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Abstract. Recently the ordinal extreme learning machine (ELMOR)
algorithm has been proposed to adapt the extreme learning machine
(ELM) algorithm to ordinal regression problems (problems where there
is an order arrangement between categories). In addition, the ELM stan-
dard model has the drawback of needing many hidden layer nodes in
order to achieve suitable performance. For this reason, several alterna-
tives have been proposed, such as the evolutionary extreme learning ma-
chine (EELM). In this article we present an evolutionary ELMOR that
improves the performance of ELMOR and EELM for ordinal regression.
The model is integrated in the differential evolution algorithm of EELM,
and it is extended to allow the use of a continuous weighted RMSE fitness
function which is proposed to guide the optimization process. This favors
classifiers which predict labels as close as possible (in the ordinal scale) to
the real one. The experiments include eight datasets, five methods and
three specific performance metrics. The results show the performance
improvement of this type of neural networks for specific metrics which
consider both the magnitude of errors and class imbalance.

Keywords: ordinal classification, ordinal regression, extreme learning
machine, differential evolution, class imbalance.

1 Introduction

Ordinal regression, or ordinal classification, problems are classification problems
where the problem nature suggests the presence of an order between labels. In
addition, it is expected that this order would be reflected on the data distribution
through the input space [1]. Compared to nominal classification, ordinal classifi-
cation has not attracted much attention, nevertheless the number of algorithms
and associated publications have grown in the late years [2].

In this work we propose an evolutionary extreme learning machine for ordinal
regression. We modify the ELMOR model proposed by Deng et. al [3] with an
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extension to allow a probabilistic formulation of the neural network, for which we
propose a fitness function that considers restrictions related to ordinal regression
problems. We evaluate the proposal with eight datasets, five related methods and
three specific performance metrics.

The rest of the paper is organized as follows. Section 2 introduces the ordinal
regression problem and formulation. Section 3 presents the extreme learning
machine and its evolutionary alternative, and Section 4 explains the proposed
method. Experiments are covered at Section 5 and finally conclusions and future
work are summarized in the last section.

2 Ordinal Regression

Ordinal regression is a type of supervised classification problem in which there
is an order within categories [1,4]. This order is generally deduced from the
problem nature by an expert or by simple assumptions about the data.

2.1 Problem Formulation

The ordinal regression problem can be mathematically formulated as a problem
of learning a mapping φ from an input space X to a finite set C = {C1, C2, . . . , CQ}
containing Q labels, where the label set has an order relation C1 ≺ C2 ≺
. . . ≺ CQ imposed on it (symbol ≺ denotes the ordering between different
categories). The rank of an ordinal label can be defined as O(Cq) = q. Each
pattern is represented by a K-dimensional feature vector x ∈ X ⊆ R

K and
a class label t ∈ C. The training dataset D is composed of N patterns D =
{(xi, ti) | xi ∈ X, ti ∈ C, i = 1, . . . , N}, with xi = (xi1, xi2, . . . , xiK).

For instance, bond rating can be considered as an ordinal regression problem
where the purpose is to assign the right ordered category to bonds, being the
category labels {C1 = AAA, C2 = AA, C3 = A, C4 = BBB, C5 = BB}, where
labels represent the bond quality assigned by credit rating agencies. Here there
is a natural order between classes {AAA ≺ AA ≺ A ≺ BBB ≺ BB}, AAA being
the highest quality one and BB the worst one.

Considering the previous definitions, an ordinal classifier (and the associated
training algorithm) has two challenges. First, since the nature of the problem
implies that the class order is somehow related to the distribution of patterns
in the space of attributes X as well as the topological distribution of the classes,
the classifier must exploit this a priori knowledge about the input space [1,4].
Secondly, specific performance metrics are needed. Given the bond rating ex-
ample, it is reasonable to conclude that predicting class BB when the real class
is AA represents a more severe error than that associated with AAA predic-
tion. Therefore, performance metrics must consider the order of the classes so
that misclassifications between adjacent classes should be considered less impor-
tant than the ones between non-adjacent classes, more separated in the class
order [5,4].
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2.2 Performance Metrics

As mentioned, ordinal regression needs specific performance metrics. In this
work we will use the accuracy and the Mean Absolute Error (MAE), since
those are the most used ones, and the recently proposed average MAE, which is
a robust metric for imbalanced datasets. Let us suppose we want to evaluate the
performance of N predicted ordinal labels for a given dataset {t̂1, t̂2, . . . , t̂N},
with respect to the actual targets {t1, t2, . . . , tN}. The accuracy, also known as
Correct Classification Rate or Mean Zero-One Error (MZE) when expressed as
an error, is the rate of correctly classified patterns.

