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Preface

The 19th International Workshop on Cellular Automata and Discrete Complex
Systems (AUTOMATA 2013) was organized by the Institut für Informatik of the
Universität Giessen and took place at the campus of natural sciences. It was a
three-day workshop starting September 17 and ending September 19, 2013. The
Universität Giessen is one of the older universities in the German-speaking part
of Europe. It was founded in 1607.

AUTOMATA 2013 continues a series of events established in 1995. The aims
of the annual workshops are:

– To establish and maintain a permanent, international, multidisciplinary fo-
rum for the collaboration of researchers in the field of Cellular Automata
(CA) and Discrete Complex Systems (DCS).

– To provide a platform for presenting and discussing new ideas and results.
– To support the development of theory and applications of CA and DCS (for

example, parallel computing, physics, biology, social sciences, and others) as
long as fundamental aspects and their relations are concerned.

– To identify and study within an inter- and multidisciplinary context, the
important fundamental aspects, concepts, notions and problems concerning
CA and DCS.

This volume contains the invited contributions and the accepted full papers of
AUTOMATA 2013. We would like to thank the invited speakers

– Nazim Fatès (Inria Nancy Grand-Est, Nancy, France)
– Enrico Formenti (University of Nice Sophia Antipolis, Nice, France)
– Pedro de Oliveira (Mackenzie Presbyterian University, São Paulo, Brazil)

for accepting our invitations and presenting us several diverse perspectives on
cellular automata.

There were 15 full and 11 exploratory papers submitted to AUTOMATA
2013 by a total of 47 authors from 17 different countries, from all over the
world, Belgium, Brazil, Chile, China, Finland, France, Germany, India, Italy,
Japan, Montenegro, Poland, Slovenia, Spain, Ukraine, United Kingdom, and
USA. We would like to thank all authors for their contributions. From the 15
full papers submitted the Program Committee selected 8 papers on the basis
of three referee reports each. Contributions in the exploratory category are not
included in this volume. The submission and refereeing process was supported by
the EasyChair conference management system. We warmly thank the members
of the Program Committee for their excellent work in making this selection. We
also thank the additional external reviewers for their careful evaluation. All these
efforts were the basis for the success of the workshop. The collaboration with
Springer for preparing this volume was very efficient and pleasant. We like to
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thank in particular Alfred Hofmann and Anna Kramer from Springer for their
help.

We are also grateful to the additional members of the Organizing Committee
consisting of Susanne Gretschel, Markus Holzer, Sebastian Jakobi, Katja Meckel,
Julien Provillard, Heinz Rübeling, and Matthias Wendlandt for their support of
the sessions and the accompanying events.

Finally, we are indebted to all participants for attending the workshop. We
hope that this workshop will be a successful and fruitful meeting, will bear
new ideas for investigations, and will bring together people for new scientific
collaborations.

September 2013 Jarkko Kari
Martin Kutrib

Andreas Malcher
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Conceptual Connections around Density

Determination in Cellular Automata

Pedro P.B. de Oliveira

Universidade Presbiteriana Mackenzie, Faculdade de Computação e Informática,
Rua da Consolação 896, Consolação, 01302-907 São Paulo, SP – Brazil

pedrob@mackenzie.br

Abstract. A recurring and well studied benchmark problem in the con-
text of computations with cellular automata is the attempt to determine
which is the most frequent cell state in an arbitrary initial configuration.
Although extremely simple in formulation, the problem has unveiled a
rich web of conceptual connections which, at the same time, have en-
larged and challenged our understanding about how to perform com-
putations within cellular automata. Here, we outline such a conceptual
web, and provide a personal assessment of some of its loose ends, with
possibly fruitful paths to address them.

Keywords: Density classification task, DCT, global majority problem,
emergent computation, cellular automata, number conserving rule.

1 Introduction

By looking up the cellular automata (CAs) literature in order to find out which
are the most well studied computation performed by them, two tasks readily
come out: the firing squad synchronisation problem and the density classification
task, the latter outnumbered by the former. It is useful to compare the two.

In a simplified way, while the firing squad demands that a state synchronisa-
tion be achieved among the various cells of the entire lattice, density classification
imposes that a decision be made, based upon information gathered over the en-
tire lattice, namely, the more frequent cell state; in both cases, the effectiveness
of the computation carried out is granted according to their reaching predefined
global configurations, after sufficiently long time.

Crucial in these problems is the existence of trivial solutions by processes al-
lowed global access to the entire lattice; this is naturally forbidden by a CA based
solution, by definition, so as to enforce that the solution to a global problem be
achieved by purely local means.

Notwithstanding such a necessary similarity, it is useful to identify differences
between the two problems. While the firing squad can be solved by a single rule
(with many examples already known, in fact), density classification cannot.

Also, while the CAs related to the former task have typically been obtained
through stepwise and careful thought-out engineering, many times supplemented
by formal methods, the CAs for the latter have been most effectively found by

J. Kari, M. Kutrib, and A. Malcher (Eds.): AUTOMATA 2013, LNCS 8155, pp. 1–14, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



2 P.P.B. de Oliveira

search methods, mostly evolutionary, in the space of possible rules. Additionally,
density classification is structurally much simpler than the firing squad, in that
it has a much simpler definition; it is more general in terms of the notion it is
based upon – that of a majority – which also appears in various other contexts
in science; it is more abstract, insofar as the notion of majority provides a direct
link to the formal language notion of context sensitivity; and also more flexible
in terms of the variations it admits.

So, such a diverse combination of features renders density classification a
paradigmatic testbed for studying computations in the context of cellular au-
tomata ([Mitchell, 1998]). As such, much have already been learned in its respect,
which ended up unveiling a web of conceptual connections, far beyond its original
motivation of a mere tool to help addressing the notion of fault tolerance in cel-
lular automata. Nevertheless, very challenging questions have been opened up,
several of them still in need of a response. It is about those conceptual connec-
tions and their current loose ends that this paper is about, even if in condensed
form.

In the following section we define the problem, and in the next we examine
what is known and what remains unknown so far about it. The subsequent
section concludes, by providing a personal assessment of some open issues still
challenging us, and possibly fruitful paths to address them. The presentation
has a survey flavour, systematic but general, with various details omitted.

2 Density Classification

Cellular automata (CAs) consist of a grid-like regular lattice of cells, together
with a state transition rule, the cells having an identical pattern of local connec-
tions to others, the lattice being subjected to some boundary condition, usually
periodic ([Wolfram, 2002]; [Kari, 2005]). Each cell can take on one of k discrete
states, assumedly varying from 0 to k-1, and the neighbourhood of a cell is de-
fined as the cell, together with those connected to it. The rule yields the next
state for every cell, as a function of its neighbourhood; at each time step, all
cells synchronously have their states updated. The size of the neighbourhood is
usually written as 2r+1, where r is the radius (or range) of the automaton. The
particular case of binary one-dimensional CAs with r = 1 yields the so-called
elementary CA rules and its corresponding elementary space.

In order to refer to rules of any given space, their numbers are defined herein
according to Wolframs standard lexicographic ordering of the state transitions,
in that the rule number is the decimal representation of the state transition
outputs, with the left-most output referring to the neighbourhood consisting
of all cells in the state k − 1, with the remaining state transitions ordered in
lexicographic order, down to the right-hand neighbourhood that consists of all
cells in the 0-state.

In its standard and simplest formulation, the density classification task (DCT,
for short) states that a binary, one-dimensional CA has to converge to a final
configuration of all cells being in the 1-state, when an odd-sized initial configura-
tion, in periodic boundary condition, has more 1s than 0s, and to a configuration
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of all 0s, otherwise; Figure 1 illustrates the two cases. This is essentially the case
of global majority determination in the initial configuration, even though for
historical reasons the reference to density has been used, in reference to the
percentage of 1s (or 0s), in which case one may refer to the problem as the
determination of ρ > 1/2.

While solving the DCT is a trivial task for any computational system with
central control, this not the case for any fully distributed system, with local pro-
cessing, as a cellular automaton. Solving the DCT has attracted attention in the
literature in particular due to the hope that good results achieved by a specific
technique for density decision could carry over to other cellular automata based
problems; furthermore, on a broader sense, majority determination is paradig-
matic in various areas of science, as a model of how global phenomena come
about from locally constrained action ([Moreira, Mathur, Diermeier and Ama-
ral, 2004]), also appearing in other contexts of computer science ([Flocchini,
2009]) and even the social sciences (for instance, [Lanchier and Neufer, 2013]).

Fig. 1. Temporal evolution (with time running downward) of one of the best rules
described in [Wolz and de Oliveira, 2008] in the one-dimensional DCT, from random
initial configurations of size 149, with more 0s on the left, and more 1s on the right
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3 What Is Known and What Is Not

3.1 Standard Formulation

The standard density classification task was defined as such in [Packard, 1988],
but implicitly it had been around since 1978, after [Gacs, Kurdyumov and Levin,
1978]. But it was only in 1995 that the problem was proven to be impossible
to solve, by [Land and Belew, 1995]. Later, [Chau, Siu and Yan, 1999] proved
the impossibility of the k-ary version of DCT, and, building upon the proof of
[Land and Belew, 1995], [Reynaga and Amthauer, 2003] could prove that two-
dimensional DCT cannot be solved either. Apparently, no proof has been given
of the impossibility of DCT in arbitrary lattice dimensions, but it is generally
believed that this is indeed the case.

An alternative path leading to the unsolvability of DCT comes from its rela-
tion to the general properties of conservation and balancedness of a rule. A rule
is conservative (or specifically number conservative, which is the case at issue)
if it is able to preserve the sum modulo k of the states in all cells, throughout
any temporal evolution; and a rule is said to be balanced when its k-ary rep-
resentation has all k states equally represented. For example, elementary rule
184 (or its dynamically equivalent 226) is number conserving, regardless of the
initial binary sequence in the lattice, since the number of cells in the 1-state is
kept unchanged throughout the temporal evolution. So, [Capcarrère and Sipper,
2001] showed that the possibility of solving d-dimensional DCT (for any d inte-
ger) would require the rule to be able to be both conservative and balanced. But
since [Fukś, 2000] had proven that conservation entails balancedness, solving d-
dimensional DCT would require the rule to be conservative which, by definition
of the standard formulation of DCT, is a contradiction.

The fact is that after the impossibility of solving the standard DCT formula-
tion became established, research efforts shifted, in this context, towards looking
for the best rule that could solve the problem as perfectly as possible. The DCT
for one- and d-dimensional cellular automata shares many properties with other
problems suitable for evolutionary algorithms. As such, using different search
techniques, mostly evolutionary computation methods, various attempts have
been made and, over time, better and better rules have been found. The search
for one-dimensional, binary, radius 3 rules of size 149 turned out to become the
standard benchmark setting used by many authors to document the abilities of
their evolutionary search techniques.

Using sophisticated evolutionary techniques [Wolz and de Oliveira, 2008] found
over 7000 previously unknown rules (in 3000 distinct equivalence classes) with
efficacy >85.91%, and over 9500 rules with efficacy >85.50%, both figures ob-
tained with evaluations against half a million initial configurations, randomly
generated with binomial distribution of densities. The rule table symmetries
that define dynamically equivalent rules play a significant role in guiding the
search towards better rules. The (supposedly) best rule found, and its unique
symmetric equivalent, score 88.99%. After so many extensive searches carried
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out, it seems likely that these two rules might indeed be the best imperfect rules
for DCT; however, the challenge to prove this observation remains open.

As far as the standard two-dimensional DCT is concerned, [Bus̆ić, Fatès,
Mairesse and Marcovici, 2013] shows that the so-called Toom’s rule, perfectly
solves the two-dimensional DCT, but only with infinite two-dimensional lat-
tice; with finite lattice sizes, as stated in [Fatès, 2012], the rule performs very
badly. On a distinct slant, [Reynaga and Amthauer, 2003] performs an attempt
to construct a two-dimensional generalisation of the GKL rule – after [Gacs,
Kurdyumov and Levin, 1978], the first ever rule proposed for one-dimensional
DCT, at the very inception of the problem – which did perform better than
Toom’s rule (as noted in [Fatès, 2012]), but lagged behind the best rule shown
in [Oliveira and Siqueira, 2006] and even in [Morales, Crutchfield and Mitchell,
2000], both by evolutionary means.

[Wolz and de Oliveira, 2008] still seem to hold to this date the best results
for two-dimensional DCT. While the best score reported with Moore neighbour-
hood in [Oliveira and Siqueira, 2006] was of about 70%, on a sample of 10000
initial configurations of size 21× 21, randomly generated with uniform distribu-
tion of densities, [Wolz and de Oliveira, 2008] reports on more than 1000 rules
at the same level, the best one reaching 83.3% on a sample of 1 million initial
configurations with uniform distribution of densities. Using von Neumann neigh-
bourhood with radius 2, the performance of the best rules found were around
81.0%. Experiments were also performed with the three-dimensional DCT, and
rules were found with von Neumann neighbourhood of radius 1, scoring around
76.0%, on lattice size 5× 5× 5.

From a different slant, also worth of mention is the result by [Gómez Soto
and Fukś, 2011], indicating that the local majority rule alone progressively im-
proves its performance in the d-dimensional DCT, as the dimensionality of space
increases. This conjecture, drawn from computational experiments and theoret-
ical arguments based on the mean-field approximation of CA rules, is yet to be
proven, though.

3.2 Alternative Formulations

Non-periodic Boundary Condition. Notwithstanding the unsolvability of
DCT in its standard formulation, the task can be perfectly solved if formulated
differently. Accordingly, [Sipper, Capcarrère and Ronald, 1998] showed that el-
ementary CA rule 184 alone can account for a solution, if periodic boundary
is replaced by fixed background of 0-states; the related previous supposed solu-
tion in [Capcarrère, Sipper and Tomassini, 1996] involving rule 184 in periodic
boundary condition is questionable, since it relies on global information.

Temporal Combination of Distinct Rules. On a different approach, [Fukś,
1997] showed that the standard DCT is solvable by the trivial combination of
running, in sequence, elementary rules 184 and 232, which are, respectively, the
conservative rule known as the traffic rule and the majority rule. More precisely,
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the author shows that the solution can achieved by running rule 184 for up to
�(N−2)/2� time steps, N being the lattice size, followed by running rule 232 for
additional �(N−1)/2� time steps; it is also remarked that in order to get a faster
rule, with radius T , it would suffice to compose rules 184 and 232 with themselves
T times, thus generating rules that can do in 1 time step what 184 and 232 do in
T steps. The paper then sketches the argument that with generalised versions of
the traffic and majority rules, it would be possible to classify any critical density
ρc = 1/n, n ≥ 2, n integer.

Following and extending this idea, [Chau, Yan, Wan and Siu, 1998] were able
to provide a solution for any rational density ρc, which generalises the previous
results. Pushing even further, [Chau, Siu and Yan, 1999] defined their affinity
and propagation rules, extended from what the traffic and majority rules do in
the previous solutions, and generalised the previous DCT solutions to the k-ary
case. However, in a sense, these rules are effectively classes of rules since the rule
radii are directly dependent not only on the number of states k (which is fine),
but also on the lattice sizeN . This entails that, for each lattice size, different rules
are effectively instantiated, thus rendering the approach somewhat questionable;
after all, if one is allowed to use such an information, it would trivially suffice
to construct specific majority rules with radius N/2. As hinted at in the paper,
the generalisation of the idea to arbitrary densities was on course but, as far as
I know, it has not come out; its generalisation to arbitrary dimensions has not
been carried out either, apparently.

[Kanoh and Wu, 2003] then showed another standard DCT solution with 2
rules, and [Martins and de Oliveira, 2005] showed 2 further solutions with 2 rules
and 24 solutions with 3 rules; in these latter cases, all the rules are elementary,
and the rule combinations have been found by evolutionary searches in the space
of possible combinations of a given size.

It is interesting that in the solution in [Chau, Siu and Yan, 1999] it becomes
clear that the first rule to be applied (the affinity rule) has to be conservative,
eventually providing a general explanation for the findings of [Fukś, 1997] and
[Chau, Yan, Wan and Siu, 1998], and bringing back the issue of conservation
to the context of density determination. In fact, from the algorithm [Boccara
and Fukś, 1998] had provided to determine whether an arbitrary binary one-
dimensional CA is conservative, the same authors provided a generalisation to
the k-ary case ([Boccara and Fukś, 2002]). It is tempting to think that better k-
ary solutions to DCT might exist out of the combination of the latter algorithm
with the result by [Chau, Siu and Yan, 1999].

Spatial Arrangement of Different Rules. Analogously to the idea of suc-
cessfully performing temporal combination of rules, one might ask about the
possibility of performing density determination by employing non-uniform CAs
– also known as hybrid or heterogeneous CAs – in which different cells in the
lattice are ascribed different rules ([Dennunzio, Formenti and Provillard, 2012]).
Although [Maiti, Munshi and Chaudhuri, 2006] clearly states that a solution to
density classification is given by means of one-dimensional, binary CAs (of arbi-
trary radii), in periodic boundary condition, only an approximate solution is in
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fact shown, with the authors even performing the error analysis of the supposed
solutions they derive; nevertheless, the technique employed therein, based upon
the analysis of the so-called rule vector graph (RVG) of a CA is quite promising.

More recently, [Naskar and Das, 2012] showed how to construct a binary, non-
uniform CA, with null boundary condition (i.e., fixed, on a background of 0s),
with finite number N of cells, that will always converge to either of the two
uniform configurations 0N or 1N and argue that such a doubly quiescent cellular
automaton could be used for density classification; although this seems a sensible
idea, the achievement is yet to be shown.

By adding the possibility of temporal rule combinations to a non-uniform CA,
a variant [Sahoo, Choudhury, Pal, Kumar and Nayak, 2009] defined and named
programmable cellular automaton, it was possible to derive exact solutions, not
surprisingly though, for both standard one- and two-dimensional DCT.

My own experience with the standard DCT favours the impossibility of a
solution, after extensive computational experiments showing that no solution
does exist out of testing all possible combinations of elementary CA rules in
lattices with 3, 5 and 7 cells, and that there is strong statistical evidence that
this should also be the case for lattices with 9 and 11 cells [de Oliveira, Faria,
Zanon and Leite, 2013]. All in all, as far as I am aware, no non-uniform solution
to DCT is presently available, although no proof has been given that it cannot
exist.

Rules with Memory. Another CA variant that has been used was to embed
memory in the CA processing; with this additional feature, [Stone and Bull,
2009] provided empirical evidence that an evolutionary search for good rules
in the standard DCT was facilitated. Analogously, [Alonso-Sanz and Bull, 2009]
showed that a given two-dimensional rule embedded with memory outperformed
the memoryless version in the two-dimensional DCT; more than that, the method
in fact led to a rule which seems to be currently the best known solution, with
performance around 90%, a figure that has to be taken with caution, since it
was obtained on a small set of only 10000 initial configurations, 149 cells long,
randomly generated with binomial distribution of densities. It remains to be
shown whether the usage of memory can lead to a perfect solution.

Stochastic Rules. By relaxing the deterministic feature of the cell updates,
we end up with a probabilistic CA. [Fukś, 2002] was the first to tackle DCT
following this approach, by defining an elementary type CA, with synchronous
update, where each state transition has a probability of leading to 0 or 1, except
the neighbourhoods 000 and 111 which, respectively, always lead to 0 and 1.
This rule can be described as if, for each cell independently, performing a shift
to the left with probability p1, a shift to the right also with probability p1, or
remaining in its original state with probability 1−2p1, for p1 ∈ (0, 1/2]; in other
words, the rule can be regarded as a probabilistic mixing of elementary rules 170
(the left-shift rule) and 240 (the right-shift rule).
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Later, [Schüle, Ott and Stoop, 2009] provided another elementary probabilistic
CA, also preserving deterministic state transitions for neighbourhoods 000 and
111, to 0 and 1, respectively, but in such a way that it can now be described as
performing, for each cell independently, an XOR with probability 1−p2, and the
majority with probability p2, for p2 ∈ (0, 1); this time the rule can be conceived
of as a probabilistic mixing of elementary rules 150 (the XOR rule) and 232 (the
majority rule).

Recently, [Fatès, 2013] discussed another elementary probabilistic CA (un-
veiled earlier, in a previous paper of the author). The approach in this case
relies on a more deterministic CA than the two predecessors, in that six, out
of the eight possible state transitions are deterministic, namely, 000→0, 001→0,
010→0, 011→1, 101→1 and 111→1. This rule, named the traffic-majority rule,
comes from the fact that it equates to a description in terms of the application,
for each cell independently, of elementary 184 (the traffic rule) with probabil-
ity 1 − p3 and elementary rule 232 (the majority rule) with probability p3, for
p3 ∈ (0, 1). Key to this rule is the fact that, while those in [Fukś, 2002] and
[Schüle, Ott and Stoop, 2009] are solutions in the statistical sense, the traffic-
majority rule is shown to have the property that it can solve DCT with arbitrary
precision, given sufficient time. But two remarks need to be made. First, that the
highest the targetted performance, the longer it takes for convergence Second,
that, given a lattice size, once the probability value p3 is adjusted for a target
performance, it does not necessarily carry over to other sizes; in fact, it is an
open question to this date how to obtain the correct probability value p3 of the
rule, for a given lattice size. Notwithstanding the latter two difficulties, obtaining
the rule is a quite remarkable result, in that it clearly shows that randomness
can be helpful to perform a computation which would not be possible otherwise.

Based on the success of the previous approach, [Fatès, 2012] discussed whether
it would be possible to devise a solution to the two-dimensional DCT from a gen-
eralisation of the latter. But the result was not satisfactory. In trying to achieve
a better rule, a different stochastic rule was devised, but this time with asyn-
chronous update, acting on pairs of cells. Such form of interacting particle system
eventually led to a performance that seems to equal it to the good deterministic
rule with memory shown in [Alonso-Sanz and Bull, 2009], as hinted at earlier.

[Bus̆ić, Fatès, Mairesse and Marcovici, 2013] also shows solutions with stochas-
tic CAs with synchronous update (the standard probabilistic CA) as well as with
asynchronous update (an interacting particle system, as they define). In this re-
spect, drawing on Toom’s rule (which is deterministic), an asynchronous rule
is defined that also solves two-dimensional DCT in infinite lattices. The paper
also discusses possibilities of solving one-dimensional DCT on the infinite lattice
size by means of three CA models, two deterministic and one probabilistic, all
conjectured to do the job. The formal approach carried out therein is powerful,
thus holding promise that it may also yield interesting results for finite lattices.

Different Update Schemes. In terms of deterministic asynchronous CAs for
one-dimensional density classification, scarce efforts were made to find rules by
evolutionary searches, with no success; for instance, [Tomassini and Venzi, 2002]
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evolved rules for three different updating schemes but only managed to find rules
that could not even outperform some known synchronous, imperfect rules of the
literature at the time. Furthermore, by showing that some elementary rules can
behave as universal pattern generators, [Vielhaber, 2012] recently introduced
the idea of computing by appropriately defining the update scheme of a CA, in
a deterministic fashion; with this, it becomes tempting to see whether a DCT
solution could be couched in this approach, even if this would be yet another
formulation of the problem.

4 Towards Tying up Some of the Loose Ends: A Personal
Assessment

The evolutionary search techniques described in [Wolz and de Oliveira, 2008],
originally targeted to the standard, one-dimensional formulation of the DCT,
ended up leading to unparalleled good results in all typical dimensions, to a
point that, to this date, the best rules mentioned therein remain the best of their
respective classes. Equally remarkable was that the same techniques have also
been successfully applied to another task, the parity problem, where the objective
is to determine the parity of the number of 1s in the initial configuration ([Betel,
de Oliveira and Flocchini, 2013]). It is this kind of carrying-over of automatic
design techniques that I believe will allow us to avail ourselves of more instances
of CAs that perform predefined computational tasks. Because of this, just like
the fruit-fly – Drosophila Melanogaster – has played a key historical role to the
field of evolutionary biology, I believe that the DCT will prove to have a similar
importance to evolutionary approaches in cellular automata.

In spite of all the efforts made throught the years, by different CA models and
design approaches, there are still many open questions, as pointed at earlier, at
specific parts of the text.

Among them, a crucial open question is the determination of which is (are)
the best possible imperfect rule(s) for a given rule radius. One difficulty that
the computational experiments have made evident is the lack a robust criterion
to compare rule performances. Issues like the size of the lattice and the kind of
sampling are critical for the corresponding scores; an illustrative discussion on
these issues is provided in [Oliveira, Martins, Carvalho and Fynn, 2009]. A re-
cent example is also symptomatic of this difficulty. In a very nice work [Kari and
Le Gloannec, 2012] showed a very good rule for one-dimensional DCT (their
ALTER1 rule, Wolfram number 313183699885809145441379072163672014912)
which, tested under 100 thousand initial configurations with binomial distribu-
tion of densities, scored best than the (possibly) best rule from [Wolz and de
Oliveira, 2008], that they named WdO (the same rule used to generate Figure
1, actually); it is also mentioned that around 20 others had been found that
also seemed better than WdO, but these are not unveiled. It turns out that AL-
TER1 had also been found (as well as their COE2) among the 3000 best rules
from [Wolz and de Oliveira, 2008] but, due to the more strict testing performed
therein (usually 500 thousand initial configuration as a baseline), ALTER1 had
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been placed in the seventh position among those 3000 rules, with a score of
88.71%, a contrast with the score reported in [Kari and Le Gloannec, 2012] of
89.66%. This is a crucial practical problem that requires a robust decision cri-
terion, either empirical or formal. Indeed, in the absence of such a conceptual
basis, even when various millions of initial configurations are employed, with
distinct density distributions, the decision does not necessary get crystal clear.

Another essential difficulty is that we still lack a way to analyse what is
required in a rule so that predefined computations be accomplished; and in the
case of search techniques towards rules with a given characteristics, we still lack
understanding of the general properties of the search space, so as to identify
which pathways should be followed. In this respect, [Vèrel, Collard, Tomassini
and Vanneschi, 2007] in a way goes about one such kind of analysis, even if mostly
as an illustration only. And as far as rule properties is concerned, the success of
[Wolz and de Oliveira, 2008] reinforces the fact the internal symmetries of a rule
are key to a successful design. But we need more.

One promising such pathway is the exploration of the connections between
DCT and conservative properties, a connection that has in a sense always perme-
ated the conceptual developments around the problem, as can be seen previously
in this paper.

In tune with the idea, [de Oliveira, 2004] had explored the possibility of de-
vising a parameter related to the conservative properties of the CA evolution,
as they might bear relevance to good rules for DCT. For that, an approach was
conceived, related to the property of (number) conservation of a rule ([Boccara
and Fukś, 2002]). Accordingly, in [de Oliveira, 2004] a parameter was defined
aimed at providing an estimate of the conservation degree of any given rule,
that is, a measure of the amount of number conservation entailed by the rule.

This idea was triggered from the rationale developed in [Fukś, 2000], that
density classification requires conservation; however, the standard DCT formu-
lation precludes conservative rules from being good DCT rules, because of the
imposition that the entire lattice should converge to either 0s or 1s. So, the intu-
ition in [de Oliveira, 2004] was that the conservative rules of a given search space
might be considered ‘beacons’ that good DCT rules should be attracted to, but
never reach. Following this idea and, given the absence of a way to generate
the conservative rules of the radius 3 space, so as to put that intuition under
test, [de Oliveira, 2004] defined a notion of conservation degree, based upon the
conservation condition established in [Boccara and Fukś, 2002] and showed that
good DCT rules were clearly correlated to high values of conservation degree.
The rules used for this evaluation were those available for [de Oliveira, Bortot
and Oliveira, 2006], which were in the range from about 80% to 86% efficacy.
But while the correlation with the defined measure was clear, the interpreta-
tion of this quantity was not, that is, although it had been derived from the
Boccara-Fukś conditions, the question arose as to whether the quantity was re-
ally measuring the supposed conservation degree of a rule. In fact, it was noticed
that the quantity might yield distinct values for rules belonging to the same class
of dynamical equivalence, which could not happen if the quantity definition was



Conceptual Connections around Density Determination in CA 11

correct. In the attempt to ‘fix’ the definition and answer the question of the
true meaning of the quantity, a careful analysis was carried out in [Schranko
and de Oliveira, 2010], which led to the ‘fixed’ version of the quantity and to
the conclusion that, even the new quantity could not really be considered a true
measure of the conservation degree of a rule. Nevertheless, the new definition
seems definitely associated with non-trivial conservative properties of a rule, its
value possibly being correlated to the rule proximity to conservative rules in
the space, so that, good DCT rules should have high value of the quantity, in
tune with the original intuition. The detailed analysis of the very good rules in
[Wolz and de Oliveira, 2008] in terms of their ‘fixed’ conservation degree should
provide rich insights into the issue.

Quite significantly, [Kari and Le Gloannec, 2012] managed to enumerate all
conservative rules with maximum internal conjugate-reflexion symmetry from
the radius 3 space, and showed that the aforementioned rule WdO is in fact
at Hamming distance 1 from one of the enumerated conservative rules, thus
strongly pointing at the truthfulness of the original intuition. It should also be
very fruitful to check such an observation for all 3000 very good rules from [Wolz
and de Oliveira, 2008]. The intuition that led [Kari and Le Gloannec, 2012] onto
the same pathway as [de Oliveira, 2004] of correlating DCT to conservation came
from a different perspective, namely, the idea by the first author of conceiving
a DCT rule that would had the same dynamical properties as the GKL rule,
but that would render the proof of these properties simpler; it is very interesting
that the rule had the notion of conservation at its core.

Finally, there is also a remarkable fact in the conceptual developments around
DCT that brings to mind the relation between simplicity and formal elegance.
Notice that while DCT cannot be solved by a single rule, no matter the size of
its radius, it can be solved in the domain of the simple elementary rules, be it
in the form of temporal combination of rules, or by blending elementary rules in
stochastic fashion. It is an appealing challenge ahead to see whether the power
of this simplicity can also be retained when doing spatial arrangements of rules,
in non-uniform CAs, and whether it scales up to larger dimensions.
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Abstract. Research on asynchronous cellular automata has received a
great amount of attention these last years and has turned to a thriving
field. We survey the recent research that has been carried out on this
topic and present a wide state of the art where computing and modelling
issues are both represented.

1 Introduction

Research on asynchronous cellular automata has gained momentum in the last
decade as it can be seen from the increase in the number of publications dedicated
to this topic or the organisation of scientific meetings dedicated to this topic.

Cellular automata are discrete dynamical systems that were initially con-
structed by von Neumann and Ulam to study self-reproduction from a logical
and mechanistic point of view [95]. The interest of cellular automata stems from
the simplicity of their structure: they are constituted of a collection of simple
automata, the cells, that are spatially arranged on a grid and which evolve ac-
cording to a local rule which gives the new state of a cell according to its previous
state and the previous states of its neighbours. Classically, cellular automata are
updated synchronously, that is, all cells change their state simultaneously at dis-
crete time steps and the global state of the system at a given time is obtained
from the information gained on the state of the system at the previous time.
This hypothesis has many advantages: with this type of updating, the system
is deterministic and simple to define. The use of a common shared time allows
one to simulate such systems very easily and, in some cases, to derive analytical
results on the behaviour of the rule. There are however some reasons why this
hypothesis of perfect synchrony could be questioned:

– When cellular automata represent a model of a natural system, one should
examine if there is a need of a global clock that synchronises the transitions of
the model. In particular, is this clock an external phenomenon (e.g., the daily
varying light of the sun) or is it an effect that emerges from the numerous
interactions between the components?

– When cellular automata are considered as a model of a massively parallel
computing device, then, operating such a device without having to distribute
the signal of a clock could have many advantages such as an increase in the
speed of computations, economy of energy, simplicity of design, etc.

J. Kari, M. Kutrib, and A. Malcher (Eds.): AUTOMATA 2013, LNCS 8155, pp. 15–30, 2013.
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These statements however do not unequivocally plead for the use of the asyn-
chronous models as opposed to their synchronous counterparts. Indeed, as soon
as the question of asynchrony is raised, numerous other questions have to be
answered ; for instance: What type of asynchronism should be used? What are
the properties of the system that are acquired or lost when turned from syn-
chronous to asynchronous ? How should we study the new system (analytically,
experimentally, etc.) ?

The purpose of this short review is to introduce the readers to the wide
landscape of asynchronism in cellular automata. As a first version destined to
the audience of AUTOMATA’13, and like all guided tours, it is not meant to
be exhaustive nor fully objective, but rather to introduce some entry points and
discussions on this wide topic. The author of the present text will be grateful
to all indications or corrections that will be given to him. Interested readers are
encouraged to check for updated versions of this text1.

2 Early Works

Nakamura was one of the first authors to investigate the computation abilities of
asynchronous cellular automata (ACA) [61]. He described several techniques to
construct universal ACA and showed how to simulate a given q-state determin-
istic CA with an ACA of the same neighbourhood whose state space is extended
to 3q2 states (see also Toffoli [90] and Nehaniv [63]).

The construction relies on the idea that if a cell is updated, it will then wait
the neighbouring cells to “catch up” and makes the next transition only when
all its neighbours are up to date ; additionally, it keeps its old state available for
the neighbouring cells in order for them to perform the “right” transitions. This
construction was later improved by the use of only q2 + 2q states by Lee, Peper
et al. [50,67].

Priese wrote a note where he considers (two-dimensional) cellular automata
as a particular case of asynchronous rewriting systems (semi-Thue-systems) and
widens the scope by considering also the case where more than one cell may be
re-written at a time (the overlapping problem) [69]. He uses his construction to
show how to build asynchronous circuits which are equivalent to asynchronous
concurrent Petri nets.

Following this path, Zielonka examined how asynchronous CA could be used
to describe the situations of concurrency that arise in distributed systems [19].
Pighizzini clarified the computing abilities of Zielonska’s models [68] and the
problem of how to determinise non-deterministic Büchi asynchronous cellular
automata was solved by Muscholl [60]. Droste generalised to pomsets the original
notion of Zielonska’s asynchronous mappings [25]; these questions was later re-
investigated by Kuske [26,45,46].

Readers wishing to learn more on the universality of asynchronous CA may
refer to the study by Takada et al., in which many important arguments and
useful references can be found [88].

1 See http://hal.inria.fr/hal-00845623 or visit the author’s web page.

http://hal.inria.fr/hal-00845623
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3 Numerical Simulations and Experimental Studies

At the same timewhen the systematic exploration of complete cellular spaces (such
as Elementary Cellular Automata) were carried out, authors have examined the
effect of asynchronism by the means of numerical simulation. Ingerson and Buvel
carried out a pioneering work were they could show that the behaviour of simple
rules could be overwhelmed by simple modifications [14]. Most importantly, they
questioned to which extent was the behaviour of a rule the consequence of the local
rule and to which extent it was due to the updating scheme.

Bersini and Detours explored the difference between the Game of Life and
closely related models with various updating schemes [10]. They observed a
“stabilising effect” of asynchronous updating. Their views were based on small-
size experiments, with grids no larger than 20*20 cells. With such lattice sizes,
they were able to observe that the Game of Life with asynchronous updating
may “freeze” on some fixed-point pattern that has a labyrinth aspect.

Schönfisch and de Roos gave a decisive impulse to the research on ACA
by comparing various updating schemes and by exhibiting clear examples to
show that the effect of these schemes could alter significantly the behaviour of
a CA [81]. They distinguish time-driven and step-driven updating methods, de-
pending on whether the updating of a cell is triggered by the determination of
an event given by a continuous time proper to each cell or by a global clock
which would send signals to all or part of the cells.

Note that it may be believed at first sight that “time-driven” methods provide
a more realistic simulation framework since the updating signal is not artificially
shared among cells. As shown by the authors themselves, this is not true since it
is easy to build a “step-driven” method that emulates a “time-driven” method:
as the update is sequential, the only relevant information for the evolution of
the updating is the order of updating, and a correspondence between the two
schemes can thus be established. Moreover, as various authors tend to believe,
even the hypothesis of sequentiality of events which states that no two updating
events can happen at the same time is not necessarily realistic. Indeed, this
hypothesis would be relevant only in the case where the transitions between
states are instantaneous. As this hypothesis is far from being valid in many
cases (especially in biological systems), a certain “degree of synchrony” between
cells should thus be assumed. As this degree is difficult to measure, the problem
is not so much about choosing the “right” model of updating but rather to
estimate the robustness of model, that is, the degree to which it is sensitive or
not to changes of its updating scheme.

This idea lead Fatès and Morvan to examine how the 256 Elementary cellular
automata (ECA) reacted to an updating where the degree of synchrony was
varied [33]. This updating scheme they used, named simply α-asynchronism2

2 Note that the terms α-asynchronism and α-synchronism have been both used and
are both relevant: the confusion comes from the fact that α is the name of the scheme
and the synchrony rate. We use here the term α-asynchronism, as it is the form that
was first proposed and which has been adopted by various authors such as Regnault,
Correia, Worsch, Fukś, etc.
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consists in updating each cell with probability α, the synchrony rate, and leaving
the state of the cells unchanged otherwise. In order to quantify the observations,
the authors used the value of the asymptotic density as a means to estimate
changes in the behaviour of the system. This parameter was considered as a
first approximation to detect changes in the behaviour: a strong variation of the
asymptotic density indicates that the system has undergone a transformation
while an absence of variation does not say anything on the stability of the system
as other modifications than the density may occur.

Despite its simplicity, this approach revealed that no direct relationship be-
tween the asynchronous behaviour and the “complexity” of the synchronous be-
haviour (Wolfram classes) existed. Four qualitative responses to variations were
remarked:

1. continuous variation of the behaviour (e.g. ECA 232),
2. discontinuity around α = 1 (e.g. ECA 2 or 110),
3. phase transition for a critical value αc < 1 (e.g. ECA 50),
4. non-regular behaviour (e.g. ECA 184).

An interesting development on the work of asynchronism concerns how it
mixes with traditional noise. Early references that address this question are a
paper by Gharavi and Anantharam, where they study a well-known result of
Toom [39], and the work of Kanada, which tackles ECA rules [44]. Mamei et
al. also considered this question for studying “complex decentralised pervasive
computing systems” that are models as two-dimensional binary CA [56]. The
most recent development is by Silva and Correia, who have given a detailed
account on robust or sensitive some ECA can be to asynchronism combined
with noise [83].

The case of asynchronous CA simulated on a non-regular topology was tackled
by Baetens et al., who examined an asynchronous updating with cells linked by
the frontiers of a Voronoi tessellation [5].

4 Phase Transitions

Blok and Bergersen showed that the Game of Life was subject to a phase tran-
sition when it was updated asynchronously [11]. They used alpha-asynchronism
and showed the existence of a transition from a “static” behaviour, where the
system would settle on fixed points, to a “living” behaviour where the system
evolves by forming labyrinth-like patterns. These authors identified that the
change of behaviour was a second-order phase transition that belongs to the
directed percolation universality class.

Fatès identified that directed percolation was also the “signature” displayed
by seven of the minimal ECA rules [27]. A special rule, namely ECA 178, was
shown to belong to the PC/DP2 universality class, a class very similar to DP
but where the each state 0 and 1 play a symmetric role.

The phase transition occurring in the Game of life was also re-examined in
detail, especially by studying how this phenomenon was affected by random
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perturbations of the topology of the CA [28,29]. The main finding was that
this phase transition was strongly dependent on the regularity of the grid and
that it was progressively “washed out” as links between cells were progressively
removed.

Another puzzling phenomenon was remarked [33]: two systems, started from
different initial conditions, but evolving with the same updating sequence, could
rapidly “coalesce” into the same state. This is not particularly surprising per se
except in the case where this coalescence phenomenon occurs even before the
system stabilises on a fixed point. Rouquier and Morvan studied systematically
the coalescence phenomenon for the 256 ECA [75]. Their study revealed that
it was possible to observe that some ECA would always coalesce, while other
would never coalesce, and that there existed some rules which displayed a phase
transition between a coalescing and non-coalescing behaviour, depending on the
synchrony rate.

5 Analytical Results

Compared to the experimental work devoted to asynchronous CA, analytical
results are relatively rare, but they are gaining momentum as more probabilistic
techniques are being developed.

One of the first analytical results of a systematic classification were given by
analysing the ECA with two quiescent states under fully asynchronous dynam-
ics [34], that is when only one cell is updated randomly at each time step. These
results were later extended by Regnault et al. tackling the case of α-asynchronous
updating [35] and by Chassaing and Gerin, who examined what was continuous
limit of the processes when the grid was made infinite [17].

Fatès and Gerin also examined how to classify the two-dimensional totalistic
CA with fully asynchronous updating [32]. They proposed a partial classification
of the 64 rules and an analysis of the convergence of some well-known rules.
Among the interesting phenomena remarked, they exhibited a list of rules, which
showed an “erratic” behaviour: the question was to determine if these rules
were exhibiting a non-converging behaviour or a “metastable” behaviour, that
is, if a (long) random sequence of updates could drive the system to a stable
state. By using techniques from automatic planning, Hoffmann et al. could solve
this problem for one rule and showed that it converged to a fixed point in (at
most) exponential time [41]. (See also the tutorial paper presented in the same
proceedings [31]).

Links between the notions of asynchrony and reversibility were examined by
Das et al. [79,21]. Wacker and Worsch also examined the question of reversibility
of ACA [96], but took a different point of view. This question is mainly open at
the moment and is currently explored by various angles.

Concerning the analysis of phase transition phenomena, Regnault carried out
a pioneering work by analysing in detail how the asynchronous minority rule
displayed various types of behaviour, depending on whether the von Neumann
and Moore neighbourhood was used [73] or even when more general graphs were
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considered [76]. Two different complementary views exist on phase transitions:
the most common way of describing a phase transition is to establish that for an
infinite system, a qualitative difference of behaviour occurs for an infinitesimal
variation of the control parameter. This second approach was adopted by Reg-
nault who could (partially) prove that for finite systems, this phase transition
corresponds to a variation of the convergence time from a linear to a polynomial
function of the system’s size [72].

Fukś and Skelton analysed three simple α-asynchronous rules [37]. They con-
sidered infinite systems with an initial Bernoulli measure as an initial condition
and determined how the asymptotic density varies as a function of the initial
density (that is, the parameter of the Bernoulli measure). Such results are gen-
erally rather difficult to obtain for the deterministic ECA.

6 Definitions of ACA and Their Mathematical Properties

Gács was one of the first authors to investigate the question of whether the evo-
lution of an asynchronous system could be independent of the order of updat-
ing [38]. He showed that although this property was undecidable, there existed
a sufficient condition to verify this independence.

These question was re-examined by Mortveit, Macauley et al., who studied in
which cases repetitions of sequential updates on Elementary Cellular Automata
could produce a set of periodic points that would be independent of the up-
dating order [54,55,53]. They obtained a list of 104 ECA which display such
an independence and, interestingly, proposed a new representation of ECA that
differs from the classical Wolfram code and that could prove useful for future
analysis of asynchronous systems. (Another alternative notation is presented in
Ref. [34]).

The possibility to simulate asynchronous rules by a universal asynchronous
simulator was examined by Worsch [97], who proved that there was an α-
synchronous host that could simulate any α-asynchronous guest that would be
updated with the same synchrony rate. This result can be even generalised to
other types of asynchronism such as fully asynchronous updating or to an even
wider variety of updating called “purely asynchronous updating”.

Manzoni examined how the dynamical properties of CA, such as injectiv-
ity, surjectivity, permutivity, etc., could be re-defined and studied in the asyn-
chronous updating context [57]. An extended definition of asynchronous CA
based on the use of probability measures was proposed by Formenti et al. [24].
Dennunzio et al. have proposed an original way to simulate a universal Turing
machine by the means of a fully asynchronous CA [23]. They introduce the no-
tion of “scattered strict simulation” in which they tolerate that only a subset
of cells is used to perform the simulation. They find that asynchrony induces a
quadratic slowdown compared to the speed of the simulated Turing machine.

Regarding the various possibilities to define asynchronous updating schemes,
Bandini et al. presented a formal description and analysis of various schemes
and tested their effects on one-dimensional binary rules where the local function
depends only on two neighbours (also called “radius-1/2” rules) [6].
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Finally, we want to mention the extension of asynchronism proposed by Bouré
et al.: while most approaches of asynchronism studied so far are based on the
dichotomy updated / not updated, this approach named β- and γ-synchronism,
models imperfect communication of states between neighbours [13]. The main
finding of the authors is that if many previously observed phenomena, such
as the existence of phase transitions that depend on the synchrony rate, are
reproduced, some unexpected phenomena also arise such as the conservation
of additional quantities (ECA 50) and the unexpected disappearance of some
phase transitions. This underlines the necessity to continue to propose various
perturbations of the “classical” CA in order to examine how their properties are
dependent on various hypotheses such as a perfect updating.

7 Computing with ACA

Tomassini and Venzi [91], Capcarrere [15] and Nehaniv [62] have studied how
interesting asynchronous cellular automata may be used to solve problems such
as the density classification or the global synchronisation. Readers interested in
this issue are referred to a study by Vanneschi and Mauri, in which an enlight-
ening discussion on these various contributions is found and where the authors
present findings of robust and generic rules [93].

Suzudo examined the use of genetic algorithms to find mass-conservative ACA
that would generate non-trivial patterns [86,87]. He classified these patterns into
three categories: checkerboards, stripes and sand-like. Although in this work
asynchronism is mainly used to ensure mass conservation, it appears also as a
useful means of generating regular patterns out of randomness, a task that is
known to be very difficult in the synchronous setting (see e.g. [30]).

Another major field of research on asynchronous CA was developed by Peper,
Lee and their collaborators. In their constructions, asynchronous computations
are realised with particles that follow Brownian movements and which interact
through special “gates” [3,2,49]. These constructions result in delay-insensitive
circuits that are Turing universal (see e.g. [47,51] and references therein). Re-
cently, Schneider and Worsch presented a 3-state CA that uses Moore neigh-
bourhood which can simulate any delay-insensitive circuit [80]. It is also worth
mentioning that these techniques also allowed the design of asynchronous models
of self-reproduction [48].

In an original line of thought, Vielhaber has designed a formal framework in
which computations are made by a proper use of the order of updating [94]. In
particular, he showed that ECA 57 with periodic boundary conditions was a rule
especially adapted for such a purpose.

8 Modelling with ACA

We are now close to end this guided tour and it is time to mention the work
devoted to modelling physical or artificial systems with asynchronous cellular
automata. While this part could be much more developed, we will keep it as
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short as possible and mention only a few entry points to the topic. The reason
is that there is a huge number of works which employ asynchronous cellular
automata, often without even mentioning the fact explicitly. We will thus try to
concentrate only on some papers where the question of the updating is explicitly
mentioned.

A good example is given by Huberman and Glance, who challenged the validity
of the simulations of spatially-extended models of the Prisoner’s dilemma on the
basis that asynchronous and synchronous updating lead to drastically opposed
conclusions [43]. This question was re-examined by Newth and Cornforth [64],
and Grilo and Correia [40], who used α-asynchronous updating to explore a
wide range of degrees of synchrony. Saif and Gade also investigated this issue
and found that there was a first order transition between a regime with an
all-defector state to a mixed state [78]. All these works share in common the
conclusion that many of the previously observed equilibrium states are mere
artifacts of a synchronous updating on a regular lattice.

Another interesting biological example is given by Messinger et al., who inves-
tigated the link between emergence of synchrony and the simultaneous opening
and closing stomatal arrays in plants [58].

In physics, Radicchi et al. [70] studied how simulations of an Ising spin system
would be dependent on the synchrony rate and also detected phase transitions.
(Note that contrary to the previously seen cases [27,73,29], the update rule is
here stochastic). Like Correia et al., the authors emphasise the fact that nei-
ther totally synchronous nor totally asynchronous updating is fully relevant for
modelling natural systems.

