
Ching-Hsien Hsu
Xiaoming Li
Xuanhua Shi
Ran Zheng (Eds.)

 123

LN
CS

 8
14

7

10th IFIP International Conference, NPC 2013
Guiyang, China, September 2013
Proceedings

Network and
Parallel Computing

Lecture Notes in Computer Science 8147
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Ching-Hsien Hsu Xiaoming Li
Xuanhua Shi Ran Zheng (Eds.)

Network and
Parallel Computing
10th IFIP International Conference, NPC 2013
Guiyang, China, September 19-21, 2013
Proceedings

13

Volume Editors

Ching-Hsien Hsu
Chung Hua University
Dept. of Computer Science and Information Engineering
Hsinchu, Taiwan R.O.C.
E-mail: chh@chu.edu.tw

Xiaoming Li
University of Delaware
Dept. of Electrical and Computer Engineering
Newark, DE, USA
E-mail: xli@udel.edu

Xuanhua Shi
Ran Zheng
Huazhong University of Science and Technology
School of Computer Science and Technology
Wuhan, China
E-mail: xuanhuashi@gmail.com; zhraner@hust.edu.cn

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-40819-9 e-ISBN 978-3-642-40820-5
DOI 10.1007/978-3-642-40820-5
Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2013947085

CR Subject Classification (1998): C.1, C.2, F.2, C.4, D.3, D.4, K.6.5

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

© IFIP International Federation for Information Processing 2013
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in ist current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

On behalf of the Organizing Committee, we would like to welcome you to the
10th IFIP International Conference on Network and Parallel Computing (NPC
2013), held in the beautiful city of Guiyang, China.

As NPC enters its tenth year, it has established itself as a premiere venue
for the dissemination of emerging technology and the latest advancement in the
areas of network computing and parallel computing. To further improve the
quality of the conference, NPC 2013 adopted a new publication model. Instead
of printing regular conference proceedings, it publishes top ranked papers in a
special issue of the International Journal of Parallel Programming (IJPP) and
other accepted papers in proceedings in the Lecture Notes in Computer Science
(LNCS) series.

We received 109 full submissions. All submissions went through a rigorous
review process. We collected an average of three reviews per submission. After
a detailed and intensive online discussion, the Program Committee accepted
12 papers for the IJPP special issue and 34 papers for the LNCS proceedings,
representing a 42% acceptance rate.

The conference would not have been possible without the contribution of
many individuals. We would like to thank all the authors, attendees, and speak-
ers, many of whom traveled great distances to attend this conference. Our deep-
est gratitude goes to the Program Committee members and external reviewers
for their hard work on completing the review process under a tight schedule.
They put together a strong, stimulating, and informative technical program. We
are very grateful for the constant support and guidance from the Steering Com-
mittee led by Kemal Ebcioglu. We must thank the local team led by Hai Jin,
Yingshu Liu, and Xuanhua Shi. Their hard work made the conference a reality.
We also owe thanks to the other Organizing Committee members for their enor-
mous contribution. Finally, the conference would not succeed without the work
of many dedicated volunteers.

We hope you will find the conference proceedings interesting.

September 2013 Lixin Zhang
Barbara Chapman

Ching-Hsien (Robert) Hsu
Xiaoming Li
Xuanhua Shi

Organization

Organizing Committee

General Chairs

Lixin Zhang Institute of Computing Technology, China
Barbara Chapman University of Houston, USA

Program Chairs

Ching-Hsien (Robert) Hsu Chung Hua University, Taiwan
Xiaoming Li University of Delaware, USA
Xuanhua Shi Huazhong University of Science and Technolgy,

China

Publicity Chairs

Adrien Lebre Ecole des Mines de Nantes, France
Wenbin Jiang Huazhong University of Science and

Technology, China

Publication Chair

Ran Zheng Huazhong University of Science and
Technology, China

Finance/Registration Chair

Wei Wu Huazhong University of Science and
Technology, China

Web Chair

Junling Liang Huazhong University of Science and
Technology, China

Steering Committee

Kemal Ebcioglu Global Supercomputing, USA (Chair)
Hai Jin Huazhong University of Science and

Technology, China
Chen Ding University of Rochester, USA
Jack Dongarra University of Tennessee, USA
Guangrong Gao University of Delaware, USA
Daniel Reed University of North Carolina, USA
Zhiwei Xu Institute of Computing Technology, China

VIII Organization

Yoichi Muraoka Waseda University, Japan
Jean-Luc Gaudiot University of California Irvine, USA
Guojie Li The Institute of Computing Technology, China
Viktor Prasanna University of Southern California, USA
Weisong Shi Wayne State University, USA
Tony Hey Microsoft, USA

Program Committee

Gagan Agrawal Ohio State University, USA
Mehmet Balman Lawrence Berkeley National Laboratory, USA
Michela Becchi University of Missouri - Columbia, USA
Salima Benbernou Université Paris Descartes, France
Surendra Byna Lawrence Berkeley National Laboratory, USA
Hsi-Ya Chang National Center for High-Performance

Computing, Taiwan
Yue-Shan Chang National Taipei University, Taiwan
Jianwei Chen Oracle, USA
Tzung-Shi Chen National University of Tainan, Taiwan
Yong Chen Texas Tech University, USA
Kenneth Chiu SUNY Binghamton, USA
Camille Coti University of Paris 13, France
Der-Jiunn Deng National Changhua University of Education,

Taiwan
Frédéric Desprez INRIA, France
Zhihui Du Tsinghua University, China
Erik Elmroth Ume̊a University, Sweden
Zhen Fang AMD, USA
Gilles Fedak INRIA, France
Binzhang Fu Chinese Academy of Sciences, China
Cecile Germain-Renaud Laboratoire De Recherche En Informatique

(LRI), France
Clemens Grelck University of Amsterdam, The Netherlands
Ken Hawick Massey University, New Zealand
Haiwu He ENS Lyon, France
Yongqiang He Facebook, USA
Jue Hong Shenzhen Institutes of Advanced Technology,

Chinese Academy of Sciences, China
Rui Hou Institutes of Advanced Technology, Chinese

Academy of Sciences, China
Chung-Ming Huang National Cheng Kung University, Taiwan
Lei Huang Prairie View A&M University, USA
Eduardo Huedo Universidad Complutense de Madrid, Spain
Shadi Ibrahim INRIA, France

Organization IX

Bahman Javadi University of Western Sydney, Australia
David Kaeli Northeastern University, USA
Hartmut Kaiser Louisiana State University, USA
Helen Karatza Aristotle University of Thessaloniki, Greece
Raj Kettimuthu Argonne National Laboratory, USA
Samee Khan North Dakota State University, USA
Dries Kimpe University of Chicago, USA
Volodymyr Kindratenko NCSA, USA
Alice Koniges Lawrence Berkeley Lab, USA
Sriram Krishnamoorthy Pacific Northwest National Laboratory, USA
Mustapha Lebbah University of Paris 13, France
Laurent Lefevre INRIA, France
Pangfeng Liu National Taiwan University, Taiwan
Yutong Lu National University of Defense Technology,

China
Patrick Martin Queen’s University, Canada
Philippe Massonet CETIC, Belgium
Jiayuan Meng Argonne National Laboratory, USA
Ruben Montero Universidad Complutense de Madrid, Spain
Matthias Mueller Technical University of Dresden, Germany
Surya Nepal CSIRO, Australia
Radu Prodan University of Innsbruck, Austria
Ioan Raicu Illinois Institute of Technology, USA
Philip Rhodes The University of Mississippi, USA
Ivan Rodero Rutgers, The State University of New Jersey,

USA

Thomas Ropars École Polytechnique Fédérale de Lausanne,
Switzerland

Rizos Sakellariou University of Manchester, UK
Prasenjit Sarkar IBM Research, USA
Bertil Schmidt Johannes Gutenberg University of Mainz,

Germany
Bruno Schulze National Laboratory for Scientific Computing,

Brazil
Weidong Shi University of Houston, USA
Yogesh Simmhan University of Southern California, USA
Xiufeng Sui Chinese Academy of Sciences, China
Guangming Tan Chinese Academy of Sciences, China
Michela Taufer University of Delaware, USA
Ana Lucia Varbanescu Delft University of Technology,

The Netherlands
Abhinav Vishnu Pacific Northwest National Laboratory, USA
Chuliang Weng Shanghai Jiao Tong University, China
Jin Xiong Institutes of Advanced Technology, Chinese

Academy of Sciences, China

X Organization

Ramin Yahyapour GWDG University of Göttingen, Germany
Yonghong Yan University of Houston, USA
Chao-Tung Yang Tunghai University, Taiwan
Chengmo Yang University of Delaware, USA
Zuoning Yin Coverity, Inc., USA
Kun-Ming Yu Chung Hua University, Taiwan
Zhibin Yu Shenzhen Institute of Advanced Technology,

China
Xin Yuan Florida State University, USA
Yunquan Zhang Chinese Academy of Sciences, China
Ming Zhao Florida International University, USA

Table of Contents

Session 1: Parallel Programming and Algorithms

A Virtual Network Embedding Algorithm Based on Graph Theory 1
Zhenxi Sun, Yuebin Bai, Songyang Wang, Yang Cao, and Shubin Xu

Access Annotation for Safe Program Parallelization 13
Chen Ding and Lei Liu

Extracting Threaded Traces in Simulation Environments 27
Weixing Ji, Yi Liu, Yuanhong Huo, Yizhuo Wang, and Feng Shi

A Fine-Grained Pipelined Implementation of LU Decomposition on
SIMD Processors . 39

Kai Zhang, ShuMing Chen, Wei Liu, and Xi Ning

FRESA: A Frequency-Sensitive Sampling-Based Approach for Data
Race Detection . 49

Neng Huang, Zhiyuan Shao, and Hai Jin

One-to-One Disjoint Path Covers in DCell . 61
Xi Wang, Jianxi Fan, Baolei Cheng, Wenjun Liu, and Yan Wang

Session 2: Cloud Resource Management

A Network-Aware Virtual Machine Allocation in Cloud Datacenter 71
Yan Yao, Jian Cao, and Minglu Li

Research on the RRB+ Tree for Resource Reservation 83
Libing Wu, Ping Dang, Lei Nei, Jianqun Cui, and Bingyi Liu

Totoro: A Scalable and Fault-Tolerant Data Center Network by Using
Backup Port . 94

Junjie Xie, Yuhui Deng, and Ke Zhou

A Cloud Resource Allocation Mechanism Based on Mean-Variance
Optimization and Double Multi-Attribution Auction 106

Chengxi Gao, Xingwei Wang, and Min Huang

ITC-LM: A Smart Iteration-Termination Criterion Based Live Virtual
Machine Migration . 118

Liangwei Zhu, Jianhai Chen, Qinming He, Dawei Huang, and
Shuang Wu

XII Table of Contents

A Scheduling Method for Multiple Virtual Machines Migration in
Cloud . 130

Zhenzhong Zhang, Limin Xiao, Xianchu Chen, and Junjie Peng

Session 3: Parallel Architectures

Speeding Up Galois Field Arithmetic on Intel MIC Architecture 143
Kai Feng, Wentao Ma, Wei Huang, Qing Zhang, and Yili Gong

Analyzing the Characteristics of Memory Subsystem on Two Different
8-Way NUMA Architectures . 155

Qiuming Luo, Yuanyuan Zhou, Chang Kong, Guoqiang Liu,
Ye Cai, and Xiao-Hui Lin

Software/Hardware Hybrid Network-on-Chip Simulation on FPGA 167
Youhui Zhang, Peng Qu, Ziqiang Qian, Hongwei Wang, and
Weimin Zheng

Total Exchange Routing on Hierarchical Dual-Nets 179
Yamin Li and Wanming Chu

Efficiency of Flexible Rerouting Scheme for Maximizing Logical
Arrays . 194

Guiyuan Jiang, Jigang Wu, and Jizhou Sun

An Efficient Crosstalk-Free Routing Algorithm Based on Permutation
Decomposition for Optical Multi-log2N Switching Networks 207

Xiaofeng Liu, Youjian Zhao, and Yajuan Wu

Conditional Diagnosability of Complete Josephus Cubes 220
Lishan Lu and Shuming Zhou

Circular Dimensional-Permutations and Reliable Broadcasting for
Hypercubes and Möbius Cubes . 232

Baolei Cheng, Jianxi Fan, Jiwen Yang, and Xi Wang

Session 4: Multi-core Computing and GPU

Accelerating Parallel Frequent Itemset Mining on Graphics Processors
with Sorting . 245

Yuan-Shao Huang, Kun-Ming Yu, Li-Wei Zhou,
Ching-Hsien Hsu, and Sheng-Hui Liu

Asymmetry-Aware Scheduling in Heterogeneous Multi-core
Architectures . 257

Tao Zhang, Xiaohui Pan, Wei Shu, and Min-You Wu

Table of Contents XIII

Scalable-Grain Pipeline Parallelization Method for Multi-core
Systems . 269

Peng Liu, Chunming Huang, Jun Guo, Yang Geng,
Weidong Wang, and Mei Yang

An Effective Approach for Vocal Melody Extraction from Polyphonic
Music on GPU . 284

Guangchao Yao, Yao Zheng, Limin Xiao, Li Ruan, Zhen Lin, and
Junjie Peng

Modified Incomplete Cholesky Preconditioned Conjugate Gradient
Algorithm on GPU for the 3D Parabolic Equation 298

Jiaquan Gao, Bo Li, and Guixia He

Partition-Based Hardware Transactional Memory for Many-Core
Processors . 308

Yi Liu, Xinwei Zhang, Yonghui Wang, Depei Qian, Yali Chen, and
Jin Wu

Session 5: Miscellaneous

Roadside Infrastructure Placement for Information Dissemination in
Urban ITS Based on a Probabilistic Model . 322

Bo Xie, Geming Xia, Yingwen Chen, and Ming Xu

Relay Hop Constrained Rendezvous Algorithm for Mobile Data
Gathering in Wireless Sensor Networks . 332

Wenjun Liu, Jianxi Fan, Shukui Zhang, and Xi Wang

Energy Efficient Task Scheduling in Mobile Cloud Computing 344
Dezhong Yao, Chen Yu, Hai Jin, and Jiehan Zhou

BotInfer: A Bot Inference Approach by Correlating Host and Network
Information . 356

Yukun He, Qiang Li, Yuede Ji, and Dong Guo

On-Demand Proactive Defense against Memory Vulnerabilities 368
Gang Chen, Hai Jin, Deqing Zou, and Weiqi Dai

Mahasen: Distributed Storage Resource Broker . 380
K.D.A.K.S. Perera, T. Kishanthan, H.A.S. Perera,
D.T.H.V. Madola, Malaka Walpola, and Srinath Perera

Probabilistic QoS Analysis of Web Services . 393
Waseem Ahmed and Yong Wei Wu

XIV Table of Contents

A Novel Search Engine to Uncover Potential Victims for APT
Investigations . 405

Shun-Te Liu, Yi-Ming Chen, and Shiou-Jing Lin

Author Index . 417

A Virtual Network Embedding Algorithm Based

on Graph Theory

Zhenxi Sun1, Yuebin Bai1,2,�, Songyang Wang1, Yang Cao3, and Shubin Xu2

1 School of Computer Science and Engineering, Beihang University,
Beijing 100191, China
yuebinb@gmail.com

2 Science and Technology on Information Transmission and Dissemination
in Communication Networks Laboratory, Shijiazhuang 050081, China

3 School of Computer Science, Beijing University of Posts and Telecommunications,
Beijing 100876, China

Abstract. Network virtualization is becoming a promising way of re-
moving the inherent ossification of the Internet, and has been steadily
attracting more and more researchers’ attention during the decades. The
major challenges in this field are improving the efficiency of virtual net-
work embedding procedure and raising the rate of virtual network re-
quests being successfully accepted by the substrate network. This paper
introduces a new virtual network embedding algorithm based on node
similarity, which means the similarity between the virtual nodes and the
substrate nodes. For more details, by calculating the degree of nodes both
in virtual network and substrate network, which is actually the number
of links associated with them, the algorithm achieves better mapping re-
sults between virtual network and the substrate network on the topology
aspect.

Keywords: Virtual Network, VN Embedding, Graph Theory, Node
Similarity.

1 Introduction

For recent years, Internet is not only greatly changing the ways that people
communicating with each other, but also making a profound influence on the
whole society. During the past four decades, the internet architecture has proven
its great worth by meeting most of the requirements of distributed applications,
which is improving the life of whole world. However, the remaining problems and
defects of the current internet are becoming more and more prominent, such as
extendibility, manageability, quality of service and power-saving, and so on. In
order to solve these problems fundamentally, some researchers propose an idea of
designing the architecture of future network from clean-slate so that to break the
constrains of current internet. However, no matter how to change the architecture
of internet, what must be kept in mind are the following three requirements:

� Corresponding author.

C.-H. Hsu et al. (Eds.): NPC 2013, LNCS 8147, pp. 1–12, 2013.
c© IFIP International Federation for Information Processing 2013

2 Z. Sun et al.

firstly, researchers must be able to experiment easily with new architectures
on live traffic from the existing networks. Secondly, there must be a plausible
deployment path for putting validated architectural ideas into practice. Thirdly,
the proposed solutions should be comprehensive so that they can address the
broad range of current architectural problems facing the Internet [1], instead of
focusing on a single narrow problem.

To keep up with such requirements, network virtualization shows the elegant
charm and powerful vitality. It allows users create virtual networks which can
be viewed as the normal networks used in real life and work, then maps them
to the substrate networks which can be the networks with traditional internet
architectures or other already deployed networks. In this way, the users can use
the virtual network to meet their demands, for example, trying the new network
architecture or providing services for companies or single users. By enabling a
plurality of diverse network architectures to coexist on a shared physical sub-
strate network, virtualization mitigates the ossifying forces at work in the current
internet and enables continual introduction of innovative network technologies.
Such a diversified Internet would allow existing architectural deficiencies to be
holistically addressed as well as enable the introduction of new architectures
supporting new types of applications and services [2].

Currently, virtual network embedding algorithms mainly parted in two pe-
riods: virtual node mapping period and virtual link mapping period [3]. What’s
more, virtual network embedding problem, with constrains on virtual nodes and
virtual links, can be reduced to the NP -hard multi-way separator problem [3],
even if all the request are known in advance. Even when all the virtual nodes are
already mapped, embedding the virtual links with bandwidth constraints onto
substrate paths is still NP -hard in the indivisible flow scenario. As a result, there
are many heuristic algorithms appears in this research area [4–7]. Although the
efforts on network virtualization research view the problem in case of the fixed
networks or stable networks, the efficiency on mapping virtual networks to the
substrate networks still has a huge improving space. What’s worse, the mobile
substrate networks are paid little attentions. What will happen if the substrate
network is an unstable network environment, such as MANET (Mobile Ad hoc
Networks).

In order to address the network virtualization of such environments, we devise
a novel mapping algorithms with forecasting techniques in this paper. Firstly,
we divide the nodes in physical networks into several small groups by the state
of link between nodes, then map the virtual nodes to nodes of physical networks.
Secondly, after all the virtual nodes have been mapped to physical nodes, the
virtual link mapping phase is finished with multi-commodity flow algorithms.

The rest of the paper is organized as follows. Section II shows the related work
in network virtualization field. Section III formulates and models the virtual net-
work embedding problem. Section IV introduces the virtual network embedding
algorithms. With the experiments result of the whole algorithm analyzed in sec-
tion V, the paper will draw a conclusion in section VI.

A Virtual Network Embedding Algorithm Based on Graph Theory 3

2 Related Work

Finding the optimal VN mapping solution that satisfies multiple objectives and
constraints can be formulated as an NP -hard problem. The aspects of VN map-
ping algorithms appears until now include independent virtual node mapping
and virtual link mapping, introduce better correlations between the two phases
by facilitating the latter phase when mapping the virtual nodes to substrate
networks, and simultaneously mapping virtual nodes and virtual links to the
physical networks.

Being different from the embedding algorithms [4–7] that separate the vir-
tual node mapping procedure and the virtual link mapping procedure, authors
in [8, 9] introduces better correlation between the node mapping and the link
mapping phases by proposing two new VN embedding algorithms D-ViNE (De-
terministic VN Embedding) and R-ViNE (Randomized VN Embedding). The
VN embedding problem deals with the mapping of a VN request, with con-
straints on virtual nodes and links, onto specific physical nodes and paths in the
substrate network that has finite resources. Since multiple VNs share the under-
lying physical resources, efficient and effective embedding of online VN requests
is of utmost importance in order to increase the utilization of substrate network
resources and InP revenue [8]. Authors in [8] use mixed integer programming
(MIP) formulation [10]to solve the embedding problem with binary constraints
on the meta edges and linear constraints on actual substrate network links.
Once all the virtual nodes have been mapped, they use the multi-commodity
flow algorithm to map the virtual links onto substrate network paths between
the mapped virtual nodes [4]. While the algorithms are not taking the changing
topology of the substrate network into account, [11] introduces a topology-aware
note ranking method. Inspired by Google’s PageRank measure, authors devise
a Markov random walk model, for computing topology-aware resource ranking
of a node to reflect both the resource and the quality of connections of the node
in the network.

The authors in [12] have proposed a distributed algorithm that simultane-
ously maps virtual nodes and virtual links without any centralized controller, but
scalability and performance of their algorithm is still not comparable with the
centralized ones. Another distributed and autonomic virtual network mapping
framework is proposed in [5], where the substrate nodes integrates autonomous
and intelligent agents which exchange messages and cooperate to carry out
the proposed VN mapping algorithm. The paper takes nodes integration into
account, but not estimate the influence from node movements brings to VN
mapping efficiency. Although these algorithms have been verifying the mapping
procedure in wireless network environments, physical node mobility of wireless
network in the physical network environment is not taken into consideration.

3 Network Model and Problem Description

For clearly describing the VN embedding problem in MANET environments, the
notation of the key elements should be defined in the very starting point. On

4 Z. Sun et al.

the one hand, the notations can facilitate describing VN embedding algorithms;
on the other hand, they will show what aspects the solutions have taken into
consideration.

3.1 Substrate Network Description

We model substrate network an undirected and weighted graph, and note it as
Gs = (Ns, Es), where Gs denotes the substrate network, Ns denotes the set of
nodes in substrate network and Es denotes the set of substrate links. Each node
of substrate network ns ∈ Ns is associated with CPU capacity c(ns) and location
information loc(ns). And each link of substrate network es ∈ Es is associated
with the bandwidth b(es), where es(i, j) denotes the bandwidth from the node i
to node j.

What the most obvious difference between MANET and traditional internet
is that the influence of node mobility must be taken into consideration in the
former environments. Due to the movements of substrate nodes, the substrate
links would be disrupted frequently. And the topology of the substrate network
finds itself in a dynamically changing state. The initial reason is the mobility of
the substrate nodes, while the ultimate result is the connected and disconnected
states switching in substrate links. In order to applied network virtualization
into such circumstance, the link state must be taken into consideration. Thus,
we define the stability of the substrate link es as s(es) ∈ [0, 1], where the bigger
value represents the more stable state of es.

3.2 Resources of Substrate Network

Each virtual network request should meet the following requirements. The com-
putation requirements of virtual nodes is ultimately the computing speed of the
CPU. When the virtual nodes need a 1Ghz computing speed, then the physical
node should be 1GHz at least, and the higher the better. So the first requirement
must be satisified is c(nv) ≤ c(ns). Similarly, the bandwidth requestment of vir-
tual link should be smaller than the mapped physical links of substrate network.
In another word, when mapping the virtual link to phsical links, the physical
links bandwidth should be greater than that of the virtual link. Thus, the second
requirements must be meet is b(nv) ≤ b(ns). While, the above two requirements
should be applied when the physical nodes have not been mapped any virtual
nodes. If not so, we should consider the remaining resources of the physical nodes
and links of substrate network. The remaining computing resources (i. e. CPU
capacity) is denoted by

RN (ns) = c(ns)−
∑

∀nv↑ns

c(nv)

A Virtual Network Embedding Algorithm Based on Graph Theory 5

which means that the substrate computing resources of the substrate node ns

is the total computing resouces subtract the resouces that already allocated to
virtual nodes. In the same way, the substrate bandwidth is denoted by

RE(e
s) = b(es)−

∑
∀ev↑es

b(ev)

Thus, the more widely applied constraints on mapping virtual nodes to substrate
nodes is as follows

c(nv) ≤ c(ns)−RN (ns)

For the virtual link mapping procedure, there is a little difference from the
above node mapping procedure. The fact is that one virtual link usually was
mapped onto several substrate links end to end, which are called path. Thus,
the remaining bandwidth of the path is decided by the smallest one.

RE(P) = min
∀es∈P

(es)

Therefore, the requirements must be satisfied in virtual link mapping procedure
should be

b(ev) ≤ RE(P), ∀P ∈ {All the mapped substrate links}

3.3 Network Description

A virtual network is similar as the substrate network, which is consisted of virtual
nodes and virtual links. So the most fittable notations are Gv = (Nv, Ev), and
Gv denotes the virtual network topology, Nv denotes the set of nodes in virtual
network, Ev denotes the set of virtual links of virtual network. The requirements
of computation of each virtual node is described by c(nv), where nv ∈ Nv

represents the subset of virtual nodes. In the same way, the bandwidth of each
virtual link is marked by b(ev), where ev ∈ Ev, and denotes the subset of virtual
links in virtual network.

3.4 VN Embedding Problem Description

When a virtual network request arrives, the substrate network should decide
whether to accept the request or not. If the request accepted, a suitable mapping
solution should be proposed by the substrate network. Generally, there are two
phases in the mapping procedure, which are virtual node mapping and virtual
link mapping. The node mapping phase usually is followed by the virtual link
mapping phase.

Figure 1 describes the process of virtual network request being mapped to the
substrate network with node constraints and link constraints. The two virtual
network request finally mapped to the two separate part of the substrate net-
work. This is merely an example of virtual network mapping, the more common
case is several virtual network sharing the same part of the substrate network.

6 Z. Sun et al.

Fig. 1. Mapping virtual network request to substrate network

The leftside of figure 1 depicts the virtual network request 1 and 2, which need
to be mapped onto the substrate network on the right side. The numbers in
black rectangle represent the computaton capacity, in more details, that in vir-
tual network is the VN request’s requirements to the physical nodes and that in
substrate network is the computation capacity the physical nodes can offer. Sim-
ilarly, the number on lines shows the bandwidth of links, one for requirements,
and the other one for the provided.

Virtual network embedding problem is defined as

M : Gv(Nv, Lv) → Gs(Ns, Ls)

from Gv to a subset of Gs, where Nv ⊂ Ns and Lv ⊂ Ls.

Node Mapping. Virtual nodes from the same virtual network must be mapped
to different substrate nodes. In the mapping MN : Nv → Ns, for all nv, mv ∈
Nv,

MN (nv) ∈ Ns

MN (mv) = MN (nv), iffmv = nv

subject to

c(nv) ≤ c(MN (nv))−
∑

iv∈Nv

c(iv)

dis(loc(nv), loc(MN (nv)) ≤ D

where dis(a,b) is the distance of node a and node b in substrate network.
In figure 1, the first VN request has the node map of { a → B, b → D, c

→ H}, and the second VN request has the node map of { d → K, e → J, f → G,
g → L }. Note that in this case, there is no virtual nodes from different VN
request sharing the same substrate node. But it may be appeared that virtual
nodes from different VN request be mapped onto the same substrate node in the
real virtual network environments.

A Virtual Network Embedding Algorithm Based on Graph Theory 7

Link Mapping. The virtual links from VN request should be mapped to one
or more substrate links with path splitting and migration. It is defined by a
mapping ME : Ev → Ps from virtual links to a subset of substrate links such
that for all ev = (mv, nv) ∈ Lv,

ME(m
v, nv) ⊆ Ps(MN (mv),MN (nv))

subject to
b(ev) ≤ RE(P), ∀P ∈ ME(e

v)

3.5 Objectives

For the work in this paper, the major concentration is on improving the perfor-
mance of the embedding procedure such as increasing the revenue of the virtual
network and decreasing the cost of vitual network embedding which is similar
to all the previous works in [4,8,9,11]. Besides, we also try our best to apply the
network virtualization into wireless environments, more accurately, the Moile
Ad Hoc Network environments, which is different from the works in [13–15].

Similar to previous efforts [4,8,9,11],the revenue of the virtual network request
as :

R(Gv) =
∑

ev∈Ev

b(ev) +
∑

nv∈Nv

c(nv)

While revenue gives an insight into how much an InP will gain by accepting a
VN request, it is not very useful without knowing the cost the InP will incur
for embedding that request. We define the cost of mapping a virtual network
request as the sum of total resources allocated to virtual network.

C(Gv) =
∑

ev∈Ev

∑
es∈Es

fev

es +
∑

nv∈Nv

c(nv)

where fev

es denotes the total bandwidth allocated on substrate link es for virtual
link ev.

4 Algorithms of VN Embedding

In graph thoery [16], each node in the undirected graph has a degree noting that
how many links are associated with. With the notion of node degree in mind, we
divide the VN embedding into two greedy stage as most previous efforts. For the
first stage, the node mapping algorithm take the effect, in which each node of
the virtual network will be sorted by its degree in descending order. The reason
for such processing is that the larger of the node degree means that the node will
be more important in the virtual network. Further more, the node with larger
degree being mapped onto the substrate network, the consequence nodes will be
mapped more easily. In addition, such dealing with node mapping will increase
the probability of accepting the virtual network request. The calculations of node
degrees is as follows.

8 Z. Sun et al.

Algorithm 1. Calculations of node degrees

Require: The set of virtual network request Gv = (Nv , Ev)
Ensure: The vector of virtual nodes with descending order on node id vNodeRank

1: for each ev ∈ Ev do
2: id← Get the first vertex id of ev

3: vNodeRank[id]++
4: id← Get the second vertex id of ev

5: vNodeRank[id]++
6: end for
7: return vNodeRank;

The notion is similar with the idea in [11] on a certain extent, but the most
obvious difference is that the virtual nodes with highest node ranking will be
mapped onto the substrate nodes with highest node ranking in [11]. In our work,
the virtual nodes with highest node ranking might not be mapped onto the sub-
strate nodes with the same highest node ranking. We sort both the nodes in
virtual network request and the substrate network by the note degree which is
decided by the associated links in descending order. In order to increase the
accepted ratio of VN request and improve the utilization of substrate nodes, we
map the virtual nodes with highest degree and lowest cpu requirements to the
substrate nodes who obtains the highest degree in substrate network environ-
ments. The virtual node mapping algorithm is as follows.

Algorithm 2. Virtual node mapping algorithm

Require: The set of virtual network request Gv = (Nv , Ev)
Ensure: The sequence of virtual nodes being mapped onto substrate nodes
1: Sort the virtual nodes Nv by node degree
2: Sort the substrate nodes Ns by node degree
3: for each nv ∈ Nv do
4: maxdegree=degree(ns)*1.2
5: mindegree=degree(ns)*0.8
6: for each ns ∈ Ns do
7: if degree(ns) ∈ (mindegree,maxdegree) then
8: potentialNodeSet← ns

9: end if
10: end for
11: find ns ∈ potentialNodeSet with least remain computing resource
12: ns ← nv

13: end for

A Virtual Network Embedding Algorithm Based on Graph Theory 9

For the virtual link mapping phase, we use the greedy algorithm as follows.

Algorithm 3. Virtual link mapping algorithm

Require: The set of VN request Gv = (Nv, Ev) , with all the edges in Q
Ensure: The state that shows the mapping procedure succeeded or failed.
1: while Q �= ∅ do
2: Ev=Q. dequeue();
3: Remove those substrate links that cannot satisfy the bandwidth requirement of

Ev. Use the shortest path algorithm to find a link mapping solution for Ev.
4: if cannot find a path for Ev then
5: return FAILED
6: end if
7: end while
8: return SUCCESS

5 Performance Evaluations

In this section, we first describe the performance evaluations and then present
our main evaluations result with analysis. Our evaluations mainly on the ratio
of accepting VN request for substrate network, the revenue of the VN and the
utilization of substrate nodes and links.

5.1 Simulation Environments

Our VN embedding simulation environment is based on the simulator called
ViNE-Yard. It is a discrete event simulator with about five thousand lines of
code implemented by C++ language. The simulator is freely available in the
address [17]. According to the previous work [8], the substrate network topology
in our experiments are randomly generated with 50 nodes using the GT-ITM
tool [18] (25×25) grids. Each pair of substrate nodes is randomly connected with
probability 0.5. The CPU and bandwidth resources of the substrate nodes and
links are real numbers uniformly distributed between 50 and 100. It’s assumed
that VN requests arrive in a Poisson process with an average rate of 4 VNs per
100 time units, and each one has an exponentially distributed lifetime with an
average of = 1000 time units. In each VN request, the number of virtual nodes
is randomly determined by a uniform distribution between 2 and 10 following
similar setups to previous works [4, 6]. The average VN connectivity is fixed at
50%. The CPU requirements of the virtual nodes are real numbers uniformly
distributed between 0 to 20 and the bandwidth requirements of the virtual links
are uniformly distributed between 0 to 50.

5.2 Result Analysis

There are four performance metrics which are described in the former section, the
accepted ratio of VN request, the revenue of VN, and utilization of substrate

10 Z. Sun et al.

1

time(s)

Fig. 2. VN request accepted ratio over time

2,000

time(s)

Fig. 3. VN Revenue over time

1

time(s)

Fig. 4. Substrate nodes’ average utility

1

time(s)

Fig. 5. Substrate links’ average utility

nodes and substrate links. The main observations we want to summarize are
as follows. Firstly, figure 2 shows the changing of VN request accepted ratio
over time. From the very beginning, due to the sufficient resources, both the
computing resources and bandwidth in substrate network, the VN request is
quickly accepted by the substrate network. While, with the passage of time, the
available resources in substrate network decreases dramatically, which causes the
drop down of the VN accepted ratio. After a period, the balance is established
between the VN request incoming and VN cancelling. From the figures 3,4,5, it
can be seen that the utilization of substrate nodes and substrate links has an
obvious improving space.

6 Conclusions and Future Work

Besides the frameworks of virtual network systems, the major problems in net-
work virtualization is the virtual network embedding problem. Improving the
acceptance ratio of virtual network request is the most important aspect, not
only because it can increase the revenue but also make full utilization of the
resources in substrate networks. In this paper, we devised a virtual network

A Virtual Network Embedding Algorithm Based on Graph Theory 11

mapping algorithm based on the similarity between the nodes in virtual net-
works and that in substrate networks.

The unstable link state in MANET environments is caused by the movements
of nodes, we just define the link state categories without deep into the regular
pattern of node movements in the paper. But the estimation against the link state
is not accurate enough, we shall discover the distributions of node mobility. For
example, let the node follow the random walk movement model or some other
models. In other words, the link state should be estimated by finding the accurate
assessment of node movement.

Current works all define the problem space by fixed CPU capacity and link
bandwidth, but in the real world, they are varying all the time. So there is still
spaces on improving the usage of the computing resources and bandwidth re-
sources. What’s more, the standard on selecting the appropriate nodes and links
for virtual network be mapped to is various, current major works just define
a fixed one on the selection standard, this is not widely applied in real envi-
ronments. From the previous works, researchers propose the methods on path
migration and splitting, which raise large amount of the ratio on virtual network
request acceptance. While if the node migration and splitting is supported, then
a virtual network request is rejected only if the total amount of bandwidth and
the ability of computing required by virtual networks exceed from that of sub-
strate networks.

Acknowledgments. We would like to thank the anonymous reviewers for their
comments and suggestions. This work is supported by the project of the National
Science Foundation of China under Grant No. 61073076, Ph.D. Programs Foun-
dation of Ministry of Education of China under Grant No.20121102110018, the
2013 Open Funds of Science and Technology on Information Transmission and
Dissemination in Communication Networks Laboratory, and the Postgraduate
Innovation Practice Fund (YCSJ-02-02) in Beihang University.

References

[1] Anderson, T., Peterson, L., Shenker, S., Turner, J.: Overcoming the internet im-
passe through virtualization. Computer 38, 34–41 (2005)

[2] Turner, J., Taylor, D.: Diversifying the internet. In: IEEE Global Telecommuni-
cations Conference, GLOBECOM 2005, vol. 2 (December 2005)

[3] Chowdhury, N., Boutaba, R.: Network virtualization: state of the art and research
challenges. IEEE Communications Magazine 47, 20–26 (2009)

[4] Yu, M., Yi, Y., Rexford, J., Chiang, M.: Rethinking virtual network embedding:
substrate support for path splitting and migration. SIGCOMMComput. Commun.
Rev. 38, 17–29 (2008)

[5] Houidi, I., Louati, W., Zeghlache, D.: A distributed and autonomic virtual net-
work mapping framework. In: Fourth International Conference on Autonomic and
Autonomous Systems, ICAS 2008, pp. 241–247 (March 2008)

[6] Zhu, Y., Ammar, M.: Algorithms for assigning substrate network resources to
virtual network components. In: Proceedings of the 25th IEEE International Con-
ference on Computer Communications, INFOCOM 2006, pp. 1–12 (April 2006)

12 Z. Sun et al.

[7] Alkmim, G., Batista, D., Saldanha da Fonseca, N.: Optimal mapping of virtual
networks. In: 2011 IEEE Global Telecommunications Conference (GLOBECOM
2011), pp. 1–6 (December 2011)

[8] Chowdhury, M., Rahman, M.R., Boutaba, R.: Vineyard: virtual network embed-
ding algorithms with coordinated node and link mapping. IEEE/ACM Trans.
Netw. 20, 206–219 (2012)

[9] Chowdhury, N., Rahman, M., Boutaba, R.: Virtual network embedding with co-
ordinated node and link mapping. In: IEEE INFOCOM 2009, pp. 783–791 (April
2009)

[10] Schrijver, A.: Theory of linear and integer programming. Wiley, New York (1986)
[11] Cheng, X., Su, S., Zhang, Z., Wang, H., Yang, F., Luo, Y., Wang, J.: Virtual

network embedding through topology-aware node ranking. SIGCOMM Comput.
Commun. Rev. 41, 38–47 (2011)

[12] Houidi, I., Louati, W., Zeghlache, D.: A distributed virtual network mapping
algorithm. In: IEEE International Conference on Communications, ICC 2008,
pp. 5634–5640 (May 2008)

[13] Yun, D., Yi, Y.: Virtual network embedding in wireless multihop networks.
In: Proceedings of the 6th International Conference on Future Internet Technolo-
gies, CFI 2011, pp. 30–33. ACM, New York (2011)

[14] Kokku, R., Mahindra, R., Zhang, H., Rangarajan, S.: Nvs: a virtualization sub-
strate for wimax networks. In: Proceedings of the Sixteenth Annual International
Conference on Mobile Computing and Networking, MobiCom 2010, pp. 233–244.
ACM, New York (2010)

[15] Kokku, R., Mahindra, R., Zhang, H., Rangarajan, S.: Nvs: a substrate for vir-
tualizing wireless resources in cellular networks. IEEE/ACM Trans. Netw. 20,
1333–1346 (2012)

[16] Graph thoery, http://en.wikipedia.org/wiki/Graph_theory
[17] Chowdhury, N.: Vine-yard simulator,

http://www.mosharaf.com/ViNE-Yard.tar.gz

[18] Zegura, E., Calvert, K., Bhattacharjee, S.: How to model an internetwork. In:
Proceedings IEEE INFOCOM 1996. Fifteenth Annual Joint Conference of the
IEEE Computer Societies. Networking the Next Generation, vol. 2, pp. 594–602
(March 1996)

http://en.wikipedia.org/wiki/Graph_theory
http://www.mosharaf.com/ViNE-Yard.tar.gz

Access Annotation for Safe Program Parallelization

Chen Ding1 and Lei Liu2

1 Department of Computer Science, University of Rochester, Rochester, USA
2 Institute of Computing Technologies, Chinese Academy of Sciences, Beijing, P.R. China

Abstract. The safety of speculative parallelization depends on monitoring all
program access to shared data. The problem is especially difficult in software-
based solutions. Till now, automatic techniques use either program instrumen-
tation, which can be costly, or virtual memory protection, which incurs false
sharing. In addition, not all access requires monitoring. It is worth considering
a manual approach in which programmers insert access annotations to reduce the
cost and increase the precision of program monitoring.

This paper presents an interface for access annotation and two techniques to
check the correctness of user annotation, i.e. whether all parallel executions are
properly monitored and guaranteed to produce the sequential result. It gives a
quadratic-time algorithm to check the exponential number of parallel interleav-
ings. The paper then uses the annotation interface to parallelize several programs
with uncertain parallelism. It demonstrates the efficiency of program monitoring
by a performance comparison with OpenMP, which does not monitor data access
or guarantee safety.

1 Introduction

With the advent of multicore processors, existing applications written in Fortran/C/C++
are increasingly adapted to parallel execution using programming interfaces such as
OpenMP, Cilkplus and TBB. They are efficient but do not guarantee correctness. The
correctness problem is more serious when parallelizing large program code, mainly due
to several issues of uncertainty:

– Complex code. A task may execute low-level or dynamic code not amenable to
static analysis. Example problems include exceptions in control flow, indirections
in data access, dynamic memory allocation and custom memory management.

– Partial information. A programmer may read and understand only a part but not the
whole program. The program may use separately compiled libraries.

– Uncertain parallelism. Parallelism may exist in most but not all iterations of a loop
or in some but not all inputs of a program. Important irregular computing tasks
such as mesh refinement, clustering, image segmentation, and SAT approximation
cannot be fully parallelized without speculation [16].

Speculative parallelization is a technique to guard parallelism against uncertainty.
To make it programmable, a number of systems provide primitives to mark a spec-
ulative task as a safe future [26], an ordered transaction [25], or a possibly parallel

C.-H. Hsu et al. (Eds.): NPC 2013, LNCS 8147, pp. 13–26, 2013.
c© IFIP International Federation for Information Processing 2013

14 C. Ding and L. Liu

region (PPR) [8]. In this paper, we call a speculative task a PPR task and use the support
system called BOP for speculation on commodity multicore machines [8, 14].

Safe parallelization depends on monitoring data access, which in software is typi-
cally done in two ways. The first is program instrumentation. The cost is high if too
many data accesses are instrumented. A compiler may remove unnecessary instrumen-
tation but only for applications amenable to static analysis [21, 24]. The other solution
is virtual-memory support to monitor data at page granularity, which incurs false shar-
ing [5, 8]. While these solutions are automatic and transparent to a user, they are not
most efficient or precise especially when monitoring complex code.

The monitoring problem may be better solved with programmer control. In this pa-
per, we define an interface for access annotation and integrate it into the BOP system.
The new interface provides two primitives for marking data writes and data reads. The
user annotation may be too much or too little, causing four possible problems:

– Insufficient annotation. Some reads and writes should be annotated but not. Incom-
pleteness can lead to three types of errors:
• Incorrect output. Speculation does not generate sequential output.
• Nondeterministic output. Speculation generates different outputs depending on

PPR task interleaving.
• Partial correctness. The annotation is sufficient for some but not all inputs.

– Redundant annotation. The same access may be repeatedly annotated.

To check completeness, we describe two techniques, to be applied in order:

1. Semantic checking, which runs the PPR tasks in the sequential order and checks
whether the output is the same as the sequential execution. The sequential PPR ex-
ecution is the canonical execution, which is different from the sequential execution
as we will explain later.

2. Determinism checking, which uses a quadratic number of tests to check whether
all parallel interleavings produce the same result as the canonical execution, which
means the sequential output if applied after the first step.

Semantic checking finds missing write annotations, while determinism checking
looks for missing read annotations. The time cost is linear to the number of PPR tasks
in the former and quadratic in the latter. If both checks are passed, the annotation is
sufficient for the given test input. For this input, all parallel executions are guaranteed
to produce the sequential result.

For the problem of redundant annotation, we view the new interface as a solution
rather than a new cause. In the program examples shown throughout the paper, we
will see how the interface enables a programmer to insert minimal annotation. Still, a
user may over optimize. Then the problem becomes a completeness issue, which is the
same as a user being too lazy or lacking knowledge. It will require annotation checking,
which is the subject of this paper.

Annotation checking is a form of debugging. It is not guaranteed to find all errors.
This is a familiar limitation to the programmer. If a program runs on an untested in-
put and produces an error, the two-step checking can be re-applied to add overlooked
annotations. With the checking support, parallel coding is similar to sequential coding.

Access Annotation for Safe Program Parallelization 15

Systematic testing can be used to gain a high degree of certainty that the parallelized
program has the right semantics and is safe.

The new model maintains and extends the benefits of speculative parallelization.
Because of the sequential semantics, parallelized code is easier to write and understand.
It can be composed with other sequential code or automatically parallelized code. There
is no need for parallel debugging—the parallelized code produces the correct output if
the sequential code does. A program may be fully annotated, so it no longer needs
speculation. Finally, an BOP program can run on a cluster of machines without shared
memory [12].

Next, we describe in detail the need of access annotation and the two checking tech-
niques, before we evaluate and discuss related work.

2 Access Annotation

To properly insert access annotation, a programmer needs to understand which tasks
are parallel and how they share data. Since not all tasks are parallel, not all data access
requires annotation.

2.1 The Execution Model

The parallelism hint is as follows:

– bop ppr{X}Y. The bop ppr block suggests possible parallelism—X is likely parallel
with the subsequent code Y. Y is also known as the continuation of X.

At run time, the PPR hints divide a sequential execution into a series of PPR tasks,
numbered in an increasing order starting from 0. Any two tasks have a sequential order
between them, so we can refer to them as the earlier task and the later task. We assume
no nesting.1

A PPR task is dynamic. It has two parts. The link is the initial execution after the
previous PPR and before the next PPR hint. It executes the code between two PPR hints.
After the link, the body is the execution of the code inside the PPR hint. We call these
two parts the link PPR and the body PPR. The parallelism happens between a body and
all later links, and between all bodies. We call all links collectively as the backbone.
The backbone is sequential, and the bodies are limbs hanging on the backbone. Next
we show how PPR tasks share data and how BOP ensures correctness.

2.2 Data Copy and Merge

Logically, a BOP program is sequential, and all data is shared. In implementation, BOP
uses a two-step strategy to share data correctly:

1 In BOP, a bop ppr hint is ignored if encountered inside a PPR task. Nested hints can be sup-
ported by assigning a linear ordering of nested tasks [17] and checking them in a way similar
to checking non-nested tasks.

16 C. Ding and L. Liu

1. Data copy-on-write during parallel execution. BOP runs each task as a Unix pro-
cess. For each page that the task modifies, the OS makes a private copy and hence
removes all interference between PPR tasks.

2. Sequential merge after parallel execution. After a PPR task finishes, the changes
are collected as a PPR patch. BOP merges the patches from multiple PPR tasks to
ensure that the results be the same as the would-be sequential execution.

Figure 1 shows two PPR tasks. Although they both modify x, they do not conflict
because each will do copy-on-write and then write to its private copy. After they finish,
they will bundle the changes into two patches. At the merge, the x value from the later
PPR task is kept to maintain sequential semantics.

bop_ppr {
 x = 1
 y = x + 1
}
bop_ppr {
 x = 3
}
z = x + y

xt1 = 1
yt1 = x + 1

xt2 = 3

z = x + y

(a) Two PPR tasks
both writing to x

(b) Copy-n-merge
implementation by BOP

xt1,yt1 patch xt2

copy-on-write

merge

patch

copy-on-write

Fig. 1. Illustration of copy and merge: two PPR tasks shown in (a), data copy-on-write during and
merge after the parallel execution shown in (b). After a PPR task, its changes are bundled into a
patch and used by the merge step.

The two steps can be called copy-n-merge. The reason for using the strategy is com-
pelling: copy-n-merge removes all false dependences in a parallel execution and all data
races in a concurrent execution. A necessary condition for a dependence or a race is that
two operations access the same memory location, and at least one is a write. By copy-
on-write, no two tasks can access the same location unless it is read only. Removing
this necessary condition removes any false dependence or data race, just as removing
oxygen extinguishes the fire.

2.3 Access Annotation

There are two types of annotations:

– ppr write(addr, size) says that the PPR task produces a new value for data at mem-
ory addr for size bytes.

– ppr read(addr, size) says that the PPR task needs the latest value produced before
the PPR task for data at addr for size bytes.

Semantically, an annotation is a requirement on the information flow. The read anno-
tation means that the reading PPR task must have the up-to-date value, the value from

Access Annotation for Safe Program Parallelization 17

the last write before the PPR task (in the sequential execution). The write annotation
means that the new value should be delivered to the remaining program execution for
use by later reads of the data. These two requirements are intuitive, although not entirely
precise.

Operationally, the annotations are used by BOP to create the PPR patch. After a task
finishes, its patch includes the set of memory locations read and modified by the task
and for each modified location, the last written value, i.e. the value it has at the end of
the PPR execution. These patches are used at the merge time for conflict checking and
data commit.

An annotation may be placed anywhere and can be executed more than once during
the task execution. Because PPR tasks do not physically share data during the execution,
the annotations specify only the values coming in and going out. As a result, the same
data needs at most two annotations in a PPR task, one for the read, and one for the write,
regardless how many times the task reads or writes the data. For the writes, only the last
value will be copied into the PPR patch. For the reads, the task must read the correct
value at the first time.

The read annotation is needed for the reads in both the link and the body of a PPR
task, while the write annotation is needed only for the writes in the PPR body. To under-
stand this slight asymmetry, we use Table 1 to enumerate all cases of true dependences
between PPR link and body pairs. Of the four possible (source, sink) pairings, only the
last two—(body i, body j) and (body i, link j), i < j —are parallel. Since both types of
dependences begin at a PPR body, it is the only place we need to be annotate for writes.

Table 1. Annotation is needed only for true dependences between body-body and body-link pairs,
i < j

source, sink parallel? data sharing annotation
link i, link j no direct none
link i, body j
body i, body j yes patching ppr write at i,
body i, link j ppr read at j

Access annotation is used to monitor dependences. It is indirect compared to annotat-
ing dependences explicitly. The indirect approach has several benefits. First, the number
of dependence annotations may be quadratic to the length of the code, while the number
of access annotations is at most linear. Second, access annotations are modular. They
can be specified function by function and aggregated in larger modules without any
extra effort. Finally, the source and sink locations of a dependence may be dynamic.

3 Correctness Checking

We use the following notations. PPR tasks are numbered from 0 to n− 1. Each PPR
task, ppr[i], has a link link[i] and a body body[i]. If a program ends in a link task, for
symmetry we assume there is an empty body[n− 1] after link[n− 1]. For each task,
we record two sets of memory locations, read,write, which are the memory locations

18 C. Ding and L. Liu

Algorithm 1: semantics checking

// 1. sequential execution

run ppr[0..n-1] in a single process

treat the data in output stmts as annotated reads

record the patches as seq_ppr[0..n-1].read/write

// 2. canonical execution

for i=1 to n-1

run link[i]

fork a process p to run body[i]

wait for p to finish and get the patch

raise error if either

cano_ppr[i].read != seq_ppr[i].read

cano_ppr[i].write != seq_ppr[i].write

copy in body[i].write

end

End Algorithm 1

Fig. 2. The algorithm for semantics checking

annotated by ppr read and ppr write. Also recorded are the values, the value at the first
read for each memory location in the read set and the value at the last write for each
location in the write set.

3.1 Semantics Checking

The results of a PPR task are communicated in a patch. If a PPR task writes to x, and x
is not annotated by a ppr write, the new value will not be included in the patch and will
not be seen by computation outside the task. If the new value is only used inside the
PPR task and not needed outside the task, the write annotation is extraneous. Omitting
an extraneous annotation improves efficiency.

However, if the new value of the write is needed, directly or indirectly, to produce
a program output later, then the write annotation is necessary. The absence of the an-
notation is an error. We call it a missing write annotation. The purpose of semantics
checking is to examine the program execution for a given input and ensure that the
program has no write annotation missing for this input.

The algorithm is given in Figure 2. Each PPR task is run twice, first in the sequen-
tial execution and second in the canonical execution. To distinguish their results, the
algorithm refers to the first as seq ppr[i] and the second as cano ppr[i].

A missing write annotation may cause the canonical execution to generate a different
output than the sequential execution. This is detected because some of the reads will
be wrong. A user can examine the canonical execution in a debugger. Debugging is
conventional since there is no concurrency or non-determinism. We note that if an error
is detected at ppr[j], the missing write annotation may be anywhere in ppr[0.. j− 1].
Not detecting an error at ppr[i] does not mean ppr[0..i] has no missing annotation.

Access Annotation for Safe Program Parallelization 19

Only when the algorithm finishes, will we know whether the program has all necessary
write annotations for the test input.

Correctness Proof. We prove by contradiction. Assume that semantics checking detects
no error but there is an unannotated write in a PPR task that is actually necessary because
its value is used to produce a later output. Since the write is not annotated, its value is
not visible outside the PPR. If the value is needed to produce an output, the output in
the canonical execution must be incorrect, which contradicts the assumption that the
checking has succeeded.

3.2 Determinism Checking

If a task ppr[i] writes x, and ppr[j] reads and prints x, i < j, the canonical execution
will be correct since the ppr[j].write is merged into the backbone before ppr[j] starts.
ppr[j] does not need a read annotation. In a real run, however, ppr[j] must exhibit a
true dependence to ppr[i]. This can be done by adding to ppr[j] a read annotation for x.
Parallel semantics checking is to ensure that there are enough read annotations to mark
all the true dependences between PPR tasks.

In a parallel execution, PPR bodies may finish in any order. In the absence of true
dependences, their patches may be merged at different times. There are two restrictions.

– Merge time. A patch can only be merged at the juncture between the end of a PPR
body and the start of the next PPR link. Any number of patches can be merged at
the same juncture.

– Merge order. The patches can only be added in the sequential order of the PPR
tasks. For example, the patch for ppr[i], i.e. ppr[i].write, can be merged only after
ppr[0..i− 1].write have all been merged first.

Under these two restrictions, there is still much freedom in when patches are merged.
For example, if ppr[0..i− 1].write are merged before link[j], then ppr[i].write may be
merged before any link[k] for k ≥ j.

We can view each PPR body as a single unit, and the merge time as its execution
time on the backbone. Then all link and body executions are serialized. The number of
possible orders is the number of all legal interleavings subject to three constraints: an
earlier link happens before a later link, an earlier body happens before a later body, and
the link happens before the body for the same PPR.

The interleaving problem is similar to arranging parentheses correctly in a sequence.
Let link[i] and body[i] be a pair of parentheses. A sequence of n open-close parentheses
corresponds to the sequential execution of 2n link and body tasks. Any sequence of
properly nested parentheses corresponds to a possible parallel interleaving. The number
of different sequences is 2n!

n!(n+1)! , known as the Catalan number.
A read annotation is missing in a PPR task if its absence can cause one or more of its

annotated writes to produce a value different from the canonical execution. Determin-
ism checking detects missing read annotations inductively for each PPR in sequential
order.

The algorithm for determinism checking is given in Figure 3. The checking is done
in a nested loop. The iterations of the outer loop are the inductive steps. At step i, ppr[i]

20 C. Ding and L. Liu

Algorithm 2: determinism checking

for i=1 to n-1

run link[1..i]

for j=1 to i-1

run in a new process p

copy in body[1..j].write

run body[i] to produce the patch

raise error if

ppr[i].read != cano_ppr[i].read

ppr[i].write != cano_ppr[i].write

terminate process p

end

end

End Algorithm 2

Fig. 3. The algorithm for determinism checking

is checked to have sufficient read annotations such that its patch is always the same as
its patch in the canonical execution, which is the same as its patch in the sequential
execution.

For the first PPR, there is nothing to check. For the second PPR, there are two
cases. The body[0].write may be merged before or after link[1]. The checking procedure
would run both cases and check whether ppr[1] produces the same result as it does in
the canonical execution. Suppose there is a true dependence from ppr[0] to ppr[1],
but the absence of a read annotation in ppr[1] causes this to be missed at the merge
time. The checking procedure would detect an error and stop.

The inductive process checks link[i] and body[i] after checking all previous links and
bodies. As in the canonical execution, the algorithm checks the PPRs sequentially in the
outer loop and applies a different number of patches in each step of the inner loop. First,
it runs body[i] with no prior patches. Then for j = 1, . . . , i−1, it includes the patches of
PPR 0 through j.

Correctness Proof. Prove by contradiction. If the determinism checking succeeds, but
in one of the speculative executions, the output is incorrect. Since all the writes are
annotated, there is a read missing. The missing read at ppr[y] and the matching write is
in body[x] (x < y). Consider the inner loop at iteration i=y. For all iterations j < x, the
execution of ppr[y] does not have the result of body[x]. There will be an error raised.
Contradiction to the assumption that the determinism checking has succeeded.

4 Discussion

Composability of Annotations. Given the program, if we fix the hints and test for an-
notation correctness, we have the property that as new annotations are added for later
tests, they preserve the correctness of earlier tests. New annotations do not break the

Access Annotation for Safe Program Parallelization 21

correctness of previously passed tests. This property helps to bring down the cost of
concurrency error testing to a level closer to sequential error testing.

Composability of Annotated Code. Multiple BOP tasks can be grouped to form a single
task the same way sequential tasks are stringed together. In addition, BOP tasks may
run with auto-parallelized code, since both have sequential semantics. However, when
new parallelism is introduced, e.g. by adding a task or removing a barrier, old access
annotations need to be checked for completeness.

Automation. Automatic techniques may be used to identify shared data accesses and
annotate them using the annotation interface. Such analysis includes type inference as in
Jade [22], compiler analysis as in CorD [24], and virtual memory support as in BOP [8].
A user may use automatic analysis in most of the program and then manually annotate
critical loops or functions. The hybrid solution lets a programmer lower the monitoring
cost while letting a tool perform most of the annotation work.

