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Abstract. This paper presents an efficient, centralized equivalent and fully 
decentralized solution to the cooperative localization of mobile robot teams. 
Formulating the cooperative localization problem in the framework of Bayesian 
estimation, the decentralized solution is designed by interlacing the calculation 
steps of prediction and update in a proper sequence. In the proposed solution, 
each robot fuses only the sensor data relevant to itself; information is shared 
among the robots by a chain communication topology. The solution yields 
linear minimum mean-square error estimates, equivalent to a centralized 
extended Kalman filter. There is no information redundancy and computation 
duplication among the robots. The solution can also be viewed from the 
perspective of implementing inference on a specific junction tree.  The 
performance of the proposed algorithm is evaluated with simulation 
experiments. 

Keywords: cooperative localization, decentralized solution, mobile robot team, 
Bayesian estimation, junction tree. 

1 Introduction 

In recent years, the cooperative localization of a robot team has received significant 
attention from the robotics community[1-3]. When the same external landmarks are 
used by different robots for self-localization or inter-robot observations are made, the 
states of the relevant robots are correlated. Cooperative localization is a joint 
estimation problem state over the time-history of the robot team, allowing the robots 
to share the localization resources and achieve higher overall performance.  

A centralized solution to the cooperative localization problem is straightforward 
yet expensive and lack of robustness. Various decentralized solutions are proposed by 
many researchers. A decentralized Kalman filter approach is proposed in [4]. The 
essence of this method is to distribute the expectation vector and the covariance 
matrix of the joint probability among the robots; each robot is allocated its state 
expectation and the covariance block-row related to itself. The prediction of the 
covariance block-row involves each robot broadcasting the state transition matrix. 
The fusion of each measurement, either a measurement regarding only one robot or an 
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inter-robot measurement, updates the parameters allocated to each robot, which 
requires the observer and the observed robot to broadcast the measurement 
information and the covariance block-rows. The operation scales poorly with the 
number of the robots and the number of the measurements. Actually, the update 
operation in standard Kalman filter framework is difficult to be distributed since the 
states are correlated to each other.  

The information filter with delayed states [5] is appealing since both the prediction 
and the update are local operations to each robot and can be easily distributed. The 
moment recovery, however, manipulates global information and seems to be an 
obstacle to a decentralized solution. The solution proposed in [6] employs the 
incremental Cholesky modifications for efficient moment recovery. The sparse 
Cholesky factors of the joint state estimate are pipelined from robot to robot and the 
moment recovery for a group of states is accomplished at some robot who 
accumulates enough Cholesky factors. The solution is communication expensive 
since the Cholesky factors are duplicated at each robot in fact. The solution presented 
in [7] reduces the communication cost at the price of lower localization accuracy. In 
[7], each robot maintains a set of information parameters with the same size of the 
parameters for the joint delayed states. Each robot only integrates data from its own 
sensors. When an inter-robot measurement occurs, the two robots exchange their 
stored data and fuse the data based on convex combination. The moment recovery can 
be implemented in a centralized manner at each robot. The result is consistent and 
unbiased, yet not a minimum mean square error estimate.  

Very recently another decentralized solution is presented in [8]. It achieves 
centralized-equivalent estimates, yet requiring a robot to transmit all odometric data 
to its neighbors, and to duplicate the data fusion effort.     

In [9], a decentralized approach based on junction tree algorithm is designed to 
solve the cooperative localization problem. In the decentralized formulation, the local 
sensor data at each robot are integrated into potentials of the cliques of junction trees; 
the information is shared among the robots through message passing between cliques. 
The information parameterization of Gaussian distributions is utilized. The 
decentralized junction tree approach actually provides a general framework, within 
which there are a number of implementations for a fixed problem due to multiple 
choices of the junction tree. 

This paper introduces a decentralized solution to the cooperative localization 
problem which could be deduced within the framework of the junction tree. Different 
from the work in [9], this work utilizes the moments form parameterization. The 
moments parameters have explicit physical meaning and the moments 
parameterization avoids the troubles brought by the moment recovery. We point out 
that the solution can be illustrated outside the context of the junction tree, instead 
from the perspective of Bayesian estimation.   

