteed, we believe that variations of the calculus can
be efficiently implemented in such a way that the generated models are semanti-
cally meaningful and useful for applications. An implementation of the calculus,
its extensions and variations can give important further insight regarding the
generation of minimal models for non-classical logics.

References

1. Baader, F.: Least common subsumers and most specific concepts in a descrip-
tion logic with existential restrictions and terminological cycles. In: IJCAI 2003,
pp. 319–324. Morgan Kaufmann (2003)

2. Baumgartner, P., Fürbach, U., Niemelä, I.: Hyper tableaux. In: Or�lowska, E.,
Alferes, J.J., Moniz Pereira, L. (eds.) JELIA 1996. LNCS, vol. 1126, pp. 1–17.
Springer, Heidelberg (1996)

3. Bry, F., Torge, S.: A deduction method complete for refutation and finite satisfi-
ability. In: Dix, J., Fariñas del Cerro, L., Furbach, U. (eds.) JELIA 1998. LNCS
(LNAI), vol. 1489, pp. 122–138. Springer, Heidelberg (1998)

4. Bry, F., Yahya, A.: Positive unit hyperresolution tableaux and their application to
minimal model generation. J. Automated Reasoning 25(1), 35–82 (2000)

5. Clarke, E.M., Schlingloff, B.: Model checking. In: Handbook of Automated Rea-
soning, pp. 1635–1790. Elsevier (2001)

6. Divroodi, A.R., Nguyen, L.A.: On bisimulations for description logics. CoRR
abs/1104.1964 (2011)

7. Gentilini, R., Piazza, C., Policriti, A.: From bisimulation to simulation - coarsest
partition problems. J. Automated Reasoning 31, 73–103 (2002)

8. Henzinger, M.R., Henzinger, T.A., Kopke, P.W.: Computing simulations on finite
and infinite graphs. In: Proc. FCS-36, pp. 453–462. IEEE Computer Society (1995)

9. Hintikka, J.: Model minimization - an alternative to circumscription. J. Automated
Reasoning 4(1), 1–13 (1988)

10. Lorenz, S.: A tableaux prover for domain minimization. J. Automated Reason-
ing 13(3), 375–390 (1994)

11. Lutz, C., Wolter, F.: Deciding inseparability and conservative extensions in the
description logic EL. J. Symbolic Computation 45(2), 194–228 (2010)

12. Niemelä, I.: Implementing circumscription using a tableau method. In: Proc. ECAI
1996, pp. 80–84. Wiley (1996)

13. Papacchini, F., Schmidt, R.A.: A tableau calculus for minimal modal model gen-
eration. ENTCS 278(3), 159–172 (2011)

14. Reiter, R.: A theory of diagnosis from first principles. Artificial Intelligence 32(1),
57–95 (1987)

Hybrid Unification in the Description Logic EL

Franz Baader, Oliver Fernández Gil, and Barbara Morawska�

Theoretical Computer Science, TU Dresden, Germany
{baader,morawska}@tcs.inf.tu-dresden.de,

fernandez@informatik.uni-leipzig.de

Abstract. Unification in Description Logics (DLs) has been proposed
as an inference service that can, for example, be used to detect redundan-
cies in ontologies. For the DL EL, which is used to define several large
biomedical ontologies, unification is NP-complete. However, the unifi-
cation algorithms for EL developed until recently could not deal with
ontologies containing general concept inclusions (GCIs). In a series of re-
cent papers we have made some progress towards addressing this prob-
lem, but the ontologies the developed unification algorithms can deal
with need to satisfy a certain cycle restriction. In the present paper, we
follow a different approach. Instead of restricting the input ontologies,
we generalize the notion of unifiers to so-called hybrid unifiers. Whereas
classical unifiers can be viewed as acyclic TBoxes, hybrid unifiers are
cyclic TBoxes, which are interpreted together with the ontology of the
input using a hybrid semantics that combines fixpoint and descriptive
semantics. We show that hybrid unification in EL is NP-complete and
introduce a goal-oriented algorithm for computing hybrid unifiers.

1 Introduction

Description logics [5] are a well-investigated family of logic-based knowledge rep-
resentation formalisms. They can be used to represent the relevant concepts of
an application domain using concept descriptions, which are built from concept
names and role names using certain concept constructors. The DL EL, which
offers the constructors conjunction (�), existential restriction (∃r.C), and the
top concept (�), has recently drawn considerable attention since, on the one
hand, important inference problems such as the subsumption problem are poly-
nomial in EL, even in the presence of GCIs [10]. On the other hand, though
quite inexpressive, EL can be used to define biomedical ontologies, such as the
large medical ontology SNOMEDCT.1 From a semantic point of view, concept
names and concept descriptions represent sets of individuals, whereas role names
represent binary relations between individuals. For example, using the concept
names Head_injury and Severe, and the role names finding and status, we can
describe the concept of a patient with severe head injury as

Patient � ∃finding.(Head_injury � ∃status.Severe). (1)
� Supported by DFG under grant BA 1122/14-2.
1 See http://www.ihtsdo.org/snomed-ct/

P. Fontaine, C. Ringeissen, and R.A. Schmidt (Eds.): FroCoS 2013, LNAI 8152, pp. 295–310, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

296 F. Baader, O. Fernández Gil, and B. Morawska

In a DL ontology, one can use concept definitions to introduce abbreviations
for concept descriptions. For example, we could use the definition Head_injury ≡
Injury � ∃finding_site.Head to define Head_injury as an injury that is located at
the head. More generally, GCIs can be used to require that certain inclusions
hold in all models of the ontology. For example,

∃finding.∃status.Severe & ∃status.Emergency (2)

is a GCI that says that a severe finding entails an emergency status.
Knowledge representation systems based on DLs provide their users with var-

ious inference services that allow them to deduce implicit knowledge from the
explicitly represented knowledge. For instance, the subsumption algorithm al-
lows one to determine subconcept-superconcept relationships. For example, the
concept description (1) is subsumed by (i.e., is a subconcept of) the concept
description ∃finding.∃status.Severe. With respect to the GCI (2), it is thus also
subsumed by ∃status.Emergency, i.e., in all models of this GCI, patients with
severe head injury have an emergency status.

Unification in DLs has been proposed in [9] as a novel inference service that
can, for instance, be used to detect redundancies in ontologies. For example, as-
sume that one developer of a medical ontology describes the concept of a patient
with severe head injury using the concept description (1), whereas another one
represents it as

Patient � ∃finding.(Severe_injury � ∃finding_site.Head). (3)

These two concept descriptions are not equivalent, but they are nevertheless
meant to represent the same concept. They can obviously be made equivalent
by introducing definitions for the concept names Head_injury and Severe_injury:
if we define Head_injury ≡ Injury � ∃finding_site.Head and Severe_injury ≡
Injury�∃status.Severe, then the two concept descriptions (1) and (3) are equiva-
lent w.r.t. these definitions. If such definitions exist, we say that the descriptions
are unifiable, and call the TBox consisting of these definitions a unifier. More
precisely, it is required that this TBox is acyclic, i.e., there are no cyclic depen-
dencies between the definitions.

To motivate our interest in unification w.r.t. GCIs, assume that the second
developer uses the description

Patient � ∃status.Emergency � ∃finding.(Severe_injury � ∃finding_site.Head)(4)

instead of (3). The descriptions (1) and (4) are not unifiable without additional
GCIs, but they are unifiable, with the same unifier as above, if the GCI (2) is
present in a background ontology.

In [7], we were able to show that unification in the DL EL (without background
ontology) is NP-complete. In addition to a brute-force “guess and then test” NP-
algorithm [7], we have also developed a goal-oriented unification algorithm for
EL, in which nondeterministic decisions are only made if they are triggered by
“unsolved parts” of the unification problem [8]. In [8] it was also shown that

Hybrid Unification in the Description Logic EL 297

these two approaches for unification of EL-concept descriptions (without any
background ontology) can easily be extended to the case of an acyclic TBox as
background ontology without really changing the algorithms or increasing their
complexity. For more general GCIs, such a simple solution is no longer possible.

In [3], we extended the brute-force “guess and then test” NP-algorithm from [7]
to the case of GCIs. Unfortunately, the algorithm is complete only for ontologies
that satisfy a certain restriction on cycles, which, however, does not prevent
all cycles. For example, the cyclic GCI ∃child.Human & Human satisfies this
restriction, whereas the cyclic GCI Human & ∃parent.Human does not. In [4], we
introduced a more practical, goal-oriented unification algorithm that can also
deal with role hierarchies and transitive roles, but still needs the ontology (now
consisting of GCIs and role axioms) to be cycle-restricted. At the moment, it is
not clear how similar brute-force or goal-oriented algorithms could be obtained
for the general case without cycle-restriction.

In this paper, we follow another line of attack on this problem. Instead of
restricting the input ontology, we allow cyclic TBoxes to be used as unifiers.
Subsumption w.r.t. cyclic TBoxes in EL has been investigated in detail in [1].
In addition to the classical descriptive semantics, it also makes sense to use
greatest fixpoint semantics (gfp-semantics) for such TBoxes. For example, w.r.t.
this semantics, the definition X ≡ ∃parent.X describes exactly those domain
elements that are the origin of an infinite parent-chain, whereas descriptive se-
mantics would also allow the empty set to be an interpretation of X , even if
there are infinite parent-chains. Hybrid semantics deals with the case where a
TBox interpreted with gfp-semantics is combined with GCIs that are interpreted
with descriptive semantics [11,14,13]. Its introduction was originally motivated
by the fact that the least common subsumer (lcs) w.r.t. a set of GCIs interpreted
with descriptive semantics need not exist. For example, w.r.t. the GCIs

Human & ∃parent.Human and Horse & ∃parent.Horse, (5)

there is no least concept description (w.r.t. subsumption) that subsumes both
Human and Horse. What elements of these two concepts have in common is that
they are the origin of an infinite parent-chain, and thus the concept X with
definition X ≡ ∃parent.X is their lcs, if we interpret this definition with gfp-
semantics, but the GCIs (5) still with descriptive semantics. A hybrid unifier is
a cyclic TBox that, together with the background ontology consisting of GCIs,
entails the unification problem w.r.t. hybrid semantics. We will show that hybrid
unification in EL, i.e., the problem of testing whether a hybrid unifier exists,
is NP-complete. In addition, we will introduce a goal-oriented algorithm for
computing hybrid unifiers. The proofs, which can be found in [6], are based on
the proof system for hybrid subsumption introduced in [14,13].

2 The Description Logic EL
The expressiveness of a DL is determined both by the formalism for describing
concepts (the concept description language) and the terminological formalism,

298 F. Baader, O. Fernández Gil, and B. Morawska

which can be used to state additional constraints on the interpretation of con-
cepts in a so-called ontology.

The Concept Description Language. The concept description language con-
sidered in this paper is called EL. Starting with a finite set NC of concept names
and a finite set NR of role names, EL-concept descriptions are built from concept
names using the constructors conjunction (C �D), existential restriction (∃r.C
for every r ∈ NR), and top (�). Since in this paper we only consider EL-concept
descriptions, we will usually dispense with the prefix EL.

On the semantic side, concept descriptions are interpreted as sets. To be more
precise, an interpretation I = (ΔI , ·I) consists of a non-empty domain ΔI and
an interpretation function ·I that maps concept names to subsets of ΔI and
role names to binary relations over ΔI . This function is inductively extended to
concept descriptions as follows:

�I := ΔI , (C � D)I := CI ∩ DI , (∃r.C)I := {x | ∃y : (x, y) ∈ rI ∧ y ∈ CI}

Classical Ontologies and Subsumption. A concept definition is an expres-
sion of the form X ≡ C where X is a concept name and C is a concept descrip-
tion, and a general concept inclusion (GCI) is an expression of the form C & D,
where C,D are concept descriptions. An interpretation I is a model of this con-
cept definition (this GCI) if it satisfies XI = CI (CI ⊆ DI). This semantics for
GCIs and concept definitions is usually called descriptive semantics.

A TBox is a finite set T of concept definitions that does not contain multiple
definitions, i.e., {X ≡ C,X ≡ D} ⊆ T implies C = D. Note that we do not
prohibit cyclic dependencies among the concept definitions in a TBox, i.e., when
defining a concept X we may (directly or indirectly) refer to X . An acyclic TBox
is a TBox without cyclic dependencies. An ontology is a finite set of GCIs. The
interpretation I is a model of a TBox (ontology) iff it is a model of all concept
definitions (GCIs) contained in it.

A concept description C is subsumed by a concept description D w.r.t. an
ontology O (written C &O D) if every model of O is also a model of the GCI
C & D. We say that C is equivalent to D w.r.t. O (C ≡O D) if C &O D and
D &O C. As shown in [10], subsumption w.r.t. EL-ontologies is decidable in
polynomial time.

Note that TBoxes can be seen as special kinds of ontologies since concept
definitions X ≡ C can of course be expressed by GCIs X & C,C & X . Thus, the
above definition of subsumption also applies to TBoxes. However, in our hybrid
ontologies we will interpret concept definitions using greatest fixpoint semantics
rather than descriptive semantics.

Hybrid Ontologies. We assume in the following that the set of concept names
NC is partitioned into the set of primitive concepts Nprim and the set of defined
concepts Ndef . In a hybrid TBox, concept names occurring on the left-hand side
of a concept definition are required to come from the set Ndef , whereas GCIs
must not contain concept names from Ndef .

Hybrid Unification in the Description Logic EL 299

Definition 1 (Hybrid EL-ontologies). A hybrid EL-ontology is a pair (O, T),
where O is an EL-ontology containing only concept names from Nprim , and T is
a (possibly cyclic) EL-TBox such that X ≡ C ∈ T for some concept description
C iff X ∈ Ndef .

The idea underlying the definition of hybrid ontologies is the following: O can be
used to constrain the interpretation of the primitive concepts and roles, whereas
T tells us how to interpret the defined concepts occurring in it, once the inter-
pretation of the primitive concepts and roles is fixed.

A primitive interpretation J is defined like an interpretation, with the only
difference that it does not provide an interpretation for the defined concepts. A
primitive interpretation can thus interpret concept descriptions built over Nprim

and NR, but it cannot interpret concept descriptions containing elements of
Ndef . Given a primitive interpretation J , we say that the (full) interpretation
I is based on J if it has the same domain as J and its interpretation function
coincides with J on Nprim and NR.

Given two interpretations I1 and I2 based on the same primitive interpreta-
tion J , we define I1 !J I2 iff XI1 ⊆ XI2 for all X ∈ Ndef .

It is easy to see that the relation !J is a partial order on the set of interpre-
tations based on J . In [1] the following was shown: given an EL-TBox T and a
primitive interpretation J , there exists a unique model I of T such that

– I is based on J ;
– I ′ !J I for all models I ′ of T that are based on J .

We call such a model I a gfp-model of T .

Definition 2 (Semantics of hybrid EL-ontologies). The interpretation I is
a hybrid model of the hybrid EL-ontology (O, T) iff I is a gfp-model of T and
the primitive interpretation J it is based on is a model of O.

It is well-known that gfp-semantics coincides with descriptive semantics for
acyclic TBoxes. Thus, if T is actually acyclic, then I is a hybrid model of (O, T)
according to the semantics introduced in Definition 2 iff it is a model of T ∪ O
w.r.t. descriptive semantics, i.e., iff I is a model of every GCI in O and of every
concept definition in T .

Subsumption w.r.t. Hybrid EL-Ontologies. Let (O, T) be a hybrid EL-
ontology and C,D EL-concept descriptions. Then C is subsumed by D w.r.t.
(O, T) (written C &gfp,O,T D) iff every hybrid model of (O, T) is also a model of
the GCI C & D. As shown in [11,14,13], subsumption w.r.t. hybrid EL-ontologies
is also decidable in polynomial time.

Here, we sketch the proof-theoretic approach for deciding subsumption from
[14,13] since our algorithms for hybrid unification in EL are based on it. The
proof calculus is parametrized with a hybrid EL-ontology (O, T) and a finite set
of GCIs Δ for which we want to decide subsumption. A sequent for (O, T) and Δ
is of the form C &n D, where C,D are sub-descriptions of concept descriptions

300 F. Baader, O. Fernández Gil, and B. Morawska

C �n C (Refl) C �n � (Top) C �0 D (Start)

C �n E

C �D �n E (AndL1)
D �n E

C �D �n E (AndL2)
C �n D C �n E

C �n D � E (AndR)

C �n D

∃r.C �n ∃r.D (Ex)

C �n D

X �n D (DefL)
D �n C

D �n+1 X (DefR)

C �n E F �n D

C �n D (GCI)

for X ≡ C ∈ T for X ≡ C ∈ T for E � F ∈ O

Fig. 1. The calculus HC(O, T ,Δ)

occurring in O, T , and Δ, and n ≥ 0. If (O, T) and Δ are clear from the context,
we will sometimes simply say sequent without specifying (O, T) and Δ explicitly.

The rules of the Hybrid EL-ontology Calculus HC(O, T , Δ) are depicted in
Fig. 1. Again, if (O, T) and Δ are clear from the context, we will sometimes
dispense with specifying them explicitly and just talk about the calculus HC.
The rules of this calculus can be used to derive new sequents from sequents that
have already been derived. For example, the sequents in the first row of the figure
can always be derived without any prerequisites, using the rules (Refl), (Top),
and (Start), respectively. Using the rule (AndR), the sequent C &n D � E can
be derived in case both C &n D and C &n E have already been derived. Note
that the rule Start applies only for n = 0. Also note that, in the rule (DefR),
the index is incremented when going from the prerequisite to the consequent.

A derivation in HC(O, T , Δ) can be represented in an obvious way by a proof
tree whose nodes are sequents: a proof tree for C &n D has this sequent as its
root, instances of the rules Refl, Top, and Start as leaves, and each parent-child
relation corresponds to an instance of a rule of HC other than Refl, Top, and
Start (see [14,13] for more details)

Definition 3. Let C,D be sub-descriptions of concept descriptions occurring in
O, T , and Δ. Then we say that C &∞ D can be derived in HC(O, T , Δ) if all
sequents C &n D for n ≥ 0 can be derived using the rules of HC(O, T , Δ).

The calculus HC is sound and complete for subsumption w.r.t. hybrid EL-
ontologies in the following sense.

Theorem 4 (Soundness and Completeness of HC). Let (O, T) be a hybrid
EL-TBox, Δ a finite set of GCIs, and C,D sub-descriptions of concept descrip-
tions occurring in O, T , and Δ. Then C &gfp,O,T D iff C &∞ D can be derived
in HC(O, T , Δ).

Hybrid Unification in the Description Logic EL 301

In [13], soundness and completeness of HC is actually formulated for a restricted
setting where Δ is empty and C,D are elements of Ndef that occur as left-hand
sides in T . It is, however, easy to see that the proof given in [13] generalizes to
the above theorem.

For n ∈ N∪{∞}, we collect the GCIs C & D such that C &n D is derivable in
HC(O, T , Δ) in the set Dn(O, T , Δ). Obviously, D0(O, T , Δ) consists of all GCIs
built from sub-descriptions of concept descriptions occurring in O, T , and Δ, and
it is not hard to show that Dn+1(O, T , Δ) ⊆ Dn(O, T , Δ) holds for all n ≥ 0
[14,13]. Thus, to compute D∞(O, T , Δ), one can start with D0(O, T , Δ), and then
compute D1(O, T , Δ),D2(O, T , Δ), . . ., until Dm+1(O, T , Δ) = Dm(O, T , Δ)
holds for some m ≥ 0, and thus Dm(O, T , Δ) = D∞(O, T , Δ). Since the cardinal-
ity of the set of sub-descriptions is polynomial in the size of the input O, T , and Δ,
the computation of each set Dn(O, T , Δ) can be done in polynomial time, and we
can be sure that only polynomially many such sets need to be computed until an
m with Dm+1(O, T , Δ) = Dm(O, T , Δ) is reached. This shows that the calculus
HC(O, T , Δ) indeed yields a polynomial-time subsumption algorithm (see [14,13]
for details).

3 Hybrid Unification in EL
We will first introduce the new notion of hybrid unification and then relate it to
the notion of unification in EL w.r.t. background ontologies considered in [3,4].

Definition 5. Let O be an EL-ontology containing only concept names from
Nprim . An EL-unification problem w.r.t. O is a finite set of GCIs Γ = {C1 &
D1, . . . , Cn & Dn} (which may also contain concept names from Ndef). The
TBox T is a hybrid unifier of Γ w.r.t. O if (O, T) is a hybrid EL-ontology that
entails all the GCIs in Γ , i.e. , C1 &gfp,O,T D1, . . . , Cn &gfp,O,T Dn. We call
such a TBox T a classical unifier of Γ w.r.t. O if it is acyclic.

It is easy to see that the notion of a classical unifier indeed corresponds to
the notion of a unifier introduced in [3,4]. In fact, Nprim and Ndef respectively
correspond to the sets of concept constants and concept variables in previous
papers on unification in DLs. Using acyclic TBoxes rather than substitutions as
unifiers is also not a relevant difference. As explained in [2], by unfolding concept
definitions, the acyclic TBox T can be transformed into a substitution σT such
that Ci &T ∪O Di iff σT (Ci) &O σT (Di). Conversely, replacements X (→ E of a
substitution σ can be expressed as concept definitions X ≡ E in a corresponding
acyclic TBox. In contrast, hybrid unifiers cannot be translated into substitutions
since the unfolding process would not terminate for a cyclic TBox.

Obviously, any classical unifier is a hybrid unifier, but the converse need not
hold. The following is an example of an EL-unification problem w.r.t. a back-
ground ontology that has a hybrid unifier, but no classical unifier.

Example 6. Let O be the ontology consisting of the GCIs (5), and

Γ := {Human & X,Horse & X,X & ∃parent.X},

302 F. Baader, O. Fernández Gil, and B. Morawska

where X ∈ Ndef and Human,Horse ∈ Nprim . Intuitively, this unification problem
asks for a concept such that all horses and humans belong to this concept and
every element of it has a parent also belonging to it. It is easy to see that
T := {X ≡ ∃parent.X} is a hybrid unifier of Γ w.r.t. O. In fact, we have already
mentioned in the introduction that X is then the lcs of Human and Horse, and
obviously the hybrid ontology (O, T) also entails the third GCI in Γ . It is also
not hard to show that this unification problem does not have a classical unifier,
basically for the same reasons that Human and Horse do not have an EL-concept
description as lcs (see [6] for details).

Flat Unification Problems. To simplify the technical development, it is con-
venient to normalize the unification problem appropriately. To introduce this
normal form, we need the notion of an atom. An atom is a concept name or
an existential restriction. Obviously, every EL-concept description C is a finite
conjunction of atoms, where � is considered to be the empty conjunction. An
atom is called flat if it is a concept name or an existential restriction of the form
∃r.A for a concept name A.

The GCI C & D is called flat if C is a conjunction of n ≥ 0 flat atoms and D
is a flat atom. The unification problem Γ w.r.t. the ontology O is called flat if
both Γ and O consist of flat GCIs.

Given a unification problem Γ w.r.t. an ontology O, we can compute in poly-
nomial time (see [6]) a flat ontology O′ and a flat unification problem Γ ′ such
that Γ has a (hybrid or classical) unifier w.r.t. O iff Γ ′ has a (hybrid or clas-
sical) unifier w.r.t. O′. For this reason, we will assume in the following that all
unification problems are flat.

Local Unifiers. The main reason why EL-unification without background on-
tologies is in NP is that any unification problem that has a unifier also has a
local unifier. For classical unification w.r.t. background ontologies this is only
true if the background ontology is cycle-restricted.

Given a flat unification problem Γ w.r.t. an ontology O, we denote by At
the set of atoms occurring as sub-descriptions in GCIs in Γ or O. The set of
non-variable atoms is defined by Atnv := At\Ndef . Though the elements of Atnv
cannot be defined concepts, they may contain defined concepts if they are of the
form ∃r.X for some role r and a concept name X ∈ Ndef .

In order to define local unifiers, we consider assignments ζ of subsets ζX of
Atnv to defined concepts X ∈ Ndef . Such an assignment induces a TBox

Tζ := {X ≡
�

D∈ζX

D | X ∈ Ndef }.

We call such a TBox local. The (hybrid or classical) unifier T of Γ w.r.t. O is
called local unifier if T is local, i.e., there is an assignment ζ such that T = Tζ .

As shown in [3], there are unification problems that have a classical unifier,
but no local classical unifier.

Hybrid Unification in the Description Logic EL 303

Example 7. Let O = {B & ∃s.D, D & B} and consider the unification problem

Γ := {A1 � B & Y1, Y1 & A1 � B, A2 � B & Y2, Y2 & A2 � B,
∃s.Y1 & X, ∃s.Y2 & X, X & ∃s.X},

where A1, A2, B ∈ Nprim and X,Y1, Y2 ∈ Ndef . This problem has the classical
unifier T := {Y1 ≡ A1 � B, Y2 ≡ A2 � B,X ≡ ∃s.B}, which is not local since it
uses the atom ∃s.B. As shown in [3], Γ actually does not have a local classical
unifier w.r.t. O. However, it is easy to see that T := {Y1 ≡ A1 � B, Y2 ≡
A2 �B,X ≡ ∃s.X} is a local hybrid unifier of T . In fact, gfp-semantics applied
to T ensures that X consists of exactly those domain elements that are the origin
of an infinite s-chain, and O ensures that any element of B (and thus also of
∃s.B) is the origin of an infinite s-chain.

To overcome the problem of missing local unifiers, the notion of a cycle-
restricted ontology was introduced in [3]: the EL-ontology O is called cycle-
restricted if there is no nonempty sequence r1, . . . , rn of role names and EL-
concept description C such that C &O ∃r1. · · · ∃rn.C. Note that the ontology O
of Example 7 is not cycle-restricted since B &O ∃s.B.

