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Abstract. In most robot-assisted surgical interventions, multimodal fu-
sion of pre- and intra-operative data is highly valuable, affording the
surgeon a more comprehensive understanding of the surgical scene ob-
served through the stereo endoscopic camera. More specifically, in the
case of partial nephrectomy, fusing pre-operative segmentations of kid-
ney and tumor with the stereo endoscopic view can guide tumor localiza-
tion and the identification of resection margins. However, the surgeons
are often unable to reliably assess the levels of trust they can bestow
on what is overlaid on the screen. In this paper, we present the proof-
of-concept of an uncertainty-encoded augmented reality framework and
novel visualizations of the uncertainties derived from the pre-operative
CT segmentation onto the surgeon’s stereo endoscopic view. To verify its
clinical potential, the proposed method is applied to an ex vivo lamb kid-
ney. The results are contrasted to different visualization solutions based
on crisp segmentation demonstrating that our method provides valuable
additional information that can help the surgeon during the resection
planning.

1 Introduction

The emergence of robot-assisted interventions using medical robots (e.g. da Vinci
Surgical System, Intuitive Surgical, Inc., Sunnyvale, CA, USA), has been shown
to increase the accuracy and reduce the operative trauma associated with com-
plex interventions. In partial nephrectomies, for instance, a crucial step is tumor
identification during which the surgeon localizes the kidney tumor mass and
identifies the resection margins. This step is important to properly plan and
speed up the succeeding stage of tumor mass excision during which blood flow
can only be safely obstructed for a limited time. More importantly, the accuracy
of this step is necessary not only to preserve kidney function by sparing as much
healthy tissue as possible, but also to avoid tumor recurrence by resecting all
cancerous tissue.

The tumor identification step is usually performed with the help of multi-
modal source of information at the surgeon’s disposal: pre-operative scans (typi-
cally 3D CT and/or MR) and intra-operative data (2.5D stereo endoscopic data
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Fig. 1. Our uncertainty-encoded image-guidance framework consists of extracting
1) the probabilistic kidney/tumor boundaries from the CT volume prior to the op-
eration and 2) the corresponding probabilistic surface information from the stereo en-
doscopic views intra-operatively using 2a) computational stereo matching techniques,
2b) converting matching weights into probability values, and 2c) triangulating the
surface probabilities into the same domain as the CT. Finally, 3) we register the pre-
operative boundary uncertainties to the stereo endoscope using probabilistic surface
reconstruction information and visualize the isoprobability contours onto the surgeon’s
console.

and, when available, laparoscopic 2D/3D ultrasound). Currently, these rich and
complementary sources of information are just displayed on the surgeon’s console
in a tiled fashion (i.e. side-by-side) or even sometimes on a separate screen of a
workstation nearby. These typical display setups require substantial additional
effort from the surgeon to piece together a 3D mental map of the surgical scene
that integrates all information together in order to localize the tumor and ad-
jacent tissue. Hence, an augmented reality view, in which the endoscopic video
stream is overlaid with highlighted kidney and tumor boundaries, can substan-
tially reduce the effort required by the surgeon to achieve accurate and quick
tumor excision.

To the best of our knowledge, all current methods rely on the visualization
of a crisp segmentation only [1]. This renders the surgeon highly susceptible to
the varying levels of confidence in what is overlaid on the screen. Segmentations
are hardly ever 100% accurate for many possible reasons: graded decomposi-
tion [2], image acquisition artifacts, inter-expert segmentation variability, and
fuzzy image segmentation [3,4]. These uncertainties can be important in subse-
quent analyses and decision-making [2,5].