2 Problem Formulation 

This section formulates the problem of cooperative localization in the framework of 
Bayesian estimation. Consider a team of mobile robots. Each robot is equipped with 
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dead-reckoning sensors to measure self-motion; odometer or inertial measurement 
unit for example. Some robots carry sensors that provide relative position 
measurements (range and/or bearing) among robots or between robots and the 
environment; such as cameras, laser range-finders. Some robots can correct its dead-
reckoning error. In the case that the environment map is known, the measurements 
between a robot and the environment can be utilized to bound the dead-reckoning 
error. Otherwise, the sensor like GPS can provide absolution localization information. 
The robots can communicate with each other. The cooperative localization task is to 
estimate the state (position, orientation, velocity etc.) of each robot making use of 
both its own observations and those observations made by and of other robots. The 
robots are identified by capitals A,B,C, etc . 

2.1 State Space Model 

The state of robot A at time instance k is denoted by A
kx . Assume the motion model of 

robot A is given as 

1 ( , )A A
k k k k kx f x u G w+ = +  (1)

where ku is the system input at time step k , kw  is the process noise, 

( ;0, )k m kw w Q  , and kG  is a matrix with proper dimensions. ( ; , )m v Pμ represents 

a Gaussian distribution over v  with mean μ  and covariance P . 

The GPS-like measurement of robot A at time step k is denoted A
kz . The 

observation model is given as 

1 1( )A A
k k kz h x r= +  (2)

where 1kr is the measurement noise, 1 1 1( ;0, )k m kr r R  . 

The measurement that robot B makes to robot A at time step k  is denoted by BA
kz . 

The observation model is defined as 

2 2( , )BA A B
k k k kz h x x r= +  (3)

where 2kr  is the measurement noise, 2 2 2( ;0, )k m kr r R  . 

If functions ( )f ⋅ , 1( )h ⋅  and 2 ( )h ⋅  are nonlinear, Taylor expansions are used to 

linearize the models to make the inference tractable. The linearized system is given in 
Table 1., where A

kμ is the best available mean estimate of A
kx . 
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Table 1. The linearized space model 

model linearized model meaning of symbols 
 

(1) 
 

1 ( , ) ( )A A A A
k k k k k k kx f u F x G wμ μ+ = + − +  A A

k kA x
k

f
F

x μ=

∂=
∂

 

 
(2) 

 

1 1 1( ) ( )A A A A
k k k k kz h H x rμ μ= + − +  

1
1 A A

k kA x
k

h
H

x μ=

∂
=

∂
 

 
 

(3) 

 
 

2 2 2 2( , ) ( ) ( )BA A B A A A B B B
k k k k k k k kz h H x H x rμ μ μ μ= + − + − +  

2
2 ,A A B B

k k k k

A
A x x
k

h
H

x μ μ= =

∂=
∂

, 

2
2 ,A A B B

k k k k

B
B x x
k

h
H

x μ μ= =

∂=
∂

 

Assume the initial state of each robot is a Gaussian variable. The linearized system 
in Table 1. defines the following conditional distributions 

1 1( ) ( ; ( , ) , )A A A A A A
k k m k k k k kp x x x Fx f u F Qμ μ+ += + −  (4)

1 1 1 1( ) ( ; ( ) , )A A A A A A
k k m k k k kp z x z H x h H Rμ μ= + −  (5)

2 2 2 2 2 2( , ) ( ; ( , ) , )BA A B BA A A B B A B A A B B
k k k m k k k k k k kp z x x z H x H x h H H Rμ μ μ μ= + + − −  (6)

where T
k kQ G QG= . 