Ruxton and Saravia have discussed the importance of the ordering in the
context of ecological modelling, studying a stochastic model of colonisation of
an environment by a species [77]. They argue in favour of adapting the updat-
ing scheme to the physical reality of the system that is modelled. The authors
also emphasise the need to describe precisely the updating scheme that is used
in order facilitate the reproducibility of the experiments. An idea that is also
developed by Caron-Lormier et al. at the same time [16].

On the simulation side, Overeinder and Sloot were among the first to ex-
amine how to deal with the simulation on ACA on distributed systems [66].
Bandman and other authors studied how to simulate chemical systems with
asynchronous CA [8,82]. Hoseini et al. made an implementation of asynchronous
CA with FPGAs [42]. They propose a particular design of the FPGA in order
to construct a “conformal computer”, that is, a computer made of physical cells
“arrayed on large thin flexible substrates or sheets. Sheets may be cut, joined,
bent, and stacked to conform to the physical and computational needs of an
application” [42].

On the applications side, we mention the work of Bandini et al., who used
asynchronous CA with memory for the design of an illumination facility [7]
and the work or Minoofam et al., who applied asynchronous CA for producing
calligraphic patterns in the Arabic language (Kufic style) [59].
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9 Asynchronism in Similar Models

We end this guided tour on an opening on the issue of asynchrony in the models
of computation that have a structure similar to cellular automata. In fact, this
topic is again so wide that it will not be possible to fully cover it and we will be
obliged to indicate only a few recent papers and entry points to the topic.

One first proposition to link the updating in multi-agent systems and cellu-
lar automata was made by Cornforth et al., but the models they studied are
in fact standard asynchronous cellular automata [20]. The question of how to
“translate” a multi-agent system with sequential updating into a synchronous
CA was tackled by Spicher et al. [84]. In order to model the displacement of the
agents, they proposed to operate with “transactional cellular automata” where
the movements of particles occur with the help of synchronous communications
between neighbouring cells. One positive effect of turning to the synchronous CA
is to remove the spurious effects that could be linked to a particular updating or-
der (the authors give the example of a model of Diffusion-Limited-Aggregation).

The link between large-scale multi-agent systems and asynchronous cellular
automata was also examined by Tošić [92]. This author argues that the structure
of cellular automata needs to be modified in several aspects, among which it
should be made asynchronous, in order to serve as a basis for modelling large
groups of interacting agents.

An alternative approach to model (discrete) multi-agent systems was pro-
posed by Chevrier and Fatès, who studied the dynamics of a simple multi-
turmite systems, also known as multiple Langton’s ants. Their formalism, in-
spired by cellular automata, captures the possibility to have synchronous in-
teracting agents [18]. The difficulty relies in describing how to solving conflicts
that occur when two or more agents simultaneously want to modify the environ-
ment. The solution relies on a framework invented by Ferber and Muller called
influence-reaction [36]. Belgacem and Fatès later extended this work by consider-
ing a wider range of updating procedures and discovered some phenomena (e.g.,
gliders) that resisted variations in the updating choices [9].

Bouré et al. designed a first version of an asynchronous Lattice-Gas Cellular
Automaton (LGCA) [12]. Their proposition can be seen as a bridge between cell-
based updating and agent-based updating. In this model, movements of particles
are defined explicitly, like in multi-agents, but the updating is made cell by cell,
like in classical cellular automata. Various responses to asynchrony are observed
depending on the patterns on which the system stabilises: stripes or clusters are
robust while checkerboards, a somewhat paradoxical pattern, are shown not be
robust. This construction needs however to be completed as there is to date no
agreement on what an asynchronous LGCA should be, in particular on how to
respect the locality of the model in the asynchronous setting.

The effect of asynchronous updating in genetic regulatory networks has also
been investigated by many authors, for instance, Aracena et al. [4], Sené et
al. [22], and Noual [65]. These authors examine the robustness of the system
under the variation of updating schemes and this perturbation is coupled with
various topological modifications of the network such as adding or removing links
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in the graph or changing boundary conditions. The question of the effect of a syn-
chronous updating in neural networks has been discussed by Taouali et al. [89].
In particular, the authors introduce an interesting distinction between the use
of (a)synchronous updating at the modelling level and at the implementation
level.

To end this tour, we mention that various works studied the differences be-
tween synchronous and asynchronous updating in coupled map lattices [52,74,1].
Similarly, the effects of the updating in the Asymmetric Exclusion Process
(ASEP) have been studied by Rajewsky et al. [71].
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76. Rouquier, J.B., Regnault, D., Thierry, É.: Stochastic minority on graphs. Theoret-
ical Computer Science 412(30), 3947–3963 (2011),
http://dx.doi.org/10.1016/j.tcs.2011.02.028

77. Ruxton, G., Saravia, L.: The need for biological realism in the updating of cellular
automata models. Ecological Modelling 107(2), 105–112 (1998)

78. Saif, M.A., Gade, P.M.: The prisoner’s dilemma with semi-synchronous updates:
evidence for a first-order phase transition. Journal of Statistical Mechanics: Theory
and Experiment 2009(7), P07023 (2009),
http://dx.doi.org/10.1088/1742-5468/2009/07/P07023

79. Sarkar, A., Mukherjee, A., Das, S.: Reversibility in asynchronous cellular automata.
Complex Systems 21(1), 71 (2012),
http://www.complex-systems.com/abstracts/v21_i01_a05.html

80. Schneider, O., Worsch, T.: A 3-state asynchronous CA for the simulation of delay-
insensitive circuits. In: Sirakoulis, G.C., Bandini, S. (eds.) ACRI 2012. LNCS,
vol. 7495, pp. 565–574. Springer, Heidelberg (2012),
http://dx.doi.org/10.1007/978-3-642-33350-7_58

81. Schönfisch, B., de Roos, A.: Synchronous and asynchronous updating in cellular
automata. BioSystems 51, 123–143 (1999)

82. Sharifulina, A., Elokhin, V.: Simulation of heterogeneous catalytic reaction by
asynchronous cellular automata on multicomputer. In: Malyshkin, V. (ed.) PaCT
2011. LNCS, vol. 6873, pp. 204–209. Springer, Heidelberg (2011)

83. Silva, F., Correia, L.: A study of stochastic noise and asynchronism in elemen-
tary cellular automata. In: Sirakoulis, G.C., Bandini, S. (eds.) ACRI 2012. LNCS,
vol. 7495, pp. 679–688. Springer, Heidelberg (2012),
http://dx.doi.org/10.1007/978-3-642-33350-7_70

84. Spicher, A., Fatès, N., Simonin, O.: Translating discrete multi-agents systems into
cellular automata: Application to diffusion-limited aggregation. In: Filipe, J., Fred,
A., Sharp, B. (eds.) ICAART 2009. CCIS, vol. 67, pp. 270–282. Springer, Heidelberg
(2010)

85. Stark, W.R., Hughes, W.H.: Asynchronous, irregular automata nets: the path not
taken. BioSystems 55, 107–117 (2000)

86. Suzudo, T.: Searching for pattern-forming asynchronous cellular automata – an
evolutionary approach. In: Sloot, P.M.A., Chopard, B., Hoekstra, A.G. (eds.) ACRI
2004. LNCS, vol. 3305, pp. 151–160. Springer, Heidelberg (2004)

87. Suzudo, T.: Spatial pattern formation in asynchronous cellular automata with mass
conservation. Physica A: Statistical Mechanics and its Applications 343, 185–200
(2004), http://dx.doi.org/10.1016/j.physa.2004.06.067

88. Takada, Y., Isokawa, T., Peper, F., Matsui, N.: Construction universality in purely
asynchronous cellular automata. Journal of Computer and System Sciences 72(8),
1368–1385 (2006), http://dx.doi.org/10.1016/j.jcss.2006.04.006
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Abstract. This text presents some notes on the classification of simple
rules in one and two dimensions. We focus on the 256 Elementary Cellular
Automata and the 64 totalistic rules with von Neumann neighbourhood.
The updating scheme is fully asynchronous updating, that is, only one
cell is updated randomly and uniformly at each time step.

While a partial classification of such rules has been proposed some
years ago, very few progress has been made since then. In order to spot
the obstacles to a complete classification, we here mainly adopt an exper-
imental approach based on the observations of the space-time diagrams.
We also give some sketch of proofs when possible and underline the in-
teresting open problems.

1 Introduction

This note looks at the problem as to whether asynchronous cellular automata
(CA) are simpler or more difficult to study that their synchronous counterparts.
This question may seem naive at first sight: since there are some asynchronous
CA that are universal in many senses [8,12], the complexity of their dynamics
is maximal. However, the question might be more interesting if we restrict its
scope to some finite sets of rules such as the 256 Elementary Cellular Automata
(ECA) or, in two dimensions, to the 64 totalistic rules with nearest neighbours
interaction.

ECAs have a wide diversity of behaviours and we refer to the work of Schüle
and Stoop for a recent development on their classification [11]. As far as asyn-
chronous ECAs are concerned, we proposed classification of a subset of these
rules based on the measure of the convergence time to a fixed point [4]. We em-
ployed fully asynchronous updating, that is, only one cell is updated at random
at each time step. This updating scheme greatly simplifies the study of the dy-
namics of the rules as no simultaneity is allowed in the transitions. In the case of
α-asynchronous dynamics, where cells are updated independently with a given
probability, the work or Regnault et al. [5] and Fukś and Skelton [6] showed that
the analysis turns out to be much more intricate. The two-dimensional case was
tackled for the 64 totalistic rules with von Neumann neighbourhood but then
again, understanding the dynamics was much more difficult and we could only
propose a few rigorous calculations of the convergence properties [3].
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How can we give a more complete view on these simple asynchronous CA?
We propose here to observe experimentally the behaviour of the rules that have
not been completely understood yet. When possible, we will sketch some proofs
of their convergence properties. Our aim is to determine whether the complexity
displayed by the simple rules relies only on the synchronous updating. If so, then
we can expect that by putting randomness in the updating, many mechanisms
that make the system complex will be broken and the system will be easier to
study. However, it may also well be that randomness overwhelms the behaviour
in such a manner that it makes the system much more difficult to study...

2 Definitions

For the sake of simplicity, we begin by defining one-dimensional cellular au-
tomata. These definitions will be adapted to the two-dimensional case in Sec. 4.
Let Λ = (Z/nZ) represent a set of n cells arranged in a ring. A cellular automa-
ton is a dynamical system constituted of cells that are arranged on Λ; each cell
can hold a state which is binary (denoted by 0 and 1), and a configuration is the
state of the system at a given time ; the configuration space is En = {0, 1}Λ, it
is finite and we have |En| = 2n.

We denote by |x|P the number of occurrences of a pattern P in x. The density
ρ(x) of a configuration x ∈ En is the ratio of 1s in this configuration: ρ(x) =
|x|1/n. We denote by 0 = 0Λ and 1 = 1Λ the two special uniform configurations.
A cellular automaton is defined by using a neighbourhood N = {n1, . . . , nν}.
It is a set of size ν, where an element ni ∈ Λ represents the displacement that
links a cell to its i-th neighbour. The behaviour of a CA is given by a local
transition function f : Qν → Q which specifies how a cell updates its states
according to the state of the cells in its neighbourhood. An Elementary Cellular
Automaton (ECA) is defined with the neighbourhood N3 = {−1, 0,+1} and a
local transition rule, a function f : {0, 1}3 → {0, 1}. For a given ring size n,
the global transition rule associated to f with a synchronous updating is the
function f : En → En that maps a configuration xt to a configuration xt+1 such
that: ∀i ∈ Λ, xt+1

i = f(xt
i−1, x

t
i, x

t
i+1).

We are here interested in examining the behaviour of CA under fully asyn-
chronous updating, that is, when only one cell is updated at each time step. Let
(Ut)t∈N be a sequence of random variables that define at each time step which cell
is updated. A fully asynchronous ECA is the stochastic process (xt)t∈N defined
recursively with x0 = x and:

xt+1
i =

{
f(xt

i−1, x
t
i, x

t
i+1) if i = Ut

xt
i otherwise.

2.1 Classification of Rules and States

The state space of a synchronous CA can be represented as an oriented graph
where the vertices are the configurations and where an edge links a configuration
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and its successor. Because of the deterministic nature of the system, this graph
can be described as a collection of connected components where each connected
component is itself a collection of trees rooted on one cycle (this type of graph
is also called a pseudo-forest). The leaves of the tree are garden-of-Eden config-
urations, the configurations on the trees represent the transient configurations
and the configurations on the cycle represent the periodic configurations.

In a truly asynchronous system, cycles no longer exist and the structure of
the graph described above does not hold any more. The behaviour of the system
can be described with a Markov chain, which allows one to divide the state space
into two types of configurations: the recurrent and transient configurations. The
recurrent configurations are the states that are visited an infinite number of
times while the transient configurations are visited only for a restricted (ran-
dom) amount of time. As it is usual in Markov chain theory, this division can be
formally established by partitioning the state space into communication classes,
that is, classes that are created by an equivalence relation which relates two
configurations that are reachable one from the other. (By convention each con-
figuration communicates with itself).

A special attention can be given to the fixed points, that is, to the commu-
nication classes of size 1. Indeed, the synchronous and asynchronous systems
share the same fixed points. Fixed points physically represent the stabilisation
of the system and in the case where the CA are used as a model of computation,
they can be interpreted as the end of a calculus (a good example is given by
the density classification problem, see e.g. [2,1]). In this work, we are interested
in classifying the rules according to the existence and reachability of their fixed
points and according to the maximum time needed to reach a fixed point.

Formally, for a given CA rule and a given system size n, let Tx represent the
rescaled convergence time to a fixed point, when starting from x ∈ QΛ: it is the
actual time t need to attain a fixed point divided by n. This is a random variable,
whose realisation depends on the sequence of updates that has been chosen. We
are interested in E[Tx], the average time needed to converge to a fixed point and
more specifically by the maximum of this quantity over all configurations of size
n. For a ring size n, the worst expected convergence time in average (WECT) of
the CA is defined by:

WECT(n) = max
{x∈QΛ}

E[Tx]

3 Elementary Cellular Automata

Our aim now is to re-examine the classification of the rules according to the
scaling of WECT as a function of the system size n. Of course, such a classifi-
cation will be relevant only if the form of the function can be directly related to
the actual behaviour of the system. Our thesis is that the WECT is not a mere
quantitative estimation but that, in fact, it can be considered as a “signature”
of the behaviour of the CA under fully asynchronous updating.

Before we jump into the scrutiny of the rules, let us first present a notation
to refer to the ECA. The most common way to refer to an ECA f is to use
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the Wolfram code, that is, a number between 0 and 255 calculated with the
formula: W (f) = 20f(0, 0, 0)+21f(0, 0, 1)+ · · ·+27f(1, 1, 1). In words, this code
corresponds to the decimal equivalent of the bits of the transition table of the
ECA, with the least significant bit f(0, 0, 0) on the left (the table has thus to be
“reversed”).

As a complementary way to study these rules, we propose to refer to an ECA
by its “transition code” (T-code in short). We associate each transition to a

letter according to the code of this table:
A B C D E F G H
000 001 100 101 010 011 110 111

.

We refer to an ECA as the list of letters that represent the active transitions,
that is, the transitions which produce a change of state. For example, the ma-
jority rule is associated to the code DE since only the transitions (1, 0, 1) and
(0, 1, 0) are active. The identity rule is denoted by the special code I.

Note that the ordering of the T-code differs from Wolfram’s code: the first
four letters A,B,C,D and the last four letters E,F,G,H, have 0 and 1 as a center
cell, respectively1. This ordering has the following advantage. First, knowing the
code, it is very easy to get the symmetric rule obtained by the permutation of
left and right: the new T-code is simply obtained by exchanging the letters B and
C, on the one hand, and F and G, on the other hand. To get the rule symmetric
by exchanging the 0 and 1 states, the letters A and H, B and G, C and F, D and
E should be exchanged.

The second advantage of the notation is to provide a kind of “profile” of the
rule as it points out the effect of each transition individually. For instance, a rule
which has many active transitions is likely to produce more activity (changes
in the cells’ state) than a rule with less active transitions. Moreover, as each
transition is labelled separately, it is easy to group transitions with similar effects
when only one cell is updated. In particular:

– A and H indicate if the state 0 or 1 are quiescent, respectively.
– B and F (resp. G and C) commend the movement of 01 (resp. 10) frontiers.
– D and E enable the merging of regions of consecutive 0s and 1s, respectively.

The role of these groups of transitions will be made clearer when analysing the
rules in more detail. In this note, ECAs will be referred to by their classical
Wolfram code and by their T-code. As the symmetries mentioned above allow
us to reduce the state space to 88 equivalent classes, we will use for the study of
each class one rule, and unless otherwise stated, we will take the rule that has
the smallest Wolfram code and call this rule the minimal representative rule.

3.1 Double-Quiescent Rules

We start by presenting the main results that have already been established for
the double-quiescent rules, for which f(0, 0, 0) = 0 and f(1, 1, 1) = 1. (Their
T-code does not have an A or an H.) Interested readers should refer to Ref. [4]
for a full development of the following theorem.

1 This means that all happens as if the transitions (x, y, z) were sorted out with the
order yxz instead of xyz.
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Theorem 1. Among the 24 minimal double-quiescent ECA, 20 converge with
a finite WECT, and 4 have an infinite WECT. Their WECT falls into the
following categories:

0, lnn,Θ{n}, Θ{n2}, Θ{2n},∞

Table 1. Classification of 24 representative rules under fully asynchronous updating.
Note that not all of the rules are minimal representatives. The arrows←,→,� denote
the possible movements of the frontiers to the left, to the right or to both directions,
respectively. The + signs denote the possibility to merge consecutive regions of 0s or
1s with transitions E and D, respectively. See Ref. [4] for more details.

behaviour ACE (#) rule 010101 101010 010010010 101101101 WECT

identity 204 (1) I · · · · 0

coupon collector
200 (2) E · · + ·

Θ(ln n)
232 (1) DE · · + +

monotone

206 (4) B ← · · ·

Θ(n)

132 (2) BC ← → · ·
234 (4) BDE ← · + +
250 (2) BCDE ← → + +
202 (4) BE ← · + ·
192 (4) EF → · + ·
218 (2) BCE ← → + ·
128 (2) EFG → ← + ·

biased random
walk

242 (4) BCDEF � → + +
130 (4) BEFG � ← + ·

random walk

226 (2) BDEF � · + +

Θ(n2)

170 (2) BDEG ← ← + +
178 (1) BCDEFG � � + +
194 (4) BEF � · + ·
138 (4) BEG ← ← + ·
146 (2) BCEFG � � + ·

biased random
walk

210 (4) BCEF � → + · Θ(2n)

no fixed-point
convergence

198 (2) BF � · · ·
other type

142 (2) BG ← ← · ·
214 (4) BCF � → · ·
150 (1) BCFG � � · ·

3.2 Beyond DQECA: Towards the Classification of the 256 ECAs

We now examine empirically the convergence of the other ECAs by looking at
their space-time diagrams and propose some classes of behaviour. Though these
classes are first defined empirically, they are meant to be constructed analytically
since the membership to each class can be decided by calculating the WECT
(and sometimes additional properties such as the type of fixed points that are
reached).
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Very Fast Converging Rules. There is a set of rules which appear to converge
rapidly to a fixed point. We conjecture that these rules converge in a time that
is logarithmic with respect to the size of the configuration. We divide this set
into two classes:

– RCH: rapid convergence to a homogeneous fixed point,
– RCN: rapid convergence to a non-homogeneous fixed point.

In the RCH class, we find the following 16 minimal rules:

0, 2, 8, 10, EFGH,BEFGH,EGH,BEGH,
18, 24, 26, 32, BCEFGH,CEGH,BCEGH,DEFGH,
34, 40, 42, 50, BDEFGH,DEGH,BDEGH,BCDEFGH,
56, 58, 74, 106. CDEGH,BCDEGH,BEH,BDEH.

On the left column, we give the Wolfram code and on the right column, we give
the T-code. We keep this convention in the following.

We represent below space-time diagrams of four rules from this class:

0 - EFGH 26 - BCEGH 58 - BCDEGH 74 - BEH

These diagrams should be interpreted as follows. Time goes from bottom to
top; square in blue and white represent cells with states 0 and 1, respectively.
The time is rescaled by a factor 1/n: the transition from one line to the other
is obtained after n updates. (This explains some discontinuities in the groups of
cells). The ring size is fixed to n = 50 and the random evolution is represented
over 30 time steps. Recall that the space is a ring, which explains that some sets
of coloured cells seem to “appear”.

It should also be noted that the initial configuration is made of half of the
cells contiguously set to 1 and 0. This choice was made in order to allow for
a better visualisation of the transmission of information than with a random
initial condition.

In the RCN class, we find the following 10 minimal rules:

4, 5, 12, 13, FGH,AFGH,GH,AGH,
36, 44, 72, 76, DFGH,DGH,EH,H,
77, 104 AH,DEH.

We represent below space-time diagrams of four rules from this class:

4 - FGH 5 - AFGH 72 - EH 104 - DEH
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Linear Convergence. We now turn our attention to the rules which converge in
linear time as a function ofn. Surprisingly,we identified only two rules in this class:

78, 94 BH,BCH.

This contrasts with the fact that there are 10 DQECA with the same type of
behaviour.

We represent below space-time diagrams of these two rules:

78 - BH 94 - BCH

Production of Stripes. There are a certain number of rules which produce
stripes. However, by contrast with the two previously examined rules, these
stripes form a background above which particles may travel and merge or an-
nihilate. We call this class STR; it is constituted of the 10 following minimal
rules:

6, 7, 14, 15, BFGH,ABFGH,BGH,ABGH,
22, 23, 30, 37, BCFGH,ABCFGH,BCGH,ADFGH,
38, 45 BDFGH,ADGH.

We represent below space-time diagrams of four rules from this class:

6 - BFGH 37 - ADFGH 38 - BDFGH 45 - ADGH

The 7 first ECAs of this class produce 01-stripes; ECA 37 and 45 produce
001-stripes (which implies that the system can be observed to stabilise only if
n is a multiple of 3). The case of ECA 38 is much less clear and deserves to be
examined more carefully.

Non-converging Rules. The last class of rules, class NC, is constituted of the
rules for which no obvious convergence is observed when looking at the (finite)
simulations. This class can be subdivided into the three following classes:

– class PSL: Partial stabilisation with localised evolution,
– class NPF: rules that possess no fixed point,
– class NLE: noise-like evolution.

In the PSL class, we find 4 minimal rules:

28, 29, 73, 108. CGH,ACGH,AEH,DH.
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We represent below space-time diagrams of four rules from this class:

28 - CGH 29 - ACGH 73 - AEH 108 - DH

The class NPF is constituted of the rules for which it is possible to show
formally that there exists no fixed point (see a proof below). There are 39 such
rules, which correspond to the 13 following minimal representatives rules:

1, 3, 9, 11, AEFGH,ABEFGH,AEGH,ABEGH,
19, 25, 27, 33, ABCEFGH,ACEGH,ABCEGH,ADEFGH,
35, 41, 43, 51, ABDEFGH,ADEGH,ABDEGH,ABCDEFGH,
57. ACDEGH.

We represent below space-time diagrams of four rules from this class:

1 - AEFGH 27 - ABCEGH 43 - ABDEGH 57 - ACDEGH

Last, we put in the NLE class the remaining 9 minimal rules:

46, 54, 60, 62, BDGH,BCDFGH,CDGH,BCDGH,
90, 105, 110, 122, BCEH,ADEH,BDH,BCDEH,
126. BCDH.

We represent below space-time diagrams of four rules from this class:

46 - BDGH 60 - CDGH 110 - BDH 126 - BCDH

From the sole observation of the space-time diagrams, it is not clear whether
their WECT is infinite or whether it scales exponentially with the ring size n.

3.3 Sketch of Proofs

Logarithmic Convergence. To show the logarithmic convergence of the rules
of class RCH and RCN, we can for instance exhibit a function F : Qn → N
for which for each configuration x the probability to decrease (at least) by a
constant quantity is proportional to F (x). This is for instance easy to do with
ECA 0: by taking ∀x ∈ En, F (x) = |x|1, we recover the rules on the coupon-
collecting process already shown for the rule E and the majority rule DE (see
Ref. [4] for a proof). However, finding such a function for the other rules is not
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straightforward, even for ECA 2 (BEFGH), although this rule has only one single
transition that updates to 1. Indeed, some space-time diagrams indicate that the
problem of proving the logarithmic convergence of this rule needs new specific
techniques to be tackled in all its generality.

Linear Convergence. Proving the linear convergence of the two rules of class
LIN seems straightforward. It is interesting to compare the 10 DQECA that
also have a linearly scaling WECT with those which contain an additional H
transition in their T-code. We see that only B and BC do not change their
class of behaviour: the presence of a non-quiescent state significantly alters the
transmission of information except for these two rules. In their specific case,
it is easy to understand why H is not affecting the behaviour: B and BC can
be described as an expansion to the left or in both directions of state 1; the
transition H then only puts 0s in the middle of zones of 1s without perturbing
the propagation process.

Stripe Production. It can be observed experimentally that for the rules that
produce 01-stripes, the convergence depends on the parity of the ring size: for an
even value of n, the system converges to a fixed by the annihilation of particles
that follow a random walk. For odd values of n, no convergence is possible as a
single particle lives for ever and can not disappear by annihilation. For all these
rules, our conjecture is thus that the WECT scales quadratically with n on the
even values of n and is infinite for the other values. The same can of course be
generalised to ECA 37 and 45 for sizes that are multiples of 3. As mentioned
earlier, the case of ECA 38 appears as much more delicate and constitutes an
interesting open problem.

About the Rules Showing No Convergence. For the rules of the PSL
class, proving that their WECT is infinite looks rather easy. It is indeed possible
to construct a non-converging configuration of arbitrary size by joining stable
and non-stable parts together. For instance, for the rule DH (ECA 108), the
configurations 0n−310̇1 and 0n−311̇1 are sent respectively to each other each
time the unstable cell (shown with a dot) is updated. We leave the proof for the
other rules as an exercise for the interested readers.

Now, let us examine the class NCP. Figure 1 is a modified de Bruijn diagram
that gives the transitions that apply on each cell of a given configuration. Infor-
mally, it can be understood as a transducer where the configuration is parsed
from left to right and where the last two digits are remembered. One switches
from one step to the other according to the new state that is read (into brack-
ets on the figure) and the transition that applies is the letter on the arrow. A
configuration can thus be transformed as a sequence of letters where each letter
specifies the transition that can apply (see e.g. Ref. [4] for examples).

As a consequence, a given configuration is a fixed point of a rule if its sequence of
letters contains no letter that is in the T-code of the rule. It can thus be shown that
a necessary and sufficient condition for a rule not to admit any fixed point is the
impossibility to make a cycle on the de Bruijn diagram without producing a letter



40 N. Fatès

B [1]

C [1]

A [0]

F [1]

H [1]

G [1]

E [0]

D [1]

10

00

01

11

Fig. 1. De Bruijn diagram with letters of the T-code associated to the transitions

that is in theT-code of the rule. It is easy to show that a rulewhich has this property
verifies all the following conditions: (a) it contains an A and an H; (b) it contains
either a D or an E; (c) it contains either a B, a C, or an E; (d) it contains either a D,
an F, or a G; (e) it contains a B, a C, an F, or a G. We searched automatically the
rules that verify these five conditions and obtained the members of class NPF.

Last but not least, let us evoke the interesting case of the members of the
NLE class. First, all these rules but ADEH have in common that 0 is their only
fixed point. Indeed, if the T-code of a rule contains the letters B and D (or,
symmetrically C and D), then 0 and 1 are the only potential fixed points (their
existence is of course conditioned by A and H). This can be noticed by looking at
the de Bruijn diagram (see Fig. 1) and noticing that all cycles of length greater
than 1 are “broken”.

As a consequence, it can be easily seen that if the T-code of a rule contains a
B and D (or C and D), contains an H and does not contain an E, then this rule
has an infinite WECT. Indeed, for any ring size, the last 1 can not disappear at
this would imply that transition E is active. This sets the case of the following

rules:
46, 54, 60, 62, BDGH,BCDFGH,CDGH,BCDGH,
110, 126 BDH,BCDH.

There remain three rules, that can be analysed individually. We begin by
the rule BCEH (ECA 90) which corresponds to an XOR operation on the left
and right neighbours. This rules admits 0 as a fixed point and (110)n/3 as an
additional fixed point when n is a multiple of 3. We conjecture that this rule is
metastable, that is, it has a WECT that scales exponentially with the ring size.
To establish this result is another interesting exercise.

Rule ADEH (ECA 105) has the specificity to possess only one fixed point
(1001)n/4 for the ring sizes that are multiples of 4. However, even for this par-
ticular value of n, it can be verified that the fixed point can not be attained as
this would necessitate one of the transitions B, C, F or G to be active.

The last case that remains is rule BDEH (ECA 122). It can be noticed that
the T-code of the rule differs from rule BCEH (ECA 90) only by the additional
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presence of D, which does not modify the reachability of the fixed point 0. We
therefore conjecture that this rule is also a metastable one.

4 Classification of the Two-Dimensional Totalistic Rules

In order to complete our view on the classification of the most simple rules, we
now briefly look at the two-dimensional case, with a specific question in mind:
are there behaviours that are somewhat “specific” of this dimension or do they
reduce to the cases previously seen ?

We now use a square grid with periodic boundary conditions Λ = (Z/LZ)2.
For the sake of homogeneity, we denote by n = L2 the total number of cells of
the grid and still express the WECT as a function of n. We will consider only
the von Neumann neighbourhood: N5 = {(0, 0), (1, 0), (0, 1), (0,−1), (−1, 0)}.

The local functions we study are defined from {0, 1}5 to {0, 1} and we focus on
the functions that do not depend on the particular values of each cell but only on
the number of 1s in the neighbourhood. These rules, known as the totalistic rules,
can be written as: φ(q1, . . . , q5) = f(q1+ · · ·+ q5), where f : {0, . . . , 5} → {0, 1}.

There are 64 such totalistic rules. We associate to each function f the code
Ti where i = f(0) · 20 + f(1) · 21 + · · ·+ f(5) · 25. These can also be represented

by a transition table; the table of T10 is:
s 0 1 2 3 4 5

f(s) 0 1 0 1 0 0
.

By construction, all the rules are invariant under the spatial symmetries (ro-
tations by 90 degrees and reflections). However, a rule may not be invariant
by the exchanging 0 and 1. There are 23 = 8 rules which are invariant by 0/1
exchange and there are 26 minimal representative rules (that is, the rules with
the smallest code number when the 0/1 exchange is applied).

We propose here to briefly re-examine the classification we proposed with
Gerin where were mainly interested by the difference between polynomial and
non-polynomial types of convergence [3]. We now endeavour to give a more
precise description of the various behaviours.

Coupon Collector. (WECT: logarithmic): T0, T8, T16, T20.
The convergence of T0 is clear; we conjecture that the three other rules also
converge in logarithmic time. Below is an example of the evolution of T20:

t = 10 t = 20 t = 40 t = 50
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Fast Monotonous Convergence. (WECT: linear): T32, T36, T40, T48.
The system converges rapidly towards a fixed point with the optional presence
of “islands” or “seas”. Below is an example of the evolution of T36:

t = 4 t = 8 t = 16 t = 32

It is interesting to note that T60, the symmetric of T48, corresponds to the
rule of the Bootstrap percolation. Remark that only special initial conditions can
allow us to see why these rules have a linear and not a logarithmic convergence.
For instance, we believe that for T36 and T40, the configuration that has the
greatest WECT is the configuration where all cells are in state 1 but one, which
is in state 0.

Checkerboard-Like Convergence. (WECT: ?): T2, T3, T4, T14, T34.
The system converges towards a checkerboard-like pattern. We refer to the work
of Regnault et al. for a description of this type of convergence [9,10]. (This author
has focused his work on the minority rule but the rules of this class appear to
follow the same type of dynamics.) Below is an example of the evolution of T34:

t = 20 t = 40 t = 60 t = 80

We do not know what are the scaling laws of the WECT for these type of
dynamics and leave the question as another open problem.

Checkerboard Convergence. (WECT: undefined): T6, T7, T38.
The behaviour of these rules is similar to the previous one except that the system
converges only if the grid size is even. All happens as if these systems were less
tolerant to defects and had more conserved quantities than the rules of the
previous class (this can happen if, for instance, defects can only annihilate by
pairs). This makes the WECT undefined as it depends on the parity of n.
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Metastable Behaviour. (WECT: exponential): T10, T11, T12, T18, T44.
The system seems not to converge but there nevertheless exists a path that leads
the system to a fixed point. Below is an example of the evolution of T10:

t = 100 t = 200 t = 500 t = 1000

As already noted by Gerin [3], it is a challenge to discriminate experimentally
the metastable rules from the non-converging ones. Indeed, it is not possible
to “see” this difference experimentally (only for small-size grids, but these sizes
can also be non-representative of the larger sizes). Here, contrary to the one-
dimensional case (see the case of rule BCEF above), we would like to show that
the distance to a fixed point does not decrease with time (in average) but we do
not know how to explicitly “measure” this distance.

This problem was tackled by Hoffmann [7] et al. for the specific case of rule
T10. A solver that used the planning techniques was used to determine the
sequence of updates that would lead to a fixed point. As a positive spin-off,
the planner not only was used to find actual solutions, but it also provided an
automatic means for proving that one fixed point was reachable with a number
of updates that varied linearly with the number of cells. An upper bound on
the convergence time was provided but an lower bound is still missing. It is also
an open problem to generalise these techniques (or new techniques) to other
metastable rules.

Partially Stabilising. (WECT: infinite): T24, T25, T52.
The system partially stabilises on some parts while some other parts remain
unstable. Below is an example of the evolution of T24:

t = 10 t = 20 t = 50 t = 51

Erratic Non-converging. (WECT: infinite): T1, T5, T9 T13, T17, T21, T22
T25, T26, T28, T30, T42 .
The system evolves with noise-like patterns without finding a fixed point. It is
an open problem to show the non-convergence of these rules. A simple proof was
produced for T42, which is the parity rule, by showing that applying a transition
on a cell can not make it stable [3] (it can however stabilise its neighbours).
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5 Discussion

This text presented some empirical analysis on the classification of fully asyn-
chronous rules. Though there are cases where the randomness of the updating
did simplify the dynamics, we observed that in general, the very problem of pre-
dicting the average convergence time to a fixed point was difficult, even when the
rules were selected for their simplicity. Among the most crucial problems to com-
plete the classification, it appears that proving logarithmic convergence of some
one-dimensional rules and proving the metastability of some two-dimensional
rules are good questions for the study of asynchrony in cellular automata.

Acknowledgements. The author expresses his gratitude to his collaborators
with whom he established the results here presented. We particularly thank L.
Gerin, M. Morvan, N. Schabanel, E. Thierry and D. Regnault. All comments,
corrections, and ideas about this text are welcome.

References
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Abstract. The paper after briefly surveying main asynchronous models
in cellular automata will report recent developments in the study of
m-ACA, a new general framework for studying asynchrony in cellular
spaces.

1 Introduction

Last twenty years witnessed the rapid growth of the domain of complex systems
both from the theoretical and the application point of view. In parallel, a num-
ber of formal models were developed in order to reproduce their behavior and,
possibly, deduce general properties from the formal models using a number of
knowledge domains going from theoretical computer science to mathematics.

Cellular automata play a central role in this context because of their three
main characteristics: locality, uniformity, synchronicity. (which is present in most
complex systems at the point that is often taken as a definition of complex
system): the emergence of a complex collective behavior starting from local
interactions between simple individuals.

A cellular automaton consists in an infinite set of identical finite automata
arranged on a regular lattice (Z in this article). Each finite automaton takes
its state from a finite set S, called the set of states or the alphabet. The state
is updated according to a local rule λ which take into account the state of the
automaton and the one of a fixed finite neighborhood of neighboring automata.
All automata in the lattice are updated in parallel.

This simple definition of the model contrasts the huge variety of long-term
dynamical behaviors which has attracted the attention of many researchers
(see [25, 13, 17, 12, 1] for recent results and a comprehensive bibliography).
At the same time, this great variety of behaviors qualifies CA as very useful
models in applications [26, 11, 10, 19, 3, 6, 32, 18].

Applications also motivated the introduction of a number of variants of CA
model. Each new model is meant to highlight peculiar properties. For example,
this paper focus on asynchrony. This last property turns out to be interesting in
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a number of different context ranging from modeling chemical reactions in living
cells, to asynchronous computation and communication in distributed systems,
and so on. As non-uniformity [16], asynchrony can also be useful to introduce
inside CA more realistic features as noise [31].

The first part of the paper briefly survey the most known manners of deal-
ing with asynchrony in CA. We do absolutely not pretend to be exhaustive or
complete. We just review those models that motivate the studies reported in
the rest of the paper. This second part of the paper introduces a new model
for asynchrony which aims at generalizing existing ones (at some extent) and
at the same time to offer enough theoretical “hooks” to be able to significantly
analyze the long-term behavior. The basic idea is to augment the classical CA
model with a measure μ over the integers. At each time step, a set of integers τ
(finite or infinite) is extracted according to μ. The elements of τ are the indexes
of the sites that are allowed to be updated, the cells with index in Z \ τ leave
their state unchanged. We call this new model m-ACA. Clearly, some work has
to be done at the formal level to adapt the existing definitions to take into ac-
count the fact that in the new situation one works with family of functions and
not with a single function (the global function) like in the classical setting. This
have also to be combined with the fact of drawing sites to be updated using the
measure μ.

After briefly surveying models related to m-ACA that can be found in litera-
ture, the paper reviews main results and ideas about m-ACA exploring both the
dynamics and some set theoretic properties. The final section contains the seeds
for a new research program which we believe will illustrate the “usefulness” of
this new model in the study of the asynchrony in cellular automata.

2 The General Framework

Notation. For all i, j ∈ Z with i ≤ j (resp., i < j) let [i, j] = {k ∈ N| i ≤ k ≤ j}
(resp., [i, j) = {k ∈ N| i ≤ k < j}). The set of positive integers (resp., reals)
is denoted by N+ (resp., R+). Given a set X , P(X) denotes the collection of
subsets of all X .

Let S be a finite alphabet. A configuration is a function from Z to S. The
configuration set SZ is usually equipped with the metric d defined as follows:

∀x, y ∈ SZ d(x, y) = 2−n , where n = min{i ∈ N | xi 
= yi or x−i 
= y−i}

The set SZ is a Cantor space i.e., a compact, totally disconnected and perfect
topological space. For any pair i, j ∈ Z, with i ≤ j, and any configuration x ∈ SZ

we denote by x[i,j] the word xi · · ·xj ∈ Sj−i+1. Similarly, for every u ∈ S� and
for every i, j ∈ [0, �), u[i,j] = ui . . . uj is the portion of a word inside [i, j]. In both
the previous notations, [i, j] can be replaced by [i, j), with the obvious meaning.
A configuration x is said to be a-finite for some a ∈ S if the number of positions
i with xi 
= a is finite.

Formally, a (one-dimensional) CA is a structure (S, λ, r) where S is the alpha-
bet or set of states, r ∈ N is the radius, and λ : S2r+1 → S is the local rule of the
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automaton. The local rule λ induces a global rule F : SZ → SZ which describes
the new global state of the CA after one time step

∀x ∈ SZ, ∀i ∈ Z, F (x)i = λ(xi−r , . . . , xi, . . . , xi+r) .

The space-time diagram of initial configuration c can be represented by a
bi-infinite figure, where for the sake of simplicity we set ct(j) := F t(c)j :

t = 0 . . . c−2 c−1 c0 c1 c2 . . . = c

t = 1 . . . c1−2 c1−1 c10 c11 c12 . . . = F (c)

...
...

...
...

...
...

...
...
...

t . . . ct−2 ct−1 ct0 ct1 ct2 . . . = F t(c)

...
...

...
...

...
...

...
...
...

Space-time diagrams are a nice visual tool that might sometimes provide intu-
itions on the dynamical behavior or emergent phenomena. In Section 4.4 we will
see that this is exactly the case.

An activation function υ i.e., a function from N to P(Z) is our main tool to
control synchronicity. Indeed, at any time step t ∈ N, υ(t) tells which sites are
active and must be updated; all other cells are left unchanged. Therefore, one
can redefine the global function at time t ∈ N using υ as follows.
For time step t = 0,

∀x ∈ SZ, ∀i ∈ Z, Fυ(x)0,i = xi .

For time step t > 0, define ∀x ∈ SZ, ∀i ∈ Z

Fυ(x)t+1,i =

{
λ(Fυ(x)t,i−r , . . . , Fυ(x)t,i, . . . , Fυ(x)t,i+r) if i ∈ υ(t+ 1) ,

Fυ(x)t,i otherwise .

Remark that choosing υ such that ∀t ∈ N, υ(t) = Z, it means that all cells are
updated at each time step i.e., we recover the classical CA setting. Summing up,
one can give the following formal definition.

Definition 1 (ACA). An Asynchronous Cellular Automaton (ACA) is struc-
ture (S, λ, r, υ) where (S, λ, r) is a CA and υ is an activation function.

The main novelty with ACA vs. CA is that in ACA one does no more have
a single global function but there is a family of global functions. This implies
that all notions concerning dynamical behavior have to be adapted to work with
family of functions.

Let T be a monoid of continuous functions from SZ to SZ where Id denotes
the identity map on SZ. The family T is said to be sensitive to initial conditions
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(or, simply, sensitive) if there exists ε > 0 such that for any x ∈ SZ and any
δ > 0, there is an element y ∈ SZ with d(x, y) < δ such that d(T (x), T (y)) ≥ ε
for some T ∈ T . Furthermore, the family T is said to be positively expansive
(or, briefly, expansive) if there exists a constant ε > 0 such that for every pair
of distinct elements x, y ∈ SZ, we have d(T (x), T (y)) ≥ ε for some T ∈ T .

Sensitivity and expansivity are elements of instability for a system whose
dynamics are described by the family T . The following notions instead refer to
elements of stability for T .

A configuration x ∈ SZ is said to be an equicontinuity point for T if ∀ε > 0
∃δ > 0 such that ∀y ∈ SZ, d(x, y) < δ implies that ∀T ∈ T , d(T (x), T (y)) < ε.
The family T is equicontinuous if every configuration is an equicontinuity point
for T or, equivalently, ∀ε > 0 ∃δ > 0 such that ∀x, y ∈ SZ, d(x, y) < δ implies
that ∀T ∈ T , d(T (x), T (y)) < ε. The family T is said to be almost equicontinuous
if the set E of all equicontinuity points for T is residual (i.e., E contains a
countable intersection of open dense subsets).

The family of functions Tν induced by an ACA with activation function ν
defined as follows

Tν =
⋃
t∈N

{Fν(·)t}

An ACA is sensitive (resp. expansive) (resp. equicontinuous) (resp., almost
equicontinuous) iff its induced family of functions is sensitive (resp. expansive)
(resp. equicontinuous) (resp., almost equicontinuous).

Modifying the activation function one can also introduce in a natural way the
notion of non-determinism, simply saying that υ is defined from N to P(P(Z)).
However, even if this subject will not be developed in this paper, it suggests the
idea that different choices of ν may bring to distinct models of asynchronism.
The next sections, briefly review the most known ones that can be found in
literature.

3 Asynchrony in Cellular Automata Literature

This section briefly surveys models and results from recent. Literature is really
huge and it cannot be exhaustively reported in these few pages. We have chosen
to survey only those models that inspired us directly the pathway to m-ACA
model.

3.1 Fully Asynchronous CA

One of the possible approaches to asynchrony is to assume that two updates
never happen at the same time. This means that only one cell updates at every
time step. The resulting dynamics is determined not only by the local rule of
the automaton, but also from an updating function whose image contains only
singletons.
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Definition 2. A fully-ACA is a quadruple Cυ = (S, λ, r, υ) where S is a finite
set called the alphabet, r ∈ N is the radius, λ : S2r+1 → S is the local rule, and
υ is the activation function. For fully-ACA the function υ respect the following
property:

∀t ∈ N υ(t) = {i}

That is, exactly one cell is updated at every time step.

It is interesting to consider the behaviour of a fully-ACA when the sequence is
not fixed. In fact, we can consider a family of fully-ACA defined in the following
way:

C = {Cυ | ∀t ∈ N |υ(t)| = 1}

A family of fully-ACA is characterized by the triple (S, λ, r) of the alphabet,
local rule, and radius in common between all the fully-ACA of the family. In this
way we can differentiate between properties that holds only when a particular
updating function is selected from the ones that can hold independently from
the particular choice of cells to be updated.

A first property that was studied is the relation between injectivity and sur-
jectivity. A family C of fully-ACA is α-injective (resp. α-surjective) when every
fully-ACA Cυ ∈ C is injective (resp. surjective). Contrarily to classical CA, those
properties are equivalent for fully-ACA.

Proposition 1 ([28]). Let C = (S, λ, r) be a family of fully-ACA. Then the
following statements are equivalent:

1. C is α-injective;

2. C is α-surjective;

3. λ is center-permutative.

The equivalence of two “global” properties with a “local” property is a re-
curring theme for fully-ACA. In fact permutativity appears to be a sufficient
condition for obtaining many interesting dynamical behaviours.

Dynamical Properties. Classical properties that are interesting to study in
this new setting are sensitivity, expansivity and transitivity. It is easy to see that
for any class C of fully-ACA there exists at least one activation function υ whose
corresponding fully-ACA Cυ is not sensitive (resp. expansive) (resp. transitive).
Hence, we say that a family of fully-ACA C = (S, λ, r) is α-sensitive (resp. α-
expansive) (resp. α-transitive) it there exists an activation function υ for which
the fully-ACA Cυ = (S, λ, r, υ) is sensitive (resp. expansive) (resp. transitive).

A first link was found between the presence of a leftmost or rightmost local
rule and sensitivity.

Proposition 2 ([28]). Let C = (S, λ, r) be a family of fully-ACA with r > 0.
If λ is either leftmost or rightmost permutative then C is α-sensitive.
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It is important to point out that, like for classical CA [7], leftmost and right-
most permutativity are only sufficient but not necessary conditions to obtain
α-sensitivity. When both leftmost and rightmost permutativity are present the
dynamical behavior changes and expansivity is obtained.

Proposition 3 ([28]). Let C = (S, λ, r) be a family of fully-ACA with r > 0.
If λ is both leftmost and rightmost permutative then C is α-expansive.

It is interesting to note that there exist rightmost permutative local rules that
give α-sensitivity but not α-expansivity.

Example 1. Let C = ({0, 1}, λ, 1) be a family of fully-ACA with λ the shift rule
(i.e., ∀a, b, c ∈ {0, 1}, λ(a, b, c) = c. This rule is rightmost permutative and, by
Proposition 2, C is α-sensitive. However, given two configurations x, y ∈ SZ with
d(x, y) = δ and with all the differences between x and y in negative position,
independently of the updating function chosen the distance between the orbits
of the two configurations cannot grow larger than δ.

Transitivity, like sensitivity, only requires permutativity either in the leftmost
or the rightmost position.

Proposition 4 ([28]). Let C = (S, λ, r) be a family of fully-ACA with r > 0.
If λ is either leftmost or rightmost permutative then C is α-transitive.

Remark 1. For sensitivity and transitivity there is an easy necessary condition
that can be used to decide quickly if a fully-ACA Cυ = (S, λ, r, υ) is not sensitive
and transitive. To obtain both sensitivity and transitivity the updating function
must be such that

⋃
i∈N

υ(i) is infinite (i.e., it is a subset of Z that is unbounded
either in the positive or in the negative values).

To obtain expansivity the necessary condition is more stringent:
⋃

i∈N
υ(i)

must be unbounded in both the negative and the positive values.

A first idea to reduce the dependence of the dynamics of the particular se-
quence chosen was to find if the property defined by an activation function was
stable. A property was defined to be stable for an activation function υ if the
property also holds for all activation function υ′ such that υ(t) = υ′(t) on all
but a finite number of elements of N.

