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Abstract. This paper presents the optimal kinematic calibration of the
Hexapod (6-UPS) parallel manipulator based on a new observability in-
dex. The polytope description, rather than the widely used ellipsoid one,
is introduced to depict the inaccuracy of the identified parameters. Then,
the infinity-norm of the residual errors is utilized to assess the calibra-
tion precision of the kinematic parameters, which should be minimized
during the process of measurement configurations selection. In order to
find the optimal configurations, the Particle Swarm Optimization (PSO)
algorithm is employed in the proposed method and a collision mechanism
is added to cope with the joint space boundary constraint of the studied
manipulator. In the end, a numerical example is studied to verify the
correctness and effectiveness of the proposed approach.

Keywords: Optimal kinematic calibration, Observability index, Parti-
cle Swarm Optimization algorithm, Hexapod manipulator.

1 Introduction

Due to the inevitable defects in manufacturing and assembly, the manipulators’
kinematic parameters do not exactly match the design goal, which influences
the positioning accuracy significantly. Therefore, kinematic calibration is always
carried out as an economical and efficient way to overcome this problem by com-
pensating the errored parameters [1]. However, due to the existence of measure-
ment errors, the kinematic parameters cannot be perfectly calibrated. Moreover,
the identification precision is sensitive to the sensor noise in some cases.

To minimize the effects of the sensor noise on the calibration quality, much re-
search work has been done in the past few decades, which are mainly concerning
their investigations on the determination of the optimal measurement configu-
rations for robot calibration [2]-[7]. Then, the problem can be expressed as to
choose a particular set of measurement configurations to minimize some specific
observability indices, which are used to evaluate the goodness of the selected
configurations. All these indices are derived based on the singular value decom-
position (SVD) of the identification matrix JP whose inverse linearly transforms
the measurement errors to the inaccuracy of the identified parameters.
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Borm and Menq [8] selected the geometric mean of all the identification Ja-
cobian matrix’s non-zero singular values as the observability index (termed as

O1 = m− 1
2 (δ1 · · · δL) 1

L , where δ1, · · · , δL represent the singular values and m is
the number of the measured configurations). It can also be related to the deter-
minate of the symmetric matrixMp = JT

PJP . Driels and Pathre [2] suggested the
condition number of JP as the observability index (expressed as O2 = δL/δ1). In
addition, Nahvi and Hollerbach used the minimal singular value of JP (denoted
as O3 = δL [9])) and the multiplication of O2 and O3 (namely O4 = δ2L/δ1 as the
noise amplification index [10]) as the observability indices, respectively. Sun and
Hollerbach [11] have systematically compared these observability indices to the
alphabet optimalities from experimental design literatures and proposed some
useful criteria for observability index option in the light of different purposes.

However, from the viewpoint of optimal experiment design, all these indices
are based on the statistics of redundant datum measurements [11]. They just
indicate a possibility for estimation precision. No guarantee can be made for
the robot’s identified parameters that the residual errors are no more than spe-
cific quantities, which is important to assess the accuracy performance of robot
manipulators.

Otherwise, all the above indices are obtained under the assumption of unit
hypersphere constraint for sensor noise, namely ‖εY ‖2 ≤ 1 (where εY is the
composed measurement error vector). As a matter of fact, the pose sensor per-
forms the measurements individually at different configurations during the cali-
bration process. Consequently, a hypercube will be generated for the constraint
of sensor noise. And an error polytope, rather than the ellipsoid, can be obtained
for the identified parameters through the linear mapping with JP .

For the above reasons, this paper presents a new observability index to eval-
uate the goodness of the selected measurement configurations for robot calibra-
tion. It is derived based on the polytope description of the residual errors and
a bounding box is generated to estimate the inaccuracy of the identified param-
eters. The l∞-norm of the residual errors, also known as the worst situation of
parameter identification, is defined as a new index O∞ which should be mini-
mized in the optimal configurations selection. The PSO algorithm is introduced
and modified to determine the optimal configurations. A collision mechanism is
employed into the searching process to cope with the input boundary constraint
of the manipulator’s actuated joints. With the proposed method, the worst case
of parameter identification can be obtained. As a result, the calibration precision
of the identified parameters can be guaranteed, which is essential to predict the
absolute positioning accuracy of robot manipulators.