The main technical result shown in [3] is that any EL-unification problem Γ
that has a classical unifier w.r.t. the cycle-restricted ontology O also has a local
classical unifier. This yields the following brute-force algorithm for classical EL-
unification w.r.t. cycle-restricted ontologies: first guess an acyclic local TBox T ,
and then check whether T is indeed a unifier of Γ w.r.t. O. As shown in [3],
this algorithm runs in nondeterministic polynomial time. NP-hardness follows
from the fact that already classical unification in EL w.r.t. the empty ontology
is NP-hard [7].

4 Hybrid EL-Unification is NP-Complete

The fact that hybrid EL-unification w.r.t. arbitrary EL-ontologies is in NP is an
easy consequence of the following proposition.

Proposition 8. Consider a flat EL-unification problem Γ w.r.t. an EL-ontology
O. If Γ has a hybrid unifier w.r.t. O then it has a local hybrid unifier w.r.t. O.

In fact, the NP-algorithm simply guesses a local TBox and then checks (using
the polynomial-time algorithm for hybrid subsumption) whether it is a hybrid
unifier.

To prove the proposition, we assume that T is a hybrid unifier of Γ w.r.t. O.
We use this unifier to define an assignment ζT as follows:

ζTX := {D ∈ Atnv | X &gfp,O,T D}.

Let T ′ be the TBox induced by this assignment. To show that T ′ is indeed a
hybrid unifier of Γ w.r.t. O, we consider the set of GCIs

Δ := {C1 � . . . �Cm & D | C1, . . . , Cm, D ∈ At},

304 F. Baader, O. Fernández Gil, and B. Morawska

and prove that, for any GCI C1 � . . . � Cm & D ∈ Δ, derivability of C1 � . . . �
Cm &∞ D in HC(O, T , Δ) implies derivability of C1 � . . . � Cm &∞ D also in
HC(O, T ′, Δ). Soundness and completeness of HC, together with the facts that
Γ ⊆ Δ and T is a hybrid unifier of Γ w.r.t. O, then imply that T ′ is also a
hybrid unifier of Γ w.r.t. O. Thus, to complete the proof of Proposition 8, it is
enough to prove the following lemma.

Lemma 9. Let C1 � . . . � Cm & D ∈ Δ. If C1 � . . . � Cm &∞ D is derivable
in HC(O, T , Δ), then C1 � . . . � Cm &n D is derivable in HC(O, T ′, Δ) for all
n ≥ 0.

Proof. We prove derivability of C1�. . .�Cm &n D in HC(O, T ′, Δ) by induction
on n. The base case is trivial due to the rule (Start).

Induction Step: We assume that the statement of the lemma holds for n −
1, and show that it then also holds for n. Let � be such that D�(O, T , Δ) =
D∞(O, T , Δ). We know that there exists a proof tree P for C1 � . . . �Cm &� D
in HC(O, T , Δ). Consider the subtree of P that is obtained from it by cutting
branches at the nodes obtained by an application of one of the rules (DefL) or
(DefR). The tree obtained this way contains only sequents with index � and has
as its leaves

– instances of the rules (Refl), (Top), or (Start),
– consequences E1 &� E2 of instances of the rules (DefL) or (DefR).

In order to show that C1 � . . . � Cm &n D is derivable in HC(O, T ′, Δ), it is
sufficient to show that, for leaves E1 &� E2 of the second kind, E1 &n E2 is
derivable in HC(O, T ′, Δ) (see [6] for details).

First, assume that E1 &� E2 was obtained by an application of (DefR). Then
E2 ∈ Ndef . Assume that ζTE2

= {F1, . . . , Fq}. By the definition of ζT , we have
E2 &gfp,O,T Fi for all i, 1 ≤ i ≤ q. In addition, by our choice of �, derivability of
E1 &� E2 in HC(O, T , Δ) (using the subtree of P with this node as root) yields
E1 &gfp,O,T E2, and thus E1 &gfp,O,T Fi for all i, 1 ≤ i ≤ q. Consequently,
E1 &∞ Fi is derivable in HC(O, T , Δ) for all i, 1 ≤ i ≤ q. Since E1 is a conjunc-
tion of elements of At and F1, . . . , Fq ∈ At, induction yields that E1 &n−1 Fi is
derivable in HC(O, T ′, Δ) for all i, 1 ≤ i ≤ q. Performing q − 1 applications of
(AndR) thus allows us to derive E1 &n−1 F1 � . . . � Fq in HC(O, T ′, Δ). Since
T ′ contains the definition E2 ≡ F1 � . . . � Fq, an application of (DefR) shows
that E1 &n E2 is derivable in HC(O, T ′, Δ).

Second, assume that E1 &� E2 was obtained by an application of (DefL).
Then E1 ∈ Ndef and E2 = F1 � . . . � Fm for elements F1, . . . , Fm of At. By
our choice of � we have E1 &gfp,O,T E2, and thus E1 &gfp,O,T Fi for all i, 1 ≤
i ≤ q. It is sufficient to show, for all i, 1 ≤ i ≤ q, that E1 &n Fi is derivable
in HC(O, T ′, Δ) since q − 1 applications of (AndR) then yield derivability of
E1 &n E2 in HC(O, T ′, Δ).

If Fi does not belong to Ndef , then it is an element of Atnv. The definition
of ζT thus yields Fi ∈ ζTE1

. Consequently, Fi occurs as a conjunct on the right-
hand side of the definition of E1 in T ′. This implies E1 &gfp,O,T ′ Fi, and thus
E1 &n Fi is derivable in HC(O, T ′, Δ).

Hybrid Unification in the Description Logic EL 305

If Fi ∈ Ndef , then E1 &gfp,O,T Fi implies that ζTFi
⊆ ζTE1

. Consequently, every
conjunct on the right-hand side of the definition of Fi in T ′ is also a conjunct on
the right-hand side of the definition of E1 in T ′. This implies E1 &gfp,O,T ′ Fi,
and thus E1 &n Fi is derivable in HC(O, T ′, Δ). ��

This finishes the proof of Proposition 8, and thus shows that hybrid EL-
unification w.r.t. arbitrary EL-ontologies is in NP. NP-hardness does not follow
directly from NP-hardness of classical EL-unification. In fact, as we have seen in
Example 6, an EL-unification problem that does not have a classical unifier may
well have a hybrid unifier. Instead, we reduce EL-matching modulo equivalence
to hybrid EL-unification.

Using the notions introduced in this paper, EL-matching modulo equivalence
can be defined as follows. An EL-matching problem modulo equivalence is an
EL-unification problem of the form {C & D,D & C} such that D does not
contain elements of Ndef . A matcher of such a problem is a classical unifier of
it. As shown in [12], testing whether a matching problem modulo equivalence
has a matcher or not is an NP-complete problem. Thus, NP-hardness of hybrid
EL-unification w.r.t. EL-ontologies is an immediate consequence of the following
lemma, whose (non-trivial) proof can be found in [6].

Lemma 10. If an EL-matching problem modulo equivalence has a hybrid unifier
w.r.t. the empty ontology, then it also has a matcher.

To sum up, we have thus determine the exact worst-case complexity of hybrid
EL-unification.

Theorem 11. The problem of testing whether an EL-unification problem w.r.t.
an arbitrary EL-ontology has a hybrid unifier or not is NP-complete.

5 A Goal-Oriented Algorithm for Hybrid EL-Unification

The brute-force algorithm is not practical since it blindly guesses a local TBox
and only afterwards checks whether the guessed TBox is a hybrid unifier. We now
introduce a more goal-oriented unification algorithm, in which nondeterministic
decisions are only made if they are triggered by “unsolved parts” of the unification
problem. In addition, failure due to wrong guesses can be detected early. Any
non-failing run of the algorithm produces a hybrid unifier, i.e., there is no need
for checking whether the TBox computed by this run really is a hybrid unifier.
This goal-oriented algorithm is based on ideas similar to the ones used in the
algorithm for classical unification in EL w.r.t. cycle-restricted ontologies in [4].
However, it differs from the previous algorithm in several respects.

First, it is based on the proof calculus HC rather than on a structural charac-
terization of subsumption, as employed in [4]. Basically, to solve the unification
problem Γ w.r.t. the ontology O, the rules of the algorithm try to build, for
each GCI C & D ∈ Γ , a proof tree for the sequent C &� D while simultaneously
generating the hybrid unifier T by adding non-variable atoms to an assignment

306 F. Baader, O. Fernández Gil, and B. Morawska

ζ inducing T . The index � of the sequent is chosen large enough, i.e., such that
derivability of C &� D implies derivability of C &∞ D. In [6] it is shown how an
appropriate number � of polynomial size can be computed from the size of the
input Γ and O.

Second, to avoid nonterminating runs of the algorithm, a blocking mechanism
needs to be employed. This mechanism prevents cyclic dependencies between
sequents where the derivability of one sequents depends on the derivability of
another sequent and vice versa. This problem did not occur in the algorithm
for classical unification in [4] due to the fact that, for classical unification, the
generation of a cyclic assignment causes the run to fail. For hybrid unification,
cyclic assignments may lead to valid hybrid unifiers. In order to realize blocking,
we need to keep track of dependencies between sequents. For this reason, we
work with p-sequents rather than sequents.

We assume without loss of generality that the input unification problem Γ
w.r.t. the input ontology O is flat. Given O and Γ , the sets At and Atnv are
defined as above.

Definition 12. A flat sequent for Γ and O is of the form C1 � . . . � Cm &n D
where C1, . . . , Cm ∈ At, D ∈ At ∪ {�}, m ≥ 0, and 0 ≤ n ≤ �. This sequent is
called ground if no element of Ndef occurs in it. A p-sequents for Γ and O is a
pair (C &n D,P) such that {C &n D} ∪ P is a finite set of flat sequents for Γ
and O.

Intuitively, the p-sequent (C &n D,P) says that we need to find a proof tree for
C &n D, and that the proof trees for all the elements of P must contain this
proof tree, i.e., the derivations of the elements of P depend on the derivation of
C &n D.

Starting with the initial set of p-sequents

Γ (0)
p := {(C &� D, ∅) | C & D ∈ Γ}

the algorithm maintains a current set of p-sequents Γp and a current assignment
ζ, which initially assigns the empty set to all X ∈ Ndef . In addition, for each
p-sequent in Γp it maintains the information on whether it is solved or not.
Initially, all p-sequents are unsolved, except those with a defined concept on
the right-hand side of its first component.2 Rules are applied only to unsolved
p-sequents. A (non-failing) rule application does the following:

– it solves exactly one unsolved p-sequent,
– it may extend the current assignment ζ, and
– it may add new p-sequents to Γp, which are marked unsolved unless their

first component has a defined concept on the right-hand side.

Adding a new p-sequent is realized through the blocking procedure. This proce-
dures checks whether the new sequent introduces cyclic derivability obligations
2 Such p-sequents are dealt with by expansion rather than by applying a rule (see

below).

Hybrid Unification in the Description Logic EL 307

Eager Axiom Solving:

Condition: This rule applies to (s, P), if s is of the form C1 � . . . � Cm �0 D or
C1 � . . . � Cm �n �.
Action: Its application marks (s, P) as solved.

Eager Ground Solving:

Condition: This rule applies to (s, P) with s = C1 � . . . � Cm �n D, if s is ground.
Action: If C1 � . . . � Cm �T D does not hold, the rule application fails. Otherwise,
(s, P) is marked as solved.

Eager Solving:

Condition: This rule applies to (s, P) with s = C1 � . . . � Cm �n D, if there is an
index i ∈ {1, . . . ,m} such that Ci = D or Ci = X ∈ Ndef and D ∈ ζX .
Action: The application marks (s, P) as solved.

Fig. 2. The eager rules of hybrid unification

(in which case it fails) and whether the sequent to be added already exists (in
which case it re-uses the existing sequent, but updates the dependency informa-
tion). Only if these two cases do not apply does it add the new sequent. To be
more precise, given a set of p-sequents Γp and a p-sequents (C &n D,P), the
procedure blocking applied to this input does the following:

B1: If the sequent C &n D belongs to P , then blocking fails.
B2: Otherwise, if there is a p-sequent of the form (C &n D,P ′) in Γp, then do

the following:
– Extend the second component of this sequent to P ′ ∪ P .
– For each p-sequent (_, P ′′) in Γp such that C &n D is in P ′′, extend the

second component to P ′′ ∪ P ,
B3: Otherwise, add (C &n D,P) to Γp.

Each rule application that extends ζX additionally expands Γp w.r.t. X as
follows: every p-sequent of the form (C1 � · · · � Cn &n X,P) is expanded by
applying blocking to (C1�· · ·�Cn &n−1 D, ∅) and Γp for every D ∈ ζX . Since the
second components of the p-sequents provided as inputs for blocking are empty,
blocking cannot fail during expansion. Note that expansion basically corresponds
to an application of the rule (DefR) of HC together with an appropriate number
of applications of (AndR).

If a p-sequent p is marked as solved, this does not mean that a proof tree for its
first component s has already been constructed (w.r.t. O and the TBox induced
by the current assignment). It may be the case that the task of constructing the
proof tree for s was deferred to constructing a proof tree for the first component
s′ of a “smaller” p-sequent. The proof tree for s′ is then part of the proof tree
for s, and thus s needs to be added to the second component of p′.

The rules of the algorithm consist of three eager rules, which are deterministic
(see Figure 2), and three nondeterministic rules (see Figure 3). Eager rules are
applied with higher priority than nondeterministic rules. Among the eager rules,

308 F. Baader, O. Fernández Gil, and B. Morawska

Decomposition:

Condition: This rule applies to (s, P) with s = C1 � . . . � Cm �n ∃s.D′, if there is a
Ci = ∃s.C′ such that blocking does not fail if applied to (C′ �n D′, P ∪ {s}) and Γp.
Action: Its application chooses such an index i and applies blocking to (C′ �n D′, P ∪
{s}) and Γp. Once blocking was applied, it expands Γp w.r.t. D′ if D′ ∈ Ndef , and
marks (s, P) as solved.

Extension:
Condition: This rule applies to (s, P) with s = C1 � . . . � Cm �n D if there is at
least one i ∈ {1, . . . ,m} with Ci ∈ Ndef .
Action: Its application chooses such an index i and adds D to ζCi . Γp is expanded
w.r.t. Ci and (s, P) is marked as solved.

Mutation:
Condition: This rule applies to (s, P) with s = C1 � . . .�Cm �n D, if there is a GCI
E1 � . . . � Ek � F in O and a set S ⊆ {1, . . . ,m} such that blocking does not fail if
applied to Γp and each of the p-sequents (

�
j∈S Cj �n E1, P ∪ {s}), . . . , (

�
j∈S Cj �n

Ek, P ∪ {s}), and (F �n D,P ∪ {s}).
Action: Its application chooses such a GCI E1 � . . . � Ek � F and a set S ⊆
{1, . . . ,m}. It applies blocking to Γp and each of the p-sequents (

�
j∈S Cj �n

E1, P ∪ {s}), . . . , (
�

j∈S Cj �n Ek, P ∪ {s}), and (F �n D, P ∪ {s}). Once blocking
was applied, (s, P) is marked as solved.

Fig. 3. The nondeterministic rules of hybrid unification

Eager Axiom Solving has the highest priority, then comes Eager Ground Solving,
and then Eager Solving.

Algorithm 13. Let Γ w.r.t. O be a flat EL-unification problem. We set Γp :=

Γ
(0)
p and ζX := ∅ for all X ∈ Ndef . While Γp contains an unsolved p-sequent,

apply the steps (1) and (2).

(1) Eager rule application: If some eager rules apply to an unsolved p-sequent
p in Γp, apply one of highest priority. If the rule application fails, then return
“no hybrid unifier”.

(2) Nondeterministic rule application: If no eager rule is applicable, let p
be an unsolved p-sequent in Γp. If one of the nondeterministic rules applies
to p, nondeterministically choose one of these rules and apply it. If none of
these rules apply to p, then return “no hybrid unifier”.

Once all p-sequents are solved, return the TBox T induced by the current
assignment.

In step (2), the choice which unsolved p-sequent to consider next is don’t care
nondeterministic. However, choosing which rule to apply to the chosen p-sequent
is don’t know nondeterministic. Additionally, the application of nondeterministic
rules requires don’t know nondeterministic guessing.

The eager rules are mainly there for optimization purposes, i.e., to avoid non-
deterministic choices if a deterministic decision can easily be made. For example,

Hybrid Unification in the Description Logic EL 309

given a ground sequent C &n D, as considered in the Eager Ground Solving rule,
the GCI C & D either follows from the ontology O, in which case any TBox is a
hybrid unifier of it, or it does not, in which case there is no hybrid unifier. This
condition can be checked in polynomial time since subsumption w.r.t. hybrid
EL-ontologies is polynomial [11,14,13]. In the case considered in the Eager Solv-
ing rule, the TBox induced by the current assignment obviously already implies
the GCI C1 � . . . � Cm & D. The Eager Axiom Solving rule corresponds to the
rules (Top) and (Start) of HC. Note that the rule (Refl) of HC is covered by
Eager Solving.

The nondeterministic rules only come into play if no eager rules can be ap-
plied. In order to solve an unsolved p-sequent (s, P), one considers which rule of
HC could have been applied to obtain s. The rules Extension and Decomposition
respectively correspond to applications of rules (DefL) and (Ex) of HC, together
with an appropriate number of applications of the rules (AndLi). The Mutation
rule corresponds to an application of the (GCI) rule from HC, again together
with an appropriate number of applications of the rules (AndLi).

Due to the space restrictions, we cannot give details on how to prove that the
algorithm is correct. Complete proofs of soundness, completeness and termina-
tion can be found in [6].

Theorem 14. Algorithm 13 is an NP-decision procedure for hybrid EL-unifi-
ability w.r.t. arbitrary EL-ontologies.

6 Conclusions

In this paper, we have first proved that hybrid EL-unification w.r.t. arbitrary EL-
ontologies is NP-complete, and then developed a goal-oriented NP-algorithm for
hybrid EL-unification that is better than the brute-force “guess and then test” al-
gorithm used to show the “in NP” result. As illustrated by Example 6, computing
hybrid unifiers rather than classical ones may be appropriate in some situations.
Nevertheless, the decidability and complexity of classical EL-unification w.r.t.
arbitrary EL-ontologies is an important topic for future research. We hope that
hybrid unification may also be helpful in this context. Basically, given a hybrid
unifier T of Γ w.r.t. O, we can obtain a classical unifier of Γ w.r.t. O by finding
an acyclic TBox S such that O∪S entails all the GCIs that (O, T) entails w.r.t.
hybrid semantics, i.e. C &gfp,O,T D implies C &O∪S D for all (relevant) concept
descriptions C,D.

References

1. Baader, F.: Terminological cycles in a description logic with existential restrictions.
In: Gottlob, G., Walsh, T. (eds.) Proc. of the 18th Int. Joint Conf. on Artificial
Intelligence (IJCAI 2003), pp. 325–330. Morgan Kaufmann, Los Altos (2003)

2. Baader, F., Borgwardt, S., Morawska, B.: Unification in the description logic EL
w.r.t. cycle-restricted TBoxes. LTCS-Report 11-05, Chair for Automata Theory,
Institute for Theoretical Computer Science, Technische Universität Dresden, Dres-
den, Germany (2011), http://lat.inf.tu-dresden.de/research/reports.html

http://lat.inf.tu-dresden.de/research/reports.html

310 F. Baader, O. Fernández Gil, and B. Morawska

3. Baader, F., Borgwardt, S., Morawska, B.: Extending unification in EL towards
general TBoxes. In: Proc. of the 13th Int. Conf. on Principles of Knowledge Rep-
resentation and Reasoning (KR 2012), pp. 568–572. AAAI/MIT Press (2012)

4. Baader, F., Borgwardt, S., Morawska, B.: A goal-oriented algorithm for unification
in ELHR+ w.r.t. Cycle-restricted ontologies. In: Thielscher, M., Zhang, D. (eds.)
AI 2012. LNCS, vol. 7691, pp. 493–504. Springer, Heidelberg (2012)

5. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F. (eds.):
The Description Logic Handbook: Theory, Implementation, and Applications.
Cambridge University Press (2003)

6. Baader, F., Fernández Gil, O., Morawska, B.: Hybrid unification in the description
logic EL. LTCS-Report 13-07, Chair for Automata Theory, Institute for Theoreti-
cal Computer Science, Technische Universität Dresden, Dresden, Germany (2013),
http://lat.inf.tu-dresden.de/research/reports.html

7. Baader, F., Morawska, B.: Unification in the description logic EL. In: Treinen, R.
(ed.) RTA 2009. LNCS, vol. 5595, pp. 350–364. Springer, Heidelberg (2009)

8. Baader, F., Morawska, B.: Unification in the description logic EL. Logical Methods
in Computer Science 6(3) (2010)

9. Baader, F., Narendran, P.: Unification of concept terms in description logics. J. of
Symbolic Computation 31(3), 277–305 (2001)

10. Brandt, S.: Polynomial time reasoning in a description logic with existential re-
strictions, GCI axioms, and—what else? In: de Mántaras, R.L., Saitta, L. (eds.)
Proc. of the 16th Eur. Conf. on Artificial Intelligence (ECAI 2004), pp. 298–302
(2004)

11. Brandt, S., Model, J.: Subsumption in EL w.r.t. hybrid tboxes. In: Furbach, U.
(ed.) KI 2005. LNCS (LNAI), vol. 3698, pp. 34–48. Springer, Heidelberg (2005)

12. Küsters, R.: Non-Standard Inferences in Description Logics. LNCS (LNAI),
vol. 2100. Springer, Heidelberg (2001)

13. Novaković, N.: Proof-theoretic Approach to Deciding Subsumption and Computing
Least Common Subsumer in EL w.r.t. Hybrid TBoxes. Master’s thesis, Chair for
Automata Theory, Institute for Theoretical Computer Science, Technische Univer-
sität Dresden, Germany (2007),
http://lat.inf.tu-dresden.de/research/mas/#Nov-Mas-07

14. Novaković, N.: A proof-theoretic approach to deciding subsumption and computing
least common subsumer in EL w.r.t. hybrid TBoxes. In: Hölldobler, S., Lutz, C.,
Wansing, H. (eds.) JELIA 2008. LNCS (LNAI), vol. 5293, pp. 311–323. Springer,
Heidelberg (2008)

http://lat.inf.tu-dresden.de/research/reports.html
http://lat.inf.tu-dresden.de/research/mas/#Nov-Mas-07

Disproving Confluence of Term Rewriting

Systems by Interpretation and Ordering

Takahito Aoto

RIEC, Tohoku University,
2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan

aoto@nue.riec.tohoku.ac.jp

Abstract. In order to disprove confluence of term rewriting systems, we
develop new criteria for ensuring non-joinability of terms based on inter-
pretation and ordering. We present some instances of the criteria which
are amenable for automation, and report on an implementation of a con-
fluence disproving procedure based on these instances. The experiments
reveal that our method is successfully applied to automatically disprove
confluence of some term rewriting systems, on which state-of-the-art au-
tomated confluence provers fail. A key idea to make our method effective
is the introduction of usable rules—this allows one to decompose the con-
straint on rewrite rules into smaller components that depend on starting
terms.

Keywords: Confluence,Non-Joinability, Interpretation,Ordering, Term
Rewriting Systems.

1 Introduction

Confluence is a property that often turns out to be useful in vast topics of term
rewriting; hence, it is conceived as one of the central properties of term rewrit-
ing (see e.g. [5,30]). There is conceivably a long history for the development of
techniques for proving confluence of term rewriting systems (TRSs, for short);
see e.g. [5,30,31]. Recently, the area of proving confluence of TRSs automatically
also caught an increasing attention. Indeed, recent works on confluence proving
often address also automation of the methods [1,2,19,21,34]. Furthermore, sev-
eral implementations of confluence provers are emerging [3,17,33], and the first
competition on confluence provers (CoCo 2012) has been held last year.

For automated confluence provers, it is also important to disprove confluence
so that they can give up unsuccessful attempts for confluence proving. In con-
trast to many dedicated techniques for proving confluence, however, not many
techniques for disproving confluence are known. A typical approach to disprove
confluence of (non-terminating) TRSs is first to construct a candidate of two
terms that can be reduced from a common term, and then to show that they
are not joinable, i.e. two terms do not have a common reduct. In this scenario,
as well as the selection of the candidates, proving non-joinability of terms is

P. Fontaine, C. Ringeissen, and R.A. Schmidt (Eds.): FroCoS 2013, LNAI 8152, pp. 311–326, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

312 T. Aoto

essential. So far, the only serious approach to prove the non-joinability of terms
is to use approximation by tree automata [9,12]1, implemented in CSI [33].

In this paper, we give new methods for proving that given two terms s, t
are not joinable. The first method consists in giving an interpretation, e.g. a
mapping from terms to natural numbers, that is preserved by the application of
usable rules and such that the interpretation of s is different from that of t. The
second method consists in giving an ordering > such that s > t, and usable rules
from s are non-decreasing and the usable rules from t are non-increasing. These
methods are implemented using polynomial interpretations and recursive path
orderings—interpretations and orderings that are widely used in the literature
for termination proving. The experiments reveal that our methods can be applied
to automatically disprove confluence of some term rewriting systems, on which
state-of-the-art automated confluence provers fail.

The rest of the paper is organized as follows. In Section 2, we give some basic
definitions and fix some notations to be used in the paper. In Section 3, we give an
abstract non-joinability criterion using interpretation; the criterion is extended
in Section 4 by a notion of usable rules for reachability. In Section 5, we give non-
joinability criteria using ordering in terms of interpretation and rewrite relation;
the latter is extended in Section 6 incorporating the notion of argument filtering
from the area of termination proving. Related works are discussed in Section
7. In Section 8, we report on our implementation and experiments. Section 9
concludes.

