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Preface

This year, the 6thedition of the Medical Imaging and Augmented Reality (MIAR)
meeting joined forces with the 8thedition of the Augmented Reality for Computer-
Assisted Interventions (AE-CAI) workshop. As organizers of this joint meeting,
we are pleased to present the proceedings of this exciting workshop held in
conjunction with MICCAI 2013 on September 22nd, 2013 in Nagoya, Japan.

Over the past several years, the satellite workshops and tutorials at MICCAI
have experienced increased popularity. MIAR/AE-CAI 2013 is a joint venture
between the prestigious MIAR workshop series held bi-annually since 2002, and
the AE-CAI workshop series affiliated with MICCAI and featured on an almost
annual basis since 2003. This year’s joint workshop received over 40 submissions
and reached over 50 registrants, not including the members of the organizing
and program committees, making MIAR/AE-CAI one of the best received and
best attended workshops at MICCAI 2013.

The event was jointly organized by scientists from The University of Tokyo
(Tokyo, Japan), Mayo Clinic (Rochester, MN, USA), and Robarts Research In-
stitute (London, ON, Canada), who have had a long standing tradition in the
development and application of augmented & virtual environments for medi-
cal imaging and image-guided interventions. In addition, a Program Committee
(PC) consisting of more than 70 international experts served as reviewers for the
submitted papers.

Rapid technical advances in medical imaging, including its growing appli-
cations to drug delivery, gene therapy, and invasive/interventional procedures,
as well as a symbiotic development of protein science, imaging modalities, and
nano-technological devices, have attracted significant interests in recent years.
This has been fueled by the clinical and basic science research endeavors to ob-
tain more detailed physiological and pathological information about the human
body, to facilitate the study of localized genesis and progression of diseases.
Current research has also been motivated by the increased movement of medical
imaging from being a primarily diagnostic modality toward its role as a thera-
peutic and interventional aid, driven by the need to streamline the diagnostic
and therapeutic processes via minimally invasive visualization and therapy.

The objective of the MIAR/AE-CAI workshop was to attract scientific con-
tributions that offer solutions to the technical problems in the area of augmented
and virtual environments for computer-assisted interventions, and to provide a
venue for dissemination of papers describing both complete systems and clinical
applications. The community also encourages a broad interpretation of the field –
from macroscopic to molecular imaging, passing the information on to scientists
and engineers to develop breakthrough therapeutics, diagnostics, and medical
devices, which can then be seamlessly delivered back to patients. The workshop
attracted researchers in computer science, biomedical engineering, computer
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vision, robotics, and medical imaging. This meeting featured a single track of
oral and poster presentations showcasing original research engaged in the devel-
opment of virtual and augmented environments for medical image visualization
and image-guided interventions.

In addition to the proffered papers and posters, we were pleased to welcome as
keynote speakers Dr. Pierre Jannin (Université de Rennes I, France), speaking on
the modeling of surgical processes for intelligent computer-assisted interventions,
and Dr. Maki Sugimoto (Kobe University, Japan), describing state-of-the-art
developments in patient-based augmented reality and bio-texture manufacturing
for minimally invasive and robotic surgery.

MIAR/AE-CAI 2013 attracted 44 paper submissions from 10 countries. The
submissions were distributed for review to the PC and each paper was evalu-
ated by at least three experts, who provided detailed critiques and constructive
comments to the authors and workshop editorial board. Based on the reviews,
29 papers were selected for oral & poster presentation and publication in these
proceedings. The authors revised their submissions according to the reviewers’
suggestions, and resubmitted their manuscripts, along with their response to re-
viewers, for a final review by the volume editors (to ensure that all reviewers’
comments were properly addressed) prior to publication in this collection.

On behalf of the MIAR/AE-CAI 2013 Organizing Committee, we would like
to extend our sincere thanks to all PC members for providing detailed and timely
reviews of the submitted manuscripts. We also thank all authors, presenters and
attendees at MIAR/AE-CAI 2013 for their scientific contribution, enthusiasm
and support. We hope that you will all enjoy reading this volume and we look
forward to your continuing support and participation in future MIAR meetings,
as well as our next AE-CAI event to be hosted at MICCAI 2014 in Boston, USA.

July 2013 Hongen Liao
Cristian A. Linte
Ken Masamune
Terry M. Peters
GuoyanZheng



Organization

Proceedings of the MICCAI 2013 Joint Workshop on Medical Imaging and
Augmented Reality & Augmented Environments for Computer-Assisted Inter-
ventions: MIAR/AE-CAI 2013

MIAR/AE-CAI 2013 Workshop Committees

Organizing Committee

Hongen Liao, PhD Tsinghua University, Beijing, China &
The University of Tokyo, Tokyo, Japan

Cristian A. Linte, PhD Mayo Clinic, Rochester, MN, USA
Ken Masamune, PhD The University of Tokyo, Tokyo, Japan
Terry M. Peters, PhD Robarts Research Institute, London,

ON, Canada
Guoyan Zheng, PhD University of Bern, Switzerland

Program Committee

Purang Abolmaesumi University of British Columbia, Canada
Leon Axel NYU Medical Center, USA
Marie-Odile Berger IRISA, Rennes, France
Wolfgang Birkfellner Medical University of Vienna, Austria
Adrien Bartoli ISIT, Université d’Auvergne, France
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Simultaneous Tensor and Fiber Registration (STFR)  
for Diffusion Tensor Images of the Brain 

Zhong Xue* and Stephen T.C. Wong 

The Methodist Hospital Research Institute, Weill Cornell Medical College, Cornell University, 
Houston, Texas, United States 

zxue@tmhs.org 

Abstract. Accurate registration of diffusion tensor imaging (DTI) data of the 
brain among different subjects facilitates automatic normalization of structural 
and neural connectivity information and helps quantify white matter fiber tract 
differences between normal and disease. Traditional DTI registration methods 
use either tensor information or orientation invariant features extracted from the 
tensors. Because tensors need to be re-oriented after warping, fibers extracted 
from the deformed DTI often suffer from discontinuity, indicating lack of fiber 
information preservation after registration. To remedy this problem and to im-
prove the accuracy of DTI registration, in this paper, we introduce a simultane-
ous tensor and fiber registration (STFR) algorithm by matching both tensor and 
fiber tracts at each voxel and considering re-orientation with deformation simul-
taneously. Because there are multiple fiber tracts passing through each voxel, 
which may have different orientations such as fiber crossing, incorporating fiber 
information can preserve fiber information better than only using the tensor in-
formation. Additionally, fiber tracts also reflect the spatial neighborhood of 
each voxel. After implementing STFR, we compared the registration perfor-
mance with the current state-of-the art tensor-based registration algorithm 
(called DTITK) using both simulated images and real images. The results 
showed that the proposed STFR algorithm evidently outperforms DTITK in 
terms of registration accuracy. Finally, using statistical parametric mapping 
(SPM) package, we illustrate that after normalizing the fractional anisotropy 
(FA) maps of both traditional developing (TD) and Autism spectrum disorder 
(ASD) subjects to a randomly selected template space, regions with significant-
ly different FA highlighted by STFR are with less noise or false positive re-
gions as compared with DTITK. STFR methodology can also be extended to 
high-angular-resolution diffusion imaging and Q-ball vector analysis. 

1 Introduction 

Diffusion tensor imaging (DTI) has been widely and effectively used to study the 
neural connectivity in the brain [1, 2]. Deformable registration and automatic labeling 
of DTI images of different subject act as important roles in such applications. It is 
also a fundamental step in other DTI image analysis such as generating the group 
averaged atlas of the brain or in comparing different groups after normalization.  
                                                           
* Corresponding author. 
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In DTI, a trivariate Gaussian distribution is used to model the anisotropic water diffu-
sion at each voxel and is characterized by a diffusion tensor. Tractography can be 
performed to the tensor field to extract fiber tracts that reflect white matter or axon 
orientations. Thus, how to align the tensor field of one subject onto another globally 
and locally while preserving the fiber tracts information after warping is the major 
goal for DTI registration. In the literature, orientation invariant features were ex-
tracted to drive such a deformation. For example, Yang et al. combined geometrical 
and fiber orientation features to define the image similarity [3]. However, the ex-
tracted scalar features from tensors and fibers only represent partial information of the 
tensor, and the orientation information is neglected. To fully take the advantage of the 
tensor information algorithms directly rely on the tensor were proposed [4-6]. Typical 
similarity measures include mutual information, multichannel DTI feature similarity 
or tensor similarity, and different transformation mechanisms were introduced in DTI 
registration studies, including elastic deformation, diffeomorphism, B-Spline, and 
piece-wise affine transformations. Comparative studies suggested that high dimen-
sional approaches utilizing full tensor features instead of tensor-derived indices can 
further improve the alignment of white matter (WM) tracts. 

One important factor needed to be considered is tensor re-orientation. Different 
from scalar image registration, the tensor at each voxel needs to be re-oriented to 
match the two images [7]. In [8], a finite strain algorithm and a preservation of prin-
cipal direction algorithm were proposed to determine the tensor re-orientation, and  
re-orientation can be performed in each iteration. Recent advances such as the piece-
wise affine transformation and the diffeomorphic non-linear registration algorithms 
adopted and integrated analytical gradients of the registration objective functions by 
considering the re-orientation of tensor during the registration. However, as mention 
above, only tensor information was utilized in these methods. Because tractography 
on newly warped images does not generate fiber bundles as accurate as those from the 
original DTI due to the registration errors, it is highly desirable that both tensor and 
fiber information need to be incorporated in the registration process. Although recent 
works showed that combining the tensor and fiber information is promising [9], they 
extracted the orientation-invariant features and did not consider the orientation of 
tensors and fibers during the procedure of the registration. 

In this paper, we propose a new DTI registration method that combines the tensor 
and fiber information simultaneously in the registration procedure, called simultaneous 
tensor and fiber registration (STFR). The image similarity measures are defined as the 
similarity of the voxel-wise tensors and that of the orientation of the fiber tracts, and 
the deformation and re-orientation is simultaneously updated by minimizing the cost 
function consisting of the new similarity subjected to the smoothness constraints of the 
deformation field. In this way, not only tensors but also local fiber tracts are aligned. 
Both simulated and real human brain DTI data sets were used to evaluate the registra-
tion performance in the experiments. By using simulated images with known deforma-
tions, the registration errors of the proposed STFR algorithm and DTITK were  
calculated and compared [5]. The results showed the new algorithm yielded more ac-
curate registration, with an average decrease of 12% of registration errors. Visual in-
spection also showed that the registered images of real human brain data sets are more 
similar to the template. Finally, we illustrated that by applying STFR to DTI images 
from ASD and TD groups, two-sample t-tests using SPM software showed regions 
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with significantly different FA are with less noise or false positive regions. The metho-
dology of STFR can also be extended to high-angular-resolution diffusion imaging and 
Q-ball vector analysis. 

2 Methods 

2.1 Algorithm Formulation 

Image registration aims to find a deformation field that maps a subject image onto 
the template image  by minimizing the objective function:  E ) SIM , , ) λ CON ),  (1) 

where ESIM T, S, ) stands for the distance measure between the two DTI images (  
and ) using deformation field f, and ECON ) represents the smoothness constraint 
of  . λ is the weight of the smoothness constraint. To incorporate both tensor and 
fiber orientation and consider re-orientation simultaneously, the objective function of 
STFR is defined as, )  | | ) ) ) , ) )) ), ) ) ), (2) 

where  is a voxel in the template image domain Ω, |Ω| is the number of voxels. )  denotes the tensor at voxel  in the template image, and ) ) 
represents the tensor at the corresponding location in the subject image. ) stands 
for the fiber tract orientations at voxel  in the template image, and ) ) 
represents the fiber tract orientations at the corresponding location in the subject im-
age. )  is the respective rotation matrix, calculated from the deformation field at 
voxel . It can be seen from Eq. (2) that both the tensor and the fiber tracts in the 
template image needs to be deformed (by using f) and re-oriented (by using ) in 
order to be compared with the corresponding tensor and fiber tracts in the subject 
image. ξindicates the tradeoff between tensor distance and fiber distance, and λ is the 
weight for the smoothness constraints of  . 

The first term in Eq.(2) calculates the distance between two tensors. Tensor simi-
larity measures can be defined by different metrics such as full tensor distance, tensor 
scalar product and so on. In [10], different tensor similarity measures have been com-
pared and the best registration performance was obtained by the Euclidean distance 
measure using full tensor. Utilizing this tensor metric, the tensor similarity in the Eq. 
(2) is defined as: , ) ) ) ) ) ) ). (3) 

The second term in Eq. (2) calculates the similarity between the fiber tracts passing 
voxel x in image  and those passing the corresponding voxel )  in image . 
We used the tractography algorithm in DTI-Studio to extract the fiber tracts on each 
image. Because the tractography was performed on sub-voxel resolution, there are 
multiple tracts passing through each voxel with different numbers. To define the dis-
tance between M fibers at a template voxel and N fibers at the corresponding subject 
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voxel, we adopted a pair-wise cosine distance metric to compute the distances. Consi-
dering the deformation and re-orientation, the distance of fiber tracts of Eq. (2) is 
defined as:   , ) ∑ 1 ) , ), , ) ) . (4) 

The third term CON ) of Eq. (2) is the smoothness constraint of the deformation 
field, and it is defined as || f|| . In this way, by minimizing ) we obtain the de-
formation field that matches not only the tensor but also the fiber tracts between the 
template image and the subject image (after deformation and re-orient the tensors and 
fiber tracts). Topology of the deformation field was also regularized using [11] to 
ensure realistic elastic transformation. 

2.2 Algorithm Implementation 

After getting the tractography results using DTI-Studio, orientations of the fiber tracts 
passing through each voxel are collected. Global affine registration was first per-
formed before applying the proposed algorithm. Images are then down-sampled so the 
registration is performed in pyramid fashion. At the lowest resolution, the initial de-
formation was set to zero, and the deformation at the lower resolution was up-
sampled to higher resolution as initialization. At each resolution, the following two 
steps were performed iteratively: 

Step 1: Calculate the voxel-wise orientation matrix  from the current deforma-
tion field . We first calculate the Jacobian matrix, ), and the orientation matrix 
is calculated as follows[12]: ) ),) ) )) ). (5) 

Step 2: Update . Using cubic B-Spline to model the deformation and applying the 
finite differential method, the partial derivatives of the objective function with respect 
to the deformation field can be calculated as ∂E/ ∂ , and   is updated by: 

ε ∂E/ ∂  . (6) 

The iteration will stop until the change of objective function is smaller than a pre-
scribed value or the maximal number of iterations is reached. Because fiber orienta-
tion in the lower resolutions does not affect much the final registration results and 
collecting all the fiber tracts passing through a low-resolution voxel may involve 
more fibers with multiple orientations, the fiber orientation is only used in the highest 
resolution.  

3 Experiments 

3.1 Comparing Registration Accuracy Using Simulated DTI Data 

To evaluate the performance of the registration, we used simulated images with known 
underlying deformation fields to compare the registration accuracy. The proposed 
STFR algorithm and the DTITK algorithm were compared using these simulated  
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children. Each data set contains 1 B0 image and 32 diffusion weighting image se-
quences along different directions. The image resolution is 2mm 2 2.7 , 
with size 128×128×70. We used the same template as the above experiment.  
Fig. 4 shows some registration results of ASD children using DTITK and STFR,  
respectively (we didn’t show original DTI data because of the page limit). Compared 
to the previous registration results, because the image resolution herein is lower, the 
registration performance is not as good as that in Section 3.1, but from Fig. 4, we can 
clearly see that STFR yielded better registration. For some images DTITK results 
were not satisfactory.  
 
 

Fig. 5. SPM two-sample t-test results for normalized FA maps of ASD and TD data using 
STFR (bottom) and DTITK (top), respectively 

In addition to compare the results visually, we normalized the FA maps of these 
subjects and performed two-sample t-tests on them using the SPM software package 
to highlight the regions with significant different FA values. All the normalized FA 
maps are first smoothed using the same parameters (Full width at half maximum 
(FWHM)=4mm) and p-value threshold was set to 0.05 with FDR correction. Some 
regions with significantly different FA are highlighted on the FA map of the template 
image in Fig. 5. Detailed analysis of the anatomical differences about the two groups 
is beyond the scope of this paper, but from the difference maps we can notice that 
because of larger registration errors, DTITK did not align the cortical areas of the 
brain well, resulting in some false positive regions marked by the SPM software. 
These results further indicate that STFR is a potential tool for aligning brain DTI 
images. We plan to make the software toolkit publicly available on 
http://www.nitrc.org projects/mias.  

Although validated the algorithm using simulated and real DTI data. We have not 
yet applied statistical power analysis for evaluating the performance of the algorithm. 
In the future, further validation with sufficient statistical power is necessary in the 
future study, and we would like to explore brain connectivity studies on ASD after 
registering the DTI images.  
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4 Conclusion 

In conclusion, we proposed a simultaneous tensor and fiber registration algorithm for 
DTI images. Full tensor information and fiber orientation information were utilized 
by simultaneously considering their re-orientations during the registration. The regis-
tration performance was evaluated through simulated and real DTI images and com-
pared with DTITK. The results confirmed the advantage of the proposed algorithm for 
better preserving fiber orientation. Our future work is to extend the registration algo-
rithm for use in a neural connectivity network study of Autism.    
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Abstract. Surgical navigation techniques have been evolving rapidly in the 
field of oral and maxillofacial surgery (OMS). However, challenges still exist  
in the current state of the art of computer-assisted OMS especially from the 
viewpoint of dental surgery. The challenges include the invasive patient regis-
tration procedure, the difficulty of reference marker attachment, navigation  
error caused by patient movement, bulky optical markers and maintenance of 
line of sight for commercial optical tracking devices, inaccuracy and suscepti-
bility of electromagnetic (EM) sensors to magnetic interference for EM tracking 
devices. In this paper, a new solution is proposed to overcome the mentioned 
challenges. A stereo camera is designed as a tracking device for both instrument 
tracking and patient tracking, which is customized optimally for the limited 
surgical space of dental surgery. A small dot pattern is mounted to the surgical 
tool for instrument tracking, which can be seen by the camera at all times  
during the operation. The patient registration is achieved by patient tracking and 
3D contour matching with the preoperative patient model, requiring no fiducial 
marker and reference marker. In addition, the registration is updated in  
real-time. Experiments were performed to evaluate our method and an average 
overall error of 0.71 mm was achieved. 

Keywords: marker-free registration, image-based navigation, image tracking, 
stereovision, dental surgery. 

1 Introduction 

Computer-assisted oral and maxillofacial surgery (OMS) has been rapidly evolving in 
the last decade [1]. The categories of the computer-assisted OMS technology can be 
roughly divided into surgical simulation and surgical navigation in terms of whether it 
is performed in the surgical planning phase or the surgical phase. In preoperative 
simulation, 3D models of the surgical site are created from preoperative medical  
images as the counterparts in the virtual space. Surgeons can perform various inspec-
tions, measurements and labeling on the models and make detailed surgical planning 
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with the help of a computer. In addition, virtual surgical procedures could also be 
carried out to simulate the real ones by means of special software and haptic devices 
[2-4]. In intra-operative navigation, a tracking device is used to track the surgical 
instrument whose position and orientation are mapped into the corresponding model 
space via a registration procedure. By this way, the relative spatial relationship  
between the instrument and the surgical site is related and visualized, hence being 
able to transfer the premade surgical plan accurately.  

In one branch of OMS, dental surgery is carried out within the limited space (i.e. 
the mouth) and the surgical navigation for dental surgery is subjected to patient 
movement especially when the surgical site is located on the mandible. Some  
commercially available navigation systems and prototypes for dental surgery have 
been reported and evaluated [5-11]. However, several disadvantages still exist in these 
navigation systems. Firstly, all of the systems employ either optical trackers or elec-
tromagnetic (EM) trackers to locate surgical instruments intra-operatively. Currently 
used optical markers are bulky compared with the small operative field, which makes 
it inappropriate to be attached on either the patient or the instrument. An EM tracker 
has relatively lower accuracy and is susceptible to metallic materials, which may 
cause the tracking to be unstable in an operating room environment. Secondly, a ref-
erence marker is required to be attached to the patient to deal with patient movement. 
The use of a reference marker is either invasive (screwed into the bone) or error-prone 
(attached on the skin or using specific casts). Lastly, the image registration procedures 
are cumbersome and invasive. For better registration accuracy, fiducial markers are 
usually used. Similar to the attachment of the reference marker, the attachment of 
fiducial markers either is invasive to patients or requires a cumbersome patient-
specific casts which is error-prone. 

In this paper, a new solution is proposed to overcome the mentioned disadvantages. 
A stereo camera is designed as a tracking device for both instrument tracking and 
patient tracking, which is optimized and configured for the limited surgical space of 
dental surgery. A small dot pattern with the size 30 ×30 mm is mounted to the  
surgical tool for instrument tracking, which can be seen by the camera at all times 
during the operation. The patient registration is achieved by patient tracking followed 
by real-time 3D contour matching with the preoperative patient model, which requires 
no fiducial marker or reference marker.  

2 Stereo Camera Tracking System 

2.1 Stereo Camera 

The stereo camera consists of two CMOS cameras with USB3.0 interface separated at 
a distance of approximate 120mm, as shown in Fig. 1(a). The maximum frame rate is 
60 frames per second (fps) with image resolution 1280×1024 pixels. The stereo cam-
era is calibrated using a 7×7 dot array pattern plate with the size 100×100 mm. The 
left and right images are undistorted and rectified so that only horizontal parallax exits 
between them. The intra-operative configuration of the stereo camera is illustrated in 
Fig. 1(b). The camera is looking down at the operative field (including the upper and 
lower teeth) at a distance of approximate 460 mm. The overlap view of the two  
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cameras sufficiently covers the entire range of motion for the surgical instruments. 
This configuration has two advantages: one is that the measurement geometry is  
customized optimally for the limited operative field so as to achieve better accuracy; 
the other is that it is easy to maintain the line of sight between the camera and the 
instrument during the operation. 

 

Fig. 1. (a) Stereo camera and calibration plate (b) Intra-operative configuration 

2.2 Instrument Tracking 

A small tool marker is designed to be attached on the surgical tool for the instrument 
tracking task. As shown in Fig. 2(a), the tool marker is composed of a resin mounting 
base fabricated by a 3D printer and a 3×3 dot array pattern for stereo tracking. The 
surgical tool has a cylindrical profile whose axis is perpendicular to the plane of the 
pattern. Fig. 2(b) shows the assembly of the two parts. The tip offset of the tool in the 
tool marker frame is determined by the geometry of the design (or, pivot calibration). 
The dot array patterns are recognized in both left and right images after which dot 
centroids are extracted with sub-pixel accuracy. Three-dimensional coordinates of the 
dot centroids are then calculated by triangulation. The pose of the tool marker frame 
is therefore calculated by matching the local coordinates in the marker frame to the 
calculated coordinates in the stereo camera frame. The pose of the tool tip frame is 
further obtained by a post concatenation of the fixed transformation matrix from the 
tool marker frame to the tool tip frame. 

 

Fig. 2. (a) Tool marker (b) Surgical instrument with the tool marker 
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3 Real-Time Marker-Free Patient Registration 

Patient registration or image registration is a key procedure to associate the surgical 
object with its virtual counterpart. The resulting transformation matrix is used to map 
the pose of the surgical tool tracked by the stereo camera to the pose in the preopera-
tive image frame, by which computer graphics (CG) techniques could be applied  
to navigate the surgical procedure. The proposed patient registration is achieved by 
patient tracking followed by matching the 3D contour of the tracked object to its 
preoperative image in real-time. 

3.1 Patient Tracking 

The patient tracking here refers to the 3D contour tracking of the teeth. Fig. 3 shows 
the stereo images of a surgical scene (simulated) of dental surgery on lower teeth. The 
operative field indicated by the red rectangles is exposed to the stereo camera using a 
dental clamp. Owing to the high contrast between the teeth and the background oral 
cavity, the 3D contour of the teeth (front teeth) could be easily extracted by the  
following algorithm. The region of interest (ROI) indicated by the yellow rectangle is 
selected manually only in the first frame of the left camera, which is used as a 2D 
template. Normalized cross correlation based template matching is performed in the 
corresponding right image and following frames to locate the ROIs. 2D contours of 
the front teeth within the ROIs in the stereo images are then extracted with sub-pixel 
accuracy. For each point on the left contour, the corresponding point on the right  
contour is obtained by epipolar constraint searching (they are supposed to have the 
same y image coordinate). The 3D contour is finally reconstructed using stereo  
triangulation. The algorithm also can apply to the upper teeth. By this way, the 3D 
contour is tracked in real-time. 

 

Fig. 3. Simulated surgical scene and 3D contour of teeth 

3.2 3D Contour Matching 

We have so far explained the intra-operative acquisition of the teeth’s geometric data. 
Next, this intra-operative data will be registered to the preoperative one. As the teeth 
are rigid objects, there is a high fidelity between their intra-operative shapes and the 
model created from the preoperative CT image. We first obtain the same contour on 
the model preoperatively and then match the two contours intra-operatively. 
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Model Contour Extraction. The triangle mesh model of the lower tooth crowns  
is created by an iso-surface extractor and is rendered by OpenGL as shown in  
Fig. 4(a). The OpenGL camera is adjusted to prepare a view for front tooth edge 
extraction shown in Fig. 4(b). The foreground and background of rendered image 
(b) are segmented using the OpenGL z-buffer as shown in Fig. 4(c). Those pixels 
whose z-buffer value is -1 are classified as background (white), otherwise they are 
classified as foreground (black). Then the edge detection of the front teeth could be 
easily carried out to obtain the 2D contour indicated by the red curve. Finally, 3D 
coordinates of the extracted 2D contour is reconstructed according to the additional 
z-buffer values held in the OpenGL frame buffer. The recovered 3D contour (red 
points) is shown in Fig. 4(d). Note that the above procedure needs to be done only 
once preoperatively. 

 

Fig. 4. (a) Surface rendering of lower tooth crowns (b) Prepared view for contour extraction (c) 
Binary z-buffer image and edge extraction (d) Recovered 3D contour 

ICP Matching. The intra-operatively tracked tooth contour is registered to the preo-
perative one using the iterative closest point (ICP) algorithm [12]. To avoid converg-
ing to local minima, the principal axes of the two point sets are calculated which are 
used together with their centers for initial match. The initial match is easily achieved 
by transforming the frame consisting of the center and the three orthogonal principal 
directions of the tracked contour to that of the extracted model contour. After the 
initial match, the ICP algorithm is applied to further refine the alignment between the 
two contours. By this way, the transformation from the model frame to the stereo 
camera frame is obtained, which is used to map the surgical instrument to the atlas for 
surgical navigation. The above procedure is carried out just after the intra-operative 
tooth contour is successfully tracked. 

4 Experiments and Results 

All experiments were performed using a computer with an Intel Core i7-3960 
CPU@3.30GHz and 16GB memories. The stereo camera worked in a monochrome 
mode with 60 fps and was connected to the computer workstation by USB3.0  
interface. C++ and OpenGL4.3 were adopted for algorithm implementation.  
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4.1 Instrument Tracking Evaluation 

The experimental setup is shown in Fig. 5. The instrument with the tool marker is 
fixed on a 3D stage whose step resolution is 0.01mm. 

 

Fig. 5. (a) Experimental setup (b) /(c) Left/right image of instrument tracking 

Tracking Precision Evaluation. The tool tip frame (represented by the origin x, y, z 
and the XYZ type Euler angles α, β, γ) was tracked while keeping stationary. 6400 
samples were acquired to evaluate the tracking precision statistically and the results 
are shown in Table 1, where the range is defined as the absolute difference between 
the maximum and the minimum; std represents the standard deviation. The average 
tracking time was 18 milliseconds. 

Table 1. tracking precision evaluation 

 x mm) y mm) z mm) α deg) β deg) γ deg) 
range 0.305 0.340 0.098 0.199 0.188 0.031 std 0.043 0.044 0.013 0.026 0.026 0.004 

Tracking Accuracy Evaluation. For accuracy evaluation, the stage was moved every 
10 mm along its x, y axis and 5 mm along the z axis. The tool tip position was record-
ed at each position to create a 5×5×5 spatial dot array which would be registered  
to the ground truth using a point-based registration algorithm. The FRE (fiducial  
registration error) was used to evaluate the tracking accuracy which is given by 
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Where ix and iy are corresponding points; R̂ and t̂ are the estimated transformation to 

transform the recorded dot array to the ground truth; N is the number of points (equal 
to 5×5×5). The alignment result is shown in Fig. 6 and the FRE was 0.15 mm. 

 

Fig. 6. Tracking accuracy evaluation 

4.2 Patient Tracking and Matching Evaluation 

Tooth models (lower and upper teeth) were created using a 3D printer from the  
segmented CT data of a patient and were assembled with a head phantom, which 
aimed to simulate the real surgical scene. The phantom was moved with different 
position and orientation. The stereo camera tracked the teeth and matched them to the 
preoperative model in real-time. The tracking and matching results of upper teeth are 
shown in Fig. 7. The average time cost was 35 milliseconds for one pair of frames. 

 

Fig. 7. Patient tracking and matching evaluation 
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4.3 Image-Based Navigation Evaluation 

Dental navigation experiments were carried out to evaluate the overall error of the 
proposed method, which includes the device tracking error, the real-time registration 
error (further including the patient tracking error and the ICP matching error) and the 
manual error caused by hand tremor. For each frame pair of the stereo camera, both 
patient tracking and instrument tracking are performed. The former is to update the 
registration matrix and the latter is to map the surgical tool into the CG model space 
for visualization. Fig. 8 shows the navigation interface demonstrating a drilling 
process between adjacent tooth roots.  

 

Fig. 8. Image-based navigation 

A post evaluation method was used for accuracy evaluation.  As shown in Fig. 9, 
10 entry points were made on the CG model of maxillary teeth (a); drilling operation 
targeting at those entry points on the corresponding phantom (b) was guided using our 
proposed method; 3D scan (c) of the phantom after drilling were obtained and was 
aligned with the preoperative CG model (d). The deviation between the preplanned 
entry points and the real drilled points were measured on the overlaid CG models as 
overall navigation errors. The results are summarized in Table 2. 

 

Fig. 9. Post evaluation (a) CG model with entry points (b) Model for drilling (c) 3D scan of the 
model after drilling (d) Overlay of the CG model and the post-3D scan 
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Table 2. error measurement 

point 
index 

1 2 3 4 5 6 7 8 9 10 mean 

error 
(mm) 

0.67 0.89 0.28 1.08 0.75 0.66 0.88 0.86 0.62 0.44 0.71 

5 Conclusion 

An image-based navigation method using stereovision for dental surgery without 
invasive and/or cumbersome patient registration procedures has been presented. The 
stereo camera has stable tracking precision and satisfactory accuracy of less than 0.2 
mm. The proposed registration scheme works in a tracking-matching way which can 
deal with the patient movement. The total time cost of the instrument tracking and the 
patient registration is less than 60 milliseconds which is fast enough for clinical use. 
Benefitting from the real-time registration, it is free to adjust the stereo camera or 
move the patient intra-operatively, in which case the registration matrix can be accor-
dingly updated within less than 1 second. Surgeons would not feel the existence of the 
registration procedure, although it indeed exists. Experimental evaluations on the 
stereo tracking device, the real-time registration and the overall accuracy of naviga-
tion were carried out and an overall navigation error of 0.71 mm was achieved. Note 
that the overall error also includes the manual error during drilling. That is why we 
chose to evaluate the error at entry points. Even though the navigation system gives 
correct current position and orientation, the drilling path may deviate owing to the 
hand tremor. A robotic arm or holder may help in reducing the manual error. 
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Abstract. Segmentation of three-dimensional (3D) transesophageal
ultrasound (TEE) is highly desired for intervention monitoring and guid-
ance, but it is still a challenging image processing task due to complex
local anatomy, limited field of view and typical ultrasound artifacts. We
propose to use a multi-cavity active shape model (ASM) derived from
Computed Tomography Angiography (CTA) segmentations in conjunc-
tion with a blood/tissue classification by Gamma Mixture Models to
identify and segment the individual cavities simultaneously. A scheme
that utilized successively ASMs of the whole heart and the individual
cavities was used to segment the entire heart. We successfully validated
our segmentation scheme with manually outlined contours and with CTA
segmentations for three patients. The segmentations of the three patients
had an average distance of 2.3, 4.9, and 2.1 mm to the manual outlines.

Keywords: TEE, ASM, Gamma Mixture Model, ultrasound, segmen-
tation, heart.

1 Introduction

Three-dimensional transesophageal echocardiography (3D TEE) is an excellent
modality for cardiac imaging and live monitoring of interventions. It allows direct
visualization of the complex 3D anatomy of the different heart cavities and valves
and the relative position of catheters, closure devices, and artificial valves. The
position of the ultrasound probe within the esophagus allows high-resolution,
unobstructed visualization of structures in the atrial and valvular regions of the
heart, and a stable viewpoint for sustained imaging with much higher image
quality than from the chest. Orientation, interpretation and automated segmen-
tation of the 3D TEE images, however, can still be challenging, since only a
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small part of the cardiac anatomy can be covered at once, and manipulation of
the probe requires considerable operator skill.

Current segmentation methods for cardiac 3D ultrasound (US) aim either at
undifferentiated blood/tissue separation (e.g. for 3D anatomical visualization)
or at segmentation of a single structure such as the mitral valve [1] or the left
ventricle. Most are based on generic approaches such as level sets [2] which do
not combine naturally with shape priors, multi-object concepts and incomplete
cavity separations (e.g. open valves or wall dropout).

Here, we propose a novel segmentation method for 3D TEE aiming at com-
plete segmentation of the different cardiac cavities in the sector view, by use of a
multi-cavity Active Shape Model (ASM), based on a full-heart statistical shape
model derived from Computed Tomography Angiography (CTA) images, in com-
bination with TEE tissue/blood classification based on Gamma Mixture Models
(GMM). Such a model can provide full anatomical context for the partial TEE
view, and may accommodate multi-view TEE fusion, multimodal image regis-
tration and tracking of interventional devices within the reconstructed anatomy.
Even when only small parts of different cavities are included in the image sector,
the full model context may still provide the proper clues to identify and correctly
segment the partial cavities.

2 Methodology

We use a statistical shape model derived from 151 atlas CTA based segmenta-
tions [3]. The three patients of this study were not included in the ASM. The
model includes the left ventricle (LV), right ventricle (RV), left atrium (LA),
right atrium (RA), and the aorta (Ao). An ASM describes a shape (s) by a lin-
ear combination of a mean shape (s̄) and the modes of shape variation derived
by principal component analysis [4]. A shape can therefore be expressed as

s = s̄+ Φb, (1)

where Φ are the eigenvectors of the shape variation and b is the shape param-
eter vector containing the linear combination coefficients. ASM of all cavities,
ASMtotal, and individual cavities, ASMpart, were built according to Cootes et
al. [4]. For the ASMtotal 90% and for the ASMpart 98% of the shape variation
were kept. The ASM is updated by blood/tissue interface detection exploiting a
probabilistic characterization of speckle proposed in [5].

New update points (r′) for the ASM are found along the normals of the model
surface for each model point (r). The new points are selected by minimizing an
objective function as proposed by van Ginneken et al. [6], which gives a robust
estimator of the blood-tissue transition point. New shape instances are computed
using a weighted back projection. Each selected updated point is assigned a
weighting factor, w, consisting of a GMM based edge probability, wGMM (r′),
a model distance term, wASM (r′), and a term disqualifying points outside the
pyramidal TEE volume, wUS (r′). The weighting factor is computed as follows:

w (r′) = wASM (r′) wUS (r′) wGMM (r′) , (2)
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where

wASM (r′) = exp

(
− (r − r′)2

σ2

)
, (3)

and σ is set to 20 (stage 1 and 2) and 10 (stage 3). The term, wUS (r′), is derived
by convolving the binary TEE mask with a Gaussian kernel with a variance of
20 voxel2.

The termwGMM (r′) accounts for the probabilistic characterization of speckle,
enhancing voxels at the blood tissue border (see below). In this case, we con-
sider the gamma distribution as a good candidate to characterize the speckle for
both blood and myocardial tissue [7,8]. Consequently, we model the intensity
distribution of US images with a two-component GMM with one component for
blood and one for myocardial tissue [5]. The voxel intensities of an ultrasound
image region (X = {Xi} , 1 ≤ i ≤ N) can be considered a set of identically
distributed random variables. The probability density function of Xi is given by

p (x|Θ) =

2∑
j=1

πjfX (x|αj , βj) , (4)

where Θ describes the parameters of the GMM (π1, π2, α1, β1, α2, β2), and fX is

the gamma probability density function (PDF) [7]. The condition
∑2

j=1 πj = 1
must hold to ensure a well defined probability p (x|Θ). The expectation maxi-
mization (EM) algorithm [9] is used to estimate the GMM parameters [5]. The
probability maps of voxels belonging to blood or tissue (k = 1, 2) are computed
by the Bayes Theorem:

pk (x|Θ) =
πkfX (x|αk, βk)∑2
j=1 πjfX (x|αj , βj)

. (5)

An example slice of a GMM map of blood and tissue is shown in Fig. 1. Then,
the GMM term, wGMM (r′), is defined as

wGMM (r′) = 1− |p2 (I (r′) |Θ)− 0.5|
0.5

, (6)

where I (r′) stands for the intensity in the US image at r′.
The schematic layout of the segmentation algorithm is shown in Fig. 2 and

comprises the following stages:

First Stage. In the first step the ASM of the entire heart containing all cavities
(ASMtotal) are used. The mean shape (X̄total) of this ASM is initially trans-
formed to the TEE image by a similarity transform Tinit which was derived by
manually indicating three landmark points in the TEE image (center of mitral
valve, center of aortic valve, and LV apex (or a long axis point)). The optimal
pose (TX̄total

) of the X̄total is found by extending the methods from Arun et al.
[10] to a weighted least square sense.

To prevent pose jumps by erroneous edge responses, all estimates of newly
found transforms (T ′) are constrained to the transform (T ′′) of the previous
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Fig. 1. Slice of a 3D TEE image (left) and the corresponding GMM map of blood
(middle). Mean shape of the used statistical shape model (right). Red: LA, green: RA,
yellow: RV, blue: LV, light green: Ao.

TEE
image

Pose alignment Updating pose
& shape

Updating pose
& shape

Stage 1 Stage 2 Stage 3

Fig. 2. Segmentation scheme

stage of the segmentation scheme by T ′ = αT ′′ + (1− α) T ′, where α weights
the resulting transform. The transform weighting factor, α, is set to 0.0 for
estimating Tinit, and to 0.4 for estimating TX̄total

.

Second Stage. After the initial pose estimation the pose and shape of ASMtotal

are iteratively updated. New shape parameters, b, are computed from the update
points (r′) and b is limited to a hyper-ellipsoid with radii up to 1.5 times the
shape variance [4].

Third Stage. In the last stage of the segmentation for each cavity a separate
shape model covering 98% of the shape variation is used. The pose updates
of each ASM are more strongly constrained by setting α to 0.8. The shape
updates are again limited to a hyper-ellipsoid with radii up to 1.5 times the
shape variance.

3 Experiments and Results

The segmentation method was validated in three datasets (TEE1, 2, and 3)
obtained from different patients (2 male, 1 female; mean age: 74) undergoing



Segmentation of 3D Transesophageal Echocardiograms 23

a Transcatheter Aortic Valve Implantation (TAVI) were selected for this work.
All TAVI patients had 3D TEE data acquired with a matrixTEE probe (X7-2t,
Philips Healthcare, The Netherlands) during the preparation of the intervention.
The patients were anesthetized and in a supine position. The image volumes of
varying image quality were acquired during one heart cycle and the end diastolic
time-frame was manually selected. All patients underwent a CTA for preopera-
tive planning. The end diastolic time frame was manually selected and the CTA
images were cropped so that only the heart was in the image volume.

To provide a segmentation ground truth, 2D contours of all visible cavities in
multiple short and long axis views were manually annotated by two independent
observers in all TEE images. First, one observer indicated four landmark points
on the mitral valve (MV) annulus, one on the aortic valve (AV), and one at the
apex of the left ventricle. The center of the four MV points, AV, and apex points
were then used to compute an initial similarity transform for the mean shape
of the total heart model(X̄total). The mean shape was overlaid with the TEE
image and small adjustments could be made to the landmark points to obtain an
optimal initial pose of the model. Using this transformation as a starting point,
the manual outlining was, performed by two observers, in ten equally distributed
2D short axis views and 4 long axis views, obtained by slicing the TEE image
and the mean shape model. The 2D contours of X̄total were interpolated by B-
splines and the control points were interactively manipulated by the observers
to adapt the contours to the correct borders of the different cavities.

Additionally, CTA images were obtained from the same patients and were
segmented using the multi-atlas based approach introduced in [11]. The obtained
CTA cardiac chamber segmentations were first manually registered to the TEE
segmentations, and subsequently automatically registered rigidly using Elastix
[12]. The Dice coefficients of TEE and CTA segmentations were calculated for
all data sets within the pyramidal TEE image.

All ASM results were compared to the average manual observer outline, which
was constructed from the mean delineations of both human observers. The mean
points were computed by iterating through the contour points of observer 1 and
finding the point with the smallest Euclidean distance of observer 2. This was
done for all contour points lying within the pyramidal image volume. The average
point-to-point distance (PTPD) was computed and served as a baseline for the
segmentation performance of the ASM.

The average point-to-surface (P2S) distance between the average observer
and the initial mean shape model (X̄total) and the final segmentations of the
ASM were calculated (Dinit and Dasm respectively) to assess the automatic
segmentation quality.

The average inter observer variabilities for all sets and heart cavities are shown
in the boxplot of Fig. 3. The average point-to-surface distance of the average
observer to X̄total and to the final segmentation result are also shown in Fig. 3.
The average Dasm was 2.3, 4.9, and 2.1 mm for TEE1, 2, and 3 respectively.

Note that the TEE 1 data set (Fig. 3, top) shows a good initial overlap of
the cavities (more than 75%), though the distance between average observer
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Fig. 3. Boxplots of interobserver variability of manual ground truth (P2PD), P2S dis-
tance of initial model to ground truth (Dinit) and P2S distance of final segmentation to
ground truth (Dasm) for the three patients (rows) per cavity (column). Initial overlap
specifies overlap of X̄total with the pyramidal TEE image.

Table 1. Dice Coefficient CTA to TEE segmentations

heart cavity LV RV LA RA Ao total

TEE1 0.88 0.80 0.84 0.81 0.76 0.85
TEE2 0.73 0.78 0.68 0.74 0.74 0.80
TEE3 0.81 0.76 0.74 0.79 0.84 0.80

and the initial mean shape is far from the inter-observer range. In that case,
the proposed segmentation scheme obtains a segmentation which lays within
the inter-observer range. The same behavior is observed for the TEE 3 data set
(Fig. 3, bottom), where the mean distance of the final ASM segmentation lays
in the inter-observer range even for an initial overlap of 71%. For the TEE 2
dataset (Fig. 3, middle), the performance of the segmentation is decreased due
to the very low initial overlap of cavities, which is less than a 35% in some cases.

The TEE segmentations were also validated with CTA segmentations. The
obtained Dice coefficients between TEE and CTA segmentations are listed in
Tab. 1 and a qualitative example of the TEE1 segmentation overlaid with the
original TEE image and transformed to the CTA image is shown in Fig. 4. Note
that these results show a very substantial overlap, even though correspondence
between the separately acquired CTA and TEE will be compromised.

4 Discussion

In this paper, we introduced a novel multi-cavity ASM segmentation method
for 3D TEE, capable of handling the complex anatomy, varying image quality,
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Fig. 4. Qualitative example of TEE1 segmentation of RV (green) and LV (cyan) over-
laid with the manual outlines (red: RV, yellow: LV) of observer 1 and 2 (left). Final
segmentation of TEE1 transformed into the CTA image (right). Structures detected in
TEE overlap well with those in the CTA image.

and the narrow field of view. The GMM approach provides a solid estimation
of blood/tissue membership probability which, in combination with the multi-
cavity statistical model, creates a robust segmentation scheme with automatic
identification of the different cavities in the complex TEE images.

The accuracy of the segmentation for the different cavities was comparable to
the interobserver variability of the manual segmentations that served as ground
truth. Accuracy was highest for TEE1 which had the best image quality and the
highest overlap of the pyramidal image volume with the heart cavities. The lowest
accuracywas obtained for TEE2which had the lowest image quality and the lowest
image overlapwith the heart cavities. Themanual segmentation for TEE2was also
harder to perform accurately and due to the small overlap less contour points were
used. Nevertheless, this confirms the relative robustness of our method.

TEE3 had worse image quality than TEE1 but comparable overlap of the heart
cavities with the image volume. For RV, LA, and Ao segmentation accuracy gains
up to 76% could be achieved compared to the initial model. This indicates that
our approach is quite robust to image noise and artifacts but needs sufficient
overlap of the cavities to perform well.

The patients used in our study were quite different from the normal population
with a rather abnormal anatomy and reduced TEE image quality. Although this
may form a challenge for the ASMs statistical shape model coverage, still very
acceptable segmentations were achieved.

Similarly, comparison to automatically segmented CTA of the same patients
showed very good correspondence which is strongly supported by the obtained
Dice coefficients. The good agreement of the TEE segmentations with the real
anatomical structure can be qualitatively inspected by overlaying the trans-
formed TEE segmentations with the CTA image (see Fig. 4).

Several extensions of the current approach are foreseen. Especially, an iterated
estimation of blood/tissue probability based on prior knowledge of blood and
tissue from the previous model estimate seems to be a promising approach.
Further evaluation on additional datasets is desired and additionally we would
like to investigate the optimization of a range of ASM parameters. Also, the pose
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constraint (α) was set to a constant value for each segmentation stage which may
have been suboptimal for some cases. Relaxing this parameter with the amount
of overlap of the cavity with the image sector and for the last iterations may
improve the accuracy further.

This whole-heart model segmentation method will provide excellent opportu-
nities for multi-view fusion and instrument tracking in procedure guidance.
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Abstract. In respiratory motion modeling for the liver, the breathing pattern is 
usually obtained by using special tracking devices from skin or diaphragm, and 
subsequently applied as input to a 4D motion model for motion estimation. 
However, due to the intrinsic limits and economical costs of these tracking  
devices, the identification of the breathing pattern directly from intra-operative 
ultrasound images is a more attractive option. In this paper, a new method is 
proposed to automatically track the breathing pattern from 2D ultrasound image 
sequences of the liver. The proposed method firstly utilizes a Hessian matrix-
based 2D line filter to identify the liver boundary, then uses an adaptive search 
strategy to in real-time match a template block centered inside the identified 
boundary, and consequently extract the translational motion of the boundary as 
the respiratory pattern. The experiments on four volunteers demonstrate that the 
respiratory pattern extracted by our method is highly consistent to those  
acquired by an EM tracking system with the correlation coefficient of at  
least 0.91.  

Keywords: ultrasound images, breathing pattern tracking, Hessian matrix-based 
filtering, adaptive search strategy. 

1 Introduction 

Image-guided robot-assisted surgery and intervention are now used in more and 
more hospitals to overcome limitations of traditional open and minimally invasive 
procedures. The most successful and established surgical robot system is the Da 
Vinci® operating system by Intuitive Surgical Inc. The issues with the Da Vinci 
system, however, are high cost of system and consumables, long set-up time for use 
and the absence of built-in intelligence. Despite these issues, it plays an established 
role in complex surgeries because of the value-added benefits but its use in simple 
procedures is conversely limited. To address the use of robots for simple procedures, 
a new trend in the medical devices is to develop simple image-guided, dedicated, 
low cost and easy-to-use robotic systems for specific surgical and/or interventional 
procedures.  
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Enlightened by the success of the prostate robot [1], we are developing an  
ultrasound (US) guided robot to achieve quantitatively targeted liver tumor biopsy 
and ablation, which requires accurate registration of pre-operative 3D computational 
tomography (CT) or magnetic resonance (MR) liver models to 2D intra-operative 
ultrasound images. However, the registration is challenging due to the movement and 
deformation of the liver soft tissue mainly caused by the respiration. 

In order to compensate the respiration-induced motion, a possible solution is to 
track the targets using a 3D US probe [2], but the 3D US has limited scanning range, 
and produces large image data which causes the problems of processing, storing and 
transferring. Another potential scheme is to utilize a 2D US probe to track the target’s 
in-plane motion, and move the probe swiftly to derive the out-of-plane motion [3]. 
The limitation of this method is that only a very thin slice near the plane is scanned, 
and the vibration of the probe can also reduce the imaging quality. 

Therefore, at present, more attention is focused on model-based approach for  
the motion compensation [4]. With this approach, a pre-operative 4D whole liver 
motion model [5-7] or target-specific motion model [8, 9] is first created. During  
the intra-operative stage, a set of external or internal landmarks are tracked as the 
surrogate of respiratory pattern to drive the models to predict the liver motion. The 
external landmarks, applied on the abdomen or chest, are usually tracked using  
special optical or electromagnetic (EM) devices [8, 9]. These devices, however, create 
certain restrictions for the surgical robots. For example, there should be no optical or 
magnetic obstructs along the path of optical or electromagnetic tracker. On the other 
hand, as internal landmarks, the implanted fiducials [6] has the issue of invasiveness, 
and the diaphragm [7] requires an extra imaging device to track it. To overcome these 
problems, and particularly, to further reduce the cost of our surgical robot, and make 
it simple and portable, we wish to automatically identify the respiratory pattern from 
intra-operative US liver images.  

Since the liver motion is strongly related to the respiration [10] and the liver boun-
dary has relatively high contrast in 2D US images. Visually, the translational motion 
of the liver boundary in a fixed US imaging plane is quite related to the respiration 
pattern. In previous work [12], we discussed a manual way to select the liver boun-
dary and extract the respiration pattern from the boundary. In this paper, we mainly 
present an automatic method to identify the liver boundary and extract its translational 
motion as respiratory pattern. 

2 Materials and Methods 

2.1 Overview 

The main framework of our method is shown in Fig. 1, which is roughly divided into 
three main stages: 1) acquisition of US image sequences; 2) automatic identification 
of the liver boundary; 3) fast extraction of the breathing pattern. The experiment  
settings for acquiring the US images are elaborated in subsection 2.2.  

After acquired, the first image of the image sequence is selected as the reference 
image for the following identification. The liver boundary will be recognized by a 
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serial of consecutive processes (Fig. 1), namely filtering (enhancing the liver boun-
dary and removing other parts in the reference image), masking (eliminating the peri-
phery of the filtered image), thresholding (removing the weak non-boundary part), 
and finding the largest connected part (i.e. the liver boundary). Subsection 2.3 will 
describe the Hessian-based 2D line filter, which plays a key role in recognizing the 
liver boundary. 

After the liver boundary is recognized, a template block (65×65 pixels by experi-
ments), whose center is located inside the liver boundary, is automatically selected 
from the reference image of the image sequence. Using this template block, a frame-
by-frame matching process, based on the normalized correlation (NC) similarity me-
tric and adaptive search range, is executed to extract the breathing pattern. The search 
range on the current frame is adaptive because its center is updated as the optimally 
matched position of the former frame. Subsection 2.4 gives a detailed explanation on 
this search strategy, which makes use of the inter-frame dependency. 

 

Fig. 1. The processing flow of our method for identifying and extracting the breathing pattern. 
It consists of three basic consecutive stages: 1) acquisition of image sequences; 2) identification 
of the liver boundary; 3) extraction of the breathing pattern. 

2.2 Data Acquisition 

The US image sequences (image resolution of 640 × 480 pixels, pixel size of about 
0.37 × 0.37 mm and temporal resolution of 10 FPS) for analysis are acquired from 
four healthy volunteers (male, average age 36, ranged 25-46), and each sequence 
consists of 256 frames. The used US imaging system is the Terason t3000 with a 5C2 
transducer. In order to validate the breath pattern identified by our method, a NDI 
Aurora electromagnetic (EM) tracking system is used to track an EM sensor on the 
umbilicus of the volunteers while acquiring the US images. The motion of umbilicus 
is selected as the reference breathing pattern for evaluation because the umbilicus on 
the abdominal surface is usually a good position to monitor the abdominal respiration 
[4]. By using the dynamic libraries from NDI and Terason, we implemented a module 
in our software platform to synchronously record the US images and EM signals,  
each US frame corresponding to an EM position. Actually, each EM position has 3 
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components (x, y, z), but we only need to choose one of them, which changes highly 
correspond to the movement of the skin marker. In order to avoid the tremor of  
the US probe by hands, a robotic arm is designed to fix the probe, which can stably 
acquire the images.  

2.3 Hessian-Based 2D Line Filter 

We introduce a 2D line filter to selectively enhance the line-like structures (mainly 
the liver boundary) in US liver images and filter out other non-line structures. This 
filter is inspired by Frangi's multi-scale line filter [11], which was designed to  
enhance the vessels of different sizes in 2D digital subtraction angiography (DSA) 
and 3D magnetic resonance angiography (MRA) images. In this paper, the liver 
boundary, which we are interested in, may be regarded as a vessel-like structure of 
strong contrast, which is observed in the US images of Fig. 1. However, compared  
to the multi-scale nature of Frangi's filter simultaneously considering the vessels of 
various sizes in images, our filter is of single scale only dependent on the width of the 
liver boundary. 

Our line filter is on the basis of the eigenvalues of the Hessian matrix, which 
represents the second-order local structures of an image. The filtering process can be 
roughly divided into three basic consecutive steps:  

1) Gaussian-based smoothing. A Gaussian filter ( )σ;xG  with standard deviation 

σ  is employed to smooth the each pixel ( )xI  of the 2D image I , where ( )yx ,=x  

denotes a pixel location in the image;  
2) Calculation of Hessian matrix and its eigenvalues. The Hessian matrix 

( )σ;xH  of each pixel ( )xI  of the filtered image ( )σ;xI  is calculated by 

( ) ( ) ( ) ( )
( ) ( ) ,
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where partial second-order derivatives of the filtered image ( )σ;xI  at the pixel loca-

tion x  are denoted by ( )σ;xxxI , ( )σ;xxyI  and so on. Assume that ( )σλ ;1 x  and 

( )σλ ;2 x  are the eigenvalues of the Hessian matrix ( )σ;xH , and satisfy 
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3) Resulting filtering. By combination of both eigenvalues, the resulting response 
is calculated by [11] 
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where ( ) ( ) ( )σλσλσ ;;; 21 xxx =R  measures the blobness of each pixel in the image, 

( ) ( ) ( )σλσλσ ;;; 2
2

2
1 xxx +=S  defines the local second-order structureness of each 
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pixel, and β and c decide the sensitivity of the line filter to both measures ( )σ;xR  

and ( )σ;xS .  

The blobness measure will gain small values in the blob-like structures or back-
ground, but large values in the line-like structures, for instance the liver boundary. On 
the other hand, the structureness measure will be fairly low in the background where 
no outstanding objects are present, but in regions with high contrast, the measure will 
be comparatively high. Therefore, both measures are glued together to achieve the 
selective response of this filter on the line structures, and ignore the blob structures or 
background. In all the experiments of this paper, β  is fixed to 0.5. The value of  

cdepends on the grey-scale range of the image and half the value of the maximum 
Hessian norm has proven to work in most cases [11].  

2.4 Adaptive Search Strategy 

Due to the quasi-periodicity of the normal respiration, the liver tissue also moves in 
an approximately periodical way. Therefore, the liver tissue repeatedly appears in a 
relatively fixed extent (the maximal motion appears in the superior-inferior direction 
with the range of 5-25 mm [10]) in a normal or even deep breathing cycle, and  
the search range can be restricted as a medium extent. Our experiment shows that a 
region of 129×129 pixels is required to find the optimal match. During the frame-by-
frame matching process, the traditional search strategy is to fix the center of the 
search range according to the position of the template region on the reference image, 
which is called as center-fixed search strategy, which is time-consuming and cannot 
satisfy the real-time requirement for the motion tracking.  

Motivated by this problem, we present a new adaptive search strategy [12],  
which defines a serial of small center-variant search ranges along the frame-by-frame 
matching process. Our search strategy makes full use of the inter-frame dependency 
of the US image sequence, which assumes that the motion extent of the liver tissue is 
small for two successive frames. Therefore, any specified image block on the former 
frame should appear inside the small neighbor region of the same position on current 
frame. The optimal matching position of the former frame can be used as the center of 
the search range of the current frame. Based on this principle, a serial of relatively 
small search ranges (17×17 pixels), whose centers are automatically updated accord-
ing to the former matched result, are formed along the image sequence. Here, we  
call center-variant search range as adaptive search range. Using the adaptive search 
strategy, we may quickly extract the respiratory pattern from the liver boundary. 

3 Results 

Fig. 2 shows the gradually varying filtering responses by tuning the smooth scale 
parameter in Eq. (2). The results show that this filter gains strongest response near the 
scale 11=σ  where the filtered boundary is maximally close to that in the original 
image. The experiments on various US images from four volunteers also support this 
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conclusion. Therefore, in all the following experiments of this paper, the smooth scale 
is fixed to 11. These experiments also prove the scale parameter is roughly propor-
tional to the width of the liver boundary. 

Fig. 3 shows the selectivity characteristic of the Hessian matrix-based line filter, 
where four sample images scanned from four corresponding volunteers are filtered.  
It is observed that the response has high value at the liver boundary and other line 
structures of high contrast. Since the smooth scale is set to fit the liver boundary and 
the boundary has higher contrast than other line-like structures, the response is 
strongest near the boundary. Therefore, as expected, the liver boundary can always be 
selectively preserved by the subsequent thresholding and largest-region-selection. 

 

 

Fig. 2. Responses of our line filter under different smoothing scales. The strongest response on 
the liver boundary is gained at the scale 11=σ , which simultaneously most approximates the 
boundary in the original image. 