In [28], it has been proved that there exists a sequence for which sensitivity
is a stable property. Similar results holds for expansivity and transitivity.

Turing Completeness. Another question that was investigated in the fully-
ACA setting was to establish whenever the model allows computations to be per-
formed and the power of such a computation both in term of Turing-completeness
[29] and in term of slowdown of the simulation of a Turing Machine.

It is possible to use the lattice SZ as the tape of a Turing machine in which,
in addition to the symbol written in a cell of the tape, the state of the machine
and some control information are encoded.
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An activation function υ respect is called universal when:

∀i ∈ N |{t ∈ N | v(t) = i}| =∞

That is, when every cell is updated infinitely many time. When v satisfies such a
property, it is possible to simulate a Turing Machine. However, depending on the
particular activation function, the simulation can be arbitrarily slow. In [14], it
has been proved that the simulation of a Turing Machine working in time T (n)
can be simulated in time O(T (n)2), hence, differently from other models like
register machines, the simulation is not exponentially slower but, in some sense,
it is “fast”. For further computation aspects of asynchronous CA we address the
reader to [27, 33].

3.2 Stochastic Fully Asynchronous CA

Even if it is interesting to study the dynamics of fully-ACA when the updat-
ing function is fixed, when modeling real-life processes there is almost always
a stochastic component involved. Therefore, the model of fully-ACA has been
extended by choosing the cell to be updated by means of a stochastic process.
An Elementary Cellular Automaton (ECA) is a (one-dimensional) CA with ra-
dius 1 and set of states S = {0, 1}. An ECA of local rule λ is doubly quiescent
if λ(0, 0, 0) = 0 and λ(1, 1, 1) = 1. In [20], Fates et al. studied doubly quiescent
ECA over finite rings of size n (with periodic boundary conditions). The au-
thors devised the following update policy. At each time step t ∈ N an integer
i ∈ {0, . . . , n − 1} is drawn with uniform probability and they set ν(t) = i. A
complete classification of the expected convergence time (when a convergence to
a configuration was possible) towards a fixed point (i.e., a configuration consist-
ing of either all 0 or of all 1). The classification consists in the following seven
classes.

Class Behavior Conv. time

I Identity 0
II Coupon collector Θ(n lnn)
III Monotonic Θ(n2)
IV Biased random walk Θ(n2)
V Random walk Θ(n3)
VI Biased random walk Θ(n2n)
VII Divergent Divergent

3.3 α-Asynchronous CA

A slight relaxation of the asynchrony condition of fully-ACA lead to the notion
of α-asynchronous CA (α-ACA). Every cell has a (not necessarily fair) coin that
is tossed at every time step to decide if the cell has to update or not. The type
of coin is fixed for every cell. That is, a certain value α ∈ (0, 1) is chosen and
every cell updates with probability α (and remain unchanged with probability
1− α).
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Like in the case of stochastic ACA, the study of α-ACA has been carried on
the restricted class of doubly quiescent ECA with focus on convergence time
towards a fixed point.

Theorem 1 ([21]). The behaviour of 52 of the 64 different doubly quiescent
ECA under α-asynchronous dynamics is the following:

– 48 ECA converge to a random fixed point from any initial configuration

with a time dependent from α that is one of the following: 0, Θ
(

logn
log(1−α)

)
,

Θ
(

n
α + 1

α(1−α)

)
, O
(

n
α(1−α)

)
, O
(

n
α2(1−α)

)
, Θ
(

n2

α(1−α)

)
;

– Two of them diverges;
– Two of them converges with a small probability if the length of the automaton

is even and diverges otherwise.

The classification of the behavior of the last 12 doubly quiescent ECA remains
an open problem. We found this work interesting and deep. What follows in this
article is an attempt to give a more general setting and provide new tools in
order to solve some of these open questions.

Among the open questions raised in [21], one concerns the analysis of the
time needed for a finite configuration to converge to a stable configuration (i.e.,
a fixed point) and more in particular, if there exists an α-asynchronous CA with
a phase transition between a polynomial and an exponential convergence time.
This question has been solved very recently in [30].

4 m-ACA

More general forms of asynchrony should involve more complex updating se-
quences in which possibly infinite sets of cells are updated at each time step and
the there are correlations between updated sites. If the formal modeling of such
general systems is easy, one cannot say the same thing about the analysis of
the long-term behavior. Therefore, one should tradeoff between full generality,
maximal non-determinism and capability of analysis. In this section, we propose
to constrain non-determinism using probability measures over the set of integers
(i.e. over the set of cells that should be updated in parallel at each time step).
Therefore, the new model is nothing but a classical CA with the addition of a
probability measure μ which is used to extract the set of cells to update. More
formally,

Definition 3 (m-ACA). An m-ACA C is a quadruple (S, r, λ, μ) where S is a
finite alphabet, r > 0 is the radius, λ : S2r+1 → S is the local rule and μ is a
probability measure on the Borel σ-algebra on P(Z).

Given the measure μ, we say that the activation function ν is generated by μ
if for all t ∈ N, the set ν(t) ∈ P(Z) is extracted using μ. Therefore, Fν is the
global function of the m-ACA.
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Denote by S the set of all activation functions. In the model proposed in this
paper, μ is used to extract the subset of Z indicating which cells are allowed to
be updated. At each time step, a new extraction is performed and we made the
hypothesis that extractions are independent. Therefore, it is natural to consider
the product measure μs of the measure μ to measure sets of activation functions
i.e., subsets of S (μs always exists and is unique, see [22, Thm. B, pag. 157]).

Consider the power set of integers P(Z) ordered by set inclusion. Then, a
filter on U on P(Z) is a subset of P(Z) such that Z ∈ U , A ∩ B ∈ U for any
A,B ∈ U and ∅ 
∈ U ; moreover it has the upward closure property i.e., if A ∈ U
and A ⊆ B, then B ∈ U . A set U ∈ P(Z) is an ultrafilter if it is a filter and for
any A ⊆ P(Z) it follows that either A ∈ U or (P(Z) \A) ∈ U . For i ∈ Z, denote
Ui the principal ultrafilter of element i i.e., the collection of all subset of P(Z)
containing the integer i.

We stress that each cell i ∈ Z is updated with a probability given by μ(Ui).

4.1 Fair and Quasi-Fair Measures

As we have already said, we are interested in studying m-ACA where the prob-
ability measure associated has some interesting properties. First of all, all cell
should have the a non-zero probability of being updated. This is a necessary
requirement for allowing the information exchange within region of the cellu-
lar space and hence allow the computing (in the Turing sense) capabilities [14].
For similar reasons, no cell should be updated with probability 1. Moreover, the
event “update all cells” should have zero probability since, more or less, this
corresponds to turn back to the classical CA model. Indeed, in order to totally
avoid mimicking the classical model, we require even more, all events concerning
an infinite number of cells should have zero probability. More formally,

Definition 4. A probability measure μ over a σ-algebra of P(Z) is fair if it
satisfies the following properties:

1. ∀i ∈ Z, 0 < μ (Ui) < 1,
2. ∀I ∈ P(Z) (|I| <∞)⇒ μ

(⋂
i∈I Ui

)
=
∏

i∈I μ (Ui),

3. ∀I ∈ P(Z) (|I| = +∞)⇒ μ
(⋂

i∈I Ui

)
= 0,

where Ui is the ultrafilter Ui or its complement.

The second condition in the definition of fair measure simply tells that cells
update independently. Remark that this condition is not sufficient to avoid the
extremal cases discussed in the introduction to this section. The following exam-
ple shows that the necessity of the third requirement on fair measures to avoid
the possibility of having infinite sets of integers with positive measure.

Example 2. Consider the measure μ : P(Z)→ [0, 1] defined as follows:

∀i ∈ Z, μ (Ui) =
i

c(i)
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where c(i) = i + 1 if i ≡ 3 mod 4, i − 1 otherwise. Consider the set I ⊆ N of
odd prime integers. Then,

μ

(⋂
i∈I

Ui

)
=
∏
i∈I

μ (Ui) =
∏
i∈I

i

c(i)
=

π

4
.

Remark that for any set S ∈ P(Z), if the cardinality of S is finite then

0 < μ

⎛⎝ ⋂
i∈I\S

Ui

⎞⎠ < 1 .

The following shows how to deduce a fair measure from a Bernoulli measure over
{0, 1}.

Example 3. Consider the Bernoulli measure β over {0, 1} such that β(1) = a
and β(0) = 1 − a. It is not difficult to verify that the measure μβ defined as
∀i ∈ Z, μβ(Ui) = a is fair. We call μβ the Bernoulli fair measure induced by β.

Clearly, anym-ACA induced by a Bernoulli fair measure is an α-asynchronous
CA and vice versa. It is also clear that the class of m-ACA is strictly bigger
than the one of α-asynchronous CA since not all fair measures are Bernoulli fair
measures.

Fair measures have some interesting properties which reveal very useful when
studying m-ACA dynamics. First of all, the measure of an ultrafilters or of
complements of ultrafilters is uniformly bounded. More formally, in [15, Lemma
1 and Remark 5], it is proved the following.

Proposition 5. For any fair measure μ there exist two constants ε, ξ such that

∀I ∈ P(Z) , 0 < ε < μ

(⋂
i∈I

Ui

)
< ξ < 1

where Ui is the ultrafilter Ui or its complement and |I| <∞.

Fair measures are a pretty large class but it is still not clear how large it is the
class of measures that respects the design principle that we have discussed at
the beginning of the section. A first step in this direction consists in considering
measures that behave much like a fair measure in the sense that they have
the same set of null measure. Before giving the formal definition we need some
preliminary definition.

Given a sigma-algebra Σ over Z, MΣ denotes the set of all measures over Σ.

Definition 5. A function f :MΣ →MΣ is zero-preserving if

∀μ ∈MΣ , ∀A ∈ Σ μ(A) = 0 ⇐⇒ (f(μ)) (A) = 0 .

Denote by Z the set of all zero-preserving functions from MΣ to itself.
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In other words, a zero-preserving function takes a measure μ over Σ into
another measure μ′ over Σ such they have the same sets of null measure (and
of course the same sets of full measure). The idea is that if μ is fair then μ′ is
not far from being fair since it will satisfy at least conditions 1 and 3 of fair
measures. Indeed, we can give the following

Definition 6. A quasi-fair measure is the image of a fair measure under a zero-
preserving function. Let AQFAIR be the set of all quasi-fair measures.

Given a set of measures M ⊆ MΣ, the zeta-closure Z(M) of M is the set of
measures which are image of some measure in M via a zero-preserving function,
more formally

Z(M) =
⋃
f∈Z

⋃
μ∈M

{f(μ)} .

Since the composition of two zero-preserving functions is a zero-preserving
function, the class of quasi-fair measures is closed under composition by zero-
preserving functions.

Proposition 6. Z(AQFAIR) = AQFAIR.

The above proposition tells us that the class of AQFAIR measures is the largest
class of measures that one can obtain by using zero-preserving functions but
it does say anything if there are other possibilities for extending the class of
measures that respect the defining principles discussed so far. However, AQFAIR

is large enough to allow to take into account complex dependencies between cells
update since the condition 2 of fair measures is no more necessarily satisfied. The
following example shows that there exists a quasi-fair measure which is not fair
and hence AQFAIR is a real extension of AFAIR.

Example 4. Choose ε ∈ (0, 1) and define μ as follows:

∀I ∈ P(Z) , μ

(⋂
i∈I

Ui

)
=

{
εn

n if n = |I| <∞ and I 
= ∅
0 otherwise

where Ui is the ultrafilter Ui or its complement. Clearly, μ is not fair since it
does not satisfy condition 2 of fair measures. Consider the Bernoulli fair measure
με and define a function f as follows

∀ξ ∈ MΣ, f(ξ) =

{
μ if ξ = με

ξ otherwise

Since f is zero-preserving μ is a quasi-fair measure.

4.2 Set Theoretic Properties

Set theoretic properties like surjectivity and injectivity are very important when
studying the dynamics since they are often necessary condition for the presence
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of a given dynamical behavior. For example, injectivity is a necessary and suf-
ficient condition for reversibility [23], while surjectivity is often necessary for
the presence of chaotic behavior [8, 1, 13] and strictly related to other dynam-
ical properties [9, 2]. Moreover, both surjectivity and injectivity are one of the
most well-known of dimension sensitive properties. Indeed, they are decidable in
dimension one [4] and undecidable for dimension two or grater [24].

Definition 7. An m-ACA C = (S, λ, r, μ) is surjective (resp. injective) iff for
all activation functions ν, Fν(·)1 is surjective (resp. injective). C is μ-almost
surely surjective (resp., injective) iff

μ ({ν(1) | Fν(·)1 is surjective (resp. injective)}) = 1 .

Permutativity is an easy-to-verify combinatorial property which is strictly con-
nected with surjectivity and injectivity.

Definition 8. A CA local rule λ : {0, 1}2r+1 → {0, 1} is center-permutative if
and only if for all (x1, . . . , xr), (y1, . . . , yr) ∈ {0, 1}r it holds

λ(x1, . . . , xr, 0, y1, . . . , yn) 
= λ(x1, . . . , xr , 1, y1, . . . , yn) .

An m-ACA is center-permutative if its local rule is center-permutative.

The following results links all the three notions introduced above.

Theorem 2 ([15]). For any measure μ ∈ AQFAIR and for any m-ACA C =
(S, λ, r, μ), the following statements are equivalent:

1. C is μ-almost surely surjective;
2. C is μ-almost surely injective;
3. C is center-permutative.

Example 5. The shift map σ is a bijective CA. For any measure μ ∈ AQFAIR, the
m-ACA version ({0, 1}, 1, σ, μ) is not surjective. Indeed, consider an activation
function ν such that ν(1) = {i} for some i ∈ Z and a configuration y ∈ {0, 1}Z
such that yi = 0 and yi+1 = 1. Then, any possible pre-image x should have
xi+1 = 1 since the site i+1 is not updated but this implies yi = 1 contradicting
the former hypothesis. By Theorem 2, the shift map is not even μ-almost surely
surjective since it is not center-permutative.

Example 6. Consider the xor CA C = ({0, 1}, 1, λ) with local rule defined as
follows

∀x, y, z ∈ {0, 1}, λ(x, y, z) = y ⊕ z

where ⊕ is the usual xor operation. It is well-known that C is surjective but not
injective. Given a measure μ ∈ AQFAIR, its m-ACA version C = ({0, 1}, 1, λ, μ) is
μ-almost surely surjective since λ is center-permutative. Indeed, this m-ACA is
surjective. Given any activation function ν and any configuration y, let us build
a pre-image x such that Fν(x)1 = y. We build the part with positive index, the
negative one is very similar. At stage i = 0, define x0 = y0 if ν(1)0 = 0, otherwise
let x0 = a and x1 = (1− a) · y0 + a · (1− y0) for a ∈ {0, 1}. At stage n, we have
two cases
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1. xn has been defined at the previous stage. If ν(1)n = 0 then leave xn un-
changed. If ν(1)n = 1 then let xn+1 = (1− xn) · yn + xn · (1− yn).

2. xn has not been defined at the previous stage. Define xn = yn if ν(1)n = 0,
otherwise let xn = a and xn+1 = (1 − a) · yn + a · (1− yn) for a ∈ {0, 1}.

By compactness, the process described above completely constructs the
pre-image x.

From the previous simple examples we deduce that the situation about surjec-
tivity and injectivity is quite different from classical CA. However, from the
decidability point of view nothing changes like it is stated by the following.

Proposition 7 ([15]). For any measure μ ∈ AQFAIR, μ-almost surely surjectiv-
ity is decidable for one-dimensional CA and undecidable in greater
dimensions.

4.3 About the Dynamical Behavior

This section surveys the (still few) knonw dynamical properties ofm-ACA. Some
of the notions concerning families of global functions have been introduced in
the previous sections, here also the measure of the set of activation functions
giving rise to a certain behavior is taken into account. Results and examples in
this section are taken directly from [15].

Definition 9. Consider an m-ACA C = (S, λ, r, μ), a real number p ∈ [0, 1],

and an activation function υ ∈ P(Z)N generated by μ. The m-ACA C is said
to be either p–equicontinuous or p–almost equicontinuous or p–sensitive or p–
expansive if μs(Υ ) = p, where Υ is the set of all sequence υ with respect to which
C has that behavior.

The remainder of the this section focuses on the situations when the above
dynamical properties happen almost surely, i.e., when p = 1.

Example 7. Let λσ be the local rule of the classical CA shift map σ. The m-ACA
C = ({0, 1}, λσ, 1, μ) is almost surely sensitive. Indeed, consider any sequence
υ with the following property: for all n ∈ N there exists a time t such that
n− i ∈ υt+i for each i ∈ [0, n], i.e., each cell of position n, n− 1, . . . , 0 is updated
respectively at time t, t + 1, . . . , t + n. Now, for any such a sequence υ, any
configuration x, and any integer n ∈ N, consider the configuration y such that
y[−n,n] = x[−n,n] and yi 
= xi for every i > n. So, the (n+ t)–th element T of the
family Tυ is such that T (y)0 
= T (x)0. Thus, Tυ is sensitive or, in other words,
C is sensitive w.r.t. υ. Furthermore, by the second Borel-Cantelli Lemma, one
finds that the set of all the updating sequences υ with the above property has
measure equal to one. Therefore, C is almost surely sensitive.

Definition 10. Consider an m-ACA C = (S, λ, r, μ) and let υ be an activation
function generated by μ. A word w ∈ Sk is s-blocking w.r.t. υ for some integer
s ∈ [1, k] if there exists an offset j ∈ [0, k − s] such that

∀i ∈ Z, ∀x, y ∈ [w]i, ∀T ∈ Tυ , T (x)[i+j,i+j+s) = T (y)[i+j,i+j+s) (1)
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Let p ∈ R with 0 ≤ p ≤ 1. A word w ∈ Sk is said to be (p, s)-blocking for some
integer s ∈ [1, k] if μs(Υ ) = p, where Υ is the set of activation functions w.r.t.
which w is s-blocking.

Example 8. Let C = ({0, 1}, λ, 1, μ) be an m-ACA where λ is the majority rule,
i.e., λ(a, b, c) = �(a+b+c)/2�. The word w = 00 is 2-blocking w.r.t. any sequence

v ∈ P(Z)N. In fact, we have that for all a ∈ {0, 1}, λ(a, 0, 0) = λ(0, 0, a) = 0.
That is, w remains unchanged w.r.t. all possible activation functions and then
it is a (1, 2)-blocking word.

In order to state that a word w is blocking w.r.t. a given activation function υ,
Condition (1) from Definition 10 prescribes that the equality holds independently
of where w is placed inside configurations. The fact that the equality holds for
some positions does not imply that it is also true for all other positions as it is
illustrated by the following example.

Example 9. Let C be the m-ACA of Example 8. Consider the activation function
υ = (Z \ {0, 1},Z \ {0, 1}, . . .). The word w = 01 satisfies (1) only for i = 0.

Given an m-ACA and a word w ∈ {0, 1}∗, there can be activation functions
w.r.t. which w is blocking and others w.r.t. which w is not.

Example 10. Let C = (S, λ, r, μ) be any m-ACA which is υ-sensitive for some

υ ∈ P(Z)N. Clearly C admits no blocking word w.r.t. υ. However, any word is
blocking w.r.t. the activation function (∅, ∅, . . .).

Given an m-ACA C = (S, λ, r, μ) and an activation function υ ∈ P(Z)N, de-
note by Eυ the set of all equicontinuity points for the family Tυ. Recall that in
the classical CA setting, almost equicontinuity is characterized by the presence
of a r-blocking word. Concerning the m-ACA context, this can be rephrased as
follows: there exists a (p, r)-blocking word⇔ the m-ACA is p-almost equicontin-
uous. Proposition 8 shows a strong result for the left-to-right implication, namely,
there exists a residual set of points which are equicontinuity points w.r.t. all ac-
tivation functions in a set of μs-measure p. The opposite implication is not yet
completely understood.

Proposition 8. Consider an m-ACA C = (S, λ, r, μ) with μ ∈ MΣ. If C admits

a (p, r)-blocking word for some p ∈ [0, 1], then there exists a subset Υ ⊆ P(Z)N

with μs(Υ ) = p such that the set
⋂

υ∈Υ Eυ is residual.

Corollary 1. Consider an m-ACA C = (S, λ, r, μ) with μ ∈ MΣ. If C admits a
(p, r)-blocking word w for some p ∈ [0, 1], then C is p-almost equicontinuous.

The following result is a first step towards a possible proof that p-almost equicon-
tinuous m-ACA admit a (p, r)-blocking word.

Proposition 9. Consider an m-ACA C = (S, λ, r, μ) with μ ∈ MΣ. Consider

the set Υ of all sequences υ ∈ P(Z)N w.r.t. which C admits an r-blocking word.
Then, the set

⋂
υ∈Υ Eυ is residual.
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The following proposition is a further witness that the new setting gives a new
genuine model which is quite different from classical CA. Indeed, in classical CA,
expansive CA are surjective but not injective [5].

Proposition 10. Consider an m-ACA C = (S, λ, r, μ) with μ ∈ AQFAIR. If C is
almost surely expansive then C is μ-almost surely injective.

4.4 Experiments

In order to explore m-ACA dynamics further one can turn to experiments in
the hope to have new intuitions. At present we are going to experiment with
only one m-ACA, namely, the shift map σ and try to analyze both the effect of
different measures μ and of initial measures with which the initial configuration
is extracted. Three classes of experiments are reported in this section. Each
class of experiments is illustrated by two figures, a space-time diagram and a
quantitative diagram. In the space-time diagram time goes downward, the state
1 is represented by a black box, 0 by a white one. The quantitative diagram
reports the value of 3 curves. The density of ones w.r.t. zeroes (colored in red)
and the number of alternates (colored in blue) during the evolution of the m-
ACA. An alternate is the boundary between a sequence of cells in state 1 and a
sequence of cells in state 0, or viceversa. This can be quickly computed counting
the number of patterns 01 or 10 in the current configuration. The third curve
is the value of the measure μ (colored in green). Remark that this time the a
value i on the x axis represents the ultrafilter Ui and the value on the y axis is
the measure of Ui. The value of μ are then repeated periodically with period 100
and rescaled to fit the same range with the other two curves.

From the first experiment we can see that the m-ACA behaves more or less
like a shift CA on the right part of the space-time diagram and like the identity
in the leftmost part of the space-time diagram. This agrees with the distribution
of values of μ.

From the second experiment, we deduce that now the m-ACA behaves more
like a shift. Sort initial segments of zeroes or ones tend to disappear rather
quickly and a (slow) process of homogenization seems to start. This is confirmed
by the curve of alternates. Remark that this curve seems to stabilize. Indeed,
more experiments (not reported here for lack of space) confirmed that the curve
continue decreasing during time although very slowly. In the third experiment,
the initial measure with which the initial configuration is extracted has been
changed so to produce a large majority of ones, μ is the same as in the first
experiments. Again, we experience the rapid decrease of alternates in the first
part of the evolution and it become slower and slower when time grows. Summing
up all the three experiments showed that there is some kind of homogenization
process that takes place. The curve of alternates seem to confirm it and to
illustrate that the speed of homogenization depends more on μ than on the
measure with which the initial configuration is extracted.
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Experiment 1. An evolution of the shift m-ACA. The measure μ takes values in
[0.01, 0.99], grows linearly with i between 0 and 100 and then it repeats periodically.
The initial configuration is extracted using a uniform measure over {0, 1}.

4.5 Exploring a New Research Direction

This section is going to explore an new research direction suggested from previ-
ous experiments. We shall concentrate on the evolutions of alternates. Assume
that the current configuration contains the pattern x1x2 . . . x6 = 111000 which
contains one alternate and consider a generic local rule λ of a CA of radius 1
such that λ(111) = 1 and λ(000) = 0 (i.e., it is a doubly quiescent ECA). Let
us try to understand what can be the possible images of 111000 under each
possible updating policy. Assume that x2 as to be updated then, according to
λ, its image is 1. Remark that if x2 is not updated, its image is also going to
be 1. The same reasoning can be applied to x5, this cell is going to conserve
the state 0 independently of the updating policy. Consider now to update x3,
its new value depends on λ(110). While it would have been 1 in case of no
update. Similarly, the new value of x4 is zero if there are no updates, λ(100)
otherwise. Therefore according the to the values of λ and to the update policy,
the alternate can change of position, stay or even give birth to a new alternate.
Figure 1, illustrates all the possible cases according to the update policy and the
probability with which they might happen if one assumes that α = μ (Ux3) and
β = μ (Ux4)
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Experiment 2. Another evolution of the shift m-ACA. The measure μ takes constant
value .33. The initial configuration is extracted using a uniform measure over {0, 1}.

Figure 2 specializes Figure 1 to the case of the shift map and shows how
alternates have moved. Since all updates are independent it is easy to see that
in this case

P (the alternate moves to the left) = α
P (the alternate does not move) = 1− α
P (the alternate moves to the right) = 0

Therefore, in this case, the probability of moving for an alternate does not de-
pend on β but only on α. A segment is the set of cells between two succes-
sive alternates. Assume that the successive alternate to the right w.r.t. to the
one we have considered above is between sites y and y + 1. Moreover, assume
that γ = μ (Uy). Clearly, the length of the segment makes a biased random
walk according to the updating probabilities of the alternates by which it is
defined.

Figure 3 illustrates the state graph of the random-walk with the corresponding
transitions probabilities which can be easily computed from α and γ. Remark
that the state 0 is absorbing, indeed, the shift map cannot create new alternates
and therefore when a segment disappears, it is forever. Disappearance of short
segments is precisely what we have remarked in the experiments of the previous
section. At this point one might try to observe the density of segments to deter-
mine if the homogenization process that seems to take place in experiments can
be expressed formally.
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Experiment 3. Another evolution of the shift m-ACA. The measure μ is like in the
first experiment. The initial configuration is extracted using a Bernoulli measure over
{0, 1} of ratio 0.8.

Denote Xn(c) the random variable representing the number of alternates in
the configuration c for cells with index between −n and n divided by 2n + 1.
The density of alternates for a configuration c is given by

δ(c) = lim sup
n→∞

Xn(c)

Of course, what interests us is understanding the behavior of δ along orbits of
the shift map, in other words we need to study the random process {Xn

n (c)}t≥0

in which Xn
n represents the value of Xn after n iterations of the shift m-ACA

started on the configuration c. Since there are no alternates creation, it is clear
that

E
[
Xn+1

n+1 | Xn
n , X

n−1
n−1 , . . . , X

0
0

]
≤ Xn

n

and hence {Xn
n (c)}t≥0 is a super-martingale. Remark that for all n ∈ N, E [Xn

n ] ≤
1. Then, by the convergence theorem for super-martingales one concludes that
limn→∞ Xn

n (c) = k for some real k > 0 for μ-almost all updating functions ν
extracted using μ. Let us prove that k = 0. Indeed, since the process converges
to k, for any ε > 0 there must be a large enough n ∈ N such that |Xn

n − k| < ε.
Consider now all the segments of size � < n in between the cells of index −n
and n. We have seen that the length of these segments perform a random walk
with 0 as an absorbing state. It means that after a time large enough they will
have disappeared with non-zero probability. Since the shift map cannot create
new segments we have that the density must have decreased to some k′ < k.

The long analysis above proves that for μ-almost all activation functions gen-
erated by μ, for η-almost all initial configurations c, there is a long-term ho-
mogenization process which turns c into a “mono-chromatic” configuration i.e.,
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Fig. 1. Alternate dynamics according to a generic doubly quiescent ECA local rule λ.
A question mark indicates that the new value depends on the local rule.

time t
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Fig. 2. Alternate dynamics according to the shift map. Remark that the alternate
moves left or right according to the probabilities indicated on the arrows label.

0 1 . . . � − 1 � � + 1
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αγ̄

αγ + ᾱγ̄

ᾱγ

αγ̄

αγ + ᾱγ̄

αγ̄

ᾱγᾱγ

αγ̄

Fig. 3. The biased random walk characterizing segment length. Remark the absorbing
state. The symbol ξ̄ means 1− ξ.

a configuration with density of alternates equal to zero. We believe that similar
formal tools and ideas can be applied successfully to all other doubly quiescent
ECA extending the classification given in [21] to the the whole Z.
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1 Introduction : Cellular Automata with Memory

Cellular Automata (CA) are discrete, spatially explicit extended dynamic sys-
tems. A CA system is composed of a grid of adjacent cells arranged as a regular
lattice, which evolves in discrete time steps. Each cell is characterized by an
internal state whose value belongs to a finite set. The updating of these states is
done simultaneously according to a common local transition rule (φ) involving
only the neighborhood (N ) of each cell [10].

Conventional CA are Markovian (ahistoric, memoryless) : The next state of

a cell depends solely on its current neighborhood configuration. Thus, if σ
(T )
i

is taken to denote the state value of the generic cell i at time-step T , the cell
values evolve by iteration of the mapping :

σ
(T+1)
i = φ

({
σ
(T )

j∈Ni

})
A seemingly natural way of implementing an explicit dependence in the dy-

namics of the past states is to take into account a summary (s) of them.
Either in the way (first summary, then rule):

s
(T )
j = s

(
σ
(1)
j , . . . , σ

(T−1)
j , σ

(T )
j

)
→ σ

(T+1)
i = φ

({
s
(T )

j∈Ni

})
(1)

or in the way (first rule, then summary),

f
(T )
i = φ

({
σ
(T )

j∈Ni

})
→ σ

(T+1)
i = s

(
f
(1)
i , . . . f

(T−1)
i , f

(T )
i

)
(2)

Both (1), referenced as embedded memory, and (2) referenced as delay mem-
ory, are extensions to the standard framework where the mapping φ remains
unaltered, but every cell retains historic memory of its past states by means of
the trait state s . So to say, cells canalize memory.
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We have studied the memory implementation given by (1) in previous works
[1], so that this article is devoted to the delay-type memory implementation
given by (2) . Only elementary CA rules will be taken into account in this initial
study.

Average Memory

Historic memory can be weighted by applying a geometric discounting process in

which the state f
(T−τ)
i , obtained τ time steps before the last round, is actualized

to ατf
(T−τ)
i , α being the memory factor lying in the [0,1] interval. This well

known mechanism fully takes into account the last round (α0 = 1), and tends
to forget the older rounds.

Thus the dynamics with the delay memory mechanism is implemented at
time-step T for every cell i as :

(i) First the map φ is applied :

f
(T )
i = φ

({
σ
(T )

j∈Ni

})
(ii) The unrounded weighted mean (m) of the f -states is then computed :

m
(T )
i =

f
(T )
i +

T−1∑
t=1

αT−tf
(t)
i

1 +

T−1∑
t=1

αT−t

≡ ωi(T )

Ω(T )
=

f
(T )
i + αωi(T − 1)

Ω(T )
(3)

(iii) Then, the new state is obtained by rounding the m
(T )
i by comparing it

to the landmark 0.5 if σ ∈ {0, 1}, assigning the last state in case of an equality
to this value, so that :

σ
(T+1)
i = H(m

(T )
i ) =

⎧⎪⎨⎪⎩
1 if m

(T )
i > 0.5

f
(T )
i if m

(T )
i = 0.5

0 if m
(T )
i < 0.5 .

(4)

The choice of the memory factor α simulates the long-term or remnant mem-
ory effect. The limit case α = 1 corresponds to a memory with equally weighted
records (full memory, equivalent to majority memory), whereas α � 1 inten-
sifies the contribution of the most recent states and diminishes the contribution
of the more remote states (short-term working memory). In general, the choice
α = 0 leads to the ahistoric model. In the σ ∈ {0, 1} scenario, α-memory is only
effective if α > 0.50 due to the rounding mechanism described in step (iii) . This
memory implementation will be referred to as α-memory.
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It is remarkable that this geometric memory mechanism is not holistic but

accumulative in its demand for knowledge of past history : The whole
{
f
(t)
i

}
series needs not be known to calculate the term ω

(T )
i of the memory charge

m
(T )
i in (3), while to (sequentially) calculate ω

(T )
i one can resort to the already

calculated ω
(T−1)
i and compute : ω

(T )
i = f

(T )
i +αω

(T−1)
i . Consequently, only one

number per cell needs to be stored. This positive property is accompanied by
the drawback of any weighted average memory : It computes with real numbers,
which is not in the realm of proper CA, that works only with integer arithmetics.

Computationally it is a saving if instead of calculating m
(T )
i for every cell, we

calculate the numerator ω
(T )
i all across the lattice and compare the 2ω

(T )
i figures

to the factor Ω(T ) .

2 Elementary CA

Elementary rules are one-dimensional CA with two possible values at each site(
σ ∈ {0, 1}

)
, with rules operating on nearest neighbors (r = 1). These rules are

characterized by a sequence of binary values (β) associated with each of the eight

possible triplets
(
σ
(T )
i−1, σ

(T )
i , σ

(T )
i+1

)
:

111 110 101 100 011 010 001 000
β1 β2 β3 β4 β5 β6 β7 β8

(5)

The rule number of elementary CA is R =
8∑

i=1

βi2
8−i ∈ [0, 255] .

Legal rules are reflection symmetric (so that 100 and 001 as well as 110 and
011 yield identical values), and quiescent (β8 = 0) . These restrictions leave 32
possible legal rules of the form :β1β2β3β4β2β6β40 .

The computer code in Table 1 generates the α-memory patterns of the rule
254 up to T = 8, for both embedded and delay memories. Full α=1.0 memory is
considered in the code in Table 1, whose output is given also in Table 1 . In this
very particular scenario, the actual σ-patterns are coincident for embedded and
delay memories. What is relevant is the toy-example given via rule 254 in Table 1
is the demonstration of the inertial effect that memory exerts, impeding the speed
of light expansion of the spatio-temporal pattern of rule 254 (11111110) .

Figures 1 and 2 show the spatio-temporal patterns of the sixteen elementary
legal rules affected by memory when starting from a single live cell 1 . The spatio-
temporal evolution is shown up to T = 25 . In Fig. 1 the memory factor varies
from 0.6 to 1.0 by 0.1 intervals. In Fig. 2 very low memory charge is considered,
i.e., the memory factor α is very close to 0.50 , the limit of its effectiveness.

As a rule, the transition from the ahistoric scenario to the fully historic α = 1.0
is fairly gradual, so that the patterns become gradually shrink as more historic

1 Starting from a single active site, history does not affect the dynamics of the remain-
ing sixteen legal ECA rules, either by its immediate extinction, e.g., rule 32, or by
the absence of spread of activity beyond the initial live cell, e.g., rule 4 .
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Fig. 1. Elementary legal rules active from a single cell
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Table 1. A MATLAB R©program for rule 254 with memory

function cam
T=8;SR=254;alpha=1.0;N=11;
[srb]=binarynumber(SR);left=[N 1:N-1];right=[2:N 1];
for memo=1:2

[SIGMA,OMEGA,omega]=init(T,N,alpha);
switch memo
case 1 % Embedded
for t=1:T
SIGMAH(t,:)=SIGMA;S=SIGMA;
omega=(alpha*omega)+SIGMA;OMEGAX=OMEGA(t);
for i=1:N
if(2*omega(i)>OMEGAX)S(i)=1;end; % Memory
if(2*omega(i)<OMEGAX)S(i)=0;end
end
[SIGMA]=RULE(S,N,sbr,left,right); % Rule
HS(t,:)=S;

end
case 2 % Delay
for t=1:T
SIGMAH(t,:)=SIGMA;
[S]=RULE(SIGMA,N,sbr,left,right); % Rule
SIGMA=S;HS(t,:)=S;
omega=(alpha*omega)+SIGMA;OMEGAX=OMEGA(t);
for i=1:N
if(2*omega(i)>OMEGAX)SIGMA(i)=1;end% Memory
if(2*omega(i)<OMEGAX)SIGMA(i)=0;end
end

end
end
subplot(2,4,2*(memo-1)+1);image(33*SIGMAH]);axis image;axis(’off’):
if(memo==1)title(’σ embedded’);else;title(’σ delay’);end
subplot(2,4,2*(memo-1)+2);imagesc(33*HS,[0,44]);axis image;axis(’off’);
if(memo==1)title(’s’);else;title(’f’);end

end
print camemory.eps -depsc

function [SIGMA]=RULE(S,N,sbr,left,right);
for i=1:N

SIGMA(i)=srb(8-(4*S(left(i))+2*S(i)+S(right(i))));
end

function [SIGMA,OMEGA,omega]=init(T,N,alpha);
SIGMA(1:N)=0; SIGMA((N+1)/2:(N+1)/2)=1;
OMEGA(1)=1.0;omega(1:N)=0;
for t=2:T;OMEGA(t)=1+alpha*OMEGA(t-1);end

function [BN] =binarynumber(rule);
BN(1:8)=0;irtx=rule;
for ix=1:8

rest=mod(irtx,2);ratio=(irtx-rest)/2;BN(8-ix+1)=rest;irtx=ratio;
end

memory is retained (higher α). Rules 50, 122, 178,250, 94, and 222,254 are
paradigmatic of this smooth evolution. Rules 126 and 182 also present a gradual
evolution, although their patterns with high levels of memory models hardly
resemble the ahistoric ones. But the non-smooth effect of memory is also present
in Figs. 1-2 . The somehow erratic effect of memory is particularly surprising in
the case of the group of rules{18,90,146,218}, in which extinction is found in all
the non-full memory scenarios of Fig. 1, but not in the full memory (α = 1.0)
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Fig. 2. Elementary legal rules active from a single cell with low memory

one, whereas in Fig. 2 extinction arises with α=0.50001 and α=0.51, but the
remaining memory charges generate fairly interesting spatio-temporal patterns.
Rule 22 also shows let us say unexpected extinctions : α = 0.6 and α = 0.8
in Fig. 1 ; again α = 0.50001 in Fig. 2 . Rule 54 extinguishes with α = 0.8, and
much surprisingly with full memory. As a rule, starting from a single site live cell,
the strong inertial effect that full memory exerts tends to induce either periodic
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patters or very narrow patterns that expands at very low velocity. Thus, the case
of rule 54 extinction with α = 1.0 is rather atypical.

Figures 3 and 4 show the effect of memory on some ECA rules when starting
at random : the values of sites are initially uncorrelated and chosen at random
to be 0 (white) or 1 (grey) with probability 1/2. The pictures show also the
differences in patterns (DP) resulting from reversing the center site value. The
damaged region is enhanced with black pixels, corresponding to the site values
that differed among the patterns generated with the two initial configurations.
Patterns are shown up to T = 81, based on a line of size 135 . Periodic boundary
conditions are imposed on the edges in the simulations in Figs. 3-4. The memory
factors implemented on them are indicated at the top of the figures.

Rule 18 (00010010) allows only dead cells with exactly one living neighbor
to become alive. All living cells die. Although seemingly simple, rule 18 shows
intriguing properties studied elsewhere. Memory has a dramatic effect on rule
18 in Fig.3 . Even at the low value of α = 0.55 , the appearance of the spatio-
temporal pattern completely changes , far from the distinctive inverted triangles
world of the ahistoric pattern. Most of the structures generated with memory
are short-living, but some of them persist in a periodic way. Some of the periodic
structures are fairly complex, except in the fully historic model, in which case
only simple periodic patterns of live cells survive.

As a rule, the effect of memory on the differences in patterns (DP) mimics
that on the spatio-temporal patterns. In the case of rule 18 in Fig.3 for example,
in the ahistoric model the perturbation grows close to the speed of light (with
Lyapunov exponents λL = λR � 1), but in the simulations with memory the
DPs shrink to small periodic structures.

The chaotic linear legal rules 90 and 150 in Fig.3 show a much smoother
evolution from the ahistoric to the full memory scenarios : no pattern evolves
either to full extinction or to the preservation of only a few isolated persistent
propagating structures (solitons). Rule 126 in Fig.4 evolves in a similar form.
Particularly when comparing the ahistoric and fully historic patterns, which
show a high degree of synchronization. The patterns with inverted triangles
dominate the scene in the ahistoric spatio-temporal of rules 90, 150 and 126 .
Historic memory fuzzyfies this common appearance, particularly in the case of
rule 150. The rules 90, 150 126 show a fairly gradual evolution from the ahistoric
DP (for rules 90 and 150 exactly that generated starting with a single site active
cell) to the DP with full memory, becoming increasingly depleted as historic
memory increases, with no extinction for any α value. To avoid coined terms
such as chaotic or random, the DP for these rules with not full memory could
be described as helter-skelter.

The no-legal low-number rule 30 (Fig.4) evolves with memory very differently
to the also low-number rule 18. The essentials of the ahistoric pattern remain
regarding rule 30 with not full memory, albeit emerging interesting structures
that in the embedded memory scenario where studied in [8] . Further study is
due in the current delay memory implementation.
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Fig. 3. Rules 18, 90 and 150 starting at random
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Fig. 4. Rules 30, 126 and 184 starting at random
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The traffic rule 184 (Fig.4) has proved particularly effective in solving the
density task : to decide whether an arbitrary initial configuration contains a den-
sity of 1s above or below ρc , particularly ρc = 0.5 . The effectiveness of rule 184,
together with that of the also number conserving block cellular automata rules
III and HPP, with embedded memory has been assessed in previous works ([3]-
[4] . The assessment of its effectiveness with delay memory is planed for the near
future. Nevertheless, the snapshots in Fig.4 may serve as a promising preamble.
In fact the moderate (not too high, not too low) degrees of memory α = 0.65
and 0.70 show that the pattern evolve to the all 1s configuration. This leads
to a correct classification of the actual initial configuration in Fig. 4, which has
ρ0 = 0.5259 > 0.5000 . Unexpectedly, the patterns for rule 184 with α = 0.55 and
α = 0.60 are coincident. In any case, the dynamics with these memory charges
also correctly classifies the initial configuration (please see Fig .5), though much
later, by T = 259 instead of by T < 90 as happens with α = 0.55 and α = 0.60 .

Fig. 5. Rule 184 with α = 0.60 memory up to T = 260

Further study is due on the effect of delay-memory on ECA, far beyond this
initial investigation (e.g., on rules 54 and 110, the two one-dimensional rules
that seem to belong to Wolfram’s complex Class IV.). In order to systematize
the analysis, one can resort to the equivalence classes, formed under the negative,
reflection and negative plus reflection transformations [13]. Memory is expected
to affect all the rules of an equivalence class in a similar way. But the details of
this hypothesis are to be scrutinized.

Probabilistic Cellular Automata with Memory

In probabilistic cellular automata the 0-1 β values defining a deterministic rule
(5) become probabilities, thus real values in the [0, 1] interval. As an exam-
ple, the deterministic parity rule [1, 0, 1, 0, 1, 0, 1, 0] may be probabilized to as
[0.9, 0, 0.9, 0, 0.9, 0, 0.9, 0]. This is the case of Fig. 6, where the initial configu-
ration is the same of Fig .3 , so that due to the proximity of the probabilities
(0.9) to the deterministic scenario (1.0) , the general structure of the patterns
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in Fig .3 is recognizable in Fig. 6, albeit altered, the paradigmatic example being
the imperfect damage in the ahistoric scenario, and stylized as a result of the
probabilization.

Fig. 6. The probabilistic rule [0.9, 0, 0.9, 0, 0.9, 0, 9.9, 0] with memory

Introducing probabilities in the CA transition rules approaches the context
to that of the Markov random fields (the basic tool in the study of interacting
particle systems), and enables to study perturbations to deterministic automata,
as well as transitional changes from one deterministic automata to another. The
study of the statistical mechanics of probabilistic CA with memory appears as
an interesting (though challenging) task.

3 Elementary Cellular Automata Rules as Memory

In the simulations so far, the length of the trailing memory is not limited. But it
may be limited to the last τ time-steps. In the shortest scenario, τ=3, in which
case, elementary CA-rules (ψ) may be in turn implemented as memory rules (see
in [2] the implementation of this approach with embedded memory) . Thus,

f
(T )
i = φ

({
σ
(T )

j∈Ni

})
→ σ

(T+1)
i = ψ

(
f
(T−2)
i , f

(T )
i , f

(T−1)
i

)
(6)

In the implementation adopted in (6) the time-step T − 2 plays the role of
left cell, whereas time-step T − 1 plays the role of right cell. Other choices are,

of course, feasible. Initially, σ
(2)
i = f

(1)
i , σ

(3)
i = f

(2)
i .

Figure 7 shows the effect on rule 150 of the CA-rules acting as memory when
starting from a single active cell up to T = 13. The numbers of the ECA rules
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acting as memory appear on the top of every pattern. In a general scenario,
rule 150 is affected by every memory rule except, of course, by the identity rule
204 (11001100) . But in the scenario of Fig. 7 a subset of rules does not affect
rule 150 : +68, +76, +100, +108, +196, +228 and +236. Some ECA rules acting
as memory lead rule 150 to extinction, e.g., +8 and +128, whereas others soon
blacken the spatio-temporal pattern, e.g., +23 and +215. Patterns consisting of
only two branches, are also traced in Fig. 7 , e.g., +4 and +132. Some patterns
with memory are reminiscent of the ahistoric one, e.g., +6 and +148, but as a
normal effect, memory notably alters the spatio-temporal patterns, leading to
patterns that are fairly unexpected regarding rule 150. The set of rules +16, +24,
+48, +56, +144, +152, and +184 produce patterns with not any cell alive at
some time-steps, which does not imply extinction after any of them. This kind of
cataleptic episodes are only feasible when endowing cells with elementary rules
as memory. As a rule, no general relevant concordance in Fig. 7 can be traced
between the effect on rule 150 of all rules in the same equivalence class. Please,
considerer as examples, the classes {60, 102, 153, 195}, {110, 124, 137, 193} . Any-
way, reflected rules tend to produce similar memory effect, e.g., {8,64}, {13,69},
{29,71}, {30,86}, or {184,226},.

Linear rules remain linear when cells are endowed with linear memory rules.
Thus for example, the parity rule 150 endowed with +150 acting as memory
would evolve as :

f
(T )
i = σ

(T )
i−1 ⊕ σ

(T )
i ⊕ σ

(T )
i+1 → σ

(T+1)
i = f

(T )
i ⊕ f

(T−1)
i ⊕ f

(T−2)
i , T ≥ 3 .

Incidentally, it is foreseeable that some rules endowed with ECA rules as delay
memory, in particular those of type linear+linear, would produce interesting
results regarding random number generation, as already proved in the embedded
memory context [6] .

The majority rule 232 acts selecting the most frequent (mode) of the last

three f -state values : ψ232

(
f
(T−2)
i , f

(T )
i , f

(T−1)
i

)
= mode

(
f
(T−2)
i , f

(T−1)
i , f

(T )
i

)
.

The idea implemented by rule 232 regarding the three most recent values may
be readily generalized to more than three time-steps. Thus, majority memory of
the last τ f -states will operate as :

σ
(T+1)
i = mode

(
f
(T−τ+1)
i , . . . f

(T−)
i , f

(T )
i

)
(7)

This kind of majority memory avoids the need of computing with real num-
bers, as α-memory does. So, it is in the realm of the CA discrete paradigm. But,
unlike α-memory, which demands just one number per cell to be stored, majority
memory of length τ demands precisely τ numbers per cell to be stored.

The lowest degree of memory conceivable is that of featuring cells by Boolean

functions of their last two states : σ
(T+1)
i = ψ

(
f
(T )
i , f

(T−1)
i

)
. These mappings are

characterized by a sequence of four binary values (β) associated with each of the

four possible pairs
(
f
(T )
i ,f

(T−1)
i

)
(a two-bit analogue of the ECA codification) :
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Fig. 7. Elementary rule 150 starting from a single active cell with CA-rules acting as
memory
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Fig. 7. (Continued.)
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11 10 01 00
β1 β2 β3 β4

≡
4∑

i=1

βs2
4−i = R ∈ [0, 15]

Thus, R = 12 (1100) being the identity rule σ
(T+1)
i = f

(T )
i , R = 5 (0101)

reversing the last state : σ
(T+1)
i = 1 � f

(T )
i , and R = 6 (0110) being the parity

rule : σ
(T+1)
i = f

(T−1)
i ⊕ f

(T )
i . The parity ECA rule 150 in particular becomes

with τ=2 parity memory (i.e., R6) :

f
(T )
i = σ

(T )
i−1 ⊕ σ

(T )
i ⊕ σ

(T )
i+1 → σ

(T+1)
i = f

(T )
i ⊕ f

(T−1)
i , T > 2 .