The rest of this paper is organized as follows. In Sec.2, the polytope and the
ellipsoid descriptions for residual errors are compared via an intuitive example.
Then, Sec.3 presents the definition and derivation of the proposed observability
index for configuration selection. The PSO algorithm with collision mechanism
is introduced in Sec.4 to search for the optimal configurations. In Sec.5, the
Hexapod manipulator is studied as a numerical example to verify effectiveness
of the proposed method. In the end, some conclusions are drawn in Sec.6.
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2 Polytope versus Ellipsoid for Error Description

Generally, the task velocity vector of a robot manipulator in the workspace can
be obtained through the linear mapping

ẏ = Jq̇ (1)

where q ∈ R
n and y ∈ R

m denote the input and the output vectors in the robot’s
joint and task spaces, respectively. J ∈ R

m×n is the Jacobian matrix. And the
robots studied here are assumed not under-actuated, which yields n ≤ m.

The manipulability ellipsoid and polytope have been systematically studied
and compared as dexterity measurements for robot manipulators [12]. The ma-
nipulability ellipsoid can be obtained conveniently based on the l2-norm estima-
tion of the input velocities (namely ‖q̇‖2 ≤ 1) as

‖q̇‖2 = q̇T q̇ = ẏTJ+TJ+ẏ ≤ 1 (2)

where J+ = JT (JJT )−1 denotes the pseudo-inverse of the Jacobian matrix J.
However, each active joint has its own velocity constraint in practice. Thus,

the joint velocity vector will be confined within ‖q̇‖∞ = max |q̇i| ≤ q̇max rather
than ‖q̇‖2 ≤ 1. Therefore, the ellipsoid approach does not transform the exact
velocity constraint from the joint space to the task space. Consequently, Lee
[12] introduced the concept of the manipulability polytope as a more accurate
and practical description of the dexterity for robot manipulators. And several
concise methods [13] have been proposed to compute the corresponding polytope
associated with the ∞-norm constraints of the active joints’ input velocities.

Actually, the precision estimation for robot calibration suffers from the same
problem. The robot’s extended kinematic model can be generally expressed as

y = f (p, q) (3)

where p represent the kinematic-parameter vector.
Then, the linearized calibration model can be represented as

ΔY + εY = JPΔp (4)

where ΔY = [ΔyT
1 , ΔyT

2 , · · · , ΔyT
m ]T is the composed deviation of the mea-

sured poses y i from their nominal ones ŷ i, namelyΔy i = y i−ŷ i, i = 1, 2, · · · ,m.
εY = [εyT

1 , εy
T
2 , · · · , εyT

m ]T represents the composed random error vector dur-
ing pose measurements. And Δp denotes the deviation of the kinematic param-
eters’ actual values from their nominal ones. The identification Jacobian matrix
is defined as JP = [JT

P,1, J
T
P,2, · · · , JT

P,m]T , which can be obtained as

JP,i =
∂f

∂p
y=ŷi

, i = 1, 2, · · · , m (5)

Since the exact values of the measurement noise cannot be determined abso-
lutely, the deviation of the parameters’ actual values from their nominal ones
can only be obtained according to the simplified form of Eq.4 as

ΔY = JPΔp (6)
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Comparing Eq.6 to Eq.4, it is obvious that the residual errors of the identified
parameters satisfy the following relation.

JP εp = εY (7)

where εp = Δp̂−Δp∗ denotes the residual errors, namely the difference between
the identified values of the kinematic parameters from their actual ones.

Then, the estimation of the residual errors can be obtained as

εp̂ = J+
P εY (8)

where J+
P = (JPJ

T
P )

−1JT
P is the Moore-Penrose inverse of JP .

All the aforementioned observability indices Oi (i = 1, · · · , 4) can be ob-
tained based on the singular values of the identification Jacobian matrix JP

and related to some indices of the error ellipsoid, such as volume, eccentricity
and maximum axis. Analogously, these results are derived under the assumption
that the measurement error forms a hypersphere constraint, namely ‖εY ‖2 ≤ 1.
However, in practice the pose sensor performs the measurements independently
at different configurations. As a result, the sensor noise will be bounded by
‖εY ‖∞ = max |εyi| ≤ εyi,max. Instead of the hypersphere, a hypercube can be
obtained as the variable constraint (namely the domain) of Eq.8. According to
the linear mapping of JP , a polytope will be derived as the range of the linear
function. Obviously, it is the exact bound of the residual errors of the identified
kinematic parameters, within which the real calibration errors will be confined.

Take the simple planar 2-R serial robot as an example. There are four kine-
matic parameters in this robot, namely the position of the fixed joint and the
lengths of the links. To simplify the expression of discussion, but without loss of
generality, only the length errors of the links are taken into consideration in this
particular case.