Shared vs. Private by Default. Most costs of speculation come from monitoring, check-
ing, and copying shared data. BOP chooses to provide interface to specify shared data
access because a user can minimize the monitoring cost by specifying only the data
that has to be shared. Furthermore, the user can annotate data by regions rather than by
elements, reducing both the number of annotation calls and the size of meta-data that
the speculation system has to track and process.

Data Access vs. Data Identity. Data identity takes just one annotation per variable. Data
access takes up to two annotations per datum per PPR (one per link task). A benefit,
however, is the uniform treatment of global and heap data. A declaration-based method
would have difficulties regarding dynamic data: heap data often has no static address,
the access is often conditional, and the data location is often dynamically computed.
Access annotation is also dynamic in that the role of data, whether shared or private, is
allowed to change in different program phases. Finally, it is also more precise since the
annotation can be inside arbitrary control flow to capture the condition of data access
and avoid redundant annotation calls. Access annotation, however is harder to ensure
completeness.

A Comparison. Table 2 compares BOP with other annotation schemes: annotation of
private data (the rest is shared) as in OpenMP, annotation of shared data as in Tread-
marks [2], annotation of shared data access as in DSTM [11], and annotation (registra-
tion) of files in distributed version control as in Mercurial.

Like DSTM, BOP annotation is based on data access rather than data identity. Unlike
DSTM, BOP uses copy-n-merge (Section 2.2), which requires annotation per PPR not
per access. In fact, the annotation can be reduced to two per task pair as shown later
in an example in Section 5. Because of copy-n-merge, annotations in BOP are entirely
local operations. Synchronization happens at the end of a task. BOP is similar to check-
in and check-out in distributed version control, which has one copy-in and one copy-out
per datum per parallel execution. Unlike check-in/check-out, not all data sharing, i.e.
link-link and link-body in Table 1, requires annotation. BOP is also distinct in its safety
guarantee and the need for correctness checking as described in this paper.

22 C. Ding and L. Liu

Table 2. Comparison of five annotation schemes

data sharing annotation unit frequency safety
BOP copy-n-merge access annotation ≤ 2 per datum per task sequential
private by default declaration, e.g. OpenMP 1 per variable no
shared by default allocation, e.g. Treadmarks 1 per variable no

access, e.g. DSTM 1 per access transaction
version control file, e.g. Mercurial 1 per file no

5 Evaluation

Access annotation was used in our earlier paper, which describes the interface (includ-
ing the ordered block) and the safe implementation of dependence hints [14]. As men-
tioned in a paragraph in Section 5.1 Experimental Setup, “BOP provides an annotation
interface for recording data access at byte granularity.” The interface described in this
paper was necessary to parallel seven of the eight tests in that paper. The programs in-
clude string substitution (Section 5 of this paper), two clustering algorithms, and five
SPEC benchmark programs: art, bzip2, hmmer, parser, and sjeng. The parallel speedup
for these programs ranges from 5.8 to a factor of 14 when running on a 16-core machine.

Next we show performance for two of the tests. The first is string substitution, whose
parallelization requires byte-granularity annotation. The second is k-means cluster-
ing, for which we compare the manual annotation with paging-based monitoring as
used in the previous paper [14]. We also compare with OpenMP, which has no access
annotation. OpenMP (or any other non-speculative system) cannot parallelize string
substitution.

For demonstration, we test two different multi-core machines: k-means on a machine
with two 2.3GHz quad-core Intel Xeon (E5520) processors with 8MB second-level
cache per processor, and string substitution on a machine with four 2.5GHz quad-core
AMD Opteron (8380) processors with 512KB cache per core. Both are compiled by by
GCC 4.4 with “-g3”. The performance is measured by the speedup over the sequential
version of the program and shown in Figure 4.

String Substitution. The test program finds and replaces a pattern in 557MB of text,
divided into 55,724 PPRs. The sequential run time is 4.4 seconds. Given the small size
of each PPR, BOP uses a pool of processes rather than starting a process for each PPR.
It uses a manager process to check correctness. When it has no checking work, the
manager computes on the next PPR. At a conflict for safe recovery, BOP resumes from
the last correct PPR and starts a new process pool.

We test the program with 5 different levels of conflicts: no conflict, 1%, 5%, 10%,
and 50% conflicts. With no conflicts, the speed is improved by 94% to a factor of 5.5
with 2 to 9 processors, as shown in Figure 4. The execution time is reduced from 4.4
seconds to 0.8 second. The improvement decreases in the presence of conflicts, as the
four other curves show. As expected, parallel performance is sensitive of the frequency
of conflicts. The maximal speedup drops to 4.9 for 1% (551) conflicts, to 2.7 for 5%
(2653) conflicts, and to 1.8 for 10% (5065) conflicts.

Access Annotation for Safe Program Parallelization 23

1 2 3 4 5 6 7 8

0
1

2
3

4
5

6

String substitution

num. processors p

sp
ee

du
p

+

+

+

+

+

+
+

+

x

x

x

x

x

x

x
x

o

o

o
o o o o o

−

−
− − − − − −

* * * * * * * *

0
1

2
3

4
5

6

+
x
o
−

*

no conflict
1% conflict
5% conflict
10% conflict
50% conflict

2 4 6 8 10 12 14

0
1

2
3

4
5

6

K−means clustering

num. processors p

sp
ee

du
p

+

+

+

+

+ +

+ +
+

+ + +
+ + +

x

x

x

x

x x x x x

x x
x

x
x

x

o

o
o

o

o
o

o

o
o

o o
o o

o
o

0
1

2
3

4
5

6

+
x
o

BOP
OpenMP
A−BOP

Fig. 4. Demonstration of BOP performance. The test of string substitution shows that BOP ex-
ploits speculative parallelism in the presence of unknown conflicts. The test of k-means clustering
shows that BOP, which monitors select data, reduces the overhead of BOP, which monitors all
data, and performs similarly to OpenMP, which does not use speculation or guarantee sequential
equivalence. OpenMP cannot parallelize the string substitution.

In the case of 50% conflicts, every other PPR fails the correctness check and requires
a rollback. The parallel execution is slower by 6% to 19%. It shows the efficiency of
understudy-based error recovery in BOP.

K-means Clustering. The program clusters N points into k clusters iteratively. It starts
with k centroids. In each step, it assigns each point to the closest centroid, and recom-
putes the center of each cluster as new centroids. In this test, we use 8 million points in
20 dimension space, 10 clusters, and 10 iterations. The sequential time is 110 seconds.

The original BOP uses page protection for all global and heap data, which includes
640MB for coordinating data, 32MB for storing cluster assignments (both old and new
assignments), and 2480 bytes for the centroids. It uses padding to separate the three
arrays. To avoid false sharing, it blocks the loop so each PPR computes on 409,600
points and use different memory pages.

The coarse granularity limits the amount of parallelism—there are 190 PPRs, every
19 of them are parallel. As a result, the performance does not increase linearly with the
number of processors. For example, a clustering iteration takes about the same amount
of time using 8 and 9 processors.

Two access annotations are used, one for the centroid array, and the other for the
(new) assignment. It monitors access to 16MB data, 2.3% of total data. The speedup,
shown as A-BOP in the figure, is consistently better than BOP, although the difference is
less than 10%. The OpenMP version has a higher sequential overhead (4%). It is about
the same speed as A-BOP, although at finer granularity, the OpenMP version ran faster.
Overall for k-means, the needed annotation is small (2 annotations), the performance is
improved over automatic monitoring and comparable to OpenMP.

24 C. Ding and L. Liu

6 Related Work

Software Speculative Parallelization. Software speculative parallelization was pioneered
by Rauchwerger and Padua [21]. While most techniques automatically parallelized do-
all loops (with limited potential on full applications [15]), several techniques provided
a safe interface for expressing possible parallelism [25,26] and likely dependence [27].
BOP used Unix processes to implement parallelism and dependence hints for sequen-
tial C/C++ programs [8, 12]. Process-based systems use the virtual memory protection
mechanism, which transparently provides strong isolation, on-demand data replication,
and complete abortability. Similar benefits can be realized for threads using the Copy-or-
Discard model with compiler and run-time support [24]. Raman et al. presented a soft-
ware system called SMTX that supports pipelined execution of sequential loops [19].
Recently, Feng et al. generalized the model as SpiceC (scalable parallelism via implicit
copying and explicit commit) to support either speculative parallelization by default or
other types of commits defined by the user [9].

The original BOP divides program data into three categories — shared, checked,
and likely private —for complete monitoring [8]. Shared data is monitored at page
granularity. Value-based checking is precise and has no false sharing. SMTX uses value-
based checking for all shared data to eliminate the false sharing (at the cost of per-access
monitoring and logging) [19]. Instead of automatic monitoring, this paper describes
an interface for a user to control access monitoring. It shows when annotations are
necessary and how to ensure their correctness. A manual interface may leverage user
knowledge and enable more efficient and precise monitoring than what is possible with
automatic methods alone.

The framework of task isolation and ordered commit has been used to ensure de-
terministic semantics and eliminate concurrency errors in multi-threaded code. Grace
used processes to implement threads to eliminate deadlocks and data races [5]. Burck-
hardt et al. defined isolation and revision types in C# to buffer and merge concurrent
data changes in r-fork/r-join threads [6]. Determinator was developed as a new operat-
ing system that buffers processes and threads in private workspaces and terminates an
execution if concurrent data writes are detected [3]. CoreDet ensured determinism in
threaded execution using versioned memory and a deterministic commit protocol [4].
The access annotation of BOP may help to make program monitoring more precise and
generally applicable in these systems. The concept of executable declaration is applica-
ble, so is the use of error recovery and speculative synchronization.

Scott and Lu gave five definitions of determinism and showed their containment
relationships [23]. A language-level definition is ExternalEvents, which requires that
the observable events in two executions be the same. An implementation level definition
is Data f low, which requires that two executions follow the same “reads-see-writes”
relationship. BOP lets a programmer define external events and relies on speculation to
preserve data flow. The combination enables user control over both the semantics and
the cost of its enforcement.

Race Detection in Fork-Join Parallelism. On-the-fly race detection can be done effi-
ciently for perfectly nested fork-join parallelism [17, 20]. Callahan and others showed
that at the program level, the problem of post-wait race checking is co-NP hard and gave

Access Annotation for Safe Program Parallelization 25

an approximate solution based on dataflow analysis [7]. They used the term canonical
execution to mean the sequential execution of fork-join parallel constructs. The post-
wait race checking can be done at run time in O(np) time, where n is the number of
synchronization operations and p is the number of tasks [18]. These and other results
are summarized in [10]. The execution model of BOP is speculative, and the primitives
of PPRs and ordered sections are hints and do not affect program semantics. The ac-
cess annotation in BOP is used both at debugging time and at run time, so it needs the
maximum efficiency. BOP gains efficiency from its data sharing model, which is copy-
n-merge. As discussed in Section 4, BOP needs at most two annotations per datum per
task and does not synchronize at every access. Race checkers, like DSTM mentioned
in Section 4, use shared memory and have to monitor all accesses, and except for the
recent Tardis system [13], update a shared data structure at each shared-data access [20].

7 Summary

We have presented a new interface for access annotation. As access monitoring be-
comes programmable, it becomes part of program semantics. This paper provides two
techniques to check correctness: canonical execution to ensure sequential semantics
and check for missing write annotations, and a quadratic-time algorithm to ensure de-
terminism and check for missing read annotations. In addition, the paper demonstrates
efficient and safe parallelization of non-trivial programs. Some of them, string substitu-
tion and time skewing, cannot be parallelized by a conventional interface like OpenMP.
Others, when parallelized safely, have a similar performance as OpenMP.

The new interface gives a programmer direct control over the cost and precision of
access monitoring. Much of the cost can be saved by leveraging user knowledge. It
enables a user to control both the semantics and its enforcement. Finally, the interface
may be used by an automatic tool, allowing the mixed use of manual and automatic
parallelization.

References

1. Allen, R., Kennedy, K.: Optimizing Compilers for Modern Architectures: A Dependence-
based Approach. Morgan Kaufmann Publishers (October 2001)

2. Amza, C., Cox, A.L., Dwarkadas, S., Keleher, P.J., Lu, H., Rajamony, R., Yu, W.,
Zwaenepoel, W.: Shared memory computing on networks of workstations. IEEE Com-
puter 29(2), 18–28 (1996)

3. Aviram, A., Weng, S.-C., Hu, S., Ford, B.: Efficient system-enforced deterministic paral-
lelism. In: OSDI (2010)

4. Bergan, T., Anderson, O., Devietti, J., Ceze, L., Grossman, D.: Coredet: a complier and
runtime system for deterministic multithreaded execution. In: ASPLOS, pp. 53–64 (2010)

5. Berger, E.D., Yang, T., Liu, T., Novark, G.: Grace: Safe multithreaded programming for
C/C++. In: OOPSLA, pp. 81–96 (2009)

6. Burckhardt, S., Baldassin, A., Leijen, D.: Concurrent programming with revisions and isola-
tion types. In: OOPSLA, pp. 691–707 (2010)

7. Callahan, D., Kennedy, K., Subhlok, J.: Analysis of event synchronization in a parallel pro-
gramming tool. In: PPoPP, pp. 21–30. ACM, New York (1990)

26 C. Ding and L. Liu

8. Ding, C., Shen, X., Kelsey, K., Tice, C., Huang, R., Zhang, C.: Software behavior oriented
parallelization. In: PLDI, pp. 223–234 (2007)

9. Feng, M., Gupta, R., Hu, Y.: SpiceC: scalable parallelism via implicit copying and explicit
commit. In: PPoPP, pp. 69–80 (2011)

10. Helmbold, D.P., McDowell, C.E.: A taxonomy of race detection algorithms. Technical Re-
port UCSC-CRL-94-35, University of California, Santa Cruz (1994)

11. Herlihy, M., Luchangco, V., Moir, M., Scherer III, W.N.: Software transactional memory for
dynamic-sized data structures. In: Proc. of the 22nd ACM Symp. on Principles of Distributed
Computing, Boston, MA, pp. 92–101 (2003)

12. Jacobs, B., Bai, T., Ding, C.: Distributive program parallelization using a suggestion lan-
guage. Technical Report URCS #952, Department of Computer Science, University of
Rochester (2009)

13. Ji, W., Lu, L., Scott, M.L.: Tardis: Task-level access race detection by intersecting sets. In:
Workshop on Determinism and Correctness in Parallel Programming (2013)

14. Ke, C., Liu, L., Zhang, C., Bai, T., Jacobs, B., Ding, C.: Safe parallel programming using
dynamic dependence hints. In: OOPSLA, pp. 243–258 (2011)

15. Kejariwal, A., Tian, X., Li, W., Girkar, M., Kozhukhov, S., Saito, H., Banerjee, U., Nicolau,
A., Veidenbaum, A.V., Polychronopoulos, C.D.: On the performance potential of different
types of speculative thread-level parallelism. In: ICS, p. 24 (2006)

16. Kulkarni, M., Pingali, K., Walter, B., Ramanarayanan, G., Bala, K., Chew, L.P.: Optimistic
parallelism requires abstractions. In: PLDI, pp. 211–222 (2007)

17. Mellor-Crummey, J.M.: On-the-fly detection of data races for programs with nested fork-join
parallelism. In: SC, pp. 24–33 (1991)

18. Netzer, R.H.B., Ghosh, S.: Efficient race condition detection for shared-memory programs
with post/wait synchronization. In: ICPP, pp. 242–246 (1992)

19. Raman, A., Kim, H., Mason, T.R., Jablin, T.B., August, D.I.: Speculative parallelization us-
ing software multi-threaded transactions. In: ASPLOS, pp. 65–76 (2010)

20. Raman, R., Zhao, J., Sarkar, V., Vechev, M.T., Yahav, E.: Scalable and precise dynamic
datarace detection for structured parallelism. In: PLDI, pp. 531–542 (2012)

21. Rauchwerger, L., Padua, D.: The LRPD test: Speculative run-time parallelization of loops
with privatization and reduction parallelization. In: PLDI, La Jolla, CA (1995)

22. Rinard, M.C., Lam, M.S.: The design, implementation, and evaluation of Jade. TOPLAS
ACM 20(3), 483–545 (1998)

23. Scott, M.L., Lu, L.: Toward a formal semantic framework for deterministic parallel program-
ming. In: The Second Workshop on Determinism and Correctness in Parallel Programming
(2011)

24. Tian, C., Feng, M., Gupta, R.: Supporting speculative parallelization in the presence of dy-
namic data structures. In: PLDI, pp. 62–73 (2010)

25. von Praun, C., Ceze, L., Cascaval, C.: Implicit parallelism with ordered transactions. In:
PPoPP, pp. 79–89 (March 2007)

26. Welc, A., Jagannathan, S., Hosking, A.L.: Safe futures for Java. In: OOPSLA, pp. 439–453
(2005)

27. Zhai, A., Steffan, J.G., Colohan, C.B., Mowry, T.C.: Compiler and hardware support for re-
ducing the synchronization of speculative threads. ACM Trans. on Arch. and Code Opt. 5(1),
1–33 (2008)

Extracting Threaded Traces in Simulation

Environments

Weixing Ji, Yi Liu, Yuanhong Huo, Yizhuo Wang, and Feng Shi

Beijing Institute of Technology, Beijing 100081, China
jwx@bit.edu.cn

Abstract. Instruction traces play an important role in analyzing and
understanding the behavior of target applications; however, existing trac-
ing tools are built on specific platforms coupled with excessive reliance
on compilers and operating systems. In this paper, we propose a precise
thread level instruction tracing approach for modern chip multi-processor
simulators, which inserts instruction patterns into programs at the begin-
ning of main thread and slave threads. The target threads are identified
and captured in a full system simulator using the instruction patterns
without any modifications to the compiler and the operating system. We
implemented our approach in the GEM5 simulator and evaluations were
performed to test the accuracy on x86-Linux using standard benchmarks.
We compared our traces to the ones collected by a Pin-tool. Experimental
results show that traces extracted by our approach exhibit high similar-
ity to the traces collected by the Pin-tool. Our approaches of extracting
traces can be easily applied to other simulators with minor modification
to the instruction execution engines.

Keywords: program trace, full system simulation, multi-core processor.

1 Introduction

Instruction trace characterizes a program’s dynamic behavior and is widely used
for program optimization, debugging and new architecture evaluation. Particu-
larly, memory traces, which are subsets of instruction traces, are frequently used
for new memory system evaluation. Program traces are also necessary for trace
driven simulators, which is a well known method for evaluating new computer
architectures. Prevailing tools for collecting application execution traces include
tools built based-on Pin [1] and Linux-process-tracker provided by the full sys-
tem simulator Simics [2]. There are also a number of simulators and emulators
available to generate traces on some platforms [3,4]. Theoretically, instruction
traces can be extracted at virtually every system level, from the circuit and mi-
crocode levels to the compiler and operating-system levels [5]. However, existing
trace collectors suffer from at least one of the following three limitations:

C.-H. Hsu et al. (Eds.): NPC 2013, LNCS 8147, pp. 27–38, 2013.
c© IFIP International Federation for Information Processing 2013

28 W. Ji et al.

– Being highly dependent on operating systems and compilers and only avail-
able for one or two exiting platforms. It is difficult to add a new platform;

– Only supporting several existing ISAs, severely limiting the usage in new
architecture exploration;

– Generating mixed instruction traces, which include instructions from other
applications and operating system modules.

Tools built on Pin are efficient to collect traces for a single application, but it is
only available for Windows and Linux running on IA-32 and x86-64. It is possible
to port Pin to other platforms hosting a different operating system; and it is also
possible to add a new back-end to Pin targeting a new processor family. However,
this work would be time consuming and laborious. Pin-tools run as applications
on existing platforms and this limits the usage when researchers are exploring
new architectures. Some simulators, such as Simics features the functionality
of single-process profiling only for Linux, while others, such as Solaris, are not
supported at present. Besides, the techniques of instruction tracing in Simics
are operating system dependent and the execution of scheduling module in the
operating system triggers the tracing on and off. In case of an operating system
update, the tracing functionality may lost their last straw to clutch at. The new
simulator GEM5, which becomes increasingly popular in full system simulation,
generates mixed instruction traces at present.

Uhlig [5] defines three aspects of metrics to evaluate the quality of traces
and shows that the collected traces should be as close as possible to the actual
stream of instructions made by a workload when running on a real system.
In particular, the authors emphasize on the portability of trace collector. It
should be easy to move the collector to other machines of the same type and
to machines that are architecturally different. Finally, an ideal trace collector
should be fast, inexpensive and easy to operate. In this paper, we propose a new
approach to extract threaded traces in full system simulation environments that
matches these criteria. This approach does not need to inspect the internal state
of operating systems and does not need to change existing compilers.

In summary, this paper makes the following contributions:

– A new approach to extracting program traces in simulation environments.
It generates separated traces for each target thread and filters the noisy
instruction sequences out.

– An efficient implementation of our approach in simulator GEM5 on x86-
Linux. Evaluations on a suite of 7 benchmarks indicate that our approach is
feasible and can be easily applied to other simulators.

The rest of this paper is organized as follows: Section 2 presents our new ap-
proach to extract thread level traces for applications in simulation environments.
Section 3 shows our experimental results. Section 4 discusses the related work
on trace extracting, and Section 5 concludes the paper.

Extracting Threaded Traces in Simulation Environments 29

2 Extracting Threaded Traces in Simulation
Environments

2.1 Basic Idea

The basic idea of our approach lies in that a process is composed of one or
more threads, and instructions executed on processors can be separated if all
the threads of one process can be identified from the view of simulators. In
general, thread IDs are software concepts and they are transparent to underline
hardware in most implementations. Therefore, two issues should be addressed
in this approach: (1) how to identify threads for a given process, and (2) how to
find instructions executed by these threads.

In state-of-art operating systems, a process is a collection of virtual memory
space, code, data and system resources. Although the internal presentation of
threads and processes in operating system may differ from one to another, a
process always has at least one thread of execution, known as the main thread or
primary thread. Additionally, one or more threads can be created by the main
thread and live within the same process. These slave threads share the same
resources with the main thread. The running of a single process is represented
as the execution of both main thread and slave threads. Namely, the traces of a
process is actually the instruction sequences that are executed in these threads.
One of the key issues is how to find the main thread and salve threads without
the help of the operating system and compiler. We work out a solution to this
problem using the stack pointer register (SP), which is explicit or implicit defined
in most processors. Usually, at the creation stage, each thread is associated to a
memory region referred to as thread stack. The primary purpose of this thread
stack is used to store return address, pass parameters to the callee, store function
local variables and so on. On the occasion of a function invocation, a new stack
frame will be allocated for the execution of that function. When function returns,
the caller or the callee is responsible to deallocated this stack frame by increasing
or decreasing the stack pointer. Hence, the top of the stack dynamically changes
from time to time and memory locations within the stack frame are typically
accessed via indirect addressing.

For most operating systems and third-party thread libraries, a large memory
block is usually allocated for each thread from the virtual memory space. The
virtual address of the stack is not enough to distinguish the target threads from
other threads created by other applications, as all the applications have the
same size of virtual spaces starting from the same virtual address. However,
these stack regions are mapped to different locations in the physical memory
space. In general, the allocated virtual regions are large enough and programs
do not change their location and size during runtime, and therefore threads
can be distinguished using their stack positions in the physical memory space.
However, this does not mean that all the physical addresses allocated to the stack
can be considered as the unique identifiers of the target threads. The reason for
this is that the virtual-to-physical mapping may change as the stack grows back
and forth. Moreover, some of the physical pages may be swapped out and in

30 W. Ji et al.

during execution. However, we find that the first page at the bottom of the
stack is always in use during the whole lifetime of a thread and most of existing
operating systems provide APIs to prevent that part or all of the calling process’s
virtual address space from being paged to the swap area. If the first page at the
bottom of the stack is locked into RAM and it is not remapped during execution,
then virtual-to-physical mapping will not change. It is natural that we can use
the first physical pages of stacks to distinguish threads of running processes.
So long as we know which thread is running on the core, instructions can be
captured and directed into different output streams.

2.2 How to Obtain Traces

The following presents a step-by-step explanation of the methodology for trace
extraction in a simulated full system environment.

1. An instruction pattern is defined for the target program, which is deli-
cately designed and composed of several instructions supported by target
processors;

2. A predefined small function is executed at the beginning of every target
thread. This function is used to: (1) lock the first page of thread stacks in
memory and (2) execute the predefined instruction pattern;

3. The source code of the program is compiled using an existing compiler and
translated into machine binary;

4. At the very beginning of thread execution, the first page at the bottom of
each thread stack is locked in RAM, so that the physical page will not be
swapped out at runtime;

5. The simulator snoops the instruction stream of each processor core and cap-
tures the patterns that are inserted into the application;

6. When the exact instruction sequence defined in the instruction pattern is
captured, the starting address vaddrs and ending address vaddre of current
stack in the virtual space are calculated according to the content of SP
and the stack size. The physical address paddrs of vaddrs is also obtained
through virtual-to-physical translation in the execution context of the pro-
cessor core. We pack vaddrs, vaddre and paddrs up in a structure and insert
it into a target thread list(ttl).

7. For each instruction executed by a processor core, the simulator reads the
register SP to find out the virtual address where the top of current stack is.
Then we go through the ttl and test the content of SP against each virtual
stack regions recorded previously. If we find that SP is pointing to one of the
virtual stack regions, we translate the vaddrs of the matched stack into its
physical address paddrs′ according to current execution context. If paddrs′

is valid and equal to paddrs, which is obtained when the pattern is captured,
then the instruction is included in the output trace.

In following discussion, we assume the starting address of a stack points to the
location where the bottom of the stack resides, no matter which direction the

Extracting Threaded Traces in Simulation Environments 31

stack grows to. Therefore, the mapping from virtual address vaddrs to physical
address paddrs does not change for a thread from the beginning to the end
and this paddrs can be used as the unique identifier of the target thread. Here,
we need one more words for the calculation of vaddrs and vaddre before we
proceed further. Given that the stack grows towards the lower address of the
virtual space, these two addresses are calculated when the pattern is captured
by:

vaddrs = vaddrsp − (vaddrsp mod ps) + (k × ps)− 1 (1)

vaddre = vaddrs + 1− ss (2)

where ps is page size and ss is stack size. k is an optional parameter and it is set
to 1 in default. The reason why we can do this is that the instruction patterns
are inserted at the beginning of both main and slave threads. We are certainly
sure that the bottom of the stack is not far away from the address stored in
the SP register when the pattern is captured. In general, there are 2 or 3 stack
frames from the bottom to the frame that the pattern is capture. Hence, the
distance from stack bottom to SP is no more than k pages. In most cases, the
frame size of the thread function dose not exceeds the page size and k is set to
1. The starting address and the ending address of the stack can be calculated
according to the size of the stack and the growing direction. The size of memory
pages and the size of stacks are configurable and they can be easily figured out
according to the version of the operating system and thread libraries.

To further present our idea clearly, a runtime scenario is given in Figure 1.
As shown in the left part of this figure, two applications (App1 and App2) are
started in the same operating system and run concurrently with 3 threads in
total(2 for App1 and 1 for App2). In this case, the virtual stack of thread T1

may overlap the virtual stack T3 because both App1 and App2 have private vir-
tual spaces, which start from the same address and spread out for the same size.
However, the three virtual pages at the bottom of these stacks are mapped to
different physical pages as threads do not share stacks. Given App1 is our target
application and instruction patterns will be captured by the simulator at the
beginning of threads T1 and T2. At that moment, both SP1 and SP2 point to
the first virtual page at the bottom of their stacks which are locked into RAM.
Thus, vaddr1s, vaddr1e, vaddr2s, and vaddr2e can be calculated using equation
1 and 2. Meanwhile, paddr1s and paddr2s are obtained by address transla-
tion using vaddr1s and vaddr2s respectively. Right now, the target thread list
ttl looks like {{vaddr1s, vaddr1e, paddr1s}, {vaddr2s, vaddr2e, paddr2s}}. The
right part of this figure shows the extracting context of an instruction. Every
time when an instruction is executed by some core in the simulator, only SP4 is
read and it is used to search ttl. In the case of virtual stack overlapping, the first
element {vaddr1s, vaddr1e, paddr1s} in ttl is tested and vaddr1s is translated
into physical address paddr1′s in current execution context. However, it turns
out that paddr1′s 	= paddr1s, which means current instruction is not belonged
to any target threads. Therefore, the instruction is not included in the trace.

32 W. Ji et al.

Phys. Mem.

Virtual Mem.

Stack of T1

SP1

App1

App2

Stack of T2

Stack of T3

vaddr1e

SP2

SP3

SP4

vaddr1s

vaddr2e

vaddr2s

vaddr3e

vaddr3s

Execution context
of current
instruction

paddr1s

paddr2s

Paddr3s

Fig. 1. Stack mapping and identification in simulation

2.3 Instruction Patterns

The instruction pattern should be delicately designed, as the same sequence of
instructions may appear in the execution of both applications and operating sys-
tem modules. However, if the instruction sequence in the pattern is long enough,
then there will be a small possibility that the same sequence of instructions exists
in the original binaries. For example, following instruction sequence in Figure 2
is an example designed for programs running on x86.

As multi-core processors are widely accepted and used now, applications run-
ning on an operating system tend to create multiple threads to fully utilize the
hardware resource. It is important to have separated trace outputs for different
threads, so that we get a precise instruction sequence for each thread. For this
purpose, we pass the thread ID(tid in the last line of Figure 2) to the runtime in
the pattern in a known register. This tid can be read from that register at the
time when the pattern is captured by the simulator. Then it is stored in the ttl
and used as an identifier for a target thread. Similarly, it is also possible to assign
different thread IDs to different applications. In such a way, we can start and run
multiple applications simultaneously in a system and have separated traces for
all the threads created by all target applications. This feature is especially useful
to analyze the dynamic execution interferences among multiple applications.

Our approach requires the user to insert instruction patterns into their source
code and start the simulator with the pattern as an input. It can be implemented
in most full system simulators without modifications to the compiler and the
operating system, as the default size of thread stacks usually does not change.
Even though the size is changed or the thread function has a very large stack
frame, setting a new size in the configuration file will be able to extract correct

Extracting Threaded Traces in Simulation Environments 33

__asm__ __volatile__ (“move %0, %%eax\n\t”
 “add $0x0, %%eax\n\t”
 “add $0x0, %%eax\n\t”
 : : “r”(tid)
);

Fig. 2. Instruction pattern for x86-Linux

traces. Our approach still work well in case of system updates, because it is not
necessary to inspect the internal state operating systems.

3 Evaluation

3.1 Evaluation Method

GEM5 is a modular platform for computer system architecture research, en-
compassing system-level architecture as well as processor microarchitecture [3].
GEM5 provides a highly configurable simulation framework, multiple ISAs, and
diverse CPU models. Our experiments were performed on x86-Linux, as it is well
supported and widely used. We lock some pages of a process’s virtual address
space into RAM, preventing these pages from being paged to the swap area. In
our implementation, mlock is invoked at the very beginning of each thread to
lock the identification pages at the bottom of thread stacks in RAM, so that
each identification page is guaranteed to be resident in RAM and mapped to a
same physical page before thread termination.

We also built an instruction tracing tool based-on the framework provided
by Pin. In our experiments, we compared our traces to the ones obtained by
the Pin-tool on x86-Linux. To further verify the effectiveness of our approach,
we run multiple benchmarks together and generate separated traces for each
application in GEM5. These traces are then compared with the traces generated
by the Pin-tool. Taking 4 applications (a, b, c and d) for example, we run the
applications in the simulator one at a time and get four traces(a1, b1, c1 and
d1), then we partition the benchmarks into 2 groups((a,b), (c,d)), and start the
two benchmarks in the same group at the same time in the simulator. Then
we extracted another four traces(a2, b2, c2 and d2) from the hybrid instruction
streams. After that, we compared the two traces of each benchmark with their
Pin-tool counterparts to see how similar they are.

Even though the simulated x86-Linux is different from the host machine in
many aspects, we expect highly similar traces for a same executable binary.
This is because the difference in microarchitecture dose not changes the order
of instructions in the same thread; however, in effect, they are not exactly the
same due to thread scheduling and synchronization. The operating system im-
ages and compilers are all provided by the GEM5 team and we didn’t make
any modifications to these system software. All the benchmarks are compiled
with the ”-static” options to make sure that no differences will be introduced

34 W. Ji et al.

into the traces by using different dynamic loaded libraries. Meanwhile, the in-
struction patterns are labeled by the #pragma OPTIMIZE OFF and #pragma
OPTIMIZE ON pair to turn off GCC optimizations in these regions. This op-
timization restriction prevents the instructions in the pattern being removed or
reordered, otherwise, the patterns can not be captured in the simulator while
applications are running.

We use the standard multi-thread benchmarks to evaluate our approach, and
all of the programs are selected from SPLASH2 [14]. For each application, only
three lines of codes are inserted into the original sources: 1) including a head
file defining the patterns, 2) inserting the pattern at the beginning of the main
thread, and 3) inserting the same pattern at the beginning of slave threads. After
that, all the benchmarks are compiled and each binary is executed on the host
machine and the simulated full system in GEM5 separately. All the benchmarks
we used are listed in table 1.

Table 1. Benchmarks

Benchmark Description Group

fft A 1-D version of six-step FFT algorithm. 1

lu-non Dense matrix factoring kernel. 1

radix Integer radix sort kernel. 2

lu-con Dense matrix factoring kernel. 2

fmm Body interaction simulation. 3

ocean Large-scale ocean movements simulation. 3

ocean-non Large-scale ocean movements simulation. 3

3.2 Results

Figure 3 and 4 show the calculated similarity between two traces collected
by hacked GEM5 and Pin-tool respectively. Call traces are reduced instruction
traces that only contain instructions of function calls and returns. All the GEM5
traces are collected in solo-runs in the simulated full system. It shows that our
traces are much similar to the ones collected by the Pin-tool. Though the the
similarity of call traces is as high as up to 90% for most benchmarks, the instruc-
tion traces exhibit a relative low similarity around 85%. The reason for this is
that the hacked GEM5 only starts to generate traces after instruction patterns
are captured. Hence, the instructions executed at the startup phase before the
main function are not included in the GEM5 traces, which add up to about 10
thousands in total. Meanwhile, we found that the difference is slightly enlarged
as the number of threads increases. In order to find out the differences for the
two call traces, the edit sequence for the two traces is rebuilt. From the edit
sequence, we found the benchmarks with multiple threads spent much longer
time at the synchronization points than their sequential versions. The threads,
which run faster than others are scheduled out and in from time to time, execute
a number of instructions to check the status of barriers.

Extracting Threaded Traces in Simulation Environments 35

50
60
70
80
90

100

rit
y(
%
)

1 thread

0
10
20
30
40
50

fft radix lu lu non ocean ocean non fmm

Si
m
ila
r

Benchmarks

2 thread

4 thread

8 thread

16 thread

Fig. 3. Instruction trace similarity for solo-runs

50
60
70
80
90
100

ity
(%

)

1 thread

0
10
20
30
40
50

fft radix lu lu non ocean ocean non fmm

Si
m
ila
r

Benchmarks

2 thread

4 thread

8 thread

16 thread

Fig. 4. Call trace similarity for for solo-runs

Even though multiple applications are started to run at the same time, our
approach is capable of distinguishing one application from another with different
thread IDs. We partition all the benchmarks into 3 groups. Each group has 2 or
3 benchmarks and all the benchmarks in one group are started together in the
same simulated full system. The hacked simulator generated separated traces for
each application. The partition of groups is given in table 1 and the calculation
results for the two platforms are shown in Figure 5 and 6. Note that each
instruction and call trace extracted from GEM5 in co-runs are compared with

50
60
70
80
90

100

rit
y(
%
)

1 thread

0
10
20
30
40
50

fft lu radix lu non ocean ocean non fmm

Si
m
ila
r

Benchmarks

2 thread

4 thread

8 thread

16 thread

Fig. 5. Instruction trace similarity for co-runs

36 W. Ji et al.

their counterparts collected by the Pin-tool in solo-runs. All the benchmarks in
the same group were started with 1-16 threads and the simulated system was
configured with 4 physical cores. Hence, target threads are swapped in and out
frequently at runtime because the number of threads is much larger than that
of available cores. The calculated results for instruction traces are very close to
each other.

50
60
70
80
90
100

ity
(%

)

1 thread

0
10
20
30
40
50

fft lu radix lu non ocean ocean non fmm

Si
m
ila
r

Benchmarks

2 thread

4 thread

8 thread

16 thread

Fig. 6. Call trace similarity for co-runs

4 Related Work

Many approaches have been in use for obtaining low level instruction traces for
applications, including dynamic instruction instrumentation, exploiting of hard-
ware performance counters, utilization of the hardware monitor and instruction
simulators or emulators [5].

Anita et. al. built a system for generating and analyzing traces based on link-
time code modification [6], which makes the generation of a new trace easy in
early days. Their system was designed for use on RISC machines and on-the-
fly analysis removes most limitations on the length of traces. Binary dynamic
instrumentation tools such as Pin [7], and other similar tools can collect appli-
cation instruction traces by modifying the application instruction stream when
running. Some tracing tools can be easily built with Pin and it widely used by
researchers to obtain traces on IA-32 and x86-64.

Full system simulators and emulators, such as Simics [2], GEM5 [3], and
QEMU [4], have the ability to collect instruction traces. But limitations can
be found as well. The Linux-process-tracker is a Simics-provided module that
allows tracking user-specified processes by either process id (pid) or file name
in Linux [8], which inspects the simulated operating system and calls the call-
back functions when interesting things occur. The GEM5 simulator is a modular
platform for computer system architecture research, encompassing system-level
architecture as well as processor microarchitecture [3]. It is widely adopted in ar-
chitecture research and does offer detailed instruction trace functionality mainly
for debugging purpose. QEMU is a fast processor emulator using a portable dy-
namic instruction translator [4]. It supports many ISA(x86, ARM, MIPS,etc)

Extracting Threaded Traces in Simulation Environments 37

both on host and guest sides and also can run in full system emulation mode.
QEMU has the ability to generate memory traces.

Researchers in application profiling and performance optimization have pro-
posed several tools and frameworks that exploit hardware devices such as hard-
ware performance counters to collect performance data [9]; while others built
hardware devices [10] [11] [12] [13] to accomplish this work. With the help of
these tools, researchers can collect application traces fast and accurately. Unfor-
tunately, these equipments are either expensive or complicated to be set up and
therefore cannot be widely used.

5 Conclusion

Traces record all the information about a program’s execution in the form of
instruction sequences. In this paper, we propose a new approach to extract
threaded traces for applications in full system simulation environments. Traces
of each application are extracted from the instruction stream blended with in-
structions from operating system modules and other applications. Each thread
in a given application is identified by an instruction pattern without inspect-
ing the internal state of the operating system. Our approach can be applied to
existing full system simulators with no changes to compilers. We implemented
our instruction extraction approach in the simulator GEM5 and performed a
number of experiments on the simulated full system x86-Linux. Experimental
results show that traces extracted by our approach exhibit high similarity to the
traces collected by a Pin-tool.

References

1. Bach, M.(M.), Charney, M., Cohn, R., Demikhovsky, E., Devor, T., Hazelwood, K.,
Jaleel, A., Luk, C.-K., Lyons, G., Patil, H., Tal, A.: Analyzing Parallel Programs
with Pin. Computer 43(3), 34–41 (2010)

2. Virtutech. Simics User Guide for Unix 3.0, Virtutech (2007)
3. Binkert, N., Beckmann, B., Black, G., Reinhardt, S.K., Saidi, A., Basu, A., Hest-

ness, J., Hower, D.R., Krishna, T., Sardashti, S., Sen, R., Sewell, K., Shoaib, M.,
Vaish, N., Hill, M.D., Wood, D.A.: The GEM5 simulator. SIGARCH Computer
Architecture News 39(2), 1–7 (2011)

4. Bellard, F.: QEMU, a fast and portable dynamic translator. In: Proceedings of the
Annual Conference on USENIX Annual Technical Conference, Berkeley, CA, USA,
pp. 41–41 (2005)

5. Uhlig, R.A., Mudge, T.N.: Trace-driven memory simulation: a survey. ACM Com-
puting Surveys 29(2), 128–170 (1997)

6. Borg, A., Kessler, R.E., Wall, D.W.: Generation and analysis of very long address
traces. SIGARCH Computer Architecture News 18(3a), 270–279 (1990)

7. Luk, C.-K., Cohn, R., Muth, R., Patil, H., Klauser, A., Lowney, G., Wallace, S.,
Reddi, V.J., Hazelwood, K.: Pin: building customized program analysis tools with
dynamic instrumentation. In: Proceedings of the 2005 ACM SIGPLAN Conference
on Programming Language Design and Implementation, New York, NY, USA,
pp. 190–200 (2005)

38 W. Ji et al.

8. Chen, X.: SimSight: a virtual machine based dynamic call graph generator. Tech-
nical Report TR-UNL-CSE-2010-0010, University of Nebraska at Lincoln (2010)

9. Browne, S., Dongarra, J., Garner, N., London, K., Mucci, P.: A scalable cross-
platform infrastructure for application performance tuning using hardware coun-
ters. In: Proceedings of the 2000 ACM/IEEE Conference on Supercomputing,
Article 42, Washington, DC, USA (2000)

10. Nanda, A., Mak, K.-K., Sugarvanam, K., Sahoo, R.K., Soundarararjan, V., Smith,
T.B.: MemorIES3: a programmable, real-time hardware emulation tool for mul-
tiprocessor server design. SIGARCH Computer Architecture News 28(5), 37–48
(2000)

11. Chalainanont, N., Nurvitadhi, E., Morrison, R., Su, L., Chow, K., Lu, S.L., Lai,
K.: Real-time l3 cache simulations using the programmable hardware-assisted
cache emulator. In: IEEE International Workshop on Workload Characterization,
pp. 86–95 (2003)

12. Yoon, H.-M., Park, G.-H., Lee, K.-W., Han, T.-D., Kim, S.-D., Yang, S.-B.: Re-
configurable Address Collector and Flying Cache Simulator. In: Proceedings of the
High-Performance Computing on the Information Superhighway, Washington, DC,
USA, pp. 552–556 (1997)

13. Bao, Y., Chen, M., Ruan, Y., Liu, L., Fan, J., Yuan, Q., Song, B., Xu, J.: HMTT:
a platform independent full-system memory trace monitoring system. In: Proceed-
ings of the 2008 ACM SIGMETRICS International Conference on Measurement
and Modeling of Computer Systems, New York, NY, USA, pp. 229–240 (2008)

14. Woo, S.C., et al.: The SPLASH-2 programs: Characterization and methodological
considerations. ACM SIGARCH Computer Architecture News 23(2), 24–36 (1995)

C.-H. Hsu et al. (Eds.): NPC 2013, LNCS 8147, pp. 39–48, 2013.
© IFIP International Federation for Information Processing 2013

A Fine-Grained Pipelined Implementation of LU
Decomposition on SIMD Processors

Kai Zhang, ShuMing Chen*, Wei Liu, and Xi Ning

School of Computer, National University of Defense Technology
#109, Deya Road, Changsha, 410073, China

smchen@nudt.edu.cn

Abstract. The LU decomposition is a widely used method to solve the dense
linear algebra in many scientific computation applications. In recent years, the
single instruction multiple data (SIMD) technology has been a popular method
to accelerate the LU decomposition. However, the pipeline parallelism and
memory bandwidth utilization are low when the LU decomposition mapped
onto SIMD processors. This paper proposes a fine-grained pipelined
implementation of LU decomposition on SIMD processors. The fine-grained
algorithm well utilizes data dependences of the native algorithm to explore the
fine-grained parallelism among all the computation resources. By transforming
the non-coalesced memory access to coalesced version, the proposed algorithm
can achieve the high pipeline parallelism and the high efficient memory access.
Experimental results show that the proposed technology can achieve a speedup
of 1.04x to 1.82x over the native algorithm and can achieve about 89% of the
peak performance on the SIMD processor.

1 Introduction

The solving of dense linear algebra with large scale is the key problem of many
scientific computation applications. The famous LINPACK benchmark [1] [2], which
is used to test the performance of super computers, runs the computation of a set of
linear equations. There are two methods for linear algebra systems, which are direct
methods and iterative methods. Usually, the direct method is very suited to dense
matrices [3]. The typical direct method is solving the linear algebra with the help of
LU decomposition, which makes efficient implementations, either purely in software
or with hardware assistance, is therefore desirable.

Libraries for linear algebra [4] [5] with optimized subroutines have been highly
tuned to run on a variety of platforms. The GPUs based system is a popular method.
On the CPU/GPU hybrid architecture, the performance can be high up to 1000
GFLOPs for single precision as well as 500 GFLOPs (1 GFLOPS = 109 Floating
Point Operations/second) for double precision. However, the memory hierarchy of
GPUs is complex. Michael [6] tailored their implementation to the GPUs inverted
memory hierarchy and multi-level parallelism hierarchy. They proposed a model that
can accurately predict the performance of LU decomposition. Leandro [7] evaluated

* Corresponding author.

40 K. Zhang et al.

different types of memory access and their impact on the execution time of the
algorithm. They showed that coalesced access to the memory leads to 15 times faster
than the non-coalesced version. The task scheduling between CPUs and GPUs is also
important. Optimized task scheduling can effectively reduce the computation [8-12],
which is corresponding to the idea on general purpose processors [13].
Reconfigurable platforms always focus on designing high performance float-point
computation units and the scalable architecture [14-16]. However, the high cost of
reconfigurable hardware leads that they are not widely used.

The previous methods pay much attention on the optimization among system
nodes. And the optimization on each unique node lacks of architecture transparence.
The common idea of various platforms is that try to exploit sufficient parallel
resources, which makes the single instruction multiple data (SIMD) technology been
a popular method to accelerate the LU decomposition. This paper extends the work to
optimize the LU decomposition on each node chip implemented with the modern
SIMD architecture. When the LU decomposition is mapped onto SIMD processors,
the native data dependences of the algorithm lead to the low pipeline parallelism and
too much memory access. And the large amount of non-coalesced memory access
existed in the algorithm results in much more memory access time.

To address these issues, a fine-grained pipelined implementation of LU
decomposition is designed to increase the performance on SIMD processors. The
proposed algorithm well utilizes data dependences to explore the fine-grained pipeline
among all the computation resources. The pipeline parallelism is highly increased on
the SIMD processor. The memory access operations are reduced by immediately
reusing the temporary result. By using external loop unrolling method, the non-
coalesced memory accesses are smartly transformed into coalesced version, which
effectively reduces most of the memory access time.

The rest of the paper is organized as follows: in Section 2, we show a basic SIMD
architecture which is taken as our optimization platform. Section 3 analyzes the basic
LU decomposition on SIMD processors. In Section 4, we describe the proposed fine-
grained pipelined algorithm. The experimental results are presented in Section 5.
Finally, Section 6 concludes the paper.

2 SIMD Architecture

The SIMD technology can operate on multiple data in parallel by the control of a
single instruction. Thanks to the simple control logic and the low cost hardware, it can
provide high performance at low power consumption and is well applied to the design
of processors, such as GPUs, AnySP [17], Cell [18] and VT [19]. Based on the above
modern state-of-the-art SIMD processors, we setup a basic framework for SIMD
processors. The basic SIMD processor is shown in Fig. 1 and is chosen as our
platform to optimize the LU decomposition.

As is depicted in Fig. 1, a SIMD processor generally consists of a Scalar Unit (SU)
and multiple Vector Processing Elements (VPEs). The SU is used to execute the
communication and scalar computation. Multiple VPEs are used to accelerate the
parallel computation. The number of VPEs is referred as SIMD width. Each VPE
usually contains functional units such as ALU, Multiply-Accumulate (MAC) and

 A Fine-Grained Pipelined Implementation of LU Decomposition on SIMD Processors 41

Load/Store (LS). The adder tree performs the reduction add operation among VPEs.
The shuffle unit can rearrange the vector data among all VPEs. The LS controls the
access to the on-chip vector memory (VM) which consists of multiple parallel banks.
A coalesced memory access can increase the bandwidth efficiency and therefore the
performance of memory-bound kernels. The shared-registers (SR) can be accessed by
the SU and all VPEs.

Fig. 1. The basic SIMD architecture

3 LU Decomposition

For solving a set of linear equations of the form

Ax = b,

where x and b are n×1 column vectors. The LU decomposition is used to factor a n×n
matrix A into a n×n lower triangular matrix L (the diagonal entries are all 1) and a
n×n triangular matrix U. Such that,

LUx = b.

Figure 2 shows the procedure of the basic LU decomposition of a matrix. The
computation amount of the algorithm is O(n3). And the communication amount is
O(n2). The matrix A is replaced by matrices L and U after the decomposition. The
loop can be divided into two segments, which are separated by dotted lines in Fig. 2.
The first segment is used to update the kth column, where the computation amount is
O(n2). The second segment is used to update the right lower sub-matrix, where the
computation amount of the algorithm is O(n3). As shown in Fig. 2, this algorithm has
high data dependences. The updated kth column of A is used to update the right lower
sub-matrix. The matrix updating segment can only be executed after all the iterations
of kth column updating computation. As the matrix for decomposition is always large,
the updated kth column cannot all reside in local registers and must be written back to
memory. Although it is time cost, the updated kth column must be read from memory
when performing the matrix updating segment, which causes large amount of memory
access operations.

42 K. Zhang et al.

Fig. 2. The basic LU decomposition algorithm

In the segment of updating the kth column, A[k,k] is shared among all VPEs to
perform the computation in parallel. The updated results cannot totally reside in
registers, thus they must be stored into memory. We assume that the SIMD width is
N. Totally N iterations can be executed in parallel in the segment of updating the right
lower matrix, where N elements of the kth column must be loaded into registers from
memory. As we can see, there are three apparent deficiencies in the above algorithm.
Firstly, the high data dependences lead to the low pipeline parallelism. The two
segments are totally executed in sequence. Secondly, all the temporary results, which
are possible to reside in registers for reusing, are written back to the memory. Thirdly,
the column data access, which causes non-coalesced access to parallel memory banks,
is low efficient. To address this issue, we propose a fine-grained pipelined LU
decomposition algorithm. The detail of this algorithm is explained in the next section.

4 Fine-Grained Pipelined LU Decomposition

To achieve the high pipeline parallelism and the high efficient memory access, a
direct way is reducing data dependences and transforming the non-coalesced access to
coalesced version. To reduce the amount of memory access, we must try to keep the
temporary results, which will be reused, in local registers. Thus, we must make a
detailed analysis on the program. We analyze data dependences among the two task
segments of the program code. Fig. 3 shows data dependences of the basic LU
decomposition algorithm.

The loop unrolling technique is a traditional method for loop accelerating. For
nested loop optimization, the universal method is internal loop unrolling with
software pipelining. However, this method causes the non-coalesced memory access
to kth and jth columns of matrix A. As shown in Fig. 3, the updated A[i,k] is used to
update A[i,j] (j=k+1 to n) which is the ith row of matrix A. As the updating of the ith
row is executed in the external loop of the second segment, we can unroll the external
loop instead of the internal loop. The unrolled loop is dispatched to all VPEs. Each

 A Fine-Grained Pipelined Implementation of LU Decomposition on SIMD Processors 43

VPE execute an iteration of the external loop of segment 2. Then all VPEs access the
ith row of matrix A in parallel. The non-coalesced memory access is smartly replaced
by the coalesced memory access.

Fig. 3. Data dependences in the LU decomposition

The SIMD execution of the ith row updating only requires the updated A[i,k] but
not the whole updated kth column. We can start the updating of ith row as soon as the
A[i,k] is updated. As the A[i,k] is a scalar element, we can employ the SU to compute
the A[i,k]. The updated A[i,k] is fast shared with all VPEs by using the SR without
writing back to memory. The shuffle unit can broadcast A[i,k] to all VPEs. Then all
VPEs immediately execute the updating of ith row in SIMD way after receiving A[i,k].

We can see that, the above method introduces a fine-grained pipelined algorithm
for LU decomposition. The updating of sub-matrix is divided into a series updating
processes for each matrix row. The updating of kth column is divided into a series
updating processes for each column element. As soon as each column element is
updated, it is immediately used to update the corresponding matrix row. Compared
with the basic algorithm, the proposed method provides more fine-grained parallelism
for the software pipeline.

The proposed software pipeline greatly corresponds to the data dependences. By
software method assistance, the fine-grained pipelined LU decomposition can be
easily implemented. Thus a high pipeline parallelism can be achieved. The proposed
fine-grained pipelined algorithm has the following advantages: efficiently utilization
of all the computation resource on the modern SIMD processor, reducing the memory
access amount and transforming the non-coalesced memory access to coalesced
version. The problems of low pipeline parallelism, too much memory access and low
efficient memory bandwidth utilization are well solved.

Fig. 4 shows the data flow of the proposed algorithm on the SIMD architecture. As
shown in Fig. 4, the kth column updating task is executed on SU. The right lower sub-
matrix updating task is executed on all VPEs in SIMD way. To transform the non-
coalesced memory access to coalesced version, the external loop of the sub-matrix
updating segment is unrolled to be executed on all VPEs in parallel. And each VPE
performs the internal loop. The SU and SIMD tasks are executed in parallel to achieve
the high pipeline parallelism. The software pipelining technology is used to keep the
native data dependence of the algorithm.

44 K. Zhang et al.

A[i,k]

SU
/

VPE1

╳ −

for i=k+1 to n
A[i,j] = A[i,j] −
A[i,k] ╳ A[k,j]

A[i,k] = A[i,k]/A[k,k]

A[k,k]

A[i,k]

A[k,j] A[k,j+1] A[k,j+N-1]

VPE2

╳ −

VPEN

╳ −

for i=k+1 to n
A[i,j+1] = A[i,j+1]
− A[i,k] ╳ A[k,j+1]

for i=k+1 to n
A[i,j+N-1] = A[i,j+N-1]
− A[i,k] ╳ A[k,j+N-1]

Fig. 4. The data flow of the proposed algorithm

Fig. 5 shows the code example of the proposed fine-grained pipeline algorithm.
The software pipelining is not shown to simplify the description. As shown in Fig.5,
the SU task and SIMD task can be executed in parallel. The SU task is executed in the
scalar unit to update the kth column. As soon as each element of the kth column is
updated, it is written to the SR. Then the shuffle unit broadcasts the updated element
to all VPEs. Each VPE employs this element to update a matrix row. All VPEs
updates the sub-matrix in parallel.

Fig. 5. The proposed fine-grained pipelined LU decomposition algorithm

 A Fine-Grained Pipelined Implementation of LU Decomposition on SIMD Processors 45

5 Experiment Results

We have implemented a cycle-accurate simulator FT-Matrix-Sim based on our
previous single-core simulator [20] for the SIMD architecture as shown in Fig. 1. In
FT-Matrix-Sim, the VM is organized as scratchpad memory and simulated with a
cycle-driven system. There are 16 VPEs, each having a 32-entry register file. Each
VPE contains four function units: ALU, two L/S and MAC. The MAC unit supports
one float-point operation each cycle. The SU has the same units with each VPE. The
VM has 16 banks. Manually optimized assemble code is used as the input of the
simulator.

The architecture established by the simulator has also been implemented in Verilog
hardware design language. The RTL implementation has been synthesized with
Synopsys Design Complier under TSMC 65 nm technology in order to obtain the
operating speeds and the cycle accurate performance simulation. The clock frequency
of the synthesized circuit can be up to 500 MHz.

Fig.6 shows the performance of the proposed fine-grained pipelined LU
decomposition algorithm. As can be seen, the speedup of the fine-grained algorithm
over the basic algorithm can be up to 1.04x to 1.82x. The average speedup is 1.15x.
The performance of the fine-grained algorithm can be up to 15.98 GFLOPS, where
GFLOPS is a popular metrix for numerical computations. The peak performance of
the synthesized circuit is 18 GFLOPS. Thus, we achieve 88.78% of peak performance
on the SIMD processor by using the proposed fine-grained algorithm. The delectable
result is that we can obtain better performance with the increasing of matrix size.

0 500 1000 1500 2000 2500 3000
1

1.2

1.4

1.6

1.8

2

Matrix Size

S
pe

ed
up

0 500 1000 1500 2000 2500 3000
15

15.2

15.4

15.6

15.8

16

G
F

LO
P

S

Speedup

GFLOPS

Fig. 6. The performance of proposed algorithm

46 K. Zhang et al.

The performance improvement resulting from the fine-grained algorithm is due to
the following two factors: the high pipeline parallelism and the high efficient memory
access. The fine-grained method greatly corresponds to the native data dependences
of the algorithm. It well explores the fine-grained parallelism between the SU and
multiple VPEs, which can effectively increase the pipeline parallelism and reduce the
memory access amount. The external loop unrolling method of the fine-grained
pipelined algorithm transforms all non-coalesced memory access to coalesced
version, which is the high efficient memory access way. The coalesced method can
reduce most of the memory access time. Table 1 shows the reduced memory access
time of the fine-grained algorithm compared with the basic version. As can be seen,
the proposed algorithm can reduce the memory access time by 90% to 96%.

The main contribution of the proposed algorithm is reducing the communication
amount and hiding the computation time of updating the kth column. Both
complexities of the above two tasks are O(n2). However, the total computation
amount of the algorithm is O(n3). So the proportion of the performance increments
brought by the proposed method goes smaller when the matrix size goes larger. But
the absolute performance of the proposed algorithm is always high.