2.2 Bayesian Estimation 

Let kZ  denote the collection of the measurements made at time step k , including 

the inter-robot measurements and the intro-robot measurements. Let k denote the 

collection of the measurements up to time step k , namely, { }1 2, ,k kZ Z Z=  . The 

task of cooperative localization is to estimate the posterior state for each robot, which 

can be given 
 
by ( , , , )A B C

k k k kp x x x  . The estimation is implemented iteratively as 

follows: 
prediction: 1 1 1 1 1

1 1 1 1( , , ) ( , , ) ( | ) ( | )R RN R RN R R RN RN R RN
k k k k k k k k k k kp x x p x x p x x p x x dx dx+ + + +=        (7) 

update: 

1
1 1 1 1 1 1 1

11
1 1 1

1 1
1

( , , ) ( | ) ( | , )

( , , | )
( ) ( )

N
R RN Ri Ri RiRj Ri Rj
k k k k k k k

i j iR RN
k k k N

Ri RiRj
k k

i j i

p x x p z x p z x x

p x x
p z p z

+ + + + + + +
= ≠

+ + +

+ +
= ≠

=
∏ ∏

∏ ∏


    (8) 

In each cycle, the computation is composed of two parts: prediction and update. In 
the prediction part, the joint state probability is propagated from time step 1k −  to time 
step k . In the update part, the inter-robot measurements and the intro-robot 
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measurements are fused. With the Gaussian assumption, the inference for the linearized 
system can be accomplished by the extended Kalman filter (EKF), providing the 
expectation and covariance of the probability distribution of the joint states.    

Inspecting that both prediction and update are actually multi-step calculations, a 
fully decentralized solution is proposed in the paper by arranging the calculation steps 
of prediction and update in a proper sequence. In the decentralized solution, 
prediction is accomplished by each robot predicting its own state and update is 
accomplished by each robot fusing the measurements relevant to itself; the state 
predictions and the measurements fusions are implemented by turns. The messages 
passed between robots are the joint probabilities where only part of robots doing 
predictions and measurement updates. The posterior joint probability is obtained by a 
certain robot.  

3 A Fully Decentralized Solution: An Example 

Example. Consider the cooperative localization of three robots which are labeled as 
A, B and C. Each robot is equipped with an odometry. Robot A is equipped with a 
GPS receiver to obtain its position. Robot B has a laser range-finder which can make 
range measurements to the other two robots (See Fig.1). The three robots can 
communicate with each other by a local wireless network.  

 

Fig. 1. The inter-robot measurements 

3.1 Estimation at Time Step 1k =  

In the beginning, the robot states are irrelevant to each other. The state prediction and 
the fusion of the intro-robot measurement are implemented in the same way at each 
robot. Take robot A for example. 

prediction:  1 0 1 0 0( ) ( ) ( | )A A A A Ap x p x p x x dx=   

update(if needed):  
1 1 1

1 1
1

( ) ( )
( )

( )

A A A

A A
A

p x p z x
p x z

p z
=  

To fuse the inter-robot measurements, the joint state probability should be 
constructed and this involves the communication of the state estimation between 
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robots. The joint state can be constructed incrementally if the robots communicate in 
a chain. An inter-robot measurement can be fused either at the observer or the 
observed when the two relevant states are included into the joint state. The order of 
the robots on the communication chain is not critical. Assume robot B sends a 
message of 1( )Bp x  to robot C and robot C constructs a joint state as follows, 

1 1 1 1( , ) ( ) ( )B C B Cp x x p x p x=  (9)

Then robot C can fuse the observation 1
BCz : 

1 1 1 1 1

1 1 1
1

( , ) ( , )
( , )

( )

B C BC B C

B C BC
BC

p x x p z x x
p x x z

p z
=  (10)

Robot C then sends its estimation to Robot A. After receiving the estimation 
message, robot A carries on the joint state construction and the inter-robot 
measurement fusion, just like robot C.  

1 1 1 1 1 1 1 1 1 1( , , , ) ( ) ( , )A B C A BC A A B C BCp x x x z z p x z p x x z=  (11)

1 1 1 1 1 1 1 1

1 1 1 1 1 1
1

( , , , ) ( , )
( , , , , )

( )

A B C A BC BA B A

A B C A BC BA
BA

p x x x z z p z x x
p x x x z z z

p z
=

 
(12)

3.2 Estimation with Correlated States 

The robot states become correlated due to the fusion of the inter-robot measurement, 
which is clearly shown in the above subsection. Without loss of generality, we assume 
the states are correlated to each other when estimating the states of time step 

1k + ( 1k ≥ ). The prior joint state is represented by ( , , )A B C
k k k kp x x x  . 