However, the MZE does not reflect the magnitude of the prediction errors.
For this reason, the MAE is commonly used together with MZE in the ordi-
nal regression literature [2,5,6]. MAE is the average absolute deviation of the
predicted labels from the true labels:

MAE =
1

N

N∑

i=1

e(xi), (1)

where e(xi) = |O(ti)−O(t̂i)|. The MAE values range from 0 to Q−1. However,
neither MZE, nor MAE are suitable for problems with imbalanced classes. To
solve this issue, Baccianella et. al [7] proposed to use the average of the MAE
across classes:

AMAE =
1

Q

Q∑

j=1

MAEj =
1

Q

Q∑

j=1

1

nj

nj∑

i=1

e(xi), (2)

where AMAE values range from 0 to Q− 1 and nj is the number of patterns in
class j.

3 Extreme Learning Machine

This section presents the ELM and ELMOR models, in order to establish the
baseline for the article proposal.

3.1 ELM for Nominal Classification and Regression

This section presents the extreme learning machine (ELM) algorithm and the
Evolutionary ELM. For a further review of ELM please refer to specific survey
[8]. The ELM algorithm has been proposed in [9]. ELM and its extensions have
been applied to several domains including multimedia Quality-of-Service (QoS)
[10] or sales forecasting, among others.

The ELM model is a Single-Layer Feedforward Neural Network that is de-
scribed as follows. Let us define a classification problem with a training set given
by N samples D = {(xi,yi) : xi ∈ R

K ,yi ∈ R
Q, i = 1, 2, . . . , N}, where xi is
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a K×1 input vector and yi is a Q×1 target vector1 Here, a target y, associated
to pattern x, is defined so that yj = 1 means that pattern x belong to class j and
yk = 0|j �= k means the pattern does not belong to class k, this is generally known
as a 1-of-Q coding scheme. Let us consider a multi-layer perceptron (MLP) with
M nodes in the hidden layer and Q nodes in the output layer given by:

f (x,θ) = (f1(x, θ1), f2(x, θ2), . . . , fQ(x, θQ)), (3)

where:
fq(x, θq) = βq

0 +
∑M

j=1 β
q
jσj(x,wj), q = 1, 2, . . . , Q, (4)

where θ = (θ1, . . . , θQ)
T is the transpose matrix containing all the neural net

weights, θq = (βq,w1, . . . ,wM ) is the vector of weights of the q output node,
βq = βq

0 , β
q
1 , . . . , β

q
M is the vector of weights of the connections between the

hidden layer and the qth output node, wj = (w1j , . . . , wKj) is the vector of
weights of the connections between the input layer and the jth hidden node, Q
is the number of classes in the problem, M is the number of sigmoidal units in
the hidden layer and σj (x,wj) the sigmoidal function:

σj (x,wj) =
1

1 + exp
(
−
(
w0j +

∑K
i=1 wijxi

)) , (5)

where w0j is the bias of the jth hidden node.
The linear system f(xj) = yj , j = 1, 2, . . . , N , can be written as the following

matrix system Hβ = Y, where H is the hidden layer output matrix of the
network:

H (x1, . . . ,xN ,w1, . . . ,wM ) =

⎡

⎢⎣
σ (x1,w1) · · · σ (x1,wM )

...
. . .

...
σ (xN ,w1) · · · σ (xN ,wM )

⎤

⎥⎦

N×M

,

β =

⎡

⎢⎣
β1
...

βM

⎤

⎥⎦

M×Q

and Y =

⎡

⎢⎣
y1

...
yN

⎤

⎥⎦

N×Q

.

The ELM algorithm randomly selects the wj = (w1j , . . . , wKj), j = 1, . . . ,M ,
weights and biases for hidden nodes, and analytically determines the output
weights βq

0 , β
q
1 , . . ., βq

M for q = 1 . . .Q by finding the least square solution to
the given linear system. The minimum norm least-square solution (LS) to the
linear system is β̂ = H†Y, where H† is the Moore-Penrose generalized inverse of
matrix H. The minimum norm LS solution is unique and has the smallest norm
among all the LS solutions, which guarantees better generalization performance.