Table 1. Reduced memory access time

Size Reduced (%) Size Reduced (%) Size
Reduced
(%)

128 90.15% 1024 94.85% 1920 95.85%

256 91.62% 1152 95.01% 2048 95.92%

384 92.65% 1280 95.23% 2176 95.95%

512 93.41% 1408 95.39% 2304 95.96%

640 93.81% 1536 95.53% 2432 95.97%

768 94.19% 1664 95.64% 2560 95.99%

896 94.54% 1792 95.74% 3000 95.99%

6 Conclusions

This paper proposed a fine-grained pipelined LU decomposition implementation on
SIMD processors. The main performance improvement is achieved by the high
pipeline parallelism and the high efficient memory access. The new algorithm well

 A Fine-Grained Pipelined Implementation of LU Decomposition on SIMD Processors 47

corresponds to data dependences of the native algorithm and effectively transforms
the non-coalesced memory access to coalesced version, which increases the pipeline
parallelism, reduces the memory access amount and increases the efficient of memory
access. To illustrate our ideas, we implemented a cycle-accurate simulator and a RTL
design. The RTL design was synthesized under TSMC 65 nm technology and
achieved a frequency of 500 MHz. With the proposed algorithm, we can obtain a
performance speedup about 1.04x to 1.82x over the basic LU decomposition
algorithm. Most of the peak performance on the SIMD processor is well utilized by
the proposed technology.

Acknowledgement. This work is supported by the National Natural Science
Foundation of China (No.61070036) and HPC Foundation of NUDT.

References

1. Dongarra, J.J., Luszczek, P., Petitet, A.: The LINPACK benchmark: past, present and
future. Concurrency and Computation: Practice and Experience 15(9), 803–820 (2003)

2. LINPACK, http://www.netlib.org/linpack
3. Michailidis, P.D., Margaritis, K.G.: Implementing parallel LU factorization with pipelining

on a multicore using OpenMP. In: 2010 IEEE 13th International Conference on
Computational Science and Engineering (CSE). IEEE (2010)

4. Dongarra, J.J., Walker, D.W.: Software libraries for linear algebra computations on high
performance computers. SIAM Review 37(2), 151–180 (1995)

5. Whaley, R.C., Dongarra, J.J.: Automatically tuned linear algebra software. In: Proceedings
of the 1998 ACM/IEEE Conference on Supercomputing (CDROM). IEEE Computer
Society (1998)

6. Anderson, M.J., Sheffield, D., Keutzer, K.: A predictive model for solving small linear
algebra problems in gpu registers. In: 2012 IEEE 26th International Parallel & Distributed
Processing Symposium (IPDPS). IEEE (2012)

7. Cupertino, L.F., et al.: LU Decomposition on GPUs: The Impact of Memory Access. In:
2010 22nd International Symposium on Computer Architecture and High Performance
Computing Workshops (SBAC-PADW). IEEE (2010)

8. Galoppo, N., et al.: LU-GPU: Efficient algorithms for solving dense linear systems on
graphics hardware. In: Proceedings of the 2005 ACM/IEEE Conference on
Supercomputing. IEEE Computer Society (2005)

9. Lifflander, J., et al.: Dynamic Scheduling for Work Agglomeration on Heterogeneous
Clusters. In: 2012 IEEE 26th International Parallel and Distributed Processing Symposium
Workshops & PhD Forum (IPDPSW). IEEE (2012)

10. Donfack, S., et al.: Hybrid static/dynamic scheduling for already optimized dense matrix
factorization. In: 2012 IEEE 26th International Parallel & Distributed Processing
Symposium (IPDPS). IEEE (2012)

11. Lifflander, J., et al.: Mapping dense lu factorization on multicore supercomputer nodes. In:
2012 IEEE 26th International Parallel & Distributed Processing Symposium (IPDPS).
IEEE (2012)

12. Venetis, I.E., Gao, G.R.: Mapping the LU decomposition on a many-core architecture:
challenges and solutions. In: Proceedings of the 6th ACM Conference on Computing
Frontiers. ACM (2009)

48 K. Zhang et al.

13. Grigori, L., Demmel, J.W., Xiang, H.: Communication avoiding Gaussian elimination. In:
Proceedings of the 2008 ACM/IEEE Conference on Supercomputing. IEEE Press (2008)

14. Jaiswal, M.K., Chandrachoodan, N.: Fpga-based high-performance and scalable block lu
decomposition architecture. IEEE Transactions on Computers 61(1), 60–72 (2012)

15. Zhuo, L., Prasanna, V.K.: High-performance and parameterized matrix factorization on
FPGAs. In: International Conference on Field Programmable Logic and Applications, FPL
2006. IEEE (2006)

16. Zhuo, L., Prasanna, V.K.: High-performance designs for linear algebra operations on
reconfigurable hardware. IEEE Transactions on Computers 57(8), 1057–1071 (2008)

17. Woh, M., Seo, S., Mahlke, S., Mudge, T., Chakrabarti, C., Flautner, K.: AnySP: Anytime
Anywhere Anyway Signal Processing. In: Proceedings of the 31st Annual International
Symposium on Computer Architecture (ISCA 2009), Austin, Texas, June 20-24 (2009)

18. Flachs, B., Asano, S., Dhong, S.H., et al.: The Microarchitecture of the Synergistic
Processor for a Cell Processor. IEEE Journal of Solid-State Circuits 41(1) (January 2006)

19. Krashinsky, R., et al.: The vector-thread architecture. In: Proceedings of the 31st Annual
International Symposium on Computer Architecture. IEEE (2004)

20. Chen, S.-M., et al.: YHFT-QDSP: High-performance heterogeneous multi-core DSP.
Journal of Computer Science and Technology 25(2), 214–224 (2010)

FRESA: A Frequency-Sensitive Sampling-Based

Approach for Data Race Detection

Neng Huang, Zhiyuan Shao, and Hai Jin

Services Computing Technology and System Lab
Cluster and Grid Computing Lab

School of Computer Science and Technology
Huazhong University of Science and Technology, Wuhan, 430074, China

{nenghuang,zyshao,hjin}@hust.edu.cn

Abstract. Concurrent programs are difficult to debug due to the
inherent concurrence and indeterminism. One of the problems is race
conditions. Previous work on dynamic race detection includes fast but
imprecise methods that report false alarms, and slow but precise ones
that never report false alarms. Some researchers have combined these two
methods. However, the overhead is still massive. This paper exploits the
insight that full record on detector is unnecessary in most cases. Even
prior sampling method has something to do to reduce overhead with
precision guaranteed. That is, we can use a frequency-sensitive sam-
pling approach. With our model on sampling dispatch, we can drop most
unnecessary detection overhead. Experiment results on DaCapo bench-
marks show that our heuristic sampling race detector is performance-
faster and overhead-lower than traditional race detectors with no loss in
precision, while never reporting false alarms.

Keywords: Concurrency, Data Race, Sampling, Bug Detection.

1 Introduction

Multithreading is getting more and more popular in today’s software. In other
words, software must become more parallel to exploit hardware trends, which
are increasing the number of processors on each chip. Unfortunately, correct and
scalable multithread programming is quite difficult. The instructions in differ-
ent threads can be interleaved randomly. A data race occurs when two different
threads access the same memory location without an ordering constraint en-
forced between the accesses, and at least one of the accesses is a write [18]. Data
races are not necessary errors in and of themselves, but they indicate a variety
of serious concurrency errors that are difficult to reproduce and debug such as
atomicity violations [13], order violations [12], and sequential consistency vio-
lations [14]. As some races occur only under certain inputs, environments, or
thread schedules, deploying low-overhead and precise-coverage race detection
tool is necessary to achieve highly robust deployed software.

There has been much effort to develop automatic tools for detecting data
races. Ultimately, the detection techniques are broadly categorized according to

C.-H. Hsu et al. (Eds.): NPC 2013, LNCS 8147, pp. 49–60, 2013.
c© IFIP International Federation for Information Processing 2013

50 N. Huang, Z. Shao, and H. Jin

the time they are applied to the program: static and dynamic. Static techniques
[11,17,21,22,24,29] provide maximum coverage by reasoning about data races on
all execution paths. However, they tend to make conservative assumptions that
lead to a large number of false data races alarm. On the other hand, dynamic
techniques [6, 7, 10, 20, 26, 30, 31] are more precise than static tools, but their
coverage is limited to the paths and thread interleaving explored at runtime. In
practice, the coverage of dynamic tools can be increased by running more tests.

Most dynamic data race detectors are not widely used due to their runtime
overhead. Data race detectors like RaceTrack [30] incurs about 2x to 3x slow-
down and Intel’s Thread Checker [23] takes performance overhead on the order
of 200x. Such large performance overhead leads to the lack of data race detec-
tors used in practice. The main reason for this very large performance overhead
is each memory operation executed by the program needs to be recorded and
analyzed. LiteRace [15] uses sampling to reduce the runtime overhead of data
race detector. It presents a sampling algorithm which based on the cold-region
hypothesis that data races are likely to occur when a thread is executing a “cold”
(infrequently accessed) region in the program. PACER [3] shows a “get what
you pay for” approach that provides scalable performance and scalable odds of
finding any race. It provides a qualitative improvement over prior approaches.

This paper presents a frequency-sensitive sampling-based approach called
FRESA. FRESA makes a precise and coverage guarantee: no matter what sam-
pling methods you used, it learns and updates its sampling strategy intelligently.
In other words, “get what you want but pay for less”.

FRESA collects and organizes historical sampling results for the next sam-
pling. In order to make the sampler more effective, it owns a finding density
table in each schedule path. Compared with previous table, FRESA computes
and creates a sampling probability interval, which helps making a more appro-
priate proportional sampling rate.

The rest of the paper is organized as follows: section 2 introduces our moti-
vation and section 3 describes our algorithm. In section 4, we show our exper-
imental results and performance. We list some related work in section 5. Then
we conclude our current work and future work in section 6.

2 Motivation

We motivate our work by a common program shown below.

public class Test{
int test1,test2,test3;
void func1(int x){

test1 += x;
}
void func2(int x){

test2 += x;
}

FRESA 51

void func3(int x){
test3 += x;

}
}

public class TestTest{
Test test = new Test();
Thread t1 = new Thread(){ //thread t1

public void run(){
for(int i = 0; i < 10000; i++)

test.func1(1);
test.func2(1);
test.func3(1);
}

}
Thread t2 = new Thread(){ //thread t2

public void run(){
test.func1(1);
for(int i = 0; i < 100; i++)

test.func2(1);
test.func3(1);
}

}
Thread t3 = new Thread(){ //thread t3

public void run(){
test.func1(1);
test.func2(1);
test.func3(1);
}

}

public static void main(){
t1.start();
t2.start();
t3.start();
t1.join();
t2.join();
t3.join();

}
}

In the program the shared memory test1, test2, test3 are accessed 10002, 102,
3 times respectively, which shows an asymmetrically accessed distribution by
thread1, thread2 and thread3. The asymmetry like the above program is quite
common in real applications.

52 N. Huang, Z. Shao, and H. Jin

Fig. 1. A random selected 200 sequential accesses in DaCapo eclipse

We have an instrumentation in DaCapo eclipse. Figure 1 lists a random se-
lected 200 sequential accesses frequency. Access frequency imbalance is quite
obviously as shown. Previous race detection methods based on sampling never
take it into account. Obviously, quite a lot overhead could be reduced through
asymmetrical sampling rate.

3 FRESA Algorithm

In order to leverage the asymmetry. This section presents our FRESA algorithm.
FRESA is a dynamic data race detection sampling method based on happen-
before relationship, which uses a frequency statistics for the next time’s sampling
based on asymmetrical access information.

FRESA starts at a user-given sampling rate r0 for every shared memory in
sampling areas. It collects shared memory access frequency at run time. With the
program execution, different shared memory’s access frequency appears different.
FRESA groups all the memories into different groups by considering their access
frequencies. As more and more different memories grouped, each group can have
a unique sampling rate based on user-given sampling rate. FRESA believes that
the more frequently the shared memory accessed, the lower proportion the shared
memory could have a data race. Since data races that occur in frequently accessed
memory of well-tested programs either have already been found or fixed.

3.1 Frequency Statistics

FRESA collects the frequency of a memory location accessed, with the aim of
grouping the memory of similar access frequency into the same group.

FRESA 53

By this means, different memories can be partitioned into different groups.
FRESA assigns different sampling rates to different groups.

FRESA uses a hashtable to maintain variables access frequency information.
We define the memory location x in hashtable as a tuple (siteId, frequencyNum).
siteId refers to the call site at which x is allocated and frequencyNum stands
for the access frequency of x. We update the hashtable after every access using
the algorithm below.

Algorithm 1. Hashtable Update Algorithm

1: if hashtable.get(siteId)!=NULL then
2: frequencyNum()++
3: else
4: hashtable.put(siteId,1)
5: end if

With the program execution, the hashtable updates at run time. Assume we
get a hash map contains n different accesses x1, x2, x3 . . .xn and with the
relevant access frequencies f1, f2, f3 . . . fn. In a general way, we first simply
divide our n tuples into 5 groups.For an empirical practice, we set four group
frequency threshold as g1 = 20, g2 = 50, g3=100, g4 = 200. For each (xi,fi), we
dispatch it into a group in the following formula:

(xi, fi) ∈

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

G1 fi ≤ g1
G2 g1 < fi ≤ g2
G3 g2 < fi ≤ g3
G4 g3 < fi ≤ g4
G5 fi > g4

(1)

We only list a simple piecewise function above. The group threshold can be
different in practice due to the different frequency distribution.

3.2 Adaptive Sampling

FRESA does the same thing as PACER either in sampling periods or non-
sampling periods. During sampling periods, FRESA fully tracks the happen-
before relationship on all synchronization operations, and variable reads and
writes, using FASTTRACK algorithm. In non-sampling periods, FRESA also
reduces the space and time overheads of race detection by simplifying analysis
on synchronization operations and variable reads and writes. However, FRESA
adaptively changes its sampling rate using variable access frequency information.
As for one access x, sampling rate r is decided by variable group classification
as the following formula:

rxi = F (gj|r0) xi ∈ gj (2)

54 N. Huang, Z. Shao, and H. Jin

where rxi indicates the proper sampling rate for access xi. F (gj |r0) defines the
sampling rate for group gj .

In our experiment, we use an exponential decline equation rxi = r0/2
j xi ∈ gj

(j = 1, 2, 3, 4) in our example.

3.3 Theoretical Accuracy and Slowdown

Table 1 summarizes the effect of FASTTRACK, PACER and FRESA have on
(1) the detection rate for any race and (2) program performance for sampling
rate r and data race occurrence rate o.

Table 1. Theoretical accuracy and slowdown

Det. race Slowdown

FASTTRACK o crw+csyncn
PACER o× r csampling(crw + csyncn)r + cnonsampling

FRESA
∑m

i=1 oi × ri
∑g

i=1 csampling(c
′
rw + csyncn)ri + cnonsampling

Constant crw is the slowdown due to analysis at reads and writes, and csyncn
is the linear slowdown in the number of threads n due to analysis at synchroniza-
tion operations. PACER essentially scales FASTTRACK’s overhead by r, as
well as a small constant factor csampling due to PACER’s additional complexity
(e.g., indirect metadata lookups). PACER adds a slowdown cnon-sampling during
non-sampling periods, which is small and near-constant in practice. In FRESA,
constant c

′
rw is a little bigger than that in PACER as shared memory’s access

frequency information update.

4 Performance Evaluation

4.1 Implementation

FRESA is implemented in Jikes RVM 3.1.01, a high-performance Java-in-Java
virtual machine [1]. FRESA is built on PACER’s source code2. We execute all
experiments on a Pentium Dual-Core CPU E5300 @2.6 GHz system with 2 GB
main memory running openSUSE Linux 3.4.6-2.10. We used the multithreaded
DaCapo benchmarks [2] (eclipse, hsqldb, and xalan; versions 2006-10-MR1). The
range of sampling rates we use in our experiments is [0.000625, 1], and we set the
minimum user given sampling rate rmin = 0.01. As data races occur infrequently
and sampling decreases the probability of observing a race, we do many trials
to evaluate accuracy.

1 http://dacapo.anu.edu.au/regression/perf/2006-10-MR2.html
2 http://www.jikesrvm.org/Research+Archive

http://dacapo.anu.edu.au/regression/perf/2006-10-MR2.html
http://www.jikesrvm.org/Research+Archive

FRESA 55

4.2 Effectiveness of Data Race Detection

Figure 2(a) and 2(b) show FRESA’s detection rate versus sampling rate for each
benchmark. Figure 2(a) counts the average number of dynamic evaluation races
per run that FRESA detects. A race’s detection rate is the ratio of (1) average
dynamic races per run at sampling rate r to (2) average dynamic races per run
with r = 100%. Each point is the average of all evaluation races’ detection rates.
The plot shows that FRESA reports races at a somewhat better rate than the
sampling rate. However, this may have some different observations in different
executions.

(a) FRESA’s accuracy on dynamic races. (b) FRESA’s accuracy on distinct races.

Fig. 2. FRESA’s accuracy on dynamic and distinct races

Figure 2(b) shows the detection rate for distinct races. If a static race occurs
multiple times in one trial, this plot counts it only once. The detection rate
is much higher because FRESA’s main concept of memory access frequency-
sensitive, which means infrequent accesses have more sampling cost.

4.3 Time and Space Overheads

Time Overhead. Figures 3 shows the slowdown incurred by FRESA on each
benchmark for r ranging over [0, 100%]. The graphs show that FRESA has
overheads that scale roughly linearly with the target sampling rate, although
the slowdown factors on different benchmarks vary a lot. The slowdown factor
in this experiment includes the execution time of the program, the overhead
incurred by the JikesRVM platform, the overhead incurred by dynamic memory
access and synchronization instrumentation and the overhead incurred by the
sampling algorithms. FRESA incurs slowdowns by a factor less than 3x on three
benchmarks (eclipse, hsqldb, xalan) at a target sampling rate of 1%, and can
detect races with a relatively higher probability (80%) than PACER. When
working at a target sampling rate of 100%, FRESA has no sampling effort and
is functionally equivalent to FASTTRACK[21]. In this scenario, FRESA slows
down the three programs by a factor of 10x on average, compared with 8x by

56 N. Huang, Z. Shao, and H. Jin

Fig. 3. Slowdown vs. sampling rates

FASTTRACK and 12x by PACER. Though FRESA uses hashtable leading to
little more access time, it still incurs less time overhead than PACER due to the
saving of sampling cost.

Space Overhead. Figure 4 shows the maximum live memory space overhead
incurred by FRESA with various FRESA configurations. The measurement in-
cludes application, VM, PACER, and FRESA memory. For each target sampling

Fig. 4. Max live memory for eclipse

FRESA 57

rate shown, we take the mean overhead over all executions. Base shows the max
memory used by eclipse running on unmodified Jikes RVM. OM only adds two
words per object and a few percent all-the-time overhead. The other configura-
tions (except LITERACE) are PACER and FRESA at various sampling rates.
At a sampling rate of 100%, FRESA takes no differences as PACER. At other
sampling rates, FRESA uses significantly less memory than PACER. The result
shows that FRESA can scale well with the sampling rate in terms of memory
space used, and with a low sampling rate of r = 1%, its space overhead appears
to be very low.

5 Related Work

A large part of researches [4–11,16, 17, 19–22,24–31] focus on dynamic or static
race detection. Dynamic race detection techniques are either based on lockset or
on happen-before or hybrid of them. Lockset based dynamic techniques could
predict data races that does not happen in a concurrent execution which leads to
report many false warnings. Happen-before based techniques detect races that
actually happen in an execution. Therefore, these techniques lack of good cov-
erage though precise. On the other hand, happens-before based race detectors
cannot predict races that could happen on a different schedule or they cannot
create a schedule that could reveal a real race. In practice, the coverage can
be increased by running more tests. Recently happens-before race detection has
been successfully extended to classify harmful races with sampling. Hybrid tech-
niques combine lockset with happens-before to make dynamic race detection
both precise and predictive. But these techniques also report many false warn-
ings. Static race detection techniques provide maximum coverage by reasoning
about data races on all execution paths. However, they tend to make conservative
assumptions that lead to a large number of false data races.

In general, the traditional methods using vector clocks takes O(n) time and
space overhead, n is the number of threads. The FASTTRACK algorithm re-
places most O(n) analysis with O(1) analysis with precise guaranteed. However,
these methods still incurs significant overhead.

A novel approach that explores the above tradeoff is sampling. LITERACE
uses a sampling dispatch to decide whether to sample synchronization events only
or together with all memory access of a function. On the other hand, PACER
uses a more effective sampling strategy. It divides an execution into a scenario of
sampling or non-sampling periods. PACER can detect race in a magic shortest
data race way and with a probability of r. This significantly reduces the slowdown
overheads.

A common limitation of the above techniques is that although existing pre-
cise sampling-based data race detectors such as PACER and LITERACE can
effectively reduce overheads so that lightweight precise race detection can be
performed efficiently in testing or post-deployment environments, they are inef-
fective in detecting races with much unnecessary repeated sampling cost. Our
insight is that along an execution trace, a program may sample some race-
infrequently variable in high sampling rate. These unnecessary sampling cost

58 N. Huang, Z. Shao, and H. Jin

potentially indicate a saving cost degree in a sampling region. Intuitively, they
may perform redundant memory access sampling, which lowers the chance of
detecting rare data races and costs more unnecessary sampling overhead.

Recently, a couple of random testing techniques for concurrent programs have
been proposed. These techniques randomly seed a program under test at shared
memory accesses and synchronization events. Although these techniques have
successfully detected bugs in many programs, they have two limitations. These
techniques are not systematic or reproducible. Many researchers look for effective
sampling method to solve this problem.

6 Conclusions and Future Work

Data race is a common problem in multithreaded program. It often indicates
serious concurrency errors which are easy to introduce but difficult to repro-
duce, discover, and fix. Prior approaches reduce overhead by sampling. But they
waste too many cost on repeated checking which can be omitted or reduced.
In other words, frequency statistical sampling strategy could be more effective
with detection precise guaranteed. This paper presents a data race detection
method that provides a detection rate for each memory location that has inverse
relationship with access frequency, and adds less time and a little more space
overheads than PACER. FRESA achieves a qualitative improvement over prior
work: its access frequency based sampling strategy suits more comfortable for
performance and accuracy sensitive program, which makes it more suitable for
all-the-time use in a variety of deployed environments. Our future work should
simplify happen-before relationship and optimize the instrumentation with a
lower cost level. In addition, we could generalize the approach to deal with dif-
ferent types of bugs caused by frequently access and develop new methods to
further refine the approach.

Acknowledgements. Thanks to the anonymous reviewers for feedback on this
work. This work is supported in part by the National High-tech R&D Program
of China (863 Program) under grant No.2012AA010905.

References

1. Alpern, B., Attanasio, C.R., Cocchi, A., Lieber, D., Smith, S., Ngo, T., Barton,
J.J., Hummel, S.F., Sheperd, J.C., Mergen, M.: Implementing jalapeño in java. In:
Proceedings of the 14th ACM SIGPLAN Conference on Object-oriented Program-
ming, Systems, Languages, and Applications, pp. 314–324. ACM (1999)

2. Blackburn, S.M., Garner, R., Hoffmann, C., Khang, A.M., McKinley, K.S.,
Bentzur, R., Diwan, A., Feinberg, D., Frampton, D., Guyer, S.Z., Hirzel, M., Hosk-
ing, A., Jump, M., Lee, H., Moss, J.E.B., Phansalkar, A., Stefanović, D., Van-
Drunen, T., von Dincklage, D., Wiedermann, B.: The dacapo benchmarks: Java
benchmarking development and analysis. In: Proceedings of the 21st Annual ACM
SIGPLAN Conference on Object-oriented Programming Systems, Languages, and
Applications, pp. 169–190. ACM (2006)

FRESA 59

3. Bond, M.D., Coons, K.E., McKinley, K.S.: Pacer: proportional detection of data
races. In: Proceedings of the 2010 ACM SIGPLAN Conference on Programming
Language Design and Implementation, pp. 255–268. ACM (2010)

4. Boyapati, C., Lee, R., Rinard, M.: Ownership types for safe programming: Pre-
venting data races and deadlocks. SIGPLAN Not. 37(11), 211–230 (2002)

5. Christiaens, M., De Bosschere, K.: Trade, a topological approach to on-the-fly race
detection in java programs. In: Proceedings of the 2001 Symposium on Java TM
Virtual Machine Research and Technology Symposium, vol. 1, p. 15. USENIX
Association (2001)

6. Dinning, A., Schonberg, E.: Detecting access anomalies in programs with criti-
cal sections. In: Proceedings of the 1991 ACM/ONR Workshop on Parallel and
Distributed Debugging, pp. 85–96. ACM (1991)

7. Elmas, T., Qadeer, S., Tasiran, S.: Goldilocks: a race and transaction-aware java
runtime. In: Proceedings of the 2007 ACM SIGPLAN Conference on Programming
Language Design and Implementation, pp. 245–255. ACM (2007)

8. Engler, D., Ashcraft, K.: Racerx: effective, static detection of race conditions and
deadlocks. SIGOPS Oper. Syst. Rev. 37(5), 237–252 (2003)

9. Flanagan, C., Freund, S.N.: Type-based race detection for java. ACM SIGPLAN
Notices 35(5), 219–232 (2000)

10. Flanagan, C., Freund, S.N.: Fasttrack: efficient and precise dynamic race detection.
In: Proceedings of the 2009 ACM SIGPLANConference on Programming Language
Design and Implementation, pp. 121–133. ACM (2009)

11. Henzinger, T.A., Jhala, R., Majumdar, R.: Race checking by context inference. In:
Proceedings of the ACM SIGPLAN 2004 Conference on Programming Language
Design and Implementation, pp. 1–13. ACM (2004)

12. Lu, S., Park, S., Seo, E., Zhou, Y.: Learning from mistakes: a comprehensive study
on real world concurrency bug characteristics. In: Proceedings of the 13th Inter-
national Conference on Architectural Support for Programming Languages and
Operating Systems, pp. 329–339. ACM (2008)

13. Lu, S., Tucek, J., Qin, F., Zhou, Y.: Avio: detecting atomicity violations via access
interleaving invariants. In: Proceedings of the 12th International Conference on
Architectural Support for Programming Languages and Operating Systems, pp.
37–48. ACM (2006)

14. Manson, J., Pugh, W., Adve, S.V.: The java memory model. In: Proceedings of
the 32nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pp. 378–391. ACM (2005)

15. Marino, D., Musuvathi, M., Narayanasamy, S.: Literace: effective sampling for
lightweight data-race detection. In: Proceedings of the 2009 ACM SIGPLAN Con-
ference on Programming Language Design and Implementation, pp. 134–143. ACM
(2009)

16. Min, S.L., Choi, J.D.: An efficient cache-based access anomaly detection scheme.
In: Proceedings of the Fourth International Conference on Architectural Support
for Programming Languages and Operating Systems, pp. 235–244. ACM (1991)

17. Naik, M., Aiken, A., Whaley, J.: Effective static race detection for java. In: Pro-
ceedings of the Twentieth ACM Symposium on Operating Systems Principles, pp.
308–319. ACM (2006)

18. Netzer, R.H., Miller, B.P.: What are race conditions?: Some issues and formaliza-
tions. ACM Lett. Program. Lang. Syst. 1, 74–88 (1992)

19. O’Callahan, R., Choi, J.D.: Hybrid dynamic data race detection. ACM Lett. Pro-
gram. Lang. Syst. 38(10), 167–178 (2003)

60 N. Huang, Z. Shao, and H. Jin

20. Pozniansky, E., Schuster, A.: Efficient on-the-fly data race detection in multi-
threaded c++ programs. In: Proceedings of the Ninth ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, pp. 179–190. ACM (2003)

21. Pratikakis, P., Foster, J.S., Hicks, M.: Locksmith: context-sensitive correlation anal-
ysis for race detection. In: Proceedings of the 2006 ACM SIGPLAN Conference on
Programming Language Design and Implementation, pp. 320–331. ACM (2006)

22. Qadeer, S., Wu, D.: Kiss: keep it simple and sequential. In: Proceedings of the
ACM SIGPLAN 2004 Conference on Programming Language Design and Imple-
mentation, pp. 14–24. ACM (2004)

23. Sack, P., Bliss, B.E., Ma, Z., Petersen, P., Torrellas, J.: Accurate and efficient
filtering for the intel thread checker race detector. In: Proceedings of the 1st Work-
shop on Architectural and System Support for Improving Software Dependability,
pp. 34–41. ACM (2006)

24. Sasturkar, A., Agarwal, R., Wang, L., Stoller, S.D.: Automated type-based anal-
ysis of data races and atomicity. In: Proceedings of the Tenth ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, pp. 83–94. ACM
(2005)

25. Savage, S., Burrows, M., Nelson, G., Sobalvarro, P., Anderson, T.: Eraser: A
dynamic data race detector for multithreaded programs. ACM Trans. Comput.
Syst. 15(4), 391–411 (1997)

26. Schonberg, E.: On-the-fly detection of access anomalies. SIGPLAN Not. 39(4)
(1989)

27. Sterling, N.: Warlock: A static data race analysis tool. In: USENIX Winter, pp.
97–106 (1993)

28. Von Praun, C., Gross, T.R.: Object race detection. In: Proceedings of the 16th
ACM SIGPLAN Conference on Object-oriented Programming, Systems, Lan-
guages, and Applications, vol. 36, pp. 70–82. ACM (2001)

29. Voung, J.W., Jhala, R., Lerner, S.: Relay: static race detection on millions of
lines of code. In: Proceedings of the 6th Joint Meeting of the European Software
Engineering Conference and the ACM SIGSOFT Symposium on the Foundations
of Software Engineering, pp. 205–214. ACM (2007)

30. Yu, Y., Rodeheffer, T., Chen, W.: Racetrack: efficient detection of data race con-
ditions via adaptive tracking. In: Proceedings of the Twentieth ACM Symposium
on Operating Systems Principles, pp. 221–234. ACM (2005)

31. Zhai, K., Xu, B., Chan, W., Tse, T.: Carisma: a context-sensitive approach to race-
condition sample-instance selection for multithreaded applications. In: Proceedings
of the 2012 International Symposium on Software Testing and Analysis, pp. 221–
231. ACM (2012)

One-to-One Disjoint Path Covers in DCell

Xi Wang, Jianxi Fan�, Baolei Cheng, Wenjun Liu, and Yan Wang

School of Computer Science and Technology, Soochow University,
Suzhou 215006, China

{20124027002,jxfan,chengbaolei,20114027003,wangyanme}@suda.edu.cn

Abstract. DCell has been proposed for one of the most important data
center networks as a server centric data center network structure. DCell
can support millions of servers with outstanding network capacity and
provide good fault tolerance by only using commodity switches. In this
paper, we prove that there exist r vertex disjoint paths {Pi|1 ≤ i ≤ r}
between any two distinct vertices u and v of DCellk (k ≥ 0) where
r = n+k−1 and n is the vertex number of DCell0. The result is optimal
because of any vertex in DCellk has r neighbors with r = n+ k − 1.

Keywords: DCell, Data Center Network, Disjoint Path Covers,
Hamiltonian.

1 Introduction

Data centers become more and more important with the development of cloud
computing. Specifically, in recent years, data centers are critical to the business
of companies such as Amazon, Google, FaceBook, and Microsoft, which have
already owned tremendous data centers with more than hundreds of thousands
of servers. Their operations are important to offer both many on-line applications
such as web search, on-line gaming, email, cloud disk and infrastructure services
such as GFS [1], Map-reduce [2], and Dryad [3].

Researches showed that the traditional tree-based data center networks [4]
have issues of bandwidth bottleneck, failure of single switch, etc.. In order to
solve the defects of tree-based data center networks, there are many data center
networks which have been proposed such as DCell [4], BCube [5], and FiConn
[6, 7]. DCell has many good properties including exponential scalability, high
network capacity, small diameter, and high fault tolerantly. In comparison with
good capabilities of DCell, BCube is meant for container-based data center net-
works which only supports thousands of servers, and FiConn is not a regularly
network which may raises the construction complexity.

DCells use servers as routing and forwarding infrastructure, and the multi-
cast routing frequency between servers are quite high in data center networks.
Multi-cast routing algorithms in DCells can be based on the Hamiltonian model
as methods on [8, 9]. One-to-one disjoint path covers (also named spanning con-
nectivity [10, 11]) are the extension of the Hamiltonian-connectivity which could

� Corresponding author.

C.-H. Hsu et al. (Eds.): NPC 2013, LNCS 8147, pp. 61–70, 2013.
c© IFIP International Federation for Information Processing 2013

62 X. Wang et al.

as well as used on multi-cast routing algorithms in DCells to largely decrease
deadlock and congestion, compared with tree-based multi-cast routing. How-
ever, the problem of finding disjoint path covers is NP-complete [13]. Therefore,
a large amount researches on problems of disjoint path covers focused on dif-
ferent special networks, such as hypercubes [13–16], their variants [17–19], and
others [20–22].

So far there is no work reported about the one-to-one disjoint path cover
properties of DCell. In this paper, we prove that there exist r vertex disjoint
paths {Pi|1 ≤ i ≤ r} between any two distinct vertices u and v of DCellk
(k ≥ 0) where n is the vertex number of DCell0 and r = n+ k − 1. The result
is optimal because of any vertex in DCellk has r neighbors with r = n+ k − 1.

This work is organized as follows. Section 2 provides the preliminary knowl-
edge. Some basic one-to-one disjoint path covers properties are given in Section
3. We make a conclusion in Section 4.

2 Preliminaries

A data center network can be represented by a simple graphG = (V (G) , E (G)),
where V (G) represents the vertex set and E (G) represents the edge set, and
each vertex represents a server and each edge represents a link between servers
(switches can be regarded as transparent network devices [4]). The edge from
vertex u to vertex v is denoted by (u, v). In this paper all graphs are simple and
undirected.

We use G1 ∪G2 to denote the subgraph induced by V (G1)∪V (G2) of G. For
U ⊆ V (G), we use G[U] to denote the subgraph induced by U in G, i.e., G[U] =
(U,E′), where E′ = {(u, v) ∈ E(G)|u, v ∈ U}. A path in a graph is a sequence
of vertices, P :< u0, u1, . . . , uj , . . . un−1, un >, in which no vertices are repeated
and uj, uj+1 are adjacent for 0 ≤ j < n. Let V (P) denote the set of all vertices
appearing in P . We call u0 and un the terminal vertices of P . P can be denoted
by P (u0, un), which is a path beginning with u0 and ending at un. Let P1 denote
< u1, u2, . . . , uk−1, uk > and P2 denote < uk, uk+1, . . . , uk+n >, then P1 + P2

denotes the path < u1, u2, . . . , uk, uk+1, . . . , uk+n >. If e = (uk, uk+1), then
P1 + e denote the path < u1, u2, . . . , uk, uk+1 >. Furthermore, if e = (uk−1, uk),
P1 − e denote the path < u1, u2, . . . , uk−1 >.

A path in a graph G containing every vertex of G is called a Hamiltonian
path (HP). HP (u, v,G) can be denoted by a Hamiltonian path beginning with
a vertex u and ending with another vertex v in graph G. Obviously, if (v, u) ∈
E(G), then HP (u, v,G) + (v, u) is a Hamiltonian cycle in G. A Hamiltonian
graph is a graph containing a Hamiltonian cycle. G is called a Hamiltonian-
connected graph if there exists a Hamiltonian path between any two different
vertices of G. Obviously, if G is a Hamiltonian-connected graph, then G must
be the Hamiltonian graph. Suppose that u and v are two vertices of a graph G.
We say a set of r paths between u and v is an r-disjoint path cover in G if the r
paths do not contain the same vertex besides u and v and their union covers all
vertices of G. An r-disjoint path cover is abbreviated as an r-DPC for simplicity.

One-to-One Disjoint Path Covers in DCell 63

A graph G is one-to-one r-disjoint path coverable (r-DPC-able for short) if there
is an r-DPC between any two vertices of G. In this paper G is r-DPC-able is
not same as G is (r + 1)-DPC-able.

For any other fundamental graph theoretical terminology, please refer to [12].
DCell uses recursively-defined structure to interconnect servers. Each server

connects to different levels of DCell through multiple links. We build high-level
DCell recursively form many low-level ones. Due to this structure, DCell uses
only mini-switches to scale out instead of using high-end switches to scale up,
and it scales doubly exponentially with server vertex degree.

We use DCellk to denote a k-dimension DCell (k ≥ 0), DCell0 is a com-
plete graph on n vertices (n ≥ 2). Let t0 denote the number of vertices in
a DCell0, where t0 = n. Let tk denote the number of vertices in a DCellk
(k ≥ 1), where tk = tk−1 × (tk−1 + 1). The vertex of DCellk can be labeled
by [αk, αk−1, · · · , αi, · · · , α0], where αi ∈ {0, 1, · · · , ti−1}, i ∈ {1, 2, · · · , k}, and
α0 ∈ {0, 1, · · · , t0 − 1}. According to the definition of DCellk [4, 23], we provide
the recursive definition as Definition 1.

Definition 1. The k-dimensional DCell, DCellk, is defined recursively as
follows.

(1) DCell0 is a complete graph consisting of n vertices labeled with
[0],[1],· · · ,[n− 1].

(2) For any k ≥ 1, DCellk is built from tk−1 + 1 disjoint copies DCellk−1,
according to the following steps.

(2.1) Let DCell0k−1 denote the graph obtained by prefixing the label of each
vertex of one copy of DCellk−1 with 0. Let DCell1k−1 denote the graph obtained
by prefixing the label of each vertex of one copy of DCellk−1 with 1. · · · . Let
DCell

tk−1

k−1 denote the graph obtained by prefixing the label of each vertex of one

copy of DCellk−1 with tk−1. Clearly, DCell0k−1
∼= DCell1k−1

∼= · · · ∼= DCell
tk−1

k−1 .
(2.2) For any αk, βk ∈ {0, 1, · · · , tk−1} and αk ≥ βk (resp. αk < βk), con-

necting the vertex [αk, αk−1, · · · , αi, · · · , α1, α0] of DCellαk

k−1 with the vertex

[βk, βk−1, · · · , βi, · · · , β1, β0] of DCellβk

k−1 as follow:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

αk = β0 +
k−1∑
j=1

(βj × tj−1) + 1

βk = α0 +

k−1∑
j=1

(αj × tj−1)

(1)

(resp.), ⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

αk = β0 +

k−1∑
j=1

(βj × tj−1)

βk = α0 +
k−1∑
j=1

(αj × tj−1) + 1

(2)

where αi, βi ∈ {0, 1, · · · , ti−1}, i ∈ {1, 2, · · · , k}, and α0, β0 ∈ {0, 1, · · · , t0 − 1}.

64 X. Wang et al.

By Definition 1, DCellαk

k−1 is a subgraph of DCellk, where αk ∈
{0, 1, · · · , tk−1}.

Figure 1(1), 1(2), and 1(3) demonstrate DCell0, DCell1, and DCell2 with
t0 = 2 respectively. 1(4) and 1(5) demonstrate DCell0 and DCell1 with t0 = 3
respectively.

3 Main Results

In this section, we will study one-to-one disjoint path cover properties of DCell.

Theorem 1. DCellk (k ≥ 0) is Hamiltonian-connected with t0 ≥ 2 except for
DCell1 with t0 = 2 . In other word, DCellk (k ≥ 0) is 1-DPC-able with t0 ≥ 2
except for DCell1 with t0 = 2.

Proof . We omit the proof due to the page limitation. �

Theorem 2. DCellk is a Hamiltonian graph for any k ≥ 0. In other word,
DCellk is 2-DPC-able for any k ≥ 0.

Proof . We omit the proof due to the page limitation. �

Lemma 1. DCell0 is (t0 − 1)-DPC-able with t0 ≥ 2.

Proof . The lemma holds for DCell0 which is a complete graph [12]. �

Lemma 2. DCell1 is 2-DPC-able with t0 = 2.

Proof . DCell1 is a cycle with 6 vertices. Therefore,DCell1 is 2-DPC with t0 = 2
[12]. �

Lemma 3. DCell2 is 3-DPC-able with t0 = 2.

Proof . For t0 = 2, we use construction method to proof this lemma. We can
construct an 3-DPC between u and v in DCell2 for any pair of vertices {u, v} ∈
V (DCell2).

For example, the 3-DPC {P1, P2, P3} (resp. {R1, R2, R3}, {T1, T2, T3},
{S1, S2, S3}, {U1, U2, U3}) from [0, 0, 0] to [0, 0, 1] (resp. [0, 1, 0], [0, 1, 1], [0, 2, 0],
[0, 2, 1]) whose union covers V (DCell2) with t0 = 2 are listed below (Similarly
for the other cases).

P1 =< [0, 0, 0], [0, 0, 1] >,
P2 =< [0, 0, 0], [0, 1, 0], [0, 1, 1], [0, 2, 1], [0, 2, 0], [0, 0, 1]>,
P3 =< [0, 0, 0], [1, 0, 0], [1, 0, 1], [2, 0, 1], [2, 2, 0], [2, 2, 1], [2, 1, 1], [4, 1, 0],

[4, 0, 0], [4, 0, 1], [4, 2, 0], [5, 2, 0], [5, 2, 1], [6, 2, 1], [6, 1, 1], [6, 1, 0], [6, 0, 0], [6, 0, 1],
[6, 2, 0], [4, 2, 1], [4, 1, 1], [3, 1, 1], [3, 2, 1], [3, 2, 0], [5, 1, 1], [5, 1, 0], [5, 0, 0], [5, 0, 1],
[1, 2, 0], [1, 2, 1], [1, 1, 1], [1, 1, 0], [3, 0, 1], [3, 0, 0], [3, 1, 0], [2, 1, 0], [2, 0, 0], [0, 0, 1]>.

R1 =< [0, 0, 0], [0, 1, 0] >,
R2 =< [0, 0, 0], [0, 0, 1], [0, 2, 0], [0, 2, 1], [0, 1, 1], [0, 1, 0]>,
R3 =< [0, 0, 0], [1, 0, 0], [1, 0, 1], [1, 2, 0], [1, 2, 1], [1, 1, 1], [1, 1, 0], [3, 0, 1],

One-to-One Disjoint Path Covers in DCell 65

Fig. 1. (1), (2), and (3) demonstrate DCell0, DCell1, and DCell2 with t0 = 2 respec-
tively. (4) and (5) demonstrate DCell0 and DCell1 with t0 = 3 respectively.

66 X. Wang et al.

[3, 2, 0], [3, 2, 1], [3, 1, 1], [4, 1, 1], [4, 2, 1], [6, 2, 0], [6, 0, 1], [6, 0, 0], [6, 1, 0], [6, 1, 1],
[6, 2, 1], [5, 2, 1], [5, 1, 1], [5, 1, 0], [5, 0, 0], [5, 0, 1], [5, 2, 0], [4, 2, 0], [4, 0, 1], [4, 0, 0],
[4, 1, 0], [2, 1, 1], [2, 2, 1], [2, 2, 0], [2, 0, 1], [2, 0, 0], [2, 1, 0], [3, 1, 0], [3, 0, 0], [0, 1, 0]>.

T1 =< [0, 0, 0], [0, 1, 0], [0, 1, 1]>,
T2 =< [0, 0, 0], [0, 0, 1], [0, 2, 0], [0, 2, 1], [0, 1, 1]>,
T3 =< [0, 0, 0], [1, 0, 0], [1, 0, 1], [1, 2, 0], [1, 2, 1], [1, 1, 1], [1, 1, 0], [3, 0, 1],

[3, 0, 0], [3, 1, 0], [2, 1, 0], [2, 0, 0], [2, 0, 1], [2, 2, 0], [2, 2, 1], [2, 1, 1], [4, 1, 0], [4, 1, 1],
[3, 1, 1], [3, 2, 1], [3, 2, 0], [5, 1, 1], [5, 1, 0], [5, 0, 0], [5, 0, 1], [5, 2, 0], [5, 2, 1], [6, 2, 1],
[6, 1, 1], [6, 1, 0], [6, 0, 0], [6, 0, 1], [6, 2, 0], [4, 2, 1], [4, 2, 0], [4, 0, 1], [4, 0, 0], [0, 1, 1]>.

S1 =< [0, 0, 0], [0, 0, 1], [0, 2, 0]>,
S2 =< [0, 0, 0], [0, 1, 0], [0, 1, 1], [0, 2, 1], [0, 2, 0]>,
S3 =< [0, 0, 0], [1, 0, 0], [1, 0, 1], [1, 2, 0], [1, 2, 1], [1, 1, 1], [1, 1, 0], [3, 0, 1],

[3, 0, 0], [3, 1, 0], [3, 1, 1], [4, 1, 1], [4, 1, 0], [4, 0, 0], [4, 0, 1], [4, 2, 0], [4, 2, 1], [6, 2, 0],
[6, 0, 1], [6, 0, 0], [6, 1, 0], [2, 2, 1], [2, 1, 1], [2, 1, 0], [2, 0, 0], [2, 0, 1], [2, 2, 0], [5, 1, 0],
[5, 1, 1], [3, 2, 0], [3, 2, 1], [6, 1, 1], [6, 2, 1], [5, 2, 1], [5, 2, 0], [5, 0, 1], [5, 0, 0], [0, 2, 0]>.

U1 =< [0, 0, 0], [0, 0, 1], [0, 2, 0], [0, 2, 1]>,
U2 =< [0, 0, 0], [0, 1, 0], [0, 1, 1], [0, 2, 1]>,
U3 =< [0, 0, 0], [1, 0, 0], [1, 0, 1], [1, 2, 0], [1, 2, 1], [1, 1, 1], [1, 1, 0], [3, 0, 1],

[3, 0, 0], [3, 1, 0], [2, 1, 0], [2, 0, 0], [2, 0, 1], [2, 2, 0], [5, 1, 0], [5, 0, 0], [5, 0, 1], [5, 2, 0],
[4, 2, 0], [4, 0, 1], [4, 0, 0], [4, 1, 0], [2, 1, 1], [2, 2, 1], [6, 1, 0], [6, 1, 1], [6, 2, 1], [5, 2, 1],
[5, 1, 1], [3, 2, 0], [3, 2, 1], [3, 1, 1], [4, 1, 1], [4, 2, 1], [6, 2, 0], [6, 0, 1], [6, 0, 0], [0, 2, 1]>.

�

Lemma 4. For any α, β ∈ {0, 1, · · · , tk}, m ∈ {1, 2, · · · , tk − 3}, and α 	= β, let

x ∈ V (DCellαk) be an arbitrary white vertex, y ∈ V (DCellβk) be an arbitrary

black vertex, and G0 = DCellαk ∪ DCellβk ∪ (
⋃m

θ=0 DCellωθ

k), where DCellαk ,

DCellβk , DCellω0

k , · · · , DCellωi

k , · · · , DCellωm

k are internally vertex-independent
with i ∈ {0, 1, · · · ,m} and ωi ∈ {0, 1, · · · , tk}. Then there exists a path between
x and y that containing every vertex in DCellk[V (G0)] where k ≥ 1 and t0 = 2.

Proof . Let G1 = DCellαk ∪DCellβk . Select z ∈ V (DCellαk) and u ∈ V (DCellγk),
such that z 	= x, (u, z) ∈ E(DCellk), and DCellγk ⊆ G0, where two graphs G1

and DCellγk are internally vertex-independent. Select ω ∈ V (DCellβk) and v ∈
V (DCellδk), such that ω 	= y, (ω, v) ∈ E(DCellk), and DCellδk ⊆ G0 where three
graphs G1, DCellγk , and DCellδk are internally vertex-independent. According to
Theorem 1, there exists a path P from x to z that containing every vertex in
DCellαk and a path Q from ω to y that containing every vertex in DCellβk .
Let G2 = G0[V (

⋃m
θ=0DCellωθ

k)]. We can construct a path S from u to v that
containing every vertex in G2 which is similar to Theorem 1. Then there exists
a path P +(z, u)+ S+ (v, ω) +Q between x and y that containing every vertex
in DCellk[V (G0)] where k ≥ 1 and t0 = 2. �

Lemma 5. DCellk is (k + 1)-DPC-able with k ≥ 2 and t0 = 2.

One-to-One Disjoint Path Covers in DCell 67

Proof . We will prove this lemma by induction on the dimension k of DCell. By
lemma 3, the lemma holds for t0 = 2 and k = 2. For t0 = 2, supposing that the
lemma holds for k = τ (τ ≥ 2), we will prove that the lemma holds for k = τ+1.

For any vertex x, y ∈ V (DCellτ+1) with x 	= y. Let x ∈ V (DCellατ) and
y ∈ V (DCellβτ) with α, β ∈ {0, 1, · · · , tτ}. We can identity α and β as follows.

Case 1. α = β. There exist (τ + 1) vertex disjoint paths {Pi|1 ≤ i ≤ τ + 1}
between any two distinct vertices x and y of DCellατ . Select u ∈ V (DCellγτ)
and v ∈ V (DCellδτ), such that (x, u), (y, v) ∈ E(DCellτ+1), where three graphs
DCellατ , DCellγτ , and DCellδτ are internally vertex-independent. According to
Lemma 4, there exists a path Pτ+2 from u to v that visits every vertex in
DCellτ+1[V (DCellτ+1−DCellατ)]. Then there exist (τ+2) vertex disjoint paths
{Pi|1 ≤ i ≤ τ + 2} between any two distinct vertices x and y of DCellτ+1.

Case 2. α 	= β and (x, y) ∈ E(DCellτ+1). Let P1 =< x, y >. Select
x0 ∈ V (DCellατ) (resp. y0 ∈ V (DCellβτ)), such that (x, x0) ∈ E(DCellατ) (resp.
(y, y0) ∈ E(DCellβτ)). According to the induction hypothesis, there exist (τ +1)
vertex disjoint paths {P ′

i |2 ≤ i ≤ τ + 2} (resp. {Q′
j|2 ≤ j ≤ τ + 2}) between

any two distinct vertices x and x0 (resp. y0 and y) in DCellατ (resp. DCellβτ).
Let P ′′

2 =< x, x0 > (resp. Q′′
2 =< y0, y >), P ′

i =< x, · · · , xi, x0 > (resp.
Q′

j =< y0, yj , · · · , y >), and P ′′
i = P ′

i − (xi, x0) (resp. Q
′′
j = Q′

j − (y0, yj)) with
3 ≤ i ≤ τ+2 (resp. 3 ≤ j ≤ τ+2). Furthermore, let zi ∈ V (DCellγi

τ) (resp. wj ∈
V (DCell

δj
τ)) with 2 ≤ i ≤ τ+2 (resp. 2 ≤ j ≤ τ+2) and (xi, zi) ∈ E(DCellτ+1)

(resp. (yi, wj) ∈ E(DCellτ+1)). Let W0 =
⋃τ+2

θ=2 DCellγθ
τ , W1 =

⋃τ+2
θ=2 DCellδθτ

and W = W0 ∪ W1 ∪ DCellατ ∪ DCellβτ . For 2 ≤ i ≤ τ + 2, we can claim the
following two subcases with respect to DCellγi

τ .
Case 2.1. DCellγi

τ ⊆ W1. Select wj ∈ V (DCellγi
τ) such that 2 ≤ j ≤ τ +

2. According to Theorem 1, there exists path a S from zi to wj in DCellγi
τ .

Furthermore, let W = W ∪DCellγi
τ and Pi = P ′′

i + (xi, zi) + S + (wj , yj) +Q′′
j .

Case 2.2. DCellγi
τ 	⊆ W1. Select DCell

δj
τ+1 	⊆ W such that 2 ≤ j ≤ τ + 2.

Then, choose DCellpτ and DCellqτ , such that three graphs DCellpτ , DCellqτ , and
W are are internally vertex-independent with p, q ∈ {0, 1, · · · , tk}. Let W ′

i =

DCellγi
τ ∪ DCell

δj
τ ∪ DCellpτ ∪ DCellqτ , according to Lemma 4, there exists a

path S from zi to wj in DCellτ [W
′
i]. Furthermore, let W = W ∪W ′

i and Pi =
P ′′
i + (xi, zi) + S + (wj , yj) +Q′′

j .
Furthermore, select Pi, such that zi 	∈ V (W1) and wj ∈ V (W ′

i) where 2 ≤
i ≤ τ + 2 and 2 ≤ j ≤ τ + 2. According to Lemma 4, there exists path S
from zi to wj in DCellτ+1[V (W ′

i) ∪ (V (DCellτ+1) − V (W))]. Furthermore, let
Pi = P ′′

i + (xi, zi) + S + (wj , yj) +Q′′
j .

According to above discussions, there exist (τ+2) vertex disjoint paths {Pi|1 ≤
i ≤ τ + 2} between any two distinct vertices x and y of DCellτ+1.

Case 3. α 	= β and (x, y) 	∈ E(DCellτ+1). Select u ∈ V (DCellτ+1) (resp. v ∈
V (DCellτ+1)), such that (x, u) ∈ E(DCellτ+1) (resp. (y, v) ∈ E(DCellτ+1)),
u ∈ DCellφτ (resp. v ∈ DCellψτ), and φ, ψ ∈ {0, 1, · · · , tk}, where DCellατ and
DCellφτ (resp. DCellβτ and DCellψτ) are internally vertex-independent. We can
claim the following three subcases with respect to u and v.

68 X. Wang et al.

Case 3.1. u ∈ V (DCellβτ). Select x0 ∈ V (DCellατ), such that (x, x0) ∈
E(DCellατ). Let y0 = u. According to the induction hypothesis, there exist
(τ + 1) vertex disjoint paths {P ′

i |2 ≤ i ≤ τ + 2} (resp. {Q′
j|1 ≤ j ≤ τ + 1})

between any two distinct vertices x and x0 (resp. y0 and y) in DCellατ (resp.
DCellβτ). Let P1 = (x, y0) + Q′

1 and Q′′
τ+2 = ∅. Then, let P ′′

2 =< x, x0 >,
P ′
i =< x, · · · , xi, x0 > (resp. Q′

j =< y0, yj, · · · , y >), and P ′′
i = P ′

i − (xi, x0)
(resp. Q′′

j = Q′
j − (y0, yj)) with 3 ≤ i ≤ τ + 2 (resp. 2 ≤ j ≤ τ + 1). Further-

more, let zi ∈ V (DCellγi
τ) (resp. wj ∈ V (DCell

δj
τ)), where 2 ≤ i ≤ τ + 2 (resp.

1 ≤ j ≤ τ + 1), wτ+2 = v ∈ V (DCell
δτ+2
τ), and (xi, zi) ∈ E(DCellτ+1) (resp.

(yi, wj) ∈ E(DCellτ+1)). The required {Pi|2 ≤ i ≤ τ + 2} paths can be derived
by the similar approach as the Case 2, so we skip it.

According to discussions in Case 3 and Case 3.1, there exist (τ + 2) vertex
disjoint paths {Pi|1 ≤ i ≤ τ + 2} between any two distinct vertices x and y of
DCellτ+1.

Case 3.2. v ∈ V (DCellατ). The required paths can be derived by the similar
approach as the Case 3.1, so we skip it.

Case 3.3. u 	∈ V (DCellβτ) and v 	∈ V (DCellατ). Let P ′′
1 = Q′′

1 = ∅, x1 = x,
z1 = u, w1 = v and y1 = y. Select x0 ∈ V (DCellατ) (resp. y0 ∈ V (DCellβτ)),
such that (x, x0) ∈ E(DCellατ) (resp. (y, y0) ∈ E(DCellβτ)). According to the
induction hypothesis, there exist (τ +1) vertex disjoint paths {P ′

i |2 ≤ i ≤ τ +2}
(resp. {Q′

j|2 ≤ j ≤ τ + 2}) between any two distinct vertices x and x0 (resp. y0
and y) in DCellατ (resp. DCellβτ). Let P ′′

2 =< x, x0 > (resp. Q′′
2 =< y0, y >),

P ′
i =< x, · · · , xi, x0 > (resp. Q′

j =< y0, yj, · · · , y >), and P ′′
i = P ′

i − (xi, x0)
(resp. Q′′

j = Q′
j − (y0, yj)) with 3 ≤ i ≤ τ +2 (resp. 3 ≤ j ≤ τ +2). Furthermore,

let zi ∈ V (DCellγi

τ+1) (resp. wj ∈ V (DCell
δj
τ)), where 2 ≤ i ≤ τ + 2 (resp.

2 ≤ j ≤ τ + 2) and (xi, zi) ∈ E(DCellτ+1) (resp. (yi, wj) ∈ E(DCellτ+1)). The
required {Pi|1 ≤ i ≤ τ +2} paths can be derived by the similar approach as the
Case 2, so we skip it.

According to discussions in Case 3 and Case 3.3, there exist (τ + 2) vertex
disjoint paths {Pi|1 ≤ i ≤ τ + 2} between any two distinct vertices x and y of
DCellτ+1.

In summary, for any two distinct vertices x, y ∈ V (DCellτ+1), there exist
(τ+2) vertex disjoint paths {Pi|1 ≤ i ≤ τ +2} between any two distinct vertices
x and y of DCellτ+1. �

Lemma 6. For any t0 ≥ 3 and k ≥ 0, DCellk is (k + t0 − 1)-DPC-able.

Proof . We will prove this lemma by induction on the dimension k of DCell. For
any t0 ≥ 3, by Lemma 1, the lemma holds for k = 0. For any t0 ≥ 3, supposing
that the lemma holds for k = τ , where τ ≥ 0, the proof that the lemma holds
for k = τ + 1 is similar to that of lemma 5 and thus omitted. �

Theorem 3. DCellk is (k + t0 − 1)-DPC-able with k ≥ 0.

