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Abstract. Deformable registration for images with different contrast-
enhancement and hence different structure appearance is extremely
challenging due to the ill-posed nature of the problem. Utilizing prior
anatomical knowledge is thus necessary to eliminate implausible defor-
mations. Landmark constraints and statistically constrained models have
shown encouraging results. However, these methods do not utilize the
segmentation information that may be readily available. In this paper,
we explore the possibility of utilizing such information. We propose to
generate an anatomical correlation-regularized deformation field prior
by registration of point sets using mixture of Gaussians based on a thin-
plate spline parametric model. The point sets are extracted from the
segmented object surface and no explicit landmark matching is required.
The prior is then incorporated with an intensity-based similarity measure
in the deformable registration process using the variational framework.
The proposed prior does not require any training data set thus excluding
any inter-subject variations compared to learning-based methods. In the
experiments, we show that our method increases the registration robust-
ness and accuracy on 12 sets of TAVI patient data, 8 myocardial perfusion
MRI sequences, and one simulated pre- and post- tumor resection MRI.

1 Introduction

Image registration helps the clinicians to combine the image information ac-
quired from different modalities, different time points, or pre- and post- contrast-
enhancement for better evaluation. Many of the medical applications rely on the
technique of image registration, ranging from examination of disease progres-
sion, to the usage of augmented reality in the minimal-invasive interventions.
For some cases, rigid/affine registration may be sufficient; however, in many
cases, deformable registration is needed to compensate for local movements.

Deformable registration is inherently ill-posed and under-constrained from
the mathematical point of view. It becomes more challenging when dealing with
different structure appearances due to different levels of contrast-enhancement
between two images. This problem widely exists in the field of medical im-
age registration, e.g., registration of the perfusion cardiac image in the wash
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Fig. 1. Structure appearance may be largely different due to different levels of contrast-
enhancement. (a) and (b) is a pair of images from pre-operative contrast-enhanced CT
and intra-operative non-contrast-enhanced C-arm CT for TAVI procedure. (c) and (d)
is a pair of images from a perfusion cardiac sequence at different phases.

in/out phases, and 3D/3D registration of pre-operative contrast-enhanced CT
and intra-operative non-contrast-enhanced C-arm CT images. In these cases,
purely relying on the intensity information produces anatomically implausible
deformation. To facilitate the deformable registration process, landmark con-
straints were proposed to increase the registration accuracy and robustness
[1,2,3]. These methods added a penalty term to penalize the correspondence
pairs from moving too far apart, therefore, accurate correspondence matching
is crucial. Incorporating the knowledge of statistical analysis on shape and dis-
placement field variability to the image registration process is another popular
approach [4,5]. Xue et al. [6] tackled the problem of high dimensional statistical
deformation models (SDMs) using wavelet based decompositions. Despite the
promising results, training the SDMs suffers from the curse of dimensionality,
and how to select the training data to represent the population remains unclear.
Recently, Lu et al. proposed the structural-encoded mutual information (SMI)
[7] which emphasizes the structures that commonly exist in both images. And
they further incorporated the rigid spine motion into their proposed application.
Incorporating the rigid motion of spine movement is clearly adhoc: it cannot
be applied to images which do not contain spine and/or have deformable mo-
tion. Among the aforementioned methods, one important and potentially readily
available information is missing and may be utilized — the segmentation of some
dominant and common objects in the images. The motion of these segmented
objects could be modeled and may greatly improve the registration accuracy.
In addition, from the clinical workflow perspective, this segmentation may be
needed for diagnosis and guidance purpose alone, and as a result, utilization of
the available segmentation results does not impose additional requirement for
the purpose of image registration.

In this paper, we propose a novel hybrid deformable registration framework
for multimodal image registration. The proposed method targets at image pairs
that have different structure appearance. Theoretically it is a generalization of
the method in [7] to deal with general structures containing deformable mo-
tion by utilizing available segmentations. A data-driven anatomical correlation-
regularized deformation field prior is generated by registration of the point sets
from the segmented objects usingmixture ofGaussians based on aTPSmodel. The
proposed cost function combines the high-level knowledge from the anatomical
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correlation-regularized deformation field and low-level intensity statistical
information. Therefore, the segmentation does not need to be complete, and
may focus only on the dominant structures to provide regularization on the
deformation field. The fine-level registration is largely driven by the image in-
tensity, which leads to a much more accurate registration compared to simple
warping using the segmentation results alone.