 

Fig. 3. The sample images (left one of each image pair) from four volunteers are processed by 
the line filter, and the response is strongest near the liver boundary 

In order to validate our method, we chose the movement of the umbilicus on the  
abdominal skin as the reference breathing pattern. Four image sequences from three 
corresponding volunteers were used for processing, and, for each image sequence, 
two exemplary image blocks centered inside the recognized liver boundary were se-
lected as matching templates. The extracted breathing patterns (Fig. 4, plotted in red) 
were visually compared to the reference breathing patterns of the umbilicus (Fig. 4, in 
green). A visual inspection on both patterns shows that the extracted breathing pat-
terns are highly consistent with the reference ones. For convenience of visual inspec-
tion, all motion curves, including the reference ones, were normalized to the interval 
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of 0 to 1. Using the correlation coefficient (CC) metric, the extracted breathing  
patterns by our method were quantitatively compared to the reference ones. The  
results from Table 1 show high relevance between both kinds of breathing patterns, 
which can be explained by that the motions of the liver and the abdominal skin are all 
induced by the respiration. 

In addition, we also performed a quantitative analysis on the computation efficien-
cy of our method, which is listed in Table 2. It is noticed that our adaptive search 
method can extract the breathing patterns in about 5 seconds for an image sequence  
of 256 frames, whereas the traditional search method takes nearly 6 minutes. These 
experiments were executed on a Dell workstation with Intel Xeon CPU E5620 2.4 
GHz and 12G RAM, and the single-thread programming mode was used.  

 

Fig. 4. Consistency is visually compared between the breathing patterns (in red), identified by 
our method, and the EM-tracked reference patterns of the umbilicus (in green). 8 template 
blocks from 4 volunteers' image sequences of 256 frames are used. 

Table 1. The consistency between the extracted breathing patterns and the reference breathing 
patterns is analyzed using the correlation coefficient (CC). The image sequences are the same 
as Fig. 4. 

 Volunteer 1 Volunteer 2 Volunteer 3 Volunteer 4 

Blocks A B C D E F G H 
Relevance 0.9559 0.9541 0.9511 0.9379 0.9844 0.9784 0.9172 0.9206 

Table 2. The computation time between the traditional search strategy and our adaptive 
strategy is compared. The image sequences are the same as Fig. 4, and the time unit is second. 

 Volunteer 1 Volunteer 2 Volunteer 3 Volunteer 4 

Blocks A B C D E F G H 

Time (s) 
Traditional 301.4 299.6 260.0 278.0 299.4 299.7 290.8 291.7 
Adaptive 5.19 5.22 5.17 5.19 5.22 5.14 5.07 5.05 

4 Conclusion 

We have introduced an efficient Hessian matrix-based 2D line filter to automatically 
identify the liver boundary from the ultrasound image sequences, and then proposed 
an adaptive block matching method to extract the translation motion of the liver 
boundary as the respiratory pattern. The experiments have also demonstrated that our 

Reference image

A

B

A

B

C E

F

(a) Volunteer 1

Original

A

B

(b) Volunteer 2 (c) Volunteer 3

DC

Original

F

E

Original

C

D

G

H

(d) Volunteer 4

HG

Original



34 J. Wu et al. 

 

method can automatically and precisely recognize the liver boundary, and in several 
seconds extract the breathing pattern, which is in phase comparable to that of the EM 
tracking system. This will be of great help for US-guided surgical robots to have a 
build-in respiratory signal tracking system, resulting in a more compact and flexible 
design at low cost. 
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Abstract. Tissue deformation is one of the major difficulties in the
registration of pre-operative and intra-operative data. Vision based tech-
niques have shown the potential to simultaneously track the endoscope
and recover a sparse 3D structure of the tissue. However, most of such
methods either assume a static environment or require the tissue organ
to have a periodic motion such as respiration. To deal with the gen-
eral tissue deformation, a new framework is proposed in this paper with
the ability of simultaneous stereoscope tracking, 3D reconstruction and
deforming point detection in the Minimally Invasive Surgery (MIS) en-
vironment. First, we adopt a Parallel Tracking and Mapping (PTAM)
framework and extend it for the use of stereoscope in MIS. Second, this
newly extended framework enables the detection of deforming points
without restricted periodic motion model assumptions. Our proposed
method has been evaluated on a phantom model, and in vivo experi-
ments demonstrate its capability for accurate tracking in nearly real time
speed as well as 3D reconstruction with hundreds of 3D points. Those
experiments have shown that our method is robust towards tissue defor-
mation and hence have promising potential for information integration
by registration with pre-operative data.

1 Introduction

Real-time on-site simultaneous endoscope localization and 3D structure recovery
are important tasks for Minimally Invasive Surgery (MIS). First of all, vision cues
and interpolation methods have been exploited to obtain semi-dense or dense tis-
sue structure, such as stereo [1], shadow [2] and thin plate spline [3]. Based on
the endoscope localization results, those recovered tissue structures from past
and current endoscope locations can be merged together to obtain a larger field
of view [4]. Secondly, most current registration methods of intra-operative and
pre-operative data in abdominal MIS are global and static and therefore the
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registration becomes inaccurate when tissue organs shift and deform. Endoscope
localization and tissue structure recovery based on the intra-operative video can
be used to refine the global registration and reduce the errors from organ move-
ments. To achieve the benefits mentioned above, general tissue deformations,
which can be caused by tool interaction as well as patients’ respiration and
heartbeats, should be carefully taken care of during the endoscope localization
and structure recovery procedure.

Many existing endoscope localization methods in different anatomical settings
typically assume a static scene. For example, in the monocular Simultaneous
Tracking and Mapping (SLAM) system introduced in [5,6] for sinus surgery, the
endoscope’s pose was estimated by two successive frames based on the static
assumption. Mountney et al. [7] applied and extended the monocular Extended
Kalman Filter SLAM (EKF-SLAM) framework from Davison [8] to stereoscope
in MIS environment. Combining the stereo EKF-SLAM framework and Stoy-
anov et al.’s semi-dense reconstruction [1], Totz et al. [4] presented a method to
recover a large and dense abdominal tissue surface. For periodic liver deforma-
tion, Mountney and Yang [9] proposed to learn the parameters of the periodic
motion first and then use it to improve the SLAM estimation. For non-periodic
deformation, Giannarou and Yang [10] presented a work to detect deforming
points using monocular Structure From Motion (SFM) framework, whose speed
is unclear and doesn’t seem to be fast.

This paper aims to simultaneously track the stereoscope and recover the 3D
structure accurately in an environment with small and non-periodic deforma-
tions, such as the MIS environment in abdomen cavity. To obtain accurate 3D
structure, we adopt the Parallel Tracking and Mapping (PTAM) framework [11],
which is able to recover more 3D points than the commonly used EKF-SLAM
system. We first extend the PTAM framework for stereoscope and apply it in
MIS environment. Later, a method is introduced to remove deforming points
and robustly track the stereoscope’s position and orientation based on rigid
points only. By removing deforming points, our system is able to simultaneously
track the stereoscope and recover the 3D structure in a non-periodic deforming
environment.

2 Methods

We first briefly review the PTAM framework and then explain how we extend
it for stereoscope and describe how we detect deforming points.

2.1 PTAM Basics

PTAM was originally designed for monocular cameras. Instead of updating the
3D map in each frame as EKF-SLAM does, tracking and mapping have been sep-
arated into two parallel threads and the mapping thread has much lower priority.
The two threads run in parallel and communicate with each other through the
3D map. The tracking thread estimates the camera pose based on the 3D map
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generated from mapping thread. The mapping thread receives new well-tracked
frames from the tracking thread and updates the 3D map accordingly. There are
three major steps in tracking. First, a decaying velocity motion model is used
to predict the current camera’s pose. Second, 3D points are reprojected on the
current frame and a fixed-range search is applied to find the reprojected points.
Third, the identified 3D points and their stereo measurements are used for pose
estimates. On the other hand, mapping also requires three important steps. First,
user is required to translate the camera and the obtained “stereo” pair and the
tracked features are used for map initialization. Second, when exploring a new
area, a frame will be saved in the map for 3D reconstruction purpose. The saved
frame is called keyframe. Third, local and full bundle adjustment [12], which is
a standard routine to simultaneously optimize the 3D points and camera poses,
are run to refine the map. The major advantage of PTAM is its ability to re-
cover a large number of 3D points. However conventional PTAM is difficult to
be directly applied in MIS setting because a static environment is assumed.

2.2 Stereoscope PTAM

In order to accurately track the scope in MIS and reconstruct the deforming
surgery scene in real-time, we adopt PTAM to utilize the stereo cameras on
a stereoscope and develop both stereo tracking with deforming point detection
and stereo mapping in our new stereoscope PTAM. First of all, MIS images
have abundant specular reflections, whose boundaries can easily be picked up as
feature points, which would cause large error to the pose estimation due to their
view dependent property. Before further processing, specular reflections should
be detected and removed. For efficiency, bright pixels with intensities larger than
180 (0 for black and 255 for white as in standard grayscale image) are simply
detected as specular reflection as well as their 5-by-5 neighbors.

For stereo tracking, we design two modes: static tracking mode and deforming
tracking mode. The static tracking mode is very similar as the conventional
PTAM except that the 3D points are reprojected and found in both left and right
images from stereoscope. In the deforming tracking mode, the system detects
deforming points and only rigid points are used for pose estimation. Our tracking
system does not detect deforming points in each frame due to two reasons. The
first is for efficiency to get nearly real time performance. Second, not all tissue
organs in abdomen have deformations all the time. For stereo mapping, the
original bundle adjustment is extended for stereo images. The outline of our
system is shown in Figure 1 and the components are detailed in the following
sections respectively.

2.3 Deforming Point Detection

As static tracking mode is similar to PTAM, we only describe deforming tracking
mode in detail. The deforming tracking mode is triggered based on two condi-
tions: 1) whether the tracking quality is poor; and 2) whether the speed of the
camera is slow, which is designed to allow the stereoscope to explore a deforming
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Fig. 1. Outline of our stereoscope PTAM, which contains two parallel threads: stereo
tracking and stereo mapping. Stereo tracking has two modes: static tracking and de-
forming tracking.

area. The measure of poor tracking quality in [11] is adopted here. The camera
pose update is a 6D vector, when the L2 norm of this vector is smaller than 0.1,
the camera motion is considered as slow.

When the deforming tracking mode is triggered, both the tissue deformation
and the stereoscope movement can contribute to the pixel displacement. To
detect deforming points, each stored 3D map points that are visible in the current
camera’s field of view is projected on the image and a square area with width
of 50 pixels centered at the projected position is searched. The set of 3D map
points that are found in both left and right images is called the first point
set, which may contain deforming, rigid and mismatched points. To remove the
mismatched points from the first point set, each pair of points found in the left
and right images is further required to be a stereo correspondence, namely, their
corresponding patches should be similar and their sum of square distance (SSD)
should be small. After the above removal, the rest of the mismatched points, if
any, will be treated as deforming ones. On the other hand, with calibrated stereo
cameras, triangulation is applied to calculate the 3D coordinates of points in the
first set which leads to a second set of 3D points represented in the left camera’s
coordinate. The first set of 3D map points is denoted as {pi}ni=1 and the second
one as {p′i}

n
i=1.

From these two point sets, we can estimate the stereoscope’s pose and iden-
tify the rigid points based on the fact that only rigid points will follow a global
Euclidean transformation while deforming or mismatched points do not. We ap-
ply RANSAC to select rigid points as inliers. During each RANSAC iteration,
3 pairs of corresponding 3D points are randomly selected to calculate the Eu-
clidean transformation, which minimizes the following objective function:

min

n∑
i=1

||pi − (R ∗ p′i + T )||, (1)
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where R is a rotation matrix and T denotes translation. A closed-form solution of
Equation (1) is obtained using Horn’s absolute orientation algorithm [13]. With
the derived transformation, we can identify rigid points as inliers and deforming
points as outliers. The threshold of the residual error using in the RANSAC
iteration is 2mm in this paper.

The above classification of rigid and deforming points is based on a single
frame. However, as claimed in [14], the most significant property of deforming
points is that they will continuously deform and hence their 3D registration
errors in Equation (1) will always be large. Therefore, the 3D registration error
for each point is accumulated and the average registration error is used to classify
whether a point is deforming or not. The average registration error contains
temporal information and is therefore very robust to detect deforming points.
It is worth noting that once the deforming points are detected, they will not be
used in the following non-linear pose refinement and stereo bundle adjustment
procedure. Therefore, the error caused by tissue deformation can be significantly
reduced.

2.4 Non-linear Stereo Pose Refinement

An initial estimate of the stereoscope pose can be obtained from previous in-
formation for each tracking mode: motion updated pose from previous frame in
static tracking mode and pose from RANSAC in deforming tracking mode. The
initial pose estimation is further refined by minimizing the reprojection error,
which is a non-linear least square optimization problem. Different parameteri-
zations are available for this problem and we follow the SE(3) parameterization
used in [11], which is claimed to give better results than others [15]. Since we
assume that the stereo cameras are well synchronized, the extrinsic transforma-
tion between the left camera and right camera should be fixed during the pose
estimation procedure. Therefore, the stereo pose update optimization problem
is given in Equation (2) and 3. The calculation of Jacobian matrices of Equation
(3) can be found in [15].

μ′ = argmin
μ

n∑
i=1

ρ(||ei||2) (2)

where ei = [eT1i, e
T
2i]

T is the reprojection error from both cameras.⎧⎪⎪⎨
⎪⎪⎩
e1i =

(
û1i

v̂1i

)
− ProjCam1(exp(μ)⊕ ELW ⊕ pj))

e2i =

(
û2i

v̂2i

)
− ProjCam2(exp(μ)⊕ ERL ⊕ ELW ⊕ pj))

(3)

in which subscripts 1 and 2 represent left and right camera respectively; (u, v)T

represents the measured 2D feature point location; ρ(·) is Tukey biweight ob-
jective function; μ ∈ SE(3) denotes a 6D vector parameterization of Euclidean
transformation; and exp(·) is an exponential map, which maps a 6D vector to
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an element in SE(3). Further, ELW , ERL ∈ SE(3) and ⊕ are the pose-pose and
pose-point compositions [15]. Subscript LW denotes the transformation from
the world coordinate to the left camera and RL for the transformation from the
left camera to the right camera. ProjCam(·) represents the camera perspective
projection. Due to real-time performance requirement, only multiple iterations
of re-weighted least square are applied to refine the pose.

2.5 Map Initialization

With calibrated stereoscope, no user cooperation is required for map initializa-
tion and the coordinates of 3D points are in mm. Since the created 3D points are
used for tracking purpose, we do not perform classic stereo matching [1], which
is likely to generate more 3D points but not necessarily good for tracking. In-
stead, similar as PTAM, we detect FAST feature points in both images and keep
the ones that are easy to track. To speed up stereo matching procedure, prior
information of the tissue environment is exploited. Since our target application
is abdominal MIS, we accordingly set the minimum and maximum distance of
stereoscope to the target as 20mm and 400mm respectively when performing
epipolar search.

2.6 Stereo Bundle Adjustment

To incorporate calibrated external information to the local and full bundle
adjustment, we minimize the following objective function:

{{μ′}, {p′}} = argmin
{{μ},{p}}

∑
i,j

ρ(||eji||2) (4)

where ej,i = [eT1ji, e
T
2ji]

T is the reprojection error of the j-th point in the i-th
keyframe. μ represents the poses of keyframes and p 3D map points.

3 Experimental Results

3.1 Tracking Accuracy

To show the tracking performance of our method, we quantitatively analyze the
camera tracking accuracy using a non-deforming intestine phantom. The ground
truth is obtained from OptiTrack system (NaturalPoint Inc.), whose tracking
accuracy is within 0.01mm and tracking speed is 100fps. In this experiment, the
intestine phantom is shown in Figure 2 a) with dimension 19cm ∗ 14cm ∗ 6cm.
The stereo cameras used in this phantom experiment has been introduced in
[16,17]. Four optical trackers are attached on the stereo system’s back, as shown
in Figure 2 b). The stereo vision system is designed for evaluation purpose only,
and therefore the system is not a miniature one. The stereo cameras are first
placed at a distance of about 11cm to the phantom. They are then manually
moved at a speed of about 10mm/s and held still at four locations.
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It should be noted that our tracking system selects the first frame of the
left camera as the world coordinate and the OptiTrack system has a different
world coordinate. To enable the comparison of trajectories from these two dif-
ferent coordinate systems, the Euclidean transformation between them need to
be calculated. To achieve this, the stereo cameras are held still for a couple of
seconds at four different locations during the movement, which results in four
line segments in the trajectories in Figure 3. These four point pairs in the two
trajectories can be used to calculate the Euclidean transformation using Horn’s
absolute orientation algorithm. The two 3D trajectories are represented in Op-
tiTrack’s coordinate system and shown in Figure 3 a). The tracking accuracies
in each dimension are also displayed in Figure 3 b), c), and d). The numerical
tracking accuracy is available in Table 1. Notice that the tracking error along
the X axis is much larger than the others. One contributing factor is that the
stereo system’s viewing direction is mostly parallel with the X axis.

a) b) c)

Fig. 2. Phantom experiment setup. a) The intestine phantom. b) The stereo cameras
attached with four optical markers. c) One example of detected deforming points shown
as white.
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Fig. 3. Comparison of stereo tracking accuracy with ground truth. Tracking results of
our method are shown in solid red and ground truths are shown in dotted blue. The
recovered 3D trajectory and ground truth are shown in a) and their projection in X
b), Y c) and Z axis d).

Table 1. Mean error and variance of the tracking results

3D Trajectory X Axis Y Axis Z Axis
Mean error (mm) 1.29 1.52 0.15 0.66
Variance (mm2) 0.66 8.37 0.13 0.65
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3.2 Evaluation with In Vivo Data

We further show the tracking results of our system on three in vivo videos.
The first two stereo videos are from Hamlyn Center [18]: Dataset1, Dataset6.
The last video was recorded while the surgeon was performing a colon surgery.
Our system is able to run at speed of 15 ∼ 20fps with a desktop computer
(3.2GHz×4 cores, 3.7GB memory). Since no ground truth of the trajectories of
those videos is available, we only show the 3D trajectories from our methods in
Figure 4. The number of recovered 3D points for the three datasets are about
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Fig. 4. 3D trajectories of the stereoscope tracked by our method over three videos: a)
Dataset1, b) Dataset6 and c) Colon surgery

a) b) c) d)

Fig. 5. Typical 3D feature points detected in one frame (zoom in for detail). Each
frame has four pyramid levels and the color of each point indicates at which level it is
detected [11]. Each column shows two random frames from one experiment. a) Intestine
phantom, b) Dataset1, c) Dataset6 and d) Colon surgery.

Fig. 6. A bladder model reconstructed from Computerized Tomography (CT) was
augmented in the colon surgery video
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600, 900, and 1600 respectively. As an example, the detected deforming points
are shown as white in Figure 2 a). The typical feature points detected in each
frame among different videos are shown in Figure 5, where a virtual white grid
is mounted at a fixed position in the real scene to indicate the tracking accuracy.
In the colon surgery video, to demonstrate the stereoscope tracking accuracy, a
virtual bladder was manually registered in the first frame and was successfully
tracked and augmented through out the whole video. Four frames are randomly
picked to show the augmented results in Figure 6. Videos are provided in the
supplemental materials to illustrate the feature point tracking procedure and
organ augmented effect.

4 Conclusions

In this paper, we have introduced a new stereoscope PTAM for abdominal MIS.
Our method is able to simultaneously track the stereoscope, perform 3D re-
construction and detect deforming points. The method has been tested on both
phantom model and in vivo data, which shows our method’s advantages in speed,
tracking accuracy, 3D reconstruction and robustness towards deformation. The
major weakness of the current system is that the stereoscope is only allowed to
move slowly and smoothly. This is because the PTAM’s feature point match-
ing in MIS environment is not robust towards view angle changes. To solve this
problem, in the near future, we plan to build a hybrid feature tracking method,
which combines FAST feature points, vessel branch points and vessel segments.
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Abstract. Deformable registration for images with different contrast-
enhancement and hence different structure appearance is extremely
challenging due to the ill-posed nature of the problem. Utilizing prior
anatomical knowledge is thus necessary to eliminate implausible defor-
mations. Landmark constraints and statistically constrained models have
shown encouraging results. However, these methods do not utilize the
segmentation information that may be readily available. In this paper,
we explore the possibility of utilizing such information. We propose to
generate an anatomical correlation-regularized deformation field prior
by registration of point sets using mixture of Gaussians based on a thin-
plate spline parametric model. The point sets are extracted from the
segmented object surface and no explicit landmark matching is required.
The prior is then incorporated with an intensity-based similarity measure
in the deformable registration process using the variational framework.
The proposed prior does not require any training data set thus excluding
any inter-subject variations compared to learning-based methods. In the
experiments, we show that our method increases the registration robust-
ness and accuracy on 12 sets of TAVI patient data, 8 myocardial perfusion
MRI sequences, and one simulated pre- and post- tumor resection MRI.

1 Introduction

Image registration helps the clinicians to combine the image information ac-
quired from different modalities, different time points, or pre- and post- contrast-
enhancement for better evaluation. Many of the medical applications rely on the
technique of image registration, ranging from examination of disease progres-
sion, to the usage of augmented reality in the minimal-invasive interventions.
For some cases, rigid/affine registration may be sufficient; however, in many
cases, deformable registration is needed to compensate for local movements.

Deformable registration is inherently ill-posed and under-constrained from
the mathematical point of view. It becomes more challenging when dealing with
different structure appearances due to different levels of contrast-enhancement
between two images. This problem widely exists in the field of medical im-
age registration, e.g., registration of the perfusion cardiac image in the wash
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Fig. 1. Structure appearance may be largely different due to different levels of contrast-
enhancement. (a) and (b) is a pair of images from pre-operative contrast-enhanced CT
and intra-operative non-contrast-enhanced C-arm CT for TAVI procedure. (c) and (d)
is a pair of images from a perfusion cardiac sequence at different phases.

in/out phases, and 3D/3D registration of pre-operative contrast-enhanced CT
and intra-operative non-contrast-enhanced C-arm CT images. In these cases,
purely relying on the intensity information produces anatomically implausible
deformation. To facilitate the deformable registration process, landmark con-
straints were proposed to increase the registration accuracy and robustness
[1,2,3]. These methods added a penalty term to penalize the correspondence
pairs from moving too far apart, therefore, accurate correspondence matching
is crucial. Incorporating the knowledge of statistical analysis on shape and dis-
placement field variability to the image registration process is another popular
approach [4,5]. Xue et al. [6] tackled the problem of high dimensional statistical
deformation models (SDMs) using wavelet based decompositions. Despite the
promising results, training the SDMs suffers from the curse of dimensionality,
and how to select the training data to represent the population remains unclear.
Recently, Lu et al. proposed the structural-encoded mutual information (SMI)
[7] which emphasizes the structures that commonly exist in both images. And
they further incorporated the rigid spine motion into their proposed application.
Incorporating the rigid motion of spine movement is clearly adhoc: it cannot
be applied to images which do not contain spine and/or have deformable mo-
tion. Among the aforementioned methods, one important and potentially readily
available information is missing and may be utilized — the segmentation of some
dominant and common objects in the images. The motion of these segmented
objects could be modeled and may greatly improve the registration accuracy.
In addition, from the clinical workflow perspective, this segmentation may be
needed for diagnosis and guidance purpose alone, and as a result, utilization of
the available segmentation results does not impose additional requirement for
the purpose of image registration.

In this paper, we propose a novel hybrid deformable registration framework
for multimodal image registration. The proposed method targets at image pairs
that have different structure appearance. Theoretically it is a generalization of
the method in [7] to deal with general structures containing deformable mo-
tion by utilizing available segmentations. A data-driven anatomical correlation-
regularized deformation field prior is generated by registration of the point sets
from the segmented objects usingmixture ofGaussians based on aTPSmodel. The
proposed cost function combines the high-level knowledge from the anatomical
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correlation-regularized deformation field and low-level intensity statistical
information. Therefore, the segmentation does not need to be complete, and
may focus only on the dominant structures to provide regularization on the
deformation field. The fine-level registration is largely driven by the image in-
tensity, which leads to a much more accurate registration compared to simple
warping using the segmentation results alone.

2 Method

2.1 Anatomical Correlation-Regularized Deformation Field Prior

Despite the popularity of landmark-based image registration techniques, for
many applications, it is very difficult to find exact/accurate landmark corre-
spondences from the images automatically due to the poor image quality. How-
ever, relatively good segmentation of some dominant objects in these image is
still possible. In our work, we assume that the segmentation of some dominant
objects is given a priori, and the point sets are extracted from the object sur-
faces. The distribution of the points were modeled using mixture of Gaussians.
Then we use the method in [8] to register the sampled point sets efficiently
without establishing explicit point correspondences. We generate an anatomical
correlation-regularized deformation field prior v using TPS model by optimizing:

ETPS(v) =

∫
(fv − g)2dx+ λEbend(v), (1)

where fv is the distribution representing the transformed point set warped by v,
and g is the distribution of the reference point set. A small λ ensures that the
TPS approximate local deformations well [9]. In our work, we choose λ to be
0.001. Ebend(v) is the bending energy of the TPS. We refer the readers to [10]
for more details of the TPS warping.

TPS is chosen to represent the underlying transformation model due to its
nice properties, including its smoothness, no free parameters to tune manually,
closed-form solutions for both warping and parameter estimation, and physical
explanation for its energy function [3,11]. Moreover, the point sets are modeled
using mixture of Gaussians for the purpose of efficient and robust registration
[8]. Registration of models of mixtures of Gaussians may not be highly accurate
at the edges, compared to other computationally-expensive landmark-based reg-
istration methods that focus on point-to-point matching. However, the defor-
mation prior generated from the point sets registration results is sufficient to
provide a high-level knowledge of the plausible deformation field. Note that, dif-
ferent from spline-based optimization schemes in other hybrid methods, we only
used TPS to approximate the segmentation-based registration results. Further-
more, the distribution of the point sets obtained from segmentation are mod-
eled as mixture of Gaussians, thus no iterative volume intensity interpolation
is involved which leads to much higher computation efficiency. In our hybrid
registration method, the registration will be largely driven by image intensity
in regions where structural information is rich. In contrast, in regions where the
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structures do not match (e.g. due to different levels of contrast enhancement),
the registration will be mainly regularized by the generated prior deformation
field.

2.2 Cost Function

The proposed cost function E combines a data term Es and a penalty term Ep,
and the weight α balances the influences of the two terms:

E(u) = Es(u) + αEp(u), (2)

where u is the deformation field. The data term Es aims to maximize the low-
level intensity statistical dependency of the two images, whereas the penalty
term Ep discourages certain implausible deformations deviated from the prior
deformation field, and the weight term α is set to 0.1.

Data Term. Intensity-based similarity measures are widely reported. Popular
similarity measures include mutual information, normalized mutual information,
correlation ratio, and cross correlation etc. As the main focus of our paper is to
introduce a prior deformation field into the deformable registration framework,
we would not specify the intensity-based similarity measure. The readers are free
to choose any of the intensity-based similarity measures which varies by different
applications, and can then be combined with the proposed prior deformation
field.

Penalty from Prior Deformation Field. Optimizing (1) provides a data-
driven prior deformation field v, and we want the prior deformation field v to
guide the deformable registration process. The penalty term is defined as:

Ep(u) = −
∫
Ω

w(x)||u(x)− v(x)||2dx. (3)

x is the location of the pixel/voxel. A local weight term w(x) is included in the
penalty term. w(x) is assigned to be large at the structure mismatching area,
and small at the area where structure information is rich and corresponds well
in the two images.

2.3 Optimization

To optimize the cost function, we follow the variational framework proposed by
Hermosillo et al. [12], which exhibits nice properties in terms of accuracy, cap-
ture range, and computational efficiency compared to the parametric deformable
models. In particular, following the notation in [12], the gradient for variational
minimization of the cost function is derived as:

∂u

∂t
= −∂E(u)

∂u
= −∂Es(u)

∂u
− α

∂Ep(u)

∂u
. (4)
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As ∂Es

∂u varies according to the choice of the data term, in this section, we only

provide the derivation of
∂Ep(u)
∂u(x) .

∂Ep(u)

∂u(x)
= 2w(x)(u(x)− v(x)), (5)

The use of the weight term w(x) leads to desirable properties while updating the
deformation field at each iteration. Specifically, at the locations with mismatch-
ing structures, w(x) is large. These areas usually produce large registration error
when solely relying on the data term, so we highly rely on the penalty term (i.e.
the deformation prior) to guide the registration process in these areas. On the
other hand, at the locations where the structures appear in both images, w(x)
is small, therefore, the registration process relies more on the data term. Fast
Gaussian filtering [13] is applied at each iteration to regularize the registration
process.

2.4 Implementation

Our implementation is advanced with efficient filtering and fully parallelized.
A multi-resolution scheme is deployed to speed up the registration process and
reduce the chance of the optimization being trapped in the local minimum during
the energy minimization process. For a typical 3D volume of 512×512×100, the
entire registration process takes around 4 minutes for a dual core CPU, compared
to 105 minutes for a B-spline based implementation reported in EMPIRE10
Challenge [14].

3 Experiments

3.1 Pre-operative CT and Non-contrast-enhanced C-arm CT

Registration of pre-operative contrast-enhanced CT and non-contrast-enhanced
C-arm CT eliminates the need for acquiring contrast-enhanced C-arm CT, which
is harmful to trans-catheter aortic valve implantation (TAVI) patients with kid-
ney impairments. Our first experiment is performed on 12 TAVI patients who
had undergone both CT and contrast-enhanced C-arm CT scans.

Experimental Setup. Following the same procedure in [7], we create non-
contrast-enhanced C-arm CT volumes from the contrast-enhanced C-arm CT.
The contrasted aortic area in the C-arm CT is replaced by intensities generated
from a Gaussian distribution with mean equal to the heart area. The gener-
ated volume is visually indifferent from real non-contrast-enhanced C-arm CT
volume acquired clinically. Thus we are essentially matching the CT with the
non-contrast-enhanced C-arm CT with known ground truth. In this experiment,
lung segmentation and rough spine segmentation can be obtained using the
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Fig. 2. Mesh-to-mesh error for 12 patients, using different registration methods

Fig. 3. Registration results, (a) Rigid (b) Deformable using SMI (c) Lu et al.’s method
(d) The proposed method

methods from [15] and [16]. The point sets are sampled from the lung surface
and the spine area with equal spacing. w(x) is defined as:

w(x) = exp(−(
dspine(x)

W
)) + (1 − exp(−(

dlung(x)

W
))), (6)

where dlung and dspine are the distance maps to the surfaces of the lung and spine
respectively. W is set to 2.25 cm to control the effective confidence region. w(x)
gives higher weight to the region away from the lung surface because in these
textureless regions, the deformation prior is the main driving force. Similarly, in
the spine region, the derived prior is more reliable and thus a higher weight is
given. We use SMI as the data term as proposed in [7].

Results. We measure the mesh-to-mesh distance by calculating the distance
between the points on surface mesh of the aortic root from CT to the closest point
on the ground truth mesh from the C-arm CT (Fig. 2). We validate on the aortic
root because it is the most important anatomical feature for guidance purpose
during TAVI. The errors are 3.08±1.17 mm, 2.59±1.15 mm, 2.01±0.69 mm and
1.74±0.50 mm for rigid-body registration, deformable registration using SMI, Lu
et al.’s method [7] and our proposed method, respectively. The results show that
deformable registration is necessary to compensate for the residual motion after
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rigid registration. Compared to the intensity-based SMI, our method and Lu et
al.’s method show the importance of incorporating anatomical knowledge into
the deformable registration framework. Clinically, a registration error below 2.5
mm is deemed acceptable. Compared to Lu et al.’s method, we improve the result
for patient 3 from borderline acceptable to very accurate, and furthermore, the
result for patient 10 is improved from clinically not acceptable to applicable. We
further perform a paired t-test between these two methods, and the two-tailed
P value equals to 0.0411, showing that the proposed method is statistically
significantly better than Lu et al.’s method. This is largely attributed to the
proposed deformation prior, which is able to model the deformable heart motion,
instead of simple rigid-body motion in the spine area as proposed in [7]. One
registration example is shown in Fig. 3. The proposed method produces the most
accurate registration result at the targeted area – the aortic root (red contours).
Furthermore, the anatomical structure at the heart area is nicely preserved,
thanks to the incorporated deformation prior. We can see that intensity-based
method fails badly because of the large area of mismatched structures. Although
Lu et al.’s method performs well around the spine and heart surface (yellow
contours), the registration result at the heart area is not clinically meaningful,
e.g. the myocardium (green contours) is badly distorted.

3.2 Myocardial Perfusion MRI

We perform our second set of experiment on 8 myocardial perfusion MRI se-
quences. Due to the intensity change caused by the contrast enhancement, reg-
istration of myocardial perfusion MRI is considered as multimodal.

Experimental Setup. We select a floating frame which has the best contrast
in the sequence, and the selected floating frame is registered to every frame of
the sequence. In this experiment, we can obtain the epicardium segmentation

Fig. 4. Quantitative comparison of the
registration errors (in pixel) obtained by
rigid registration, SMI and the proposed
method.

Fig. 5. Registration results (a) Rigid. (b)
SMI. (c) Simple warping using the defor-
mation prior. (d) Proposed method. Yel-
low and blue lines are the propogated and
the ground truth contour.
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Fig. 6. (a) Pre-operative MRI. (b) Simulated post-operative MRI. (c), (d) and (e) are
the registration results obtained by SMI, simple warping using the deformation prior,
and the proposed method, respectively.

using [17]. The point sets are sampled from the epicardium outline with equal
spacing. Similar to (6), w(x) is a distance function to the segmented epicardium.
The information of epicardium segmentation is thus implicitly embedded into
the registration process. Again, SMI is used as the data term.

Results. For our data set, myocardial contours (epicardium and endocardium)
of all the slices were drawn by a cardiologist. These contours serve as the ground
truth. We calculated the root mean square distance from the ground truth to
the propagated contours. The comprehensive comparison of each sequence can
be found in Fig. 4. The paired t-test indicates that our hybrid method is statisti-
cally significantly better than the intensity-based method with P value equaling
to 0.0263. We demonstrate the result using an example shown in Fig. 5, the main
deficiency of the intensity-based and simple warping is emphasized using the red
arrows. It is shown that intensity-based registration does not perform well in
the homogeneous area because of the lack of structure information, while simple
warping using the deformation prior results in noticeable registration errors at
the structure-rich areas as the intensity information is ignored. In comparison, by
combining the strength of both intensity-based and segmentation-based meth-
ods, our hybrid method produecs the best result. Note that Lu et al’s method
[7] is not applicable to this data due to the fact that there is no spine and the
motion prior is non-rigid.

3.3 Simulated Pre- and Post- liver Tumor Resection MRI

The proposed hybrid method could be potentially applied to another category
of registration problems with mismatching structures, i.e., registration between
volumes of pre- and post- tumor resection. In this experiment, the registration
is performed on pre-operative MRI and simulated post-operative MRI.

Experimental Setup. We simulated a post tumor resection image based on
the pre-operative MRI. Then we artificially deform the pre-operative MRI, and
registration is performed between the deformed pre-opeartive MRI and the sim-
ulated post-operative MRI. w(x) is one at the resected area and zero otherwise.
SMI is used as data term, where we do not count the statistics in the resected
area. The deformation of the resected area solely relies on the regularization.



Hybrid Multimodal Deformable Registration 53

We assume the liver segmentation is available, and the point set is extracted
from the liver surface.

Results. Here we get the qualitative preliminary results using one data set
as shown in Fig. 6. Again, we use the arrows to emphasize the regions where
intensity-based and simple warping using segmentation do perform well. Quali-
tatively, intensity-based registration does not perform well in the resected area,
and simple warping using the liver segmentation does not preserve the detailed
structures well. The proposed hybrid method guides the registration using the
deformation prior at the resected area, while at the rest of the area, intensity-
based method dominates. By combining the strength of both, the hybrid method
achieves the best registration result as demonstrated in Fig. 6.

4 Discussion and Conclusion

In this paper, we present a hybrid multimodal deformable registration frame-
work with a data-driven deformation prior. The proposed method addresses
registration of images with different structure appearance due to different levels
of contrast medium, and is validated on both TAVI and perfusion MR data.
In addition, preliminary results show that the proposed method can also be
applied to registration of pre- and post- tumor resection images. The experi-
mental results demonstrate the superiority of the proposed method compared to
intensity-based method and simple warping using segmentation. Furthermore,
we derived the analytical solution for optimization under the variational frame-
work which is computationally efficient. The main limitation of our method is
the availability of the segmentation information. For our algorithm, we do not
require very accurate segmentation result to generate the deformation prior to
guide the registration process. Therefore, we can make use of the available seg-
mentation algorithms to achieve the rough segmentation. Our algorithm is not
applicable to images that no segmentation is available. In the future, we plan to
apply the algorithm to more clinical data sets. We will also study how different
segmentations will affect the registration results.
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Abstract. Hemihepatectomy is a regular way to resect the liver graft
for living donor liver transplantation. Middle hepatic vein (MHV)-guided
precise hemihepatectomy demands high-quality pre-surgery planning.
This paper presents a pre-operative planning system to assist surgeons
in risk assessment and planning the resection pathway with a desired
safety margin to MHV. Our algorithm is able to automatically construct
a smooth resection pathway according to a few user-input control points
and the desired safety margin. Moreover, the resection pathway is opti-
mized by minimizing the resection area for less liver impair. Experiment
of planning MHV-guided hemihepatectomy on six healthy livers was con-
ducted and the blood-free liver parenchyma volumes of the graft and the
remnant were computed for risk assessment. The comparison between
the planning results using the proposed system and the results from the
conventional 2D slice-based planning suggests that the proposed plan-
ning system is more convenient and provides a better planning result.

1 Introduction

Living donor liver transplantation (LDLT) is an ultimate but effective method to
treat liver failure caused by late-stage liver cirrhosis and liver cancer [1,2]. In this
operation, a portion of a donor’s healthy liver will be resected and transplanted
to a patient (recipient), whose entire liver is to be removed. Hemihepatectomy,
with the desired outcome of splitting a liver into 2 portions with nearly equal
volumes, is the regular way to resect the donor’s liver into graft, which is for
the recipient, and remnant, which remains for the donor. Pre-operative surgical
planning is important to determine the surgical proposal, define the resection
pathway, and calculate the volumes of liver parenchyma in both of the graft and
the remnant, to guarantee 1) the safety of the donor and the recipient during
the operation, and 2) there is enough liver parenchyma in both the remnant and
the graft to support the lives of the donor and the recipient after the operation.
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The liver has a set of complex vascular systems, including hepatic artery (HA),
hepatic vein (HV), portal vein (PV) and bile duct (BD). In the planning of hemi-
hepatectomy, middle hepatic vein (MHV) and gallbladder fossa are important
landmarks to define the resection pathway (Fig.1). The traditional recommen-
dation for right or left hemihepatectomy is to transect the liver approximately 1
cm to the right or left side of MHV to avoid damage to MHV. Fan [3] proposed
MHV-guided precise hemihepatectomy. Briefly, the precise liver transection plan
is obtained by exposing the MHV early in the phase of liver transection and
following its course to the inferior vena cava. Compared with traditional hepa-
tectomy, precise hepatectomy can minimize the liver injury, ensure intact blood
supply, venous drainage, and biliary drainage of the remnant liver, and preserve
the greatest functional hepatic tissue through accurate preoperative evaluation
and individual operation planning [3,4].

The structure, branching and confluence pattern of MHV is highly variable
among individuals, hence planning MHV-guided hemihepatectomy on the basis
of individual donor is essential. Conventional planning by tracking MHV and
drawing the transection plane on a stack of 2D computed tomography (CT)
slices is tedious and time-consuming. In addition, if a safety margin from the
resection plane to MHV is required, it is not easy for 2D slice-based planning to
guarantee the exact safety margin required.

There is no gold standard to define a resection surface. It is subjectively de-
fined by surgeons. Thus, even a fully automated planning is subjected to further
revision. Commercialized systems such as MeVisLab [5,6], Mint Liver [7], and
Scout Liver [8] can be used to interactively define the resection surface for hemi-
hepatectomy. However, they may require lots of user iterations to define a proper
resection plan in order to guarantee the safety margin to MHV. In this paper,
a semi-automatic 3D liver surgery planning system is proposed. Surgeons only
need to modify a few control points, then the system will automatically con-
struct the resection surface fulfilling the required safety margin. The system has
the following features.

– Simple and friendly user interaction. To modify a resection surface, users
only need to simply edit a few control points of the resection surface or
change the safety margin to the MHV. As such, re-planning is easy and fast.

– Automatic construction and optimization of the resection surface. Based on
the control points and the safety margin, an algorithm has been developed to
construct a resection surface from the control points, guaranteeing the safety
margin. The algorithm also optimizes the resection surface by reducing its
surface area to reduce the potential impair and bleeding.

2 Interactive Planning System

As presented in Fig.2, the proposed planning system consists of 4 parts.

CT data pre-processing segments the liver objects and extracts the major
branch of MHV.
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Fig. 1. Resection path-
way of hemihepatectomy
(arrow head)

Fig. 2. The flowchart of the resection planning

User interaction enables users to interactively edit the resection surface and
select a desired safety margin.

Surface construction and optimization automatically creates the resection
surface, guaranteeing the safety margin while minimizing the resection area.

Volume calculation provides the blood-free volumes of the two lobes to sup-
port risk assessment and clinical decision making.

After volume calculation, the safety margin is guaranteed. Thus, users only
need to assess whether the volumes are enough for both of the donor and the
recipient. If not, user can keep refining the resection plan by further editing the
resection surface. The proposed algorithm will update the resection surface and
present the corresponding lobe volumes. The following sections will detail each
part.

2.1 Representation of the Resection Surface

A resection surface is used to resect the liver into the left lobe and the right lobe
(Fig.3(a)). In the developed planning system, the resection surface depends on
its contour, which is a closed 3D polygon (Fig.3(b)). Our algorithm constructs a
smooth surface interpolating the contour while using the contour as its boundary.
As such, the vertices of the contour act as the control points, which are used to
control the shape of the resection surface. Users only need to modify the control
points without considering the interior portion of the resection surface.

2.2 CT Data Pre-processing

Contrast-enhanced abdominal CT scans in PV phase were used in this study.
A 3D flipping-free mesh deformation algorithm [9] was employed on the CT



58 W. Chen et al.

(a) A liver resected into two
lobes

(b) The resection surface

Fig. 3. Two lobes and the resection surface

scan after an anisotropic diffusion filtering, for the segmentation of the 3D gross
liver as the volume-of-interest (VOI, Fig.4(a)) . Then hepatic vasculatures were
segmented from the VOI and grouped into the trees of PV and HV accordingly,
by a context-based voting scheme which utilized region-based vessel features [10].
In short, it represents vessels in terms of shape and intensity within a local region
using vessel context, and segments and separates vessels hierarchically based on
vessel context and its derived features (Fig.4(b)). After that, the major branch
of MHV was traced and extracted from HV tree, using a semi-automated vessel
tracking algorithm from VMTK (www.vmtk.org) (the blue vessel in Fig.4(b)).
The major branch of MHV is a polygon S with a sequence of points Si, and
it is approximated using a set of cylinders Ci(Si, Si+1, ri), each of which is a
cylinder between Si and Si+1 with radius ri. Fig.4(c) is a MHV approximated
by 12 cylinders. For any vertex Vi on the resection surface, its distance to the
cylinder Ci is denoted as d(Vi, Ci), and its distance to MHV is taken as

dMHV(Vi) = min
i
{d(Vi, Ci)}. (1)

After this, guaranteeing the safety margin α to MHV is equivalent to guaran-
teeing that dMHV(Vi) ≥ α.

(a) Segmentation of liver,
PV and HV

(b) Extract of MHV (c) Cylinder approxima-
tion

Fig. 4. Input CT data pre-processing

www.vmtk.org
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2.3 User Interactions

User interaction in the proposed planning system is simple, that only the follow-
ing three basic operations are required.

Initialization requires users to manually click two points on the screen (two
red points in Fig.5(a)). A plane perpendicular to the screen is created in-
terpolating the two points. The contour of the resection is initialized as the
intersection between the plane and the bounding box of the liver.

Contour modification enables users to interactively edit the contours by ei-
ther re-positioning a control vertex or inserting/removing a control vertex.

Safety margin modification allows users to input any required safety margin
to MHV. As an example, the safety margin can be changed from 0 mm
(Fig.5(b)) to 10 mm (Fig.5(c)).

(a) Planar resection (b) 0 mm safety margin (c) 10 mm safety margin

Fig. 5. User interactions

2.4 Surface Construction and Optimization

The resection surface is initialized as a planar surface. After its contour is modi-
fied, the resection surface should be updated accordingly. To make the resection
surface surgically resectable, the updating of the resection surface should guar-
antee that

– The resection surface should be smooth,
– Each vertex on the resection surface should keep the safety margin to MHV,

and
– The area of the resection surface is minimized so as to reduce the potential

impair and bleeding.

The local minimization algorithm [11] provides a method to construct a sur-
face of minimal area. However, planning directly using this algorithm can lead to
an unacceptable result that is too close to MHV or cuts through MHV. In this
section, we will extend the algorithm to guarantee the safety. Such extension
is not trivial. Since the MHV surface and the resection surface are triangular
meshes, directly extending the local area minimization algorithm to guarantee
the safety margin to MHV surface involves lots of point-mesh-distance calcu-
lations. When the surface resolutions for the resection surface and the MHV
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surface are high, the algorithm will not be fast enough for realtime applications.
In our algorithm, we adopt a cylinder approximation to MHV during prepro-
cessing and turn the complex calculation into simple point-cylinder-distance.

The resection surface is constructed as a triangular mesh R consisting of a set
of vertices V and a set of triangles T . Each triangle (i, j, k) is defined by three
vertices Vi, Vj and Vk. The area A of the mesh R is the sum of all triangles’ areas.
With the contour fixed, A is a function of interior vertices Vi. The process of
area minimizing is to find appropriate positions for Vi such that A is minimized.

minA = min
∑

(i,j,k)∈T

1
2 |ViVj × ViVk|

s.t. dMHV(Vi) ≥ α, Vi ∈ V.
(2)

The resection surface will be updated iteratively. In each iteration, all interior
vertices of the resection surface are updated one-by-one. A new position is to be
calculated for each vertex Vi in two steps.

Firstly, for each vertex Vi, V̄i is obtained following Chen’s method [11] as

V̄i = −C−1
∑

(i,j,k)∈NT (i)

(VjVk · Vj)VjVk − (VjVk)
2Vj√

(VjVk × VjVi)2
, (3)

where · is the inner product, and × is the cross product, and NT (i) ⊆ T is the
subset of all the triangles that contain vertex Vi, and

C =
∑

(i,j,k)∈NT (i)

(VjVk)
2

⎛
⎝1 0 0

0 1 0
0 0 1

⎞
⎠− (VjVk)(VjVk)

⊥

√
(VjVk × VjVi)2

.

Secondly, check the distance from V̄i to MHV. If dMHV(V̄i) ≥ α, Vi is updated
to be V̄i. Otherwise, extend the radius of each cylinder by α, and project V̄i to
the the nearest cylinder. Updating the Vi as the projection point will guarantee
that dMHV(V̄i) = α.

In one iteration, all interior vertices are updated once and each vertex satisfies
dMHV(V̄i) ≥ α. As shown in Fig.2, the process continues until the area change
in one iteration is smaller than the prescribed tolerance ε. Experimental results
have shown that the resection surface converges.

2.5 Volume Calculation

The lobe volumes are very important in hemihepatectomy planning. In our sys-
tem, once the resection surface is defined, the volume portions of PV and HV
in the left and right lobes can be calculated. Thus, the blood-free volume for
each lobe and its ratio to the whole liver can be provided. Users can refine the
resection pathway to achieve the desired volume ratio for the remnant and the
graft.
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3 Experiments and Results

This section shows the planning of right hemihepatectomy, that the left lobe is
remnant for the donor and the right lobe is the graft for the recipient. Contrast-
enhanced abdominal CT scans in PV phase from six human subjects with health
livers were included in the experiment. CT images were reconstructed into the
image matrix of 512x512, with in-plane resolution of 0.65-0.73 mm and slice
thickness of 1 mm. The resection pathway of MHV-guided right hemihepatec-
tomy with MHV PRESERVATION (preserved for the donor) was planned in
two scenarios: 1) the resection pathway was kept next to the major branch (or
the right major branch) of MHV, and 2) a 10-mm safety margin was kept from
the resection pathway to the major branch (or the right major branch) of MHV.
The planning procedure was performed jointly by a surgeon and a scientist using
1) the developed 3D interactive planning tool, and 2) 2D slice-based planning
on ImageJ (http://rsb.info.nih.gov/ij/) with the support from maximal
intensity projection volume rendering for the original CT data.

3.1 Hemihepatectomy

Whether MHV should be harvested or not remains one point of debate in hemi-
hepatectomy. Using our planning system, users can easily plan harvesting MHV
for the recipient or preserving MHV for the donor, and compare the results to
make the final decision. Fig.6 shows the planning result for a case with 5 mm
safety margin. The ratio of remnant for the donor is only 29% if MHV is har-
vested (Fig.6(a)). On the other hand, the figure is 55% if MHV is preserved for
the donor. In this case, MHV can not be harvested.

(a) MHV harvested (b) MHV preserved

Fig. 6. Harvest or preserve MHV

3.2 Automatical Planning vs Manual Planning

Table 1 collects the blood-free volumes of the planning for the six cases. In all
cases, MHVs are preserved in remnants. Conventionally, the surgeon will plan

http://rsb.info.nih.gov/ij/
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Table 1. Right hemihepatectomy planning results

3D sliced-based planning Planning using the proposed system
0 mm 10 mm 0 mm 10 mm

Case Graft Remnant Graft Remnant Graft Remnant Graft Remnant

1 718(57%) 533(43%) 626(50%) 625(50%) 574(46%) 677(54%) 586(47%) 665(53%)
2 710(63%) 416(37%) 639(57%) 487(43%) 539(48%) 587(52%) 530(47%) 596(53%)
3 1199(64%) 671(36%) 1111(59%) 759(41%) 897(48%) 973(52%) 895(48%) 975(52%)
4 958(60%) 636(40%) 835(52%) 759(48%) 774(49%) 820(51%) 760(48%) 834(52%)
5 1232(71%) 496(29%) 1100(64%) 628(36%) 838(48%) 890(52%) 822(48%) 906(52%)
6 861(56%) 669(44%) 813(53%) 717(47%) 718(47%) 812(53%) 700(46%) 830(54%)

* The unit is mL.

the resection pathway on each slice with a safety margin to MHV. The planned
resection pathway can only keep the safety margin to the MHV on this slice but
may not keep the safety margin to MHV on other slices, thus such operations
may not guarantee the safety margin to MHV in 3D. Moreover, the planning
result may not guarantee enough liver parenchyma volumes in both the remnant
and the graft. As such, the obtained surgical proposal may not be operable.
For example, in Cases 2, 3, 4 and 5, during the slice-based planning, as the
surgeon planed the resection with a 0 mm safety margin slice-by-slice, the final
graft volumes are much greater than the remnant volume. It means the remnant
volume is significantly smaller than half of the whole liver volume. The same
situation occurs for Cases 2, 3, 5 with a 10 mm safety margin. A re-planning
will be required. However, it is time-consuming to re-plan in 2D slices with a
prescribed safety margin. It requires even more time to plan for different safety
margins.

Re-planning using the proposed system is easy and fast. The surgeon only
need to modified a few control points and select the required safety margin to
perform a re-planning. For the six cases, better surgical plans which preserve 51-
55% of the whole liver volumes for donors were obtained by using the proposed

(a) 3D-based (b) Slice-based

Fig. 7. Semi-automatical planning VS manual planning in the smoothness of the re-
section surface
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system. With our system, surgeons only need to adjust a few control points to
achieve any ratio of graft-remnant partition for the donor, but the acceptable
ratio and the actual surgical proposal is decided by surgeons.

As presented in Fig.7(b), slice-based planning result may not provide a smooth
resection surface. On the other hand, the resection surface constructed by the
proposed system is a smooth surface, which can be integrated for intra-operative
application. During the actual operation, there are many ways to help surgeons
to follow the smooth resection surface, such as augmented reality.

4 Conclusions and Future Work

For the planning of hemihepatectomy, the resection plan is subjectively defined
by surgeons. In this paper, a semi-automatic system is developed to help surgeons
to plan MHV-guided hemihepatectomy. Surgeons only need to interactively ad-
just a few control points and select the desired safety margin. Our algorithm
can automatically construct a smooth resection pathway according to the con-
trol points and guaranteeing the safety margin. In parallel, area minimization
is adopted to optimize the resection surface to reduce the potential impair and
bleeding in the operation. Blood-free volumes of the graft and the remnant are
calculated based on the planning result to support the users’ decision mak-
ing. Users can decide whether to harvest MHV or not by trying different resec-
tion pathways. As the user interactions to define the resection path way is very
simple, re-planning is therefore very fast. Compared with the conventional 2D
slice-based planning, the proposed system is faster and provides better planning
results, which are surgically resectable thus can be integrated for intra-operative
application. As a future work, we will adopt augmented reality to help surgeon
to follow the planned pathway during the operation.
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Abstract. Prostate segmentation from extracorporeal ultrasound
(ECUS) images is considerably challenging due to the prevailing speckle
noise, shadow artifacts, and low contrast intensities. In this paper, we
proposed a cascaded shape regression (CSR) method for automatic
detection and localization of the prostate. A sequence of random fern
predictors are trained in a boosted regression manner. Shape-indexed
features are used to achieve invariance against geometric scales, trans-
lation, and rotation of prostate shapes. The boundary detected by CSR
is used as the initialization for accurate segmentation by using a dy-
namic directional gradient vector flow (DDGVF) snake model. DDGVF
proves to be useful to distinguish desired edges from false edges in ECUS
images. The proposed method is tested on both longitudinal- and axial-
view ECUS images and achieves Root Mean Square Error (RMSE) under
1.98 mm (=4.95 pixels). It outperforms the active appearance model in
terms of RMSE, failure rate, and area error metrics. The testing time of
CSR+DDGVF is less than 1 second per image.

Keywords: Cascaded regression, prostate segmentation, random ferns,
dynamic directional gradient vector flow.

1 Introduction

High Intensity Focused Ultrasound (HIFU) is being used throughout the world
as a therapeutic procedure for prostate cancer and benign prostate hyperplasia
(BPH). An important component in BPH removal using HIFU is to position and
focus on the targeted prostate tissue. Extracorporeal ultrasound (ECUS) images
are usually noisier than the transrectal ultrasound (TRUS) images. Therefore,
accurate automatic prostate segmentation from ECUS images faces considerable
challenges. Numerous prostate segmentation methods have been developed in
literature, either for TRUS, MR, or CT images (see [1] for an extensive review).

According to the information used to guide the segmentation, the prostate
segmentation methods can be classified into four groups [1]: contour and shape
based method, region based methods, supervised and un-supervised classification
methods, and hybrid methods. Since edge information is unreliable and edges
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are even broken in ultrasound images, the use of the first group of methods, e.g.
active contour model (ACM) [6], [5], and curve fitting [7], [8] alone are often
ineffective. Region based methods such as graph partitioning [10] and regional
level set [9], solve the segmentation problem in an energy minimization frame-
work. The popular regional level set [11] relies on region homogeneity, which is
often violated due to artifacts and dropouts in ultrasound images, and generates
fragmented regions. Classification methods cluster [12] or classify [13] the pixels
into the prostate or the background based on feature vectors. To produce accu-
rate segmentations, the above methods are often combined into hybrid methods
so that the segmentations are more robust to artifacts and noises.

A widely used approach is to match statistical shape models to images to
locate points on deformable objects. Cootes et al. proposed the active shape
model (ASM) [14] which maintains the principal modes of shape variations in
a deformable model framework. The later active appearance models (AAM)
[15] combine models of both shape and texture using an efficient parameter
update scheme. One of the limitations of parametric shape model approaches is
that minimizing model parameter errors in the training set is indirect and sub-
optimal [3]. Moreover, ACM and AAM based methods need good initialization
since they are local optimization. The linear regression used in the original AAM
may be insufficient to capture the variance of shape and appearance of the
prostate in ECUS images. Non-linear regression based matching methods have
been introduced using boosted regression [17], [18] and random forest regression
[19]. Zhou proposed shape regression machine (SRM) which uses image-based
boosting regression for left ventricle segmentation from echocardiogram [16].
Sequences of random fern predictors have been used in a cascaded way for face
alignment [2], [3]. Recently, regression based voting approaches [20], [21] show
efficiency in locating facial feature points accurately.

In this work, we propose a cascaded shape regression (CSR) method for ef-
ficient prostate detection and localization with the shape being represented by
a sequence of sampled points on the prostate contours. The advantages of the
CSR are:

– The alignment error is explicitly minimized during the training of regressors,
instead of minimizing model parameters which is indirect.

– The regressed shapes are constrained by the linear subspace constructed by
all training shapes. We need no parameter tuning to estimate the variation
of shapes in the regression model.

– The initialization is fully automatic. We use the average of all training shape
and the true shape of other training samples to initialize the CSR for train-
ing, assuming that the training samples well represent the possible location,
rotation and scale of the prostate shapes. Afterwards, the CSR is simply
initialized by the average of all training shapes during testing.

To achieve accurate prostate segmentation, the CSR results have to be refined.
Following the CSR, the dynamic directional gradient vector flow (DDGVF)
snakes [23] is adopted to optimize the detected shape boundary. DDGVF is
a type of external force model which endows the snake/active contour model
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the ability to discern edges of different orientations dynamically during the con-
tour deformation. This property is very useful to distinguish desired edges from
false edges in noisy images such as ECUS images efficiently [23]. Furthermore,
DDGVF snake is faster than other existing methods such as contour or region
based level set, mesh, and atlas.