1 Note we change the notation of the targets here from a scalar target (t) to a vec-
tor target (y). This is due to the multi-class neural network outputs, since neural
networks generally have Q or Q− 1 number of output neurons.
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The evolutionary extreme learning machine (EELM) [11] improves the original
ELM by using the original Differential Evolution (DE) algorithm proposed by
Storn and Price [12]. The EELM uses DE to select the input weights wj , and the
Moore-Penrose generalized inverse to analytically determine the output weights
between hidden and output layers. Then, the population of the evolutionary
algorithm is the set of input weights wj which are evaluated completing the
ELM training process.

3.2 ELM for Ordinal Regression

The ELM has been adapted to ordinal regression by Deng et. al [3] being the
key of their approach the output coding strategies that impose the class order-
ing restriction. That work evaluates single multi-class and multi-model binary
classifiers. The single ELM was found to obtain slightly better generalization
results for benchmark datasets and also to report the lowest computational time
for training. In the present work the single ELM alternative will be used. In the
single ELMOR approach the output coding is a targets binary decomposition
[13], an example of five classes (Q = 5) decomposition is shown in Table 1.

Table 1. Example of nominal and ordinal output coding for five classes (Q = 5)

1-of-Q coding Frank and Hall coding [13]⎛
⎜⎜⎜⎜⎝

+1 −1 −1 −1 −1
−1 +1 −1 −1 −1
−1 −1 +1 −1 −1
−1 −1 −1 +1 −1
−1 −1 −1 −1 +1

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

+1,−1,−1,−1,−1
+1,+1,−1,−1,−1
+1,+1,+1,−1,−1
+1,+1,+1,+1,−1
+1,+1,+1,+1,+1

⎞
⎟⎟⎟⎟⎠

In this way, the solutions provided by the β̂ = H†Y expression tend to pro-
duce order aware models. For the generalization phase, the loss-based decoding
approach [14] is applied, i.e. the chosen label is that which minimizes the expo-
nential loss:

t̂ = arg min
1≤q≤Q

dL (Mq,g(x)) ,

where t̂ is the predicted class label, being t̂ ∈ C = {C1, C2, . . . , CQ} containing
Q labels, Mq is the code associated to class Cq (i.e. each of the rows of coding
at the right of Table 1), g(x) = f (x,θ) is the vector of predictions given by the
model in Eq. (3), and dL (Mq,g(x)) is the exponential loss function:

dL (Mq,g(x)) =

Q∑

i=1

exp (−Miq · gi(x)) . (6)
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4 Evolutionary Extreme Learning Machine for Ordinal
Regression

This section presents our evolutionary extreme learning machine for ordinal re-
gression (EELMOR) model and the associated training algorithm. First, the
EELMOR extends the ELMOR model to obtain a probabilistic output. For do-
ing that, the softmax transformation layer is added to the ELMOR model using
the negative exponential losses of Eq. (6):

pq = pq(x, θq) =
exp(−dL (Mq,g(x)))∑Q
i=1 exp(−dL (Mi,g(x)))

, 1 ≤ q ≤ Q, (7)

where pq is the posterior probability that a pattern x has of belonging to class Cq

and this probability should be maximized for the actual class and minimized (or
ideally be zero) for the rest of the classes. This formulation is used for evaluating
the individuals in the evolutionary process but not for solving the ELMOR
system of equations.

In the case of ordinal regression, the posterior probability must decrease from
the true class to more distant classes. This has been pointed out in the work of
Pinto da Costa et al. [5]. In that work an unimodal output function is imposed to
the neural network model, and the probability function monotonically decreases
as the classes are more distant from the true one.

According to the previous observation, we propose a fitness function for guid-
ing the evolutionary optimization that simultaneously considers two features of
a classifier:

1. Misclassification of non-adjacent classes should be more heavily penalized as
the difference between classes labels grows.

2. The posterior probability should be unimodal and monotonically decrease
for non-adjacent classes.

In this way, not only the right class output is considered, but also the posterior
probabilities with respect to the wrong classes are reduced. In order to satisfy
these restrictions, we propose the weighted root mean square error (WRMSE).