2 Preliminaries

The product of two sets A and B is denoted by A × B. We write A2 for A× A,
and more generally, An (for the n-fold product of A) or Πi∈IAi, where I is an
arbitrary index set. A tuple of elements is denoted by 〈a1, . . . , an〉 or 〈ai〉i∈I .
The disjoint union of two sets A and B is denoted by A ; B, and that of all
Ai (i ∈ I) by

⊎
i∈I Ai. The composition of relations R and S is denoted by

R◦S. The reflexive transitive closure of R is denoted by R∗; for a relation →, its
reverse is denoted by ←, the reflexive closure by

=→ and the reflexive transitive
closure by

∗→. We write a0 →n an to denote a0 → a1 → · · · → an and a →≤n b
if a →m b for some m ≤ n. We say an element a is a normal form (w.r.t. →) if
there exists no b such that a → b. The relation → is well-founded if there exists
no infinite chain a0 → a1 → · · · . A relation is a partial order if it is reflexive,
transitive and antisymmetric, and a quasi-order if it is reflexive and transitive.

We consider arity-fixed function symbols. The arity of function symbol f is
denoted by arity(f). Function symbol f is a constant if arity(f) = 0. The set
of terms over a set F of function symbols and the set V of variables is denoted
by T(F ,V). Terms which are not variables are referred to as non-variable terms
and terms containing no variables are called ground terms. The set of variables
in a term t is denoted by V(t). Let � (called a hole) be a special constant that

1 The technique is investigated in different literature. Applications of the technique
are found also in the literature for termination proving [23,25].

Disproving Confluence by Interpretation and Ordering 313

is not involved in F . A context is a term in T(F ∪{�},V) that contains exactly
one hole in the term. The term in T(F ,V) obtained by replacing the hole in a
context C with a term t is denoted by C[t]. A context C is empty if C = � and
non-empty otherwise. A term s is said to be a subterm of t if t = C[s] for some
context C. We write s � t to denote that s is a subterm of t. The set of positions
in a term t is denoted by Pos(t). A term t can be identified with a mapping
Pos(t) → F . The root position is denoted by ε; thus the root symbol of a term
t is denoted by t(ε). The subterm at the position p ∈ Pos(t) is denoted by t|p.
We write C[s]p if C(p) = �.

A substitution is a mapping V → T(F ,V), which is homomorphically extended
to the mapping T(F ,V) → T(F ,V). For any substitution θ and term t, θ(t) is
written as tθ if no confusion arises. Terms s and t are said to be unifiable if
sθ = tθ for some substitution θ. We write Unif(s, t) to denote that the terms s
and t are unifiable.

A rewrite rule l → r is a pair of terms2. A term rewriting system (TRS, for
short) is a set of rewrite rules. For a TRS R, a rewrite step s →R t is given
if s = C[lθ] and t = C[rθ] for some rewrite rule l → r ∈ R, context C and
substitution θ. A relation R on terms is said to be closed under contexts if s R t
implies C[s] R C[t] for any context C, is closed under substitutions if s R t implies
sθ R tθ for any substitution θ. A rewrite relation is a relation on terms that is
closed under contexts and substitutions. Given a TRS R, it is readily checked
that the relation →R = {〈s, t〉 ∈ T(F ,V)2 | s →R t} is a rewrite relation, and is
said to be the rewrite relation of R. If no confusion arises, the subscript of →R
will be omitted. A partial order (quasi-order) is a rewrite partial order (rewrite
quasi-order, respectively) if it is a rewrite relation.

Given a term s, the sets of terms {t ∈ T(F ,V) | s ∗→ t} and {t ∈ T(F ,V) |
t

∗→ s} are denoted by [s](
∗→) and (

∗→)[s], respectively. Terms s and t are said to

be joinable if [s](
∗→)∩ [t](

∗→) �= ∅, and non-joinable otherwise. We write NJ(s, t)
to denote that the terms s and t are non-joinable. A TRS R is confluent if for
any terms s, t, (

∗→)[s] ∩ (
∗→)[t] �= ∅ implies [s](

∗→) ∩ [t](
∗→) �= ∅. A TRS R is

terminating if →R is well-founded. It is known that confluence of a TRS R is
decidable if R is terminating.

In order to disprove that a (non-terminating) TRS R is confluent, we construct

two terms s and t such that (
∗→)[s] ∩ (

∗→)[t] �= ∅ in some way, and then prove
NJ(s, t). In order to check non-joinability of terms, it suffices to check ground
instances of them using fresh constants [33]. From here on, we concentrate on
the problem of proving non-joinability of ground terms.

3 Proving Non-joinability by Interpretation

In this section, we give an abstract criterion to prove non-joinability of terms
based on their interpretations in F -algebras. Then we point out why it is not
useful for our purpose—we will fix the problem in the next section.

2 Here, we drop the usual restriction that l /∈ V and V(r) ⊆ V(l); we will deal with
rewrite rules that do not satisfy these restrictions in Section 6.

314 T. Aoto

We first recall some basic terminology on semantics of the equational logic
and fix our notations (see e.g. [5]). An F-algebra A = 〈A, 〈fA〉f∈F 〉 is a pair of
a set A and a tuple of functions fA : An → A for each n-ary function symbol
f ∈ F ; the set A is called the carrier set of the F -algebra A. A valuation on A
is a mapping V → A. The interpretation [[t]]A,σ (which is abbreviated as [[t]]σ for
brevity) of a term t ∈ T(F ,V) w.r.t. a valuation σ on A is recursively defined
by [[x]]σ = σ(x) and [[f(t1, . . . , tn)]]σ = fA([[t1]]σ, . . . , [[tn]]σ). For any substitution
θ and valuation σ, a valuation [[θ]]σ is given by [[θ]]σ(x) = [[θ(x)]]σ . We note
that the interpretation of ground terms is independent of valuation, i.e., for any
ground term t, [[t]]σ = [[t]]ρ holds for any valuations σ, ρ. Hence, w.l.o.g. we drop
valuations to denote the interpretation of ground terms.

The next property is well-known (e.g. [5]).

Lemma 1. Fix an F-algebra A. For any term t, substitution θ and valuation
σ, [[tθ]]σ = [[t]](σ◦[[θ]]σ). ��

Using the notion of interpretation of terms in F -algebras, the following crite-
rion for non-joinability of (ground) terms naturally arises.

Theorem 2. Let s, t be ground terms and A = 〈A, 〈fA〉f∈F〉 an F-algebra such
that A =

⊎
i∈I Ai. Suppose (i) for any valuation σ and l → r ∈ R, if [[l]]σ ∈ Ai

then [[r]]σ ∈ Ai, (ii) for any f ∈ F , a ∈ A and i, j ∈ I, if a ∈ Ai implies
fA(. . . , a, . . .) ∈ Aj , then fA(. . . , b, . . .) ∈ Aj for any b ∈ Ai and (iii) [[s]] ∈ Ai

and [[t]] ∈ Aj with i �= j. Then NJ(s, t).

Proof. It is straightforward to show by induction on C that for any valuation σ
and l → r ∈ R, [[C[lθ]]]σ ∈ Ai implies [[C[rθ]]]σ ∈ Ai. Thus for any valuation σ,
u →R v and [[u]]σ ∈ Ai imply [[v]]σ ∈ Ai. Suppose that NJ(s, t) does not hold, i.e.

u ∈ [s](
∗→) ∩ [t](

∗→) for some u. Then we obtain [[u]]σ ∈ Ai from [[s]]σ ∈ Ai and
[[u]]σ ∈ Aj from [[t]]σ ∈ Aj . This contradicts our assumption that Ai ∩ Aj = ∅.

��

Although Theorem 2 may be applied to prove non-joinability of two terms in
general, it is not effective in our setting—in the context of disproving confluence,
one wants to show NJ(s, t) for s, t satisfying (

∗→)[s]∩ (
∗→])[t] �= ∅. For such s, t, if

the conditions (i), (ii) of the theorem are satisfied, then s ∈ Ai ⇔ t ∈ Ai holds,
and hence the condition (iii) never holds.

The trick to apply the idea in our setting is to relax the condition (i) so that
the constraint is applied not to all rules but only to rules usable in the reductions
starting from s or t, which will be explored in the next section.

4 Usable Rules for Reachability

In the literature for proving termination of TRSs, a notion of usable rules is
known to be very useful in the dependency pairs technique [4,14,18,32]. There,
the name ‘usable’ originally comes from the fact that usable rules are rules
possibly used to connect dependency pairs. Naturally, it is not very suitable for

Disproving Confluence by Interpretation and Ordering 315

our purpose, because, in our setting, usable rules are to be the collection of rules
that are possibly used in reductions from an initial term.

To suit our setting, we introduce a notion of usable rules for reachability.
For this, the notion of TCAP [13] (introduced for defining usable rules for
dependency pairs) is helpful. For terms t, TCAP(t) is defined recursively by:
TCAP(x) = x′, TCAP(f(t1, . . . , tn)) = x′ if Unif(f(u1, . . . , un), l) for some
l → r ∈ R, and TCAP(f(t1, . . . , tn)) = f(u1, . . . , un) otherwise, where ui =
TCAP(ti) (1 ≤ i ≤ arity(f)). Here, a new fresh variable is taken for x′ every
time it is used.

Definition 3 (usable rules for reachability). For any TRS R and term s, let
U0(R, s) be the smallest set U0(R, s) ⊆ R satisfying the following conditions: (i)
if l → r ∈ R with l ∈ V, then l → r ∈ U0(R, s); (ii) for any l → r ∈ R and non-
variable subterm f(u1, . . . , un) � s, if Unif(f(TCAP(u1), . . . ,TCAP(un)), l)
then l → r ∈ U0(R, s); (iii) if l′ → r′ ∈ U0(R, s) and l → r ∈ U0(R, r′),
then l → r ∈ U0(R, s). The set Ur(R, s) of usable rules for reachability w.r.t. a
TRS R and a term s is defined by Ur(R, s) = R if there exists l → r ∈ U0(R, s)
such that V(r) �⊆ V(l) and Ur(R, s) = U0(R, s) otherwise.

Under the usual variable restrictions on rewrite rules, our notion of usable
rules corresponds to the one obtained from the usable rules for innermost termi-
nation [13] by replacing ICAP with TCAP. (Standard) usable rules U(R, s) in
dependency pairs [4] is different from Ur(R, s)—for example, for R = {f(a) → b},
we have Ur(R, f(b)) = ∅ �= R = U(R, f(b)). Under the usual restriction of rewrite
rules on variables, it is easy to check Ur(R, s) ⊆ U(R, s).

The following is a key lemma to prove our theorem below.

Lemma 4. Let R be a TRS, l → r ∈ R and s, t terms. If s
∗→R ◦ →{l→r} t

then l → r ∈ Ur(R, s).

Proof. The proof consists of proving the following three claims step by step.

1. If s →{l→r} t then l → r ∈ U0(R, s) (and hence, l → r ∈ Ur(R, s)).
2. If s →{l→r} t then Ur(R, t) ⊆ Ur(R, s).

3. If s
∗→R ◦ →{l→r} t then l → r ∈ Ur(R, s).

1. Suppose s →{l→r} t. If l ∈ V then l → r ∈ U0(R, s) by definition. Otherwise,
there exists non-variable subterm u � s such that u = f(u1, . . . , un) = lθ
for some substitution θ. Then, as ui = TCAP(ui)θi for some θi, we have
f(TCAP(u1)θ1, . . . ,TCAP(un)θn) = lθ. Because one can assume w.l.o.g.
that V(TCAP(ui))∩V(TCAP(uj)) = ∅ for i �= j and V(TCAP(ui))∩V(l) =
∅, it follows that f(TCAP(u1), . . . ,TCAP(un)) and l are unifiable, and hence
l → r ∈ U0(R, s).

2. Since l → r ∈ U0(R, s) by the claim 1, if V(r) �⊆ V(l) then Ur(R, s) = R ⊇
Ur(R, t). So, suppose V(r) ⊆ V(l). It suffices to show U0(R, t) ⊆ U0(R, s).
We show the claim by induction on the definition of U0(R, t). Suppose
l′ → r′ ∈ U0(R, t). (i) Suppose l′ ∈ V . Then by definition l′ → r′ ∈ U0(R, s).

316 T. Aoto

(ii) Suppose there exists a non-variable subterm u = f(u1, . . . , un) � t
such that Unif(f(TCAP(u1), . . . ,TCAP(un)), l′). Let t = C[rθ]. Then ei-
ther (a) u � θ(x) for some x ∈ V(r), (b) u � C, (c) u = vθ for some
non-variable subterm v = f(v1, . . . , vn) � r or (d) u = C′[rθ] for some non-
empty context C′ � C. In the cases of (a) and (b), because V(r) ⊆ V(l),
we have u � s = C[lθ] and hence l′ → r′ ∈ U0(R, s) by definition. In the
case of (c), by Unif(f(TCAP(u1), . . . ,TCAP(un)), l′) and f(u1, . . . , un) =
f(v1, . . . , vn)θ, we have Unif(f(TCAP(v1), . . . ,TCAP(vn)), l′). Hence be-
cause v = f(v1, . . . , vn) � r, it follows l′ → r′ ∈ U0(R, r). Thus, since
l → r ∈ U0(R, s) by our claim 1, we have l′ → r′ ∈ U0(R, s) by def-
inition. In the case of (d), let C′ = f(u1, . . . , C̃, . . . , un). Then because
of Unif(f(TCAP(u1), . . . , TCAP(C̃[rθ]), . . . ,TCAP(un)), l′), it follows that
Unif(f(TCAP(u1), . . . ,TCAP(C̃[x′]), . . . ,TCAP(un)), l′), and thus we have
Unif(f(TCAP(u1), . . . ,TCAP(C̃[lθ]), . . . ,TCAP(un)), l′). Thus l′ → r′ ∈
U0(R, s) by definition. (iii) Suppose there exists l′′ → r′′ ∈ U0(R, t) and
l′ → r′ ∈ U0(R, r′′). Then, by induction hypothesis, l′′ → r′′ ∈ U0(R, s) and
hence l′ → r′ ∈ U0(R, s) by definition.

3. We show the claim by induction on the length k of s
∗→R t. (B.S.) k = 1. Then

s →{l→r} t and thus l → r ∈ Ur(R, s) by the claim 1. (I.S.) k > 1. Suppose

s →R s′
∗→R ◦ →{l→r} t. Then by induction hypothesis l → r ∈ Ur(R, s′).

Since Ur(R, s′) ⊆ Ur(R, s) by the claim 2, we obtain l → r ∈ Ur(R, s). ��

Now, Theorem 2 in the previous section is refined by replacing “l → r ∈ R”
with “l → r ∈ Ur(R, s) ∪ Ur(R, t).”

Theorem 5. Let s, t be ground terms and A = 〈A, 〈fA〉f∈F〉 an F-algebra such
that A =

⊎
i∈I Ai. Suppose (i) for any valuation σ and l → r ∈ Ur(R, s)∪Ur(R, t),

if [[l]]σ ∈ Ai then [[r]]σ ∈ Ai, (ii) for any f ∈ F , a ∈ A and i, j ∈ I, if a ∈ Ai

implies fA(. . . , a, . . .) ∈ Aj, then fA(. . . , b, . . .) ∈ Aj for any b ∈ Ai and (iii)
[[s]] ∈ Ai and [[t]] ∈ Aj with i �= j. Then NJ(s, t).

Proof. Similar to the proof of Theorem 2, using Lemma 4. ��

The criterion of Theorem 5, in general, is not amenable for automation, and
one has to use more concrete instances of the theorem such as given below.

Corollary 6. Let A be an F-algebra and s, t be ground terms. Suppose (i) [[l]]σ =
[[r]]σ for any valuation σ and l → r ∈ Ur(R, s)∪Ur(R, t) and (ii) [[s]] �= [[t]]. Then
NJ(s, t). ��

Proof. Take the carrier set A itself as the index set and the singleton set {a} as
Aa for each a ∈ A. ��

Corollary 7. Let s, t be ground terms and A an F-algebra whose carrier set
is a set of integers. Suppose there exists an integer k ≥ 2 such that (i) for any
valuation σ and l → r ∈ Ur(R, s) ∪ Ur(R, t), [[l]]σ ≡ [[r]]σ (mod k) and (ii)
[[s]] �≡ [[t]] (mod k). Then NJ(s, t). ��

Disproving Confluence by Interpretation and Ordering 317

Proof. Take I = {0, 1, . . . , k− 1} and Ai = {n ∈ A | n mod k = i} for each i ∈ I
and use Theorem 2. ��

One way to automate non-joinability check using (instances of) Corollar-
ies 6 and 7 is to use linear polynomial interpretations [5]: Take the set of
integers as the carrier set, and for each n-ary function symbol f ∈ F , let
fA(x1, . . . , xn) = af,0 + af,1x1 + · · · + af,nxn where af,0, . . . , af,n are selected
from a finite range of integers. Then the criteria of Corollaries 6 and 7 can be
encoded as constraint solving problems assigning suitable values for each af,i
(f ∈ F , 0 ≤ i ≤ arity(f)). Indeed, this kind of constraint solving for polyno-
mial interpretations is commonly used in termination tools, and its automation
techniques are widely known (e.g. [7,14]).

In following examples, non-confluence is shown using these corollaries.

Example 8. Let

R =

{
(1) a → h(c), (2) a → h(f(c))
(3) h(x) → h(h(x)), (4) f(x) → f(g(x))

}
.

Let s = h(c) and t = h(f(c)). As a ∈ (
∗→)[s]∩(

∗→)[t], it suffices to show NJ(s, t) to
disprove the confluence of R. We have Ur(R, s)∪Ur(R, t) = {(3), (4)}. Take an F -
algebra A = 〈{0, 1}, 〈fA〉f∈F〉 as aA = cA = 0, fA(n) = 1−n, hA(n) = gA(n) =
n. Then for any valuation σ, we have [[h(x)]]σ = σ(x) = [[h(h(x))]]σ and [[f(x)]]σ =
1 − σ(x) = [[f(g(x))]]σ ; thus, [[l]]σ = [[r]]σ for each l → r ∈ Ur(R, s) ∪ Ur(R, t).
Thus [[s]] = [[h(c)]] = 0 �= 1 = [[t]] = [[h(f(c))]]. Therefore, NJ(s, t) by Corollary 6.

Example 9. Let

R =

{
(1) a → f(c), (2) a → h(c)
(3) f(x) → h(g(x)), (4) h(x) → f(g(x))

}
.

Let s = f(c) and t = h(c). We have Ur(R, s) ∪ Ur(R, t) = {(3), (4)}. Take an
F -algebra A = 〈N, 〈fA〉f∈F〉 as aA = cA = 0, gA(n) = n + 1, fA(n) = n,
hA(n) = n + 1. Then [[f(x)]]σ − [[h(g(x))]]σ = σ(x) − (σ(x) + 2) = −2 and
[[h(x)]]σ − [[f(g(x))]]σ = (σ(x) + 1) − (σ(x) + 1) = 0. Take k = 2. Then [[f(x)]]σ ≡
[[h(g(x))]]σ (mod k) and [[h(x)]]σ ≡ [[f(g(x))]]σ (mod k) for any valuation σ. Fur-
thermore, since we have [[s]] = [[f(c)]] = 0 and [[t]] = [[h(c)]] = 1, [[s]] �≡ [[t]] (mod k).
Hence, NJ(s, t) by Corollary 7.

5 Proving Non-joinability by Ordering

In Corollary 7, we considered the case that the carrier set is a set of integers. In
such a case, another obvious choice to obtain a partition of the carrier set is to
divide it as A = {n ∈ A | n < k};{n ∈ A | k ≤ n} for some k. We first formulate
this idea in a more abstract setting, using the notion of ordered F -algebra [35].

An ordered F-algebra A = 〈A,≤, 〈fA〉f∈F 〉 is a triple of a set A, a partial
order ≤ on it and a tuple of functions fA : An → A for each n-ary function

318 T. Aoto

symbol f ∈ F . We use < to denote strict part of ≤, i.e. < = ≤ \ ≥. An ordered
F -algebra A = 〈A,≤, 〈fA〉f∈F〉 is said to be weakly monotone if a ≤ b implies
fA(. . . , a, . . .) ≤ fA(. . . , b, . . .) for any a, b ∈ A and f ∈ F . Interpretations of
terms on ordered F -algebras are defined in the same way as on F -algebras.

Theorem 10. Let A be a weakly monotone ordered F-algebra and s, t be ground
terms. Suppose (i) [[l]]σ ≤ [[r]]σ for any valuation σ and any l → r ∈ Ur(R, s),
(ii) [[l]]σ ≥ [[r]]σ for any valuation σ and any l → r ∈ Ur(R, t) and (iii) [[s]] > [[t]].
Then NJ(s, t).

Proof. By weak monotonicity, for any valuation σ, u →Ur(R,s) v implies [[u]]σ ≤
[[v]]σ and u →Ur(R,t) v implies [[u]]σ ≥ [[v]]σ. Hence the claim follows. ��

Remark that well-foundedness of the ordering is not necessary, in contrast to
orderings used in termination proving.

We now consider the case that term algebras are taken as F -algebras, and
formulate the theorem in a more general way using the notion of rewrite relation.
For this, the following notion is useful.

Definition 11 (discrimination pair). A pair 〈�,0〉 of two relations � and
0 is said to be a discrimination pair if (i) � is a rewrite relation, (ii) 0 is a
irreflexive relation and (iii) � ◦ 0 ⊆ 0 and 0 ◦� ⊆ 0.

Remark that neither transitivity, well-foundedness nor closure under substi-
tutions and contexts is needed for the relation 0, unlike a similar notion used
in the termination proving, called reduction pair [24]. Note also that in the con-
dition (iii), both of � ◦ 0 ⊆ 0 and 0 ◦ � ⊆ 0 are requested—this is again
contrasted with the reduction pair where either �◦0 ⊆ 0 or 0◦� ⊆ 0 suffices;
both conditions will be required in the proof of the theorem given below.

Clearly, for any rewrite quasi-order �, the pair 〈�,� \ �〉 forms a discrimi-
nation pair.

Theorem 12. Let R be a TRS and s, t ground terms. Suppose there exists a
discrimination pair 〈�,0〉 such that Ur(R, s) ⊆ �, Ur(R, t) ⊆ � and s 0 t.
Then NJ(s, t).

Proof. Since � is a rewrite relation, it follows that u →{l→r} v implies u � v for
any l → r ∈ Ur(R, s), and u →{l→r} v implies u � v for any l → r ∈ Ur(R, t).

Suppose u ∈ [s](
∗→) ∩ [t](

∗→). Let s = s0 → s1 → · · · → sn = u. Then, by
Lemma 4, s = s0 →li1→ri1

s1 →li2→ri2
· · · →lin→rin sn = u with lij → rij ∈

Ur(R, s) for all j = 1, . . . , n. Thus s � · · · � u. Since t ≺ s � · · · � u, we obtain
t ≺ u by the property � ◦ 0 ⊆ 0 of the discrimination pair. Similarly, from
t → · · · → u, we obtain t � · · · � u. By u 0 t � · · · � u, we obtain u 0 u by the
property 0◦� ⊆ 0 of the discrimination pair. This contradicts our assumption
that 0 is irreflexive. ��

In terms of interpretations, Theorem 12 amounts to taking term algebras as
F -algebras, while Theorem 10 allows to take any F -algebra. On the other hand,
in terms of discrimination pairs, Theorem 10 amounts to taking a discrimination
pair of the form 〈�,� \�〉. Hence Theorem 10 is not subsumed by Theorem 12
and vice versa.

Disproving Confluence by Interpretation and Ordering 319

6 Argument Filtering for Non-joinability

The criterion of Theorem 12 has a typical style used in criteria for termination
proving. Therefore, similarly to the termination proving case, a discrimination
pair can be obtained using various path orders combined with argument fil-
tering. For dependency pairs, usable rules can be considered after performing
argument filtering [14] and this sometimes decreases usable rules that need to
be considered. In this section, we show that such an extension is possible also
for non-joinability proving.

An argument filtering [4] is a mapping π : F → (List(N+) ∪ N+) such that
π(f) ∈ {[i1, . . . , ik] | 1 ≤ i1 < · · · < ik ≤ arity(f)} ∪ {i | 1 ≤ i ≤ arity(f)}.
Here, N+ denotes the set of positive integers and List(N+) the set of lists
of positive integers. The application of the argument filtering π to terms is
recursively defined as xπ = x for x ∈ V , f(t1, . . . , tn)π = f(tπi1 , . . . , t

π
ik

) if
π(f) = [i1, . . . , ik], f(t1, . . . , tn)π = tπi if π(f) = i. Hence tπ ∈ T(Fπ,V) where
Fπ = {f ∈ F | π(f) ∈ List(N+)} with arity(f) = |π(f)|. For a TRS R, we put
Rπ = {lπ → rπ | l → r ∈ R}. For substitution θ, we put θπ(x) = θ(x)π .

The following properties of the argument filtering are well-known (e.g. [4]).

Lemma 13. (1) (sθ)π = sπθπ. (2) s →{l→r} t implies sπ
=→{lπ→rπ} tπ.

Theorem 14. Let R be a TRS and s, t ground terms. Suppose there exist a dis-
crimination pair 〈�,0〉 and an argument filtering π such that Ur(Ur(R, s)π , sπ) ⊆
�, Ur(Ur(R, t)π , tπ) ⊆ � and sπ 0 tπ. Then NJ(s, t).