4 Conclusion and Future Work

The delay memory implementation mechanism studied here (1), together its
closely related embedded one (2) studied in previous works [1] , constitute a sim-
ple extension (of straightforward computer codification) of the basic paradigm
allowing for an easy systematic study of the effect of memory in cellular automata
(and other discrete dynamical systems). This may inspire some useful ideas in us-
ing cellular automata as a tool for modeling phenomena with memory. This task
has been traditionally attacked by means of differential, or finite-difference, equa-
tions, with some (or all) continuous component. In contrast, full discrete models
are ideally suited to digital computers. Thus, it seems plausible that further
study on cellular automata with memory should prove profitable, and may be
possible to paraphrase T.Toffoli [11] in presenting cellular automata with mem-
ory as an alternative to (rather than an approximation of) integro-differential
equations in modeling phenomena with memory. Besides their potential appli-
cations, cellular automata with memory have an aesthetic and mathematical
interest on their own, so that we believe that the subject is worth to studying.

Nearest and next-nearest (r = 2) one-dimensional CA, two-dimensional CA,
and reversible [5] rules with delay type memory are planed to be studied in
the near future. Asynchronous updating, probabilistic rules, multifractal prop-
erties [9], structurally dynamic cellular automata, and the effectiveness of CA
rules with delay type memory in random number generation and in solving the
density classification task will also come under scrutiny.

Acknowledgment. This work was supported by the Spanish MEC Project
MTM2012-39101-C02-01.

Appendix

A Glimpse of Two-dimensional Cellular Automata with Memory
Let us mention here the effect of α-memory in a particular two-dimensional CA
rule, that of the parity rule in the Moore neighbourhood N (summation modulo
two) :
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f
(T )
i,j =

∑
(k,l)∈Ni,j

σ
(T )
k,l

Figure 8 shows the effect of memory up to T = 18 on the 2D parity rule
starting from a single live cell. Non-low levels of memory tend to freeze the
dynamics from the early time-steps, e.g. over 0.60 in Fig. 8. In the particular case
of full memory small oscillators of short range in time are frequently generated,
such as the period-two oscillator that appears as soon as T = 3 in Fig. 8. The
group of evolution patterns shown in the [0.501,0.54] interval of α variation of
Fig. 8, might not be expected to be generated by the parity rule, because they
are too sophisticated for this simple chaotic rule. This is particularly so beyond
the scope of Fig. 8, i.e., for T > 18, as Fig. 9 shows in the case of α = 0.501 ,
where memory induces patterns notably different to the ahistoric ones. These
patterns tend to be framed in squares of size not more than T×T , whereas in the
ahistoric case, the patterns tend to be framed in 2T ×2T square regions, so even
a very small memory charge induces a very notable reduction in the affected cell
area in the scenario of Fig. 8. Diffusion-Limited Aggregation like [12] simulation
practitioners might be somehow inspired in the pattern formation dynamics
shown in Fig. 9 .

Fig. 8. The 2D parity rule with α-memory



Elementary Cellular Automata with Memory of Delay Type 83

Fig. 9. The 2D parity rule with very low α-memory

References

1. Alonso-Sanz, R.: Discrete systems with memory. World Scientific Pub. (2011)
2. Alonso-Sanz, R., Martin, M.: Elementary cellular automata with elementary mem-

ory rules in cells: The case of linear rules. J. of Cellular Automata 1(1), 70–86
(2006)

3. Alonso-Sanz, R.: The HPP rule with memory and the density classification task.
Int. J. of Modern Physics C 21(9), 1115–1128 (2010)

4. Alonso-Sanz, R., Bull, L.: A very effective density classifier two-dimensional cellular
automaton with memory. J. Phys. A: Math. Theor. 42, 485101 (2009)

5. Alonso-Sanz, R.: Reversible cellular automata with memory: patterns starting with
a single site seed. Physica D 175(1/2), 1–30 (2003)

6. Alonso-Sanz, R., Bull, L.: Random number generation by cellular automata with
memory. Int. J. Modern Physics C 19(2), 351–367 (2008)

7. Alonso-Sanz, R., Bull, L.: Elementary cellular automata with minimal memory and
random number generation. Complex Systems 18(2), 195–213 (2009)

8. Martinez, G.J., Adamatzky, A., Alonso-Sanz, R., Seck-Touh-Mora, J.C.: Complex
dynamics emerging in Rule 30 with majority memory. Complex Systems 18(3),
345–365 (2009)

9. Sanchez, J.R., Alonso-Sanz, R.: Multifractal properties of R90 cellular automaton
with memory. Int. J. Modern Physics C 15(10), 1461–1470 (2004)

10. Schiff, J.L.: Cellular automata: a discrete view of the world. Wiley (2008)
11. Toffoli, T.: Cellular automata as an alternative to (rather than an approximation

of) differential equations in modeling physics. Physica D 10, 117–127 (1984)
12. http://en.wikipedia.org/wiki/Diffusion-limited_aggregation

13. Wuensche, A., Lesser, M.: The Global Dynamics of Cellular Automata. Addison-
Wesley (1992)

http://en.wikipedia.org/wiki/Diffusion-limited_aggregation


A Robustness Approach to Study Metastable

Behaviours in a Lattice-Gas Model of Swarming
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Abstract. Research in biology is increasingly interested in discrete dy-
namical systems to simulate natural phenomena with simple models.
But how to take into account their robustness? We illustrate this issue
by considering the behaviour of a lattice-gas model with an alignment-
favouring interaction rule. This model, which has been shown to display
a phase transition between an ordered and a disordered phase, follows
ergodic dynamics. We present a method based on the study of stability
and robustness, and show that the organised phase may result in sev-
eral different behaviours. We then observe that behaviours are influenced
asymptotically by the definition of the cellular lattice.

Keywords: Swarming behaviour, lattice-gas cellular automata, phase
transitions, robustness, discretisation effects, resonance effects.

Introduction

Research on natural systems has thrived in the past years with the use of dynam-
ical systems to simulate their behaviour. An interesting approach to the prob-
lem considers simple mathematical models, such as Turing’s reaction-diffusion
equations, may reproduce the mechanisms that Nature uses in many complex
phenomena. When these models are hard to solve analytically, numerical sim-
ulations allow one to explore a wide variety of rules and to obtain statistical
data by repeating experiments at a reduced cost. Simple discrete models, such
as cellular automata, have been known to be a valuable tool to model complex
natural phenomena, as their simplicity is often a good means to identify the role
played by each component of the model and thus to make clear the necessary
conditions for the emergence of a given behaviour [1].

However, the use of simple models inevitably alters the way entities interact
with each other and could affect the system by introducing some unwanted
behaviour [2]. Thus, when studying the behaviour of a model through simulation,
it is necessary to distinguish which part of the behaviour emerges from the
interaction rule, from the part induced by the simulation setting. This question
amounts to determine the robustness of a model, that is, “the degree to which
[its behaviour] is insensitive to effects that are not considered in the design” [3].
An intuitive method for detecting such effects consists in studying extensively

J. Kari, M. Kutrib, and A. Malcher (Eds.): AUTOMATA 2013, LNCS 8155, pp. 84–97, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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the dynamics of the system under different simulation conditions and search for
modifications of the behaviour (see e.g. [4,5]).

This paper considers the simulation of a complex phenomenon in the field
of collective motion, that is, the coordinated movement of entities with local
interaction. This family of models has been extensively studied in numerous
natural systems [6,7], using various models from self-propelled particles [8] to
cellular automata [9]. The goal was either to gain insight of into the mechanisms
involved in the biological systems [10,11,12] or to provide a simulation tool for
human crowds [13,14], as well as to design physically-inspired algorithms that
perform on grids [15,16].

The Vicsek model was introduced in 1995 as a model of “self-propelled parti-
cles” moving at constant speed in a continuous space [17]. Assuming a stochastic
direction-averaging rule, with a single parameter modulating the alignment be-
haviour from random to deterministic orientation, Vicsek et al. observed the
swarm instability, that is, a phase transition that separates chaotic, random mo-
tion from complete alignment of the particles. Discrete versions of Vicsek’s self-
propelled particles were developed by Deutsch et al. on a square lattice [18,19]
as well as Csahók and Vicsek on an hexagonal lattice [20]. Indeed, discrete dy-
namical systems such as lattice-gas cellular automata (LGCA) are well-suited
tools for simulating complex systems with minimal computational cost because
of their parallel, spatially-extended structure. In spite of the discretisation, these
models show a conservation of the swarm instability transition [21], whereas the
resulting dynamics shows the appearance of novel behaviours [22]. Our objective
here is to assess the robustness of the behaviour, by studying the dependence of
Deutsch’s model [19] on the definition of the system’s lattice.

The model’s dynamics come with an additional difficulty: we will show that
because the updating rule being stochastic and reversible makes the system
ergodic. How can we then extract information about the dynamics in such an
unstable environment? In fact, even though no configuration remains indefinitely
stable, we will see that the system is subject to metastability [23], that is, it “can
persist for a long period of time in a phase which is not the one favoured by the
thermodynamic parameters” [24]. In other words, once randomly initialised, the
system will quickly converge towards some specific type of configurations, or
pattern, and hold it for long times until random fluctuations allow it to escape
this pattern for another one. These patterns act as “basins of attraction” which
can thus be used to study how the system organises in long times and for a large
number of simulations. Our goal is to provide a first “map” of these basins and
explain how they are linked to the robustness of the model.

After presenting a formal description of the model (Sec. 1), we determine
the different patterns of the system by constraining the state space (Sec. 2),
after which we quantify their stability by studying the influence of an increasing
spatial size. We then reveal how the observation of the behaviour is influenced by
resonance effects for any finite lattice (Sec. 3). Finally, we study how the lattice
may introduce biases in the observations of the system’s behaviour (Sec. 4), and
finish by briefly discussing the implications of our approach (Sec. 5).



86 O. Bouré, N. Fatès, and V. Chevrier

1 Deutsch Lattice-Gas Model of Swarming

1.1 Lattice-Gas Cellular Automata

A lattice-gas cellular automaton (LGCA) is a discrete dynamical system defined
by a triplet {L,N , fI} where :

– L ⊂ Z2 is the array that forms the cellular space.
– N is a finite set of vectors called the neighbourhood. It associates to a cell

the set of its neighbouring cells. The sets N and L are such that for all c ∈ L
and for all n ∈ N , the neighbour c+ n is in L.

– fI is the local interaction rule.

In LGCA, neighbouring cells are connected via channels through which particles
can travel from one cell to another. For the sake of simplicity, we will consider
here that each channel is associated to a neighbour. Consequently, the number
of channels is given by ν = card(N ).

We thus note the configuration x as the state of the automaton, which is
defined as a function x : L → Q ⊂ Nν which maps each cell to a set of states for
the channels. Each channel contains a given number of particles represented by
an element of N. The state of a cell c ∈ L is denoted by xc = (x1(c), ..., xν (c)) ∈
Q, where xi(c) ∈ N is the state of the i-th channel that connects cell c and its
neighbour c+ ni, with N = {n1, . . . , nν}.

I P

(a) (b) (c)

Fig. 1. The cycle of a LGCA cell (a) at initial state, (b) after interaction step I, (c) after
propagation step P. By convention, black and white triangles represent occupied and
empty channels respectively.

The dynamics of a LGCA arises from the successive applications of two tran-
sitions applied to all cells synchronously (see example on Fig. 1):

– The interaction step I reorganises the particles within each cell. The local
transition fI : Qν+1 → Q is denoted by:

xI
c = fI(xc,xc+n1 , . . . ,xc+nν ), with N = {n1, . . . , nν} . (1)

– The propagation step P relocates all particles simultaneously in the same
channel of the corresponding neighbour in N . The result of the local transi-
tion fP : Qν+1 → Q is given by:

xP
c = fP (x

I
c ,x

I
c+n1

, . . . ,xI
c+nν

)

=
(
xI
1(c− n1), . . . , x

I
ν(c− nν)

)
(2)
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The evolution of the system from a time t to the following time t + 1 is
determined by: xt+1 = P ◦ I(xt). In this paper, initial configurations x0 are
generated from a uniform distribution of density ρ, where ρ is the probability
for each channel, independently, to contain a particle.

1.2 Swarming in Lattice-Gas Cellular Automata

The swarm model we study is taken from the work of Deutsch et al. compiled in a
dedicated book (see Ref. [19], chapter 8.2). It describes a probabilistic swarming
interaction rule in which a cell reorganises its particles according to a probability
distribution that maximises local alignment.

This transition is particle-conserving and uses its neighbourhood state as a
director field to align the cell particles. In this paper, the neighbourhood is com-
posed of the vectors of the 4 nearest cells: N = {(1, 0), (0, 1), (−1, 0), (0,−1)}.
Moreover, an exclusion principle is imposed: a channel contains at most one
particle. As a consequence, a configuration is a vector x ∈ QL where the state
for a cell c is a vector xc ∈ Q = {0, 1}4.

To maximise the alignment of particles within cells, the computation of the
individual rule uses two parameters:

– The local flux Jc(x) =
∑ν

i=1 xi(c) · ni the resulting particle direction in a
cell c, with the neighbourhood N = (ni).

– The director field Dc(x) =
∑ν

i=1 Jc+ni(x) denotes the total flux of the
neighbourhood of a cell c.

Now, let k(x, c) =
∑ν

i=1 xi(c) be the the number of particles in a cell c, and
Ω(k) ⊂ Q the set of the possible states of a cell that contains k particles. For
a cell c ∈ L, the transition probability for the interaction step to update from
a state xc to a new state xI

c ∈ Ω(k(x, c)) in the presence of the director field
Dc(x) is given by:

P (xc → xI
c) =

1

Z
exp
[
σ.Jc(x

I) ·Dc(x)
]

(3)

where:

– The normalisation factor Z is such that
∑

xI
c∈Ω(k(x,c)) P (xc → xI

c) = 1.
– The alignment sensitivity σ is the control parameter controlling the intensity

of the swarming effects.

With only the parameter σ to control the behaviour continuously from random
direction to deterministic alignment1, the model is fairly simple and thus easy
to explore. An example of a local application of the rule is shown on Fig. 2.

1 When σ = 0, all outcomes xI that conserve the number of particles have an equal
probability to be selected, making the interaction step completely random. Inversely,
when σ →∞, the system becomes pseudo-deterministic, that is, the selection almost
always picks one of the configurations that maximises the local alignment.
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J =(0,0)
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Fig. 2. Example of the application of the swarm interaction rule for the central cell.
Left: typical states for a cell and its neighbours, with neighbouring fluxes and the
director field Dc(x) of the center cell. Right: elements of Ω(2) along with a table of the
computed weights (Eq. 3) for different values of σ before normalisation to probability 1.

1.3 Recurrence and Ergodicity of Behaviours

An important property of the update rule is that, for a given transition xt →
xt+1 → xt+2, the probability that xt+2 = xt (up to an interaction) is strictly
positive2. This implies that the Markov chain representing the evolution of the
system is recurrent, that is, there is always a non-zero probability to go back
to previously visited configurations. In other words, for a given initial configu-
ration, any reachable configuration will be visited an infinite number of times
over infinite simulation times: the behaviour thus consists strictly speaking of
a random walk over the entire space of reachable configurations. Studying the
system’s dynamics shows that if the behaviour often converges towards a sta-
ble attraction point (Fig. 3-a), it is much more volatile for particular parameter
values (Fig. 3-b). How then to study the behaviour in such unstable conditions?
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Time
5000 5000

0

0.5

0

-0.5

0 0

a) ρ=0.2, σ=1.5 b) ρ=0.4, σ=0.9 

Fig. 3. Evolution of the mean alignment γ for different values of the density ρ and the
sensitivity σ. Note how the behaviour “shifts” between several organised patterns.

The observations in Fig. 3 suggests that there exist distinct lower-energy at-
tractors, which will appear more often from random configurations (attractivity)

2 This can easily be proved by noting that the interaction that reverses all channels
within cells is associated to a positive probability.
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or remain present for longer simulation times (stability). Our approach consists
in considering these sets of ordered and stable configurations, referred to as pat-
terns, and use them to characterise the behaviour of the system by focusing on
the regions of the parametrical space where the considered pattern is most stable
and attractive. The next section is thus devoted to a thorough search for these
patterns.

2 Observation and Identification of Patterns

In the literature, analytical approaches have been used to describe the organisa-
tion phenomenon occurring in this model [9]. However, a systematic experimental
approach to explore the organisation process has to our knowledge not yet been
carried out.

2.1 Monitoring the Behaviour

The first method is simply to inspect by eye the configurations ; three types of
visualisations are used:

– The density visualisation (Fig. 4 -Left) displays how many particles are in a
cell. Empty cells are white, cells with 1, 2 and 3 particles are light, medium
or dark grey, respectively, and fully occupied cells with 4 particles are black.

– The flux visualisation(Fig. 4 -Middle) is a new representation that we in-
troduce in order to facilitate the reading of the resulting particles direction
within cells by associating a colour for each cell flux. A zero-flux cell is
represented in white, while other types of flux show a different colour for
each corresponding cardinal point: N (green), N-E (lime), E (yellow), S-E
(orange), S (red), S-W (magenta), W (blue), N-W (cyan).

– The channel visualisation (Fig. 4 -Right) displays the state of channels by
denoting the presence of a particle in a channel by a black triangle.

We also use a quantitative method with two order parameters :

– The mean velocity φ, introduced by Bussemaker et al., averages horizontal
and vertical momentum, in order to quantify a consensus in the direction of
particles. For a configuration x, it is defined by:

φ(x) =
1

card(L)

∥∥∥∥∥∑
c∈L

Jc(x)

∥∥∥∥∥
∞

where ‖v‖∞ = |vx|+ |vy |. (4)

– To this parameter, we add themean alignment γ to express whether particles
of a cell are in average aligned with the flux of the neighbours of this cell:

γ(x) =
1

k(x)

∑
c∈L

1

card(N )
Jc(x) ·Dc(x) (5)
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where k(x) =
∑

c∈L k(x, c) is the total number of particles. Its value varies
in [−1, 1]: γ = 1 indicates that all particles are aligned, and for γ = −1, all
particles are antialigned3.

These two parameters are complementary as they capture two distinct aspects
of the spatial organisation of particles: the mean alignment γ monitors whether
particles are on average aligned or antialigned with the neighbouring fluxes,
while φ captures a global consensus in directions.

Experimental Protocol. Throughout the paper, the following protocol will be
used to assess the resulting behaviour for each given setting (σ, ρ):

1. fix the lattice dimensions L and the parameters ρ and σ,
2. start from an initial configuration, randomly generated by a Bernoulli dis-

tribution where each channel has a probability ρ to contain a particle, and
1− ρ to be empty,

3. iterate the system for a fixed transition time Ttr,
4. average the value of the parameters for a sampling time Tsa,
5. use visualisations and order parameters to classify the configuration,
6. repeat from step 2 several times.

2.2 Observation and Identification of Patterns

We already know from the literature that the model displays a phase transition
separating a chaotic disorganised phase from an organised phase for critical
values of the parameters (σ, ρ) [21]. Our classification completes this observation
by distinguishing several patterns, shown in Fig. 4:

Random Pattern (R). This category includes all configurations that do not
display any observable ordered phenomenon. It is characterized by a zero-
mean velocity and a zero-mean alignment and corresponds to the paramet-
rical region of low sensitivity σ and low particle density ρ.

Diagonal Stripe Pattern (DS). For higher values of (ρ, σ), the behaviour or-
ganises into a diagonal stripe, composed of cells containing two particles that
points to the same two orthogonal directions, and travels diagonally through
the lattice. It is quantitatively characterised by high values for both mean
velocity φ and mean alignment γ.

Checkerboard Pattern (CB). For high values of the density (ρ ∈ [0.3, 0.5])4,
the system surprisingly organises into regions where each cell contains two
particles that are antialigned with the neighbours’ fluxes. This observation
is confirmed by a zero-velocity φ and a negative mean alignment γ.

3 We borrow this term from spins systems in particle physics. Antialignment refers to
the relationship between two particles whose directions are on the same axis, but in
opposition.

4 It can be shown that the system is symmetrical around ρ = 0.5, by exchanging 0s
(no particle) and 1s (particle) in the channels.
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Random pattern (R)

σ = 0.5
ρ = 0.2

φ = 0.03
γ = 0.006

Diagonal stripe pattern (DS)

σ = 1.5
ρ = 0.2

φ = 0.95
γ = 0.83

Checkerboard pattern (CB)

σ = 1.5
ρ = 0.4

φ = 0.01
γ = −0.63

Clusters patterns (CL)

σ = 4
ρ = 0.2

φ = 0.98
γ = 0.89

Fig. 4. (colour online) Major patterns, with associated visualisations and typical values
for parameters. Configurations are obtained from random initial configuration, for L =
25, t = 1000.

Clusters Pattern (CL). When the sensitivity increases drastically (σ > 2),
the system no longer organises into a diagonal stripe, but into a small number
of clusters of collinear particles. These clusters travel through the lattice and
occasionally meet by overlapping, but remain seemingly stable in the long
run. It is characterised by a high mean alignment γ while the mean velocity
φ can take any value in [0, 1].

These first observations show us that the transition from order to disorder does
not consist only by the formation of a stripe. Most interestingly, although some
patterns echo back to previous observations [19,22], the checkerboard constitutes
a novel observation for this model. In order to determine if these observations
are robust, we now propose to assess the stability of the patterns for various
simulation settings.
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3 Characterisation of the Patterns’ Stability

Recall that according to the model description, the dynamics of the system
is ergodic. This means that for given input parameters (ρ, σ), the system will
theoretically disorganise and organise into different patterns, according to their
inherent stability and attractivity. The measure and even the observation of sta-
bility through simulation can be problematic, as witnessing those phenomena in-
volves long and highly-variable times. In order to estimate the system behaviour
and study its robustness, we must thus consider each pattern and explore its
stability when varying all the parameters that define the model, namely : the
density ρ, the sensitivity σ and the lattice definition.

3.1 Influence of the Lattice Size

In a previous report [25], we presented additional patterns observed for small
lattices (L = 20). Although these types of organisation are stable, our observa-
tions suggested that the stability of these patterns dramatically decreases as the
lattice size increases. We thus decide to consider the case of lattices of reasonably
large lattice sizes (L > 50) for which these patterns are no longer observed.

3.2 Distribution of Patterns in the Parametrical Plane

Increasing the lattice scale has by contrast limited effects on the aspect and
evolution of the presented patterns. In addition, it is interesting to note that for
most couples (ρ, σ), only one type of pattern appears preponderantly at different
places and spread on the entire lattice. When conflicting forms of the pattern
appear, they co-exist for some time but generally merge to a unique lattice-scale
pattern:

– In the case of the diagonal stripe, several stripes of conflicting directions may
appear simultaneously, until only one direction remains.

– The checkerboard pattern first appears scattered in several “regions” of local
checkerboards of different directions (e.g. NW/SE versus NE/SW), until a
unified checkerboard covers the entire lattice.

The corresponding parametrical regions for each major patterns are displayed
on Fig. 5. Note that if it is difficult to observe experimentally more than one
type of pattern anywhere inside these regions, inbetween settings (dashed lines)
easily display pattern shifts and the occasional coexistence of several patterns of
different types.

Our observations suggest that the presented patterns remain stable for large
lattices, for long enough simulations times. It is however still not clear how
is characterised the transition between a pattern to another, and whether the
stability of the behaviour can be generalised for any lattice L.
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Fig. 5. Spatial distribution of the disordered and ordered phases in the density-
sensitivity parametric plane. We divided the ordered phase into approximated regions
of appearance for each observed patterns. The circles represent experimental observa-
tions of the phase transition.

3.3 Influence of the Lattice Size Ratio

The diagonal stripe is defined as a cluster of particles looping over the periodic
boundaries of a square lattice.Onemay thenwonderwhat happenswhen the lattice
has unequal dimensions. We thus now consider as parameters ρ = 0.2, σ = 1.5,
which match the diagonal stripe region, and a rectangular lattice L = (Z/LxZ)×
(Z/LyZ), where Lx and Ly are respectively the width and height of the lattice.
Several cases can be distinguished for the ratio Lx/Ly (see Fig. 6-Left):

– Integer or quasi-integer “regular” ratios (e.g. 100 × 50, 100 × 30) show a
diagonal stripe pattern that loops one or several times over the periodic
boundaries.

– For other “irregular” ratios (e.g. 60 × 100), the configuration displays an
unfinished, distorted diagonal stripe, as it can no longer loop “regularly”
over the periodic boundaries. However, over very long simulation times, the
system might finally find a stable pattern (see 66× 100 (b)).

From these observations, we conclude that the regularity of the lattice influences
the behaviour of the system, by disturbing the regularity of the diagonal stripe
pattern. We can quantify this phenomenon by considering the following process:
starting from a fixed density ρ = 0.2 and given lattice dimensions (Lx, Ly), we
measure the mean alignment γ after a few thousands steps for different values
of the sensitivity σ. We thus obtain a plot of alignment γ versus sensitivity σ,
displayed in Fig. 6-Right.

It is interesting to note that although the transition between the disordered
and the ordered phases is always observed, the sharpness of the transition as
well as the critical point σc slightly change from regular to irregular ratios.
These observations support the hypothesis of a strong connection between the
formation of the diagonal stripe pattern and the regularity of the lattice. Our
interpretation of this phenomenon is that the diagonal stripe pattern emerges
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Fig. 6. Left: typical configurations obtained for different lattice ratios after 1000 time
steps ; note that the case 66× 100 is shown at two different times: at t = 1000 (a) and
at t = 106 (b). Right: a quantification of the corresponding transitions, as plot of the
mean alignment γ versus the alignment sensitivity σ, for different lattice ratios with
transient and sampling times (Ttr = 105, Tsa = 100).

from the periodic interactions of diagonal clusters which is achieved more easily
in regular lattices than in irregular ones. Therefore, it can be considered as a
“resonance” effect caused by the finite lattice with periodic boundaries.

More generally, this means that a finite implementation of the model induces
a bias in the behaviour of the system. Now this final statement questions our un-
derstanding of the dynamics: how much of the resonance effects tamper with the
resulting behaviour? To tackle this issue, we propose to consider the case of an in-
finite lattice L = Z2 and to compare the observed behaviour with the finite case.

4 Overcoming the Resonance Effects

Changing the implementation of the model from a finite to an infinite lattice
suggests drastic changes in hypotheses. If the number of possible configurations
is infinite, the probability to escape a given pattern through fluctuations becomes
zero, and the behaviour can no longer be considered as metastable. Instead,
we will observe the emergence of phases, that is, local behaviours that occur
statistically everywhere on the lattice and remain stable.

In order to study the behaviour without long-term resonance effects, we pro-
pose to choose coherent values for the space and time dimensions of the simula-
tions. This means that to estimate the behaviour in a given order of T , we need
to use an equivalent size L ≈ T for the lattice. Similarly, to study the asymp-
totic behaviour, both dimensions must increase simultaneously when passing
to the limit. As an example, we computed samples of lattice sizes L = 1500
and L = 100 respectively for (Ttr = 1400, Tsa = 100). As observed in Fig. 7, the
difference in the resulting behaviours is significant, as captured by the evolution
of order parameters versus the sensitivity σ:

– The transition between the disorganised and organised phases greatly differs
between experiments: for the case L = 100, the transition is sharp and almost
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Fig. 7. The organisation phenomena for different values of σ at fixed ρ. Dots represent
independent sampling for (Ttr = 1400, Tsa = 100) and for different lattice settings –
black accounts for L = 1500, and grey for L = 100.

immediate whereas for the case L = 1500, the transition is progressive. This
observation seems to confirm the resonance effects identified in the last section.

– The plot for densities ρ = 0.2 and 0.4 confirms the existence of at least an
“aligned” and an “antialigned” phase. The case ρ = 0.3 appears to show an
intermediate case, but the precise transition is not visible.

– The differentiation between the diagonal stripe and the clusters pattern is a
priori not apparent.

Our simulations are now too limited to assess asymptotic behaviours, as their
cost both in terms of time and memory reached computational limits. However,
they are sufficient to display tendencies in the organisation of particles and re-
veal divergent behaviours. In particular, we conjecture from the observation of
order parameters that the asymptotic behaviour of the system divides up in at
least three phases: disorganised, aligned and antialigned. Moreover, a prelimi-
nary visual experiment using a L = 500 lattice and t = 500 suggests a visible
differentiation of behaviour between the diagonal stripe and the clusters pattern
(see Fig. 8). Determining whether there exists a distinct phase for the diagonal
stripe pattern is an interesting problem left for future work.

ρ = 0.2, σ = 1.5
Stripes

ρ = 0.2, σ = 3
Clusters

ρ = 0.4, σ = 1.5
Checkerboards

Fig. 8. (colour online) Flux visualisation of large-scale configurations for non-biased
simulations, with equal space and time dimensions (t = 500, L = 500)
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5 Conclusions and Perspectives

In spite of the model following a stochastic updating rule controlled by the sole
parameter σ, and behaviours being derived from random initial configuration
determined only by their density ρ, a surprisingly high number of distinctive
patterns could be identified. By simulating the model for conditions that were
not planned in its original design, we discovered that the organised phase could
result in unexpected behaviours that exhibit the limits of the model.

Identification of Novel Patterns. For instance, the stability of the checkerboard
is an important result of this study: although particles try to maximise their
own alignment, the global alignment remains negative. Even, our exploration of
its robustness via variations of the lattice supported the idea that the system
adopts an anti-aligned phase. It is however undeniable that the checkerboard is
intrinsically linked to the synchronous updating scheme of the model, as showed
in a previous work [26], which questions its “realism” with regards to a biological
context.

Revealing Resonance Bias. Our experiments echo back to an unresolved issue
on the nature of the transitions in this model of swarming. The swarm insta-
bility, the transition between the disordered and the ordered phases, has been
previously documented in numerous studies of lattice-gas models as “weakly
first-order” by Csahók et al. [20] and second-order by Bussemaker et al. [21].

Our simulations suggest that the diagonal stripe pattern is heavily subject to
resonance effects, induced by simulations of finite lattice with periodic bound-
aries, over long times. In other terms, it means that the limits of time t and
space L are non-commutative, that is, fixing L and studying the behaviour
for t → ∞ is not equivalent to fixing t and studying the behaviour for L → ∞.
According to our observation, this implies that the phase transition may appear
first-order in the case of a finite lattice, but would actually be of higher-order in
an open infinite space.
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Abstract. Leakage squeezing is a novel approach towards resisting side
channel attacks against cryptographic implementations. It is seen that
certain codes are ideal for leakage squeezing applications. However, in
this paper we argue that few other cryptographic properties are essential
for better squeezing. In this respect we analyze few Cellular Automata
(CA) configurations towards suitability in leakage squeezing. It is argued
that nonlinear cellular automata with respective cryptographic and code
properties are ideal for applications in this scenario.

Keywords: Leakage Squeezing, Cellular Automata, Nonlinear Cellular
Automata, Hybrid Nonlinear Cellular Automata.

1 Introduction

Cellular Automata are self-evolving systems of cells each of which updates itself
per cycle following a rule embedded into it. Cellular Automata (CA) is known for
its ability to generate pseudorandom sequences needed for various applications
like VLSI testing and coding theory, [10]. Several researchers have attempted to
apply the pseudorandomness of CA to cryptography. In this paper we describe
a usage of CA in connection with both coding theory and cryptography.

Side channel attacks present great threat to cryptographic implementations.
It is seen in literature that most of the standard cryptographic algorithms in
block cipher, stream cipher, hash functions or other categories can be effectively
analyzed using information about side channel leakage in practical time. Hence,
it became necessary to protect sensitive information in cryptographic algorithms
from side channel leakages. In this direction, a novel approach was introduced
in [6], which does not store any sensitive algorithmic information in hardware
registers for hardware implementations. The sensitive information is computed
on the execution-time and again ”masked” before storing. A detailed description
of the scheme is given in the following section. This scheme is called leakage
squeezing.

A formal analysis of the leakage squeezing schemes show that linear codes
fit in correctly in the design. In this respect CA are directly applicable to such
designs as a vast literature is available on design of linear codes using CA ([9]).
However, in this paper, we argue that certain other cryptographic properties are
mandatory for use in leakage squeezing scheme. We then analyze certain nonlin-
ear hybrid CA configurations for matching in requirements of these applications.
It is seen that we can get suitable CA for applications in leakage squeezing among
the analyzed CA.
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This paper is organized as follows. Following introduction, we describe basic
definitions related to CA and cryptographic properties in section 2. We describe
the method of leakage squeezing in this section also. The technique and analysis
of requirements of CA in leakage squeezing is described in section 3. Finally
section 4 concludes the paper.

2 Preliminaries

Before describing the usage of Cellular Automata (CA) in leakage squeezing, in
this section, we briefly discuss basics of CA, basic definitions of cryptographic
properties and the concept of leakage squeezing. Detailed discussion of CA can
be found in [9], while a detailed introduction of leakage squeezing and its analysis
on first and second order can be found in [6] and [1] respectively.

2.1 Cellular Automata

In this subsection, we present the basic terminology of CA.

Definition 1. Cellular Automata: A cellular automaton is a finite array of cells.
Each cell is a finite state machine C = (Q, fc) where Q is a finite set of states
and f a mapping fc : Q

n → Q. The mapping fc, called local transition function. n
is the number of cells the local transition function depends on. On each iteration
of the CA each cell of the CA updates itself with respective fc. Dimension of the
cell array is called the dimension of the CA. Adjacent cells of a cell are called
the neighbourhood of the CA.

The number of neighbouring cells fc depends on, may be same or different
on different directions of the automaton. fc may be same or different for cells
across the automaton. The array of cells may be multi-dimensional. Hence, a
huge number of CA configurations are possible. In this paper, we model rules
as Boolean functions, so that, Q = {0, 1}. Each cell of the system is initialized
with a Boolean value. Collectively, over the automaton it is referred to as the
seed. In this paper, we have considered 1-dimensional CA only.

A 1-dimensional CA, each of whose rule depends on left and right neighbour
and the cell itself is called a 3-neighbourhood CA. Similarly, if each cell depends
on 2 left and 2 right neighbours and itself only, it is called 5- neighbourhood
CA. A CA whose cells depend on 1 left and 2 right neighbouring cells is called
a 4-neighbourhood right skew CA. A left skewed 4- neighbourhood CA can be
defined similarly.

Definition 2. Rule:The local transition function for a 3-neighbourhood CA cell
can be expressed as follows:
qi(t+ 1) = fc[qi(t), qi+1(t), qi−1(t)]
where fc denotes the local transition function realized with a combinational logic,
and is known as a rule of CA cell [9]. The decimal value of the truth table of the
local transition function is defined as the rule number of the CA.
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For example, for 1-dimensional 3-neighbourhood CA, Rule 30: fi = qi−1(t)⊕
(qi+1(t) + qi(t)), where + is the Boolean or operator and ⊕ is the Boolean xor
operator. This rule is extensively studied for application to cryptography [3].
Rule 60: fi = qi−1(t)⊕ qi(t).
Rule 90: fi = qi−1(t)⊕ qi+1(t).

Definition 3. Uniform and Hybrid Cellular Automaton: A CA whose local tran-
sition function is same for all the cells is called uniform cellular automaton else
it is called a hybrid cellular automaton.

Definition 4. Linear and Nonlinear Cellular Automaton: A CA whose lo-
cal transition function in algebraic normal form (ANF) does not involve the
(Boolean and) operator in any of the cell is called the linear cellular au-
tomaton. Otherwise, it is called a nonlinear CA. For example, rule, fi =
qi−1(t)⊕ qi+1(t) employed in each cell is a linear cellular automaton, while rule,
fi = qi−1(t).qi+1(t) employed in each cell is a nonlinear cellular automaton,
where, qi−1(t) and qi+1(t) denotes left and right neighbours of the i-th cell at
t-th instance of time.

Any CA can be utilized to generate pseudorandom sequences of different de-
gree of security by first selecting a seed and then updating each cell according to
the transition functions. State values from the middle cell of the cell array may
be taken output to represent generation of pseudorandom sequences.

2.2 Cryptographic Terms and Primitives

We now provide definitions involving cryptographic primitives. We will concen-
trate only on boolean functions.

Affine Function: A boolean function which involves its input variables in lin-
ear combinations (i.e., combinations involving ⊕) only, is called an affine func-
tion. For example, f(x1, x2) = x1 ⊕ x2 is an affine function, while the function,
f(x1, x2) = x1 ⊕ x2 ⊕ x1.x2 is not an affine function, where . is the boolean
”and” operation.

Hamming Weight: Number of boolean 1’s in a boolean function’s truth table
is called the hamming weight of the function. For example, hamming weight of
f(x1, x2) = x1 ⊕ x2 is, 2 and hamming weight of f(x1, x2) = x1.x2 is 1.

Balanced Boolean Function: If the hamming weight of a boolean function of n
variables is 2n−1, it is called a balanced boolean function. Thus, f(x1, x2) =
x1 ⊕ x2 is balanced, while f(x1, x2) = x1.x2 is not balanced.

Hamming Distance: Hamming weight of f1 ⊕ f2 is called the hamming distance
between f1 and f2. Thus, hamming distance between f1(x1, x2) = x1 ⊕ x2 and
f2(x1, x2) = x1.x2 is 1.

Nonlinearity: The minimum of the hamming distances between a function, f and
all affine functions involving its input variables is nonlinearity of the function.
Hence, nonlinearity of f(x1, x2) = x1.x2 is 1.

Resiliency: A boolean function of n variables is called to have a resiliency t, if
for all possible subsets of variables of size less than or equal to t, on fixing values



Leakage Squeezing Using Cellular Automata 101

of those variables in each of the set, the resultant boolean function still remains
balanced. For example, resiliency of f(x1, x2) = x1 ⊕ x2 is 1, but resiliency of
f(x1, x2) = x1.x2 is 0.

Algebraic Degree: The highest degree of a boolean function is called the algebraic
degree of the boolean function. Thus, algebraic degree of f(x1, x2) = x1 ⊕ x2 ⊕
x1.x2 is 2.

2.3 d-Monomial Test

d-Monomial test is a statistical test for pseudorandomness proposed indepen-
dently in [2] and [4]. It investigates boolean function representation of each
output bit in terms of input bits. If boolean function is pseudorandom sequence
generator, the it will have a d-degree monomials 1

2

(
n
d

)
many. A deviation will in-

dicate non-randomness. For example, consider the function f(x1, x2) = x1 ⊕ x2,
it has 2 1-degree monomials and 0 2 degree monomial. It turns out that it has
2, 2-degree monomials less, hence it is very much non-pseudorandom. On the
other hand f(x1, x2) = x1 ⊕ x1.x2 ⊕ ¬x1.¬x2 passes the test and is a good
pseudorandom generator.

In spite of its simplicity, this test gained huge appriciation in cryptographic
community. It proved to be a good tool in analyzing the degree of pseudoran-
domness of cryptographic systems. To the best of our knowledge, d-monomial
test has not been applied to CA configurations previously. We explore different
CA configurations under this test.

2.4 Leakage Squeezing

Leakage squeezing was introduced in [6] towards the aim of protecting crypto-
graphic designs from unintentional leakages. The idea is not to store sensitive
cryptographic data in registers, thus disabling direct access of sensitive data us-
ing side channel leakages. Instead of storing a single sensitive cryptographic in-
formation, two or more protected shares are stored. The sensitive data is masked
using one or more masks, while bijections of masks are also stored. The design
with single mask is studied in [6] and that with two masks for second-order
leakage squeezing is studied in [1]. Certainly, consulting the papers ([6] and [1])
it becomes evident that higher order leakage squeezing can also be attempted,
however, the hardware overhead and throughput need to be justified. Here, we
briefly discuss the concept of leakage squeezing. We also produce the conditions
on bijections derived in [6] and [1].

Leakage Squeezing of Order One [6]. Let, X be a shared variable. Instead
of storing X in a register, we store two variables in registers. The design includes
a masking generator. The masking generator generates an ideal pseudo-random
mask M at every cycle of operation. The design also includes a bijection F :
{0, 1}n → {0, 1}n, where n is the bit-length of X and M . The actual shares
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stored in the design are, S1 = X ⊕ M and S2 = F (M). Thus the sensitive
variable X may be obtained as,

X = S1 ⊕ F−1(S2)

= X ⊕M ⊕M.

The invariant of each iteration of the cryptographic algorithm is, X = S1 ⊕
F−1(S2). Thus during the following cycle a new mask is generated, M ′ (this
process is called mask-refresh), the bijection F is applied and the new sensitive
value X ′ is protected. It may be mentioned that F is known in public. Thus
the strength of the scheme depends on pseudo-random mask M . The scheme is
depicted in figure 1.

Fig. 1. Leakage Squeezing of Order One

Leakage squeezing of order one is studied in [6]. It is assumed that the archi-
tecture leaks in Hamming Weight model. It was derived in this paper that the
condition for dth order leakage squeezing is achieved when F is a (2n, n, d + 1)
code.

Leakage Squeezing of Order Two [1]. Leakage squeezing of order two is
studied in [1]. The scheme is as follows:

– Let, X be the sensitive variable.
– Let, F1 and F2 be two bijections from n bit strings to n bit strings.
– Let, M1 and M2 be two pseudo-random masks.

Then, use three shares in three registers, S1 = X ⊕M1 ⊕M2, S2 = F1(M1) and
S3 = F2(M2). The sensitive value X may thus be obtained from,

X = S1 ⊕ F−1
1 (S2)⊕ F−1

2 (S3)

= X ⊕M1 ⊕M2 ⊕M1 ⊕M2
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Here, again it should be noted that F1 and F2 are known in public, thus, strength
of the design depends on masking generators generating masksM1 and M2. Also,
the invariant being X = S1 ⊕ F−1

1 (S2) ⊕ F−1
2 (S3), mask refreshes to generate

M ′
1 and M ′

2 to store shares S′
1, S

′
2 and S′

3 to protect sensitive value X ′ in the
following cycle and so on. The scheme is depicted in figure 2.

Fig. 2. Leakage Squeezing of Order Two

The paper, [1] has analyzed the requirements of bijections F1 and F2. The
authors have again assumed leakage in Hamming Weight model. A number of
conditions on F1 and F2 have been derived. For this paper, it suffices to state
that if F1 and F2 are linear, dth order leakage squeezing is achieved where d
is the minimal distance of the code, (x, F−1

1 (x), F−1
2 (x));x ∈ GFn

2 ) (of rate 1/3
and with three disjoint information sets) minus 1.

3 Leakage Squeezing Using Cellular Automata

It is seen that linear codes are ideal as bijective functions used in leakage squeez-
ing schemes. Cellular Automata is studied extensively in coding theory [9]. There
are algorithms for generating (2n, n, d) codes using linear CA rules. Rules 90,
150, 102 are used extensively in generating (2n, n, d) codes. These codes can
provide leakage squeezing of order d − 1. Similarly, in case of order two leak-
age squeezing also as we have seen these codes are easily applicable as F1 and
F2. However, being used in a cryptographic implementation linear codes present
certain weaknesses.

Consider a linear bijection F . It follows that for some n× n matrix T , when
M is of length n, F (M) = T.M . Note that T is publicly known and F (M) is
stored in a register. So, if leakage L is obtained from register containing F (M),
the information obtained about M is, T−1.L, which in turn induces leakage in-
formation about sensitive variable X as, T−1.L⊕S1. Therefore, it is evident that
linear bijections or linear codes are not suitable for design of leakage squeezing
schemes.
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Analyzing the weaknesses of linear bijections as described above it follows
that the bijections should not be easily invertible. In other words, nonlinearity is
required for the bijections. In addition argumentively in a similar pattern it will
follow that the bijections used in leakage squeezing need to be cryptographically
robust. If F (M) is unbalanced or less resilient the leakage through F (M) is
higher and therefore getting information about the sensitive value X .

In summary, cryptographically robust CA with good distance properties need
to be studied for choice of bijections in leakage squeezing schemes. In the fol-
lowing subsection we analyze a set of hybrid nonlinear CA for candidacy as
bijections of leakage squeezing schemes.

The rules used here were first introduced in [5]. In that paper, authors ana-
lyze the d−monomial characteristics of those rulesets. In this paper, we study
other cryptographic properties of the rulesets such as nonlinearity, resiliency,
balancedness and algebraic degree. Note however that none of the rulesets are
maximum length CA.

For the experiment we have taken the following hybrid CA rulesets:

1. Ruleset 1 : Rules 30 and 60 spaced alternately over a 3-neighbourhood CA.
2. Ruleset 2 : Rules 30, 60 and 90 spaced alternately over a 3-neighbourhood

CA.
3. Ruleset 3 : Rules 30, 60, 90 and 120 spaced alternatively over a 3-

neighbourhood CA.
4. Ruleset 4 : Rules 30, 60, 90, 120 and 150 spaced alternatively over a 3-

neighbourhood CA.
5. Ruleset 5 : Rules 30, 60, 90, 120, 150, 180, 210, 240 spaced alternatively over

a 3-neighbourhood CA.
6. Ruleset 6 : Rules 30, 60, 90, 120, 150, 180, 210, 240, 15, 45 spaced alternatively

over a 3-neighbourhood CA.

The Boolean expressions of the used rules are tabulated in table 1.

3.1 Functional Model of CA for Testing Crypto-properties

For the experiment, we have taken an (n + 1)-cell null-boundary CA(figure 3).
Here, without loss of generality, n is assumed to be odd. Each cell of the CA
is assumed to have an unknown value, xi, 0 ≤ i ≤ n at the beginning. Boolean
rules are set into the CA cells according to the CA configuration needed. Thus,
each cell’s output is determined by a corresponding local transition function fi.
Collectively, the functions are represented as F . The output bits of the CA are
denoted by, y0, y1, . . . yn. The middle cell’s output (yn+1

2
) is analyzed. Here, fn+1

2

is the local transition function of the n+1
2

th
cell and f t

n+1
2

is defined recursively

as follows:

f t+1
n+1
2

= fn+1
2
(f t

n+1
2

)
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Fig. 3. Configurations of CA experimented

For that, we express the n+1
2

th
cell’s output as a function of initial input un-

knowns, xi, 0 ≤ i ≤ n. For a 3-neighbourhood CA.

yn+1
2

= fn+1
2
(xn+1

2 −1, xn+1
2
, xn+1

2 +1)

This process is iterated for multiple clock cycles, for the hybrid CA,

ytn+1
2

= f t
n+1
2

(xn+1
2 −t, . . . , xn+1

2
, . . . , xn+1

2 +t)

ytn+1
2

= f t
n+1
2

(xn+1
2 −t, . . . , xn+1

2
, . . . , xn+1

2 +2t)

Thus, it is clear that at tth iteration, for a 3-neighbourhood CA, the output bit
is a function of 2t+1 bits. Beyond 3rd iteration, the Boolean function acts upon
10 or more variables and hence becomes unwieldy to analyze. In this paper, we

have listed results of first 3 iterations only. We have chosen the n+1
2

th
cell for

our analysis because it will be least affected by the boundary null values and
more affected by the neighbouring cells and thus better charaterize the rule of
the CA. However, in case of hybrid configurations, we have analyzed output of
all nonuniform middle cells and have selected the best rule as the output.