The robot team satisfies the following assumptions before implementing the 
1k + estimation: 

1. The prior is held by a robot, say robot A.  
2. The intro-robot measurements are held by the robot who makes the 

measurements. That is to say, there is no communication among the robots about 
the intro-robot measurements. 

3. The inter-robot measurements are held by the two relevant robots. For example, 
the measurement BA

kz
 
is stored at both robot A and robot B. This requires a 

measuring robot to send the inter-robot measurement information to the 
observed robot. 

 
 

Assume { }, ,A BA BC
k kk kZ z z z= . Again the robots need to communicate in a chain. It’s 

better for robot A to start the estimation since it holds the prior joint state. The 
decentralized solution places no constraint on the locations of the other two robots at 
the communication chain. Take the communication topology of A B C→ →  for 



526 H. Mu et al. 

 

example. The computations implemented by each robot in the fully decentralized 
solution are as follows. 

Robot A: 

prediction: 1 1( , , ) ( , , ) ( | )B C A A B C A A A
k k k k k k k k k k kp x x x p x x xdx p x x+ +=           (13) 

update:       
1 1 1

1 1
1

( , , ) ( )
( , , , )

( )

B C A A A
k k k k k kB C A A

k k k k k A
k

p x x x p z x
p x x x z

p z

+ + +
+ +

+

=


         (14) 

Robot B: 

prediction:  1 1 1 1 1 1( , , , ) ( , , , ) ( )B C A A B C A A B B B
k k k k k k k k k k k k kp x x x z p x x x z p x x dx+ + + + + +=     (15) 

update: 1 1 1 1 1 1

1 1 1 1
1

( , , , ) ( , )
( , , , , )

( )

B C A A BA B A
k k k k k k k kB C A A BA

k k k k k k BA
k

p x x x z p z x x
p x x x z z

p z

+ + + + + +
+ + + +

+

=


   (16) 

Robot C:    
prediction: 1 1 1 1 1 1 1 1 1 1( , , , , ) ( , , , , ) ( )B C A A BA B C A A BA C C C

k k k k k k k k k k k k k k kp x x x z z p x x x z z p x x dx+ + + + + + + + + +=   (17) 

update: 
1 1 1 1 1 1 1 1

1 1 1 1
1

( , , , , ) ( , )
( , , )

( )

B C A A BA BC B C
k k k k k k k k kB C A

k k k k BC
k

p x x x z z p z x x
p x x x

p z

+ + + + + + + +
+ + + +

+

=


   (18) 

At the end of 1k + estimation, robot C achieves the posterior state estimation for 
each robot. It can send the results to the other robots. To estimate the states at next 
time step, it’s better to start the calculations from robot C to avoid unnecessary 
communication.  

4 A Fully Decentralized Solution: General Cases 

4.1 Perspective of the Bayesian Estimation 

The solution for the example of three robots in Section 3 can be generalized to a team 
of N robots. The observer who made an inter-robot measurement is required to send a 
measurement message to the observed robot, which ensures the measurement can 
always be fused by one of the two robots. Except the communication of the inter-
robot measurements, the communication of the state estimation requires a chain 
topology. The only thing a robot should know about other robots is the IDs 
(identifications) of its neighbors. In the applications where there exists a fixed 
communication chain, the neighbors’ IDs can be downloaded to each robot as prior 
information. In the cases where it is hard to find a fixed communication chain due to 
the movements of the robots, the communication chain can be built dynamically for 
different estimation cycles. Each robot acts in a modular way described as follows. 
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1. For time step 1k = ： 
-- Predicting its own state since the states are irrelevant at the moment. 
-- Updating its own state by fusing intro-robot measurements if there is any. 
-- If there is an estimation message sending from a neighbor: 
  ---- receiving the message and then calculates the joint state probability; 
  ---- updating the joint state by fusing the inter-robot measurements that the relevant 
states appear in the joint state.  
-- Sending an estimation message to a neighbor with whom it has not communicated 
any estimation message in this estimation cycle. If a robot can not find such a 
neighbor, the estimation finishes up and the robot is identified as the starting robot for 
the next estimation cycle. 
2. For time step 1k + ( 1,2,k =  ):  
 If the robot is the starting robot or if the robot receives an estimation message from 
its neighbor: 
--Predicting its own state in the joint state probability. 
--Updating the joint state by fusing intro-robot measurements if there is any. 
--Updating the joint state by fusing the inter-robot measurements that the relevant 
states appear in the joint state.  
-- Sending an estimation message to a neighbor with whom it has not communicated 
any estimation message in this estimation cycle. If a robot can not find such a 
neighbor, the estimation finishes up and the robot is identified as the starting robot for 
the next estimation cycle. 