Supposing three different configurations are measured for identifying the ac-
tual lengths of the links. For each configuration, a two-dimensional error vector
is employed into the calibration model due to the sensor noise. Therefore, the
total sensor noise will be constrained within a 6-hypercube. According to the
linear mapping defined in Eq.8, the exact bound of the identified links’ residual
errors can be obtained in the form of a polygon, as illustrated in Fig.1.

From the figure, it is obvious that the exact error bound can be obtained as the
convex hull of the image points mapped from the vertices of the measurement
error’s constraint hypercube. And most of the image points are transformed
onto the inner points of the identified error polytope. The error ellipse is also
illustrated in the figure for comparison. It shows that the error ellipse is smaller
than the polygon both in volume and maximum magnitude. Additionally, the
ellipse’s maximum axis, known as the worst direction for error transmission, does
not point to a certain vertex of the obtained error polygon. It means that the
error ellipse just presents a qualitative evaluation for the residual errors and can
not provide the quantitative estimation how accurate the kinematic parameters
would be after identification. Thus, it can be stated that the polytope description
is more direct and accurate than the ellipsoid one to evaluate the identification
quality of the kinematic parameters.
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Fig. 1. Error polytope v.s. ellipsoid for the identified parameters

3 Observability Index Based on the l∞-Norm Evaluation

As indicated in the above section, the precision estimation for robot calibration
can be solved conveniently once the exact error bound of the identified param-
eters is determined absolutely. However, it is not an easy task to completely
specify the error polytope due to the high dimension of the identified parame-
ters and the excessive measurement datum.

Suppose the dimension of the robot’s output vector is n and p kinematic pa-
rameters need to be calibrated with m different measured configurations. Then,
the constraint of the measurement errors can be represented by a hypercube
in the Euclidean space R

mn. And the dimension of the identification Jacobian
matrix satisfies JP ∈ R

mn×p. As a result, the problem of estimating the residual
errors of the calibrated parameters has been transformed to the one of deter-
mining the error polytope in R

p mapped from the mn-hypercube through JP .
In the case of the six degree-of-freedom (DOF) Hexapod manipulator, there

are totally 42 kinematic parameters to be calibrated and more than seven differ-
ent configurations to be measured for reliable parameter identification [14]. The
dimension of the composed error vector εY will be increased by six for each more
measurement. Therefore, the least dimension of εY would be 48. Then, the total
number of the vertices of the error hypercube will be 2mn = 248

.
= 2.8147×1014.

Even for the kinematic parameter, the number of the error hypercube’s vertices
will exceed 2p = 242

.
= 4.3980 × 1012. It is an extremely big, even impossible,

problem to completely determine the exact bound of the residual errors in such
high dimension situation. Thus, it is necessary to define some indices to estimate
the inaccuracy of the identified parameters.

As discussed in the above sections, the observability indices Oi(i = 1, 2, 3, 4)
are derived based on the 2-norm constraint for the measurement errors, as

‖εY ‖22 = εY T εY = εp̂TJT
PJP εp̂ = εp̂TMP εp̂ ≤ 1 (9)

where MP = JT
PJP .
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As indicated in the literatures [15], the l2-norm constraint is usually used in
many robotics applications more because it is mathematically tractable than
physically desirable. Since the pose sensor performs the measurement indepen-
dently at different configuration during robot calibration, the l∞-norm constraint
is more practical than the l2-norm one for the measurement errors.

Therefore, an alternative observability index is defined based on the ∞-norm
of the identified parameters’ residual errors as

O∞ � ‖εp̂‖∞ = ‖J+
P εY ‖∞ (10)

According to the definitions of the ∞-norm (the maximum row sum of abso-
lute values) of vectors and matrices, the new index can be rewritten as

O∞ = max
1≤i≤p

|εp̂i| = max
1≤i≤p

|
mn∑

j=1

(J+
P )i,jεY j | (11)

where εp̂i and εY j are the ith and jth components of the error vector εp̂ and
εY respectively. (J+

P )i,j denotes the entry in the ith row and jth column of J+
P .

For the vertices of the measurement error hypercube, the components of εY
would be either 1 or -1 (namely εY j = ±1). Let εY j have the same sign as the
entry (J+

P )i,j . Then, the observability index can be finally determined as

O∞ = max
1≤i≤p

|εp̂i| = max
1≤i≤p

mn∑

j=1

|(J+
P )i,j | = ‖J+

P ‖∞ (12)

From Eq.12, O∞ can be simply the l∞-norm of J+
P . Its physical meaning is

the maximum absolute value of the components in the identified parameters’
residual errors. For a given planar vector rp = (xp, yp)

T , the ∞-norm produces
a square constraint with the side equal to the maximal component of the vector,
namely ‖rp‖∞ = max{|xp|, |yp|}. Using this concept, Eq.8 can be interpreted in
a geometric manner. Still take the planar case as an example. As shown in Fig.2,
based on the image points transformed from the measurement errors’ constraint
hypercube, different estimations for the error bound of the identified parameters
can be obtained according to different criterions.