One-to-One Disjoint Path Covers in DCell 69

Proof . By Lemma 1, the theorem holds for k = 0 and t0 ≥ 2. By Lemma 2, the
theorem holds for k = 1 and t0 = 2. By Lemma 5, the theorem holds for k ≥ 2
and t0 = 2. By Lemma 6, the theorem holds for t0 ≥ 3 and k ≥ 0. �

4 Conclusions

DCell has been proposed for one of the most important data center networks and
can support millions of servers with outstanding network capacity and provide
good fault tolerance by only using commodity switches. In this paper, we prove
that there exist r vertex disjoint paths {Pi|1 ≤ i ≤ r} between any two distinct
vertices u and v of DCellk (k ≥ 0) where n is the vertex number of DCell0
and r = n+ k − 1. The result is optimal because of any vertex in DCellk has r
neighbors with r = n+ k − 1. According to our result, the method in [8, 9] can
be used to decrease deadlock and congestion in multi-cast routing in DCell.

Acknowledgments. This work is supported by National Natural Science Foun-
dation of China (61170021), Specialized Research Fund for the Doctoral Pro-
gram of Higher Education (20103201110018), Application Foundation Research
of Suzhou of China (SYG201240), and Graduate Training Excellence Program
Project of Soochow University (58320235).

References

1. Ghemawat, S., Gobioff, H., Leung, S.: The Google file system. ACM SIGOPS
Operating Systems Review 37(5), 29–43 (2003)

2. Dean, J., Ghemawat, S.: MapReduce: Simplified data processing on large clusters.
Communications of the ACM 51(1), 107–113 (2008)

3. Isard, M., Budiu, M., Yu, Y., Birrell, A., Fetterly, D.: Dryad: distributed data-
parallel programs from sequential building blocks. ACM SIGOPS Operating Sys-
tems Review 41(3), 59–72 (2007)

4. Guo, C., Wu, H., Tan, K., Shi, L., Zhang, Y., Lu, S.: Dcell: a scalable and fault-
tolerant network structure for data centers. ACM SIGCOMM Computer Commu-
nication Review 38(4), 75–86 (2008)

5. Guo, C., Lu, G., Li, D., Wu, H., Zhang, X., Shi, Y., Tian, C., Zhang, Y., Lu, S.:
BCube: a high performance, server-centric network architecture for modular data
centers. ACM SIGCOMM Computer Communication Review 39(4), 63–74 (2009)

6. Li, D., Guo, C., Wu, H., Tan, K., Zhang, Y., Lu, S.: FiConn: Using backup port for
server interconnection in data centers. In: IEEE INFOCOM, pp. 2276–2285 (2009)

7. Li, D., Guo, C., Wu, H., Tan, K., Zhang, Y., Lu, S., Wu, J.: Scalable and cost-
effective interconnection of data-center servers using dual server ports. IEEE/ACM
Transactions on Networking 19(1), 102–114 (2011)

8. Lin, X., Philip, P., Ni, L.: Deadlock-free multicast wormhole routing in 2-D mesh
multicomputers. IEEE Transactions on Parallel and Distributed Systems 5(8), 793–
804 (1994)

9. Wang, N., Yen, C., Chu, C.: Multicast communication in wormhole-routed symmet-
ric networks with hamiltonian cycle model. Journal of Systems Architecture 51(3),
165–183 (2005)

70 X. Wang et al.

10. Lin, C., Huang, H., Hsu, L.: On the spanning connectivity of graphs. Discrete
Mathematics 307(2), 285–289 (2007)

11. Lin, C., Huang, H., Tan, J., Hsu, L.: On spanning connected graphs. Discrete
Mathematics 308(7), 1330–1333 (2008)

12. West, D.B., et al.: Introduction to graph theory, p. 2. Prentice Hall, Englewood
Cliffs (2001)

13. Park, J., Kim, C., Lim, S.: Many-to-many disjoint path covers in hypercube-like
interconnection networks with faulty elements. IEEE Transactions on Parallel and
Distributed Systems 17(3), 227–240 (2006)

14. Caha, R., Koubek, V.: Spanning multi-paths in hypercubes. Discrete Mathemat-
ics 307(16), 2053–2066 (2007)

15. Chen, X.: Many-to-many disjoint paths in faulty hypercubes. Information Sci-
ences 179(18), 3110–3115 (2009)

16. Chen, X.: Paired many-to-many disjoint path covers of hypercubes with faulty
edges. Information Processing Letters 112(3), 61–66 (2012)

17. Park, J., Kim, H., Lim, H.: Many-to-many disjoint path covers in the presence of
faulty elements. IEEE Transactions on Computers 58(4), 528–540 (2009)

18. Ma, M.: The spanning connectivity of folded hypercubes. Information Sci-
ences 180(17), 3373–3379 (2010)

19. Shih, Y., Kao, S.: One-to-one disjoint path covers on k-ary n-cubes. Theoretical
Computer Science 412(35), 4513–4530 (2011)

20. Hsu, H., Lin, C., Hung, H., Hsu, L.: The spanning connectivity of the (n, k)-star
graphs. International Journal of Foundations of Computer Science 17(2), 415–434
(2006)

21. Chen, X.: Unpaired many-to-many vertex-disjoint path covers of a class of bipartite
graphs. Information Processing Letters 110(6), 203–205 (2010)

22. Huanga, P., Hsub, L.: The spanning connectivity of line graphs. Applied Mathe-
matics Letters 24(9), 1614–1617 (2011)

23. Kliegl, M., Lee, J., Li, J., Zhang, X., Guo, C., Rincon, D.: Generalized DCell
structure for load-balanced data center networks. In: IEEE INFOCOM Conference
on Computer Communications Workshops, pp. 1–5 (2010)

C.-H. Hsu et al. (Eds.): NPC 2013, LNCS 8147, pp. 71–82, 2013.
© IFIP International Federation for Information Processing 2013

A Network-Aware Virtual Machine Allocation in Cloud
Datacenter

Yan Yao, Jian Cao*, and Minglu Li

Department of Computer Science and Engineering, Shanghai Jiao Tong University, China
{yaoyan,ml-li}@sjtu.edu.cn, cao-jian@cs.sjtu.edu.cn

Abstract. In a cloud computing environment, virtual machine allocation is an
important task for providing infrastructure services. Generally, the datacenters,
on which a cloud computing platform runs, are distributed over a wide area
network. Therefore, communication cost should be taken into consideration
when allocating VMs across servers of multiple datacenters. A network-aware
VM allocation algorithm for cloud is developed. It tries to minimize the com-
munication cost and latency between servers, with the number of VMs, VM
configurations and communication bandwidths are satisfied to users. Specifi-
cally, a two-dimensional knapsack algorithm is applied to solve this problem.
The algorithm is evaluated and compared with other ones through experiments,
which shows satisfying results.

Keywords: VM allocation; cloud datacenter; Two dimensional knapsack
algorithm.

1 Introduction

Cloud computing has emerged as a new paradigm for hosting and delivering services
over the Internet[1]. There are three service models in cloud computing: Infrastructure
as a Service (IaaS), Platform as a Service (PaaS), and Software as a Service (SaaS)
which deliver the infrastructure, platform, and software (application) as services re-
spectively. These services are made available to consumers in an on-demand way. In
order to provide users with various cloud services, many cloud providers (e.g. Amazon,
Google) have built their cloud datacenters around the world.

Resource allocation is a core process in a datacenter. Recently, an increasing number
of cloud providers take advantage of virtualization technologies, such as VMware [3],
Xen [4], KVM [5] and OpenVZ [6], to implement a cloud datacenter. Typically, a user
submit his requests, including the number of Virtual Machines (VMs for short) and
their configurations through a portal of the provider. The provider will allocate the
VMs in the cloud datacenters to satisfy the requirements of the user. Thus VM alloca-
tion is becoming a new problem to be solved.

There already exist many algorithms for VM allocations with different aims and
assumptions [7]. Some of them try to allocate VMs in an energy efficient way[8-11].

* Corresponding author.

72 Y. Yao, J. Cao, and M. Li

Energy consumption is a big concern for cloud providers. But other factors should be
considered in VM allocation as well, such as network. Some works have been done on
VMs allocation in a network-aware way [12-15]. However, there still exists several
open issues to be solved. Firstly, the existing allocation algorithms considering the
consumptions of network resources are designed for traditional datacenters whose
network architectures are often centralized, not distribute over a wide area. In a cloud
data center, the distances between different sub-datacenters greatly affect the perfor-
mance of applications. In addition, the VMs requested by users have various configu-
rations, such as different number of processors or amount of memory. Thus the issue
of the heterogeneity should be considered.

In this paper, we focus on the two open issues mentioned above. As it is well
known that the resource allocation problem is NP-hard, here we developed a heuristic
algorithm, a Network-aware VM allocation algorithm based on Maximum Clique
(MCNVMA for short), with the goal of minimizing the maximum latency in commu-
nication between the sub-datacenters. MCNVMA considers constraints on local
physical resources, such as CPU and memory, as well as the network. In order to make
it more practical, the VMs and the datacenters both are heterogeneous in MCNVMA.

The rest of this paper is organized as follows: Section 2 discusses related work and
Section 3 introduces the problem in details. Section 4 illustrates detail steps of the
MCNVMA we developed. Experimental results are illustrated in Section 5 to show
performance evaluation of MCNVMA. Section 6 concludes the paper.

2 Related Work

Existing work on the allocation of VMs can be categorized into three offering models:
reservation model, spot markets model and on-demand access model [17]. In the res-
ervation model, a user purchase a bundle of resources for a period (e.g., a whole year) ,
during which the specified VMs can get great discount for payment in advance. Spot
market model is a one-side auction market, consuming resources at a lower and flexible
cost. In on-demand access model, users simply requests a specified number of the VMs,
and pays for it according to a fixed schedule of fees. Here we restrict our study to
on-demand access model. There are two types of VM allocation decisions to be made:
initial placement [18] and optimizing (or migration) of VMs allocations over time [19].
In the current research, initial placement and VM migration as considered as separate
topics, though in some cases similar algorithms may be employed. We limit our study
to initial VM placement. Cluster and node are two levels considered in initial VM
placement. In general, we consider physical machines are put in an unstructured re-
source pool so that the default is a shared cluster.

Some constraints should be satisfied when VMs are allocated to physical machines,..
Usually, the constraints are put on some specific attributes such as CPU usage, memory
usage, and network usage. These constraints can be summarized into a weighted cri-
teria used to order physical machines. If the criteria is about energy, then the algorithm
tends to save energy [8-11]. If the criteria is about network, the algorithm tends to
reduce the network traffic[12-15]. We briefly introduce some of them related to our

 A Network-Aware Virtual Machine Allocation in Cloud Datacenter 73

work. In [12], the authors introduce a Traffic-aware VM Placement Problem
(TVMPP), trying to reduce the aggregate traffic. As TVMPP is NP-hard , the authors
introduce a heuristic approach to solve it. In [13], a Min Cut Ratio-aware VM
Placement (MCRVMP) is proposed. It considers both constraints on local physical
resources and network resources evolving from complex network topologies and dy-
namic routing schemas. They achieve them by exploiting the notion of network graph
cuts. While both TVMPP and MCRVMP assume static and well-defined traffic de-
mands, in [14] the authors focus on the equivalent capacity notion to consolidate VMs
with uncorrelated traffic demands. Traffic demands are modeled as stochastic va-
riables, and the optimization problem strives to place VMs while ensuring that the
maximum network capacity is not violated with a particular user-defined probability.
Hence, the final VM placement problem is a stochastic bin packing problem, and
authors introduce a new heuristic approach to solve it. However, all the above net-
work-aware VM allocation strategy ([12][13][14]) are designed for traditional data-
centers whose network architectures are often centralized and do not distribute over a
wide area. Mansoor Alicherry et. al in [15] proposed a network aware resource allo-
cation algorithm based on distributed datacenter. They also take it make a compare
with traditional datacenter and they regard the VMs as homogeny, which means all the
VMs requested by users have the same number of processors and the same amount of
memory. It is not applicable to real world. In this paper, we view datacenter are geo-
graphical distribution and VM requested by users are unique. The number of processors
and the amount of memory of the VMs requested can be arbitrary realistic value.

3 VM Allocation Problem in Cloud Datacenters

What exactly is the VM allocation? In brief, a user requests for a service hosted in the
cloud, requiring the allocation of VMs in the cloud datacenters, to meet the requested
service's computational needs. The datacenter should identify the suitable physical
resources for each requested VMs and allocate them.

A user’s request can be specified in terms of the number of VMs, their configura-
tions and the communication requirements. Sometimes a user may not have a priori
knowledge of the communication requirements among the VMs. However we can get
it by statistic analysis approach. In this paper, we assume that knowledge of the
communication requirements among the VMs is already known.

We use a small dataset for ease of illustrating. In reality, it can be much larger sets
of VMs and cloud datacenters. Suppose a user applies for ten VMs to run an applica-
tion over a cloud infrastructure. Each VMs has fixed processor and memory (See
Table 1) and the communication requirements(bandwidth) between VMs is collected
(See Table 2). In Table 2, if the entry value is 0,it indicates there is no communication
between two virtual machines, otherwise, it represents the necessary communication
bandwidth needed. Suppose there are only five sub-datacenters to run these VMs.
Each sub datacenter has some free CPU and memory capacities (see Table 3), and the
distance between them are known as well(Table 4). Now, we need to find an VM
allocation meeting the following requirements:

74 Y. Yao, J. Cao, and M

• Processor and memory r
not exceed its available f

• The communication requ
• The communication betw

(or servers) is minimized

In this paper, each VM
propose a heuristic approac
lection and server selection.
geographically distributed,
selected sub datacenters. S
sub-datacenters and place
very similar in algorithm.
datacenters.

Table 1. VM R

VM P

VM0
VM1
VM2
VM3
VM4
VM5
VM6
VM7
VM8
VM9

Table 2. C

M. Li

requirements of VMs allocated on a sub-datacenter sho
free capacity.
uirements among VMs can be satisfied.
ween VMs which belonging to different sub-datacen
d.

 can be placed on arbitrary datacenters and servers.
ch which consists of two consequent steps: datacenter
. Datacenter selection is to select sub datacenters , which
to place the VMs. And then assign individual VMs to

Server selection is to determine the servers in the selec
the individual VMs to the servers. The two steps
And here we just provide an example of selecting

Requirements(processor number, memory amount)

Processor Requirement Memory Requirement

4 2
8 8
2 4
8 2
4 4
4 6
2 1
9 10
8 2
6 4

Communication cost between VMs（Mbps）

ould

nters

We
se-

h are
the

cted
are
sub

 A Network-Aware Virtual Machine Allocation in Cloud Datacenter 75

Table 3. Datacenters Free Capacities

DC Processor Capacity Memory Capacity

DC0 60 15
DC1 22 18
DC2 40 12
DC3 20 13
DC4 80 21

Table 4. Distance between DCs (mile)

 DC0 DC1 DC2 DC3 DC4

DC0 0 2 7 11 10
DC1 2 0 5 7 1
DC2 7 5 0 9 20
DC3 11 7 9 0 15
DC4 10 1 20 15 0

4 VM Allocation Algorithm

4.1 Problem Formulation

Our problem statement can be briefly described as follows:

1. m cloud datacenters are available and their resource capacities given along processor
and memory dimensions. Noted as the set , , … , . For each

, with the capacity , ;
2. There are n VMs to be placed. The requirements of these VMs are given in terms of

processors and memories needed, denoted as , , … , and for
each , the capacity requirement is , ;

3. The communication cost between n VMs is denoted by a matrix
;

4. The communication distance between any two sub datacenters is given, denoted as
. We regard the network resource as sufficiently enough, how-

ever in server selection phase, the constrains on communication distance is
changed to the network resource (like bandwidth).

5. We need to find a mapping between VMs and sub datacenters that satisfies the VMs’
resource requirements while minimizing inter-datacenter traffic and intra-datacenter
traffic between VMs.

While finding such a mapping, we have to take care that the total resource re-
quirement of the VMs placed on the same sub datacenter should not exceed the
datacenter's capacity.

76 Y. Yao, J. Cao, and M. Li

4.2 MCNVMA Algorithm

The basic idea of our MCNVMA algorithm is: First of all, we identify a subset of the
datacenters with minimizing length of the paths between the datacenters. Additionally
we need to determine the datacenter assignment for each individual VM. For this
assignment, our objective is to minimize the inter datacenters traffic between the VMs.

Firstly, we select a set of datacenters to place the VMs. We view this problem as a
sub-graph selection problem, which is finding a maximum sub-graph with a given
diameter. For general graphs, it is an NP-hard problem and cannot be approximated
within 2-ε for any ε>0)[15].

Given a complete graph G = (V, E, c, l). The vertices V represent the datacenters,
and weights , on them denote the number of processors and
the amount of memory of the datacenter respectively. The edges E represent the path
between the datacenters and length l on them denotes the communication distance
between the sub datacenters (in server selection phase denotes bandwidth). Let s be
the number of VMs requested by the user. Then we should find a sub graph of G,
denoted as G', with m' vertices. G' meeting the flowing conditions<1, 2>, with mini-
mum maximal distance.
For 1,2, … , , 1

 2
where equals to (represent the number of processors VMj required) if
VMj is deployed on data center i, otherwise is zero; and equals to
(represent the amount of memory VMj required) if VMj is deployed on datacenter i,
otherwise also is zero.

Since the original graph is a complete graph, the subgraph induced by the selected
vertices is also complete. And all of the complete graphs are their self-clique. Hence,
our goal is to find such a clique whose length of the longest edge is minimum.

Algorithm: MCNVMA(G, N, W[][],Value[])
Input: G =(V, E, w, l)
 N: the amount of VMs;
 Value[]: value of VMs;
Output: min_diameter.

for each vertex v∈V
 ′ , ′ , Count , ;
 AllocatedVM TDKnapsack(weight,W,Cost);
 ToAllocateVM W-AllocatedVM;
 Sorted the vertices of G in increasing order of length to
v, noted as , , ,..., .
 0

 A Network-Aware Virtual Machine Allocation in Cloud Datacenter 77

 while ()
 ;
 perform two dimensional knapsack algorithm.
 max , , ;
 ;
 , , ;
 compute to remain to allocated VMs.

 end while
 if min_diameter >diameter
 min_diameter diameter
 else if min_diameter > diameter
Compare the communication cost of clique
end while
end for
return min_diameter

Once a datacenter is selected, we will assign individual VMs to it. This assignment
is done during the process of datacenter selection. This problem can be regarded as a
variant of two dimensional knapsack problem. We regard each datacenters as a knap-
sack and each VM as an item. The capacity of knapsack consists of available proces-
sors and memory. As mentioned in the problem statement, each item has two different
kinds of cost (processors and memory). The value of each VM is the sum of the
bandwidth, which is needed while communicating with others. The value is dynamic
change along with the implementation of the algorithm. Our goal is to find the alloca-
tion of VMs with the maximum value under the conditions of limited capacity and
minimum communication.

The algorithm finds a sub-clique satisfying the constraints that include vertex v and
places VMs by invoking two dimensional knapsack algorithm which is implemented
by the dynamic programming method. After completing the two dimensional knap-
sack algorithm, the VMs with lager communication requirement are placed on the
same datacenter, then the communication cost between different datacenter is least.
The algorithm finds maximum clique including vertex v by adding nodes in an in-
creasing order of length to v, until the weight of the clique meeting the constraints.
The algorithm computes the diameter of the resulting sub-clique as well. This is done
by maintaining the diameter as the nodes are added. When a node is added, the di-
ameter of the sub-graph change only if the length of the edges induced by that node is
greater than the current diameter.

The algorithm finds a sub-clique meeting the constraints through the while loop for
each of the vertices, and selecting the one with the smallest diameter.

4.3 Example and Analysis

Now let's illustrate how to solve the problem introduced in Section 3.2 using MCNVMA
algorithm. First of all, we need to map datacenters onto the nodes of a graph(Fig. 3).

78 Y. Yao, J. Cao, and M. Li

The weights of nodes correspond to the capacity of datacenters (Table 3), and the
weights of edges correspond to distances between sub-datacenters (Table 4).

Firstly, we select a arbitrarily node, such as n0 as the start node. We use two di-
mensional knapsack algorithm to assign VMs set on it. The sum of each row of Table 2
is the VM's value (Table 5), which changing dynamically. Now we place {VM3, VM6,
VM7, VM8} on n0. As n1 to shortest among n0's neighbors. Next, we select and place
VMs on n1 from the remaining VMs list ({VM0, VM1, VM2, VM3, VM4, VM5, VM9 }).
This procedure repeats until all of the VMs have been allocated.

Table 5. VM value list Table 6. Result

We record the nodes and the diameter of the sub graph, which is induced by the
nodes (Table 6). Then we select the clique with minimum diameter C={n0, n1, n2}, that
is datacenter DC0, DC1, DC2.

Fig. 1. Graph G=(V,E)

Analysis: In the while loop needs to sort the lengths of edges incident on a node, which
takes nlogn time, where n is number of datacenters. While loop in the algorithm may be
executed once per node. Computing diameter takes O(n2) as there are n2edges. And the
dynamic programming based two dimension knapsack algorithm takes O(mn) time as
there are m VMs and n data centers. Hence, in the worst case, the running time of while

Start node Clique Diameter

n0 { n0, n1, n2} 7
n1 { n1, n4, n0} 10
n2 { n2, n1, n0} 7
n3 { n3, n1, n2} 9
n4 { n4, n1, n0} 10

VM Value(Mbps)

VM0 1.9
VM1 2.1
VM2 1.35
VM3 2.71
VM4 1.6
VM5 1.7
VM6 2.61
VM7 2.76
VM8 3.22
VM9 2.03

weight of vertices :
w={(60,15),(22,18),(40,12),(20,13),(80,21)}
weight of edges :
<0,1>=2,<0,2>=7,<0,3>=11,<0,4>=10
<1,2>=5,<1,3>=7,<1,4>=1
<2,3>=9,<2,4>=20
<3,4>=15

0

1 2

3
4

 A Network-Aware Virtual Machine Allocation in Cloud Datacenter 79

loop is O(n2). Algorithm MCNVMA executes the while loop times, one for each node so
that the worst case complexity is O(n3).

5 Evaluation

5.1 Experiment Settings

We compare MCNVMA algorithm with Random algorithm and Greedy algorithm.
Random algorithm selects a random datacenter and places VMs as many as possible
on it randomly. If there are more VMs in the request than available in the datacenter,
then the algorithm chooses the next datacenter randomly to place the remaining VMs.
This process is repeated until all the VMs are placed. Greedy algorithm selects the
datacenter with maximum capacity. It places as many VMs from the request as possi-
ble on that datacenter. If there are remaining VMs in the request to be placed, then the
algorithm selects the next datacenter with the largest free capacity. This process con-
tinues until all the VMs are placed.

To measure the performance of the algorithms, we create random topologies and
user requests, and measure the maximum distance between any two VMs in the
placement output by these algorithms. The locations of datacenters are randomly se-
lected from 500x500 grid. In each of the experiments below, we report the results as
average of 100 runs.

5.2 Experiment Results

Firstly, we measure the maximum distance of the placement for a request of 100
VMs. By varying the number of datacenters, we compare the maximum distance be-
tween any two VMs, see Figures 2 and 3. MCNVMA algorithm has much smaller
distance than random algorithm. The communication cost between datacenters in
MCNVMA is lower than other two.

Fig. 2. Max distance for 100 VMs

80 Y. Yao, J. Cao, and M. Li

Now, we set the number of datacenter to 50. We vary the number of VMs to eva-
luate the maximum distance and the stability of the algorithm. From figure 5 we can
see that the maximum distance computed by MCNVMA algorithm is much lower
than random algorithm and greedy algorithm. And the stability of MCNVMA is simi-
lar to the other two algorithms (Fig. 6).

Fig. 3. Communication Cost for 100 VMs Fig. 4. The number of selected datacenters for

Fig. 5. Maximum distance for 50 DCs Fig. 6. Algorithm Stability for 50 DCs

6 Conclusions and Future Work

In this work we provide a allocation algorithm (MCNVMA) for VMs in cloud data-
center. Each VM can has its own configuration requirements in MCNVMA. The
communication cost among VMs, which can be collected, are also defined as re-
quirements as well. This algorithm try to find solutions with short communication
path among VMs while user’s requirements can be satisfied. From experimental
results, the MNCRA algorithm reduces the communication cost between the VMs
especially in large scale datacenters.

 A Network-Aware Virtual Machine Allocation in Cloud Datacenter 81

In this paper, only network factors are considered. However, energy saving, load
balancing and other factors should also be considered in real applications. We are
going to explore other market models, such as spot market model as well.

Acknowledgements. This work is partially supported by China National Science
Foundation (Granted Number 61073021, 61272438), Research Funds of Science and
Technology Commission of Shanghai Municipality (Granted Number 11511500102,
12511502704), Cross Research Fund of Biomedical Engineering of Shanghai Jiao-
tong University (YG2011MS38). The work described in this paper was supported
by Morgan Stanley. Morgan Stanley and Shanghai Jiao Tong University Innovation
Center of Computing in Financial Services have entered into Collaboration Agree-
ment No. CIP-A20110324-2.

References

1. Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R., Konwinski, A., Lee, G., Pat-
terson, D., Rabkin, A., Stoica, I., Zahari, M.: A View of Cloud Computin. Communications
of the ACM 53(4), 50–58 (2010)

2. Bhardwaj, S., Jain, L., Jain, S.: Cloud computing: A study of infrastructure as a service
(IAAS). International Journal of Engineering and Information Technology 2(1), 60–63
(2010)

3. Waldspurger, C.: Memory resource management in VMware ESX server. ACM SIGOPS
Operating Systems Review 36(SI), 194 (2002)

4. Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer, R., Pratt, I.,
Warfield, A.: Xen and the art of virtualization. In: Proceedings of the Nineteenth ACM
Symposium on Operating Systems Principles, p. 177 (2003)

5. Kivity, A., Kamay, Y., Laor, D., Lublin, U., Liguori, A.: kvm: the Linux virtual machine
monitor. In: Proceedings of the Linux Symposium, vol. 1, pp. 225–230 (2007)

6. Openvz: Server virtualization open source project (2010), http://openvz.org
7. Ye, K., Huang, D., Jiang, X., et al.: Virtual machine based energy-efficient data center ar-

chitecture for cloud computing: a performance perspective. In: Proceedings of the 2010
IEEE/ACM Int’l Conference on Green Computing and Communications & Int’l Conference
on Cyber, Physical and Social Computing, pp. 171–178. IEEE Computer Society (2010)

8. Cao, J., Wu, Y., Li, M.: Energy efficient allocation of virtual machines in cloud computing
environments based on demand forecast. In: Li, R., Cao, J., Bourgeois, J. (eds.) GPC 2012.
LNCS, vol. 7296, pp. 137–151. Springer, Heidelberg (2012)

9. Beloglazov, A., Abawajy, J., Buyya, R.: Energy-aware resource allocation heuristics for
efficient management of data centers for cloud computing. Future Generation Computer
Systems 28(5), 755–768 (2012)

10. Buyya, R., Beloglazov, A., Abawajy, J.: Energy-efficient management of data center re-
sources for cloud computing: a vision, architectural elements, and open challenges. In:
Proceedings of the 2010 International Conference on Parallel and Distributed Processing
Techniques and Applications, PDPTA 2010, Las Vegas, USA (2010)

11. Beloglazov, A., Buyya, R.: Energy efficient resource management in virtualized cloud data
centers. In: Proceedings of the 2010 10th IEEE/ACM International Conference on Cluster,
Cloud and Grid Computing. IEEE Computer Society (2010)

82 Y. Yao, J. Cao, and M. Li

12. Meng, X., Pappas, V., Zhang, L.: Improving the scalability of data center networks with
traffic-aware virtual machine placement. In: 2010 Proceedings IEEE INFOCOM, pp. 1–9.
IEEE (2010)

13. Wang, M., Meng, X., Zhang, L.: Consolidating virtual machines with dynamic bandwidth
demand in data centers. In: 2011 Proceedings IEEE INFOCOM, pp. 71–75. IEEE (2011)

14. Biran, O., Corradi, A., Fanelli, M., et al.: A stable network-aware vm placement for cloud
systems. In: Proceedings of the 2012 12th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing (ccgrid 2012), pp. 498–506. IEEE Computer Society (2012)

15. Alicherry, M., Lakshman, T.V.: Network aware resource allocation in distributed clouds. In:
2012 Proceedings IEEE INFOCOM. IEEE (2012)

16. Liu, L., et al.: GreenCloud: a new architecture for green data center. In: Proceedings of the
6th International Conference Industry Session on Autonomic Computing and Communica-
tions Industry Session. ACM (2009)

17. Shang, S., Wu, Y., Jiang, J., Zheng, W.: An Intelligent Capacity Planning Model for Cloud
Market. Journal of Internet Services and Information Security 1(1), 37–45

18. Machida, F., Kawato, M., Maeno, Y.: Redundant Virtual Machine Placement for Fault to-
lerant Consolidated Server Clusters. In: Proceedings of the 12th IEEE/IFIP Network Oper-
ations and Management Symposium, Osaka, Japan, pp. 32–39 (2010)

19. Lee, S., Panigrahy, R., Prabhakaran, V., Ramasubrahmanian, V., Talwar, K., Uyeda, L.,
Wieder, U.: Validating Heuristics for Virtual Machine Consolidation, Microsoft Research,
MSR-TR-2011-9 (January 2011)

C.-H. Hsu et al. (Eds.): NPC 2013, LNCS 8147, pp. 83–93, 2013.
© IFIP International Federation for Information Processing 2013

Research on the RRB+ Tree for Resource Reservation

Libing Wu1,2,*, Ping Dang1, Lei Nei1,2, Jianqun Cui3, and Bingyi Liu1

1 School of Computer Science, Wuhan University, Wuhan, China
2 State Key Laboratory of Software Engineering, Wuhan University, Wuhan, China

3 School of Computer Science, Central China Normal University, Wuhan, China
cswlb@126.com

Abstract. The performance of the data structure has a significant impact on the
overall performance of the advance resource reservation in the distributed
computing. Because the query and update operations of the B+ tree are of high
efficiency, so this paper proposes a B+ tree structure suitable for resource res-
ervation - the RRB+ tree. Also, we design and implement the corresponding
algorithms of query, insertion and deletion. Different with the B+ tree that insert
and delete one key word at a time, the RRB+ tree insert one reservation request
and delete one tree node every time. The RRB+ tree is of a higher precision of
expression. With the fixed reservation admission control algorithm and the same
rate of acceptance, the experimental results show that the RRB+ tree is easier to
operate for the complex and changing network environment, and have a higher
utilization of storage space.

Keywords: Data structure, Advance resource reservation, RRB+ tree, Loop time
slot array.

1 Introduction

In high-performance distributed computing environments, some applications require
access to distributed heterogeneous resources. These resources are often located in
different zones and subject to different management strategies, which make it difficult
to co-allocate them. In order to solve this problem, a method of resource reservation is
used. It can ensure that all required resources are available at the same time in a specific
period of the future time, and it can guarantee the QOS of services [1]. According to the
use time of reserved resources, the resource reservation can be divided into two
types - the immediate resource reservation and the advance resource reservation. The
latter is more widely used because of its flexibility, and this study focus on it.

The optimization of the data structure’s performance plays a pivotal role in im-
proving the overall performance of the advance resource reservation. Data structures
are mainly used to store the real-time resource reservation information, involving
operations of queries, insertions, and deletions. Among the processing time of the

* Corresponding author.

84 L. Wu et al.

resource reservation, 60% is for the processing of the data structure, 8% is for the
selection of suitable resources, and the remaining 32% is for the management of the
resource reservation mechanism [2]. The key problem of building a data structure
suitable for resource reservation is how to speed up the query rate and reduce the data
redundancy. To this end, this paper studies the B+ tree for resource reservation - the
RRB+ tree. By comparison with the loop time slot array, it is of better precision of
expression, and higher utilization of storage space for the complex and changing net-
work environment.

2 Related Works

The existing data structures can be divided into two categories: slot data structures, and
non-slot data structures. The time slot array [3-4] is a typical example of slot data
structures. Each array element represents a time slot, and the value of it represents the
amount of reserved resources. The time slot array is simple and easy for the admission
control of reservation requests. However, there are also many inadequacies. First, if the
duration of a request is too long, a considerable number of array elements will need to
store the information, which is a waste of memory. Second, its precision of expression
is very low, which means that if the unit of the array is a second, you can not describe
the precise time in milliseconds. Third, the size of the array is affected by the para-
meters of reservation requests. The slot-based segment tree [5] is another time slot data
structure. With the flexible resource reservation, Mugurel et al. improves the segment
tree so that it can be better applied to actual environments [6].

In the studies of non-slot data structures, Qing Xiong et al. propose a data structure
based on the single linked list [7]. The experimental results show that its memory
consumption is far less than the time slot array, and greatly superior to it in time con-
sumption when the volume of requests is not very large. Libing Wu et al. propose an
improved single linked list structure - the indexed list [8]. The experiments show that
its memory consumption is lower than the single linked list, and its query time is shorter
than the time slot array.

The tree structures are another widely studied non-slot data structures. Tao Wang et
al. propose a bandwidth reservation resource tree [9]. All leaf nodes in the tree have the
same depth. Each node represents a non-empty time interval. Each leaf node occupies a
time interval, and the amount of remaining resources within this interval is the same.
The interval that the parent node describes is the sum of the intervals occupied by all its
children. However, the experimental results [7] show that the bandwidth reservation
resource tree is not as good as the slot array in both the processing ability and the
memory consumption. Other tree structures include the binary search tree [10] and the
resource binary tree.

3 The RRB+ Tree

The B+ tree is typically used in the database and the operating system's file system.
Data in the B+ tree can be kept stable and in order. The insertion and update algorithms

 Research on the RRB+ Tree for Resource Reservation 85

of the B+ tree are of logarithmic time complexity, which means that the insertion and
update operations can be done efficiently. Therefore, according to the characteristics of
resource reservation, we improve the B+ tree's node structure and related algorithms to
obtain better performance, and that is the RRB+ tree.

The reservation requests are defined as follows:

Request = (bw, ts, td);

The parameter bw indicates the reserving bandwidth within each unit time, the pa-
rameter ts indicates the beginning time of the reservation, and the parameter td
represents the reserving duration. Different from the B+ tree that insert a keyword each
time, the RRB+ tree insert a reservation request, which means that the RRB+ tree
consider the time values as keywords and the bandwidth of that time as a record.

3.1 Tree Node Structure

The non-leaf node of an m order RRB+ tree contains only the largest keywords of its
sub trees. There are two head pointers: the pointer root to the root node and the pointer
first to the leftmost leaf node. The nodes of the tree are defined as follows:

struct Bnode

{

 int keynum;

 int key[m+1];

 int record[m+1];

 BNode *ptr[m+1];

 BNode *parent;

 int seq;

 struct BNode *next;

};

The parameter keynum represents the number of keywords in the node, and its range
is [2/m , m]. (key, record, ptr) describes a keyword: the parameter key represents
the value of the keyword and it used to store the time in this article; the parameter
record shows the resource reservation information of key, and its initial value is 0; and
the parameter ptr is a pointer to the sub tree associated with that keyword key. The
parameter parent points to the parent node of this node, the parameter seq indicates that
it is the seq-th children of the parent node, and the parameter next is a pointer to the next
node of the same level. Each node consumes the memory of 4 * (4 + 3 * (m +1)) bytes.

Figure 1 shows a third order RRB+ tree. From the figure, we can get the current
bandwidth reservation information stored in this tree: the amounts of reserved re-
sources is 10 during the 0-14 time period, 90 during the 15-26 time period, 50 during
the 27-35 time period, and so on.

86 L. Wu et al.

Fig. 1. Third Order RRB+ Tree

3.2 Algorithms

3.2.1 Query
After the server receives the request Request (bw, ts, td), it should find out whether the
reserving start time (the keyword ts) is in the RRB+ tree. The query results are as
follows:

(1) Empty tree;
(2) The tree is not empty, and the keyword ts is greater than all keywords in the

current tree;
(3) The tree is not empty, ts is not greater than the largest keyword but it is not a

keyword in the tree;
(4) The tree is not empty, and ts is one of the keywords.

The first two cases can be directly judged. For the first case, if the pointer root is
null, the tree is empty. For the second case, the rightmost keyword of the node root is
the biggest one in the tree. For the latter two cases, the query operation is similar to that
of the binary sort tree. Traverse the tree from top to down since the node root – in every
internal node, if ts is not bigger than a keyword of it from left to right, then enter the
corresponding child node of that keyword until the traversal comes to leaf nodes. The
structure of the query result is as follows:

struct Result

{

 BNode * ptr;

 int i;

 int tag;

};

The parameter ptr points to the leaf node where the insertion should begin for the
latter two cases. For the first two cases, it will be NULL because it has to create a tree in
the first case and the insertion place is clear in the second case (the rightmost leaf node).
The parameter i indicates that the keyword ts should be the i-th keyword of the node ptr

 Research on the RRB+ Tree for Resource Reservation 87

for the third case, and is originally the i-th keyword of the node ptr for the fourth case.
For the first two cases, it will be zero. The parameter tag describes which one of the
four cases is true for that result.

3.2.2 Insertion
On the basis of the query results above, the admission control will be done first. If it is
of the first two cases, the server can directly decide the current reservation request to be
admitted. For the latter two cases, the sever needs to read the resource reservation
information during the time period of [ts, ts + td), and thus judges whether the request
can be accepted. If it is able to accept the request, the corresponding insertion operation
will be done.

If the tree is empty, establish a tree and insert the request. If the tree is not empty, the
insertion operation will be divided into two steps: the insertion of the starting keyword
ts and the insertion of the end keyword (ts+td). The insertion is only done in leaf nodes.
When the number of keywords in the node is greater than m, it needs to be split into two
nodes and their parent node should contain both biggest keywords of them, which may
lead to the splits of internal nodes layers up. If the split is at the node root, a new one
should be created. The implementation process of the internal nodes’ split algorithm is
as follows:

void Split(BNode *tmp)

while(tmp->keynum > m)

 //create a new node t as a successor to the node tmp, and the latter

 //tmp->keynum/2 keywords are moved to t

 Create(t);

 if(tmp == root)

 //create a new node as root with the node tmp and t as its children

 CreateRoot(tmp, t);

 else

 //update the node tmp’s parent node so that it contains both the

 //biggest keywords of the node tmp and t

 Update(tmp->parent);

 //continue upward, to see whether the internal nodes need to split

 tmp = tmp->parent;

 end if

 end while

For the insertion of the starting time ts, there will be no operation if the current tree
contains the keyword ts(in case 4). If ts is greater than all the keywords in the current

88 L. Wu et al.

tree (in case 2), update the biggest keywords of each internal layer with the value of ts
from top to down. And insert ts into the rightmost leaf node, setting its record value as
equal as that of its previous keyword. If the tree doesn't contain the keyword ts and it is
not greater than the largest keyword of the current tree (in case 3), insert it into the leaf
node that the pointer ptr points to and set its record value the same as the previous
keyword. Keywords’ insertion may lead to leaf node's splitting and it is slightly dif-
ferent with the splitting algorithm of internal nodes (shown in the above algo-
rithm) - the keyword may fall into the node tmp or t (the variables tmp and t are in the
above algorithm), so the query result needs to be updated according to the real situation.
The parent nodes will contain one more keyword, which may lead to the split opera-
tions upward. The insertion algorithm of ts is shown as follows:

void DealWithTs(Result r)

if(r.tag == 2)

 //update the biggest keywords of internal layers with the value of ts

top-down

 ReplaceDown(ts);

 //r.ptr is the rightmost leaf node•insert insert ts to r.ptr

 Update(r.ptr);

else if(r.tag == 3)

 //insert ts to r.ptr as the i-th member

 Insert(r.ptr, i);

end if

if(r.ptr->keynum > m)

 //if the leaf node splits after the insertion, update r

 SplitUpdate(r.ptr);

 if(r.ptr->parent > m)

 Split(r.ptr->parent);

 end if

end if

Take the 3 order RRB+ tree shown in Figure 1 as an example, insert the request (30,
108, 20) into it, and that leads to the calling of the insertion algorithm of ts at first. Insert
the keyword 108 to the third leaf node on the left and set its record value equal to that of
the previous keyword 100 (that is 70). Then the number of keywords in that leaf node
becomes 4, greater than 3, so it must be split. After the splitting, the number of key-
words in its parent node becomes 4, so it needs to split, too. The new tree is shown in
Figure 2.

 Research on the RRB+ Tree for Resource Reservation 89

Fig. 2. After the Insertion of the ts (108)

To insert the request (30, 108, 20) completely, it needs to traverse 20 time units
starting from the keyword 108. The next keyword of 108 is the keyword 110 and two
units of time between them, which is less than 20, so the record value of keyword 108
updates to 100 (70 + 30 = 100). The next keyword of 110 is the keyword 125 and 15
time units between them, which is less than 18 (20 - 2 = 18), so the record value of the
keyword 110 updates to 108 (78 + 30 = 108). The next keyword of 125 is the keyword
134 and 9 time units between them, which is greater than 3 (18 - 15 = 3), and then the
keyword 128 (108 + 20 = 128) is inserted between the keywords 125 and 134, with its
record value equal to the current record value of the keyword 125 (42), and the record
value of keyword 125 becoming 72 (42 + 30 = 72). After these operations done to the
tree in the Figure 2, it changes and its new state is illustrated in Figure 3.

Fig. 3. After the Request (30, 108, 20) Inserted Completely

After the insertion of ts, the parameter ptr points to the node where the keyword ts
has been inserted and the parameter i indicates the position of ts in the node ptr pointing
to for all these four search results, which makes the subsequent insertion algorithm of
(ts + td) transparent to the four different insertion cases and simplifies this algorithm
implementation. In the (ts + td) insertion algorithm, firstly all record values of key-
words during the time period [ts, ts + td) are updated, and then the keyword (ts + td) is
inserted.

90 L. Wu et al.

4 Comparative Experiments

4.1 The Loop Time Slot Array

As time goes on, resources that have been reserved will be used, and there are new
resources available for reservation. The traditional time slot array consumes much
memory, resulting in poor performance. So this paper chooses the loop time slot array
as the data structure for the comparison with the RRB+ tree. As shown in Figure 4, the
size of this array is represented by the parameter MAX, and the size of a slot is
represented by the parameter SLOT. The initial value of the variable time is 0. It will
point to the next slot once a slot of time has been gone, and reset the value of the prior
slot zero. When it points to the slot MAX-1, after a slot of time it will point to the slot 0
again, i.e., the variable time indicates the value of the current time (Its exact value is
currentTime%MAX). When the request Request(bw, ts, td) arrives, find out the starting
position in the loop slot array with the values of the variables time and ts, and then the
array cycle down td units to reserve resources.

Fig. 4. The Loop Time Slot Array

4.2 Experimental Environment

Use Visual Studio 2010 as the development platform and the programming language is
C++. Characterizations of the relevant parameters are as follows:

avgI, the average interval between the time requests arrive. The moments when
requests arrive follow the Poisson distribution with the parameter λ , and avgI =λ .
If SLOTλ == , the server receives a request each time slot on average.

bw, the reserved bandwidth. Its value follows the uniform distribution within the
range of (b1, b2) and the mean value is 221) / + bB = (b .

td, the duration. It follows the exponential distribution and the variable E represents
its mean value.

BWMAX, the maximum bandwidth that the system can provide per unit time.
Interval, the interval between two deletions of the RRB+ tree.

4.3 Results and Analysis

The fixed reservation admission control algorithm is used to decide whether to accept a
reservation request or not. In the simulation experiments, the admission control rate
will be about 98% by adjusting the value of the variable BWMAX after the values of
other parameters are set. So the performance evaluation of the two data structures will
be more objective. The settings of the relevant parameters are as shown in Table 1.

 Research on the RRB+ Tree for Resource Reservation 91

Table 1. The Experimental Parameters

 m

BWMAX

(KB)

SLOT

(ms)

λ
(ms)

b1

(KB/ms)

b2

(KB/ms)

Set 1 3 8000 1 100 100 1000

Set 2 5 8000 1 100 100 1000

Set 3 3 8000 1 100 100 1000

Set 4 3 8000 1 1000 100 1000

 B

(KB/ms)

b3

(ms)

b4

(ms)

T

(ms)

E

(ms)

Interval

(s)

Set 1 550 10 100 55 1000 1

Set 2 550 10 100 55 1000 1

Set 3 550 10 100 55 1000 60

Set 4 550 10 100 55 1000 60

The memory consumption of the RRB+ tree and the loop time slot array is shown in
figure 5 below. "BD" represents the memory consumption of the RRB+ tree before
deletions, "AD" represents the memory consumption of the RRB+ tree after deletions,
and "Array" represents the memory consumption of the loop time slot array. In order to
ensure the accuracy of experimental results, reservation requests of these four settings
are the same (that means the random seed to generate the parameters of reservation
requests is unchanged), and the value of the parameter BWMAX is also the same, so
they get the same resource reservation results.

In Figure 5, the memory consumption of the loop time slot array in set 1, 2 and 3 is
the same, and that in set 4 is different. That is because it takes the difference between
the maximum reserved time and the current time as the actual memory consumption.
And the values of λ in set 1, 2 and 3 are the same, so their resource reservation
situation is the same and thus obtain the same memory consumption at the same output
time. But the value of λ in set 4 is different, resulting in the different memory con-
sumption at the same output time.

The only difference between set 1 and 2 is the different orders of trees. The orders of
RRB+ trees are 3 in set 1 and 5 in set 2. And their performances of the memory con-
sumption are almost the same. The only difference between set 1 and 3 is the frequency
of deletions. The frequency is one second in set 1 and one minute in set 3, which means
that the deletions will be done probably every 10 requests received in set 1 and 600 in
set 3. So the memory consumption before the deletion of RRB+ tree in set 3 is much
larger than that in set 1.

92 L. Wu et al.

Fig. 5. Comparison of Memory Consumption

The only difference between set 3 and 4 is that the value of λ in set 4 is ten times as
large as that in set 3. So it probably receives 10 reservation requests in set 3 and one in
set 4 per second. And the memory consumption of the RRB+ tree in set 4 has been
significantly improved compared to that in set 3.

It can be seen that the memory consumption of the RRB+ tree is far less than that of
the loop time slot array, when its deletion interval is appropriate. For different kinds of
reservation requests, the RRB+ tree can achieve better performance through appro-
priately adjusting its parameters. The memory consumption of the loop slot array only
associates with the largest reserved time and the current time. And if requests reserve
resources far earlier than the time they use them or the durations are too long, its
memory consumption will greatly increase. Also it is hard to set the size of the loop slot
array. Therefore, the storage space utilization of the RRB+ tree will be much higher
than that of the loop time slot array for the complex and changing network
environment.

5 Conclusions

The performance optimization of the data structure plays a pivotal role in improving the
overall performance of resource reservation. Data structure is mainly used to store the
real-time resource reservation information, involving the operations of query, insertion
and deletion. The query and update operations of the B+ tree are of high efficiency, so
this paper propose a B+ tree structure suitable for resource reservation - the RRB+ tree,
and design the corresponding algorithms for it. The results of experiments compared
with the loop time slot array show that the storage space utilization of the RRB+ tree

 Research on the RRB+ Tree for Resource Reservation 93

will be much higher than that of the loop time slot array for the complex and changing
network environments.

Acknowledgment. This work is supported by National Science Foundation of China
(No. 61070010, 61170017, 61272212) and Science & Technology Plan of Wuhan city.

References

1. Zhan, G., Siwei, L.: Dynamic grid resource reservation mechanism based on re-
source-reservation graph. Journal of Software 22(10), 2497–2508 (2011) (in Chinese)

2. Burchard, L.-O.: Analysis of data structures for admission control of advance reservation
requests. IEEE Transactions on Knowledge and Data Engineering 17(3), 413–424 (2005)

3. Burchard, L.-O., Heiss, H.-U.: Performance evaluation of data structures for admission
control in bandwidth brokers. Technical Report TR-KBS-01-02, Communications and Op-
erating Systems Group, Technical University of Berlin (May 2002)

4. Andreicaf, M.I., Ţăpuş, N.: Time slot groups - a data structure for QoS-constrained advance
bandwidth reservation and admission control. In: 10th International Symposium on
Symbolic and Numeric Algorithms for Scientific Computing, Timisoara, pp. 354–357
(September 2008)

5. Brodnik, A., Nilsson, A.: An efficient data structure for advance bandwidth reservations on
the Internet. In: Proc. of the 3rd Conference on Computer Science and Electrical Engi-
neering, pp. 1–5 (2002)

6. Andreicaf, M.I., Ţăpuş, N.: Efficient data structures for online QoS-constrained data transfer
scheduling. In: International Symposium on Parallel and Distributed Computing, Timisoara,
pp. 285–292 (July 2008)

7. Xiong, Q., Wu, C., Xing, J., Wu, L., Zhang, H.: A linked-list data structure for advance
reservation admission control. In: Lu, X., Zhao, W. (eds.) ICCNMC 2005. LNCS, vol. 3619,
pp. 901–910. Springer, Heidelberg (2005)

8. Wu, L., Yu, T., He, Y., Li, F.: A index linked list suited for resource reservation. Journal of
WUT (Information & Management Engineering) 33(6), 904–908 (2011) (in Chinese)

9. Wang, T., Chen, J.: Bandwidth tree - a data structure for routing in networks with advance
reservation. In: 21st IEEE International Performance, Computing, and Communications
Conference, Phoenix, AZ, pp. 37–44 (April 2002)

10. SchelBn, O., Nilsson, A., Norrgkd, J., Pink, S.: Performance of QoS agents for provisioning
network resources. In: Seventh International Workshop on Quality of Service(IWQoS
1999), London, pp. 17–26 (1999)

C.-H. Hsu et al. (Eds.): NPC 2013, LNCS 8147, pp. 94–105, 2013.
© IFIP International Federation for Information Processing 2013

Totoro: A Scalable and Fault-Tolerant Data Center
Network by Using Backup Port

Junjie Xie1, Yuhui Deng1,2, and Ke Zhou3

1 Department of Computer Science, Jinan University, Guangzhou, 510632, P.R. China
xiejunjiejnu@gmail.com

2 State Key Laboratory of Computer Architecture, Institute of Computing Technology,
Chinese Academy of Sciences, Beijing, 100190, P.R. China

tyhdeng@jnu.edu.cn
3 School of Computer Science & Technology,

Huazhong University of Science & Technology,
Key Laboratory of Data Storage Systems, Ministry of Education of China, P.R. China

Abstract. Scalability and fault tolerance become a fundamental challenge of
data center network structure due to the explosive growth of data. Both struc-
tures proposed in the area of parallel computing and structures based on tree
hierarchy are not able to satisfy these two demands. In this paper, we propose
Totoro, a scalable and fault-tolerant network to handle the challenges by using
backup built-in Ethernet ports. We connect a bunch of servers to an intra-switch
to form a basic partition. Then we utilize half of backup ports to connect those
basic partitions with inter-switches to build a larger partition. Totoro is hierar-
chically and recursively defined and the high-level Totoro is constructed by
many low-level Totoros. Totoro can scale to millions of nodes. We also design
a fault-tolerant routing protocol. Its capability is very close to the performance
bound. Our experiments show that Totoro is a viable interconnection structure
for data centers.

Keywords: Data Center, Interconnection Network, Scalability, Fault Tolerance,
Backup Port.

1 Introduction

With the development of information digitization, large amounts of data is being
created exponentially every day in various fields, such as industrial manufacturing,
e-commerce, and social network, etc. For example, 72 hours of video are uploaded to
YouTube every minute [1]. 1 billion active Facebook users upload 250 million photos
every day. If these photos are printed and piled, the height would be as tall as 80 Eif-
fel Towers [2]. A report from IDC even shows that 1,800EB data has been created in
2011 with a 40-60% annual increase [3]. As data increases exponentially, the scale of
data centers has been increased sharply.

In recent years, governments and multinational corporations are racing to invest
amounts of money to build many large data centers. For instance, Google has already

 Totoro: A Scalable and Fault-Tolerant Data Center Network by Using Backup Port 95

had 19 data centers where there are more than 1 million servers. Some corporations,
such as Facebook, Microsoft, Amazon, eBay and so on, have hundreds of thousands
of servers in their own data centers. In this case, scalability becomes a necessary con-
dition for data centers.

With the increasing scale of data centers, failures become quite common in the
cloud environment. Failures from software, hardware, outage or even overheat will
have a significant impact upon the running applications. For example, Amazon EC2
and RDS failed for several days, leading to the stoppage of some famous corporations
[4]. Google also reports that 5 nodes will fail during a MapReduce job and 1 disk will
fail every 6 hours in a 4,000-node cluster running MapReduce [5]. Hence, failures and
their damages make fault tolerance a big challenge in the cloud environment.

In current practice, most of data centers are tree-based. At the top of its hierarchy, a
tree-based data center provides the Internet services by core-routers or core-switches.
However, there are three weaknesses about the top-level switches. Firstly, they can
easily become the bandwidth bottleneck. Secondly, if one port fails, it will make its
subtrees all isolated. In other words, they are the single points of failure. Thirdly, top-
level switches are so expansive that updating will cause the steep rise in cost. In
summary, tree-based structure lacks enough scalability and fault tolerance.

Fat-Tree [6] is an improved tree-based structure. It scales out with a large number of
links and mini-switches. By using more redundant switches, Fat-Tree provides higher
network capacity than traditional tree-based structures. But the scalability of Fat-Tree
is still limited by the ports of switches fundamentally. DCell [7] is a level-based, recur-
sively defined interconnection structure. It typically requires multiport (e.g., 3, 4 or 5)
servers. DCell scales doubly exponentially with the server node degree. It is also fault
tolerant and supports high network capacity. But the downside of DCell is that it
trades-off the expensive core switches/routers with multiport NICs and higher wiring
cost. FiConn [8] is also a new server-interconnection structure. It utilizes servers with
two built-in ports and low-end commodity switches to form the structure. FiConn has a
lower wiring cost than DCell. Routing in FiConn also makes a balanced use of links at
different levels and is traffic-aware to better utilize the link capacities. However, the
downside of FiConn is that it has lower aggregate network capacity.

Besides the structures mentioned above, there are various interconnection solutions
presented in recent years, such as Portland [9], VL2 [10], CamCube [11] and so forth.
These structures have their advantages in some aspects, yet they still have some defi-
ciencies. In contrast to the existing work, we propose a new interconnection structure
called Totoro. It utilizes commodity server machines with two ports as FiConn does.
When constructing a high-level Totoro, the low-level Totoros use half of their availa-
ble backup ports for interconnections as well. Totoro and FiConn share the similar
principle to place the interconnection intelligence onto servers. In FiConn, all com-
munication between two partitions flows through a unique link. This brings severe
forwarding load to the servers at each end of this link. Unlike FiConn, there is no
direct link between any two servers in Totoro. All servers communicate with each
other through switches. There are multiple links connecting two partitions directly.
All the data that flows from one partition to another partition can be distributed
to these links. This lowers the forwarding load and makes the transmission more

96 J. Xie, Y. Deng, and K. Zhou

efficient. Totoro scales exponentially with the hierarchical level. A 3-level Totoro can
hold more than 1-billion servers by using 32-port switches. Totoro is also fault tole-
rant, benefiting from multi-redundant links, which provides high network capacity.
We also design a fault-tolerant routing mechanism, whose capacity is very close to
that of shortest path algorithm (SP) with lower traffic and computation overhead.

2 Totoro Interconnection Network

2.1 Totoro Architecture

Totoro is recursively defined. It consists of a series of commodity servers with two
ports and low-end switches. We connect N servers to an N-port switch to form the
basic partition of Totoro, denoted by Totoro0. We call this N-port switch intra-switch.
Each server in Totoro0 is connected to an intra-switch by using one port and the rest
of ports are called available ports. If consider a Totoro0 as a virtual server, we denote
the number of available ports in a Totoro0 as c. Obviously, there is c = N. Next, we
connect each Totoro0 to n-port switches by using c/2 ports. Each Totoro0 is connected
to c/2 switches and each switch is connected to n Totoro0s. Now we get a larger parti-
tion, which is denoted by Totoro1 (e.g., in Figure 1). By analogy, we connect n Toto-
roi-1s to n-port switches to build a Totoroi in the similar way. Note that, we will never
connect switches with switches. We call a switch connecting different partitions an
inter-switch. In a Totoroi, switches and links connecting different Totoroi-1s are called
level-i switches and level-i links respectively. Peculiarly, the level of intra-switch is 0.

Table 1. Useful denotations and their meanings in the following text

Denotation Meaning

N The number of ports on an intra-switch.

n The number of ports on an inter-switch.

K The top level in a Totoro.

Totoroi An ith level Totoro.

ci The number of available ports in a Totoroi.

[aK, aK-1, …, ai, …, a1, a0]

A (K+1)-tuple to denote a server, ai < n (0 < i
≤ K) indicates which Totoroi-1 this server is
located at and a0 < N indicates the index of this
server in that Totoro0.

(u - bK-u, bK-u+1, …, bi,…, b1, b0)

A combination of an integer and a (K-u+1)-tuple
to denote a switch, u ≤ K indicates that it is a
level-u switch, bi < n (0 < i ≤ K-u) indicates
which Totorou+i-1 this switch is located at and b0
indicates the index of this switch among level-u
switches in that Totorou.

 Totoro: A Scalable and Fault-Tolerant Data Center Network by Using Backup Port 97

Fig. 1. A Totoro1 structure with N = 4, n = 4. It is composed of 4 Totoro0. Each Totoro0 has 4
servers and an intra-switch with 4 ports. 4 Totoro0 connect through 2 inter-switches.

If the inter-switch has n ports, we note that the number of child partitions in a par-

ent partition is also n. If we denote the number of available ports in a Totoroi as ci,
there is ci = ci–1 * n/2. This is because a Totoroi has n Totoroi-1s and we connect each
Totoroi-1 to ci/2 inter-switches (level-i) by using half of its available ports (ci–1/2). It
implies that the number of paths among Totorois is n/2 times of the number of paths
among Totoroi-1s. Multiple paths make the routing protocol robust and fault tolerant.
Totoro can communicate in the presence of failures with redundant links. Further-
more, the number of high-level links is n/2 times of the number of low-level links
means that high-level links will not be the bottleneck of the system and Totoro has
high network capacity.