Proof. Suppose u ∈ [s](
∗→) ∩ [t](

∗→). Let s = s0 →{l1→r1} · · · →{ln→rn} sn =
u. Then by Lemma 4, li → ri ∈ Ur(R, s) for all i = 1, . . . , n. Then sπ =
sπ0

=→{lπ1→rπ1 } sπ1
=→{lπ2→rπ2 } · · · =→{lπn→rπn} sπn = uπ by Lemma 13 where lπi → rπi ∈

Ur(R, s)π for all i = 1, . . . , n. Then by Lemma 4, lπij → rπij ∈ Ur(Ur(R, s)π , sπ).
Hence tπ ≺ sπ � sπ1 � · · · � uπ. Thus, by the definition of the discrimination
pair, tπ ≺ uπ. Similarly, we have tπ � · · · � uπ. Hence uπ 0 tπ � · · · � uπ, and
uπ 0 uπ. This contradicts 0 is irreflexive. ��

If one takes an argument filtering π such that π(f) = [1, 2, . . . , arity(f)] for
all f ∈ F , then we have π(t) = t for any term t. Thus, Theorem 14 subsumes
Theorem 12.

Some readers may wonder whether Theorem 14 can be obtained from Theo-
rem 12 by taking the discrimination pair 〈�′,0′〉 defined by s �′ t iff sπ � tπ and
s 0′ t iff sπ 0 tπ for some discrimination pair 〈�,0〉. Indeed, it can be shown
that the discrimination pair 〈�′,0′〉 given like this is again a discrimination pair.
However, the direct application of Theorem 12 only yields Ur(R, t) in the place of
Ur(Ur(R, t)π , tπ) in Theorem 14. Since the inclusion Ur(Ur(R, t)π, tπ) ⊆ Ur(R, t)
may be proper, Theorem 14 is not subsumed by Theorem 12.

Example 15. Let

R =

{
(1) c → f(c, d), (2) c → h(c, d)
(3) f(x, y) → h(g(y), x), (4) h(x, y) → f(g(y), x)

}
.

320 T. Aoto

Theorem 5 (⊇ 2)

Corollary 6 Corollary 7 Theorem 10 Theorem 12

Theorem 14

automation

Fig. 1. Relations of theorems and corollaries

Let s = h(f(c, d), d) and t = f(c, d). First consider to apply Theorem 12. Then
we need to solve the following constraint:{

h(f(c, d), d) 0 f(c, d), c � f(c, d), c � h(c, d)
f(x, y) � h(g(y), x), h(x, y) � f(g(y), x)

}
.

This constraint can not be satisfied using a discrimination pair 〈�rpo,�rpo\�rpo〉
based on recursive path orders. Next, we consider applying Theorem 14. For this,
take an argument filtering π as π(g) = 1, π(f) = [2] and π(h) = [1]. Then we
have Ur(Ur(R, s)π , sπ) = {(3)π, (4)π} and Ur(Ur(R, t)π , tπ) = {(3)π, (4)π}. Then
we need to solve the following constraint:{

h(f(d)) 0 f(d), f(y) � h(y), h(x) � f(x)
}
.

Then the constraint is satisfied by a discrimination pair 〈�rpo,�rpo \ �rpo〉,
where �rpo is the recursive path order based on the precedence f � h. Thus
NJ(s, t) by Theorem 14.

In Figure 1, we summarize relations of theorems and corollaries presented in
the paper. The dotted line at the middle of the figure indicates that criteria
below this line are suitable for automation.

7 Related Works

Non-Joinability Check in Confluence Provers We now review methods for prov-
ing non-joinability employed in the state-of-the-art confluence provers ACP [3],
CSI [33] and Saigawa [17] that participated in the 1st Confluence Competition
(CoCo 2012). Obviously, if the termination proof of the input TRS succeeds, the
well-known criterion that confluence coincides with joinability of all critical pairs
(Knuth-Bendix criterion [22]) can be used to prove non-confluence. Below we de-
scribe other approaches employed by these provers for proving non-confluence
and non-joinability.

ACP basically uses the following three conditions to show non-joinability.

Disproving Confluence by Interpretation and Ordering 321

ACP(1). Fix some n > 0. Check [s](
∗→) = [s](→≤n) and [t](

∗→) = [t](→≤n). If
it is the case and [s](→≤n) ∩ [t](→≤n) = ∅ then conclude NJ(s, t).

ACP(2). Check s(ε) �= t(ε). If it is the case, check (by an approximation) that

∀s′ ∈ [s](
∗→). s(ε) = s′(ε) and ∀t′ ∈ [t](

∗→). t(ε) = t′(ε) hold. If they hold,
conclude NJ(s, t).

ACP(3). If s(ε) = t(ε) /∈ {l(ε) | l → r ∈ R}, then check NJ(s|i, t|i) holds for
some i. If it is the case, conclude NJ(s, t). This is used in conjunction with
ACP(1) and ACP(2).

CSI uses the following two conditions to show non-joinability [33].

CSI(1). If TCAP(s) and TCAP(t) are not unifiable, then conclude NJ(s, t).
CSI(2). Use the approximation technique based on tree automata: Try to con-

struct tree automata As and At such that [s](
∗→) ⊆ L(As) and [t](

∗→) ⊆
L(At) (using the method in [23]). If they succeed, then check L(As)∩L(At) =
∅. If it is the case, then conclude NJ(s, t).

Saigawa uses CSI(1) above and the following extension of the Knuth-Bendix
criterion [21] to disprove confluence.

Saigawa(1). Suppose S is confluent, R is terminating relative to S, and R is
not strongly overlapping on R and vice versa. Then R∪S is confluent iff all
S-critical pairs of R is joinable by R ∪ S-rewrite steps.

Apparently the approach presented in the paper is very different from those
employed already in these confluence provers, and the criteria given in the paper
are not subsumed by any of the techniques employed in these confluence provers3.

Decidable Classes. Besides Knuth-Bendix criterion saying that confluence is de-
cidable for terminating TRSs [22], decision procedures for deciding confluence
of the TRSs in some classes of TRSs have been investigated.

One of the most basic such classes is the class of ground TRSs [8,26]. For
ground TRSs a polynomial time algorithm for deciding confluence is known
[6,10]. Such a decision procedure is implemented in CSI [33].

Other well-known such classes include the class of shallow right-linear TRSs
[15], the class of right-ground TRSs [16,20] and the class of monadic right-linear
TRSs [28]. (The former two classes include the class of ground TRSs.) To the
best of our knowledge, however, no implementations of the decision procedures
other than the one mentioned above have been reported.

The criteria presented in this paper are free of syntactic restrictions on rewrite
rules characterizing such classes. In particular, Examples 8, 9 and 15 are neither
shallow, right-ground nor monadic; hence, they do not belong to any classes
mentioned above for which confluence is decidable.

3 Meanwhile, new versions of tools have been released, and CoCo 2013 have been held.
The methods described in the present paper have been incorporated to the latest
version of ACP.

322 T. Aoto

8 Implementations and Experiments

Implementations The following instances of presented criteria have been imple-
mented. The implementation is built on ACP. The language used in the imple-
mentation is the functional programming language SML/NJ [29].

Cor. 7 (k = 2, 3). Corollary 7 applied for the polynomial interpretation with
linear polynomials, i.e. fA has the form a0,f + af,1x1 + · · · + an,fxn for
each function symbol f of arity n. In case k = 2, we check whether [[l]]σ −
[[r]]σ is even for all rewrite rules l → r ∈ Ur(R, s) ∪ Ur(R, t) and whether
[[s]] − [[t]] is odd. We encode these constraints in boolean formulas and check
the constraints by an external SAT solver (or SMT solver). We deal with
integer variables of the range between 0 and 15 that are encoded by four
bits. Thus the constraint that an integer variable x = (b3 b2 b1 b0)10 is even
is encoded by b̄0 (i.e. b0 equals false). The condition that a monomial ax
(a ∈ Z) is even is encoded by true if a is even and by “x is even” otherwise.
The condition that a polynomial a0 + a1x1 + · · · + anxn is even is encoded
recursively by the disjunct of both of the monomial a0 and the polynomial
a1x1+· · ·+anxn are even and both are odd, recursively. Finally, the condition
that meta polynomial Φ = ϕo+ϕ1X1+· · ·+ϕnXn where ϕi are polynomials,
is even is encoded by all polynomials ϕo, . . . , ϕn are even and Φ is odd is
encoded by the constant part ϕ0 is odd and polynomials ϕ1, . . . , ϕn are even.
The case k = 3 is more complicated but encoding is again straightforward.
For example, (b3 b2 b1 b0)10 ≡ (c3 c2 c1 c0)10 (mod 3) can be encoded by
(b3 ∧ b2 ∧ b1 ∧ b0) ∨ ((b3 ⊗ b1) ∧ (b2 ⊗ b0)) ∨ (b̄3 ∧ b̄2 ∧ b̄1 ∧ b̄0).

Th. 10 (poly). Theorem 10 applied for polynomial interpretation with linear
polynomials. Similar to the case Cor. 7 (k = 2, 3), we encode the constraints
in boolean formulas and check the constraints by an external SAT solver.
We also deal with integer variables of the range between 0 and 15 which
are encoded by four bits. To ensure the weak monotonicity, we restrict all
coefficients of fA = af,0 + af,1x1 + · · · + af,nxn to be non-negative. Our im-
plementation tries two possible applications of the Theorem to show NJ(s, t),
namely that (1) [[s]] > [[t]], [[l]]σ ≥ [[r]]σ for l → r ∈ Ur(R, t) and [[l]]σ ≤ [[r]]σ
for l → r ∈ Ur(R, s), and (2) [[t]] > [[s]], [[l]]σ ≥ [[r]]σ for l → r ∈ Ur(R, s) and
[[l]]σ ≤ [[r]]σ for l → r ∈ Ur(R, t). Because of our bounds on integer variables,
it may be the case that only one of (1) or (2) works and the other doesn’t.

Th. 14 (rpo). Theorem 14 applied for recursive path order with argument fil-
tering. Similar to the cases Cor. 7 (k = 2, 3) and Th. 10 (poly), we encode the
constraints in boolean formulas and check the constraints by an external SAT
solver. Let S = Ur(R, s). We approximate the set of usable rules Ur(Sπ , sπ) by
Ûr(Sπ , sπ) where Ûr is given by Ûr(R′, s′) = U(R′, s′) ∪ {l → r ∈ R′ | l ∈ V}
and U returns the set of usable rules for dependency pairs [4]. The soundness
of the approximation follows from Ur(R′, s′) ∩ � ⊆ Ûr(R′, s′) ∩ � for well-
founded rewrite quasi-order �. Here, S is computed before the encoding and
the constraint Ûr(Sπ , sπ) ⊆ � is encoded in a similar way as the encoding of
termination criteria using dependency pairs [14]. Currently, we don’t know

Disproving Confluence by Interpretation and Ordering 323

whether a direct encoding of Ur(Sπ , sπ) is possible. Finally, as in the case
for Th. 10 (poly), our implementation tries two possible applications of the
Theorem (the sπ 0 tπ version and the tπ 0 sπ version).

Selecting candidates for the non-joinability test For all these implementations,
candidates for the non-joinability test are generated from the input TRS R like
this: (1) first compute the one-step unfolding R′ of R [27] and then (2) compute
critical pairs of R ∪ R′, and finally, (3) all critical pairs are sorted w.r.t. term
size and at most 100 critical pairs are considered as candidates.

Apparently, various ways to compute candidates for the non-joinability test
are possible. Note that considering just reducts of critical pairs of R for candi-
dates is not enough for proving non-confluence [11].

Here we explain very roughly which candidates for the non-joinability test
are considered in the state-of-the-art confluence provers. According to [33], CSI
considers candidates from the set C =

⋃
〈s1,t1〉{〈s, t〉 | s1 →≤m s, t1 →≤n t}

where 〈s1, t1〉 ranges over those satisfying s1 = C[r1σ]p ← C[l1σ]p = C[l2σ]q →
C[r2σ]q = t1 with l1 → r1, l2 → r2 ∈ R, p � q and p ∈ Pos(C[l2]q). ACP
uses similar candidates, with (probably very) different heuristics for choosing
C, p, q,m, n and choices of the candidates from C. Saigawa considers, for testing
CSI(1), candidates from the set

⋃
〈−,v,−〉{〈s, t〉 | v →≤n s, v →≤n t, s �= t} where

〈−, v,−〉 ranges over critical peaks of R ∪ R−1.

Experiments Experiments have been performed on our implementation and the
state-of-the-art confluence provers ACP (ver. 0.31), CSI (ver. 0.2) and Saigawa
(ver. 1.4). Each test is performed on a PC with one 2.50GHz CPU and 4G mem-
ory; the timeout is set to 60 seconds. We have tested a collection of 23 new exam-
ples which includes Examples 8, 9, 15 developed in the course of experiments,
and a collection of 35 examples from the 1st Confluence Competition (CoCo
2012) that were not proved to be confluent by any of participating provers.

A summary of the experiments is shown in Table 1. Each column shows
success(�) or failure(×) of confluence disproving on Examples 8, 9 and 15, the
numbers of examples from the collections that are successfully proved to be
non-confluent and of those that timeout (except CSI, for which one can not dis-
tinguish timeout and failure), and the total time in seconds. The column below
all shows the result for the combination of the four instances. Note that ACP,
CSI and Saigawa consume considerable time for proving confluence while our
implementation concentrates on disproving confluence.

All provers ACP, CSI and Saigawa fail on Examples 8, 9 and 15. Both of
Cor. 7 (k = 2) and Cor. 7 (k = 3) succeed on Examples 8 and 9. Th. 10 (poly)
succeeds on Example 8. Th. 14 (rpo) succeed on Examples 8 and 15. Hence,
incomparability of Cor. 7 and Th. 14 (rpo) is observed.

In the experiments on the collection of 23 new examples, the following are
observed: Th. 14 (rpo) succeeds most. Cor. 7 (k = 2) and Cor. 7 (k = 3) succeed
on the same examples. The examples handled by Th. 10 (poly) are also handled
by Th. 14 (rpo) and also by Cor. 7. Examples handled by any of the provers ACP,
CSI and Saigawa are also handled by all.

324 T. Aoto

Table 1. Summary of experiments

ACP CSI Saigawa Cor. 7 Cor. 7 Th. 10 Th. 14 all
(k = 2) (k = 3) (poly) (rpo)

Example 8 × × × � � � � �
Example 9 × × × � � × × �
Example 15 × × × × × × � �
23 examples (success) 9 12 3 16 16 14 19 21
23 examples (timeout) 0 – 1 0 3 0 0 1
23 examples (time in sec.) 2 2107 228 25 293 206 26 84

35 examples (success) 18 21 17 17 16 17 17 16
35 examples (timeout) 1 – 6 5 8 3 1 9
35 examples (time in sec.) 71 485 482 318 562 446 106 761

In the experiments on the collection of 35 examples from CoCo 2012, the
following are observed. All instances succeed on the same examples, except for
Cor. 7 (k = 3), in which one timeouts. The numbers of examples on which ACP,
CSI and Saigawa succeed but all fails are 4, 5, 3, respectively. There is one ex-
ample (Cops Problem 15) which is proved by our implementation but by none
of the provers. Unfortunately, the success on this example is not due to our new
technique—this difference arises by the way one computes the candidates for
non-joinability test.

Example 16 (Cops Problem 15). Let

R =

⎧⎨⎩
(1) f(x, f(y, z)) → f(f(x, y), f(x, z))
(2) f(f(x, y), z) → f(f(x, z), f(y, z))
(3) f(f(x, y), f(y, z)) → y

⎫⎬⎭ .

Let s = f(a, a) and t = a. Note s, t ∈ [f(f(a, a), f(a, a))](
∗→). Then s, t are normal

forms and hence it is easy to see that NJ(s, t).

Finally, the running time is observed like this: Th. 14 (rpo) < Cor. 7 (k = 2)
< Th. 10 (poly) < Cor. 7 (k = 3).

All details of the experiments are available on the webpage: http://www.
nue.riec.tohoku.ac.jp/tools/acp/experiments/frocos13/all.html.

9 Conclusion

We have presented sufficient criteria of non-joinability of terms that can be used
to disprove confluence of TRSs. Our criteria are based on interpretation and
ordering, and are using new notions of usable rules and discrimination pairs.
The combination of arguments filtering and our notion of usable rules have been
also considered. We have given some concrete instances of our criteria which
are amenable for automation—implementations of these instances have been
described and experiments have been reported. Experiments have shown that

Disproving Confluence by Interpretation and Ordering 325

the presented methods can automatically disprove confluence of TRSs, on which
state-of-the-art automated confluence provers fail.

Since our criteria are parametrized by F -algebras or orderings, other concrete
instances of our criteria can be possibly used. We note that all of our instances
are highly non-optimal, i.e. they do not use the full strength of discrimination
pairs; for example, they are all well-founded although this is not required for
discrimination pairs. Future work would involve exploring other possibilities to
obtain effective interpretations and orderings.

Acknowledgements. Thanks are due to anonymous referees for many valuable
comments. This work was partially supported by a grant from JSPS No. 23500002.

References

1. Aoto, T.: Automated confluence proof by decreasing diagrams based on rule-
labelling. In: Proc. of 21st RTA. LIPIcs, vol. 6, pp. 7–16. Schloss Dagstuhl (2010)

2. Aoto, T., Toyama, Y.: A reduction-preserving completion for proving confluence
of non-terminating term rewriting systems. Logical Methods in Computer Sci-
ence 1(31), 1–29 (2012)

3. Aoto, T., Yoshida, J., Toyama, Y.: Proving confluence of term rewriting systems au-
tomatically. In: Treinen, R. (ed.) RTA 2009. LNCS, vol. 5595, pp. 93–102. Springer,
Heidelberg (2009)

4. Arts, T., Giesl, J.: Termination of term rewriting using dependency pairs. Theo-
retical Computer Science 236(1-2), 133–178 (2000)

5. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press
(1998)

6. Comon, H., Godoy, G., Nieuwenhuis, R., Tiwari, A.: The confluence of ground
term rewrite systems is decidable in polynomial time. In: Proc. of 42nd LICS,
pp. 263–297. IEEE Computer Society Press (2001)

7. Contejean, E., Marché, C., Tomás, A.P., Urbain, X.: Mechanically proving termina-
tion using polynomial interpretation. Journal of Automated Reasoning 34, 325–363
(2005)

8. Dauchet, M., Heuillard, T., Lescanne, P., Tison, S.: Decidability of the confluence
of finite ground term rewrite systems and of other related term rewrite systems.
Information and Computation 88, 187–201 (1990)

9. Durand, I., Middeldorp, A.: Decidable call by need computations in term rewriting.
In: McCune, W. (ed.) CADE 1997. LNCS (LNAI), vol. 1249, pp. 4–18. Springer,
Heidelberg (1997)

10. Felgenhauer, B.: Deciding confluence of ground term rewrite systems in cubic time.
In: Proc. of 23rd RTA. LIPIcs, vol. 15, pp. 165–175. Schloss Dagstuhl (2012)

11. Felgenhauer, B.: A proof order for decreasing diagrams. In: Proc. of 1st IWC,
pp. 9–15 (2012)

12. Genet, T.: Decidable approximations of sets of descendants and sets of normal
forms. In: Nipkow, T. (ed.) RTA 1998. LNCS, vol. 1379, pp. 151–165. Springer,
Heidelberg (1998)

13. Giesl, J., Thiemann, R., Schneider-Kamp, P.: Proving and disproving termina-
tion of higher-order functions. In: Gramlich, B. (ed.) FroCos 2005. LNCS (LNAI),
vol. 3717, pp. 216–231. Springer, Heidelberg (2005)

326 T. Aoto

14. Giesl, J., Thiemann, R., Schneider-Kamp, P.: Mechanizing and improving depen-
dency pairs. Journal of Automated Reasoning 37(3), 155–203 (2006)

15. Godoy, G., Tiwari, A.: Confluence of shallow right-linear rewrite systems. In: Ong,
L. (ed.) CSL 2005. LNCS, vol. 3634, pp. 541–556. Springer, Heidelberg (2005)

16. Godoy, G., Tiwari, A., Verma, R.: Characterizing confluence by rewrite closure and
right ground term rewriting systems. Applicable Algebra in Engineering, Commu-
nication and Computing 15, 13–36 (2004)

17. Hirokawa, N., Klein, D.: Saigawa: A confluence tool. In: Proc. of 1st IWC, p. 49
(2012)

18. Hirokawa, N., Middeldorp, A.: Tyrolean termination tool: Techniques and features.
Information and Computation 205(4), 474–511 (2007)

19. Hirokawa, N., Middeldorp, A.: Decreasing diagrams and relative termination. Jour-
nal of Automated Reasoning 47(4), 481–501 (2011)

20. Kaiser, �L.: Confluence of right ground term rewriting systems is decidable. In: Sas-
sone, V. (ed.) FOSSACS 2005. LNCS, vol. 3441, pp. 470–489. Springer, Heidelberg
(2005)

21. Klein, D., Hirokawa, N.: Confluence of non-left-linear TRSs via relative termina-
tion. In: Bjørner, N., Voronkov, A. (eds.) LPAR-18. LNCS, vol. 7180, pp. 258–273.
Springer, Heidelberg (2012)

22. Knuth, D.E., Bendix, P.B.: Simple word problems in universal algebras. In: Leech,
J. (ed.) Computational Problems in Abstract Algebra, pp. 263–297. Pergamon
Press (1970)

23. Korp, M., Middeldorp, A.: Match-bounds revisited. Information and Computa-
tion 207(11), 1259–1283 (2009)

24. Kusakari, K., Nakamura, M., Toyama, Y.: Argument filtering transformation. In:
Nadathur, G. (ed.) PPDP 1999. LNCS, vol. 1702, pp. 47–61. Springer, Heidelberg
(1999)

25. Middeldorp, A.: Approximating dependency graphs using tree automata tech-
niques. In: Goré, R.P., Leitsch, A., Nipkow, T. (eds.) IJCAR 2001. LNCS (LNAI),
vol. 2083, pp. 593–610. Springer, Heidelberg (2001)

26. Oyamaguchi, M.: The Church-Rosser property for ground term rewriting systems
is decidable. Theoretical Computer Science 49, 43–79 (1987)

27. Payet, É.: Loop detection in term rewriting using eliminating unfoldings. Theoret-
ical Computer Science 403, 307–327 (2008)

28. Salomaa, K.: Decidability of confluence and termination of monadic term rewriting
systems. In: Book, R.V. (ed.) RTA 1991. LNCS, vol. 488, pp. 275–286. Springer,
Heidelberg (1991)

29. Standard ML of New Jersey, http://www.sml.org/
30. Terese: Term Rewriting Systems. Cambridge University Press (2003)
31. Toyama, Y.: Confluent term rewriting systems. In: Giesl, J. (ed.) RTA 2005. LNCS,

vol. 3467, p. 1. Springer, Heidelberg (2005) slides are available from,
http://www.nue.riec.tohoku.ac.jp/user/toyama/slides/toyama-RTA05.pdf

32. Urbain, X.: Modular & incremental automated termination proofs. Journal of Au-
tomated Reasoning 32, 315–355 (2004)

33. Zankl, H., Felgenhauer, B., Middeldorp, A.: CSI – A confluence tool. In: Bjørner,
N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS (LNAI), vol. 6803, pp.
499–505. Springer, Heidelberg (2011)

34. Zankl, H., Felgenhauer, B., Middeldorp, A.: Labelings for decreasing diagrams. In:
Proc. of 22nd RTA. LIPIcs, vol. 10, pp. 377–392. Schloss Dagstuhl (2011)

35. Zantema, H.: Termination of term rewriting by semantic labelling. Fundamenta
Informaticae 24, 89–105 (1995)

http://www.sml.org/
http://www.nue.riec.tohoku.ac.jp/user/toyama/slides/toyama-RTA05.pdf

On Forward Closure
and the Finite Variant Property�

Christopher Bouchard1, Kimberly A. Gero1,
Christopher Lynch2, and Paliath Narendran1

1 University at Albany—SUNY, Albany, NY, USA
{cbou,kgero001,dran}@cs.albany.edu

2 Clarkson University, Potsdam, NY, USA
clynch@clarkson.edu

Abstract. Equational unification is an important research area with
many applications, such as cryptographic protocol analysis. Unification
modulo a convergent term rewrite system is undecidable, even with just
a single rule. To identify decidable (and tractable) cases, two paradigms
have been developed — Basic Syntactic Mutation [14] and the Finite
Variant Property [6]. Inspired by the Basic Syntactic Mutation approach,
we investigate the notion of forward closure along with suitable redun-
dancy constraints. We show that a convergent term rewriting system
R has a finite forward closure if and only if R has the finite variant
property. We also show the undecidability of the finiteness of forward
closure, therefore determining if a system has the finite variant property
is undecidable.

Keywords: Equational unification, Finite variant property, Forward
closure, Term rewriting, Undecidability.

1 Introduction

Equational unification is an important research area which has applications in
cryptographic protocol analysis, automated theorem proving, and automated
reasoning. However, unification modulo a convergent term rewrite system is un-
decidable in general, even if the system has just a single rule [1]. Consequently,
there is interest in identifying decidable instances of equational unification. Two
important syntactic paradigms have been developed to identify such instances.
One paradigm was developed in “Basic Syntactic Mutation”, by Christopher
Lynch and Barbara Morawska [14]. They give syntactic criteria on equational
axioms E which guarantee that the corresponding E-unification problem is in
NP. If the system satisfies some additional criteria, they provide a polynomial-
time decision algorithm for that E-unification problem. The second paradigm
was developed in “The finite variant property: How to get rid of some algebraic

� C. Bouchard, K. Gero, and P. Narendran were supported in part by NSF grant
CNS 09-05286. C. Lynch was supported in part by NSF grant CNS 09-05378.