 
In the Bayesian estimation framework, both the prediction and the update are 

composed of multiple steps. The decentralized solution interlaces these steps to make 
each robot fuse its local sensor data and share its information across the team with 
proper communication strategy. For a linearized system model, the estimates 
generated by the decentralized solution achieve the same accuracy as a centralized 
EKF, if given the same data. In this sense, the decentralized solution is optimal since 
it yields minimum mean-square error estimation. 

4.2 Perspective of the Junction Tree Algorithm 

The proposed solution is actually a special implementation of the junction tree 
solution in [9]. The junction tree used for inference is specific. Firstly, the cliques of 
the junction tree are formulated using the elimination order as follows. The 
measurement variables are eliminated before the state variables and the state variables 
at time step 1k −  are eliminated before the states at time step k . The elimination 
order of the state variables at time step 1k −  determines the communication chain of 
robots. The construction of a junction tree is still not unique from the cliques. An 
optimal junction tree in terms of the minimum communication cost among the robots 
can be determined by making the initialization of cliques local to each robot. The 
junction tree for the cooperative localization at time step k  for the example in 
Section 3 is depicted in Fig.2. 
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The standard Hugin strategy is adopted as the message passing strategy for the 
inference on the junction tree. Assume the states of robots are irrelevant with each 
other at the beginning. The overall decentralized solution is implemented in terms of 
Hugin algorithm as follows. 

1. Initialization 
Each robot is informed the IDs of its neighbors in the communication chain. The 
potentials of the measurement cliques are initialized as the measurement likelihoods. 

For 1k = , the state potentials of all the robots are initialized in the same way. 
Take robot A for example. The state potential of robot A is initialized as 

0 1 0( ) ( | )A A Ap x p x x
.
 

 

Fig. 2. The junction tree for inference for time step k ( 1k ≥ ) for the example in Section 3, 

with the initial potentials of the cliques given for 2k ≥ . The dotted lines illustrates the 
allocation of the cliques to the robots. The arrows with dark head stand for the message passing 
involving communication between robots, while the arrows with simple head represent the 
message passing between cliques held by the same robot.  

For 2k ≥ , the state potential of the robot who holds the prior, take robot A for 

example, is initialized as 1 1 1 1( , , ) ( | )A B A A
k k k k kp x x p x x− − − − . The state potential for 

other robots, take robot B for example, is initialized as 1( | )B B
k kp x x − . 

2. Inference, 1k ≥  
When a robot makes an inter-robot measurement, it sends a measurement message to 
the observed robot. Each robot manipulates its state potential by the following 
operations. 
(1) Multiplying in the estimation message passed to it if there is any, and denoting the 
ID of the robot who passed the message to it as X. 
(2) Incorporating the measurement likelihoods if there is any, including intro-robot 
measurements and inter-robot measurements. 
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(3) Eliminating the older own state from the state potential. If there is another 
neighbor different from X, formulating an estimation message from the resultant 
potential and transmitting to that neighbor. Otherwise, the resultant potential gives the 
required state estimates of time instance k for all the robots. The state of this robot 
should be eliminated first when constructing junction tree for next cycle inference.  

5 Performance Evaluation and Analysis 

In this section, we perform simulations to validate our approach and analyze the 
performance in terms of accuracy, modularity, scalability and robustness.  