At the structure of Totoro, there are several inter-switches between two partitions.
Servers in a Totoroi (0 ≤ i < K) can access servers in another Totoroi directly by
multiple paths without any other Totoroi. For instance, in Figure 1, server [0, 1] wants
to access [1, 1]. Under normal circumstances, we can choose the path [0, 1], (0-0, 0),
[0, 0], (1-0), [1, 0], (0-1, 0), [1, 1]. Assume that the link between [0, 0] and (1-0) fails,
this path is unavailable now. In this case, we can choose another path [0, 1], (0-0, 0),
[0, 2], (1-1), [1, 2], (0-1, 0), [1, 1]. It is still the communication between two Totoro0s
without any other ones. Therefore, the structure of Totoro reduces the accessing dis-
tance between servers.

Observing the structure of Totoro, we find that not all servers are connected to in-
ter-switches. In our design philosophy, we retain a large number of available ports for
expanding. Thus, our Totoro is open and convenient to be expanded. We propose
expanding Totoro by increasing the hierarchical level rather than updating the switch-
es. This helps reduce the costs of devices and management in data centers. Without
high-end devices, our Totoro also scales exponentially and we will discuss about this
in Section 2.2.

98 J. Xie, Y. Deng, and K. Zhou

2.2 Totoro Building Algorithm

In Totoro, we can indicate a server in two ways: Totoro tuple or Totoro ID. Totoro
tuple is a (K+1)-tuple [aK, aK-1, …, ai, …, a1, a0]. It indicates where this server is lo-
cated clearly and it will help calculate the common partition of two servers. For ex-
ample, servers [0, 0] and [0, 1] in Figure 1, we know that these two servers are in the
same Totoro0[0] due to their common prefix (i.e., [0]). Totoro ID is an unsigned in-
teger, taking a value from tK (tK is the total number of servers in a TotoroK). Totoro ID
will be used to identify a server uniquely. Note that, the mapping between Totoro
tuple and Totoro ID is a bijection. In addition, we denote a switch as a combination of
an integer and a (K-u+1)-tuple, (u - bK-u, bK-u+1, …, bi,…, b1, b0). Algorithm 1 gives the
Totoro building algorithm, which follows the principle in Section 2.1. The key in
Algorithm 1 is to work out the level of the outgoing link of this server (Line 10).

Algorithm 1. Totoro Building Algorithm

0 TotoroBuild(N, n, K) {
1 Define tK = N * n

K
2 Define server = [aK, aK-1, …, ai, …, a1, a0]
3 For tid = 0 to (tK - 1)
4 For i = 0 to (K – 1)
5 ai+1 = (tid / (N * n

i)) mod n
6 a0 = tid mod N
7 Define intra-switch = (0 - aK, aK-1, …, a1, a0)
8 Connect(server, intra-switch)
9 For i = 1 to K
10 If ((tid – 2i-1 + 1) mod 2i == 0)
11 Define inter-switch (u - bK-u, …, bi, …, b0)
12 u = i
13 For j = i to (K - 1)
14 bj = (tid / (N * n

j-1)) mod n
15 b0 = (tid / 2

u) mod (N / n * (n/2)u)
16 Connect(server, inter-switch)
17 }

Table 2. Total number of servers in Totorou with different N, n, u

N n u tu

16 16 2 4096

24 24 2 13824

32 32 2 32768

16 16 3 65536

24 24 3 331776

32 32 3 1048576

 Totoro: A Scalable and Fault-Tolerant Data Center Network by Using Backup Port 99

Theorem 1 describes the total number of servers in Totorou :

Theorem 1:

Proof: A Totoro0 has t0 = N servers. n Totoro0s are connected to n-port inter-switches
to form a Totoro1. Hence, there are t1 = n * t0 servers in a Totoro1. By analogy, a Toto-
roi (i ≤ u) consists of n Totoroi-1s and has ti = n * ti-1 servers. Finally, the total num-
ber of servers in a Totorou is tu=N * nu.

3 Totoro Routing

3.1 Totoro Routing Algorithm (TRA)

Totoro routing algorithm (TRA) is simple but efficient by using Divide and Conquer
algorithm. Assume that we want to work out the path from src to dst: Suppose src and

Algorithm 2. Totoro Building Algorithm

0 TotoroRoute(src, dst) {
1 If (src == dst)
2 Return NULL
3 Define k = lowestCommonLevel(src, dst)
4 If (k == 0) // in the same Totoro0
5 Return P(src, dst)
6 Else
7 Define P(m, n) = getNearestPath(src, k)
8 Return TotoroRoute(src,m)+P(m,n)+TotoroRoute (n,dst)
9 }

Table 3. The mean value and standard deviation of path length in TRA and Shortest Path Algo-
rithm in Totorou of different sizes. Mu is the maximum distance between any two servers in
Totorou.

N n u tu Mu
TRA

Shortest Path
Algorithm

Mean StdDev Mean StdDev

24 24 1 576 6 4.36 1.03 4.36 1.03

32 32 1 1024 6 4.40 1.00 4.39 1.00

48 48 1 2304 6 4.43 0.96 4.43 0.96

24 24 2 13824 10 7.61 1.56 7.39 1.32

32 32 2 32768 10 7.68 1.50 7.45 1.26

100 J. Xie, Y. Deng, and K. Zhou

dst are in the same Totoroi but two different Totoroi-1s. Firstly, there must be a level-i
path between these two Totoroi-1s. We denote this path as P(m, n), which implies that
m and src are in the same Totoroi-1, while n and dst are in the same Totoroi-1. Then,
we work out P(src, m) and P(n, dst) respectively with the same technique. In this
process, if we find src and dst are both in the same Totoro0, we just return the directed
path between them. Finally, we join the P(src, m), P(m, n) and P(n, dst) for a full path.
Algorithm 2 follows the whole process mentioned above. The function getNearest-
Path just returns a nearest level-k path to the source host.

The SP that we use is Floyd-Warshall [13] algorithm. From Table 3, we observe
that the performance of TRA is close to the SP under the conditions of different sizes.
Although the SP is globally optimal, its computation complexity is as high as O(n3). It
is not suitable for routing in data center. Our TRA is efficient enough and much simp-
ler than the SP. Thus, we will build Totoro Fault-tolerant Algorithm based on TRA.

3.2 Totoro Broadcast Domain (TBD)

In order to send the packets with correct paths, servers need to detect and share the
link states. Although global link states can help servers work out the optimal path, it is
impossible to share the global link states in data center due to its large scale of nodes.

Therefore, we introduce the definition of Totoro Broadcast Domain (TBD) to break
up the network. We define a variable called bcLevel for broadcast domain, which
means that a TotorobcLevel is a TBD. The server in a TBD is called inner-server, while
the server connected to a TBD with an outgoing link whose level is larger than bcLe-
vel is called outer-server. Take Figure 1 for example, assume that bcLevel = 0. Then
Totoro0[0] is a TBD. [1, 0], [2, 0], [3, 0], [1, 2], [2, 2], [3, 2] are the outer-servers of
Totoro0[0].

Servers detect the states of links connected to them and broadcast the states to its
intra-switch and inter-switch (if it has) periodically. If a server receives a link state
packet, it handles the packet based on the following steps: If this packet has ever been
received, then just drop it. Otherwise, save the link states and determine whether the
packet comes from inter-switch. If so, broadcast it to the intra-switch. If not, broad-
cast it to the inter-switch if this server is connected to an inter-switch with a link
whose level is smaller than bcLevel.

3.3 Totoro Fault-Tolerant Routing (TFR)

In combination of TRA and TBD, we propose a distributed, fault-tolerant routing
protocol for Totoro without global link states. Firstly, we give the constraint to bcLe-
vel: bcLevel ≥ logn(2

K/N). It makes sure that every inner-server can find an arbi-
trary level link in its TBD as well as its link state.

We divide the Totoro network into several TBDs and they are connected by links
with level ≥ bcLevel + 1. We use Dijkstra [12] algorithm for routing within TBD
and TRA for routing between TBDs. Take Figure 1 for instance, assume that bcLevel
is 0 and we want to find out the path from src[0, 2] to dst[1, 1]. Src and dst are in two
different Totoro0. By using TRA, we find that a level-1 link between these two

 Totoro: A Scalable and Fault-Tolerant Data Center Network by Using Backup Port 101

Totoro0 is required. We just get the nearest path P([0, 2], [1, 2]). In the real routing
calculation, we just need to work out the next hop. Note that [1, 2] is an outer-server
of this TBD. Hence, it can be simplified to work out the path from [0, 2] to [1, 2].
Then by using Dijkstra algorithm, we find that the next hop is [1, 2]. Furthermore, we
add a proxy field to the packet header, which means a temporary destination. If this
field is not empty, servers just need to find out the next hop to the proxy by using
Dijkstra without TRA. After the packet arrives at the proxy, TRA will be used again
to find out the next proxy.

If the proxy is unreachable (e.g., P([0, 2], [1, 2]) fails), we can set the proxy as [1,
0]. Then the failure will be bypassed successfully. In conclusion, TRA will be used to
find out the proxy on the nearest path firstly. If it fails, TFR will reroute the packet to
another proxy by using local redundant links. Moreover, if there exist several availa-
ble links, TFR can choose one according to a random algorithm or the link load. Al-
gorithm 3 shows the detailed procedure of TFR.

4 Experiment Evaluation

4.1 Evaluating Path Failure

We use simulation to evaluate the performance of Totoro under four types of failures,
including link, node, switch and rack failures. In the simulation, we also use SP to
compare with our TFR. The SP that we used is based on Floyd-Warshall algorithm

Algorithm 3. Totoro Fault-tolerant Routing Algorithm

0 TotoroRoute(this, pkt) {
1 If (this == pkt.dst) deliver(this, pkt) and Return
2 ElseIf (pkt.proxy == this) pkt.proxy = NULL
3 If (pkt.ttl <= 0) drop(pkt) and Return
4 pkt.ttl -= 1
5 Define next = dijkstraRouting(pkt.dst)
6 If (next == NULL)
7 If (pkt.proxy == NULL)
8 Define k = lowestCommonLevel(this, pkt.dst)
9 Define pathSet = getLocalPaths(this, k)
10 Foreach (m, n) in pathSet
11 next = dijkstraRouting(n)
12 If (next != NULL)
13 pkt.proxy = n
14 Break
15 Else
16 next = dijkstraRouting(pkt.proxy)
17 If (next != NULL) deliver(next, pkt) and Return
18 drop(pkt) and Return
19 }

102 J. Xie, Y. Deng, and K. Zhou

and it offers a performance upper bound under the structure of Totoro. The networks
where we run TFR and SP are a Totoro1 (N=48, n=48, K=1, tK=2,304) and a Totoro2

(N=16, n=16, K=2, tK=4,096). Each Totoro0 is a rack. Failures are generated random-
ly and their ratios vary from 2% to 20%. In our simulation, each node routes packets
to all the other nodes 20 times. Therefore, each simulation result is an average of 20
running results.

Figure 2 plots the path failure ratio versus the node failure ratio. It shows that the
performance of TFR is almost identical to that of SP, regardless of the number of
servers. The server failure is quite common as we mention in Section 1 according to
[5]. The remarkable capacity of TFR benefits from the technique of rerouting, which
maximizes the usage of redundant links when a node failure occurs.

Figure 3 plots the path failure ratio versus the link failure ratio. We observe that the
path failure ratio of TFR increases with the link failure ratio. Our TFR performs well
when the link failure ratio is small (i.e., lower than 4%). But it can not perform as
well as SP when the link failure ratio increases and the performance gap between
them becomes larger and larger. For instance, in the same Totoro2 (N=16, n=16, K=2),
the gap is about 16% (0.21 - 0.05) when the link failure ratio is 8%. It rises to 32%
(0.43 - 0.11) when the link failure ratio increases to 16%. This is because link failure
just result in a very few nodes’ being disconnected. The SP is global optimal and it
always finds out a path from the source to the destination, if it exists. Thus, SP can

Fig. 2. Path failure ratio vs. node failure ratio Fig. 3. Path failure ratio vs. link failure ratio

Fig. 4. Path failure ratio vs. switch failure ratio Fig. 5. Path failure ratio vs. rack failure ratio

 Totoro: A Scalable and Fault-Tolerant Data Center Network by Using Backup Port 103

achieve a good performance even when the link failure ratio is high. But our TFR is
not global optimal and not guaranteed to find out an existing path. We also observe
that Totoro which holds more servers has a lower path failure ratio. It implies that the
integrated capacity of fault tolerance will be more obvious under the condition of a
large scale. This enlightens us to improve our TFR because of its huge performance
improvement potential on handling link failure.

Figure 4 plots the path failure ratio versus the switch failure ratio. It shows that
TFR performs almost as well as SP in Totoro1 (N=48, n=48, K=1). But the perfor-
mance gap between TFR and SP becomes larger and larger with the increase of
switch failure ratio in the same Totoro2 (N=16, n=16, K=2). We also observe that path
failure ratio of SP is lower in a larger-level Totoro. It means that more redundant
high-level switches help bypass the failure rather than become the single points of
failure. Given this, our future work will be devoted to improving the performance of
TFR under switch failure.

In our simulation, we also study the relationship between the rack failure and the
path failure. We select a rack randomly and make all the nodes and links in this rack
fail. Figure 5 plots the path failure ratio versus the rack failure ratio. It shows that in a
low-level Totoro (e.g., Totoro1), TFR achieves results very close to SP. But the capac-
ity of TFR in a relative high-level Totoro (e.g., Totoro2) could be improved. However,
TFR performs still well enough when the rack failure ratio is lower than 10%.

4.2 Evaluating Network Structure

In this section, we compare Totoro with traditional Tree structure and several recent
structures of Fat-Tree, DCell and FiConn to evaluate our network structure. Table 4
summarizes the topological property comparison result of different network struc-
tures. We denote the total number of servers as T.

The node degree of Totoro or FiConn approaches to 2 as k grows, but will never
reach 2. They all achieve a smaller node degree than DCell, which means a lower
deployment and maintenance overhead. Furthermore, Totoro and FiConn are always
incomplete and highly scalable by using available backup ports.

As we all know, the smaller the diameter is, the more efficient the routing mechan-
ism will be. The diameter of Tree is 2logd-1T, where d is the number of switch ports.
Fat-Tree has a diameter of 2log2T. The upper bound of diameter of DCell is 2lognT-1.
And the diameter of FiConn is O(logT). They all achieve a relative small diameter. It
seems that Totoro has a large diameter. But it is not accurate in practice. A low-level
Totoro can hold hundreds of thousands or even millions of servers, e.g., a Totoro2

Table 4. Topological property comparison of different network structures

Structure Degree Diameter Bisection Width

Tree -- 2logd-1T 1

Fat-Tree -- 2log2T T/2

DCell k + 1 <2lognT-1 T/4longnT

FiConn 2 – 1/2k O(logT) O(T/logT)

Totoro 2 – 1/2k O(T) T/2k+1

104 J. Xie, Y. Deng, and K. Zhou

with N = n = 48 has 110,592 servers and a Totoro3 with N = n = 32 has 1,048,576
servers. However, the diameters of Totoro2 and Totoro3 are only 10 and 18, respec-
tively. In addition, even though the diameters of Tree and Fat-Tree are both small,
they can not be comparable with Totoro since their scalability is limited by the num-
ber of switch ports.

Tree structure has a bisection width of 1 because each server or switch has only one
path to the upper node. The failure of one path will make their subtrees all isolated.
What’s more, high-level links will become the bandwidth bottleneck. Fat-Tree over-
comes these problems by using more redundant switches near the root in its hierarchy.
It has a large bisection width of T/2. DCell has a large bisection width of T/4longnT
since it has more ports on a server. And the bisection width of FiConn is O(T/log(T)).
Totoro also has a relative large bisection width of T/2k+1. As we have mentioned
above, a low-level Totoro can hold a large number of servers. When we take a small
number of k, the bisection width is large, e.g., BiW=T/4, T/8, T/16 when k = 1, 2, 3,
respectively. A large bisection width means a fault-tolerant and resilient structure.
Thus, we can draw a conclusion that Totoro is fault-tolerant both in the topological
analysis and from the path failure evaluating above. In addition, a relative large bisec-
tion width also leads to a higher network capacity.

In a word, Totoro gains the good scalability, fault tolerance and relative high net-
work capacity. These attractive properties all meet the current requirement of data
centers. Hence, our Totoro is a viable interconnection solution for data centers.

5 Conclusion

Structures neither proposed in the area of parallel computing nor based on tree hie-
rarchy in current practice meet the requirements of scalability and fault tolerance.
This drives us to present a new structure called Totoro. Then we detail the physical
structure of Totoro. It is hierarchically and recursively defined. Through topological
property analysis we know that Totoro scales exponentially and it is convenient to
expand Totoro by using backup built-in Ethernet ports. In addition, we elaborate a
distributed and fault-tolerant routing protocol called TFR, which is designed to handle
various failures. The experiments show that its capability of handling fault tolerance
is very close to that of the SP, especially in the presence of server failure. Further-
more, TFR significantly reduces the network traffic of sharing link states and the
computation overhead. Lastly, we compare Totoro with other interconnection struc-
tures in some aspects, including node degree, diameter, and bisection width. It shows
that Totoro is able to satisfy the demands of scalability and fault tolerance. In a word,
topological analysis, experiments and comparison prove that Totoro is a viable inter-
connection solution for data centers. One problem faced by Totoro is the failure han-
dling under some kinds of failures. Failure handling depends largely on fault-tolerant
algorithm. We have seen the huge performance improvement potential from TFR. In
the future work, we will be devoted to solving this problem by using more techniques,
such as multiplexing and retouring based on remote proxy.

Acknowledgments. We would like to thank the anonymous reviewers for helping us
refine this paper. Their constructive comments and suggestions are very helpful. This
work is supported by the National Natural Science Foundation (NSF) of China under

 Totoro: A Scalable and Fault-Tolerant Data Center Network by Using Backup Port 105

grant (No.61272073, No. 61073064), the Scientific Research Foundation for the Re-
turned Overseas Chinese Scholars (State Education Ministry), the Educational Com-
mission of Guangdong Province (No. 2012KJCX0013), the Science and Technology
Planning Project of Guangdong Province (No.2012A080102002), the Science and
Technology Planning Project of Guangzhou (No. 2012J4100109), Open Research
Fund of Key Laboratory of Computer System and Architecture, Institute of Compu-
ting Technology, Chinese Academy of Sciences (CARCH201107). The corresponding
author of this paper is Yuhui Deng.

References

1. Statistics-YouTube, http://www.youtube.com/t/press_statistics
2. A Typical Day In the Internet, http://www.mbaonline.com
3. Gantz, J.F., Chute, C.: The diverse and exploding digital universe: An updated forecast of

worldwide information growth through 2011. In: IDC (2008)
4. Ten worst cloud crashes in 2011,

http://www.ctocio.com/hotnews/2370.html
5. Dean, J.: Experiences with MapReduce, an abstraction for large-scale computation. In:

PACT: 15th International Conference on Parallel Architectures and Compilation Tech-
niques, vol. 16(20), p. 1. ACM (2006)

6. Al-Fares, M., Loukissas, A., Vahdat, A.: A scalable, commodity data center network archi-
tecture. ACM SIGCOMM Computer Communication Review 38(4), 63–74 (2008)

7. Guo, C., Wu, H., Tan, K., Shi, L., Zhang, Y., Lu, S.: Dell: a scalable and fault-tolerant
network structure for data centers. ACM SIGCOMM Computer Communication Re-
view 38(4), 75–86 (2008)

8. Li, D., Guo, C., Wu, H., Tan, K., Zhang, Y., Lu, S.: FiConn: Using backup port for server
interconnection in data centers. In: IEEE INFOCOM 2009, pp. 2276-2285. IEEE (2009)

9. Niranjan Mysore, R., Pamboris, A., Farrington, N., Huang, N., Miri, P., Radhakrishnan, S.,
Vahdat, A.: PortLand: a scalable fault-tolerant layer 2 data center network fabric. ACM
SIGCOMM Computer Communication Review 39(4), 39–50 (2009)

10. Greenberg, A., Hamilton, J.R., Jain, N., Kandula, S., Kim, C., Lahiri, P., Sengupta, S.:
VL2: a scalable and flexible data center network. ACM SIGCOMM Computer Communi-
cation Review 39(4), 51–62 (2009)

11. Costa, P., Donnelly, A., O’shea, G., Rowstron, A.: CamCube: a key-based data center.
Technical Report MSR TR-2010-74, Microsoft Research (2010)

12. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische Mathema-
tik 1(1), 269–271 (1959)

13. Floyd, R.W.: Algorithm 97: shortest path. Communications of the ACM 5(6), 345 (1962)
14. Deng, Y.: RISC: A resilient interconnection network for scalable cluster storage systems.

Journal of Systems Architecture 54(1), 70–80 (2008)
15. Parhami, B.: Introduction to parallel processing: algorithms and architectures. Series in

Computer Science, vol. 1. Springer, Heidelberg (2006)
16. Loguinov, D., Kumar, A., Rai, V., Ganesh, S.: Graph-theoretic analysis of structured

peer-to-peer systems: routing distances and fault resilience. In: Proceedings of the 2003
Conference on Applications, Technologies, Architectures, and Protocols for Computer
Communications, pp. 395–406. ACM (2003)

17. Barroso, L.A., Dean, J., Holzle, U.: Web search for a planet: The Google cluster architec-
ture. Micro IEEE 23(2), 22–28 (2003)

C.-H. Hsu et al. (Eds.): NPC 2013, LNCS 8147, pp. 106–117, 2013.
© IFIP International Federation for Information Processing 2013

A Cloud Resource Allocation Mechanism Based
on Mean-Variance Optimization and Double

Multi-Attribution Auction

Chengxi Gao, Xingwei Wang, and Min Huang

College of Information Science and Technology, Northeastern University
Shenyang, P.R. China

gaocxresearch@gmail.com, {wangxw,mhuang}@mail.neu.edu.cn

Abstract. As a new kind of commercial model, cloud computing can integrate
various kinds of resources in the network. Resource providers offer these re-
sources to users in the form of service and receive corresponding profits. To
make more rational use of the cloud resources, an effective mechanism is ne-
cessary for allocating the resources. In this paper, the price attribution and
non-price attributions of both traders are analyzed. The support vector machine
algorithm is utilized to predict the price, further determining the quote and bid.
Then, the BP neural network algorithm is used to transfer the non-price attribu-
tions to the quality index. Finally, to maximize the total satisfaction of resource
providers and resource consumers, the mean-variance optimization algorithm is
adopted to obtain the optimized cloud resource allocation scheme. Simulation
results have shown that the proposed mechanism is feasible and effective.

Keywords: Cloud resource, Double multi-attribution auction, BP neural
network, Support vector machine, Mean-variance optimization.

1 Introduction

Cloud computing is the development of distributed computing, parallel computing, grid
computing and many other technologies [1]. It can integrate various types of resources
in the network, so that they can be fully utilized. Therefore, a robust resource allocation
mechanism has become the focus of researches about cloud computing which can
specify the billing functionalities of the system and efficiently allocate the resources
while bringing the most profits.

Contemporarily, auction theory has been successfully used in solving the problem
of resource allocation in many cases, which has shown good performance. Danak et
al. presented a repeated auction-based allocation protocol and a utility-maximizing
bidding algorithm to improve the long-term profits of the grid users [2], but they didn’t
consider the fraud behavior in the market mechanism. Lan et al. proposed a multi-unit
Continuous Double Auction (CDA) and got a reasonable resource allocation scheme to
ensure fairness between users [3], but they didn’t consider the fraud behavior of the
users. Tan et al. proposed a novel Stable Continuous Double Auction (SCDA) me-
chanism which effectively reduced the instable factors of CDA and brought good

 A Cloud Resource Allocation Mechanism Based on MVO and DMAA 107

economic returns [4], but the mechanism was weak in the consideration of the mali-
cious bidding behavior of users. Prodan et al. determined the resource allocation model
based on the CDA mechanism [5], but they didn’t predict the market price.

Besides, game theory is also practical in the area of resource allocation. Teng et al.
proposed a resource pricing and allocation policy through game theory which solved
the equilibrium allocation problem among different users [6], but they didn’t consider
the malicious bidding behavior of users. Mutz et al. designed a resource pricing me-
chanism based on game theory and scheduled jobs and computed payments in pseu-
do-polynomial time [7], but they didn’t consider the Quality of Service (QoS). Wang
et al. determined the transaction price through the linear pricing strategy, and used the
game-theoretic algorithm to get the optimized bandwidth resource allocation scheme
[8], but they didn’t consider the information of historical transactions.

To sum up, the majorities of existing researches only care about the price attribution,
but ignore the non-price attributions in transactions. Moreover, they lack the careful
consideration about the fraud behaviors in the market mechanisms and don't forecast
reasonably about the market price based on historical information.

In this paper, according to the Support Vector Machine (SVM) and Back Propaga-
tion (BP) neural network, we propose a cloud resource allocation mechanism based on
Mean-Variance Optimization (MVO) algorithm and double multi-attribution auction
(DMAA) mechanism. The prices of both traders are forecast based on SVM algorithm,
and the non-price attributions of resource providers and resource consumers are con-
verted into the quality indexes based on BP neural network algorithm. Combined with
the DMAA mechanism, the cloud resource allocation scheme is obtained based on the
MVO algorithm which aims to maximize the total satisfaction of both trades while
increasing the resource utilization of providers and satisfying more consumers.

The rest of this paper is organized as follows. We introduce the system framework in
Sect.2, and the auction model is discussed in Sect. 3. We talk about how to predict the
price using SVM algorithm in Sect. 4 and multi-attribution processing is specified
based on BP neural network algorithm in Sect. 5. We design a resource allocation
scheme based on MVO algorithm in Sect. 6. The proposed mechanism is simulated and
evaluated in Sect. 7 and we conclude the paper in Sect. 8.

2 System Framework

The cloud system mainly involves three roles including resource provider (RP),
resource consumer (RC) and auction organizer (AO). The system framework is
presented in Fig. 1.

Fig. 1. System framework

108 C. Gao, X. Wang, and M. Huang

As is shown in Fig. 1, the process of the system is specified as follows:

Step1: RP and RC submit their own information to AO to confirm the identity;
Step2: RP and RC use SVM algorithm to predict the prices and submit them to AO ;
Step3: If there is a matching transaction, then go to Step4.Otherwise RP and RC are

notified to confirm whether or not they are willing to stay in the auction. If they are,
they need to re-determine the price according to SVM algorithm and then submit the
new tenders to AO . Otherwise they will quit the auction or wait for the next auction
considering their own situation;

Step4: According to the matching results of the transaction, AO uses BP neural
network algorithm to transfer the non-price attributions to the quality index and adopts
the MVO algorithm to solve the cloud resource allocation scheme;

Step5: AO notifies RP and RC to update the quote and bid respectively to participate
in the new round of the auction until the end;

Step6: RC who receives the resources pays for the service to the corresponding RP ,
and they assess each other for his performance after the transaction. AO updates the
corresponding information.

3 Auction Model

3.1 Resource Provider

Multi-Attributions of Resource Provider. When analyzing RP ’s trading behavior,
we put forward three non-price attributions including RP ’s quality of service (SQoS),

level of delivery (SLoD) and level of spiteful quote (SLoSQ).

Quality of Service. SQoS is used to measure the quality of the resources that RP pro-

vides. { }1,2,3, ,ig M∈ represents the grade that the i-th resource consumer (iRC)

gives to RP where M is the total amount of RCs . RP ’s quality of service in this trans-
action (this

SQoS) is defined as in Eqn.(1) .

1

1 Mthis
S ii

QoS g
M =

= (1)

Devote RP ’s quality of service for the last H transactions by old
SQoS , so after this

transaction, SQoS is defined as in Eqn. (2).

1

old this
S S

S

H QoS QoS
QoS

H

⋅ +=
+

 (2)

Level of Delivery. SLoD is used to check whether or not RP delivers the usage rights

of the resources to RC on time. i
BTEFT , i

BTLFT , i
BTL and iDT respectively represent

iRC ’s task expected finished time, task latest finished time, task length and deal

time. RP ’s level of delivery for iRC is devoted by iLoD which is specified in Eqn. (3).

 A Cloud Resource Allocation Mechanism Based on MVO and DMAA 109

 ()()
()

2

2

0,

1
,

i i i i i i
B B B B

i i i
B Bi i i i i i

B B B B
i i

B B

DT TEFT TL or DT TLFT TL

DT TLFT TLLoD
TEFT TL DT TLFT TL

TEFT TLFT

α
α

 < − > −
 − − += + − ≤ ≤ −

−

 (3)

Where i i
B BTEFT TLFT≠ andα is constant which is used to adjust the value of iLoD .

So SLoD is defined as in Eqn. (4).

1

1 M

S ii
LoD LoD

M =
= (4)

Level of Spiteful Quote. SLoSQ is used to check whether or not RP has the behavior of

spiteful quote or disrupting the auction market. p is the price of the resources

that RP provides, top and bottom represent the upper and lower limits of the resource

price that AO sets, most and least devote the highest and lowest trading price of the
resources. So SLoSQ is specified in Eqn. (5).

()
()

()
()

2

2

2

2

1 , 0

,

0 ,

,

1 ,

S

p bottom

p least
bottom p least

bottom least

LoSQ least p most

p most
most p top

top most

p top

α
α

α
α β

β
β

β

< <

− ⋅ ≤ < ⋅ − ⋅= ⋅ ≤ ≤ ⋅

− ⋅ ⋅ < ≤ − ⋅
 >

 (5)

Whereα and β are constant which are used to adjust the value of SLoSQ .

Satisfaction of Resource Provider. i
SS is the satisfaction of RP when transacting

with iRC . X represents a kind of resources that RP sells. X
SEDP and X

SRP are the ex-

pected deal price and reserve price of this kind of resource respectively that RP wants to
sell. ,i XDP is the deal price and ,i X

BIoQ represents the quality index which is calculated

in Sect.5. ,i X
SS represents the satisfaction which is specified in Eqn.(6) .

,

,
, , ,

,

1 ,

,

0 ,

i X X
S

i X
i X i X X i X X
S B S SX

S

i X X
S

DP EDP

DP
S IoQ RP DP EDP

EDP

DP RP

β α

 ≥

 = ⋅ + ⋅ ≤ <

 <

 (6)

Whereα and β are constant which are used to adjust the value of ,i X
SS .

As is shown in Eqn. (6),when X represents hard disk, CPU, memory or bandwidth,
we can accordingly calculate ,i harddisk

SS , ,i cpu
SS , ,i memory

SS or ,i bandwidth
SS which respectively

110 C. Gao, X. Wang, and M. Huang

represents the satisfaction when transacting corresponding kind of resources. If
RP and iRC don’t trade a kind of resources such as CPU, then , 0i cpu

SS = . So i
SS is defined

as in Eqn. (7).

 (), , , ,1

4
i i cpu i memory i harddisk i bandwidth
S S S S SS S S S S= + + + (7)

SS represents the total satisfaction of RP ’s transactions

with 1RC , 2RC , ⋅ ⋅ ⋅ , MRC and is defined as in Eqn.(8) .

1

1 M
i

S S
i

S S
M =

= (8)

3.2 Resource Consumer

Multi-Attributions of Resource Consumer. When analyzing RC ’s trading behavior,
we put forward two non-price attributions including RC ’s level of payment (BLoP)

and level of spiteful bid (BLoSB). BLoP and BLoSB are quantified similarly

as SLoD and SLoSQ which have been defined previously, so we don’t repeat the quanti-

fication here.

Satisfaction of Resource Consumer. i
BS is the satisfaction of RC when transacting

with iRP (the i-th resource provider). It is similar to i
SS ,so we don’t repeat the defini-

tion here.

3.3 Auction Organizer

When the auction starts, AO submits RP 's quote to the quote queue and RC 's bid to
the bid queue respectively. The quote queue is sorted in ascending order and

_lowest quote represents the one at the head of the quote queue. The bid queue is sorted

in descending order and _highest bid represents the one at the head of the bid queue.
AO has to check whether or not there are transactions that satisfy the condition for

matching which is specified as _ _highest bid lowest quote≥ .

4 Price Prediction

4.1 SVM Algorithm

The goal of SVM algorithm [9] is to select a function (),f x α from the regression

estimation function set (){ },f x α which can express the mapping relationship be-

tween x

and y

. Then we can adopt (),f x α to predict y

when given x

.

In this paper, we adopt symmetric overrelaxation preprocessing technology [10] to
reduce the conditions of the coefficient matrix of the linear equations which can

 A Cloud Resource Allocation Mechanism Based on MVO and DMAA 111

decrease the iteration time of the algorithm, thus speeding up the convergence rate and
weakening the influence that rounding errors have on SVM.

4.2 Price Prediction Method Based on SVM Algorithm

In this paper, we use exponential smoothing method to predict the relationship between
supply and demand. jsd represents the j-th relationship between supply and demand in

previous transactions, 0SA represents the initial predicted value and jSA represents the

j-th predicted value which is defined in Eqn.(9).

 () ()
2

1 0
0

1 1
j

i j

j j i
i

SA sd SAα α α
−

− −
=

= ⋅ − ⋅ + − ⋅ (9)

Where1 1j n≤ ≤ + ,α is the smoothing coefficient and 0 1α≤ ≤ .

The structure of RP ’s training samples is consisted of RP ’s quality index (SIoQ),

reserve price (SRP), the relationship between supply and demand (SD), remaining

sale amount (SRSA) and predicted sale price (PSP).

The structure of RC ’s training samples is consisted of RC ’s quality index (BIoQ),

reserve price (BRP), SD ,task urgency degree (TUD) and predicted buying price (PBP).

The process of predicting the price based on SVM algorithm is as follows:

Step1: If there is a trained SVM, then go to Step 3. Otherwise, initialize the training
sample set and determine the parameters of SVM algorithm such as the error threshold
and maximum iteration time;

Step2: Train SVM using the training samples and update the weights. Then save the
trained SVM;

Step3: Utilize the trained SVM to predict the price and generate the sample cor-
responding to this price prediction as the training sample which is then added to the
training sample set;

Step4: If the maximum iteration time is not reached, then go to Step 2; otherwise,
output the prices and the algorithm ends.

5 Multi-Attribution Processing

5.1 BP Neural Network Algorithm

The structure of BP neural network [11] is consisted of input layer, hidden layer and
output layer where input layer and output layer are single layers while hidden layer can
be a single layer or multiple layers. The learning process of BP neural network [12-14]
includes the forward propagation and the error back propagation of the signal. These
two processes are carried out circularly until the output error of BP neural network is
less than the minimum error or the preset training time is reached.

In this paper, Sigmoid function [15] is utilized as the activation function to train the
samples. The weights of the BP neural network are updated after training for W times

112 C. Gao, X. Wang, and M. Huang

where W is constant. Variable learning rate is adopted to adjust the decline rate of
errors dynamically in the process of training. Inertia factor is used to measure the
impact that the weight increments of previous trainings have on the weights of current
training. Chaos noise [16] is introduced into the process of weight updating so as to
improve the error back-propagation process and the ability of jumping out of a local
minimum point, thus enhancing the learning ability of BP neural network algorithm.

5.2 Multi-Attribution Processing Method Based on BP Neural Network
Algorithm

The structure of RP ’s training samples is consisted of SQoS , SLoD , SLoSQ and SIoQ

The structure of RC ’s training samples is consisted of BLoP , BLoSB and BIoQ .

The process of applying BP neural network algorithm to multi-attribution processing
method is as follows:

Step1: If there is a trained BP neural network, then go to Step 3. Otherwise, initialize
the training sample set and determine the parameters of BP neural network algorithm
such as the error threshold and maximum iteration time;

Step2: Train the BP neural network using training samples and adjust the weights.
Then save the trained BP neural network;

Step3: Utilize the trained BP neural network to transfer the non-price attributions to
the quality index and generate the sample corresponding to this multi-attribution
processing as the training sample which is then added to the training sample set;

Step4: If the maximum iteration time is not reached, then go to Step 2; otherwise,
output the quality index and the algorithm ends.

6 Resource Allocation

In this paper, the total satisfaction of RC and RP is used as the fitness function in order
to determine whether or not the allocation scheme is good.

6.1 MVO Algorithm

MVO algorithm [17] is a kind of intelligent optimization algorithms. The basic idea is
to use the mean and variance of the components of the solution vectors to evolve the
solution set and find the optimal solution by iteration.

6.2 Resource Allocation Based on MVO Algorithm

Step1: Determine the amount of resources of this transaction namely TA and in-
itialize the related parameters of MVO algorithm such as the maximum iteration time
and the dimension of variation which is devoted by c . Generate a random initial solu-
tion X according to TA ;

Step2: Calculate the fitness function value. If the termination condition is satisfied,
then go to Step 5;

Step3: Create the n best− population where n best− population represents the set
of the top n best solutions when all of the solutions are sorted in descending order

 A Cloud Resource Allocation Mechanism Based on MVO and DMAA 113

according to the fitness function value. Then calculate the mean and variance of the
components of the solution vectors. Choose the solution with the largest fitness func-
tion value as the father solution fatherX ;

Step4: Randomly select c components from fatherX and evolve and update the selected

components to get the child solutions, and then go to Step2;
Step5: Output the optimal resource allocation scheme and the algorithm ends.

7 Simulation and Evaluation

The resource allocation mechanism is implemented and evaluated based on JDK and
Cloudsim on the Eclipse platform. There are 200 sRP and 150 sRC participating in the
auction. The parameters of the proposed algorithms are detailed in Table 1, Table 2 and
Table 3. A set of cloud resource prices is selected from Amazon as is shown in Table 4,
which acts as the reference of RP 's quote and RC 's bid.

Table 1. Relative Parameters to BP Neural Network Algorithm

Relative parameter Value

Input layer node number 1

Hidden layer node number 20

Output layer node number 1

Error threshold 0.01

Number of training samples 400

Maximum iteration time 1000

Table 2. Relative Parameters to SVM Algorithm

Relative parameter Value

Error threshold 0.01

Penalty coefficient 100

Regularization parameter 100

Maximum iteration time 1000

Table 3. Relative Parameters to MVO Algorithm

Relative parameter Value

Scale of n-best population 10

Dimension of the solutions 4

Dimension of variation 3

Asymmetry factor 0.1

Maximum iteration time 1000

114 C. Gao, X. Wang, and M. Huang

Table 4. Prices of Cloud Servers

Server Size Linux Windows

RAM Disk
Network

Bandwidth
Hourly

Estimated

Monthly
Hourly

Estimated

Monthly

256MB 10GB 10Mbps $0.010 $7.30 - -

512MB 20GB 20Mbps $0.020 $14.60 - -

1024MB 40GB 30Mbps $0.040 $29.20 $0.053 $37.96

2048MB 80GB 40Mbps $0.080 $58.40 $0.106 $75.92

4096MB 160GB 50Mbps $0.160 $116.80 $0.212 $151.84

8192MB 320GB 60Mbps $0.320 $233.60 $0.424 $303.68

15872MB 620GB 70Mbps $0.640 $467.20 $0.848 $607.36

30720MB 1200GB 80Mbps $1.217 $876.00 $1.606 $1156.30

In this paper, SCDA mechanism [4] is used as the benchmark double auction me-

chanism which acts as the reference of the performance compared with the proposed
DMAA mechanism. SCDA adds a compulsory bidding adjustment layer (CBAL)
based on the traditional CDA mechanism. When RP and RC submit the prices to AO ,
CBAL will delete the unreasonable prices according to the historical trading prices
and the supply and demand of resources. Meanwhile, SCDA sets the task queue to
save the tasks to be finished and the task queue is sorted in descending order accord-
ing to the bids. All of the sRP calculate the price needed to complete the first task in
the task queue. If there exists RP whose quote is less than the price, then the RP with
the lowest quote can transact with the RC corresponding to the first task of the task
queue.

7.1 The Comparison of Resource Utilization Rate of Resource Providers

We compare the resource utilization rate of RP between the two auction mechanisms
in three cases when the supply exceeds the demand, the supply equals the demand and
the supply is less than the demand. The results are presented in Fig.2.

0
0.2
0.4
0.6
0.8

1 2 3 4 5 6 7 8 9 10

DMAA SCDA

Auction Cycle

0
0.1
0.2
0.3
0.4
0.5
0.6

1 2 3 4 5 6 7 8 9 10

DMAA SCDA

Auction Cycle

0
0.1
0.2
0.3
0.4

1 2 3 4 5 6 7 8 9 10

DMAA SCDA

Auction Cycle

Fig. 2. The comparison of resource utilization rate

As is shown in Fig.2, at the beginning of the auction, the resource utilization rate of
DMAA mechanism is slightly lower than that of SCDA mechanism. With the auction
going on, the resource utilization rate of DMAA mechanism is higher than that of

 A Cloud Resource Allocation Mechanism Based on MVO and DMAA 115

SCDA mechanism. This is because that the price prediction method used in the DMAA
mechanism requires a process of collecting the training samples and learning, and at the
beginning of the auction, the price prediction method is still in the process of learning,
so the excellent performance of the method seems vague, thus the resource utilization
rate of DMAA mechanism is lower than that of SCDA mechanism. With the auction
going on, the performance of the price prediction method is gradually stabilized, so the
resource utilization rate of DMAA mechanism is higher than that of SCDA mechanism.

7.2 The Comparison of the Amount of Resource Consumers Whose Demands
Are Satisfied

We compare the amount of resource consumers whose demands are satisfied between
the two auction mechanisms in three cases when the supply exceeds the demand, the
supply equals the demand and the supply is less than the demand. The results are
presented in Fig.3.

0
4
8

12
16

1 2 3 4 5 6 7 8 9 10

DMAA SCDA

Auction Cycle

0
4
8

12
16
20

1 2 3 4 5 6 7 8 9 10

DMAA SCDA

Auction Cycle

04
81216202428

1 2 3 4 5 6 7 8 9 10

DMAA SCDA

Auction Cycle

Fig. 3. The comparison of the amount of resource consumers whose demands are satisfied

As is shown in Fig.3, at the beginning of the auction, the amount calculated from
DMAA mechanism is slightly lower than that from SCDA mechanism. With the auc-
tion going on, the amount calculated from DMAA mechanism is higher than that from
SCDA mechanism. The reason is similar to that in the previous section.

7.3 The Comparison of the Execution Time

We compare the execution time of the two mechanisms when the amount of sRC is
30,50,70,90,110,130 and 150 respectively, and the results are presented in Fig.4.

0

4

8

12

16

20

30 50 70 90 110 130 150

DMAA SCDA

E
x
e
c
u
ti
o
n
ti
m
e
(s
)

The amount of resource comsumers

Fig. 4. The comparison of the execution time

116 C. Gao, X. Wang, and M. Huang

As is shown in Fig.4, the execution time of the DMAA mechanism is higher than
that of SCDA mechanism in all these seven conditions, and with the amount
of sRC increasing, the gap of the execution time between the two mechanisms be-
comes larger. This is because in DMAA mechanism, the multi-attribution processing
method based on BP neural network algorithm, the price prediction method based on
SVM algorithm and the resource allocation scheme based on MVO algorithm will
take large amounts of time for learning and iteration, but the time consumed is less
than 20s in most cases. If the hardware is greatly improved, the execution time of the
proposed mechanism can be reduced to within the acceptable range.

8 Conclusion

Cloud computing can integrate the distributed resources in the network and provide
service to users. So a resource allocation mechanism is needed to reasonably allocate
the idle resources. In this paper, MVO algorithm and DMAA mechanism are adopted to
design and simulate a cloud resource allocation mechanism. In the proposed mechan-
ism, RP and RC use SVM algorithm to predict the price and submit the tenders
to AO . AO comprehensively analyzes the price attribution and non-price attributions of
both traders and uses the BP neural network algorithm to transfer the non-price attri-
butions to the quality index. To effectively allocate the resources and maximize the
total satisfaction of both traders, the problem of optimal cloud resource allocation is
transformed into the optimization problem of maximizing the total satisfaction. And
MVO algorithm is utilized to obtain the optimized cloud resource allocation scheme.
Simulation results have shown that the proposed mechanism is feasible and effective
for increasing the resource utilization rate and satisfying the demands of users. It con-
stitutes our future work to implement and test the mechanism in the actual system so as
to further improve the practicality of the model and the algorithm.

Acknowledgements. This work is supported by the National Science Foundation for
Distinguished Young Scholars of China under Grant No. 61225012; the National
Natural Science Foundation of China under Grant No. 61070162, No. 71071028 and
No. 70931001; the Specialized Research Fund of the Doctoral Program of Higher
Education for the Priority Development Areas under Grant No. 20120042130003; the
Specialized Research Fund for the Doctoral Program of Higher Education under Grant
No. 20100042110025 and No. 20110042110024; the Specialized Development Fund
for the Internet of Things from the ministry of industry and information technology of
the P.R. China; the Fundamental Research Funds for the Central Universities under
Grant No. N110204003 and No. N120104001.

References

1. Dikaiakos, M.D., Katsaros, D., Mehra, P., Pallis, G., Vakali, A.: Cloud Computing: Dis-
tributed Internet Computing for IT and Scientific Research. IEEE Internet Computing 13,
10–13 (2009)

 A Cloud Resource Allocation Mechanism Based on MVO and DMAA 117

2. Danak, A., Mannor, S.: Efficient bidding in dynamic grid markets. IEEE Transactions on
Parallel and Distributed Systems 22, 1483–1496 (2011)

3. Lan, Y., Tong, W., Liu, Z., Hou, Y.: Multi-unit continuous double auction based resource
allocation method. In: 2012 Third International Conference on Intelligent Control and In-
formation Processing, pp. 773–777. IEEE Press, Dalian (2012)

4. Tan, Z., Gurd, J.R.: Market-based grid resource allocation using a stable continuous
double auction. In: 8th IEEE/ACM International Conference on Grid Computing,
pp. 283–290. IEEE Computer Society, Washington, DC (2007)

5. Prodan, R., Wieczorek, M., Frad, H.M.: Double auction-based scheduling of scientific ap-
plications in distributed grid and cloud environment. Journal of Grid Computing 9,
531–548 (2011)

6. Teng, F., Magoules, F.: Resource pricing and equilibrium allocation policy in cloud com-
puting. In: 10th International Conference on Computer and Information Technology, pp.
195–202. IEEE Press, Bradford (2010)

7. Mutz, A., Wolski, R.: Efficient auction-based grid reservations using dynamic program-
ming. In: 2008 ACM/IEEE conference on Supercomputing, pp. 1–8. IEEE Press, Piscata-
way (2008)

8. Wang, L.J., Meng, M.Q.H.: A Game Theoretical Bandwidth Allocation Mechanism
for Cloud Robotics. In: 10th World Congress on Intelligent Control and Automation,
pp. 3828–3833. IEEE Press, Beijing (2012)

9. Rajasegarar, S., Leckie, C., Bezdek, J.C., Palaniswami, M.: Centered hyperspherical and
hyperellipsoidal one-class support vector machines for anomaly detection in sensor net-
works. IEEE Transactions on Information Forensics and Security 5, 518–533 (2010)

10. Xing, Y.Z.: On Issues and Applications for Least Squares Support Vector Machine. Nanj-
ing University of Science and Technology (2009) (in Chinese)

11. Zweiri, Y.H., Seneviratne, L.D., Althoefer, K.: Stability analysis of a three-term backpro-
pagation algorithm. Neural Networks 18, 1341–1347 (2005)

12. Suresh, S., Omkar, S.N., Mani, V.: Parallel implementation of back-propagation algorithm
in networks of workstations. IEEE Transactions on Parallel and Distributed Systems 16,
24–34 (2005)

13. Zhang, F., Chang, H.Y.: Employing BP Neural Networks to Alleviate the Sparsity Issue in
Collaborative Filtering Recommendation Algorithms. Journal of Computer Research and
Development 43, 667–672 (2006)

14. Li, L.: The Research of Intrusion Detection Technology Based on Artificial Neural Net-
work. National University of Defense Technology (2008) (in Chinese)

15. Richard, O.D., Peter, E.H., David, G.S.: Pattern Classification. China Machine Press, Bei-
jing (2009) (in Chinese)

16. Azamimi, A., Uwate, Y., Nishio, Y.: Effect of chaos noise on the learning ability of back
propagation algorithm in feed forward neural network. In: 6th International Colloquium on
Signal Processing and Its Applications, pp. 1–4. IEEE Press, Mallaca City (2010)

17. Erlich, I., Venayagamoorthy, G.K., Worawat, N.: A Mean-Variance Optimization Algo-
rithm. In: 2010 IEEE Congress on Evolutionary Computation, pp. 1–6. IEEE Press,
Barcelona (2010)

C.-H. Hsu et al. (Eds.): NPC 2013, LNCS 8147, pp. 118–129, 2013.
© IFIP International Federation for Information Processing 2013

ITC-LM: A Smart Iteration-Termination Criterion
Based Live Virtual Machine Migration

Liangwei Zhu, Jianhai Chen, Qinming He, Dawei Huang, and Shuang Wu

College of Computer Science, Zhejiang Universiy,
Zheda Rd. 38, Hangzhou 310027, China

{zhulw,chenjh919,hqm,tossboyhdw,catting}@zju.edu.cn

Abstract. Live migration of virtual machines (VMs) plays an important role in
grids, clouds and datacenters, and has become the cornerstone of resource
management in virtualized systems. The efficiency of live migration depends on
the downtime, total migration time and total transferred data. However, while
migrating a memory-intensive VM, XEN/KVM often do many useless
iterations of memory copy in order to reach expected downtime which can
never be reached, leading to a great deal of useless data transferring and
insufferable total migration time. It consumes mass of network bandwidth and
CPU resource when transferring memory from one to another node. Hence, a
critical task is to determine the optimal time to terminate the copy iteration for
live migration. In this paper, we propose a smart iteration-termination criterion
based live migration which is termed as ITC-LM, to self adaptively control
when to terminate iteration. We have implemented ITC-LM into KVM/QEMU.
The improvement is significant, especially when migrate a memory-intensive
VM. The experimental results show that, our approach can decrease 50.33% of
total transferred data on average without impairing migration downtime.

Keywords: Virtualization, Live migration, Iteration-Termination Criterion,
Terminating Conditions.

1 Introduction

Virtualization technology plays an important role in cloud computing [1, 2], in which
a large number of virtual machines (VMs) are dynamically allocated to multiple
physical machines (PMs). Virtualization enables live migration of VMs, which
provides a flexible way to relocate VMs from one physical node to another, leading to
efficient resource management [3], such as load balancing and power-saving etc.

Live migration of virtual machine is the essential mechanism of virtualization,
which is included in all current mainstream virtualization platforms such as KVM [4],
XEN [5], VMware [6], etc. Pre-copy as default live migration method of these
platforms is the most popular algorithm of live migration, which first sends VM’s
memory to the destination host and then resumes VM in it. In order to improve
migration performance, some research employs memory compression to reduce the
transferred pages during live migration.

 ITC-LM 119

However, the efficiency of current live migration methods are not always
satisfying, especially in a memory-intensive scenario. Now methods keeps the
iterations of copying memory until the downtime is short enough, and if the expected
downtime is always too high, it stops memory copy iterations after a fixed number of
memory-copy iterations. As a result, these methods usually stop memory--copy
iteration too late in memory-intensive scenarios and will consume a lot of network
resource of a data center, even resulting in the performance degradation of data
center.

Unfortunately, the existing live migration approaches commonly ignore the
problem of determination about when to terminate the iterations. In pre-copy, memory
is transferred from the source node to the destination node while VM is still running
on source. Modified pages which are generated in the iteration are transferred in
subsequent iteration. This process based on that the VM remaining dirty pages can
converge to a small value. However, there are still lots of remaining dirty pages after
multiple iterations when low-bandwidth or VM with a high workload. In other words,
more iterations of copy memory cannot decrease the remaining dirty pages and no
more benefit to the service downtime.

In this paper, we propose a smart iteration-termination criterion (ITC) based live
migration method, termed as ITC-LM. We use ITC value to determine when to
terminate the iteration in live migration. Actually, ITC value changes dynamically
during the live migration process. In our method, we terminate the iteration when the
ITC value is less than a given threshold.

The main contributions of this paper are as follows:
First, we proposed a smart ITC-LM technique to decide when to stop iteration

during live migration. To the best of our knowledge, our method is the first to
consider both the iteration rounds and the convergence of remaining dirty pages.

Second, we have implemented our proposed algorithm in recent stable release of
KVM/QEMU [9, 10] and show that our methods can be conveniently deployed in
virtualization platform.

Eventually, we demonstrate the effectiveness of ITC-LM method in our
experiments by four different kinds of workloads. The results show that ITC-LM
decreases 53.35% of total migration time and 50.33% of total transferred data on
average.

2 Background and Motivation

There are various algorithms of live migration. Most of these studies are mainly based
on the pre-copy live migration algorithm. It basically works [21] as follows:

1) The resources of memory and VCPUs are reserved on the destination.
2) Memory of VM is sent to destination and using bitmap to log the dirty pages

which rewrite during the memory copy.
3) The source continuously copies VM’s memory dirty pages to the destination.

A number of iterations are performed to retransfer the pages which are dirtied
in previous iteration.

120 L. Zhu et al.

4) Suspend the running VM at the source, and copy remaining pages to the
destination.

5) The VM is resumed on the destination.

In the best case, the approach of pre-copy can achieve an expected downtime by
several iterative copy operations.

2.1 Terminating Conditions

There are some common conditions to decide the time to terminate the iterative copy
operations.

Remaining Dirty Pages. Ideally, the default size of remaining dirty pages can be
reached using iterative copy operations. However this is completely depending on the
assumption of remaining dirty pages can converge expected size. Some application
rewrite memory frequency that remaining dirty pages still very large over multiple
rounds [17].

Maximum Number of Iterations. The terminative conditions of exact values for the
maximum number of iteration are arguable, sometimes when the dirty rate is low
compared to the transfer rate, the remaining pages will decrease quickly and down
time will not have benefit from more iteration.

Hybrid Terminating Condition. Some of approaches use terminative conditions
simultaneously of above two as shown in figure 1. Each iteration check the remaining
pages whether below the expected remain pages, and check the number of iteration is
more than the maximum number of iterations. This condition has been used in XEN,
KVM/QEMU etc.

Fig. 1. A typical algorithm of use two terminative conditions simultaneously

 ITC-LM 121

2.2 The Problems of Common Terminating Conditions

The hybrid terminating condition can finish the live migration but the default
remaining pages size and maximum number of iterations is hard to estimate. Beside,
we can know that in order to minimize the size of remaining dirty pages the maximum
iterations need to be set to a value that larger enough for most cases of live migration.
However, a lot of useless iterations of pre-copy caused large amount of transferred
data, especially when migrate a memory-intensive VM.

(a) Remaining dirty pages (b) Transferred data

Fig. 2. Number of remaining dirty pages and transferred data of each migration iteration rounds
when migrate a VM which running workload of RUBiS webserver workload. VM size is 2GB.

From figure 2 we observe that the remaining pages converge from the fifth
iteration. But the remaining dirty pages size still bigger than the default size 30MB
(some approaches use remaining pages size divide transfer rate). So iterations of copy
will continuous perform until the number of iterations exceeds the maximum number
which is set as thirty-seven that larger enough for most cases of live migration in our
experiments.

3 Algorithm Design

Although, the live migration complete after number of iteration exceeds the maximum
number, the more iteration the more network bandwidth and CPU resource it
consumes and it would prolong the total migration time. Moreover, it makes
applications in migrated VM suffer longer time of performance degradation.

The iterations of pre-copy are completely depending on the assumption of the
remaining pages can converge to a small value. However iteration of pre-copy may
never converge to a small value or even the convergence of iteration never happen
when the VM’s workload is high or bandwidth instability. So there should be some
smart threshold to force the final iteration of a live migration which does not
converge.

122 L. Zhu et al.

3.1 Terminating Condition Based on Remaining Dirty Pages

First, some notations are defined as follows:

ir
M : The remaining dirty pages after ith iteration in the migrated virtual machine.

it
M : The data is transferred to destination of ith iteration.

i
T : The time of complete ith iteration used.

ipage
R : The average dirty pages rate of ith iteration.

itran
R : The average transferred rate of ith iteration.

The average dirty page rate of ith iteration can be calculated as

i

trr

page
T

MMM
R

iii

i

)(
1

−−
= − . (1)

The average transferred rate of ith iteration can be presented as:

i

t

tran

T

M
R

i

i

= . (2)

Only when
itran

R is greater than
ipage

R , the iteration can reduce the remaining

pages. From formula (1) and (2) we can get:

1−
<

ii rr
MM . (3)

 Different between two consecutive remaining pages is defined as:

1−−=
iii

MMD . (4)

The above inequality indicates the remaining pages should be less than its previous
round. Thus the iteration can reduce the remaining page size. Otherwise the rounds
have no contribution to reach to the default value.

From formula (4), it is clear that when Di is not less zero is a good terminative
condition. However, VM’s dirty page rate and transfer rate are not stable in real
virtualized system, thus once we find it unreliable that the remaining dirty pages is
less than its previous one.

 ITC-LM 123

(a) RUBiS 1GB (b) RUBiS 2GB

Fig. 3. Remain dirty pages in successive iterations. The experiments choose benchmark of
RUBiS as workload for each VM memory size. In order to see clear the trend of remaining
dirty pages, the first iterations are taken off from the figures. The default remaining dirty pages
set as 30MB and maximum iterations is thirty-seven (a number that larger enough for most
cases of live migration).