2 Methodology

In this section, we present the cascaded shape regression method which is used
for estimating the prostate shape and position, given a set of training data. The
regressed shape is then used to initialize dynamic directional gradient vector
flow snakes for accurate boundary segmentation.

2.1 Cascaded Shape Regression (CSR)

A prostate shape is represented by a sequence of M landmark points: S =
[x1, y1, ..., xM , yM ]T . A training sample, {(Ii, Ŝi)}, consists of an image Ii and
a true shape Ŝi, i = 1, 2, ..., N . As a landmark-based shape model, an essential
requirement is that landmarks on all training samples are located at correspond-
ing positions. Because of the ellipsoidal shape of the prostate, it is not an easy
task to label the same points. To find these landmarks, we first fit the manually
drawn prostate boundary in the image to an ellipse. Starting from the orien-
tation of fitted ellipse, equally-distanced landmarks are selected automatically
from the prostate boundary.

A cascaded regressorR = (R1, R2, ..., RT ) consists of T weak regressors. Given
an image I and an initial prostate shape S0, each regressor generates a shape
increment vector δS to update the previous shape:

St = St−1 +Rt(I, St−1),with δSt = Rt(I, St−1), t = 1, 2, ..., T. (1)

The output of regressors depends on image I and the previous shape St−1, using
random fern and shape-indexed features which will be described in the following
sections. Each regressor is trained to minimize the difference between the true
shape and the new shape updated by the regressor, i.e.,

Rt = argmin
R

N∑
i=1

‖Ŝi − (St−1
i +R(Ii, S

t−1
i )‖2. (2)

Random Fern Regressors. We use random ferns as weak regressors in the
cascade. The fern was firstly introduced for classification [4] and later used for
regression [2], [3]. A fern regressor is created by randomly selecting s features
from a vector of F features and comparing them with s thresholds randomly
selected. In this way, each input feature vector is divided into one of 2s bins. Each
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bin b is associated with a regression output δSb that minimizes the alignment
error of training samples Ωb that fall into the bin:

δSb = argmin
δS

∑
i∈Ωb

‖Ŝi − (Si + δS)‖2. (3)

Eqn. (3) is solved by simply taking the mean of all shape differences,

δSb =

∑
i∈Ωb

(Ŝi − Si)

|Ωb|+ ρN
, (4)

where ρ is a regularization term to overcome over-fitting when the number of
training samples in the bin is insufficient. The exact solution of Eqn. 3 is given
by Eqn. 4 when ρ = 0. At each stage in the cascaded regression, a pool ofK ferns
are randomly generated and the one with the lowest regression error is chosen.

In [2], single-variate regressors are trained separately for individual pose pa-
rameters. We train multi-variate regressors for all the M landmark points si-
multaneously: they either fall into a bin or not. As shown in Eqn. 4, each shape
increment is a linear combination of certain training shapes {Ŝi}. We choose the
average of all training shapes as the initial estimate of shape S0 for regression.
Therefore, all intermediate shapes in the regression and the final regressed shape
are always a linear combination of all training shapes [3]. Therefore, no extra
constraint is used to impose smoothness on the output shape. In contrast, if we
train separate single-variate regressors for each individual component of S, then
the shape will become more and more irregular after each regression.

Shape-Indexed Features. We used simple shape-indexed features to learn
each regressor. Shape-indexed features mean that a pixel is indexed relative
to the currently estimated shape rather than the original image coordinates.
Since the prostate shapes are mostly elliptical, we can estimate the best fit to
an ellipse from a given prostate shape S, using the least-square criterion. The
ellipse is parameterized by its location (tx, ty), major/minor axis a, b, and the
orientation ϕ. Therefore, the current shape is reflected by the translation, scale,
and rotation of the fitted ellipse.

These features are computed as the intensity difference between two pixels
in the image. To compute F shape-indexed features from the current estimated
shape, we first randomly sample 2F pixels within a circle of radius r centered
at (0, 0). Then F of them are randomly selected as pn1 , and the rest of them
as pn2 , n = 1, ..., F . So pn1 and pn2 are not correlated. These points are then
undergone a similarity transform according to the parameters of the best-fit
ellipse H(tx, ty, a, b, ϕ). The intensity differences at the transformed 2F pixels
result in F shape-indexed features I(H(pn1 )) − I(H(pn2 )), which are invariant
against the geometry scale, translation, and rotation of different prostate shapes.
As any ellipse may be construed as an affine transformation of a circle, we use
similarity transform as an approximate in order to generate randomly sampled
pixel pairs nearby and within the prostate shape.
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Training for CSR. The training process for CSR is summarized in Algo-
rithm 1. For each training sample Si, we use the average of all training shape(
S0 =

∑N
j=1 Ŝj

N

)
and the true shape of the rest of training samples {Ŝj|j =

1, 2, ..., N, j 
= i} to initialize the CSR. The CSR is trained to move the shape to
the true shape Ŝi even if the initial positions are far from Ŝi. For each testing
sample, CSR is only initialized for once by the average shape because it is the
single shape estimate that minimize the training error before regression starts.

Algorithm 1. Training for cascaded shape regression

Require: {(Ii, Ŝi)}, i = 1, 2, ..., N

begin initialize S0
i =

∑N
j=1 Ŝj

N
or S0

i =
{
Ŝj |j = 1, 2, ..., N, j �= i

}
, i = 1, 2, ..., N for

data augmentation
for t = 1 to T do

for i = 1 to N do
Fit the current shape St−1

i to an ellipse and compute shape-indexed features
end for
Train K random ferns on all N current shapes and select the best fern which

gives the lowest training error
Apply Eqn. (4) to compute δSb = Rt

b for each bin b in the best fern
for i = 1 to N do

St
i = St−1

i + δSb, suppose the features of St−1
i fall into bin b, b ∈ {1, 2, ..., 2s}

end for
end for

return R = (R1, R2, ..., RT )

2.2 Dynamic Directional Gradient Vector Flow

In CSR, the prostate shape is represented by a sequence of landmark points.
Overfitting will occur if a large set of landmark points is used but the number of
training data is limited. If using less number of landmark points, the regressed
shape may miss the curvature change in prostate boundary. Given the CSR
result as an initialization for the snake, we adopt the DDGVF [23] method to
detect the prostate boundary more accurately in noisy and low-contrast ECUS
images.

To compute DDGVF, an edge map f = [f+
x (x, y), f−

x (x, y), f+
y (x, y), f−

y (x, y)]
is generated from image I, where f+

x , f−
x , f+

y , and f−
y are the gradients of positive

step edges in x, −x, y, and −y directions respectively. Accordingly, the DDGVF
field v(x, y) = [u+(x, y), u−(x, y), v+(x, y), v−(x, y)] has four components, which
are found by solving the following partial differential equations separately:

vt = μ∇2v− (v− df)df2, initialized by v0 = df (5)
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where t is the time and df = [df+
x , df−

x , df+
y , df−

y ]. Finally, the snake is deformed
under the external force Fext = [Fx, Fy], defined by

Fx = u+ ∗max{cos(θ), 0} − u− ∗min{cos(θ), 0} (6)

Fy = v+ ∗max{sin(θ), 0} − v− ∗min{sin(θ), 0} (7)

where θ is the contour’s normal directional at a certain snaxel.

3 Experiments

We validate the performance of our method (CSR+DDGVF) on two datasets: 74
longitudinal view and 76 axial view ECUS images of the prostate. The resolution
of the images is 488×744 pixels and (0.40 mm/pixel). 50 images are randomly
selected from each dataset as the respective training sets and the rest as the
testing sets respectively. Each prostate shape is described by M = 20 landmarks.
The parameters of the CSR are set as follows: number of training data N = 50,
number of phases in the cascade T = 512, fern depth s = 5, number of ferns
K = 128, radius r = 1.5, and number of features F = 64.

We use average Root Mean Square Error (RMSE), failure rate, precision,
recall, and Dice coefficient (DSC)1 to evaluate the segmentation result. To cal-
culate the failure rate, two thresholds on RMSE (φ = 2.4 or 3 mm) are used,
which corresponds to 6.5% and 8.1% of average prostate length in longitudinal
view images. The precision, recall, and DSC are averaged respectively only for
those images where the segmentation result and the ground truth are at least
overlapped. The results are compared with the original AAM proposed by Cootes
et al. [15] using the optimized C++ implementation from [22].

During the testing of CSR, we use the average of all training shapes as the
initialization by simply overlaying it on the testing image domain. In our ECUS
prostate segmentation application, because the training data are from the same
imaging setting as those for the testing data, their scales are considered the
same. As long as the training data are representative for the size, shape and
position variations, there is no need to invoke transformations in terms of scale
and translation. As for rotation, the orientation of the prostate is estimated by
fitting an ellipse to determine the correspondence of landmarks in the model and
the object in the test image. Similarly, AAM was initialized by putting the mean
shape (up to a scale factor) in the test image domain. The DSC of the average
shape against true shapes is 0.79±0.13 and 0.66±0.24 for longitudinal and axial
images respectively. In Fig. 1, the position of prostate shape at different stages
is illustrated. The two initial shapes used for the two datasets respectively are
shown in the first column (t=0) and the final regression results are shown in the
last column (t=512).

1 precision= TP
TP+FP

, recall= TP
TP+FN

, and DSC= 2TP
2TP+FP+FN

, where TP , FP , and
FN are the number of true positive, false positive, and false negative pixels, respec-
tively.
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Table 1. Quantitative comparison of segmentation results for the two datasets.
RMSEφ: average RMSE in mm under φ mm, fφ: failure rate (RMSE> φ mm).

Dataset Method RMSE2.4 f2.4 RMSE3 f3 Precision Recall DSC

Longi- AAM 2.00±1.42 84.1% 2.29±0.11 72.8% 0.76±0.20 0.83±0.15 0.78±0.15
tudinal CSR 1.89±0.17 27.0% 1.98±0.19 17.5% 0.88±0.14 0.93±0.06 0.90±0.10

CSR+DDGVF - - - - 0.91±0.13 0.90±0.08 0.90±0.09

Axial
AAM 1.85± 0.44 96.0% 2.05±0.44 94.7% 0.87±0.11 0.82±0.06 0.84±0.08
CSR 1.73 ±0.11 9.1% 1.75±0.14 6.5% 0.90±0.11 0.93±0.10 0.91±0.10

CSR+DDGVF - - - - 0.94±0.11 0.89±0.10 0.91±0.10

Table 2. Training and testing time

Method Training (50 images) Testing (per image)

AAM 10.9 sec 51 sec

CSR 22 min 0.11 sec

CSR+DDGVF 22 min 0.92 sec

For the experiment, we use 5-fold cross validation (4 for training and 1 for
testing) to avoid bias in such a splitting. All metrics are first averaged within each
fold and the mean/standard deviation among the 5-fold are shown Table 1. It
can be observed that the AAM has a much higher fail rate due to its sensitivity
to initialization. The CSR achieves an average RMSE (under 3 mm) of 1.98
and 1.75 mm for the two datasets respectively. The CSR also outperforms the
AAM for other performance metrics when only successful segmentation cases are
counted. Our method is implemented in Matlab R2012a on a Windows machine
with 3.2GHz CPU and 12GB RAM. The training and testing time is compared
in Table 2. With an unoptimized Matlab code, the CSR requires 22 minutes to
train 50 images, which is relatively long. However, our testing speed is only 0.92
seconds per image which is much faster than the AAM. This is desirable for real-
time applications such as in-vivo experiments of BPH removal. The segmentation
results of the CSR and the AAM is compared in Fig. 2.

Fig. 1. Regressed shapes at different stages (from left to right) t=0, t=1, t=3, t=7,
and t=512 respectively. First row is longitudinal view and the second row is axial view.
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Fig. 2. Prostate segmentation results by active appearance model (first and third row)
and cascaded shape regression (second and forth row). The red contour represents the
ground truth and the green/yellow contour represents the segmentation results.

(a) (b) (c) (d)

Fig. 3. Segmentation results of CSR (green contour) and CSR+DDGVF (yellow con-
tour). The red contour represents the ground truth.

Fig. 3 displays the final segmentation results. The prostate boundary after
snake deformation using DDGVF is closer to the ground truth. We interpolate
the landmark points on both the segmented boundary and the ground truth so
that the distance between two neighboring points is between 0.5 to 1.5 pixels.
The overlap ratios in the results of CSR+DDGVF are also shown in Table 1.
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4 Conclusion and Future Work

A novel approach has been proposed for prostate segmentation from ECUS im-
ages. By using cascaded shape regression, our approach is able to efficiently
locate the prostate boundary against shape, position, and orientation variations
in ECUS images. With the help of DDGVF, efficient and accurate segmentation
is achieved. Future work includes developing CSR+DDGVF into a real-time
prostate tracking framework.
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Abstract. Feature tracking for endoscopic images is a critical compo-
nent for image guided applications in minimally invasive surgery. Recent
work in this field has shown success in acquiring tissue deformation, but
it still faces issues. In particular, it often requires expensive algorithms to
filter outliers. In this paper, we firstly propose two real-time pre-processes
based on image filtering, to improve feature tracking robustness and thus
reduce outlier percentage. However the performance evaluation of detec-
tion and tracking algorithms on endoscopic images is still difficult and
not standardized, due to the difficulty of ground truth data acquisition.
To overcome this drawback, we secondly propose a novel framework that
allows to provide artificial ground truth data, and thus to evaluate detec-
tion and feature tracking performances. Finally, we demonstrate, using
our framework on 9 different in-vivo video sequences, that the proposed
pre-processes significantly increase the tracking performance.

1 Introduction

Minimally Invasive Surgery (MIS) gets more and more common nowadays. In
comparison to open surgery, there are many advantages for the patient: less
trauma, faster recovery, aesthetic reasons... However, important disadvantages
arise for the surgeon: restricted vision, difficult hand-eye coordination, no tac-
tile perception, loss of depth perception. Extensive research work in the field
of computer vision, which attempts to provide 2D or 3D preoperative or in-
traoperative information to the surgeon [2], has been performed to reduce these
disadvantages. For example, image mosaicing [19], 3D depth recovery [17,11] and
augmented reality view [14] can assist surgeons to increase intervention safety.
For these technologies to be successful, feature tracking of tissues must be robust
and accurate. In addition, depending on the applications, it is desirable that the
tracked features span the whole field of view.

The ability to successfully track a feature depends on its representation which
usually includes colors, edges, corners, intensities, textures or gradients. Unlike

C.A. Linte et al. (Eds.): MIAR/AE-CAI 2013, LNCS 8090, pp. 75–85, 2013.
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synthetic scenes and outdoor environments, MIS images exhibit considerable
drawbacks: specular reflection, shadow effects, dynamic lighting conditions, non-
rigid deformation due to patient motion (heartbeat, breathing) and interactions
with surgical instruments. These conditions may result in tracking failure. Sev-
eral research studies attempt [13,21,20,16] to identify the best features to track
from endoscopic images using optical flow and/or feature descriptor methods.
Nevertheless, they have not yet resulted in a routinely used clinical application
due to MIS image properties. In particular, no quantitative work has been con-
ducted to evaluate the benefit of a pre-processing step based on image filtering
to enhance image quality (dynamic range, contrast, noise response), which can
improve feature tracking performance and avoid supplementary techniques to
remove outliers [8] and/or to recover tracking failure [5] which can be time con-
suming. We believe that an adapted pre-processing step in real-time for MIS
images is important to increase the tracking performance.

In this paper we investigate the influence of pre-process in tracking perfor-
mance and show rigorously and quantitatively their improvement on detection
and tracking steps using our proposed framework for feature tracking validation.

2 Related Work

Improving the identification of robust features using pre-processing methods in
MIS images is not common. Wu et. al.[20] use histogram equalization to em-
phasize the gradient intensity to avoid tracking failure. In [21], they perform a
Gaussian smoothing to reduce the noise response. However, neither of them did
perform a quantitative assessment to evaluate the benefits of the pre-process.
Regarding evaluation methodology, it usually depends on the type of feature
tracking approach: recursive or descriptor based methods. In both cases, provid-
ing ground truth data is a problem to evaluate the tracking performance.

Evaluation of the Detection Quality: Previous work [21,13,16] usually com-
pares the number of detected points for different detectors and reports the per-
centage of the robust ones. No quantitative analysis to measure the distribution
of points is provided and it do not investigate the choice of algorithm parameter
values. Up to now, there is no clear and recognized methodology to evaluate and
to compare different methods.

Evaluation of the Tracking Quality: In [12,16], they visually assess whether
the points are well tracked over the sequence and report the percentage of robust
features. This method is tedious, time consuming, subjective and must be re-
peated for each new sequence. In addition, manual labelling could be only done
on salient features, which is difficult for the liver due to its homogeneous surface
texture. Other approaches [8,13,21] evaluate the tracking performance using a
3D rigid model or phantom. They compute the registration error between the
reconstructed surface (using Structure From Motion or Stereo) from the tracked
points and the scanned 3D model. Although this measure allows to evaluate the
tracking quality, it is an indirect measure that does not provide the tracking
pixel accuracy and the percentage of robust points.



Evaluation of Endoscopic Image Enhancement for Feature Tracking 77

The main problem for tracking performance validation is related to the lack
of ground truth data. Recently, a method to detect tracking failure caused by
motion, occlusion, and slowly drifting trajectory for recursive tracking was pro-
posed [9]. It is based on the forward-backward tracking error of selected features.
Features are tracked frame by frame as they move forward in time and then, the
video is played on reversed frames and features are tracked backward until the
beginning of the video. If a feature is perfectly tracked, it should go back to
its location on the first frame. We highlight that the proposed method can be
considered as an artificial ground truth for recursive tracking methods, since
it allows to know where each selected feature should arrive on the last frame
of the forward-backward sequence (initial frame). However, in [9] the tracking
computation of a feature from frame t to t+1 is based on almost the same im-
age window as from t+1 to t, therefore the forward and backward tracking are
correlated causing the underestimation of the tracking error.

The main contributions of this paper are twofold. Firstly, we propose two
pre-processes based on image filtering to improve feature detection and track-
ing. Secondly, we describe a novel framework for evaluating tracking efficiency
(accuracy, robustness and distribution) for a recursive tracking method (as op-
tical flow). This framework provides an artificial ground truth data based on an
improved version of the forward-backward tracking that tackles the correlation
issue mentioned above. This framework allows not only to evaluate the influence
of pre-process, but also to compare different detection and tracking methods.

3 Pre-processing Methods

Because of varying illumination (shadows, reflections) and to the unique source
of light located at the tip of the endoscope, dark areas in endoscopic images can
be important (up to 40% of the image size) involving an underexposed histogram.
It seems necessary to adaptively adjust the contrast on the dark area of the im-
age and also to increase the gradient of the inner structure and vessels to im-
prove feature detection and tracking. Our implementation uses GPU acceleration
of OpenCV without a GPU parallelization and optimisation. Time computation
per HD frame takes approximatively 0.01 seconds for Egal Smooth and 0.06 sec-
onds for TopHat on a PC core I7-3.4GHz withNvidia GTS 450 graphic card. Fig.1
shows an example on MIS images of the two pre-process methods we propose.

1. Egal Smooth : In order to enhance contrast of the images, histogram equal-
ization (HE) seems well adapted since it will enlarge the dynamic of the gray
level in the peak containing information on the dark area. A standard method to
enhance contrast for color images applies HE to every channel of an RGB image
independently. This technique may result in a higher concentration of bright
pixels and can cause color artefact due to the combined encoding of intensity
and chromaticity in the RGB images [6], which can cause undesirable effects for
feature tracking. To overcome this problem, we convert the image to the HSV
color space and enhance Saturation (S) and Value (V) independently and later
re-transform to the RGB color space. We keep the chromaticity of the image
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(Hue) unchanged. The HE of V (resp. S) makes the dark areas more contrasted
(resp. the colors become more vivid). This technique gives better results for lu-
minance distribution. We apply a Gaussian filter (Gσ) to the S and V channels
after applying HE, with σ = 1.5 (and kernel size 5 × 5). The σ was adapted
empirically for our specific image resolution so as not to erase the small inner
structures (vessels). Applying a Gaussian filter to V (resp. S) reduces noise re-
sponse and increases entropy of the histogram (resp. spreads out the color of
dark edges like vessels and inner structures).

2. Top Hat :Another way to increase image contrast is to locally enhance details
(edges, corners) in the image. A neighbourhood-based morphological contrast
operator can be obtained by computing the white and black top hat of the
image. The white top hat is then added to the original image to enhance bright
objects and the black top hat is subtracted from the resulting image to enhance
dark objects. In order to perform a morphological operator on color image, we
use a vectorial order for the opening and closing [7]. We also apply a Gσ (σ = 1.5
and kernel size 5× 5) to the output image to reduce the noise.

(a) Original (b) Top Hat (c) Egal Smooth

Fig. 1. Example of the two pre-process results (2 first lines) and image samples of the
various remaining sequences we used (2 last line).

4 Evaluation Methodology

In this section, we first explain our modified version of the forward-backward
tracking to obtain artificial ground truth data. Secondly, we explain the two
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parts of our framework to evaluate feature tracking and feature detection
performances.

4.1 Forward-Backward Tracking Based on Even-odd Frames

Our approach is based on the assumption that to evaluate the final drift er-
ror, the backward tracking should be decorrelated from the forward tracking.
In other words, the feature should go back to the initial position with differ-
ent frames than for the forward tracking. This decorrelation is done by mak-
ing the forward tracking on the even frames and the backward tracking on the
odd frames. Let FB = (I0, I2, I4, ..., In-2, In, In-1, ..., I3, I1, I0) be the modified
forward-backward sequence of (n + 2) frames where It is the tth frame of the
considered video sequence. For each feature we measure the Euclidean distance
ε between its initial position and its final position of the FB sequence. This dis-
tance corresponds to the feature drift during the tracking step. In the case of an
accurate feature tracking, ε should be less than 1 pixel. From the computation
of ε for each feature, we firstly calculate the percentage of features, where ε is
below a certain threshold. This percentage assesses the robustness of track-
ing. However, this threshold can be misleading because it does not indicate the
accuracy of the properly tracked features. Indeed, two pre-processes may provide
the same percentage of robust features, but the ε distances may be lower for one
of the pre-processes. Thus, we also propose to provide the ε histogram of the
set of tracked features, which gives the tracking accuracy.

4.2 Evaluation of Feature Tracking Performance

This first method evaluates the pre-process influence on the feature tracking ro-
bustness and accuracy (regardless of the feature detection method used). In fact,
the number and robustness of features during the tracking step usually depends
on a particular threshold. Varying the threshold could allow a supplementary
detection of features but with doubtful tracking performance. Thus, to demon-
strate the advantage of a pre-process, the percentage of robust points should be
increased whatever the threshold used. Consequently, we propose the following
methodology.

For a given threshold, we detect features in the first frame without pre-process.
We then track the feature set over the forward/backward sequence with the pre-
process and without it. We compare the percentage of robust points and
the ε histogram with and without pre-process. This tracking is repeated for
different threshold values that span the threshold range. Finally, we obtain a
comparison of robustness and accuracy for the whole threshold range.

4.3 Evaluation of Feature Detection Performance

This second evaluation method assesses to what extent the pre-process improves
the robustness, accuracy and distribution of the detected features. In fact, to
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compare two detection methods (or the benefit of a pre-process filter), the com-
mon approach is to provide the percentage of robust points only. However, the
distribution and density of detected points in the first image are also important
factors. Moreover, standard approaches compare the detection performance with-
out evaluating the influence of detection threshold and use standard detection
parameters provided by the available implementation [21,13,16]. The number
of detected features can thus be totally different in the compared set. Finally,
lowering the detection threshold causes the increase of the detected features but
this does not necessarily mean they are robust and well distributed in the entire
image. Therefore, we propose the following methodology.

In order to compare the quality of feature detection, we need to compare
feature sets of the same size detected with and without pre-process. Hence,
given a detector threshold for the sequence without pre-process, we choose a
different threshold for pre-process sequence so that we get the same number of
detected features. Then, we firstly compare the distribution of detected points
with and without pre-process, using for each set 2 histograms: one for x-axis
(image columns) and one for y-axis (image rows). Secondly, we compare tracking
accuracy and robustness with and without pre-process, computed using the same
method as in Sec. 4.2 (percentage of robust points and ε histogram).
The process is repeated for different numbers of features (and so for different
threshold values).

5 In-vivo Evaluation

We evaluate our approach on 9 in-vivo HD video sequences (1920×1080) 25fps,
corresponding to a panning view of an abdominal exploration. Three of them
contain a human liver and gallbladder and the others contain pig liver, spleen
and bowels (cf Fig. 1). From top to bottom, then from left to right, the sequence
contains respectively 109, 317, 185, 159, 111, 207, 429, 189, 105 frames. In this
evaluation, we firstly evaluate the influence of pre-process during tracking with
Shi-Tomasi (so called GFTT for good features to track) [18], FAST [15], BRISK
[10] and SURF [3] detectors and Lucas-Kanade (LK) [1] tracking algorithm.
Secondly, we show the influence of pre-process during detection. The OpenCV
library was used with following parameters, which were used on all sequences:
GFTT threshold was defined as: from 0.001 to 0.01 with a step of 0.001 and
from 0.01 to 0.09 with a step of 0.01 to have a wide variation in the number
of features detected. For BRISK: octave = 3, detection thresholds from 10 to
28 with a step of 1. For FAST: the default mask 9-16 was used, a non-maxima
suppression set to true, and detection thresholds from 10 to 46 with a step of 2.
For SURF: octave = 4, hessian thresholds from 50 to 900 with a step of 50. For
LK: a window size of (25× 25) and pyramid level of 3.

5.1 Evaluation of the Influence of Pre-process During Tracking

The evaluation was run for each sequence, we detect a set of points without pre-
process, then track it in the 3 modes (no preprocess, Egal Smooth and Top Hat).
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Table 1. Average percentage of robust features with and without pre-process

Detection No pre-process

Tracking No pre-process Top Hat Egal Smooth

GFTT 77.7% 83.3% 81.1%
SURF 81.6% 90.4% 91.3%
BRISK 81.8% 85.6% 88.3%
FAST 77.5% 82.2% 84.8%

In Fig. 2 we show an example result for one sequence (pig bowels). Fig. 2a, 2b, 2c,
2d shows the percentage of robust features with a drift under 5 pixels (5 pixels
correspond to the thinnest vessel width). One can clearly see that each proposed
pre-process improves the robustness of tracking, whatever the detection thresh-
old and the detector used. Fig. 2e, 2f, 2g, 2h shows the ε distances histogram
for a fixed threshold to get 500 detected features with GFTT, SURF, BRISK
and FAST detectors. We print the number of points with drift lower than one
pixel. It appears clearly that pre-process also increases accuracy of the tracking.
Tab.1 shows the percentage of average results of robust features for all threshold
values and for the 9 sequences. The robustness is improved up to 9% for Top
Hat and 10% for Egal Smooth. SURF detector performs with a better robustness
than the other detectors as it has been already reported in [4].

5.2 Evaluation of the Influence of Pre-process During Detection

In this evaluation we adapt thresholds to get the same number of points detected
using each pre-process and without as explained in Sec. 4.3. Fig. 3 shows the
number and the distribution of detected features with and without pre-process
on one example sequence (human liver 184 frames). One can see that for the same
number of features detected, we provide a slightly better distribution. Tab. 2 pro-
vides the percentage of robust points for the example sequence and the average
result over the 9 sequences. One can clearly see that each pre-process improves
the robustness up to 8% for Top Hat and Egal Smooth with better results for
SURF detector. On average the accuracy of tracking from the ε histogram is
improved using Top Hat (resp. Egal Smooth) of 8.2% (resp. 9.4%).

Table 2. Percentage of robust features properly tracked with respect to the pre-process
applied

Pre-processes No pre-process Top Hat Egal Smooth

Sequence Liver Average Liver Average Liver Average

GFTT 84.3% 78.7% 93.1% 82.1% 94.3% 83.8%
SURF 87.5% 76.4% 96.7% 84.3% 95.8% 84.5%
BRISK 84.1% 77.1% 91.3% 81.1% 93.5% 82.4%
FAST 83.1% 74.8% 88% 79.2% 91.3% 82%
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Fig. 2. (a,b,c,d) Percentage of robust points with and without pre-process for different
thresholds. (e,f,g,h) ε histogram distance for 500 points.
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Fig. 3. Number of points and their distribution with and without pre-process

6 Conclusion

We have presented a novel methodology based on a revisited form of the for-
ward backward error, for feature tracking and detection evaluation for endo-
scopic images. It allows to compare different detectors, tracking algorithms and
the influence of a pre-process step providing artificial ground truth. We highlight
that our framework requires a few seconds to evaluate tracking performance of
a triplet detector/tracker/parameters and thus can be applied in early interven-
tion to find an adapted triplet to the current scene (provided that tracking is
required a few minutes after the intervention starts). We also show that includ-
ing pre-process to improve image quality, can increase the efficiency of detector
and tracking algorithms. The pre-processes are designed to take the specificity
of endoscopic images into account, in particular the presence of vessels and their
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noticeable characteristics (color and shape). Results showed an increase of fea-
ture robustness up to 10% and accuracy up to 9%. In the future, we will
strengthen our evaluation on more organs (stomach, uterus, heart).
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Abstract. Intensity-based 3D-2D registration is a well-established technique 
shown to be effective for many clinical applications. However, it is valid mainly 
for 3D Computed Tomography (CT) volume to 2D X-ray image registration  
because the computation of volume-based Digitally Reconstructed Radiography 
(DRR) relies on the linear relationship between CT’s intensity and the attenua-
tion coefficient of the underlying structure for X-ray. This paper introduces a 
mesh-based DRR renderer that simulates realistic-looking X-ray images from  
3D meshes, which can be used to replace conventional volume-based DRR in  
intensity-based 3D-2D registration for 3D volumes from various image modali-
ties. The proposed renderer calculates the travel distance of a given ray within 
the mesh, and computes X-ray attenuation based on the travel distance and the 
object’s attenuation property. The proposed method also uses a novel ray-casting 
strategy that takes GPU architecture into consideration for high computational 
efficiency. Validation results show that the proposed mesh-based DRR simulates 
X-ray images with a high fidelity, and intensity-based 3D-2D registration using 
the resulting mesh-based DRR achieves satisfactory results on clinical data. 

Keywords: 3D-2D Registration, Mesh Rendering, Digitally Reconstructed  
Radiography, Ray Tracing, Endovascular Aneurysm Repair. 

1 Introduction 

Registration of pre-operative 3D volumes and intra-operative 2D images is one of the 
enabling technologies widely used in image-guided therapy [1]. After being actively 
researched over a decade, intensity-based 3D-2D registration methods are shown to  
be effective for registering 3D Computed Tomography (CT) and 2D X-ray images. 
Specifically, volume-based Digitally Reconstructed Radiography (DRR) is produced to 
simulate 2D X-ray images from the 3D data and the pose of the 3D volume is iterative-
ly optimized by maximizing the similarity between the DRR and X-ray images.  
However, volume-based DRR (volume-DRR) technique has two major limitations. 
First, the 3D image modality is largely limited to CT because the intensity of the 3D 
volume is assumed to be linearly correlated to the attenuation coefficient of the under-
lying structure for X-ray. Second, the speed of volume-DRR with large volumetric data 
(512x512x267) is relatively slow (184 ms/DRR) even on modern GPU (Geforce 8800 
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GTX) [2] due to the heavy computation of volume ray casting, which makes compre-
hensive optimization schemes using a large number of iterations less affordable.  

To solve these limitations, some attempts have been made to use meshes of the  
target object to generate artificial 2D projection images to replace volume-DRR, and 
3D-2D registration using meshes is referred to as mesh-to-image registration. In [3], 
Thivierge-Gaulin et al. proposed to render the mesh to a binary 2D mask, and classify 
the 2D pixels of the X-ray image into two groups: inside and outside the mask. Based 
on the extreme simplification by binarization of the mesh projection, a special similar-
ity measure, i.e. the summation of the variance of intensities in each group, needs to 
be used for registration purpose. However, this similarity measure is relatively coarse 
and sensitive to outliers, and can only work under the assumption that intensities of 
the target object is homogeneous in the X-ray image. In addition, it is not sensitive to 
small movement and therefore may lead to deteriorated registration accuracy. Kaiser 
et al. proposed to divide the target object, a transesophageal echocardiogram probe, 
into two pieces according to the material’s attenuation property [4]. Two binary 
masks are then rendered from the two meshes corresponding to the two pieces, and 
are blended using alpha values based on the material’s attenuation coefficients to 
generate a DRR-like image. Although this method makes one step further comparing 
to [3], it still does not fully utilize the geometric information of the 3D mesh, and 
completely ignores the thickness of the object, which is in fact a key factor in the 
formation of real X-ray images.  

In this paper, we introduce a novel mesh-based DRR (mesh-DRR) rendering  
algorithm that simulates the process of X-ray traveling through the object and getting 
attenuated. The proposed mesh-DRR takes both the attenuation property and the 
geometry of the object into consideration, and therefore can simulate real X-ray im-
ages with a high fidelity, similar to volume-DRR generated for CT. With the resulting 
mesh-DRR, almost all the existing intensity-based 3D-2D registration techniques can 
be directly applied on mesh-to-image 3D-2D registration, meaning that given the 
segmentation of the target objects it can register various 3D image modalities other 
than CT, e.g. Magnetic Resonance (MR), Positron Emission Tomography (PET), 
Computer-aid Design (CAD) model of medical devices and etc. In addition, rendering 
of mesh-DRR is much more computationally efficient than volume-DRR, which  
significantly speeds up the 3D-2D registration process and potentially enables more 
comprehensive optimization schemes.  

2 X-ray Attenuation Model 

When X-ray travels through an object, the attenuation can be described by 

 ) , (1) 

where  and  are X-ray densities before and after attenuation,  is the path of  
X-ray in the target object, and ) denotes the attenuation coefficients along the 
path of X-ray. When using a logarithm detector, the intensity of X-ray image is 
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we calculate the intersection points and lines of the mesh with this slice (Fig.1(a)). 
The intersection lines for this slice are then sorted and connected to obtain one or 
multiple 2D contours (Fig.1.(b)). Finally, we calculate the intersection points between 
the 2D contours and each row in this slice. Those voxels between the odd and even 
intersection points are inside the mesh, and those voxels between the even and odd 
intersection points are outside the mesh (Fig. 1(c)). Conversion of the mesh into a 
binary mask for this slice is achieved by traversing all the rows in this slice, and the 
same process repeats for all the slices in this volume. Once the binary masks for all 
the meshes are created, they are classified into different groups according to their 
attenuation property, e.g. contrast agent, bone, soft tissue, air and etc. The binary 
masks in the same group are then merged to generate one binary mask with the same 
attenuation property. Marching cube algorithm [5] is applied on each of the merged 
binary masks to generate non-overlapping closed meshes, one for each group with a 
known attenuation coefficient. Note that the iso-surface of a binary mask tends to 
have aliasing artifacts; a pseudo distance map is thus built near the mask boundary 
and updated iteratively according to mean curvature flow [6]. The corresponding 
mesh is then extracted from the distance map as zero level set using marching cube 
algorithm.  

3.2 Mesh Decimation 

The meshes extracted from a high-resolution 3D binary volume by marching cube 
algorithm are usually very dense, providing details of the object that are typically not 
important for 3D-2D registration purpose. On the other hand, the rendering efficiency 
of mesh-DRR (will be described in details in the next section) is proportional to the 
number of triangles in the input meshes. Therefore, in most cases these meshes can be 
decimated dramatically without significantly affecting the appearance of mesh-DRR 
while significantly speeding up the rendering and in turn the registration process. In 
this paper, we use a mesh decimation algorithm similar to the algorithm described in 
[7], with some modifications to preserve the topology of the original mesh as well as 
increase the speed. Essentially the mesh decimation algorithm iteratively contracts 
one vertex pair into one point until the number of triangles is reduced to the target 
number. To determine which vertex pair to contract, a quadratic error is computed for 
each pair to measure the geometrical difference caused by contracting the pair, and 
the one with the smallest quadratic error is contracted. Additional dimensions can be 
added to the vertices and quadratics to take various properties of the mesh into con-
sideration, e.g. geometry, normal, color and 2D texture. For our purpose, the quadrat-
ics is defined for geometry only for higher computational efficiency. The vertex pairs 
are stored using a min heap data structure for efficient determination of the pair with 
the smallest quadratic error. After the contraction, both the quadratic errors of those 
affected vertex pairs and the min heap are updated. While [7] uses general vertex pair 
contraction that can merge unconnected regions of the model, we only allow contrac-
tion of points connected by an edge, which guarantees that the decimated mesh has 
the same topology as the original mesh, which is important for medical applications 
where small structures are of interest. In addition, the evaluation of quadratic error  
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of unconnected vertex pair can be avoided, which increases the speed of mesh  
decimation.  

3.3 Ray-Mesh Intersection  

According to Eqn. 3, given a closed mesh of an object with uniform attenuation coef-
ficients, the intensity of mesh-DRR for a given pixel can be generated by shooting a 
ray from the source to the detector and calculating the distance it travels within the 
mesh. The calculation of distance requires detection of all the intersections between 
the ray and the mesh, which is different from standard mesh ray-casting problem 
where only the closest intersection is of interest and thus detected. In particular, a ray 
enters and leaves the object alternatively, resulting in an even number of intersections. 
If all the intersections are detected and sorted by their distance to the source, denoted 
as , odd and even intersection points then represent the position of the ray  
entering and leaving the object, respectively. Therefore, the travel distance within the 
object can be computed as 

 ∑ . (5) 

Calculation of all the intersections of a mesh with a ray is computationally expen-
sive, because unless some sort of culling is performed, each ray must be tested for 
intersection/non-intersection with all the triangles. A common strategy for intersec-
tion culling is space partitioning, which partitions the 3D space into sub-regions, and 
each sub-region contains a subset of triangles. In this paper, the partitioned sub-region 
is referred to as a “voxel”. During ray-casting, we first perform ray-voxel intersection 
test to detect the voxels along the path of the ray, and only perform ray-triangle inter-
section test for triangles in these voxels. In this manner, the intersection tests of a 
large number of triangles in voxels that are not along the path of the ray can be 
avoided. There are two popular space partitioning schemes: kd-tree where voxels  
are of different sizes [8], and constant voxel partitioning [9]. We use constant voxel 
partitioning because the uniform grid structure makes it straightforward to traverse 
voxels pierced by the ray in the front-to-back order, which is essential for efficient 
implementation of mesh-DRR rendering on a Graphic Processing Unit (GPU). The 
voxel traversal algorithm is shown in Fig. 2, which, for a high efficiency, detects the 
face through which the ray leaves the current voxel, and tests ray-voxel intersection 
for only the neighboring voxel in that direction. This process repeats until the ray 
travels out of the boundary of the volume. 

The proposed mesh-DRR rendering algorithm is implemented on GPU for high 
computational efficiency. In particular, we use ray-based parallelization that lunches 
one thread for each ray to traverse voxels and compute intersections. The computation 
of Eqn. 5 requires sorted intersection lists, which are typically achieved by saving  
all the intersections with their corresponding source-to-intersection distance and  
performing sorting after traversal. However, saving all intersections is not preferable 
in GPU implementation because the on-chip shared or per-thread buffer might not be 
sufficient to store all the intersections for a given ray. Global memory of GPU  
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Table 1. Pesudo code of the mesh-DRR rendering algorithm 

1.  the ray
2.  current traversed voxel 
3.  0 
4.  entry distance of R 
5.  exit distance of  
6.  nil 
7.  nil 
8.  0  
9. while  
10. do   
11.  infinity 
12.  0 
13. for all triangles  in  
14. if  intersects with  in , 

and the source to intersection 
distance  

15. 1 
16. if    

17.  intersection point 
18. end if 
19. end if 
20. end for 
21.  source to  distance 
22. if  is odd intersection (enter-

ing mesh) 
23.    
24. else 
25. || ||  
26. end if  
27. while 1 
28.  exist distance of the cur-

rent traversed voxel 
29.  next neighboring voxel along  
30. end while  
31. return 

 

is usually large, but memory access could be very slow when coalesced memory 
transaction cannot be guaranteed. In addition, as GPU does not allow dynamic memo-
ry allocation, designing a data structure to save an arbitrary number of intersections 
could be problematic.  

We propose a triangle traversal algorithm to ensure that all intersections for a given 
ray are detected in the front-to-back order, so that Eqn. 5 can be updated iteratively 
during the traversal process with minimum memory consumption. In particular, each 
thread only needs a buffer for storing one intersection point. When an odd intersection 
point is detected, it is saved in the buffer, waiting for the following even intersection 
point. Once the even intersection point is detected, the distance between the two 
points is calculated and added to , and the buffer can be used to store the next odd 
intersection point. Since the front-to-back order of voxel traversal has already been 
guaranteed by the voxel traversal algorithm [9], we only need to make sure that all the 
intersections within each voxel are also visited in the front-to-back order. The basic 
strategy is to traverse all triangles in one voxel multiple times, and only the unpro-
cessed intersection with the smallest distance is processed at a time. This process 
repeats until there are no more unprocessed intersections in this voxel. The triangle 
traversal process will then move onto the next voxel until all the voxels are traversed 
(The pseudo codes are shown in Table 1).  

4 Experiments and Results 

4.1 Mesh-DRR Rendering and Similarity Profile 

We first conducted experiments to evaluate the appearance and speed of the proposed 
mesh-DRR rendering. The intensity-based similarity profile of mesh-DRR was further  
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            (a)                       (b)                     (c)                    (d) 

Fig. 4. (a) Normalized Cross Correlation (b) Pattern Intensity (c) Gradient Correlation and (d) 
Gradient Difference similarity profile for mesh-DRR and binary-DRR on phantom data 

 
              (a)                     (b)                      (c)                    (d) 

Fig. 5. (a) Normalized Cross Correlation (b) Pattern Intensity (c) Gradient Correlation and (d) 
Gradient Difference similarity profile for mesh-DRR, binary-DRR, and CT-DRR on real data 

evaluate the property of similarity measures. A good similarity measure should have 
the global maximum at the target position with a wide basin and has few local max-
imums. We evaluated 4 similarity measures, including Normalized Cross Correlation 
(NCC), Pattern Intensity (PI), Gradient Correlation (GC) and Gradient Difference 
(GD). In phantom tests, a CT-DRR rendered from a known pose was used as the ref-
erence image with a known ground truth, and the similarity profiles of mesh-DRR and 
binary-DRR were generated against the CT-DRR (Fig. 4). In tests with real data, the 
maximum opacity image of the abdominal aorta calculated from the intra-operative 
angiographic image (Fig. 3(f)) was used as the reference image, and the ground truth 
pose was manually obtained by an expert. The similarity profiles of CT-DRR, mesh-
DRR and binary-DRR were then plotted against the maximum opacity image. Both 
Fig. 4 and Fig. 5 show that the similarity profile of mesh-DRR has a more dominant 
peak at the ground truth position and less number of local maxima than that of binary-
DRR. Fig. 5 shows that mesh-DRR and CT-DRR have very similar similarity profiles 
for all similarity measures, indicating that mesh-DRR can be potentially used in inten-
sity-based 3D-2D registration for a wide variety of 3D image modalities other than 
CT, given the segmentation of the target object. 

4.2 Mesh-to-Image Registration Using Mesh-DRR 

In this experiment, we further integrated the mesh-DRR renderer into an intensity-based 
3D-2D registration framework and evaluated the mesh-to-volume registration accuracy  
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The attenuation coefficient for air is almost zero, and therefore was not used in mesh-
DRR rendering. Heuristic attenuation coefficient values were assigned for bones and 
soft tissues, and a mesh-DRR for the head MRI was rendered following Eqn. 4. For 
comparison, we also generated a CT-DRR from the CT volume of the same patient, a 
volume-based DRR rendered directly from MRI (MRI-DRR), and a DRR-like image 
using alpha blending of two binary images (alpha-DRR) as proposed in [4]. The most 
dominant feature in X-ray images of the head is the skull, due to its high attenuation 
coefficient. It can be seen that for both mesh-DRR and CT-DRR, the boundary of the 
skull is shown as a dark ring (Fig. 6(a)(b)). For MRI-DRR, however, since the bony 
structure is usually not picked up well by MRI using the standard protocol, the skull is 
shown as a white ring (pointed by the arrow in Fig. 6(c)). For alpha-DRR, as  
the thickness of the object is not taken into consideration, it cannot distinguish the 
boundary of the skull and results in a uniform intensity (Fig. 6(d)).  

Intensity-based 3D-2D registration was performed to register the 3D MRI volume 
using both mesh-DRR and MRI-DRR to the simulated X-ray image using CT-DRR. 
For the ease of visualization, the boundary of the skull at the registered pose is overla-
id onto the CT-DRR in Fig. 6(e). It shows that although there are some details in 
mesh-DRR that are different from CT-DRR (mainly due to the imperfect segmenta-
tion), the quality of the mesh-DRR is sufficient for mesh-to-image registration, which 
correctly overlays the boundaries of the skull in MRI and CT volumes. In comparison, 
using MRI-DRR results in an incorrect lower position, which matches the scalp in 
MRI to the skull in CT. 

5 Conclusion 

In this paper, we introduced a mesh-based DRR rendering technique that can generate 
realistic simulated X-ray images from 3D meshes. The proposed mesh-DRR render-
ing algorithm using ray-casting technique is optimized for GPU architecture to 
achieve high computation efficiency. We have shown that the proposed mesh-DRR 
achieves much faster rendering speed than volume-DRR (volume ray-casting),  
and the resulting rendering can lead to efficient and accurate intensity-based 3D-2D 
registration for CT volumes and other modalities. Our future work is to quantitatively 
evaluate the proposed mesh-DRR for 2D-3D registration on a large database and for 
various 3D image modalities. 
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Abstract. A fully automatic and highly accurate 2-D/3-D registration technique 
with an extended capture range is proposed for registering implant models to 
single-plane fluoroscopy. The proposed method utilizes library-based registra-
tion for pose initialization, followed by an intensity-based iterative registration 
for pose fine tuning. The algorithm matches the 2-D silhouette of the implant 
extracted from the fluoroscopy with a pre-computed library of 2-D silhouettes 
of the implant model to estimate the initial pose. Each library entry represents a 
combination of out-of-plane rotation parameters. Library matching is performed 
by computing Shape Context (SC) of the extracted 2-D silhouette and minimiz-
ing the Jensen-Shannon Divergence of SCs from the fluoroscopy and the library 
entry. After pose initialization, iterative optimization is performed to fine tune 
the registration by maximizing the intensity-based similarity measure between 
the fluoroscopic image and the simulated X-ray image. In the iterative registra-
tion, we use a novel two-layer hierarchical optimization strategy to achieve a 
high accuracy in depth estimation, to which the projection image is very insen-
sitive. The proposed approach is validated on both computer simulated images 
and real X-ray images. Validation results show significant improvements over 
conventional methods in terms of robustness and accuracy. 

Keywords: 2-D/3-D registration, robust pose initialization, shape context,  
implant registration. 

1 Introduction 

2-D/3-D Image registration is one of the enabling technologies widely used in image-
guided therapy and interventional radiology. Among the applications of 2-D/3-D reg-
istration techniques, there is a special category where the object to be registered is a 
metal implant. There are three properties of metal implants that make this particular 
category different from the general 2-D/3-D registration problems. First, the metal 
implants are always rigid. Second, the X-ray image of the metal implant is very dark 
due to its high opacity and hence is relatively easy to segment. Third, the structural 
model of the implant is usually available as a Computer Assisted Design (CAD) mod-
el. By taking advantage of these three properties, an advanced 2-D/3-D registration 
technique dedicated to metal implants should be able to achieve higher reliability and 
accuracy than the general 2-D/3-D registration methods.  
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By far, most 2-D/3-D registration methods in literatures are iterative [1]. These me-
thods iteratively adapt the registration parameters to maximize a matching metric 
reflecting the quality of registration. The iterative registration algorithms can be fur-
ther divided into two categories, intensity-based methods [2-5] and feature-based 
methods [6], depending on the similarity measure to be optimized. Intensity-based 
methods, which maximize the similarity between the simulated X-ray image produced 
from the 3-D volume and the real X-ray image, are shown to be very accurate, espe-
cially when multiple image planes are employed. However, a constraint of the clinical 
usage of intensity-based registration methods is their small capture range, and typical-
ly manual initialization is required to bring the 3-D model close enough to the target 
position. On the other hand, feature-based methods, which register landmark and/or 
salient features that have been manually or semi-automatically extracted from both 
the 2-D image and the 3-D model, exhibit fast execution time and high robustness in 
face of large mis-registration. However, it is difficult to achieve fully automatic and 
accurate landmark/salient feature extraction. 

 

Fig. 1. (a) 3-D structural CAD model of the implant. (b) 2-D fluoroscopic image 

For the 2-D/3-D registration applications where the 3-D structural CAD model is 
available, another category called library-based methods has been proposed [7-9]. 
Library-based methods take advantage of the known 3-D structural model to generate 
a pre-computed library of expected 2-D projections of the 3-D model, and perform 
library matching for the given 2-D image to estimate the pose of the 3-D model. 
However, the library-based methods suffer from a major drawback that the registra-
tion accuracy is limited by the density of library entries over the parameter space. To 
circumvent this burden, Cyr et al. [9] borrowed the multi-resolution idea from image 
registration field and proposed a hierarchical approach, which iteratively narrows 
down the search range and generates a denser library in the target area. Although this 
hierarchical approach achieves a higher accuracy, it sacrifices the advantage of offline 
computation of library generation and feature extraction. Hermans et a.l [10] pro-
posed to use the library-based method to provide an initial pose to start the iterative 
registration algorithm. Our proposed method uses the same workflow as in [10] by 
concatenating a library-based registration and an iterative optimization of fine-tuning, 
but with improvements in two aspects: 1. significantly faster library matching using a 

(a)  (b)  
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more efficient shape encoder and matching metric; 2. higher accuracy in depth posi-
tion estimation by utilizing a hierarchical optimization strategy.  

In our approach, the library consists of 2-D contours extracted from the silhouettes 
of the implant, and are encoded by Shape Context [11]. We then use Jensen-Shannon 
Divergence as the matching metric for fast library matching. The proposed library 
matching scheme achieves a high computational efficiency because it has the Shape 
Contexts of library entries pre-computed offline, and only leaves the simple Jensen-
Shannon Divergence to be computed online. With the initial pose estimated from 
library matching, a two-layer optimization of intensity-based similarity measure is 
further performed for the 3-D pose fine tuning. 

2 Method 

2.1 Overview 

The proposed method consists of two steps: (1) The initial pose is estimated by 
matching the silhouette of the implant in fluoroscopic images to a library of expected 
2-D silhouettes of the 3-D model of the same implant from different views. The li-
brary matching will provide a pose initialization to bring the 3-D model close to the 
target position. (2) After pose initialization, the estimated pose is refined by applying 
a hierarchical optimizer to maximize the similarity between the simulated X-ray im-
age and the fluoroscopic image. 

2.2 Camera Setup 

The X-ray imaging system is described by the prospective projection model in Fig. 2. 
The imaging system consists of a point source of X-ray located at the origin and an 
image detector perpendicular to z axis. X-rays are emitted from the point source, 
passing through the object and producing images on the image detector. The 3-D pose 
of the model is described by 6 parameters, , , , , , , where , , ) is the 

Fig. 2. Imaging system model 
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Library Matching --- Estimation of the Geometry-Relevant Transformation 
Prior to performing library matching for pose estimation, the implant in the fluoros-
copic image is converted to silhouettes by a region growing segmentation method 
[12]. The simulated X-ray images are silhouettes by nature in our simplified imaging 
system model. However, as shown in Fig.1, for certain implants, nails might be ap-
plied and therefore occlude the holes of the implant in fluoroscopic images. To rule 
out the impact of nails, we ignore all holes and only use the outline contour of the 2-D 
silhouette, which is represented by a sequence of  points , uniformly sampled on 
the contour. 

After extracting the contour from the 2-D image, we use Shape Context to encode 
the contour. Shape Context is the ideal shape descriptor in our case because it is inva-
riant to translation, rotation and even scaling if the point-to-point distance is norma-
lized to [0, 1].  

As shown in Fig. 4, given a fixed point , all other points can be represented in a 
polar coordinate system with pole  and polar axis  connecting  and the gravity 
center. Shape Context is defined as a joint histogram of the radius d and the polar 
angle . In this paper, we use 64 bins for both the radius and the polar angel in the 
computation of the joint histogram , ). The library matching metric is then de-
fined as the Jensen-Shannon Divergence (JSD) between the Shape Context of the 
fluoroscopic image and a given library entry: 

  ∑ , ) , ), ) ∑ , ) , ), ) (1) 

Where , ) and , ) are Shape Contexts of target image and library image, 
respectively. The library matching selects the library entry that yields the smallest 
JSD. Denoting the transformation parameters of the matched library entry as , , , , , , the initial estimation of  and  are: 

 ,  (2) 

It is worthy to point out that the Shape Context of the whole library can be com-
puted offline. The computations that need to be done online include 2-D fluoroscopic 
image processing, shape encoding and library matching. 

 

Fig. 4. (a) Computation of Shape Context (b) Example of Shape Context 
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 ,  (5) 

where SID is the source to detector distance, which is assumed to be known in our 
imaging system model. 

2.4 Registration Fine Tuning 

The 2-D/3-D registration fine tuning technique is built on the intensity-based iterative 
registration algorithm proposed by [5]. In particular, we use a simplified Digital Re-
constructed Radiograph (DRR) model to render simulated X-ray images. For each 
pixel, a ray connecting the pixel and the source of X-ray is drawn. If the ray passes 
through the 3-D CAD model, then the pixel is white, otherwise it is black. The simi-
larity between the simulated X-ray images and the real X-ray image is evaluated using 
Normalized Cross Correlation (NCC): 

 , ) ∑ , ) , ) , ) , )∑ , ) , ) , ) , )  (6) 

However, the accuracy of depth estimation for mono-plane intensity-based 2-D/3-
D registration is relatively poor because a change in depth position only causes small 
changes in the 2-D silhouette. To achieve a high accuracy of depth estimation, the 
above similarity measure is optimized by a two-layer hierarchical optimizer. In par-
ticular, assuming the starting position is , , , , , , three hill climbing optimiz-
ers are launched independently at three different depth positions of -10,  and 

+10, and within a search range of 5 mm in depth. The registration result that yields 
the largest similarity measure among the three will be selected. After the first layer, 
the depth position z will be brought closer to the target position, but still has a relative 
large error because of the large search range. The second layer is very similar to the 
first layer, but with a much smaller search range and search step. Five optimizers are 
lunched in the second layer with a 5 mm interval and 2.5 mm search range. The pro-
posed optimization strategy avoids local maxima by dividing the searching space into 
small bins in the depth direction and performing separate optimization in each bin 
with a small step size. 

3 Experimental Results 

In this section, we assess the accuracy and robustness of the proposed method. Many 
previous 2-D/3-D registration methods reporting high a convergence rate and accura-
cy only start registration from poses that are very close to the target position. In our 
experiments, the initial pose will be not provided by the user, and the ability of the 
proposed method to start registration from arbitrary poses will be demonstrated. 

3.1 Synthetic Data 

Computer simulation test was conducted to assess the performance of the proposed 
method. One hundred binary DRRs of the implant were rendered by the perspective 
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method has large 3D-TRE (32.72 mm) and low success rate (24%). After applying the 
library matching method for pose initialization, the 3D-TRE is reduced to 2.75 mm 
and the success rate is increased to 78%. The accuracy of  position is further im-
proved by employing the hierarchical optimization scheme and the final accuracy 
achieves 1.20 mm in 3D-TRE and 96% in success rate.  

Table 1. Experimental results of synthetic data tests 

 
Average errors 

Success 
rate XY 

difference 
Z 

difference 
Angular 

difference 3D-TRE 

LM 0.237mm 4.56mm 1.42° 4.56mm 50% 
Prop. 0.033mm 1.16mm 0.60° 1.20mm 96% 

LM+CO 0.043mm 2.65mm 0.98° 2.75mm 78% 
HO 5.64mm 9.52mm 28.89° 26.20mm 28% 

Conv. 5.34mm 15.49mm 32.23° 32.72mm 24% 

3.2 Real Data  

Our proposed method (LM+HO) was lastly applied on four real X-ray datasets. For 
the real X-ray images that do not have the “golden standard” ground truth of the 3-D 
pose, we are only able to measure the registration accuracy in the 2-D projection. The 
RMSD between the 2-D contours of the implant’s silhouette in the projected  
image and the fluoroscopic image, referred to as 2D-TRE, is calculated and shown in 
Table 2. It is shown that for all four real X-ray images, sub-0.1-millimeter 2D-TRE 
are achieved. 

