
J. Lee et al. (Eds.): ICIRA 2013, Part I, LNAI 8102, pp. 77–84, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Low Complexity MAP Algorithm for Turbo Decoder

Jonghyun Seo and Jangmyung Lee

Dept. of Electronic Engineering, Pusan National University,
Jangjeon-dong, Geumjung-gu, Pusan, Korea, Republic of

{jhseo,jmlee}@pusan.ac.kr

Abstract. As a promising decoding algorithm for turbo codes in terms of
relatively low BER, the maximum a posteriori (MAP) algorithm is most widely
used. However, the conventional MAP algorithm requires a large number of
computations. A modified MAP algorithm is therefore proposed for reduction
of the associated memory size and ultimately power saving. A newly introduced
block combing is performed for the memory efficiency such that two branch
metrics (BMs) are merged into one branch metric. When calculating FSM
(Forward State Metric) of the associated state transition, BM is included in the
subsequent FSM, and thus when calculating APP (A Posteriori Probability), the
BM is exempted and the number of computations for LLR (Log Likelihood
Ratio) is reduced. Simulation results demonstrate reduced memory size in use
and equivalent performance, compared to the conventional MAP algorithm.

Keywords: Turbo decoder, MAP algorithm.

1 Introduction

Error correcting code has been researched since announcement of Shannon‘s coding
theorem in 1984. And turbo code is one of the error correcting codes proposed in
1993 by Berrou, Glavieux, and Thitimaishima [1].

Turbo code has been researched actively because it has excellent performance of
error correction, and there are SOVA (Soft-Output Viterbi Algorithm) or MAP
(Maximum A Posteriori) in algorithm of turbo code. Even though SOVA algorithm
has less complexity than MAP algorithm, MAP algorithm shows better performance
than SOVA algorithm [3]. Thus, MAP algorithm is mainly used in these days [4].
MAP algorithm proposed in 1974 by Bahl, and MAP algorithm calculates to APP
from signal of noise.

The following section describes the MAP algorithm for the turbo decoder and then
accounts to the block processing technique in section 3. Section 4 describes that
efficient MAP algorithm using block combining. Section 5 describes experimental
result. Finally section 6 summarizes this paper.

2 Map Algorithm

The MAP algorithm was firstly presented in 1974 by Bahl, Cocke, Jelinik and Raviv.
The MAP algorithm aims to calculate the a-posteriori probability (APP) of each state
transition [4][5].

78 J. Seo and J. Lee

Given noisy observation vector, the MAP algorithm finds the probability of each
valid state transition as in the Trellis diagram. As shown in Fig.1, the terms, alpha,
beta, and Gamma, are defined as the forward state metric and the backward state
metric and the branch metric, respectively. Alpha has a systemic bit that means state
metric transitioning from the previous state, s', at time k-1 to the next state, s, at time
k. Beta can be obtained from the previous one by iterative calculation after receiving
all information. The Gamma is defined as the probability that a given transition is
chosen given the received sequence at a given state.[7]

Fig. 1. The Conventional trellis with 4-state from time k-1 to time k+1

In order to calculate LLR, gamma value is initial needed from received data. Then,
alpha and beta value are calculated by using gamma value. Numerical formula
(Mathematic method) is shown below. Alpha and beta values are expressed as
follows.

(1)

(2)

1
(',)

1

1
(',)

1

(') (',) ()

() ln()
(') (',) ()

k

k

k k k
s s

u
k

k k k
s s

u

s s s s

L u
s s s s

α γ β

α γ β

−
=>

=+

−
=>

=−

=





(3)

1

1

1
(, '')

1
1

1
(, '')

1

() (, '') ('')

() ln()
() (, '') ('')

k

k

k k k
s s

u
k

k k k
s s

u

s s s s

L u
s s s s

α γ β

α γ β
+

+

−
=>

=+
+

−
=>

=−

=





(4)

Eq. (3) and (4) are LLR computed at time k and k+1, respectively. These equations
make a decision for the information bit with a maximum probability when
transitioning from the previous state to the current state.

''
1kS +

1(0)kα −

(0)kα

kS'
1kS −

1(2)kα −

1(1)kβ +

(0)kβ
1(0)kβ +

(2,0)kγ

(0,0)kγ 1(0,0)kγ +

1(0,1)kγ +

1

3

 Low Complexity MAP Algorithm for Turbo Decoder 79

3 Using the Block Processing Technique

In this section, we explain a modified MAP algorithm using block processing
technique for efficient memory use [2].

Fig. 2. Block processing trellis with 4-state from time k-1 to time k+1

The algorithm using the block processing technique does not take into account
alpha and beta values at time k, but only at time k+1, thereby reducing memory
storage for alpha and beta value at time k. Alpha, beta and gamma values are
expressed as follows.

Although the block processing MAP algorithm needs much smaller memory size

for the state metric and reduces power consumption, it has a defect that the algorithm
needs more multiplication operations than conventional MAP algorithm in LLR
calculation.