On one hand, a circular area can be obtained according to the l2-norm evalua-
tion. From the figure, it is obvious that this circle is inscribed by the exact error
polygon. Based on this criterion, it can be guaranteed that the l2-norm values of
the residual errors will not exceed the radius of the bounding circle. It sounds a
reasonable evaluation for the inaccuracy of the kinematic parameters for robot
calibration. However, it is difficult to identify the vertex with maximum l2-norm
in high dimensional cases, such as the spatial parallel manipulators.

On the other hand, a square region can also be obtained based on the l∞-norm
evaluation of the residual errors, as shown in the figure. The physical meaning of
this estimation is that each component of the residual errors will not be larger
than this magnitude. And it is easy to calculate the side length of this bounding
square according to Eq.12. Moreover, a smaller bounding box can be specified by



390 G. Chen, H. Wang, and Z. Lin

Fig. 2. Comparison of the 2-norm and infinity-norm evaluations for the residual errors

computing each row sum of absolute values of J+
P , namely the l1-norm of the row

vectors, which binds the residual errors. As a result, for a given matrix J+
P there

exist individual assessments for the error bound of all identified parameters. And
the observability index O∞ is defined as the largest one for the overall evaluation
of the identification inaccuracy.

4 PSO Algorithm with Collision Mechanism

In this section, the PSO algorithm [16,17] is introduced to search for the optimal
configuration set according the observability index O∞. Taking the active joints’
boundary constraints into account, a collision-mechanism is employed into the
standard PSO algorithm to cope with boundary constraint problem.

The actual position of one particle in the swarm is associated with a particular
design vector x , the dimension of which equals to the number of design variables
in the studied problem. The trajectory of the ith particle at iteration k can be
described with the position update equation as

xk+1
i = xk

i +Δxk+1
i (13)

where the velocity update equation for the particle can be determined as

Δxk+1
i = ωΔxk

i + c1r
k
1,i(x

b,k
i − xk

i ) + c2r
k
2,i(x

b,k
∗ − xk

i ) (14)

where x b,k
i denotes the best previously obtained position of the particle i before

the current iteration and x b,k
∗ is the previously best one among the entire swarm.

The random numbers rk1,i and rk2,i are uniformly distributed in [0, 1]. c1 and c2
are referred to as the intelligent particles’ cognitive and the social scaling factors.
And ω denotes the inertia factor.
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Fig. 3. The collision mechanism of PSO algorithm

Applying the algorithm to our problem, each particle among the swarm corre-
sponds to a set of measurement configurations. Then, the problem can be set up
conveniently and the updating theme of the swarm can be implemented readily.
However, the standard PSO algorithm is usually applied to solve unconstrained
optimization problems. In order to handle the motion constraint of the robot’s
active joints, a collision-mechanism is introduced to maintain a feasible popula-
tion when some particles cross across the searching boundary.

Suppose the particles are constrained within the feasible searching region Γ,
as shown in Fig.3. Then, a collision will occur when the updated position of a
particle reaches outside. It is natural and intuitive to regard Γ as a cage made
of glass. Although the particles are with intelligence, they cannot realize the
existence of the transparent boundary. When they find better positions based
on their cognitive and social intelligence, they will fly towards them without any
hesitation. Then, infeasible individuals will be generated among the population
if no handling strategy is introduced.

The basic idea of the collision-mechanism is based on the inelastic behavior of
two colliding objects. The searching particles are supposed to be bounced back
when they hit the boundary of Γ. Then, the position update theme of the flying
particles can be rewritten as follows if collision happens.

xk+1
i,j = bj − CR,j

(
xk
i +Δxk+1

i,j − bj
)

(15)

where bj represents the limitation of the jth component of the design vector x .
And 0 ≤ CR,j ≤ 1 is the coefficient of restitution. CR,j = 0 and CR,j = 1 are
associated with the perfectly inelastic and elastic collisions, respectively.