Table 2. 2D-TRE of real data tests 

 Image 1 Image 2 Image 3 Image 4 
2-D RMSD 0.011mm 0.013mm 0.079mm 0.092mm 

4 Conclusion 

In this paper, a fully automatic, accurate, and robust 2-D/3-D registration method is 
proposed for registering metal implants to single-plane fluoroscopic images with an 
arbitrary pose. The proposed method combines library-based method and intensity-
based iterative method to achieve full automation, high accuracy, and a very large 
capture range. The feasibility of the proposed method is shown using both simulated 
and real data. In all the simulated datasets, it is shown that the library-based initializa-
tion provides a good pose estimation that has RMSD smaller than 10mm. Compared 
to the conventional optimizer, the proposed hierarchical optimizer shows significant 
improvements in terms of the accuracy of depth estimation. Future works include 
clinical testing of the proposed method and investigation of other possible shape en-
coders that are capable of partial shape matching. 
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Abstract. This work presents a framework for mapping of free-hand endoscop-
ic views onto 3D anatomical model constructed from ultrasound images without 
the use of external trackers. It is non-disruptive in terms of existing surgical 
workflow as surgeons do not need to accommodate operational constraints as-
sociated with the use of additionally installed motion sensors or tracking sys-
tems. A passive fiducial marker is attached to the tip of the endoscope to create 
a geometric eccentricity that encodes the position and orientation of the camera. 
The relative position between the endoscope and the anatomical model under 
the ultrasound image reference frame is used to establish a texture map that 
overlays endoscopic views onto the surface of the model. This addresses opera-
tional challenges including the limited field-of-view (FOV) and the lack of 3D 
perspective associated with minimally invasive procedure. Experimental results 
show that average tool position and orientation errors are 1.32 mm and 1.6o re-
spectively. The R.M.S. error of the overall image mapping obtained based on 
comparison of dimension of landmarks is 3.30 mm with standard deviation  
of 2.14 mm. The feasibility of the framework is also demonstrated through  
implementations on a phantom model. 

Keywords: surgical navigation, image-guided ultrasound, image mapping. 

1 Introduction  

1.1 Motivation 

Developments in minimally invasive surgical techniques have driven research inter-
ests in image-guidance and surgical navigation over the past decades. While the bene-
fits of minimally invasive procedure are now well recognized, such operations are 
usually associated with challenging visual and dexterous constraints. It is especially 
demanding in the case of endoscopic fetal surgery where the FOV is extremely small 
and movement within the surgical site highly delicate. Current practices involve the 
use endoscopic camera known as fetoscope [1,2] to acquired views inside the womb 
and ultrasound imaging for a global perspective of the surgical site so as to navigate 
surgical instruments. Surgeons have to register the two sources of information mental-
ly working with non-intuitive ultrasound images and extremely limited fetoscopic 
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FOV. Therefore, it is important to equip surgeons with an integrated visualization 
platform that presents an intuitive 3D navigation perspective of the surgical site to-
gether with details and expanded views of the surface anatomy for instance, the pla-
centa vasculature in the case of Twin-to-twin transfusion syndrome [3]. 

1.2 State-of-the-Art and Existing Limitations 

Surgical navigation technology in fetal surgery has been relatively lagging compared 
to its counterparts in procedures like cardiac or neurosurgery. This is partly due to the 
unique clinical requirements in fetal surgery which exclude many mainstream imag-
ing modalities that are ionizing in nature. Ultrasound imaging turns out to be one of 
the best options for image-guidance in fetal surgery. Together with the use of a fetos-
cope, minimally invasive fetal endoscopic surgery [4, 5] can be performed. 

An image stitching approach via feature point correspondence of 2D fetoscopic 
images for placenta visualization was proposed by Reff et al. [6]. While this approach 
addresses the issue of limited FOV by providing a global 2D map of placenta it does 
not provide a 3D global perspective and no evaluation of the error due to the use of 
projective transformation model is presented. Liao et al. [7, 8] demonstrated the map-
ping of 3D fetoscopic view to a prebuilt phantom placenta model based on positional 
information acquired through a commercial optical tracker. This provides surgeons 
with an intuitive visualization platform encompassing surface details of the placenta 
vasculature and the 3D perspective of the operation site. However, it relies on optical 
tracking system that requires the attachment of markers onto surgical instruments and 
maintaining line-of-sight throughout the operation workspace [9]. These compromise 
the usability of the system. Our approach differs in that we construct a visualization 
platform relying only on the imaging instruments used for the surgery. It obtains the 
endoscope pose and location using ultrasound image-based localization and constructs 
a texture map using the endoscopic images. 

Ultrasound image-based instrument tracking has been investigated in several appli-
cations including visual-servo applications [10] and surgical navigation [11]. A com-
prehensive analytical study of tracking passive markers in real-time 3D ultrasound is 
presented by Stoll et al. [12]. Mung et al. [13] demonstrated sub-mm accuracy with 
active sensor attached to the tool tip. However, to the best of our knowledge, study 
that investigates the use of ultrasound image-based localization for mapping of endos-
copic views to 3D anatomical model has not yet been presented in existing literature. 

1.3 Scope and Organization 

The contributions of this work include the application and analytical study of a novel 
approach that facilitates mapping of endoscopic views to anatomical model con-
structed from 3D ultrasound without the use of tracking system. 

The next section discusses the method for ultrasound image-based localization and 
texture mapping followed by an explanation of the experimental study. Results are 
presented and discussed in Section 4. Finally, we conclude the paper by summarizing 
the important contributions, current limitations, and a brief remark on the future work.   
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3 Experiment 

An experiment on a phantom placenta model was carried out to evaluate the efficacy 
of the system in terms of ultrasound image-based localization accuracy and consisten-
cy in image overlay. Fig. 5 depicts the experiment setup with both the endoscope and 
ultrasound probe imaging a phantom placenta in a water tank environment.  

A commercial optical tracking system (POLARIS Spectra, NDI) was used to eva-
luate the accuracy of positional estimation of a ϕ5.4 mm endoscopic camera 
(LS501D, Shinko Optical). As shown in fig. 5, a stationary 3D tilt-scanning ultra-
sound probe was used to acquire ultrasound image sequences at 1 degree angular step 
and (0.3 x 0.3) mm2 pixel size through a Prosound α10, Aloka ultrasound imaging 
system. The ultrasound image-based localization accuracy is therefore benchmarked 
against the commercial optical tracking system.  

To minimize workspace-dependent errors, reference tracking from a proximal 
marker was performed instead of direct tracking of the endoscope based on the optical 
tracker’s absolute frame. Frame intervals along a camera trajectory constrained to a 
mechanical pivoting port were tracked by ultrasound image-based method with their 
corresponding views acquired. The mechanical port constraint is to mimic the condi-
tion of minimally invasive procedure. To isolate uncertainties derived from technical 
issues like ultrasound motion artifacts, we performed localization and pose estimation 
under a static condition. This is a reasonable operational setting since the updating 
requirement for the ultrasound image-based localization is not demanding as dis-
cussed previously. We are only concerned with the accuracy of the localization.     

 

Fig. 5. Experiment setup 

To assess the efficacy of the overall texture map on the 3D model, we made use of 
clearly visible vascular bifurcations on the phantom as physical landmarks. The accu-
racy and precision of the texture mapping were evaluated by comparing the physical 
dimension of a 3-point triangular landmark extracted manually across 10 mapped 
results as illustrated in fig.6 by the screenshot of a particular frame.  
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Abstract. We describe a technique for intraoperative initialization of
2D/3D registration. The technique uses a tracked tool that is already
available in the operating room, as part of an image-guided navigation
system, to establish the transformation between the preoperative vol-
ume and the intraoperative patient. Initialization is performed in two
phases: volume-tool pose planning in the virtual world, and patient-tool
pose mimicking in the physical world. Depending on the requirements
for accuracy and interaction time, the second phase can be done using
either instant, coarse, initialization or Augmented Reality (AR) based
interactive initialization. The former method is fast and requires no in-
traoperative modalities, while the latter uses intraoperative x-rays as a
guide to continuously refine the initialization. The proposed technique is
appropriate for intraoperative 2D/3D initialization as it is contactless,
fast, and uses devices already available as part of the navigation sys-
tem. Evaluation was done using three publicly available reference data
sets. The instant, coarse, initialization was able to provide a mean Tar-
get Registration Error (mTRE) of 28-40mm, with the majority of the
error associated with errors in translation. The AR-based initialization
was able to achieve a mTRE on the order of 5-10mm with an average
interaction time of 40-60sec.

1 Introduction

The ability to register preoperative 3D images, CT or MR, to the intraoperative
setting is a prerequisite of the majority of image-guided navigation systems.
Currently, this is primarily performed using fiducials or anatomical landmarks
and surfaces which are digitized intraoperatively. An alternative approach is to
perform 2D/3D anatomy-based rigid registration, aligning the volumetric data
using x-ray images. This subject has been studied extensively resulting in a large
number of published algorithms, as surveyed in [1]. These algorithms vary by
modality, anatomical structure and algorithmic approach. While the differences
are many, all of them have one characteristic in common, they are iterative and
require initialization.

In practice, the majority of 2D/3D registration algorithms have not been able
to transition from bench to bedside, except in the domain of radiation therapy.
The distinguishing feature of this domain as compared to the operating room

C.A. Linte et al. (Eds.): MIAR/AE-CAI 2013, LNCS 8090, pp. 117–126, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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(OR) is that a good initial estimate of the registration parameters is available
via accurate patient positioning using other means. In the laboratory setting
various approaches to initialization of 2D/3D registration have been used [1,2],
including: (1) knowledge of the spatial relationships associated with the clini-
cal setup; (2) coarse paired point registration using skin adhesive fiducials or
anatomical landmarks; and (3) manual, keyboard and mouse based, initializa-
tion via interactive positioning of the volumetric data using visual comparison
between the medical images and the virtual images.

These approaches are often less applicable in a general clinical setting. Knowl-
edge of the clinical setup to estimate an initial transformation is often not suffi-
ciently accurate. Coarse paired-point registration is not always applicable as it
either requires placement of fiducials prior to imaging, making the clinical work-
flow more cumbersome, or requires digitizing anatomical landmarks which may
not be accessible. Finally, use of a keyboard and mouse to perform initialization
does not fit well in the OR environment due to the requirement for sterility and
the fact that the clinical setting is already physically cramped.

We present an Augmented Reality (AR) approach to initializing 2D/3D
anatomy-based registration. Our method uses a tracked tool (e.g. a pointer tool)
to augment the physical x-ray image with a virtual, volume rendered, image of
the anatomy. The user interactively positions and orients the tool so that the
virtual and physical images overlap. This approach uses existing hardware found
in any navigation system and can be used for all anatomical volumetric imaging
modalities. The method was assessed using publicly available reference data sets
for evaluation of 2D/3D registration.

2 Method

Our initialization approach is based on the use of a tracked tool to interactively
overlay a volume rendering of the anatomy onto the x-ray images. Using multiple
AR views, the user manipulates the tool in physical space until the volume
rendering of the anatomy overlaps with the corresponding anatomical structures
in all x-ray images.

The approach consists of two steps, planning in the virtual world, and in-
teraction in the physical world. In the planning step the user places a virtual
representation of a physical tool next to the volumetric representation of the
anatomical structure obtained from CT or MR. In the interaction step, the user
mimics the plan in the physical world. That is, they attempt to position the
tool in the same pose relative to the anatomy as was done in the virtual world.
Figure 1(a) illustrates the concept of this approach.

In Figure 1(b) we present all of the coordinate systems used by our approach.
We assume that the transformation from the tool model to its Dynamic Reference
Frame (DRF), T toolDRF

toolmodel, and from the x-ray images to the tracker are known
via tool calibration and camera calibration. The transformation from the volume
coordinate system to the tool model coordinate system, T toolmodel

volume , is specified
by the user in the planning step, and the patient coordinate system corresponds
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toolmodel
patient

T
toolmodel

volume

virtual toolvolumetric image

physical tool

T

patient volume

tracker

tool DRF

x−ray1 x−rayN

tool model

patient DRF

patient

(a) (b)

Fig. 1. (a) The user attempts to replicate the pose of the tool defined in the vir-
tual world in the physical world. That is they attempt to position the tool in the
physical world such that T toolmodel

volume = T toolmodel
patient . When this happens the volume and

patient coordinate systems coincide and we can compute the desired transformation,
T patientDRF
patient . (b) Coordinate systems involved in the registration, solid lines denote

known transformations, dashed denote unknown transformations.

to the correct volume pose in the OR, which coincides with the physical location
of the patient.

The transformation we seek is given by:

T patientDRF
patient = (T tracker

patientDRF )
−1T tracker

toolDRFT
toolDRF
toolmodelT

toolmodel
patient

⇓
T patientDRF
patient = T patientDRF

toolmodel T toolmodel
patient

If the planned transformation is mimicked accurately in the OR, we have
T toolmodel
volume = T toolmodel

patient , which gives us the desired transformation by substitu-
tion into the previous equation to yield.

T patientDRF
patient = T patientDRF

toolmodel T toolmodel
volume (1)

Depending on the accuracy requirements imposed by the subsequent registra-
tion algorithm one can use this approach in two ways: instant, coarse, initial-
ization, and interactive AR based initialization. The former is applicable for a
variety of intraoperative registration methods as it does not utilize any intraop-
erative images. The later does require availability of intraoperative images and
is thus only applicable to procedures where intraoperative imaging is used.

2.1 Planning

The goal of planning is to define the relative pose between the tool model
and the preoperative volume. This is performed using a graphical user interface
(Figure 2(a)), within which the poses of the volume and the tool model can
be manipulated individually or concurrently. The tool’s pose should match its
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(a) (b)

Fig. 2. Graphical user interfaces for pose planning in virtual world (a) and pose mim-
icking in physical world (b)

intended pose in the physical world and it is the user’s responsibility to position
it in a valid location. This means that the tool cannot overlap with anatom-
ical structures and if using an optical tracking system, its planned position is
expected to be visible in the OR.

We use the same approach for registration of CT and MR. Given that in
x-ray images the visible structures are primarily bones, we require the user to
manipulate the volume rendering transfer function so that these structures are
visible to them. This does not imply that the transfer function is optimal, only
that for the specific user it yields a visually clear set of anatomical structures.

It should be noted that our approach imposes several requirements on the
design of the tracked tool. It must provide six degrees of freedom so that we
can manipulate the volume pose in the physical world, and it should not be
symmetrical so that the user can visually distinguish between different tool poses.
That is, a cylindrical tool such as a needle is best avoided as it defines an infinite
number of poses which only differ in rotation about the needle axis. One can
design a specific tool based on these requirements, but this is most often not
necessary. In our case we utilize a pointer probe which is available as part of the
navigation system.

2.2 Instant, Coarse, Initialization

The coarse initialization approach consists of a single step. The planned tool
pose is mimicked in the OR by placing the tool besides the patient as planned
and initiating the initialization with a foot switch. No further user interaction is
required, and T patientDRF

patient is estimated instantly. Obviously the accuracy of the

result depends on the difference between T toolmodel
volume , the transformation we use,

and T toolmodel
patient the correct transformation.

While this method is simple and fast, the initialization accuracy depends on
how accurately the planned transformation can be replicated in the OR. By using
anatomical landmarks one can plan easy-to-reproduce poses which can provide
relatively accurate initializations. As no intraoperative modality is involved, the
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method can potentially be used to initialize other forms of registration (e.g. point
cloud/surface).

2.3 Interactive Augmented Reality Based Initialization

The AR initialization approach is iterative and based on visually guiding the user
to the correct pose. We achieve this by real-time direct volume rendering which
is overlaid onto the x-ray images. In our case, we perform hardware accelerated
volume rendering in parallel for 2-3 images (Figure 2(b)). It should be noted
that the camera parameters used to perform the rendering are specific to each
x-ray image and are obtained from accurate calibration of the clinical imaging
system.

To use the AR based approach, the user starts by performing a coarse initial-
ization as described above. This is required so that there is a reasonable overlap
between the rendered image and the x-ray. Then, the user translates and ro-
tates the tracked tool based on the AR views with the goal of maximizing the
visual similarity between the overlaid volume rendering and underlying x-ray
images. The process continues until a good overall overlay between the x-rays
and the corresponding renderings is achieved. The maximal overlap is obtained
when T toolmodel

volume = T toolmodel
patient , and the desired transformation is computed as

described above. Again, the accuracy of the result depends on the difference
between these two transformations.

3 Experiments

3.1 Data

We evaluate our initialization approach using three publicly available reference
data sets for 2D/3D registration. The first data set [3] is from the Image Sci-
ence Institute (ISI), Netherlands, and consists of images from a spine phantom
containing three vertebra. The second data set [4] is from the University of Ljubl-
jana, from a phantom consisting of five lumbar vertebra. The third data set [5]
is from the Medical University of Vienna, and consists of a cadaver animal head.
Unlike the previous two data sets, this data set contains a significant amount of
soft tissue which is visible in the x-ray images.

For each of the data sets, we selected two x-ray images, one CT, one MR, and
the reference transformations for the CT and MR. The reference transformations
position the volumes in the “tracker”, common, coordinate frame to match the
corresponding x-ray images. Figure 3 shows the x-ray images from all reference
data sets.

3.2 Evaluation Scheme

In the reference data sets, only reference transformations with respect to their
own “trackers”, common coordinate frame, were provided. We need to link these
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ISI U. Ljubljana Med. U. Vienna

Fig. 3. X-ray images of the reference data sets. First row: AP view. Second row: lateral
view.

“tracker” coordinate frames to our physical setup and tracking system. Fig-
ure 4(a) illustrates how the reference transformation is established, and how
the error transformation is computed. T tracker′

patient , T tracker′
xray ap and T tracker′

xray lat were
provided as part of the reference data. The transformation we are interested
in, T patientDRF

patient , is unknown as we do not have the physical phantoms from
which the reference data sets were created. We thus need to make an arbitrary
choice, relating a physical, tracked, reference frame to the phantom. Once this

patientDRF

patient

toolmodel

tracker

toolDRF

volume

xray_ap xray_lat

tracker’

X

Y

Zx

y
z

(a) (b)

Fig. 4. (a) Transformations involved in the validation of the initialization approach.
The tracker′ coordinate system is the common/world coordinate system used by the
reference data set. (b) Definition of reference transformation. The patient and DRF co-
ordinate frames are shown in red and green colors, respectively, and the transformation
between the two was used as the reference of our experiments.
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transformation is established we can compute the transformation T tracker
tracker′ ac-

cordingly to obtain the reference transformations with respect to our tracker.
Then the error transformation between the estimated and ground-truth pose is
computed as

T patient
volume = (T tracker

patientDRF T
patientDRF
patient )−1T tracker

toolDRFT
toolDRF
toolmodelT

toolmodel
volume (2)

Note that when the user is able to exactly mimic the planned tool position in
the physical world we have T patient

volume = I.

In our experiments, T patientDRF
patient was chosen based on the bounding box of the

volume. First, a cardboard box, Figure 4(b), was used to represent the physical
patient. The box roughly matches the volume’s bounding box in size, and its
coordinate frame is aligned with the volume’s coordinate frame. Then the patient
DRF was placed at the lower-left corner of the xz-surface of the box. Finally,
we obtained the coordinates of three known points on the box in the DRF’s
coordinate system. Thus we have the coordinates of the same points in the
patient coordinate system and in the DRF coordinate system. From this setup,
T patientDRF
patient is readily available via paired point rigid registration [6].
We used the Polaris Vicra optical tracking system from Northern Digital Inc.

(Waterloo, ON, Canada) to evaluate our approach. Initialization accuracy is
evaluated using the mean Target Registration Error (mTRE):

mTRE(e;S) =
1

N

N∑
i=1

‖ T patient
volume pi ‖, (3)

where T patient
volume is the error transformation with parameters e, computed as Eq. 2,

pi is a point on our target bone surface S, and N is the total number of surface
points.

For each data set, combination of x-ray/MR and x-ray/CT, we created ten
plans. We thus had 60 planned tool poses in the virtual world. For each of the
sixty plans we had two users perform initialization using the coarse and AR
based approaches. For the AR-based initialization approach we also recorded
the interaction time.

3.3 Results

Table 1 summarizes the results for the coarse initialization. This method resulted
in a relatively high mTRE (28-40mm). However it should be noted that the
rotational errors are relatively low, while the translational errors are high. This
fact can benefit registration algorithms as correcting rotation errors is more
challenging than correcting translation errors. We observed that for each data
set the rotational errors are more dominant along one axis. Not surprisingly this
axis corresponds to the long axis of our tool. As we noted in section 2.1, the
uncertainty in orientation when using a cylindrical like tool is higher around its
main axis. This theoretical observation is reflected in practice by our results. We
also note that the translational errors have large standard deviations. This is
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Table 1. Experimental results for coarse initialization (summary of all 120 initialization
trials)

ISI U. Ljubljana Med. U. Vienna

mTRE (mm) 28.1 ± 15.4 29.8 ± 14.0 39.9± 19.9

θx (◦) 0.8± 3.6 −0.9± 1.7 4.4± 8.2

θy (◦) −6.3± 6.6 −0.3± 1.3 2.0± 1.9

θz (◦) 2.0± 2.5 −5.1± 5.0 −0.5± 2.8

tx (mm) −10.3 ± 13.3 −25.4± 17.8 −8.1± 12.5

ty (mm) 7.3 ± 10.1 7.5± 15.2 2.6± 17.7

tz (mm) −10.4 ± 16.3 8.4± 11.8 11.7± 6.7

primarily due to the variations in pose planning. In our current implementation
we did not provide quantitative feedback (i.e. distances between the tool and
anatomy), thus the user visually judges the distance in the virtual world and
attempts to mimic it in the physical world. This variability can potentially be
minimized by allowing the user to measure distances in the virtual world, which
they can then mimic more accurately in the physical world.

Figure 5 summarizes the results for the AR-based interactive initialization.
With an average interaction time of 40-60 seconds, an average mTRE of 5-
10mm can be achieved. These numbers satisfy the requirements of most 2D/3D
registration applications.

ISI U. Ljubljana Med. U. Vienna
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Fig. 5. Experimental results for AR-based interactive initialization. Results from the
two users were combined: (top row) mTRE, and (bottom row) interaction time.
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3.4 Discussion

The subject of 2D/3D rigid registration is often considered a solved problem.
One would assume this is the case given the large number of solutions presented
in the literature. Unfortunately, the majority of these methods assume reason-
ably accurate initialization, mTRE < 10mm, is available, yet they do not specify
how it is obtained. While there are specific clinical settings where such an ini-
tialization is available, this is not the case in general. As a consequence 2D/3D
registration has not been able to transition from bench to bedside.

We propose an AR based solution to initialization which is applicable for
image-guided navigation when x-ray images are available. Our method was in-
spired by an observation made in [7] in the context of segmentation which is
equally relevant for registration: Humans are highly adept at determining the
presence and rough location of an object of interest in an image. In the context of
registration, we provide an intuitive interaction approach which allows us to take
advantage of the operators recognition abilities. As a result, the initialization is
quick and robust to occlusions in the x-ray image.

To evaluate our approach we used three publicly available reference data sets.
On the one hand, this enables a fair comparison between our approach and
other methods, all evaluated on the same data sets. On the other hand, these
reference data sets do not fully reflect the complexity of the clinical setting.
This is primarily visible in the spine data sets which have much less soft tissue
than their clinical counterparts. We do not expect this to significantly effect the
accuracy of our approach as the operator will implicitly compensate for these
differences while interactively setting the volume transfer function during the
planning phase. An additional difference between our setting and the OR is
that the anatomy of interest may not be visible due to sterile drapes. This can
potentially have a significant effect on the results of the coarse registration phase
as it solely relies on visually positioning the tool relative to the anatomy without
acquiring any intraoperative images. We do not expect this to have a significant
effect on our overall results. Our only requirement from the coarse initialization
is that the resulting transformation enables us to augment the x-ray images.
That is, the volume rendering should have some overlap with the x-ray images
which is the case even when the transformation we use is far from the correct
one. The user then manipulates the tracked tool based on the AR view which is
not effected by the draping. As a consequence we expect similar accuracy in the
OR to that obtained in our phantom studies.

4 Conclusion

We described an AR-based approach for initializing 2D/3D registration as part of
an image-guided navigation system. The approach does not require any additional
equipment and uses a tracked tool which is already part of the navigation system.
As our approach is interactive it is equally applicable to registration of CT or MR.
In addition, our initialization is based on visual alignment of anatomical structures
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which simplifies the clinical workflow as there is no requirement for placement of
fiducials prior to imaging.
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F., Nöbauer-Huhmann, I., Bergmeister, H., Stock, M., Georg, D., Bergmann, H.,
Birkfellner, W.: Validation for 2D/3D registration I: A new gold standard data set.
Med. Phys. 38(3), 1481–1490 (2011)

6. Horn, B.K.P.: Closed-form solution of absolute orientation using unit quaternions.
Journal of the Optical Society of America A 4(4), 629–642 (1987)

7. Udupa, J.K., et al.: A framework for evaluating image segmentation algorithms.
Comput. Med. Imaging Graph. 30(2), 75–87 (2006)



 

C.A. Linte et al. (Eds.): MIAR/AE-CAI 2013, LNCS 8090, pp. 127–135, 2013. 
© Springer-Verlag Berlin Heidelberg 2013 

Surface Reconstruction from Tracked Endoscopic Video 
Using the Structure from Motion Approach 
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Abstract. The lack of 3D vision and proper depth perception associated with 
traditional endoscopy significantly limits the quality of the diagnostic examina-
tions and therapy delivery. To address this challenge, we propose a technique to 
reconstruct a 3D model of the visualized scene from a sequence of spatially-
encoded endoscopic video frames. The method is based on the structure from 
motion approach adopted from computer vision, and uses both the intrinsic 
camera parameters, as well as the tracking transforms associated with each ac-
quired video frame to calculate the global coordinates of the features in the  
video, and generate a true size 3D model of the imaged scene. We conducted a 
series of phantom experiments to evaluate the robustness of the proposed  
method and the accuracy of a generated 3D scene, which yielded 1.7±0.9 mm 
reconstruction error. We also demonstrated the application of the proposed me-
thod using patient-specific endoscopic video image samples acquired during an 
in vivo gastroscopy procedure. 

Keywords: reconstruction, endoscopy, motion tracking device, structure from 
motion, hand-eye calibration. 

1 Introduction 

Endoscopy is the gold standard imaging modality for screening many types of cancers 
in soft cavities, such as gastric and colorectal cancer. However, the limitations of 
endoscopic video, including lack of 3D vision and depth perception, as well as radial 
image distortions, present challenges to clinicians as far as hand-eye coordination and 
operating field localization, which, in turn, impact the quality of the endoscopic exam. 
As an example, during endoscopy procedures, the digestive tract is examined segment 
by segment, but it is difficult to keep track of any segments that might have been left 
unexamined. In fact, ~13% of examinations are incomplete, leading to a high “miss 
rate” for pathological conditions [1, 2].  

A visualization approach that conveys the 3D relationship between the imaged 
structures would greatly improve this technique. However, 3D scene reconstruction 
from video images of soft cavity organs remains a difficult problem. Due to the de-
formability of soft cavity organs, conventional modeling methods of reconstruction 
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from pre-operative imaging data have limited success.  In recent years, computer 
vision based algorithms have attracted great attention, for their potential to provide in 
vivo, intraoperative reconstructions of the soft cavity organs using endoscopes. 
Stoyanov et al. used a stereo vision algorithm to create a 3D model of a laparoscopic 
video scene [3]. Nevertheless, given the limited baseline length (on the order of the 
endoscope diameter), the stereo vision algorithm cannot precisely reconstruct 3D 
scenes at a relatively large distance. To overcome this shortcoming, some researchers 
even proposed to change the position of optical cameras to the lateral side of the en-
doscope [4]. Another attempt was led by Fuchs et al. [5], who replaced the traditional 
endoscopic camera with a structured light projector and scanner to provide an aug-
mented reality visualization of the soft tissue. Although adequate, this approach  
requires additional surgery to acquire the 3D structure. In addition, both stereo recon-
struction and reconstruction based on structured light cannot make use of typical  
monocular endoscope. 

We propose a novel 3D reconstruction method based on a well-known computer 
vision algorithm - the structure from motion (SFM), which enables 3D structure re-
construction from a single moving camera. Hartley et al. have shown that the SFM 
method can only reconstruct a true size 3D model from an un-calibrated camera, if the 
positions of several reference points in the imaged scene are known [6]. To compen-
sate for the inability to annotate reference points on the patient’s organ during endos-
copic procedures, our method uses a motion tracking device (i.e., tracking sensor) 
attached to the endoscope to estimate the position and pose of endoscope in real time. 
For robotic applications, this approach is known as hand-eye calibration [7] and sev-
eral groups have proposed various approaches to perform the calibration, by imposing 
special requirements on the endoscope positions and poses during image acquisition. 
Unfortunately, such requirements are difficult to meet in a clinical setting, as humans 
do not possess the same precision as robots, and the optimal tracking volume asso-
ciated with the employed magnetic tracking system is also a limiting factor (a small 
cuboid of 31cm x 46cm x 30 cm).   

Here, we propose a new approach to solve hand-eye calibration problem. By track-
ing the position and orientation of the endoscope in real time, the true coordinates of 
the imaged scene can be identified, and a 3D surface model of the viewed scene can 
be generated. Comparing with existing reconstruction algorithms, the advantage of 
our method is that it applies to typical monocular endoscopes. The method is imple-
mented and validated using a traditional gastroscope (GIF-QX240, Olympus Corp., 
CA, USA).  

2 Materials and Methods 

2.1 Outline of the Method 

Given the homologous pixel coordinates i ix x′↔  of a 3D point Xi imaged in two 

different frames, according to the SFM theory, the global 3D coordinates of Xi can be 
computed by solving the following linear equations: 
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where xf , yf are dependent on the endoscope focal length and physical size; and 

xc , yc represent the intersection of endoscope optical axis and imaging plane.  

These four parameters describe the optical properties of the endoscope, referred 
to as intrinsic parameters, while R and t describe the transform between the world 
coordinate system and the camera coordinate system, referred to extrinsic parameters. 
Based on the description above, our method can be divided into six steps (Fig. 1). In 
the paper, we only focused on hand-eye calibration and briefly introduced other steps. 

 

 

Fig. 1. Flow-chart of the reconstruction method 

The lens of endoscope is similar to a fish-eye lens and the acquired images appear 
distorted. To correct for these distortions, the intrinsic parameters of the endoscope 
can be determined before endoscopy using the widely-accepted method proposed by 
Zhang’s et al. [8], and used to un-distort the images. 

Then the extrinsic parameters of the endoscope was estimated by the hand-eye ca-
libration method which was detailed in section 2.2. 

To obtain the corresponding points i ix x′↔  in the two frames, we chose to use 

the Features from Accelerated Segment Test (FAST) detector [9] , as it is a scale and 
rotation invariant and features faster performance and a higher detection rate than 
other commonly used detectors, such as the Scale-Invariant Feature Transform (SIFT) 
and Speeded Up Robust Features (SURF) detectors. After detection, a multi-
dimensional vector was then extracted to describe each feature, followed by matching 
of homologoues features from the two frames using the k-nearest neighbor algorithm. 
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Triangulation is the process of computing the 3D coordinate from two different 
views using the linear equations in (1). Since there might be errors in the detected 
corresponding points i ix x′↔ , the 3D coordinates solved from (1) are only an ap-

proximation of real point. To obtain a robust and meaningful solution, the geometric 
error cost function was used to solve the optimization problem, the solution of which 
is the closest point on the epipolar line [6].  

Based on the 3D coordinates determined from equation (1), the triangle patches 
were generated to form a surface model, which was visualized using a surface render-
ing method. 

2.2 Hand-Eye Calibration and Estimation of Extrinsic Parameters 

The endoscope was instrumented by attaching an Ascension magnetic tracking sensor 
(Ascension, Northern Digital Inc. Waterloo, Canada) (Fig. 2(c)), enabling real-time 
identification of the endoscope position and pose within the magnetic field generated 
by the transmitter (Fig. 2(a)). Currently, the tracking sensor and its cable were at-
tached to the endoscope by surgical tape; before endoscopy, the endoscope as well as 
the attached sensor were sterilized. In future, we considered to incorporate tracking 
sensor into endoscope directly, e.g. attached the tracking sensor through the endos-
cope tube in a way similar to how biopsy forceps and endoscopic ultrasonography is 
utilized. Fig. 2(d) shows the coordinate systems considered in this calibration: world 
(global) coordinate system – associated with the transmitter; sensor coordinate system 
– associated with the tracking sensor; and camera coordinate system – associated with 
the acquired images. 
 

a   b    c 

 d 

Fig. 2. (a-c): 6DOF magnetic tracking system, including a flat transmitter (a), power unit (b), 
and tracking sensor (c). (d): coordinate systems considered in this application.    
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The extrinsic parameters represent the transform between the world and camera 
coordinates. Since the transform between the sensor and world coordinates is  
provided by the tracking system, the key to compute the extrinsic parameters is to 
determine the transform between the sensor and camera coordinate, (i.e. the hand-eye 
calibration transform) determined using the method illustrated below Fig. 3.   

 

 

Fig. 3. Determination of the hand-eye calibration transform: A checker-board pattern is imaged 
from two different endoscope positions, while maintaining the optical axes parallel 

To determine this transform, we imaged a checker-board pattern from two different 
endoscope positions precisely marked to ensure that the endoscope optical axis is 
maintained parallel between the two different acquisitions. The endoscope was first 
places at position M, and image M-l2 of the checker-board patterns in position l2 was 
acquired, containing K features (corners). The pattern was then shifted to position (l3) 
10 mm away and maintained, and image M-l3 was acquired. This protocol was re-
peated with the endoscope at position N, keeping the optical axes at the two positions 
parallel, and images N-l2 and N-l3 were acquired. With the images M-l2 and N-l2, we 
can calculate the 3D coordinates of the first K points at the position of l2 by using the 
stereo vision triangulation theory: 
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where , , ,x y x yf f c c are endoscope intrinsic parameters, 

, ,( , )i M i Mx y are the pixel 

coordinate of feature point i  in the imaging plane with the endoscope positioned at 
M, 

, ,( , , )i M i M iX Y Z  are the 3D camera coordinates with the endoscope positioned at 

M, and
, ,i M i Nx x− is referred to as the disparity. The second set of K features at the 

position of l3 can be obtained in a similar fashion. The world coordinate of the two 
sets of K features were measured by selecting them with the tracked stilus. After de-
fining the world-to-camera coordinate transform ( ,c w c wR t−> −> ) using the two sets of K 

homologous features, the transform from the camera to sensor coordinate 
( ,c s c sR t−> −> ) can be calculated: 

 
 ( )1 1,c s s w c w c s s w c w s wR R R t R t t− −

−> −> −> −> −> −> −>= = −  (4) 
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Following hand-eye calibration, the extrinsic parameters of the endoscope at any 
position can be calculated by equation (5), and all imaged features can be transposed 
from the image coordinate frame into the world coordinate frame. 

 ( ) ( )1 1 1,w c s w c s w c c s s w s w c s s wR R R t R R R t t
− − −

−> −> −> −> −> −> −> −> −>= = − +  (5) 

3 Results 

3.1 Validation of Hand-Eye Calibration Method 

To evaluate the precision of our hand-eye calibration method, we computed the sen-
sor-to-camera transform at three different positions in the magnetic field. Ideally the 
transform should be reproducible, however, due to the measurement and computa-
tional uncertainty, slight differences were observed (Table 1). 

The error associated with the translation vector is measured by calculating the Euc-

lidean distance from each measured vector ,c s it −> to their mean. To determine the 

error associated with the rotation matrix, we computed the difference between the 
mapping of a unit vector under the mean transform, and each of the three transforms, 
and used the maximum angle between the resulting vectors as a measure of error:  

( ) ( )( )( ), ,max
T

c s i c s c s i c sError eig R R R R−> −> −> −>≤ − −               (6) 

where ,c s iR −> is the rotation matrix measure at position i and c sR −> is their mean. 

Table 1. Results of Hand-Eye Calibration  

Position 
c st −>   

(mm) 

Rotation angle around  

X, Y, Z axes 

(degree) 

Error of 

c st −>  

(mm) 

Error  
of 

c sR −>  

(radian) 

1 (-1.96, -8.55, -3.76) (89.87, -4.51, 84.97) 0.14 0.0028 

2 (-1.96, -8.71, -3.19) (89.66, -4.62, 85.05) 0.05 0.0029 

3 (-2.03, -8.65, -3.26)  (89.93, -4.76, 85.17) 0.02 0.0035 

Average (-1.98, -8.64, -3.40) (89.82, -4.63, 85.06) / / 

3.2 Estimation of Reconstruction Error 

To evaluate the error associated with the reconstruction of the 3D scene, we designed 
a phantom experiment using a gastric model with 28 markers attached on its inner 
wall (Fig. 4 (a)). The model was imaged from two different positions using a gastros-
cope (Fig 4.b&c) and Fig. 4(d) shows the reconstructed 3D surface model of the im-
aged scene. The reconstruction error was determined as the Euclidean distance  
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between the reconstructed and true marker coordinates (identified by discretization 
with a tracked stylus) and which resulted in 1.7±0.9 mm, equivalent to a root mean 
square (RMS) error of 1.9 mm. 

 

a   b  
 

c        d  
 

Fig. 4. 3D reconstruction of the gastric model containing 28 markers (a) imaged from two 
different views (b) and (c), and reconstructed as a 3D rendered surface (d) 

3.3 Reconstruction from an in vivo Gastroscopy Procedure 

To demonstrate the value of the proposed method in the context of an intended clini-
cal application, Fig. 5(a & b) shows a pair of video images acquired during an in vivo 
gastroscopy procedure, from which features of interest were detected and matched. 
The black hole in the image is pylorus.    

     

a b c 

Fig. 5. (a) & (b) In vivo demonstration of feature detection and matching from two (a) & (b) 
clinical gastroscopy images, with the 3D reconstructed scene in (c) displayed as a rendered 
surface. The arrow direction and length represent the direction and strength of the feature vec-
tor, respectively. The features with same direction and strength represent the matched features.  
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Fig. 5 (c) is the surface reconstructed from the frames pairs in Fig. 5(a) & (b).  
In the reconstructed model we can also see the pylorus, the black hole in the center, 
and the region around the pylorus is slightly convex, which just accords with the 
shape of the pylorus in the gastroscopic videos. 

4 Discussion and Conclusion 

In this paper, we proposed an fast and efficient surface reconstruction approach for 
soft cavity organs based on typical monocular endoscopic video frames acquired 
while the position and orientation of the endoscope is tracked using magnetic tracking 
system.  To determine the intrinsic parameters of the endoscopic camera, we used the 
method proposed by Zhang et al., which assumes an invariant endoscope focal length 
the procedure. This is a common assumption of all traditional optical endoscopes, 
requiring the determination of all intrinsic parameters only once, prior to a procedure. 
Compared to the conventional SFM method, our method is more accurate in estima-
tion of camera’s position and pose. According to Velez et al [10], the translation error 
of traditional SFM was as large as 27.7122 mm while ours was no more than 0.14 
mm. Another advantage featured by our method is the computation of the extrinsic 
parameters simply by several matrix computations, without the need for any complex 
algorithms. Moreover, by employing high-speed feature detectors and using GPU 
acceleration to un-distort the acquired video frames, our method performs in less than 
30 ms on a 2.5 GHz CPU PC running 64-bit Windows 7 with 4G RAM and an 
NVIDIA Quadro FX 570 graphics card, and yields a 1.9 mm RMS reconstruction 
error. Compared to the stereo reconstruction method proposed by Stoyanov et al [11], 
our method has a lower reconstruction error (1.9 mm compared to 2~10 mm). 

To date, the method had been used in an image-guided biopsy marking system for 
gastroscopy [12]. Future efforts will be channeled to improve computer-aided endos-
copy, as a means to provide better real-time visualization for superior clinical evalua-
tion and examination quality. 
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Abstract. Off-pump beating heart interventions require a good guid-
ance system to show both cardiac anatomy and motion. Over the years,
echocardiography has become a popular solution for such a purpose be-
cause of its real-time imaging capability, flexibility, non-invasiveness, and
low cost. However, it can be difficult for surgeons to appreciate the posi-
tion and orientation of 2D images and to keep surgical tools and targets
both shown in the image plane with only ultrasound guidance. In this
paper, we propose to use CT images as high-quality 3D context to en-
hance ultrasound images through image registration to provide a better
guidance system with very few changes to standard workflow. We have
also developed a method to generate synthetic 4D CT images through
non-rigid registration, when dynamic pre-operative CT images are not
available. The validation of synthetic CT images was performed by
comparing them to real dynamic CT images and the validation of CT-
ultrasound registration was performed with static, dynamic,
and synthetic CT images.

Keywords: image-guidance, beating-heart interventions, synthetic CT,
CT-enhanced ultrasound guidance.

1 Introduction

Mitral valve prolapse (MVP) is a common valvular abnormality that can cause
severe non-ischaemic mitral regurgitation[3]. The cause of MVP can be histo-
logical abnormalities of valvular tissue, geometric disparities between the left
ventricle and mitral valve (MV), or various connective tissue disorders[4]. Im-
plantation of artificial chordae tendineae is a widely used technique for correction
of both posterior and anterior leaflet prolapse[2]. The conventional surgical ap-
proach for mitral valve repair usually requires a full or partial sternotomy and
the use of a heart-lung machine, also referred as the “pump”. Recent develop-
ments in cardiac surgery, however, have made it possible to perform the repair in
a minimally-invasive manner on a beating heart (“off-pump”)[1]. However, these
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minimally invasive approaches are often limited by the lack of a direct view
of surgical targets and/or tools, a challenge that is compounded by potential
movement of the target during the cardiac cycle. For this reason, sophisticated
image-guided navigation systems are required to assist in procedural efficiency
and therapeutic success.

Guidance systems for off-pump beating heart interventions must show both
cardiac anatomy and tissue motion. Echocardiography (ultrasound), because of
its real-time imaging capability, flexibility, non-invasiveness, and low cost, is fre-
quently employed in cardiac surgery as both a monitoring and imaging modality.
However, safety concerns exist since it can be difficult for surgeons to appreciate
the position and orientation of 2D images relative to a surgical tool, and to keep
the tool tip and target in the image plane simultaneously. As alternatives, fluo-
roscopy can only provide real-time 2D projection images , while poorly demon-
strating the target anatomical structures; intra-operative MRI has the capability
of displaying cardiac anatomy and motion dynamically during interventions[7],
but is very expensive, requires developments of novel, non-ferromagnetic tools
and devices, and is unavailable in most institutions. To overcome these limita-
tions, Moore et al.[9] described a navigation system for off-pump beating heart
mitral valve repair, in which the bi-plane transesophageal echocardiogram (TEE)
images were augmented by a virtual presentation of selected anatomical models,
i.e. mitral valve annulus (MVA) and aortic valve annulus (AVA), which were de-
fined by manually identified feature points on the TEE images right before the
surgery started. Animal studies showed that the augmented virtuality guidance
that they employed significantly improved the efficiency, accuracy, and safety of
the procedure that involved guiding the surgical tool from the entry point at
the cardiac apex to the target area, compared to TEE-only guidance. However,
the virtual anatomical model were not dynamically updated and could be cen-
timeters away from the actual position due to physical movement of the target
during the surgery.

In this paper, we propose a guidance system that improves on Moore’s work by
employing CT-enhanced ultrasound images for guiding such procedures. Both
CT and ultrasound are commonly used in the standard clinical workflow for
cardiac interventions, so the proposed approach requires very few changes in the
image acquisition workflow. In this guidance system, intra-operative TEE images
display the real-time cardiac anatomy and motion, while the pre-operatively
acquired high spatial resolution CT images are dynamically fused with the TEE
images to provide a high quality 4D context. We also developed a method to
generate patient-specific synthetic 4D CT image sequences based on a static
CT image and 4D ultrasound images to avoid the need to acquire high-dose
retrospectively-gated CT scans[5]. We validated and compared the accuracy and
efficiency of different registration approaches with both real and synthetic CT
images, with respect to the mitral valve annulus, the target for procedures that
aim to repair the mitral valve.
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Fig. 1. The suggested clinical workflow of how to use CT-enhanced ultrasound guidance
for off-pump beating heart interventions

2 Methods

2.1 Suggested Clinical Workflow

The suggested clinical workflow for using CT-enhanced ultrasound guidance is
illustrated below (Fig. 1). In the pre-operative stage, 4D CT images are either
acquired by performing a retrospectively gated CT scan or generated based on a
static CT and 4D ultrasound images from the same patient using the proposed
synthetic CT generation method. The 4D CT images are transferred to the
guidance system and brought to the operation room prior to surgery.

In the peri-operative stage, an initial registration is performed between a
peri-operatively required 3D ultrasound volume and a CT image at the same or
closest cardiac phase using feature based registration. Features, such as the inner
walls of the left ventricles, are semi-automatically segmented using an approach
described in [11]. The resulting registration transform is then saved and used as
an initialization for the intra-operative CT to ultrasound registration.

In the intra-operative stage, CT images are registered to the intra-operatively
acquired TEE images using rapid GPU-based algorithm. The registered images
can be visualized in different formats according to surgeon’s preference, such
as directly overlaying TEE images onto CT, displaying the volume rendering
CT images within the visualization environment, or simply extracting critical
features from these images and displaying them fused the CT or TEE volumes. In
this way, visual linkage can be provided between the intra-operative images, pre-
operative image, anatomical models, and surgical tools within the same guidance
framework.
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2.2 Generation of 4D Synthetic CT

The generation of the synthetic dynamic CT images is performed through non-
rigid registrations between ultrasound images [12] over a single cardiac cycle to
obtain patient specific heart motion maps, in the form of deformation fields, and
to apply these vector maps to CT images to provide synthetic animation. In
this approach, at least one sequence of 3D TEE images, representing at least
one complete cardiac cycle, and one single frame cardiac CT images must be
acquired pre-operatively.

The procedure begins with the selection of a single 3D TEE image, acquired
at a cardiac phase close to the static CT image as a reference and rigidly reg-
istering it to the static CT image. The rigid registration is performed by semi-
automatically segmenting the inner wall of the left ventricles from both the
reference TEE image and the static CT image, aligning the segmented ventricles
with the Iterative Closest Point (ICP) method, and refining the alignment with
a mutual information based registration [6] . All the other TEE images in the
4D sequence are then rigidly registered to the reference image as initialization
for the later non-rigid transform.

After the initial rigid registration step, non-rigid registrations are performed
amongst the ultrasound images in the 4D sequence. To obtain the deformations
fields that relate the reference image to all the other images in the sequence, we
can either perform registration directly between the reference image and each
member of the sequece, between temporally adjacent images, or in a group-
wise manner [13]. The deformation fields are then employed as cardiac motion
maps and applied to the static CT image to generate a synthetic dynamic CT
sequence. By performing this approach for each frame, we can generate an entire
sequence of synthetic dynamic CT images with the same temporal resolution
as the 4D TEE images. The non-rigid registration method we employed is the
mult-resolution fast free-from (F3D) deformation registration method described
by Modat et al. [8], because of its capability of handling the morphological
deformation due to cardiac motion and providing relatively smooth deformation
fields.

2.3 GPU-Based Real-Time Registration

During the intra-operative stage, real-time image registration is performed be-
tween intra-operative and pre-operative images. Dynamic CT images obtained
from retrospectively gated scans, synthetic CT images generated by our method,
and pre-operative 4D TEE images, can potentially fulfill the role of pre-operative
images in the proposed system. CT images can be registered to the intra-
operative TEE images in two different ways. The first is to perform online regis-
tration directly between the CT images and intra-operative TEE images, using
a multi-modality registration method. The second is to perform the registration
between CT images and pre-operative TEE images prior to the surgery, per-
form online registration between intra-operative and pre-operative TEE images
during the surgery, and then combine the two transforms to achieve registration
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between CT and intra-operative TEE images. The potential benefit of the sec-
ond method is that the off-line registration can be verified by clinicians prior to
the procedure to ensure optimized results, and the online registration is between
images of a single modality (i.e. ultrasound), which can potentially be performed
more efficiently and reliably. We used mutual information (MI) as the similarity
metric for CT to TEE registration, while employing sum of squared differences
(SSD) for TEE to TEE registration. Validation of these methods is presented
below.

In this project we perform rigid registration between intra- and pre-operative
images at corresponding cardiac phases. To accelerate this process, bringing it
close to real-time, the registration algorithms are parallelized on graphic process-
ing units (GPUs). The registration pipeline contains three components: image
transform, linear interpolation, and similarity metric computation. In this case,
image transform and interpolation can be completely parallelized and very effi-
ciently implemented on a GPU, since the operation on each voxel is identical and
independent. However, the similarity metric computation, either MI or SSD, can-
not be perfectly parallelized due to potential race conditions [10], that is caused
by access to a shared memory address by multiple processing threads without
proper synchronization which can lead to unexpected results. We therefore use a
recursive method, that divides the entire volume into small blocks first and then
iteratively sums up the intermediate results, to achieve partial parallelization for
this computation.

3 Experiments and Results

3.1 Validation of Synthetic CT

The validation of the quality of synthetic CT images is perform by comparing
the synthetic images to real dynamic CT volumes. We performed the validation
the data from five patient. For each patient we acquired a dynamic CT sequence
representing one cardiac cycle and a 4D TEE sequece representing several car-
diac cycles. The first images in the dynamic CT sequence was used as a static
CT image from which synthetic CT images were generated. Then, we manually
segmented the left ventricles from both dynamic and synthetic CT images and
compared them at corresponding cardiac phases with respect to the Dice Sim-
ilarity Coefficient(DSC) and root mean square errors (RMSe). The results are
shown in Table 1.

Table 1 demonstrates that the left ventricles in the synthetic CT images were
quite similar as the ones in the dynamic CT images with a mean DSC of 0.82
and mean RMS of 2.96mm. However, the comparison results at diastolic frames,
such as frame 2 and 10, are better than the results at systole (frame 4 and 5). One
possible reason for this phenomenon is that patients were under general anesthesia
when taking TEE scans, while they were awake when taking dynamic CT scans.
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Table 1. Comparison of left ventricles between synthetic and dynamic CT images over
one cardiac cycle of five patients

# of frame 2 3 4 5 6 7 8 9 10

DSC(mean) 0.86 0.81 0.77 0.77 0.80 0.83 0.83 0.85 0.87
DSC(σ) 0.03 0.02 0.05 0.05 0.03 0.04 0.05 0.04 0.03

RMS(mean) 2.48 3.11 3.67 3.63 3.28 2.74 2.71 2.59 2.42
RMS(σ) 0.60 0.46 0.88 0.58 0.77 0.84 0.43 0.21 0.27

*RMS measurements in mm

3.2 Validation of CT-TEE Registration

In order to examine the impact of introduing dynamic and synthetic CT im-
ages to the guidance system, we performed CT-TEE registration using static,
dynamic, and synthetic CT images. The static CT images used in this exper-
iment were acquired at end-diastole. We manually segmented the mitral valve
annulus (MVA), which indicates the target area in the mitral valve repair proce-
dure, and used it for the target registration error (TRE) tests. Two registration
approaches were used. The first directly performs multi-modality registration
between pre-operative CT and intra-operative TEE images, while the second
separates the registration into two stages, CT-TEE registration at pre-operative
stage and TEE-TEE registration at intra-operative stage. The first approach
uses mutual information as a similarity metric, while the second uses SSD. The
validation was performed on five patients’ data and for each patient we used
image sequences representing two cardiac cycles. The result is shown in Table 2.

Table 2. Comparison of TRE w.r.t. MVA with static, dynamic, and synthetic CT
images (mm)

CT-TEE Registration

CT type Static Dynamic Synthetic

Cardiac phase of TEE ES ED ES ED ES ED

RMS (mean) 9.00 4.90 3.94 4.94 4.59 4.12
RMS (σ) 2.51 0.95 1.37 0.74 1.22 0.41

CT-TEE + TEE-TEE Registration

CT type Static Dynamic Synthetic

Cardiac phase of TEE ES ED ES ED ES ED

RMS (mean) 10.37 5.56 4.59 5.23 5.91 4.29
RMS (σ) 1.36 2.25 0.33 1.52 2.08 1.03

*ES: end-systole, ED:end-diastole

Table 2 shows that, with both registration approaches, using only a static CT
image for registration can result in large TRE errors when the TEE image was
acquired at a different cardiac phase. However, this error can be reduced by using
dynamic or synthetic CT images. The result showed that using the synthetic CT
images generated by our method led to results similar to those obtained from
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Fig. 2. An example of registration results. First row: results at end systole; Second
row: results at end diastole; Left column: registration using static CT; Middle column:
registration using dynamic CT; Right column: registration using synthetic CT. TEE
images are shown in yellow, while CT images are shown in grey. The yellow curves
represent MVA from TEE, while the red curves represent MVA from CT.

actual dynamic CT images. However, using synthetic CT can greatly reduce the
radiation dose applied to patients.

Comparing the two registration approaches, it can be observed that the result
of directly CT-TEE approach was slightly better than the two-stage approach. A
possible reason for this is that the two-stagemethod introduced registration errors
in both of the stages and these errors were accumulated. However, the two-stage
approach showedbetter efficiencyat the intra-operative stage, requiring 227±63ms
to perform a TEE-TEE registration using SSD, while the direct approach required
430±182ms to perform a CT-TEE registration using mutual information.

4 Discussion and Conclusion

We proposed a CT-enhanced ultrasound guidance system in which pre-operative
CT images and intra-operative TEE images are fused to provide both real-time
cardiac motion and high quality 3D anatomy context. The proposed solution can
provide a linkage between pre-operative and intra-opertive images and flexibility
in visualization formats. It is cost-effective and requires very few changes to
the current standard workflow. We have also developed a method to generate
synthetic 4D CT images to be used in the guidance system. The validation
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showed that by introducing synthetic CT images to the system, we can achieve
better results than using a static CT image and similar results to the use of
actual dynamic images, without applying high radiation dose to the patient.
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Abstract. Statistical shape models (SSMs) made using point sets are
important tools to capture the variations within shape populations. One
popular method for construction of SSMs is based on the Expectation-
Maximization (EM) algorithm which establishes probabilistic matches
between the model and training points. In this paper, we propose a novel
Bayesian framework to automatically determine the optimal number of
the model points. We use a Dirichlet distribution as a prior to enforce
sparsity on the mixture weights of Gaussians. Insignificant model points
are determined and pruned out using a quadratic programming tech-
nique. We apply our method to learn a sparse SSM from 15 manually
segmented caudate nuclei data sets. The generalization ability of the
proposed model compares favorably to a traditional EM based model.

1 Introduction

Statistical shape models, originally invented by Cootes et.al. in [1], have a long
history in aiding automatic segmentation of anatomical structures using prior
shape based information [2][3]. Learning a shape prior from training data can
be in general described as the problem of density estimation in pattern anal-
ysis. Parametric modeling of statistics from training data is a popular method
mainly due to its compactness and computational efficiency. However using these
methods, an optimal model complexity must be chosen. This is an important
issue because it affects the generalization efficiency of the trained model. For
SSMs with no exact point correspondences, the model complexity can refer to
the number of the points representing the mean shape, which is usually selected
prior to construction of the model [4][5].

One of the traditional approaches for determining an optimal model during
the training phase is to enforce sparsity on an initially maximal model. To the
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best of our knowledge, no prior such work has been published in the context
of SSMs to address the problem of selecting the number of points on the mean
model. Zhang et.al. proposed a method for sparse shape representation in [6].
However, their method needs all the training set to be saved in a large shape
repository. Durrelman et.al. [7] proposed a L1-type prior to enforce sparsity on
the deformation fields, which encode the shape variations. Hence, their method
is different from ours in the respect that they do not enforce sparsity on the
number of the points of the mean model.

In this chapter, we propose a novel Bayesian framework to learn a sparse SSM
from point cloud training sets. The major novelty of the method is our formu-
lation which allows us to use quadratic programming as a tool for determining
the optimal number of mean shape points during the alignment procedure. We
formulate the problem as estimation of mixture weights of Gaussians. To enforce
sparsity, we impose a symmetric Dirichlet distribution as a prior on the weights
of the mixture and estimate the unknown parameters using EM algorithm [12].
The hyper-parameter controlling the sparsity level is determined using cross val-
idation. As an example application, we apply our method to learn variations
of caudate nuclei within a set of manually segmented data sets [9]. We show
the importance of selecting optimal number for model points and compare our
method to a state-of-the-art model proposed in [4]. This chapter is organized as
following: we introduce our formulation in Section 2, and present the results in
Section 3 which is followed by a conclusion in Section 4.

2 Methods

Let X = {Xk ∈ (RD)Nk},1 ≤ k ≤ K denote the set of K observed D dimen-
sional point sets, and M = {mj ∈ R

D},1 ≤ j ≤ NM be a model point set.
In addition, let T = {Tk = (sk, Rk, bk)} be the set of K rigid transformations
where each Tk globally transforms the model points mj ∈ M onto the space
of Xk, i.e. Tk � mj = skRkmj + bk. We consider xki ∈ Xk to be a noisy ob-
servation vector sampled from a Gaussian distribution centred at Tk � mj such
that: p(xki|Tk,mj) = N (xki|Tk � mj , Σ), where Σ = diag(σ2

1 , · · · , σ2
D) is a diag-

onal covariance matrix. Since NM points exist on M, the conditional pdf of xki
can be given as a mixture of Gaussians: p(xki|Tk,M, π) =

∑NM

j=1 πjp(xki|Tk,mj)

where π = (π1, · · · , πNm)T .
Now, assuming that all Nk observed points on Xk are independent, the prob-

ability of Xk can be written as: p(Xk|Tk,M, π) =
∏Nk

i=1 p(xki|Tk,M, π).Finally,
to model the pdf of the total observation X , we further assume the given K
points sets are jointly independent and identically distributed (i.i.d.) such that:

p(X|T ,M, π) =
K∏

k=1

p(Xk|Tk,M, π). (1)

Next, we formulate the problem of estimating the set of parameters in a
Bayesian framework and maximize the following posterior probability:

T̂ ,M̂, π̂=argmax
T ,M,π

log[p(T ,M, π|X )]=argmax
T ,M,π

[log p(X|T ,M, π)+log p(π)] (2)
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2.1 Dirichlet Prior on the Mixture Coefficients

In this section we propose a prior pdf for the set of mixture coefficients π defined
in previous section, which leads to sparse estimation of the model points. To
enforce sparsity, we let π be drawn from a symmetric Dirichlet distribution
function [11] which is given by:

p(π) =
Γ (NM (N(α− 1) + 1))

Γ (N(α− 1) + 1)NM

NM∏
j=1

πj
N(α−1) (3)

in which N denotes the total number of the observed points (N =
∑K

k=1 Nk),
Γ is the Gamma function and α is the concentration parameter. This form is
slightly different from standard symmetric Dirichlet distribution in the way that
we have replaced α − 1 by N(α − 1) to effectively enforce the sparsity. Also,
the gamma functions are also modified so that that the integral of (3) over π
results in one. For α = 1, this distribution reduces to a uniform distribution.
For values of α > 1, all πi coefficients will be close to 1/NM . However, for α < 1
the distribution prefers sparsity on the mixture coefficients, i.e. , some πi will
be close zero.