Table 1. ANF of used 3-neighbourhood Rules

Type Rule # Nbd ANF

Linear

15 3 x̄1

60 3 x1 ⊕ x2

90 3 x1 ⊕ x3

150 3 x1 ⊕ x2 ⊕ x3

240 3 x1

Non-linear

30 3 (x2.x3)⊕ x1 ⊕ x2 ⊕ x3

45 3 x1 ⊕ x3 ⊕ (x2.x3)⊕ 1
120 3 x1 ⊕ (x2.x3)
180 3 x1 ⊕ x2 ⊕ (x2.x3)
210 3 x1 ⊕ x3 ⊕ (x2.x3)



106 S. Karmakar and D.R. Chowdhury

Historically, researchers have studied balancedness, nonlinearity, resiliency
and algebraic degree [7], [8] to explore CA as a crypto-primitive. Our emphasis
is on a new cryptographic test called d-monomial test.

3.2 Cryptographic Properties of Hybrid CA

In this subsection we discuss the basic cryptographic properties of the rulesets
mentioned above. The experiment is conducted using Mathematica 8 following
the model described in the above subsection. It is seen that beyond 3-rd iteration
these tests become practically impossible. So, we state results of first 3 iterations
of the rulesets only. The values tabulated refers to the maximum obtainable
among all bits of the output.

Balancedness of Hybrid CA. Balancedness is an important property of a
primitive from cryptographic viewpoint. It demonstrates that no information
can be obtained from the output bits in terms of bias of 0s and 1s. In table 2, we
show the values of balancedness of different rulesets. Hence, even though rule 30

Table 2. Balancedness of the Rulesets

Nonlinearity

Iterations

Rules 1 2 3

Ruleset 1 Y Y Y

Ruleset 2 Y Y Y

Ruleset 3 Y Y Y

Ruleset 4 Y Y Y

Ruleset 5 Y Y Y

Ruleset 6 Y Y Y

uniform CA is not balanced for all three iterations, when it is alternated with
rule 60, 90 cells it becomes balanced. Hence in respect of generating balanced
functions with nonlinear rules we could use proper linear rules in alternate.

Nonlinearity of Hybrid CA. Nonlinearity of a crypto-primitive is also an
important property. It measures the minimum distance of the output from linear
functions. Since, a linear function is not cryptographically suitable, a highly
nonlinear function implies stronger resistance against cryptographic analysis. In
table 3, we show the results on the values of nonlinearity of the rulesets. Note that
it is not possible to get nonlinearity more than 48 in this series of construction.

Resiliency of Hybrid CA. Resiliency measures a form of stronger balanced-
ness of a crypto-primitive. It indicates the bias in change of output bits when
input bits are changed. The results of resiliency of the rulesets is tabulated in 4.
From the above observations we see that ruleset 5 provides best resiliency.
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Table 3. Nonlinearity of the Rulesets

Nonlinearity

Iterations

Rules 1 2 3

Ruleset 1 2 8 32

Ruleset 2 2 8 48

Ruleset 3 2 8 48

Ruleset 4 2 8 48

Ruleset 5 2 8 32

Ruleset 6 2 2 48

Table 4. Resiliency of the Rulesets

Resiliency

Iterations

Rules 1 2 3

Ruleset 1 1 0 0

Ruleset 2 2 2 1

Ruleset 3 2 2 1

Ruleset 4 2 2 1

Ruleset 5 2 2 2

Ruleset 6 2 2 1

Algebraic Degree of Hybrid CA. Algebraic degree provides a crypto-
primitive with algebraic strength against mathematical attacks such as Grobner
basis, cube attack etc. In table 5, we gather the maximum algebraic degrees of
the rulesets for the first three iterations.

Table 5. Algebraic Degrees of the Rulesets

Algebraic
Degree

Iterations

Rules 1 2 3

Ruleset 1 2 2 3

Ruleset 2 2 2 3

Ruleset 3 2 3 3

Ruleset 4 2 3 4

Ruleset 5 2 3 4

Ruleset 6 2 3 4

d-Monomial Test of Hybrid CA [5]. d-monomial test results of the 6 hybrid
CA are reproduced here from [5] in table 6.



108 S. Karmakar and D.R. Chowdhury

Table 6. d-monomial Test of the Rulesets

Number of n-th degree terms

Rules 1 2 3 4

Ruleset 1 3,3,5 1,3,3 0,0,2 0,0,0

Ruleset 2 3,3,2 1,3,3 0,0,1 0,0,0

Ruleset 3 3,2,4 1,3,5 0,1,3 0,0,0

Ruleset 4 3,2,4 1,3,7 0,1,7 0,0,2

Ruleset 5 3,2,4 1,3,5 0,2,6 0,0,3

Ruleset 6 3,2,4 1,3,5 0,2,6 0,0,3

The table above shows that, rules 30, 60, . . . , 240 and rules 30, 60, . . . , 45 are
better rules than all other combinations.

Distance. The rulesets are also tested for distance with input X and output Y
where |X | = |Y |. We have randomly tested the rulesets for up to 3 iterations,
with random length bit strings. It is seen that all the rulesets show an aver-
age distance of 2 over all the iterations. Thus leakage squeezing of order 1 are
guaranteed for all six rulesets.

Considering other cryptographic properties, 3 iterations of the rulsets pro-
vides both cryptographic strength and shows order 1 leakage squeezing.
The results show that any one among the six rulesets can be employed as
squeezer. However, rulesets 5 or 6 are the best choice for the leakage squeez-
ing applications.

4 Conclusion

In this paper, we have discussed the technique of leakage squeezing of orders 1
and 2. It is explained that although linear codes provide the required properties
of leakage squeezing, they are weak with respect to cryptographic properties.
We have explained that basic cryptographic properties are necessary for leakage
squeezing applications. We have analyzed cryptographic properties of few hybrid
nonlinear CA introduced in [5]. The distance of the rulesets is also explored. It
is seen that the rulesets show average distance of 2, thus, guarantees order 1
leakage squeezing. It is seen that ruleset 5 and 6 are robust choices for first order
leakage squeezing.
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Abstract. It is known that CA rules which are both leftmost and rightmost per-
mutive (bipermutive rules) are expansively and mixing chaotic. In this paper, we
prove that bipermutive rules also satisfy the condition of 1-resiliency (that is, bal-
ancedness and first order correlation-immunity), which is an important property
used in the design of pseudorandom number generators for cryptographic pur-
poses. We thus derive an enumerative encoding for bipermutive rules based on
a graph representation, and we use it to generate all the 256 bipermutive rules
of radius 2. Among these rules we select the ones which satisfy additional cryp-
tographic properties: high nonlinearity and 2-resiliency. Finally, we assess the
quality of the pseudorandom sequences generated by these remaining rules with
the ENT and NIST statistical test suites, taking the elementary rule 30 as a bench-
mark.

Keywords: Cellular automata, boolean functions, pseudorandom number gen-
erators, stream ciphers, deterministic chaos, permutivity, resiliency, nonlinearity,
Walsh transform, ENT test suite, NIST test suite.

1 Introduction

Cellular automata (CA) have widely been used in the past to define pseudorandom num-
ber generators (PRNG) for the design of stream ciphers. Starting with Wolfram [13],
particular interest has been devoted to the study of CA rules of radius 1. Wolfram pro-
posed to use a CA equipped with rule 30 and to sample the trace of its central cell as a
pseudorandom sequence. Unfortunately, even if rule 30 is nonlinear and balanced, and
even if it is chaotic with respect to Devaney’s definition of topological chaos [4], it does
not satisfy the property of first order correlation-immunity, introduced by Siegenthaler
in [8]. More generally, Martin has pointed out in [6] that all nonlinear and balanced
rules of radius 1 are not first order correlation-immune. As a consequence, a CA-based
PRNG using these rules may pass classic statistical randomness tests, but it is suscepti-
ble to correlation attacks.

Cattaneo, Finelli and Margara showed in [2] that bipermutive rules (that is, rules
which are both leftmost and rightmost permutive) are expansively chaotic, while in [3]
it has been proved that rules which are either leftmost or rightmost permutive are mixing
chaotic. Thus, bipermutive rules satisfy stronger definitions of topological chaos than
the one given by Devaney.
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The aim of this paper is to study the class of bipermutive rules with respect to
the cryptographic property of resiliency, which includes balancedness and correlation-
immunity. In particular, we prove that bipermutive rules are 1-resilient, and we derive
a graph-based encoding to enumerate all bipermutive rules of a given radius r. We then
apply this encoding to generate all 256 bipermutive rules of radius 2, and compute their
Walsh transforms to select only those which are nonlinear and 2-resilient (which is, by
Tarannikov’s bound [10], the best possible trade-off between these two properties in
the case of boolean functions of 5 variables). We successively filter out the rules which
do not generate sequences of 216 bits that pass the statistical tests from the ENT suite,
using rule 30 as a benchmark. Finally, we apply the more stringent NIST test suite to
longer sequences (106 bits) produced by the remaining rules, observing that three of
them pass all the tests, like rule 30.

The rest of this paper is organized as follows. Section 2 recalls basic definitions
and theoretical results about cellular automata and the properties of nonlinearity and
m-resilience a CA rule should satisfy for cryptographic applications. Section 3, after
a brief introduction to topological chaos in CAs and permutive rules, reports the main
theoretical contribution of the paper, namely the proof that bipermutive rules are also
1-resilient. Section 4 describes an enumerative encoding for bipermutive rules based on
a graph representation and the application of this encoding to the generation of bipermu-
tive rules of radius 2, in order to recover only those which are nonlinear and 2-resilient.
Section 5 reports the results of the statistical tests of the ENT and NIST suites applied
to the pseudorandom sequences generated by the rules found in Section 4. Finally, Sec-
tion 6 sums up the results presented throughout the paper, and points out some possible
future developments and improvements on the subject.

2 Cellular Automata and Cryptographic Properties of Boolean
Functions

2.1 Cellular Automata

Cellular automata are a particular type of discrete dynamical systems, characterised by
a regular lattice of cells. At each discrete time step, all the cells synchronously update
their states by applying a local rule. Formally, we give the following definition of finite
one-dimensional cellular automaton, which is the typical model of CA used in crypto-
graphic applications.

Definition 1. A finite one-dimensional cellular automaton is a 4-tuple 〈n,A,r, f 〉 where
n ∈ N is the number of cells, A is the set of local states, r ∈ N is the radius and
f : A2r+1 → A is the local rule.

Thus, essentially, a finite one-dimensional CA is composed by an array of n cells.
In what follows, we assume A = F2: the CA, in this case, is called boolean. For all
i ∈ {1, ...,n} and t ∈ N, we denote with ct

i the state of the i-th cell at time t, and the
next state is computed as ct+1

i = f (ct
i−r, ...,c

t
i , ...,c

t
i+r). The configuration of the CA at

time t is the binary vector ct = (ct
1, ...,c

t
n). To update the cells at the boundaries, two

approaches are possible: null boundary conditions, where r cells with constant states
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are added before the first cell and after the last one, and periodic boundary conditions,
in which the array can be viewed as a ring, so that the last cell precedes the first one.
For all radii r ∈ N, each of the 222r+1

local rules can be indexed by its Wolfram code,
introduced in [12], which is basically the decimal representation of the binary string
that encodes the truth table of the rule.

Wolfram extensively studied the 256 elementary rules (that is, rules of radius r = 1),
and in [13] he proposed to use a CA with rule 30 as a pseudorandom number generator
for cryptographic purposes, since it exhibits a chaotic behaviour when observing the
sequence of configurations {ct}t∈N. The CA is initialised with a random configuration
c0 (the seed), and at each time step the state of the central cell is taken as a new pseu-
dorandom bit. Wolfram analysed this PRNG by applying several statistical tests, which
suggested it could generate good pseudorandom sequences.

2.2 Cryptographic Boolean Functions

Boolean functions are fundamental in cryptography, in the design of both stream ciphers
and block ciphers. Here we summarise the essential definitions and properties of the
theory of cryptographic boolean functions applied in the rest of the paper to the local
rules of CA. An excellent reference for cryptographic boolean functions is [1].

A boolean function in m variables is a mapping f : Fm
2 → F2, which in the follow-

ing we will identify by the 2m-bit string representing its truth table. Given ω and x
vectors of Fm

2 , by ω · x we denote the scalar product between ω and x, computed as
ω · x =

⊕m
i=1 ωi · xi. The polar value of f (x) is f̂ (x) = (−1) f (x). The Hamming weight

of a vector x ∈ Fm
2 , denoted by wH(x), is the number of nonzero coordinates in x. A

boolean function f : Fm
2 → F2 is called balanced if | f−1(0)| = | f−1(1)| = 2m−1. Un-

balanced functions are generally not desirable in cryptographic applications, since they
present a statistical bias which can be exploited for linear and differential cryptanalysis.

We now recall the definition of the Walsh Transform, an essential tool used to char-
acterise cryptographic properties of boolean functions.

Definition 2. The Walsh Transform of a boolean function f : Fm
2 → F2 is a function

F̂ : Fm
2 → R defined as follows: ∀ω ∈ Fm

2

F̂(ω) = ∑
x∈Fm

2

f̂ (x) · (−1)ω·x . (1)

The value F̂(ω) is also called the Walsh coefficient of f with respect to the vector ω. A
naive algorithm to compute the Walsh Transform of a boolean function having a truth
table of n = 2m bits requires O(n2) operations. There is, however, a Fast Walsh Trans-
form (FWT) algorithm, described in [1], which requires only O(n log2 n) operations.

We describe some properties of the Walsh Transform which will be used extensively
to prove the theoretical results of this paper:

Property 1. Denoting by 0 the null vector of Fm
2 , it follows that F̂(0) = ∑x∈Fm

2
f̂ (x).

Property 2. From Property 1, it is obvious that a function f is balanced if and only if
F̂(0) = 0.



1-Resiliency of Bipermutive Cellular Automata Rules 113

Property 3. If wH(ω) = 1, then F̂(ω) = ∑x∈Fm
2

f̂ (x) · (−1)xi , where i is the index of the
nonzero coordinate of ω. Thus in this case the sign of the generic term in (1) is uniquely
determined by the value of xi.

Given a boolean function f , the maximum absolute value of its Walsh coefficients,
Wmax( f ), is called the spectral radius of f . The spectral radius is useful to characterise
the nonlinearity of a boolean function, which is formally defined as the Hamming dis-
tance from the set of affine functions: in [1] it is shown that given a boolean function
f : Fm

2 → F2 its nonlinearity is Nl( f ) = 2−1(2m−Wmax( f )). In the design of stream or
block ciphers, the nonlinearity of the boolean functions selected should be as high as
possible, since it provides better confusion.

A second important property for cryptographic boolean functions is correlation-
immunity, introduced by Siegenthaler in [8]. A boolean function f is said to be k-th
order correlation-immune if the restrictions of f obtained by fixing k input coordinates
of f all have the same Hamming weight. If a function used in a stream cipher does
not satisfy this property, it is possible to apply a divide-and-conquer correlation attack
described in [9] using k Linear Feedback Shift Registers, in order to recover the plain-
text. A function which is both balanced and k-th order correlation-immune is called
k-resilient. Xiao and Massey proved in [14] a necessary and sufficient condition for a
boolean function to be k-th order correlation-immune, using its Walsh Transform.

Theorem 1. A boolean function f : Fm
2 → F2 is k-th order correlation-immune if and

only if, ∀ω ∈ Fm
2 such that 1≤ wH(ω)≤ k, F̂(ω) = 0.

Hence, in order to verify whether a given boolean function is k-resilient, by Prop-
erty 2 and Theorem 1 it suffices to check that its Walsh Transform vanishes for all the
input vectors having Hamming weight less than or equal to k, including the null vector.

The three properties of balancedness, nonlinearity and k-th order correlation-immu-
nity induce a trade-off; in particular, Tarannikov [10] showed an upper bound on the
maximum nonlinearity obtainable in k-resilient functions (with k ≤ m− 2), which is
2m−1− 2k+1.

2.3 Correlation-Immunity of Elementary CA Rules

The local rule of a CA can be viewed as a boolean function (with an odd number of
variables, since it is always defined on 2r + 1 cells, where r is the radius), so it is
possible to verify if it is suitable to design a CA-based PRNG by checking its balanced-
ness, nonlinearity and correlation-immunity. Returning to Wolfram’s PRNG, it turns out
that rule 30 is both balanced and nonlinear (with Nl( f30) = 2), but it is not first order
correlation-immune. More generally, Martin has shown in [6] by an exhaustive search
that, among the 256 elementary rules, only 8 linear rules are 1-resilient. This fact can
also be interpreted as a corollary of Tarannikov’s bound: if r = 1 then the local rule is
defined over m = 3 variables, and the maximum nonlinearity for 1-resilient functions
is 23−1− 21+1 = 0. The consequence is that elementary CA rules are not adequate for
building a cryptographic PRNG or a stream cipher, so it is necessary to explore the
spaces of rules having higher radii.
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3 Bipermutive CA Rules

3.1 Symbolic Dynamics and Topological Chaos in Cellular Automata

The dynamics of one-dimensional CAs is generally studied on the space of bi-infinite
sequences AZ = {c : Z→ A}, since every finite CA is trivially periodic. In this case, a
configuration c is a function which assigns to each integer number a symbol from the
alphabet A. The set AZ is usually endowed with the Tychonoff distance, which in the
boolean case A = F2 is defined ∀x,y ∈ AZ as

d(x,y) =
+∞

∑
i=−∞

1

2|i|
|x(i)− y(i)| . (2)

Under this distance, AZ is a compact and perfect (i.e., without isolated points) metric
space. Moreover, any global rule F : AZ→AZ induced by a CA local rule is a uniformly
continuous function with respect to the Tychonoff distance. Thus a one-dimensional
CA, now denoted by a triple 〈A,r, f 〉, can be considered as a discrete time dynamical
system (DTDS) 〈X ,F〉, where the phase space is X = AZ and the update function is the
global rule F : AZ → AZ which applies at each time step the local rule f to all the cells
i ∈ Z.

The notion of deterministic chaos has been formalized in several rigorous definitions
in the literature of dynamical systems. The most popular among them is perhaps the
definition given by Devaney in [4], which uses a topological approach.

Definition 3. A DTDS 〈X ,F〉 is Devaney-chaotic (D-chaotic) if it satisfies the following
conditions:

1. Topological transitivity: for all nonempty open subsets U,V ⊂ X, ∃t ∈ N such that
Ft(U)∩V 
= /0.

2. Topological regularity: The set Per(F) = {x∈X : ∃p∈N : F p(x) = x} of temporally
periodic points is dense in X.

3. Sensitivity to initial conditions: there exists an ε > 0 such that ∀x ∈ X , ∀δ > 0,
∃y ∈ X with d(x,y)< δ and ∃t ∈ N such that d(Ft(x),Ft(y))≥ ε.

Other definitions of chaos have been introduced by substituting stronger conditions to
the three proposed by Devaney. In particular, the definition of expansive chaos (E-chaos)
in a perfect DTDS 〈X ,F〉 reported in [2] substitutes sensitivity to initial conditions by
positive expansivity: there exists an ε > 0 such that, ∀x,y ∈ X , x 
= y, ∃t ∈ N such that
d(Ft(x),Ft(y)) ≥ ε. In mixing chaos (M-chaos) [3] topological transitivity is replaced
by topological mixing: for all nonempty open subsets U,V ⊂ X , ∃t ∈N such that ∀s≥ t,
Fs(U)∩V 
= /0.

3.2 Permutive Rules

We now turn to the permutivity property of a boolean function, successively applying
it to CA local rules. Given f : Fm

2 → F2, x = (x1, ...,xm−1) ∈ Fm−1
2 and x̃ ∈ F2, let us

denote by (x, x̃{i}), with i ∈ {1, ...,m}, the vector

(x, x̃{i}) = (x1, ...,xi−1, x̃,xi, ...,xm−1) ∈ Fm
2 .



1-Resiliency of Bipermutive Cellular Automata Rules 115

In other words, (x, x̃{i}) is the vector of Fm
2 created by inserting at position i in x the

value x̃, and shifting to the right by one place all the components x j with j ≥ i.

Definition 4. A boolean function f : Fm
2 → F2 is called i-permutive (or permutive in

the i-th variable) if, ∀x = (x1, ...,xm−1) ∈ Fm−1
2 , it results that

f (x,0{i}) 
= f (x,1{i}) . (3)

A function f which is 1-permutive is also called leftmost permutive (or L-permutive),
while a function which is m-permutive is called rightmost permutive (or R-permutive).
We call bipermutive a function which is both L-permutive and R-permutive.

In [2] and [3] two important relationships between permutive rules and chaotic CAs
have been proved, which can be summarised as follows:

Theorem 2. The following sufficient conditions hold:

1. A CA based on a local rule f which is bipermutive is E-chaotic.
2. A CA based on a local rule f which is either L-permutive or R-permutive is

M-chaotic.

Thus, bipermutive rules induce CAs which are strongly chaotic, since they satisfy both
the definitions of M-chaos and E-chaos. In the case of elementary CAs, rule 30 is R-per-
mutive (and so M-chaotic), while the bipermutive rules are 90, 105, 150 and 165, which
are all linear.

3.3 Resiliency of Bipermutive Rules

We can now prove the following property: bipermutive rules, besides the chaotic be-
haviour they induce in CAs, are also 1-resilient. We begin by showing that if a boolean
function is permutive in one of its variables, then it is balanced.

Lemma 1. If f : Fm
2 → F2 is i-permutive, then f is balanced.

Proof. Considering Property 1, we rewrite the Walsh Transform of the null vector as
follows:

F̂(0) = ∑
{x∈Fm

2 : xi=0}
f̂ (x) + ∑

{x∈Fm
2 : xi=1}

f̂ (x) . (4)

The function f is i-permutive, so ∀x ∈ Fm−1
2 , f̂ (x,1{i}) = − f̂ (x,0{i}). The second sum

in (4) is exactly the opposite of the first sum, and F̂(0) = 0. By Property 2, this means
that f is balanced. ��

Now we show that bipermutive rules are first order correlation-immune.

Lemma 2. Let f : Fm
2 → F2 be bipermutive. Then f is first order correlation-immune.

Proof. Using the characterization of correlation-immunity given in Theorem 1, it is
sufficient to show that ∀ω ∈ Fm

2 such that wH(ω) = 1, F̂(ω) = 0. Let ω be a generic
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vector having Hamming weight 1. By Property 3, the Walsh Transform of ω can be
computed as

F̂(ω) = ∑
x∈Fm

2

f̂ (x) · (−1)xi . (5)

We distinguish two cases:

1. ω has the nonzero coordinate in the first m−1 positions (there are m−1 vectors of
such kind, from (1,0, ...,0,0) to (0,0, ...,1,0)). We rewrite (5) as follows:

F̂(ω) = ∑
x∈Fm−1

2

f̂ (x,0{m}) · (−1)xi + ∑
x∈Fm−1

2

f̂ (x,1{m}) · (−1)xi (6)

where i ∈ {1, ...,m− 1}. Since f is R-permutive, f̂ (x,1{m}) = − f̂ (x,0{m}). More-

over, since in (6) x varies in Fm−1
2 , the terms (−1)xi are the same in both sums.

Thus, it follows that

F̂(ω) = ∑
x∈Fm−1

2

f̂ (x,0{m}) · (−1)xi − ∑
x∈Fm−1

2

f̂ (x,0{m}) · (−1)xi = 0 .

2. ω has the nonzero coordinate in the last position, that is ω= (0,0, ...,1). The Walsh
Transform of ω is given by

F̂(ω) = ∑
x∈Fm

2

f̂ (x) · (−1)xm . (7)

We observe that the substitution f̂ (x,1{m}) =− f̂ (x,0{m}) used in the previous case
does not work here, since the second sum in (6) would gather all the vectors with
value 1 in the last coordinate, and the signs would all be changed ((−1)xm = −1,
∀x ∈ Fm−1

2 ). We thus rewrite (7) in the following way:

F̂(ω) = ∑
x∈Fm−1

2

f̂ (x,0{1}) · (−1)xm + ∑
x∈Fm−1

2

f̂ (x,1{1}) · (−1)xm . (8)

Now, f is also L-permutive, so f̂ (x,1{1}) = − f̂ (x,0{1}). By using an argument
analogous to the one used in case 1, it follows that

F̂(ω) = ∑
x∈Fm−1

2

f̂ (x,0{1}) · (−1)xm − ∑
x∈Fm−1

2

f̂ (x,0{1}) · (−1)xm = 0 .

In conclusion, the Walsh Transform vanishes for all vectors of Hamming weight 1, thus
the function f is first order correlation-immune. ��

By combining Lemmas 1 and 2, we finally get the following

Theorem 3. Let f : Fm
2 → F2 be a bipermutive boolean function. Then, f is 1-resilient.
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4 Generating Bipermutive Rules of a Given Radius

Theorem 3 motivates the search for bipermutive boolean functions to be used in CA-
based PRNGs, since they are both strongly chaotic and of cryptographic interest. The
idea is to span the space of bipermutive functions of a given odd number of variables (or,
equivalently, of a given radius) in order to check additional cryptographic properties, in
particular, high nonlinearity and higher order of resiliency. We propose a simple enu-
merative encoding which allows us to represent a bipermutive function f : Fm

2 → F2 as
a string of 2m−2 bits, and then we apply it to exhaustively explore the set of bipermutive
boolean functions defined on 5 variables.

4.1 An Enumerative Encoding for Bipermutive Functions

Let us denote by Fm = { f : Fm
2 → F2} the space of boolean functions in m ≥ 2 vari-

ables, and let G = (V,E) be a graph where V = Fm
2 is the set of vertices, and E ⊆V ×V

is the set of edges defined by the following relation: for all x = (x1, · · · , xm) and
y = (y1, · · · , ym) ∈ V , the edge (x,y) is in E if and only if

(x1 = ȳ1 ∧ (∀i ∈ {2, · · · , m} xi = yi))
∨

(xm = ȳm ∧ (∀i ∈ {1, · · · , m−1} xi = yi)) ,

where ȳ j is the complement of bit y j. In other words, the edges in E connect those inputs
in Fm

2 which must have different output values in order to satisfy either L-permutivity
or R-permutivity in a boolean function. The relation which defines E is symmetric, so
the graph G is undirected. We now show some simple properties of G.

Property 4. The degree of each node x ∈ V is 2. In fact, for all x ∈ Fm
2 , there exists a

unique x′ ∈Fm
2 such that x1 = x̄′1 and xi = x′i for all i∈ {2, · · · , m}. Similarly, there exists

a unique x′′ ∈ Fm
2 such that x′′ 
= x′ and xm = x̄′′m and xi = x′′i for all i ∈ {1, · · · , m− 1}.

Property 5. Let x,y be vectors of Fm
2 such that x1 = ȳ1, xm = ȳm and xi = yi for all

i ∈ {2, · · · , m− 1}. Then, the two adjacent nodes of x are the same as the adjacent
nodes of y. In fact, let us suppose that x′,x′′ ∈ Fm

2 are the two adjacent nodes of x,
in particular that x1 = x̄′1, xi = x′i for all i ∈ {2, · · · , m} and xm = x̄′′m, xi = x′′i for all
i∈ {1, · · · , m−1}. Then, x′1 = y1 and x′i = yi for all i∈ {2, · · · , m−1}. Since xm = x′m,
it follows that ym = x̄′m, so (y,x′) ∈ E . A similar argument shows that (y,x′′) ∈ E , so
x′,x′′ are also the adjacent nodes of y.

Property 6. Since the relation which defines E is symmetric, from Property 5 we can
deduce that the adjacent nodes of x′ and x′′ are exactly x and y, hence {x, x′, x′′, y} is a
connected component of G. There are 2m−2 pairs (x,y) ∈ Fm

2 of vectors which differ in
the leftmost and rightmost coordinates and are equal in the m− 2 central ones. Thus G
is composed by 2m−2 disjoint connected components of this kind.

A boolean function f ∈ Fm can be represented as a label function f : V → F2 on
the vertices of G. If f is bipermutive then the label of each node x is different from the
labels of its two adjacent nodes, while the labels of the nodes which are connected via
a path of length 2 are the same. Considering Property 6, this means that the label of
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a single node uniquely determines the labels of the remaining nodes in the connected
component where x resides. So, in the case of a bipermutive function, we can define the
configuration of a generic connected component in G as the value of the label of one
of its nodes x, called the representative of the connected component. The most natural
choice is to select in each connected component the node x whose binary vector en-
codes the smallest integer number as representative, which is the one having value zero
in the leftmost and rightmost coordinates. From a 2m−2-bit string c we can thus recover
the truth table of the corresponding bipermutive function f : Fm

2 → F2 as follows: for
all j ∈ {0, · · · , 2m−2− 1}, we label the representative r j of the j-th connected compo-
nent with the value c j. The adjacent nodes of r j are then labelled with c̄ j, and the last
node in the connected component (the one having nonzero value in the leftmost and
rightmost coordinates) is labelled with c j. Figure 1 reports an example of bipermutive
rule represented on the graph G in the case of m = 3 variables. Given m ∈ N, there are
exactly 22m−2

bipermutive functions of m variables; moreover, by using this choice of
representatives in G the truth tables of the functions can be enumerated in lexicographic
order.

000

0

100

1

101

0

001

1

110

1

111

0

011

1

010

0

Fig. 1. Representation of the function 01011010 (rule 90) on the graph G. The representatives are
shaded in gray, so this function corresponds to the string c = 00.

4.2 Application to the Case r = 2

It has already been observed that in the case of elementary CAs (r = 1) there are only
four bipermutive rules which are all linear. We have thus used the enumerative encoding
described in Section 4.1 to explore the set of 223

= 256 bipermutive rules of radius r = 2.
The algorithm used to generate these functions is straightforward, since it simply loops
on the set {0, · · · , 255}, converts each integer i in the corresponding binary expansion
ci and instantiates the labels on the vertices of G according to the configurations of the
connected components encoded by ci.

By applying Tarannikov’s bound to the case of boolean functions of 5 variables
(which is exactly the set of CA rules of radius 2) we see that, with respect to the prop-
erty of nonlinearity, there can be 1-resilient rules with Nl = 12 and 2-resilient rules with
Nl = 8. For higher orders of resiliency, there are only linear functions. For each biper-
mutive rule generated by our algorithm, we computed its nonlinearity and checked if it



1-Resiliency of Bipermutive Cellular Automata Rules 119

was 2-resilient by using the Fast Walsh Transform. It turned out that all the rules were
either nonlinear with Nl = 8 or linear. We thus selected the rules which were nonlinear
and 2-resilient, since they can resist to second order correlation attacks. This left us, in
total, with 56 rules.

5 Statistical Randomness Tests

Nonlinearity, resiliency and bipermutivity are not sufficient conditions to make a CA
rule suitable for the design of a cryptographic PRNG: for this reason, we subjected
the 56 2-resilient nonlinear bipermutive rules discovered by the method discussed in
Section 4 to a series of statistical tests, in order to find which of them generate pseudo-
random sequences at least as good as the ones produced by rule 30. We structured our
analysis in two phases. First, we removed the rules which generated small pseudoran-
dom sequences (216 bits) that did not pass the tests of the ENT suite [11], using rule 30
as a benchmark. Then, we applied the NIST test suite [7] to longer sequences (106 bits)
generated by the remaining rules. In both phases, we used Wolfram’s method for pseu-
dorandom generation. In particular, we employed a finite CA with periodic boundary
conditions composed by n = 64 cells (since 64 bits is a common value for the length of
the seed in many standard PRNGs, like ANSI X9.17) and we sampled the trace of the
32nd cell to generate the pseudorandom sequences.

5.1 ENT Tests Results

The ENT Test Suite, assembled by Walker and described in [11], is a battery of 5 statis-
tical tests (Entropy, Chi-Square, Arithmetic Mean, Monte Carlo Value for π and Serial
Correlation Coefficient) which can be used to check the quality of pseudorandom se-
quences. For each bipermutive 2-resilient nonlinear rule of radius 2 we generated a
single sequence of length l = 216 = 65536 bits, using as initial seed the configuration
containing only a 1 in the 32nd cell. This method is similar to the one adopted by Koza
in [5], where he evolved a CA-based PRNG by a genetic programming algorithm (even
if, in that case, the fitness function was only the entropy of the generated sequence).
Interestingly, the best rule found by Koza with his approach was rule 30.

As a first selection step, we discarded the rules which did not generate sequences that
passed the Chi-Square test, since this is the most sensitive test in detecting deviations
from randomness. As suggested in [11], a sequence passes the Chi-Square test if the
corresponding p-value is included in the interval [0.1,0.9]. After this selection, only
42 rules remained, and we subsequently compared their results with those obtained by
rule 30, selecting only the ones with an error errπ < 1% in the approximation of π. The
resulting 28 rules were similar or even better than rule 30 with respect to the other tests
(entropy, arithmetic mean and serial correlation coefficient), so no further selection was
performed.

We observed that 24 rules presented the same ENT results in couples. This fact was
expected, since in each couple the rules are related by the reflexive transformation,
mentioned in [6]. Given a binary vector x ∈ Fm

2 , with x = (x1, · · · , xm), the mirror
image of x is defined as the vector xM = (xm, · · · , x1). The reflex of a boolean function
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f : Fm
2 → F2 is the function fR defined as fR(x) = f (xM), ∀x ∈ Fm

2 . This transformation
preserves the nonlinearity and resiliency of a function, since the spectral radius remains
unaltered, and the Hamming weight of an input vector is the same as that of its mirror
image. The remaining four rules not coupled are self-reflexive, that is fR(x) = f (x).

Considering our method of pseudorandom generation described earlier, two rules
equivalent by reflexive transformation produce two sequences of configurations which
are symmetric, thus the trace of the 32nd cell is the same. Table 1 shows the ENT
results of the 28 final rules, grouped by reflection couples. The results of rule 30 are
also reported for comparison.

Table 1. ENT tests results on the pseudorandom sequences generated by the 28 rules after the
selection process. E8 stands for the entropy computed on an 8-bit schema, χ2 is the p-value of
the Chi-Square test, µdev is the normalized deviation from the mean value µ = 127.5, errπ is the
error in the approximation of π and scc is the Serial Correlation Coefficient.

Rule - Reflected rule E8 χ2 µdev errπ scc

1452976485 - 1717213605 7.979592 0.83 0.004848 0.37% -0.002338
1453762905 - 1701485205 7.977838 0.56 0.008593 0.66% 0.002280
1453959510 - 1718196630 7.979487 0.85 0.000567 0.37% -0.003930
1500161685 - 1516676505 7.978750 0.69 0.004215 0.75% 0.003161
1503307365 - 1784059305 7.976643 0.30 0.003097 0.01% -0.012526
1516873110 (self-reflexive) 7.977783 0.57 0.003332 0.10% 0.003791
1520018790 - 1784255910 7.976146 0.32 0.001983 0.01% 0.015071
1705417305 (self-reflexive) 7.979135 0.82 0.006708 0.09% 0.001310
1705613910 - 1722128730 7.976625 0.34 0.008589 0.18% 0.017063
1772459610 (self-reflexive) 7.976147 0.27 0.004326 0.38% 0.002607
2509924965 - 2790676905 7.977823 0.52 0.005322 0.38% -0.013957
2510907990 - 2791659930 7.976643 0.30 0.005385 0.55% -0.025343
2526636390 - 2790873510 7.978825 0.73 0.000548 0.10% -0.005077
2573821590 - 2590336410 7.978674 0.76 0.008456 0.57% 0.013556
2589549990 (self-reflexive) 7.979135 0.82 0.000952 0.75% -0.010592
2778290790 - 2794805610 7.978866 0.83 0.007370 0.66% 0.011000

30 (benchmark) 7.979031 0.80 0.004169 0.66% -0.013926

5.2 NIST Tests Results

To further investigate the randomness quality of the rules selected with the ENT suite,
we applied the more stringent statistical tests devised by the NIST in [7] to longer gen-
erated sequences. For each couple of rules equivalent by reflexive transformation, we
chose to test only the rule with the smallest Wolfram code (since the other is expected
to show a similar pseudorandom behaviour), so in total we tested 12 rules plus the 4
self-reflexive ones.

The NIST suite includes 15 tests, some of which are repeated several times with
different parameters and patterns: the total number of tests run on each sample of pseu-
dorandom sequences is thus 187. The technical details of the tests can be found in [7].
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For the sake of our discussion, it is sufficient to know that each test in the suite produces
a p-value for each sequence in the sample, and that the sequence passes the test if its
corresponding p-value is included in the confidence interval [α,1−α], where α is the
significance level. Then, the results of a test over the entire sample of sequences gen-
erated by a rule are interpreted using two approaches. First, the proportion of passing
sequences is computed, and this proportion is considered acceptable if it lies above the
minimum pass rate

mpr = p̂− 3

√
p̂(1− p̂)

N
, (9)

where p̂ = 1−α and N is the sample size. Second, a Chi-Square test is performed to
verify whether the p-values are well distributed, by dividing [0,1] in 10 subintervals.

To set up the parameters of the tests, we followed the recommendations suggested
in [7]. In particular, for each rule we generated a sample of N = 1000 pseudorandom
sequences of length l = 106 bits. The 1000 64-bit seeds for the CA have been created
with the HotBits service (available at http://www.fourmilab.ch/hotbits/), which
is a true random number generator (TRNG) based on the radioactive decays of a Cae-
sium-137 source. The significance level adopted was α = 0.001.

Table 2 reports the results of the 16 rules tested (along with rule 30, always used as a
benchmark). For each rule, the value in the column “Approach 1” refers to the number
of tests passed with respect to the proportions of passing sequences, while the value
in “Approach 2” represents the number of tests passed with respect to the distribution
of p-values. We can observe that, except for rule 1503307365, the worst results are

Table 2. NIST tests results on the pseudorandom sequences generated by the 16 final rules of
radius 2 and the elementary rule 30, used as a benchmark.

Rule Approach 1 Approach 2

1452976485 187/187 187/187
1453762905 186/187 186/187
1453959510 186/187 187/187
1500161685 184/187 186/187
1503307365 37/187 187/187

1516873110 (self-reflexive) 94/187 184/187
1520018790 187/187 187/187

1705417305 (self-reflexive) 25/187 186/187
1705613910 185/187 187/187

1772459610 (self-reflexive) 24/187 187/187
2509924965 186/187 187/187
2510907990 129/187 186/187
2526636390 187/187 186/187
2573821590 186/187 186/187

2589549990 (self-reflexive) 25/187 185/187
2778290790 187/187 187/187

30 (benchmark) 187/187 187/187
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obtained by the self-reflexive rules, with very low pass rates concerning Approach 1.
The reason could lie in the intrinsic symmetries of the space-time diagrams produced
by this kind of rules, which are evident by using the pseudorandom generation method
of Section 5.1 (initial configuration having only a 1 in the central cell).

The remaining rules all have pass rates close to the maximum, and three of them
(1452976485, 1520018790 and 2778290790) pass all the tests with respect to both ap-
proaches, like rule 30. One could thus reasonably conclude that these three rules are
at least as good as rule 30 for pseudorandom number generation, and moreover they
satisfy an additional stronger definition of chaos (E-chaos) and 2-resiliency.

6 Conclusions

In this paper we showed that bipermutive rules, besides generating CAs which are ex-
pansive and mixing chaotic, are also 1-resilient, and thus potentially useful for the de-
sign of strong cryptographic PRNGs. We also derived an enumerative encoding for
bipermutive rules based on a graph representation which groups the 2m inputs of a
boolean function f : Fm

2 → F2 in 2m−2 disjoint connected components. Since it is al-
ready known by Tarannikov’s bound that among the elementary CA rules there are no
nonlinear resilient rules, we applied this encoding to generate the 256 bipermutive rules
of radius 2, and used the Fast Walsh Transform to compute their nonlinearities and
check whether they were 2-resilient.

We successively tested the resulting 56 nonlinear and 2-resilient rules with two bat-
teries of statistical randomness tests, the ENT suite and the NIST suite. We used the
former to discard the rules which did not generate good pseudorandom sequences of 216

bits, and the latter to investigate more thoroughly the remaining 16 rules by sequences
of 106 bits, taking in both phases the results obtained by rule 30 as a benchmark. The
final results showed that rules 1452976485, 1520018790 and 2778290790 passed all
the 187 NIST tests, like rule 30.

It is important to remark, however, that although these three rules are chaotic, 2-re-
silient, nonlinear, and generate good pseudorandom sequences, they cannot be used
alone in the design of either a cryptographic PRNG or a stream cipher. In fact, there are
many other properties of cryptographic boolean functions, described in [1], which we
did not consider in this paper: propagation criterion, algebraic degree and algebraic im-
munity are some of the most important ones. An interesting direction for future research
is thus to study the class of bipermutive rules with respect to these additional proper-
ties.We also saw that there are no bipermutive rules of radius 2 reaching the maximum
nonlinearity allowed by Tarannikov’s bound, even if they are not 2-resilient. Further
investigation is needed to verify whether bipermutivity induces a stricter bound on the
nonlinearity achievable by a boolean function.

The enumerative encoding described in Section 4.1 gives an effective mean to ex-
plore the spaces of rules having higher radii. The interest in doing such kind of search
is twofold. The first motivation is practical: it is intuitive to think that, as the radius of
the rules increases, the diffusion of a CA-based PRNG gets better. The second reason
which motivates the exploration of rules with higher radii is to test conjectures about
the aforementioned cryptographic properties, by finding counterexamples.
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In the case of r = 3 and r = 4 there are 225
= 4294967296 and 2128 ≈ 3.4 · 1038

bipermutive rules, respectively; an exhaustive exploration as we did for r = 2 is thus
infeasible. However, these search spaces could be reduced by improving our encoding
in order to enumerate only those rules which are 2-resilient and highly nonlinear, using
the Shannon decomposition. This approach will be pursued in future research. For all
radii r > 4, instead, the set of possible rules is so large that heuristic methods would
be necessary to efficiently visit the search space, even under the new encoding. For
example, we observe that it would be straightforward to apply our enumerative encoding
to evolve bipermutive rules by means of genetic algorithms.
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Abstract. Since the 1980’s, automata networks have been at the centre
of numerous studies, from both theoretical (around the computational
abilities) and applied (around the modelling power of real phenomena)
standpoints. In this paper, basing ourselves on the seminal works of
Robert and Thomas, we focus on a specific family of Boolean automata
networks, those without negative cycles. For these networks, subjected to
both asynchronous and elementary updating modes, we give new answers
to well known problems (some of them having already been solved) about
their convergence towards stable configurations. For the already solved
ones, the proofs given are much simpler and neater than the existing
ones. For the others, in any case, the proofs presented are constructive.

Keywords: Boolean automata networks, cycles, monotony, convergence
and convergence time.

1 Introduction

Historically, the appearance of automata networks (ANs) in computer science
flows from the works of McCulloch and Pitts on neural networks [14] and of
von Neumann on cellular automata (CAs) [15], in the 1940’s. In this way, they
are amongst the first unconventional models of computation and constitute the
origin of numerous key works in this domain, such as that of Kleene on fi-
nite automata [13] and of Elspas and Golomb on circuit theory [3, 7]. Then,
in the 1980’s, in a context at the frontier of discrete dynamical systems and
models of computation, many researches were led on these objects that pro-
vided significant results on their dynamical behaviours and their expressive-
ness [4, 5, 10, 21]. Beyond these mostly theoretical works, the interest in ANs
has been sustained through their application to biology. Since McCulloch and
Pitts indeed, a thriving line of researches on ANs have been done about their
ability to model biological regulation networks, with a special attention paid to
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genetic networks. Amongst the best representative studies in this domain are
those of Kauffman [11] and Thomas [26], from which high impact results on
some governing laws of living systems have been obtained (we will evoke some
of them later). Relying on both these computational and biological standpoints,
which contribute equally to the motivations of the paper, the study developed
further focuses on the convergence of ANs.

Before we give more details about the contents of the paper, let us give clari-
fications about ANs. From the most general point of view, an AN is a system of
interacting computing units, the automata of the network, over a discrete time.
Here, an automaton has to be considered as a discrete entity that computes a
result, i.e. its updated state, according to a predetermined local transition func-
tion depending on the inputs it receives from other automata (possibly including
itself) in the network, i.e. its neighbours. Thus, in some sense, an automaton can
be viewed as a black box. The interactions between automata, that define the
neighbourhood relations between them, are directed edges between automata.
They can be of two sorts according to their activating (’+’-label) or inhibiting
(’−’-label) nature. From this derives the fact that the architecture of an AN is
captured by a digraph, classically called the interaction graph. Note that, in the
specific context of CAs, the automata that are rather called cells share the same
local transition function and are organised on a lattice graph. Let us highlight
that, in this paper, we restrict ourselves to the study of finite ANs (i.e. of finite
size, not to be confused with networks of finite automata). To go further, we
speak of Boolean automata networks (BANs), meaning that automata states
can only take Boolean values. From the computational point of view, it is well
known that it is not a limitation [5, 24]. However, from the modelling point of
view where automata can represent genes for instance, it is. But it is deliberate
in the sense that such a limitation allows to focus on the state changes rather
than on the states themselves.

Now that the static aspect of BANs has been presented, let us add that their
study is classically dived into a dynamical dimension. Being given an arbitrary
BAN, with the concept of a configuration that corresponds to the attribution of
a state to every automaton, its dynamical behaviour can be studied by executing
its local transition functions over time. In general, the behaviour of a BAN is also
represented by a digraph, called the transition graph (in the context of CAs, we
rather speak of space-time diagram). In the sequel, we pay particular attention
to transient and asymptotic behaviours of BANs. The asymptotic behaviours
of a BAN, its attractors, are the terminal strongly connected components of its
transition graph. Note that to focus on the dynamical aspect of a BAN asks for
choosing an updating mode (e.g. a non-deterministic one [28], a deterministic
one [21] or a probabilistic one [23]). In this work, we selected the (perfectly)
asynchronous one, that gives non-deterministically from each configuration the
ability of updating every automaton1.

1 Nevertheless, notice that the results extend naturally to the elementary updating
mode [17, 16], unless an explicit mention is given.
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Some peculiar architectural patterns of BANs, namely the cycles, are known
to play a major role in their dynamical behaviours. Two kinds of cycles are
distinguished: the positive and the negatives ones, the former being composed
of an even number of negative arcs, the latter of an odd number of negative
arcs. Let us now recall three results that constitute the basis of our study: (i)
the Robert’s theorem – if the interaction graph of a BAN does not contain any
cycle, its dynamical behaviour is ”trivial”, i.e. it admits a unique attractor that
is a stable configuration [21]; (ii) the first Thomas’ rule – the presence of a
positive cycle in a BAN is necessary for it to admit several stable configurations
and (iii) the second Thomas’ rule – the presence of a negative cycle is necessary
for it to admit a stable oscillation [18–20, 27]. From these, the general aim of
this paper is to address the problem of the convergence (and the convergence
time) of BANs with no negative cycles in their architecture. As a result, with
n denoting the number of automata (i.e. the size) of such a BAN, the main
contributions are:

– a result showing that the absence of negative cycles in BANs implies Boolean
monotonicity;

– a new proof of the second Thomas’ rule, much simpler and neater;
– a result showing that, for any configuration, there exists a path of length at

most n in the transition graph from this configuration to a stable configura-
tion.

In Section 2 are given the main definitions and notations used in the paper.
Section 3 presents the results discussed above about the convergence of BANs
with no negative cycles, before Section 4 concludes the paper and provides some
relevant perspectives of this work.

2 Definitions and Notations

This section gives the classical definitions and notations in the context of BANs.
Those that are more specific will be given when they will prove to be useful.

2.1 BANs

Let B = {0, 1} and let V = {1, . . . , n} denote a set of n ∈ N Boolean automata
such that ∀i ∈ V, xi ∈ B is the state of automaton i. A configuration of N is a
vector x ∈ Bn that instantiates the state of each automaton of V (a configuration
can be denoted by either a vector or a binary word). Because special attention
is paid to automata switches in this paper, we introduce the following notations:

∀x ∈ Bn,

1. ∀i ∈ V, xi = (x1, . . . , xi−1,¬xi, xi+1, . . . , xn), and

2. ∀W = W’ " {i} ⊆ V, xW = (xi)
W’

= (xW’)
i
.