Figure 3 illustrates the remaining dirty pages fluctuate during iterations and pages
will continue to reduce after a shock. In detail, if only use the condition of difference
between two successive remaining dirty pages will terminate the iteration at the first
shock points (see the point of a and c in Figure 3). However the remaining dirty pages
will continuously decrease after these points (see the point of b and d in Figure 3).

3.2 Iteration-Termination Criterion

Based on the analysis of the iterative characteristics in the VM live migration, the key
idea of the proposed method is to avoid directly terminating iterations when the
remaining dirty pages do not decrease. So we give a smart iteration-termination
criterion (ITC) based live migration method, termed as ITC-LM. In our method, we
use ITC value to accumulative the variation tendency of remaining dirty pages and
determine when to terminate the iteration in live migration. The value of ITC is
relation to the difference of remaining pages between two consecutive iterations.

According to the variation of the remaining pages of iterations, if the remaining
pages of current iteration are less than the previous one, then we add a trust value to
ITC. The bigger ITC value means the more valuable to do iterations. On the contrary,
if the remaining pages of current iteration are not less than the previous one, it means
doing iterations has no benefit for reducing downtime, and then we cut down ITC
value by dividing ITC value to a distrust coefficient which is used to constraint the
rate of ITC descent.

We conclude ITC by formula (5) as follows.

distrustcITCtrustcITCITC _/)1()_(αα −++= , (5)

124 L. Zhu et al.

Where α is a 0-1 constant,

>=
<

=
0,0

0,1

i

i

D

D
α , trustc _ is a constant value

which denotes the trust value, and distrustc _ is a constant value which denotes
the distrust coefficient.

According to our experiments, the value of trustc _ and distrustc _ is
empirical and correlative. For example, when we set trustc _ to 1 and set

distrustc _ to 2, then we obtain a good performance of live migration in our
experiments and we will do more research about values of trustc _ and

distrustc _ in our future work.

3.3 ITC-LM Algorithm

We have designed the ITC-LM Algorithm and implemented it in recent stable release
of KVM/QEMU using ITC. QEMU is an open source machine emulator. KVM (for
Kernel-based Virtual Machine) is a full virtualization solution for Linux on x86
hardware which containing virtualization extensions. When QEMU use KVM for its
virtualization acceleration, can get a better performance. The major part of ITC-LM
was implemented in QEMU. We use bitmap of memory to calculate the size of dirty
pages. The pseudo code of ITC-LM algorithm is listed in follows:

Pseudo Code of ITC-LM algorithm.

ITC=0;c_trust=1;c_distrust=2;
pre_remain_pages_size=full_memory_size();
while(true){
 copyiteration()
 if(remain_pages_size()<pre_remain_pages_size){
 ITC=ITC+c_trust;
 pre_remain_pages_size=remain_pages_size();
 }
 else{
 ITC=ITC/c_distrust;
 if(ITC<=1)
 break;
 else
 pre_remain_pages_size=remain_pages_size();
 }
}
end_iteration();

4 Evaluation

In this section, we perform a series of live migration experiments with some various
characteristic workloads on VM with varying working set sizes to evaluate the

 ITC-LM 125

performance of ITC-LM algorithm by comparing with QEMU/KVM default pre-copy
algorithm (Pre-default) which implemented hybrid terminating condition. In the
following, we first introduce the experimental environment, and then we present the
results of different benchmarks.

4.1 Experimental Environment

All live migration experiments are performed on two identical hosts as source and
destination host respectively. Each host has dual Intel(R) Xeon(R) CPU E5606 @
2.13GHZ with a total of eight cores. Each one has 16GB RAM. The host runs
Ubuntu 12.04LTS with KVM module and QEMU-1.4.0. The source and destination
hosts are connected via Gigabit switched Ethernet. The OS of Linux VM are all
Ubuntu12.04LTS with Kernel-3.2.0 and all VM images are stored in a Network File
System (NFS). We perform experiments VMs are configured with two virtual CPUs.
In each experiment the nodes of source and target only run the live migration VM.
Besides, we use another identical host to deployment the client emulator of RUBiS.

4.2 Overview of Workload

We perform our experiments with the following VM workloads:

1. Kernel-complication. Linux kernel compilation is a balanced workload to use the
source of VM. Two parallel threads were used to run Linux 3.8.5 kernel [12]
compilation.

2. Parallel Benchmarks. The NAS parallel benchmarks (NPB) [14] are a set of
programs which evaluate the performance parallel performance, available in
commonly-used programing models like MPI and OpenMP. In our experiments,
we use Embarrassingly Parallel (EP) of NPB (NPB-EP) to simulation the parallel
computing workload.

3. SPEC jbb2005 [13]. It is a SPEC’S benchmark for evaluating the performance of
server side java. It provides enhanced workload with a more object-oriented
manner to reflect real-world applications.

4. Dynamic web Server. Rice University Bidding System (RUBiS) [11] which is a
prototype modeled after eBay.com used to evaluate patterns and application
servers performance. It contains a client-browser emulator, and we implement it
in a third physical host.

4.3 Experiment Results

In this section, the results from the four workloads are present. The evaluation metric
of experiments primarily includes total migration time, total transferred data and
downtime during live migration of virtual machine. We run live migration five times
for each workload and use the arithmetic mean for each metric.

126 L. Zhu et al.

(a) Kernel-Compiling (b) NPB-EP

(c) SPECjbb (d) RUBiS

Fig. 4. Remaining dirty pages of each iteration compared with ITC-LM and Pre-default for
each workload. (Memory 1GB)

Total Transferred Data. Figure 4 respectively shows the each iteration remaining
data of during live migration of VM running. The iteration rounds of ITC-LM far less
than the pre-copy default algorithm in KVM/QEMU under the workload of kernel-
compile, SPECjbb and RUBiS. As figure 4 (b) shows the benchmark of NPB-EP is a
compute-intensive workload and VM produce less dirty pages, and iteration ending
soon. Thus two approaches both in less iteration.

Experimental results in figure 5 (a) show that compare with KMV/QEMU’s default
migration algorithm, ITC-LM can reduce total transferred data 50.73%, 7.74%,
69.55%,73.29% respectively in diverse workload of above, an average of 50.33%.
This will lighten greatly network loads of data center.

Total Migration Time. The results in figure 5(b) show that benefit from less
iteration, ITC-LM can reduce total migration time 50.54%, 17.70%, 70.03%,75.14%,
an average of 53.35%. For this, the service running in live migration VM can suffer
less time of the decrease of quality.

Downtime. In order to evaluate the influence of ITC-LM on downtime, experiments
are performed with two memory size: 1GB and 2GB. Figure 5 (c) and (d) shows ITC-
LM can get a good performance in total transferred data and total migration time
while has slight influence on the downtime of live migration. This is because ITC-LM
based on a smart threshold not a default remaining dirty pages or maximum iteration
rounds.

 ITC-LM 127

 (a) Total transferred data (Memory 1GB) (b) Total migration time (Memory 1GB)

 (c) Downtime (Memory 1GB) (d) Downtime (Memory 2GB)

Fig. 5. Total transferred data, total migration time and downtime of ITC-LM and Pre-default
during live migration for four different kinds of workloads

5 Related Work

The technology of live migration is widely used in virtualization. At present, there are
several types of live migration methods. The pre-copy approach is a main migration
method in the mainstream virtualization platform such as KVM [4], XEN [5],
VMware [6], etc.

Some research has been done to improve the performance of live migration based
on pre-copy in which the widespread used method is memory compression. Zhang et
al. [15] proposed a novel approach MMD to find identical and similar memory pages
to redundant memory data. Delta compression technique [16] applied XOR on the
current pages with kept previously sent pages in source host. Jin et al. [17] designed
an adaptive memory compression based on memory page characteristics. ME2 [18]
identified useful pages and then used RLE algorithm to compress data. Page rewriting
frequency is related to dirty page rate. Microwiper [19] ordered dirty memory pages
according their rewriting rate. Petter et al. [20] designed a page priority map on top of
the dirty page bitmap and proposed dynamic page transfer reordering based
on it. CR/TR-Motion [22] log execution trace on source and replay it on target host.
Chiang et al. [27] proposed a bootstrapping VM introspection technique to get the

128 L. Zhu et al.

information of memory pool, and skips free memory pages during migration. Jo et al.
[28] first sent the memory-to-disk mapping to the host, and then fetch the contents
directly from the shared storage.

Post-copy [7] resumes running VM on the target host with only its CPU state
before copying the VM’s memory from source host to target. Adaptive pre-paging
and dynamic self-ballooning [8] can improve the post-copy performance. Hirofuchi et
al. [23] through a lightweight extension implement post-copy to KVM. Besides, some
researches proposed hybrid live migration [24, 25, 26] approach that use pre-copy
and post-copy methods simultaneously. They do some memory copy iteration of pre-
copy before the stage of post-copy method.

6 Conclusions and Future Work

In this paper, we have presented the design and implementation of a smart ITC-LM
technique for live migration of virtual machines. We choose four representative server
applications in modern data center to verify our algorithm. The results show that ITC-
LM has a good performance in different kinds of workload. In future work, we will
study trust value and distrust coefficient of ITC-LM to make our approach more
effective. Furthermore, we will implement our approach to other virtualization
platforms.

Acknowledgments. This work was partly supported by the National Key Technologies
R&D Program under Grants No. 2011BAD21B02.

References

1. Armbrust, M., Fox, A., Griffith, R., et al.: A view of cloud computing. Communications of
the ACM 53(4), 50–58 (2010)

2. Fox, A., Griffith, R., Joseph, A., et al.: Above the clouds: A Berkeley view of cloud
computing. Dept. Electrical Eng. and Comput. Sciences, University of California,
Berkeley, Rep. UCB/EECS, 28 (2009)

3. Wang, X., Du, Z., Chen, Y., et al.: Virtualization-based autonomic resource management
for multi-tier Web applications in shared data center. Journal of Systems and
Software 81(9), 1591–1608 (2008)

4. Kivity, A., Kamay, Y., Laor, D., et al.: kvm: the Linux virtual machine monitor. In:
Proceedings of the Linux Symposium, vol. 1, pp. 225–230 (2007)

5. Barham, P., Dragovic, B., Fraser, K., et al.: Xen and the art of virtualization. ACM
SIGOPS Operating Systems Review 37(5), 164–177 (2003)

6. Nelson, M., Lim, B.H., Hutchins, G.: Fast transparent migration for virtual machines. In:
Proceedings of the Annual Conference on USENIX Annual Technical Conference, p. 25
(2005)

7. Hines, M.R., Deshpande, U., Gopalan, K.: Post-copy live migration of virtual machines.
ACM SIGOPS Operating Systems Review 43(3), 14–26 (2009)

8. Hines, M.R., Gopalan, K.: Post-copy based live virtual machine migration using adaptive
pre-paging and dynamic self-ballooning. In: Proceedings of the 2009 ACM SIGPLAN/
SIGOPS International Conference on Virtual Execution Environments, pp. 51–60. ACM
(2009)

 ITC-LM 129

9. Kernel Based Virtual Machine, KVM,
http://www.linux-kvm.org/page/Main_Page

10. QEMU, http://wiki.qemu.org/Main_Page
11. Rice University Bidding System, RUBiS, http://rubis.ow2.org/
12. Linux-kernel, https://www.kernel.org/
13. Standard Performance Evalution Corporation, SPECJbb2005,

http://www.spec.org/jbb2005/
14. NAS Parallel Benchmarks, NPB,

http://www.nas.nasa.gov/publications/npb.html
15. Zhang, X., Huo, Z., Ma, J., et al.: Exploiting data deduplication to accelerate live virtual

machine migration. In: 2010 IEEE International Conference on Cluster Computing
(CLUSTER), pp. 88–96. IEEE (2010)

16. Svärd, P., Hudzia, B., Tordsson, J., et al.: Evaluation of delta compression techniques for
efficient live migration of large virtual machines. Virtual Execution Environments
(VEE) 46(7), 111–120 (2011)

17. Jin, H., Deng, L., Wu, S., et al.: Live virtual machine migration with adaptive, memory
compression. In: IEEE International Conference on Cluster Computing and Workshops,
CLUSTER 2009, pp. 1–10. IEEE (2009)

18. Ma, Y., Wang, H., Dong, J., et al.: ME2: Efficient Live Migration of Virtual Machine with
Memory Exploration and Encoding. In: 2012 IEEE International Conference on Cluster
Computing (CLUSTER), pp. 610–613. IEEE (2012)

19. Du, Y., Yu, H., Shi, G., et al.: Microwiper: Efficient Memory Propagation in Live
Migration of Virtual Machines. In: 2010 39th International Conference on Parallel
Processing (ICPP), pp. 141–149. IEEE (2010)

20. Svard, P., Tordsson, J., Hudzia, B., et al.: High performance live migration through
dynamic page transfer reordering and compression. In: 2011 IEEE Third International
Conference on Cloud Computing Technology and Science (CloudCom), pp. 542–548.
IEEE (2011)

21. Clark, C., Fraser, K., Hand, S., et al.: Live migration of virtual machines. In: Proceedings
of the 2nd conference on Symposium on Networked Systems Design & Implementation,
vol. 2, pp. 273–286. USENIX Association (2005)

22. Liu, H., Jin, H., Liao, X., et al.: Live virtual machine migration via asynchronous
replication and state synchronization. IEEE Transactions on Parallel and Distributed
Systems 22(12), 1986–1999 (2011)

23. Hirofuchi, T., Nakada, H., Itoh, S., et al.: Enabling instantaneous relocation of virtual
machines with a lightweight vmm extension. In: 2010 10th IEEE/ACM International
Conference on Cluster, Cloud and Grid Computing (CCGrid), pp. 73–83. IEEE (2010)

24. Sahni, S., Varma, V.: A Hybrid Approach to Live Migration of Virtual Machines. In: 2012
IEEE International Conference on Cloud Computing in Emerging Markets (CCEM), pp.
1–5. IEEE (2012)

25. Shribman, A., Hudzia, B.: Pre-Copy and post-copy VM live migration for memory
intensive applications. In: Caragiannis, I., et al. (eds.) Euro-Par Workshops 2012. LNCS,
vol. 7640, pp. 539–547. Springer, Heidelberg (2013)

26. Chen, Y., Huai, J.P., Hu, C.M.: Live migration of virtual machines based on hybrid
memory copy approach. Chinese Journal of Computers 34(12), 2278–2291 (2011)

27. Chiang, J.H., Li, H.L., Chiueh, T.: Introspection-based memory de-duplication and
migration. In: Proceedings of the 9th ACM SIGPLAN/SIGOPS International Conference
on Virtual Execution Environments, pp. 51–62. ACM (2013)

28. Jo, C., Gustafsson, E., Son, J., et al.: Efficient live migration of virtual machines using
shared storage. In: Proceedings of the 9th ACM SIGPLAN/SIGOPS International
Conference on Virtual Execution Environments, pp. 41–50. ACM (2013)

C.-H. Hsu et al. (Eds.): NPC 2013, LNCS 8147, pp. 130–142, 2013.
© IFIP International Federation for Information Processing 2013

A Scheduling Method for Multiple Virtual Machines
Migration in Cloud

Zhenzhong Zhang1, Limin Xiao1, Xianchu Chen1, and Junjie Peng2

1 State Key Laboratory of Software Development Environment,
School of Computer Science and Engineering

Beihang University, Beijing, China
2 School of Computer Engineering and Science

Shanghai University, Shanghai, China
{zzzhang,chengxc}@cse.buaa.edu.cn,

xiaolm@buaa.edu.cn, jjie.peng@shu.edu.cn

Abstract. Infrastructure as a Service(IaaS) is important in Cloud Computing,
which provides on-demand virtual machines(VMs) to users. The resource man-
agement plays an important role in IaaS cloud, which deploys and relocates
virtual machine on available hosts for different targets, such as load balancing,
power saving and resource utilization improving. The virtual machine place-
ment problem can be considered as a bin packing problem. Many researchers
use the heuristic algorithms based approach to solve this virtual machine
placement problem. However, they all focus on how to find the optimization
solution for the bin packing problem of virtual machine placement. These
studies did not consider the scheduling of multiple virtual machine migration
that involved in the transfer process from one V-P mapping to another.
Because of the large overhead produced by virtual machine migration, the op-
timization of multiple virtual machines migration process could reduce the
overhead of resource management in IaaS cloud, and accelerate the migration
process. In this paper, we analyse and formal the multiple virtual machines mi-
gration problem, and propose a scheduling method to reduce the VM migration
times and accelerate the migration process. Experiments show that our method
can decrease the VM migration times, reduce the traffic and accelerate the
process of multiple virtual machine migration.

Keywords: Cloud Computing, Virtual Machine Schedule, Multiple Virtual
Machines Migration, IaaS.

1 Introduction

Cloud computing[1] is a popular trend in current computing which attempts to
provide cheap and easy access to computational resources. IaaS(Infrastructure as a
Service)[2] provides infrastructure or the actual hardware to customers who are re-
sponsible to install operating systems and necessary softwares. Based on virtualiza-
tion technology[3], IaaS cloud is usually provided to users in the form of Virtual

 A Scheduling Method for Multiple Virtual Machines Migration in Cloud 131

Machines (VMs), such as Amazon EC2[4] and VMware vCloud[5]. On IaaS cloud
platform, resources are provided by need as services, and it guarantees to the sub-
scribers that it sticks to the Service Level Agreement (SLA). IaaS cloud platform
needs to dynamically deploy and relocate virtual machine onto proper physical hosts
in order to meet different needs, such as avoid hotspot, power saving and load balanc-
ing[5-7]. Therefore, how to dynamically and efficiently schedule virtual machines
among physical hosts to meet the needs of different targets becomes a problem.

The traditional resource management methods usually schedule virtual machine or
allocate resource in cloud when some certain conditions are triggered[8-10], such as
threshold for load balancing. Due to the complexity and variability of a large number
of virtual machines in IaaS cloud, traditional methods are difficult to carry out global
resource optimization management. To address this issue, many optimization theory
based virtual machine placement approaches are used to solve the resource manage-
ment problem in IaaS cloud[11, 12]. In such scenario, the resource management prob-
lem is considered as a bin packing problem, which need to find the proper mapping of
virtual machines to available physical machines.

Linear programming[13], genetic algorithm[14] and ant colony algorithm[15] have
been used to solve the bin packing problem, and obtained good results. All these re-
searches are focused on how to find the actual mapping of virtual machines to availa-
ble physical machines(V-P mapping). However, these studies did not consider the
scheduling of multiple virtual machine migration that involved in the transfer process
from one V-P mapping to another. Because the virtual machine migration process
needs to copy large amounts of data(memory data or even virtual disk) from the
source host to the destination host, it will produce large CPU overhead and network
traffic, and cost much resource. Therefore, the optimization of multiple virtual ma-
chines migration process could reduce the overhead of resource management in IaaS
cloud and accelerate the migration process. The optimization includes reducing the
number of virtual machine migration, and migrating small VM instead of big VM.

In this paper, we study the multiple virtual machines migration problem, and pro-
pose a scheduling method to optimize multi-virtual machine migration process. The
main contributions of this paper are concluded as the followings: (1)Modeling and
formalization of the multiple virtual machines migration problem; (2)A scheduling
method optimizing the multiple virtual machines migration process.

2 Related Work

For resource management in cloud data center, previous work has focused on the
problem of placing and replacing VMs in servers, in order to optimize resource man-
agement for different criteria, including performance, power and cost. There are some
molded products and research projects on virtualized resource management, such as
VMware DRS[8]. They dynamically allocate the CPU, memory and I/O resources to
partitioned virtual machines according to customer’s requirements, but they ignore the
QoS[9]. The work in [16] minimized the number of physical machines using dynamic

132 Z. Zhang et al.

adaptation technique based on off-line analysis of application performance, which is
seen as a function of machine utilization. The load forecasting techniques are also
widely used in the management of cloud resources, such as load-balancing and re-
source scheduling[17]. In [18], a model-predictive controller is proposed to minimize
the total power consumption of the servers in an enclosure subject to a given set of
QoS constraints.

Optimization and heuristic methods are wildly used by virtual machine scheduling
and placement in IaaS cloud for different targets, such as load balancing or power
saving. Integer Linear Programming is used to solve an interference-aware VM
placement problem(IAWMP)[13]. They first formulate this problem by an Integer
Linear Programming (ILP) model to solve it optimally. They also propose a poly-
nomial-time heuristic algorithm to efficiently solve the IAWMP problem. In [14] a
general model is proposed for resources allocation of virtual machines in multi-tier
distributed environments. Their model describes each virtual machine and each physi-
cal host by a multi-dimensional resource vector, allowing the coexistence of both
quantitative and qualitative resources, also handling different SLAs. [15] proposes a
multi-objective ant colony system algorithm for the virtual machine placement prob-
lem. Their method could efficiently obtain a set of non-dominated solutions that si-
multaneously minimize total resource wastage and power consumption. [19] proposes
a runtime virtual machine mapping framework(GreenMap), and designs a probabilis-
tic, heuristic algorithm to mapping VMs onto a set of physical machines under the
constraint of multi-dimensional resource consumptions.

However, all above optimization and heuristic researches are focus on how to find
the actual mapping of virtual machines to available physical machines(V-P mapping).
Although some virtual machine migration research[20, 21] can help to accelerate
virtual machine migration process, however, the scheduling of multiple virtual
machine migration that involved in the transfer process from one V-P mapping to
another was rarely considered. Therefore, in this paper, we will study the multiple
virtual machines migration problem, and propose a scheduling method to optimize
multi-virtual machine migration process.

3 Problem Analysis and Formulation

3.1 Analysis of Multiple Virtual Machines Migration Problem

In this paper, the heuristics-based resource management methods are consist of two
steps, which is shown in Figure 1. Firstly, the bin packing problem of virtual machine
management is solved by a heuristic based algorithm, and the global approximate
optimal virtual machine groups are obtained. The VMs mapping to same physical host
are in same group, called a VM-cluster. Next, For the global optimal virtual machine
grouping, we also need to convert the virtual machines to physical host mapping
(V-P mapping) from current state(initial VM location) to the target state(final VM
location).

 A Scheduling Method for Multiple Virtual Machines Migration in Cloud 133

Fig. 1. The process of VM placement in IaaS cloud

The same VM group can locate on different hosts, therefore the target state is not
unique. This process of V-P mapping convert involves the migration of multiple vir-
tual machines, which could be scheduled to reduce the migration cost of VMs. Our
study is focused on the optimization of the multiple virtual machines migration
process. The purpose of this optimization is to minimize the overhead of CPU and
network cost and avoid resource conflicts during the migration process(migration the
number of virtual machines, choose the smaller virtual machine migration, adjust
virtual machine migration steps to avoid conflicts). The optimization includes the
choosing of VM for migration, the selecting of destination physical host, and accele-
rate the migration process of all VMs. For example, If several V-P mappings have
same effect, we will choose the one that has minimum number of VM migration. If
several V-P mapping have same VM migration steps, the one with minimal numbers
of VM migration times will be chosen.

We need to develop a model to describe the scheduling problem of multiple virtual
machines migration. In this model, the virtual machines which belong to same physi-
cal host are in the same group, and called a VM-cluster. At the initial moment, the
VM-clusters of all virtual machines in IaaS cloud are the initial state of V-P mapping.
Our schedule method is responsible for converting the V-P mapping from one type of
VM-cluster to another VM-cluster. In this process, the proper physical host should be
chosen for every VM-cluster, and the proper order of virtual machine migration de-
termined, which is equivalent to create a new mapping of VM-clusters to physical
hosts. Of course, this new mapping must meet the demand that the number of VM
migration and the amount of traffic are as small as possible.

3.2 Formal Description of the VM Schedule Problem

We formalize the virtual machines to physical hosts mapping problem in this section.
Firstly, we define some basic objects below:

• Host is denoted by Hk(k=1,2...,N), and the set of hosts is H={H1,H2,...,HN},(N>=1).
Vj denotes all the virtual machines that need to be migration. The set of virtual ma-
chine is V = {V1,V2,…,Vn}(n>=1). The virtual machines that locate on the same
physical host form a virtual machine set. We call this set the VM-cluster which is
denoted by Ci(i=1,2...,M). The set of VM-cluster is C={C1,C2,…,CM}. In order to
simplify this model, we require M always be no more than N, that is the number of
VM-clusters should be less than or equal to the number of hosts.

• L(Vj) is the amount of network traffic that generated by the migration of virtual
machine Vj. Cost is the total amount of traffic generated by multiple virtual ma-
chines migration. In the initial state, each virtual machine running on a particular
station host to form a set of virtual machine clusters.

134 Z. Zhang et al.

• At the initial state, each virtual machine running on a particular host to form a set
of VM-cluster. And it will be converted to another set of VM-cluster by our sche-
dule method. If the virtual machine Vj belongs to a cluster Ci, it is denoted as
Vj∈Ci. The optimal mapping of virtual machines to physical hosts will be selected
by our scheduling method.

3.3 The VM Scheduling Method

After management strategy at initial state, all the virtual machines in the system are
re-divided into a set of VM-clusters(shown as Vj∈ Ci, Ci∈C). The establishment of
mapping of virtual machines to physical hosts is equivalent to choose the suitable of
physical host Hk for each VM-cluster Ci. Our multiple virtual machine migration
scheduling method need to create mapping of VM-cluster set(C) to physical host
set(H) as f(M→N), and select the optimal one that meet our targets(minimum migra-
tions, etc.). Each mapping establishes a relationship between VM-clusters to hosts,
and determines the target hosts that each virtual machine will migrate to. Therefore
migration path of the virtual machines is also determined. Because the mapping of
VM-cluster(C, the number of C is M) to physical hosts(H, the number of H is N) will
generate a large number of virtual machine migration paths(A). Our scheduling al-
gorithm needs to search for the optimal solution in all migration paths, and we will
use heuristic approaches to simplify the process. After the optimal migration path is
obtained, our scheduling algorithm will further determine the optimal virtual machine
migration steps based on the principle of minimum system cost.

VM

V1

Virtual Machine Monitor

VM

V3

VM

V4

Virtual Machine Monitor

VM

V5

VM

V6

VM

V7

Virtual Machine Monitor

VM

V8

VM

V9

Migration VMs： 5

VM

V2

H1 H2 H3

B

Migration VMs： 7

VM

V1

Virtual Machine Monitor

VM

V3

VM

V4

Virtual Machine Monitor

VM

V5

VM

V6

VM

V7

Virtual Machine Monitor

VM

V8

VM

V9

VM

V2

H1 H2 H3

A

Fig. 2. The migration path of f1 and f2

We show a simple examples here, to describe our method in detail. As a case that
virtual machines V1-V9 run on three hosts(H1, H2, H3). After bin packing optimiza-
tion, these virtual machines are divided into three clusters(C1:V1,V2,V4,V9;
C2:V3,V6,V8;C3:V5,V7). Two different mappings are available, the mapping of f1 is
(C1→H2,C2→H3,C3→H1), and the mapping of f2 is (C1→H1,C2→H2,C3→H3).
F1 and f2 are shown in Figure 2.A and 2.B. These two mappings correspond to two
multiple virtual machine migration paths. These two migration paths choose different
physical hosts for VM-clusters, resulting in a different number of VM migrations.
Obviously, the path of f2 needs to migrate 5 VMs, which is less than 7 VMs of f1.

 A Scheduling Method for Multiple Virtual Machines Migration in Cloud 135

When the two mappings have the same VM migration times, the different size
and load of virtual machines will also lead to a larger difference of network traffic and
CPU load. For example, the migration of virtual machine with large memory and
higher workload needs to copy more data and consume more CPU resources. L(Vj)
indicates the network traffic generated by virtual machine Vj during migration. The
total transfer data of fx is Cost(fx), which is the sum of all L(Vj). Like the first step,
the cost of each migration paths are estimated and the one with minimum migration
traffic would be chosen.

While the virtual machines starts migrate, the migrating virtual machines which
have same source or destination host would migrate one by one. Because the node
migration performance of host would decreased significantly due to simultaneous
execution of multiple virtual machine migration. And of course, the virtual machines
which their migration do not conflict with each other, could migrate at same time.

4 Design and Implementation

4.1 Host Selection Algorithm for Virtual Machine

The host selection algorithm for virtual machine is used to find the optimal mapping
from all possible V-P mapping, and to obtain the proper destination hosts for the VMs.
Specifically, it needs to search all A mappings of VM-cluster(C, the number is M) to
physical hosts(H, the number is N), and selects the optimal mapping as the multiple
virtual machine migration path. The optimal selection principle is minimum migration
times of multiple migration process and minimum amount of migration network traf-
fic(ie, the migration of VMs with smaller size will generate less network traffic). An
improved genetic algorithm is be used to search the best mapping solution in this case.
Due to limited space, the details of the genetic algorithm are not shown here.

1. Input: fs ∈{fs| 0 < s <= MN}

2. for each fs ∈{fs| 0 < s <= MN} do

3. for each j (1<= j <= n) do

4. if（The current host of Vj is not the host of Vj in fs mapping）

5. Yj
’
 = The host ID of Vj belong to in fs mapping;

6. Else

7. Yj
’ = Yj ;

8. End for / * We can get <Y1’,Y2’,…,Yn’> */

9. if （ ∑ Y = = min∑ Y Y）

10. insert f into collection F;

11. End for

12. for each f in F do

13. Cost(f) <= Min(F);

14. Min(F) = Cost(f);

15. End for

16. Output: Min(F)

Fig. 3. The algorithm for Optimal mapping selection

136 Z. Zhang et al.

The pseudo-code of our based algorithm is shown in Figure 8. The algorithm tra-
verses all A mappings (lines 1-11) to obtain the minimum value of VM migration
times and generates the set F which contains all the mappings with the minimum mi-
gration times (lines 8-9). Finally, it calculates the network traffic(Cost(f)) for each
mapping in F, and select the mapping with minimum network as the return result of
the algorithm (lines 12-15). In the algorithm, Vj is the virtual machine with number j,
Yj is the host where the virtual machine Vj current locates, fs is a mapping of virtual
machines to hosts, Yj' is the host that Vj will migrate to with the fs mapping, F is a set
of mapping with minimum VM migration times, Cost(f) is the network traffic gener-
ate by VMs migration of mapping f and Min(F) is the mapping with minimum Cost(f)
in set F.

4.2 The Migration Order and Parallelization of Multiple VMs Migration

After the selection of target hosts for multiple virtual machine hosts migration, the
schedule algorithm next needs to determine the migration order of these virtual ma-
chines to be migrated. Our scheduling algorithm will generate a trituple <V , H ,H >
for each virtual machine that needs to be migrated. V is the virtual machine need to be

migrated, H and H are the source and destination hosts for migration of V . The
order of multiple virtual machine migration could be represented by this trituple se-
quence. Our algorithm is mainly based on the following two principles to arrange the
order of multiple virtual machine migration, and execute the migration process.

Firstly, the scheduler give priority to migrates virtual machine on high-load host to
the low-load host, and give priority to migrates virtual machines with higher workload
and bigger size. The migration of virtual machine will cost much CPU resource both
on source and destination hosts. While priority migrate virtual machine on high-load
host to low-load host, we need only consider the impact of migration on the source
host(high-load host). And on the other hand, if migrate VM to a high-load host, there
may be no enough resource remained for this virtual machine. Meanwhile, the sche-
duler priority migrate virtual machine with higher workload on source host. This is
mainly because the virtual machine with higher workload is more sensitive to re-
source competition. A bit more workload increase will cause the performance of the
application decline. But for the application on low-load virtual machine, the workload
increase is tolerable. And based on the queuing theory, the VM with bigger memory
size has less priority to migrate. Therefore, according to the above aspects, the sche-
duler can minimize the impact of VM migration on application performance.

Secondly, the parallel migration can be used for the virtual machines whose migra-
tion do not interfere with each other. For performance and stability reasons, a physical
host can only deal with one virtual machine migration, either as an source host or as a
destination hosts. Therefore, we can refer to the realization of processor's instruction-
level parallelism to parallel processing the multiple virtual machines migration. In this
case, the trituple sequence of migration VM is handled as the sequence of instructions
of processor. When a VM migration is in processed, the source and destination hosts
are marked busy, and reset free after VM migration. Therefore, while the source and

 A Scheduling Method for Multiple Virtual Machines Migration in Cloud 137

destination hosts of the trituple being processed are not busy, the migration of this
trituple could be executed immediately. Based on this strategy, our method can
achieves parallel virtual machine migration, and avoid resource conflict.

5 Experiment and Evaluation

In this section, we validate and test the multiple virtual machine migration scheduling
method, then analysis its performance. Using different test cases of multiple virtual
machines migration to verify the effect of our schedule algorithm. The performance
of our method is compared with default migration method, which migrate virtual
machines one by one randomly.

For our experiment environment, we use a cluster composed by eight computer
servers and one storage array. The configuration of server includes two AMD Opteron
2350 quad-core CPUs running at 2.0GHz and 12GB DDR RAM. They are all running
XenServer 6.1[22]. The storage array connects four hosts through optical fiber, as a
shared storage. All the servers are connected by a Gigabit LAN. The virtual machine
templates are configured with one VCPU, 1GB,2GB,4GB RAM and one virtual
network card. The load generator program will randomly call some of the popular
applications to generate the CPU, network and disk I/O workload, such as kernel
compilation, file compression, and FTP, etc.

5.1 Verify the Effectiveness of Our Algorithm

We select a test case to validate effectiveness of our scheduling algorithm. This test
case uses 12 virtual machines and 8 physical hosts. The detail configuration of each
virtual machine and physical host are shown in Table 1. These configurations of test
case include input of algorithm, memory of VM and physical, the mapping of virtual
machine to physical before and after migration, the workload of each virtual machine
and physical host and the output of algorithm at stage 1 and 2.

Table 1. The configuration of test case

Input of VM-cluster C1:v1,v2,v3,v10;C2:v4,v5,v6,v7;C3:v8,v9,v11,v12
Information of VMs
VM ID Mem(MB) Init reside host ID Load(%)
V1 1024 H1 30%
V2 1024 H1 60%
V3 1024 H4 50%
V4 2048 H6 15%
V5 2048 H4 80%
V6 2048 H4 50%
V7 3072 H6 40%
V8 3072 H2 35%
V9 3072 H2 45%
V10 4096 H5 70%
V11 4096 H7 50%
V12 4096 H2 10%

138 Z. Zhang et al.

Table 1. (continued)

Information of physical hosts before VMs migration
Host ID Mem(GB) VMs Load(%)
H1 12 V1,V2 15%
H2 12 V8,V9,V12 15%
H3 12 None 0%
H4 12 V3,V5,V6 30%
H5 16 V10 10%
H6 16 V4,V7 10%
H7 16 V11 10%
H8 16 None 0%
Information of physical hosts after VMs migration
Host ID Mem(GB) VMs Load(%)
H1 12 V1,V2,V3,V10 35%
H2 12 V8,V9,V11,V12 25%
H3 12 None 0%
H4 12 None 0%
H5 16 None 0%
H6 16 V4,V5,V6,V7 30%
H7 16 None 0%
H8 16 None 0%
Output of stage 1: V10-->H1, V3-->H1, V11-->H2, V5-->H6, V6-->H6
Output of stage 2: V5,V3,V6,V10,V11

The output of our algorithm is listed in Table 1. Because our algorithm is divided

into two stages, our validation also has two stages.
Firstly, the output of the first stage of our algorithm is a set of V-P mapping which

has the minimum virtual machine migration times. For this test case, the minimum
migration times is 5, and the mapping in the set is (f1: V10-->H1, V3-->H1, V11--
>H2, V4-->H4, V7-->H4) and (f2: V10-->H1, V3-->H1, V11-->H2, V5-->H6,
V6-->H6). Then the algorithm compares the migration traffic of each mapping, and
chooses the V-P mapping with minimum migration traffic as the optimal migration
path. In this test case, the Cost(f1) = L(V10)+L(V3)+L(V11)+L(V4)+L(V7) = 14GB,
and Cost(f2) = L(V10)+L(V3)+L(V11)+L(V5)+ L(V6) = 13GB. Because Cost(f1) is
greater than Cost(f2), our algorithm will select the f2 as the optimal migration path for
multiple virtual machine migration.

Table 2. The trituple Sequence for migration step

Id Trituple Load(VM/Host) Mem(MB)
1 (V10,H5->H1) 70%/10% 4096
2 (V3,H4->H1) 50%/30% 1024
3 (V11,H7->H2) 50%/10% 4096
4 (V5,H4->H6) 80%/30% 2048
5 (V6,H4->H6) 50%/30% 2048
Migration step: V5,V3,V6,V10,V11

 A Scheduling Method for Multiple Virtual Machines Migration in Cloud 139

Table 3. The parallel migration process for multiple virtual machine migration

Time Migrating VMs/ Mem(G) Waiting VMs Busy Hosts

T1 V5(2G),V10(4G),V11(4G) V3(1G),V6(2G) H4,H6,H5,H1,H7,H2

T2 V5(2G),V10(4G),V11(4G) V3(1G),V6(2G) H4,H6,H5,H1,H7,H2

T3 V10(4G),V11(4G),V6(2G) V3(1G) H5,H1,H7,H2,H4,H6

T4 V10(4G),V11(4G),V6(2G) V3(1G) H5,H1,H7,H2,H4,H6

T5 V3(1G) None H4,H6

The second stage of the algorithm is to generate a virtual machine migration

sequence based on the optimal mapping f2 which obtained by the first stage. The
migration sequence is shown as a trituple sequence in Table 2. According to our op-
timization strategy, the migration order output by the second stage of out algorithm is
V5, V3, V6, V10, V11. This is because the virtual machine V5 has a higher workload,
and the physical host V5 reside on has the highest workload in the physical hosts. The
virtual machine V10 and V11 migrate at last, due to the large memory(4098MB).

The Table 3 shows the parallel migration process of multiple virtual machines
based on the migration order. We divide virtual machine migration process to several
periods. During each period, 1GB data could be transferred. As Table shows, the mi-
grating VMs, waiting VMs and physical hosts which be occupied for each period
during migration process. In Table 3, at T1 period, the migration of virtual machine
V5 is executed. However, VM V3 and V6 are waiting due to resource confliction, and
VM V10 and V11 can migrate at T1 period without interference with each other. At
the beginning of T3 period, VM V5 finishes the migration. The next VM V3 could
not start migration because of the destination host(H1) of V3 is busy. Thus, the VM
V6 starts migration at T3 period. The VM V3 finishes migration at end of T5 period.
The total time of the parallel migration are 5 periods. Compared with the 13 periods
of serial migration, the parallel virtual machine migration greatly reduces migration
time(160%), and avoids resource conflicts in multiple virtual machine migration.

5.2 Verify the Versatility of Our Algorithm

We choose several test cases to validate the algorithm's versatility. The detailed con-
figuration of these test cases are shown in Table 4. 30 virtual machines are running on
three physical hosts, each VM has 1GB memory. The VM-cluster inputs of five test
cases are shown in Table 5.

Table 4. The distribution state of virtual machines

VM/Host Host1 Host2 Host3
VM ID V1~V10 V11~V20 V21~V30

140 Z. Zhang et al.

Table 5. Five test cases

ID/
VM-cluster

C1 C2 C3

Case 1 1,11,12,13,14,15,16,17,
18,19

2,3,4,5,6,7,8,9,10,20,30 21,22,23,24,25,26,27,28,29

Case 2 1,2,3,5,11,12,14,17,21,2
4,25

4,13,15,16,18,19,20,22,23
,26,28

6,7,8,9,10,27,29,30

Case 3
1,2,3,5,24,25

4,13,15,16,18,19,
26,28,11,12,14,17,21

6,7,8,9,10,27,29,30,20,22,
23

Case 4 1,14,17,21,24,25,16,18,
19,20

4,13,15, 22,23,26,28,7,8,9 6,10,27,29,30,2,3,5,11,12

Case 5 1,12,14,17,21,24,19,20,
22, 9,10,27,25

4,13,15,2,3,5,11,16,18,
23,26,28

6,7,8, 29,30

Fig. 4. Migration time of five time cases

The results of migration time for each test case are shown in Figure 4. We can see
that, compared with default migration strategy, the average VM migration times of
our algorithm is lower. The degree of optimization is different for each test case
depending on the initial mapping state. This experiment shows that in most cases, our
algorithm can optimize the process of multiple virtual machine migration.

6 Conclusion and Future Work

This paper presents a schedule method for multiple virtual machine migration. The
contributions of this paper include:(1) We analyze and formal the problem of multiple
virtual machine migration; (2) We propose a schedule algorithm for multiple virtual
machine migration. The algorithm contains two parts. The first is finding the mini-
mum cost VM migration path from all mapping of virtual machine to physical hosts,
and the second an algorithm generating the optimization virtual machine migration
sequence, and accelerating multiple virtual machine migration process based on
parallelize techniques; (3) We use some experiments to verify the effectiveness and
versatility of the algorithm.

0

5

10

15

20

Case 5Case 4Case 3Case 1

M
ig

ra
tio

n
tim

es

Test Case

 Default MIgration
 Our schedule MIgration

Case 2

 A Scheduling Method for Multiple Virtual Machines Migration in Cloud 141

In this paper, the algorithm proposed has high complexity, and it's performance is
not good while dealing with large-scale multi-virtual machine migration case. There-
fore, we need to improve the scalability of the our method.

Acknowledgments. This work is supported by the National Natural Science Founda-
tion of China(61232009); the State Key Laboratory of Software Development Envi-
ronment (SKLSDE-2012ZX-07); the Doctoral Fund of Ministry of Education of
China (20101102110018); the Hi-Tech Research and Development Program (863)
of China (2011AA01A205); the Beijing Natural Science Foundation(4122042);
Shanghai Science and Technology Innovation Action Plan(11511500400)

References

1. Armbrust, M., et al.: A view of cloud computing. Communications of the ACM 53(4),
50–58 (2010)

2. Zhang, Q., Cheng, L., Boutaba, R.: Cloud computing: state-of-the-art and research chal-
lenges. Journal of Internet Services and Applications 1(1), 7–18 (2010)

3. Rosenblum, M., Garfinkel, T.: Virtual machine monitors: Current technology and future
trends. Computer 38(5), 39–47 (2005)

4. Amazon Elastic Compute Cloud, http://aws.amazon.com/en/ec2/
(accessed May 2013)

5. vCloud, http://en.wikipedia.org/wiki/VCloud (accessed May 2013)
6. Ren, X., Lin, R., Zou, H.: A dynamic load balancing strategy for cloud computing plat-

form based on exponential smoothing forecast. In: International Conference on Cloud
Computing and Intelligence Systems (2011)

7. Srikantaiah, S., Kansal, A., Zhao, F.: Energy aware consolidation for cloud computing. In:
USENIX Conference on Power Aware Computing and Systems (2008)

8. Vmware. Resource management with VMware DRS. VMware Whitepaper (2006)
9. Song, Y., Li, Y., Wang, H., Zhang, Y., Feng, B., Zang, H., Sun, Y.: A service-oriented

priority-based resource scheduling scheme for virtualized utility computing. In: Sadayap-
pan, P., Parashar, M., Badrinath, R., Prasanna, V.K. (eds.) HiPC 2008. LNCS, vol. 5374,
pp. 220–231. Springer, Heidelberg (2008)

10. Zhang, Z., et al.: A VM-based Resource Management Method Using Statistics. In: Interna-
tional Conference on Parallel and Distributed Systems (2012)

11. Bobroff, N., Kochut, A., Beaty, K.: Dynamic placement of virtual machines for managing
sla violations. In: International Symposium on Integrated Network Management (2007)

12. Verma, A., Ahuja, P., Neogi, A.: pMapper: power and migration cost aware application
placement in virtualized systems. In: Issarny, V., Schantz, R. (eds.) Middleware 2008.
LNCS, vol. 5346, pp. 243–264. Springer, Heidelberg (2008)

13. Lin, J.W., Chen, C.H.: Interference-aware virtual machine placement in cloud computing
systems. In: International Conference on Computer & Information Science 2012 (2012)

14. Campegiani, P., Presti, F.L.: A general model for virtual machines resources allocation in
multi-tier distributed systems. In: International Conference on Autonomic and Autonom-
ous Systems (2009)

15. Gao, Y., et al.: A multi-objective ant colony system algorithm for virtual machine place-
ment in cloud computing. Journal of Computer and System Sciences (2013)

142 Z. Zhang et al.

16. Khanna, G., et al.: Application performance management in virtualized server environ-
ments. In: Network Operations and Management Symposium (2006)

17. Prevost, J.J., et al.: Load prediction algorithm for multi-tenant virtual machine environ-
ments. In: World Automation Congress, WAC (2012)

18. Wang, X., Wang, Y.: Coordinating power control and performance management for vir-
tualized server clusters. Transactions on Parallel and Distributed Systems 22(2), 245–259
(2011)

19. Liao, X., Jin, H., Liu, H.: Towards a green cluster through dynamic remapping of virtual
machines. Future Generation Computer Systems 28(2), 469–477 (2012)

20. Liu, H., et al.: Performance and energy modeling for live migration of virtual machines. In:
International Symposium on High Performance Distributed Computing (2011)

21. Jin, H., et al.: Live virtual machine migration with adaptive, memory compression. In: In-
ternational Conference on Cluster Computing and Workshops (2009)

22. Xenserver, http://www.citrix.com/products/xenserver/overview.html
(accessed May 2013)

Speeding Up Galois Field Arithmetic

on Intel MIC Architecture�

Kai Feng1, Wentao Ma1, Wei Huang1, Qing Zhang2, and Yili Gong1,��

1 Computer School, Wuhan University
430072 Hubei, China

2 Inspur (Beijing) Electronic Information Industry Co., Ltd.
100085 Beijing, China
yiligong@whu.edu.cn

Abstract. Galois Field arithmetic is the basis of LRC, RS and many
other erasure coding approaches. Traditional implementations of Galois
Field arithmetic use multiplication tables or discrete logarithms, which
limit the speed of its computation. The Intel Many Integrated Core
(MIC) Architecture provides 60 cores on chip and very wide 512-bit
SIMD instructions, attractive for data intensive applications. This paper
demonstrates how to leverage SIMD instructions and shared memory
multiprocessing on MIC to perform Galois Field arithmetic. The exper-
iments show that the performance of the computation is significantly
enhanced.

Keywords: Galois Field Arithmetic, MIC Architecture, SIMD, OpenMP,
Speedup.

1 Introduction

From disk arrays [1], cloud platforms [2] to archival systems [3] storage systems
must have fault tolerance to protect themselves from data loss. Erasure codes
provide the basic technology for the fault tolerance of a storage system. The
classic Reed-Solomon code [4] organizes a storage system as a set of linear equa-
tions whose arithmetic is Galois Field arithmetic, termed GF(2w). W is the
length of a word, the basic computing unit. Encoding and decoding of a storage
system for fault tolerance are implemented by computing these linear equations
by multiplying large regions of bytes by various w -bit constants in GF(2w) and
combining the products using bitwise exclusive-or (XOR).

Traditional implementations of Galois Field arithmetic use multiplication ta-
bles or discrete logarithms, which limit the speed of its computation. The per-
formance using multiplication is at least four times slower than using XOR
[5]. James S. Plank et al. fast Galois Field arithmetic using 128-bit SIMD
instruction [6].

� This work is supported by the National Natural Science Foundation of China under
Grant No. 61100020.

�� Corresponding author.

C.-H. Hsu et al. (Eds.): NPC 2013, LNCS 8147, pp. 143–154, 2013.
c© IFIP International Federation for Information Processing 2013

144 K. Feng et al.

In late 2012, Intel released its commercial products based on the Many Inte-
grated Core (MIC) architecture [7], targeting to High Performance Computing
field for the PetaFLOPS era. It is based on the streamlined x86 core and similar
to the architecture of the existing CPUs. Since its architectural compatibility,
it can utilize existing parallelization software tools, including OpenMP [8], etc.
and specialized versions of Intel’s Fortran, C++ and math libraries [9]. Its SIMD
instructions are further extended to very wide 512-bit and allow 512-bit numbers
to be manipulated on a core simultaneously. MIC’s 60 cores also greatly enhance
its parallel computing capabilities.

To the best of our knowledge, how to use a computing unit as powerful as a
MIC coprocessor for Galois Field arithmetic has not been discussed yet. When
the operator size of SIMD instructions extends from 128 bits to 512 bits, though
the number of elements keeps at 16, the size of each element changes from 8
bits to 32 bits. With smaller w, e.g. w = 4, the spatial utilization ratio is only
1/8 for the multiplication table. The obvious waste needs to be avoided to save
memory usage. As to larger w, e.g. w = 32, the existed algorithm [6] maps a word
into 4 8-bit parts since the element size of 128-bit SIMD instructions is 8-bit,
which in-creases complexity and decreases performance. With 32-bit elements,
the over-head should be reduced.

This paper will detail how to leverage 512-bit SIMD instructions and shared
memory multiprocessing to multiply regions of bytes by constants in GF(2w) for
w ∈ {4, 8, 16, 32}. Each value of w has similar but still different implementation
techniques. We will present these techniques and compare the performance of
our algorithms on MIC with other approaches on other platforms.

The rest of this paper is organized as follows. The next section describes
related work. Section 3 gives description about Erasure Codes and Galois Fields.
Section 4 introduces 512-bit instructions used in our algorithms. Section 5 details
our algorithms leveraging 512-bit SIMD instructions and OpenMP to multiply
regions of bytes by constants in GF(2w) for w varying from 4 to 32. Section 6
compares and analyzes the performance of our algorithms and the others. Section
7 is the conclusion and future work.

2 Related Work

Erasure coding is an alternative to replication for fault tolerance as storage
systems scale. Traditionally used in the communication field, erasure codes have
gained their popularity due to lower spatial requirement under the same
reliability.

Many erasure codes are based on Galois Field arithmetic, such as Pyramid
codes [10], LRC codes [2], RS codes [11] and F-MSR codes [12], among which the
most common one is RS codes. RS codes are used in Bigtable [13] from Google,
Cassandra [14] from Facebook and Cleversafe [15]. Microsoft Azure uses LRC
codes [2].

Traditional implementations of Galois Field arithmetic adopt multiplication
tables or discrete logarithms. There are methods proposed to improve Galois

Speeding Up Galois Field Arithmetic on Intel MIC Architecture 145

Field arithmetic, such as Kevin M. Greenan et al. using split multiplication
tables and composite fields [16], Jianqiang Luo et al. using bit-grouping tables
[17] and H. Peter Anvins approach based on fast multiplication by two [8,18]
and so on.

Recently in [6] James S. Plank et al. present the algorithms of Galois Field
arithmetic on CPUs using 128-bit SIMD instructions. As with [6], this paper
focuses solely on multiplying regions of bytes by constants. We will exploit 512-
bit SIMD instructions as well as OpenMP on MIC coprocessors.

3 Erasure Codes and Galois Fields Arithmetic

Fault tolerance of a storage system is enabled by redundancy. For Galois Field
Arithmetic based erasure codes, n disks are partitioned into k disks for original
data and m disks for coding information, which is calculated from the original
data. When no more than m disks fail, the lost data can be recovered through
the remaining disks.

For example, RAID-6 has two (m = 2) coding disks (C0 and C1), which are
created from k data disks (Di, 0≤i<n) as shown in Fig. 1 (a). Content of every
disk is composed of w -bit words, such as dih and cih (0≤i<k, 0≤j<2, 0≤h<l).

(a)

(b)

Fig. 1. The RAID-6 data disks and coding disks (k = 4). (a) The composition of the
RAID-6. (b) How to create code disk C1.

146 K. Feng et al.

Here l is the number of words in a disk. The coding disks are created by a set
of linear equations on the right.

The arithmetic of redundant code generation mainly includes Galois Field
multiplication and addition, which correspond to multiplication and XOR oper-
ations. Taking C1 as an example, every word dih is multiplied by a constant ai,
shown in Fig. 1 (b). The products of dih and ai (0≤i<k) are added (XOR-ed)
and the sum is cih (0≤h<l). Since the speed of XOR operations is very fast
for modern computes, multiplication becomes the dominant concern with code
calculating.

The selection of w decides the number of disks in the storage system for
protection. For example, when using Reed-Solomon codes, w = 4 means the
disk number cannot be larger than 16; w = 16 sets the limit to 65,536 disks. The
value of w also greatly impacts the computation performance. Larger values of
w perform much more slowly than smaller ones. Usually w is a power of 2 to
match the size of machine words. Combining all the factors together, typically
w is 4 or 8 for storage systems [2,15] and could be 32 and 64 for security and
erasure coding purpose [17].

4 512-Bit SIMD Instructions

The Intel Many Core not only has ordinary vector floating-point units, but also
uses special registers that enable packed data of up to 512 bits in length for
optimal vector graphic streaming SIMD processing. These 512-bit instructions
[7] can manipulate sixteen elements of 32 bits or eight elements of 64 bits at a
time. In this paper, we use manipulation of 16 elements of 32 bits simultaneously.
We leverage the following instructions in our implementations:

� mm512 setzero epi32(void): sets all the elements of the 512-bit vector to
zero. Returns a 512-bit vector with all elements set to zero.

� mm512 set1 epi32(int a): sets all 16 elements of an int32 result vector to an
equal integer value specified by a. Returns an int32 vector with 16 elements
each equal to integer value specified by a.

� mm512 slli epi32(m512i v2, unsigned int count): performs an element-by-
element logical left shift of int32 vector v2, shifting by the number of bits
given by immediate count. If the shift value specified by this parameter is
greater than 31 then the result of the shift is zero.

� mm512 srli epi32(m512i v2, unsigned int count): performs an element-by-
element logical right shift.

� mm512 and epi32(m512i v2, m512i v3): performs a bitwise AND oper-
ation between int32 vectors v2 and v3.

� mm512 xor epi32(m512i v2, m512i v3): performs a bitwise XOR opera-
tion between int32 vectors v2 and v3.

� mm512 loadunpackhi epi32(m512i v1 old, void const* mt): the high 64-
byte-aligned portion of the double word stream starting at the element-
aligned address mt is loaded. It usually works together with the intrinsic

Speeding Up Galois Field Arithmetic on Intel MIC Architecture 147

mm512 loadunpacklo epi32(m512i v1 old, void const* mt) to load 64 bytes
in memory into a 512-bit variable.

� mm512 permutevar epi32(m512i v2, m512i v3): this is the real enabling
SIMD instruction for GF(2w). It permutes 32-bit blocks of int32 vector v3
according to indices in the int32 vector v2. The ith element of the result is
the j th element of v3, where j is the ith element of v2.

5 Galois Field Arithmetic on MIC

In this section, calculating yA in GF(24), GF(28), GF(216) and GF(232) on MIC
are presented respectively.

5.1 Calculating yA in GF(24)

When w = 4, each word is composed of four bits, and there are only 16 values
that a word may be. All operations are based on a 16 16 multiplication table
that is small enough to fit into main memory and can be calculated in advance.
A table lookup is needed every four bits, i.e. 2K lookups for a region of 1K bytes.

The SIMD intrinsics operates on operators composed of 16 32-bit elements
simultaneously. In the original table, each entry corresponds to the 16 4-bit
results of a number y multiplied by 16 numbers from 0 to 15. Storing only 4-bit
in a 32-bit element is obviously a waste. Thus we try to merge multiple entries
into one in the multiplication table, which is showed in Fig. 2. The products
of y and 0x0 to 0xf from 8 entries are placed in 16 elements from the lowest to
highest, and in each element the product from entry 7 on the high end and the
one from entry 0 at the low end. Compressing entries 8-15, 16-23 is similar.

Since the processing element of SIMD instructions is 32-bit while w = 4,
every 32 bits in an element are split into 8 4-bit unit using mask[i], shown in
Fig. 3 step (6). Step (7)-(9) calculated tmp[i] and should be executed for 0≤i<8.
Finally, perform XOR operation on all tmp values and get yA. Thus 40 SIMD
instructions fulfill 128 multiplication operations.

In general the amounts of data to be computed are huge. Dividing data into
basic units of 512 bits and there are no data dependence among them. Thus it
is natural to parallelize Galois Field Arithmetic by OpenMP exploiting 60 cores
on MIC and opens up to 240 threads.

5.2 Calculating yA in GF(28)

When w = 8, each word is 8-bit and there are 256 values that a word may have.
In principal the method used in GF(24) is applicable to the one in GF(28). The
difference is that the instruction mm512 permutevar epi32() only works on 16-
element tables (each element is 32-bit), 256 values are too large to fit into a
16-element variable. Let a be an 8-bit word and ah and al be the high-order 4
bits and low-order 4 bits of a respectively, and we have:

a = (ah 4)⊕ al. (1)

148 K. Feng et al.

Fig. 2. Merge eight entries into one in the multiplication table when w = 4. Four
entries in the original table are merged into one to fit 512-bit registers and variables
on MIC. The upper line is high-order 256-bits and the lower line is low-order 256-bits.
All variables are presented in hex.

Fig. 3. Multiplying a 512-bit region A by y = 7 in GF(24)

Thus
ya = y(ah 4)⊕ yal. (2)

Based on the above analysis, the multiplication table is divided into two,
tablehigh which stores the result of y(ah4) and tablelow which storage the
result of yal. As with GF(24), multiplication tables are compressed and occupy

Speeding Up Galois Field Arithmetic on Intel MIC Architecture 149

8KB memory. Fig. 4 shows the steps to extract the corresponding content from
the compressed lookup tables for mm512 permutevar epi32() to permute. Since
the lookup content for y = 7 is at 24-31 bit of each element in the compressed
table entry, both tablehigh and tablelow, it is extracted by right-shifting 24 bits
and masked by 0xff.