2.2 Optimization Using EM

Direct solution of the problem in (2) does not have a closed form thus we use
the EM algorithm [12] to find a tractable solution. Having an estimate of the
parameters Θ = {T ,M, Σ, π} at the current iteration (n), EM maximizes a
lower bound on the right hand of (2) which has the following form:

Q(Θ|Θ(n))=

K∑
k=1

Nk∑
i=1

NM∑
j=1

{E(n)
kij [log(πj)+log(N (xki|Tk � mj , Σ))]}+log(p(Π))(4)

The EM algorithm consists of two iterative steps. In the E-Step, the posterior
probabilities E

(n)
kij are updated using current estimates of parameters:

E
(n)
kij =

π
(n)
j N (xki|T (n)

k � m
(n)
j , Σ(n))∑NM

l=1 π
(n)
l N (xki|T (n)

k � m
(n)
j , Σ(n))

(5)

In the M-Step, the value of (4) is maximized w.r.t. the unknown parameters.
We have followed the same principle outlined in [13] in order to derive update
equations of the parameters T ,M, Σ. The obtained equations are the same as
those in [13] and omitted here due to the limitation of space. In this paper, we
give our emphasis to derive the update equations for the vector π which results
in sparsity of the estimated model M.

We replace (3) in (4) and keep the relevant terms to π. Next, we apply the
constraint that

∑NM

j=1 πj = 1 by a Lagrangian parameter λ, and we arrive at
following expression which should be maximized for each πj , 1 ≤ j ≤ NM :

Q(Θ|Θ(n))=
K∑

k=1

Nk∑
i=1

NM∑
j=1

{[E(n)
kij + (α− 1)]log(πj)}+ λ(

NM∑
j=1

πj − 1) +O.T. (6)
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Taking derivative w.r.t. πj and eliminating λ we obtain:

π�
j =

γ
(n)
j + α− 1

NM (α− 1) + 1
(7)

where N denotes the total number of the observed points (N =
∑K

k=1 Nk) and

γ
(n)
j = 1/N

∑K
k=1

∑Nk

i=1 E
(n)
kij . This value can be regarded as the total responsibil-

ity which the model point mj admits. For α = 1, (7) reduces to classic maximum
likelihood based estimation of mixture weights where no sparsity is imposed.

It is important to note that the mixture weights which are computed using
(7) may take negative values, because no positivity constraint is considered in

(6). In fact, it is easy to see that for 1 − 1/NM ≤ α, if γ
(n)
j < 1 − α then

π�
j < 0. In other words, if the total responsibility of the model point mj drops

beyond the value of 1 − α, its corresponding mixture weight will be negative.
However, since this is not a plausible value, for such model points we set πj = 0
using a quadratic programming scheme explained below. Note that sparsity can
increase when α is very close to 1−1/NM . Hence, we define an auxiliary variable
as z ∈ (0, 1) to specify α using: α = (1− 1/NM)z+(1− z). With this definition,
sparsity will be proportional to z. Having estimated all values of π�

j , we update
the mixture weights by solving the following convex optimization problem using
the generalized sequential minimal optimizer proposed in [8]:

π
(n)
1 , · · · , π(n)

NM
= argmin

π1,···,πNM

NM∑
j=1

(π�
j − πj)

2, s.t :

NM∑
j=1

πj = 1 ∧ 0 ≤ πj , ∀j (8)

The method breaks this problem into a series of small sub-problems by identi-
fying those mixture weights that violate the constraints. We have observed that
even for a large number of model points (NM � 1e4), the convergence rate is
typically less than a second. At the end of the M-Step, we identify and prune
out those model points whose corresponding mixture weights are zero. Next, we
update NM by counting the remaining alive points. The algorithm iteratively
alters between E and M steps until convergence.

2.3 Construction of Statistical Shape Model

A popular method for construction of a shape model is using Principal Compo-
nent Analysis [1]. The method requires one-to-one point correspondences
between the training data set aligned with the mean shape. To identify such
relations, we use the idea of “virtual correspondence” proposed in [4] which re-
solves the problem as follows: For any model point mj a virtually correspondent
point, denoted by x̆kj , is induced by the training sample Xk according to:

x̆kj =

Ns∑
i=1

Ekij∑
l Eklj

T−1
k � xki (9)
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Fig. 1. Manually segmented caudate nuclei in axial, coronal and sagital slices

We compute these correspondences for all training samples and obtain K + 1
virtually aligned shapes (including the mean shape). Next, we convert each shape
into a vector by a column-wise concatenation and apply the PCA to the co-
variance matrix of these vectors. As a result we obtain the average vector X̄ ∈
R

DNM and the matrix of eigenmodes P ∈ R
DNM×n, where n ≤ K is the number

of the principal components considered. Having defined these components, any
unseen sample vector X can be considered as: X = X̄ + Pb, where b is the
coefficients vector. To eliminate the noise from X , each coefficient is constrained
by: |bi| ≤ 3

√
λi where λi is the ith eigenvalue of the co-variance matrix of training

vectors [1].

3 Results

In this section we first describe our available data sets of caudate nuclei and
provide details of the training point sets. Finally, we present the results of the
proposed method and compare its generalization ability with [4].

3.1 Specifications of Data and Point Sets

The caudate data consists of 15 data sets acquired from subjects with Schizop-
typal Personality Disorder [9]. Each caudate nucleus was manually segmented
by an expert (see Fig.1). In this paper, we use a mixed type of coordinates-
levelset values as a feature vector at each point to facilitate representation of
the surfaces using implicit definition. Let φk denote the signed distance function
from the surface of the kth segmented training set. The points specifying Xk,
are defined as xki = [xki, yki, zki, φk(xki, yki, zki)]

T . We only consider the points
in a narrow band surrounding the surface of the segmented structures. For the
thickness of 2.0 mm, approximately 4000 points are obtained per a single nu-
cleus. Next, each point set is individually decimated to around 400 points by
setting z = 0.9 and estimating no transformation. The resulting point sets are
then used to construct the shape models in the subsequent steps. Fig.2 shows a
few samples of these point sets prior to registration in (a) and after it in (b).

3.2 Experiments

In the first part of our experiments we aimed at determining an optimal value
for z (hence an optimal model) by measuring generalization efficiency of the
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Fig. 2. (a) Ten training point clouds represented by the points in a narrow band of
thickness 2.0, (b) The same point sets registered by our proposed method
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Fig. 3. Estimated generalization error (see Section 3.2) for different numbers of training
versus test samples: 10 vs. 5 (blue), 5 vs. 10 (red), and 3 vs. 12 (black)

estimated SSMs. With 15 point sets generated as explained in Section 3.1, we
performed three sets of cross-validations by using 10, 5 and only 3 point sets as
training data and leaving the rest as the test sets. To evaluate the generaliza-
tion, PCA analysis was first performed using the co-registered training sets (see
Section 2.3). Next, each test point set was first aligned with the trained model
and subsequently projected to its PCA space. The number of eigenmodes used
in this projection was equal to the number of training sets. Then, the average
distance between the surfaces of the original and the projected test set was mea-
sured. To reconstruct surfaces from point sets, the level set values on the points
were interpolated using radial basis functions [10] and then the zero level set was
extracted. For each evaluation, we increased the sparsity by varying z from 0 to
1 in increments of 0.1. The number of model points NM was initially set to the
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(a) (b) (c)

Fig. 4. Estimated mean shape from 10 segmented caudate nuclei at:(a)z = 0 (3601
points), (b)z = 0.3 (630 points) and (c)z = 0.9 (186 points)

total number of available points (typically N −K to avoid extreme over-fitting)
and later reduced by the imposed sparsity.

Fig.3 shows the results of these experiments applied on a single caudate nu-
cleus. As seen, for each number of training data sets, there is an optimal sparsity
level which is implied by z. For instance, using 10 training data sets, the mini-
mum average generalization error of 1.03± 0.23mm occurs at z = 0.3 (sparsity
level of 82.7%). Models with more points suffer from over-fitting, and models
with decreased number of points lose details. This is shown in Fig.4. The pres-
ence of small apart pieces in Fig.4-(a) can be explained as follows: due the large
number of points (3601) the estimated variance of the components, i.e. Σ, is
rather small. Consequently, the registration of the training point sets hasn’t
been accurate enough and the zero level of these points sets do not coincide as
good as the other models in (b) and (c), where we have had a better registration
performance. Furthermore, as the number of training data sets decreases, the
generalization ability reduces and less sparsity levels are preferred by the model.

We compared our sparse SSM with an EM-ICP based model by closely follow-
ing the principle outlined in [4] and performing 3 fold cross validation scheme
(10 training data set). The parameters needed to be set in this method were
as follows: Nm = 400 (equal to a typical number of points on a single training
set), variance reduction factor of 0.85 and 20 number of EM iterations. A t-test
showed the attained errors of 1.10±0.22mm were significantly higher than those
attained using our sparse model (p-value: 0.0043). Fig.5 shows the mean model
and variations along the first and second principal components for both caudate
nuclei. These are estimated using all K = 15 data sets and z = 0.3 which led
to a model with 1181 points decimated from 7875 training points. As seen, the
variation along the first component changes the length of the tails in (a), whereas
the variation along the second component displaces the tail position.

4 Conclusion

In this paper we approached the problem of model selection in the context of
statistical shape models. Our method is a Bayesian estimation framework which
imposes sparsity on the number of mixture components using a Dirichlet distri-
bution. The method is able to automatically identify an optimal number of mean
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(a) (b)

Fig. 5. (a) First principal and (b) second principal modes of variation are shown. In
both figures the mean shape (X̄) is specified in red and other colors specify the positive
and negative variations along with the principle modes X̄ ± λiPi.

shape points. We successfully applied our method to learn the variations within
the segmented caudate data sets and showed that it favorably compares with
a classic EM-ICP method. The proposed algorithm can generate highly sparse
(over 80%) yet reasonable models. The trained model can be used for shape
based segmentations and classifications. In the current framework, we determine
the concentration parameter using cross-validation. In future, we will estimate
this hyper-parameter by its explicit optimization in the training phase.
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Abstract. Image registration, which aligns a pair of fixed and moving images, 
is often tackled by the large shape and intensity variation between the images. 
As a remedy, we present a generalized registration framework that is capable to 
predict the initial deformation field between the fixed and moving images, even 
though their appearances are very different. For the prediction, we learn the 
prior knowledge on deformation from pre-observed images. Especially, our 
method is significantly differentiated from previous methods that are usually 
confined to a specific fixed image, to be flexible for handling arbitrary fixed 
and moving images. Specifically, our idea is to encapsulate many pre-observed 
images into a hierarchical infrastructure, termed as cloud, which is able to 
efficiently compute the deformation pathways between the pre-observed 
images. After anchoring the fixed and moving images to their respective port 
images (similar images in terms of intensity appearance) in the cloud, we 
predict the initial deformation between the fixed and moving images by the 
deformation pathway between the two port images. Thus, the remaining small 
deformation can be efficiently refined via most existing deformable registration 
methods. With the cloud, we have obtained promising registration results on 
both adult and infant brain images, demonstrating the advantage of the 
proposed registration framework in improving the registration performance.    

1 Introduction 

Deformable registration of brain MR images is a key step in neuroscience and clinical 
studies. Although many algorithms have been proposed during past decades, most of 
them aim to directly estimate the deformation field that deforms a moving image to a 
fixed image. Ignoring the potentially high variation between the two images might 
undermine the registration quality, as it is well known that the registration of two 
images with different appearance is much more challenging than the registration of 
two images with similar appearance. Specifically, the registration would be extremely 
vulnerable to structural ambiguities in detecting anatomical correspondences between 
the two very different images, and also suffer from high computational cost. 

One of effective remedies to overcome the inter-image variation in registration is 
to predict the deformation pathway based on prior knowledge. Thus, by providing the 
predicted deformation as a good initialization to existing registration methods, the 
complete deformation between two images can be easily estimated via efficient 
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deformation refinement [1-4]. In the existing methods, the correlation between 
appearance and deformation statistics of moving images with respect to a fixed image 
is often established in the training stage. Then, given a new moving image, its 
deformation field (or coefficients) can be predicted to initialize the registration from 
the learned correlation model. However, learning of the appearance-deformation 
correlation is generally confined to a specific fixed image, which limits the flexibility 
of the framework since the fixed image may change in different applications.  

In this work, we present a generalized registration framework that provides on-
demand access to any arbitrary fixed and moving images, even though the shape and 
intensity variation between the two images might be large. Specifically, we create an 
infrastructure, in which a large number of pre-observed brain images are carefully 
organized and the deformation field between each pair of them can be easily 
calculated. Thus, every image in the infrastructure may serve as the port image, to 
which a to-be-registered image can be anchored if they are similar. After anchoring 
the fixed and moving images to their respective ports, we assert that the desired 
deformation between the two images can be well approximated by the deformation 
between the two ports. The deformation pathway determined by our infrastructure can 
be regarded as a well-performing initialization and further refined efficiently by 
existing registration methods. We further term the infrastructure of brain images as 
the cloud, resembling the popular cloud computing, due to its capability in providing 
registration services that are transparent to varying fixed and moving images. That is, 
the cloud is adaptive to any input fixed and moving images, and can predict 
satisfactory deformation field as the initialization to the existing registration methods 
for further refinement, even though the variation between the images is large. 

It is clear that the key of our registration framework is to construct the cloud and 
use it for guiding image registration. A straightforward solution is to build the cloud 
with a simple graph, where (1) nodes representing similar images are directly linked 
by edges; (2) all pairs of nodes/images in the cloud are essentially (directly or 
indirectly) connected. Meanwhile, we calculate the deformation field associated with 
each (connected) graph edge. Then, given a new pair of fixed and moving images, the 
shortest route between their respective ports can be identified in the cloud. After that, 
the deformation between two port images can thus be computed by integrating all 
deformations on the graph edges along the shortest route. The solution by the simple 
graph, however, may suffer from the large number of pre-observed images included 
in the cloud, which is often required to well understand the distribution of the high-
dimensional images. Specifically, the critical issue is that the route between the fixed 
and moving images may travel along too many nodes in the graph, thus resulting in 
accumulated errors when integrating deformation fields along individual edges. 

A hierarchical design of the cloud, which potentially reduces the length of the 
identified route between the fixed and moving images, obviously can better predict 
the initial deformation to register the two images. Bearing this point, we automatically 
partition all pre-observed images into several groups, with each group consisting of 
only similar images in terms of their intensity appearances. After building the simple 
graph to describe the image distribution in each group, we introduce inter-group links 
that connect each pair of groups and finally acquire the hierarchical infrastructure as 
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the cloud. Taking advantages of this hyper-graph, the fixed and moving images can 
thus be better registered by following the shortest route inside the cloud.  

We have evaluated our cloud registration framework integrated with one of the 
state-of-the-art registration methods [5]. Promising experimental results on both real 
and simulated brain images demonstrated that our cloud registration method is able to 
substantially improve the registration results, indicating its potential to be applied to 
the challenging registration problems, e.g., infant and elderly brain images. 

2 Methods 

2.1 Cloud with Simple Graph 

Given the fixed image  and moving image , the goal of image registration is to 
estimate the deformation pathway  that deforms  to the space of . The 
conventional registration methods usually estimate the deformation pathway  
between  and  directly. However, the optimization of  could be very difficult 
and vulnerable to local minima, when the appearance difference between  and  is 
large. In order to alleviate this concern, we utilize a simple graph of pre-observed 
images to provide good initialization for registration.  

Simple Graph Construction: Here, we consider all pre-observed images | 1, … ,  sitting in a high-dimension manifold. Thus, two images with similar 
appearances are close to each other on the manifold. We then introduce a graph to 
approximate the manifold, as only similar images are connected in the graph. Two 
criteria are applied to build the graph: (1) each pair of nodes (images) should be 
linked (directly or indirectly); (2) the number of edges should be as less as possible. 
Given a well-defined graph, we only calculate the deformation fields for the images 
directly connected in the graph, thus avoiding the challenge of registering two 
faraway images.  

To acquire the desired graph, we first calculate the distance matrix , 

where each entry ,  encodes the distance between the image  (1, , ) and the image  ( 1, , ). The sum of squared difference (SSD) of 
intensity is used for measuring image distance due to its simplicity. To meet the two 
criteria above, we use a line-search-based method to determine the optimal threshold 

 upon image distances. Specifically, we set the search range with the low bound 0  and the upper bound max , . Then, the threshold  is updated 
following ), where the scalar 0,1) specifies the step size in 
line search. If the constructed graph satisfies criterion (1),  will be decreased to ; 
otherwise,  will be increased to . We repeat these steps until  meets with . 
After obtaining the optimal threshold , we can determine the edges by following  

 1 ,0 . (1) 

Here, 1  represents that there is an edge between  and , while 0 
indicates no direct link between  and .  
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In our experiments, we follow the method in [1] to simulate MR brains images 
from the learned statistical model on image appearance and deformation fields in 
order to have enough number of images to build the cloud. Since the simulation 
method needs to specify a template image, we simulate the image in each group by 
regarding the exemplar image in affinity propagation (AP) as the center node. 
Specifically, for each group in the cloud, we first align all nodes with the center node. 
Then we apply PCA to these deformation fields for obtaining eigenvectors to 
represent the characteristic of the statistical deformation fields. Finally, to simulate 
brain images in this graph, we randomly perturb each eigenvector within the 
statistically valid range for generating the new deformation fields, which are used to 
deform the exemplar images to simulate the new brain images in the cloud. 

3.1 Simulated Dataset 

For quantitatively evaluating the registration performance of our proposed 
framework, we conducted the deformation simulation algorithm proposed in [7]. We 
simulated 60 images, based on the deformation statistics on an elderly brain database 
by the simulator, and then divided them into 3 groups (i.e., # of groups in the  
cloud = 3) by AP method. The images in each group are used for building the hyper-
graph in the cloud. 

Fifty pairs of fixed and moving images, along with their ground-truth deformation 
fields, are also generated using the simulator. By predicting the initial deformation 
followed by estimating the residual deformations between 50 pairs of fixed and 
moving images, we compare their complete deformation fields by the original 
registration method without deformation prediction, as well as three deformation 
initialization based registration methods, with the ground-truth deformations. As the 
result, the averaged magnitude of residual deformations by the four registration 
methods for 50 pairs of data, compared to the ground-truth deformations, are 0.58, 
0.49, 0.47 and 0.38 mm (ours), respectively. This indicates that our cloud registration 
method is the best in predicting initial deformations for further registration.  

3.2 Infant Brain Dataset 

Longitudinal brains of seven infant subjects are used in this experiment, with each 
subject having the serial images acquired at 6 time points (0, 3, 6, 9, 12, and 18 
months old). Due to the lack of enough images (totally 42 images), our experiments 
with this dataset were performed in a leave-two-out (LTO) fashion by randomly 
choosing two images as fixed and moving images from the dataset. For each LTO 
case, the rest 40 images are divided into 2 groups by the AP method.  

To qualitatively evaluate the performance of deformation prediction, we display 
the warped moving images w.r.t. a selective fixed image by three deformation 
initialization methods in Fig. 4. The visual inspection on the similarity between the 
warped moving images (Fig. 4c-e) w.r.t. the fixed image (Fig. 4b) indicates our cloud 
registration method can provide the best initialization for infant brain images. 
Especially, the aggressive warping in the warped moving images (depicted by red 
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arrows in Fig. 4) by tree-based and SVR-based methods is not shown in the result by 
our cloud registration method. This aggressive warping is mainly caused by the 
accumulated deformation error when forcing the deformation pathway to go through 
the fixed template in other two methods. 

Due to lack of label information in this dataset, we classified all voxels into three 
tissue categories, white matter (WM), gray matter (GM) and ventricular CSF (VN), 
by using a publicly available software (http://www.nitrc.org/projects/ibeat/). The 
averaged Dice overlap ratios achieved by four registration methods (the original 
registration method + three deformation initialization based registration methods) are 
shown in Table 1, demonstrating the best registration accuracy by our cloud 
registration method. The outperformance of all three deformation initialization based 
registration methods over the original registration method is apparent, indicating the 
importance of using good deformation initialization to help register infant brain 
images with large anatomical and dynamic intensity changes. 

 
 

(a) moving image (b) fixed image (c) warped moving image 
by tree-based method 

(d) warped moving image 
by SVR-based method

(e) warped moving image 
by proposed method  

Fig. 3. Demonstration of three warped versions of a moving image (a) w.r.t. a fixed image (b) 
by tree-based method (c), SVR-based method (d), and our cloud-based method (e) 

Table 1. Averaged Dice overlap ratios of WM, GM and VN tissue maps on the registered 
images, by the original registration method and three initialization based registration methods 

 Original  
registration 

Tree-based 
method 

SVR-based 
method 

Proposed 
method 

WM 71.3 73.3 73.5 74.7 
GM 71.1 72.9 73.4 74.5 
VN 69.3 71.2 71.6 73.1 

3.3 IXI Dataset 

The 30 images in IXI dataset (http://brain-development.org/), each with 83 manually 
labeled ROIs, were used in this experiment. Similar to the experiment in Section 3.2, 
in each LTO case, two images are selected as the fixed and moving images and the 
rest 28 images are divided into 2 groups by AP method. We repeated this cross-
validation for 50 times (IXI-1). For quantitatively evaluating the registration 
performance, we measure the registration accuracy based on the averaged Dice 
overlap scores of 83 ROIs from all 50 LTO cross-validation cases. The averaged Dice 
overlap scores are 78.9%, 79.1% and 79.8% by tree-based method, SVR-based 
method, and our proposed method, respectively, and 78.3% by the original 
registration method.  
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Abstract. We present a way to register the uterus in monocular
laparoscopy in realtime using a novel two-phase approach. This differs
significantly to SLAM, which is currently the leading approach for
registration in MIS when scenes are approximately rigid. In the first
phase we construct a 3D model of the uterus using dense SfM. This
involves a method for semi-automatically masking the uterus from
background structures in a set of reference frames, which we call
Mask Bootstrapping from Motion (MBM). In the second phase the 3D
model is registered to the live laparoscopic video using a novel wide-
baseline approach that uses many texture maps to capture the real
changes in appearance of the uterus. Capturing these changes means
that registration can be performed reliably without needing temporal
priors, which are needed in SLAM. This simplifies registration and leads
to far fewer tuning parameters. We show that our approach significantly
outperforms SLAM on an in vivo dataset comprising three human uteri.

1 Introduction

One of the main current goals of computer assisted intervention in Minimal
Invasive Surgery (MIS) is to enrich the surgeon’s video data using Augmented
Reality (AR). Examples of this include being able to visualise sub-surface
structures [16], enlarge the surgical field of view [18] and overlay information from
other imaging modalities [14]. AR in MIS involves solving a fundamental open
problem, namely registration. Depending on the application this may involve
registering optical images to one another, or to register them to another modality.
A challenging problem is how to achieve registration accurately, reliably and
in realtime. In this paper we focus on the problem of registering laparoscopic
images of the uterus. Solving this problem would open up several important
clinical applications, including AR-assisted resection of lesions such as uterine
fibroids and endometriosis.

The uterus is a flexible organ that can exhibit strong deformation when
manipulated with laparoscopic tools [12]. However when observing the uterus
during intervention prior to resection it remains quite rigid and does not
deform significantly due to respiration. Optical registration in laparoscopy has
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been studied previously for other organs using the assumption of rigid, or
approximately rigid motion. This has been developed with monocular [4,6,7] and
stereo [13,18] laparoscopes. These solve the problem using a general paradigm
called visual Simultaneous Localisation and Mapping (SLAM). Visual SLAM
relies only on raw optical data, and does not need other hardware such as
magnetic [14] or optical [16] tracking devices. SLAM involves building a 3D
representation of the environment, known as the map, and determining the rigid
transform which positions the map in the camera’s coordinate frame. The core
challenge in SLAM is how to achieve data association. SLAM requires data
association in two respects. The first is for map building. The second is for
localisation, which is to determine where the map’s points are located in a
new input image. SLAM offers a fast solution to these problems and has found
considerable success in man-made environments. However SLAM in MIS is still
proving challenging. This is due to the repeated nature of tissue texture, rapid
camera motion and photo-constancy violations caused by blood or mucous.

SLAM also has considerable difficulty when the scene is not globally rigid.
When the scene is made up of independently moving structures SLAM can make
errors bymerging features from different structures into onemap. For laparoscopic
procedures involving the uterus a typical scene will comprise the uterus, ovaries,
peritoneum, small intestine and bladder. In most procedures a cannula is inserted
into the uterus through the vagina and is operated externally by an assistant.
The assistant’s hand movement causes the uterus to move independently of the
surrounding structures. As we will show, one cannot apply off-the-shelf monocular
SLAM in these conditions. One problem is to ensure the map comprises features
from the uterus and not background structures. We therefore have in conjunction
with registration a segmentation problem. This amounts to computing binary
masks which label pixels as either being on the uterus body or not. However
achieving this automatically is difficult and has not been studied in the literature.

The focus of this work is to solve registration using a minimal amount of
manual segmentation. A naive way to proceed would be to mask the uterus
manually in one or more frames and enforce that SLAM uses features found only
within the masks. However, there is no guarantee that SLAM will not eventually
use features from surrounding organs, thus leading to mapping and localisation
errors. By contrast it is infeasible to mask frames manually for every frame.

Proposed Approach and Registration Pipeline. Our solution is to step away
from the SLAM paradigm and solve the mapping problem with dense multi-
view Structure-from-Motion (SfM) [8]. We use SfM to explicitly decouple the
map building process from localisation. Using SfM has the advantage that
data association is done without requiring input images come from a video.
Rather, it works using a collection of unorganised images, and unlike SLAM
assumes nothing about temporal continuity. We propose a SfM-based method
for registering the uterus in two distinct phases. We illustrate this in Figure
1. Phase 1 involves estimating a dense 3D model of the uterus from a set of
reference frames. These are recorded whilst the surgeon views the uterus from
a range of different viewpoints. This involves a novel process that we call Mask
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Fig. 1. Proposed approach pipeline divided into two phases. Phase 1 uses a reference
video to construct a dense 3D surface model of the uterus. Phase 2 registers the model
to new video frames in realtime.

Bootstrapping from Motion (MBM). The idea behind MBM is to use a small
number of manually-segmented masks to bootstrap computing the masks in all
reference frames. First a small number of reference frames are selected, called
keyframes, which are masked manually. An initial dense 3D uterus model is
computed using SfM with only these masked keyframes. The model is then
registered to all other reference frames, and their masks are predicted using
the model’s projected silhouette. We then can use all reference frames and
masks to compute a more accurate 3D model. Importantly, the masks do not
need to be particularly accurate, because modern SfM algorithms are inherently
robust. Rather the mask’s job is to prevent confusion during SfM by background
structures transforming according to different motion models.

Phase 2 involves using the 3D model from Phase 1 to register the uterus in
realtime. In contrast to SLAM, we present a way to achieve this that does not
rely on a prediction using the registration in previous frames. Rather each frame
can be registered independently. This is achievable due to the rich appearance
data provided by the model’s many reference frames. We call this Wide-Baseline
Multi-Texturemap Registration (WBMTR).

Materials. Data has been acquired with a standard Karl Stortz 10mm zero-
degree HD laparoscope, capturing videos at 25fps at 1920 × 1080 pixels. The
laparoscope was calibrated using standard methods immediately before inter-
vention using OpenCV’s calibration library. Algorithms have been implemented
in a combination of C++ and CUDA, and run on a standard Intel i7 desktop
PC with an NVidia GTX 660 CUDA-enabled graphics card.

2 Phase 1: Dense 3D Reconstruction Using MBM

2.1 Creating the Exploratory Video and Frame Pre-processing

The exploratory video begins at the point during intervention after abdominal
inflation, instrument and camera insertion and once the uterus has been localised
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by the surgeon. The goal of this video is two-fold. The first is to provide sufficient
data so that the uterus body can be reconstructed with SfM. The second is to
provide sufficiently different views of the uterus in order to capture how its
appearance changes as it is viewed from different viewpoints. This second point
is crucial for achieving reliable registration in Phase 2. To achieve these goals we
capture the exploratory video in somewhat controlled conditions with a simple
protocol. By contrast in Phase 2 the surgeon can view the uterus as they wish.

The protocol is as follows. The uterus is centred in the video so that the uterus
fundus is fully visible to the camera (Figure 1, top keyframe). At this point video
capture begins. The uterus is then tilted by manipulating the cannula to reveal
the posterior side of its body (Figure 1, bottom keyframe). It is then moved
in a rotary fashion to reveal lateral and anterior views. Once completed video
capture stops. We denote the length in seconds of the exploratory video with T .
In practice T � 30 seconds. From the capture we select a subset of 60 reference
frames. We do this automatically by partitioning the video into 60 even time
intervals: {t1, t2, ...t60}. At each time tk we create a local window comprising the
frames at tk ± T

60×2 . From this window we select the sharpest frame. We do this
by computing the response of a 5 × 5 smooth Laplacian filter and measuring a
robust maximum (specifically at the 90th percentile). The frame with the highest
robust maximum in the kth interval is chosen to be the kth reference frame.
From the reference frames we select a subset of 8 uniformly-spaced keyframes.
For each keyframe we create a mask by manually outlining the uterus body with
an interactive polygon. This process is quick because the masks do not need to
be particularly accurate, and takes approximately 1-2 minutes to perform.
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Fig. 2. Mask Bootstrapping from Motion (MBM) applied to the uterus

2.2 Mask Bootstrapping from Motion (MBM)

In Fig. 2 we have expanded out the MBM component in Fig. 1. MBM takes
as inputs the set of keyframes and their respective masks. The first step of
MBM is to perform dense SfM using the masked keyframes. Modern dense SfM
works in two stages. The first stage is to perform sparse SfM using local features
extracted from the images. The well established method for this is to estimate the
camera poses from feature correspondences, and then refine them with bundle
adjustment [8]. The second stage involves reconstructing a dense surface using
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multi-view stereo [17]. The masks come into play in both stages. In the first
stage features are only used that lie within the masks. In the second stage only
pixel information within the masks is used to constrain dense reconstruction.
There exist several mature libraries for performing dense SfM. We have found
good success for both the sparse and dense stages using Agisoft’s Photoscan
[1]. For reconstructing the uterus we did not need to change Photoscan’s default
parameters for mesh smoothness and resolution. With a set of 8 keyframes Sparse
SfM takes about 15 seconds on our hardware and Dense SfM takes about 1
minute, returning a 3D model in the order of 20,000 vertices.

The next stage of MBM is to take this 3D model and perform registration using
WBMTR for the remaining reference frames. We postpone details of WBMTR to
§3, as it is the same algorithm used for live registration. For each reference frame
WBMTR either gives us the model’s 3D pose, or it returns a failure to register. For
all frameswith 3Dpose estimates, we render themodel withOpenGL and compute
the model’s silhouette. We then morphologically dilate the silhouette to grow its
area to allow the next run of SfM to be able to discover more of the uterus surface.
Empirically we have found a dilation of amount 15% area to be effective. There is a
compromise here, as we do not want significant background regions being included
in the masks. We then pass the reference images and their masks back to dense
SfM, which returns a second 3D surface model, and the 3D poses of the model
with respect to the reference frames. Sometimes it may fail to estimate pose. The
reasons for this are the same as the reason why WBMTR may fail, chiefly if there
is excessive motion blur. We call the set of reference images for which pose was
estimated the texturemap images. We use this term because these images allow
us to texturemap the model. However unlike traditional texturemapping where
the images are combined to form a single aggregated texturemap, we keep all
texturemap images. By doing so we capture the real changes of appearance of the
uterus as it is viewed from different viewpoints. This is important because state-
of-the-art feature detectors and descriptors can still have difficulty in handling
viewpoint changes due to the complex interaction between tissue reflectance,
illumination angle and surface orientation.Whenweusemany texturemap images,
we are reducing the requirement for features to be invariant to these changes.

3 Phase 2: Wide-Baseline Multi-texturemap Registration

In this section we describe WBMTR for registering the 3D model in realtime.
WBMTR is a feature-based method. That is, registration is achieved by
determining feature correspondences between the 3D model’s texture maps and
a given input image. Unlike SLAM, WBMTR requires no initial pose estimate.

3.1 Preparing the Model for Registration

For each texturemap image, we render the 3D model with OpenGL and store
the corresponding 3D position of all pixels that lie within the model’s silhouette.
Using this we can immediately determine the 3D positions of any 2D image
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features located within the model’s silhouette. Note that without computing a
dense 3D model this is not possible in general. For each texturemap image we
extract a large set of image features. Specifically we use GPU-SURF features
[2] because they can be computed very quickly and, as shown in the evaluation
section, work well for the uterus. Similar or better accuracy would be expected
with SIFT [11], however these are far slower to compute. We use OpenCV’s GPU-
SURF implementation with default settings, giving descriptors of length d = 128
bytes. For a typical 1920× 1080 images of the uterus, between 70-500 features
are usually found, taking less than 10ms with our hardware. We use the average
of the green and blue channels to compute features, rather than the standard
approach of using average intensity. The reason is that green and blue light
penetrates human tissue superficially and do not exhibit as much sub-surface
scattering as with red light. The difference is very prominent with the uterus
[3]. To mitigate tracking specularities we detect saturated pixels as those with
intensity greater than 250, and any feature that lies within 5 pixels to a saturated
pixel is discarded. We concatenate the features from all texturemap images into
a single list, represented by F = {(xm, Im,dm)}, where xm denotes the mth

feature’s 3D position in the model coordinate frame, Im denotes the index of the
texturemap from which it was detected and dm denotes its descriptor.

3.2 Registration

For a given input image we compute its GPU-SURF features using the average
of its green and blue channels. We denote this with the set G = {(yi, d̃i)}. yi

denotes the ith feature’s image position and d̃i denotes its descriptor. WBMTR
follows a RANSAC-based hypothesis and test framework [5]. Specifically this
splits registration into three components. The first involves computing a set of
candidate matches between F and G. The second involves searching for a pose
hypothesis that can best explain these matches. The third involves taking the
best hypothesis and refining with efficient gradient-based optimisation [10].

Computing candidate matches. Candidate matches are found between F and G
as those pairs with (i) strong descriptor agreement and (ii) have a low likeli-
hood of being false. (ii) can be achieved with Lowe’s Ratio Test (LRT) [11]. For
each member of F we compute the member in G with the nearest descriptor. If
this descriptor distance is less than τ times the distance to the second nearest
descriptor in G, it is deemed a candidate match. The LRT is very standard in
feature-based pose estimation and we use a default value of τ = 0.8. A novelty
of using multiple texture maps is that we can also exploit match coherence. What
we mean by coherence is that correct matches are likely to be those which come
from similar texturemap images. Enforcing coherence can reduce false matches
because it prevents matches occurring from wildly different texture maps. We
enforce coherence with a winner-takes-all strategy. We first find the index I∗ of
the texturemap with the most amount of candidate matches after applying LRT.
This indicates the texturemap image which is ‘closest’ to the input image. Because
SURF is invariant to scale changes and image rotation, close means a texturemap
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image which views the uterus from a similar viewpoint, up to a change in depth
and a rotation of the laparoscope about its optical axis. We then recompute
the candidate matches with LRT, but using only features from I∗. Performing
these processes is very quick. This is because F is completely pre-computed, and
evaluating descriptor distances can be distributed trivially on the GPU.

Computing 3D Pose. Given the set of candidate matches, we perform RANSAC
to find the most compatible rigid 3D pose. This involves sampling many match
subsets of size 4, and for each sample creating a pose hypothesis using PnP
[10]. Each hypothesis is tested for support by measuring how many of the
other matches are predicted well by the hypothesis. Sampling and hypotheses
testing is very parallelisable, and we use OpenCV’s existing implementation
for this. There are two free parameters which govern performance. The first
is the deviation τr (in pixels) below which a match is considered to support
a hypothesis. The second is the minimum number of matches nc which must
support a hypothesis. We have found good default values to be τr = 12 pixels
and nc = 15, and terminate RANSAC if more than 500 hypotheses have been
sampled. If no pose has been found with more than nc supported matches, then
we say the uterus’ pose cannot be estimated for that image. Because registration
is achieved independently for each frame there may be some registration jitter
between frames which is undesirable for AR. This can be handled easily by
applying some temporal smoothing. Currently we output a weighted average
the pose estimates over a short time interval comprising the previous m = 5
frames, using the weighting scheme wt = (m− t)/m+ 1.

4 Experimental Results

In this section we evaluate WBMTR using real in vivo data from three different
human uteri captured before hysterectomy. We name these U1, U2 and U3. The
video data for each uterus is divided into two sections. The first is the exploratory
section. The second is a free-hand section, where the surgical team observed the
uterus but were free to move the laparoscope and cannula as they wished. The
free section lasted approximately one minute and started immediately after the
exploratory section.

Marker-Based Ground Truth Evaluation. Before starting the exploratory section,
artificial markers were introduced on the uterus to give us accurate pose
estimates that could be used for Ground-Truth (GT) evaluation. The surgeon
marked the uterus with a coagulation instrument at 12-15 locations spread over
the uterus body. This gave a set of small regions approximately 3mm in diameter
which could be tracked. We show snapshots of these markers in Figure 3, middle-
left column. We performed marker tracking using correlation-based tracking.
The markers were tracked using a small patch surrounding each marker, and
fitted using a 2D affine transform that was optimised with gradient descent.
We manually verified the tracks, and manually initialised if the tracks became
lost. We then ran bundle adjustment [8] to compute the markers’ positions in
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3D, and the 3D poses of the uterus in each frame. If fewer than four markers
were visible in a frame we said GT pose could not be estimated for that frame.
Care was taken to avoid WBMTR exploiting the additional texture introduced
by the markers. This was done by masking out the markers in each frame, thus
preventing SURF from finding features on the markers.

Method Comparison. We compared our method against the most recent SLAM
system applied to laparoscopic images [7], which is based on EKF. The public
code accompanying [7] uses FAST features [15]. We have found FAST to perform
very poorly with the uterus because it comprises few corner-like features, and [7]
could perform better using SURF features. We use this as the baseline method
which we refer to as SLAM+SURF. We also tested the performance of PTAM [9].
However PTAM also uses FAST, and to work requires a good initialisation. This
is done by tracking points in the first ten or so frames and performing stereo.
For each uterus very few PTAM tracks could be found, despite the motion being
smooth, and were insufficient to successfully initialise the maps.

We summarise the results of WBMTR against SLAM+SURF in Figure 4. The
three rows correspond to results for the three uteri. We plot error with respect
to position (in mm) in the first column, and error with respect to rotation (in
degrees) in the second column. The vertical black line corresponds to the point
in time when the exploratory section stopped, and the free-hand section started.
WBMTR and SLAM+SURF give translation up to a global scale factor. This is
a property of all visual SLAM and SfM methods. To give translation estimates in
mm, it must be rescaled by a scale factor given by GT. For both methods, this was
done by computing the least-squares scale factor which minimised the translation
error with respect to GT. We can see from Figure 4 that WBMTR significantly
outperformed SLAM+SURF, with respect to rotation and translation, and across
both the exploratory and free-hand sections. As time increases the translation
error of SLAM+SURF steadily increases, indicating that it suffers significant pose
estimation drift. By contrast WBMTR suffers no such drift, and the translation
error is usually below 2mm. There are some error spikes in WBMTR, particularly
in the free-hand sections. This occurs when the uterus is only partially visible
to the camera. In these cases only features on a fraction of the surface can be
estimated, and hence we have fewer features with which to constrain pose. There
are some gaps in the graphs for which error could not be computed. These occur
when fewer than four markers were visible in a frame. In the third column of
Figure 4 we show the 3D trajectories of the camera estimated by WBMTR and
SLAM+SURF. GT is shown as blue dots. Here the performance improvement of
WBMTR over SLAM+SURF is very clear. In the third and fourth columns of
Figure 3 we show snapshots of the registered 3D model overlaid in two frames.
One can see WBMTR handles cases when the surface is partially visible and
occluded by tools. Note that the boundary of the reconstructed 3D model should
not necessarily align to the occluding contour of the uterus in the image. This is
because the 3D models are only partially reconstructed by SfM. The boundary
does not correspond to anything physical, but rather the region on the uterus for
which SfM could reconstruct shape.
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Fig. 3. Column 1: the dense 3D models built in Phase 1. Column 2: the coagulation
markers. Columns 3&4: the registered models using WBMTR.

Fig. 4. In vivo evaluation of pose estimation accuracy for three uterus datasets

5 Conclusion and Future Work

We have presented a reliable and fast way to register the uterus in monocular
laparoscopy using a novel two-phase approach. The approach differs to SLAM
by decoupling 3D mapping and segmentation (done in Phase 1) from live
registration (done in Phase 2). Phase 2 is achieved in realtime at approximately
26fps using standard hardware, and does not depend on successful registration
in previous frames. It is thus simpler than EKF-SLAM and PTAM because it
does not require switching between tracking and re-localisation. We have shown
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that our approach significantly outperforms EKF-SLAM for this problem. In
the future we aim to enlarge our evaluation dataset and to explore the new
opportunities that our method opens up for AR-assisted resection planning in
uterine laparosurgery.
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Abstract. Accurate catheter navigation is necessary in endovascular
interventions to avoid endothelial injury and subsequent complications.
Although the use of robotic assistance has facilitated the navigation of
catheters through complex anatomies, ambiguity in the catheter shape
due to the 2D visualization provided by fluoroscopy can result in catheter
and arterial wall collisions. The need for accurate shape reconstruction
and localisation of the catheter has motivated the development of a range
of 3D sensing techniques and augmented intraoperative imaging. The
purpose of this paper is to present a 3D vision-based catheter shape re-
construction and localisation technique without the need for additional
hardware. It is based on adaptive C-arm positioning under spatial con-
straints by incorporating appearance priors. On-line estimations of the
3D catheter shape can be achieved from the fluoroscopic images alone
and are used to define the C-arm rotation that is optimal to reconstruct
and localise the 3D catheter shape. The method is fully automatic and
carried out without the burden of additional radiation and nephrotoxic
risk to the patient. Detailed validation has been performed to demon-
strate the potential clinical value of the technique.

1 Introduction

Catheter-based endovascular interventions have been increasingly used due to
its minimal trauma to the patient. However they are associated with increased
complexity as manipulation of the guidewire and catheter is difficult. Moreover
there is a loss of direct access to the anatomy and poor visualisation of the surgi-
cal site. Endovascular robotic systems have been introduced in order to improve
navigation through complex anatomies, enhancing the control and stability of
the catheter [1]. However, clinically, the current imaging for intraoperative guid-
ance is still limited to X-ray fluoroscopy which is a 2D projection of the 3D
scene generated by an interventional X-ray (C-arm) system. Although the use of
ultrasound, real-time MRI and additional 3D tracking devices attached to the
catheter is gaining momentum, these solutions are not fully integrated into the
clinical workflow yet. In parallel, the underlying technologies for interventional
X-ray are also steadily improving owing to the development of accurate C-arm
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movements, robot actuation (e.g. Artis zeego by Siemens and Discovery IGS by
GE), hardware and software for enhancing the image quality, and incorporation
of CT-like reconstruction capabilities. In order to minimise radiation exposure,
nephrotoxic risk (due to excessive use of contrast agent) and endothelial damage
(caused by unwanted collisions of the catheter with the vessel walls), it is neces-
sary to maximise the information content of the available intraoperative imaging
with technological solutions that are easy to integrate into the existing clini-
cal workflow. Therefore, the reconstruction and localisation in 3D space of the
catheter using fluoroscopy is necessary in order to minimize the aforementioned
factors and ensure safe navigation through the endovascular system. Moreover,
the reconstruction and localisation of the entire 3D shape of the catheter is par-
ticularly important for tendon driven robotic catheters with multiple bending
segments (such as the Hansen Sensei system) as cross-talk is inevitable. It is not
only the catheter tip that can collide with the artery walls; endothelial damage
can be caused by any point along the catheter length. This 3D shape informa-
tion can aid the clinician when performing robotic catheterisation, providing safe
guidance through complex anatomy by identification of critical locations.

3D shape reconstruction of the catheter can be achieved with biplane C-arm
systems using triangulation [2] or 3D/2D registration [3]. Although these ap-
proaches are well developed, biplane C-arm systems are not always available
due to their high cost or operation workspace constraints during endovascular
interventions. To achieve 3D localisation with monoplane C-arm systems, addi-
tional information is required. These include the use of preoperative data of the
vessel morphology combined with back projection [4] and other patient specific
anatomical priors. For these approaches, achieving an accurate registration of the
preoperative model and handling anatomy deformations remains a challenge. To
partially overcome these limitations a 3D probability distribution of the current
plausible positions of the catheter, which was calculated using a particle filter
and was based on fluoroscopic images and 3DRA, has been introduced [5]. Sev-
eral non-rigid 3D/2D registration methods have also been proposed to estimate
the position of deforming vascular structures [6,7]. However, these alone are dif-
ficult to apply to catheter shape reconstruction as a 3D model of the object
is required in advance and the projection of a catheter shape is less informa-
tive than a projection of a vessel structure in order to recover its shape from
projections images. Catheter localisation using limited C-arm rotation has also
been investigated using non-rigid structure from motion combined with a kine-
matic model of the catheter [8]. However, the kinematic model cannot deal with
catheter deformation caused by collisions with the surrounding environment.

The purpose of this research is to propose a 3D catheter reconstruction and
localisation scheme based on a monoplane C-arm system with adaptive position-
ing in order to ensure safe and accurate online navigation. The optimal C-arm
position used for reconstructing and localising the catheter is calculated using an
initial 3D catheter shape estimated via appearance priors. To this end, we will
use the Hansen Artisan robotic catheter as the exemplar to illustrate the overall
concept and theoretical background of the system. The robotic catheter part
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Fig. 1. The 3D catheter shape reconstruction and localisation workflow. The dashed
lines represent inputs used at time t but estimated at time t− 1.

modelled in this work was the leader (shown in Figure 4(a)). With the proposed
method, the rotation of the C-arm is limited to small angles to ensure speed,
safety and minimal disturbance to the operation workspace during endovascular
intervention. Although a complex navigation path might require several limited
rotations, the achieved 3D catheter localisation can decrease the overall proce-
dure time which is affected by the challenge in 2D navigation. Detailed validation
of the method is performed to illustrate its potential clinical value.

2 Methods

The proposed online catheter reconstruction and localisation consists of the fol-
lowing steps: 2D catheter centreline extraction, 3D catheter shape estimation
using appearance priors, optimal C-arm positioning and 3D shape reconstruc-
tion and localisation. The workflow of the method is shown in Figure 1.

2.1 Learning and Filter-Based Methods for Centreline Extraction

To automatically detect the catheter centreline in the fluoroscopic sequences,
a learning-based technique combined with a filter-based method was used. The
catheter is first detected using a cascade of boosted classifiers with Haar-like
features [9]. Instead of training the classifiers to detect the whole catheter as a
single object, small segments are detected first by treating the catheter as a set
of connected small rigid segments. The entire projected shape is then estimated
connecting the detected segments. The cascade was trained using data different
to that used for validation. Catheter segments were manually annotated in flu-
oroscopic images and used as positive samples while fluoroscopic images with
no catheter were used to generate negative samples for the training phase. The
cascade had 20 stages. After initial detection false positives were filtered out
taking into account the density of the detections, namely the overlap between
bounding boxes (detected regions). In this study, the minimum number of over-
lapping detections that an accepted detected patch has to present is five, which
was empirically estimated.

While the result of the learning-based approach provides an approximate au-
tomatic segmentation of the catheter, the positions of the bounding boxes is not
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accurate enough for a precise centreline localisation. A filter based on the Hes-
sian matrix [10] was applied on the detected regions in order to have a precise
segmentation of the catheter. The eigenvalue of the Hessian matrix encapsulates
information regarding the presence of line-like objects in the filter area. The

Hessian matrix is calculated as: H =

(
Lxx Lxy

Lxy Lyy

)
where Lxy is the result of the

convolution of a scaled Gaussian derivative. Thus, the eigenvalues are estimated

as: λ1,2 = 1
2

(
Lxx + Lyy ±

√
(Lxx − Lyy)2 + 4L2

xy

)
. Finally, for each bounding

box, the centre of mass of the cloud of pixels that respond positively to the
filter was calculated. This resulted in a line of points along the centreline of the
catheter. A cubic spline was then fitted to the point cloud to form a smooth and
continuous 2D catheter centreline.

2.2 3D Catheter Shape Estimation Using Appearance Priors

To estimate the 3D shape of the catheter S using appearance priors, the 2D
centreline extracted was first divided into n small segments defined as cz, z =
1 . . . n. For each of these 2D segments their 3D orientation in the image plane (θ)
was estimated considering the orientation of the segment in the image, as shown
in Figure 2(a). Their 3D orientation out of the image plane (φ) was estimated
using a database of visual appearance priors at different degrees of bending
angle, as shown in Figure 2(b). The database of visual appearance priors was
generated offline and was composed by fluoroscopic projections of segments of
the catheter recorded at different C-arm positions, simulating controlled and
known rotations of the catheter out of the image plane. Rotations modelled in
the database ranged between 0◦ to 50◦ around the Z axis (defined along the
length of the imaging bed). The cardinality of the database used was six (one
template every 10◦, as shown in Figure 2(b)) as it was observed that no significant
visual changes occurred on the catheter segment for shorter angle intervals. As
the projection of each segment cannot differentiate positive or negative angles,
i.e., the catheter bending into or out of the projection plane, this ambiguity is
resolved by incorporating a smoothness constraint of the catheter. Each segment
cz had the length of the templates used in the database of visual appearance
priors.

The estimated catheter shape S was modelled using a graph representation,
where each 3D edge corresponds to the centreline of each 3D segment of the
catheter and the nodes their connections. Spherical coordinates were adopted to
define the edge connecting two consecutive nodes xi and xj . The 3D coordinates
of the root of the graphs were x1 and were initialised to the origin of the coor-
dinate system of the shape. Hence, as shown in [6], the 3D position of a generic
kth node can be calculated as:

xk = x1 +
∑

i,j∈Ak

⎡
⎣ r cos θij sinφij

r sin θij sinφij

r cosφij

⎤
⎦ , (1)
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Fig. 2. The estimated catheter shape S (c) is calculated using the appearance priors.
In order to calculate the 3D orientation of each catheter segment (one catheter segment
is highlighted in the fluoroscopic image) their 3D orientation in the image plane (θ)
was estimated considering the orientation of the segment in the image (a) while their
3D orientation out of the image plane (φ) was estimated using a database of visual
appearance priors at different degrees of bending angle (b).

where r is the length of the edge that links the ith and jth nodes respectively, φij

and θij are the two angles of the polar notation and Ak is the set of ancestors
of the kth node. This gave a recursive definition of the catheter shape.

In this study, r was calculated by dividing the length of the catheter (in
mm) by n. Therefore, to define S starting from the root node, every edge has
to be defined by estimating φij and θij . θij is the slope of ci (highlighted in
yellow in Figure 2(a)) and was calculated by approximating ci with a line that
passes through its first and last point. φij is the slope of the ith 3D segment
along the projection plane and is estimated using the database of appearance
priors. Based on this database, a similarity measurement was calculated using
normalised cross-correlation between each template of the database and the pro-
jection of the ith 3D segment. The template with the highest similarity indicated
the value of φij . During template matching, each template was rotated by θij to
match the orientation of the ith 3D segment projected in the image plane.

Once all nodes were defined, a Catmull-Rom spline was used to interpolate
between them to generate a smooth and continuous 3D catheter centreline. The
3D centreline was discretised into m equidistant nodes which represent the esti-
mated catheter shape S. m was empirically chosen to be 20 in this study in order
to best represent the shape without increasing the complexity of the model. S is
defined in the coordinate system of the shape and it is different than the C-arm
coordinate system where the catheter has to be localised. Therefore S encapsu-
lates approximated 3D shape and orientation information of the catheter with
respect to the C-arm but does not provide the absolute position of the shape.
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Fig. 3. (a) shows the estimated catheter shapes St−1 and St at the original C-arm
position. This position is not optimal for the 3D reconstruction and localisation of the
catheter at time t as the deformation described by Vdif lies outside the image plane
creating the angle β. In (b) the C-arm has been rotated by β in order to reach the
optimal position where Vdif lies on the image plane.

2.3 Optimal C-Arm Positioning and 3D Catheter Shape
Reconstruction and Localisation

We define St−1 and St (at two time points t − 1 and t) to be two estimated
catheter shapes found. St−1 and St are used to calculate the optimal C-arm
position for the catheter shape reconstruction and localisation at time t. An
estimation of the deformation between St−1 and St was found as S(t−1,t) = St−
St−1. It can be appreciated that large reconstruction errors due to ambiguities
of the single view would occur when the catheter deformation S(t−1,t) is out of
the image plane (Figure 3(a)). To minimise this error, it is necessary to acquire
a different view, optimised with due consideration of S(t−1,t) and the limitations
of the C-arm rotation. Therefore, an online optimal small-angle reprojection
method is proposed.

The optimal C-arm position is calculated using the optimal orientation vector

defined as Vdif =
−−−−→
Stip
t−1B, where Stip

t−1 is a 3D point that describes the position

of the tip of St−1, B = Stip
t−1 + S̄(t−1,t) and S̄(t−1,t) is the mean of S(t−1,t). Al-

though Vdif is a 3D vector and coarsely approximates the deformation between
the two catheter shapes, it encapsulates information of the main deformations
regarding their relative displacement and orientation with respect to the C-arm
view. The C-arm should be oriented in such a way that Vdif is aligned to the
detector (the deformation lies on the image plane, as shown in Figure 3(b))
and therefore the deformation can be recovered without any ambiguities due
to the single view used. The optimal rotation of the C-arm β is calculated as
β = arctan(Vdify/Vdifx) where Vdify and Vdifx are the y and x components of
Vdif respectively. This constrains the rotation of the C-arm around the Z axis.

The shape Zt is the 3D catheter shape that is reconstructed and localised
in the C-arm coordinate system. It is composed by q equidistant 3D nodes,
where q = 20. Zt is found from the optimal C-arm view (rotating the C-arm
by β, as shown in Figure 3(b)) using Zt−1 as prior knowledge of the shape
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and the 2D catheter centreline extracted on the fluoroscopic image acquired
at the optimal C-arm position. To reconstruct and localise this catheter shape
in the C-arm coordinate system, the energy function E(u) = D(u) + αSl(u) +
γSD(u) was minimized. u are the displacements of the nodes of Zt−1 to minimize
the function and localise the current catheter shape Zt, which is estimated as
Zt = Zt−1 + u. Sl is the length preserving term and SD is the smoothness
term as described in [7]. D is the image-based difference measure between the
projections of Zt−1 displaced of u and the 2D catheter centreline extracted from
the fluoroscopic image acquired at the optimal C-arm position. It is defined
as: D = 1

q

∑q
i=1 M

2(d(yi)) where q is the number of nodes of Zt−1, yi is the

projection in the image plane of the ith node of Zt−1 after a displacement ui

and M is the distance map calculated using the 2D centreline. Since a 2D to 3D
correspondence between the 2D centreline and Zt−1 is known, the distances of
the projections of the displaced endpoints of Zt−1 used to find D were calculated
considering the endpoints of the 2D centreline instead of M. The coefficients α
and γ were empirically chosen to be 120 and 4.5, respectively.

2.4 Experiment Design and Validation

To validate the achievable accuracy of the proposed method, detailed experi-
ments were performed with a silicone phantom of the aortic arch (Elastrat Sarl,
Geneva, Switzerland) and a Hansen Artisan robotic catheter (Hansen Medical,
Mountain View, CA, USA). A GE Innova 4100 for interventional radiology (GE
Medical Systems, Buc, France) was used to acquire the fluoroscopic images and
the CT scans for validation. The experimental setup is shown in Figure 4. The
calibration of the C-arm was performed using a customised grid phantom. To
obtain the ground truth data, the catheter was manually segmented from the
CT volumes and a 3D centreline was extracted from the segmented meshes [11].

For this study, two comprehensive data sets were collected. For the first set,
the robotic catheter was scanned at a fully extended (straight) shape as well as at
two different bending shapes. For each shape, fluoroscopy images were acquired
with projection planes from 0◦ to +40◦ RAO (Right Anterior Oblique), with
image acquisition every 2◦. 3D CT scans of the catheter were also acquired for
validation. The second set of data consisted of two sequences of the catheter in
the silicone phantom: a pullback along the aortic arch from the aortic root and
one cannulating the left subclavian artery starting from the descending aorta.
The procedure was divided into five steps for the cannulation of a left subclavian
artery and four steps for the aortic arch. At each step, fluoroscopy images were
acquired with projection planes from 0◦ to +40◦ RAO, with image acquisition
every 2◦. 3D CT scans of the catheter were also acquired for validation. The
catheter was moved 10 to 15 mm at each step.

For the first dataset, the fully extended shape was used as initialisation Zt−1

in order to reconstruct the two curved shapes. For each C-arm position (every
10◦ from 0◦ to 40◦) the curved shapes were reconstructed and localised from that
X-ray projection and at the optimal C-arm position found for that particular
position. The mean errors were calculated as the mean of the distances between
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Fig. 4. The experimental setup (b): Hansen Artisan robotic catheter (a), a silicone
phantom of the aortic arch (c) and an automatic pullback device (d)

each point along the calculated 3D catheter centreline to the closest point on the
ground truth centreline and the distances between each point along the ground
truth centreline to the closest point on the 3D calculated catheter centreline. For
the second dataset, the errors of the localised shapes along the sequences were
again compared to the ground truth; however, the initial shape Zt−1 for each
step was taken to be the reconstructed and localised shape at the previous step.

