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Abstract. In this paper, we show that complex Gaussian random matrix satis-
fies the restricted isometric property (RIP) with overwhelming probability. We 
also show that for compressive sensing (CS) applications, complex Gaussian 
random matrix outperforms its real number equivalent in the sense that it re-
quires fewer measurements for exact recovery of sparse signals. Numerical  
results confirm our analysis. 
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1 Introduction 

In recent years, compressive sensing (CS) has attracted much attention in the academ-

ic world [1]. In CS, a high dimensional vector x ∊ Rn, which is k-sparse (i.e., ∥x∥0 ≤ k 

< n), is sensed by a fat random matrix A ∊ Rm×n (m < n), yielding a low dimensional 
measurement vector 

 Axy = . (1) 

Although (1) is an underdetermined system and has infinitely many solutions, the CS 
theory promises to achieve the perfect recovery of x by exploiting the sparsity. In 
analyzing the recovery performance, the restricted isometry property (RIP) for the 
sensing matrix A has been widely used. It has been a standard tool for studying how 
efficiently the measurement matrix A captures information about sparse signal. Let-
ting AT denote a submatrix of A with columns listed in set T, the matrix A is said to 
satisfy the k-RIP if there exists δk ∊ (0, 1) such that [2]  

 ( ) kTTk AA δλδ +≤′≤− 11  (2) 

for any T with cardinality |T| ≤ k. In particular, δk is called isometry constant. It has 
been shown that many types of random matrices have excellent restricted isometry 
behavior. For example, a matrix A ∊ Rm×n, which has i.i.d. entries with Gaussian dis-
tribution N(0, 1/m), obeys the k-RIP with δk < ε with overwhelming probability if  [3] 
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In many CS applications, a more general setting is that the sensing matrix A ∊ Cm×n 
is a random matrix with complex Gaussian entries. There has been empirical evidence 
that CS works well under this setting, see, for instance, Shim [4]. However, 
difficulties remain in analyzing the theoretical recovery performance since little has 
been known about the RIP for random matrix with complex Gaussian entries. 

In this work, we study the RIP for random complex Gaussian matrix. For simple 
description, we define GRM(m, n, σ2) as a class of m × n random matrices, for which 
the real part and imaginary part of entries form a set of 2mn i.i.d. random variables 
with distribution N(0, σ2/2). We argue that RIP holds for complex Gaussian Matrices. 

Theorem 1. For any random matrix A ∊ GRM(m, n, 1/m), we show that the matrix A 
satisfies the k-RIP with isometry constant 

 ( )γααδ H
m

n
k

4
2 ++<  (4) 

with overwhelming probability, where α = k/m, γ = k/n and H is the entropy function 
H(γ) = -γ log γ – (1-γ) log (1 - γ). 

2 Proof of Theorem 1 

This section is devoted to the proof of Theorem 1. We stress that the technique we 
used in the proof is similar to that in [2]. We first consider the eigenvalue of AT

*AT 

where AT is a submatrix of A with k columns, and then extend the result to all such 
submatrices.  

Lemma 1. [Lemma 4 in [5]] For any random matrix B ∊ GRM(m, n, 1), it satisfies 

 ( )( )[ ] ( ) ( ) 



∈∀





 +++≤

2

1
 0,t  expexp 22* tnmtnmnBtBTrE , (5) 

And 

 ( )( )[ ] ( ) ( ) [ ]∞∈∀




 ++−−≤−  0,t  expexp 22* tnmtnmnBtBTrE , (6) 

where E[·] represents expectation and Tr[·] is the trace. 

Lemma 2. For any complex matrix B, all the eigenvalues of exp(tB*B) satisfy 

 ( )( ) ( )( )BBtBtB ii
∗∗ = λλ expexp , (7) 

and are always positive. 
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Proof. Since B*B is Hermitian and has full rank, its eigenvalues are all real numbers. 
According to the definition of exponential, 

 ( ) ( ) ( )n
BtB

n
BtBBtBIBtB ∗∗∗∗ ++++=

!

1

!2

1
exp

2  , (8) 

as n → ∞. For a matrix Q consisted of the eigenvectors of B*B, exp(tB*B) can be di-
agonalized by Q.  

 ( ) ( ) ( )nt
n

ttIQBtBQ Λ++Λ+Λ+=−

!

1

!2

1
exp 2*1  . (9) 

By the definition of the exponential function, the i-th eigenvalue on the diagonal is 

 ( )( ) ( )( ) 0expexp >= ∗∗ BBtBtB ii λλ . (10) 

Lemma 3. For a matrix A ∊ GRM(m, n, 1/m), singular value concentration inequali-
ties of AT satisfy 

 ( ) ( ) ( )
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14
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max α
εεαλ m

kAAP TT , (11) 
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2*

min α
εεαλ m

kAAP TT , (12) 

where AT is a submatrix consisted of k columns randomly selected from A. 

Proof. For each AT out of A, AT times sqrt m belongs to GRM(m, n, 1). Let τ = mt. 
Then from Lemma 1, 

 ( )( )[ ] ( ) ( ) 




 +++≤ −∗ 212

11expexp τατατ mkAATrE TT , (13) 

for τ ∊ [0, m/2]. Since all eigenvalues of exp(τAT
*AT) are positive (from Lemma 2),  

 ( )( ) ( )( ) ( )( )TTTTTT AAAAAATr *
max

*
max

* expexpexp τλτλτ =≥ . (14) 

For t ∊ [0, m/2] and a small deviation ε, we get 

 ( ) ( ) 




 ++≥ εαλ

2*
max 1TT AAP  

                         ( ) ( ) 




 ≥





 −+−= 11exp

2*
max εαλ ttAAtP TT  (15) 
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 ( ) ( )( )[ ]TT AtATrEtt *2
exp1exp 





 −+−≤ εα  (17) 

 ( )( )21 1exp tmtk ++−≤ − αε , (18) 

where (16) uses the Markov's inequality. For a quadratic function, it is obvious that 
f(t) = -tε + m 1(α + 1)t2 attains the minimum at t0 = mε / 2(α + 1). 

