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Abstract. A lot of data mining techniques are develop to handle large data sets. 
When applied on small data sets however they perform poorly. More often than 
not conclusions have to be drawn from relatively small data sets due to various 
reasons. Rough sets approximations can be applied in such situations since they 
do not need a critical amount of data in order to provide reliable results.  
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1 Introduction 

Missing and contradictory data has been omitted nearly without hesitation from 
scientific investigations a few decades ago being regarded as a distraction. Obviously 
this implies partially correct conclusions since a lot of interesting dependencies can not 
be reviled. Use of Boolean logic in particular limits system’s responses to true or false 
and cannot therefore recognize other occurrences like f. ex partially correct or 
incomplete information about services. Boolean logic appears to be quite sufficient for 
most everyday reasonings, but it is certainly unable to provide meaningful conclusions 
in presence of inconsistent and/or incomplete input, [4]. This problem can be resolved 
by applying methods from the theory of rough sets approximations. 

In this work we are focussing on services’ evaluations being subjects of cooperative 
decision making. 

2 Background  

A lattice is a partially ordered set, closed under least upper and greatest lower bounds. 
The least upper bound of x  and y is called the join of x  and y , and is sometimes 

written as yx + ; the greatest lower bound is called the meet and is sometimes written 

as yx , [6]. 

A  context is a triple ),,( IMG  where G  and M  are sets and MGI ×⊂ . 

The elements of G  and M  are called  objects and attributes respectively [1], [6], 
and [15]. 

For GA ⊆  and MB ⊆ , define 

},)(|{= gImAgMmA' ∈∀∈ })(|{= gImBmGgB' ∈∀∈  
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where 'A  is the set of attributes common to all the objects in A  and 'B  is the set of 
objects possessing the attributes in B . 

A  concept of the context ),,( IMG  is defined to be a pair ),( BA  where 

GA ⊆ , MB ⊆ , BA' =  and AB' = . The  extent of the concept ),( BA  is 

A  while its  intent is B . A subset A  of G  is the extent of some concept if and 

only if AA'' =  in which case the unique concept of the which A  is an extent is 

),( 'AA . The corresponding statement applies to those subsets MB ∈  which is the 

intent of some concepts. 
The set of all concepts of the context ),,( IMG  is denoted by ),,( IMGB . 

≤ );,,( IMGB  is a complete lattice and it is known as the  concept lattice of the 

context ),,( IMG . 

From classical stand point of view a concept is well defined by a pair of intention 
and extension. Existence of well defined boundaries is assumed and an extension is 
uniquely identified by a crisp set of objects. In real life situations one has to operate 
with concepts having grey/gradual boundaries, like f. ex. partially known concepts, 
[16], undefinable concepts, and approximate concepts, [9]. 

Rough Sets were originally introduced in [14]. The presented approach provides 
exact mathematical formulation of the concept of approximative (rough) equality of 
sets in a given approximation space. An  approximation space is a pair ),(= RUA , 

where U  is a set called universe, and UUR ×⊂  is an indiscernibility relation. 
Equivalence classes of R  are called  elementary sets (atoms) in A . The 

equivalence class of R  determined by an element Ux∈  is denoted by )(xR . 

Equivalence classes of R  are called  granules generated by R . 
Attributes reduction stands for removal of attributes that do not effect the primary 

system. Rough sets attribute analysis is usually applied in the process of establishing 
the relative importance of an attribute and consecutively remove it if it contains 
redundant information. 

Data analysis with various applications is well presented in [1], [2], [7], [8], [13]. 
Multi-criteria methods for project evaluation are applied in [5], [11]. 

3 Summarized Assessments 

Services are evaluated by experts where their summarized assessments are denoted by 
 - very high level of success,  - high level of success,  - moderate level of 

success,  - low level of success, and  - unknown level of success. A concept 
lattice relating services and criteria evaluations is presented in Fig. 1. A graphical 
representation of rough sets approximations can also be seen in Fig. 2.  
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Fig. 1. A concept lattice 
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Below we present expert

outcomes.     

The abbreviation P  sta

Cr 1 - a nonempty cell in
lower approximation  

Cr 2 - a nonempty cell ind
part of the set that does not 

Cr 3 - a nonempty cell ind
part of the upper approxima

Cr 4 - a nonempty cell in
the upper approximation  

 ∗  - the first and the sec
 •  - the second and the 
  x - the third and the for

    
 
 
 
 
 

 

Fig. 2. Approximations 
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Table 1. An illustrative decision table 

   Cr 1   Cr 2   Cr 3   Cr 4  
         
P 1  ∗   •   x 
P 2  ∗   •   x 
P 3  ∗   •   x 
P 4  ∗   •   x 
P 5  ∗   •   x 
P 6  ∗   •   x 
P 7     x  • ∗
P 8     x  • ∗
P 9     x  • ∗
P 10     x • ∗
P 11     x  • ∗
P 12  x    • ∗
P 13  x    • ∗
P 14  x    • ∗
P 15  x    • ∗

 

   

The indiscernable sets are   {=1P P 1, P 2, P 3, P 4, P 5, P 6, P 7} , {=2P P 8, P 

9, P 10, P 11} , {=3P P 12, P 13, P 14, P 15} . The set { P 1, P 2, P 4, P 5, P 12, P 13, 

P 14, P 15}  is a rough set because it can not be presented as an union of 1P  and 3P . 

The upper and lower approximations of are {=*R P 1, P 2, P 3, P 4, P 5, P 6, P 7, P 8, 

P 9, P 10, P 11, P 12, P 13, P 14, P 15}  and  {=*R P 12, P 13, P 14, P 15} . 

4 Conclusion 

Services’ assessment is on many occasions forced to extract information from 
imperfect, imprecise, and incomplete data. Therefore, precise reasoning rules are 
difficult and some times impossible to use. Applying rough sets approximations 
facilitates a balance between accuracy and precision. 
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