Based on the modified updating theme, the evolving population will search
the best position for the particles within the feasible region all the time to
guarantee the algorithm proceed successfully. Additionally, the restitution coef-
ficient can be modified flexibly between 0 and 1 in different cases. As pointed
by Nategh [14], the maximum observability index is potentially obtained at the
extreme boundary of the robots’ motion constraints. Then, for our optimal con-
figurations selection problem, the collisions are supposed to be perfectly inelastic
ones, namely CR,j = 0, to make the algorithm quickly converge.
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Fig. 4. The hexapod (6-UPS) parallel manipulator

5 Numerical Simulations

In this section, the hexapod (6-UPS) parallel manipulator, as shown in Fig.4, is
studied as a numerical example to demonstrate the proposed calibration method.
There are 7 independent kinematic parameters to be identified in each limb,
namely the position vector of the universal joint on the fixed platform u i, the
initial length of the prismatic joint li and the position of the spherical joint on
the moving platform si. Thus, there are totally 42 parameters to be identified
during the kinematic calibration, whose nominal values are listed in Tab.1.

Each measurement generates six constraint equations to the calibration sys-
tem. Therefore, at least 8 measurement configurations are required for reliable
parameter identification. In order to reduce the influence of the sensor noise,
14 different configurations are measured. The pose sensor’s measurement errors
are assumed to be uniformly distributed in εp ∈ [−0.010, 0.010]mm for position
and εo ∈ [−0.001, 0.001] rad for orientation. Otherwise, the motion ranges of the
actuated prismatic joints lie in qi ∈ [−200.00, 200.00]mm, i= 1, · · · , 6.

Using the modified PSO algorithm, the optimal measurement configurations
for kinematic calibration can be determined conveniently based on the proposed
observability index O∞ whose iterative improvement is illustrates in Fig.5. From

Table 1. Nominal values of kinematic parameters (mm)

Limb No. u i li si

1 (1931.8517, 517.6381, 0)T 3757.4884 (565.6854, 565.6854, 0)T

2 (−517.6381, 1931.8517, 0)T 3757.4884 (207.0552, 772.7407, 0)T

3 (−1414.2136, 1414.2136, 0)T 3757.4884 (−772.7407, 207.0552, 0)T

4 (−1414.2136,−1414.2136, 0)T 3757.4884 (−772.7407,−207.0552, 0)T

5 (−517.6381,−1931.8517, 0)T 3757.4884 (207.0552,−772.7407, 0)T

6 (1931.8517, −517.6381, 0)T 3757.4884 (565.6854,−565.6854, 0)T
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Fig. 5. Improvement of the observation index O∞ during the searching process

the figure, it is obvious that the observability index is reduced significantly by
the properly selected configurations than that by the random ones.

In order to validate the obtained result, numerical simulations are carried out.
Random errors ranged in [−5.0, 5.0]mm are added to the nominal parameters to
obtain the presumed actual ones. The robot’s simulated actual poses is obtained
by means of a numerical method to the forward kinematics analysis. Additionally,
uniformly distributed measurement errors are introduced to simulate the sensor
noise.

As shown in Fig.6, the residual errors of the robot’s identified parameters are
much smaller than the manufacturing and assembly tolerances before calibration.
Moreover, the identification precision can be further improved by choosing a set
of optimal measurement configurations. In the numerical example, mean value
of the residual errors has been reduced from 0.370mm to 0.047mm.

Fig. 6. Residual errors of the identified parameters
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Fig. 7. Residual errors of the identified parameters in numerical experiments

Otherwise, the boundary for all parameters’ residual errors can also be
obtained by calculating all rows’ l1-norm of J+

P , which can be regarded as a
threshold for identification inaccuracy. To verify this property, another numer-
ical experiment is designed by repeating the above calibration simulation for
thousands of times, as shown in Fig.7. It is evident that none of the maximal
residual errors of the identified parameters exceeds this theoretical maximum.
But in some cases, the maximal residual errors are close to this threshold, which
means that the worst situation for parameter-identification may arise due to un-
fortunate distribution of the random measurement errors for the end-effector’s
poses. Therefore, the final accuracy performance of the calibrated manipulator
can be obtained with this estimation for the parameters’ identification inaccu-
racy.

6 Conclusion

In this paper, a new observability index is proposed for the optimal configurations
selection for robot calibration. The concept of the error polytope is introduced
to describe the inaccuracy of the identified parameters based on the l∞-norm
evaluation, which provides a deterministic estimation for residual errors. The
new index is not only mathematically tractable but also with intuitive physical
meanings. It has ascertained the absolute bound of the potential residual er-
rors and then guaranteed the identification inaccuracy not exceed some specific
thresholds. The results of the numerical simulation have verified the correctness
and effectiveness of the proposed approach.
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