Furthermore, let 1l = {−1,+1} and s : B→ 1l be the function that switches from
Boolean values to signed values such that s(b) = b−¬b. In order to compare two
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N1 =

⎧⎪⎪⎨
⎪⎪⎩

f1(x) = x3

f2(x) = x1 ∨ x3

f3(x) = x2 ∧ ¬x4

f4(x) = ¬x1

1 2 3 4+

−
+

+

+
−

Fig. 1. A BAN N1 of size 4 and its signed interaction graph G1

configurations x, y ∈ Bn, we use D(x, y) = {i ∈ V | xi 
= yi} and the Hamming
distance d(x, y) = |D(x, y)|.

A BAN N whose automata set is V is a set of n Boolean functions such
that N = {fi : Bn → B | i ∈ V}. Given i ∈ V, fi is called the local transition
function of automaton i. It predetermines its behaviour depending on the states
of other automata that influence it and that appear consequently as literals in
the Boolean expression of fi. More precisely, it predetermines its behaviour for
every configuration x ∈ Bn, meaning that if i is updated in x, its state switches
from xi to fi(x). We introduce now the sign of an interaction (i.e. an influence)
from j to i, both in V, in configuration x ∈ Bn with:

signx(j, i) = s(xj) · (fi(x) − fi(x
j)).

From this, the set of interactions that are effective in x is defined as A(x) =
{(j, i) ∈ V2 | signx(j, i) 
= 0}. And we derive directly the interaction graph, or
architecture, of N by defining the digraph G = (V,A), where A =

⋃
x∈Bn A(x)

is the set of interactions (cf. Figure 1) and |A| = m. We add that automata of
V that influence i are called the neighbours of i, and that the neighbourhood
of i ∈ V in G is denoted by V−(i). In this paper, we consider BANs whose
interaction graphs are simple, i.e. if there exists (j, i) ∈ A, it is unique and
such that ∀x ∈ Bn, signx(j, i) 
= 0 and is constant, and thus denoted simply by
sign(j, i) ∈ 1l. Remark that if sign(j, i) = +1 (resp. sign(j, i) = −1), (j, i) is
an activating (resp. inhibiting) interaction so that the state of i tends to mimic
(resp. negate) that of j. The digraph obtained by labelling each arc (i, j) ∈ A
with sign(i, j) is the signed interaction graph of N . We also denote it by G, in
order not to burden the reading. To finish on BANs, we add that the sign of a
path in G equals the product of the signs of its arcs, which leads us to define
positive and negative cycles in G. Abusing notations, a cycle C of G is positive
(resp. negative) if sign(C) = +1 (resp. sign(C) = −1). Note that this paper only
deals with BANs whose signed interaction graphs do not contain any negative
cycle.

2.2 Transition Graphs

In a BAN N , we call elementary transition a couple of configurations (x, y) ∈
Bn × Bn, such that y is obtained by updating automata of x, meaning that
∃W 
= ∅ ⊆ V, ∀i ∈ V, yi = xi if i ∈ V \ W and yi = fi(x) if i ∈ W. If
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Fig. 2. The asynchronous transition graph G1 of N1, defined in Figure 1, and its two
attractors, the stable configurations 0001 and 1110 (ineffective transitions have been
omitted)

x = y (i.e. d(x, y) = 0), then transition (x, y) is said to be ineffective. Con-
versely, if 0 < d(x, y) ≤ n, it is effective. As evoked, a transition (x, y) can
induce the updating of automata of a subset W 
= ∅ ⊆ V . If |W | > 1, (x, y)
is synchronous. Otherwise, if |W | = 1, (x, y) is asynchronous and is denoted
by x y, which implies that d(x, y) ≤ 1. Let T = {x y | x, y ∈ Bn}
be the set of asynchronous transitions of N . Digraph G = (Bn,T) is then the
asynchronous transition graph of N (cf. Figure 2). In other words, G represents
the discrete dynamical system associated to N when the latter is governed by
the non-deterministic ”perfectly” asynchronous updating mode. In this paper, as
said before, results presented are for BANs subjected to this specific updating
mode. However, unless we mention it, they trivially extend to the elementary
(also called general) updating mode, that considers both synchronous and asyn-
chronous transitions [17], to which we associate an elementary transition graph
whose T is then the set of all possible elementary transitions. Notice that the
reason for which the results about convergence times presented in this paper
apply to the elementary updating mode directly comes from the nature of ele-
mentary transition graphs. Indeed, an asynchronous transition graph is a sub-
graph of the related elementary transition graph. As a consequence, a path in
the former also is a path in the latter, and thus, the upper bound results are
valid in both cases.

Let N be an arbitrary BAN of size n and let G = (Bn, T ) its associated
asynchronous transition graph. Let x ∈ Bn be any configuration of N . We
define as a trajectory of x any path in G that starts in x. A strongly connected
component (SCC) of G that does not admit any outgoing transition is a terminal
strongly connected component (TSCC). An attractor of N is a TSCC of G , that
corresponds thus to an asymptotic behaviour of N . The size of an attractor
is defined as the number of configurations it contains. An attractor of size 1
(resp. of size greater than 1) is a stable configuration (resp. a stable oscillation).
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Finally, we call convergence time of a configuration x the length of the shortest
trajectory that leads it to an attractor and convergence time of a BAN the
biggest convergence time of all configurations in Bn.

3 Results

This section aims at presenting the main results obtained on BANs with no
negative cycles: a relationship with the Boolean monotonicity, a new simple and
neat proof of the Thomas’ second rule and a result about the linear convergence
time of such BANs depending on their sizes.

3.1 Negative Cycles and Monotonicity

The global transition function of a BAN N = {fi : Bn → B | i ∈ V} is the map
f : Bn → Bn such that, for all x ∈ Bn and i ∈ V, f(x)i = fi(x). We say that N
is monotone if

∀x, y ∈ Bn, x ≤ y =⇒ f(x) ≤ f(y),

where ≤ is the usual partial order on Bn. Equivalently, N is monotone if its
signed interaction graph has only positive arcs. For all W ⊆ V, the W-switch of
N is the BAN N W = {fWi : Bn → B | i ∈ V} such that

∀x ∈ Bn, fW(x) = f(xW)
W
.

In other words, N W is obtained from N by replacing, for automata in W,
ones by zeros and zeros by ones. By doing this operation, a lot of properties are
preserved. In particular, the asynchronous transition graph of N W is isomorphic
to that of N (the isomorphism being x #→ xW). Besides, the signed interaction
graph GW of N W is obtained from the signed interaction graph G of N by: (i)
kipping exactly the same vertices and the same arcs, and (ii) changing the sign
of ingoing and outgoing arcs of W, i.e. arcs (j, i) such that j ∈ W and i /∈ W
and arcs (j, i) such that j /∈W and i ∈W. So G and GW have the same cycles,
and these cycles have the same signs, even if the repartition of signs on arcs may
differ. These similarities lead us to say that a BAN N ′ is equivalent to N if
N ′ is the W-switch of N for some W ⊆ V (cf. Figure 3).

Proposition 1. Let N be a BAN and let G be its signed interaction graph. If
G is strongly connected and has no negative cycles, then N is equivalent to a
monotone BAN.

Proof. The proof is based on arguments that we can find in [1, 8]. First of all,
let us note that if G has no negative arcs, it is monotone by definition. So, let
us admit that G has negative arcs.

Pick any vertex i ∈ V of G. For any vertex j ∈ V, G has at least one path
from i to j (since G is strongly connected), and all paths from i to j have the
same sign (since otherwise G would have a negative cycle). Let us denote by
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N2 =

⎧⎨
⎩

f1(x) = x3
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Fig. 3. (a) A BAN N2 of size 3, its signed interaction graph G2 and its asynchronous

transition graph G2; (b) the monotone BAN N {2}
2 equivalent to N2 (its {2}-switch

actually) and its associated asynchronous transition graph G {2}
2

signij ∈ 1l this sign, and let W be the set of vertices j such that signij = +1. We
shall prove that an arc (k, l) ∈ A of G is negative if and only if it is entering or
leaving W. Let (k, l) be any arc of G.

If k, l ∈ W then G has a positive path from i to k and from i to l. Thus,
if (k, l) is negative, then together with the positive path from i to k, it gives a
negative path from i to l, which is a contradiction. Thus (k, l) is positive, and
we prove in a similar way that (k, l) is positive if k, l /∈W.

If (k, l) is an outgoing arc of W (k ∈ W and l /∈ W) then G has a positive
path from i to k and a negative path from i to l. Thus if (k, l) is positive, then
together with the positive path from i to k it gives a positive path from i to l,
which is a contradiction. Thus (k, l) is negative, and we prove in a similar way
that (k, l) is negative if it is an ingoing arc of W.

Hence, an arc of G is negative if and only if it is an ingoing or an outgoing
arc of W. Let N W be the W-switch of N , and let GW be its signed interaction
graph. As said above, GW is obtained from G by changing the signs of ingoing
and outgoing arcs of W. We deduce that GW has only positive arcs, so that N W

is monotone (cf. Figure 3). ��

Actually, it is possible to characterise BANs that are equivalent to a monotone
BAN in terms of undirected negative cycle. To do so, we need the following
characterisation of Harary [8]: An arc-signed undirected graph has no negative
cycles if and only if there exists a set of vertices W such that an edge of the
graph is negative if and only if it has one end in W and another outside W.
Now, let N be a BAN with signed interaction graph G, and let U(G) be the
undirected arc-signed graph obtained from G by forgetting directions (U(G) may
have loops, and U(G) has both a positive arc and a negative arc between two
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vertices if G has a negative cycle of length two between these vertices). Using
the characterisation of Harary, we can obtain the following characterisation: A
BAN N is equivalent to a monotone BAN if and only if U(G) has no negative
cycle. The previous proposition (which is enough for our purpose) follows from
the fact that if G is strongly connected, then U(G) has no negative cycles if
and only if G has no negative cycles. Analogues of this characterisation are well
known in the context of differential systems, see [9, 25] for instance.

3.2 Stable Configurations and Stable Oscillations

In this section, we show how to recover known results about stable configurations
and oscillations from the previous proposition and the following two easy results
on monotone BANs.

Proposition 2. Suppose that N is monotone and such that, ∀i ∈ V, fi 
= cst.
Then, configurations 0 . . . 0 and 1 . . . 1 are stable configurations.

Proof. Let f be the global transition function of N . If f(0 . . . 0) 
= 0 . . . 0 then
fi(0 . . . 0) = 1 for some i ∈ V. Let x ∈ Bn. Since 0 . . . 0 ≤ x and N is monotone,
we have fi(0 . . . 0) ≤ fi(x) so fi(x) = 1. Thus fi(·) = cst = 1, which is a contra-
diction. As a consequence, f(0 . . . 0) = 0 . . . 0 and configuration 0 . . . 0 is stable.
We prove in a similar way that f(1 . . . 1) = 1 . . . 1. ��

Proposition 3. Suppose that N is monotone. For all x ∈ Bn, the asynchronous
transition graph of N has a path of length at most 2n from x to a stable config-
uration.

Proof. Let G be the asynchronous transition graph of N whose global transition
function is f. Let P = x0x1 . . . xp be a decreasing path of G starting from x = x0,
and of maximal length for this property, i.e.

x0 ≥ x1 ≥ · · · ≥ xp and xp ≤ f(xp).

Let Q = y0y1 . . . yq be an increasing path of G starting from y0 = xp, and of
maximal length for this property, i.e.

y0 ≤ y1 ≤ · · · ≤ yq and yq ≥ f(yq).

Let k < q. If yk ≤ f(yk) then yk ≤ yk+1 ≤ f(yk), and since N is monotone,
f(yk) ≤ f(yk+1). Thus:

yk ≤ f(yk) =⇒ yk+1 ≤ f(yk+1).

Since y0 = xp, we have y0 ≤ f(y0) and we deduce that ∀0 ≤ k ≤ q, yk ≤ f(yk+1).
In particular, yq ≤ f(yq), and we deduce that yq = f(yq). Thus the concatenation
of P and Q gives a path from x to the stable configuration yq. Since P and Q are
decreasing and increasing, we have p, q ≤ n. As a consequence, the concatenation
of P and Q is of length at most 2n. ��
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Let N be BAN and let G be its signed interaction graph. Aracena [1] (see
also [2]) proved the following: If G is strongly connected and has no negative
cycles (and at least one arc) then the global transition function has at least two
stable configurations. This is an immediate consequence of Propositions 1 and 2.
Actually, all the arguments of the original proof are more or less contained in the
proof of these two propositions, so we cannot speak about a proof simplification
here. However, the interest in Proposition 1, which gives a new relationship
between monotonicity and negative cycles, is clearly visible with the following
second application.

In [19], the following discrete version of the second Thomas’ rule has been
established, with a quite complex proof: If G has no negative cycles, then the
asynchronous transition graph of N has no stable oscillations. Actually, a very
easy proof results directly from Propositions 1 and 3. Indeed, suppose that G
has no negative cycles, and suppose first that G is strongly connected. Then N
is equivalent to a monotone BAN N ′ by Proposition 1. And we deduce from
Proposition 3 that, in the asynchronous transition graph G ′ of N ′, a stable
configuration can be reached from every initial configuration. Since the asyn-
chronous transition graph G of N is isomorphic to G ′, we have proven the
following: If G has no negative cycles and is strongly connected, then, in G , a
stable configuration can be reached from any initial configuration (∗). Now, sup-
pose that G is not strongly connected. Then, by applying (∗) on the SCCs of G,
proceeding from the initial ones to the terminal ones (according to the underly-
ing topological ordering of the SCCs), we obtain the same conclusion: a stable
configuration can be reached from any initial configuration. As a consequence,
G has no stable oscillations, which had to be proven.

3.3 More Precisions about Convergence Times

In this part, for a given monotone BAN N of size n and an arbitrary initial con-
figuration x ∈ Bn, we interest in the set A (x) of stable configurations reachable
from x. We will show the followings results:

– there exist two stables configurations a+(x) and a−(x) of A (x) such that
for any a ∈ A (x), a−(x) ≤ a ≤ a+(x);

– a−(x) and a+(x) are reachable from x in less than 2n − 4 transitions and,
in some cases, this bound is tight;

– there exists a configuration a ∈ A (x) such that a is reachable from x in at
most n transitions.

To compute a−(x), we will proceed as in the proof of Proposition 3, by using
a decreasing path from x of maximal length and, then, an increasing path of
maximal length. The computation of a+(x) is done symmetrically. Let us denote
by 0(x) (resp. 1(x)) a configuration (which can be proven to be unique) resulting
from following a decreasing path P of maximal length (resp. an increasing path
Q of maximal length).
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Lemma 1. Let N be a monotone BAN and G its associated asynchronous tran-
sition graph. Consider a configuration x ∈ Bn of N . If there exists an automa-
ton i such that 0(x)i = 1, then the configurations where the state of automaton
i equals 0 are not reachable from x. Conversely, if there exists an automaton i
such that 1(x)i = 0, the configurations where the state of automaton i equals 1
are not reachable from x.

Proof. Let x ∈ Bn. First, let us prove the first part of the lemma. Consider
an automaton i such that 0(x)i = 1, and let us suppose that there exists a
configuration y ∈ Bn reachable from x such that fi(y) = 0. Without loss of
generality, we suppose that y is the closest configuration to x with an automaton
k such that fk(y) = 0 and 0(x)k = 1 (in G ). Since fi(y) = 0, fi(0(x)) = 1 and fi
is monotone, there exists at least one automaton j ∈ V −(i) such that yj = 0 and
0(x)j = 1. Now, since 0(x)j = 1, we have xj = 1 and thus j switches from state
1 to state 0 along the path from x to y, which is a contradiction with the fact
that y is the closest configuration to x with an automaton k such that fk(y) = 0
and 0(x)k = 1. We prove in a similar way the second part of the lemma. ��

Corollary 1. Let N be a monotone BAN and G its associated asynchronous
transition graph. Consider a configuration x ∈ Bn of N . For any configuration
y reachable from x, 0(x) ≤ 0(y).

Lemma 2 below gives a mean to detect irreversible transitions, i.e. transi-
tions that make an automaton stable in the sense that its state cannot change
anymore.

Lemma 2. Let N be a monotone BAN and G its associated asynchronous
transition graph. Consider a configuration x ∈ Bn of N . If there exists an au-
tomaton i ∈ V such that xi = 0 and fi(0(x)) = 1, configurations with automaton
i in state 0 are not reachable from a configuration reachable by x with automaton
i in state 1.

Proof. Consider a configuration x ∈ Bn of N with an automaton i ∈ V such
that xi = 0 and fi(0(x)) = 1. Let y ∈ Bn be a configuration with yi = 1
that is reachable from x, and z ∈ Bn a configuration reachable from y. By
Corollary 1, 0(x) ≤ 0(y) and fi(0(y)) = 1. Configuration 0(y) is reachable from
y by a decreasing path and, since fi is monotone, 0(y) = 1. By Corollary 1,
0(y) ≤ 0(z) ≤ z and, necessarily, zi = 1. ��

Let us denote by a−(x) (resp. a+(x)) the configuration 1(0(x)) (resp. 0(1(x))).
Note that both these configurations are reachable from x.

Theorem 1. Let N be a monotone BAN of size n and G its associated asyn-
chronous transition graph. Consider an arbitrary configuration x ∈ Bn of N .
Configurations a−(x) and a+(x) are stable and ∀a ∈ A (x), a−(x) ≤ a ≤ a+(x).

Proof. From the proof of Proposition 3, a−(x) is stable. Symmetrically, it is easy
to show that a+(x) is too.
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Consider any a ∈ A (x). Since a is reachable from x, by Lemma 1 we have 0(x) ≤
a. Now, consider a minimal increasing path from 0(x) to a−(x). Suppose (for a
contradiction) that there is an automaton i ∈ V such that ai = 0 and a−(x)i = 1.
Without loss of generality, we suppose that i is the first that is updated along the
path with this property (∗). Then, let y ∈ Bn be the configuration reached from
0(x) just before the updating of i. Thus we have fi(y) = 1. Since a ≥ 0(x) and
since i respects (∗), a ≥ y holds. Moreover, since fi is monotone, fi(a) = 1, which
is a contradiction with the fact that a is a stable configuration. Thus a−(x) ≤ a
and we prove with similar arguments that a ≥ a+(x). ��

Let O(f) be the time complexity for evaluating the local transition functions.
Remark that the computation time to find a+(x) and a−(x) is O(n + m + f).
Despite this time complexity in the general case, genetic regulation networks are
known to have a connectivity (i.e. the average in-degree of G) 2 ≤ K ≤ 3 [12].
As a consequence, we can assume that the time complexity in real-life examples
is O(n).

Let us now give an upper bound (only valid for the asynchronous updating
mode) on the convergence time from x to a−(x) (and conversely for a+(x)),
i.e. an upper bound on the length of shortest paths from x to a−(x). More
precisely, let us prove that the convergence time from x to a−(x) is at most
2n − 4 (for n ≥ 3). Suppose first that no local update functions are constant,
so that 1 . . . 1 and 0 . . . 0 are stable configurations. Consider that x is not 1 . . . 1
(otherwise x = a−(x) and there is nothing to prove). If 0(x) = 0 . . . 0 then
a−(x) = 0(x) and the convergence time is d(x, 0 . . . 0) < n. So, suppose that
0(x) is not 0 . . . 0. Then the convergence time from x to 0(x) is at most n − 2,
and the convergence time from 0(x) to a−(x) = 1(0(x)) is at most n− 1. Now,
suppose (for a contradiction) that the convergence time from x to a−(x) is 2n−3.
Then the convergence time from x to 0(x) is n − 2 and the convergence time
from 0(x) to a−(x) is n−1. We deduce that, in configuration x, there is a unique
automaton, let us call it i, whose state is 0, and we deduce that a−(x) = 1 . . . 1.
Since there are no transitions from x to a−(x) (otherwise the convergence time
is 1) and since the network is monotone, we deduce that for all y ∈ Bn, if yi = 0
then fi(y) = 0. But it means that configuration 1 . . . 1 cannot be reached from
x, which is a contradiction. As a consequence, the convergence time from x to
a−(x) is at most 2n − 4. Now, from this, it is easy to see that if the network
contains k constant local update function, then the convergence time from x to
a−(x) is at most k + 2(n − k) − 4, so that 2n − 4 is a correct bound in every
case. Now, studying the dynamics of networks defined as⎧⎨⎩

f1(x) = x1 ∨ xn

∀i ∈ {2, . . . , n− 1}, fi(x) = xi−1

fn(x) = xn−1 ∧ xn

evidences that the bound is obtained (it is easy to show it with n = 3 by
computing the convergence time of x = 101 to a−(x) = 110).
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Also, notice that if a stable configuration a verifies a−(x) ≤ a ≤ a+(x), we
cannot conclude that a ∈ A (x). The simplest example is the BAN of size 3
defined as {

f1(x) = x2 ∧ x3

∀i ∈ {2, 3}, fi(x) = xi−1 ∨ xi
.

Consider the initial configuration x = 100. We have a−(x) = 000 and a+(x) =
111. Furthermore, a−(x) ≤ a = 001 ≤ 111 is stable but is not reachable from x.

Now, we show that every configuration can converge in no more than n tran-
sitions.

Theorem 2. Let N be a monotone BAN of size n and G its associated asyn-
chronous transition graph. Consider an arbitrary configuration x ∈ Bn of N .
There exists a stable configuration a ∈ A (x) such that a is reachable in at most
n transitions from x without switching the state of an automaton twice.

Proof. Consider an arbitrary configuration x ∈ Bn of N and the following al-
gorithm that returns a couple of configurations (y, z) ∈ Bn × Bn:

// Input: N and x ∈ B
n.

y ← x
z ← 0(y)
while ∃i ∈ V s.t. fi(z) = 1 ∧ zi = 0 do

yi ← 1
z ← 0(y)

end
return y, z

Consider an automaton i such that zi = 1. Since z = 0(y), fi(z) = 1. Now,
consider an automaton j such that zj = 0. Suppose that fj(z) = 1. In this
case, either yj = 0, which is a contradiction because the algorithm should have
switched its state to 1, or yj = 1, and, since z = 0(y), this contradicts the
monotonicity of fj . Thus, z is a stable configuration.

Now, let us prove that z is reachable from x. Consider the following invariant:
When an automaton i of y is switched from 0 to 1, fi(y) = 1. Since y ≥ 0(y),
fi(0(y)) = 1 and fi is monotone, then fi(y) = 1. Thus, y is reachable from x. And
since z = 0(y), z is reachable from x.

By Lemma 2, there is a path of irreversible transitions from x to y. Since
z = 0(y), there is a decreasing path from y to z. Thus, z is reachable in no more
than n transitions from x without switching the state of an automaton twice.
And we deduce that the convergence time of x is at most n. ��

4 Conclusion and Perspectives

In this paper, we have focused on BANs without negative cycles and have shown
(or given new neater proofs of) pertinent results in a context at the frontier
of theoretical computer science and theoretical biology. Notice once again that,
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although proofs are given in the framework of BANs subjected with the asyn-
chronous updating mode (for easing the reading), they remain valid for the much
more complicated elementary updating mode. Of course, this is due to the re-
striction we did on BANs themselves, by considering only those with no negative
cycles that are known to admit no stable oscillations as asymptotic behaviours.
Rather than recalling now the results presented in the previous lines, we prefer
drawing some perspectives that we believe relevant for further works.

The first perspective directly comes from the last result presented. It shows
that, in a monotone BAN of size n (and its equivalent BANs), any configuration
can reach dynamically a stable configuration in at most n transitions. A natural
question that remains to be answered to in the same framework as that used in
this paper is the following: are the stable configurations that are reachable from
a given arbitrary initial configuration all reachable in 2n− 4 transitions? If not,
are they in a polynomial number of transitions according to n? Furthermore, this
study allows to give, for each configuration of monotone(-equivalent) BANs, a
basic representation of its set of attractors, and thus, of the attraction basins of
the underlying dynamical systems. However, it should be possible to go further
and give more precisions about these sets, as it has been done in the case of
Minority in [22]. Also, of course, it would be interesting to characterise BANs of
size n inducing negative cycles in their architecture which would not break the
convergence time property in at most n transitions.

Moreover, following [6, 17, 16, 21], we know that the choice of the updating
mode is crucial for the dynamical behaviour of a BAN, even a monotone one, to
have certain properties. For instance, although monotone BANs admit only sta-
ble configurations as asymptotic behaviours according to both the asynchronous
and elementary updating modes, that is not the case if they are subjected to
the parallel updating mode. For instance, consider a monotone positive cycle
of size n evolving in parallel, it admits stable oscillations (or limit cycles) and,
consequently, does not converge necessarily. As a consequence, it would be of
interest to dive this study and its associated perspectives into the context of
deterministic updating modes, such as the block-sequential ones.

Finally, on the basis of the present work, the last perspective that seems
amongst the most relevant according to us would be to work on the discrete
version of the monotone function theory on Banach spaces notably developed by
Hirsch and Smith in [9, 25]. This would lead us to obtain a better understanding
of the common properties of such continuous and discrete objects and, possibly,
to highlight fundamental properties they do not share.
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Abstract. We introduce the classes of color blind and typhlotic cellu-
lar automata, that is, cellular automata that commute with all symbol
permutations and all symbol mappings, respectively. We show that color
blind cellular automata form a relatively large subclass of all cellular
automata which contains an intrinsically universal automaton. On the
other hand, we give simple characterizations for the color blind CA which
are also group homomorphisms, and for general typhlotic CA, showing
that both must be trivial in most cases.

Keywords: cellular automata, commutation, symbol permutations,
homomorphisms.

1 Introduction

Suppose we wish to study a cellular automaton f , that is, a continuous shift
invariant function from SZ to itself, where S is a finite alphabet. A natural di-
rection of study would be to consider its relation to some other cellular automata,
for example to find the commutator of f , the set of all cellular automata it com-
mutes with. This is known as the commuting block maps problem, and it has a
long history, dating back to the 70s [2]. Algebraically, the commutator of f can
also be viewed as the set of homomorphisms of the unary algebra (SZ, f) that
are also cellular automata. To generalize this notion, one defines the commutator
of a whole family of cellular automata as the set of those CA that commute with
all of them.

In this article, we study so-called color blind (typhlotic) cellular automata,
that is, automata which commute with all symbol permutations (all symbol
mappings, respectively), on full shifts and their subshifts. In other words, color
blind cellular automata form the commutator of the family of all cellwise per-
mutations. They are interesting mainly from the mathematical point of view, as
the commutator of a simple but nontrivial class of CA. We give a natural logical
characterization of color blind cellular automata and show that there exists an
intrinsically universal color blind CA. Perhaps somewhat surprisingly, we show
that intrinsic universality is also possible in typhotic CA if the full shift is binary,
but that every typhlotic CA must be a shift map on other full shifts. We also
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show that in a quantitative sense, the class of color blind cellular automata is
relatively as large as possible in the class of all cellular automata.

We then consider the case of full shifts over a finite group alphabet. The
natural self-maps of such objects are the cellular automata that are also group
homomorphisms for the product group structure, and we call them homomorphic
cellular automata. We investigate cellular automata that are both color blind
and homomorphic. This turns out to be very restrictive, and the situation is
similar to that of typhlotic CA without the group structure: if the alphabet
group is sufficiently simple (Z2, Z3, or Z2

2), then there exist nontrivial color
blind homomorphic CA, but on more complicated full group shifts, all color
blind homomorphic CA are shift maps.

2 Definitions

Let S be a finite set, called the alphabet. The full shift is the space SZ of infinite
configurations over S endowed with the product topology. For x ∈ SZ and n ∈ Z,
we denote by xn the symbol of x at coordinate n. For a word w ∈ S∗ and s ∈ S,
we denote by |w| the length of w, and by |w|s the number of occurrences of s in
w. For a configuration x ∈ SZ, we say w occurs in x if w = x[n,n+|w|−1] for some
n ∈ Z.

A subset X ⊂ SZ is called a subshift if it is closed in the topology and invari-
ant under the shift map σ : SZ → SZ, defined by σ(x)n = xn+1. Alternatively, a
subshift X is defined by a set F ⊂ S∗ of forbidden words as the set of configura-
tions in which no w ∈ F occurs. If F can be taken finite, X is a subshift of finite
type (SFT for short). A configuration x ∈ SZ is spatially periodic if σp(x) = x
for some p > 0.

A continuous mapping f : X → X in a subshift that commutes with σ is
called a cellular automaton. All cellular automata f are defined by local functions
F : SN → S, where N ⊂ Z is the finite neighborhood of f , by the formula
f(x)n = F (xn+N ) for all n ∈ Z [4]. We usually define N = [−r, r] for some r ∈ N,
called the radius of f . To each CA f we associate a local function floc, which
in general is not uniquely defined, but this should not cause any confusion. A
configuration x ∈ X is called temporally periodic (with respect to f) if fp(x) = x
for some p > 0. A symbol mapping π : S → S can also be seen as a cellular
automaton on SZ by π(x)n = π(xn).

Let S be a finite algebra. Then, SZ becomes an algebra when the operations
are applied cellwise. We say a CA f : SZ → SZ is homomorphic (with respect
to the algebraic structure of S) if it is a homomorphism of SZ. From the results
of [10] we know that this is the case exactly if the local rule F : SN → S is a

homomorphism. If S is an abelian group and f is of the form
∑k−1

i=0 σni for some
ni ∈ Z, we say f is a sum of shifts, and if the ni are pairwise distinct, f is a sum
of distinct shifts.

Let X be a nonempty set, and let Q ⊂ 2X . If ∅ /∈ Q and for all A,B ∈ Q we
have A ⊂ C =⇒ C ∈ Q and A∩B ∈ Q, then Q is a filter on X . If additionally
Q ⊂ Q′ =⇒ Q = Q′ for all filters Q′ of X , then Q is an ultrafilter.
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Remark 1. In the literature, the terminology related to cellular automata that
are also group homomorphisms varies wildly. For example, in [7], the authors use
the terms additive CA and group CA for cellular automata that are homomor-
phic with respect to an abelian group alphabet, and the term k-rule for CA that
are sums of k distinct shifts. In [8] the term linear CA is used for homomorphic
cellular automata. On the other hand, in [6] and many subsequent articles, the
term linear CA refers to cellular automata on ZZ

p that we would call sums of
shifts. Of course, over the alphabet Zp the notions of homomorphic CA and sum
of shifts coincide, but not over general abelian group alphabets. Even worse, the
term linear is sometimes used to refer to one-dimensional CA. We have chosen
our terminology in the hope of being as unambiguous as possible.

3 Color Blind Cellular Automata

We begin with the definition of our objects of interest, the color blind cellular
automata.

Definition 1. Let f : SZ → SZ be a CA such that for all symbol permutations
π : S → S we have f ◦ π = π ◦ f . Then we say f is color blind. If f commutes
with all symbol mappings, we say f is typhlotic.

In other words, the set of color blind (typhlotic) cellular automata on SZ is
exactly the commutator of the set of all permutations on S (functions from S
to itself, respectively). Another way to express this is that the set of spacetime
diagrams of a color blind CA is closed under permuting the colors. We use the
somewhat obscure term typhlotic, meaning blind, to avoid cluttering the global
namespace of cellular automata: we will soon see that these automata are rather
trivial (Theorem 2), and presumably do not have much theory beyond what we
prove in this article.

Example 1. The radius-1 cellular automaton f on {0, 1, 2}Z defined by

floc(a, b, c) =

⎧⎨⎩
c, if a = b 
= c,
a, if a 
= b = c,
b, otherwise

is clearly color blind. It always chooses the symbol in its neighborhood that is
in the minority, or acts as the identity CA if such a symbol does not exist. A
portion of a spacetime diagram of f is shown in Figure 1.

A CA f on SZ is called captive if the local rule floc satisfies floc(a1, . . . , an) ∈
{a1, . . . , an} for all a1, . . . , an ∈ S. Color blind CA are ‘almost captive’ in the
following sense.
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Fig. 1. A sample spacetime diagram of the cellular automaton of Example 1, with
time advancing downward. The labels of the colors are unimportant, since any symbol
permutation of a spacetime diagram of a color blind CA is also its spacetime diagram.

Lemma 1. Let f : SZ → SZ be a color blind CA. Then floc(a1, . . . , an) ∈
{a1, . . . , an} whenever |{a1, . . . , an}| < |S| − 1.

Proof. Suppose that we have |{a1, . . . , an}| < |S| − 1, but a = floc(a1, . . . , an) /∈
{a1, . . . , an}. Then, there exists

b ∈ S \ {a, a1, . . . , an}.

Now, f does not commute with the transposition (a b). ��

The automaton of Example 1 is captive by definition. However, not all color
blind automata are captive, since the local rule may output the ‘last remaining
color’ unambiguously when all but one color appear in the neighborhood, as the
alphabet size is known. The following is an example of this phenomenon.

Example 2. The radius-1 cellular automaton f on {0, 1, 2}Z defined by

floc(a, b, c) =

{
d, if |{a, b, c}| = 2 and d /∈ {a, b, c},
b, otherwise

is color blind. It always chooses the unique symbol that does not appear in its
neighborhood, or acts as the identity CA if such a symbol does not exist. It is
clearly not captive. A portion of a spacetime diagram of f is shown in Figure 2.

Fig. 2. A sample spacetime diagram of the cellular automaton of Example 2, with time
advancing downward



Color Blind Cellular Automata 143

Typhlotic CA are in fact captive, which we will obtain as a corollary of Theo-
rem 2. We continue with a simple logical characterization of color blind cellular
automata which motivates their definition.

Definition 2. Fix a set of variables V = {v1, . . . , vn}. A color blind equation
over V is a boolean combination of basic equations of the form vi = vj. For a
symbol equation E over V , an alphabet S and a word w ∈ Sn, we denote by
E(w) the equation obtained by replacing each vi by wi in E. The equation E
defines a set of words E(S) ⊂ Sn by E(S) = {w ∈ Sn | E(w) holds}. We say E
is captive on S if the last letter of w occurs at least twice in w for all w ∈ E(S),
and captive, if it is captive on S for all finite S. If n = 2r+2 and E(S) defines a
function from S2r+1 to S, we let fS

E : SZ → SZ be the cellular automaton whose
local function it is. We say fS

E is defined by a color blind equation.

Lemma 2. A set of words W ⊂ Sn is defined by a color blind equation if and
only if it is closed under symbol permutations.

Proof. First, let W = E(S) for an equation E, and consider an arbitrary symbol
permutation π : S → S. It is clear that if E(w) holds for a word w ∈ Sn, then
so does E(π(w)), and thus W is closed under symbol permutations.

Suppose then that W is closed under symbol permutations. For all w ∈ W ,
define the equation Ew =

∧
i,j∈[0,n−1] t(i, j), where t(i, j) is vi = vj if wi = wj ,

and ¬(vi = vj) otherwise.We let E =
∨

w∈W Ew. Now, it is clear thatW ⊂ E(S).
On the other hand, let v ∈ E(S). This means that v ∈ Ew(S) for some w ∈ W .
It is easy to see that there then exists a symbol permutation π : S → S with
π(w) = v, and since W is closed under symbol permutations, we have v ∈W . ��

As a cellular automaton commutes with symbol permutations if and only if its
local rule does, we obtain the following corollary.

Corollary 1. A CA f : SZ → SZ is (captive and) color blind if and only if it is
defined by a (captive and) color blind equation.

Example 3. The cellular automaton of Example 1 is defined by the captive and
color blind equation

(v1 = v2 ∧ v2 
= v3 ∧ v3 = v4) ∨ (v1 
= v2 ∧ v2 = v3 ∧ v1 = v4) ∨ (v2 = v4),

where v1, v2, v3 and v4 correspond to a, b, c and floc(a, b, c) in the definition,
respectively.

The characterization essentially says that a cellular automaton is color blind if
and only if it can be defined without referring to any particular colors, but only
their arrangements on the neighborhood. If we restrict to captive color blind
cellular automata, the equation defining the color blind CA can be chosen so
that it defines a CA on any subshift containing the original. This is essentially
the content of Proposition 1. To prove it, we need a few definitions and lemmas.
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Definition 3. Let X ⊂ Y ⊂ SZ be subshifts. If X = Y ∩ Z for some SFT
Z ⊂ SZ, we say X is a subSFT of Y .

Lemma 3. If X is a subSFT of Y and X =
⋂

i∈N
Xi for some subshifts Xi of

Y such that Xi+1 ⊂ Xi for all i ∈ N, then X = Xi for some i.

Proof. Let X = Y ∩Z where Z is an SFT. Then,
⋂

i∈N
Xi = X ⊂ Z, so Xi ⊂ Z

for all large enough i, since Z is an SFT (all the finitely many forbidden patterns
of Z must be absent in some Xi). But Xi = X for all such i.

Definition 4. Let X ⊂ SZ be a subshift, and let f : X → X be a CA. Suppose
that whenever π : S → S is a symbol permutation and x ∈ X satisfies π(x) ∈ X,
then π(f(x)) = f(π(x)). Then we say f is color blind on X. If there exists r ∈ N
such that for all x ∈ X there exists k ∈ [−r, r] such that f(x) = xk, we say f is
captive on X.

Proposition 1. Let X ⊂ SZ be a subshift. Then a CA f : X → X is captive
and color blind on X iff f = fS

E |X for a captive color blind equation E.

Proof. If f = fS
E |X for some captive color blind equation E and π : S → S is any

symbol permutation, then π(fS
E(x)) = fS

E(π(x)) for all x ∈ SZ, so in particular
this is the case when x, π(x) ∈ X . In this case f is also clearly captive on X .

For the other direction, the idea is to take the subshift

Y = {(x, y) ∈ X2 | f(x) = y},

and define a decreasing sequence of subshifts Yi ⊂ (S2)Z such that Y =
⋂

i∈N
Yi,

and the Yi are all defined by color blind equations of a certain form. Since the
subshift Y is a subSFT of Z = X2 and Yi ⊂ Z, Lemma 3 implies that Y = Yi

for some i ∈ N.
So suppose that f : X → X is captive and color blind on X , and let [−r, r] be

the neighborhood of f . For all i ∈ N, define Wi = {x[−r−i,r+i] · f(x)0 | x ∈ X}.
Let Ei be a set of equations defined by the Wi, as in Lemma 2, so that Ei(v · a)
holds if and only if there is a permutation π : S → S and some w · b ∈ Wi with
π(w · b) = v · a. For large enough i the Ei are captive, since f is captive on X .
Define then

Yi = {(x, y) ∈ X2 | ∀j ∈ Z : Ei(x[j−r−i,j+r+i] · yj)} ⊂ (S2)Z.

Now, we claim that Y = {(x, y) ∈ X2 | f(x) = y} =
⋂

i∈N
Yi. Clearly, Y ⊂ Yi

for all i ∈ N, so suppose (x, y) ∈
⋂

i∈N
Yi but (x, y) /∈ Y . We may assume f(x)0 
=

y0. Now, as Ei(x[−r−i,r+i] · y0) holds for all i, there exist symbol permutations
πi : S → S and words wi · bi ∈ Wi such that πi(wi · bi) = x[−r−i,r+i] · y0.

Take an infinite subsequence where the πi and bi are fixed, and denote these
by π and b. Then, extract a subsequence where the wi converge to some con-
figuration z ∈ SZ. Now we have z ∈ X , π(z) = x ∈ X , f(z)0 = b and thus
π(f(z))0 = π(b) = y0, but f(π(z))0 = f(x)0. This is a contradiction, and thus
Y =

⋂
i∈N

Yi.



Color Blind Cellular Automata 145

Since Y is a subSFT of X2 and the sequence (Yi)i∈N is decreasing, we have
Y = Yi for some i ∈ N by Lemma 3, and the captive color blind equation Ei thus
defines a local function floc : B2(r+i)+1(X) → S for f . Let F be the equation
defined by B2(i+r)+1(X) and let

E = Ei ∨ (¬F ∧ vout = v1),

where vout = v2(r+i)+2 denotes the output value of the function defined by E.
Then, fR

E is a captive color blind cellular automaton for any alphabet R: If the
input of the local function is a word of X up to renaming the symbols, then fR

E

chooses the output from the inputs as f would. Otherwise, the word does not
satisfy F , and fR

E chooses the leftmost input as the output. ��

Example 4. The restriction of captivity in the above result is necessary: the sym-
bol permutation (0 1) on {0, 1}Z cannot be extended, as a cellular automaton,
to a color blind cellular automaton on {0, 1, 2}Z.

We also show by another example that the color blind equation defined by
floc may not be sufficient even if it is captive in the sense that it always outputs
a symbol seen in the neighborhood. Let X consist of the configurations x =
∞(0122)∞ and y = ∞(0022)∞ and their shifts, and define floc : {0, 1, 2}3 →
{0, 1, 2} by floc(a, b, c) = b, except for floc(0, 1, 2) = 0. Now, f is captive and
color blind on X (the only symbol permutation we need to check is (0 2)).
However, the color blind equation defined by floc does not extend to a cellular
automaton on {0, 1, 2}Z, since floc(012) = 0 = floc(201). One can check that the
local rule with neighborhood N = [−1, 2] suffices though.

4 Constructing Color Blind Cellular Automata

In this section, we give concrete examples of color blind cellular automata, and
prove some results that require explicit construction of such objects.

Definition 5. Let f : SZ → SZ be a cellular automaton with neighborhood
size n. We say f is a majority CA if, whenever floc(s1, . . . , sn) = s, we have
|{i ∈ [1, n] | si = s}| ≥ |{i ∈ [1, n] | si = s′}| for all s′ ∈ S.

This means that the local rule of a majority CA always outputs a symbol that
occurs a maximal number of times in the input. All majority CA are of course
captive. In the binary case, there is a unique majority CA for each odd neigh-
borhood size, and this CA is color blind. In other cases, the CA must have a
tie-breaking rule. To make such a CA color blind we can, for example, always
choose the leftmost input symbol sm that maximizes |{i ∈ [1, n] | si = sm}|.

Of the 256 elementary cellular automata (see [12] for the definitions and the
numbering scheme), 16 rules are color blind. The even-numbered rules are sum-
marized in Table 1, while the odd-numbered rules are obtained by subtracting
their numbers from 255, effectively composing them with the symbol permuta-
tion (0 1). We show the even-numbered color blind rules, as they are exactly the
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Table 1. The even-numbered color blind elementary CA. The variables v1, v2 and v3
denote inputs to the local rule, and v4 is its output.

CA Color blind equation Description

142 (v4 �= v2) ⇐⇒ (v1 = v2 �= v3) Left shift with ‘barriers’

150 (v1 = v2) ⇐⇒ (v4 = v3) Sum of neighborhood mod 2

170 v4 = v3 Left shift

178 (v4 = v2) ⇐⇒ (v1 = v2 = v3) Flip unless all inputs equal

204 v4 = v2 Identity

212 (v4 �= v2) ⇐⇒ (v1 �= v2 = v3) Mirrored 142

232 (v4 �= v2) ⇐⇒ (v1 �= v2 �= v3) Majority

240 v4 = v1 Right shift

captive ones. Of these 8 elementary automata, the most interesting ones are 150
and 142. Rule 150 is a sum of three distinct shifts, and some properties of rule
142 are studied in at least [3].

In the next result, intrinsic universality is understood with respect to simu-
lation by injective bulking. In this formalism, a cellular automaton f : SZ → SZ

simulates another automaton g : T Z → T Z if there exists an injective function
φ : T → Sm×n from T -symbols to S-rectangles such that for every spacetime
diagram x of g, the configuration φ(x) is a spacetime diagram of f . An intrinsi-
cally universal automaton is then one that simulates any other CA. See [9] for
the precise definitions; the main message of the theorem is that captive color
blind cellular automata can be very complex both from the computational and
the dynamical points of view.

Theorem 1. For any alphabet S with |S| ≥ 2, there exists an intrinsically uni-
versal captive color blind cellular automaton on SZ.

Proof. It is enough to show that any single CA can be simulated by a captive
color blind automaton, as there exists an intrinsically universal CA and injective
simulations are composable. Let thus g : [1, n− 1]Z → [1, n− 1]Z be any cellular
automaton, choose distinct symbols a, b ∈ S and for all i ∈ [1, n− 1], let wi =
aib2n−i. Define the injection h : [1, n− 1]Z → SZ by

h(x) = wx−2wx−1 .wx0wx1 . . . .

Let Z = h([1, n − 1]Z) and Y =
⋃2n−1

i=0 σi(Z). It is easy to see that Y ⊂ SZ

is an SFT, since its configurations are exactly the infinite concatenations of the
finitely many words wi ∈ a+b+. Define f : Z → Z by f ◦ h = h ◦ g. Now, f
has a unique shift-commuting extension to a function f̂ : Y → Y , which is then
a cellular automaton simulating g. We may assume f̂ has neighborhood [−r, r]
for some r > 2n. Then f̂ is trivially captive and commutes with all symbol
permutations of Y , since both symbols are always visible in the neighborhood,
and no nontrivial symbol permutation keeps any configuration of Y inside it.
Thus, f̂ has a color blind extension to SZ by Proposition 1. ��
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In [1], the set Aut(X) of bijective cellular automata on a mixing SFT X ⊂ SZ

is considered (see the article for the precise definition). The symmetry of X is
defined as the relative asymptotic density of Aut(X) in the set of all cellular
automata on X : s(X) = lim supn→∞

1
n log log |Aut(X)n|, where Aut(X)n de-

notes the set of bijective cellular automata on X that can be defined on the
neighborhood [−�n/2�, &n/2']. Inspired by this, we define the following.

Definition 6. Let C be a family of cellular automata on SZ. The density of C
is defined as

d(C) = lim sup
n→∞

1

n
log|S| log|S| |Cn|, (1)

where Cn denotes the set of cellular automata in C that can be defined on the
neighborhood [−�n/2�, &n/2'].

We now show that color blind cellular automata are abundant in the sense of
the previous definition. Note that the set CA of all cellular automata on SZ has
density 1, as |CAn| = |S||S|n for all n ∈ N.

Proposition 2. Denote by CB the set of captive color blind cellular automata
on SZ. Then d(CB) = 1.

Proof. Let S = {s1, . . . , s|S|}, and let n ∈ N be arbitrary. We define an injective
map φ : CAn → CBn+|S|, which shows that |CAn| ≤ |CBn+|S||. For that, let

f ∈ CAn have neighborhood size n. The local function φ(f)loc : Sn+|S| → S
works as follows on the inputs a1, . . . , an+|S| ∈ S. If the symbols an+1, . . . , an+|S|
are pairwise distinct, we let π : S → S be the symbol permutation that maps
each an+i to si. The local function then returns π−1(floc(π(a1), . . . , π(an))). If
the symbols an+1, . . . , an+|S| are not pairwise distinct, φ(f)loc returns a1. Then
φ(f) is captive and color blind, and φ is injective.

Now, we calculate

1

n+ |S| log|S| log|S| |CBn+|S|| ≥
1

n+ |S| log|S| log|S| |CAn|

=
1

n+ |S| log|S| log|S| |S||S|n =
n

n+ |S|
n→∞−→ 1,

which proves the claim. ��

We remark here that our definition of density measures the asymptotic growth
rate of a set of cellular automata on a given alphabet, when the radius increases.
An alternative perspective is taken in [11], where the radius r ∈ N is fixed, and
the density of a set C is cellular automata is defined as the limit of |Cn|/|CAn|,
when it exists, where Cn is the set of CA in C with radius r on an alphabet of
size n. Interestingly, it is shown in particular that the density of the set of all
captive cellular automata is 0, so the opposite of the analogue of Proposition 2
holds in this formalism.
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5 Typhlotic Cellular Automata

We now turn our attention to typhlotic cellular automata, and start with the
observation that they are not necessarily trivial. For example, the intrinsically
universal CA given in Theorem 1 is in fact typhlotic in the case |S| = 2. Further-
more, every binary majority CA is typhlotic. These CA are already color blind,
so we only need to check that they commute with the symbol maps that are
not permutations, namely the constant maps s #→ 0 and s #→ 1. But this easily
follows from the fact that both the intrinsically universal CA and majority CA
are captive.