3 Results

Figure 5 shows the results of the catheter shape reconstructed and localised using
the first data set with two catheter shapes at different bending shapes. The mean
reconstruction and localisation errors of the catheter recovered from the optimal
C-arm position were compared to the original C-arm view where the projection
is taken. The results show an improvement in the catheter shape localisation
with the optimal position. The errors reported for the C-arm position at 0◦ and
10◦ are the same since the original position was already optimal in that case and
therefore the C-arm does not need to be rotated.

Reconstruction and localisation errors for the two sequences in the second
dataset are shown in Table 1 for the left subclavian artery and aortic arch at
both the original positions which were chosen to be 0◦ and 40◦ respectively and
at the optimal C-arm positions estimated using the method. The large differ-
ences between the reconstruction and localisation errors for the optimal C-arm
position and the fixed position prove that even with small but optimal rotation
the catheter localisation can be achieved using a monoplane system. The results
derived show that with this framework, the accuracy of 3D shape localisation
is comparable to that of the conventional triangulation or 3D/2D registration
based on biplane systems. However the method proposed is based on one single
optimal view while biplane-based methods rely on stereo vision. The 3D recovery
of the catheter shape using the proposed technique is shown in Figure 6.

4 Conclusions

A novel method for accurate 3D catheter shape reconstruction and localisation
based on appearance priors and adaptive C-arm positioning has been proposed.
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Fig. 5. The localisation errors of the two curved catheter shapes from the first data
set. The results from the shape reconstruction and localisation at the optimal C-arm
position are shown in black while those from original position are shown in grey.

Table 1. Reconstruction and localisation errors (in mm) for the left subclavian artery
cannulation and the aortic arch pullback sequence

Left Subclavian Artery Aortic Arch

Opt C-arm Position 1 2 3 4 5 1 2 3 4

2D Centreline Extraction (pixels) 0.81 0.89 0.89 0.69 0.52 0.66 0.69 0.68 0.73
3D Mean 0.53 2.40 1.45 1.17 2.69 1.52 2.78 4.14 5.98
3D StdDev 0.21 1.53 0.45 1.12 1.11 0.54 2.11 3.59 5.86
3D Tip 0.96 6.24 2.83 4.41 3.83 3.22 10.60 13.64 18.49
C-arm Position 0◦ 22◦ 10◦ 10◦ 10◦ 40◦ 40◦ 40◦ 0◦

Fixed C-arm Position 1 2 3 4 5 1 2 3 4

2D Centreline Extraction (pixels) 0.81 1.10 0.86 0.95 1.00 0.66 0.69 0.68 0.78
3D Mean 0.53 2.95 3.66 8.79 7.71 1.52 2.78 4.14 7.30
3D StdDev 0.21 2.67 1.06 0.79 0.68 0.54 2.11 3.59 6.89
3D Tip 0.96 9.59 5.45 8.81 6.16 3.22 10.60 13.64 22.24
C-arm Position 0◦ 0◦ 0◦ 0◦ 0◦ 40◦ 40◦ 40◦ 40◦

Fig. 6. Two catheter shapes (a) and (b) localised from the original C-arm position and
from the optimal C-arm position. The initial 3D position of the catheter Zt−1 is shown
in blue, the ground truth in green and the recovered 3D catheter shape Zt in red.
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It utilises fluoroscopic images alone to calculate the optimal C-arm rotation to
best capture the 3D catheter shape. The results from detailed phantom exper-
iments show the potential of the method for 3D catheter tracking and shape
reconstruction. The advantage of the method is that it is designed for widely
available monoplane C-arm systems and does not require additional hardware.
This facilitates efficient navigation through complex anatomies, ensuring speed,
safety and minimal disturbance to the operation workspace during endovascular
intervention.

Acknowledgments. The authors wish to thank Dr. Celia Riga for her contri-
bution to this research.
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Abstract. In most robot-assisted surgical interventions, multimodal fu-
sion of pre- and intra-operative data is highly valuable, affording the
surgeon a more comprehensive understanding of the surgical scene ob-
served through the stereo endoscopic camera. More specifically, in the
case of partial nephrectomy, fusing pre-operative segmentations of kid-
ney and tumor with the stereo endoscopic view can guide tumor localiza-
tion and the identification of resection margins. However, the surgeons
are often unable to reliably assess the levels of trust they can bestow
on what is overlaid on the screen. In this paper, we present the proof-
of-concept of an uncertainty-encoded augmented reality framework and
novel visualizations of the uncertainties derived from the pre-operative
CT segmentation onto the surgeon’s stereo endoscopic view. To verify its
clinical potential, the proposed method is applied to an ex vivo lamb kid-
ney. The results are contrasted to different visualization solutions based
on crisp segmentation demonstrating that our method provides valuable
additional information that can help the surgeon during the resection
planning.

1 Introduction

The emergence of robot-assisted interventions using medical robots (e.g. da Vinci
Surgical System, Intuitive Surgical, Inc., Sunnyvale, CA, USA), has been shown
to increase the accuracy and reduce the operative trauma associated with com-
plex interventions. In partial nephrectomies, for instance, a crucial step is tumor
identification during which the surgeon localizes the kidney tumor mass and
identifies the resection margins. This step is important to properly plan and
speed up the succeeding stage of tumor mass excision during which blood flow
can only be safely obstructed for a limited time. More importantly, the accuracy
of this step is necessary not only to preserve kidney function by sparing as much
healthy tissue as possible, but also to avoid tumor recurrence by resecting all
cancerous tissue.

The tumor identification step is usually performed with the help of multi-
modal source of information at the surgeon’s disposal: pre-operative scans (typi-
cally 3D CT and/or MR) and intra-operative data (2.5D stereo endoscopic data

C.A. Linte et al. (Eds.): MIAR/AE-CAI 2013, LNCS 8090, pp. 182–191, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Uncertainty-Encoded Augmented Reality 183

Fig. 1. Our uncertainty-encoded image-guidance framework consists of extracting
1) the probabilistic kidney/tumor boundaries from the CT volume prior to the op-
eration and 2) the corresponding probabilistic surface information from the stereo en-
doscopic views intra-operatively using 2a) computational stereo matching techniques,
2b) converting matching weights into probability values, and 2c) triangulating the
surface probabilities into the same domain as the CT. Finally, 3) we register the pre-
operative boundary uncertainties to the stereo endoscope using probabilistic surface
reconstruction information and visualize the isoprobability contours onto the surgeon’s
console.

and, when available, laparoscopic 2D/3D ultrasound). Currently, these rich and
complementary sources of information are just displayed on the surgeon’s console
in a tiled fashion (i.e. side-by-side) or even sometimes on a separate screen of a
workstation nearby. These typical display setups require substantial additional
effort from the surgeon to piece together a 3D mental map of the surgical scene
that integrates all information together in order to localize the tumor and ad-
jacent tissue. Hence, an augmented reality view, in which the endoscopic video
stream is overlaid with highlighted kidney and tumor boundaries, can substan-
tially reduce the effort required by the surgeon to achieve accurate and quick
tumor excision.

To the best of our knowledge, all current methods rely on the visualization
of a crisp segmentation only [1]. This renders the surgeon highly susceptible to
the varying levels of confidence in what is overlaid on the screen. Segmentations
are hardly ever 100% accurate for many possible reasons: graded decomposi-
tion [2], image acquisition artifacts, inter-expert segmentation variability, and
fuzzy image segmentation [3,4]. These uncertainties can be important in subse-
quent analyses and decision-making [2,5].

In this paper, we propose to provide a visualization of uncertainties at the
kidney and tumor boundaries as a visual cue to assist the surgeon in finding the
optimal resection strategy. This is similar in concept to what is currently being
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(a) (b) (c)

Fig. 2. Probabilistic pre-operative CT segmentation. (a) Original CT. (b) Membership
probabilities of kidney (green), tumor (blue), and background (red). (c) Background
boundary location probability (0 in black and 1 in white).

explored in radiotherapy for brain tumors when extrapolating glioma invasion
with variable margins [6]. Our visual cues are derived from shape boundary
uncertainties in the probabilistic segmentation of the pre-operative CT. This
information is then registered to the endoscopic view as explained in Fig. 1. We
apply our method to an ex vivo lamb kidney to create an uncertainty-encoded
augmented reality view. We compare our results to standard guidance methods
that use crisp segmentations and clearly demonstrate the benefits of our method
and its utility for resection planning.

2 Methods

We first describe the probabilistic segmentation of the pre-operative CT that
provides uncertainties about the boundary localization of kidney and tumor.
Secondly, we perform a probabilistic 3D surface reconstruction from stereo en-
doscopy to which the probabilistic segmentation is directly registered.

2.1 Probabilistic Segmentation of Pre-operative CT Scans

The probabilistic segmentation of the pre-operative CT is based on the random
walker segmentation algorithm [4,7] that generates membership probabilities of
three manually seeded regions: background (BG: red), kidney (KD: green), and
tumor (TM: blue) (Fig. 2b).

We denote the resulting multi-label probabilistic CT segmentation by:

PCT
seg : Ω ⊂ R

3 → p ∈ S2 ,

where p = [pBG, pKD, pTM ] belongs to the simplex of order 2, and Ω is the
spatial domain of the CT. From this multi-label probabilistic segmentation, we
can extract the membership probability map of background PCT

BG , kidney PCT
KD

and tumor PCT
TM regions.

We also compute the likelihood PCT
surface of the surface union of kidney and

tumor in the pre-operative CT (Fig. 2c) by combining the membership proba-
bilities of being inside the kidney PCT

KD and inside the tumor PCT
TM as follows:
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PCT
surface = 1− |(PCT

KD + PCT
TM )− 0.5|

0.5
. (1)

2.2 Probabilistic Stereo-Endoscopic Surface Reconstruction

We propose an extension of traditional computational stereo techniques of sur-
face reconstruction from a single crisp surface [8] to a probabilistic representation
of surfaces in 3-space.

Dense Matching of Left and Right Stereo Images. Using polar rectifica-
tion [9] with the camera calibration parameters, the 2D dense matching of left
and right stereo images is simplified to a 1D matching along parallel epipolar
lines in the left and right rectified images. We use the normalized cross correlation
(NCC) ratio on greyscale images as a matching similarity metric. This metric
has the advantage of being less prone to changes in illumination. In contrast
with current state-of-the-art methods, e.g. [10,11,12], instead of computing one
set of robust and optimal matches, we retain all possible matches with their as-
sociated disparity (displacement d ∈ Z between matching points along the same
horizontal line of the recitified images) and similarity measure (c ∈ [−1, 1]).

Construction of a 3D Probabilistic Voxel Map. In order to facilitate
the pre-op to intra-op registration detailed in Section 2.3, we first create a 3D
probabilistic voxel map in which each voxel stores the probability of being at the
surface of the stereo endoscopic scene. To achieve this, we compute the disparity
probability values by converting the NCC profile c = [c1, c2, · · · , cNd

] computed
previously at every pixel (u, v) ∈ Ω2D ⊂ R

2 in one of the rectified images for
different disparities d ∈ D = {d1, d2, · · · , dNd

}, where Nd is the total number of
disparities. Basically, the NCC profiles are stacked into a 3D correlation map:

NCCstereo
3D : (u, v, di) ∈ Ω3D → ci ∈ [−1, 1] (2)

and converted into a 3D probabilitistic voxel map using the Gibbs measure as
follows:

P stereo
3D (u, v, di) =

exp (−β (maxd (NCCstereo
3D (u, v, d))−NCCstereo

3D (u, v, di)))

W (β)
,

(3)
where W (β) =

∑
d exp (−β (maxd (NCCstereo

3D (u, v, d))−NCCstereo
3D (u, v, di)))

is the partition function, and β is a free parameter.
Finally, the 3D position of each matched pair of points in the stereo views

is triangulated with the camera projection matrices to transform P stereo
3D into a

probabilistic voxel map P stereo
surface in real world 3D space:

P stereo
surface : (x, y, z) ∈ Ω3D → [p, 1− p] ∈ S1 , (4)

where p ∈ [0, 1] is the likelihood of a surface at voxel (x, y, z) in real world 3D
space.
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(a) (b) (c) (d)

Fig. 3. Transverse slices of CT volume depicting our ex vivo lamb kidney phantom with
(a) an exophytic and (c) an endophytic artificial tumor. (b) and (d) are probabilistic
Random Walker segmentations of (a) and (c), respectively. Tumor labels are colored
blue, kidney is colored green, and the background is red.

2.3 Registration of Stereo Camera and CT

We initialize the registration of the CT to the stereo camera in a semi-automatic
manner using manually matched landmarks between the original CT, left and
right camera views. In this first step, we use a similarity transformation to model
the combination of (1) a rigid transformation to cope with different reference
frames between stereo camera and CT acquisitions and (2) a global scaling to
cope with ambiguities resulting from possible camera calibration errors. The re-
sulting transformation is then refined with an automatic similarity registration of
PCT
surface to P stereo

surface obtained respectively from (1) and (4). Finally, a non-linear
registration step of these two volumes with a B-Spline transformation model is
performed to cope with deformations occurring between the pre-operative CT
acquisition and the surgical scene. We used elastix [13] with the sum of squared
differences (SSD) similarity metric for the two last automatic registration steps.

3 Results

3.1 Materials

For validation purposes, we fabricated an ex vivo phantom using a lamb kidney
and implanted artificial tumors inside it. Different materials (chewing gum and
olive pit) were used to emulate low and high contrast kidney-tumor boundaries
within the CT. The chewing gum was placed on the surface of the kidney to
emulate a partially exophytic tumor/cyst (Fig. 3a) and the olive pit was planted
deep inside the kidney (close to the renal pelvis) representing a completely en-
dophytic tumor (Fig. 3c).

A 16 slice Siemens Somatom CT scanner was used to acquire a high resolution
CT volume of the phantom. The resulting volume is composed of 130 (0.600 mm
thick) transverse slices of 512 × 512 pixels (0.215 mm pixel spacing). Stereo
endoscopy data was captured with a calibrated da Vinci S system at full HD
1080i resolution.
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(a) (b)

(c) (d) (e)

Fig. 4. Results of registration: (a) Original left stereo camera view, (b) final registered
crisp mesh of the tumors (blue) projected on top of the image. Close-up views depicting
intermediate results of the registration: (c) pose estimation, (d) automatic similarity
transformation, and (e) non-rigid registration.

3.2 Ex vivo Lamb Kidney Study

The Random Walker segmentation algorithm was applied with manual seeding
of each label in the CT volume. The probabilistic labeling corresponding to the
two simulated tumors is illustrated in Fig. 3b and 3d. Note that the diffusion of
uncertainties in the endophytic case is more visible compared to the exophytic
tumor; this is a direct result of weaker contrast (CT intensity values: difference
in pit/gum composition) at the kidney-tumor boundary. We were careful to keep
the distances between the manually placed seeds and the visible boundaries con-
stant to decrease the influence of seed placement on the resulting segmentations.

As illustrated in Fig. 4a, our phantom is quite smooth and lacks unique fea-
tures on its surface. This results in a largely uncertain reconstruction from our
stereo matching algorithm, which in turn causes the registration to be sensitive to
the initial pose estimation. Successful registration was achieved after estimating
the pose (Fig. 4c) using only four manually selected corresponding landmarks.
The outcome of the registration was verified visually (Fig. 4) by projecting the
kidney and tumor surfaces on both left and right endoscopy views. A small error
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(a) (b)

(c) (d)

Fig. 5. Augmented reality view of Ex vivo lamb kidney with endophytic and exophytic
artificial tumors showing different visualization scenarios: (a) crisp contour of projected
mesh, (b) isotropic 2D diffusion of the crisp contour, (c) 2D projections of the crisp
mesh dilated in 3D by 1 mm increments, (d) 2D projections of 3D isoprobabilities
from 0.5 to 0.15. Contours range from the most probable boundary (red) to the most
conservative boundary (green).

in alignment (< 1 mm) is observed in the resulting registration, this is due to the
error in reconstruction which is attributed to lack of texture on the phantom.

In order to verify the usefulness of probabilistic boundary visualization, we
present four visualization scenarios. In the first case (Fig. 4b), we generate a
crisp mesh model of the tumor by thresholding the probabilistic segmented CT
volume to extract the most probable kidney-tumor boundary. In our second
case, we project the previously generated mesh onto a 2D plane (normal to
the camera) and extract its contour (Fig. 5a). This particular approach does
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(a)

(b)

Fig. 6. (a) Top and (b) side views of ex vivo lamb kidney augmented with uncertainty-
driven tumor boundary localization. Uncertainty is encoded into the tumor boundary
ranging from certain (green) to uncertain (red).

not provide the surgeon with much additional information. Without any visi-
ble information (e.g. in the endophytic case) the surgeon’s confidence regarding
the visualized crisp boundary is, at best, changing isotropically away from the
contour (as emulated in Fig. 5b). Third case, we isotropically dilate the 3D
thresholded volume of the tumors by 1 mm increments and overlay the cor-
responding projected 2D contours (Fig. 5c). The resulting 2D contours dilate
anisotropically as they are influenced by the orientation and shape of the tu-
mor in 3-space. Fourth case, we propose thresholding the probabilistic volume
at increasingly conservative confidence intervals instead of isotropic dilation to
obtain isoprobability contours (Fig. 5d). In this case, we are essentially guiding
the dilation of resection boundaries using the underlying uncertainty informa-
tion extracted during the probabilistic segmentation of the CT. These results
are consistent with our initial observation that the diffusion of uncertainties are
greater in the endophytic case (pit/gum difference).
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We presented the four cases to expert urology surgeons. The general consen-
sus was that the information presented in the fourth case (Fig. 5d) is promising.
A valid critique was made regarding the number of contours being overlayed on
the endoscopy view: it obstructs the kidney more than the simple crisp solution
(Fig. 5a). In order to address this problem, we present a complimentary visualiza-
tion scenario in which uncertainties are projected onto a single crisp contour. We
accomplish this by computing the minimum distance between the most probable
contour and the most conservative one at every location of the most probable
contour (distance from inner-most to outer-most contours in Fig. 5d). A lower
distance implies a higher confidence in the boundary localization as it indicates
a sharper edge in the probability map. We then transform these distances into
a relative color map and use it to color-code the crisp contour (Fig. 6).

This final visualization scenario does not only provide the most probable tu-
mor boundary localization, but also provide information about its local con-
fidence. This visualization can guide the surgeon to quickly identify the best
(most confident) place to start the resection. During the resection, the surgeon
can always opt for the fourth case to see exactly how the uncertainty is diffused
spatially.

4 Conclusion

We proposed a framework that enables extraction and registration of proba-
bilistic data from two complimentary sources of information available in robot-
assisted surgical interventions. Our approach provides the confidence in the re-
sulting augmented information which can help the surgeon during the localiza-
tion of excision margins before resection.

The novel visualization we presented is a proof of concept. The next step is
to validate our experiments on clinical data and more realistic ex vivo phantoms
with agar-based tumors of varying intensities, shapes and sizes [14]. We plan to
conduct in-depth summative usability tests in addition to more formative usabil-
ity tests to fully validate the integration of our uncertainty encoded visualization
techniques into the clinical workflow. In the near future we aim to automate the
initialization (pose estimation) steps and facilitate real-time operation of this
framework. Although in this paper we presented uncertainty encoding from pre-
operative CT, we will be taking advantage of other intra-operative sources of
uncertainty to improve the confidence at the localized boundary while new data
is acquired during the resection.
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Abstract. This paper presents an illumination invariant, histogram
equalization invariant, rotation-robust and spatially stable texture de-
scriptor for B-mode ultrasound images. We design a new edge-encoding
descriptor that captures edge distributions of ultrasound textures. The
distribution of edges categorized by their strength forms a signature of
a specific textural pattern. Oriented edges are first quantized into dif-
ferent levels of salience according to local contrast and then aggregated
to polar bins. A distance function that incorporates with our descriptor
for effective texture comparison is introduced. The performance of the
proposed descriptor is evaluated by various experiments.

Keywords: B-mode ultrasound image, image descriptor, edge statistic.

1 Introduction

B-mode ultrasound imaging is a widely available imaging modality. It is obtained
by detecting the envelope of received back-echoes from a transducer. Ultrasound
wave would attenuate in organs, be scattered by scatterers and be reflected upon
acoustic boundaries. Scattered waves arrive at the transducer with random phase
differences, superimpose together to produce stochastic patterns. Irregular tissue
boundaries and tissue-dependent attenuation rates result in varying back-echo
strengths and inconsistent illumination conditions.

An image descriptor represents the underlying features within a region of
interest of an image. It is critical in many applications, including segmentation,
classification, image retrieval, interest point detection, etc. The success of these
applications relies on the coding and the extraction of image features. Feature
coding and extraction in ultrasound images is particularly challenging due to
the speckle rich property. A descriptor that captures textural patterns and be
robust to imaging artifacts is always desirable.

In this work, we introduce a new type of edge encoding texture descriptor
which is sufficiently distinctive to identify textural difference and robust to un-
avoidable artifacts inherited from the ultrasound imaging process. Our approach
transforms an input patch into a set of (polar) orientated edge histograms. Ori-
ented edges are quantized into salience levels according to local contrast. The
encoded feature vector is invariant to illumination changes and histogram-based
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Fig. 1. Illustration of the QLED generation process. Edge images from multiple orien-
tations are extracted from the input patch. Edges are quantized according to both local
and global information. A collection of the distribution of edge salience from multiple
orientations becomes a signature of the input patch.

operations, robust to rotation and spatially stable. We also provide a distance
function which incorporates with our descriptor for effective texture comparison.
We call our descriptor: Quantized Local Edge Distribution(QLED) descriptor.

2 Related Work

Recently, many approaches have been proposed to describe speckle patterns in ul-
trasound textures. These approaches mainly fall into two categories, distribution
estimation [1,2,3] and edge encoding [4,5,6]. Distribution estimation approaches
adopt various statistical models for the distribution of envelope intensity like
Rayleigh distribution [1] or Nakagami distribution [2,3]. Distribution estima-
tion approaches detect image local mean, variance or distribution parameters as
feature descriptions and thus, are sensitive to histogram transformation or con-
trast enhancement. Edge encoding approaches focus on the occurrence of local
edges or gradients and encode features in conjunction with positions, orienta-
tions and scales. Famous approaches include Local Binary Pattern(LBP) [7,5,6],
Gray-Level Co-occurrence Matrix(GLCM) [8,4] and Histogram of Oriented Gra-
dients(HOG) [9]. Distribution-based approaches sacrifice neighborhood informa-
tion; edge encoding approaches do not capture high level information. There
lacks a descriptor which considers both neighborhood relationships and high
level information, and is robust to imaging artifacts.

3 Method

Figure 1 illustrates the work flow of generating a QLED descriptor. An ultra-
sound texture patch is decomposed into a set of edge images along different
orientations. Edges along the same orientation are quantized into levels. The
distribution of those quantized edges, having different salience levels, forms a
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signature of the original input. The QLED descriptor gives comprehensible in-
formation. For example, majority of the edges in orientation 1 are weak edges
while in orientation 3, edges with different salience levels are evenly distributed.
The relative distribution forms a feature vector which is useful in texture com-
parison, classification, segmentation or higher level analysis.

The major difference between our approach and gradient-based approaches
(say HOG), is that edges are being processed instead of gradients. Note that
ultrasound textures are basically interactions of point spread functions, the mag-
nitude of gradients are often too small and unstable. Moreover, HOG gives a dis-
tribution of gradients among different orientations, while our approach concerns
the distribution of edges among different salience levels within an orientation.

3.1 Edge Acquisition

We aim at identifying the textural pattern exhibits within a region of interest
by capturing the distribution of oriented edges. The first stage is to record the
relationships between neighboring pixels. Given an image patch I, I(x, y) repre-
sents the pixel intensity located at (x, y). For any pixel, the intensity difference
E between I(x, y) and its’ neighbor is defined as:

Eα(x, y) = I(x + δcos(α), y + δsin(α))− I(x, y) (1)

where α is the concerned orientation at a small distance (δ). Edge properties
are cyclic symmetric, therefore concerning the orientations between 0◦ − 180◦ is
enough. This step eliminates histogram shifts as we only consider relative pixel
intensities. The orientation resolution is controlled by the number of sampling
orientation (P ) that is α = (α1, α2, . . . , αP ). A patch is decomposed into P edge
images, each contains edge information along a single orientation.

3.2 Edge Quantization

One characteristic appearance of ultrasound speckle patterns is the ripple-like
texture. Microscopic view of these ripples is a collection of edges with various
strengths. The distribution of them would be a powerful feature to discriminate
speckle patterns. Previous researches [10,11] have demonstrated that threshold-
ing on the histogram of edge magnitude is a practical metric of edge salience.
Based on this idea, we quantize the strength of edges into salience levels accord-
ing to the distribution of edge strength and local contrast. We set a constant
quantization level λ to be the first κ percentile of the edge magnitude histogram
plus a term related to the dynamic range of local intensity. We formulate the
quantization as finding an intensity level of histogram threshold (λ) followed by
quantizing the edges :

argmin
λ∈[0−255]

∑λ
n=0 H(n)∑255
n=0 H(n)

− κ (2)
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Sα = sign(Eα) ∗ �
‖Eα‖

λ+ t(Imax − Imin)
� (3)

where H(.) is the histogram of the magnitude of extracted edges, Sα is the
quantized pattern containing the salience level of edges along orientation α and
t is a parameter to control the impact from the dynamic range of the input
patch. The parameter κ is set to the 30th percentile and t is set to 0.15.

3.3 Quantized Edge Binning

A quantized pattern shows the occurrence of interested edges represented by
salience levels. The next step is to compute the distribution of these quantized
edges for effective description. The frequency counts for each salience level are
computed. To cope with indefinite input patch size, we normalize the frequency
counts with the total number of pixels involved. Note that the computation of
edges is not well defined in patch boundaries, those areas are trimmed and do
not contribute. We define Cα(l) as the frequency counts for quantization level l
at orientation α:

Cα(l) =
no. of pixels in Sα = l

total no. of pixels in patch
(4)

Finally, the QLED descriptor is generated by computing weighted components
among orientation neighbors which are labeled with the same salience level.
This can reduce aliasing effect due to discrete sampling in the first step. We
accumulate Gaussian weighted distribution vectors in the polar direction.

Qp(l) =
∑P

i=1 wp(αi)Cαi(l)

wp(αi) =
1

σ
√
2π

exp(− (αi−αp)
2

2σ2 )

(5)

If rotational invariant is required, wemay rotate the indices to a reference order.
It is convenient to define the reference order according to the frequency counts of
the non-salient entries (l = 0). The distribution vectors would be re-ordered such
that the first vector would have the largest ratio of non-salient edges.

Qp̂ = Q[(p+r) mod P ]+1

where Qp̂=1(0) ≥ Qp̂(0), ∀p, p̂ ∈ {1, 2, . . . , P}
(6)

4 QLED Distance Measure

Image descriptors are usually high dimensional. A distance function is necessary
for similarity measurement between descriptions. The QLED descriptor is of P -
by-(2L + 1) dimension, where L is the highest quantization level. Rather than
computing an Euclidean distance between two high dimensional descriptors, we
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estimate the difference in degree of disparity of edge salience. The degree of
disparity of edge salience is measured by high order moments of the QLED
description. As we are not interested in the balance between the rising edges’
salience and the falling edges’ salience, but the disparity of the edges’ salience,
we take only the even moments. The distance between two QLED description is
defined as

Distance(Q1, Q2) =
∑
n

P∑
p

1

P
·

L∑
l

|Q1
p(l)−Q2

p(l)| · ln

Ln
(7)

where Q1, Q2 ∈ QLED and n = 2, 4, 6... are the order of moments taken into
consideration. Each term is normalized by a denominator, having the maximum
possible difference in degree of disparity along an orientation among two descrip-
tions. Taking such a normalization value would equalize the impact introduced
by different order of moments, however this is not the only normalizing strategy.
In practice, we consider up to the 6th moment.

5 Experiments

We conduct a series of experiments to demonstrate the feature extraction power
of the QLED descriptor under various situations. Our experiments are designed
to imitate real life applications. We compare our descriptor with two common
and powerful texture descriptors, LBP and GLCM. In our implementation, the
distance of two GLCM descriptions is computed as the Euclidean distance be-
tween two feature vectors formed by the {Angular second moment, Contrast,
Correlation}, same as the definition in the original work [8]. LBP feature is ob-
tained by finding neighbor relationship with parameters P = 8, R = 1. LBP
labels are rotated to the minimum representation. LBP histograms are clamped
to prevent domination. Distance of two LBP descriptions is computed by finding

(a) (b) (c) (d) (e)

Fig. 2. Input patches. (Top row)Patch I, (Bottom row)Patch II. (a) Original, (b) Illu-
minated, (c) Locally illuminated, (d) Histogram stretched, (e) Histogram compressed.
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Table 1. The measured distance between patches using QLED (lower is more similar)

I, σ2 Dist. I(a) I(b) I(c) I(d) I(e) II(a) II(b) II(c) II(d) II(e)

0.34, 0.0076 I(a) 0.000 0.000 0.040 0.000 0.002 0.152 0.152 0.189 0.153 0.161

0.51, 0.0076 I(b) - 0.000 0.040 0.000 0.002 0.152 0.152 0.189 0.153 0.161

0.41, 0.0132 I(c) - - 0.000 0.044 0.037 0.120 0.120 0.145 0.120 0.128

0.40, 0.0147 I(d) - - - 0.000 0.023 0.153 0.153 0.189 0.154 0.162

0.32, 0.0022 I(e) - - - - 0.000 0.130 0.130 0.167 0.131 0.139

0.43, 0.0061 II(a) - - - - - 0.000 0.000 0.037 0.000 0.009
0.63, 0.0061 II(b) - - - - - - 0.000 0.037 0.000 0.009
0.50, 0.0101 II(c) - - - - - - - 0.000 0.036 0.035
0.40, 0.0155 II(d) - - - - - - - - 0.000 0.008
0.37, 0.0020 II(e) - - - - - - - - - 0.000

Table 2. The measured distance using different descriptors (lower is more similar)

Same Textural Pattern Different Textural Pattern
I(a)-I(d) II(a)-II(c) I(a)-II(b) I(d)-II(e)

GLCM (0-1) 0.118 0.141 0.105 0.241

LBP8,1 (0-1) 0.000 0.006 0.003 0.003

QLED (0-1) 0.000 0.037 0.152 0.162

the inverse of the correlation between two histograms: 1 − corr(H1
LBP , H

2
LBP ).

The number of sampling orientation P of our QLED descriptor is set to 4. In this
way, the angular sampling interval of QLED is equal to that of LBP, ensuring a
fair comparison.

5.1 Illumination Variance

In this experiment, two patches are extracted from different tissues in a liver
scan. We apply post-processing techniques, make variants of them, and compare
their relative differences. Figure 2(a) (top and bottom) shows the two original
patches followed by their variants. It is often the case that the region of interest
occupies certain space in ultrasound scans. The illumination condition is un-
predictable and the time gain compensation setting may not be evenly tuned.
Therefore, a robust description of textural features is essential to dealing with
uneven average intensities. As listed in Table 1, the distances between Patch I
and its variants remain consistently low, while the distances between Patch I
and variants of Patch II are consistently at a higher level. This demonstrates
that the QLED descriptor together with the distance function can discriminate
patches consistently under various conditions.

Table 2 shows a comparison between LBP, GLCM and QLED. Since GLCM
does not focus on illumination invariant, the measured distances are not stable.
One can not draw any reasonable conclusion to distinguish similar patterns from
different patterns based on the measured distance given by GLCM. Both QLED
and LBP show absolute resistant to histogram equalization (Case:I(a)-I(d)). In
case of local illumination changes, the distance of similar patches (Case:II(a)-
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Fig. 3. An analysis of rotational robustness of descriptors. A ‘source’ patch is compared
to its rotated counterparts. The rotation is ranged from 5◦ to 30◦. A ‘different pattern’
is also compared as reference. The measured distances are normalized by the distance
between the source and the 5◦ rotated patch.

II(c)) given by LBP is double to the distance between two different textural
patterns. It happened that the illumination variation was so strong that some
neighbor relationships had changed, the LBP label, as a consequence, changed.
Successive values of LBP histogram do not bear any meaning and thus the
change in measured distance is unpredictable. Compared to QLED, the distance
changes slightly upon illumination variation, but is still much smaller than value
between different textural patterns.

5.2 Rotational Variance

In clinical scans, textures vary upon scan directions. Here, we conduct another
experiment to test for rotational variance. We artificially compound a set of
ultrasound textural patches with gradual increase in rotation (5◦ − 30◦) (Fig. 3
bottom). We compare the source patch with its rotated counterparts. GLCM is
designed to be a strong rotation invariant descriptor. LBP is robust to rotation
but not absolutely invariant in some data sets [7]. This test is challenging as the
degree of textural rotation is smaller than the angular sampling intervals of all
3 types of descriptors involved.

We test the robustness of descriptors’ resistant to rotation changes but, at
the same time, remain sensitive to textural changes. We compute the distance
between the source and other patches using 3 descriptors. The distances are nor-
malized by the measured distance of the least rotated patch for easy comparison.
Ideally, if a descriptor is robust to rotational changes, the normalized distance
of all rotated patches to the source patches should be very similar. If the nor-
malized distance increases upon texture rotation, its robustness is low. A plot
of the measured distance between patches using 3 types of descriptors is shown
in figure 3. (The actual measured distances for all the 3 descriptors are low.)
Both QLED and GLCM show a distance close to 1 for the 10◦, 15◦, 20◦, 25◦, 30◦
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rotated patches. The relatively larger distances (∼10 times) between the source
and the different patten patch also demonstrate that QLED and GLCM do not
sacrifice textual sensitivity to obtain rotational invariance. For the LBP descrip-
tor, the measured distance increases upon further rotation. Some of the measured
distances are even higher than the distance to the different patten patch. One
possible explanation is that the degree of rotation of those patches is less than
the angular sampling interval such that the label rotation scheme of LBP fails
to provide rotational invariance.

(a) Input image (b) Distance map (c) Selected patch

Fig. 4. An experiment on two clinical images. The patches in (c) (red squares in (a))
are compared with all pixels in the corresponding image. The textural distance is shown
in the color-coded distance map in (b). Shades from green to red indicate increasing
dissimilarity.

5.3 Experiment on B-mode Images

In the two previous experiments, we examine patches and their variants. Those
situations are elementary compared to clinical images. In this experiment, we
chose two complete B-mode images to demonstrate the capability of our de-
scriptor(Fig. 4). The first one is a scan of jelly phantom with a biopsy needle
inserted. On the upper left corner, there are air bubbles of previous insertion
tracks, thus demonstrating a different texture. The second image is a scan of kid-
ney scanned with a curved probe, stated in [12]. The images formed by curved
probes are said to be rotated or deformed on the two sides, and are considered as
very challenging for texture descriptors. Figure 4(b) shows the resultant distance
maps. Similar textures are roughly indicated by the overlaid green color. Note
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that the distance maps are smooth and transitions can be found on boundaries
rather than abrupt and unstable values. This property is potentially helpful to
classification and segmentation problems.

6 Conclusion

In this work, we present a texture descriptor for B-mode ultrasound images and a
corresponding distance function for texture comparison. We capture local edges
and quantize them into different salience levels. The distribution of edge salience
is shown to be a powerful feature to distinguish ultrasound textures. We also
demonstrate simple applications of the QLED descriptor. Future works includes
generalization of sampling resolution and quantization strategy. Application of
QLED descriptor to more complicated classification and segmentation problems
is favorable.
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Abstract. Augmented reality improves the information display dur-
ing intervention by superimposing hidden structures like vessels. This
support is particularly appreciated in laparoscopy where operative condi-
tions are difficult. Generally, the displayed model comes from a
preoperative image which does not undergo the deformations due to
pneumoperitoneum. We propose to register a preoperative liver model
on intraoperative data obtained from a rotational C-arm 3D acquisi-
tion. Firstly, we gather the two models in the same coordinate frame
according to anatomical structures. Secondly, preoperative model shape
is deformed with respect to the intraoperative data using a biomechani-
cal model. We evaluate our method on two in vivo datasets and obtain
an average error of 4 mm for the whole liver surface and 10 mm for the
vessel position estimation.

Keywords: registration, liver, laparoscopy, intraoperative, augmented
reality.

1 Introduction

Laparoscopic surgery is a well-know technique that can replace open surgery to
improve patient healthcare. However, this kind of surgery is difficult to achieve
due to the loss of 3D depth and tactile perceptions during intervention. Aug-
mented reality has been proposed to display structures like liver vessels or tu-
mours that are usually hidden on the video [8,9,13]. This information is usually
coming from an image acquired before the intervention and thus without pneu-
moperitoneum. This gas injection, that creates a working space for surgeons,
highly modifies viscera shape and particularly the liver which undergoes defor-
mations over several centimeters [5] and are extremely difficult to simulate [6,7]
(cf. Fig. 1). Therefore, it is mandatory to update the preoperative model shape
for augmented reality based guidance applications. Obviously, this update can
be done only if intraoperative information of the critical structures is available.
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Practically, such information can be provided by organ surface acquisition (us-
ing an optical technique) or by intraoperative 3D acquisition (using a rotational
C-arm like Zeego SIEMENS). Although rotational C-arms are currently not rou-
tinely integrated in surgical rooms, such a set-up begins to be more and more
available in hospitals [11,12,14].

In this paper, we propose an approach to update the shape of a preoperative
model of the liver using information extracted from an intraoperative 3D volume
acquired with a rotational C-arm. To our knowledge, it is the first time that a
non-rigid registration of a preoperative 3D model on an intraoperative data
acquired after pneumoperitoneum has been evaluated in vivo, in the context of
laparoscopic surgery.

Fig. 1. One can see the porcine liver surface mesh before (resp. after pneumoperi-
toneum) in the left column (resp. middle column). The two meshes in wireframe (on
the right) outline the important deformations that porcine liver undergoes due to pneu-
moperitoneum: the anterior part shifts down and the left lobe moves toward the left in
the abdominal cavity.

Related Work. Vagvolgyi et al. [1] proposed to register a preoperative model of
the kidney on an intraoperative surface reconstruction computed from a stereo
endoscope. Firstly, a rigid alignment is performed using interactively selected
landmarks, refined by an ICP registration. Secondly, a deformation is applied so
that the preoperative model fits the reconstructed surface using a mass spring
model. The same kind of method is applied for open surgery application, based
on a two-step registration (rigid and non-rigid) using surface information from
an optical system [3,10,2]. Despite realistic results, no quantitative evaluation
was provided on their patient data.

In our context, all these methods cannot provide a good global accuracy.
Indeed, the liver undergoes important motion and compression in the antero-
posterior direction, but, even if we know the position of the anterior intraoper-
ative part of the liver, the posterior part position remains unknown. One can
clearly see in Fig. 1 that an alignment of anterior faces of preoperative and in-
traoperative liver cannot guarantee a proper registration of the posterior liver
part, mainly because of the compression, which makes anterior and posterior
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parts closer. Without introperative information of the posterior part, it seems
extremely difficult to foresee the liver shape.

Based on this information, we propose a three-step registration method to
update the liver preoperative shape from a quick analysis of an intraoperative
3D acquisition. We highlight that our method does not rely on the intraoperative
image quality, which is usually poor due to low dose parameters and inserted
instruments or trocars, and quite common with rotational C-arm. Moreover, the
acquired volume must not necessarily contain the whole liver but a reasonable
part of its anterior surface, the spine and the portal vein entry for the initial
alignment step of our method.

Firstly, we describe our three-step registration and the data that we have
to extract from intraoperative images (cf. Sec. 2). Secondly, we will present the
evaluation of our method on two porcine data sets showing that such an approach
can provide an updated 3D model with an accuracy within 3 mm for liver surface
and 10 mm for vessels (cf. Sec. 3).

2 Method

Our registration is composed of three intraoperative steps. Firstly, a global rigid
registration is proposed to align the posterior part of the liver shape of both
models in the same space using spine and portal vein entry positions. Then, we
compute a matching between the two anterior surfaces using an interactive tool
based on geodesic distance analysis. Finally, this matching is used to update the
preoperative model shape from a biomechanical simulation engine.

2.1 Pre-processing of Data Input

The liver and critical structures (vessels and tumours) are segmented on the pre-
operative acquisition by experts using semi-automatic tools and corresponding
surface meshes are computed (MP being the preoperative liver model in this pa-
per). A volume mesh V mP is also computed for the liver with the CGAL library
(http://www.cgal.org), which is required for the biomechanical deformation step.

We assume that the liver posterior part does not undergo deformations due
to pneumoperitoneum (cf. Fig. 2). This assumption seems quite reasonable since
analysis of two pairs of 3D acquisitions of pigs (before and after pneumoperi-
toneum) shows that shape deformation in this part is small. Indeed, ICP rigid
registration of the posterior part leads to surface registration errors of 1 mm
on average. The spine undergoes a little deformation during gas injection and
can thus be used as a landmark to estimate the liver posterior part position.
Segmentation of the spine is done automatically with a threshold of the intraop-
erative medical image and by keeping the largest connected component. However,
the liver can slide a little along the spine (cranio-caudal direction) although it
is attached to vena cava and aorta. Relying on spine registration only is thus
not sufficient and a further translation is necessary. We decided to use the main
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portal vein bifurcation, visible in both preoperative and intraoperative images
to compute this translation.

For the non-rigid registration step, the anterior surface of the liver in the intra-
operative image MI is necessary and segmented (cf. Fig. 3): firstly, we threshold
the air (around -1000 HU) and we compute the two main connected components
which are the air around the patient and the air in the abdominal cavity. Then,
we keep the part of tissue (between 100 HU and 210 HU) which is connected
to the air in the abdominal cavity only. The other viscera such as stomach and
bowels are also extracted with this method. Thus, a manual step is required to
delineate the liver area only on the surface model. The mesh curvature close to
liver boundaries, allows an easy visual identification (and could be automatized
in the future).

Fig. 2. One can see that the posterior part of the liver is not much deformed after
pneumoperitoneum. On the left: the image before pneumoperitoneum, on the right:
the image after pneumoperitoneum. The left image was rigidly registered according to
the spine position and the portal vein entry point. On both images, we highlight in
yellow the liver posterior part. One can see on the right image that the liver shape
remains almost identical after pneumoperitoneum.

Fig. 3. On both figures, one can see the anterior part of the liver after pneumoperi-
toneum extracted with our method.

2.2 Rigid Registration Using Anatomical Landmarks

In this step, we rigidly register the preoperative and the intraoperative model
using the spine position and the portal vein entry point. A first ICP rigid regis-
tration is performed between both meshes of the spine. The translation of this
rigid registration is then refined using a manual identification of the portal vein
entry point in both 3D images, easily identified despite the low quality of the
C-arm acquisition (cf. Fig. 4).
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Fig. 4. One can see the preoperative CT (on the left) and the C-arm 3D acquisition
(on the right). The bifurcation of the portal vein we use to refine the translation is
highlighted with a red cross.

2.3 Vertex Matching between MP and MI

In the previous step, the preoperative model MP was rigidly registered on MI so
that when superimposed, their posterior part is on top of each other. The next
step is the computation of the vertex matching between anterior parts of MP

and MI . This matching step is performed using geodesic distances on meshes
between vertices and relevant anatomical landmarks.

These landmarks are manually identified and matched on both meshes. We call
a geodesic distance map GDML the set of geodesic distances between each mesh
vertex and a landmark L. The geodesic distance is the length of the shortest path
along the mesh between two vertices and is computed with the geodesic library
(http://code.google.com/p/geodesic/). We assume that the geodesic distance of
a vertex VP to a landmark on MP is approximately the same as the distance
between the corresponding vertex VI and the matched landmark on MI (cf.
Fig. 5). Practically, three GDM associated to three landmarks are sufficient to
compute all vertex matches.

For each vertex VI , we compute its anatomical corresponding VC onMP which
minimizes the following criteria:

VC = arg min
Vk∈MP

∑
Lj

I ,L
j
P∈LandmarkSet

||(GDMLj
I
(VI)−GDMLj

P
(Vk))|| • δ,

where δ is a normalized weight: δ =
[GDMLj

I
(VI)]

−1∑
i∈[0;NbLandmark][GDMLi

I
(VP )]−1

(which increases when VI is close to the landmark Lj
I)

(1)

2.4 Biomechanical Deformation

The resulting matches provide a displacement field of the liver anterior surface.
A biomechanical model is then used to interpolate this field on the liver inner
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Fig. 5. One can see the preoperative liver mesh MP (top row) and the liver anterior
part after pneumoperitoneum MI (bottom row) obtained from the method in Sec. 2.1.
Colours on each mesh illustrate the geodesic distance of each vertex to a landmark (the
yellow point). Blue vertices are close to the landmark and red ones are far. One can
see that anatomically matched vertices have approximately the same colour (the red
point is an example).

part. The volume mesh of the preoperative mesh is associated with a finite ele-
ment model for soft tissue deformation. MP and this volume mesh are mapped
together: each vertex of MP is associated with a tetrahedron of V mP . Thus,
if a displacement is applied on a vertex of MP , a corresponding displacement
is propagated to the associated tetrahedron of V mP using the transpose of the
Jacobian of the mapping. In a same way, the vessel mesh is mapped with VmP :
when V mP is deformed, the vessels are also deformed. We assume that the liver
posterior part is not deformed during pneumoperitoneum, thus, the posterior
vertices of MP are fixed (cf. Fig. 6). The deformation of MP is finally performed
by adding springs between the matched points with a stiffness selected empiri-
cally so that MP overlaps MI (cf. Fig. 6).

The biomechanical parameters used for the finite element model are Young’s
modulus and Poisson ratio. These parameters represent the elasticity and com-
pressibility properties of the liver. We choose realistic values found in literature
for Young’s modulus (15 kPa found in [4]). The Poisson ratio is equal to 0.35 to
allow slight volume compression or dilation. Indeed, it happens that the volume
of the liver slightly changes during pneumoperitoneum.

3 Evaluations on Porcine Data

Our evaluation is performed on data from two pigs: a pair of 3D volume data
sets has been acquired with contrast agent before and after pneumoperitoneum
for both pigs. For the first pair, the pig stayed on the same CT table, so that
the rigid registration based on spine was not necessary (only translation had to
be estimated). For the second pair, the pig was moved from a CT to a Zeego
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(a) First case

(b) Second case

Fig. 6. One can see the two meshes before our biomechanical deformation using SOFA
for the two cases. The source mesh is in red and each of its vertices is pulled to match
with its matching vertex on the target blue mesh using springs (in green). The fixed
points in the posterior part are in pink.

C-arm: preoperative data has been acquired with CT and intraoperatively after
pneumoperitoneum on Zeego.

The evaluation requires a ground truth: segmentation of the liver (MF ) and its
vessels on the intraoperative acquisition is performed for both cases. We evaluate
the registration accuracy of our method on the liver surface and the simulated
vessel positions: we compare our registration results with the segmentation of
the intraoperative acquisition. The biomechanical simulation is performed using
the FEM from the SOFA engine (http://www.sofa-framework.org/).

We highlight that the ground truth liver segmentation was done fully manually
on Zeego image due to the acquisition quality: image intensity values in the liver
are extremely inhomogeneous due to artefacts.

On average, our method requires about 5 minutes, including all the interactive
steps: intraoperative segmentation (1 min), rigid registration (1 min), vertex
matching (2 min) and biomechanical deformation (1 min). This duration is a
reasonable delay for the surgeon, although it should be reduced to 1 min to be
totally accepted in the clinical workflow.

3.1 Evaluation of the Mesh Surface Position

We compare our computed surface mesh MR with the full intraoperative mesh
MF . We provide a colour scheme for MR which illustrates the distance between
it and MF . This colour scheme is done by computing the distance between each
triangle TR of MR and the mesh MF (i.e. the length of the orthogonal projection
of the gravity center G of TR on the closest triangle of MF ). The contribution
of each triangle is weighted according to its area size.

We obtain a mean error within 4 mm for the whole liver in both cases. As a
reference we compute the distance between the two input meshes just after the
rigid registration and the mean error is 6 mm (for more details cf. Tab.1 and
Fig. 7). We also compute the distance before rigid registration for the first case,
as the images were acquired within a short delay in the same CT-scan.
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The main errors are in the cranial part of the liver. Indeed, the diaphragm
is also deformed during pneumoperitoneum which causes deformation of several
millimeters, which are difficult to predict since they cannot be easily segmented
in the intraoperative images.

Table 1. The distance between each triangle of MR and the ground truth segmentation
is computed and sorted in four groups. Each group contains a quartile of the triangle
total number weighted by its area size. The distance is between MR and MF : before
registration (1), after rigid registration (2) and after non-rigid registration (3).

First case (mm) Second case (mm)

Colour range (1) (2) (3) (2) (3)

Blue to Turquoise 0 - 3.4 0 - 1.4 0 - 1.0 0 - 2.9 0 - 1.2
Turquoise to Green 3.4 - 6.2 1.4 - 3.4 1.0 - 2.5 2.9 - 6.3 1.2 - 3.2
Green to Yellow 6.2 - 10.9 3.4 - 8.7 2.5 - 4.2 6.3 - 11.3 3.2 - 6.3
Yellow to Red 10.9 - 54.9 8.7 - 47.1 4.2 - 12.4 11.3 42.2 6.3 - 40.8

Mean (± Std.Dev.) 6.0 (± 7.2) 4.9 (± 6.8) 2.3 (± 2.4) 6.3 (± 7.0) 3.6 (± 4.6)

Fig. 7. One can see the results of our method on the liver surface of the examples
illustrated in Fig. 1 with the ground truth in black wireframe. Both meshes are coloured
according to Tab.1: the left one with the third column and the right one with the fifth
column. For the second case on the right, one can see that the results are not very good
on the middle part of the liver. In fact, during pneumoperitoneum, the middle liver
lobe went to the right under the right lobe. This phenomenon also explains the average
surface error of 3.6 mm . Our registration does not manage this kind of displacement
for the moment.

3.2 Evaluation of the Vessel System

The evaluation of the vessel registration accuracy is performed on both cases
(cf. Fig. 8). We compute the Euclidean distance between some vein bifurcations
which have been manually selected. We obtain for the first case (resp. the second
case), an average error of 17.5 mm ± 9.0 mm and maximum value 37.4 mm (resp.
14.8 mm ± 10.7 mm and maximum value 38.2 mm) without our registration and
10.3 mm ± 2.7 mm and maximum value 15.8 mm (resp. 10.8 mm ± 8.3 mm and
maximum value 28.9 mm) after the non-rigid registration (cf. Fig. 8).

We have observed that the improvement of the non-rigid registration is less
important for the second data set due to the lobe sliding phenomenon. Indeed,
the non-rigid registration properly compensates for the lobe motion only if lobe
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surface is identified and matched on both preoperative and intraoperative im-
ages. On the second data set, since one lobe moved and is hidden below another
one, we could not perform a proper surface matching. If we ignore this lobe in
the error computation (the first error on the right histogram on Fig. 7), the
average error decreases to 9 mm ± 2.5 mm. We believe that results should be
better on human data since human liver is not composed of independent lobes
and has less elastic properties.

Fig. 8. One can see the Euclidean distance between vessel bifurcations after rigid reg-
istration (in blue) and after non-rigid registration (in orange). Each column represents
the error of one bifurcation.

4 Conclusion

In this paper, we propose to update a preoperative shape model using intraopera-
tive data from a 3D C-arm acquisition. Firstly, we have shown that a registration
based on an anterior surface information only is insufficient to provide good accu-
racy. To overcome this issue, we have proposed to register the posterior part with
the reasonable assumption that it remains rigid. The anterior part deformation
is performed with a non-rigid registration corresponding to the anatomical area
in the intraoperative image. Results show the feasibility of our approach. We are
aware that our method requires manual steps (portal vein entry identification
and landmark matching), but it seems reasonable for our clinicians. In fact, the
main concern of surgeons is the registration error. Our method still has to be
improved since surgeons consider that an acceptable guidance accuracy for deep
structures is about 5 mm (for instance to show preoperative resection planning).
In case we manage to obtain better intraoperative image quality, our work could
be a very good initialization for intensity-based registration which may decrease
the registration error of our method. We are currently working with radiologists
on acquisition device parameters to improve the image quality.

Finally, we believe that our method can also be used with 3D reconstruction
based on the endoscopic video. Indeed, the anterior surface we have segmented
for our method is approximately what we can expect from a Structure-from-
Motion method. If the endoscope is tracked using an optical tracking system as
in [11], the table can be used as a reference to initialize the rigid registration
up to a translation (along the table plane), that could be determined by a quick
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localization of the portal vein from the endoscopic view. This approach will
also be tested in the future and integrated in an augmented reality software to
visually assess the registration accuracy of our system.

Acknowlodgement. We are gareteful to IHU-Strasbourg for providing the
Zeego acquisitions on pigs.

References

1. Vagvolgyi, B., et al.: Video to ct registration for image overlay on solid organs. In:
Proc. Augmented Reality in Medical Imaging and Augmented Reality in Computer-
Aided Surgery (AMIARCS), pp. 78–86 (2008)

2. Rucker, D.C., et al.: Nonrigid liver registration for image-guided surgery us-
ing partial surface data: A novel iterative approach. In: SPIE Medical Imaging,
p. 86710B. International Society for Optics and Photonics (2013)

3. Cash, D.M., et al.: Compensating for intraoperative soft-tissue deformations us-
ing incomplete surface data and finite elements. IEEE Transactions on Medical
Imaging 24(11), 1479–1491 (2005)

4. Samur, E., et al.: A robotic indenter for minimally invasive characterization of soft
tissues. International Congress Series, vol. 1281, pp. 713–718 (2005)

5. Sanchez-Margallo, F.M., et al.: Anatomical changes due to pneumoperitoneum
analyzed by mri: an experimental study in pigs. Surg. Radiol. Anat. 33(5),
389–396 (2011)

6. Bano, J., et al.: Simulation of pneumoperitoneum for laparoscopic surgery planning.
In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012, Part I.
LNCS, vol. 7510, pp. 91–98. Springer, Heidelberg (2012)

7. Bano, J., Hostettler, A., Nicolau, S.A., Doignon, C., Wu, H.S., Huang, M.H., Soler,
L., Marescaux, J.: Simulation of the abdominal wall and its arteries after pneu-
moperitoneum for guidance of port positioning in laparoscopic surgery. In: Bebis,
G., et al. (eds.) ISVC 2012, Part I. LNCS, vol. 7431, pp. 1–11. Springer, Heidelberg
(2012)

8. Marescaux, J., et al.: Augmented-reality–assisted laparoscopic adrenalectomy.
JAMA: The Journal of the American Medical Association 292(18), 2214 (2004)

9. Masamune, K., Sato, I., Liao, H., Dohi, T.: Non-metal slice image overlay display
system used inside the open type MRI. In: Dohi, T., Sakuma, I., Liao, H. (eds.)
MIAR 2008. LNCS, vol. 5128, pp. 385–392. Springer, Heidelberg (2008)

10. Clements, L.G., et al.: Organ surface deformation measurement and analysis in
open hepatic surgery: method and preliminary results from 12 clinical cases. IEEE
Transactions on Biomedical Engineering 58(8), 2280–2289 (2011)

11. Feuerstein, M., et al.: Intraoperative laparoscope augmentation for port placement
and resection planning in minimally invasive liver resection. IEEE Transactions on
Medical Imaging 27(3), 355–369 (2008)

12. Shekhar, R., et al.: Live augmented reality: A new visualization method for la-
paroscopic surgery using continuous volumetric computed tomography. Surgical
Endoscopy, 1–10 (2010)

13. Nicolau, S.A., et al.: Augmented reality in laparoscopic surgical oncology. Surgical
Oncology 20(3), 189–201 (2011)

14. Nozaki, T., et al.: Laparoscopic radical nephrectomy under near real-time three-
dimensional surgical navigation with c-arm cone beam computed tomography. Sur-
gical Innovation 19(3), 263–267 (2012)



Volume Visualization for Neurovascular

Augmented Reality Surgery

Marta Kersten-Oertel, Simon Drouin, Sean J.S. Chen, and D. Louis Collins

McConnell Brain Imaging Center, MNI, McGill University, Montreal, Canada

Abstract. In neurovascular image-guided surgery, surgeons use pre-
operative vascular data sets (from angiography) to guide them. They
map information from angiography images onto the patient on the oper-
ating room table to localize important vessels. This spatial mapping is
complex, time consuming and prone to error. We’ve developed an aug-
mented reality (AR) system to visualize the pre-operative vascular data
within the context of a microscope/camera image. Such an AR visualiza-
tion enhances the surgeon’s field of view with data that is not otherwise
readily available (e.g., anatomical data beyond the visible surface or data
about the flow of blood through the vessels), and it aids the surgeon to
better understand the topology and locations of vessels that lie below the
visible surface of the cortex. In this paper, we explore a number of dif-
ferent volume rendering methods for AR visualization of vessel topology
and blood flow.

1 Introduction

Mixed reality visualizations have become a focus of research in the medical
domain for surgical training, planning, diagnosis and guidance. The purpose of
such visualizations is to improve the understanding of complex multimodal data
within the context of the patient in the operating room (OR). In image-guided
surgery (IGS) augmented reality (AR) visualization is achieved by introducing
pre-operative virtual models of patient data onto the patient or into live images
of the surgical field of view. To date, the most frequently used analyzed data
representations of patient anatomy are simple surface or wireframe renderings of
the data [7]. This, despite faster processors and graphics cards that allow for real-
time rendering rates of volume rendered virtual data onto real world images. One
advantage of using volume rendering for virtual data is that a larger number of
visualization methods may be studied by appropriately tuning transfer functions.
This in turn may allow for better depth and spatial perception, and more visually
pleasing results.