P. Fontaine, C. Ringeissen, and R.A. Schmidt (Eds.): FroCoS 2013, LNAI 8152, pp. 327–342, 2013.
© Springer-Verlag Berlin Heidelberg 2013

328 C. Bouchard et al.

properties” by Hubert Comon-Lundh and Stéphanie Delaune [6]. Here it was
shown that E-unification is decidable if E has the finite variant property, and
Escobar, Meseguer, and Sasse showed how narrowing can be used to implement
an E-unification decision algorithm for such an E [9].

In studying the BSM algorithm in the context of convergent rewrite sys-
tems [5], we found that the notion of saturation by paramodulation is equivalent
to that of forward closure if the system is convergent and suitable redundancy
constraints are added. Hermann considers the idea of forward closure chains in
“Chain Properties of Rule Closures” [10], and he proved that the finiteness of
forward closure is undecidable for general rewrite systems—in particular, the
system he considers has an undecidable termination problem. Hermann did not,
however, consider any sort of redundancy.

In this paper, we extend the notion forward closure1 to allow redundancy
constraints and show that a convergent term rewriting system R has a finite
forward closure if and only if R has the finite variant property. In showing this
equivalence we define the IR-boundedness property which characterizes the finite
variant property. Additionally, we show the undecidability of the finiteness of
forward closure for convergent rewrite systems, and therefore that determining if
a system has the finite variant property for such systems is undecidable. Finally,
we show that the finiteness of forward closure is a modular property, i.e., if two
disjoint rewrite systems have a finite forward closure, their union also has a finite
forward closure.

In the interest of space, several proofs and examples have been omitted or
shortened in this version. They are given in full in a tech report [4].

2 Notation and Preliminaries

We consider rewrite systems over ranked signatures, usually denoted Σ, and
a possibly infinite set of variables, usually denoted X . We assume the reader
is familiar with the usual notions and concepts in term rewriting systems [2]
and equational unification [3]. The set of all terms over Σ and X is denoted as
T (Σ,X). Given a term t, we denote by Pos(t) the set of all positions in t, and
by FPos(t) the set of all non-variable positions in t. An equation, e.g. in [2] is
an ordered pair of terms (s, t), usually written as s ≈ t. Here s is the left-hand
side and t is the right-hand side of the equation [2]. A rewrite rule is an equation
s ≈ t where Var(s) ⊇ Var(t), usually written as s → t. A term rewriting system
is a set of rewrite rules.

Our focus in this paper is on unifiability modulo theories that have convergent
term rewriting systems. Let R be a convergent term rewriting system. We assume
that there is a well-founded reduction ordering 0 on terms such that →+

R ⊆ 0.
Let ≺ be the inverse of 0, i.e., s ≺ t if and only if t 0 s. We further assume
that the ordering is total on ground terms. We extend this order to equations
as (s ≈ t) 0 (u ≈ v) if and only if {s, t} 0mul {u, v}, where 0mul is the multiset
1 From this point on, we will use “forward closure” to mean “forward closure with

redundancy constraints”.

On Forward Closure and the Finite Variant Property 329

order induced by 0. A term t is an innermost redex of a rewrite system R if
and only if all proper subterms of t are irreducible and t is an instance of the
left-hand side of a rule in R.

The following proposition holds since →R ⊆ 0 and since 0 is transitive.

Proposition 1. Let R be a convergent rewrite system and let t, l, and r be
terms such that t 0 l and t 0 r. If l ↓R r, then every term that appears in the
rewrite proof (“valley proof”) is below t in the reduction ordering 0.

3 Strict Redundancy

Given a set of equations E, the set of ground instances of equations in E is de-
noted by Gr(E). An instance is ground if its terms do not contain any variables.
A ground equation e is strictly redundant in E if and only if it is a consequence
of equations in Gr(E) which are smaller than e modulo the ordering we use to
show termination [14]. An equation e is strictly redundant in E if and only if
every ground instance e′ of e is strictly redundant in E. In our setting, with con-
vergent rewriting systems R and reduction orderings 0, this can be formulated
as follows. For a ground equation s ≈ t we define the following (possibly infinite)
ground term rewriting system:

G≺(s≈t)
R := {l → r | (l → r) ∈ Gr(R) and (l → r) ≺ (s ≈ t)}

Now a ground equation s ≈ t is strictly redundant in R if and only if

G≺(s≈t)
R � s ≈ t

Since our focus in this paper is on convergent rewrite systems, we first give a
condition on R such that G≺(s≈t)

R is convergent.

Lemma 1. Let R be a convergent rewrite system, and let s and t be ground
terms such that s 0 t. Then G≺(s≈t)

R is convergent.

Now we explore conditions on equations that force those equations to be
redundant in a rewrite system. The following lemma follows almost directly
from the definition of G≺(s≈t)

R .

Lemma 2. Let R be a convergent rewrite system. Then an equation s1 ≈ s2 is
strictly redundant in R if and only if for every ground instance δ(s1) ≈ δ(s2) of
s1 ≈ s2, δ(s1) and δ(s2) are joinable modulo G≺(δ(s1)≈δ(s2))

R .

Lemma 3. Suppose R is a convergent rewrite system such that the rule l → r
is strictly redundant in R. Then the rule θ(l) → θ(r) is strictly redundant in R
for any substitution θ.

Lemma 4. Let R be a convergent rewrite system, and let l and r be terms
joinable modulo R such that l 0 r and a proper subterm of l is reducible. Then
l ≈ r is strictly redundant in R.

330 C. Bouchard et al.

Proof. Suppose l ≈ r is not strictly redundant in R. Then, by Lemma 2, there
is a ground instance δ(l) ≈ δ(r) such that δ(l) and δ(r) are not joinable in
G = G≺(δ(l)≈δ(r))

R . Since a proper subterm of l is reducible, there is a rule l′ → r′

in R and a position p �= ε in Pos(l) such that l|p = σ(l′) and l →R l[σ(r′)]p.
Therefore δ(l)|p = δ(σ(l′)) and δ(l) →R δ(l[σ(r′)]p). Since →R ⊆ 0, we have
that δ(l) 0 δ(l[σ(r′)]p), and since reduction orders are closed under substitutions,
δ(l) 0 δ(r). Thus, by Proposition 1, there are rewrite sequences

δ(r) →∗
R t ←∗

R δ(l[σ(r′)]p)

such that each term in the rewrite sequences is below δ(l) in the ordering ≺.
Therefore, since each term is ground, δ(r) and δ(l[σ(r′)]p) are joinable in G .

Since δ(l) = δ(l[σ(l′)]p) = δ(l)[δ(σ(l′))]p, and since the ordering ≺ has the
subterm property on ground terms, δ(σ(l)) ≺ δ(l). Thus δ(l) →G δ(l[σ(r′)]p).
So δ(l) and δ(r) are joinable in G , which is a contradiction. Therefore s ≈ r is
strictly redundant in R. ��

Lemma 5. Let R be a convergent rewrite system and l ≈ r be an equation such
that l is an innermost redex and l →+

R r. Then l ≈ r is strictly redundant in R
if there is a term r′ such that l →R r′ and r′ ≺ r.

Proof. If l →R r′ and l is an innermost redex, then l → r′ is an instance of a rule
in R and (l ≈ r′) ≺ (l ≈ r). Since R is confluent, r′ ↓R r and, by Proposition 1,
every term that appears in the rewrite proof is below l in the ordering. Thus
every ground instance of l → r can be proven using only smaller instances of
rules in R, and therefore l ≈ r is strictly redundant in R. ��

Unfortunately, the converse cannot be proved unless additional assumptions
are made about the ordering. However, for ground equations we can prove both
directions:

Lemma 6. Let R be a convergent rewrite system and l ≈ r be a ground equation
such that l is an innermost redex and l →+

R r. Then l ≈ r is strictly redundant
in R if and only if there is a ground term r′ such that l →R r′ and r′ ≺ r.

Proof. The “if” part follows from Lemma 5.
Suppose now that there is no term r′ ≺ r such that l →R r′, but l ≈ r is

strictly redundant in R. Then by Lemma 2, l and r must be joinable modulo
G≺(l≈r)
R . Thus there must be a rule l → r′′ in G≺(l≈r)

R , and so (l → r′′) ≺ (l ≈ r).
We then have that r′′ ≺ r. This is a contradiction, so l ≈ r is not strictly
redundant in R. ��

This leads us to a very useful lemma. In practice many of the equations we
look at will be rewrite rules whose right-hand side is in normal form. This gives
us a simple syntactic check for the redundancy of such rules.

Lemma 7. Let R be a convergent rewrite system, and let l ≈ r be an equation
such that l is reducible and r is the normal form of l. Then l ≈ r is strictly
redundant in R if and only if a proper subterm of l is reducible.

On Forward Closure and the Finite Variant Property 331

4 A (Slightly) Stronger Notion of Redundancy

A rule ρ1 = l1 → r1 is said to be an instance of a rule ρ2 = l2 → r2 if and only
if there is a substitution σ such that σ(l2) = l1 and σ(r2) = r1. We write this as
ρ2 � ρ1 or as ρ2 �σ ρ1 if the substitution σ is of significance. For instance, the
rule f(x, x) → x is an instance of the rule f(x, y) → x.

A rule ρ is redundant2 in R if and only if it is either strictly redundant in R
(i.e., every ground instance of ρ is strictly redundant in R) or there is a rule ρ′

in R such that ρ′ � ρ.
We can extend Lemma 3 from the previous section to redundancy as follows.

Lemma 8. Let R be a convergent rewrite system such that the rule l → r is redun-
dant in R. Then the rule θ(l) → θ(r) is redundant in R for any substitution θ.

5 Forward Closure

Following Hermann [10], the forward-closure of a term rewrite system R is de-
fined in terms of the following operation on rules in R. Let ρ1 = l1 → r1 and
ρ2 = l2 → r2 be two rules in R, and let p ∈ FPos(r1). Then

ρ1 �p ρ2 := σ(l1 → r1[r2]p)

where σ = mgu(r1|p =? l2). We call this the forward overlap of ρ1 and ρ2 at p.

Proposition 2. Let ρ1, ρ2, and ρ3 be rules such that ρ3 = ρ1 �p ρ2 for some
position p. If t →ρ3

t′ then ∃ t′′ : t →ρ1
t′′ and t′′ →ρ2

t′.

Given rewrite systems R1, R2, and R3 we define FOV(R1, R2) (the set of
forward overlaps) and N (R1, R2, R3) (the set of non-redundant rules) as

FOV(R1, R2) := {ρ1 �p ρ2 | ρ1 = (l1 → r1) ∈ R1, ρ2 ∈ R2, and p ∈ FPos(r1)}
N (R1, R2, R3) := {ρ | ρ ∈ FOV(R1, R2) and ρ is not redundant in R3}

We now simultaneously define NRk(R) (new rules step) and FC k(R) (forward
closure step) for all k ≥ 0.

NR0(R) := R NRk+1(R) := N (NRk(R), R,FC k(R))

FC 0(R) := R FC k+1(R) := FC k(R) ∪ NRk+1(R)

Finally, we define the forward closure of R.

FC (R) :=
∞⋃
i=1

FC i(R)

Note that FC k(R) ⊆ FC k+1(R) for all k ≥ 0. A set of rewrite rules R is
forward-closed if and only if FC (R) = R.

2 This is referred to as non-strictly redundant in [15].

332 C. Bouchard et al.

Example 1. The following rewrite system has a finite forward closure:

Rex = {f(s(x)) → f(x), s(s(s(x))) → x}

There is an overlap of the first rule with itself, and we see that the rewrite system
has one forward overlap,

FOV(NR0(Rex), Rex) = {f(s(s(x))) → f(x)}

This rule is not redundant in Rex, as the ground instance f(s(s(a))) ≈ f(a)

cannot be proven by G≺(f(s(s(a)))≈f(a))
Rex

, i.e. smaller rules in Gr(Rex). Thus we
see that

NR1(Rex) = {f(s(s(x))) → f(x)}
FC 1(Rex) = {f(s(s(x))) → f(x), f(s(x)) → f(x), s(s(s(x))) → x}

To compute the next set of forward overlaps, we can only overlap the new
rule with the first rule of Rex. So there is one new forward overlap,

FOV(NR1(Rex), Rex) = {f(s(s(s(x)))) → f(x)}

However, this rule is redundant by Lemma 7, since the subterm s(s(s(x))) at
position 1 of the left-hand side is reducible. Thus NR2(Rex) = ∅, and the rewrite
system has a finite forward closure FC (Rex) = FC 1(Rex). ��

Now we will give constraints that must be satisfied to have a finite forward
closure.

Lemma 9. Given a convergent rewrite system R, FC (R) is finite if and only if
there is a k > 0 such that NRk(R) = ∅.

Corollary 1. Given a convergent rewrite system R, FC (R) is finite if and only
if there is a k > 0 such that FC (R) = FC k(R).

Now we will discuss the case where a term t is an innermost redex.

Lemma 10. Let R be a convergent rewrite system, and let t and t′ be terms
where t is an innermost redex. If t →FCk′(R) t

′ then t →k
R t′ for some k ≤ k′ +1.

Proof. Suppose k′ = 0. Then FC k′(R) = R, and thus t →R t′.
Otherwise, assume that if t →FCk′−1(R) t′ then t →k

R t′ for some k ≤ k′. If
t →FCk′(R) t

′ then either t →FCk′−1(R) t
′ or t →NRk′ (R) t

′. In the first case we are
done. In the second case, t → t′ is in NRk′(R) = N (NRk′−1(R), R,FC k′−1(R)).
Therefore (t → t′) = ρ1 �p ρ2, for ρ1 in NRk′−1(R), ρ2 in R, and position
p. Since NRk′−1(R) ⊆ FC k′−1(R), t →FCk′−1(R) t′′ →R t′ for some t′′. By our
assumption, t →k

R t′′ for some k ≤ k′, so t →k+1
R t′. ��

In the next lemma we show that when our initial rewrite system R is con-
vergent then at every step in our forward closure procedure the rewrite system
returned is convergent.

On Forward Closure and the Finite Variant Property 333

Lemma 11. Let R be a convergent rewrite system. Then for all k ≥ 0, FC k(R)
is convergent.

Throughout the remainder of the section we will show that our forward closure
procedure will get an innermost redex “closer and closer” to its normal form. The
section culminates in a theorem that will be used to show one of the main results
in this paper.

Lemma 12. Let R be a convergent rewrite system, and let t and t′ be terms
where t is a ground innermost redex and t →FCk(R) t′ for some k ≥ 0. If t′ is
not in normal form then there exists a term t′′ ≺ t′ such that t →FCk+1(R) t

′′.

Proof (Sketch). If t′ is not in normal form, then there is some rule in FCk(R)
that rewrites t to t′. This rule will be overlapped with a rule from R in the next
step of forward closure, resulting in a new rule to a lower term. ��

Lemma 13. Suppose R is a convergent rewrite system and t an innermost redex
with normal form t̂ where t →k′

R t̂. Then there is a k such that t →FCk(R) t̂.

Proof. Let θ be a substitution that maps each variable x in t to a distinct free
constant cx. Let s = θ(t) and ŝ = θ(t̂). Note that θ(t̂) is still irreducible, so ŝ is
the normal form of s. Also note that, by Lemma 11, since R is convergent so is
FC k(R) for any k ≥ 0.

Suppose there is no k such that s →FCk(R) ŝ. Then, by Lemma 12, if s →FCk(R)

sk for some k and some ground term sk, then there is a ground term sk+1 ≺ sk
such that s →FCk+1(R) sk+1. Thus there is an infinitely descending chain

s 0 · · · 0 sk 0 sk+1 0 sk+2 0 · · ·

and therefore the ordering 0 is not well-founded. This is a contradiction, so there
must be a k such that s →FCk(R) ŝ. Since s = θ(t) is an innermost redex, this
rewrite occurs at the root. Thus there is a rule ρ = (l → r) in FC k(R) such that
ρ �σ (θ(t) → θ(t̂)).

Suppose now that t does not rewrite to its normal form in one step modulo
FC k(R). Then ρ �� (t → t̂). If θ �τ σ, then ρ �τ (θ(t) → θ(t̂)) since θ ◦ θ = θ
(i.e., θ is idempotent). But then ρ �σ (t → t̂). So θ �� σ. This means there is a
position p in l such that l|p = cx for some x. This is a contradiction since each
cx is free. Thus t →FCk(R) t̂. ��

Corollary 2. If R is a convergent rewrite system and t an innermost redex with
normal form t̂, then t →FC (R) t̂.

Theorem 1. A convergent rewrite system R is forward-closed if and only if
every innermost redex can be reduced to its R-normal form in one step.

Proof. If R = FC (R) then, by Corollary 2, for any innermost redex t with normal
form t̂, t →R t̂. Thus we have proven the “only if” part.

To prove the “if” part, assume that every innermost redex can be reduced to
its normal form in one step, but R is not forward-closed. Thus there is a rule

334 C. Bouchard et al.

l → r in FC (R) that is not in R. If l is not an innermost redex in R then, by
Lemma 4, l → r is redundant in R. So l must be an innermost redex in R and
can be reduced to its normal form l̂ in one step. Since (l → l̂) ≺ (l → r), and
since R is confluent, l and r are joinable using only smaller instances of rules
in R and thus l → r is redundant in R. This is a contradiction, so R must be
forward-closed. ��

6 Equivalence of Finiteness of Forward Closure and the
Finite Variant Property

In this section we show that a system has a finite forward closure (with redun-
dancy) if and only if it has the finite variant property, as defined by Comon-
Lundh and Delaune [6]. We will adopt the notation used in [7].

Definition 1. Let R be a convergent rewrite system. A term-substitution pair
(t, θ) is an R-variant of a term s if and only if θ is R-normalized and θ(s) →!

R t.
An R-variant (t, θ) of a term s is said to be more general than another R-variant
(t′, θ′) of the same term s, denoted as (t, θ) � (t′, θ′), if and only if there is a
substitution ρ such that t′ = ρ(t) and θ′ = ρ ◦ θ. A complete set of R-variants
of a term s, denoted as [[s]]

�, is a set of R-variants of s, such that for every
R-variant (s′, γ) of s there is a variant (t, θ) ∈ [[s]]� such that (t, θ) � (s′, γ). A
convergent term rewriting system R has the finite variant property if and only
if every term s has a finite complete set of R-variants.

Comon-Lundh and Delaune showed that the finite variant property is equiv-
alent to the boundedness property.

Definition 2. A rewrite system R has the boundedness property (or is bounded)
if, for every term t, there exists an integer n such that for every normalized
substitution σ, the normal form of σ(t) is reachable by a derivation whose length
can be bounded by n (thus independently of σ):

∀t ∃n ∀σ : (σ↓)(t)
≤n−−−→R σ(t)↓

We first introduce a different notion of boundedness for a term rewriting
system and prove that this new notion is equivalent to the standard notion.

Definition 3. A rewrite relation →R (alternatively, a term rewriting system R)
is IR-bounded if and only if there is a “global” bound n such that every innermost
redex can be reduced to its normal form in n steps or less:

∃n ∀t :
[
t is an innermost redex ⇒ t

≤n−−−→R t↓
]

Lemma 14. Suppose a convergent rewrite system R is bounded. Then R is IR-
bounded.

On Forward Closure and the Finite Variant Property 335

Proof. For each function symbol f in Σ, consider the term tf = f(x1, . . . , xm),
where m is the arity of f and x1, . . . , xm are variables. Since R is bounded,
there is an nf such that for any normalized substitution θ, θ(tf)

≤nf−−−→R θ(tf)↓.
Let u be a innermost redex with f as its root symbol. Note that there is a
normalized substitution θ such that θ(tf) = u, and thus u

≤nf−−−→R u ↓. Let
n be the largest such nf for any f in Σ. Then for any innermost redex u′,
u′ ≤n−−−→R u′↓. Therefore, R is IR-bounded. ��

Lemma 15. Suppose a convergent rewrite system R is IR-bounded. Then R is
bounded.

Proof. Since R is IR-bounded, there is a bound n such that for any innermost
redex u, u ≤n−−−→R u↓. Let t be a term, and θ be a normalized substitution. The
set of positions where θ(t) could be rewritten is a subset of FPos(t). Consider
a position p in FPos(t) such that θ(t)|p is an innermost redex. Since R is IR-

bounded, θ(t)|p
≤n−−−→R (θ(t)|p) ↓. Once θ(t)|p is rewritten, the only subterms

that can become new innermost redexes are its ancestors. Clearly then the entire
term θ(t) can be rewritten in no more than n · |FPos(t)| steps. Therefore R is
bounded. ��

With this result, we can easily show one direction of the equivalence.

Lemma 16. Suppose a convergent rewrite system R has a finite forward closure
FC (R). Then R has the finite variant property.

Proof. If FC (R) is finite, then FC (R) = FC k(R) for some k. By Corollary 2,
given an innermost redex t, t →FC (R) t↓. So t →FCk(R) t↓, and by Lemma 10
there is a k′ ≤ k + 1 such that t →k′

R t ↓. Therefore R is IR-bounded. By
Lemma 15, R is bounded, and thus R has the finite variant property. ��

In the other direction, things are a bit more complicated. We relate the vari-
ants of a rewrite system to redundancy. First, given a rewrite system R, we
define the following set of rules, VR.

Definition 4. For a convergent rewrite system R that has the finite variant
property, we define

VR = {θ(l) → l′ | l → r ∈ R and (l′, θ) ∈ [[l]]
� and θ(l) is an innermost redex}

The rules in VR correspond to variants of the left-hand sides of rules in R.
The next three lemmas use this set to prove that a convergent system with the
finite variant property has a finite forward closure.

Lemma 17. Suppose a convergent rewrite system R has the finite variant prop-
erty. Then there is a k > 0 such that each rule in VR is redundant in FC k(R).

336 C. Bouchard et al.

Proof. Since R has the finite variant property, for any term t, [[l]]� is finite. Thus
VR is finite. For each θ(l) → l′ in VR, θ(l) is an innermost redex and l′ is its
normal form. Thus, by Lemma 13, there is a k > 0 such that θ(l) →FCk(R) l′.
Let k′ be the max of all such k. Each rule in VR is redundant in FC k′ (R). ��

Lemma 18. Suppose a convergent rewrite system R has the finite variant prop-
erty, and let k > 0 be such that each rule in VR is redundant in FC k(R).
Then every innermost redex can be reduced to its normal form in one step mod-
ulo FC k(R).

Proof. Let θ(l) be an innermost redex where l is the left-hand side of a rule
in R. Let s be its normal form. Clearly the substitution θ has to be a normalized
substitution (over Var(l)) for otherwise θ(l) would not be an innermost redex.
Since R has the finite variant property, there is a variant (l′, σ) of l such that
(s, θ) & (l′, σ). Thus there is a substitution η such that θ = η ◦ σ and s = η(l′).
Thus, since σ(l) is also an innermost redex, θ(l) → s is an instance of the rule
σ(l) → l′ ∈ VR. Since l′ is the normal form of σ(l), by Lemma 7, σ(l) → l′ must
not be strictly redundant in FC k(R). So σ(l) → l′, and therefore θ(l) → s, must
be an instance of a rule in FC k(R) and we are done. ��

Lemma 19. Suppose a convergent rewrite system R has the finite variant prop-
erty. Then R has a finite forward closure FC (R).

We have now equated the finite variant property to the finiteness of forward
closure. All the results in this section lead us to the following theorem.

Theorem 2. Let R be a convergent rewrite system. The following statements
are equivalent:

(i) R is bounded.
(ii) R is IR-bounded.

(iii) R has a finite forward closure
(iv) R has the finite variant property

7 Undecidability of Finiteness of Forward Closure

We will prove the undecidability of the finiteness of forward closure by reduc-
tion from the uniform mortality problem for deterministic Turing machines [11].
Given a deterministic Turing machine M , the machine is said to be uniformly
mortal if and only if there is a number k such that, for any instantaneous de-
scription I of M , the number of transitions that M can make starting from I is
at most k.

We represent a deterministic Turing machine M as a tuple (Γ, ␢, Q, δ, F),
where Γ is the tape alphabet, ␢ ∈ Γ is the blank symbol, Q is the set of states,
F ⊂ Q is the set of final states, and δ : (Q \ F) × Γ → Q × Γ × {L,R} is the
transition function. We assume that Γ ∩ Q = ∅.

An instantaneous description (ID) of M is represented as a tuple (u, q, γ, v),
where u is a suffix of the string to the left of the tape head, q is the current state,

On Forward Closure and the Finite Variant Property 337

γ is the current symbol under the tape head, and v is a prefix of the string to
the right of the head. The strings to the left and right of the tape head may be
infinite, but only a finite suffix and prefix, respectively, will contain non-blank
symbols. Therefore, we let u be the longest suffix of the string to the left of the
tape head such that u �= ␢u′. Similarly, v is the longest prefix of the string to
the right of the head such that v �= v′␢.

For IDs I1 and I2 of M , I1 � I2 if and only if there is a transition in δ that
would move M from I1 to I2. Note that this usage of � is separate from the
usual meaning of “proves”. An ID I = (u, q, γ, v) is final if and only if q ∈ F .

The notion of an ID can be extended to that of a window. A window W of M
is a tuple (u, q, γ, v) such that u ∈ ␢∗u′ and v ∈ v′␢∗ for some u′ and v′ such that
I = (u′, q, γ, v′) is an ID of M . In this case, W extends I. The width of W is
|W | = |u|+ |v|+1. For windows W1 and W2, W1 � W2 if and only if |W1| = |W2|
and there are IDs I1 and I2 such that W1 and W2 extend I1 and I2, respectively,
and I1 � I2.

Proposition 3. Let M be a Turing machine, and let I1, I2, . . . , In be IDs of M
such that I1 � I2 � · · · � In. Then there is a width k and windows W1, W2, . . . ,
Wn, each with width k, such that each Wi extends Ii and W1 � W2 � · · · � Wn.