2 Method

2.1 Anatomical Correlation-Regularized Deformation Field Prior

Despite the popularity of landmark-based image registration techniques, for
many applications, it is very difficult to find exact/accurate landmark corre-
spondences from the images automatically due to the poor image quality. How-
ever, relatively good segmentation of some dominant objects in these image is
still possible. In our work, we assume that the segmentation of some dominant
objects is given a priori, and the point sets are extracted from the object sur-
faces. The distribution of the points were modeled using mixture of Gaussians.
Then we use the method in [8] to register the sampled point sets efficiently
without establishing explicit point correspondences. We generate an anatomical
correlation-regularized deformation field prior v using TPS model by optimizing:

ETPS(v) =

∫
(fv − g)2dx+ λEbend(v), (1)

where fv is the distribution representing the transformed point set warped by v,
and g is the distribution of the reference point set. A small λ ensures that the
TPS approximate local deformations well [9]. In our work, we choose λ to be
0.001. Ebend(v) is the bending energy of the TPS. We refer the readers to [10]
for more details of the TPS warping.

TPS is chosen to represent the underlying transformation model due to its
nice properties, including its smoothness, no free parameters to tune manually,
closed-form solutions for both warping and parameter estimation, and physical
explanation for its energy function [3,11]. Moreover, the point sets are modeled
using mixture of Gaussians for the purpose of efficient and robust registration
[8]. Registration of models of mixtures of Gaussians may not be highly accurate
at the edges, compared to other computationally-expensive landmark-based reg-
istration methods that focus on point-to-point matching. However, the defor-
mation prior generated from the point sets registration results is sufficient to
provide a high-level knowledge of the plausible deformation field. Note that, dif-
ferent from spline-based optimization schemes in other hybrid methods, we only
used TPS to approximate the segmentation-based registration results. Further-
more, the distribution of the point sets obtained from segmentation are mod-
eled as mixture of Gaussians, thus no iterative volume intensity interpolation
is involved which leads to much higher computation efficiency. In our hybrid
registration method, the registration will be largely driven by image intensity
in regions where structural information is rich. In contrast, in regions where the
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structures do not match (e.g. due to different levels of contrast enhancement),
the registration will be mainly regularized by the generated prior deformation
field.

2.2 Cost Function

The proposed cost function E combines a data term Es and a penalty term Ep,
and the weight α balances the influences of the two terms:

E(u) = Es(u) + αEp(u), (2)

where u is the deformation field. The data term Es aims to maximize the low-
level intensity statistical dependency of the two images, whereas the penalty
term Ep discourages certain implausible deformations deviated from the prior
deformation field, and the weight term α is set to 0.1.

Data Term. Intensity-based similarity measures are widely reported. Popular
similarity measures include mutual information, normalized mutual information,
correlation ratio, and cross correlation etc. As the main focus of our paper is to
introduce a prior deformation field into the deformable registration framework,
we would not specify the intensity-based similarity measure. The readers are free
to choose any of the intensity-based similarity measures which varies by different
applications, and can then be combined with the proposed prior deformation
field.

Penalty from Prior Deformation Field. Optimizing (1) provides a data-
driven prior deformation field v, and we want the prior deformation field v to
guide the deformable registration process. The penalty term is defined as:

Ep(u) = −
∫
Ω

w(x)||u(x)− v(x)||2dx. (3)

x is the location of the pixel/voxel. A local weight term w(x) is included in the
penalty term. w(x) is assigned to be large at the structure mismatching area,
and small at the area where structure information is rich and corresponds well
in the two images.

2.3 Optimization

To optimize the cost function, we follow the variational framework proposed by
Hermosillo et al. [12], which exhibits nice properties in terms of accuracy, cap-
ture range, and computational efficiency compared to the parametric deformable
models. In particular, following the notation in [12], the gradient for variational
minimization of the cost function is derived as:

∂u

∂t
= −∂E(u)

∂u
= −∂Es(u)

∂u
− α

∂Ep(u)

∂u
. (4)
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As ∂Es

∂u varies according to the choice of the data term, in this section, we only

provide the derivation of
∂Ep(u)
∂u(x) .

∂Ep(u)

∂u(x)
= 2w(x)(u(x)− v(x)), (5)

The use of the weight term w(x) leads to desirable properties while updating the
deformation field at each iteration. Specifically, at the locations with mismatch-
ing structures, w(x) is large. These areas usually produce large registration error
when solely relying on the data term, so we highly rely on the penalty term (i.e.
the deformation prior) to guide the registration process in these areas. On the
other hand, at the locations where the structures appear in both images, w(x)
is small, therefore, the registration process relies more on the data term. Fast
Gaussian filtering [13] is applied at each iteration to regularize the registration
process.