5.1 Simulation 

A conventional two-wheel veihcle model is used and the trajectories of robots are 
generated by setting waypoints. Three robots (labeled with A, B and C) are 
considered. Assume each robot has odometer for motion measurement. Robot A and 
robot B each has a range finder which can make range measurements to other robots 
lying within 150m. Robot B also has a GPS receiver. The standard deviations are: 
initial positions, 8m; velocity measurements, 0.6m/s; steering angle measurements, 
10degree; GPS measurements, 2m; range measurements, 0.1m. Data association for 
the range observations is assumed known. 

Fig. 3 provides the robot trajectories with and without cooperative localization, 
together with the ground truth. The cooperative localization errors for robot A in x-
axis and y-axis are given in Fig.4, together with the 3σ uncertainty. There is no inter-
robot range measurement relevant to robot  A before 15s, since the distances to the 
other robots are larger than 150m, beyond the limit of the range finder. After 15s, the 
localization error for robot A is reduced sharply and maintained small due to the 
fusion of the range measurements. The benefit of the cooperative localization is 
obvious. The accuracy of our decentralized solution is the same with a centralized 
EKF.  
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5.2 Analysis 

The proposed solution has following advantages.  

(1) Accuracy. The proposed solution is optimal in terms of the linearized system 
model of the cooperative navigation problem. However, the problem itself is actually 
a nonlinear problem, especially the observation equations of the inter-robot 
measurements. The loss of the accuracy due to the linearization can be reduced 
utilizing the relinearization technique. Each iteration of relinearization repeats the 
whole estimation process except the linearization points are updated as estimates of 
last iteration.  
(2) Modularity. No global knowledge of the robots team is required a prior, each 
robot can be constructed and programmed in a modular fashion, allowing dynamic 
system configuration. In the decentralized cooperative navigation solution, the 
communication requirements between robots are allowed to change dynamically, as 
long as the whole team can communicate in a chain structure.  
(3) Scalability. The proposed solution has good scalability especially among the 
centralized-equivalent solutions. The computation of data fusion is distributed to each 
robot pretty much evenly without any duplication. No broadcast is involved. The 
communication load is not only lower than most of the other centralized-equivalent 
solutions, but also is comparable with the solution in [7]. The communication of the 
inter-robot measurements in the two solutions is the same. The bulk of the 
communication of estimates is 22 ( )m Nd for the solution in [7] and 2( 1)( )N Nd−  for 

the solution in this work, where m  is the number of the inter-robot measurements, 
N is the number of the robots, and d is the state dimension for single robot. When it 
satisfies ( 1) / 2m N> − , which are common cases, our solution has lower 

communication costs.  
(4) Robustness. The communication chain can be built dynamically in each estimation 
cycle, imposing the least requirements on the connectivity of the robots. Each robot 
has a joint state estimate for the team, at most one estimation cycle earlier. As a result 
the cooperative localization could be restarted at any other robot when a robot fails.    

6 Conclusions 

In the paper, a novel decentralized solution to the cooperative localization problems 
of robot teams is investigated. The solution is designed by interlacing the calculation 
steps of prediction and update in a proper sequence. In the proposed solution, each 
robot fuses only the sensor data relevant to itself and shares estimation information 
with its neighbors on a chain communication topology. The solution is centralized-
equivalent, in the sense that it yields linear minimum mean-square error estimates, 
equivalent to a centralized extended Kalman filter given the same data. The solution 
has good scalability since there is no information redundancy and computation 
duplication among the robots. Each robot acts in a modular manner and the solution is 
robust to robot failure. The solution can also be viewed from the perspective of 
implementing inference on a specific junction tree.  
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A simulation scenario of three ground robots is designed to verify our approach. 
Our simulated system has time-synchronous measurements. However, the 
decentralized algorithm applies equally to real-world asynchronous systems, in which 
case time-alignment is performed by projecting forward the platform states (according 
to the motion model) to match the observation time-stamps. This is the same approach 
as is routinely applied in centralized filtering systems. The approach is not limited to 
the scenario described here; it can be applied to multiple aerial vehicles and multiple 
underwater vehicles as well. Also, the decentralized structure appears to be a general 
paradigm for decentralized estimation, like cooperative target tracking, cooperative 
exploration, etc. 
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