In this paper, we propose to provide a visualization of uncertainties at the
kidney and tumor boundaries as a visual cue to assist the surgeon in finding the
optimal resection strategy. This is similar in concept to what is currently being
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(a) (b) (c)

Fig. 2. Probabilistic pre-operative CT segmentation. (a) Original CT. (b) Membership
probabilities of kidney (green), tumor (blue), and background (red). (c) Background
boundary location probability (0 in black and 1 in white).

explored in radiotherapy for brain tumors when extrapolating glioma invasion
with variable margins [6]. Our visual cues are derived from shape boundary
uncertainties in the probabilistic segmentation of the pre-operative CT. This
information is then registered to the endoscopic view as explained in Fig. 1. We
apply our method to an ex vivo lamb kidney to create an uncertainty-encoded
augmented reality view. We compare our results to standard guidance methods
that use crisp segmentations and clearly demonstrate the benefits of our method
and its utility for resection planning.

2 Methods

We first describe the probabilistic segmentation of the pre-operative CT that
provides uncertainties about the boundary localization of kidney and tumor.
Secondly, we perform a probabilistic 3D surface reconstruction from stereo en-
doscopy to which the probabilistic segmentation is directly registered.

2.1 Probabilistic Segmentation of Pre-operative CT Scans

The probabilistic segmentation of the pre-operative CT is based on the random
walker segmentation algorithm [4,7] that generates membership probabilities of
three manually seeded regions: background (BG: red), kidney (KD: green), and
tumor (TM: blue) (Fig. 2b).

We denote the resulting multi-label probabilistic CT segmentation by:

PCT
seg : Ω ⊂ R

3 → p ∈ S2 ,

where p = [pBG, pKD, pTM ] belongs to the simplex of order 2, and Ω is the
spatial domain of the CT. From this multi-label probabilistic segmentation, we
can extract the membership probability map of background PCT

BG , kidney PCT
KD

and tumor PCT
TM regions.

We also compute the likelihood PCT
surface of the surface union of kidney and

tumor in the pre-operative CT (Fig. 2c) by combining the membership proba-
bilities of being inside the kidney PCT

KD and inside the tumor PCT
TM as follows:
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PCT
surface = 1− |(PCT

KD + PCT
TM )− 0.5|

0.5
. (1)

2.2 Probabilistic Stereo-Endoscopic Surface Reconstruction

We propose an extension of traditional computational stereo techniques of sur-
face reconstruction from a single crisp surface [8] to a probabilistic representation
of surfaces in 3-space.

Dense Matching of Left and Right Stereo Images. Using polar rectifica-
tion [9] with the camera calibration parameters, the 2D dense matching of left
and right stereo images is simplified to a 1D matching along parallel epipolar
lines in the left and right rectified images. We use the normalized cross correlation
(NCC) ratio on greyscale images as a matching similarity metric. This metric
has the advantage of being less prone to changes in illumination. In contrast
with current state-of-the-art methods, e.g. [10,11,12], instead of computing one
set of robust and optimal matches, we retain all possible matches with their as-
sociated disparity (displacement d ∈ Z between matching points along the same
horizontal line of the recitified images) and similarity measure (c ∈ [−1, 1]).

Construction of a 3D Probabilistic Voxel Map. In order to facilitate
the pre-op to intra-op registration detailed in Section 2.3, we first create a 3D
probabilistic voxel map in which each voxel stores the probability of being at the
surface of the stereo endoscopic scene. To achieve this, we compute the disparity
probability values by converting the NCC profile c = [c1, c2, · · · , cNd

] computed
previously at every pixel (u, v) ∈ Ω2D ⊂ R

2 in one of the rectified images for
different disparities d ∈ D = {d1, d2, · · · , dNd

}, where Nd is the total number of
disparities. Basically, the NCC profiles are stacked into a 3D correlation map:

NCCstereo
3D : (u, v, di) ∈ Ω3D → ci ∈ [−1, 1] (2)

and converted into a 3D probabilitistic voxel map using the Gibbs measure as
follows:

P stereo
3D (u, v, di) =

exp (−β (maxd (NCCstereo
3D (u, v, d))−NCCstereo

3D (u, v, di)))

W (β)
,

(3)
where W (β) =

∑
d exp (−β (maxd (NCCstereo

3D (u, v, d))−NCCstereo
3D (u, v, di)))

is the partition function, and β is a free parameter.
Finally, the 3D position of each matched pair of points in the stereo views

is triangulated with the camera projection matrices to transform P stereo
3D into a

probabilistic voxel map P stereo
surface in real world 3D space:

P stereo
surface : (x, y, z) ∈ Ω3D → [p, 1− p] ∈ S1 , (4)

where p ∈ [0, 1] is the likelihood of a surface at voxel (x, y, z) in real world 3D
space.
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(a) (b) (c) (d)

Fig. 3. Transverse slices of CT volume depicting our ex vivo lamb kidney phantom with
(a) an exophytic and (c) an endophytic artificial tumor. (b) and (d) are probabilistic
Random Walker segmentations of (a) and (c), respectively. Tumor labels are colored
blue, kidney is colored green, and the background is red.

2.3 Registration of Stereo Camera and CT

We initialize the registration of the CT to the stereo camera in a semi-automatic
manner using manually matched landmarks between the original CT, left and
right camera views. In this first step, we use a similarity transformation to model
the combination of (1) a rigid transformation to cope with different reference
frames between stereo camera and CT acquisitions and (2) a global scaling to
cope with ambiguities resulting from possible camera calibration errors. The re-
sulting transformation is then refined with an automatic similarity registration of
PCT
surface to P stereo

surface obtained respectively from (1) and (4). Finally, a non-linear
registration step of these two volumes with a B-Spline transformation model is
performed to cope with deformations occurring between the pre-operative CT
acquisition and the surgical scene. We used elastix [13] with the sum of squared
differences (SSD) similarity metric for the two last automatic registration steps.

3 Results

3.1 Materials

For validation purposes, we fabricated an ex vivo phantom using a lamb kidney
and implanted artificial tumors inside it. Different materials (chewing gum and
olive pit) were used to emulate low and high contrast kidney-tumor boundaries
within the CT. The chewing gum was placed on the surface of the kidney to
emulate a partially exophytic tumor/cyst (Fig. 3a) and the olive pit was planted
deep inside the kidney (close to the renal pelvis) representing a completely en-
dophytic tumor (Fig. 3c).

A 16 slice Siemens Somatom CT scanner was used to acquire a high resolution
CT volume of the phantom. The resulting volume is composed of 130 (0.600 mm
thick) transverse slices of 512 × 512 pixels (0.215 mm pixel spacing). Stereo
endoscopy data was captured with a calibrated da Vinci S system at full HD
1080i resolution.
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(a) (b)

(c) (d) (e)

Fig. 4. Results of registration: (a) Original left stereo camera view, (b) final registered
crisp mesh of the tumors (blue) projected on top of the image. Close-up views depicting
intermediate results of the registration: (c) pose estimation, (d) automatic similarity
transformation, and (e) non-rigid registration.

3.2 Ex vivo Lamb Kidney Study

The Random Walker segmentation algorithm was applied with manual seeding
of each label in the CT volume. The probabilistic labeling corresponding to the
two simulated tumors is illustrated in Fig. 3b and 3d. Note that the diffusion of
uncertainties in the endophytic case is more visible compared to the exophytic
tumor; this is a direct result of weaker contrast (CT intensity values: difference
in pit/gum composition) at the kidney-tumor boundary. We were careful to keep
the distances between the manually placed seeds and the visible boundaries con-
stant to decrease the influence of seed placement on the resulting segmentations.

As illustrated in Fig. 4a, our phantom is quite smooth and lacks unique fea-
tures on its surface. This results in a largely uncertain reconstruction from our
stereo matching algorithm, which in turn causes the registration to be sensitive to
the initial pose estimation. Successful registration was achieved after estimating
the pose (Fig. 4c) using only four manually selected corresponding landmarks.
The outcome of the registration was verified visually (Fig. 4) by projecting the
kidney and tumor surfaces on both left and right endoscopy views. A small error
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(a) (b)

(c) (d)

Fig. 5. Augmented reality view of Ex vivo lamb kidney with endophytic and exophytic
artificial tumors showing different visualization scenarios: (a) crisp contour of projected
mesh, (b) isotropic 2D diffusion of the crisp contour, (c) 2D projections of the crisp
mesh dilated in 3D by 1 mm increments, (d) 2D projections of 3D isoprobabilities
from 0.5 to 0.15. Contours range from the most probable boundary (red) to the most
conservative boundary (green).

in alignment (< 1 mm) is observed in the resulting registration, this is due to the
error in reconstruction which is attributed to lack of texture on the phantom.