2.4 Implementation

Our implementation is advanced with efficient filtering and fully parallelized.
A multi-resolution scheme is deployed to speed up the registration process and
reduce the chance of the optimization being trapped in the local minimum during
the energy minimization process. For a typical 3D volume of 512×512×100, the
entire registration process takes around 4 minutes for a dual core CPU, compared
to 105 minutes for a B-spline based implementation reported in EMPIRE10
Challenge [14].

3 Experiments

3.1 Pre-operative CT and Non-contrast-enhanced C-arm CT

Registration of pre-operative contrast-enhanced CT and non-contrast-enhanced
C-arm CT eliminates the need for acquiring contrast-enhanced C-arm CT, which
is harmful to trans-catheter aortic valve implantation (TAVI) patients with kid-
ney impairments. Our first experiment is performed on 12 TAVI patients who
had undergone both CT and contrast-enhanced C-arm CT scans.

Experimental Setup. Following the same procedure in [7], we create non-
contrast-enhanced C-arm CT volumes from the contrast-enhanced C-arm CT.
The contrasted aortic area in the C-arm CT is replaced by intensities generated
from a Gaussian distribution with mean equal to the heart area. The gener-
ated volume is visually indifferent from real non-contrast-enhanced C-arm CT
volume acquired clinically. Thus we are essentially matching the CT with the
non-contrast-enhanced C-arm CT with known ground truth. In this experiment,
lung segmentation and rough spine segmentation can be obtained using the
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Fig. 2. Mesh-to-mesh error for 12 patients, using different registration methods

Fig. 3. Registration results, (a) Rigid (b) Deformable using SMI (c) Lu et al.’s method
(d) The proposed method

methods from [15] and [16]. The point sets are sampled from the lung surface
and the spine area with equal spacing. w(x) is defined as:

w(x) = exp(−(
dspine(x)

W
)) + (1 − exp(−(

dlung(x)

W
))), (6)

where dlung and dspine are the distance maps to the surfaces of the lung and spine
respectively. W is set to 2.25 cm to control the effective confidence region. w(x)
gives higher weight to the region away from the lung surface because in these
textureless regions, the deformation prior is the main driving force. Similarly, in
the spine region, the derived prior is more reliable and thus a higher weight is
given. We use SMI as the data term as proposed in [7].

Results. We measure the mesh-to-mesh distance by calculating the distance
between the points on surface mesh of the aortic root from CT to the closest point
on the ground truth mesh from the C-arm CT (Fig. 2). We validate on the aortic
root because it is the most important anatomical feature for guidance purpose
during TAVI. The errors are 3.08±1.17 mm, 2.59±1.15 mm, 2.01±0.69 mm and
1.74±0.50 mm for rigid-body registration, deformable registration using SMI, Lu
et al.’s method [7] and our proposed method, respectively. The results show that
deformable registration is necessary to compensate for the residual motion after
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rigid registration. Compared to the intensity-based SMI, our method and Lu et
al.’s method show the importance of incorporating anatomical knowledge into
the deformable registration framework. Clinically, a registration error below 2.5
mm is deemed acceptable. Compared to Lu et al.’s method, we improve the result
for patient 3 from borderline acceptable to very accurate, and furthermore, the
result for patient 10 is improved from clinically not acceptable to applicable. We
further perform a paired t-test between these two methods, and the two-tailed
P value equals to 0.0411, showing that the proposed method is statistically
significantly better than Lu et al.’s method. This is largely attributed to the
proposed deformation prior, which is able to model the deformable heart motion,
instead of simple rigid-body motion in the spine area as proposed in [7]. One
registration example is shown in Fig. 3. The proposed method produces the most
accurate registration result at the targeted area – the aortic root (red contours).
Furthermore, the anatomical structure at the heart area is nicely preserved,
thanks to the incorporated deformation prior. We can see that intensity-based
method fails badly because of the large area of mismatched structures. Although
Lu et al.’s method performs well around the spine and heart surface (yellow
contours), the registration result at the heart area is not clinically meaningful,
e.g. the myocardium (green contours) is badly distorted.