Somewhat curiously, if the alphabet S has more than two elements, the sit-
uation changes drastically. For example, as a corollary of Theorem 2, a ternary
color blind majority CA can not be typhlotic unless it has a neighborhood of size
1. The proof of Theorem 2 follows from some rather general set theory. Namely,
we show that a typhlotic CA is defined by an ultrafilter on its neighborhood,
and ultrafilters on finite sets are very simple. We note that we do not need any
hard set theoretic results on ultrafilters: they just happen to provide convenient
terminology for the proof.

We start with two characterizations of ultrafilters. The first one is just the
observation that the well-known partition property of ultrafilters characterizes
them, as also the filter axioms follow from it. This result has already appeared
in at least [5]. The second one is rather specific to typhloticity, and is in fact just
the first part of Theorem 2 in thin disguise.

Lemma 4 (Corollary 1.6 of [5]). Let X be a nonempty set, let k ∈ N with
k ≥ 3, and let Q ⊂ 2X have the property that for all partitions (A1, . . . , Ak) of
X, exactly one Ai is in Q. Then Q is an ultrafilter. Furthermore, every ultrafilter
satisfies the property for every k ≥ 1.

Proof. First, from the partition (X, ∅, . . . , ∅) we deduce that ∅ /∈ Q and X ∈ Q.
Now, Q cannot contain two disjoint subsets A,B ⊂ X , as otherwise the partition
(A,B,X \ (A ∪B), ∅, . . . , ∅) would contradict the assumptions. Thus, if A ⊂ X ,
then exactly one of A and X \A is in Q, by the partition (A,X \A, ∅, . . . , ∅).

Suppose then that A ∈ Q and A ⊂ B. The partition (X \B,A,B \A, ∅, . . . , ∅)
proves that X \B /∈ Q, so by the above B ∈ Q. Finally, if A,B ∈ Q, then neither
of A\B or B\A can be in Q, and then the partition (A\B,B\A,A∩B, ∅, . . . , ∅)
shows that A ∩B ∈ Q.

The converse claim is a well known property of ultrafilters. ��

For the next lemma, we define a more general definition of typhloticity.

Definition 7. Let S and T be sets with S finite, and let f : ST → S be a
function. Then we say f is typhlotic if for every function g : S → S, we have
f ◦ g = g ◦ f , where g is applied coordinatewise on the left side of the equation.

Lemma 5. Let T be a set, and S a finite set with |S| ≥ 3. Then the map
f #→ {{i ∈ T | xi = f(x)} | x ∈ ST } is a bijection from the set of typhlotic maps
f : ST → S to the set of ultrafilters on T .
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Proof. Without loss of generality, let S = [1, k]. For all x ∈ ST and s ∈ S we
define x|s = {i ∈ T | xi = s}.

Let first f : ST → S be typhlotic, and denote by Q ⊂ 2T the image of f
under the mapping. By Lemma 4, we need to show that if (A1, A2, A3) is a
partition of T , then exactly one of the Ai is in Q, that is, of the form x|f(x) for
some x ∈ ST . First, since k ≥ 3, there exists x ∈ ST such that x|i = Ai for
all i ∈ {1, 2, 3}. Then f(x) ∈ {1, 2, 3}, for otherwise, letting π : S → S be the
symbol map that sends f(x) to 1 and otherwise acts as the identity, we would
have 1 = π(f(x)) = f(π(x)) = f(x), a contradiction. Thus at least one of the
Ai is in Q.

Suppose then that, for example, A1 = x|f(x) and A2 = y|f(y) for some
x, y ∈ ST , where we may assume f(x) = 1 and f(y) = 2 by applying sym-
bol permutations. Let z ∈ ST be defined by z|i = Ai for all i ∈ {1, 2, 3}. If
f(z) = 1, define the symbol map π : S → S by π(2) = 2 and π(s) = 3 for all
s ∈ S \ {2}. Then

3 = π(f(z)) = f(π(z)) = f(π(y)) = π(f(y)) = π(2),

a contradiction. A symmetric argument shows that f(z) 
= 1 is likewise impossi-
ble. Thus exactly one of the Ai is in Q, and Q is a ultrafilter.

Conversely, let Q be an ultrafilter on T , and define f : ST → S by f(x) = a
iff {i ∈ T | xi = a} ∈ Q. Again by Lemma 4 (the converse direction), f is then
well-defined. Since ultrafilters are closed under supersets, f is easily seen to be
typhlotic. As the ultrafilter corresponding to f is Q, this concludes the claim. ��

The following is also a well known property of ultrafilters (for instance, it
appears as Example 1.3 in [5]).

Lemma 6. Let T be finite and let Q be an ultrafilter on T . Then Q is principal,
that is, Q = {A ⊂ T | j ∈ A} for some j ∈ T .

Proof. Since T is finite, we can take a minimal set A in Q. If A is a singleton,
we are done. If A is not a singleton, Q is not a maximal filter. ��

Theorem 2. If |S| ≥ 3, the typhlotic CA f : SZ → SZ are exactly the shift
maps. If |S| = 2, they are exactly the captive color blind CA.

Proof. First, suppose |S| ≥ 3, and let N ⊂ Z be the neighborhood of f . The
local rule floc : SN → S is typhlotic since f is. Let Q be the ultrafilter on N
that defines it, given by Lemma 5. Since N is finite, Q = {A ⊂ N | j ∈ A} for
some j ∈ N by Lemma 6, which means

f(x)0 = a ⇐⇒ {i ∈ N | xi = a} ∈ Q ⇐⇒ xj = a.

Thus f is a shift map.
In the case |S| = 2, a CA is captive if and only if it commutes with constant

maps, and all symbol maps are either permutations or constant maps. This
concludes the proof. ��
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6 Homomorphic Color Blind Automata

In Section 4, we saw that color blind cellular automata can do almost anything
a general cellular automaton can do, with any alphabet size. On the other hand,
typhlotic cellular automata turned out to be almost the same objects as color
blind CA in the binary case, but shift maps for larger alphabets. In this section,
we show that cellular automata that are color blind and homomorphic satisfy a
similar property: if the group is very simple, the color blind homomorphic CA
form a large subclass of all homomorphic CA, but when the group is larger, they
are all shift maps.

Color blindness of homomorphic CA was also studied in [7], and there, the
term k-rule was used for a sum of k distinct shifts. In the article, two particular
cases of our main result Theorem 3 were proven. We prove Theorem 3 in a
long series of simple lemmas, starting with the fact that every CA that is a
group homomorphism is a sum of symbol endomorphisms. For simplicity, we use
additive notation for all groups, as we will see very soon, in Lemma 10, that a
full group shift that admits a color blind homomorphic CA must be abelian.

Lemma 7. Let G be a finite group and let f : GZ → GZ be a homomorphic CA
with neighborhood N = [−r, r]. For all i ∈ N , there exists a group endomorphism
fi : G→ G such that

– fi(g) + fj(h) = fj(h) + fi(g) whenever h, g ∈ G and i 
= j ∈ N , and
– floc(g1, . . . , gn) = f1(g1) + f2(g2) + · · ·+ fn(gn) for all g1, . . . , gn ∈ G.

Note that the order of summation in the above formula for floc is irrelevant
by the first item.

Proof. For all i ∈ N , define the function fi : G→ G by

fi(g) = floc(1, . . . , 1︸ ︷︷ ︸
i−1

, g, 1, . . . , 1︸ ︷︷ ︸
m−i

),

and note that this is an endomorphism of G. Let i < j ∈ N and g, h ∈ G. Since
floc is a homomorphism, we have

fi(g) + fj(h) = floc(1, . . . , g, . . . , 1, . . . , 1) + floc(1, . . . , 1, . . . , h, . . . , 1)

= floc(1, . . . , g, . . . , h, . . . , 1)

= floc(1, . . . , 1, . . . , h, . . . , 1) + floc(1, . . . , g, . . . , 1, . . . , 1)

= fj(h) + fi(g),

and for all g1, . . . , gn ∈ G,

floc(g1, . . . , gn) =

r∑
i=−r

floc(1, . . . , 1︸ ︷︷ ︸
i−1

, gi, 1, . . . , 1︸ ︷︷ ︸
m−i

)

= f1(g1) + f2(g2) + · · ·+ fn(gn).

This concludes the proof. ��



Color Blind Cellular Automata 151

We call the endomorphisms fi the symbol endomorphisms of f . If n ≥ 1, all
endomorphisms of Zn are multiples of the identity map, so we have the following.

Lemma 8. Let G be a finite abelian group with decomposition G =
∏m

i=1 Zp
mi
i

,
where the pi are prime numbers and mi ≥ 1. Then every homomorphic cellular
automaton on GZ is a sum of shifts if and only if the primes pi are distinct.

Thus, in general every group homomorphic CA is a sum of shifted endomor-
phisms, and for certain abelian groups the endomorphisms can be taken to be
identity maps. Note that the fact that the images of distinct symbol endomor-
phisms commute means that the local rule of a homomorphic cellular automaton
first projects its inputs to subgroups of G which commute with each other, and
then multiplies them together. In particular, we have the following.

Lemma 9. Let G be a group and let the CA f : GZ → GZ be homomorphic. If
at least two of the symbol endomorphisms of f are surjective, then G is abelian.

We now see that in the case of color blind homomorphic CA, there is no loss of
generality in retricting to the abelian case.

Lemma 10. Let G be a finite group and let the CA f : GZ → GZ be color blind
and homomorphic with minimal neighborhood size at least 2. Then G is abelian,
and if |G| ≥ 4, then f is a sum of distinct shifts.

Proof. All groups of order at most 3 are abelian, so we may assume |G| ≥ 4.
Let 1 
= g ∈ G, and consider the configuration z(g) = ∞1g1∞. Since the local
rule sees at most two distinct symbols in its neighborhood, the image f(z(g))
must also be a configuration over {1, g} by Lemma 1. Since f commutes with the
transposition (g h), we have I = {i ∈ Z | f(z(g))i = g} = {i ∈ Z | f(z(h))i = h}
for all 1 
= h ∈ G. From this we deduce that the symbol endomorphisms of f are
either trivial or identity maps, and since at least two of them must be nontrivial,
G is abelian by Lemma 9. Also, we clearly have f =

∑
i∈N σi, where N ⊂ Z is

the set of those i for which the symbol endomorphism fi is nontrivial, so f is a
sum of distinct shifts. ��

From now on, all alphabets will be abelian groups. Lemma 8 and Lemma 10 now
give us the following.

Corollary 2. Let G be a finite abelian group and f : GZ → GZ a color blind
homomorphic CA. Then f is a sum of shifts, which are distinct if |G| ≥ 4.

The radius-1 CA f with local rule (a, b, c) #→ a+ 2b+ c is an example of a color
blind homomorphic CA on ZZ

3 which is not a sum of distinct shifts.

Lemma 11. Let G be a finite abelian group and f : GZ → GZ a homomorphic
CA. The f commutes with the symbol permutation φg(h) = h+ g if and only if
f(∞g∞) = ∞g∞.
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Proof. Having f(∞g∞) = ∞g∞ is equivalent to f(x) + ∞g∞ = f(x) + f(∞g∞)
for all x ∈ GZ, which is simply commutation with φg, since f(x) + f(∞g∞) =
f(x+ ∞g∞). ��

We now proceed with a case analysis on the small groups Z2, Z3 and Z2
2.

Lemma 12. Let the CA f : ZZ
2 → ZZ

2 be homomorphic with minimal neighbor-
hood size m ∈ N. Then f is color blind if and only if f fixes ∞1∞, if and only if
m is odd.

Proof. The only nontrivial permutation of Z2 is φ1, so it follows from Lemma 11
that f is color blind if and only if it fixes ∞1∞. Since f is a sum of shifts by
Corollary 2, and the shifts are trivially distinct, this is the case if and only if m
is odd. ��

Lemma 13. Denote G = Z2
2, and let the CA f : GZ → GZ be homomorphic.

Then f is color blind iff it is a sum of an odd number of distinct shifts.

Proof. The proof relies on the facts that 2ng = 0 for all g ∈ G and n ∈ N, and
if G = {a, b, c, d} then a+ b + c = d.

Suppose first that f is color blind. Corollary 2 applies, so that f is a sum of
m distinct shifts for some m ∈ N. This means that X = {(0, 0), (0, 1)}Z ∼= ZZ

2 is
closed under f , and the restriction of f to X is also a sum of shifts. If f |X were
not color blind then f would not be either, so m must be odd by Lemma 12.

On the other hand, let f be a sum of m distinct shifts for odd m, and consider
an arbitrary transposition φ = (g h). Denote G = {a, b, g, h}. Let g1, . . . , gm ∈ G,
and for c ∈ G, let nc be the number of i ∈ {1, . . . ,m} such that gi = c.

If both ng and nh are even, then exactly one of na and nb is odd, let
us say na. Then floc(φ(g1), . . . , φ(gm)) = a = φ(floc(g1, . . . , gm)). If both ng

and nh are odd, we may again assume na is odd and nb is even, so that
floc(φ(g1), . . . , φ(gm)) = a + g + h = φ(floc(g1, . . . , gm)), since a + g + h =
b /∈ {g, h} is a fixed point of φ.

If ng + nh is odd, we may assume ng is odd and nh is even. Then, na + nb

is even, and the cases left to consider are that both na and nb are odd or
both are even. If na and nb are both odd, then floc(g1, . . . , gm) = a+ b+ g = h,
which implies floc(φ(g1), . . . , φ(gm)) = a + b + h = g and φ(floc(g1, . . . , gm)) =
φ(h) = g. If both are even, then floc(φ(g1), . . . , φ(gm)) = h = φ(g) =
φ(floc(g1, . . . , gm)). This finishes the proof since transpositions generate the
group of permutations. ��

Lemma 14. Let the CA f : ZZ
3 → ZZ

3 be homomorphic. Then f is color blind if
and only if it fixes ∞1∞, if and only if it is a sum of 3k + 1 shifts for some k.

Proof. By Lemma 11, f fixes ∞1∞ if and only if it commutes with the symbol
permutation φ1. We prove that all such homomorphic CA are color blind, for
which it is enough to show that they also commute with the transposition (1 2).
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By Corollary 2, f is a sum of shifts
∑m

i=1 σ
ki for some m ∈ N and ki ∈ Z. For

all x ∈ ZZ
3 , we then have

((1 2) ◦ f)(x) = (1 2)

(
m∑
i=1

σki(x)

)
=

m∑
i=0

(1 2)(σki(x)))

=

m∑
i=0

σki ((1 2)(x)) = (f ◦ (1 2))(x),

where the second equality follows from the fact that (1 2) is an automorphism
of Z3 and the third one directly from the fact that (1 2) is a cellular automaton.

Finally, it is easy to see that a sum of m shifts on ZZ
3 fixes the point ∞1∞ if

and only if m ≡ 1 mod 3. ��

Finally, we handle the remaining cases in a single lemma.

Lemma 15. Let G be a finite abelian group such that |G| > 3 and G 
∼= Z2
2, and

let the CA f : GZ → GZ be homomorphic. Then f is color blind if and only if it
is a shift map.

Proof. First, a shift map is trivially a color blind homomorphic CA for any group
alphabet.

As for the nontrivial direction, Corollary 2 again applies, so that floc returns
the sum of the values in the neighborhood N of f . If |N | = 0, then f does not
commute with symbol permutations, as it sends everything to ∞0∞. Assume
then that |N | ≥ 2.

We first suppose |G| > 4. In this case, we take 0 
= g ∈ G and h ∈ G such
that h /∈ {0, g,−g}. Now, g + h /∈ {0, g, h}, so that floc(g, h, 0, . . . , 0) = g + h /∈
{0, g, h}, which is a contradiction by Lemma 1. Now, let |G| = 4, so by the
assumption that G 
∼= Z2

2, we have that G ∼= Z4. But now floc(1, 1, 0, . . . , 0) = 2,
again contradicting Lemma 1.

Of course, in the remaining case that |N | = 1, f is a shift map. ��

We collect the results of this section into a single statement.

Theorem 3. Let G be a finite group, and let f : GZ → GZ be a homomorphic
cellular automaton. Then, f is color blind iff one of the following (partially
overlapping) conditions holds.

– G = Z2, G = Z2
2 or G = Z3, and f fixes unary points,

– G = Z2 or G = Z2
2, and f is a sum of an odd number of distinct shifts,

– G = Z3, and f is a sum of 3k + 1 shifts for some k,

– |G| > 4 or G = Z4, and f is a shift map.

Proof. If G is not abelian, then f is a shift map by Lemma 10. In the converse
case, Lemma 12, Lemma 13, Lemma 14 and Lemma 15 give the claim. ��
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This gives a complete characterization of homomorphic color blind cellular
automata on full shifts whose alphabet is a finite group. We also note that in
our arguments we mainly manipulated the local functions of cellular automata,
so the result should hold as such for multidimensional automata with exactly
the same proofs. Thus Theorem 3 is a generalization of the results of [7], which

state that for all dimensions d ≥ 1, any sum of 4 distinct shifts on ZZ
d

3 is color

blind, and no sum of m distinct shifts on ZZ
d

n is color blind if n ≥ m > 1.
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Abstract. We discuss bipermutive cellular automata from a combina-
torial and topological perspective. We prove a type of topological ran-
domizing property for bipermutive CA, show that the commutator of a
bipermutive CA is always small and that bipermutive affine CA have
only affine CA in their commutator. We show the last result also in the
multidimensional case, proving a conjecture of [Moore-Boykett, 97].

Keywords: cellular automata, bipermutivity, commutation, affine
cellular automata.

1 Introduction

Bipermutive cellular automata, that is, CA which are permutive in the left- and
rightmost coordinates of their neighborhood, have been investigated in great
detail in the literature. Most of the work has been in the ergodic theory of
cellular automata, as this is a natural framework for studying the randomizing
nature of bipermutive automata. We refer to [5] for a survey of this theory.

We take a more combinatorial approach, and study the topological dynam-
ics of bipermutive cellular automata and their commutators in the monoid of
cellular automata. On the side of topological dynamics, we obtain some basic
results about orbits of one-dimensional configurations and subshifts. We prove
a simple lemma stating that every pattern is self-replicating on a periodic back-
ground. We use this to show that every SFT with sufficient mixing properties
becomes a full shift in the limit in the action of the CA, and we say the CA
topologically randomizes such SFTs, as this is a kind of topological analogue of
asymptotic randomization in ergodic theory. For bipermutive CA and a mixing
SFT, topological randomization turns out to be equivalent to the existence of a
transitive point. We also present a particular case of asymptotic randomization
in the multidimensional setting, for a natural generalization of bipermutivity,
which we call total extremal permutivity.

Our results about orbits are purely qualitative: while we prove that certain
subshifts tend to the full shift, we do not obtain any sensible bounds for when a
pattern first appears. One can extract such bounds from our proofs, but they are
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not very good: For example, we can prove that the golden mean shift X tends
to the full shift in the action of the binary XOR automaton f . However, the
bounds directly obtained fall short of showing that all binary words of length n

appear in fa(n)

(X) where a(n) = aa
··a

denotes tetration and a is the size of the
alphabet.

Interestingly, we obtain rather strong quantitative results on the commutator
using the purely qualitative results on orbits: Our main result on the commutator
of a totally extremally permutive CA is that for any radius, it contains only
exponentially many cellular automata with that radius, while the number of
cellular automata of a given radius in general is doubly exponential.

We then move on to totally extremally permutive affine self-maps of group
shifts, where affine means homomorphic up to the addition of a constant. Our
main result here extends the result of [4] that affine bipermutive CA have only
affine CA in their commutator to all dimensions, which was conjectured in [4]. In
fact, we show that the multidimensional case rather directly reduces to the one-
dimensional case, so that the first proof is just an application of the result of [4].
The second proof is based directly on the lemma that all patterns self-replicate
on a periodic background, as we can use this to superpose two patterns. In the

case of a homomorphic totally extremally permutive CA on ZZ
d

p , and considering
only CA with 0 as a quiescent state, we give a third proof which shows that the
commutator is exactly the set of all homomorphisms. This in turn is a direct
consequence of our results on orbits of subshifts.

2 Definitions

Let S be a finite set, called the alphabet. For d ∈ N, the d-dimensional full

shift is the space SZ
d

of infinite configurations over S endowed with the product

topology. For x ∈ SZ
d

, we denote by xn the symbol of x at coordinate n. For

any s ∈ S, when the dimension d is clear from context, we define c(s) ∈ SZ
d

as
the configuration with c(s)n = s for all n ∈ Zd. A one-dimensional configuration
x ∈ SZ is spatially periodic if xi+p = xi for some p > 0 and all i ∈ Z.

A subset X ⊂ SZ
d

is called a subshift if it is closed in the topology and

invariant under all shift maps σm : SZ
d → SZ

d

form ∈ Zd, defined by σm(x)n =
xn+m. A pattern is a pair (N,w), where w ∈ SN , for a finite domain N ⊂ Zd.
We denote BN(X) = {(N, xN ) | x ∈ X}, and define the language of X as
B(X) = {(N, xN ) | N ⊂ Zd finite, x ∈ X}. In the one-dimensional case, patterns
are replaced by words in these definitions. Since a subshift is uniquely defined
by its language, and every extendable and factor-closed language defines a one-
dimensional subshift [3], we may write X = B−1(L), if B(X) is the set of factors

of the extendable language L ⊂ S∗. The entropy of a subshift X ⊂ SZ
d

is defined
as h(X) = limn→∞ 1

nd log |B[0,n−1]d(X)|.
Alternatively, a subshift is defined by a set F ∈ S of forbidden patterns as the

set of configurations XF = {x ⊂ SZ
d | ∀(N,w) ∈ F,n ∈ Zd : xn+N 
= w}. If F

is finite, then XF is of finite type (SFT for short). Once a finite set of forbidden



Commutators of Bipermutive and Affine Cellular Automata 157

patterns is chosen in the one-dimensional case, the length of the longest pattern
is called the window size of the corresponding SFT. We say an SFT X ⊂ SZ

is mixing if there exists n ∈ N, called its mixing distance, such that for all
u,w ∈ B(X) and m ≥ n there exists v ∈ Bn(X) such that uvw ∈ B(X).

A continuous mapping f : X → X in a subshift that commutes with all shift
maps is called a cellular automaton. All cellular automata f are defined by local
functions F : SN → S, where N ⊂ Zd is the finite neighborhood of f , by the
formula f(x)n = F (xn+N ) for all n ∈ Zd [2]. A configuration x of X is called

temporally periodic (with respect to f) if fp(x) = x for some p. If X = SZ
d

, we
denote by floc the local function of f with the minimal neighborhood.

A CA f with minimal neighborhood N is permutive in a coordinate n ∈ N
if for all x ∈ SN , permuting the symbol of x at n permutes the image floc(x).

We say a CA f : SZ
d → SZ

d

is totally extremally permutive if |N | ≥ 2, and
floc is permutive in every coordinate that is also a vertex of the convex hull
of N . Here, the convex hull of N is a polygon in Rd, and the word ‘vertex’
refers to any corner of this polygon. We define a bipermutive CA as a totally
extremally permutive CA in dimension one. It is easy to see that our definition
of bipermutivity coincides with the usual definition.

Function composition ◦ gives the set of all CA (on a fixed subshift) the struc-
ture of a monoid. The commutator of the CA f : X → X is then naturally
defined as

C(f) = {g : X → X | g is a CA, f ◦ g = g ◦ f}.

Let G be a finite group. Then applying the operations of G cellwise gives rise

to a natural group structure on GZ
d

. A cellular automaton which is a group

homomorphism of GZ
d

is said to be homomorphic. We avoid the commonly used
terms ‘linear’ and ‘additive’ as the first can also refer to one-dimensional cellular
automata, and both terms are sometimes used to refer to cellwise sums of shift

maps. If f : GZ
d → GZ

d

satisfies f(x) = g(x) · c(C) for all x, for some C ∈ G
and some homomorphic CA g, then we say f is affine.

We denote by SLd(Z) the restriction of SLd(R) to those functions that map

Zd bijectively to itself. For a configuration x ∈ SZ
d

and A ∈ SLd(Z), we define

A(x) ∈ SZ
d

by A(x)n = xA(n) for all n ∈ Zd, and for a subshift X ⊂ SZ
d

,
we define A(X) = {A(x) | x ∈ X}. Here, the choice of A over A−1 in xA(n)

is by analogy with how shift maps are defined: we always transform the view,
not the configuration. From the linearity of A it follows that A(X) is also a
subshift. For a cellular automaton f : X → X , we define A(f) : A(X) → A(X)
by A(f)(x) = A(f(A−1(x))) for all x ∈ X . It is easy to see that A(f) is a cellular
automaton, and if N ⊂ Zd is the neighborhood of f , then A−1(N) is that of
A(f). Moreover, A(f) is totally extremally permutive, homomorphic or affine if
and only if f is, and if g : X → X is another CA, we have A(f ◦g) = A(f)◦A(g).

Multi-dimensional and one-dimensional full shifts have a natural connection
through the following definitions. Let

Xd
p = {x ∈ SZ

d

| ∀i ∈ {2, . . . , d} : σpei(x) = x},
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where (ei)i are the natural basis of Zd. That is, Xd
p is the d-dimensional full shift

restricted to points with period p ∈ N in all but the first dimension. There is

a natural bijection between Xd
p and (Spd−1

)Z, which we call ρp (the dimension
will always be clear from context).

3 Self-replication in Bipermutive CA

In this section, we study the behavior of individual configurations under the
action of bipermutive CA. We give some examples, and prove Lemma 1 which
states that every pattern, when surrounded by temporally and spatially pe-
riodic content, eventually self-replicates in the orbit of a bipermutive cellular
automaton. All of the results of this article are, to some extent, based on this
observation.

Fig. 1. An illustration of the elementary CA 150 running from the initial pattern 101
for 16 generations. The red ellipses show that the initial pattern repeats periodically
at the borders.

We start with an illustration of this fundamental property of bipermutive CA
for a particularly simple example: the binary CA with local rule gloc(a, b, c) =
a+ b+ c mod 2 and neighborhood {−1, 0, 1}. This is the elementary cellular au-
tomaton number 150, see Figure 1 for a sample spacetime diagram. In addition
to being permutive in each coordinate, this CA exemplifies many other interest-
ing properties (for example, it is homomorphic and totalistic). We illustrate how
one can build an arbitrary pattern from restricted (sparse) input using only its
bipermutivity in Figure 2.

Let f be bipermutive, and let a ∈ S be such that fp(∞a∞) = ∞a∞. Then,
as we outlined above, any word w ∈ Sn, when superposed on the periodic back-
ground ∞a∞, is a kind of self-replicating pattern: Copies of w periodically ap-
pear on both borders of the light cone starting from w. See Figure 1 for a con-
crete illustration. The precise statement is formulated in Lemma 1. The proof is
straightforward.
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Fig. 2. We illustrate the general idea of building patterns from sparse configurations
using the CA 150. We show how to systematically use its bipermutivity to build the
pattern 111 while keeping the starting configuration sparse (although it ‘accidentally’
appears already on the first step). In the figure on the left, we show an initial part
of the spacetime diagram of the configuration with a single 1, until the 1 reappears
sufficiently far to the right, indicated by the red circles. The arrow indicates that by
permuting the upper right coordinate, we simultaneously permute the cell it points to.
In the figure on the right, we have permuted said coordinate so that the prefix 11 of
111 is obtained. We then repeat the procedure by waiting for the (arbitrary) data to
the right of 11 to repeat sufficiently far away, and locating a suitable coordinate a that
can be used to extend the repeated 11 into 111.

Lemma 1. Let f : SZ → SZ be a left permutive CA with neighborhood [−r, r′],
and let y ∈ SZ be temporally and spatially periodic with periods t and p, respec-
tively. Let x ∈ SZ be such that xi = yi for all i > 0, and let n ∈ N. Then,
denoting C = pt(|S|n)! and I = [−n+ 1, 0], for all � ∈ N, we have

f �C(x)I+�rC = xI .

Proof. We begin with an auxiliary observation. Let A = (Q,Σ, δ) be a reversible
DFA, and let q ∈ Q and w ∈ Σ∗ be arbitrary. Then δ(q, w�·|Q|!) = q for all � ∈ N,
which follows from the fact that the function δ(·, w) is a bijection fromQ to itself.

Then, let Q = Sn and Σ = Sr+r′ , and let δ : (Q × Σ) → Q be defined by
δ(q, w) = f(qw). We claim that A = (Q,Σ, δ) is a reversible DFA. That it is a
DFA is trivial, so let q, q′ ∈ Q and w ∈ Σ with qi 
= q′i, where i ∈ [0, n − 1] is
maximal. Since f is left permutive, we have δ(q, w)i 
= δ(q′, w)i, and thus A is
reversible.

Consider the words qi = f i(x)I+ri ∈ Q and wi = f i(x)[1,r+r′]+ri ∈ Σ
for i ∈ N. Since r is the right ‘speed of light’ for f , we actually have wi =
f i(y)[1,r+r′]+ri for all i ∈ N, and thus the sequence (wi)i∈N is periodic with
period pt. Furthermore, we see that δ(qi, wi) = qi+1 holds for all i. Denoting
w = w0, . . . , wpt−1 ∈ Σpt, we have δ(q0, w

�·|Q|!) = q0 for all � ∈ N by the above
discussion on reversible DFAs, and expanding the definitions gives the claim. ��
The lemma states that the pattern xI is repeated on every Cth step on the
right border of the light cone. Of course, in the right (or bi-) permutive case, a
symmetric result holds. We refer to both results as Lemma 1.
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4 Orbits of One-dimensional Subshifts in Bipermutive
CA

With the help of Lemma 1, we now consider the orbits of subshifts in bipermutive
cellular automata. The focus is on their long-term (asymptotic) dynamics, in
particular the set of patterns that will eventually appear during the evolution.

Definition 1. Let X be a subshift, f : X → X a cellular automaton and Y ⊂ X
a subshift of X. We define the f -orbit closure Y f of Y to be the set

⋃
i∈N

f i(Y ).

We also define the asymptotic set of Y as ωf (Y ) =
⋂

n∈N

⋃
i≥n f

i(Y ).

Clearly, we always have ωf (Y ) ⊂ Y f , and Y f = Y σm◦f for all m ∈ Z.
The first nontrivial result that follows from Lemma 1 is a generalization of the

ideas in the caption of Figure 2. Namely, the property of a bipermutive cellular
automaton f : SZ → SZ that every word is self-replicating can be used to show
that every word occurs in some image fn(X) if the SFT X ⊂ SZ satisfies certain
mixing properties. In fact, an SFT X satisfying the assumptions of the following
theorem will even contain a transitive point for f by a slightly more involved
proof, but we do not need this result.

Theorem 1. Let f : SZ → SZ be a bipermutive CA and X ⊂ SZ a nontrivial
mixing SFT with window size m. If there exists v1 ∈ Bm−1(X) such that v1s ∈
Bm(X) for all s ∈ S, then ωf (X) = SZ.

Proof. Suppose that such a v1 exists. Without loss of generality we can assume
that ∞v∞1 ∈ X , and that m is also a mixing distance for X . Namely, since
periodic points are dense in X , we have ∞vv∞1 ∈ X for some v ∈ B(X), and
then we can simply replace v1 by vv1. Also, it is clear that m can be replaced by
a larger value. Let then w ∈ S∗ be arbitrary. We will show, by induction on |w|,
that there exist arbitrarily large n ∈ N such that w ∈ B(fn(X)), from which the
claim then follows. The case |w| = 0 is trivial.

Suppose then that the claim holds for w ∈ S∗, and let s ∈ S. We will prove the
claim for the word ws. Figure 3 illustrates the proof. Let r and r′ be the left and
right radii of f , respectively. By the induction hypothesis, for arbitrarily large
n ∈ N, there exists a word u ∈ B|w|+n(r+r′)(X) such that fn(u) = w. We can take
n so large that fn(∞v1

∞) = ∞v2
∞ has the property that fp(∞v2

∞) = ∞v2
∞

for some p ∈ N, where |v2| = m− 1.
For all k ∈ [m, 2m− 2] we choose a mixing word zk ∈ Bk(X) and an arbitrary

left extension yk ∈ S−N such that xk = yk.uzkv
∞
1 ∈ X . Now, fn(xk)[rn,∞) =

wz′kv
∞
2 for some z′k ∈ Bk+n(r+r′)(X). Then, by Lemma 1, there exists tk >

k + n(r + r′) + |v1| such that

fn+�tk(xk)[r(n+�tk),∞) = wz′kv
∞
2

for all � ∈ N. Let h = lcm{tk | k ∈ [m, 2m− 2]}, so that

fn+h(xk)[r(n+h),∞) = wz′kv
∞
2 ,

for all k.
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Let now k be such that

a = (r + r′)(n+ h) + |w|+ 1 ≡ |u|+ k mod (m− 1). (1)

We can permute the coordinate a of xk (and choose a new right tail arbitrarily),
because (1) and the fact that h > k+n(r+r′)+ |v1| imply that it is preceded by
the word v1, and m is the window size of X . Permuting the coordinate a in xk

(point A in Figure 3) permutes the coordinate a− r′(n+ h) = r(n+ h)+ |w|+1
in fn+h(xk) (point B in Figure 3) without affecting any coordinate to the left
of it, and thus all the words ws for s ∈ S occur in fn+h(X). Since n may be
chosen arbitrarily large, this concludes the induction step. ��

u

w

?

w

w

v1

v2

v2

v2

v2

zk

z′k

k

k + n(r + r′)

n

p

tk

h

v1 v1 · · · v1

v2 v2 · · ·
v2 v2 · · ·

v2 v2 · · ·

v2 v2 · · ·
B

A

Fig. 3. A schematic diagram of the proof of Theorem 1. The coordinate A may be
changed to any symbol without changing the left part, and by permuting A, we also
permute B.

Note that in the proof of Theorem 1, both left and right permutivity are
needed: As the CA is left permutive, Lemma 1 guarantees that w repeats on the
right border of the light cone. Right permutivity on the other hand guarantees
that the permutation applied to the coordinate a of xk propagates along the left
side of the light cone to a permutation of the (n+ h)th image.

Also, we note that if X is a proper subshift of SZ, then
⋃

n∈N
fn(X) is not

actually equal to SZ. In fact, for all n, the subshift fn(X) has the same entropy
as X , since a bipermutive CA is finite-to-one [3], and thus cannot contain a
transitive point (a configuration in which every finite pattern occurs). This means
that the appearance of all words of Sk for larger and larger k in fn(X) is somehow
compensated by having these words appear in only a small number of different
contexts.
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Example 1. Let X ⊂ {0, 1}Z be the golden mean shift (the SFT with forbidden
pattern 11), and let f : {0, 1}Z → {0, 1}Z be the binary XOR automaton, which
is bipermutive. Then

f(X) = B−1((0∗(11)∗)∗).

Thus, f(X) is conjugate to the even shift B−1((1∗(00)∗)∗) by the CA that applies
the permutation (0 1) cellwise, and it is indeed well known that the golden mean
shift and the even shift have equal entropy. However, B2(X) = {00, 01, 10}, while
B2(f(X)) = {00, 01, 10, 11}.

We continue one more step:

f2(X) = B−1((0∗10(00)∗1)∗),

the binary subshift where every second maximal contiguous segment of 0s is of
odd length. Note that

B3(X) = {000, 001, 010, 100, 101},
B3(f(X)) = {000, 001, 010, 011, 100, 110, 111}, and
B3(f

2(X)) = {000, 001, 010, 011, 100, 101, 110, 111},

but X and f2(X) again have equal entropy.

Let Y ⊂ SZ be a subshift. If these exists m ∈ N such that no word w ∈ Bm(Y )
can be followed in Y by every letter of S, then the entropy of Y satisfies h(Y ) ≤
log(|S| − 1). If Y is also binary, then the existence such an m implies that Y is
periodic. Thus we have the following corollaries to Theorem 1.

Corollary 1. If Y ⊂ SZ is a mixing SFT with h(Y ) > log(|S| − 1) and the
automaton f : SZ → SZ is bipermutive, then ωf (Y ) = SZ.

Corollary 2. If Y ⊂ {0, 1}Z is a nontrivial mixing SFT and the automaton
f : {0, 1}Z → {0, 1}Z is bipermutive, then ωf (Y ) = {0, 1}Z.

In the special case that the alphabet is a group of prime order and the cellular
automaton is a homomorphism, we can relax our assumptions on the SFT X .
We only sketch the proof of the following result, as it is mostly the same as that
of Theorem 1.

Theorem 2. Let p ∈ N be a prime, let S = Zp, let the CA f : SZ → SZ be a
group homomorphism with at least two neighbors, and let Y ⊂ SZ be a nontrivial
mixing SFT. Then ωf(Y ) = SZ.

Proof (Sketch). First, note that f is automatically bipermutive. Since X is non-
trivial, there exists a long word v1 ∈ B(X) such that v1a, v1b ∈ B(X) for some
a 
= b ∈ Zp. Let wc ∈ B(ωf(X)) for some c ∈ Zp, and as in the proof of Theo-
rem 1, there exist k ∈ N and u ∈ B(X) such that uv1a is an fpk-preimage of wc.
Then uv1b is an fpk-preimage of wd, where d = c+ b − a in Zp by the linearity
of f . After p such operations, we see that we ∈ B(ωf(X)) for all e ∈ Zp. ��
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Theorem 2 can be thought of as a kind of topological analogue of Theorem 5.3
in [5] (proved in [6]), which in particular states that the ergodic averages of any
Markov measure with full support converge to the uniform Bernoulli measure
in the weak-star topology, under the action of a bipermutive homomorphic CA
on ZZ

p . The automaton is said to asymptotically randomize such a measure. Us-
ing analogous terminology, we can say that a CA f topologically randomizes a
subshift X if ωf(X) = SZ, and Theorem 2 then states that a bipermutive ho-
momorphic CA topologically randomizes every nontrivial mixing SFT X ⊂ ZZ

p .
Theorem 1 can of course also be phrased in terms of topological randomization,
but the class of subshifts randomized is not quite as natural (see Question 1).

There is also a more familiar meaning to these results, as topological random-
ization for a left (or right) permutive cellular automaton in fact corresponds to
the existence of a transitive point.

Theorem 3. Let f : SZ → SZ be a left permutive CA with neighborhood [−r, r′],
where r > 0, and let X ⊂ SZ a mixing SFT such that ωf (X) = SZ. Then X
contains a transitive point for f .

Proof. We show that given any w ∈ Bp(X) and v ∈ Sp, there exist x ∈ X
and N ∈ N such that x[0,p−1] = w and fN (x)[0,p−1] = v. We may assume
without loss of generality that ∞w.w∞ ∈ X , and then there exist m, t ∈ N
such that fm(∞w.w∞) = f t+m(∞w.w∞) = ∞u.u∞ for some u ∈ B(X). Since
ωf (X) = SZ, there exists M ≥ m and v1, v2 ∈ B(X) such that fM (v1v2) = v
and |v1| = rM . Define y = zv1.v2w

′w∞, where z ∈ S−N and w′ ∈ B(X) are
chosen such that y ∈ X and p divides |v2w′|. Now, fM (y) = z′.vw′′u′∞ for some
z′ ∈ S−N, w′′ ∈ (Sp)∗ and u′ ∈ Sp. Lemma 1 now implies that for C = pt(|S|p)!
and all � ∈ N, we have fM+�C(y)�rC+[0,p−1] = v. Since y�rC+[0,p−1] = w for large
enough �, some translate of y can be chosen as x. ��
The next (rather trivial) example shows that the restriction to a group of prime
order is necessary in Theorem 2, that just mixing does not suffice for proving
Theorem 1, and that entropy h(Y ) ≥ log(|S|/2) is not enough for Corollary 1.

Example 2. Let f : {0, 1}Z → {0, 1}Z be the elementary cellular automaton
number 150, X = ({0, 1} × {0})Z ⊂ ({0, 1}2)Z = Y and g = f × f . Then X
is a mixing SFT with h(X) = log 2, g is homomorphic and bipermutive, and
h(Y ) = log 4, but g(X) = X .

Here, the CA g is a group homomorphism, and B1(X) is a subgroup of the full
group that g cannot expand. We do not know whether such cheating is the only
way to guarantee that a mixing SFT does not expand to the full shift. In fact,
we do not know whether a bipermutive CA randomizes every mixing SFT that
uses the full alphabet.

Question 1. Let f : SZ → SZ be a bipermutive cellular automaton, and Y ⊂ SZ

a nontrivial mixing SFT with B1(Y ) = S. Do we then have ωf (Y ) = SZ?

A positive solution to Question 1 seems plausible, especially if f is also a group
homomorphism, and would extend Theorem 1 to a much more natural class of
topologically randomized subshifts.
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Definition 2. Let 0 ∈ S and d, k ≥ 1. The k-sparse subshift of dimension d is

the SFT X ⊂ SZ
d

defined by the forbidden patterns

{P ∈ S[1,k]d | |P |0 ≤ kd − 2}.

For example, the one-dimensional binary 2-sparse subshift is just the golden
mean shift, since it is defined by the set of forbidden patterns

{w ∈ {0, 1}2 | |w|0 ≤ 0} = {11}.

We can apply Theorem 1 to such subshifts to obtain concrete examples of simple
subshifts that bipermutive automata take to the full shift in the limit, as the
k-sparse subshift obviously satisfies the assumption of Theorem 1. This obser-
vation (and especially its generalization Proposition 1) is useful in the study of
commutation of cellular automata, as we will see in the next section.

Corollary 3. Let f : SZ → SZ be a bipermutive CA, k ∈ N, and X ⊂ SZ the
k-sparse subshift. Then ωf (X) = SZ.

5 Orbits of Multidimensional k-sparse Shifts in Totally
Extremally Permutive CA

In this section, we extend Corollary 3 to higher dimensions. The proof is es-
sentially the same as that of Theorem 1, but we use some additional tricks
to make the argument cleaner. Namely, we apply a certain transformation of
SLd(Z) to make the neighborhood shape more suitable, and then use a similar
shoot-and-reperiodize technique as in [7] to partially reduce the problem to the
one-dimensional case.

Definition 3. For n = (x1, . . . , xd) ∈ Zd, denote π(n) = x1. A set N ⊂ Zd is
pointy, if

|N ∩ π−1(min π(N))| = |N ∩ π−1(max π(N))| = 1.

Lemma 2. Let f : SZ
d → SZ

d

be a cellular automaton. Then, there exists
A ∈ SLd(Z) such that A(f) has a pointy neighborhood.

Proof. For all n ∈ N, define the shear map An ∈ SLd(Z) by

An(x1, x2, . . . , xd) = (x1 + n

d∑
i=2

xi, x2, . . . , xd).

Let N ⊂ Zd be the neighborhood of f . Then for n = max π(N)−minπ(N) + 1,
the image An(N) is pointy, so An(f) has a pointy neighborhood. ��

The usefulness of pointy neighborhoods comes from the following observation.
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Lemma 3. Let f : SZ
d → SZ

d

be a totally extremally permutive CA with a

pointy neighborhood. Then for all p, the automaton f ′ = ρp(f) : (Spd−1

)Z →
(Spd−1

)Z defined by f ′ = ρp ◦ f ◦ ρ−1
p is bipermutive.

Proposition 1. If the CA f : SZ
d → SZ

d

is totally extremally permutive with

quiescent state 0, then ωf (X) = SZ
d

, where X is the d-dimensional k-sparse
subshift.

Proof. We prove here the case d = 2. The general case follows similarly, but is
notationally more complex. We first ensure that the neighborhood is pointy (the
first axis is the horizontal one) and is located at the west border of the east half-
plane, so that on points with a vertical period, a one-dimensional bipermutive
CA with right speed of light 0 is simulated. The general idea is to successively
draw larger and larger patterns at the origin as follows: As vertically periodic
configurations are in a sense just one-dimensional horizontal configurations, we
can apply Lemma 1 to any vertically periodic and horizontally 0-finite config-
uration to obtain that any finite set of columns repeats infinitely many times
in the orbit. Now, as in the proof of Theorem 1, we carefully shoot a signal in
the right cell at the right time, and add a huge vertical period to conclude the
induction step.

Let us make this precise. We may assume without loss of generality that the
lexicographically minimal element in the neighborhood of f is (0, 0), and that
the maximal is (m1,m2) with m1 > 0. We may also assume that f has a pointy
neighborhood by Lemma 2. Let n ≥ k, and let P ∈ Sn×n be arbitrary. We
inductively construct vertically periodic configurations xi ∈ X such that the
lexicographical prefix of P of size i occurs in some f t(xi) at the origin, and
xi
(a,b) = 0 for all b ∈ Z for large enough a ∈ Z. For x1, we choose x1

(0,nm) = P(0,0)

for all m ∈ Z, and x1
n = 0 for all other n ∈ Z2.

Suppose then that xi has already been constructed, and let p ∈ N be its
vertical period. By Lemma 3, when restricted to the set X2

p , f simulates a

bipermutive one-dimensional CA g : (Sp)Z → (Sp)Z through the bijection ρp.
Denote H = {(a, b) | a ≥ 0} ⊂ Z2. Since ρp(x

i)� = 0p for all large enough � ∈ Z
and the left radius of g is 0, we can use Lemma 1 to conclude that there exist
arbitrarily large t > 0 such that xi|H = f t(xi)|H .

Now, there are arbitrarily large t ∈ N such that f t(xi) contains the lexi-
cographical prefix of P of size i at the origin. Let thus t be larger than the
maximal a ∈ Z with xi

(a−k,b) 
= 0 for some b ∈ Z. Let (c, d) be the lexico-

graphically (i + 1)th coordinate of P . We let y(s)i ∈ X be as xi, but with the
coordinate (tm1 + c, tm2 + d) containing s ∈ S. Now, permuting s in y(s)i per-
mutes f t(y(s)i(c,d)), so we can choose s so that f t(y(s)i(c,d)) = P(c,d), and denote

yi = y(s)i.
Since (m1,m2) is the lexicographically maximal vector in the neighborhood

of f , (c, d) is the lexicographically minimal coordinate which can change in
f t(y(s)i), when we permute s. Thus, f t(yi) contains the lexicographical prefix
of P of size i+1 at the origin. We obtain xi+1 from yi by adding any sufficiently
large vertical period. ��



166 V. Salo and I. Törmä

Similarly to how Theorem 1 could be generalized to Theorem 2, we can gen-
eralize Proposition 1 to Proposition 2. We omit the proof.

Proposition 2. Let p ∈ N be a prime, let S = Zp, let f : SZ
d → SZ

d

be a group
homomorphism with at least two neighbors, and let Y ⊂ SZ be a the k-sparse

shift. Then ωf ({0, 1}Z
d ∩ Y ) = SZ.

6 Commutation

In this section, we discuss the commutator of a totally extremally permutive
cellular automaton. First, we consider the size of such a commutator, and then
look at what happens when the totally extremally permutive CA is also an affine
map on a full shift with cellwise defined group structure.

6.1 Size of the Commutator of a Totally Extremally Permutive CA

In this section, we prove a strong upper bound on the number of commuting
cellular automata of any radius. This result is based on the following lemma,
which relates the commutator of a given CA f to the f -closures of subshifts.

Lemma 4. Let X ⊂ SZ
d

be a subshift, let f : X → X be a CA and let Y ⊂ X
with Y f = X. Then the map φ : C(f)→ XY defined by φ(g) = g|Y is injective.