Fig. 4. Multiplying a 512-bit region A by y = 7 in GF(28)

After acquiring the lookup tables, the remaining steps are similar to the ones
with w = 4 in Fig. 3, except for step (8) and (9). For w = 8, eight 4-bits in
an element is indexed by i (0≤i<8). When i is odd, it means that these 4 bits
are high-order of a word; when it is even, these 4 bits are low-order of a word.
High-order 4 bits and low-order 4 bits are subject to looking up different tables,
tablehigh and tablelow, as well as left-shifting different bits. The revisions are as
follows:

(8) for the high-order 4 bits i.e. i is odd
tmp[i] = mm512 permutevar epi32(tmp[i], th).
for the low-order 4 bits i.e. i is even
tmp[i] = mm512 permutevar epi32(tmp[i], tl).
(9) When i is odd: tmp[i] = mm512 slli epi32(tmp[i], (i-1) 2).
When i is even: tmp[i] = mm512 slli epi32(tmp[i], i 2).

5.3 Calculating yA in GF(216)

For GF(216) each 16-bit word may have 216 = 64K values. Since the instruction
mm512 permutevar epi32() only works on 16-element tables, word a is divided
into 4-bit sub-words, named a3 through a0:

a = (a3 12)⊕ (a2 8)⊕ (a1 4)⊕ a0. (3)

Then
ya = y(a3 12)⊕ y(a2 8)⊕ y(a1 4)⊕ ya0. (4)

150 K. Feng et al.

Thus, we need perform 4 table lookup operations for a 16-bits word. We use
compressed tables for data storage. The entries from four tables for a constant
y take up 256 bytes and the total memory usage is 8 MB.

5.4 Calculating yA in GF(232)

For w = 32, the processing is similar. We split each word a (32 bits) into 4-bit
sub-words, named a7 through a0:

a = (a7 28)⊕ (a6 24)⊕ (a5 20)⊕ (a4 16)⊕ (a3 12)

⊕(a2 8)⊕ (a1 4)⊕ a0.
(5)

Then

ya = y(a7 28)⊕ y(a6 24)⊕ y(a5 20)⊕ y(a4 16)⊕ y(a3 12)

⊕y(a2 8)⊕ y(a1 4)⊕ ya0.
(6)

Thus we need perform 8 table lookup operations for a 32-bit word. Since the
element size is 32-bit and the same as the size of Galois Field arithmetic word,
w, there is no need for compression. The entries from eight tables for a constant
y take up 512 bytes and the total size is 2 TB, which is too large to fit into main
memory.

6 Performance Evaluation

The performance of our proposed algorithms on a MIC coprocessor is evaluated
and for comparison the Multiplication Table algorithms [5] and the 128-bit SIMD
algorithms from [6] are run on a CPU machine.

The MIC machine used in the experiments is Intel Xeon Phi coprocessor
5110p, 60 cores, core frequency 1.053 GHz, 8 GB GDRR5 memory, 32 KB L1
Instruction Cache, 32 KB L1 Data Cache, 512 KB unified L2 Cache. When the
cores do not share data or code, the effective L2 Cache is 30 MB. The comparing
machine is Intel Xeon CPU E5620 ∗ 2, 2.4 GHz, 32 KB L1 Instruction Cache,
32 KB L1 Data Cache, 256 KB L2 Cache, 12 MB L3 Cache, 32 GB memory.

The multiplication table algorithms and 128-bit SIMD algorithms are tested
on CPU and MIC machines. Our proposed 512-SIMD algorithms are run on MIC
with native mode. In all algorithms, regions of random values are multiplied by
constants in GF(2w). For OpenMP accelerated algorithms the region size varies
from 1 MB to 1 GB, while for Multiplication Table and SIMD only algorithms
the size range is 1 KB to 1 GB. The results are shown in Fig. 5 - Fig. 9.

From Fig. 5 (MulTa is the abbreviation for multiplication table) it can be
seen that the SIMD algorithms (128-bit SIMD on CPU and 512-bit SIMD on
MIC) greatly outperform the multiplication table algorithms. When w = 4, the
performance using SIMD on MIC is 13 times more than that of using multiplica-
tion table, and 10.6 times on CPU. We can also conclude that the performance
of both algorithms on CPU is better than that on MIC, mainly because the core

Speeding Up Galois Field Arithmetic on Intel MIC Architecture 151

on CPU is more powerful than the one on MIC (2.4 GHz over 1.053 GHz). For
example the multiplication table algorithm on CPU is about 1.8 times faster
than on MIC and the SIMD is 1.3 times faster. With w = 8, 16 and 32 we have
similar results and the details are omitted.

Fig. 6 presents the performance under different w values. We can see that
the performance does not change much as w grows which is quite different from
the conclusion from [6]. In [6] w = 4 and w = 8 perform roughly the same,
w = 16 slightly slower and w = 32 slower still. This is because MIC SIMD
instructions can operate on more bits (512 bits over 128 bits) simultaneously
thus fewer operations needed for a word processing, which benefits larger w. For
a certain w, when the region size reaches a point between 256 KB and 512 KB,
the performance peaks and then drops dramatically. This is because L2 cache
saturation impacts the performance greatly.

(a) MulTa algorithms. (b) SIMD algorithms.

Fig. 5. The performance of MulTa algorithms and SIMD algorithms on CPU and MIC
with w = 4

The results of OpenMP-based acceleration on the algorithms are shown in
Fig. 7 - Fig. 9. For the multiplication table algorithm, it is always CPU-intensive
thus changing the region size does little impact on performance as given in Fig.
7. For the 128-bit SIMD algorithms, before L3 cache saturates 8 threads are
better than 4 threads; after the saturation they are of the same since it is I/O
bound now. In the best case, the 128-bit SIMD outperforms the multiplication
table by 9.5.

Fig. 8 - Fig. 9 compare the performance of the multiplication table algorithm
(w = 4) with the 512-bit SIMD (w = 4, 8, 16 and 32) on MIC. Though each
core on MIC is capable of 4-way hardware multi-threading, 240 threads do not
have the best performance while generally speaking 180 threads are the best.
The 512-bit SIMD + OpenMP algorithm is better than the multiplication table
+ OpenMP on MIC by 6.8 times and better than the 128-bit SIMD + OpenMP
on CPU by 7.2 times.

The peak speedups for all algorithms and conditions are summarized in Table
1 with w = 4. Here we take the performance of the single-threaded multiplication
table algorithm on CPU as the base 1.

From Fig. 9 (a) - (d) right before the combined 32 MB L2 cache saturates
the computing peak can be about 220 GB/s. MIC works as a coprocessor and

152 K. Feng et al.

is connected to the host by standard PCIe x16 which has one-way bandwidth 8
GB/s theoretically. In practice, we have tested that the peak bandwidth from
MIC to CPU is 7.0 GB/s and that is 6.7 GB/s from CPU to MIC. Obviously
I/O is the bottleneck of Galois Field arithmetic.

Fig. 6. The performance
of SIMD algorithms on
MIC with w = 4, 8, 16 and
32

Fig. 7. The performance
of OpenMP accelerated
MulTa and SIMD algo-
rithms on CPU with 4 and
8 threads, when w = 4

Fig. 8. The performance
of OpenMP accelerated
MulTa algorithm on MIC,
when w = 4

(a) w = 4. (b) w = 8.

(c) w = 16. (d) w = 32.

Fig. 9. The performance OpenMP accelerated 512-bit SIMD algorithms with different
thread numbers on MIC

Speeding Up Galois Field Arithmetic on Intel MIC Architecture 153

Table 1. The speedups with w = 4 (taking the performance of the single-threaded
multiplication table on CPU as the base 1; MulTa is the abbreviation for multiplication
table)

Peak Speedup MulTa MulTa+OpenMP SIMD SIMD+OpenMP

CPU(128-bit SIMD) 1 5.5 10.6 52.2

MIC(512-bit SIMD) 0.56 55.4 7.2 373.4

7 Conclusion and Future Work

In this paper, we detail how to apply 512-bit SIMD instructions with OpenMP
on MIC to Galois Field arithmetic. The algorithms are evaluated with different
w from 4 to 32. The performance of our algorithms is about 7.2 to 35.2 times
faster than the implementations using 128-bit SIMD with OpenMP on CPU.

With 512-bit SIMD and OpenMP, cache, main memory and I/O to host be-
come bottlenecks. In future we focus on improving the I/O performance and
coordination between computation and data transfer.

Acknowledgments. We would like to thank Inspur (Beijing) Electronic Infor-
mation Industry Co., Ltd offering a server with Intel Xeon Phi coprocessor for
experiments.

References

1. Blaum, M., Brady, J., Bruck, J., et al.: EVENODD: An efficient scheme for toler-
ating double disk failures in RAID architectures. IEEE Transactions on Comput-
ers 44(2), 192–202 (1995)

2. Huang, C., Simitci, H., Xu, Y., et al.: Erasure coding in windows azure storage.
In: USENIX Conference on Annual Technical Conference, USENIX ATC (2012)

3. Tansley, R., Bass, M., Smith, M.: DSpace as an open archival information system:
Current status and future directions. In: Koch, T., Sølvberg, I.T. (eds.) ECDL
2003. LNCS, vol. 2769, pp. 446–460. Springer, Heidelberg (2003)

4. Plank, J.S.: A tutorial on Reed-Solomon coding for fault-tolerance in RAID-like
systems. Software Practice and Experience 27(9), 995–1012 (1997)

5. Plank, J.S., Luo, J., Schuman, C.D., Xu, L., Wilcox-O’Hearn, Z.: A performance
evaluation and examination of open-source erasure coding libraries for storage. In:
FAST-2009: 7th Usenix Conference on File and Storage Technologies, pp. 253–265
(2009)

6. Plank, J.S., Greenan, K.M., Miller, E.L.: Screaming fast Galois Field arithmetic
using Intel SIMD instructions. In: FAST-2013: 11th Usenix Conference on File and
Storage Technologies, San Jose (2013)

7. Intel Corporation. Intel? C++ Compiler XE 13.1 User and Reference Guides,
http://software.intel.com/sites/products/documentation/doclib/stdxe/

2013/composerxe/compiler/cpp-lin/index.htm

8. OpenMP Application Program Interface, http://openmp.org/wp/

http://software.intel.com/sites/products/documentation/doclib/stdxe/2013/composerxe/compiler/cpp-lin/index.htm
http://software.intel.com/sites/products/documentation/doclib/stdxe/2013/composerxe/compiler/cpp-lin/index.htm
http://openmp.org/wp/

154 K. Feng et al.

9. Intel � Math Kernel Library for Linux* OS User’s Guide,
http://software.intel.com

10. Huang, C., Chen, M., Li, J.: Pyramid codes: Flexible schemes to trade space for
access efficiently in reliable data storage systems. In: NCA 2007: 6th IEEE Inter-
national Symposium on Network Computing Applications, Cambridge, MA (2007)

11. Kalcher, S., Lindenstruth, V.: Accelerating Galois Field arithmetic for Reed-
Solomon erasure codes in storage applications. In: 2011 IEEE International Con-
ference on Cluster Computing (CLUSTER), pp. 290–298. IEEE (2011)

12. Hu, Y., Chen, H.C.H., Lee, P.P.C., Tang, Y.: NCCloud: Applying network coding
for the storage repair in a cloud-of-clouds. In: FAST-2012: 10th Usenix Conference
on File and Storage Technologies, San Jose (2012)

13. Chang, F., Dean, J., Ghemawat, S., Hsieh, W.C., Wallach, D.A., Burrows, M.,
Chandra, T., Fikes, A., Gruber, R.E.: Bigtable: A Distributed Storage System for
Structured Data. In: OSDI 2006: Seventh Symposium on Operating System Design
and Implementation, Seattle, WA (2006)

14. Lakshman, A., Malik, P.: Cassandra: A Decentralized Structured Storage System.
ACM SIGOPS Operating Systems Review 44(2), 35–40 (2010)

15. Resch, J.K., Plank, J.S.: AONTRS: blending security and performance in dispersed
storage systems. In: FAST-2011: 9th Usenix Conference on File and Storage Tech-
nologies, San Jose, pp. 191–202 (2011)

16. Greenan, K.M., Miller, E.L., Schwarz, T.J.: Optimizing Galois Field arithmetic for
diverse processor architectures and applications. In: IEEE International Sympo-
sium on Modeling, Analysis and Simulation of Computers and Telecommunication
Systems, MASCOTS 2008, pp. 1–10. IEEE (2008)

17. Luo, J., Bowers, K.D., Oprea, A., Xu, L.: Efficient software implementations of
large finite fields GF(2n) for secure storage applications. ACM Transactions on
Storage (TOS) 8(1), 2 (2012)

18. Anvin, H.P.: The mathematics of RAID-6,
http://kernel.org/pub/linux/kernel/people/hpa/raid6.pdf

http://software.intel.com
http://kernel.org/pub/linux/kernel/people/hpa/raid6.pdf

C.-H. Hsu et al. (Eds.): NPC 2013, LNCS 8147, pp. 155–166, 2013.
© IFIP International Federation for Information Processing 2013

Analyzing the Characteristics of Memory Subsystem
on Two Different 8-Way NUMA Architectures

Qiuming Luo1,2, Yuanyuan Zhou1, Chang Kong1, Guoqiang Liu1,
Ye Cai1,2,*, and Xiao-Hui Lin3

1 National High Performance Computing Center (NHPCC), SZU, China
2 College of Computer Science and Software Engineering, SZU, China

3 Department of Communication Engineering, SZU, China
{lqm,caiye}@szu.edu.cn,
clarkong89@gmail.com

Abstract. Two NUMA architectures with different memory subsystems are
experimentally analyzed in this paper. By applying the benchmark with various
access patterns, it shows much different characteristics of memory system be-
tween Xeon E5620 with Global Queue and LS 3A with typical crossbar switch.
The experiment results reveal the fact that LS 3A and Xeon E5620 have some
similar features. Our study also showed some other diverse features of these
two platforms: due to the different contention locations and mechanisms, the
memory access model for E5620 doesn’t fit for LS 3A. Through comparing, we
find that one advantage of LS 3A is that it can obtain steady bandwidth on
both local and remote thread, and it is more fair for local and remote access un-
der some circumstances. Another fact is that LS 3A is not such sensitive to
remote access, compared with E5620, so there will be no obvious performance
degradation caused by non-local memory access.

Keywords: Memory subsystem, NUMA, Global Queue, Crossbar switch.

1 Introduction

With the increasing number of processor cores on one single machine, memory
bandwidth has become the main bottleneck of computer system. Instead of using fast-
er and bigger processor caches, NUMA has reduced the memory bandwidth issue by
using asymmetric hierarchical memory model. A NUMA system contains some pro-
cessors, caches, memory controllers and memory banks, using connection technolo-
gies provided by AMD’s HT (HyperTransport)[1] or Intel’s QPI (Quick Path Inter
connect) [2] to connect with each other. Due to the NUMA factor, when a process
access local memory or remote memory, they have different access delay and band-
width. To obtain the optimal performance, previous optimization work on NUMA
platform often schedule the process, move data from remote to local to maximize the

* Corresponding author.

156 Q. Luo et al.

local accesses. Some of these are based on analysis after execution [3][4][5], while
others can dynamic deal with it during execution [6][7][8][9][10].

Instead of just observing local or remote memory access, the studies have made
deep analyze of the inner memory controller architecture in recent two years. And
they found that under some circumstance decreasing data locality may procure better
performance [11][12]. This kind of study involves the detail behaviors and architec-
ture of memory controller and it is more applicable to real application environment.
After all, entirely local or remote access is not common in real applications. When we
study the memory bandwidth on NUMA platform we need to consider both memory
layout and the contention of local and remote memory access. We need to understand
its architecture features through experiments to take full advantage of these CPU’s
underlying hardware power.

In this paper, we test two NUMA platforms, consisted of LS 3A processors and
Intel Xeon E5620 processors, to characterize their memory performance. Then we
analyze their similarities and differences, merits and shortcoming based on their dif-
ference architectures. At last, we propose a guideline to obtain best performance when
using NUMA system consisted of these two processors.

2 Experimental Setup

In this section we describe the architecture details of the evaluation systems, the
benchmark programs, and the experimental methodology used.

2.1 Hardware

LS 3A used in our work is an experimental CPU made by Institute of Computing
Technology (Chinese Academy of Sciences). The NUMA platform made by LS 3A is
consisted of dual-processors and it use HT to connect with each other. As shown in
Fig.1(a), for each processor, the first level crossbar switch X1 connected with four 64-
bit superscalar GS464 high performance processor cores (P0-P3)，four 1MB shared
second level cache (we can also call it LLC, Last Level Cache), the two ports of HT
used to connect with IO or other processors. The second level crossbar switch X2
used to connect LLC and 2 memory controllers MC0 and MC1, which also called
IMC(Integrated Memory Controller). Each MC is connected with 2GB DDR2 memo-
ry, and the total memory of the system is 8GB. The frequency and width of the HT on
this main board is about 200MHz and 8-bit (it can work on 800MHz and 16-bit). Two
64-bits 400MHz DDR2 controller can provide total bandwidth about 6.4GB/s. The 8
processor cores will share the L2 cache. When doing remote memory access, they go
through the remote crossbar switch X1 and X2. Intel named LLC, local and remote
arbitrate queue and IMC as uncore unit, and it corresponds to the part surrounded by
dotted line square in Fig.1.

 Analyzing the Characteristics of Memory Subsystem 157

(a) LS 3A (b) E5620

Fig. 1. NUMA system consisted of dual-processors

In this architecture, a memory access may reach different components, such as lo-
cal cache, remote LLC (L2), local memory or remote memory. And IMC also can
deal with request from other nodes. So they need the support of request queuing and
arbitrating mechanism. According to the official material, LS 3A use the HT port to
send remote memory access request and it will contend the X1 switch network with
native memory access request issued by the 4 local processor cores (include direct
access to DDR and those access the LLC). And there is no detail explanation about
how it arbitrates the request, so we need to figure out its inner mechanism through
experiments. But from the architecture we can tell it is much different about remote
memory access and local memory access path from Intel Xeon E5620. The later
NUMA system is illustrated as Fig.1(b), the QPI connection, processor core and LLC
layout is different from LS 3A. In E5620, the processor cores shared the L3 cache,
GQ (Global Queue) is used for dealing with request from L3 cache, IMC and QPI.
IMC have 4 channels and is used to connect 4 DDR3-1066 (2GB each, the total
memory is 8GB). It can provide 25.6GB/s peak bandwidth. Two QPIs separately used
for connecting with I/O and processors, the unidirectional peak bandwidth is
11.72GB/s and the bidirectional peak bandwidth is 23.44GB/s

The uncore unit in Intel E5620 processor is shown in Fig.2. It includes 3 compo-
nents, LLC, IMC and QPI, and connected with each other with GQ. In GQ component
(based on crossbar switch), there are 3 queues to deal with the miss request and up-
date request from L2 cache and the remote access request from QPI. These queues’
length is 32 items, 16 items and 12 items respectively[13]. Since every memory re-
quest goes through GQ, there are many contentions among local memory request and
remote memory request on it. And GQ can reserve about 50% bandwidth for remote
memory access request (This is the maximum bandwidth of remote memory access).
Early version of E5500 reserves less than 50% of total bandwidth.

PMU (Performance Monitoring Unit) can used for observing and analyzing per-
formance issues in Intel E5620 [13]. This paper used Intel E5620 for comparison, the
same tests will perform on both platform.

Cache plays an important role in memory tests. In order to measure the bandwidth,
we need to take advantage of cache and reduce the interference of cache. The detail
information of cache on LS 3A is described in [14]. LS 3A have implement a

158 Q. Luo et al.

Fig. 2. Intel E5620 uncore unit

non-blocking cache technology. It can support up to 24 misses in LS 3A’s cache. The
Westmere (Nehalem’s successor) core of Intel E5620 has private L1 and L2 cache,
four Westmere cores of E5620 shared the L3 cache (LLC). Its non-blocking technolo-
gy can support up to 16 caches misses. Since LS and Intel have different cache levels,
capacity and pre-fetch mechanism, we need to avoid their influence about measuring
the bandwidth.

2.2 Software and Benchmarks

The Linux kernel on LS 3A platform is Linux 2.6.36, the compiler version is GCC
4.4.5 and the compile parameter is gcc –fopenmp –O3. The Intel platform use Linux
2.6.32 as its kernel and the compiler version is also GCC 4.4.5, the compile parameter
is gcc –fopenmp –O3 –mcmodel=medium.

This paper use STREAM [15] to test the memory access performance of each pro-
cessor core, each processor and the whole system. Traid has an intensive memory
access cycle. It accesses 3 arrays (a[], b[] and c[]). Their sizes all exceed the size of
LLC, so they can issue enough memory access requests. The kernel cycle of Triad is
showed in Fig.3.

Fig. 3. kernel cycle of Triad

In fact, an instance or thread is not able to saturate the maximum bandwidth of
IMC, so we can’t just use one Triad program to study the memory access characteris-
tic of Intel or LS NUMA systems. Besides, we need to study the memory contention
of local request and remote request. We must use at least 2 Triad instances to fulfill
our work. So we made some modification on Triad and made it can produce multiple
processes or threads to execute concurrently. Through using OpenMP, we can use

core3 core1 core0 core2

GQLLC

PC
Power Control

QPI

QHL
IMC

CRA

 Analyzing the Characteristics of Memory Subsystem 159

For direction and static schedule direction to parallelize it, the threads can share the 3
arrays and access their data set alone at the same time. The threads share the arrays,
but the processes didn’t share any data.

The advantage of Triad is described as below: The first one is that it is cache-
starve-style[17] application and the cache will have steady missing rate, each Triad
thread will not influence the cache missing of LLC[16]. The second advantage is that
94% to 99%’s read operation will reach the main memory [12], it will not be im-
pacted by confliction on cache line.

2.3 Measurement and Methodology

We use numactl [18] tool to control the data distribution on every node’s memory and
bind the threads to corresponding nodes.

To study the interference and contention on IMC and cross-process connection
(HT/QPI), we defined three configurations, as fig.4 shows, about the layout of threads
and data. The first configuration put threads in both L(Local, on node0) site and
R(Remote, on node1) site, and put all data in L site. The second configuration put
threads and data on both nodes in a cross accessing style. The third configuration put
threads on L site and issue memory access to both nodes.

Fig. 4. Threads and data layout configurations

When measuring the memory access bandwidth, it needs to obtain the total number
of memory access that arrived IMC and the time elapsed. But we can’t get the total
amount of memory access direct for the program or source code. The Intel’s processor
hardware counter can give accurate cache line size, missing rate and processor fre-
quency [12]. But we haven’t got the proper tools for LS 3A to do this, so we use the
execution time of Triad as a reference. This is mainly due to Triad has a steady
memory access workload, and every data only accessed once, this kind of applica-
tion’s execution time is decided by memory access operation[13]. In addition, both
LS 3A and E5620 processor’s L1 instruction cache have enough capacity to hold
Triad’s main cycle instructions, which means fetching instruction will not occupy the
memory controller’s bandwidth. So we can compute the bandwidth as below:

L

node1

R

node0

cores

IMC/

Mem

(a) Conf. 1

L

node1

R

node0

(b) Conf. 2

L

node1

R

node0

(c) Conf. 3

160 Q. Luo et al.

Bandwidth Bandwidth Bandwidth Bandwidth Memory Access SizeExe Time MB/s

Due to local process and remote process need different time to finish the workload,
the contention will not exist when one of them exit. We execute the processes repeat-
edly to keep the bandwidth contention. Therefore, the date we get is under contention.

The Intel’s Nehalem micro architecture use MESIF protocol to keep cache cohe-
rent, different access states in cache line will cause different access delay. The states
of LS 3A are INV、SHD and EXC, L2 cache use directory to find cache stay in
which processor core. Since the modified Triad code doesn’t share data, cache line
will only exist M, E and I state, we don’t have to take the delay variation into account.

At last, Nehalem micro architecture’ SpeedStep and Turbo Burst technology [13]
can change the clock frequency according to power consumption and fever situation.
Therefore we close this function in BIOS to exclude its influence and provide a steady
easy measure system environment.

3 Experimental Data of Memory Performance

We divide the work into several parts. The first test, using Conf.1 configuration, is to
measure the local or remote bandwidth from threads on one single node, on both LS
and Intel platform. The second one (still using Conf.1) then combines the local and
remote access together to show the contention on one IMC. The third test is based on
Conf.3 which focus on the total bandwidth of whole system based on the same confi-
guration as previous tests. The forth test is based on Conf.2 which setup a cross ac-
cessing scenery. The last one study the confliction of local and remote access issued
from same node, using Conf.3. The details are described in following sections.

3.1 Local and Remote Bandwidth for One Single IMC

In order to study the behavior of IMC serving the local and remote requests, the first
test using conf. 1. In this section (xL,yR) represents the threads binding, x represents
the number of local threads (on node0) and y represents the number of remote threads
(on node1). There will be x+y threads executing concurrently.

The setup of (xL,0R), which means no remote access, is used to measure the local
accessing. From Fig.7(a) we can see the bandwidth of serving the local access on LS
platform continues to increase till it reaches the maximum thread number on signal
node. And the remote memory bandwidth (with setup of 0L,yR) is about 20% less
than local access bandwidth. On Intel platform, it nearly reaches the maximum band-
width with 2 threads, and the maximum bandwidth of remote memory is 20%~30%
less than local memory bandwidth.

The data show that LS can obtain increasing bandwidth with more threads, but Intel
can reach the maximum bandwidth with fewer threads.

 Analyzing the Characteristics of Memory Subsystem 161

 (a) LS 3A NUMA (b) Intel E5620 NUMA

Fig. 5. The memory bandwidth of local and remote access with signal node

3.2 Local and Remote Memory Contention on One IMC

Now we test the memory contention for local and remote memory access on one node
under configuration 1. In order to check out how remote access interferes with local
bandwidth, we set xL from 1 to 4 with yR increased from 0 to 4 and illustrate it as
Fig.6. From the figure we can see the bandwidth decreased steady with more remote
access on LS 3A NUMA. But on Intel E5620 the local bandwidth decreased dramati-
cally with 1 remote thread, and the local bandwidth decreased little when there are
more than 1 remote threads. Another difference is that more local threads will obtain
more local bandwidth on LS platform, while Intel platform remains the same except a
little increment for 4 local threads.

(a) LS 3A NUMA (b) Intel E5620 NUMA

Fig. 6. The impact of remote access to local bandwidth

We also measure the remote bandwidth impact by local threads. The details are
showed in Fig.7, where remote thread number varies from 1 to 4 with local thread
number varies from 0 to 4. It can say that this case is similar to previous case.

0

0.2

0.4

0.6

0.8

1

1 threads2 threads 3threads 4threads

N
or

m
al

iz
ed

 M
em

or
y

Ba
nd

w
id

th

Local Remote

0

0.2

0.4

0.6

0.8

1

1thread 2thread 3thread 4thread

N
or

m
al

iz
ed

 M
em

or
y

Ba
nd

w
id

th

Local Remote

0
0.2
0.4
0.6
0.8

1

0R 1R 2R 3R 4R

1L 2L 3L 4L

0
0.2
0.4
0.6
0.8

1

0R 1R 2R 3R 4R

1L 2L 3L 4L

162 Q. Luo et al.

 (a) LS 3A NUMA (b) Intel E5620 NUMA

Fig. 7. Remote bandwidth impact by local memory contention

3.3 Total Memory Bandwidth

Table 1 is the total memory bandwidth with different (xL,yR) combination under
configuration 1. The total memory bandwidth in this table is the normalized sum of
local and remote bandwidth.

These 2 tables show that on both platform the maximum bandwidth is not at
(4L,4R). The maximum for LS platform is at (4L, 3R) and the Intel platform is at
(3L,2R). If there are 6 threads, the maximum bandwidth for LS is not at (4L,2R) but
at (3L,3R), it is similar on both platforms. From the data we can find that on both
NUMA platforms, maximizing local access can’t obtain the maximum bandwidth,
and when move some threads to remote node may increase the total bandwidth.

Table 1. Normalized total bandwidth with different (xL, yR) combination

(a) LS 3A NUMA

 0R 1R 2R 3R 4R

0L 0 0.268604753 0.489641936 0.669026213 0.796305483

1L 0.510155182 0.76435979 0.93206135 1.071639386 1.167414268

2L 0.807668329 1.077136439 1.21477007 1.061157669 1.327363384

3L 0.957279374 1.221851671 1.294655035 1.428549427 1.026310918

4L 1 1.244672139 1.395384964 1.480886933 1.458042771

(b) Intel E5620 NUMA

 0R 1R 2R 3R 4R

0L 0 0.469004798 0.675381934 0.714149411 0.718478895

1L 0.660250795 1.034590501 1.073531914 1.056589576 1.047122689

2L 0.980231839 1.205814996 1.253073808 1.245351318 1.237903597

3L 0.989410094 1.18881594 1.260403052 1.252844415 1.243145613

4L 1 1.059521274 1.057766793 1.029016999 1.021363832

0

0.2

0.4

0.6

0.8

1

0L 1L 2L 3L 4L

1R 2R 3R 4R

0

0.2

0.4

0.6

0.8

1

0L 1L 2L 3L 4L

1R 2R 3R 4R

 Analyzing the Characteristics of Memory Subsystem 163

3.4 Cross Pattern

We place the threads and the data they access on different nodes according to confi-
guration2, which is defined by in Fig.4(b), to check out how the remote access of
node0 and node1 interfere with each other. The detail is showed in Fig.8. On Intel’s
platform, when there is one opposite thread, the referenced threads’ bandwidth will
decrease about 30% (except for the case of 1 local threads), and there is not band-
width lost when the remote thread number increase further. And when there is only
one referenced thread, the bandwidth will decrease less than 5%. On LS Platform, the
opposite thread impact is much less, with the maximum no more than 10%. This test
shows that LS’s remote access’s influence is much smaller than that of Intel.

 (a) LS (b) Intel

Fig. 8. Bandwidth for cross pattern

3.5 Split Pattern

The last test setup is according to configuration 3 in Fig.4(c), and we want to check
out how the local and remote access of the threads on the same node interferes with
each other. We call this access pattern as split pattern. The result is showed in Fig.9.

 (a)LS local (b) LS remote

Fig. 9. Bandwidth for split pattern

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0R 1R 2R 3R 4R
1L 2L 3L 4L

0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

0R 1R 2R 3R 4R

1L 2L 3L 4L

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0R 1R 2R 3R

1L

2L

3L

0.2

0.3

0.4
0.5

0.6
0.7

0.8
0.9

1

0L 1L 2L 3L

1R

2R

3R

164 Q. Luo et al.

(c) Intel local (d) Intel remote

Fig. 9. (continued)

The Fig.9(a) and Fig.9(b) showed that LS NUMA platform have little impact on each
other. But Fig.9 (c) and Fig.9(d) shows that, on Intel NUMA platform, there is
continually impact on local accesses when increasing the remote accesses. The result
from split pattern apparently shows that the optimization on Intel’s platform will not
fit for LS platform.

4 Discussion and Conclusion

In this section, we first discuss the architectural differences between these NUMAs
concerning the memory access, and then try to explain their diverse behavior.

Local threads in E5620 only need to go through GQ and IMC to access the memo-
ry, and the remote threads must go through GQ, QPI and IMC to access the memory,
as illustrated in Fig.10(b). The LS 3A local access need to go through X1, X2 and
IMC, and the remote access must go through X1, HT, X2 and IMC, as shown in
Fig.10(a).

 (a) LS 3A (b) E5620

Fig. 10. Local and remote access channels (2L,1R)

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0R 1R 2R 3R

1L

2L

3L

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0L 1L 2L 3L

1R

2R

3R

 Analyzing the Characteristics of Memory Subsystem 165

When considering the rate to issue memory access, the individual LS core is not
such powerful as E5620 core, because the later can saturate the IMC by only two
threads/cores as Fig.5 shown. The remote access is much slower than local access, on
both platforms, due to the overhead of cross-processor interconnection.

When local and remote accesses compete for the same IMC, the LS demonstrates a
equally free competition and Intel demonstrates a arbitrated behavior. As Fig.6 and
Fig.7 shows, the local bandwidth on LS will decrease as more remote competitive
threads and vice versa, but the Intel limit the tense of competition to some degree. The
arbitrative action on Intel platform will reserve 50%~60% IMC bandwidth for local
accessing and 40%~50% for remote accessing, not matter how many threads/cores
take part in the competition.

The total bandwidth of two IMCs demonstrates the characteristics that previous
study have point out[12]. As Tab.1 shows, the best performance occurs at (3L,3R)for
LS with 6 threads.

For the cross pattern case, there is little contention on LS platform because of the
full duplex HT connections, but an obvious contention on GQ in Intel platform. That
explain why there is a dramatic drop for Intel and a slightly decrease for LS in Fig.8.

For the last case of split pattern, there is not variation on LS platform due to the
crossbar switch routing, but there is a nearly linear decrease on Intel platform due to
the queuing on GQ.

Because of the different philosophies of designing, these two NUMA systems
demonstrate apparently diverse behavior of memory subsystem. With GQ might make
Intel platform get a better bandwidth and a little longer delay. And the GQ’s arbitra-
tive action will contain the competition between local and remote threads. With barely
crossbar switch LS allow the free competition and overcome the performance degra-
dation of unnecessary arbitrating (as the cases of cross pattern and split pattern).

When optimizing the memory performance on these platforms, the thread amount,
thread binding, and memory layout should be considered with the memory subsys-
tem’s characteristics together. The best mapping of thread and data can be found
according to the measured data other than barely maximizing the memory locality.
Basically speaking, it needs more threads to compete for a higher bandwidth on LS
architecture.

Acknowledgement. The research was jointly supported by project grant from Natural
Science Foundation of China under the numbers NSFC61003272, NSFC61171071,
grant from Foundation of Guangdong Province and Chinese Academy of Sciences
(2011A090100037), and grants from Foundation of Shenzhen City under the numbers
JCYJ20120613161137326, JCYJ2012061310222457.

References

1. Advanced Micro Devices. AMD HyperTransport Technology-based system architecture
(EB/OL). AMD, Sunnyval (May 2002),
http://www.amd.com/us/Documents/AMD_HyperTransport_Technolog
y_based_System_Architecture_FINAL2.pdf

166 Q. Luo et al.

2. Maddox, R.A., Singh, G., Safranek, R.J.: A first look at the Intel QuickPath Interconnect
(EB/OL). Intel Corporation, Hillsboto (April 28, 2009),
http://www.intel.com/intelpress/articles/A_First_Look_
at_the_Intelr_QuickPath_Interconnect.pdf

3. Li, H., Tandri, S., Stumm, M., Sevcik, K.C.: Locality and loop scheduling on NUMA mul-
tiprocessors. In: International Conference on Parallel Processing (ICPP). IEEE, New York
(1993)

4. Marathe, J., Mueller, F.: Hardware profile-guided automatic page placement for ccNUMA
systems. In: Proceedings of the Eleventh ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming (PPoPP). ACM, New York (2006)

5. McCurdy, C., Vetter, J.C.: Memphis: Finding and fixing NUMA-related performance
problems on multi-core platforms. In: International Symposium on Performance Analysis
of Systems & Software (ISPASS). IEEE, New York (2010)

6. Ogasawara, T.: NUMA-aware memory manager with dominant-thread-based copying GC.
In: Proceedings of the 24th ACM SIGPLAN Conference on Object Oriented Programming
Systems Languages and Applications (OOPSLA). ACM, New York (2009)

7. Tikir, M.M., Hollingsworth, J.K.: NUMA-aware Java heaps for server applications. In:
Proceedings of the 19th IEEE International Parallel and Distributed Processing Sympo-
sium (IPDPS). IEEE, Colorado (2005)

8. Tikir, M.M., Hollingsworth, J.K.: Hardware monitors for dynamic page migration. Journal
of Parallel and Distributed Computing 68(9), 1186–1200 (2008)

9. Verghese, B., Devine, S., Gupta, A., et al.: Operating system support for improving data
locality on CC-NUMA computer servers. In: Proceedings of the Seventh International
Conference on Architectural Support for Programming Languages and Operating Systems
(ASPLOS). ACM, New York (1996)

10. Wilson, K.M., Aglietti, B.B.: Dynamic page placement to improve locality in CC-NUMA
multiprocessors for TPC-C. In: Proceedings of the 2001 ACM/IEEE Conference on Super-
computing (SC). ACM/IEEE, New York (2001)

11. Awasthi, M., Nellans, D.W., Sudan, K., et al.: Handling the problems and opportunities
posed by multiple on-chip memory controllers. In: 19th International Conference on Paral-
lel Architecture and Compilation Techniques (PACT). ACM, Vienna (2010)

12. Majo, Z., Gross, T.R.: Memory System Performance in a NUMA Multicore Multiproces-
sor. In: Proceedings of the 4th Annual International Conference on Systems and Storage
(SYSTOR). ACM, New York (2011)

13. Levinthal, D.: Performance Analysis Guide for Intel Core i7 Processor and Intel Xeon
5500 Processors (EB/OL). Intel Corporation (2009),
http://software.intel.com/sites/products/collateral/hpc/
vtune/performance_analysis_guide.pdf

14. Wang, H., Gao, X., Chen, Y., Hu, W., et al.: Interconnection of Godson-3 Multi-Core Pro-
cessor. Journal of Computer Research and Development 45(12), 2001–2010 (2008) (in
Chinese)

15. McCalpin, J.D.: Memory bandwidth and machine balance in current high performance
computers. IEEE Computer Society Technical Committee on Computer Architecture
(TCCA) Newsletter, 19–25 (1995)

16. Intel Corporation. Intel 64 and IA-32 Architectures Optimization Reference Manual
(EB/OL). Intel Corporation (April 2010),
http://www.intel.com/content/dam/doc/manual/64-ia-32-
architectures-optimization-manual.pdf

17. Charles, J., Jassi, P., Ananth, N.S., et al.: Evaluation of the Intel Core i7 Turbo Boost fea-
ture. In: Proceedings of the 2009 IEEE International Symposium on Workload Characteri-
zation (IISWC). IEEE, Washington (2009)

18. Kleen, A.: An NUMA API for Linux (EB/OL) (August 2004),
http://www.halobates.de/numacpi3.pdf

C.-H. Hsu et al. (Eds.): NPC 2013, LNCS 8147, pp. 167–178, 2013.
© IFIP International Federation for Information Processing 2013

Software/Hardware Hybrid Network-on-Chip
Simulation on FPGA

Youhui Zhang*, Peng Qu, Ziqiang Qian, Hongwei Wang, and Weimin Zheng

Department of Computer Science and Technology, Tsinghua University
100084 Beijing, China

zyh02@tsinghua.edu.cn

Abstract. In this paper, a software-and-hardware hybrid simulation method for
CMP (Chip-MultiProcessor) system is designed, as well as its performance
model. In detail, the NoC (Network-On-Chip) module is totally simulated by
the FPGA resource; a software-and-hardware interaction interface of this mod-
ule is provided so that the simulation software running on the on-chip soft core
can cooperate with the NoC to complete the whole simulation. In other words,
the most time-consuming and relatively-fixed part is implemented by hardware
and others are implemented by software, which maintains simulation flexibility
and high performance owing to the compact on-chip design. We implement this
design on the Xilinx’s Virtex 5 155T chip and the work frequency is 100Mhz.
Compared with a typical software counterpart, the simulation speed of NoC is
more than 3000 times faster; and the advantage is widened further with the in-
creasing injection rate. Moreover, compared with another hybrid method ex-
ecuting the software part on the host CPU, it is still fairly faster although the
host performance is much higher than the on-chip core.

Keywords: Network on chip, FPGA, Simulation.

1 Introduction

Networks-on-Chip (NoC) [1][2] is an approach to designing the communication sub-
system between IP cores in a chip, which separates the on-chip communication from
computing and storage to improve scalability. For multi-core architectures, NoC has
been regarded as one of the crucial and common components. NoC interacts with
other functions on-chip, like the cache-coherency (CC) mechanism, the cache-line
distribution and so on, to affect the whole system efficiency. It means system archi-
tects and researchers must include detailed NoC simulation as part of any complete
system simulation.

Detailed NoC simulation is a time-consuming process [3] [4]. Thus quite a few
existing projects [5][6][7][8] have used FPGA resource to emulate NoC for high
speed, and the reconfigurable feature of FPGA provides a certain degree of flexibility.
Furthermore, to simulate the system rather than the NoC itself is the final destination.
Thus, NoC simulation should interact with other simulation modules efficiently.

* Corresponding author.

168 Y. Zhang et al.

This paper presents a software/hardware hybrid design for such requirements. The
design principle is: the detailed and time-consuming NoC simulation is totally ac-
complished by the hardware resource (FPGA) and a simple but general purpose inter-
face between the software and hardware simulations has been provided. To reduce the
roundtrip transfer latency between SW and HW, we use the on-chip soft processor to
execute simulation software to drive the NoC.

This paper gives the following contributions:

1. A general SW/HW hybrid simulation framework of CMP has been designed and
implemented. The kernel is a configurable NoC simulator on the FPGA and some
parameters such as data width, network topology, channel FIFO depth, virtual
channel options, and packet length and so on can be assigned without recompiling /
resynthesizing. Now in a Xilinx Virtex 5 FPGA chip, a NoC to scale to 16 nodes
can be simulated with one MicroBlaze CPU on-chip and the work frequency is
100Mhz. A simple interface between SW and HW is also designed that the simula-
tion software running on the on-chip soft core can cooperate with the NoC.

2. Performance analysis is given to show under what circumstance such a design is
preferred. There are two ways to run the simulation software, on the on-chip soft
CPU or on the host general-purpose CPU. The former usually works on a much
lower frequency (1/10 ~ 1/30 of the latter) but its interaction speed with the hard-
ware module is very high because they co-exist on the same chip. For the latter, the
transfer trip between the FPGA and the host application is fairly long. We present a
sequential and quantitative performance model for such situations

3. The running efficiency is compared with its software counterpart. Result shows
that, the NoC speed is 3000 times faster than the 100% software method for the
simulation of a 4X4 NoC. Moreover, two usage examples are presented: For the
first, two directory-based CC protocols for the multi-core architecture design have
been simulated on this framework. In this case, all parts other than the NoC are si-
mulated on the on-chip soft core. Compared with the counterpart that executes the
software part on the host CPU, its speed is much higher because the HW/SW trans-
fer latency has been reduced remarkably. The second is a trace-driven case. Com-
pared with the counterpart that executes all parts (including the equivalent
NoC simulation implemented by software) on the host CPU, our method is much
faster, too.

2 Related Work

Many NoC simulators are achieved by software. Some are standalone tools, like
BookSim [3] and DARSIM [4] while others are used as the interconnection module of
full-system simulators (GEMS [9], SimFlex[10], etc.). Software implementations are
very easy for reconfiguration, fast to compile and deterministic. However they are
quite slow, so that users often have to maintain reasonable running speed at the ex-
penses of simulation accuracy.

Several FPGA-based NoC simulators have been designed [5], [6], [7], [8], [11] that
increase simulation performance by 10 times and more. [5] presents an emulation

 Software / Hardware Hybrid Network-on-Chip Simulation on FPGA 169

environment implemented on an FPGA that is suitable to explore a wide range of
NoC design-space. It gets a speed-up of 4 orders of magnitude with respect to a Sys-
temC simulation of the same network. But re-generating is required when changing
the configuration of the network.

DRNoC [6] solves this problem based on the re-configurability of FPGAs. Spee-
dups of hundreds of time have been achieved in the presented use case compared with
a non-reconfigurable approach (synthesis based). However, partial reconfiguration
requires a special design flow and incurs area overheads; and only a few select devic-
es are available. NoCem [7] improves emulation density over [4] and implements a 9-
node mesh network on a single FPGA. Moreover, an example memory architecture
exploration platform based on this tool has been provided. [8] virtualizes a single
router on an FPGA, allowing the simulation of a NoC with multiple routers. An off-
chip ARM processor stores N contexts for the router model and orchestrates the emu-
lation of the N-node network. However, the off-chip ARM/FPGA communication is a
performance bottleneck.

Further, DART [11] virtualizes NoC totally on the chip while no help of any off-
chip CPU is needed. It provides a flexible FPGA-based NoC simulator platform by
decoupling the simulator architecture from the architecture of the simulated system.
This technology has been also used in some multi-core CPU simulations, like Protof-
lex [12], RAMPGold [13] and so on.

Our work can be regarded as an extension of the above-mentioned projects. We de-
sign a straight and efficient HW/SW interface to control and stimulate the FGPA NoC
module, and give a performance model of
such a hybrid design to judge in what case it
is beneficial in terms of performance.

A similar hybrid work is [14]. It is fo-
cused on how to design the FPGA platform
efficiently, which is used as an emulation
platform for the cache and NoC designers to
verify their designs in cooperation with the
full-system software simulator. In contrast,
our work provides a flexible NoC simulator
on FPGA and all other modules, including
the cache system, are implemented by soft-
ware on-chip. Then, researchers can explore
the design space more flexibly as less RTL
(Register Transfer Level) codes are needed,
and the SW/HW interaction is more efficient
owing to the compact on-chip design.

3 System Design

From the viewpoint of the system architects or researchers, a chip multi-core proces-
sor (CMP) contains the following levels (Fig.1).

Fig. 1. Levels of the micro-architecture
of CMPs

170 Y. Zhang et al.

• Network on Chip: Most NoCs are packet-switched. The router usually implements
wormhole routing with virtual channel (VC) flow control. Each packet in the net-
work consists of the header flit to setup a route, an arbitrary number of data flits
that contain the packet’s information and one tail flit that will free the router’s re-
sources. All communications, including explicit accesses issued from CPU cores or
the others (like control messages used by the CC protocol), are transferred in this
level.

• Memory hierarchy: It includes all of cores’ local caches and / or on-chip memories.
Access requests from CPU cores will be handled by this level before entering into
the NoC. If CC is maintained by hardware (which is true for most CMP designs to-
day), the corresponding components (for example, the CC directory) are also re-
garded as part of this level.

• CPU cores and upper-level components.

In our design, the whole NoC is emulated by FPGA and quite a few of parameters
can be configured without recompiling. Detailed descriptions of parameters are
listed in Table 1. Of course, the simulation scale is limited by the available on-chip
resources.

Further, we wrap the hardware kernel to provide control signals for the simulation
software. From the viewpoint of software, the NoC module works like a function call:
when all of the upper level’s architecture-states in one simulated cycle have been
updated, the software simulator invokes the SW/HW interface to promote the NoC
simulation a cycle. Because the HW running frequency is much higher than the soft-
ware simulation1, this sequential design does not affect the simulation speed.

Table 1. Parameters of the NoC simulator

Configurations Valid Options
Topology Mesh,Torus,2D-Torus
Data width 1-256 bits

Packet Length 2,4,8,16 words

Pipeline latency of the router Arbitrary (> 3)

VC Number 0/2/4

FIFO Length 2,4,8,16

3.1 The Internal Design

From the physical view, the NoC simulator contains multiple nodes connected by a
crossbar, which allows all-to-all communication mode. Because it can restrict the

1 In our design, MicroBlaze and NoC both work at 100Mhz and a machine instruction on the

MicroBlaze will take at least 3 cycles to complete. Therefore, during a whole NoC cycle,
there is almost no progress for software.

 Software / Hardware Hybrid Network-on-Chip Simulation on FPGA 171

communication pattern through this interconnect, this design is able to model the
connectivity of the target topology. Then from the viewpoint of simulation, arbitrary
topologies can be simulated. In the current design, we only introduce 5 entry points
into one NoC node (North, South, West, East and Local Access Point), which limits
the number of types that can be simulated.

Each node is a timing model, including the channel FIFOs, a router and a traffic
generator: The first sends and receives data-flits to and from the node through those
points; the second consists of arbitration blocks used to judge what is transmitted and
when. The traffic generator connects to the Local Access Point to inject data flits into
NoC. Each node has parameters that can be configured to match the properties of the
component they simulate, without modifying the RTL codes (using VHDL generics).

• Traffic Model

Each data-flit in the NoC is described by a 32-bit value. It contains the metadata such
as the source / destination addresses, the packet length, a timestamp that indicates
when the flit should be forwarded, and the injection time to compute latency at the
destination. The bit-width is dependent on the range of configuration parameters: For
a NoC containing 16 nodes, 8 bits are used to represent the source and destination
IDs, and we reserve extra 4 bits for expansion. Now the maximum of packet length is
16, so that 4 bits are used here. In addition, the timestamp occupies 6 bits and 10 bits
for the latency computation.

For flow control, the credit-based mechanism is used: The upstream router keeps a
count of the number of free flit buffers in each virtual channel downstream. Then,
each time the upstream router forwards a flit, thus consuming a downstream buffer, it
decrements the appropriate count. If the count reaches zero, no further flits can be
forwarded until a buffer becomes available. Once the downstream router forwards a
flit and frees the associated buffer, it sends a credit to the upstream router, causing a
buffer count to be incremented. The 12-bit credit descriptor contains a timestamp (6
bits) and a virtual channel identifier.

• Timing Model

The channel FIFO models the timing information of latency of a wire link; each FIFO
contains multiple virtual channels (VCs) and a RTL parameter controls the number of
VCs to incorporate (up to 4 for this design). For each incoming flit, it will be queued
into its VC and the internal timing logic can compute the corresponding de-queue
timestamp.

The router models a four-stage wormhole VC router with credit-based flow con-
trol. Each router connects to four channel FIFOs and a traffic generator. The determi-
nistic routing (X-Y routing) is supported because this simulator is mainly used to
simulate the mesh (or mesh-like) topologies now. Router latency is modeled by in-
crementing the flit timestamp (it is also configurable) when it leaves. Contention in
VC and switch allocation is also modeled by adjusting the timestamp appropriately.

172 Y. Zhang et al.

3.2 The Configuration and Result-Collection Interface

The interface contains the following types of signals or modules:

• Packet Injection: Packet control is written to the channel FIFO for the local access
point. It will contain the metadata of packet such as source / destination addresses,
packet length, and so on, which will be used to route the packet.

• Statistics Export: There are three counters per traffic generator to record the num-
ber of injected and received packets and the cumulative packet latency.

• Router Metadata: These lines are used to collect running status of each router,
which can be used to locate and analyze the hot spot(s). Now they mainly consist
of various VC status signals (empty or full).

• Clock Signal: The clock signal of NoC is connected to a special strobe register.
Once this register has been written, a clock signal of high frequency will be issued
to promote the NoC simulation a cycle.

• Reset Signal: It is a synchronous signal and the configuration is lost during the
reset.

• Simulation configurations: As mentioned earlier, each node has configurable pa-
rameters (packet length, VC Number, FIFO length, etc.). These parameters are
chained in a 16-bit shift register. A software tool sends the configuration bits over
an RS232 serial interface.

From the system point of view, the NoC is a device attached to the processor bus.
Thus software can access the above-mentioned signals through the memory-address
mapping mechanism.

3.3 Performance Model

A sequential simulation model is presented here. In another word, the simulation
software works with the hardware NoC sequentially. It is also a common case
for quite a few widely-used full-system simulators, like SIMICS+GEMS and so
on. Therefore, the elapsed time for one simulated cycle, E, can be represented by
Equation 1.

 E = Tsw + Thw + Tinteraction (1)

Tsw denotes the elapsed time of software execution and Thw is the hardware time.
The last one represents the roundtrip latency of HW/SW interaction.

There are two modes of sequential simulation.

• Both software and hardware simulations are completed in the same chip.

In this case, both of Tinteraction and Thw are of the order of magnitude of 10 ns, while Tsw
is much larger. For example, the test of this design shows that MicroBlaze and NoC
both work at 100Mhz and a machine instruction on the MicroBlaze will take average-
ly 3 cycles to complete. It means the software simulation will consume tens or
hundreds of instructions to finish a simulated cycle. Then, in this case E mainly
depends on Tsw.

 Software / Hardware Hybrid Network-on-Chip Simulation on FPGA 173

• The software is running on the host.

Here Thw is still of the order of magnitude of 10 ns and Tinteraction is much larger. Tests
show that, in our design the average roundtrip latency between the host software and
the NoC is about 0.3ms (through the GB Ethernet cable). On the other hand the soft-
ware execution time is smaller: for an n-core CPU to simulate m target cores (m >=
n), it is about 1/(30*n) of the previous version2 if we assume the frequency of the host
CPU is 3Ghz.

In this case, E equals with (300000ns + Tsw / (30*n)). The conclusion is
straightforward: if the operation in one simulated cycle is too complex, for example, it
takes the core on-chip more than 30000 cycles (10ns per cycle) to complete, using the
host CPU is preferred (just like [14] did); otherwise, the on-chip mode is better.

4 Implementation and Evaluation

4.1 Implementation

We use the open source implementation of NoC emulator [7] as the foundation, which
is a body of VHDL code configurable by a top-level package file that can create a
variety of Network on Chips on parameters of data-width, virtual channel implemen-
tations, topology, and in-network buffering lengths.

We wrap this emulator as described in Section 3.1 to provide the SW/HW inter-
face. As mentioned in Section 3.2, because the NoC simulation is actually used as a
timing model, the original design of in-network buffers has been simplified. In detail,
the packet header is necessary to be stored and forwarded node by node; for data flits,
only the corresponding arbitration and flow control behaviors should be simulated
while no real data-transfer is needed.

The FPGA platform used is BEE3. One BEE3 module consists of four large Vir-
tex-5 155T FPGA chips. In addition, up to 4 Gigabit Ethernet interfaces allow a full-
duplex data communication between each BEE3 module and a host server.

This NoC simulator is created by Xilinx ISE 12.4. For a 4X4 mesh, about 60% of
FPGA slices have been used and its running frequency is 100Mhz. The remaining
resources are used to occupy the MicroBlaze CPU.

BEEcube Platform Studio (BPS) is employed, too, which is a system-level IDE
specially designed for BEE3. We use soft registers provided by BPS to connect the
software simulation to the NoC. Such a register works like a normal hardware regis-
ter; the difference lies in that it is used as a bus device that software can access. In
order to improve the HW/SW interaction performance, several 128-bit-wide soft reg-
isters are used to supply data as much as possible once.

2 Because the detailed simulation of one core is usually implemented as a large and tightly-

coupled state machine, it is difficult to be parallelized. On the other side, more than one target
core can be simulated in parallel on several host CPU cores as they only interact with each
other through the NoC.

174 Y. Zhang et al.

Moreover, external DRAM has been mapped into the MicroBlaze’s address space
so that the simulation software on-chip can access enough memory space. Thus, the
work flow of one simulated cycle is described as follows:

Step 1) Software reads all output signals of the hardware NoC;
Step 2) Software completes all simulated events (of the memory hierarchy and / or

the above level) in the current cycle.
Step 3) Software updates all input signals of the SW/HW interface accordingly.
Step 4) Trigger the reg_clk_strobe register.

4.2 Usage Examples and Tests

• Running Performance Comparison

We use a well-known software NoC simulator, BookSim [15], as the counterpart and
compare its performance with the FPGA version under different flit-injection-rates
(configuration time is excluded). The flit-injection-rate defines the rate at which
packets are injected into the simulator; for example, setting flit-injection-rate = 0.25
means that each node injects a new packet in one out of every four simulator cycles.

The configurations used by these two simulators are listed in Table 2.

Table 2. Configurations of the comparison

Topology 2D-Mesh

NoC Scale 4*4

FIFO length 8

Packet Length 1

Link latency per flit 1 cycle

Router pipeline latency per flit 4 cycles

One Linux server with a 3.2GHz Intel Xeon processor is used to run BookSim;

multiple flit-injection-rates, from 0.05 to 0.5, are configured respectively to show the
simulation performance under different loads.

The speedup (in the right part of Fig.2) is the ratio of the number of cycles simu-
lated per second in FPGA to that in software. We observe that the software’s simula-
tion speed decreases with increasing injection rate (in the left part of Fig.4) while the
hardware speed is constant. As a result, our simulator achieves greater speed-up at
higher packet injection rates: The least is more than 3000 as the scale is 4X4 and the
flit-injection-rate is 0.05; when the flit-injection-rate is set as 0.5, the ratio is about
6000. In addition, as the NoC scale increases, the speed gap will expand further.

• Comparison with other FPGA-based solutions

We have collected some information of existing FPGA-based NoC simulators, includ-
ing the running performance, the consumed on-chip resources and the NoC scale that
can be simulated, and presented them in Table 3. Because the FPGA chips used by
these works are different, the comparison is for reference only.

 Software / Hardware Hybrid Network-on-Chip Simulation on FPGA 175

Fig. 2. Performance of the FPGA NoC simulator. In both figures, the X-axis stands for the NoC
scale and flit-injection-rates. For example, 4X4(0.5) means there 16 nodes and each node in-
jects a new packet in one out of every two simulator cycles. In the left part, the y-axis stands for
the simulation speed measured in cycles per second. In the right part, the y-axis indicates the
ratio of the number of cycles simulated per second in FPGA to that in software.

Table 3. Comparison with other FPGA-based simulators

 [5] [7] [8] [11] Ours
Running
Frequency(Mhz)

50 70 6.6 50 100

On-chip
resources (slices)

7387
(Virtex II
Pro V20)

16394
(Virtex II Pro
(XC2VP30))

N/A
(Virtex-II
8000)

13050
(Virtex II Pro
(XC2VP30))

11005

NoC Scale 6 9 N/A3 94 16

• CC Examples

For the 4X4 mesh NoC, we simulate some directory-based CC protocols of CMP at
the memory-hierarchy level to verify its function. The software is written in C and
running on the soft processor on-chip. Details are presented as follows:

─ The whole memory space is shared by all cores. The CC feature is kept by
the distributed-directory-based hardware, which is the main simulated subject by
software.

3 It supports the time-division multiplexing technology, so that one physical node can simulate

multiple target nodes (while the simulation speed will be degraded). For example, if a 4X4
network is simulated, the maximum simulation frequency is 206 kHz.