4 Proposed Scheme for Low Low Complexity Map Algorithm

A. The first proposed scheme

In this section, we explain a modified MAP algorithm using block combining for an
efficient turbo decoder.

Fig. 3 shows a combining decoding process from two decoding processes. FSM
and BSM are calculated using the combined BM values at each state, and the
combined BM value means that two calculated BM values, one value is from time k-1
to k and the other is from time k to time k+1. The value can be expressed as,

', , '' ', , '' s s s s s s s
k k kγ γ γ= × (5)

'
1kS −

''
1kS +

1

2

3

0

80 J. Seo and J. Lee

Fig. 3. Block combining trellis with 4-state from time k-1 to time k+1

(6)

(7)

', ''s s
kγ combining calculate value that transfer to state(S) in time k from state(S') in

time k-1. Alpha and beta value in time k+1 calculate with integrated BM value
Calculating Alpha and Beta value in this algorithm is as same as conventional MAP
algorithm. That is, keep systemic bit to next state (s) at time k from previous state (s')
at time k-1. Alpha in the same manner, received all of information bit thereafter
current beta value repetitional calculate through next beta value.

To '0' state in time k+1 transfer from all states in time k-1 which receive data (0,0).
To '1' state in time k+1 transfer from all states in time k-1 which receive data (0,1).
And to '2' state in time k+1 transfer from time k-1 which receive data (1,0). To '3'
state in time k+1 transfer from time k-1 which receive data (1,1). Probability values
calculate that to each state in time k+1 from time k-1. Express followed below

1 ', '' 1
0,0

(00 :) k k k s s kp u y α γ β− += =
 (8)

1 ', '' 1
0,1

(01:)k k k s s kp u y α γ β− += =

(9)

1 ', '' 1
1,0

(10 :)k k k s s kp u y α γ β− += =

(10)

1 ', '' 1
1,1

(11:) k k k s s kp u y α γ β− += =

(11)

(00 :)k kp u y= display probability likely data (0,0) in received data ky .

(01:)k kp u y= indicates that probability likely data (0,1) in received data ky .

'
1kS −

''
1kS +

00

01

10

11

decoded

0

1

2

3

 Low Complexity MAP Algorithm for Turbo Decoder 81

And (10 :)k kp u y= indicates that probability likely (1,0). (11:)k kp u y=

indicates that probability likely (1,1).
After calculating their probability values, the maximum value can be determined

because decoding calculation is differed according to the maximum value in LLRC.
LLRC of the maximum value is as follows.

 CASE1 (00 :)k kp u y=

(10 :)
() log() ,

(00 :)
k k

k
k k

p u y
L u

p u y

==
=

1

(01:)
() log()

(00 :)
k k

k
k k

p u y
L u

p u y+
==
=

(12)

CASE2 (01:)k kp u y=

(11:)
() log() ,

(01:)
k k

k
k k

p u y
L u

p u y

==
=

1

(01:)
() log()

(00 :)
k k

k
k k

p u y
L u

p u y+
==
=

(13)

 CASE3 (10 :)k kp u y=
(10 :)

() log() ,
(00 :)

k k
k

k k

p u y
L u

p u y

==
=

1

(11:)
() log()

(10 :)
k k

k
k k

p u y
L u

p u y+
==
=

(14)

 CASE4 (11:)k kp u y=
(11:)

() log() ,
(01:)

k k
k

k k

p u y
L u

p u y

==
=

1

(11:)
() log()

(10 :)
k k

k
k k

p u y
L u

p u y+
==
=

(15)

()kL u become decoding value in time k. 1()kL u + become decoding value in time

k+1. (00 :)k kp u y= divide (10 :)k kp u y= in ()kL u of case1. It does

divide (00 :)k kp u y= by (10 :)k kp u y= in ()kL u of case1. Because it does

product of probability value of received data '0' when transfer to time k from time k-

1 and probability value of received data '0' when transfer to time k+1 from time k. So,

decoding value at time k+1 should make an offset.

Similarly, calculate 1()kL u + . Also case2 and case3 , case4 calculate in the same

method. Equation (8) can be simplified.

1 ', '' 1

0,0

(00 :)k k k s s kp u y α γ β− += =

(16)

Probability of (0,0) that is received data from equation (16) can be simplified by only
current state of alpha and beta. Because alpha values at time k+1 include alpha values
of all states. Equation (10), (11), (12) also can be simplified by same way.

82 J. Seo and J. Lee

B. The second proposed scheme

If (00 :)k kp u y= > (01:)k kp u y= ;

 Then buf = ‘1’;

 If (00 :)k kp u y= > (10 :)k kp u y=

 Decoding data = ‘00’;

 Else if (00 :)k kp u y= < (10 :)k kp u y=

 Decoding data = ‘10’

Else if (00 :)k kp u y= < (01:)k kp u y= ;

 Then buf = ‘0’;

If (01:)k kp u y= > (11:)k kp u y= ;

 Decoding data = ‘01’;

Else if (01:)k kp u y= < (11:)k kp u y= ;

 Decoding data = ‘11’;

<Pseudocode>

5 Conclusions

A Multiplication operation can be transferred to an adder operation by using Log-
MAP algorithm[7]. To make an easy hardware design, Log-MAP algorithm applies to
conventional algorithm and proposed algorithm. After that following the application,
compare conventional algorithm with proposed algorithm into LLRC.