In a similar way, the lower bound in (12) can be proved. 
Lemma 3 demonstrates the lower and upper bounds of λ(AT

*AT) for some AT. Note 
that the isometry constant δk ∊ (0, 1) is defined as the minimum constant such that for 
all T ∊ {1, ···, n} and |T| = k, 

 ( ) kTTk AA δλδ +≤≤− 11 * . (19) 

For notational simplicity, denote λmax = λmax(AT
*AT) and observe that 

 ( ) ( )
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From Stirling's approximation, we know the combination number k out of n approx-
imates to exp(nH(γ)). Then it follows that 

 ( ) ( )
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m

nHm
kP

TA

γε
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εαλ 4

4
exp11, 22

max . (21) 

As thus, for m goes to infinite, 

 ( ) ( ) mnH γαλ 41 2
max ++< . (22) 

Similar results hold for λmin. The proof of Theorem 1 is established.  

3 Simulation and Discusssion 

From Theorem 1, one can show that upper bound in (4) is more stringent than that in 
the real number situation [2]. Indeed, let Ar denote a m ×n random matrix with real 
number entries satisfying N(0, 1/m). Then for n → ∞, 

 ( ) ( )nAk log2 αδ →  and ( ) ( )nAr
k log22 αδ → . (23) 

The isometry constant for A is 0.7 times as much as that for Ar and hence is more 
stringent.  To see the difference between δk(A) and δk(A

r), we perform simulations to 
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provide an empirical comparison. To be specific, we generate a number of real and 
complex Gaussian random matrices. For each matrix, we calculate the isometry con-
stant by an exhaustive search. The distributions of δk(A) and δk(A

r) are displayed in 
Fig. 1. One can easily observe that δk(A) is uniformly smaller than δk(A

r). 
The reason why the complex Gaussian random matrix has more stringent isometry 

constant than the real Gaussian random matrix is perhaps that the extreme singular 
values of any submatrix formed by k (or fewer) columns from A has stronger concen-
tration property. Indeed, the probability of violation for real Gaussian random matrix 
decreases at a speed of exp(-mε2/8) as ε increases [6], whereas, as shown in Lemma 
3, the probability of violation for complex case decreases at exp(-mε2/4). In other 
words, the distribution of the extreme singular value of complex Gaussian matrix has 
a smaller tail, and therefore, the complex Gaussian matrix has a smaller δk (for the 
same γ and α), when compared to the real case. For compressive sensing applications, 
this result implies that fewer measurements are required [7]. 

To illustrates the advantage of complex Gaussian sensing matrix over the real case 
in compressive sensing, we perform simulations on sparse signal recovery with com-
plex and real Gaussian random matrices. In our simulation, we employ orthogonal 
matching pursuit (OMP) algorithm as the recovery algorithm to recover k-sparse sig-
nals with complex entries. Two kinds of recovery are performed. First, we directly 
employ OMP to recover the complex signal x in the complex number signal model 
(1). Second, we reformulate model (1) to a real number signal model [8]: 
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and then employ OMP to recover x’. Note that the recovery of the second case is per-
formed in the real domain. We compare the minimally required  measurements y 
guaranteeing exact recovery of sparse signals. 
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Fig. 1. Distribution of δk(A) and δk(A
r), with k = 4, m = 20, and n = 128 



18 K. Xu, J. Wang, and B. Shim 

 

For a fixed sparsity ratio γ, k = 10, and n = 256, the exact recovery ratio by OMP 
algorithm is simulated with different measurement number m. Note that α and γ re-
main the same after reformulation. We calculate the exact recovery ratio for x and x’. 
The result is shown in Fig. 2. where cOMP represents the recovery result using the 
first method (i.e., direct recovery in the complex domain). It is easily observed that 
the first method outperforms the second method, as it uniformly requires fewer mea-
surements for exact reconstruction. 

It is interesting to note that the superior numerical performance of A over A’ can al-
so be explained as follows. For an n × 1 k-sparse complex signal, its real number 
equivalent is an 2n × 1 2k-sparse signal. In the recovery process, one sparse signal is 
selected with a candidates number of k out of n. Whereas, in the real equivalent case, 
candidates number 2k out of 2n. By Stirling's approximation, we know 

 








→






 n

k
nH

e
k

n
 and 









→






 n

k
nH

e
k

n 2

2

2
. (25) 

Thus it is easier to solve the complex sparse signal recovery problem than the refor-
mulated real sparse signal recovery problem. 
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Fig. 2. Exact recovery of sparse signals via OMP for complex Gaussian measurement matrix 
and its real number equivalent 

4 Conclusion 

This paper presented the RIP for Gaussian random matrix with complex entries. The 
result demonstrated that compared to the isometry constant for real Gaussian random 
matrices, the isometry constant for complex Gaussian random matrices are more 
stringent. This implies that for CS applications, the required number of measurements 
guaranteeing exact recovery can be fewer when the complex Gaussian random 
measurements are used. 
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