For any given Turing machine M , we construct a rewrite system RM and
show that M is uniformly mortal if and only if FC (RM) is finite. Our system is
over the signature Σ = Q∪Γ ∪ {ε, s}, where each q ∈ Q has arity 3, each γ ∈ Γ
has arity 1, ε is a constant, and s has arity 1. We assume an infinite set X of
variables.

We can encode a number n as a term sn(ε). Each ternary function sym-
bol q ∈ Q represents a window in state q, and each monadic function symbol
γ ∈ Γ represents concatenation on the left by that symbol. We encode a string
w = γ1 · · · γn over Γ as a term enc(w) = (γ1 ◦ · · · ◦ γn)(ε), where ◦ is function
composition (i.e., (f ◦g)(x) = f(g(x))). We can then encode a window (u, q, γ, v)
as a term q(enc(urev), γ(enc(v)), sn(ε)), where urev is the reverse of the string u,
and n is the number of transitions the machine is allowed to make.

We say two terms t1 and t2 are sequential if and only if t1 and t2 both have
root symbols from Q and t1|3 = s(t2|3). We say a term t is legal if and only if
there is a window W of M such that t encodes W . We say a term is illegal if
and only if it has a root symbol from Q but is not legal.

Definition 5. We define a function φ : T (Σ,X) → T (Σ) to transform illegal
terms into legal terms. For all q ∈ Q,

φ(q(t1, t2, t3)) = q(φ′
Γ (t1), φ′

Γ (t2), φ′
{s}(t3))

where φ′
S : T (Σ,X) → T (Σ) is a helper function parameterized by a signature

S ⊆ Σ,

φ′
S(t) =

{
f(φ′

S(t′)) if t = f(t′) for some f (1) ∈ S

ε otherwise

338 C. Bouchard et al.

The function φ′
S finds the “highest” occurrence of a term whose root symbol

does not belong in a string over signature S and replaces it with ε. The function
φ uses this to ensure that subterms encode valid tape strings (over the signature
Γ) or numbers (over the signature {s}).

We can now construct our rewrite system RM from a machine M .

Definition 6. Let M = (Γ, ␢, Q, δ, F) be a deterministic Turing machine. First
set RM := ∅. For each left-moving transition (q, γ) (→ (q′, γ′, L) in δ, extend RM

by

RM := RM ∪ {q(γ0(x), γ(y), s(z)) → q′(x, γ0(γ′(y)), z) | γ0 ∈ Γ}

where x, y, and z are variables. Then, for each right-moving transition (q, γ) (→
(q′, γ′, R) in δ, extend RM by

RM := RM ∪ {q(x, γ(γ0(y)), s(z)) → q′(γ′(x), γ0(y), z) | γ0 ∈ Γ}

where again, x, y, and z are variables.

We first prove some basic properties of the rewrite system RM .

Lemma 20. Let M be a deterministic Turing machine, let t1 be an innermost
redex, and let t2 and t3 be terms such that t1 →RM t2 and t1 →RM t3. Then
t2 = t3.

Lemma 21. Let M be a deterministic Turing machine. Then the rewrite system
RM is convergent.

Lemma 22. Let M be a deterministic Turing machine, let t1 be an innermost
redex, and let t2 be a term such that t1 →RM t2. Then t2 is either an innermost
redex or in normal form.

Lemma 23. Let M be a deterministic Turing machine, let t1 be an innermost
redex, and let t2 be a term such that t1 →RM t2. Then t1 and t2 are sequential.

Our goal in this section is to show that the rewrite system RM models com-
putation of the machine M . Unfortunately, there are terms over Σ that are
RM -reducible but do not encode any window of M . With the φ function, we
can map such illegal terms to a representative legal term. The following lemma
shows that φ preserves the RM -reducibility of the term, and thus we can focus
our attention on legal terms.

Lemma 24. Let M be a deterministic Turing machine, and let t1 be an inner-
most redex and t2 be a term such that t1 and t2 have root symbols from Q. Then
t1 →k

RM
t2 for some k > 0 if and only if φ(t1) →k

RM
φ(t2).

Proof (Sketch). The idea is that φ′
Γ and φ′

{s} can be pushed below the subterms
of instances of rules in RM . So if t1 →k

RM
t2, then for any step t → t′, there is a

On Forward Closure and the Finite Variant Property 339

rule l → r in RM such that t → t′ &σ l → r. If we apply φ, the φ′
Γ and φ′

{s} will
be pushed down into σ(x) for each x ∈ Var(l), and thus φ(t) → φ(t′). Therefore
we have φ(t1) →k

RM
φ(t2).

Conversely, if t1 �→k
RM

t2, then applying φ cannot fix things, because it only
changes things below the rule. Therefore φ(t1) �→k

RM
φ(t2). ��

Corollary 3. Let M be a deterministic Turing machine, and let t be a term
with a root symbol from Q such that no proper subterm of t is reducible. Then
φ(t) is in RM -normal form if and only if t is in RM -normal form.

Now we can relate transitions between windows of M to rewriting terms that
encode them in RM .

Lemma 25. Let M be a deterministic Turing machine, let W1 and W2 be win-
dows of M with equal width, and let t1 and t2 be sequential terms encoding W1

and W2, respectively. Then W1 � W2 if and only if t1 →RM t2.

Proof (Sketch). Here the idea is that if t1 and t2 encode W1 and W2, respectively,
and if there is a transition from W1 to W2, then it corresponds to a unique rule
in RM that rewrites t1 to t2. Similarly, if there is a rule that rewrites t1 to t2, it
corresponds to a unique transition from W1 to W2. ��

Lemma 26. Let M be a deterministic Turing machine, let W be a window of
M , and let t be a term encoding W. If W is final, then t is in normal form.

Lemma 27. Let M be a deterministic Turing machine. Then M is uniformly
mortal if and only if the rewrite system RM is IR-bounded.

Proof (Sketch). We first show a one-to-one correspondence between windows of
M and legal terms. Transitions between windows correspond to rewrites in RM .
If the machine is uniformly mortal, the bound corresponds to IR-boundedness.
Otherwise there exists some unbounded rewrite sequence starting from an in-
nermost redex. ��

Theorem 3. It is undecidable to check, given a finite convergent term rewriting
system, whether it has a finite forward closure.

Proof. By Lemma 27, we have reduced the uniform mortality problem for deter-
ministic Turing machines to the IR-boundedness problem. Therefore, by The-
orem 2, the uniform mortality problem can be reduced to checking if R has a
finite forward closure. By Lemma 21, for any deterministic Turing machine M
we know that RM is convergent. Thus it is undecidable whether a finite conver-
gent term rewriting system has a finite forward closure. ��

Corollary 4. It is undecidable to check, given a finite convergent term rewriting
system, whether it has the finite variant property.

340 C. Bouchard et al.

8 Modularity of Forward Closure

In this section we examine how forward closure behaves when rewrite systems are
combined. We first consider the modularity of the finiteness of forward closure,
i.e., whether the property is preserved when combining systems over disjoint
signatures.

Theorem 4. Let R1 and R2 be finite rewrite systems over signatures Σ1 and
Σ2 respectively. If Σ1 ∩ Σ2 = ∅, then FC (R1 ∪R2) = FC (R1) ∪ FC (R2).

Proof. Suppose FC (R1∪R2) � FC (R1)∪FC (R2). Then there must be a k such
that either a rule from FC k(R1) was overlapped with a rule from R2, or a rule
from FC k(R2) with a rule from R1. We will assume the former without loss of
generality. Thus there is a rule l → r in FC (R1 ∪ R2) such that

(l → r) = (l1 → r1)�p (l2 → r2)

where p ∈ FPos(r1), (l1 → r1) ∈ FC k(R1), and (l2 → r2) ∈ R2. So then

(l → r) = θ(l1) → θ(r1[r2]p)

where θ = mgu(r1|p =? l2). However, since Σ1 and Σ2 are disjoint, and since p
is a non-variable position in r1, the terms r1|p and l2 are not unifiable due to
function clash. This is a contradiction. Since FC (R1 ∪R2) ⊇ FC (R1)∪FC (R2),
we have that FC (R1 ∪ R2) = FC (R1) ∪ FC (R2). ��

However, if the systems are allowed to share constants, then even if the systems
have finite forward closures their union may not.

Example 2. Let R1 = {f(a, h(x)) → h(f(b, x))}, and let R2 = {b → a}, where
a and b are constants. These systems are clearly convergent and forward-closed.
However, consider their union,

R1 ∪ R2 = {f(a, h(x)) → h(f(b, x)), b → a}

This system is convergent. However, it has an infinite forward closure, because
for all k > 0:

NR2k(R1 ∪ R2) = {f(a, hk+1(x)) → hk+1(f(a, x))}

This is obtained by overlapping the rule from NR2k−2(R1 ∪ R2) first with the
rule from R2, then with the rule from R1 (this is why the rules occur in every
other step of forward closure). None of these rules are redundant, because they
are not instances of existing rules and the ground instances obtained by applying
the substitution {x (→ a} cannot be proven by smaller instances of rules. Since
NRk(R1 ∪ R2) �= ∅ for any k, by Lemma 9, FC (R1 ∪ R2) is not finite. ��

On Forward Closure and the Finite Variant Property 341

9 Relationship to Runtime Complexity

Inspired by a comment from one of our reviewers, we examined the relationship to
the field of runtime complexity, as described in [12]. The notion of the runtime com-
plexity of a rewrite system is similar to the IR-boundedness property. However,
while runtime complexity gives a bound for all rewrite sequence from an inner-
most redex, IR-boundedness only guarantees that a rewrite sequence exists which
is shorter than the bound. For this reason, a rewrite system with O(1) runtime
complexity is IR-bounded, but it seems that the inverse is not necessarily true.

Several tools exist for automatically checking the runtime complexity of a
rewrite system, such as CaT3 and TCT4. These tools can now be used to recog-
nize a class of rewrite systems with the finite variant property.

10 Conclusion and Future Work

Inspired by Basic Syntactic Mutation [5, 14], we explored forward closure and
its relation to the finite variant property [6]. We found that, with suitable re-
dundancy constraints, the finiteness of forward closure is equivalent to the finite
variant property. We also showed that finiteness of forward closure is undecid-
able, even for convergent rewrite systems.

A great deal of research has gone into finding ways to decide if a rewrite sys-
tem has the finite variant property [8]. As we have shown the equivalence of the
finite variant property and finiteness of forward closure, we have a convenient
procedure for checking the finite variant property, much like Knuth-Bendix com-
pletion provides a procedure for deciding the word problem [13]. As the finiteness
of forward closure is undecidable, the procedure may not terminate, but if the
rewrite system has the finite variant property, the procedure will terminate in a
finite number of steps.

Our future work centers around extending forward closure to work modulo
equational theories. The most important is the theory of AC (associativity and
commutativity), which has many practical applications, but we hope to consider
a much more general class of theories. We will also examine in more detail
how forward closure behaves when rewrite systems are combined that are not
completely disjoint.

Acknowledgements. We wish to thank Serdar Erbatur, Ralf Sasse, and the
reviewers for their detailed comments, style suggestions, and proof corrections
which helped considerably to improve this paper.

References

[1] Anantharaman, S., Erbatur, S., Lynch, C., Narendran, P., Rusinowitch, M.: Uni-
fication Modulo Synchronous Distributivity. In: Gramlich, B., Miller, D., Sattler,
U. (eds.) IJCAR 2012. LNCS, vol. 7364, pp. 14–29. Springer, Heidelberg (2012)

3 http://cl-informatik.uibk.ac.at/software/cat/
4 http://cl-informatik.uibk.ac.at/software/tct/

http://cl-informatik.uibk.ac.at/software/cat/
http://cl-informatik.uibk.ac.at/software/tct/

342 C. Bouchard et al.

[2] Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University
Press (1999)

[3] Baader, F., Snyder, W.: Unification Theory. In: Robinson, J.A., Voronkov, A.
(eds.) Handbook of Automated Reasoning, pp. 440–526. Elsevier Science Publish-
ers BV (1999)

[4] Bouchard, C., Gero, K.A., Lynch, C., Narendran, P.: On Forward Closure and the
Finite Variant Property. Technical report, Dept. of Computer Science, University
at Albany—SUNY (July 2013)

[5] Bouchard, C., Gero, K.A., Narendran, P.: Some Notes on Basic Syntactic Muta-
tion. In: Escobar, S., Korovin, K., Rybakov, V. (eds.) Proceedings 26th Interna-
tional Workshop on Unification, pp. 9–14 (2012)

[6] Comon-Lundh, H., Delaune, S.: The finite variant property: How to get rid of some
algebraic properties. In: Giesl, J. (ed.) RTA 2005. LNCS, vol. 3467, pp. 294–307.
Springer, Heidelberg (2005)

[7] Erbatur, S., Escobar, S., Kapur, D., Liu, Z., Lynch, C., Meadows, C., Meseguer,
J., Narendran, P., Santiago, S., Sasse, R.: Effective Symbolic Protocol Analysis
via Equational Irreducibility Conditions. In: Foresti, S., Yung, M., Martinelli, F.
(eds.) ESORICS 2012. LNCS, vol. 7459, pp. 73–90. Springer, Heidelberg (2012)

[8] Escobar, S., Meseguer, J., Sasse, R.: Effectively checking the finite variant prop-
erty. In: Voronkov, A. (ed.) RTA 2008. LNCS, vol. 5117, pp. 79–93. Springer,
Heidelberg (2008)

[9] Escobar, S., Sasse, R., Meseguer, J.: Folding variant narrowing and optimal vari-
ant termination. Journal of Logic and Algebraic Programming 81(7-8), 898–928
(2012); Rewriting Logic and its Applications

[10] Hermann, M.: Chain properties of rule closures. Formal Aspects of Comput-
ing 2(1), 207–225 (1990)

[11] Hillebrand, G.G., Kanellakis, P.C., Mairson, H.G., Vardi, M.Y.: Undecid-
able Boundedness Problems for Datalog Programs. Journal of Logic Program-
ming 25(2), 163–190 (1995)

[12] Hirokawa, N., Moser, G.: Automated Complexity Analysis Based on the Depen-
dency Pair Method. In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR
2008. LNCS (LNAI), vol. 5195, pp. 364–379. Springer, Heidelberg (2008)

[13] Knuth, D.E., Bendix, P.: Simple word problems in universal algebras. In: Leech, J.
(ed.) Computational Problems in Abstract Algebra, pp. 263–297. Pergamon Press
(1970)

[14] Lynch, C., Morawska, B.: Basic Syntactic Mutation. In: Voronkov, A. (ed.) CADE
2002. LNCS (LNAI), vol. 2392, pp. 471–485. Springer, Heidelberg (2002)

[15] Nieuwenhuis, R., Rubio, A.: Paramodulation-Based Theorem Proving. In: Robin-
son, J.A., Voronkov, A. (eds.) Handbook of Automated Reasoning, pp. 371–443.
Elsevier, MIT Press (2001)

Term Rewriting with Logical Constraints�

Cynthia Kop1 and Naoki Nishida2

1 Department of Computer Science, University of Innsbruck
Technikerstraße 21a, 6020 Innsbruck, Austria

Cynthia.Kop@uibk.ac.at
2 Graduate School of Information Science, Nagoya University

Furo-cho, Chikusa-ku, 4648603 Nagoya, Japan
nishida@is.nagoya-u.ac.jp

Abstract. In recent works on program analysis, transformations of var-
ious programming languages to term rewriting are used. In this setting,
constraints appear naturally. Several definitions which combine rewriting
with logical constraints, or with separate rules for integer functions, have
been proposed. This paper seeks to unify and generalise these proposals.

Keywords: Term rewriting, Constraints, Integer rewriting.

1 Introduction

Given the prevalence of computer programs in modern society, an important
role is reserved for program analysis. Such analysis could take the form of for
instance termination (“will this program end eventually, regardless of user in-
put?”), productivity (“will this program stay responsive during its run?”) and
equivalence (“will this optimised code return the same result as the original?”).

In recent years, there have been several results which transform a real-world
program analysis problem into a query on term rewriting systems (TRSs). Such
transformations are used to analyse termination of small, constructed languages
(e.g. [3]), but also real code, like Java Bytecode [13], Haskell [10], LLVM [5], or
Prolog [15]. Similar transformations are used to analyse code equivalence in [4,9].

In these works, constraints arise naturally. Where traditional TRSs generally
consider well-founded sets like the natural number, more dedicated techniques
are necessary when dealing with for instance integers or floating point numbers.
Unfortunately, standard techniques for analysing TRSs are not equipped to also
handle constraints. While integers and constraints can be encoded in TRSs, the
results are either hairy or infinite, and generally hard to handle.

For this reason, rewriting with native support for logical constraints over a
model was proposed [9]. While the results from normal term rewriting do not
immediately apply in this setting, the ideas extend easily, so dedicated results
are derived without much effort. Thus, constrained TRSs give a useful abstrac-
tion layer for program analysis. Several alternative definitions of constrained
rewriting, focused on integer constraints, have also been given, see e.g. [4,5,8].

� The research in this paper is supported by the Austrian Science Fund (FWF) inter-
national project I963 and the Japan Society for the Promotion of Science.

P. Fontaine, C. Ringeissen, and R.A. Schmidt (Eds.): FroCoS 2013, LNAI 8152, pp. 343–358, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

344 C. Kop and N. Nishida

Unfortunately, the various formalisms are incompatible; results from one style
of constrained rewriting do not necessarily transfer to another. This is a shame,
as e.g. the lemma generation method in [12] (there used to prove equivalence of
C-functions) might otherwise be reused in termination proofs. Also, dependency
pairs and graphs are introduced in each of [3,8,14]. Thus, a lot of time is spent on
redoing the same work for slightly different settings. Moreover, there are things
we cannot do easily with any of them, such as overflow-conscious analysis.

In this paper, we propose a new formalism which unifies existing definitions
of constrained rewriting. This formalism seeks to be general : unlike most of its
predecessors, we do not limit interest to the integers, since in the future we
will likely want to analyse programs which involve for instance real numbers or
bitvectors. Moreover, we do not restrict attention to one kind of analysis (e.g.
only termination or function equivalence). This way, we may for instance use the
same dependency pair framework both to analyse termination of Haskell, and as
part of a proof that two Java programs produce the same result (as termination
is an essential property in inductive equivalence proofs, see e.g. [4,12]).

Paper Setup. This paper is structured as follows. In Section 2 we consider some
preliminaries: both mathematical notions and a definition of many-sorted term
rewriting. In Sections 3 and 4 we introduce the LCTRS formalism, which is the
main contribution of this work. In Section 5 we will study how LCTRSs relate
to existing definitions. Finally, to demonstrate how existing analysis techniques
extend, we will consider basic confluence and termination results in Section 6.

2 Preliminaries

2.1 Sets and Functions

We assume that the mathematical notion of a set is well-understood.
The function space from a set A to a set B, denoted A =⇒ B, consists of

all sets f of pairs 〈a, b〉 with a ∈ A and b ∈ B, such that for all a ∈ A there
is a unique b ∈ B with 〈a, b〉 ∈ f . The =⇒ is considered right-associative, so
A =⇒ B =⇒ C is the function space A =⇒ (B =⇒ C). We use functional
notation: for f ∈ A1 =⇒ · · · =⇒ An =⇒ B, f(a1, . . . , an) denotes the unique
b with 〈a1, 〈a2, . . . 〈an, b〉 . . .〉 ∈ f . When dealing with constraints, we need a
notion of truth. To this end, we will often use the set B = {�,⊥} of booleans.

Example 1. We consider the set N of natural numbers and the set R of real
numbers. An example element of the function space R =⇒ R =⇒ N is the
function λx ∈ R, y ∈ R. abs(2x + y3 − 9). Here, the λ notation denotes function
construction. The comparison relation > on natural numbers is an element of
N =⇒ N =⇒ B, and can also be denoted in extended form, λx ∈ N, y ∈ N. x > y.

2.2 Many-Sorted Term Rewriting Systems

Next, we consider term rewriting. In constrained rewriting, types like integers and
booleans appear naturally. Since we have, at present, little reason to introduce
function types, let us consider many-sorted TRSs.

Term Rewriting with Logical Constraints 345

Sorts and Signature. We assume given a set S of sorts and a set V of vari-
ables. A signature Σ is a set of function symbols f , each equipped with a sort
declaration of the form [ι1 × . . . × ιn] ⇒ κ with all ιi and κ sorts. A variable
environment is a set Γ of variable : sort pairs.

Terms. Fixing a signature Σ, a term is any expression s built from function
symbols in Σ, variables, commas and parentheses, such that Γ � s : ι can be
derived for some environment Γ and sort ι, using the following inference rules:

Γ ∪ {x : ι} � x : ι

Γ � s1 : ι1 . . . Γ � sn : ιn f : [ι1 × . . . × ιn] ⇒ κ ∈ Σ

Γ � f(s1, . . . , sn) : κ

For any non-variable term s, there is a unique sort ι such that Γ � s : ι for
some Γ ; we say that ι is the sort of s. The set of terms over Σ and V is denoted
Terms(Σ,V). Var(s) is the set of variables in s. A term s is ground if Var(s) = ∅.

Contexts and Substitution. Fixing an environment Γ , a substitution is a map-
ping [x1 := s1, . . . , xk := sk] from variables to terms, with {x1 : ι1, . . . , xk : ιk}
⊆ Γ and where Γ � s1 : ι1, . . . , Γ � sk : ιk. The result sγ of applying a substitu-
tion γ on a term s, is s with all occurrences of any xi replaced by si. A context
C is a term with zero or more special variables: �1, . . . ,�n, each occurring once.
If Γ ∪ {�1 : ι1, . . . ,�n : ιn} � C : κ, and also Γ � si : ιi for all i, then we define
the term C[s1, . . . , sn] as C with each �i replaced by the corresponding si.

Rules and Rewriting. In a many-sorted TRS (without constraints!) rules are
pairs l → r where l and r are terms, l is not a variable and Var(r) ⊆ Var(l);
moreover, l and r must have the same sort. A (finite or infinite) set of rules R
induces a rewrite relation →R on the set of terms by the following inference rule:

C[lγ] →R C[rγ] for all rules l → r, contexts C and substitutions γ.

→+
R denotes the transitive closure of →R, and →∗

R the reflexive-transitive one.

Example 2. We consider a many-sorted TRS, with signature and rules as follows:

0 : int plus : [int× int] ⇒ int geq2 : [int × int× int× int] ⇒ bool
s : [int] ⇒ int sum : [int] ⇒ int sum2 : [bool× int] ⇒ int
p : [int] ⇒ int geq : [int× int] ⇒ bool

sum(x) → sum2(geq(0, x), x) geq(x, y) → geq2(x, y, 0, 0)
sum2(true, x) → 0 geq2(s(x), y, z, u) → geq2(x, y, s(z), u)

sum2(false, s(x)) → plus(s(x), sum(x)) geq2(p(x), y, z, u) → geq2(x, y, z, s(u))
plus(s(x), y) → s(plus(x, y)) geq2(0, s(x), y, z) → geq2(0, x, y, s(z))
plus(p(x), y) → p(plus(x, y)) geq2(0, p(x), y, z) → geq2(0, x, s(y), z)

plus(0, y) → y geq2(0, 0, s(x), s(y)) → geq2(0, 0, x, y)
s(p(x)) → x geq2(0, 0, x, 0) → true
p(s(x)) → x geq2(0, 0, 0, s(x)) → false

Here, sum(n) calculates Σn
i=1i. Because we consider integers, rather than the

(well-founded) natural numbers, this is a somewhat tricky system for common
analysis methods. A term sum(s(0)) is reduced to s(0) in 11 steps.

346 C. Kop and N. Nishida

Example 3. We might simplify Example 2 by considering an infinite signature,
which contains all integers, and an infinite set of rules, as is (roughly) done in [8]:

sum(x) → sum2(geq(0, x), x)
sum2(true, x) → 0
sum2(false, x) → plus(x, sum(plus(x,−1)))

plus(n,m) → k ∀n,m, k ∈ Z such that n + m = k
geq(n,m) → true ∀n,m ∈ Z such that n ≥ m
geq(n,m) → false ∀n,m ∈ Z such that n < m

This system is more pleasant, but has infinitely many rules, which makes it awk-
ward to deal with except for dedicated techniques. Also, we still have to encode
the constraints in the rules (and add rules to evaluate them), which makes analy-
sis tricky. For example, termination of sum(x) relies on x getting closer to 0 in
every step; to prove this, we must track the implications of geq(0, x) →∗

R false.

Note: term rewriting is usually defined without sorts. Then, function symbols
have an arity (number of arguments) rather than a sort declaration. Such a TRS
can be seen as a many-sorted TRS by assigning to symbols with arity n a sort
declaration [term× . . .× term] ⇒ term, with n occurrences of term before the ⇒.

3 Term Rewriting with Logical Constraints

Examples 2 and 3 illustrate why rewriting with native support for integer op-
erations and constraints is a good idea. Normal rewriting simply does not seem
adequate when handling data types which are not usually defined inductively.

We could add integers and integer constraints to rewriting, as in [3]. But with
equal effort, we may be more general. Rather than focusing on Z, we follow the
ideas of [9] and take the underlying domain, and operations on it, as parameters.