First, we design the type of cost associated with the errors. Let us define
the absolute cost matrix as A, where the element aij = |i − j| is equal to the
difference in the number of categories, aij = |i− j|. The absolute cost matrix is
used, for instance, for calculating the MAE, being i the actual label and j the
predicted label. An example of an absolute cost matrix for five classes is shown
in Table 2. In the case of WRMSE, A cannot be directly applied because it
would suppress information about the posterior probability of the correct class
(see Eq. (9)). Then, we add a square matrix of ones 1 so that our final cost
matrix is C = A+ 1 (see an example in Table 2).

Second, according to the model output defined in Eq. (7), we define the
weighted root mean square error (WRMSE) associated to a pattern as:

e =

∑Q
q=1(ciq

√
(yq − pq)2)

Q
, (8)
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Table 2. Example of an absolute cost matrix (A) and an absolute cost matrix plus
the matrix of ones (C = A+ 1) for five classes (Q = 5)

A C = A+ 1⎛
⎜⎜⎜⎜⎝

0 1 2 3 4
1 0 1 2 3
2 1 0 1 2
3 2 1 0 1
4 3 2 1 0

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

1 2 3 4 5
2 1 2 3 4
3 2 1 2 3
4 3 2 1 2
5 4 3 2 1

⎞
⎟⎟⎟⎟⎠

where i is index of the true target and ciq represents the cost of errors associated
to the q output of the neural network coded in matrix C (see Table 2). Finally,
the total error of the prediction is defined as:

WRMSE =

∑N
i=1(ei)

N
. (9)

For ending this section, it should be noticed that in a single model multi-
class classifier the RMSE has the interesting property of selecting solutions
that consider good classification performance of all classes simultaneously [15].
In the case of MZE, only one network output (the one with maximum value)
contributes to the error function, and it does not contribute with the output’s
value. However, for RMSE it is straightforward to check that each model output
(posterior probabilities) contributes to the error function. Then, the model’s
decision thresholds and posteriors will tend to be more discriminative. This
implicit pressure over the posteriors is even more severe in the case of WRMSE.

5 Experimental Section

This section presents experiments comparing the present approach with several
alternatives, with special attention to the EELM and the ELMOR as reference
methods.

5.1 Datasets and Related Methods

Table 3 shows the characteristics of the 8 datasets included in the experiments.
The publicly available real ordinal regression datasets were extracted from bench-
mark repositories (UCI [16] and mldata.org [17]). The experimental design in-
cludes 30 stratified random splits (with 75% of patterns for training and the
remainder for generalization).

In addition to the EELM, ELMOR and the proposed method (EELMOR),
we include the following alternatives in the experimental section:

– The POM algorithm [18], with the logit link function.
– The GPOR method [6] including automatic relevance determination, as pro-

posed by the authors.
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Table 3. Characteristics of the benchmark datasets

Dataset #Pat. #Attr. #Classes Class distribution
automobile (AU) 205 71 6 (3, 22, 67, 54, 32, 27)
balance-scale (BS) 625 4 3 (288, 49, 288)

bondrate (BO) 57 37 5 (6, 33, 12, 5, 1)
contact-lenses (CL) 24 6 3 (15, 5, 4)
eucalyptus (EU) 736 91 5 (180, 107, 130, 214, 105)

LEV (LE) 1000 4 5 (93, 280, 403, 197, 27)
newthyroid (NT) 215 5 3 (30, 150, 35)

pasture (PA) 36 25 3 (12, 12, 12)

– NNOR [19] Neural Network with decomposition scheme by Frank and Hall
in [13].

The algorithms’ hyper-parameters were adjusted by a grid search using MAE
as parameter selection criteria. For NNOR, the number of hidden neurons, M ,
was selected by considering the following values, M ∈ {5, 10, 20, 30, 40}. The
sigmoidal activation function was considered for the hidden neurons. For EL-
MOR, EELM and EELMOR, higher numbers of hidden neurons are considered,
M ∈ {5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100}, given that it relies on sufficiently
informative random projections [9]. With regards to the GPOR algorithm, the
hyperparameters are determined by part of the optimization process. For EELM
and EELMOR the evolutionary parameters’ values are the same as used at [11].
The number of iterations was 50 and the population size 40.