In this work, we present a volumetric visualization method for augmented re-
ality in neurovascular surgery. Understanding intra-operative vascular scenes is
difficult for numerous reasons. In vascular neurosurgery, surgeons use an operat-
ing microscope that enables a magnified, more precise and clear view of the local
region of interest. The microscope, however, provides no information as to the
vessel anatomy below the surface. The burden is with the surgeon to best map
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the rudimentary images on the navigation system to the patient lying on the
table. This task is made more difficult due to the frequent repositioning of the
surgical microscope during surgery and the lack of visible external anatomical
landmarks because of the sterile draping of the patient. By registering the live
microscope image (or a camera image) in the OR with pre-operative plans, mod-
els and data sets the surgeon can get a better understanding of the layout of the
vessels beyond those seen only at the surface. In Fig. 1 on the left, we show IBIS
(the Intra-operative Brain Imaging System navigation system) [4] with the cur-
rent type of navigation view (the three cross planes of the pre-operative dataset
plus the microscope image) used for neurosurgery at the Montreal Neurological
Institute (Canada), on the right, we show the AR view which would replace the
microscope image.

Fig. 1. Left : The navigation view used for neurosurgery at our institute, three cross
planes of the segmented vessels from the pre-operative CTA dataset (coronal, sagital
and axial) plus the microscope image). Right : We replace the microscope image with
the AR view to aid understanding of the layout of the vessels beyond those seen on
the cortical surface.

Cerebral vascular scene understanding is complex for several reasons. Two
of these are: (1) difficulties in spatial and depth understanding of the vascular
data due to the fact that many vessels overlap at many different depths and the
large number of furcations and (2) difficulties in intra-operatively distinguish-
ing between arteries and veins in vascular abnormalities (where both look red
under the microscope). In this paper we address both of these issues by intro-
ducing different volume rendering techniques. Scene de-cluttering, which allows
relevant information in terms of topologically close vessels to the neurovascu-
lar anomaly, is used for enhanced spatial understanding. The perceptive cue of
aerial perspective (implemented as fog) is used to enhance relative depth percep-
tion of the vessels. Colour-coding of vessels based on flow information is used to
differentiate between arteries and veins. Furthermore, to combine the vascular
volumes with live images from the microscope and to ensure that the virtual
objects are perceived as being within the patient rather than floating in front
of the patient we use edges extracted from the microscope image as a depth
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cue. AR visualizations, which provide better spatial and depth understanding,
as well as information as to blood flow within vessels, may reduce the amount
of time required to locate specific vessels of interest, and may help to reduce the
amount of resected tissue during surgery.

2 Background and Related Work

Arteriovenous malformations (AVMs) are abnormal collections of blood vessels.
The central part of the AVM, or the nidus, is made up of abnormal vessels
that are hybrids of true arteries and veins. AVMs are fed by one or more arteries
(feeders), and are drained by one or more draining veins (drainers). These feeding
and draining vessels often have weakened walls and therefore may leak or rupture.
Neurosurgery for AVMs involves identifying the margins of the malformation
and tying off or clipping the feeder vessels, obliterating the draining veins and
removing or obliterating the nidus. A detailed understanding of the arterial
inflow from feeders and venous drainage from drainers is therefore important for
clinical evaluation and management of AVMs.

The use of techniques which aid the characterization of the pattern and dis-
tribution of feeders and drainers by quantification of the relative blood flow is
necessary as it is not always trivial to identify whether a vessel is a feeding artery
or an arterialized vein. By visualizing information from blood flow analysis in
the vessels we can aid surgeons to intra-operatively distinguish between feeders
and drainers. With the use of AR, we believe, we can aid surgeons by reducing
the time to localize and identify important vessels during surgery by showing
the vessels which are not visible when looking at the cortex through the surgical
microscope and by colour coding vessels to help in differentiation.

A number of mixed reality systems have been developed for neurosurgery.
Examples include: Edwards et al.’s [5] microscope-assisted guided interventions
(MAGI) system, a stereoscopic microscope for neurosurgery and otolaryngology;
Glossop et al.’s [6] projector based system for craniotomies; and Paul et al.’s [14]
system that allows for both AR and AV visualization for neuronavigation. For
more information about mixed reality surgical systems the reader is referred to
the review by Kersten et al. [7].

To date few systems have used volumetric representations of virtual objects
in mixed reality. In Kersten et al.’s review of the state of art in mixed reality
IGS only about 1% of reviewed papers used volume rendering [7]. Systems that
have used volumetric data rather than surface or wireframe representations in-
clude those developed by Bichlmeier et al.[2], Volonté et al. [19], Mischkowski et
al. [12], Konishi et al. [10], Scheuering et al. [16], Suzuki et al. [17], Wieczorek
et al. [18] and Yamaguchi et al. [20]. In our system we use volume rendered
pre-operative angiography data as our virtual object because volume rendering
allows for direct manipulation of visualization parameters. Furthermore, partic-
ular volume visualization methods which use perceptual cues have been shown to
provide a good depth understanding of cerebral vasculature, in particular when
compared to stereoscopic visualization [9].
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3 Volume Rendering in Neurovascular AR

We developed a test development environment where we use a 3D printed nylon
head phantom, in lieu of a patient, to study different AR visualization methods.
Details about the system, including calibration and registration information, as
well as the development of the phantom used for visualization studies can be
found in Drouin et al. [4]. In this section, the system is described using the
checklist for mixed reality system descriptions based on the DVV taxonomy [8].

3.1 Data

The visualized imaging data used in our system is comprised of CT or MR an-
giography and/or 3D X-ray angiography, depending on the data that is available
for each patient. The 3D volumetric data is acquired pre-operatively and is vol-
ume rendered as a virtual object that is registered to live patient images of the
cerebral cortex in the OR. In the following example we use: a combination arte-
rial and venous-phase CT-DSA acquired using a Toshiba Aquilion ONE (Toshiba
Medical Systems) with an isotropic 0.5mm resolution and two 3D X-ray angiog-
raphy with selective vessel contrast injection acquired using the GE Advantx LC
LP+ Biplane Angiographic System (GE Healthcare) with an isotropic 0.4mm
resolution. In terms of prior-knowledge data, a 3D surface representation of a
pointer may be rendered on the screen when used. We currently do not visualize
any patient specific scores or derived data.

3.2 Visualization Processing

In order to extract the vessels from the angiography data, region growing with
a pre-defined threshold was used. The segmented vascular data set was then
volume rendered using a number of different visualization methods, mainly: vas-
cular scene de-cluttering, feeder/drainer colour coding based on blood flow, and
fog rendering for enhanced depth perception.

Combining Virtual Objects with the Camera Image. The goal of AR is to
fuse a camera image that provides contextual information about the location of
the surgical target with the pre-operative scans that provide precise information
about the configuration of the surgical target. To this effect, our approach has
been to modulate the opacity of the camera image to show more of the volume
rendering in the region of the surgical target and more of the camera image
elsewhere. Simply fading out transparency from the area around the surgical
target presents a problem: the volume rendered image appears to be above the
surface of the patient. Salient features, such as edges, extracted from the camera
image have been used to provide better spatial and depth understanding in AR
visualizations (e.g. Avery et al. [1] and Lerotic et al. [11]). In our work, we use
the cue of occlusion: in the area around the surgical target where the camera
image is made transparent to show the virtual object below the surface, we keep
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only the edges extracted from the camera image. To find those edges we use a
Sobel operator which computes an approximation of the gradient of the image
intensity function. The Sobel operator was implemented as a shader in OpenGL.

Each pixel’s rgb and alpha components are computed as follows:

(RGB component) Idispi .rgb = Icami .rgb (1)

(Alpha component) Idispi .a = (1.0− f) + (f ∗ ||−→Gi||) (2)

where Idispi is pixel i of the displayed image, Icami is pixel i of the raw camera

image,
−→
Gi = (Gxi , Gyi) is computed with the standard 3x3 sobel kernel

Gx =

⎡
⎣1 0 −1
2 0 −2
1 0 −1

⎤
⎦ ∗ Icami , Gy =

⎡
⎣ 1 2 1

0 0 0
−1 −2 −1

⎤
⎦ ∗ Icami (3)

and factor f is used to fade out transparency starting from radius r1 to radius

r2 around point
−→
C which is a projection of the surgical target in image space

f =

⎧⎪⎪⎨
⎪⎪⎩
d < r1 0.0

r1 < d < r2 exp−
(

d−r1
r2−r1

)2
.25

d > r2 1.0

(4)

where d = ||−→P − −→
C ||, −→P is the image space coordinate of the pixel considered.

Once Idisp is computed, it is combined with the volumetric data using OpenGL’s
alpha blending. Figure 2 illustrates the different steps involved in the computa-
tion of the final AR view.

Fig. 2. (a) The original image. (b) The computed alpha channel (Idispi .a). (c) Repre-
sentation of the variables involved in the computation of the alpha channel.

De-cluttering. Vascular data is complex in terms of the number of vessels that
overlap in depth and the many furcations of the vessels. Visualization of vessels,
therefore, may involve de-cluttering (selectively removing details) of vessels, to
show the most relevant vessels at a given point in surgery. We can determine
and visualize topologically close vessels to an AVM by using a level-set front
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propagation method which is seeded at the AVM nidus [3]. A transfer function
is then used to fade out vessels so that further vessels from the nidus become
more and more transparent. In Fig. 3 (a) we show the pre-operative dataset.
In (b) the vascular volume is rendered as a virtual object with the real camera
image. The large amount of vessels makes it difficult to understand the spatial
layout of the vessels, furthermore, not all vessels are relevant to the surgery. We
therefore allow selective viewing of vasculature close to the AVM nidus, making
distant vessels transparent (Fig. 3 (c)).

Fig. 3. (a) The pre-operative vascular data (combination of MRA, CT DSA and X–
ray angiography. (b) Combined virtual vascular volume with real camera image. (c)
Combined virtual vascular volume using de-cluttering based on distance from AVM.

Colour-Coding Flow. Neurosurgery for AVMs involves identifying the mar-
gins of the malformation and tying off or clipping the feeder vessels, obliterating
the draining veins and removing or obliterating the nidus. The task of differ-
entiating between veins and arteries is difficult and can be complicated by the
fact that the paths of vessels leading into the nidus are tortuous and may not
conform to the standard topology or known anatomical locations. Clipping the
wrong vessels may cause the AVM to rupture or cut-off blood flow to other
regions of the brain. Therefore, a detailed understanding of the arterial inflow
from feeders and venous drainage from drainers is crucial for management of
AVMs. In order to aid surgeons to intra-operatively differentiate between feed-
ing and draining vessels we use Chen et al.’s[3] method for vessel labelling based
on level-set front propagation. In this method a curve of the level set is evolved
based on the intensities in an image. By propagating the level-set front through
the vessels in the raw images, we are able to use the algorithm to determine the
path of blood flow in the vessels. Vessels are colour coded based on the labels,
as arteries (coloured red), veins (coloured blue), or as being within the nidus
(coloured purple) as in Fig. 4.

Fog. Depth perception and spatial understanding of angiography data is com-
plex due to the fact that many vessels overlap at different depths and there is a
lack of perceptual cues available for scene understanding. Kersten et al. [8] found
that aerial perspective (implented as fog) was one of the best cues for relative
depth perception of vascular volumes for both novices and surgeons. Here, we
examine the use of fog in the context of an AR visualization (Fig. 5).
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Fig. 4. (a) A colour labelled flow map with feeders (red), drainers (blue) vessels, and
nidus (purple). (b) Coloured labelled vessels as virtual object combined with the camera
image. (c) AR scene with colour labelled and de-cluttered vascular volume.

Fig. 5. (a) Volume rendering with fog used as a cue for distance; further vessels exhibit
less contrast than those closer to the viewer. (b) Volume rendered vessel AR scene with
fog. (c) Volume rendered AR scene with vessels rendered based on flow (red for feeding
vessels, blue for draining vessel, and purple for nidus).

3.3 View

The perception location of our system is a monitor. As display, we use a flat screen
digital monitor, allowing for greater control of what type of data is displayed
and what processing can be done on both the virtual objects and on the live
camera image. Furthermore, by using the display of the navigation system as
the perception location we can provide the surgeon not only with information
as to what is below the surface but with the context of the information, i.e. how
the entire vascular volume relates to the anatomy in the area of resection.

In terms of interactions, the user can control the radius of the transparent
circle which shows the vessels beyond the visible surface of the cortex. Users can
control the location of the center of the circle. Furthermore, the user may interact
with the augmented reality visualization by turning on and off the camera image,
rotating the scene, and tuning the transfer function of the volume.

4 Results

We presented our system to a number of neurosurgeons and the neuronaviga-
tion team at the Montreal Neurological Institute (Canada). The neuronaviga-
tion team develop plans and visualizations for image-guided surgery. As well as
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giving demos of the system to two neurosurgeons specializing in neurovascular
surgery, we asked a number of neurosurgeons to fill out an online question-
naire on the perceived usefulness of the different visualization methods in the
context of image-guided neurosurgery. They rated the techniques on a Likert
scale from 1 to 5 (where 5 was that the method would be very useful and 3
they were unsure of the method’s usefulness). We also asked for comments on
the different visualization techniques. The questionnaire can be seen online at:
http://tinyurl.com/pjmhdq6.

The neuronavigation team evaluated all of the visualizations as beneficial to
navigation in comparison to the currently used navigation system (Table 1).

Table 1. Results of the online questionnaire. Experts rated the different vi-
sualization techniques on a Likert scale from 1 to 5 (5 very useful, 3
unsure). Coding: DR=Decluttered Red, CR=Cluttered red; DC-C=Decluttered
Colour-coded; C-CC=Cluttered Colour-coded; FR=Fog Red; FC-C=Fog Colour-
coded; Fav R=Favourite of red images; Fav C-C=Favourite of Colour-coded images.

Occupation DR CR DC-C C-CC FR FC-C Fav R Fav C-C

Neuronavigation 3 4 4 4 3 3 DR CC-C
Neuronavigation 5 5 5 5 5 5 DR DC-C

Neurosurgeon 2 3 4 4 3 3 FR C-C
Neurosurgeon 4 2 2 3 3 3 DR DC-C
Neurosurgeon 4 1 3 3 4 4 DR DC-C
Neurosurgeon 4 1 4 3 2 3 DR C-C
Neurosurgeon 4 2 3 4 4 3 DR DC-C

Average for neurosurgeons 4.2 2 3.6 4 3.6 3.6

On average, the neurosurgeons found that decluttered red vessels (4.2) and
visualizing flow to and from the nidus (4) were most helpful and would be most
useful intra-operatively. The colour coding was found useful whether the scene
was cluttered or de-cluttered suggesting that for better organized visualizations
(i.e. colour coding), more information could be viewed and deciphered by the
viewer. Fog (both red and colour coded) and decluttered colour-coding was on
average found to be somewhat useful (3.6). In general the ratings varied greatly
across the neurosurgeons.

One of the neurosurgeons specializing in neurovascular surgery commented
that in the OR surgeons move the surgical microscope around in order to benefit
from the motion parallax cue. Therefore, they could imagine moving the camera
from our system around to help them visualize the nidus and its relationship
with all the vessels. Specifially, the surgeon stated that: ”watching the relative
movement of the deeper vessels to those located more superficially” would al-
low them ”to best position [themselves] over the surgical corridor leading most
directly to the vessel(s) of interest.”

http://tinyurl.com/pjmhdq6
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5 Conclusions and Future Work

We have presented an AR reality neuronavigation system and explored different
volume rendering visualization techniques for vessel identification and localiza-
tion as well as spatial understanding of vasculature. We found that the results
varied greatly between neurosurgeons. This suggests that performance tests on
tasks may be better suited and more conclusive for visualization evaluations.
Surgeon’s individual preferences for different types of visualzations may not cor-
respond to what makes them more efficient or aids them in surgical tasks.

At the same time we received very positive feedback from both neurosurgeons
and the neuronavigation team and will be bringing our AR system into the OR
in the coming weeks. In particular, we will need to study how the visualization
methods work with real images of the cortex.

The next step of this work will involve experiments in the lab and studies in
the OR which look at if and when AR visualization is useful for neurovascular
surgery. Furthermore, we will also examine the posibility of injecting information
from our visualization into the microscope to limit surgical workflow disruptions.
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Abstract. Selecting effective drug candidate is a crucial procedure in
drug discovery and development. Dynamic Positron Emission Tomog-
raphy (dPET) is an ideal imaging tool for pharmacokinetic analysis in
drug selection, because it offers possibilities to tract the whole proce-
dure of drug delivery and metabolism when the drug is radio-labeled
properly. However, various challenges remain: 1) the kinetic models for
drugs are generally very complicated and selecting a proper model is
very difficult, 2) solving the kinetic models often needs special mathe-
matical considerations, 3) dPET imaging suffers from poor spatial and
temporal resolutions, 4) blood sampling is required in pharmacokinetic
analysis, but it is very hard to generate an accurate one. In this paper,
we propose a reinforcement learning based model selection and param-
eter estimation method for pharmacokinetic analysis in drug selection.
We first utilize several physical constraints to select the best possible
model from a bank of models, and then estimate the kinetic parameters
based on the selected model. The method highly improves the accuracy
in model selection and can estimate corresponding kinetic parameters
even with an inaccurate blood sampling. The quantitative accuracy of
our method is tested by experiments using digital phantom and Monte
Carlo simulations. Furthermore, 3 cases of patient studies on model selec-
tion and parameter estimation are also provided to show the potentials
to reduce drug development cycle and save money for the pharmaceutical
industry.

1 Introduction

In drug discovery and development, the procedure of drug selection is full of chal-
lenging issues. Kelloff et al. show that more than 90% of all new oncology drugs
fail in the late stages of development because of inadequate activity and difficul-
ties in determining their efficacy [1]. Quantitative pharmacokinetic analysis with
dynamic Position Emission Tomography (dPET) imaging now plays a promising
role as determinants of in vivo drug action to help select drug candidate. Fast
and accurate pharmacokinetic analysis with rapid information feedback in the
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early stage of drug discovery and development is critical to obtain the in vitro
and in vivo drug properties[2][3].

dPET is an imaging method to monitor the spatiotemporal distribution of
an injected radiotracer and reflect its cellular level changes. This feature makes
dPET an excellent tool to facilitate pharmacokinetic analysis by tracking the
whole procedure of drug delivery and metabolism[4]. With the dPET acquisition
data, compartmental analysis forms the basis for tracer kinetic modeling[5]. A
typical procedure of pharmacokinetic analysis by dPET imaging include, firstly,
setting up a working hypothesis of the target enzyme or receptor for a particu-
lar disease, secondly, establishing suitable models (or surrogate markers) to test
biological activities, and at last, screening the new drug molecules for biological
activities. In this procedure, model selection by dPET has seldom been stud-
ied because of various scientific challenges, for example, 1) the kinetic models
for drugs are generally very complicated, when facing a new biomarker (new
drug), it is hard to determine which model will work best, 2) accurately solving
these complicated models always needs special mathematical considerations, 3)
although we can always use more complicated models to represent certain bio-
logical activity, the computational cost increase significantly due to the complex
of the model, which cause a burden for the early drug discovery. 4) measurement
data from dPET suffers from poor spatial and temporal resolutions, especially
the first several time frames, 5) blood sampling is required in pharmacokinetic
analysis but it is very hard to generate an accurate one[6].

In this paper, we propose a reinforcement learning based method which com-
bines model selection and parameter estimation for pharmacokinetic analysis by
dPET. Machine learning in image processing and analysis is growing rapidly[7].
Of various machine learning methods, reinforcement learning is meant to be
a general approach to learn from interactions[8]. It is a control method which
presents a robust mechanism for goal directed decision making. Unlike supervised
learning methods, no examples of desired behavior are provided during training,
instead, behavior is guided through positive or negative reinforcements[9]. There-
fore, this method do not require a large training dataset, and is especially suit-
able for preclinical drug selection and pharmacokinetic analysis with only limited
data sets[10]. Additionally, as a control mechanism, the method can solve the
complicated kinetic models with noisy dPET acquisition data. Furthermore, the
method can inherently deal with disturbances during blood sampling.

Most models can be decomposed into a set of compartments, so we first define
a model bank which consists of basic compartment models. Then we design the
method to be able to first choose the most suitable model from the model bank
for the measurement data, and then estimate the kinetic parameters based on
the selected models. Since in clinical routines, an accurate blood sampling is very
difficult to get, we also test our method with both an accurate input function
and an inaccurate one. Quantitative analysis is conducted using digital phantom
and Monte Carlo simulations. Furthermore, 3 cases of patient studies are also
provided to show the potentials to reduce drug development cycle and save
money for the pharmaceutical industry.
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2 Method

2.1 Drug Kinetic Models

Drug kinetic models include simple drug transport model, which generally con-
tains equal or less than three compartments and can be solve directly, and com-
plicated biological models, which can contain up to twenty compartments and
generally requires prior knowledge to solve[5]. Most complicated models with
many compartments can usually be decomposed into a combination of simple
models with less than four compartments. In our study, we build a model bank
which consist of 6 basic models with less than four compartments. The model
bank shown in Fig.1 includes two compartment blood flow model (Model 1),
standard two tissue three compartment Phelps 4K model with reversible target
tissue (Model 2) and Sokoloff 3K model with irreversible target tissue (Model
3), three tissue five parameter bertoldo model (Model 4), standard three tis-
sue four compartment model (Model 5 and Model 6). More complicated models
with more compartments and parallel models with multiple injections can be
extended from aforementioned standard models [11][12].

All six models can be represented by a set of differential equations with corre-
sponding kinetic parameters K = {k1, k2 · · · kn}, where n is the number of kinetic
parameters. Here we utilize Model 2 as an example to demonstrate our method.
Model 2 can be represented by first-order differential equations

dCF (t)

dt
= k1(t)CP (t) + k4(t)CB(t)− (k2(t) + k3(t))CF (t) (1)

dCB(t)

dt
= k3(t)CF (t)− k4(t)CB(t) (2)

The measurement of dPET is the combination of radiotracer in plasma CP ,
non-specific binded radiotracer CF and specific binded radiotracer CB through

CPET = (1− Vb) · (CF + CB) + Vb · CP (3)

Y = DCPET + e (4)

where Vb is the blood volume fraction, Y is measured projection data , D is the
system probability matrix, and e is the noises during acquisition. Eqn.(4) can
be represented by a more general time-dependent form for all models as

Y (t) = DX(K, t) + e(t) (5)

2.2 Temporal-Difference Reinforcement Learning

Temporal Difference reinforcement learning (TD Learning) is a combination of
Monte Carlo ideas and dynamic programing[8][9]. Therefore, like Monte Carlo
methods, TD Learning can learn from raw experiences without pre-defined mod-
els, and like dynamic programing, TD learning can update its estimations based
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Fig. 1. Compartment models. Model 1-6, from left to right, from top to bottom.

on a part of learning outcomes rather than the final outcome. These features
are especially suitable for model selection and noisy dPET data. Regardless of
model, when we have an initial K, we define an action set a, which contains
2n components, {a+1 , a−1 , a+2 , a−2 , · · ·a+n , a−n , }, the subscript corresponds to the
kinetic parameter, the superscript represents increasing (+) or decreasing (-)
that kinetic parameter by certain amount during estimation. We derive the TD
Learning algorithm for model selection and parameter estimation from the clas-
sic one as shown in Algorithm1. Details will be shown in next subsection.

2.3 Model Selection and Parameter Estimation Process

Model Selection. As shown in the algorithm, reinforcement learning acts ac-
cording to the rewards, we define three rewards based on physical constraints
for model selection. The combination of three rewards is able to exclude non-
matching models fast, which can improve the computational efficiency, and re-
duce the disturbances from the noises in low count dPET data. By denoting K ′

as the estimated kinetic parameters after selecting an action from a,

1. Reward 1 : We compare the measured total counts in each time frame of measure-
ment data Y and estimated total counts with K′.

MSE(TotalCounts(Y (t)), T otalCounts(DX(K′, t))) < Threshold1 (6)

2. Reward 2: We compare the first order difference of Time Activity Curve (TAC)
from measurement data Y and TAC curve estimated with K′.

MSE(Difference(TAC(Y )), Difference(TAC(DX(K′, t))) < Threshold2 (7)

3. Reward 3: This is an optional reward, if there is priori knowledge from clinical
data available, they are learned together through a 2-hidden layer neural network
(NN), and then used as a reference for estimated K′.

MSE(NN(Y ),K′) < Threshold3 (8)
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where MSE is the operation to calculate the mean squared error. When each
reward criterion is met, we have a reward (rew = +1), otherwise, (rew = −1).
Then we accumulate all rewards by eligible trace Q-Learning [8] as shown in the
Algorithm1

Q(K, a) ← Q(K, a) + α[rewm+1 + γQ(Km+1, am+1)−Q(K, a)] (9)

where α, γ are learning parameters, which control the width and depth of learn-
ing. Proofs in [8] show that α and γ mostly affect the convergence speed, and
have only limited effect on learning accuracy after convergency. By setting proper
learning parameters, all the states will be traversed through all actions in Monte
Carlo/TD learning, the possible solutions are reflected by positive accumulated
rewards. After iterations, the action with biggest positive rewards will be the
final result. Here we choose both α and γ to be 0.1 as suggested in the book[8].
Q is the value function in the Q-Learning, which stores all the rewards, and m
represents iteration steps.

Then the algorithm is applied to every model in the model bank, with each
estimated K ′ from the maximum in Q, we calculate the Bias between estimated
TAC (TACe) and true TAC (TACm) from measurement data for each model by

Bias = 1
T

∑ ‖TACm−TACe‖
TACm

, where T is number of time frames. The model with
the lowest Bias in the model bank will be the selected model by our method.

Parameter Estimation. When using Algorithm 1 to choose model, simulta-
neously calculated K ′ will be the initial parameter for that model. Furthermore,
the kinetic parameter can also be calculated with a refined action set aref con-
taining smaller increasing or decreasing amount using Algorithm1.

Algorithm 1. Model Selection and Parameter Estimation by TD Learning

Initialize Q(K,a) arbitrarily
Initialize K
Repeat until convergency

Randomly choose one action from a
Repeat for all steps

Take action a, generate K’, observe reward rew using defined criteria
Choose a’ from K’ derived from Q
Accumulate all rewards using Eqn. 9
K ← K’

End
End
Select the maximum in Q, corresponding K is the estimated K
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Fig. 2. (a) Input functions (b) Success rate of model selection by Fitting method(left
& blue) and our method(right & red). Input function 1-5: highly underestimation,
disturbed underestimation, perfect input function, disturbed overestimation, highly
overestimation.

3 Experiments and Results

3.1 Experiment Settings

In order to evaluate the quantitative accuracy of the proposed method, our
first experiment starts with Zubal phantom and Monte Carlo simulations. One
slice of the phantom is shown in Fig. 3 (a). The input function used here is
Feng input, CFDG

P (t) = (A1t − A2 − A3)e
−λ1t + A2e

−λ2t + A3e
−λ3t. The base

values of the parameters λi and Ai selected here are A1 = 28μCi/mL/min,
A2 = 0.75μCi/mL, A3 = 0.70μCi/mL, λ1 = 4.1339min−1, λ2 = 0.01043min−1

and λ3 = 0.1191min−1. In our experiments, we test 5 cases of input function,
perfect input function, disturbed input function with 20% error (both overes-
timation and underestimation), and highly overestimated and underestimated
input function with 50% error. A demonstration of overestimation, underesti-
mation and delayed injection is shown in Fig. 2 (a). For each input function test,
we simulate 4 cases with each model, so there are totally 120 cases for 6 models.

The TAC are calculated based on the dynamic acquisition procedure that
consists of 29 frames: 6×5sec, 2×15sec, 6×0.5min, 3×2min, 2×5min and
10×10min. The acquisition data is treated by random correction, normalization,
scatter correction, attenuation sequentially. The results are estimated by both
weighted Levenberg-Marquardt fitting method and our method for comparison.

3.2 Experiment Results

Currently, there are still no well-accepted methods to perform model selection,
researchers either predefine several models and then compare their statistical
results from several studies, or generate the model from a large set of clinical
experimental studies. All these efforts need relatively a longer study cycle and
more funds. The method we are proposing is a feasibility study for fast identify-
ing the models. The accuracy of our method is validated by predefined ground
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Table 1. Model selection results. NA is ”Not Applicable” (i.e. The model is early
excluded by our combined reward defined in Sec 2.3).

Model1 Model2 Model3 Model4 Model5 Model6

DataSet 1 0.0962 NA NA NA NA NA

DataSet 2 0.8116 0.1695 NA 0.2721 NA NA

DataSet 3 0.9250 NA 0.6175 0.7801 0.6828 NA

DataSet 4 0.5177 NA 0.5394 0.1426 NA NA

DataSet 5 NA NA 0.6316 0.2546 0.1483 NA

DataSet 6 0.8608 0.4677 NA 0.3530 NA 0.2752

(a) (b) (c)

Fig. 3. Parametric image by (a) Ground Truth (b) Fitting (c) Our method

truths from Monte Carlo studies and clinical common understandings. The re-
sults are also compared with commonly used model fitting methods in Monte
Carlo studies.

Table.1 shows the model selection results of 6 selected cases. Dataset 1-6 are
the simulation results based on Model 1-6. Dataset 1-3 are estimated with over-
estimated input function, while Dataset 4-6 are estimated with underestimated
input function. The results show the model selection calculation by our meth-
ods. The lowest biases clearly show the selected models in each case. And Fitting
method fails in nearly all highly overestimated or underestimated cases. For the
total 120 cases, we summarize the model selection results and show them in
Fig.2 (b), the results are classified by input function types. The statistical re-
sults further shows fitting method will only work when the input function can be
well estimated, while our method can still maintain a good selection results with
even highly over- or under-estimated input function. That is important since
the overestimations and underestimations in input functions are very normal in
clinical practices.

As we mentioned in the method section, besides model selection, our method
can also estimate the kinetic parameters. Fig.3 shows one example of estimated
parametric images, which is based on DataSet 2 in Table.1. 3 Region of Interests
(ROIs) are first selected in heart, muscle and body surface, and then the kinetic
parameters are estimated by both Fitting method and our reinforcement learn-
ing method. The Fitting method reflects the overestimation in the image while
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(a) (b) (c)

Fig. 4. (a) Case 1 (b) Case 2 (c) Case 3

our method can still reconstruct the correct kinetic parameters. Because of the
limitation of pages, we could not cover all the aspects of comparison, however,
the results listed above proved the ability of our method to correctly select the
model and estimate the kinetic parameters.

Currently, there are still no well-accepted methods to perform model selection,
researchers either predefine several models and then compare their statistical
results from several studies, or generate the model from a large set of clinical
experimental studies. All these efforts need relatively a longer study cycle and
more funds. What we are proposing is a feasibility study for fast identifying the
models. The accuracy of our method is validated by predefined ground truths
from Monte Carlo studies and clinical common understandings.

3.3 Real Patient Experiments

We study three cases of real patient dPET scans. Fig. 4 shows the 3 cases, the
first case is the scan of patient thorax, a ROI is defined in the normal muscle
region, the second case studies a ROI in the heart region, and the third case is
with a ROI in the liver. The dPET scans are performed on our PET scanner, the
dynamic data set consists of 40 time frames: 20×0.5min, 15×1min and 5×2min.
The input function is estimated by fitting the reconstructed dynamic images.
This input function is equal to a disturbed one affected by noises in reconstructed
images. The model selection results are shown in Table.2. The results of model
selections are consistent with suggestions from clinical studies. ROI 1 is normal
tissue and Model 3 is mostly used. ROI 2 is near the left ventricular and highly
affected by the blood flow, so the blood flow model (Model 1) is most suitable.
For ROI 3, clinical results had shown the necessity and importance of estimation
of K4 in liver cancer, and our method correctly choose the right Model 2 (Phelps
4K model). In all 3 studies, the non-applicable models are excluded successfully.
The estimated kinetic parameters are shown in Table.3.
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Table 2. Model selection results. NA is ”Not Applicable”.

Model1 Model2 Model3 Model4 Model5 Model6

Case 1 1.5901 1.4248 1.1735 1.6549 1.5558 NA

Case 2 0.7963 NA NA 0.9482 NA NA

Case 3 1.3809 1.0721 1.6025 1.2169 NA NA

Table 3. Estimated kinetic parameters for 3 cases. NA is ”Not Applicable”.

K1 K2 K3 K4 K5 K6

Case 1 0.0960 0.1540 0.0375 NA NA NA

Case 2 0.1080 0.0838 NA NA NA NA

Case 3 0.0400 0.0620 0.0145 0.0015 NA NA

4 Conclusion

We present a reinforcement learning based model selection and parameter esti-
mation method for pharmacokinetic analysis. The method can choose the most
suitable model from the model bank for the measurement data, and then esti-
mate the kinetic parameters based on the selected models. Both Monte Carlo
simulation and real patient studies show the ability of our method to accurately
select the proper model from the model bank and then estimate the kinetic
parameters under noisy low-count dPET acquisition data and inaccurate input
function.
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Abstract. Recent advances in Optical Coherence Tomography (OCT)
has enabled high resolution imaging of three dimensional artificial vas-
cular networks in vitro. Image segmentation can help quantify the mor-
phological and topological properties of these curvilinear networks to
facilitate quantitative study of the angiogenic process. Here we present
a novel method to delineate the 3D artificial vascular networks imaged
by spectral-domain OCT. Our method employs multiple Stretching Open
Active Contours (SOACs) that evolve synergistically to retrieve both the
morphology and topology of the underlying vascular networks. Quantifi-
cation of the network properties can then be conducted based on the seg-
mentation result. We demonstrate the potential of the proposed method
by segmenting 3D artificial vasculature in simulated and real OCT im-
ages. We provide junction locations and vessel lengths as examples for
quantifying angiogenic sprouting of 3D artificial vasculature from OCT
images.

Keywords: Angiogenesis, Curvilinear Network, Active Contours,
Optical Coherence Tomography.

1 Introduction

Angiogenesis, a process where new vessels form from existing vasculature, re-
lies on a series of highly coordinated events. During angiogenic sprouting, some
of the most fundamental questions in vascular biology concern how endothelial
cells coordinate to build branching tubular networks, which appear to be mor-
phologically different in a tissue-specific manner. The molecular mechanisms to
pattern tissue-specific vascular networks remain largely unknown.

Previously, the angiogenic process has been observed, manipulated and stud-
ied using confocal microscopy [1]. In this paper, we present an alternative ap-
proach in which the 3D angiogenic process is monitored using OCT images.

C.A. Linte et al. (Eds.): MIAR/AE-CAI 2013, LNCS 8090, pp. 231–240, 2013.
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Optical Coherence Tomography (OCT) is a non-invasive 3D optical imaging
modality which provides 3D reconstructional images of biological tissues with
micro-scale image resolution [2]. OCT can be used to monitor the angiogenic
sprouting morphogenesis with millimeter penetration depth, which is better than
that of confocal microscopy. We also show that image analysis of OCT image
data can provide quantitative information about the angiogenic system, thus
gives insights into how the system works.

Delineating blood vessels is the first step toward quantitative study of the
angiogenic process. Quantification of angiogenic vasculature by segmentation
methods has been reported using binarization [3] and skeletonization [4] or using
explicit models such as generalized cylinder [5] or super-Gaussian functions [6].
Compared to our proposed method, [5] does not provide topological information
such as junction locations of the vasculature network. There is a large literature
for 3D vessel segmentation in imaging modalities such as MRA or CTA [7]. [8]
extracted centerlines of arteries in CTA/MRA by a minimal path method, where
user inputs of starting and ending points for the path is required. In contrast,
our method can extract the centerlines without the need of manual initialization.
We found there has been no work on the segmentation and quantification of
3D angiogenesis from OCT images, which suffer from heavy speckle noise, non-
uniform intensities and gaps in the vessels. These present a more challenging case
in which some traditional methods like skeletonization followed by binarization
do not work well.

In this work we use open parametric active contours or “Snakes” [9], which
can explicitly take into account the linear nature of the vessels. As a variant of
the original “Snakes”, Stretching Open Active Contours (SOACs) [10] are open
curves that adapt under the influence of image forces as well as stretching forces
exerted at both tips. SOACs have been successfully applied to the segmentation
of microtubules [11], tracking of actin filaments [12], and tracing axons [13].

Multiple active contours that elongate and merge with one another have been
used to segment networks of actin filaments in 2D TIRFM images [14]. The
approach is good for images with high noise. Here we present an extension and
significant modification of the multiple SOACs method to address the more
challenging issues that arise in 3D OCT and demonstrate its potential by results
on both simulated and real OCT images.

2 Methods

Stretching Open Active Contours with an adaptive stretching force (Sect. 2.1)
are first initialized automatically by identifying intensity ridge points in 3D (Sect.
2.2). Initial SOACs then evolve sequentially according to a specific set of rules to
handle overlap (Sect. 2.3). The result is a network of SOACs. Finally, we locate
vessel junctions and extract the optimal vessel network topology by applying
smoothness constraints on SOAC segments across junctions (Sect. 2.4).
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2.1 SOAC with Adaptive Stretching Force

A SOAC, r(s), s ∈ [0, L], where s is the arc length parameter and L is its length,
is an open-ended parametric active contour with stretching force applied at its
two tips (Fig. 1). The image force applied on the curve makes it conform to
desired image features when the model elongates. The stretching force is defined
as [14]:

Fig. 1. Illustration of a Stretching Open Active Contour (SOAC) with adaptive stretch-
ing forces applied at its two tips. Local foreground and background intensities are
estimated by the evenly distributed green and red samples, respectively, on the per-
pendicular plane of the end tangential.

∇Estr(r(s)) =

⎧⎪⎨
⎪⎩
− r′(s)

|r′(s)| · F (s), if s = 0,
r′(s)
|r′(s)| · F (s), if s = L,

0, if 0 < s < L

(1)

where Estr is the stretching energy and F (s) is the magnitude of stretching force
determining the elongation of a SOAC.

Unlike previous methods where F (s) are determined globally [10,12,14], we
define it here to be proportional to the image contrast local to the SOAC tips:

F (s) =
If (r(s))− Ib(r(s))

If (r(s))
= 1− Ib(r(s))

If (r(s))
, s = 0, L (2)

where If (r(s)|s=0,L) and Ib(r(s)|s=0,L) are the local foreground and background
intensity at tips, respectively. This definition can avoid under-segmentation of
dim vessels and over-segmentation of bright ones in the presence of foreground
and background intensity variations.

We found that an effective way to estimate If (r(s)|s=0,L) and Ib(r(s)|s=0,L)
is to sample local intensities around the tips and then compute the average of the
intensity samples. Specifically, samples are drawn uniformly on concentric circles
from the plane r′(s) · (x− r(s))|s=0,L = 0, where x is the spatial variable in the
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image coordinates. The tip itself and those samples that lie on circles of radii
less than Rnear are for local foreground intensity estimation, while samples that
lie on circles of radii between Rnear and Rfar are for local background intensity
estimation (Fig. 1).

2.2 Automatic Initialization of Multiple SOACs

Here we extend the automatic initialization in [14] to 3D. We can initialize
SOACs on the centerlines of vessels by locating 3D intensity ridge points. We
define a ridge point in axis k to be the image location of which intensity is locally
maximum along axis k, k = 0, 1, 2. Thus it can be detected by looking for the
plus-to-minus sign change in the image derivative in that axis direction [15].
Then we identify candidate SOAC points in 3D as ridge points in at least two
axis directions. Specifically, we define a SOAC candidate point along x axis as
a point that is a ridge point in both of the other two axis directions, namely,
y and z. Similarly, a SOAC candidate point along y is a ridge point in both x
and z, and a SOAC candidate point along z is a ridge point in both x and y
directions. Next, candidate SOAC points are linked to form initial SOACs.

In order to avoid ambiguities when linking SOAC candidate points, we ini-
tialize SOACs separately along each axis direction. That is, locally connected
candidate points along x are linked to form an initial SOAC along x, and the
process is repeated to form SOACs along y and z. The constructed initial SOACs
are redundant but they will become a concise representation of the vascular net-
work after their sequential evolution.

2.3 Sequential Evolution of Multiple SOACs

Initialized SOACs will evolve until convergence, one after another, in a sequential
manner. We introduce schemes to keep the converged network of SOACs free of
overlap.

Detecting general overlap for the current evolving SOAC involves calculat-
ing the Euclidean distance from each point of the SOAC to each points of all
converged SOACs, and overlaps are all sets of consecutive points of which the
distance is less than a threshold de. Detecting general overlap after each iteration
is too expensive which would dramatically slow down the sequential evolution.
If, otherwise, this is done after all the SOACs have converged, then the more
redundant initial SOACs are, the more computation have been wasted when
SOACs extend onto foregrounds that have already been extracted, leading to
many duplicate segmentation.

Here we adopt a balanced strategy. We divide overlaps into end overlap and
non-end overlap. The former, usually caused by SOAC elongation, is the overlap
that starts from the end points of the evolving SOAC. Eliminating end over-
lap timely can prevent aforementioned duplicate segmentation. Detecting end
overlap can be done efficiently because we essentially check from two tips only,
and stop at the first non-overlap point. We check this type of overlap after each



Delineating 3D Angiogenic Sprouting in OCT Images 235

iteration so that it is nearly a O(1) operation1. The latter, non-end overlap, is
more general than end overlap thus more expensive to detect, and is done once
after convergence. Non-end overlap is usually caused by SOAC body drifting in
the presence of weak edges.

2.4 Correcting the Topology of SOAC Network

The network of converged SOACs may not be topologically correct because
SOACs evolve one after another, those SOACs that start early have a better
chance to extend along multiple branches. When they elongate across intersec-
tions of branches, artificial corner may occur.

To retrieve a topologically correct network, we use the fact that the artificial
vascular network typically involves straight vessels crossing one another or side
branches forming off straight vessels. Using the recorded connectivity informa-
tion, we first cut the SOACs at each junction into “SOAC segments” so that no
SOACs extend across any junctions. Short SOAC segments are discarded. Next
we construct an undirected graph G = (V,E), where V is the set of vertices
which are end points of SOAC segments. For any two vertices, u, v, we have
an edge (u, v) ∈ E if ‖u − v‖2 < dg, dg is a distance threshold. Once we have
the graph G, we apply connected components analysis in G to detect clusters
of vertices, where each cluster represents a junction. More specifically, let one
connected component be denoted by C, and |C| be the number of vertices in
C, then C is a junction if |C| > 1, with |C| being the degree of the junction;
otherwise it corresponds to a dangling vessel end.

We define the smoothness between a pair of end points as the angle between
the tangential vectors of SOAC segments at the two end points. For each detected
junction, we recursively link up the smoothest pair of end points across it, until
all pairs are linked or the angle between current smoothest pair does not satisfy
a threshold θ. All the SOAC segments that are linked up become part of one
longer SOAC.

3 Experimental Results

We validate the proposed method quantitatively using simulated vessel images
with ground truth. For real OCT images, we evaluate our results qualitatively
because of lack of ground truth. Moreover, the junctions and vessel lengths are
presented as examples of quantification based on the segmentation results.

3.1 Validation on Simulated Vascular Images

The goal of testing on simulated 3D vascular network is to quantify the accuracy
and robustness of our method. We use one of our segmentation result (a SOAC
network) for an OCT image to generate the simulated images. The set of known
SOACs serve as the ground truth for validation.

1 The only exception is when the evolving SOAC is totally redundant so the entire
sequence of points are checked.
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Generation of Simulated Images. We generated simulated images using a
real OCT image segmentation result, which serves as the skeleton of the simu-
lated vessels. A clean simulated image was generated by diffusing these skeletons
with a Gaussian kernel of σ = 3 voxels in each direction. Let the real OCT image
be Ioct(x) and its corresponding segmentation result (i.e. the ground truth) be
rgt(s). The clean image Iclean(x) is computed as

Iclean(x) = [a · (W (x) · Ioct(x)) + b] ∗Gσf
(x) (3)

where W (x) is a window function,

W (x) =

{
1, if x ∈ rgt(s)

0, otherwise
(4)

The scale and shift factor a and b is used for scaling up the intensity and gen-
erating a constant background, respectively. The clean image is then corrupted
by a multiplicative speckle noise thus the noisy image Inoise(x) [16]:

Inoise(x) = Iclean(x) · Y (5)

where Y ∼ Γ ( 1
σ2
Γ
, σ2

Γ ) is a random variable of Gamma distribution. Both noisy

and clean images are 8-bit. We vary b from 0 to 9 and set σΓ = 0.5, 1. This
combination gives 20 simulated images of different degradation quantified by
the Peak Signal-to-Noise Ratio (PSNR) between Inoisy and Iclean.

Results and Evaluation. We measure vertex error and Hausdorff distance
between resultant SOACs {rc(s)} and the ground truth {rgt(s)}. Here we treat
all computed SOAC points as one set Rc and all ground truth points as another
set Rgt. The vertex error is defined similar to “error per face” in [17],

dV (Rc, Rgt) =
1

2|Rc|
∑

xc∈Rc

min
xgt∈Rgt

‖xc − xgt‖+
1

2|Rgt|
∑

xgt∈Rgt

min
xc∈Rc

‖xgt − xc‖

(6)
and the Hausdorff distance between Rc and Rgt is

dH(Rc, Rgt) = max{ max
xc∈Rc

min
xgt∈Rgt

‖xc − xgt‖, max
xgt∈Rgt

min
xc∈Rc

‖xgt − xc‖} (7)

An example segmentation result for one of the simulated images is shown in
Fig. 2. The dV -PSNR and dH -PSNR curves for these 20 simulated images are
plotted in Fig. 3, which shows the segmentation error (in terms of vertex error
and Hausdorff distances) is very low on simulated images with PSNR greater
than 25dB. Comparing the three results in Fig. 4 shows that the number of false
positives drastically decreases as PSNR increases. Common SOAC parameters
[14] used for both simulated and experimental images are set as follows: vis-
cosity coefficient γ = 2 for controlling the step size for SOAC evolution; first
order continuity weight α = 0.01 for controlling SOAC’s tension; second order
continuity weight β = 0.01 for controlling SOAC’s rigidity; image force weight
kimg = 1; stretching force weight kstr = 0.01. The junction smoothness threshold
θ = 2π/3.



Delineating 3D Angiogenic Sprouting in OCT Images 237

Fig. 2. Three orthogonal views of a simulated image (upper row) and its segmentation
result shown in same view (lower row). Note SOACs (Magenta) are shown with the
detected junction points (Green).

Fig. 3. dV -PSNR and dH -PSNR curve. The error is in fraction of the length of the
diagonal of the image volume.

Fig. 4. Comparison of results on images with different PSNR values. First column:
PSNR = 26.6dB (image same as in Fig. 2). Second column: PSNR = 16.5dB. Third
column: PSNR = 12.3dB. Note the different number of false positives introduced.
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3.2 Results on Experimental OCT Images

In our experiment, we tested our algorithm on images acquired using a cus-
tom spectral-domain OCT system. The system was developed using a super-
continuum light source, which enabled 1.5μm axial resolution in tissue. A 175-
degree conical lens [18,19] was used in combination with a 10× objective to
provide an extended depth-of-field of 200μm and a traverse resolution of 2.3μm.
Data acquisition was performed at 20,000 A-scans/s with over 100 dB sensitiv-
ity. 3D OCM images were acquired on the artificial blood vessel device [1] with
voxel size 1.0× 1.0× 1.0μm. Because we do not have ground truth, we perform
qualitative evaluation for results on experimental images.

On these images, the goal is to accurately delineate the morphology of the
vascular network and identify vessel junction points. Figure 5 shows one result
of applying our method. The output includes multiple SOACs, each represent-
ing an individual vessel in the vascular network. The length of each SOAC is
used to estimate the length of the vessel. For each SOAC, we have densely sam-
pled points on the curve as well as image intensity along the curve. From these
we can compute distributions of orientation, curvature, and intensity along the
vessels. Besides the geometry and intensity information, we also have the junc-
tion locations identified (green spheres) and the connectivity information among
vessels.

(a) (b) (c)

Fig. 5. Example segmentation results on an experimental OCT image. Image size is
480×300×600. (a) an OCT image of artificial vascular network; (b) Resultant SOACs
and junction points (green spheres); (c) a zoomed-in view of a portion of the extracted
network (the area enclosed by the white square in (b)). Estimated vessel lengths (Unit:
μm) are displayed as text labels.

4 Discussion and Conclusion

Parameter tuning is often needed when different kinds of experimental images
need to be analyzed. One useful parameter is the pair of Rnear and Rfar, which
define the local foreground and background sampling region, in turn determining
how much a SOAC is stretched. Rnear and Rfar needs to be set according to
the vessel scale.
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In summary, we proposed a novel method for analyzing OCT images of the
angiogenic process. The method is based on a network of SOACs, where we
introduce new initialization method in 3D, regularization for sequential evolu-
tion, and topology correction for the converged SOAC network. With the ability
to obtain morphological and topological quantification of in vitro vessels, this
algorithm together with molecular perturbations will provide insights into the
molecular mechanisms that regulate vascular patterning both in developmental
and pathological vasculature. In our future work we will include optimization of
parameters and estimation of vessel radius in the framework.
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Abstract. The environment in which a surgeons is trained profoundly
effects their preferred method for visualizing patient images. While clas-
sical 2D viewing might be preferred by some older experts, the new gener-
ation of residents and novices has been raised navigating in 3D through
video games, and are accustomed to seeing 3D reconstructions of the
human anatomy. In this study, we evaluate the performance of different
groups of users in 4 different visualization modalities (2D planes, orthog-
onal planes, 3D reconstruction and augmented reality). We hypothesize
that this system will facilitate the spatio-visual abilities of individuals in
terms of assessing patient-specific data, an essential requirement of many
neurosurgical applications such as tumour resection. We also hypothesize
that the difference between AR and the other modalities will be greater
in the novice group. Our preliminary results indicate that AR is better
or as good as other modalities in terms of performance.

Keywords: Augmented Reality, Neurosurgical Training, Tumour
Resection, Surgical planning.

1 Introduction and Clinical Motivation

Brain cancer is among the least survivable types of cancers with a five-year rel-
ative survival rate of 35% [1]. It is estimated that 2,800 Canadians and 23,000
Americans were diagnosed with primary brain tumours in 2012, resulting in
1,800 and 13,700 deaths respectively [2][1]. Compared to alternative courses of
treatments, surgical resection of a tumour is the most recommended option [3].
Pre-operative planning of tumour resection interventions involves identifying op-
timal surgical pathways and specifying surgical entry points based on a num-
ber of criteria, geared towards minimizing post-surgery complications. Surgeons
often make use of multiple views of the brain to plan brain tumour resection.
Older surgeons are often trained with axial planes only (CT-scan and later MRI),
whereas the younger generation of experts are trained with tri-planar views of ax-
ial, sagittal, and coronal images sampled from 3D MRI datasets. However, with
advancements in technology, medical students and residents are now accustomed
to 3D reconstructed structures. Furthermore, they are able to interact with these
3D neuroanatomical structures in a Virtual Reality (VR) environment using the
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same skills employed when playing 3D video games. For a surgeon to be able
to determine a desirable surgical approach for a procedure, visualizing the loca-
tion of the lesion is essential. Classically, they form a mental image of the lesion
within the skull from the 2D MRI images using their anatomical knowledge and
spatial reasoning abilities. There are a number of factors to take into account
in determining an optimal path for the brain tumour resection, one being the
distance between the entry point on the skull and the tumour. Minimizing this
distance would minimize the surgical path and as a result, the amount of tissue
cut during the procedure. Another consideration, however, is to estimate the
longest axis of the tumor - since if the tumour is retracted along this axis, there
will be minimal disruption to tissues adjacent to the tool. Another consideration
which is often the most important is the location of major pathways and elo-
quent areas that control functions such as speech, motion, vision, etc. Disruption
to these areas during surgery can lead to postoperative deficits in the patient.
Most surgical institutions in developed countries possess neuronavigational sys-
tems, which enables surgeons to load the images, reconstruct them in 3D, choose
their trajectory, and confirm that their approach does not interact with major
vessels, eloquent areas or take an unfeasibly deep path. Unfortunately, many de-
veloping countries do not have access to this expensive technology. In addition,
this system does not account for brain shift, and is prone to technical and user
errors. It is therefore essential for a trainee to be able to identify the ideal surgi-
cal approach for a tumor using anatomical landmarks. Augmented Reality (AR)
enables the overlay of virtual information onto an image of the patient’s body in
the OR. This can help with surgical planning, and can also serve as a training
tool. In our case, we have developed a system to assist junior trainees to identify
the locations of eloquent areas, white matter tracts, and the tumour in the brain.
AR thereby provides intuitive visualization of the brain and facilitates trainee
interaction with the different structures. Although, many AR systems have been
developed for neurosurgical applications [4]-[9], only few studies have been con-
ducted to evaluate the usability and efficacy of such systems compared to other
modalities. In this paper, we evaluate an AR-based surgical training platform to
determine how a user performs as the function of visualization mode. Our main
hypothesis is that the benefit of AR would improve the performance of all users
during the task of determining the optimal surgical approach.

2 Materials and Methods

2.1 Material

A previously developed surgical training AR system was extended for the pur-
pose of these experiments. Our AR system was based on off-the-shelf AR eyewear
(Vuzix 920AR) with twin displays/cameras, as well as a head phantom and a
stylus. The Vuzix eyewear as well as the head phantom and the stylus were
tracked with an optical tracking system (Polaris, NDI, Canada). To control the
experimental variables such as the location and orientation of the longest axis
of the tumor, and its proximity to eloquent areas, 28 segmented tumor samples
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(DTI challenge workshop, MICCAI, 2010-11) were placed in different regions of
the brain by an expert to create realistic and clinically relevant scenarios. In
addition to the tumors, we also incorporated functional areas (extracted from
functional MRI datasets) of the motor cortex representing the peripheral limbs,
as well as the visual cortex, the language areas, and the hippocampus (short
term memory). Tractography of major fasciculi (white matter tracts of neurons
in the brain, connecting two functional areas) were also incorporated within the
volume: uncinate fasciculus (connecting the orbitofrontal cortex to the temporal
lobe and limbic system - associated with emotion regulation, cognition, declara-
tive memory and face recognition/memory and its lesion associated with different
psychiatric disorders), Meyer’s loop (prolongation of the optic tracts essential for
vision), arcuate fasciculus (connecting the Wernicke and Broca language areas)
as well as the corticospinal tracts (descending fibers from the motor areas to
the spinal cord enabling movements in the face, trunk and limbs). A total of
112 different scenarios were created and displayed randomly to the subjects. In
order to operationalize a comparison between different visualization modes, im-
ages containing the MRI of the brain (anatomical T1 image), segmented tumour,
eloquent areas, and white matter tract were displayed in 2D (axial, coronal and
sagittal planes - Fig. 1-a), orthogonal planes (XP - Fig. 1-b), 3D (Fig. 1-c) and
AR (Fig. 1-d).

2.2 Participants

3 expert neurosurgeons with >5 years of practice, 4 intermediate (residents and
fellow) with >2 years of training and 4 novices (graduate students) with no
neurosurgical experience participated in this study.

2.3 Methodology

Participants were asked to identify the longest axis of the tumour as well as the
shortest path from the surface of the cortex to the tumour. For the longest axis
task (LA), subjects were asked to align the stylus with the longest axis of the
tumour. For the shortest distance task (SD), they were asked to place the tip of
the stylus on the appropriate location on the head phantom. Each experiment
involved 64 trials 1 (32 trials per task) in which the patient MR volume randomly
selected from the database and displayed in the 4 different modalities described
earlier. The display of these modalities - as well as the task performed- was
counterbalanced between and within subjects to correct for the effect of training
and fatigue (e.g. Fig. 2). The response time (RT), the location of the stylus (in
SD), and orientation (in LA) were recorded for every trial. The RT was the time
elapsed between the time at which subjects start scrolling through the images
and the time at which subject indicated their desired point/angle.

1 48 trials for one of our experts.
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Fig. 1. Different Visualization Modalities: a) 2D, b) XP, c) 3D, and d) AR

Fig. 2. An example illustrating the order of modalities visualization
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2.4 Analysis

The recorded location/orientation of the stylus was compared to the longest axis
of the segmented tumour determined using geometrical Principal Components
Analysis (i.e. the primary eigenvector). For the shortest distance, the gold stan-
dard was computed by finding the shortest possible distance from the surface
of the tumour to the surface of the cortex (Inaccessible points of entry such as
face, ears, and neck were excluded in this process) The index of performance
was calculated in accordance with Fitts’ methodology, respecting the tradeoff
between speed and accuracy [10]. The index of performance is the product of
their speed (the reciprocal of time, i.e. 1

RT ) multiplied by the Index of Difficulty
of the task (i.e. the logarithm of the probability that they could perform the
task by luck). In other words, the Index of Performance (Ip) can be determined
using the following formulas:

Ip|LA =
1

RT
log2

μR

Rerror
, Rerror = Rotational Error

Ip|SD =
1

RT
log2

μT

Terror
, Terror = Translational Error

Note that in above formula μR is the mean error angle if chosen randomly and
is equal to 57o (1 radian). On the other hand, μT is computed for each individual
case using a Monto-Carlo simulation. This is done by distributing random points
on the surface of the skull and finding the mean shortest distance to the tumour.

3 Results and Discussion

3.1 Longest Axis

The I p for the LA task is depicted in Fig. 3. By looking at the I p, it becomes
apparent that in all modalities but AR, experts outperform both trainees and
novices, particularly in 2D. In case of AR, however, novices performed as accu-
rate as experts but with higher variation. A multivariate ANOVA test indicated
that only the mode of visualization was significant (p=0.02 <0.05) but not the
expertise. No significant interaction effect between visualization method and
expertise was observed. Post-hoc analysis using the Tukey test revealed that
subjects’ level of performance (i.e. I p) was significantly higher in AR compared
to 2D and XP (μAR=.093, μ3D=.066, μ2D=.045, μXP=.035).