Table 1. Compare proposed Algorithm with conventional algorithm using log-MAP Algorithm
in LLR Calculation(n:state number, m:data frame)

Log-MAP
algorithm

Pietroben
algorithm

Block processing
algorithm

Proposed
algorithm

Adder
Operation

4*n(m-1) n(m-1) 12*n((m-1)/2) 1/2*n(m-1)

Max
Operation

3/2*n(m-1) 1/2*n(m-1) 3*n(m-1) (n-1)((m-1)/2)

FSM(or BSM)
Memory

m*n m*n 1/2*n(m+1) 1/2*n(m+1)

Number of total memory 2*n(2*m-1) 2*n(2*m-1) n(3*m-1) n(3*m-1)

 Low Complexity MAP Algorithm for Turbo Decoder 83

Table 2. Compare Proposed Algorithm with conventional algorithm at the number of time for
switching(using the Xilinx XST)

Block
processing
algorithm

Proposed
algorithm

The
decrement(%)

Power(mw) 55.41 23.77 56

Area 70.08 28.68 59

Table 3. Compare Proposed Algorithm with conventional at LLRC(using the Xilinx XST)

Conventional

algorithm

Block processing
algorithm

& Proposed algorithm
The decrement(%)

n=4
m=400

6384 4796 25

n=4
m=800

12792 9596 25

The Proposed scheme has less adder operation than conventional algorithm, and
memory uses are as same as block processing technique. However, the operation
quantities are far less than block processing technique. Thus, turbo decoder design
consist of proposed scheme, the total circuit area can be reduced because it uses small
number of adders.

MAP algorithm of turbo decoder has an excellent performance of error correction,
but it has very high complexity. In this paper, we proposed an efficient MAP
algorithm by using the block combining. 'Block Combining' means that two times of
decoding processes are unified with one process and the result both decrease the
calculations in memory and operation.

Therefore, proposed MAP algorithm by using block combining can use in efficient
memory size and in low power. It is also suitable for low power system or high-speed
system.

References

1. Berrou, C., Glavieux, A., Thitimajshima, P.: Near Shannon limit error-correcting coding
and decoding: Turbo-Codes. In: Proceeding of IEEE International Conferences on
Communications 1993, pp. 1064–1070 (May 1993)

2. Lee, I., Vallejo, M.L., Mujtaba, S.A.: Block Processing Technique for Low Power Turbo
Decoder Design. In: IEEE 55th VTC Spring 2002, pp. 1025–1029 (2002)

3. Papke, L., Robertson, P., Villebrun, E.: Improved decoding with the SOVA in a parallel
concatenated (trubo-code) scheme. In: Proceeding of ICC 1996, Dallas, TX, USA,
pp. 102–106 (June 1996)

4. Bahl, L., Cocke, J., Jelinek, F., Raviv, J.: Optimal decoding of linear codes for minimizing
symbol error rate. IEEE Trans. Inform. Theory IT-20, 284–287 (1974)

84 J. Seo and J. Lee

5. Pietrobon, S., Barbulescu, A.S.: A simplification of the modified Bahl decoding algorithm
for systematic convolutional codes. In: Proceeding of ISITA 1994, Sydney, Australia,
pp. 875–880 (November 1994)

6. Pietrobon, S., Barbulescu, A.S.: A simplification of the modified Bahl decoding algorithm
for systematic convolutional codes. In: Proceeding of ISITA 1994, Sydney, Australia,
pp. 875–880 (November 1994)

7. Robertson, P., Villebrun, E., Hoher, P.: A Comparison of Optimal and Sub-Optimal MAP
Decoding Algorithms Operating in the Log Domain. In: Proceedings of the International
Conference on Communications, pp. 1009–1013 (June 1995)

8. Forney, G.: The Viterbi algorithm. Processdings of the IEEE 61, 268–278 (1973)
9. Bahl, L.R., Cocke, J., Jelink, F., Raviv, J.: Optimal Decoding of Linear Codes for

Minimising Symbol Error Rate. IEEE Transactions on Information Theory 20, 284–287
(1974)

10. Shrestha, R., Paily, R.: 2013 26th International Conference on VLSI Design and 2013 12th
International Conference on Embedded Systems (VLSID), pp. 86–91 (2013)

	Low Complexity MAP Algorithm for Turbo Decoder
	1 Introduction
	2 Map Algorithm
	3 Using the Block Processing Technique
	4 Proposed Scheme for Low Low Complexity Map Algorithm
	5 Conclusions
	References