3.2 Myocardial Perfusion MRI

We perform our second set of experiment on 8 myocardial perfusion MRI se-
quences. Due to the intensity change caused by the contrast enhancement, reg-
istration of myocardial perfusion MRI is considered as multimodal.

Experimental Setup. We select a floating frame which has the best contrast
in the sequence, and the selected floating frame is registered to every frame of
the sequence. In this experiment, we can obtain the epicardium segmentation

Fig. 4. Quantitative comparison of the
registration errors (in pixel) obtained by
rigid registration, SMI and the proposed
method.

Fig. 5. Registration results (a) Rigid. (b)
SMI. (c) Simple warping using the defor-
mation prior. (d) Proposed method. Yel-
low and blue lines are the propogated and
the ground truth contour.
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Fig. 6. (a) Pre-operative MRI. (b) Simulated post-operative MRI. (c), (d) and (e) are
the registration results obtained by SMI, simple warping using the deformation prior,
and the proposed method, respectively.

using [17]. The point sets are sampled from the epicardium outline with equal
spacing. Similar to (6), w(x) is a distance function to the segmented epicardium.
The information of epicardium segmentation is thus implicitly embedded into
the registration process. Again, SMI is used as the data term.

Results. For our data set, myocardial contours (epicardium and endocardium)
of all the slices were drawn by a cardiologist. These contours serve as the ground
truth. We calculated the root mean square distance from the ground truth to
the propagated contours. The comprehensive comparison of each sequence can
be found in Fig. 4. The paired t-test indicates that our hybrid method is statisti-
cally significantly better than the intensity-based method with P value equaling
to 0.0263. We demonstrate the result using an example shown in Fig. 5, the main
deficiency of the intensity-based and simple warping is emphasized using the red
arrows. It is shown that intensity-based registration does not perform well in
the homogeneous area because of the lack of structure information, while simple
warping using the deformation prior results in noticeable registration errors at
the structure-rich areas as the intensity information is ignored. In comparison, by
combining the strength of both intensity-based and segmentation-based meth-
ods, our hybrid method produecs the best result. Note that Lu et al’s method
[7] is not applicable to this data due to the fact that there is no spine and the
motion prior is non-rigid.

3.3 Simulated Pre- and Post- liver Tumor Resection MRI

The proposed hybrid method could be potentially applied to another category
of registration problems with mismatching structures, i.e., registration between
volumes of pre- and post- tumor resection. In this experiment, the registration
is performed on pre-operative MRI and simulated post-operative MRI.

Experimental Setup. We simulated a post tumor resection image based on
the pre-operative MRI. Then we artificially deform the pre-operative MRI, and
registration is performed between the deformed pre-opeartive MRI and the sim-
ulated post-operative MRI. w(x) is one at the resected area and zero otherwise.
SMI is used as data term, where we do not count the statistics in the resected
area. The deformation of the resected area solely relies on the regularization.
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We assume the liver segmentation is available, and the point set is extracted
from the liver surface.

Results. Here we get the qualitative preliminary results using one data set
as shown in Fig. 6. Again, we use the arrows to emphasize the regions where
intensity-based and simple warping using segmentation do perform well. Quali-
tatively, intensity-based registration does not perform well in the resected area,
and simple warping using the liver segmentation does not preserve the detailed
structures well. The proposed hybrid method guides the registration using the
deformation prior at the resected area, while at the rest of the area, intensity-
based method dominates. By combining the strength of both, the hybrid method
achieves the best registration result as demonstrated in Fig. 6.

4 Discussion and Conclusion

In this paper, we present a hybrid multimodal deformable registration frame-
work with a data-driven deformation prior. The proposed method addresses
registration of images with different structure appearance due to different levels
of contrast medium, and is validated on both TAVI and perfusion MR data.
In addition, preliminary results show that the proposed method can also be
applied to registration of pre- and post- tumor resection images. The experi-
mental results demonstrate the superiority of the proposed method compared to
intensity-based method and simple warping using segmentation. Furthermore,
we derived the analytical solution for optimization under the variational frame-
work which is computationally efficient. The main limitation of our method is
the availability of the segmentation information. For our algorithm, we do not
require very accurate segmentation result to generate the deformation prior to
guide the registration process. Therefore, we can make use of the available seg-
mentation algorithms to achieve the rough segmentation. Our algorithm is not
applicable to images that no segmentation is available. In the future, we plan to
apply the algorithm to more clinical data sets. We will also study how different
segmentations will affect the registration results.
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