3.2 Shortest Distance

The I p for the SD task is illustrated in Fig. 4. Similar to LA, the index of per-
formance for experts was higher than both intermediate residents and novices
(in case of 2D, intermediate performed equally well but significantly better than
novices). A multivariate ANOVA test indicated that both the mode of visualiza-
tion and expertise were significant (Mode: p=0.001 <0.05, Expertise: p=0.005
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Fig. 3. Index of Performance for the task of longest axis

<0.05). No significant interaction effect between visualization method and exper-
tise was observed. Post-hoc analysis using Tukey test showed that a) experts were
significantly better than novices, and b) subjects’ level of performance (i.e. Ip)
was significantly higher in AR and 3D compared to XP (μAR=.085, μ3D=.073,
μ2D=.055, μXP=.040).

4 Conclusion

Perceiving the spatial relationships between relevant structures such as tumours
and eloquent areas is necessary for successful neurosurgical pre-operative plan-
ning. The usability of such percepts is heavily influenced by the mode of visu-
alization and interaction within the neurosurgical planning environment. Most
experts ( >5 years of experience) were trained at a time when 3D reconstructions
of brain images were scarce and therefore accustomed to interpreting 2D images.
CT imaging was classically presented as axial slices, while MRI images as or-
thogonal slices (axial, coronal, and sagittal canonical views). Experts are able
to interpret 3D structures, identify anatomical landmarks in order to plan for
the approach, and measure those landmarks on the skin before starting surgery
after viewing only 2D images. The new generation of trainees, however, who
started their residency training in neurosurgery over the past 6 years, has been
trained using 3D models of the brain. They also have been trained to use neu-
ronavigation systems for most neurosurgical procedures. Therefore, while they
are still used to looking at 2D images to prepare their approaches, they tend to
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Fig. 4. of Performance for the task of shortest distance

rely more on new technology to help them in their planning. In any case, our
preliminary results show that all subjects with a neurosurgery background per-
formed better than novices in all visualization modalities to identify the shortest
distance and longest axis 2. Nevertheless, AR was shown to be superior to other
modalities (or equally good) in terms of performance. XP, on the other hand,
was significantly slower for everyone, and most subjects reported anecdotally
that they did not feel comfortable working in that modality. In addition, experts
were impressed by the functionality of the AR. Future studies need to include
more expert neurosurgeons and intermediate subjects. In addition, our novices
comprised of graduate students who have participated in our previous studies
and are used to working with MRI images. Thus, a new group of novices will be
recruited to act as nave subjects.

Acknowledgments.

References

1. American Cancer Society: Cancer Facts and Figures. American Cancer Society,
Atlanta (2012) (available online. last accessed December 12, 2012)

2. Canadian Cancer Statistics, produced by Canadian Cancer Society, Statistics
Canada, Provincial/Territorial Cancer Registries, Public Health Agency of Canada
(2012) (available online. last accessed December 12, 2012)

2 with the exception of AR for identifying the longest axis where novices performed
better than intermediate subjects.



248 K. Abhari et al.

3. National Cancer Institute (NCI) booklet (NIH Publication No. 09-1558) (available
online. posted April 29, 2009)

4. Azimi, E., Doswell, J., Kazanzides, P.: Augmented reality goggles with an inte-
grated tracking system for navigation in neurosurgery (2012)

5. Drouin, S., Kersten-Oertel, M., Chen, S.J.-S., Collins, D.L.: A realistic test and de-
velopment environment for mixed reality in neurosurgery. In: Linte, C.A., Moore,
J.T., Chen, E.C.S., Holmes III, D.R. (eds.) AE-CAI 2011. LNCS, vol. 7264,
pp. 13–23. Springer, Heidelberg (2012)

6. Mahvash, M., Besharati Tabrizi, L.: A novel augmented reality system of image
projection for image-guided neurosurgery. Acta Neurochirurgica, 1–5 (2013)

7. Mitha, A.P., et al.: Simulation and augmented reality in endovascular neurosurgery:
Lessons from aviation. Neurosurgery 72(suppl. 1), A107–A114 (2013)

8. Yudkowsky, R., et al.: Practice on an augmented reality/haptic simulator and li-
brary of virtual brains improves residents’ ability to perform a ventriculostomy.
Simulation in Healthcare 8(1), 25–31 (2013)

9. Shamir, R.R., et al.: Trajectory planning with Augmented Reality for improved
risk assessment in image-guided keyhole neurosurgery (2011)

10. Fitts, P.M.: The information capacity of the human motor system in controlling
the amplitude of movement. J. Exp. Psychol. 47(6), 381–391 (1954)



 

C.A. Linte et al. (Eds.): MIAR/AE-CAI 2013, LNCS 8090, pp. 249–257, 2013. 
© Springer-Verlag Berlin Heidelberg 2013 

Matching Functional Connectivity Patterns for Spatial 
Correspondence Detection in fMRI Registration 

Zhenyu Tang1,2, Di Jiang1,2,3, Hongming Li1,2, and Yong Fan1,2,* 

1 Brainnetome Center, Institute of Automation, Chinese Academy of Sciences,  
Beijing 100190, China 

2 National Laboratory of Pattern Recognition, Institute of Automation, 
 Chinese Academy of Sciences, Beijing 100190, China 

3 Department of Mathematics, Zhejiang University, Hangzhou 310027, China 
yfan@nlpr.ia.ac.cn, yong.fan@ieee.org 

Abstract. A novel method is proposed to match functional connectivity patterns 
represented by graphs for spatial registration of fMRI data. Different from ex-
isting functional connectivity pattern based registration methods that detect  
corresponding functional units across different subjects by minimizing their dif-
ference in functional connectivity strength, our method adopts a graph represen-
tation to characterize functional connectivity information among all voxels in 
fMRI data of each subject, then detects spatial correspondence between subjects 
using graph matching. To integrate information of both functional connectivity 
strength and spatial relations, the graph representation of functional connectivi-
ty information of fMRI data models each voxel as one graph node and connects 
each pair of graph nodes with an edge weighted by their functional connectivity 
strength measure, estimated as correlation coefficient between their functional 
signals. To make the graph matching computationally feasible, an iterative 
matching strategy with stochastic resampling is proposed to match graphs of 
spatially distributed local functional connectivity patterns and subsequently to 
drive the image registration iteratively. The proposed method has been  
validated by registering resting state fMRI data of 20 healthy subjects. The va-
lidation experiment results have demonstrated that our method can achieve im-
proved inter-subject functional consistency. A comparison experiment result 
has further indicated that the proposed method can achieve better performance 
than existing methods. 

Keywords: fMRI registration, graph matching, functional connectivity pattern. 

1 Introduction 

Functional Magnetic Resonance Imaging (fMRI) has been widely utilized in studies 
of neuroscience and neuropsychiatric disorders for investigating the brain’s function 
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architecture and function alternations due to diseases in vivo. To facilitate voxel-wise 
statistical analysis of fMRI data from multiple subjects, spatial alignment of fMRI 
data from different subjects is required as a preprocessing step. The spatial alignment 
of fMRI data is typically achieved by registering their corresponding Structural MRI 
(sMRI) data and using resulting mapping fields to align the fMRI data. However, 
brain functional units are not necessarily aligned with the brain anatomical structure 
consistently across different subjects due to inter-subject functional variability [1].  

Recently, several methods have been proposed for fMRI data registration based on 
the fMRI data themselves [2-4]. A method proposed in [2] directly used the functional 
signal at each voxel as features to detect corresponding functional units by maximiz-
ing correlation coefficient of inter-subject functional signals in fMRI data for achiev-
ing inter-subject cortical surface registration. However, such a method can only be 
used for task-oriented fMRI data, not suitable for registering resting-state fMRI data 
due to that resting state functional signals across different subjects are not always 
synchronic. Several studies have proposed to detect corresponding functional units 
across different subjects by maximizing similarity of functional connectivity patterns 
for spatial alignment of fMRI data. In [3], the spatial alignment of inter-subject cor-
tical surfaces was achieved by maximizing similarity of correlation matrices of func-
tional signals of the whole cortical surfaces, each encoding one subject’s whole brain 
functional connectivity pattern. A spectral embedding method was used in [4] to ex-
tract features from the whole brain correlation matrix of functional signals and the 
extracted features of different subjects were matched using a point set registration 
algorithm to compute mapping field. However, the features of different subjects ex-
tracted using the spectral embedding are not directly comparable, and ad hoc tech-
niques had to be adopted to make the features invariant to rotation, order and sign of 
individual coordinate axes [4]. In [5, 6] local functional connectivity pattern was  
defined for each voxel and estimated as a probability distribution of correlation coef-
ficients between functional signals of voxels within a local region of the voxel consi-
dered. All the available functional connectivity pattern based registration methods do 
not explicitly take into consideration the spatial relationship of functional connectivity 
information among different functional units.  

To integrate information of both functional connectivity strength and spatial rela-
tions, we propose to detect corresponding functional units by matching graph based 
functional connectivity patterns for fMRI data registration. In particular, each fMRI 
data is presented by a graph that encodes the whole brain functional connectivity in-
formation, containing both connectivity strength and spatial relationship in the fMRI 
data. In such a graph, voxels are regarded as graph nodes that are connected with 
edges weighted by functional connectivity measures between the connected graph 
nodes. The spatial correspondence detection between the two fMRI data of different 
subjects is then solved by graph matching [7, 8]. Both synthetic fMRI data and  
resting-state fMRI data of 20 subjects were used to evaluate our method and evalua-
tion results demonstrated that our method can improve the inter-subject functional 
consistency. 
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2 Methods 

2.1 Graph Representation of Functional Connectivity Pattern 

Given a subject’s fMRI data, its whole brain functional connectivity information is 
characterized by a graph , ), where  is a set of graph nodes modeling all 
gray matter voxels ( , … , ), and , | , 1, … , )  is a set of graph 
edges that connect all possible pairs of nodes. Each graph edge ,  is weighted by 
functional connectivity strength, estimated as the Pearson Correlation Coefficient 
(PCC) between functional signals at two nodes connected by the edge. Since the 
symmetric property of the PCC, the graph is undirected. 

2.2 Correspondence Detection by Graph Matching with Topological 
Constraint 

Given two graphs , ) with  nodes and , ) with  nodes, the objec-
tive of graph matching is to determine correspondence of nodes as well as edges of 
the two graphs, i.e., finding an assignment matrix 0, 1 , in which , 1 if 
node  in  corresponds to node  in , under the one-to-one constraint: ∑ , 1 1, … , ) and  ∑ , 1 1, … , ) . The graph matching 
problem can be formulated as arg max ),  

(1). .  0, 1 , ∑ ) 1, 1, … , ) , ∑ ) 1,1,…, ),

where  is a column vector obtained by concatenating each row of , and  is an 
 affinity matrix. In particular, diagonal and non-diagonal elements of  

describe node-to-node correspondence and edge-to-edge correspondence between two 
graphs, respectively. Since the functional signals in resting state fMRI data of differ-
ent subjects are typically not synchronous, especially for resting state fMRI data, the 
graph matching of functional connectivity patterns can only rely on the edge-to-edge 
correspondence. Therefore , 0, 1, … ,  and the edge-to-edge affinity is 
computed as 

, α , , ,  
 

(2) / , / , , , 

where ,  and ,  are edge weights calculated by the Pearson Correlation Coeffi-
cient (PCC) between functional signals at two nodes connected by the edge in  
(nodes  and , , 1, … , , ) and  (nodes  and , c , 1, … , , ) respectively.  and  are lengths (in pixel) of the edges 
from node  to  and from  to  respectively. The operator  rounds  to 
its nearest integer towards minus infinity. The optimization problem shown in Eqn. 
(1) is an Integer Quadratic Program (IQP). Since IQP is NP-hard,  is usually relaxed 
to have continuous values, i.e., 0,1  so that approximate solutions can be 
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obtained [7, 8]. In this study, we adopt the random walk based graph matching me-
thod proposed in [7] for its accuracy and computational efficiency. 

To achieve reliable matching, a topological constraint based on Jacobian deter-
minant of the mapping vectors is applied as a hard constraint in the graph matching. 
In particular, once a solution of the graph matching is available, spatial mapping is 
determined for each voxel , and Jacobian determinant ) of the deformation field 
at voxel  can be calculated. If ) 0 then the matched node is discarded. As 
illustrated in Fig. 1, there are two cases of matched nodes. Fig. 1 left shows the map-
ping vectors with . ) 0 while Fig. 1 right gives an example where . ) 0. The 
mapping vectors are obtained from nodes falling in a region centered at the red point 
and their matched nodes in the other graph. Matched nodes are marked in the same 
color. 

 

 

Fig. 1. Two cases of matched nodes and their corresponding mapping vectors (matched nodes 
in two graphs are in the same color). One mapping’s Jacobian determinant is greater than zero 
(left), and the other is less than zero (right). 

2.3 Dense Mapping Field Computation Using Iterative Graph Matching 

Since the computational cost is high to matching the whole brain graphs of functional 
connectivity patterns, we solve the graph matching problem using a stochastic resam-
ple strategy. In particular, graphs of functional connectivity patterns are built at even-
ly distributed spatial locations in the brain to capture local functional connectivity 
patterns, and then graphs of local functional connectivity patterns are matched to es-
tablish correspondence between subjects and drive the image registration iteratively.  

 

 

Fig. 2. Illustration of matching graph based connectivity pattern to achieve fMRI registration 
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Fig. 2 illustrates the whole process of our method for registering fMRI-1 (moving 
data) to fMRI-2 (fixed data). For the fMRI-1, a graph is constructed to capture a given 
voxel’s local connectivity patterns within its neighborhood. The graph is constructed 
within a Region of Interest (ROI, marked as a red rectangle) centered at this voxel. 
The voxel and its neighboring voxels in the ROI are nodes of the graph and each edge 
is weighted by the Pearson Correlation Coefficient (PCC) of functional signals be-
tween its connected nodes. In the same way, graphs of local functional connectivity 
patterns can be constructed for each voxel in fMRI-2. Then the correspondence be-
tween voxels of the two fMRI data are established by matching corresponding graphs 
using graph matching algorithms [7, 8]. It is worth noting that for each graph in the 
moving data, the matched graph is searched in a graph at the same voxel position but 
with a larger ROI in the fixed data. Based on all matched graphs, a dense mapping 
field for registering the moving data to the fixed one can be produced. The graphs 
illustrated in Fig. 2 are based on 2D fMRI data examples and 4-connectivity for sim-
plicity. In our method, all graphs are built on 3D fMRI data and fully connected.  

To achieve robust and efficient fMRI data registration, we adopt an iterative graph 
matching strategy to perform the image registration iteratively. In particular, at each 
iteration step, a pre-defined number of voxels are randomly sampled in the Gray Mat-
ter (GM) of the moving fMRI data because meaningful functional signals are located 
in the GM. To achieve sub-voxel regional accuracy, the fixed fMRI data is up-
sampled. For each pair of graphs at the same location in the moving and fixed fMRI 
data, the random walk based graph matching [7] with the topological constraint is 
used to establish spatial correspondence between their graph nodes. Such a procedure 
has been proved to be efficient and robust in non-rigid image registration [9]. Based 
on the corresponding voxels established by graphs, a dense mapping field can be ob-
tained by composing updating mapping field derived from the matched graphs after 
each iteration step formulated as 

, , ) , , , ) , 1, … , , 1, … , 1, … , , 
(3) , , ) , , ) , 

where  is the updating mapping field after the th iteration, w, h and l are 
width, height and length of the fMRI data,  is the mapping vector obtained from 
matched graphs at the th selected voxel located at position ,  is the pre-defined 
number of the selected voxels in each iteration, . ) is the Gaussian kernel defining 
weight for  at the position (x,y,z), and  is the currently obtained dense  
mapping field that is applied to the moving image for achieving a better spatial initia-
lization for the next iteration. The iterative process gradually improves the spatial 
alignment of corresponding functional units of the moving and fixed fMRI data. The 
iteration stops when converges, i.e., no significant change occurs in the resulting 
mapping field or the iteration excesses a pre-defined number. 
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3 Results 

Our proposed method was tested using synthetic fMRI images and resting-state fMRI 
data of 20 subjects. We also compared our method with an fMRI registration method 
that characterizes local functional connectivity pattern for each voxel using a proba-
bility distribution of correlations between functional signals of the voxel and its 
neighboring voxels within a local region [5,6]. 

The synthetic fMRI data were used to intuitively demonstrate the capability of 
finding corresponding position between two images by matching graphs of functional 
connectivity patterns. Each synthetic fMRI image contains two different regions (a 
rectangle and a circle), pixels in the same region are assigned with the same fMRI 
signal extracted from a real fMRI data, as shown in Fig. 3 left. Fig. 3 right shows 
corresponding pixels in both images and their spatial relations detected by the pro-
posed method. 

 

 

Fig. 3. Left: two synthetic fMRI images, each image contains two regions (a rectangle and a 
circle) and pixels in the same region are assigned with the same fMRI signal extracted from a 
real fMRI data. Right: corresponding pixels in both images and their spatial relations detected 
by the proposed method. 

Our method was also validated based on a resting state fMRI dataset with 20 
healthy subjects, obtained from http://fcon_1000.projects.nitrc.org (New York_b). All 
the image data were preprocessed by slice timing, head movement correction, band-
pass filtering, and regressing out signals of white matter and cerebrospinal fluid. No 
spatial smoothing was applied to the images. In addition, to reduce huge computa-
tional workload and to accelerate the convergence speed, fMRI data of all subjects 
were initialized by corresponding mapping fields obtained by registering their corres-
ponding sMRI data to the MNI152 space with a spatial resolution of 3×3×3 mm3 us-
ing ANTS (http://www.picsl.upenn.edu/ANTS/) with a nonlinear registration model, 
namely SyN [10]. A mask image of the brain gray matter was generated to constrain 
the randomly selected voxels only in the gray matter area.  

In our experiment, one fMRI data was randomly chosen as the fixed fMRI data 
(template) and the rest 19 fMRI data were registered to the template image. The fixed 
fMRI data was up-sampled by 2 folders to achieve sub-voxel registration accuracy. At 
each iteration step, 120 voxels were randomly selected and evenly distributed in the 
GM in the moving fMRI data. Since fMRI data have been initially registered by struc-
tural image registration in the preprocessing stage, for each selected voxel, a 3 3 3 
voxels ROI centered at the voxel was used to construct a graph representing the func-
tional connectivity pattern, while the graph for the voxel at the same position in the 
fixed fMRI data was constructed in an 11 11 11 voxels ROI. 
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the inter-subject functional distances across different subjects gradually decrease with 
the progression of our method. 

We also obtained registration results for the same fMRI dataset using the method 
proposed in [5, 6], referred to as PDF-based registration method. We performed the 
same DMN based evaluation for the registered fMRI data. Fig. 6 shows the number of 
voxels larger than each specific t value threshold using the method (noted as PDF-based 
method) and our method, indicating our method can get better registration performance. 

 

 

Fig. 6. Number of voxels in the DMN exceeding each specific t value threshold, determined by 
ICA on registered fMRI data. Then t value for each voxel was calculated by one sample t-tests 
across subjects based on the subject-specific Z-score maps for registered fMRI data by different 
methods, including PDF-based method and our method. 

4 Discussions 

We presented a novel fMRI image registration method that is directly based on the 
functional information. The image registration is driven by functional connectivity 
patterns that can overcome the problem of asynchrony of functional signals across 
different subjects. Different from the existing functional connectivity pattern based 
registration methods [3-6], we proposed a graph based representation to encode both 
the functional connectivity measures and their spatial information, which facilitates 
robust inter-subject spatial correspondence detection of the same functional units with 
spatial coherence. Such a representation of functional connectivity patterns is also 
generally applicable to both task-oriented and resting state fMRI data. The inter-
subject spatial correspondence detection between different subjects can then be con-
verted to the graph matching problem. Furthermore, to make the graph matching more 
robust and reliable, a topological constraint defined by the Jacobian determinant is 
added. To achieve an efficient image registration, an iterative graph matching strategy 
with stochastic resampling is introduced to perform the image registration that has 
been proved to be efficient and robust for non-rigid image registration [9]. The im-
plementation of our method can be further improved by 1) adopting an adaptive size 
of ROI to construct graphs of localized functional connectivity patterns, and 2) consi-
dering the statistical significance of functional connectivity measures of functional 
signals in graph based representation of functional connectivity patterns.  

The ongoing study is focusing on evaluating the proposed method by splitting  
the fMRI data into training and testing data along the time-dimension for  
cross-validation, and applying the method to datasets including both healthy subjects 
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and patients. Furthermore, we will optimize the algorithm to accelerate the computa-
tion with the help of parallel computation. 
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Abstract. Laparoscopic ultrasound is a useful adjunct for guidance in
minimally invasive surgery. Tracking the location of the ultrasound trans-
ducer relative to the laparoscope would enable an augmented reality
overlay of subsurface anatomical features on the surgeon’s field of view.
The accuracy of tracking is a critical aspect for such augmented reality
guidance. We propose stereo tracking of visible markers on a new “pick-
up” laparoscopic ultrasound transducer and a direct transformation of
the ultrasound image into the coordinates of a stereo laparoscope. We
also suggest that ultrasound calibration be performed using a separate
stereo camera system with a wide baseline. Such calibration is shown to
improve point reconstruction accuracy from 3.1 mm to 1.3 mm.

Keywords: Ultrasound, Augmented Reality, Robotic Surgery.

1 Introduction

Minimally invasive surgery (MIS) offers significant advantages compared to open
surgery. For example, incisions are smaller, there is less post-operative pain, and
a shorter post-operative recovery. However, MIS procedures have disadvantages
including: limited view of the surgical field, and reduction of surgical dexter-
ity. Two technologies hold promise to help overcome these disadvantages. These
are stereo laparoscopes which improve a surgeon’s depth perception and laparo-
scopic ultrasound (LUS) which improve visualization of subsurface anatomical
features. Industry has recognized the demand for stereo laparoscopes as repre-
sented firstly, by the inclusion of a stereo laparoscope with the da Vinci Surgical
System (Intuitive Surgical, Sunnyvale, CA, UBC), [7] and secondly, by the de-
velopment of stereo laparoscopes for non-robotic MIS such as the Viking 3DHD
Vision System (Viking Systems, Westborough, MA, USA) and the Endoeye Flex
3D (Olympus, Shinjuku, Tokyo, Japan). There is growing interest in the use of
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stereo laparoscopy for standard laparoscopy and for tracking tools and instru-
ments as part of an augmented reality system [8].

LUS improves surgical safety by allowing surgeons to visualize important
anatomy beneath the organ surface. 82% of surgeons practicing endoscopy expect
an increase in the use of LUS in the next 5-years [17]. To improve the accessibility
and ease of interpretation of LUS, several research groups have developed aug-
mented reality LUS systems by tracking the position of a LUS transducer. Offline
ultrasound calibration must be performed to determine the transformation from
the ultrasound image coordinate system to the LUS transducer marker coordi-
nate system. During ultrasound calibration and during surgery, the accuracy of
the tracking of the LUS transducer determines the overall accuracy of the aug-
mented reality LUS system. Tracking of the LUS transducer has been achieved by
robotic kinematics [13], optical tracking [9,12], electromagnetic tracking [3], and
a combination of optical tracking and electromagnetic tracking [4]. An external
base coordinate system, which must be used for tracking with robot kinematics,
electromagnetic tracking and external optical tracking, makes tracking suscepti-
ble to error amplification due to the lever-arm effect. Maximizing the calibration
accuracy is critical to these augmented reality systems.

One of our previous contributions to the field of robotic LUS was the develop-
ment of a small “pick-up” LUS transducer that can be picked-up by the da Vinci
robot and controlled by the surgeon at the da Vinci console [15]. BK Medical
(Herlev, Denmark) sells a similar product called the ProART. In this paper we
propose an augmented reality LUS system using the new pick-up LUS transducer
[15] and stereo laparoscopy. Pratt et al. developed a similar augmented reality
LUS system for mono laparoscopy and a pick-up LUS transducer [12]. They used
the laparoscope to track the LUS transducer and eliminated the need for an ex-
ternal base coordinate system. This visual tracking of the LUS transducer offers
the potential of higher accuracy due to a reduced lever-arm effect and a direct
transformation from the ultrasound image to the camera via visible markers on
the LUS transducer [12]. Our proposed augmented reality LUS system also uses
visual tracking and eliminates the external base coordinate system. Furthermore,
we address the problem that stereo laparoscopes have a narrow baseline (camera
spacing of about 5 mm) which results in narrow triangulation and poor accuracy
of stereo laparoscope augmented reality systems [18].

Our primary innovation is to separate ultrasound calibration and LUS trans-
ducer tracking. We use a 75 mm baseline stereo camera for ultrasound calibra-
tion and a stereo laparoscope for LUS tracking. For both ultrasound calibration
and LUS tracking we use the same LUS optical fiducials and the same tracking
method. This approach should reduce the ultrasound calibration error. We mea-
sure accuracy by using the tracked LUS to estimate the location of a pinhead
of known location in the camera coordinate system. To our knowledge, Leven et
al. [9] proposed, but did not report, results for direct visual tracking of a LUS
with a stereo laparoscope, so this is the first such report. A second aspect of
this project is to characterize the accuracy of an augmented reality LUS system
as a function of a changing camera focal length. We do this to understand the
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consequences of a surgeon changing the focal length of the stereo laparoscope
during surgery to optimize the view of the surgical field [16].

The objective and novelty of this paper is to show how the size of camera
baseline during ultrasound calibration affects the error of an augmented reality
LUS system.

2 Methods

This section describes the apparatus that was used, the calibration and tracking
methods, and the experiments. We compared the combination of a wide baseline
calibration and narrow baseline tracking (our proposal) to a combination of
narrow baseline calibration and narrow baseline tracking (the standard approach
of using the same sensor for calibration and tracking). Accuracy and precision
of the two proposed augmented reality LUS systems are reported. Henceforth,
the stereo laparoscope will be referred to as a narrow baseline camera.

2.1 Apparatus, Calibration and Tracking

We used a SonixTOUCH ultrasound machine (Ultrasonix Medical Corporation,
Richmond, BC, Canada) with a 10MHz LUS transducer (28 mm linear array)
[15]. The LUS transducer is designed to take advantage of the dexterity of the
da Vinci tools. It can be picked up with the da Vinci Pro-Grasp tool and be
moved in all 6 DOF. Furthermore, the surgeon at the da Vinci console con-
trols the movement of the LUS transducer which allows the surgeon’s natural
hand-eye coordination to aid interpretation of the 3D anatomy from a set of 2D
cross-sectional images. All ultrasound images were taken at an ultrasound im-
age depth of 20 mm. All camera images (stereo camera calibration, ultrasound
calibration and validation experiments) were taken simultaneously with the two
camera systems allowing for a more controlled comparison of the accuracies of
the respective camera combinations. The narrow baseline camera is a wide angle
NTSC da Vinci stereo laparoscope from the da Vinci Surgical System (Stan-
dard). It has a narrow baseline of 5 mm and a resolution of 720 × 486 pixels.
The wide baseline camera system has a baseline of 75 mm and consists of two
Flea2 cameras (Point Grey Research, Richmond, Canada) with a resolution of
1280 × 960 pixels. It has previously been observed that a similar difference in
camera resolution did not have a significant effect on camera calibration results
[12], so the important difference is the baseline. The calculation of the intrinsic
and extrinsic camera parameters and lens distortion coefficients was done with
the Caltech Camera Calibration toolbox [2] using about 20 images of unique
poses of a 8 × 10 checkerboard with 5 mm squares.

To define the LUS transducer marker coordinate system we used a similar
approach to Pratt et al. [12] in which a small checkerboard is mounted onto the
LUS. We placed a 6 × 2 and a 7 × 2 checkerboard with 3.175 mm squares on the
two flat (9 mm × 27 mm) surfaces on each side of the LUS transducer [Figure
1]. Our checkerboard is made of surgical identification tape (KeySurgical Inc.,
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Eden Prairie, MN, USA) which is approved for internal human use, repeated
sterilization cycles and designed to be semi-permanently attached to surgical
instruments. Using a camera to track an ultrasound transducer for construction
of 3D ultrasound images has been done previously [1].

Fig. 1. Left: Picture showing the da Vinci Pro-Grasp tool holding the “pick-up” LUS
transducer which has checkerboard markers on it. Right: Same picture as left with
addition of 3D coordinate system overlay showing the axes of the LUS transducer
marker coordinate system (T). The z axis and the normal of the ultrasound imaging
plane are almost parallel.

We used the triple N-wire ultrasound calibration technique [10]. The triple N-
wire phantom was precisely manufactured with the Objet30 desktop 3D printer
(Objet Inc., Billerica, MA, USA) which has 28 micrometer precision. For defining
the location of the N-wires in the coordinate system of the phantom we used
an Optotrak Certus optical tracker (Northern Digital Inc, Waterloo, Ontario,
Canada) to track four NDI markers on our phantom and an NDI tracked stylus
that was used to select the 18 N-wire holes. An Optotrak is not strictly required
for this step; we could have used the known geometry of our CAD model to
calculate the same geometric relationships. The phantom bath was filled with
distilled water and 9% by volume glycerol [11] to achieve a sound speed of
1540 m/s.

For ultrasound calibration and tracking experiments the LUS transducer was
placed at a distance of 100 mm from the narrow baseline camera and 150 mm
from the wide baseline camera. Figure 2 includes a picture of the experimen-
tal setup (left) and a diagram of the four coordinate systems. The coordinate
systems are: #1) Ultrasound image coordinate system (I), #2) LUS transducer
marker coordinate system (T), #3) Camera coordinate system (C) and #4)
Phantom coordinate system (Ph). The camera coordinate system (C) represents
either the coordinate system of the wide baseline or narrow baseline camera.

Equation (1) shows the transformation from the ultrasound image coordinate
system (x,y with units of mm) to the camera coordinate system (a,b,c with units
of mm). The ultrasound calibration matrix - the fixed 6DOF transformation from
the ultrasound image to LUS transducer marker coordinate system ( TT

I) - is
the part of that equation that is determined offline prior to LUS imaging during
surgery. The transformation from the LUS transducer marker coordinate system
to the camera coordinate system ( TC

T ) is solved by using a corresponding point
algorithm between the known location of the 21 saddle points on the transducer
checkerboard in the transducer coordinate system and the camera coordinates of
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Fig. 2. Two pictures of the experimental setup. Left: The wide baseline and narrow
baseline (stereo laparoscope) cameras are in the foreground and the pick-up LUS trans-
ducer and triple N-wire phantom are in the background. Right: The LUS transducer,
held by the da Vinci Pro-Grasp tool, is directly above the N-wires. The phantom op-
tical fiducials are in the background. The four experimental coordinate systems (I, T,
C and Ph) and the transformations between them ( TC

T , TT
I , TC

Ph) are shown.

those same saddle points as determined by a Harris corner detector and stereo-
triangulation [5]. The transformation from the phantom to the camera ( TC

Ph) is
solved in the same way except the points are the four centers of the NDI markers
and their locations in the camera images are selected manually.
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For each LUS image of the N-wire phantom, the location in the phantom co-
ordinate system where the wires intersect the ultrasound imaging plane (d,e,f)
are calculated by segmenting the wire ultrasound points and using the distance
between the points and the known geometry of the N-wire phantom. The ultra-
sound calibration matrix ( TT

I) is solved by using a corresponding point algo-
rithm [5] between the N-wire points (d,e,f), projected from the phantom to LUS
transducer marker coordinate system, (see equation (2)) and the same N-wire
points (x,y) in the ultrasound image coordinate system. Ultrasound segmenta-
tion is done via a semi-automatic algorithm which finds the location of each wire
by finding the centroid of the ultrasound image pixels associated with each wire.
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In total, 30 LUS transducer poses were captured for calibration. The 30 poses
were randomly assigned to ten groups of 10, ten groups of 15 and one group of
30 and the ultrasound calibration matrix for each group was calculated. During
ultrasound calibration, the LUS transducer covered an approximately uniform
range within a 5×5×20 mm cuboid and Euler angles of 23◦, 11◦, and 23◦ about
the x, y and z axes of the LUS transducer marker coordinate system of the first
LUS transducer pose [Figure 1].

In summary we built our experimental apparatus so we could compare the
combination of a wide baseline camera for ultrasound calibration and a narrow
baseline camera for tracking to the combination of a narrow baseline camera for
both ultrasound calibration and tracking.

2.2 Experiments

2.2.1 Point Reconstruction Accuracy and Precision

To estimate the pinhead’s location in the camera coordinate system, it is seg-
mented from each ultrasound image and its location is transformed to the camera
coordinate system as shown in equation (1). Its actual location is determined
by stereo triangulation of the pinhead location after draining the fluid medium.
Accuracy is the Euclidean distance from the average of the estimated pinheads
location to the actual pinhead location. Precision is the average Euclidean dis-
tance from each estimated pinhead location point to the centroid of those points.
These measures account for errors in calibration as well as alignment, segmen-
tation, tracking and other errors [6]. However, we kept alignment, segmentation
and tracking constant across experiments so the changes in accuracy and preci-
sion are primarily due to the different ultrasound calibration matrices. The same
22 LUS transducer poses were used for all point reconstruction experiments. The
LUS transducer covered an approximately uniform range within a 6×8×10 mm
cuboid and Euler angles ranged over 22◦, 16◦, and 28◦ about the x, y and z axes
respectively of the LUS transducer marker coordinate system of the first LUS
transducer pose. The pinhead is plastic and has a diameter of 2.5 mm.

2.2.2 Point Reconstruction Accuracy as a Function of Focal Length

In this experiment the change in accuracy and precision is calculated for a change
of focal length from 100 mm to 160 mm. The focal length of the stereo laparo-
scope was changed to 160 mm, the LUS transducer was moved to a distance of
about 160 mm from the stereo laparoscope and 16 new LUS transducer poses
were captured. The location of the LUS transducer was calculated using the
100 mm focal length camera calibration parameters and separately with the
160 mm focal length camera calibration parameters. Both sets of camera cali-
bration parameters were calculated with 20 images of an 8 × 10 checkerboard
and the Caltech Camera Calibration toolbox [2]. The stereo laparoscope is set to
a focal length of 100 mm or 160 mm by placing a checkerboard perpendicular to
the viewing direction at those respective distances and adjusting the focus until



264 P. Edgcumbe, C. Nguan, and R. Rohling

the checkerboard is sharply in focus. This approach is necessary because the da
Vinci application programming interface does not report the focal length.

3 Results

3.1 Point Reconstruction Accuracy and Precision

The wide baseline approach for calibration improved accuracy (reduced point tar-
get localization error) from 3.1 mm to 1.3 mmwhen 30 LUS transducer poses were
used for calibration (Table 1). A similar trend was seen for 10 and 15 calibration
poses. A greater number of poses appear to help repeatability of the calibration.

Table 1. Point reconstruction accuracy (mm) ± standard deviation for the combina-
tion of narrow baseline calibration and tracking and the combination of wide baseline
calibration and narrow baseline tracking. 30 LUS transducer poses were captured for
calibration and randomly assigned to ten groups of 10, ten groups of 15 and one group
of all 30 poses.

Stereo camera type Stereo camera type # of calibration poses
for ultrasound calibration for tracking LUS 10 15 30

Narrow baseline Narrow baseline 3.3 ± 1.3 3.3 ± 0.9 3.1

Wide baseline Narrow baseline 1.5 ± 0.4 1.4 ± 0.3 1.3

The wide baseline approach for calibration improved precision a small amount
(Table 2).

Table 2. Point reconstruction precision (mm) ± standard deviation for the combina-
tion of narrow baseline calibration and tracking and the combination of wide baseline
calibration and narrow baseline tracking. 30 LUS transducer poses were captured for
calibration and randomly assigned to ten groups of 10, ten groups of 15 and one group
of all 30 poses.

Stereo camera type Stereo camera type # of calibration poses
for ultrasound calibration for tracking LUS 10 15 30

Narrow baseline Narrow baseline 1.3 ± 0.2 1.4 ± 0.1 1.3

Wide baseline Narrow baseline 1.2 ± 0.1 1.1 ± 0.1 1.2

3.2 Point Reconstruction Accuracy as a Function of Focal Length

Table 3 shows the accuracy and precision of the point reconstruction test after
moving the LUS transducer from a distance of 100 mm to 160 mm and changing
the focal length from a distance of 100 mm to 160 mm without updating the
camera calibration parameters. The change of focal length without updating the
camera calibration parameters decreases accuracy (increased point target local-
ization error) to about 20 mm. When the stereo camera is calibrated at 160 mm
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Table 3. Point reconstruction results (mm) ± std for the LUS transducer at a distance
of 160 mm from the narrow baseline camera. The focal length (mm) is the focal length
at which the stereo camera calibration parameters were calculated. 30 LUS transducer
poses were captured for calibration and randomly assigned to ten groups of 15.

Stereo camera type Stereo camera type Focal Length Accuracy Precision
for ultrasound calibration for tracking LUS (mm) (mm) (mm)

Narrow baseline Narrow baseline 100 19.2 ± 0.7 1.8 ± 0.2

Wide baseline Narrow baseline 100 20.2 ± 0.2 1.5 ± 0.1

Narrow baseline Narrow baseline 160 2.6 ± 1.0 1.8 ± 0.2

Wide baseline Narrow baseline 160 0.8 ± 0.4 1.5 ± 0.1

and those camera calibration parameters are used accuracy returns to 0.8 mm
and 2.6 mm for wide baseline and low baseline camera tracking respectively.
These results are similar to what was observed when the LUS transducer was at
a distance of 100 mm.

4 Discussion and Conclusion

We have shown a millimeter level of accuracy for an augmented reality LUS
system via direct visual tracking using a stereo laparoscope, suggesting it is a
viable option for guidance in minimally invasive surgery. When we implement our
proposed method of using a wide baseline (75 mm) stereo camera for ultrasound
calibration and a narrow baseline (5 mm) stereo laparoscope for tracking the
accuracy is 1.3 mm (Table 1). When the narrow baseline camera system is used
for ultrasound calibration and tracking, accuracy of 3.1 mm is achieved. This
reinforces the need for careful consideration of the ultrasound calibration step.

Most other research groups that developed augmented reality LUS systems
used tracking systems that include an external base coordinate system such as
optical tracking [9], electromagnetic tracking [3], and a combination of optical
tracking and electromagnetic tracking [4]. These groups have reported point re-
construction errors in the approximate range of 1.5 mm and 3 mm. It should be
noted that direct comparisons of accuracy results are difficult because of differ-
ences in apparatus, tests and definitions of accuracy. The novelty in our work is
the use of a different stereo camera system for the ultrasound calibration and
the direct visual tracking of the LUS transducer with a stereo laparoscope. The
concept of using a different sensor for ultrasound calibration is broadly applica-
ble. With the increasing adoption of the da Vinci, Viking and Olympus stereo
laparoscopes, the need for understanding the challenges associated with direct
visual tracking with a stereo laparoscope will continue to grow. Furthermore, di-
rect visual tracking has an elegant simplicity that minimizes the extra equipment
required to implement the system and electromagnetic field distortion is not a
concern. One drawback is the need for a line of sight between the laparoscope
and the LUS transducer, but this is naturally performed by the surgeon when
placing the LUS transducer over a region of interest. A second drawback is that
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blood or other fluid may obscure part of the LUS checkerboard optical markers.
However, as long as part of the checkerboard remains visible the LUS transducer
can still be tracked, albeit with reduced accuracy.

To further understand the effect of camera baseline on accuracy we calcu-
lated the accuracy of the combination of wide baseline calibration and tracking
and the accuracy of the combination of narrow baseline calibration with wide
baseline tracking. The results were 0.6 mm and 2.45 mm respectively. For these
experiments we used the same 30 LUS transducer poses that were captured for
calibration and the same 22 LUS transducer poses that were captured to deter-
mine the accuracy and precision. Thus, the best case accuracy is 0.6 mm and we
surmise that using a narrow baseline camera for tracking decreases accuracy (in-
creases point target localization error) by about 0.7 mm to the overall accuracy
of 1.3 mm (see Table 1).

The next steps for this project include real-time implementation, clinical val-
idation and further accuracy improvements. The custom-built pick-up LUS [15]
used in this experiment has a built-in EM sensor so visual tracking and EM sensor
fusion is possible [4]. Further work will also address our finding that the change
in stereo laparoscope camera focal length during the operation has a dramatic
effect on the error of the point reconstruction accuracy. In future work we plan
to match the camera calibration parameters to a range of pre-calibrated setting
by using the checkerboard that is already mounted on the LUS transducer as
a guide to the approximate camera calibration parameters. Several applications
we may pursue for the stereo laparoscope augmented reality LUS system are
guidance during MIS hepatic or renal tumour resections, pre-operative CT scan
to intra-operative ultrasound registration and display of absolute elastography
images [14]. Regardless, the stereo laparoscope augmented reality LUS system
is broadly applicable across a large range of surgeries.
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Abstract. The purpose of this study was to compare multiple voxel-based 
morphometry (VBM) approaches and analyze the whole-brain white matter 
(WM) changes in the unilateral temporal lobe epilepsy (TLE) patients relative 
to controls. In our study, the performance of the VBM approaches, including 
standard VBM, optimized VBM and VBM-DARTEL, was evaluated via a 
simulation, and then these VBM approaches were applied to the real data 
obtained from the TLE patients and controls. The results from simulation show 
that VBM-DARTEL performs the best among these VBM approaches. For the 
real data, WM reductions were found in the ipsilateral temporal lobe, the 
contralateral frontal and occipital lobes, the bilateral parietal lobes, cingulated 
gyrus, parahippocampal gyrus and brainstem of the left-TLE patients by VBM-
DARTEL, which is consistent with previous studies. Our study demonstrated 
that DARTEL was the most robust and reliable approach for VBM analysis. 

1 Introduction 

Voxel-based morphometry (VBM) is a computational quantitative magnetic 
resonance image (MRI) analysis technique which can detect the differences of the 
brain tissue composition between groups. Compared with the conventional region-of-
interest (ROI) analysis, VBM is fully automated and unbiased, and is not restricted to 
the analysis of specific brain regions. VBM was first proposed by Ashburner and 
Friston [1], which allows a voxel-wise study of differences in tissue concentration 
throughout the whole brain between groups. An optimized VBM method was 
introduced by Good et al. [2], improving image registration and segmentation. More 
recently, the preprocessing steps of VBM have been improved with the 
Diffeomorphic Anatomical Registration Through Exponentiated Lie algebra 
(DARTEL) registration method [3]. DARTEL was proposed by Ashburner as an 
alternative to the traditional registration measures in statistical parametric mapping 
(SPM), which can achieve more accurate inter-subject registration of brain images.  
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VBM has been applied to detecting the pathological changes in various diseases [4-
6]. In particular, there have been lots of studies focusing on the application of VBM in 
temporal lobe epilepsy (TLE) [6-8]. TLE is one of the most frequent forms of partial 
epilepsy in adults, and is defined as a chronic neurological condition characterized by 
recurrent unprovoked seizures originating from temporal lobe. Many MRI studies 
have shown that structural abnormalities associated with TLE have been found in the 
hippocampus as well as other structures in extrahippocampal regions. Keller et al. [8] 
compared the standard and the optimized VBM for analysis of brain abnormalities in 
TLE, revealing that the optimized VBM might detect the subtle neuroanatomical 
changes that were not found in the standard VBM. According to previous studies, we 
found that most studies focused on finding gray matter (GM) atrophies in TLE 
patients, while a few studies on white matter (WM) abnormalities. 

As DARTEL is a very recent technique used in VBM, only a few studies have 
applied this new method in VBM [9], and there has not been any studies detecting the 
structural changes in TLE with DARTEL. Yassa et al. [10] evaluated several 
registration approaches, concluding that DARTEL was a real improvement over the 
standard registration method. However, VBM-DARTEL was not compared with other 
VBM approaches in previous studies. 

In our study, we first evaluated these VBM techniques (standard VBM, optimized 
VBM, and VBM-DARTEL) via simulated data to provide a ground truth. Then these 
VBM approaches were applied to the real data to detect the WM abnormalities 
between the unilateral TLE patients and controls. This is the first study to compare 
VBM-DARTEL with standard and optimized VBM and be applied to TLE, and the 
performance of these multiple VBM approaches was quantified in our study. 

2 Materials and Methods 

2.1 Simulation of Atrophy 

Images with simulated atrophy can act as the gold standard for evaluating the relative 
merits of various VBM approaches. We employed 20 normal anatomical models from 
BrainWeb (http://www.bic.mni.mcgill.ca/brainweb/) and the algorithm developed by 
Karacali and Davatzikos, which automatically simulated anatomical deformations, 
was used to simulate the volumetric loss of 3D images [11]. To eliminate inter-
individual differences, the 20 normal models were considered as the controls, and the 
corresponding images with simulated atrophies were the patients. We selected three 
regions (centered in the left hippocampus, the right frontal lobe and the right occipital 
lobe) to simulate atrophies (Fig. 1).  The radius of the three regions was 5/5/2mm, 
and the atrophied degree was 25±1.62%, 10±1.75%, 25±1.62%, respectively. In 
addition, we add Gaussian noise to all the images (SNR=33).The acquisition 
parameters were as follows: TR/TE=22/9.2 ms, flip angle (FA) =30° and 1 mm 
isotropic voxel size. 
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2.2 Subject and Data Acquisition 

The study group consisted of 20 left-TLE patients (age: 33.2±8.1 years; 9 males), 20 
right-TLE patients (age: 34.1±7.2 years; 9 males) and 20 controls with no history of 
neurological or psychiatric symptoms (age: 32.2±6.2 years; 9 males). All of these 
groups were matched in age and gender. The laterality of the seizures origin was 
determined based on medical history, ictal EEG and hippocampal atrophy observed 
on MRI. Written informed consent was obtained from each subject before the study. 

T1-weighted MRI scans were obtained using a 3 Tesla scanner with following 
parameters: TR/TE/TI = 7/3/400 ms, slice thickness = 1.6 mm, FA= 15°, matrix size 
= 256×256, field of view (FOV) = 24×24 cm2, yielding axial slices with in-plane 
resolution of 1×1 mm2. 

 

Fig. 1. Landmarks for simulated atrophies centered in (A) the left hippocampus, (B) the right 
frontal lobe and (C) the right occipital lobe 

2.3 Image Preprocessing 

All the 3D T1-weighted images were brain extracted to exclude the non-brain tissues 
and reoriented with the origin set close to the anterior commissure (AC). All these 
images were then preprocessed with multiple VBM approaches detailed as follows. 
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Preprocessing steps were performed by using Statistical Parametric Mapping (SPM8) 
(http://www.fil.ion.ucl.ac.uk/spm, Wellcome Department of Cognitive Neurology, 
London, UK, 2008) on a Matlab 7.6 platform (MathWorks, Natick, MA, USA). 

The methodology of the standard VBM was proposed by Ashburner and Friston in 
2000 [1], which was used to detect the differences in tissue density between groups. 
All the skull-stripped and reoriented images were spatially normalized to the Montreal 
Neurological Institute (MNI) space by minimizing the residual sum of squared 
differences between structural MRI and the ICBM 152 template image. The data were 
then resampled to 1.5×1.5×1.5 mm3. All these images were partitioned into GM, WM 
and CSF using the unified segmentation algorithm with bias correction incorporated 
in [12]. WM images were then smoothed with an 8-mm smoothing kernel. 

The optimized VBM method customized a study-specific template obtained from 
all the subjects. Each reoriented image was normalized to MNI template and resliced 
to 1.5-mm isotropic voxels. Then, they were smoothed with an 8-mm Gaussian 
kernel. The whole-brain template was created by averaging all these images. The 
reoriented images were then normalized to the customized template and resliced to 
1.5×1.5×1.5 mm3.  After that, the unified segmentation algorithm [12] was 
performed. The segmented WM images were smoothed with 8-mm FWHM and the 
average image was the specific WM template. The reoriented images were segmented 
in native space. Each segmented WM image was normalized to the study-specific 
WM template with the normalization parameters applied to the reoriented images. 
Then, these normalized images were segmented again. Furthermore, modulation was 
alternative to correct for volume changes, creating the Jacobian scaled warped WM 
images. These images were then smoothed with an 8-mm Gaussian filter. 

In VBM-DARTEL method, each reorientated image was first segmented into GM, 
WM and CSF in native space and then Procrustes aligned GM and WM images were 
generated by a rigid transformation. The resolution of the aligned images was 
specified as 1.5×1.5×1.5 mm3.  The study-specific GM/WM templates were then 
created by the aligned images from all the patients and controls. The procedure began 
with the generation of an original template computing the average of all the aligned 
data, followed by the first iteration of the registration on each subject in turn. Thus, a 
new template was created and the second iteration began. After six iterations, the 
template was generated, which was the average of the DARTEL registered data. 
During iterations, all images were warped to the template yielding a series of flow 
fields that parameterized deformations, which were employed in the modulation step. 
Since the previous processing was in native space, it was a requirement to transform 
all the normalized, modulated data into MNI space. After the space transformation, all 
these images were smoothed with an 8-mm FWHM isotropic Gaussian kernel. 

2.4 Statistical Analysis 

Based on the general linear model, statistical parametric maps were created to identify 
brain regions with significant changes in patients relative to controls. As the simulated 
data, all the preprocessed WM images were analyzed with paired t test. An absolute 
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threshold of 0.1 was used in the analysis. Since the images of controls and patients are 
from identical subjects, covariates (such as total intracranial volume (TIV), age and 
gender) were not considered in this model. The performance of the three VBM 
approaches was quantitatively evaluated by the ratio which was calculated by dividing 
the number of true positive voxels by the number of all the detected voxels with 
increasing t values. As the real data, the processed WM images were analyzed using 
two-sample t-test. The absolute threshold was set to 0.1. TIV, age and gender were 
incorporated in the design as nuisance covariates. The statistical parametric maps 
were thresholded at a p value of ＜0.05 by False Discovery Rate (FDR) to correct for 
multiple comparisons, and the extent threshold was set to 20. 

 

Fig. 2. Significant WM atrophies detected by (a) standard VBM, (b) optimized VBM 
(unmodulated), (c) optimized VBM (modulated), and (d) VBM-DARTEL using simulated data 
(p < 0.05, corrected for multiple comparisons using FDR, cluster size > 20 voxels) 

3 Results 

As the simulated data, significant WM atrophies detected by VBM approaches were 
shown in Fig. 2. We can see that all the VBM approaches have detected more or less 
degree of significant atrophies in the regions under the ground truth. With standard 
VBM (Fig. 2a), WM density changes were detected, but some false positive regions 
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were also found. Using optimized VBM without modulation (Fig. 2b), less false 
positive regions were seen in the WM compared with standard VBM. For modulated 
data (Fig. 2c), the optimized VBM method examined more significant atrophies in 
WM, and fewer false positive regions were presented. With VBM-DARTEL (Fig. 
2d), most true positive regions and least false positive regions displayed. The two 
regions with 5-mm radius were detected in each VBM method. However, the detected 
area of the region with 10% atrophy degree was smaller in each VBM approach 
except VBM-DARTEL. In addition, the atrophied region simulated with 2-mm radius 
and 25%-atrophy was only detected by VBM-DARTEL. Hence, a conclusion can be 
drawn that VBM-DARTEL is more robust and reliable than other VBM methods. 

The ratio of the true positive voxels in the detected regions with increasing t values 
was calculated to quantitatively evaluate the performance of VBM approaches (Fig. 
3). For the same t threshold, the higher the ratio is, the better the performance is. It is 
clear that with the t value increased, the ratio increased and reached 100% fastest with 
VBM-DARTEL method, indicating that VBM-DARTEL performed best. The order 
of the performance of these VBM approaches is: VBM-DARTEL > optimized VBM 
(modulated) > optimized VBM (unmodulated) > standard VBM. 

As the real data, significantly reduced WM concentrations were detected by the 
standard VBM protocol in the left-TLE patients (Fig. 4 (a)) but not by the optimized 
VBM without modulation. For VBM-DARTEL and the optimized VBM with 
modulation, which contained a modulation step, WM volume reductions were found 
in the left-TLE patients (Fig. 4 (b), (c)). Fig. 4 shows that the locations of significant 
regions detected by standard VBM are more widely distributed. The distributions of 
significant atrophies detected by optimized VBM (modulation) and VBM-DARTEL 
were similar but obviously larger extents were found using VBM-DARTEL. 

 

Fig. 3. The performance evaluated by the ratio of true positive voxels in the detected regions 
with increasing T values 
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Concluded from the simulation, VBM-DARTEL is more robust and reliable than 
other VBM approaches. Using VBM-DARTEL, the left-TLE patients showed WM 
volume decreases predominantly focused in the ipsilateral temporal lobe, the 
contralateral frontal and occipital lobes, the bilateral parietal lobes, cingulated gyrus, 
parahippocampal gyrus and brainstem (Table. 1). However, no significant WM 
concentration/volume reductions were examined in the right-TLE patients.  

 

Fig. 4. Regions with significantly reduced white matter concentration/volume in the left-TLE 
patients (p<0.05, corrected for multiple comparisons using FDR) relative to controls by (a) 
standard VBM, (b) optimized VBM with modulation, and (c) VBM-DARTEL 

Table 1. Significant reductions in white matter detected in the left-TLE patients versus controls 
by VBM-DARTEL (p<0.05, corrected for multiple comparisons using FDR, cluster size > 20) 

Anatomical location Side 
Talairach coordinates 

p(FDR-corr) t Cluster 
x(mm) y(mm) z(mm) 

Cingulate gyrus L 0 -9 31 0.024  5.07  25173 

-12 -36 34 0.027  3.17  90 

Superior temporal gyrus L -37 -1 -18 0.024  4.40  3911 

ParaHippocampal gyrus R 34 -8 -20 0.024  3.74  1482 

Inferior frontal gyrus R 45 17 13 0.025 3.38 113 

Inferior parietal lobule L -49 -44 26 0.026  3.22  149 

Middle occipital gyrus R 34 -67 7 0.036  2.85  45 

Precuneus R 15 -47 49 0.037  2.83  32 

Transverse temporal gyrus L -37 -33 14 0.038  2.80  28 

Brainstem R 10 -15 -3 0.039  2.79  54 
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4 Discussion and Conclusions 

In the present study, the performance of various VBM approaches (standard VBM, 
optimized VBM and VBM-DARTEL) was first evaluated by simulation, concluding 
that VBM-DARTEL performed the best and the optimized VBM with modulation 
came second.  In the left-TLE patients, WM reductions were found in the ipsilateral 
temporal lobe, the contralateral frontal and occipital lobes, the bilateral parietal lobes, 
cingulated gyrus, parahippocampal gyrus and brainstem by VBM-DARTEL. To the 
best of our knowledge, this is the first study to quantitatively evaluate VBM-
DARTEL with standard and optimized VBM methods. 

Previous studies [10] evaluated several registration approaches, concluding that 
DARTEL was a real improvement over the standard method. Keller et al. [8] revealed 
that the optimized VBM might detect more subtle neuroanatomical changes than 
standard VBM. In our study, VBM-DARTEL showed the best performance, next 
came the optimized VBM with modulation, which was a support to previous study. 

There are many factors which may affect the results. First, voxels alignment is 
concernful in the preprocessing. Compared with other VBM methods, registration in 
DARTEL involves simultaneously minimizing the sum of squares difference between 
source and target images as well as the linear elastic energy of the deformations. 
While the normalization in SPM estimates nonlinear deformations by the linear 
combination of discrete cosine transformations, DARTEL provides high dimensional 
warping. Second, modulation is an important step in VBM. After nonlinear 
normalization, the volume of some regions may change. Modulation is the step to 
preserve the volume of a particular tissue within a voxel. With modulation, it is 
allowed to detect the volume changes. Third, template may also affect the results. In 
standard VBM, the template is ICBM 152 template. In optimized VBM, the template 
is generated by averaging the smoothed images from all subjects, which was matched 
with the study group. In DARTEL, the template is also created from all the subjects, 
but the procedure is iterative, which may improve the results. Many previous studies 
[8] have demonstrated the study-specific template might obtain more accurate results.  

Some studies reported WM reductions of TLE patients in temporal lobe, frontal 
lobe and the corpus callosum [7]. Mueller et al. [8] found WM reductions in parietal 
lobe, parahippocampal gyrus and brainstem. Our results were consistent with these 
studies. Besides, our results from VBM-DARTEL showed more significant reductions 
in cingulated gyrus and occipital lobe, which was also detected in GM atrophy by 
Keller et al. [6]. Thus, our results have demonstrated the validity of VBM-DARTEL. 

In our study, no significant WM atrophies were observed in the right-TLE patients. 
Coan et al. [13] reported that the atrophied progression was less intense in the right-
TLE. Besides, less atrophies of hippocampus were observed in the right-TLE patients 
on MR images, suggesting that there might be less atrophy.  

In the present study, some issues are still to be addressed. First, although VBM-
DARTEL performed best among various VBM approaches, it has some disadvantages 
when compared with variable velocity models. The constant velocity vector field 
employed in DARTEL makes the model parameterization less suited to computational 
anatomy studies [3]. Second, the scanning parameters of simulated and real data were 
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different, which might cause differences in the evaluation. However, the results from 
both simulated and real data revealed that VBM-DARTEL performs best, indicating 
VBM-DARTEL is appropriated to these two models. 

The current study has some limitations. First, the images are resliced from 1×1×1 
mm3 to 1.5×1.5×1.5 mm3 during the preprocessing step because of a memory problem 
in VBM-DARTEL. Thus, the atrophied size might be affected. Second, the TLE 
patient group was heterogeneous without subgroup stratification and no consideration 
of medication was included, which is to be considered in the future.  
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