Proof. Let g, h ∈ C(f) be such that g|Y = h|Y , and let x ∈ X be arbitrary. Let
r ∈ N be a common radius for g and h, and let y ∈ Y and i ∈ N be such that
f i(y)[−r,r]d = x[−r,r]d . Then, since g, h ∈ C(f), we have

g(x)0 = g(f i(y))0 = f i(g(y))0 = f i(h(y))0 = h(f i(y))0 = h(x)0.

Since x was arbitrary, we have g = h. ��

Proposition 3. Let f : SZ
d → SZ

d

be a totally extremally permutive CA with
a quiescent state 0 ∈ S. For all n ∈ N, define

Cn(f) =
{
g ∈ C(f) | [0, n− 1]d is a neighborhood for g

}
.

Then |Cn(f)| ≤ |S|1+nd(|S|−1). If S = Zp for a prime p ∈ N and f is a group

homomorphism, then |Cn(f)| ≤ |S|1+nd

.

Proof. Let X ⊂ SZ
d

be the n-sparse shift. Proposition 1 and Lemma 4 together
imply that |Cn(f)| is at most the number of local maps B[0,n−1]d(X) → S.

Since we have |B[0,n−1]d(X)| = 1 + nd(|S| − 1), the number of such maps is

|S|1+nd(|S|−1). In the homomorphic case, apply Proposition 2 to replace X with

Y = X ∩ {0, 1}Zd

, where we have |B[0,n−1]d(Y )| = 1 + nd. ��
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The upper bound, reached for example by the identity CA, is |Cn(f)| =

|S||S|nd

for all n ∈ N. In [1], a concept called ‘symmetry’ is defined for one-
dimensional subshifts: the symmetry of an SFT X ⊂ SZ is defined as the limit
superior of 1

n log logA(n), where A(n) is the number of bijective CA on X which
have neighborhood [0, n − 1]. For X = SZ, this is 1 if logarithms are taken in
base |S|, see [1]. We give a more general definition in the same vein, by taking
the same limit for an arbitrary set of CA.

Definition 4. Fix an alphabet S, and let F be a set of cellular automata on the

full shift SZ
d

such that f ∈ F implies σv ◦ f ∈ F for all v ∈ Zd. The density of
F is defined as

d(F ) = lim sup
n

1

nd
log logA([0, n− 1]d),

where A(N) is the number of cellular automata in F with minimal neighborhood
contained in N , and logarithms are taken in base |S|. If F is a set of cellular
automata on a subshift X ⊂ SZ, we define F ′ by mapping illegal configurations
to a fixed symbol, and let d(F ) = d(F ′).

It is easy to see that the density of the set of automorphisms of a one-dimensional
SFT is equal to its symmetry (which in turn is equal to its entropy [1]), and that
the density of the commutator of the identity map is 1. We summarize Propo-
sition 3 by noting that the density of the commutator of any totally extremally
permutive CA is 0. In [4], it was proved that if f, g : SZ → SZ are commut-
ing radius- 12 cellular automata and f is bipermutive, then there exist functions
φ, ψ : S → S such that gloc(a, b) = floc(φ(a), ψ(b)) (g is an isotope of f). From
this one can compute the weaker upper bound of 1

2 for the density of the com-
mutator of a bipermutive CA.

6.2 Commutator of an Affine Totally Extremally Permutive CA

Next, we turn to affine totally extremally permutive cellular automata on GZ
d

,
where G is a finite group. By the next lemma, no generality is lost if we assume
G to be abelian.

Lemma 5. Let G be a finite group, and suppose there exists a totally extremally

permutive and affine cellular automaton on GZ
d

with minimal neighborhood of
size at least 2. Then, G is abelian.

Proof. If there exists such an affine cellular automaton, then there must in par-
ticular exist a homomorphism f with minimal neighborhood of size at least 2. So,

let f : GZ
d → GZ

d

be such a homomorphism, and order the arguments of its local
rule floc : G

n → G so that it is permutive in its first two arguments. Let g, h ∈ G,
and let g′, h′ ∈ G such that floc(g

′, 1, 1, . . . , 1) = g and floc(1, h
′, 1, . . . , 1) = h.

Since floc is a homomorphism, we have

g · h = floc(g
′, 1, 1, . . . , 1) · floc(1, h′, 1, . . . , 1) = floc(g

′, h′, 1, . . . , 1)
= floc(1, h

′, 1, . . . , 1) · floc(g′, 1, 1, . . . , 1) = h · g.
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Thus G is abelian. ��

Lemma 6. Let G,H be abelian groups, and let g : G → H be such that g(a +
b− c) = g(a)+ g(b)− d holds for some c ∈ G and d ∈ H, and all a, b ∈ G. Then,
g(a) = h(a) − g(2c) + 2d for a homomorphism h : G → H. In particular, g is
affine.

Proof. We have

g(a+ b) = g(a+ (b + c)− c)

= g(a) + g(b+ c)− d

= g(a) + g(b+ 2c− c)− d

= g(a) + g(b) + g(2c)− 2d.

Denote e = g(2c)− 2d, and let h(a) = g(a) + e. Then

h(a+ b) = g(a+ b) + e

= g(a) + g(b) + 2e

= h(a) + h(b),

so h is a homomorphism and g is affine. ��

In [4] it was proved, using algebraic methods, that among CA with radius
1/2, affine and bipermutive CA can only commute with affine CA. We show the
small step required to generalize this result for our definition of commutator in
one dimension:

Theorem 4. Let f : GZ → GZ be bipermutive and affine (so that G is abelian),
and let g : GZ → GZ commute with f . Then g is affine.

Proof (Based on the results of [4]). By composing with shifts, we may assume
f has neighborhood [0,mf ] and g has neighborhood [0,mg]. Then, since g com-
mutes with f , it also commutes with fk. Let k be large enough that mf ·k ≥ mg.
Then, the mf · k blocking of fk (the automaton obtained from fk by joining
blocks mf · k consecutive cells into single symbols) is bipermutive and affine
with radius 1/2, and the corresponding blocking h of g has radius 1/2. Thus,
the result of [4] applies, and h is an affine self-map of (Gmf ·k)Z. But clearly g
must then have been affine for GZ, because the blocking operation is a group
isomorphism.

We can also prove this directly, using Lemma 1:

Proof (Using Lemma 1). First, we can assume that f has a unary fixed point
c(a) by taking powers of f , and we denote g(c(a)) = c(b). Now, f also fixes
c(b). Without loss of generality, assume f has neighborhood [0,m] and g has
neighborhood [0, n]. Let w ∈ G2n+1 and e ∈ {a, b}, and let x ∈ GZ be the
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configuration with x[−n,n] = w and xi = e for i /∈ [−n, n]. DenoteM = (|G|2n+1)!
and apply Lemma 1, so that

fM (x)j = fM (x)j−mM = wj (2)

for all j ∈ [−n, n].
Let then w1, w2 ∈ Gn+1, let x ∈ GZ be the configuration with xj = w1

j and

xj+mM = w2
j for all j ∈ [0, n], and a everywhere else. By the affinity of f and

(2), we have
fM (x)j = w1

j + w2
j − C

for all j ∈ [0, n] and some constant C ∈ G. Thus we have g(fM (x))0 = gloc(w
1+

w2 − (C, . . . , C)︸ ︷︷ ︸
n+1

). On the other hand, we have g(x)j 
= b only when j ∈ [−n, n]

or j−mM ∈ [−n, n], so using the affinity of f and (2), we see that fM (g(x))0 =
gloc(w

1)+gloc(w
2)−C. Since f and g commute, these values are equal, and thus

g is affine by Lemma 6 (setting c = (C, . . . , C) and d = C). ��

Now, let us reduce the multidimensional case to the one-dimensional case.

Theorem 5. Let f : GZ
d → GZ

d

be totally extremally permutive and affine (so

that G is abelian), and let g : GZ
d → GZ

d

commute with f . Then g is affine.

Proof (Using Lemma 1). We only present a proof for d = 2. We first modify the
neighborhoods of f and g. First, we compose with a shift so that the lexicograph-
ically minimal element in the neighborhood of f is (0, 0). Then, we ensure that
for the maximal element (m1,m2) of the neighborhood, we have m1 > 0 by con-
sidering

(
0 1−1 0

)
(f) instead in the case m1 = 0. We also make sure f has a pointy

neighborhood by applying Lemma 2. These transformations amount to mapping
f #→ σv(A(f)) for some A ∈ SL2(Z) and v ∈ Z2. Note that f ′ = σv ◦A(f) and
g′ = σv′ ◦A(g) commute for all v′ ∈ Z2, and f ′ is affine and totally extremally
permutive.

Now, let the neighborhood of g′ be contained in [0, p − 1]2 (by choosing v′

appropriately), and consider the vertically periodic subshift Xp. The restrictions
f ′|Xp and g′|Xp simulate one-dimensional cellular automata on (Gp)Z through
the bijection ρp. By Lemma 3, the one-dimensional CA corresponding to f ′|Xp

is bipermutive, and it is clearly affine. Then, by Theorem 4, g′|Xp is affine. This
implies that g′ is affine as well, since g′ has neighborhood [0, p−1]2. Finally, also
g is affine since transformations of SLd(Z) are group isomorphisms. ��

For the special case of totally extremally permutive homomorphic CA on a group
of prime order, there is a very nice characterization for the commutator restricted
to CA with quiescent state 0. This can be seen as a corollary of the previous
results, but we present a very short direct proof based on Proposition 2 and
Lemma 4.

Proposition 4. Let G = Zp, let f : GZ
d → GZ

d

be a totally extremally permu-

tive homomorphism. Then g : GZ
d → GZ

d

with g(c(0)) = c(0) commutes with f
if and only if g is homomorphic.
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Proof. Let g have radius r. Then Xf = SZ, where X = {0, 1}Zd ∩ Y and Y
is the r-sparse shift, by Proposition 2. As G = Zp, all homomorphic automata
commute, so in particular h ◦ f = f ◦ h for the unique homomorphic automaton
defined by h|X = g|X . Thus, g = h by Lemma 4. ��

7 Conclusions

In this article, we have shown that a bipermutive one-dimensional cellular au-
tomaton topologically randomizes any sufficiently complicated mixing SFT, and
that this is equivalent to the existence of a transitive point. We have also shown
that if the CA is also a group homomorphism on a prime alphabet, then any non-
trivial mixing SFT can be randomized. Next, we showed that this result partially
generalizes to higher dimensions, in that an extremally permutive CA topologi-
cally randomizes all k-sparse shift, which are particular highly mixing SFTs. We
used these results to obtain strong bounds on the size of the commutator of an
extremally permutive automaton. Finally, we showed that the commutator of
an extremally permutive affine cellular automaton consists of affine automata,
solving the old open problem posed in [4].

Future directions for this line of research could include generalizing Theo-
rem 1 and Proposition 1 by showing topological randomization for a larger and
more natural class of subshifts. Question 1 is related to this problem. One could
also try to combine the notions of topological randomization of subshifts and
asymptotic randomization of measures, in the hope of generalizing Theorem 5.3
of [5] for measures of not necessarily full support. Also, if any cellular automaton
topologically randomizes every k-sparse shift, Proposition 3 holds for it, so one
could also try to extend Proposition 1 for other classes of automata in the hope
of obtaining bounds for commutator sizes. Finally, it may be possible to gen-
eralize Theorem 5 for other algebraic structures than groups, or even for other
natural classes of cellular automata, and this should be further investigated.
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Abstract. In this article we are considering linear cellular automata
with states in the ring of maps from a finite field in itself. We are par-
ticularly interested in the structure of the subrings generated by the
coefficients of powers of polynomials with coefficients in the above men-
tioned ring. We present results on the equality of these subrings together
with an upper bound on the number of different subrings generated by
this procedure.

1 Introduction

Information dynamics of cellular automata (CA) was introduced in [3,4]. The
general question is the spreading of information by a cellular automaton. The
information dynamics was concerned with CA whose cell states are polynomial
rings in X over a finite field. For the benefit of the reader we briefly explain the
basic ideas and fix some notation. Let R be a (finite) ring and f : R3 → R a
map, the local rule of the CA. Then f induces a map F , the global map, from
RZ to RZ, the set of bi-infinite sequences with values in R. For a configuration
c ∈ RZ one defines a new sequence F (c) by setting

F (c)(j) = f(c(j − 1), c(j), c(j + 1))

for all j ∈ Z. Iterating this global map F leads to a sequence of configurations
ct = F t(c), t ≥ 0.

In information dynamics one is interested in the following question; Assume
that R is the ring of mappings from a finite field GF(q) to itself, then R can
be described as the ring of polynomials in X of degree less than q. Now, given
an initial configuration c, defined as c(j) = aj , j < 0, c(0) = X , and c(j) = bj
for j > 0, where aj , bj are constant polynomial functions and X stands for a
variable or information, then X affects the cells of ct(j), where j = −t, . . . , t.
The problem is to recover X by basic ring operations with the values of ct. In
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general, one associates to the configuration ct a subring Ct ⊆ R which consists
either of all F-linear combinations of all finite sums and products of the ct(j),
or of all F-linear combinations of finite sums and products of the ct(j) and the
elements of the field. Information dynamics is concerned with the sequence of
subrings generated by a CA.

In [1] the author starts to investigate this problem for the ring of maps from
a finite field into itself.

In this paper we continue this study for linear CA. A linear CA with states
in a ring is best described as follows: The sequences c : Z→ R are considered as
formal Laurent series, c(Y ), the local rule is a polynomial P (Y ) with coefficients
in R and the global map is simply the multiplication of the formal Laurent series
with the polynomial. One then has the nice description of ct as ct(Y ) = P (Y )tc0.

In this article we consider linear CA with states in the ring of maps of a finite
field to itself. For a local rule P [Y ] and the special initial configuration c0 = X
with c0(j) = 0 for j 
= 0 we associate a sequence of rings P(t) to the orbit
ct = P (Y )tc0, t ≥ 0.

After the introduction of same basic facts and notions we present in Section 3 a
precise definition of the subrings P(t) and their properties. We present necessary
conditions for all subrings P(t) to be equal as well as an upper bound for the
number of different subrings.

2 Some Basic Facts

With F we denote the finite field GF(q) with q = ps elements, where p is a
prime, the characteristic of the field, and s ∈ N = {1, 2, . . .}. The set of all maps
from F to F is denoted as F[X ] which can be thought of as residue class ring
F[X ]/(Xq −X). In other words, there is a one to one relation of maps from F
to F and the polynomials p(X) of degree less than q with coefficients in F. For
a subset M of F[X ] we define the support of M as

supp(M) = {ξ | there exists f ∈M with f(ξ) 
= 0}, (1)

the zero-set of M is defined as

Z(M) = {ξ | f(ξ) = 0 for all f ∈M}. (2)

Moreover, two elements ξ, ζ ∈ F are called M -equivalent, denoted as ξ ≡M ζ, if
f(ξ) = f(ζ) for all f ∈M . If ξ and ζ are notM -equivalent, then ξ and ζ are called
M -separable. Note that, if Z(M) 
= ∅, then Z(M) is an M -equivalence class and
all other M -equivalence classes belong to the support of M . The partition of
F induced by the M -equivalence is denoted as PM (F). With PM (supp(M)) we
denote the partition of the support of M into M -equivalence classes. If Z(M) 
=
∅, then

PM (F) = PM (supp(M)) ∪ {Z(M)}.
The set F[X ] becomes a ring with pointwise addition and multiplication, i.e.,

(f + g)(ξ) = f(ξ) + g(ξ) and (fg)(ξ) = f(ξ)g(ξ) for f , g ∈ F[X ] and ξ ∈ F.
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Moreover, F[X ] is also an F-vectorspace by setting

(r f)(x) = r f(x)

for r ∈ F and f ∈ F[X ]. The dimension of the F-vectorspace F[X ] is equal to
q = |F|.
Example 1. 1. The set of monomials {Xj | j = 0, 1, . . . , q − 1} forms a base of

F[X ].
2. The above mentioned one to one correspondence of elements in F and the

polynomials in F[X ]/(Xq −X) is now explained in detail.
Since F is a finite field with q elements, one has ξq−1 = 1 for all ξ ∈ F∗ =
F \ {0}. For ξ ∈ F we define the polynomial

δξ(X) = 1− (X − ξ)q−1,

which can be considered as an element of F[X ]/(Xq−X). On the other hand,
if we consider the map ζ #→ δξ(ζ), then we see that δξ is the characteristic
function of ξ, i.e., δξ(ζ) = 1 for ζ = ξ and zero otherwise. Obviously, the
set {δξ(X) | ξ ∈ F} forms a base of F[X ]. Moreover, the map from F[X ] to
F[X ]/(Xq −X) defined as

f #→
∑
ξ∈F

f(ξ)δξ(X)

defines a ring isomorphism.

In connection with information dynamics of cellular automata we introduce the
notion of a (sub)vectorspace-ring.

Definition 1. A subset R of F[X ] is called a (sub)vectorspace-ring of F[X ] if

1. R is a subring of the ring F[X ]
2. R is an F-subvectorspace of the F-vectorspace F[X ].

From now on we call a (sub)vectorspace-ring R of F[X ] simply a vectorspace-
ring. If R ⊆ F[X ] is a vectorspace-ring, then one has for all r, s ∈ R and ξ ∈ F
that r ·s ∈ R, r+s ∈ R and ξr ∈ R. The following examples show that there are
subrings of F[X ] which are not vectorspaces and that there are subvectorspaces
of F[X ] which are not subrings.

Example 2. 1. Let F = GF(25) then the field F5 = GF(5) is a subfield of F.
Therefore the set of maps from F to F5 is a subring of F[X ]. However, it is
not a subvectorspace of F[X ].

2. If F = GF(p), p a prime number, then every subring of F[X ] is also a
subvectorspace.

3. The multiplicative group F∗ = F \ {0} is cyclic of order q− 1 with primitive
element ρ, i.e., F∗ = {ρj | j = 0, . . . , q−2}. For q odd we consider the identity
map idF. Clearly, the set V = {ξ idF | r ∈ F} is a subvectorspace of F[X ], and

each element of V is a bijection from F to F. Since 1 = ρ0 = ρ2(
q−1
2 ) it follows

that id2F is not a bijection and hence not in V . This means that V is not a
subring.
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The following lemma links the dimension of a vectorpace-ring R ⊆ F[X ] with its
support.

Lemma 1. Let R be a vectorspace-ring of F[X ], then

dim(R) = |supp(R)/ ≡R|

In other words, the dimension is equal to the number of R-equivalence classes
which belong to the support of R. Note that Lemma 1 also applies to the trivial
vectorspace-ring R = {0}, having dimension 0. Note also, that Lemma 1 applies
only to vectorspace-rings of F[X ]. I.e., if V is the vectorspace generated by
the identity map on F with q > 2, then dim(V ) = 1. On the other hand,
|supp(V )/ ≡V | = q − 1 > 1.

As a consequence of the results in [1] we note

Corollary 1. Let R be a non-trivial vectorspace-ring of F[X ], then the charac-
teristic maps of the elements of the partition of supp(R), i.e., the maps χU :
F→ F defined as

χU (ξ) =

{
1 if ξ ∈ U
0 otherwise

for U ∈ PR(supp(R)), form a base of R.

Remark 1. If f and g are elements of the vectorspace-ring R 
= {0} they can be
written as

f =
∑

U∈PR(supp(R)) αUχU and g =
∑

U∈PR(supp(R)) βUχU ,

where αU , βV ∈ F correspond to the respective values of f and g on U . The sum
of f and g is given as

(f + g) =
∑

U∈PR(supp(R))

(αU + βU )χU

and, as a consequence of the fact that χU χV = 0 if U ∩ V = ∅, their product is

(f g) =
∑

U∈PR(supp(R))

αU βUχU .

Thus the maps χU , U ∈ PR(supp(R)) form a base of the vectorspace-ring R

Further properties of subvector-rings are

Corollary 2. 1. Let V be a subvectorspace of F[X ], then

|V | = qdim(V )

2. If R and R′ are vectorspace-rings of F[X ] such that |R| = |R′|, then R and
R′ are isomorphic as vectorspace-rings.
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3. Let R and R′ be vectorspace-rings of F[X ]. The vectorspace-rings R and R′

are equal if and only if
Z(R) = Z(R′)

and
PR(supp(R)) = PR′(supp(R′))

Proof: The proof of 1. is clear. The proof of 2. is as follows. If |R| = |R′| = 0,
then R = R′ = {0} and the assertion holds. We therefore assume that |R| =
|R′| ≥ 1. By 1. it follows that dim(R) = dim(R′) and Lemma 1, implies that
|supp(R)/ ≡ R)| = |supp(R′/ ≡ R′)| = s. With Uj , Vj , j = 1, . . . , s we denote
the elements of PR(supp(R)) and PR′ (supp(R′)), respectively. By Corollary 1,
it follows that each f ∈ R can be written as

f =

s∑
j=1

αjχUj ,

where αj ∈ F for j = 1, . . . , s. The same holds for g ∈ R′ and the base χVj ,
j = 1, . . . , s. Due to the properties of the base, it is plain that Ξ : R → R′

defined as

Ξ(f) = Ξ

⎛⎝ s∑
j=1

αjχUj

⎞⎠ =

s∑
j=1

αjχVj

defines a vectorspace-ring isomorphism. This proves 2.
Finally, assertion 3. is a consequence of the proof of 2. �

Remark 2. 1. The set R = {r | r ∈ F} of constant maps and the set R′ =
{rδ0(x) | r ∈ F} of maps with values equal to zero for all ξ 
= 0 are
vectorspace-rings of dimension 1. Therefore they are vectorspace-ring iso-
morphic. However, as sets they are different.

2. Let R and R′ be vectorspace-rings of F [X ]. Then R′ ⊆ R if and only if
Z(R) ⊆ Z(R′) and the partition PR(F) is finer than PR′(F), i.e., every
U ∈ PR(F) is contained in a V ∈ PR′(F), see [1].

3. If R is merely a subring of F[X ], then the cardinality of R is a power of p. As
an example, consider F = GF(4) and the set R = {0, 1−X3} ⊆ F[X ], i.e.,
R contains the zero map and the characteristic function δ0(X) of 0 . Then
R is a subring of F[X ] of cardinality 2.

Let G = {g1, . . . , gn} ⊆ F[X ] be a subset of F[X ], with 〈G〉 we denote the
smallest vectorspace-ring that contains G. With 〈G〉N we denote the smallest
vectorspace-ring that contains G and the constant maps. The vectorspace-ring
〈G〉 consists of all finite F-linear combinations of finite products of elements of
G, and 〈G〉N = 〈G ∪C〉, where C denotes the constant maps in F[X ].

Example 3. 1. The polynomial X represents the identity map on F and one
easily computes that

〈{X}〉 = {
q−1∑
j=1

rjX
j | rj ∈ F},
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i.e., all maps from F to F with f(0) = 0, and that

〈{X}〉N = {
q−1∑
j=0

rjX
j | rj ∈ F},

i.e., all maps from F to F. Moreover, supp({X}) = supp(〈{X}〉) and
supp(〈{X}〉N) = F

2. Consider the field F = GF(5) and the maps f(X) = 3X + 2X2 +4X3 +X4

and g(X) = 1 + 4X + 4X2 + 4X3 + 3X4, which in a tabular form are given
as

F 0 1 2 3 4
f 0 0 2 1 1
g 1 1 0 0 0

Then one computes that 〈{f, g}〉 consists of all polynomials of the form

p(X) = a1(1 + 4X + 4X2 + 4X3 + 3X4) + a2(2X +X2 + 3X3 + 4X4)

+a3(4X + 3X3 + 3X4),

where ai ∈ F, i = 1, 2, 3. Using the base from Corollary 1 every element of
〈{f, g}〉 is a F-linear combination of χ{0,1}, χ{2} and χ{3,4}.
Note that ξ ≡{f,g} ζ if and only if ξ ≡〈{f,g}〉 ζ.

The following Lemma 2 which is based on the results in [1] explains the above
observations.

Lemma 2. Let G ⊆ F[X ], then

1) supp(G) = supp(〈G〉)
2) Z(G) = Z(〈G〉)
3) supp(〈G〉N ) = F
4) Z(〈G〉N ) = ∅
5) ξ ≡G ζ ⇐⇒ ξ ≡〈G〉 ζ
6) ξ ≡G ζ ⇐⇒ ξ ≡〈G〉N ζ

As a consequence we note

Lemma 3. For a non-empty G subset of F[X ] the following holds

1. Any f ∈ 〈G〉 is of the form

f =
∑
U

αUχU

where the sum is over U ∈ PG(supp(G)) and αU ∈ F.
2. Any f ∈ 〈G〉N is of the form

f =
∑
U

αUχU

where the sum is over U ∈ PG(F) and αU ∈ F.

Remark 3. If f ∈ F[X ] is bijective and f(ξ) = 0, then 〈{f}〉 consists of all maps
with f(ξ) = 0, in particular dim〈{f}〉 = q − 1. Furthermore, 〈{f}〉N is equal to
F[X ]. This generalizes the above example for the identity map.
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3 Cellular Automata

In this section we introduce one dimensional CA of radius 1 with states in
F[X ]. That means there exists a local rule f : F[X ]3 → F[X ] and its extension
F : F[X ]Z → F[X ]Z defined as

F(c)(j) = f(c(j − 1), c(j), c(j + 1)).

Then information dynamics is related to the following problem. Given the initial
configuration c : Z → F[X ] as c(0) = x and c(j) = 0 otherwise, where x is the
identity map on F and 0 the zero map on F. If ct denotes the configuration at
time t how does the set of vectorspace-rings

P(t) = 〈{ct(j) | j ∈ Z}〉

or
PN (t) = 〈{ct(j) | j ∈ Z}〉N

evolve. What are possible relations between P(t) and P(0) = 〈{x}〉 or P(t− 1)
and similarly for PN (.).

Unfortunately, a general answer seems to be out of reach. It is therefore prof-
itable to restrict our attention to a certain subclass of CA, namely, the linear,
to be precise the F[X ]-linear cellular automata. The linearity allows us to study
local rules which depend on more than three cells.

The local rule of a linear CA is a linear map f : F[X ]d+1 → F[X ] defined as

f(f1, . . . , fd+1) =

d∑
i=0

gifi+1, (3)

where gi ∈ F[X ] for i = 0, . . . , d. This yields a global map F : F[X ]Z → F[X ]Z

defined as
F(c)(j) = f(c(j − d), c(j − d+ 1), . . . , c(j)),

for j ∈ Z. If one denotes the elements of F[X ]Z as formal Laurent series, i.e.
c =
∑

j∈Z
fj Y

j , with fj ∈ F[X ], then F can be considered as the multiplication
of a formal Laurent series with the polynomial

P (Y ) =
d∑

j=0

gjY
j , (4)

i.e., F(c) = P (Y )
∑

j∈Z
fj Y

j . Note that P (Y ) ∈ F[X ][Y ], i.e., it is a polynomial

with coefficients in F[X ]. Given an initial configuration c0, then, due to the
linearity one has that

ct = P (Y )tc0.

For the t-th power of P (Y ) we denote by P(t) the vectorspace-ring generated
by the coefficients of P (Y )t, and PN(t) is the vectorspace-ring generated by the
coefficients of P (Y )t and the constant maps.
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Example 4. 1. Consider the field F = GF(2) and the polynomial P (Y ) =
g0 + g1Y + g2Y

2. Then, since f2 = f and 2f = 0 for all f ∈ F[X ],
one obtains P(1) = 〈g0, g1, g2〉, P(2) = 〈g0, g1, g2〉, P(3) = 〈g0, g1, g2〉,
P(4) = 〈g0, g1, g2〉. The extension of the list leads to the conjecture that
P(t) = P(1) holds for all t ∈ N. This indeed is true, which follows from the
obvious fact that the 0-th coefficient of P (Y )t is always equal to g0 and the
2t-th coefficient is equal to g2 combined with the fact that the t-th coefficient
of P (Y )t is equal to g1. The last assertion follows from a simple induction
argument and the equality P (Y )2t = P (Y 2)t.

2. Consider the field F = GF(4) = {0, 1, ζ, 1 + ζ} with 1 + ζ + ζ2 = 0. The
polynomial is P (Y ) = g0 + g1Y + g2Y

2, and the maps gi, i = 0, 1, 2 are
defined as

F 0 1 ζ 1 + ζ
g0 1 ζ 0 0
g1 0 0 ζ 0
g2 0 0 0 ζ

Due to the fact that gigj = 0, whenever i 
= j and due to the fact that
f4 = f for all f ∈ F[X ] combined with characteristic of F is equal to two,
one obtains that P(1) = 〈g0, g1, g2〉, P(2) = 〈g20 , g21 , g22〉, P(3) = 〈g30 , g31 , g32〉,
P(4) = 〈g0, g1, g2〉. For the powers of the maps gi we have

F 0 1 ζ 1 + ζ
g20 1 1 + ζ 0 0
g21 0 0 1 + ζ 0
g22 0 0 0 1 + ζ

F 0 1 ζ 1 + ζ
g30 1 1 0 0
g31 0 0 1 0
g32 0 0 0 1

By Lemma 2 one obtains that P(1) = P(2) = F[X ] and P(3) = {f | f ∈
F[X ] such that f(0) = f(1)}. Moreover, by induction it is easy to show that
P(3t + 1) = P(3t + 2) = F[X ] for t = 0, 1, 2, . . . and P(3t) = {f | f ∈
F[X ] such that f(0) = f(1)} = P(1) for t = 1, 2, 3, . . ..

Contrary to those examples, if P (Y ) = g0+g1Y +g2Y
2+g3Y

3 or local rule of
4 cells, it is not at all clear what the relation between P(t) and P(1) is. The main
part of this article is devoted to gain an understanding of the general situation
with any d ≥ 0 in Equation (3) and Equation (4).

A first general result is related to the property ξq = ξ for all ξ ∈ F.

Lemma 4. Let P (Y ) ∈ F[X ][Y ], then one has P(q t) = P(t) for all t ∈ N.

Proof: Since the field has the characteristic p, it follows that P [Y ]qt = P [Y q]t

which proves the assertion. �
For a polynomial P (Y ) ∈ F[X ][Y ] and ξ ∈ F we define the polynomial

P (Y )(ξ) ∈ F[Y ] as

P (Y )(ξ) =

d∑
i=0

gi(ξ)Y
i.
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Thus P (Y )(ξ) is a polynomial with coefficients in F. The coefficients of P (Y )(ξ)
are obtained by a simultaneous evaluation of gi at ξ. Due to this description of
P (Y )(ξ) one has (P (Y )(ξ))t = (P (Y )t)(ξ). Moreover, the elements of the zero
set of P(1) are the values ξ ∈ F such that P (Y )(ξ) = 0, and ξ1 and ξ2 belong to
the same P(1)-equivalence class if and only if P (Y )(ξ1) = P (Y )(ξ2).

Lemma 5. Let P (Y ) ∈ F[X ][Y ], then P(t) ⊆ P(1) and supp(P(t))=supp(P(1))
for all t ∈ N.

Proof: The first assertion is obvious. For the second assertion let ξ ∈ Z(P(1)).
Then P (Y )(ξ) = 0 and therefore (P (Y )t)(ξ) = (P (Y )(ξ))t = 0 which shows
that ξ ∈ Z(P(t)). On the other hand, if ξ ∈ Z(P(t)), then 0 = (P (Y )t)(ξ) =
(P (Y )(ξ))t yields ξ ∈ Z(P(1)). Thus Z(P(1)) = Z(P(t)) for all t, which implies
the assertion. �

Based on the above Lemma and results in the Appendix we have the next
result.

Theorem 1. If P (Y ) ∈ F[X ][Y ] and if t ∈ N such that gcd(t, q − 1) = 1, then

P(t) = P(1).

Proof: By Lemma 5 we already know that supp(P(t)) = supp(P(1)), and it
remains to show that the P(1)-equivalence classes are the same as the P(t)-
equivalence classes. To this end let ξ, ζ ∈ F be P(1)-equivalent, this means

P (Y )(ξ) = P (Y )(ζ),

and therefore
P (Y )t(ξ) = P (Y )t(ζ),

i.e., ξ and ζ are P(t)-equivalent. Now suppose that ξ and ζ are P(t)-equivalent,
i.e., P (Y )t(ξ) = P (Y )t(ζ). Since gcd(t, q − 1) = 1, Lemma 10 applies and it
follows that P (Y )(ξ) = P (Y )(ζ), i.e., ξ and ζ are P(1)-equivalent. This proves
the assertion. �

As Example 2 from above shows, it may happen that P(t) 
= P(1), if gcd(t, q−
1) > 1. In order to develop necessary and sufficient criteria for P(1) = P(t) we
introduce a stricter notion of separability.

Definition 2. ξ and ζ ∈ F are called (0, 1)-separable (relative to P (Y )) if there
exists a coefficient gj of P (Y ) such that either gj(ξ) = 0 and gj(ζ) 
= 0 or
gj(ξ) 
= 0 and gj(ζ) = 0.

The polynomial P (Y ) is (0, 1)-separating if every pair (ξ, ζ) that is separable
is (0, 1)-separable.

Remark 4. If P (Y ) ∈ GF(2)[X ][Y ], i.e., the coefficients of P are maps g :
{0, 1} → {0, 1}, then every separable pair (ξ, ζ) is (0, 1)-separable.

As a consequence of ξq−1 = 1 for all ξ ∈ F∗ we have: ξ and ζ are (0, 1)-
separable relative to P (Y ), if and only if there exists a coefficient gj of P (Y )
such that

gj(ξ)
q−1 + gj(ζ)

q−1 = 1.
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The usefulness of the (0, 1)-separability is demonstrated by the next result.

Theorem 2. If P (Y ) ∈ F[X ][Y ] is (0, 1)-separable, then

P(t) = P(1)

for all t ∈ N.

Proof: Let ξ and ζ be separable by P (Y ), i.e., there exist a gj such that gj(ξ) 
= 0
and gj(ζ) = 0 (or vice versa) and assume that ξ and ζ are not separable by
P (Y )t. Then we have P (Y )(ξ)t = P (Y )(ζ)t. By Theorem 5 in the Appendix,
there exists ρ ∈ F∗ such that P (Y )(ξ) = ρP (Y )(ζ). This is a contradiction to
gj(ξ) 
= 0 and gj(ζ) = 0. Therefore ξ and ζ are P (Y )t-separable. �

The above result may suggest that the (0, 1)-separabilty is preserved by the
powers of P (Y ). However, as the following example shows, this is not true.

Example 5. Let F = GF(3), i.e., F = {0, 1, 2} with addition and multiplication
modulo 3. Let P (Y ) ∈ F[X ] be given as

P (Y ) = 1 + (1 +X2)Y + (2X2)Y 2 + Y 3 + Y 4

i.e., the maps gi are given as
F 0 1 2
g0 1 1 1
g1 1 2 2
g2 0 2 2
g3 1 1 1
g4 1 1 1

Then 0 and 1 are (0, 1)-separable relative to P (Y ) and they are not (0, 1)-
separable relative to P (Y )2. Indeed, one computes

P (Y )2=1+(2+2X2)Y+(1+X2)Y 2+(2+2X2)Y 3+Y 4+2Y 5+(1+X2)Y 6+2Y 7+Y 8

and the coefficients of P (Y )2 belong to the set {hi | i = 1, 2, 3, 4} with

F 0 1 2
h0 1 1 1
h1 2 1 1
h2 1 2 2
h3 2 2 2

Showing that 0 and 1 are separable by P (Y )2 but not (0, 1)-separable. Note also
that 1 and 2 are not separable by P (Y )2.

The next result provides a necessary and sufficient condition for two points ξ and
ζ to be not P(t)-separable, i.e., ξ and ζ are P(t)-equivalent. As Theorem 1 and
Example 4, 2. indicate, the only case where P(t) � P(1) is likely is the case that
t is a divisor of q − 1. The following theorem provides necessary and sufficient
conditions for P(t) to be a proper subset of P(1).
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Theorem 3. Let ξ, ζ ∈ F be P(t)-separable. For a divisor δ of q−1 the following
holds: ξ and ζ are not P(δ)-separable if and only if there exists a ρ ∈ F∗ such
that ρδ = 1 and P (Y )(ξ) = ρP (Y )(ζ).

Proof: The if-part of the proof is obvious. It remains to establish that P [Y ](ξ)δ =
P [Y ](ζ)δ implies P (Y )(ξ) = ρP (Y )(ζ). This is a consequence of Theorem 5. �

Remark 5. Let δ and δ′ be divisors of q− 1 such that δ′ divides δ. If ξ and ζ are
not P(δ′)-separable, then they are not P(δ)-separable.

Theorem 3 allows us to consider not only values of t which are a divisor of q− 1.

Lemma 6. If t ∈ N is such that gcd(t, q − 1) = δ. Then ξ and ζ are not P(t)-
separable if and only if they are not P(δ)-separable.

Proof: Since t = δ t′, being not P(δ)-separable induces not being P(t)-separable.
This proofs the if part.

For the only-if part we write t = δ δ′ t with δ = gcd(t, q− 1), gcd(δ′, q−1
δ ) = 1

and gcd(t, q− 1) = 1. By Theorem 5, there exists a ρ ∈ F∗ such that P (Y )(ξ) =
ρP (Y )(ζ) and ρt = 1. Since t = δδ′t and gcd(t, q−1) = 1 it follows ρδ

′δ = 1. Since
gcd(δ′, q−1

δ ) = 1 it follows by Lemma 9 that ρδ = 1. And therefore P (Y )(ξ)δ =
(ρP (Y )(ζ))δ = P (Y )(ζ)δ , which proves that ξ and ζ are not P(δ)-separable. �
The above results allow to give an upper bound for the number of different
vectorspace-rings of the form P(t).

Lemma 7. Let P (Y ) be a polynomial with coefficients in F[X ]. Then the num-
ber of different vectorspace-rings of the form P(t) is bounded by the number of
divisors of q − 1.

Example 6. 1. For F = GF(2), i.e., the field with 2 elements one has P(t) =
P(1) for all t ∈ N. This follows from the fact that F∗ = {1} has no proper
subgroups.

2. Let F = GF(3), i.e., F = {0, 1, 2} with addition and multiplication modulo
3. Then q − 1 = 3 − 1 = 2 has only the divisors 1 and 2. Let P [Y ] be given
as

P [x][Y ] = (x+ 2x2) + (1 + x)Y + (2 + 2x)Y 2

i.e., the maps gi, i = 0, 1, 2 are given as

F 0 1 2
g0 0 0 1
g1 1 2 0
g2 2 1 0
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Since P (Y )(0) = 2P (Y )(1), it follows that 0 and 1 are not P(2)-separable.
This is also established by the list of coefficients of P [X ]2, which is

F 0 1 2
g20 0 0 1
2g0g1 0 0 0
g21 + 2g0g2 1 1 0
2g1g2 1 1 0
g22 1 1 0

One sees that dimP(1) = 3 and dimP(2) = 2. Moreover, by Lemma 6 one
has P(2t) = P(2) and P(2t+ 1) = P(1) for all t ∈ N.

The next result gives a criterion for P(t) = P(1) for all t.

Theorem 4. Let P (Y ) =
∑d1

j=0 gjY
j be a polynomial with coefficients in F[X ].

Then the following holds: P(t) = P(1) for all positive t if and only if for all ξ,
ζ ∈ F, ξ 
= ζ, and all ρ ∈ F∗ one has P (Y )(ξ) 
= ρP (Y )(ζ).

In other words, if the coefficients of P (Y ) are written in matrixform, i.e., each
row corresponds to a non-trivial coefficient of P (Y ), then P(t) = P(1) for all t
if and only if no column is a non-trivial, i.e., ρ ∈ F∗ \ {1} multiple of another
column.

Another inportant observation from the results above is that only the coeffi-
cients of P (Y ) determine P(t). If Q(Y ) is a polynomial with coefficients in F[X ],
then Q(t) denotes the vectorspace-ring generated by the t-th power of Q(Y ). We
then have

Lemma 8. Let P (Y ) =
∑d1

j=0 gjY
j and Q(Y ) =

∑d2

j=0 hjY
j be polynomials

with coefficients in F[X ]. If the sets {gj | j = 0, . . . , d1} and {hj | j = 0, . . . , d2}
are equal, then P(t) = Q(t) for all positive t.

The next example elucidates the above results.

Example 7. The finite field is F = GF(7) = {0, 1, . . . , 6} with addition and
multiplication modulo 7. Then F∗ = {1, 2, 3, 4, 5, 6} has order 6 and the divisors

of 6 are 1, 2, 3, 6. If P (Y ) =
∑d

j=0 gjY
j is the linear rule for a CA, then by

Lemma 7 there are at most 4 different vectorspace-rings of the form P(t). By
Lemma 6, one has P(t) = P(δ) if δ = gcd(t, 6). Thus it is sufficient to investigate
P(t) for t = 1, 2, 3, 6.

Let the linear rule of a CA be given as

P (Y ) = 1 + 3x+ 2x2 + 3x3 + 6x4 + x5+
(2 + 5x+ 4x2 + 4x3 + 2x4 + x5)Y+
(3 + 6x2 + 5x3 + 5x4 + x5)Y 2+
(4 + 2x+ 3x2 + x3 + 2x4 + x5 + 2x6)Y 3.
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Writing the coefficients in matrix form one obtains

F 0 1 2 3 4 5 6
g0 1 2 6 5 4 1 2
g1 2 4 5 6 2 4 5
g2 3 6 4 0 0 0 1
g3 4 1 3 2 3 6 0

The rows represent the coefficents of P (Y ) and the columns represent the poly-
nomials P (Y )(ξ). From the matrix one easily deduces that supp(P(1)) = F. By
Theorem 1, it follows that supp(P(t)) = F for all t. Since the columns are mu-
tually different it follows that different ξ, ζ ∈ F are P(1)-separable. This shows
that

P(1) = F[X ].

An inspection of the columns reveals the folowing relations

P (Y )(1) = 2P (Y )(0)
P (Y )(2) = 6P (Y )(0)
P (Y )(4) = 5P (Y )(3)
P (Y )(5) = 3P (Y )(3)
P (Y )(5) = 2P (Y )(4)

Since 62 = 1, it follows that 2 and 0 are not P(2)-separable, see Theorem 3, and
these are the only two elements which are not P(2)-separable. It follows that

P(2) = {f : F→ F | f(0) = f(2)},

or, equivalently, the partition of F induced by P(2) is F = {0, 2} ∪ {1} ∪ {3} ∪
{4} ∪ {5} ∪ {6}.

Since 23 = 1, it follows that the pairs 0, 1 and 4, 5 are the only not P(3)-
separable pairs. Therefore

P(3) = {f : F→ F | f(0) = f(1) and f(4) = f(5)}

and the partition of F is given as F = {0, 1} ∪ {4, 5} ∪ {2} ∪ {3} ∪ {6}.
Finally, since ξ6 = 1 for all ξ ∈ F∗, it follows that P (Y )3(0) = P (Y )3(1) =

P (Y )3(2) and P (Y )3(3) = P (Y )3(4) = P (Y )3(5), therefore

P(6) = {f : F→ F | f(0) = f(1) = f(2) and f(3) = f(4) = f(5)}

and the partition of F is F = {0, 1, 2} ∪ {3, 4, 5} ∪ {6}. To summarize we have 4
different vectorspace-rings of the form P(t), moreover

P(t) = P(gcd(t, 6)).

We conclude with an observation which will be worthwhile to be investigated
further. The divisors of q − 1 form a lattice as well as the vectorspace-rings
generated by P (Y ). The partial order defined by this lattice is for the divisors
x ≤ y if x divides y and for the vectorspace-ring V ≤ W if V ⊆ W . Figure 1
shows that the respective lattices are isomorphic.
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1

2

P(1)

P(3)

P(6)

P(2)

Fig. 1. The lattice structure of the divisors of 6 and the vectorspace-rings of P (Y )

4 Auxiliary Results

In this section we provide some necessary tools from the theory of finite fields,
for more details see [2]. We also prove two auxiliary results needed several times
throughout the text. Let F be a (finite) field. Then F∗ = F \ {0} equipped with
the multiplication is a cyclic group of order q−1. Therefore there exists an ε ∈ F∗,
a primitive element, such that F∗ = {εs | s = 0, 1, . . . , q− 2} and εq−1 = 1. Since
powers of elements of F as well powers of F[X ] play an important rôle in the
above, we denote two necessary results. The first is concerned with n-th powers
in F∗ and the second one deals with powers of polynomials.

Lemma 9. For n ∈ N define πn : F∗ → F∗ as πn(ξ) = ξn. Then πn is injective
if and only if gcd(n, q − 1) = 1.

Proof: Since F∗ is a finite set, the injectivity of πn implies the bijectivity, and
vice versa. Since πn(ξ ζ) = πn(ξ)πn(ζ) the injectivity of πn is equivalent to
π−1
n (1) = {1}. Since ξ = εs for s ∈ {0, . . . , q− 2} it follows that πn(ξ) = 1 if and

only if the equation n s ≡ 0 mod q − 1 has solutions s ∈ {0, . . . , q − 2}. Note
that s = 0 corresponds to the obvious solution ξ = 1. By Satz 3.1 in [5] the
number of solutions is equal to gcd(n, q − 1). This proves the assertion. �

Theorem 5. Let p(Y ), q(Y ) ∈ F[X ] be polynomials different from 0 and let
n ∈ N be greater than 0. Then the following holds: p(Y )n = q(Y )n if and only if
there exists ρ ∈ F∗ such that q(Y ) = ρp(Y ) and ρn = 1.

Proof: If q(Y ) = ρp(Y ) and ρn = 1, then p(Y )n = q(Y )n.

Now let p(Y )n = q(Y )n. Let F̂ be the splitting field of p(Y ), i.e.,

p(Y ) = α

d∏
j=1

(Y − ξj),
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where α ∈ F∗ ⊆ F̂ and ξj ∈ F̂, j = 1, . . . , d. Since q(Y )n = p(Y )n, it follows that

q(Y )n = αn
d∏

j=1

(Y − ξj)
n

over the field F̂. We therefore conclude that F̂ is the splitting field for q(Y ), i.e.,
there exists an β ∈ F∗ such that

q(Y ) = β

d∏
j=1

(Y − ξj)

and βn = αn. For ρ = βα−1 we obtain q(Y ) = ρp(Y ). �
The next Lemma shows an application of the above two results

Lemma 10. Let p(Y ), q(Y ) be polynomials with coefficients in the field F and
let n be a positive natural number satisfying gcd(n, q − 1) = 1. Then

p(Y )n = q(Y )n

if and only if p(Y ) = q(Y ).

Proof: If p(Y ) = q(Y ), then the assertion is clear. Now assume that p(Y )n =
q(Y )n. By Theorem 5 there exists a ρ ∈ F∗ such that q(Y ) = ρ p(Y ) and ρn = 1.
Lemma 9 implies that ρ = 1. �

5 Concluding Remarks

In this article we have shown that the description of the subrings generated by
a linear CA and with the special initial configuration c such that c(0) = 1 and
c(j) = 0, j 
= 0 is fairly complete. The list of subrings can be computed alone
from a knowledge of the coefficients of the polynomial P (Y ). As a next step
towards a complete solution of the problem of information dynamics of (linear)
CA is a description of the subrings generated by P (Y ) and a non-trivial initial
configuration like c0 = vxw where v and w are semi-infinite strings of constant
maps as treated in [3].

The authors are grateful to Thomas Worsch for having interest and making
discussions on this topics.
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Bouré, Olivier 84

Chevrier, Vincent 84

de Oliveira, Pedro P.B. 1

Fatès, Nazim 15, 31, 84
Formenti, Enrico 46

Karmakar, Sandip 98

Leporati, Alberto 110

Mariot, Luca 110
Melliti, Tarek 124

Nishio, Hidenosuke 171

Regnault, Damien 124
Richard, Adrien 124
Roy Chowdhury, Dipanwita 98

Salo, Ville 139, 155
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