In order to verify the usefulness of probabilistic boundary visualization, we
present four visualization scenarios. In the first case (Fig. 4b), we generate a
crisp mesh model of the tumor by thresholding the probabilistic segmented CT
volume to extract the most probable kidney-tumor boundary. In our second
case, we project the previously generated mesh onto a 2D plane (normal to
the camera) and extract its contour (Fig. 5a). This particular approach does
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(a)

(b)

Fig. 6. (a) Top and (b) side views of ex vivo lamb kidney augmented with uncertainty-
driven tumor boundary localization. Uncertainty is encoded into the tumor boundary
ranging from certain (green) to uncertain (red).

not provide the surgeon with much additional information. Without any visi-
ble information (e.g. in the endophytic case) the surgeon’s confidence regarding
the visualized crisp boundary is, at best, changing isotropically away from the
contour (as emulated in Fig. 5b). Third case, we isotropically dilate the 3D
thresholded volume of the tumors by 1 mm increments and overlay the cor-
responding projected 2D contours (Fig. 5c). The resulting 2D contours dilate
anisotropically as they are influenced by the orientation and shape of the tu-
mor in 3-space. Fourth case, we propose thresholding the probabilistic volume
at increasingly conservative confidence intervals instead of isotropic dilation to
obtain isoprobability contours (Fig. 5d). In this case, we are essentially guiding
the dilation of resection boundaries using the underlying uncertainty informa-
tion extracted during the probabilistic segmentation of the CT. These results
are consistent with our initial observation that the diffusion of uncertainties are
greater in the endophytic case (pit/gum difference).



190 A. Amir-Khalili et al.

We presented the four cases to expert urology surgeons. The general consen-
sus was that the information presented in the fourth case (Fig. 5d) is promising.
A valid critique was made regarding the number of contours being overlayed on
the endoscopy view: it obstructs the kidney more than the simple crisp solution
(Fig. 5a). In order to address this problem, we present a complimentary visualiza-
tion scenario in which uncertainties are projected onto a single crisp contour. We
accomplish this by computing the minimum distance between the most probable
contour and the most conservative one at every location of the most probable
contour (distance from inner-most to outer-most contours in Fig. 5d). A lower
distance implies a higher confidence in the boundary localization as it indicates
a sharper edge in the probability map. We then transform these distances into
a relative color map and use it to color-code the crisp contour (Fig. 6).

This final visualization scenario does not only provide the most probable tu-
mor boundary localization, but also provide information about its local con-
fidence. This visualization can guide the surgeon to quickly identify the best
(most confident) place to start the resection. During the resection, the surgeon
can always opt for the fourth case to see exactly how the uncertainty is diffused
spatially.

4 Conclusion

We proposed a framework that enables extraction and registration of proba-
bilistic data from two complimentary sources of information available in robot-
assisted surgical interventions. Our approach provides the confidence in the re-
sulting augmented information which can help the surgeon during the localiza-
tion of excision margins before resection.

The novel visualization we presented is a proof of concept. The next step is
to validate our experiments on clinical data and more realistic ex vivo phantoms
with agar-based tumors of varying intensities, shapes and sizes [14]. We plan to
conduct in-depth summative usability tests in addition to more formative usabil-
ity tests to fully validate the integration of our uncertainty encoded visualization
techniques into the clinical workflow. In the near future we aim to automate the
initialization (pose estimation) steps and facilitate real-time operation of this
framework. Although in this paper we presented uncertainty encoding from pre-
operative CT, we will be taking advantage of other intra-operative sources of
uncertainty to improve the confidence at the localized boundary while new data
is acquired during the resection.
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