5.2 Experimental Results

Table 4 shows mean generalization performance of all the algorithms including
metrics described at Section 2.2. The mean rankings of MZE, MAE and AMAE
are obtained to compare the different methods. A Friedman’s non-parametric
test for a significance level of α = 0.05 has been carried out to determine the
statistical significance of the differences in rank in each method. The test rejected
the null-hypothesis stating that all algorithms performed equally in the mean
ranking of the three metrics. Because of space restrictions, we will only examine
AMAE metric, since it is the most robust one. For this purpose, we have applied
the Holm post-hoc test to compare EELMOR to all the other classifiers in order
to justify our proposal. The Holm test is a multiple comparison procedure that
works with a control algorithm (EELMOR) and compares it to the remaining
methods [20]. Results of the test are shown in Table 5, which shows that our
proposal improves on all the methods’ performance except NNOR for α = 0.10,
and there are only statistical differences with EELM for α = 0.05. The second
best performance in AMAE was for NNOR.
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Table 4. Experimental generalization results comparing the proposed method to other
nominal and ordinal classification methods. The mean and standard deviation of the
results are reported for each dataset, as well as the mean ranking. The best result is
in bold face and the second best result in italics.

MZE Mean Mean MZE rank
Method/DataSet AU BS BO CL EU LE NT PA
EELM 0.453 0.152 0.544 0.344 0.507 0.393 0.152 0.389 4.94
ELMOR 0.384 0.082 0 .476 0.383 0.440 0.371 0.051 0.389 3.31
GPOR 0.389 0.034 0.422 0.394 0.315 0.388 0 .034 0.478 3.13
NNOR 0 .376 0 .039 0.500 0.294 0.418 0.373 0.035 0.237 2.31
POM 0.533 0.092 0.656 0.378 0.841 0.380 0.028 0.504 4.69
EELMOR 0.360 0.092 0.533 0 .306 0 .394 0 .372 0.035 0 .333 2.63

MAE Mean Mean MAE rank
Method/DataSet AU BS BO CL EU LE NT PA
EELM 0.688 0.216 0.722 0.517 0.718 0.439 0.154 0.404 5.06
ELMOR 0.542 0.089 0.649 0.522 0.531 0.406 0.052 0.404 3.44
GPOR 0.594 0.034 0.624 0.511 0.331 0.422 0 .034 0.489 2.75
NNOR 0.503 0 .044 0.671 0 .456 0.476 0.408 0.035 0.241 2.44
POM 0.953 0.111 0.947 0.533 2.029 0.415 0.028 0.585 5.00
EELMOR 0 .510 0.108 0 .644 0.433 0 .447 0 .407 0.035 0 .344 2.31

AMAE Mean Mean AMAE rank
Method/DataSet AU BS BO CL EU LE NT PA
EELM 0.813 0.426 1.119 0.545 0.778 0.632 0.212 0.404 4.75
ELMOR 0.649 0.176 1.168 0.531 0.575 0.611 0.114 0.404 3.94
GPOR 0.792 0.051 1.360 0.651 0.362 0.654 0.062 0.489 4.13
NNOR 0.566 0 .066 1.135 0 .493 0.506 0.608 0.059 0.241 2.19
POM 1.026 0.107 1 .103 0.535 1.990 0.632 0.050 0.585 4.06
EELMOR 0 .592 0.172 1.041 0.463 0 .489 0.608 0 .052 0 .344 1.94

Table 5. Table with the different algorithms compared with EELMOR using the Holm
procedure (α = 0.10) in terms of AMAE. The horizontal line shows the division
between methods significantly different from EELMOR.

i Algorithm z p α
′
Holm

1 EELM 3.0067 0.0026 0.0200
2 GPOR 2.3385 0.0194 0.0250
3 POM 2.2717 0.0231 0.0333
4 ELMOR 2.1381 0.0325 0.0500
5 NNOR 0.2673 0.7893 0.1000

6 Conclusions and Future Work

In this work, we have adapted the ELMOR model to the Evolutionary ELM.
We have proposed the weighed RMSE error function to guide the algorithm.
Based on theoretical analysis and experimental results, we justify the proposal
compared to the reference methods and other ordinal regression techniques.

Future work involves the design and experiments with new output codes and
associated error functions. In addition, as a future work, a comparison can be
performed taking into account the run time of the algorithms. Also the explo-
ration of limitations of the proposal should be part of future research.
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