Terms. We assume given a signature Σ = Σterms ∪Σtheory . Terms are elements
of Terms(Σ,V) as in Section 2.2. Moreover, we assume given a mapping I which
assigns to each sort occurring in Σtheory a set, and an interpretation mapping
J which maps each f : [ι1 × . . . × ιn] ⇒ κ ∈ Σtheory to a function Jf in
Iι1 =⇒ . . . =⇒ Iιn =⇒ Iκ. For every sort ι occurring in Σtheory we also fix a set
Valι ⊆ Σtheory of values : function symbols a : [] ⇒ ι, where J gives a one-to-one
mapping from Valι to Iι. Let Val be the set of all values. We generally identify
a value c with the logical term c(). An interpretation mapping can be extended
to an interpretation on ground terms in Terms(Σtheory ,V) in the obvious way:

�f(s1, . . . , sn)�J = Jf (�s1�J , . . . , �sn�J)

The elements of Σtheory and Σterms may overlap only on values (Σtheory ∩
Σterms ⊆ Val). We call a term in Terms(Σtheory ,V) a logical term, and a term
in Terms(Σterms ,V) a proper term. Intuitively, logical terms define a function or
constraint in the model, while proper terms are the objects we want to rewrite.
Mixed terms typically occur as intermediate steps in a reduction.

A ground logical term s has value t if t is a value such that �s� = �t�. Every
ground logical term has a unique value. A logical constraint is a logical term of

Term Rewriting with Logical Constraints 347

some sort bool with Ibool = B. We generally let Valbool = {true, false}. A ground
logical constraint s is valid if �s�J = �. A non-ground constraint s is valid if sγ
is valid for all substitutions γ which map the variables in Var(s) to a value.

Example 4. Choosing Iint = Z and Ibool = B, we might let Σtheory be the set
below, with interpretations as given in e.g. SMTLIB [1]:

true : bool + : [int× int] ⇒ int ∧ : [bool× bool] ⇒ bool
false : bool ≥ : [int× int] ⇒ bool ¬ : [bool] ⇒ bool

n : int (n ∈ Z) = : [int× int] ⇒ bool

Moreover, we let Σterms = {sum : [int] ⇒ int} ∪ {n : int | n ∈ Z}.
The values in Σ are true, false, and n for all n ∈ Z. Examples of logical terms,

considering ≥, + and = as infix symbols, are 0 = 0 + −1 and x + 3 ≥ y + −42.
Both are constraints. 5+ 9 is also a ground logical term, but is not a constraint.
sum(x) and sum(sum(42) are proper terms. The value 0 is both a proper and a
logical term. sum(37 + 5) is neither, but is still a term (also called mixed term).

In Example 4 we restricted interest to functions in SMTLIB for Σtheory , but
this is not fundamental; we might also for instance have a symbol p : [int] ⇒ int
with Jp = λx.x − 1, or pi : [int] ⇒ int with Jpi = λn.“the nth decimal of π”. It
is in general a good idea, however, to limit interest to computable functions.

Rules and Rewriting. A rule is a triple l → r [ϕ] where l and r are terms, and ϕ
is a logical constraint. l must have the form f(l1, . . . , ln) with f ∈ Σterms\Σtheory ,
and l and r must have the same sort. If ϕ = true with J (true) = �, the rule is
usually just denoted l → r. A rule is regular if Var(ϕ) ⊆ Var(l) and standard if
l is a proper term. We define LVar(l → r [ϕ])) as Var(ϕ) ∪ (Var(r) \ Var(l)).

A substitution γ respects a rule l → r [ϕ] if Dom(γ) = Var(l) ∪ Var(r) ∪
Var(ϕ), γ(x) is a value for all x ∈ LVar(l → r [ϕ]) and ϕγ is valid.

We assume given a set of rules R. The rewrite relation →R is a relation on
terms, defined as the union of →rule and →calc, where:

C[lγ] →rule C[rγ] if l → r [ϕ] ∈ R and γ respects l → r [ϕ]
C[f(s1, . . . , sn)] →calc C[v] if f ∈ Σtheory \Σterms, all si values,

and v is the value of f(s1, . . . , sn)

A reduction step with →calc is called a calculation. A term is in normal form if
(and only if) it cannot be reduced with →R. Sometimes we consider innermost
reduction: C[f(s)] →R,in C[t] if f(s) →R t, and all si are in normal form.

A logical constrained term rewriting system (LCTRS) is defined as the pair
(Terms(Σ,V),→R). An LCTRS is typically given by providing I and J and the
sets Σterms , Σtheory and R. When clear from context, the signatures and map-
pings may be omitted. An innermost LCTRS is the pair (Terms(Σ,V),→R,in).

A (normal or innermost) LCTRS is standard or regular if all its rules are stan-
dard or regular respectively. In a regular LCTRS, →R is computable, provided
Jf is computable for all f ∈ Σtheory . Even in a regular LCTRS, the right-hand
sides of rules may contain fresh variables. This can for example be used to simu-
late user input. Think for example of a rule Start → Handle(input) where input
is a variable; by definition of →R, input can only be instantiated by a value.

348 C. Kop and N. Nishida

Example 5. It is time to see how these definitions work in practice. Let us modify
Example 2 to use constraints and calculations. We have defined Σtheory and
Σterms in Example 4. The rules are replaced by the following set:

sum(x) → 0 [0 ≥ x] sum(x) → x + sum(x + −1) [¬(0 ≥ x)]

Note that the sum rules may only be applied to a term sum(n) whose immediate
argument n is a value, so this subterm itself cannot contain the symbol sum.

For an example derivation, let us calculate Σ2
n=1n. We have: sum(2) →rule

2 + sum(2 + −1) →calc 2 + sum(1) →rule 2 + (1 + sum(1 + −1)) →calc 2 + (1 +
sum(0)) →rule 2+(1+0) →calc 2+1 →calc 3. In each step, it so happens that we
have exactly one choice of what rule to apply, and where. For example in the first
step, ¬(0 ≥ 2) holds and 0 ≥ 2 does not, so only the second rule is applicable.
Neither rule can be applied on sum(2 + −1), as 2 + −1 is no value; →calc is
applicable. We cannot use a calculation step on 2 + (1 + sum(0)), as there is no
subterm with the right form; the system does not know about associativity.

One might wonder why we insist that all variables in LVar are instantiated
with values, rather than just logical terms. Having a rule f(x, y) → y [x ≥ y],
could we not reduce f(x + 1, x) without this instantiation?

The reason to require that γ(x) is ground for x ∈ Var(ϕ) is simplicity of the
rewrite relation: by posing this restriction, validity of ϕγ is mostly easy to test.
Without it, validity might not be computable.1 Moreover, without this restriction
the reduction relation is not preserved under substitution: for a symbol a ∈
Σterms \ Σtheory , we cannot have f(a + 1, a) → a, as a + 1 is not a logical term.
It does make sense to study whether a term f(x + 1, y), or even a term f(x, y)
with x > y reduces. In Section 4 we will see how to rewrite constrained terms.

By requiring that γ(x) is even a value, we avoid complicating notions like
complexity. If we could →rule-reduce terms like sum(3+−1+−1+−1), then these
additions would have to be calculated in every step when testing the constraint.
There does not seem to be any advantage to allowing these hidden calculations;
we can simply →calc-normalise ground logical terms before applying a rule step.
For the same motivation of complexity, we only allow →calc to take single steps,
rather than allowing C[s] →calc C[v] for any logical term s with value v.

Note that →calc is not special; using →calc is functionally equivalent to ex-
tending R with all rules f(x1, . . . , xn) → y [f(x1, . . . , xn) = y] where f ∈ Σtheory .

Regularity and Standardness. Regularity is a useful condition. An irregu-
lar LCTRS is not in general deterministic, polynomially solvable, or even com-
putable. Consider for example a rule f(x) → g(f(y), f(z)) [x = y∗z∧y > 1∧z > 1],
which quickly decomposes a natural number into its prime factors.

Still, there is some advantage in allowing irregular systems. For example, in
termination analysis a transformation might chain the two regular rules f(x) →
g(x − 1, input) [x > 0] and g(x, y) → f(y) [x ≥ y] into a single irregular rule:
f(x) → f(y) [x > 0 ∧ x − 1 ≥ y]. In addition, an irregular rule can be used to

1 For example, defining Jp(n) to be true if a sequence of 9999 nines starts at the nth

decimal of π, and false otherwise, and considering a rule f(x)→ x [¬p(x)], we don’t
know whether a term f(x) should reduce for all instances of x.

Term Rewriting with Logical Constraints 349

calculate a partial function, e.g. div(x, y) → z [z ∗ y = x], which cannot be easily
defined otherwise. Note that such a rule does not lead to undecidability.

Similar to regularity, standardness is convenient: in a standard system there
are no overlaps between →rule and →calc. Standardness is a natural property,
since symbols from Σtheory \Σterms in terms are conceptually intended primarily
as a way to do calculations. We don’t use modulo reasoning: a non-standard rule
f(x + 1) → r matches only terms of the form f(s + 1), so not for instance f(3).
As with regularity, non-standard systems may arise during analysis, for example
when a rule is reversed. Note that even in standard systems, left-hand sides of
rules may contain values (or other symbols in Σterms); while we often encounter
rules of the form f(x1, . . . , xn) → r [ϕ], this is not an innate property.

Overview. Compared to the rather hairy (Example 2) or infinite (Example 3)
systems obtained when encoding integer arithmetic and constraints in a normal
TRS, LCTRSs offer an elegant alternative. Although LCTRSs often have infinite
signatures, calculation steps make it possible to avoid infinite sets of rules.

Example 6. To demonstrate a situation where we should not use the integers as
an underlying set, consider the following short imperative program:

1. function main() { 5. x = x * 2;

2. byte x = input(); 6. }
3. while (x < 150) { 7. return x;

4. if (x == 0) x = 1; 8. }
Here a byte is an unsigned 8-bit integer. This program doesn’t terminate: input 0
gives an infinite reduction (with x changing from 0 to 1, 2, 4, 8, 16, 32, 64, 128, 0).

Using the ideas of [3], we might model this program as follows:

main → loop(input) loop1(x) → loop2(1) [x = 0]
loop(x) → loop1(x) [x < 150] loop1(x) → loop2(x) [¬(x = 0)]
loop(x) → return(x) [¬(x < 150)] loop2(x) → loop(x ∗ 2)

As bytes are not unbounded, our underlying set is not Z. Rather, we consider
the set BV8 of bit vectors of length 8, and let J map to corresponding notions of
addition, multiplication, comparison and equality (see SMT-LIB [1]). With this
theory, a reduction from start adequately simulates a reduction in the original
imperative program. Note that if we had naively translated the program to an
LCTRS over the integers, we could have falsely concluded (local) termination.

We can analyse systems on bitvectors in much the same way as we analyse
systems over the integers. We will see some ideas for this in Section 6.

4 Constrained Terms

As discussed in Section 3, there are good reasons why the definition of rewriting
requires that variables in a constraint are instantiated by values. But sometimes
you may want to know whether a term of a certain form rewrites. For example,
if we know that x < −3, this is enough to decide that sum(x) reduces to 0.

In this section, we will therefore consider constrained terms : pairs s [ϕ] of a
term s and a constraint ϕ. Constrained terms are harder to rewrite and analyse

350 C. Kop and N. Nishida

than normal terms, but sometimes the need may arise. For instance in rewriting
induction (see e.g. [4,9]) when proving that f(x) ↔∗ g(x, 0) [x ≥ 1], being able
to reason about the reducts of f(x) [x ≥ 1] is very relevant.

To rewrite constrained terms, we must take several things into account. For
example, given a rule f(0) → 1, we should be able to reduce f(x) [x = 0], even
though f(x) itself is not matched by the left-hand side. We will also need to deal
with irregular rules; given a rule f(x) → g(y) [y > x], we should be able to reduce
f(x) [x > 3] to g(y) [y > 4], or at least to an instance, like g(y) [x > 3∧y = x+1].

A substitution γ respects a constrained term s [ϕ] if γ(x) is a value for all
x ∈ Var(ϕ) and �ϕγ� = �. Two constrained terms s [ϕ] and t [ψ] are equivalent,
notation s [ϕ] ≈ t [ψ], if for all substitutions γ which respect s [ϕ] there is a
substitution δ which respects t [ψ] such that sγ = tδ, and vice versa.

Example 7. Examples of constrained terms over the signature of sum are:

1. sum(x) [x ≥ 3];
2. x + y [x ≥ y ∧ ¬(x = y) ∧ x = 3];
3. 3 + z [1 ≥ x ∧ x + 1 ≥ z];

Constrained terms 2 and 3 are equivalent, as the following formulas hold in Z:

∀x, y.(x ≥ y ∧ ¬(x = y) ∧ x = 3) ⇒ ∃x′, z.1 ≥ x′ ∧ x′ + 1 ≥ z ∧ x = 3 ∧ y = z
∀x′, z.(1 ≥ x′ ∧ x′ + 1 ≥ z) ⇒ ∃x, y.x ≥ y ∧ ¬(x = y) ∧ x = 3 ∧ y = z

It is clear that equivalence of two constrained terms is not always easy to tell.

To be able to modify constraints, we assume that Σtheory contains a symbol
∧ : [bool× bool] ⇒ bool with J∧ the conjunction operator on the booleans, and
for all sorts ι a symbol =ι: [ι× ι] ⇒ bool with J=ι := λn,m ∈ Iι.n = m.

Rewriting Constrained Terms. We let s [ϕ] →calc t [ϕ ∧ x = f(s1, . . . , sn)]
if s = C[f(s1, . . . , sn)] with f ∈ Σtheory \Σterms, all si in Var(ϕ)∪Val, x a fresh
variable, and t = C[x]. Additionally, s [ϕ] →rule t [ϕ] if ϕ is satisfiable, s = C[lγ]
and t = C[rγ] for some rule l → r [ψ] and substitution γ such that:

– Dom(γ) = Var(l) ∪ Var(r) ∪Var(ψ)
– γ(x) is a value or variable in Var(ϕ) for all x ∈ LVar(l → r [ψ])
– ϕ ⇒ (ψγ) is valid (that is, for all δ with ϕδ valid also ψγδ is valid)

The relation →R on constrained terms is defined as ≈ ·(→calc ∪ →rule)· ≈.

Example 8. With the rule f(0) → 1: f(x) [x = 0] ≈ f(0) [true] →rule 1 [true].

Example 9. With the irregular rule f(x) → g(y) [y > x], we have: f(x) [x >
3] ≈ f(x) [x > 3 ∧ y > x] →rule g(y) [x > 3 ∧ y > x] ≈ g(y) [y > 4]. Similarly,
f(x) [x > 0] reduces with f(x) → g(y) [x = y + 1] to f(y) [y ≥ 0]. We do not
have that f(x) [true] → g(x−1) [true], as x−1 cannot be instantiated to a value.

Example 10. Following on Example 5, we may reduce sum(x) [x > 2] as follows:

sum(x) [x > 2] →R x + sum(x + −1) [x > 2]
→R x + sum(y) [x > 2 ∧ y = x + −1]
→R x + (y + sum(y + −1)) [x > 2 ∧ y = x + −1]
→R x + (y + sum(z)) [x > 2 ∧ y = x + −1 ∧ z = y + −1]

Term Rewriting with Logical Constraints 351

The notion of reduction on constrained terms is intimately tied to the notion
of reduction on terms, as the following two theorems demonstrate:

Theorem 1. If s →R t then also s [true] →R t [true].

Theorem 2. If s [ϕ] →R t [ψ] then for all substitutions γ which respect s [ϕ]
there is a substitution δ which respects t [ψ] such that sγ →R tδ.

Thus, we have a notion of constrained terms and reduction thereof. We do not
consider these notions as basic; rather, using for instance Theorem 2, they can be
used in analysis to find properties of unconstrained terms in the system (think
for instance of an inductive proof that sum(x) ≥ x if x ≥ 0).

Determining whether a constrained term reduces, or what it reduces to, is a
difficult problem. In special cases (for instance, regular rules with linear integer
arithmetic) it is decidable, but in others we may have to resort to clever guessing.

5 Comparison to Existing Systems

So, we have a new formalism. Is this truly more convenient or general than
existing formalisms? Here we will briefly study some formalisms from the liter-
ature, and sketch how they relate to the LCTRSs introduced here. However, a
comprehensive study of all relevant formalisms is beyond the reach of this paper.

5.1 Constrained TRSs from [9,12,14]

LCTRSs are based primarily on the constrained TRSs in [9,12,14]. Like our
LCTRSs, these systems have a separate theory signature, and a given interpre-
tation mapping J . The main difference is that they have no values or calculation
steps. Instead, these features are encoded in the terms and rules, with for exam-
ple the integers being represented as 0, s(0), s(s(0)), . . . , p(0), p(p(0)), . . .

Example 11. The sum system is implemented as a CTRS with rules:

sum(x) → 0 [0 ≥ x] 0 + y → y s(p(x)) → x
sum(s(x)) → sum(x) + s(x) [x ≥ 0] s(x) + y → s(x + y) p(s(x)) → x

p(x) + y → p(x + y)

Compared to their predecessors, LCTRS are far simpler to use: by having sym-
bols for all values and using calculation steps, systems are implemented much
more concisely (as demonstrated by sum). Moreover, the resulting systems are
easier to analyse. For example, note that this version of sum is not a constructor
system, and proving confluence or complete reducibility is difficult. Also, due to
the countable nature of terms, no finite CTRS can encode Example 12:

Example 12. Using sorts int, real and bool, and addition on the real numbers
denoted by +., we might represent the function n (→ Σn

i=i

√
n as follows:

sumroot(x) → 0.0 [0 ≥ x] sumroot(x) → sqrt(x) +. sumroot(x − 1) [¬(0 ≥ x)]

There does not seem to be an easy way to simulate CTRSs as LCTRSs or the
other way around. However, initial results suggest that results for CTRSs [9,12,14]
easily extend to LCTRSs, and are moreover vastly simplified by the translation.

352 C. Kop and N. Nishida

5.2 Integer Term Rewriting Systems

In Example 3 we saw a system somewhat like the integer term rewriting systems
in [8]. These ITRSs are innermost TRSs with an infinite signature Σ ∪ Σint ,
where Σint includes BOp = {+,−, ∗, /,%, >,≥, <,≤,=, �=,∧,⇒} and moreover
true, false and all integers. R is defined as R ∪ PD, where PD = {n ◦ m → k |
n,m, k ∈ Z ∪ B, ◦ ∈ BOp | n ◦m = k holds in Z and B} (e.g. 1 + 2 → 3 ∈ PD).

Example 13. An example ITRS in [8] has Σ = {log, lif} and R consisting of:

log(x, y) → lif(x ≥ y ∧ y > 1, x, y) lif(true, x, y) → 1 + log(x/y, y)
lif(false, x, y) → 0

Terms containing symbols ≥, ∧, + and / can be rewritten using the PD rules.

We can model an ITRS as an LCTRS, which is finite if R is finite. ITRSs are
not defined with sorts, but sorts can easily be imagined. Indeed, there seems
little reason to analyse the behaviour of a term like log(true, 5 + false), and for
innermost termination (the primary area of interest for ITRSs) presence of sorts
makes no difference [7]. The only other issue is that some elements of BOp (/
and %) define partial functions, so cannot be modelled by calculations.

To define an LCTRS with the same terms and rewrite relation as a given
sorted ITRS (with sorts int and bool assigned in the obvious way), let Val :=
{true, false : bool}∪{n : int | n ∈ Z}, Σterms := Σ∪Val∪{/,% : [int× int] ⇒ int}
and Σtheory := Val ∪ (BOp \ {/,%}). We use the expected interpretations for
Σtheory . Let R := R∪{x/y → z [x = y∗z], x%y → z [x = y∗u+z∧0 ≤ z∧z < y]}.
Then →R is exactly the reduction relation from the original ITRS. R is finite,
because →calc and the two irregular rules take over the role of →PD. Note that
the irregularity is not an issue for computability in this case.

Example 14. The system from Example 13 becomes the following LCTRS (ig-
noring the % symbol which does not occur in any rule):

log(x, y) → lif(x ≥ y ∧ y > 1, x, y) lif(true, x, y) → 1 + log(x/y, y)
x/y → z [x = y ∗ z] lif(false, x, y) → 0

Comment: if, for whatever reason, we do want to analyse the original unsorted
ITRS, we can also do so with an LCTRS. In this case, we assign a single sort
term as suggested in Section 2, and let Iterm = Z∪B; we cannot use calculations
now, because all functions are partial, but can encode →PD with irregular rules.

Conditional ITRSs. Integer TRSs play a role in the termination analysis of
Java Bytecode employed in [13]. There, termination of JBC is reduced to termi-
nation of a conditional ITRS; rules look somewhat like the rules in LCTRSs:

log(x, y) → 1 + log(x/y, y) | x ≥ y ∧ y > 1 →∗ true
log(x, y) → 0 | ¬(x ≥ y ∧ y > 1) →∗ true

These systems are unravelled to ITRSs for analysis (giving the system from
Example 13). However, if the elements of Σint are not root symbols of left-hand
sides of R, and / and % do not occur in the conditions, we can translate such
systems into LCTRSs immediately (replacing conditions by constraints), and

Term Rewriting with Logical Constraints 353

obtain a system where constraints are not encoded. We can prove that a CITRS
generates the same relation as its transformation to an innermost LCTRS.

As for the other direction, LCTRSs are not a special case of ITRS. Most
importantly, ITRSs have no native treatment of constraints. These have to be
encoded, and to for instance prove termination of even simple systems we need
far more powerful techniques than in the LCTRS setting. Moreover, ITRSs are
restricted to the integers. While Example 6 can be encoded, using rules like
loop2(x) → loop((x ∗ 2)%256), ITRSs cannot represent for instance Example 12.

5.3 Z-TRSs

Next, we consider a mixture of the ideas in [3,4,5,6].2 Z-TRSs are based on a
many-sorted signature Σ, which must include Σint = {0, 1 : int, − : [int] ⇒
int, +, ∗ : [int × int] ⇒ int}. Constraints are given by the grammar:

C ::= true | false | s = t | s > t | s ≥ t | ¬C | C ∧ C s, t terms over Σint

Rules are triples l → r [ϕ] where ϕ is a constraint, l and r are terms with the
same sort, and l has the form f(l1, . . . , ln). The left-hand sides may not contain
any element of Σint. The reduction relation is defined much like in LCTRSs,
except that γ “respects” l → r [ϕ] if all variables of sort int are instantiated by
(not necessarily ground) terms over Σint, and ϕγ is valid. Note that symbols
2, 3, . . . are not included in the signature; terms have forms like sum((1+1)+1).

Example 15. In [3] we see how a code snippet is translated to a Z-TRS:
while (x > 0 && y > 0) {

if (x > y) { while (x > 0) { x--; y++; } }
else { while (y > 0) { y--; x++; } }

}
eval1(x, y) → eval2(x, y) [x > 0 ∧ y > 0 ∧ x > y]
eval1(x, y) → eval3(x, y) [x > 0 ∧ y > 0 ∧ ¬(x > y)]
eval2(x, y) → eval2(x + −1, y + 1) [x > 0]
eval2(x, y) → eval1(x, y) [¬(x > 0)]
eval3(x, y) → eval3(x + 1, y + −1) [y > 0]
eval3(x, y) → eval1(x, y) [¬(y > 0)]

In fact, Z-TRSs are very close to our LCTRSs, but with a fixed theory signature.
Although there is no concept of “values”, there is no harm to internally replacing
ground terms over Σint by the corresponding value (in a tool, or when manually
rewriting terms), because the symbols in Σint do not occur in any left-hand side.

For every Z-TRS, we can define an LCTRS which is roughly the same, modulo
calculation of integer values. We can do this as follows: let Σtheory := {n :
int | n ∈ Z} ∪ {true, false : bool, − : [int] ⇒ int, +, ∗ : [int × int] ⇒ int, =
, >,≥: [int × int] ⇒ int, ¬ : [bool] ⇒ bool, ∧ : [bool × bool] ⇒ bool} and
Σterms := (Σ \Σint) ∪ {n : int | n ∈ Z}. Every Z-TRS rule is already a standard
rule in this LCTRS, and every term in the original Z-TRS is still a term.

2 The authors use simplifications of this formalism for different applications. For ex-
ample, multiplication is omitted, or custom symbols must have output sort unit.

354 C. Kop and N. Nishida

Theorem 3. We can derive, for all ground terms s, t:

– if s →R t in a Z-TRS, and s →∗
calc s′ ∈ Terms(Σterms ∪ Σtheory ,V), then

exists t′ such that t →∗
calc t′ and s′ →+

R t′ in the corresponding LCTRS;
– if s →rule t in the corresponding LCTRS, and s′ ∈ Terms(Σ,V) such that

s′ →∗
calc s, then there is a term t′ such that t′ →∗

calc t and s′ →R t′ in the
original Z-TRS.

Thus, results from LCTRSs typically extend to Z-TRSs. As with ITRSs, Z-
TRSs cannot model the behaviour of LCTRSs. Being fundamentally restricted
to the integers, they cannot easily represent Example 6, nor Example 12. An
extension of Z-TRSs, which admits all integers in the signature, can model a
variation of Example 6, as discussed in [6]. This analysis uses extra rules to
“normalise” integers to their range, e.g. loop2(x) → loop3(x ∗ 2), loop3(x) →
loop3(x − 256) [x ≥ 256], loop3(x) → loop(x) [x ≥ 0 ∧ 256 ≥ x].

5.4 Constrained Equational Systems

For a very different direction, let us consider a system from the further past.
In [11], a framework for constrained deduction is developed, which uses con-
strained terms and rules. Like the current paper, the interpretation of function
symbols (Jf) is not fixed, but assumed to be given by the user. There is no
notion of values, however. This fits with a typical usage of the formalism, where
the underlying model is the set of terms modulo some theory.

Example 16. We consider a constrained system with symbols ∗ : [term× term] ⇒
term, a, b : term, =AC: [term× term] ⇒ bool. The model Iterm is the set of terms
over {∗, a, b}, where a, b and ∗ are interpreted as themselves and =AC is interpre-
ted as equality on terms modulo AC (associativity and commutativity) of ∗.

Unlike LCTRSs, this formalism has no separate “term signature”: all function
symbols have a meaning in the model, and may occur in both terms and con-
straints. Rules have the form s → t [ϕ] and are used for example to simplify
constrained terms (called constrained formulas) modulo an equational theory.

Example 17. In the signature from Example 16, we consider a rule (x ∗ x) ∗x →
a [¬(x =AC a)], which matches modulo AC. The constrained formula x ∗ (b ∗ (b ∗
y)) =AC a∗b [x =AC b] is AC-equivalent to ((x∗b)∗b)∗y =AC a∗b [x =AC b], which
can be reduced to a∗y =AC a∗b [x =AC b]. This notion of reduction is called total
simplification. There is also a notion of partial simplification, where constrained
terms are reduced to pairs. This happens when a rule does not necessarily match;
for example the constrained formula x∗ (b∗ (b∗y)) =AC a∗b [¬(x =AC y] reduces
to the pair a∗y =AC a∗b [¬(x =AC y∧(x∗x)∗x =AC (x∗b)∗b∧¬(x =AC a)] and
((x ∗ b) ∗ b) ∗ y =AC c ∗ b [¬(x =AC y)∧¬((x ∗x) ∗x =AC (x ∗ b) ∗ b∧¬(x =AC a)].

There are many similarities between these equational systems and LCTRSs; to
a large extent they can be seen as non-standard LCTRSs. From this perspective,
complete simplification is exactly constrained rewriting as we saw in Section 4.
We have no notion of partial simplification, because it fundamentally relies on

Term Rewriting with Logical Constraints 355

the symbols from terms being moved into the constraint, but similar techniques
could be defined for the special case that Σterms = ∅.

However, LCTRSs do not allow reasoning modulo a theory, which alters fun-
damental properties like computability of reduction. Moreover, the systems from
[11] violate an essential rule in LCTRSs: logical terms reduce only to their value.
In the presence of rules like x + (y + z) → y, many analysis techniques break.

Thus, while there is an overlap in expressibility between these two formalisms,
we do not claim to cover or improve on this style of constrained rewriting. The
dynamics of the systems are too different, and so are their purposes: where
equational systems are designed for equational reasoning in logic, LCTRSs are
designed for analysing programs. In the rest of this section, we have seen how
LCTRSs relate to several formalisms which share this goal.

6 Analysing LCTRSs

Several times we have alluded to the ease of analysis in LCTRSs, so it is time
to give some indication of how this is done. Unfortunately, we cannot do this
justice, as there are many questions for analysis and little space. To give some
ideas of how common techniques extend to LCTRSs, we will now briefly study
some basic confluence and termination results.

6.1 (Weak) Orthogonality

Confluence is the property that whenever s →∗
R t and s →∗

R q there is some
w such that t →∗

R w and q →∗
R w. We will extend the common notion of

orthogonality, a property which implies confluence, to LCTRSs.
It is well-known that for any pair of terms which can be unified, there is a most

general unifier. That is, if s and t have distinct variables, and sγ = tγ, there is
some δ such that also sδ = tδ, and any unifying substitution γ can be written
as ε ◦ δ for some ε (here, (ε ◦ δ)(x) = δ(x)ε if x ∈ Dom(δ) and ε(x) otherwise). A
substitution γ respects variables of a rule ρ if γ(x) is a value or variable for all x
in LVar(ρ). If γ respects variables of l → r [ϕ], then lγ → rγ [ϕγ] is also a rule.

Definition 1 (Critical Pair). Given rules ρ1 ≡ l1 → r1 [ϕ1] and ρ2 ≡ l2 → r2
[ϕ2] with distinct variables, the critical pairs of ρ1, ρ2 are all tuples 〈s, t, ϕ〉 where:
– l1 can be written as C[l′1], where l′1 is not a variable, but is unifiable with l2;
– C �= �, or not ρ1 = ρ2 modulo renaming of variables, or Var(r1) �⊆ Var(l1);
– the most general unifier γ of l′1 and l2 respects variables of both ρ1 and ρ2;
– ϕ1γ ∧ ϕ2γ is satisfiable;
– s = r1γ and t = (Cγ)[r2γ] and ϕ = ϕ1γ ∧ ϕ2γ.

The critical pairs for calculations of a rule ρ are all critical pairs of ρ with any
“rule” of the form f(x1, . . . , xn) → y [y = f(x)] with f ∈ Σtheory \ Val.

Note that a rule f → g(x) has a critical pair with its own renamed copy:
〈g(x), g(y), true ∧ true〉. This is necessary because fresh variables in the right-
hand sides of rules are a very likely source of non-confluence.

356 C. Kop and N. Nishida

Example 18. Consider the following rules:

(ρ1) f(x1, y1) → g(x1 + y1) [x1 ≥ y1]
(ρ2) f(x2, y2) → g(x2) [x2 ≤ y2]
(ρ3) f(x3, y3) → g(y3) [x3 < y3]
(ρ4) f(x4, x4 + y4) → g(y4) [x4 > 0]

There are no critical pairs between ρ1 and ρ3: although f(x1, y1) and f(x3, y3)
can be unified (with most general unifier [x1 := x, x3 := x, y1 := y, y3 := y]),
the formula x ≥ y ∧ x < y is not satisfiable. On the other hand, ρ1 and ρ2 do
admit a critical pair: 〈g(x+y), g(y), x ≥ y∧x ≤ y〉. None of the rules ρ1, ρ2 or ρ3
gives a critical pair with ρ4, since in the resulting mgu γ we have γ(y1) = x+ y,
and thus this substitution does not respect the variables of ρ1, ρ2, ρ3. Finally, ρ4
has a critical pair for calculations, 〈g(y), f(x, z), x > 0 ∧ z = x + y〉.

Definition 2 (Weak Orthogonality). A critical pair 〈s, t, ϕ〉 is trivial if s [ϕ]
≈ t [ϕ]. An LCTRS R is weakly orthogonal if the left-hand side of each rule is
linear (no variable occurs more than once), and for any pair ρ1, ρ2 ∈ R: every
critical pair between ρ1 and a variable-renamed copy of ρ2, and every critical pair
of ρ1 for calculations, is trivial. It is orthogonal if there are no critical pairs.

The following result follows much like its unconstrained counterpart:

Theorem 4. A weakly orthogonal LCTRS is confluent.

Example 19. sum is orthogonal, so by Theorem 4 this LCTRS is confluent.

6.2 The Recursive Path Ordering

To prove termination of a TRS, it suffices to show that its rules are included in
the recursive path ordering [2], a well-founded ordering 0 which is monotonic and
stable under substitutions. We will consider a simple variation of this ordering.
To deal with the possibly infinite number of values, we assume that Σtheory

contains a symbol �ι for all sorts ι occurring in Val, which is mapped to a well-
founded ordering >ι in Iι. For example, we might take �int= λxy.x > y∧x ≥ 0.
We also assume given a well-founded ordering � on the symbols of Σterms\Σtheory .

The recursive path ordering is defined by the following derivation rules:

1. s > t [ϕ] if one of the following holds:
(a) s, t ∈ Terms(Σtheory ,Var(ϕ)), and ϕ ⇒ (s = t ∨ s � t) is valid
(b) s = f(s1, . . . , sn), t = f(t1, . . . , tn) with f /∈ Σtheory and each si > ti [ϕ]
(c) s 0 t [ϕ], or s = t is a variable

2. s 0 t [ϕ] if one of the following holds:
(a) s, t ∈ Terms(Σtheory ,Var(ϕ)), and ϕ ⇒ s � t is valid
(b) s = f(s1, . . . , sn) with f ∈ Σterms \ Σtheory and one of:

i. si > t [ϕ] for some i ∈ {1, . . . , n}
ii. t = g(t1, . . . , tm) with g ∈ Σtheory or f � g, and for all i: s 0 ti [ϕ]

iii. t = f(t1, . . . , tn), all si > ti [ϕ] and for at least one i: si 0 ti [ϕ]
iv. t ∈ Var(ϕ)

Term Rewriting with Logical Constraints 357

Theorem 5. An LCTRS R is terminating if we can choose a suitable �ι for
all ι, and some well-founded �, such that l 0 r [ϕ] for all l → r [ϕ] ∈ R.

Proof. We can define a pair (≡, >) of an equivalence relation and a compatible
ordering with →calc⊆≡ and C[s] > C[t] if s 0 t [true] and s /∈ Terms(Σtheory , ∅).
Having these, we observe first that > is well-founded, and second that if l > r [ϕ],
then lγ 0 rγ [true] for all substitutions γ which respect l → r [ϕ].

Example 20. Taking n �int m if n > m and n ≥ 0, the sum system is terminating
by the recursive path ordering: For the first rule, sum(x) 0 0 [0 ≥ x] by 2(b)ii.
For the second, writing ϕ = ¬(0 ≥ x), we have sum(x) 0 x+ sum(x+−1) [ϕ] by
2(b)ii because sum(x) 0 x [ϕ] by 2(b)iv, and sum(x) 0 sum(x+−1) [ϕ] by 2(b)iii
because x 0 x + −1 [ϕ] by 2a, because ϕ ⇒ (x > x + −1 ∧ x ≥ 0) is valid.

Note that Example 3, with encoded constraints, cannot be handled by RPO.

Of course, this is a very basic version of the recursive path ordering. There
are various ways to strengthen the technique, but this is left for future work.

6.3 Observations

Both when analysing confluence and termination, a pattern appears: existing
techniques extend in fairly natural way, with the constraints handled by proving
validity of some formula. In other techniques we have studied but omitted here
(such as dependency pairs and inductive equality proofs) a similar pattern arises.

Importantly, this pattern does not depend on the kind of theory we use:
analysis takes a similar form whether we reason about integer arrays, reals or
bitvectors. The difference is in how to solve the resulting formulas. When auto-
matically analysing properties of LCTRSs, it seems natural to combine a dedi-
cated analysis tool with SMT-solvers for the theory of interest. This way, we can
immediately profit from the continuing improvement of the SMT-community,
without having to adjust our methods when a new theory is explored.

7 Conclusion

In this paper, we have studied logical constrained term rewriting systems.
LCTRSs offer an approach to program analysis for a large variety of languages
and analysis questions. Due to their similarity to normal term rewriting, we
can easily transpose the many powerful techniques of traditional term rewriting.
However, by natively handling constraints, we obtain a much simpler analysis
than if we were to encode the constraints in the rules.

In conclusion, LCTRS can be summarised with four keywords: They are nat-
ural : values in the logic are modelled with constants, and calculations do not
need to be encoded. They are general : LCTRSs are not restricted to for instance
the integers, but can handle all kinds of theories. They are versatile: LCTRSs
can model a wide range of problems, from termination and overflow analysis to
program equivalence, and can represent examples from many existing formalisms
of constrained or integer rewriting. Finally, they are flexible: common analysis
techniques for term rewriting extend to LCTRSs without much effort.

358 C. Kop and N. Nishida

In the future, we aim to provide a tool to rewrite and analyse LCTRSs. Such
analysis would not necessarily need special treatment for the various theories: in
many cases (as we saw in Section 6), an LCTRS problem can be converted into
a sequence of SMT-queries which might be fed into an external solver.

In addition, we hope to extend translations of program analysis from e.g.
[3,9,13] with arrays and bitvectors, thus making use of the greater generality of
LCTRSs, and the power of SMT-solvers for various theories.

References

1. Community. SMT-LIB, http://www.smtlib.org/
2. Dershowitz, N.: Orderings for term rewriting systems. Theor. Comput. Sci. 17(3),

279–301 (1982)
3. Falke, S., Kapur, D.: A term rewriting approach to the automated termination anal-

ysis of imperative programs. In: Schmidt, R.A. (ed.) CADE 2009. LNCS, vol. 5663,
pp. 277–293. Springer, Heidelberg (2009)

4. Falke, S., Kapur, D.: Rewriting induction + linear arithmetic = decision proce-
dure. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS (LNAI),
vol. 7364, pp. 241–255. Springer, Heidelberg (2012)

5. Falke, S., Kapur, D., Sinz, C.: Termination analysis of C programs using compiler
intermediate languages. In: Schmidt-Schauß, M. (ed.) Proc. RTA 2011. LIPIcs,
vol. 10, pp. 41–50. Dagstuhl (2011)

6. Falke, S., Kapur, D., Sinz, C.: Termination analysis of imperative programs using
bitvector arithmetic. In: Joshi, R., Müller, P., Podelski, A. (eds.) VSTTE 2012.
LNCS, vol. 7152, pp. 261–277. Springer, Heidelberg (2012)

7. Fuhs, C., Giesl, J., Parting, M., Schneider-Kamp, P., Swiderski, S.: Proving Ter-
mination by Dependency Pairs and Inductive Theorem Proving. Journal of Auto-
mated Reasoning 47(2), 133–160 (2011)

8. Fuhs, C., Giesl, J., Plücker, M., Schneider-Kamp, P., Falke, S.: Proving termina-
tion of integer term rewriting. In: Treinen, R. (ed.) RTA 2009. LNCS, vol. 5595,
pp. 32–47. Springer, Heidelberg (2009)

9. Furuichi, Y., Nishida, N., Sakai, M., Kusakari, K., Sakabe, T.: Approach to
procedural-program verification based on implicit induction of constrained term
rewriting systems. IPSJ Trans. Program. 1(2), 100–121 (2008)

10. Giesl, J., Raffelsieper, M., Schneider-Kamp, P., Swiderski, S., Thiemann, R.: Au-
tomated termination proofs for Haskell by term rewriting. ACM Transactions on
Programming Languages and Systems 33(2), 7:1–7:39 (2011)

11. Kirchner, C., Kirchner, H., Rusinowitch, M.: Deduction with symbolic constraints.
Revue Française d’Intelligence Artificielle 4(3), 9–52 (1990)

12. Nakabayashi, N., Nishida, N., Kusakari, K., Sakabe, T., Sakai, M.: Lemma gener-
ation method in rewriting induction for constrained term rewriting systems. Com-
puter Software 28(1), 173–189 (2010) (in Japanese)

13. Otto, C., Brockschmidt, M., von Essen, C., Giesl, J.: Automated termination anal-
ysis of java bytecode by term rewriting. In: Lynch, C. (ed.) Proc. RTA 2010. LIPIcs,
vol. 6, pp. 259–276. Dagstuhl (2010)

14. Sakata, T., Nishida, N., Sakabe, T.: On proving termination of constrained term
rewrite systems by eliminating edges from dependency graphs. In: Kuchen, H. (ed.)
WFLP 2011. LNCS, vol. 6816, pp. 138–155. Springer, Heidelberg (2011)

15. Schneider-Kamp, P., Giesl, J., Ströder, T., Serebrenik, A., Thiemann, R.: Auto-
mated termination analysis for logic programs with cut. Theory and Practice of
Logic Programming 10(4-6), 365–381 (2010)

http://www.smtlib.org/

Author Index

Alberti, Francesco 23
Aoto, Takahito 311
Areces, Carlos 263

Baader, Franz 181, 295
Balbiani, Philippe 151
Barrett, Clark 120
Bertolissi, Clara 40
Blanchette, Jasmin Christian 245
Borgwardt, Stefan 165
Bouchard, Christopher 327
Burel, Guillaume 229

Cruanes, Simon 229

Demri, Stéphane 120
Deters, Morgan 120

Fernández Gil, Oliver 295
Fervari, Raul 263

Gero, Kimberly A. 327
Ghilardi, Silvio 23

Hoffmann, Guillaume 263
Horbach, Matthias 198

Karrenberg, Ralf 56
Kersani, Abdelkader 7
Koopmann, Patrick 87
Kop, Cynthia 343

Korovin, Konstantin 214, 261
Košta, Marek 56

Lippmann, Marcel 165
Lynch, Christopher 327

Mikulás, Szabolcs 151
Morawska, Barbara 295

Narendran, Paliath 327
Nishida, Naoki 343

Ouaknine, Joël 197

Papacchini, Fabio 279
Paulson, Lawrence C. 1
Peltier, Nicolas 7
Peñaloza, Rafael 71
Popescu, Andrei 245

Ranise, Silvio 40

Schmidt, Renate A. 87, 279
Sharygina, Natasha 23
Sofronie-Stokkermans, Viorica 198
Sturm, Thomas 56

Thost, Veronika 165

Wernhard, Christoph 103

Zarrieß, Benjamin 181
Zou, Tingting 71

	Preface
	Organization
	Table of Contents
	Invited Talk 1
	MetiTarski’s Menagerie of Cooperating Systems
	1 Introduction
	2 Architectural Overview
	3 MetiTarski’s Decision Procedures
	4 Ongoing Research
	5 Prospects for Further Integration
	References

	Inductive Theorem Proving
	Combining Superposition and Induction: A Practical Realization
	1 Introduction
	2 Syntax and Semantics
	3 Superposition Calculus
	4 Loop Detection
	5 Practical Application of the Loop Detection Rule
	6 Implementation
	7 Experimentation
	8 Conclusion
	References

	Arrays and Memory Access Optimization
	Definability of Accelerated Relations in a Theory of Arrays and Its Applications
	1 Introduction
	2 Preliminaries
	3 Programs Representation
	4 Backward Search and Acceleration
	5 Iterators
	6 Accelerating Local Ground Assignments
	7 Experimental Evaluation
	8 Conclusion and Future Work
	References

	Verification of Composed Array-Based Systems with Applications to Security-Aware Workflows
	1 Introduction
	2 Formal Preliminaries
	3 Composed Array-Based Systems
	3.1 An Example of Composed Array-Based Systems
	3.2 The Class of n-Components Array-Based Systems

	4 Backward Reachability
	5 Termination of Backward Reachability
	6 Application to Security-Aware Workflow Systems
	7 Conclusions and Related Work
	References

	Presburger Arithmetic in Memory Access Optimization for Data-Parallel Languages
	1 Introduction
	2 Memory Access Optimization for Data-Parallel Languages
	3 Translation to Presburger Arithmetic
	4 Modulo Elimination as a Preprocessing Step
	5 From SMT Solving Results to Code
	6 Evaluation: OpenCL Performance
	7 Related Work
	8 Conclusions and Future Work
	References

	Approximation and Forgetting
	Roughening the EL Envelope
	1 Introduction
	2 Rough Sets
	3 Rough EL++
	4 A Completion Algorithm
	5 Conclusions
	References

	Uniform Interpolation of ALC-OntologiesUsing Fixpoints
	1 Introduction
	2 Preliminaries
	3 Overview of the Method
	4 Resolution-Based Symbol Elimination
	5 Eliminating Definers Using Ackermann’s Lemma
	6 Correctness of the Decision Procedure
	7 Correctness of the Uniform Interpolation Method
	8 Related Work
	9 Conclusion and Future Work
	References

	Abduction in Logic Programming as Second-Order Quantifier Elimination
	1 Introduction
	2 Notation and Semantic Framework
	3 Classically Represented Logic Programming Semantics
	4 Basic Concepts of Abduction
	5 The Globally Weakest Sufficient Condition
	6 Abduction with Logic Programming Semantics
	7 Related Work
	8 Conclusion
	References

	Invited Talk 2
	Witness Runs for Counter Machines
	1 Introduction
	2 Machines with Registers
	2.1 Presburger Arithmetic in a Nutshell
	2.2 Presburger Counter Systems
	2.3 Decision Problems
	2.4 Some Classes of Presburger Counter Systems

	3 Loops, Path Schemas and Flatness
	3.1 Computing Loop Effects in (PA)
	3.2 Finitary Path Schemas
	3.3 Flat Presburger Counter Systems
	3.4 Finite Monoid Property in Affine Presburger Counter Systems
	3.5 Flattable Presburger Counter Systems

	4 Verifying Temporal Properties
	4.1 Presburger LTL
	4.2 The Logic CLTL with Finite Window
	4.3 Model-Checking Linear-Time Properties
	4.4 A Quick Look at a Branching-Time Extension

	5 PathSchemaEnumeration
	5.1 Why Path Schema Enumeration?
	5.2 Pruning the Search Space: Path Schema Subsumption
	5.3 How to Deal with Quantifiers
	5.4 An Algorithm that Builds Cycle Schemas and Path Schemas

	6 Conclusion
	References

	Temporal and Description Logic Techniques
	Decidability and Complexity via Mosaics of the Temporal Logic of the LexicographicProducts of Unbounded Dense Linear Orders
	1 Introduction
	2 Products of Unbounded Dense Linear Orders
	3 Mosaics
	4 Completeness
	5 Soundness
	6 Complexity
	7 Conclusion
	References

	Temporal Query Answering in the Description Logic DL-Lite
	1 Introduction
	2 Preliminaries
	3 Answering Temporal Conjunctive Queries
	4 Eliminating Future Operators
	5 A New Algorithm
	6 Rigid Names
	7 Conclusions
	References

	Verification of Golog Programs over Description Logic Actions
	1 Introduction
	2 Preliminaries
	3 Golog Programs over DL Actions
	4 Verifying Temporal Properties of DL-Golog Programs
	5 Conclusion
	References

	Invited Talk 3
	Specification and Verification of Linear Dynamical Systems: Advances and Challenges

	Theorem Proving with Theories and Sorts
	Obtaining Finite Local Theory Axiomatizations via Saturation
	1 Introduction
	2 Preliminaries
	2.1 General Definitions
	2.2 Local Theory Extensions

	3 Recognizing Ψ-local Theory Extensions
	3.1 Locality and Embedability
	3.2 Locality and Saturation

	4 A Constrained Inference Calculus
	5 Locality and Melting Constraints
	6 Conclusion
	References

	Non-cyclic Sorts for First-Order Satisfiability
	1 Introduction
	2 Preliminaries
	3 Non-cyclic Sorts and Finite Herbrand Universe
	4 EPR-Based Finite Model Finding
	5 Flattening and Finite Model Finding
	6 Sort-Restricted Flattening
	7 Implementation and Evaluation
	8 Conclusion and Future Work
	References

	Detection of First Order Axiomatic Theories
	1 Introduction
	2 Notations and Definitions
	3 Detecting Axioms
	4 Meta-Reasoning with Datalog
	4.1 Description of an Axiomatic Theory
	4.2 Encoding of Properties
	4.3 Encoding of Definitions
	4.4 Encoding of Other Properties
	4.5 Incremental Computation
	4.6 Backward Chaining

	5 Why Recognize Theories?
	5.1 Lemmas
	5.2 Equational Redundancy Criteria
	5.3 Term Orderings

	6 Experimental Results
	References

	Mechanizing the Metatheory of Sledgehammer
	1 Introduction
	2 An Isabelle View of Logic Translations
	3 Clausal First-Order Logic
	4 Monotonicity and Its Inference
	5 Sort Encodings
	6 First-Order Logic with Quantifiers
	7 Classical Metatheorems
	8 Lifting to Arbitrary Structures and Formulas with Binders
	9 Conclusion
	References

	Invited Talk 4
	From Resolution and DPLL to Solving Arithmetic Constraints
	References

	Modal Logic and Description Logic
	Tableaux for Relation-Changing Modal Logics
	1 Relation-Changing Modal Logics
	2 Tableau Calculi
	2.1 Sabotage
	2.2 Bridge
	2.3 Swap

	3 Global Relation-Changing Operators
	4 Ending Remarks
	References

	Computing Minimal Models Modulo Subset-Simulation for Modal Logics
	1 Introduction
	2 Preliminaries
	3 Subset-Simulation as Minimality Criterion
	4 Computing Subset-Simulation between Models
	5 Tableau Calculus
	6 Minimal Model Soundness
	7 Discussion
	8 Conclusion
	References

	Hybrid Unification in the Description Logic EL
	1 Introduction
	2 The Description Logic EL
	The Concept Description Language.
	Classical Ontologies and Subsumption.
	Hybrid Ontologies.
	Definition 1 (Hybrid
	ontologies).
	–
	–
	Definition 2 (Semantics of hybrid
	ontologies).
	Subsumption w.r.t. Hybrid
	Ontologies.
	Hybrid
	Calculus
	Definition 3.
	Theorem 4 (Soundness and Completeness of HC).

	3 Hybrid Unification in EL
	Definition 5.
	Flat Unification Problems.
	Local Unifiers.

	4 HybridEL-Unification is NP-Complete
	5 A Goal-Oriented Algorithm for Hybrid EL-Unification
	6 Conclusions
	References

	Rewriting
	Disproving Confluence of Term Rewriting Systems by Interpretation and Ordering
	1 Introduction
	2 Preliminaries
	3 Proving Non-joinability by Interpretation
	4 Usable Rules for Reachability
	5 Proving Non-joinability by Ordering
	6 Argument Filtering for Non-joinability
	7 Related Works
	8 Implementations and Experiments
	9 Conclusion
	References

	On Forward Closure and the Finite Variant Property
	1 Introduction
	2 Notation and Preliminaries
	3 Strict Redundancy
	4 A (Slightly) Stronger Notion of Redundancy
	5 Forward Closure
	6 Equivalence of Finiteness of Forward Closure and the Finite Variant Property
	7 Undecidability of Finiteness of Forward Closure
	8 Modularity of Forward Closure
	9 Relationship to Runtime Complexity
	10 Conclusion and Future Work
	References

	Term Rewriting with Logical Constraints
	1 Introduction
	2 Preliminaries
	2.1 Sets and Functions
	2.2 Many-Sorted Term Rewriting Systems

	3 Term Rewriting with Logical Constraints
	4 Constrained Terms
	5 Comparison to Existing Systems
	5.1 Constrained TRSs from [9,12,14]
	5.2 Integer Term Rewriting Systems
	5.3 Z-TRSs
	5.4 Constrained Equational Systems

	6 Analysing LCTRSs
	6.1 (Weak) Orthogonality
	6.2 The Recursive Path Ordering
	6.3 Observations

	7 Conclusion
	References

	Author Index