4 DART supports the time-division multiplexing technology, too. Here only the number of
physical nodes are given.

176 Y. Zhang et al.

─ No real CPU core is simulated. Instead, read / write memory accesses from the
upper-level are created randomly.

─ On the memory-hierarchy level, a distributed and shared L2 cache including 16
banks and 16 L1 private caches have been simulated; all connect with each other
through the 4X4 mesh. From the system point of view, each core has a L2 bank
and a L1 private cache; the former is also the home directory of the corresponding
memory-address range assigned to it. All distributed directories construct a global
table that keeps track of what memory is held and where.

Now, two variants of the MESI protocol have been implemented:

Case 1: When one cache-line is to be modified, its owner directory will invalidate all
copies in L1 caches.

Case 2: When one cache-line has been modified, its owner directory will replace all
copies in caches with the new content as well as the copy in the memory.

A fixed sequence of 10000 memory accesses has been simulated in these two cas-
es; the results are presented in Table 4. We can see that the number of elapsed cycles
of Case 2 is about 164.5% of that of Case 1, although its L1 cache hit-ratio is 160.9%
of Case 1. The reason lies in that, for Case 2, the communication times is much larger,
about 229.5% of the other; and the average transfer-latency of a message through the
NoC is increased from 3.8 cycles to 4.1.

Table 4. Results of CC Examples

 Case 1 Case 2

Simulated cycles 83627 137536

Cache-hit ratio 16.31% 26.24%

Number of NoC communications 44131 101300

Average transfer-latency of a message 3.8 cycles 4.1 cycles

For Case 1, the whole simulation time is about 2.5s. According to the performance

model in Section 3.2, if running the CC simulation on the host CPU that interacts with
the FPGA, the time spent on the roundtrip communications will be more than 25.1s
(83627 *0.3ms), which is much more than the on-chip version. Therefore, this mode
is preferred for such relatively simple simulations.

In addition, if both simulations (CC and the NoC) are completed by software on
the host, the estimated running-time is also longer although we take the fastest simu-
lation speed of BookSim (about 31000 cycles per second in Fig.4).

• Trace-driven Example

This is a real usage. To compare NoC designs with different configurations, we have
to simulate a few NoC architectures and use the real running trace as the input to

 Software / Hardware Hybrid Network-on-Chip Simulation on FPGA 177

judge the better design. The trace is collected through the following way: We use the
Pin [16] to instrument the real target process; in the corresponding callback code, we
simulate a 16-core CMP’s memory hierarchy with the given configurations but no
NoC-communication has been simulated. Till now we can get the access-trace for
NoC and the collected trace contains about 3,200,000 records.

Then, we use the GB Ethernet cable to transfer records into the chip when a proxy
program is running on the soft core to receive data to drive the NoC. Although the
transfer latency of the Ethernet is relatively high, its throughout is enough so that the
transfer is not the bottleneck.

It has consumed 29,000,000 cycles or so to complete all records, in 127s. In con-
trast, we use the 100% software solution and the running time is about 710s.

5 Conclusions

We have presented a method that allows multi-core system designers to simulate NoC
and other layers with flexibility and fast enough speed. By providing common
SW/HW interfaces, the time-consuming and relatively-fixed part, NoC, is imple-
mented by hardware while others are implemented by software. We synthesize this
design on the Xilinx’s Virtex 5 155T FPGA and some example has been completed to
show its availability. In addition, performance analysis is given to show under what
circumstance such a design is preferred: if the operation in one simulated cycle is too
complex, using the host CPU for software simulation is preferred although the slow
HW/SW interaction exists; otherwise, the on-chip mode is better.

Acknowledgement. The work is supported by the High Technology Research and
Development Program of China under Grant No. 2013AA01A215. The authors wish
to thank Mo Tao, Li Xiaoxiao and Jiang Linhao for their tireless support of the simu-
lation environment.

References

1. Dally, W.J., Towles, B.: Route packets, not wires: on-chip interconnection networks. In:
Proceedings of Design Automation Conference (DAC 2001), Las Vegas, USA, pp. 684–
689 (2001)

2. Benini, L., Micheli, G.D.: Networks on chips: a new SoC paradigm. IEEE Computer 35,
70–78 (2002)

3. Dally, W., Towles, B.: Principles and Practices of Interconnection Networks. Morgan
Kaufmann Publishers Inc., San Francisco (2003)

4. Lis, M., Shim, K.S., Cho, M.H., Ren, P., Khan, O., Devadas, S.: DARSIM: a Parallel
Cycle-Level NoC Simulator. In: Proceeding of 6th Annual Workshop on Modeling,
Benchmarking and Simulation (June 2010)

5. Genko, N., Atienza, D., De Micheli, G., Mendias, J., Hermida, R., Catthoor, F.: A com-
plete network-on-chip emulation framework. In: Proceeding of Design, Automation and
Test in Europe, DATE (March 2005)

178 Y. Zhang et al.

6. Krasteva, Y., Criado, F., de la Torre, E., Riesgo, T.: A Fast Emulation-Based NoC Proto-
typing Framework. In: Proceedings of International Conference on Reconfigurable Com-
puting and FPGAs (December 2008)

7. Schelle, G., Grunwald, D.: Onchip interconnect exploration for multicore processors utiliz-
ing FPGAs. In: Proceedings of 2nd Workshop on Architecture Research using FPGA Plat-
forms (2006)

8. Wolkotte, P., Holzenspies, P., Smit, G.: Fast, Accurate and Detailed NoC Simulations. In:
Proceedings of First International Symposium on Networks-on-Chip, NOCS 2007 (May
2007)

9. Martin, M.M.K., Sorin, D.J., Beckmann, B.M., et al.: Multifacet’s general execution-
driven multiprocessor simulator (GEMS) toolset. ACM SIGARCH Computer Architecture
News 33, 92–99 (2005)

10. Hardavellas, N., Somogyi, S., Wenisch, T.F., Wunderlich, R.E., Chen, S., Kim, J., Falsafi,
B., Hoe, J.C., Nowatzyk, A.G.: SimFlex: a fast, accurate, flexible full-system simulation
framework for performance evaluation of server architecture. SIGMETRICS Perform. Ev-
al. Rev. 31(4), 31–34 (2004)

11. Wang, D., Jerger, N.E., Steffan, Gregory Steffan, J.: DART: a programmable architecture
for NoC simulation on FPGAs. In: Proceedings of the Fifth ACM/IEEE International
Symposium on Networks-on-Chip (2011)

12. Chung, E.S., Papamichael, M.K., Nurvitadhi, E., Hoe, J.C., Falsafi, B., Mai, K.: ProtoFlex:
Towards Scalable, Full-System Multiprocessor Simulations Using FPGAs. ACM Transac-
tions on Reconfigurable Technology and Systems 2(2) (June 2009)

13. Asanović, K., Patterson, D., Tan, Z., Waterman, A., Avizienis, R., Lee, Y.: RAMP Gold:
An FPGA-based Architecture Simulator for Multiprocessors. In: Proceedings of Design
Automation Conference, DAC 2010 (2010)

14. Liu, G.X., Li, G.H., Gao, P., Qu, H., Liu, Z.Y., Wang, H.X., Xue, Y.B., Wang, D.S.:
Cycle-Accurate 64+Core FPGA-Based Hybrid Simulator. In: Proceedings of 5th Annual
Workshop on Architectural Research Prototyping (2010)

15. Jiang, N., Michelogiannakis, G., Becker, D., et al.: BookSim 2.0 User’s Guide (2003),
https://nocs.stanford.edu/cgi-bin/trac.cgi/raw-
attachment/wiki/Resources/BookSim/manual.pdf

16. Berkowits, S.: Pin - A Dynamic Binary Instrumentation Tool,
http://software.intel.com/en-us/articles/pin-a-
dynamic-binary-instrumentation-tool

Total Exchange Routing

on Hierarchical Dual-Nets

Yamin Li1 and Wanming Chu2

1 Hosei University, Tokyo 184-8584 Japan
2 University of Aizu, Aizu-Wakamatsu 965-8580 Japan

Abstract. The hierarchical dual-net (HDN) is a newly proposed inter-
connection network for massive parallel computers. The HDN is con-
structed based on a symmetric product graph (base network). A k-level

hierarchical dual-net, HDN(B,k, S), contains nk = (2n0)
2k/(2

∏k
i=1 si)

nodes, where S = {G′
1, G

′
2, . . . , G

′
k}, G′

i is a super-node and si = |G′
i| is

the number of nodes in the super-node at the level i for 1 ≤ i ≤ k, and
n0 is the number of nodes in the base network B. The S is used mainly
for adjusting the scale of the system. The node degree of HDN(B,k, S)
is d0 + k, where d0 is the node degree of the base network. The HDN is
node and edge symmetric and can contain huge number of nodes with
small node-degree and short diameter. The total exchange is one of the
most dense communication patterns and is at the heart of numerous ap-
plications and programming models in parallel computing. In this paper,
we show that the total exchange routing can be done on HDN efficiently.

Keywords: interconnection network, total exchange routing.

1 Introduction

Recently, because of the advances in computer and networking technologies, su-
percomputers containing hundreds of thousands of nodes have been built [10]. It
was predicted that the parallel systems of the next decade will contain 10 to 100
millions of nodes [2]. The interconnection network plays an important role for
achieving high-performance in such ultra-scale parallel systems. The performance
of an ultra-scale parallel computers depends largely on the time complexities of
communication schemes, and in turn depends on the diameter of the network.
An interconnection network consists of switches with multiple communication
ports and cables connecting ports by following certain topologies. For an ultra-
scale parallel computer, the traditional interconnection networks may no longer
satisfy the requirements for the high-performance computations or efficient com-
munications. For such an ultra-scale parallel computer, the node degree and the
diameter will be the critical measures for the effectiveness of the interconnec-
tion networks. The node degree is limited by the hardware technologies and the
diameter affects all kinds of communication schemes directly. The number of
communication ports (node degree) in the network-on-chip (NoC) is typically
4 to 8 in current implementations. The off-chip interconnect switches can have

C.-H. Hsu et al. (Eds.): NPC 2013, LNCS 8147, pp. 179–193, 2013.
c© IFIP International Federation for Information Processing 2013

180 Y. Li and W. Chu

tens of ports, but the cost becomes expensive as the number of ports increases.
Other important measures for the effectiveness of the interconnection networks
include symmetricity, scalability, and efficient routing algorithms.

The following two categories of interconnection networks have attracted a
great research attention and been used in many supercomputers’ implementa-
tions. One is the hypercube-like family that has the advantage of short diameters
for high-performance computing and efficient communications. The other is the
2D/3D mesh or torus family that has the advantage of small and fixed node
degrees and easy implementations [1]. Traditionally, most supercomputers in-
cluding those built by CRAY, IBM, SGI, and Intel use 3D tori or hypercubes.
However, the node degree of the hypercube increases logarithmically as the num-
ber of nodes in the systems increases; the diameter of the 2D/3D torus becomes
large in an ultra-scale parallel system. To solve these problems, the hierarchical
(cluster-based) architectures are proposed in literature [3,6]. The supercomputer
Roadrunner built by IBM adopts a new approach for the interconnection net-
work [4]. It is a cluster-based architecture: the connection among clusters is fully
connected, and the fat-tree is used for the connection inside a cluster.

In this paper, we first present a flexible interconnection network, called Hi-
erarchical Dual-Net (HDN) [8]. The HDN is symmetric and can connect a large
number of nodes with a small node degree, meanwhile keeping the diameter
short. The HDN was motivated by recursive dual-net (RDN) [7]. The RDN can
be viewed as a special case of HDN. The RDN has merits of low node degree
and short diameter. The problem of the RDN is that it grows too fast in size,
and there is no mechanism to control the rate of its growth. Different from
the RDN, the scale of the HDN can be controlled by setting a set of suitable
parameters while generating an expanded network through dual-construction.
The HDN also adapts the cluster-based architecture. Compared to the Road-
runner, the HDN is symmetric, uses small number of links, and meanwhile keeps
the diameter short. The HDN structure is also better than other popular ex-
isting networks such as hypercube and 2D/3D torus with respect to the degree
and diameter. We investigate the topological properties of the HDN and show
some examples of HDNs with simple base networks of small size. Then we com-
pare them to other networks such as three-dimensional torus used in IBM Blue
Gene/L [1], and hypercube. The total exchange, or all-to-all personalized com-
munication, is one of the most dense communication patterns and is at the heart
of numerous applications and programming models in parallel computing. In this
paper, we present an efficient total exchange routing algorithm on a hierarchical
dual-net. The time complexity Tk(m) of the algorithm for an HDN(B, k, S) is
Tk(m) = (2k+1−2)(ts+ twmnk/2)+2kT0(mnk/2), where nk is the total number
of nodes, ts is startup latency, m is the message length in words, and tw is the
per-word transfer time.

The rest of this paper is organized as follows. Section 2 introduces the hier-
archical dual-net in details. Section 3 describes the routing algorithm. Section 4
gives the total exchange routing algorithm on a hierarchical dual-net. Section 5
concludes the paper.

Total Exchange Routing on Hierarchical Dual-Nets 181

2 The Hierarchical Dual-Net

We begin with a brief introduction to the recursive dual-net (RDN). The RDN is
constructed recursively by a dual-construction. The dual-construction is a way
to expand a given symmetric graph G of size n to a new symmetric graph G∗

of size 2n2. It generates 2n copies of G as subgraphs (denoted as clusters) of
G∗. Half of them, n clusters, are of class 0 and the others are of class 1. The
connection method is described below.

If G is symmetric then the expanded graph G∗ is unique and symmetric.
Therefore, the dual-construction can be applied recursively from a symmetric
network (the base network). RDN(m, k) denotes an RDN generated from a base
network of size m by applying dual-construction k times. The problem about an

RDN is that its growth rate is super-exponential ((2m)2
k

). There is very little
space for selection of the size of an RDN. For example, let the base network
be a 3-cube, then the sizes of RDN(8, k) will be 27, 215, and 231 for k = 1, 2,
and 3, respectively. In HDN, we provide a mechanism to control the growth rate
through its expansion from a base network. This new interconnection network
has a very flexible way for adjusting its size.

The hierarchical dual-net, HDN(B, k, S), contains three sets of parameters:
B is a symmetric product graph, we call it base network; k is an integer that
indicates the level of the HDN (the number of dual-constructions applied); and
S = {G′

1, G
′
2, . . . , G

′
k}, where G′

i is a sub-graph of HDN(B, k−1, S) and si = |G′
i|

is the number of nodes in a super-node at the level i for 1 ≤ i ≤ k. All these
terminologies will be defined in the following paragraphs.

Given r graphs Gi = (Vi, Ei), 1 ≤ i ≤ r, their product graph G = G1 ×G2 ×
. . .×Gr is defined as the graph G = (V,E), where V = {(v1, v2, . . . , vr)|vi ∈ Vi,
1 ≤ i ≤ r} and E = {[(u1, u2, . . . , ur), (v1, v2, . . . , vr)]| for some j, (uj , vj) ∈ Ej

and for i 	= j, ui = vi}.
In other words, the nodes of the product graph G are labeled with r-tuples,

where the ith element of the r-tuples is chosen from the node set of the ith
component graph. The edges of the product graph connect pairs of nodes whose
labels are identical in all but the jth element, and the two nodes corresponding
to the jth elements in the jth component graph are connected by an edge.

Meshes/tori or hypercubes are typical examples of product graphs. Given a
product graph G = G1×G2×. . .×Gr, we define a quotient graph Q as Q = G/G′

where G′ is a sub-product graph of G such that G = G′×Q. A node in a product
graph G = G1× . . .×Gi× . . .×Gr can be represented by (a1, . . . , ai, . . . , ar) with
0 ≤ ai ≤ |Gi|−1. We define a sub-graph G′ as G′ = G

′′
1 × . . .×G

′′
j × . . .×G

′′
q with

G
′′
j = Gi for 1 ≤ j ≤ q ≤ r and 1 ≤ i ≤ r, G

′′
j 	= G

′′
k if j 	= k for 1 ≤ j, k ≤ q.

Then a node in the sub-graph G′ can be represented by (b1, . . . , bi, . . . , bq) with

0 ≤ bi ≤ |G′′
i | − 1. We can consider a quotient graph Q as a reduced graph of G

with G′ being mapped into a single node (a super-node).
A graphG is symmetric (node-symmetric) if all its nodes looks alike. A product

graph is symmetric if all its component graphs are symmetric. We use the sym-
metric product graph as the base network for generating a hierarchical dual-net

182 Y. Li and W. Chu

through dual-constructions.We denote the base network asB = B1×B2×. . .×Br

where all the Bi, 1 ≤ i ≤ r, are symmetric. We define a super-node of B, denoted
as SN as a sub-product graph of B. That is, SN = Bi1 ×Bi2 × . . .×Biq , where
ij, 1 ≤ j ≤ q, are distinct and q ≤ r.

Let |Bi| = bi be the number of nodes in Bi for 1 ≤ i ≤ r. The HDN(B, 0, S) =
B is the base network. For i > 0, the HDN(B, i, S) is generated from HDN(B, i−
1, S) by a construction to be explained below. Note that S = {G′

1, G
′
2, . . . , G

′
k},

where G′
i is a sub-graph of HDN(B, k − 1, S) and si = |G′

i| is the number of
nodes in a super-node at the level i for 1 ≤ i ≤ k. First, we define a super-node
of level i, denoted as SN i, to be a sub-product graph G′

i of size si in B. Then,
we define graph Qi as the quotient graph HDN(B, i − 1, S)/SN i. Suppose that
there are Ni−1 nodes in the HDN(B, i−1, S), then the number of nodes ni in Qi

is Ni−1/si. The si can be 1 or
∏q

j=1 |Bij |, where 1 ≤ ij ≤ r and q ≤ r. That is,
si can be a product of any number of integers in {b1, b2. . . . , br}. For example, if
r = 3, b1 = 2, b2 = 3, and b3 = 5, the possible si can be 1, 2, 3, 5, 2 × 3, 2 × 5,
3× 5, or 2× 3× 5.

The construction of HDN(B, i, S), 1 ≤ i ≤ k, can be defined by a two-step
process: First, we perform a dual-construction on the quotient graph Qi−1 =
HDN(B, i−1, S)/SN i (HDN(B, 0, S)= B). Let the graph generated by the dual-
construction be Qi, and the subgraph of two nodes that is connected by a cross-
edge of level i be K2. Second, to get the HDN(B, i, S), we replace every K2 in Qi

by a product graph K2×SN . We call HDN(B, i− 1, S) cluster of HDN(B, i, S).

HDN(B, i− 1, S) 0 1 ni − 1

0 1 ni − 1

si links

Class 0

Class 1

ni
super-nodes

ni
super-nodes

ni
super-nodes

ni
super-nodes

ni
super-nodes

ni
super-nodes

Cluster

Fig. 1. Build an HDN(B, i, S) from HDN(B, i− 1, S)

Referring to Figure 1, an HDN(B, i, S) consists of 2ni clusters which are
divided into two classes: class 0 and class 1 with each class containing ni clusters.
That is, the number of clusters in each class is equal to the number of super-
nodes in a cluster. At level i, each super-node in a cluster has si new links to
a super-node in a distinct cluster of the other class. Because there are si nodes
in a super-node, one node contributes a new link. The dual-construction of an
RDN is a special case of the construction of an HDN with si = 1 for 1 ≤ i ≤ k.

The indexes of the nodes in HDN(B, k, S) can be defined as follows. Let SNk
id

be a super-node id in a cluster of HDN(B, k, S) and Nk
id be a node id in a super-

node, then a node in the HDN(B, k, S) can be represented by (Ck, Uk
id, SN

k
id, N

k
id)

Total Exchange Routing on Hierarchical Dual-Nets 183

where Ck is the class id (0 or 1) and Uk
id is the cluster id. A cross-edge at level

k connects node (Ck, Uk
id, SN

k
id, N

k
id) and node (Ck, SNk

id, U
k
id, N

k
id).

If we use a 2 × 3 × 5 torus as the base network, Table 1 lists the number of
nodes in HDN(B, 1, S) and HDN(B, 2, S) under the different configurations of S.
The node degrees are 7 and 8 for HDN(B, 1, S) and HDN(B, 2, S), respectively,
because the node degree of B is 6. From the table, we can see that the HDN
covers the nodes range from several hundreds to several millions.

Table 1. Number of nodes in HDN(B,k, S) where B is a 2× 3× 5 torus

k = 1 s1 = 1 s1 = 2 s1 = 3 s1 = 5 s1 = 6 s1 = 10 s1 = 15 s1 = 30

1,800 900 600 360 300 180 120 60

k = 2 s2 = 1 s2 = 2 s2 = 3 s2 = 5 s2 = 6 s2 = 10 s2 = 15 s2 = 30

s1 = 1 6,480,000 3,240,000 2,160,000 1,296,000 1,080,000 648,000 432,000 216,000

s1 = 2 1,620,000 810,000 540,000 324,000 270,000 162,000 108,000 54,000

s1 = 3 720,000 360,000 240,000 144,000 120,000 72,000 48,000 24,000

s1 = 5 259,200 129,600 86,400 51,840 43,200 25,920 17,280 8,640

s1 = 6 180,000 90,000 60,000 36,000 30,000 18,000 12,000 6,000

s1 = 10 64,800 32,400 21,600 12,960 10,800 6,480 4,320 2,160

s1 = 15 28,800 14,400 9,600 5,760 4,800 2,880 1,920 960

s1 = 30 7,200 3,600 2,400 1,440 1,200 720 480 240

Suppose that the node degree of the base network B is d0, the node degree of
the HDN(B, k, S) is d0+k. Let Ni−1 be the number of nodes in the HDN(B, i−
1, S). There are Ni = 2(Ni−1/si)Ni−1 = 2N2

i−1/si nodes in the HDN(B, i, S)
for 1 ≤ i ≤ k, where Ni−1/si is the number of clusters in each class. That is,

the number of nodes in the HDN(B, k, S) is (2n0)
2k/(2

∏k
i=1 si), where n0 is the

number of nodes in the base network.
Let the diameter of the HDN(B, i − 1, S) be Di−1 and the diameter of the

super-node (SN) be D(SNi). Then, if we map a super-node into a single node,
the diameter of the quotient graph Qi−1 is D(Qi−1) = Di−1 −D(SN i).

To route a node u in a cluster of class 0 (or 1) to a node v in a different cluster
of the same class, we can route u along with a direct link of level i to a node
u′ in a cluster of class 1 (or 0). This takes one step. Then, we route u′ inside
the cluster to a node w′ that can reach a node w in the same cluster of node v
along with direct link of level i. The longest distance between nodes u′ and w′

is D(Qi−1).
Similarly, we can route node w′ to a node w (by one step) and then to a node

v′ which is in the same super-node of v (by D(Qi−1) steps). Finally, we route v′

to node v, this takes D(SN i) steps. Therefore, we have the following recurrence:

Di = 2(1 +D(Qi−1)) +D(SN i) = 2Di−1 −D(SN i) + 2

Solving the above recurrence, we get the diameter Dk of HDN(B, k, S) as below:

Dk = 2kD(B)−
k−1∑
j=0

2jD(SNk−j) + 2k+1 − 2

184 Y. Li and W. Chu

where D(B) and D(SN i), 1 ≤ i ≤ k, are the diameters of the base network
and the super-nodes, respectively. The results of the analysis in this section are
summarized in the following theorem.

Theorem 1. Assume that the base network B is a symmetric, product graph and
SN i, 1 ≤ i ≤ k, are sub-product graphs of B with |SN i| = si. Let the number of
nodes, the node-degree, and the diameter of B be n0, d0, and D0, respectively.
Let the diameters of SN i, 1 ≤ i ≤ k, be D(SN i). Let S = {G′

1, G
′
2, . . . , G

′
k},

where G′
i is a sub-graph of HDN(B, k − 1, S) and si = |G′

i| is the number of
nodes in a super-node at the level i for 1 ≤ i ≤ k. Then, the number of nodes of

HDN(B, k, S) is (2n0)
2k/(2

∏k
i=1 si), the node-degree is d0+k, and the diameter

is Dk = 2kD(B) − ∑k−1
j=0 2

jD(SNk−j) + 2k+1 − 2, where N is the number of
nodes in HDN(B, k, S).

Table 2 lists the topological properties of the torus, n-cube, CCC [9], Dual-
Cube [6], RDN, and HDN. The CCC (cube-connected cycles) is obtained by
replacing a node in an n-cube with an n-node cycle. The Dual-Cube is a special
case of RDN with k = 1 and a base network of an n-cube.

Table 2. Comparison of topological properties

Network # of nodes Degree Diameter

3D Torus x ∗ y ∗ z 6 (x+ y + z)/2

n-cube 2n n n

CCC(n) n ∗ 2n 3 2n+ �n/2	 − 2

Dual-Cube(n) 22n−1 n 2n

RDN(m,k) (2m)2
k

/2 d0 + k 2k ∗D0 + 2k+1 − 2

HDN(B,k, S) (2|B|)2k/(2∏k
i=1si) d0 + k 2k(D(B) − ∑k−1

j=0 2j(D(SNk−j)) + 2k+1 − 2

In [7], we introduced the CR (cost ratio) for measuring the combined effects
of the hardware cost (node degree) and the software efficiency (diameter) of an
interconnection network. Instead of CR, this paper uses a more general measure,
namely weighted cost ratio CRw(G), for the evaluation. The CRw(G) is defined
as below. Let |(G)|, d(G), and D(G) be the number of nodes, the node degree,
and the diameter of G, respectively. We define CRw(G) as

CRw(G) =
w1d(G) + w2D(G)

log2|(G)|
where w1 and w2 are weights for node degree and diameter, respectively. We
have w1 + w2 = 100%.

The weighted cost ratio CRw of an n-cube is always 1 regardless of its size
and weights. The CRw for some HDN(B, k, S) is shown in Table 3 where B is a
2×3×5 torus and we assume w1 = w2 = 50%. For simplicity, we use the number
of nodes in super-nodes to represent S, instead of sub-graphs. From the table,
we can see that the HDNs are more effective than hypercubes and tori measured
by the weighted cost ratio although as the si increases, the CRw becomes larger.

Total Exchange Routing on Hierarchical Dual-Nets 185

Table 3. CRw with w1 = w2 = 50% for some HDN(B,k, S)

Network n d D CR

10-cube 1,024 10 10 1.00

3D-Tori(10) 1,000 6 15 1.05

HDN(B,1, (1)) 1,800 7 10 0.79

HDN(B,1, (2)) 900 7 9 0.82

HDN(B,1, (3)) 600 7 9 0.87

19-cube 524,288 19 19 1.00

3D-Tori(80) 512,000 6 120 3.32

HDN(B,2, (2, 2)) 810,000 8 19 0.69

HDN(B,2, (2, 5)) 324,000 8 18 0.71

HDN(B,2, (5, 2)) 129,600 8 17 0.74

The minimum CRw shown in the list is 0.69. Unfortunately, we do not know the
theoretical or experimental optimal value of CRw up to the date we wrote this
paper and it can be an open question for the future.

3 Routing on HDN

Given two nodes u and v in HDN(B, k, S), we first present a simple routing
algorithm that finds a shortest path from u to v. In Section 2, we defined the
product and quotient graphs. Now, we define the difference graph as follows.
Let SN1 and SN2 are two super-nodes in base network B, the difference graph
SN1−SN2 is the sub-product graph ofB such that Bi, 1 ≤ i ≤ r, is in SN1−SN2

if and only if Bi ⊂ SN1 and Bi 	⊂ SN2. For example, if B = C2 × C3 × C5,
SN1 = C2 × C3, and SN2 = C3 × C5 then SN1 − SN2 = C2.

We also need a re-indexing process of nodes in the cluster, which is an
HDN(B, i− 1, S), for routing via cross-edges of level i since the indexes of nodes
in HDN(B, i − 1, S) is based on SN i−1 and the cross-edge of level i is defined
based on SN i. The index of a node in HDN(B, i − 1, S) contains four parts
(Ci−1, U i−1

id , SN i−1
id , N i−1

id) as explained in the previous section.
At the construction of the ith level, HDN(B, i − 1, S) becomes a cluster

containing only two parts, SN i
id and N i

id, of the node index in HDN(B, i, S).
The other two parts, Ci and U i

id, are generated from the construction at the
ith level. The re-indexing process that generates a 1-to-1 mapping between
(Ci−1, U i−1

id , SN i−1
id , N i−1

id) and (SN i
id, N

i
id) on an HDN(B, i− 1, S) is necessary

for the proposed routing algorithm.
Since the number of super-nodes SN i in HDN(B, i− 1, S) equals to Ni−1/si,

the range of SN i
id is 2|U i−1/(SN i − SN i−1)| × |(SN i−1 − SN i)|. If si−1 = si

then the re-indexing is simple: 1-1 mapping between SN i
id and the 3-tuple

(Ci−1
id , U i−1

id , SN i−1
id). However, when si−1 	= si, the re-indexing is a little com-

plicated and is explained below.
Let the q-tuple, (bi1 , . . . , biq) be the index of a node in a super-node SN , where

bi1 × . . . × biq = |SN |. Then the re-indexing from (Ci−1, U i−1
id , SN i−1

id , N i−1
id)

186 Y. Li and W. Chu

to (SN i
id, N

i
id) moves the indexes of those Bj ⊂ SN i − SN i−1 into N i

id and
the indexes of those Bj ⊂ SN i−1 − SN i into SN i

id. For example, let B =
C2 × C3 × C5, s1 = |C2| × |C3| = 6, and s2 = |C3| × |C5| = 15, then, the nodes
in HDN(B, 1, S) can be represented by (C1, U1

id, SN
1
id, N

1
id), where C1 = 0 or 1,

0 ≤ U1
id < 5, 0 ≤ SN1

id < 5, and 0 ≤ N1
id < 6. For the indexes of the nodes

in HDN(B, 2, S), we perform re-indexing of nodes in HDN(B, 1, S), which is a
cluster of HDN(B, 2, S), to get (SN2

id, N
2
id), where 0 ≤ SN2

id < 2 × 5 × 2 = 20,
and 0 ≤ N2

id < 3 × 5 = 15, obtained by swapping |B1| and |B3|. That is,
|SN2| = |C1| × |U1| × |B1| = 2× 5× 2 = 20, and |N2| = |B2| × |B3| = 15.

Table 4 shows four examples of re-indexing in detail for a cluster in the
HDN(B, 2, S) with B = C2×C3×C5, s1 = 2×3 = 6, and s2 = 3×5 = 15. In the
HDN(B, 1, S), the node representation (C1, U1

id, SN
1
id, N

1
id) can be converted to a

serial number i by i = C1×(|B|/s1)2×s1+U1
id×(|B|/s1)1×s1+SN1

id×s1+N1
id =

C1×150+U1
id×30+SN1

id×6+N1
id. Similarly, the (SN2

id, N
2
id) can be converted

to a number SN2
id × s2 +N2

id = SN2
id × 15 +N2

id.

Table 4. Re-indexing examples

Index in HDN(B, 1, S) Index in HDN(B, 2, S)

(C1, U1
id, SN1

id, N
1
id) Serial number (SN2

id, N
2
id) Serial number

(0, 0, 0, 0) 0 × 150 + 0 × 30 + 0 × 6 + 0 = 0 (0, 0) 0 × 15 + 0 = 0

(1, 4, 2, 3) 1 × 150 + 4 × 30 + 2 × 6 + 3 = 285 (19, 0) 19 × 15 + 0 = 285

(0, 0, 2, 2) 0 × 150 + 0 × 30 + 2 × 6 + 2 = 14 (0, 14) 0 × 15 + 14 = 14

(1, 4, 4, 5) 1 × 150 + 4 × 30 + 4 × 6 + 5 = 299 (19, 14) 19 × 15 + 14 = 299

Assume that the point-to-point routing algorithm in the base network is avail-
able. The proposed algorithm for routing node u to node v in HDN(B, k, S)
works as follows. We first perform re-indexing of u and v if k > 1. Then, there
are three cases: the two nodes are in the same cluster (Case 1), in the distinct
clusters of the same class (Case 2), and in the distinct clusters of distinct classes
(Case 3). Case 1 is trivial. Case 3 can be reduced to Case 2 by routing u via a
cross-edge of level k. Therefore, we explain only the Case 2: The two nodes are
in the distinct clusters with the same class. We first identify the super-nodes,
denoted as SNk

u′ and SNk
v′ , in the two Qk−1s containing u and v, respectively,

such that SNk
u′ and SNk

v′ are connected by a unique cross-edge of level k in Qk

from the dual-construction. Then, we route node u to node u′, and node v to
node v′ inside the clusters of level k, respectively. Notice that, u′ and v′ are not
unique although SNk

u′ and SNk
v′ are unique. The algorithm finds the u′ and v′

that leave uk
3 and vk3 unchanged if possible. And then, the routing from u to v

is done by routing u′ to u′′ ∈ SNk
v′ via a cross-edge of level k in HDN(B, k, S)

and routing from u′′ to v′ inside SNk
v′ . The algorithm is formally presented as

Algorithm 1. The correctness of the algorithm and its time complexity are given
in Theorem 2.

Theorem 2. Assume that the routing algorithms in the base network B is avail-
able. In HDN(B, k, S) for k > 0, routing between any two nodes can be done

Total Exchange Routing on Hierarchical Dual-Nets 187

Algorithm 1. HDN ROUTING (HDN(B,k, S), u, v)
input: HDN(B,k, S);
input: node u = (uk

0 , u
k
1 , u

k
2 , u

k
3) (the node representation of level k);

input: node v = (vk0 , v
k
1 , v

k
2 , v

k
3) (the node representation of level k);

output: a path u⇒ v;
begin

if k = 0 then
Base routing(B, u, v);

else
if k > 1 then /* perform re-indexing */

(uk−1
0 , uk−1

1 , uk−1
2 , uk−1

3)← (uk
2 , u

k
3);

(vk−1
0 , vk−1

1 , vk−1
2 , vk−1

3)← (vk2 , v
k
3);

endif
Case 1: uk

0 = vk0 and uk
1 = vk1 /* u, v in the same cluster */

if k > 1 then
HDN ROUTING (HDN(B,k − 1, S), u, v);

else
Base routing(B, u, v);

endif
Case 2: uk

0 �= vk0 /* u, v in the clusters of distinct classes */
u′ ← (uk

0 , u
k
1 , v

k
1 , u

k
3);

v′ ← (vk0 , v
k
1 , u

k
1 , v

k
3);

if k > 1 then /* perform re-indexing */
((u′)k−1

0 , (u′)k−1
1 , (u′)k−1

2 , (u′)k−1
3)← (vk1 , u

k
3);

((v′)k−1
0 , (v′)k−1

1 , (v′)k−1
2 , (v′)k−1

3)← (uk
1 , v

k
3);

HDN ROUTING (HDN(B,k − 1, S), u, u′);
HDN ROUTING (HDN(B,k − 1, S), v, v′);

else
Base routing(B, u, u′);
Base routing(B, v, v′);

endif
route u′ to u′′ via a cross-edge of level k; /* u′′ = (vk0 , v

k
1 , u

k
1 , u

k
3) */

Base route(B, u′′, v′); /* route from uk
3 to vk3 inside the super-node */

Case 3: uk
0 = vk0 and uk

1 �= vk1 /* u, v in the clusters of the same class */
route u to w via the cross-edge of level k;
route node w to node v as in Case 2;

endif
end

in at most 2kR(B) − ∑k−1
j=0 2

jR(SNk−j) + 2k+1 − 2 steps, where R(B) and

R(SN i), 1 ≤ i ≤ k, are the time complexities of the routing in B and SN i,
respectively.

Proof: We show the correctness of Algorithm 1 by induction on k. Assume that
the algorithm is correct for k − 1 ≥ 0. From the algorithm, it is clear that we
need to consider only Case 2. In Case 2, nodes u′ and u are in the same cluster
by the definition of u′. They can be connected by the induction hypothesis.
Similarly, nodes v′ and v can be connected. The node u′′ that is connected

188 Y. Li and W. Chu

to u′ by a cross-edge of level k and node v′ are in the same super-node as
can be seen from their IDs. Therefore, they can be connected by Base routing
algorithm. Next, we derive the time complexity Rk of the algorithm. In Case
2, there are two recursive calls to connect u to u′ and v to v′, respectively.
Since the nodeIDs of u and u′ are the same (so are v and v′), a recursive call
takes only Rk−1 − R(SNk) time. Since the SupernodeIDs of u′′ and v′ are the
same, the last call to Base route to connect u′′ to v′ takes only R(SNk) time.
In Case 3, there is an additional routing step via a cross-edge. Therefore, the
time complexity Rk of HDN Routing(HDN(B, k, S), u, v) satisfies the recurrence
Rk = 2(Rk−1−R(SNk))+R(SNk)+2 for k > 0. Solving this recurrence, we have

Rk = 2kR(B)−∑k−1
j=0 2

jR(SNk−j)+2k+1−2 whereR(B) andR(SN i), 1 ≤ i ≤ k,

are the time complexities of the routing in B and SN i, respectively. ��

4 Total Exchange Routing on HDN

Design of efficient routing algorithms for collective communications is the key is-
sue in parallel computers or networks. Collective communications are required in
load balancing, event synchronization, and data exchange. Based on the number
of sending and receiving processors, these communications can be classified into
one-to-many, one-to-all, many-to-many and all-to-all. The nature of the mes-
sages to be sent can be classified as personalized or non-personalized (multicast
or broadcast). The all-to-all personalized communication (total exchange) is at
the heart of numerical applications.

An important metric used to evaluate efficiency of communication is trans-
mission latency, or communication time. The communication time depends on
many factors such as contentions, switching techniques, network topologies etc.
Therefore, we first define the communication model used in this paper.

We assume that the communication links are bidirectional, that is, two
directly-connected processors can send messages to each other simultaneously.
We also assume the processor-bounded model (one-port model) in which each
node can access the network through a single input port and a single output port
at a time. The port model of a network system refers to the number of inter-
nal channels at each node. In order to reduce the complexity of communication
hardware, many systems support one-port communication architecture. We also
assume the linear cost model in which the transfer time for a message is linearly
proportional to the length of the message.

There are many switching methods. In this paper, we assume the packet
switching model [5]. In this model, each packet is maintained as an entity that
is passed from node to node as it moves through the network. The long message
can be partitioned and transmitted as fixed-length word w. The first few bytes
of a packet contains routing and control information and are referred as packet
header. A packet is completely buffered at each intermediate node before it is
forwarded to the next node (for this reason, the model is also called store-and-
forward switching). In this paper, we allow packages that are headed for the
same destination to be combined into a single message. The time to pack and

Total Exchange Routing on Hierarchical Dual-Nets 189

unpack messages is included in the startup latency. The packet switching model
is suitable for collective communication in MPP since it is safer than other
switching models such as virtual cut-through switching. With packet switching
model, the communication time for a message of length m (number of fixed-
length words) to be sent to a node of distance d is d(ts + mtw), where ts is
startup latency, the time required for the system to handle the message at the
sending node, tw is the per-word transfer time (1/tw is the bandwidth of the
communication links). Through this paper, we will use the formula above for
estimating the communication times of the proposed algorithms.

In total exchange, each node sends a distinct message of size m to every other
node. The total number of messages is p2 (a node also has a message for itself).
Referring to Figures 2 and 3, the algorithm for total exchange in HDN can be

(0000,0000)
(0000,0001)
(0000,0010)
(0000,0011)

(0000,0100)
(0000,0101)
(0000,0110)
(0000,0111)

(0000,1000)
(0000,1001)
(0000,1010)
(0000,1011)

(0000,1100)
(0000,1101)
(0000,1110)
(0000,1111)

(0000,0010)
(0000,0011)

(0000,0000)
(0000,0001)

(0000,1100)
(0000,1101)

(0000,1110)
(0000,1111)

(0000,0100)
(0000,0101)

(0000,0110)
(0000,0111)

(0000,1000)
(0000,1001)

(0000,1010)
(0000,1011)

(0000,0010)
(0000,0011)

(0000,0000)
(0000,0001)

(0000,1100)
(0000,1101)

(0000,1110)
(0000,1111)

(0000,0100)
(0000,0101)

(0000,0110)
(0000,0111)

(0000,1000)
(0000,1001)

(0000,1010)
(0000,1011)

(0000,0010)
(0000,0011)

(0000,0000)
(0000,0001)

(0000,1100)
(0000,1101)

(0000,1110)
(0000,1111)

(0000,0100)
(0000,0101)

(0000,0110)
(0000,0111)

(0000,1000)
(0000,1001)

(0000,1010)
(0000,1011)

(a) Send message via cross-edge (b) Total exchange inside cluster

(c) Send message via cross-edge (d) Total exchange inside cluster

(0000,0011)

classID
clusterID
super-nodeID
nodeID

message

source destination

Fig. 2. Four stages of total exchange on HDN(B,1, S) (only shows the case of node 0)

190 Y. Li and W. Chu

(a) Send message via cross-edge (b) Total exchange inside cluster

(c) Send message via cross-edge (d) Total exchange inside cluster

0
0

3

2

1

3
0

3

2

1

2
0

3

2

1

1
0

3

2

1

0

0 2

3

0 2

2

0 2

1

0 2

31 313131

0
0

3

2

1

3
0

3

2

1

2
0

3

2

1

1
0

3

2

1

0

0 2

3

0 2

2

0 2

1

0 2

31 313131

0
0

3

2

1

3
0

3

2

1

2
0

3

2

1

1
0

3

2

1

0

0 2

3

0 2

2

0 2

1

0 2

31 313131

0
0

3

2

1

3
0

3

2

1

2
0

3

2

1

1
0

3

2

1

0

0 2

3

0 2

2

0 2

1

0 2

31 313131

Fig. 3. Four stages of total exchange on HDN(B,2, S) (only shows the case of node 0)

described in four stages. Note that all nodes in the figures do the same operations
but only the cases of node 0 are shown for clarity. Also note that the commas of
node address in Figure 2 are omitted for saving spaces.

1. In the first stage, we first divide Mmy id into two parts, M1my id and
M2my id, where M1my id contains all messages to be sent to the nodes in
the clusters of my type, and M2my id contains the rest message. Then, the
first part of personalized messages M1 is exchanged between my id and
partner, the neighbor via cross-edge of level k. The time this stage takes is
ts + twmnk/2.

2. In the second stage, we first pack all messages that are to be sent to the
nodes in the cluster of level k with clusterID = q into a single message
msgq. Then, we perform total exchange inside each cluster, where msgq is
to be sent to node with nodeID = q. The time this stage takes is denoted as
Tk−1(nk/nk−1), the time for total exchange inside the cluster.

3. In the third stage, each node packs the received messages into a single mes-
sage of length nkm and sends the packed message to its neighbor along the
cross-edge of level k. After receive the message, each node unpacks the mes-
sage received from its neighbor into nk−1 messages, msgq′ , where msgq′ is
the collection of all messages destinated to node with nodeID = q′ in the
cluster. The time this stage takes is also ts + twmnk/2.

Total Exchange Routing on Hierarchical Dual-Nets 191

4. In the last stage, we perform total exchange again within each cluster of
level k. This can be done since the packed messages sent through the level-k
cross-edge are all destinated to the nodes inside the cluster. The time this
stage takes is also Tk−1(nk/nk−1), which is the time for total exchange inside
the cluster.

The algorithm is showed in Algorithm 2. All nodes execute the algorithm
concurrently. In Algorithm 4, my id is the id of the node. The initial message
to be sent is Mmy id which contains p messages of length m. At the end of the
algorithm, each node stores the collection of all p messages in result.

Algorithm 2. TOTAL EXCHANGE (HDN(B,k, S), Mmy id)

begin

if k = 0 result← TOTAL EXCHANGE (B,Mmy id);

else

Divide Mmy id into two parts, M1my id and M2my id, where M1my id contains

all messages to be sent to the nodes in the clusters of type my type, and

M2my id contains the rest messages;

partner← the neighbor via cross-edge of level k;

send message M1my id to partner;

Receive message M1partner from partner;

M ′
my id ←M2my id ∪M1partner;

Pack all messages in M ′
my id that are to be sent to the nodes in the cluster of

level k with cluster ID = q into a single message msgq to be sent to the

node with node ID = q;

Tmy id ← TOTAL EXCHANGE (HDN(B,k − 1, S), M ′
my id);

send message Tmy id to partner;

receive message Tpartner from partner;

T ′
my id ← Tpartner;

Unpack T ′
my id into nk−1 messages, msgq′ , such that msgq′ is the collection of

messages destinated to the node with node ID = q′;
result← TOTAL EXCHANGE (HDN(B,k − 1, S), T ′

my id);

endif

end

The time to complete the total exchange on an HDN(B, 1, S) is

T1(m) = (ts +mtwn1/2) + T0(mn1/2) + (ts +mtwn1/2) + T0(mn1/2)
= 2(ts +mtwn1/2) + 2T0(mn1/2).

Generally, on an HDN(B, k, S), the time to complete the total exchange is

Tk(m) = (ts+ twmnk/2)+Tk−1(nk/nk−1)+(ts+ twmnk/2)+Tk−1(nk/nk−1)
= 2(ts + twmnk/2) + 2Tk−1(nk/nk−1). That is,

Tk(m) = (2k+1 − 2)(ts + twmnk/2) + 2kT0(mnk/2)

192 Y. Li and W. Chu

where nk is the total number of nodes and T0(m) is the time complexity for
total exchange in B. In the examples of Figures 2 and 3 where B is a 2-cube,
T0(m) = 2(ts + twm). If B is an n-cube, then T0(m) = n(ts + twm2n/2).

For the HDN(B, 1, S) shown in Figures 2, T1 = 2(ts+8twm)+4(ts+8twm) =
6(ts + 8twm). In contrast, T = 4(ts + 8twm) for a 4-cube of same size. For the
HDN(B, 2, S) shown in Figures 3, T2 = 6(ts + 64twm) + 4 × 2(ts + 64twm) =
14(ts + 64twm). In contrast, T = 7(ts + 64twm) for a 7-cube of same size. The
times of total exchange for HDNs are longer than that for hypercubes but an
HDN has much less links than a hypercube of the same size. We summarize this
result in the following theorem.

Theorem 3. Assume that the time complexity T0(m) for total exchange in the
base network B is known, where m is the length of each message. The time
complexity Tk(m) for total exchange on an HDN(B, k, S), k > 0, is Tk(m) =

(2k+1 − 2)(ts + twmnk/2) + 2kT0(mnk/2), where nk = (2n0)
2k/(2

∏k
i=1 si).

5 Concluding Remarks

The hierarchical dual-net can connect a large number of nodes with a small node-
degree and a short diameter. It is a potential candidate for the interconnection
network of the supercomputers of the next generation that may have more than
one million of nodes. We can select a popular network of small size that is a
product graph as the base network and then connect multiple base modules
with cross links (cables) to construct a very large-scale hierarchical dual-net. We
can also select a suitable set of integers based on the base network to control the
number of nodes in the supercomputer. The base networks can be implemented
in a NoC VLSI and high-speed line cables may be used as the cross links to
connect PCB modules in cabinets. We presented an efficient algorithm for total
exchange on recursive dual-net. There are many problems, such as disjoint path
and fault-tolerant routing, on recursive dual-net that are worth further research.

References

1. Adiga, N.R., Blumrich, M.A., Chen, D., Coteus, P., Gara, A., Giampapa, M.E., Hei-
delberger, P., Singh, S., Steinmacher-Burow, B.D., Takken, T., Tsao, M., Vranas,
P.: Blue gene/l torus interconnection network. IBM Journal of Research and De-
velopment 49(2/3), 265–276 (2005)

2. Beckman, P.: Looking toward exascale computing, keynote speaker. In: Interna-
tional Conference on Parallel and Distributed Computing, Applications and Tech-
nologies (PDCAT 2008), Dunedin, New Zealand (December 2008)

3. Ghose, K., Desai, K.R.: Hierarchical cubic networks. IEEE Transactions on Parallel
and Distributed Systems 6(4), 427–435 (1995)

4. IBM: Roadrunner: Hardware and Software Overview. IBM Corporation (January
2009), http://www.redbooks.ibm.com/redpapers/pdfs/redp4477.pdf

5. Kumar, V., Grama, A., Gupta, A., Karypis, G.: Introduction to parallel computing:
design and analysis of algorithms. Benjamin/Cummings Press (1994)

http://www.redbooks.ibm.com/redpapers/pdfs/redp4477.pdf

Total Exchange Routing on Hierarchical Dual-Nets 193

6. Li, Y., Peng, S., Chu, W.: Efficient collective communications in dual-cube. The
Journal of Supercomputing 28(1), 71–90 (2004)

7. Li, Y., Peng, S., Chu, W.: Recursive dual-net: A new universal network for super-
computers of the next generation. In: Hua, A., Chang, S.-L. (eds.) ICA3PP 2009.
LNCS, vol. 5574, pp. 809–820. Springer, Heidelberg (2009)

8. Li, Y., Peng, S., Chu, W.: Hierarchical dual-net: A flexible interconnection network
and its routing algorithm. In: Proceedings of the Second International Conference
on Networking and Computing, Osaka, Japan, pp. 58–67 (November 2011)

9. Preparata, F.P., Vuillemin, J.: The cube-connected cycles: a versatile network for
parallel computation. Commun. ACM 24, 300–309 (1981)

10. TOP500: Supercomputer Sites (June 2013), http://top500.org/

http://top500.org/

Efficiency of Flexible Rerouting Scheme

for Maximizing Logical Arrays

Guiyuan Jiang1, Jigang Wu2, and Jizhou Sun1

1 School of Computer Science & Technology, Tianjin University,
Tianjin 300072, China

2 School of Computer Science & Software Engineering,
Tianjin Polytechnic University, Tianjin 300387, China
{jguiyuan,asjgwu}@gmail.com, jzsun@tju.edu.cn

Abstract. In a multiprocessor array, some processing elements (PEs)
fail to function normally due to hardware defects or soft faults caused
by overheating, overload or occupancy by other running applications.
Fault-tolerant reconfiguration considered in this paper is to reorganize
fault-free PEs from a processor array with faults to a logical array of reg-
ular mesh topology by changing the interconnections among PEs. This
paper presents the efficiency of the flexible rerouting scheme to maximize
the usage of the fault-free PEs, by developing an efficient reconfigura-
tion algorithm without backtracking. The proposed algorithm constructs
each logical columns from left to right on candidate PE sets. It updates
the candidate sets by excluding the PEs which cannot be used, once a
logical column is formed. Also, it is proved that the proposed heuristic
algorithm is able to generate the maximum-size logical array in linear
time. Experimental results show that 123 logical columns can be con-
structed on 256 × 256 host arrays with fault density of 30%, resulting
in an improvement of 51% in comparison to the previous algorithm by
which only 82 logical columns can be produced. Furthermore, our algo-
rithm is able to generate target arrays with harvest over 56% on host
arrays with fault density of 50%, while the previous work cited in this
paper fails to construct any target array in this case.

Keywords: Interconnection network, reconfiguration, rerouting scheme,
fault tolerant, algorithm.

1 Introduction

The quest for high-performance and low-power leads to design multi-core archi-
tectures where an increasing number of processing elements (PEs) are integrated
on a single chip in a tightly coupled fashion. In order to fully exploit the process-
ing capabilities offered by the integration of an increasing number of PEs, on-
chip communication networks play a critical role in developing high-performance
embedded computing system. The option of reconfiguring the interconnect topol-
ogy using optical circuit switches, which are of low-cost, low-power and high-
bandwidth, opens up new possibilities for improving not only the computing
performance but also the reliability of multiprocessor systems.

C.-H. Hsu et al. (Eds.): NPC 2013, LNCS 8147, pp. 194–206, 2013.
c© IFIP International Federation for Information Processing 2013

Efficiency of Flexible Rerouting Scheme 195

To fully exploit the processing capabilities, many works have investigate
application-aware topology reconfiguration techniques which try to customize
the multiprocessor array to a topology that matches the traffic pattern of the
application in order to reduce the power consumption and message latency etc.
Optimizing network topology and mapping cores to network are two important
application-specific reconfiguration methods. Topology determines the connec-
tivity of the Network-on-Chip (NoC) nodes, while the core mapping tries to
place the processing cores communicating more frequently near each other. The
problem of topology selection and core mapping on NoC nodes have been ex-
plored to optimize an interconnection network based on a set of communication
constraints by many researchers [1][2]. Reconfiguring the topology on NoC to
reduce power consumption has been studied in [3]. And the work in [4] extends
the paper [3] by proposing a more flexible and efficient structure and by provid-
ing extensive evaluations to thoroughly investigate the power, latency, and area
of the reconfigurable NoC.

Since these fully customized topologies are designed and optimized for some
specific applications, they give the best performance and power results only for
that applications. The fault-tolerant reconfiguration considered in this paper is
to re-organize the fault-free PEs in the multiprocessor array to a regular topol-
ogy (standard structured) which ensuring well-controlled electrical parameters.
Generally, two distinct types of fault-tolerant approaches, i.e. the redundancy
approach and the degradation approach, are mostly investigated for processor ar-
ray reconfiguration. The redundancy approach tolerates faulty PEs by replacing
them with spare PEs [5][6], and if these PEs cannot replace all the faulty ones,
the chip has to be discarded. In degradation approach, [7] studied the problem
of 2D mesh reconfiguration under three different routing constraints. They have
shown that most problems that arise under these constraints are NP-complete
and they also proposed some heuristic reconfiguration algorithms for these prob-
lems. An algorithm, namely GCR, was proposed in [8] to find a maximal logical
array (MLA) that contains a set of the selected rows. The techniques performing
row-exclusion and compensation were proposed and combined with GCR into a
heuristic algorithm to generate an approximate MLA [9]. Recently, the power
dissipation of a logical array was reduced in [10] by reducing the number of
long-interconnects utilizing a dynamic programming approach. In [11], a genetic
algorithm (GA) for the reconfiguration of degradable mesh arrays is presented to
evolve rerouting strategies for constructing logical rows/columns. In [12], novel
techniques are presented to accelerate reconfiguration by employ flexible upper
and lower bounds for the maximum logical array (MLA). The degradable re-
configuration approach for three-dimensional mesh-connected processor arrays
is investigated in [13][14].

In a logical array, two neighboring PEs are interconnected through a group
of physical links and these physical links form a interconnect path (intercon-
nect for short) between the two PEs. Note that this architecture implements
reconfiguration using simple switches, thus overlap of physical links is not al-
lowed between any two interconnects, i.e., no physical link is shared by any two

196 G. Jiang, J. Wu, and J. Sun

interconnects of a feasible logical array. In order to generate logical arrays
without overlap, most previous works develop reconfiguration algorithms un-
der rerouting schemes with limitation on the routing distance d (see section 2.1
for formal definition), which means that if the distance between two PEs ex-
ceeds d, then the two PEs are not allowed to connect to form a logical array.
This has brought convenience for designing reconfiguration algorithms, but it
leads to large number of unused fault-free PEs, which is a serious waste of com-
puting resources. This motivates us to increase the utilization of fault-free PEs
by adopting flexible rerouting scheme. In this paper, we first investigate the per-
formance loss of previous works in terms of utilization of fault-free PEs, then we
adopt a flexible rerouting scheme in reconfiguration resulting in an efficient non-
backtracking algorithm, to produce maximum logical arrays under the rerouting
scheme.

2 Preliminaries

2.1 Fault-Tolerant Architecture and Rerouting Schemes

Let H denotes the physical (host) array on which some of the elements are de-
fective due to hardware/circuit defects or soft faults which means temporary un-
availability caused by overheating, overload or occupancy by other applications.
Assume the fault density of the physical array is ρ, then there areN = (1−ρ)·m·n
fault-free PEs in a m×n physical array. The rows and columns in physical array
are called physical rows and columns respectively. A logical subarray which con-
tains no faulty PEs constructed by changing states of reconfiguration switches
is called a logical array (target array), denoted as T . The rows and columns in
logical target array are called logical rows and columns respectively. Throughout
this paper, ei,j(e

′
i,j) indicates the PE located at the position of (i, j) of the host

(logical) array, where i is its row index and j is its column index. row(u)(col(u))
denotes the physical row (column) index of the PE u. u=v denotes that u is
identical to v.

Fig. 1 shows the fault-tolerant architecture for a 4×4 host array. The fault-
tolerant reconfiguration is achieved by inserting several reconfiguration switches
in the network allowing the network to flexibly change the connections among
PEs. Each square box in the host array represents a processing element (PE),
whereas each circle represents a reconfiguration switch. In all figures in this
paper, the gray shaded boxes represent faulty PEs while unshaded ones represent
the fault-free PEs. There are 4 states for each switch.

In order to generate logical arrays without overlaps among interconnects,
two software control schemes, i.e. bypass and rerouting schemes, are utilized to
guide reconfiguration algorithms. In particular, row bypass and column rerout-
ing schemes are mostly employed in previous works. As shown in Fig.1, if PE
ei,j is faulty, then PE ei,j−1 can communicate with PE ei,j+1 and data will by-
pass ei,j through an internal bypass link. This scheme is called row bypass. In
column rerouting scheme, PE e(i, j) could connect to e(i + 1, j′) by changing
states of related switches where |j − j′| ≤ d and d is called the compensation

Efficiency of Flexible Rerouting Scheme 197

Row bypass

Architecture

column rerouting channel
row rerouting channel

fault-free
faulty

column rerouting switch

row rerouting switch

Column reroutingSwitch states

Fig. 1. Switch functions and rerouting manners on a 4 × 4 mesh linked by four-port
switches

distance [8][9]. If d is limited to 1, then PE ei,j can connect to one of the three
PEs, i.e. ei+1,j−1, ei+1,j and ei+1,j+1, to form a logical column. The three PEs
are called neighbors of ei,j, and set of the three PEs is denoted as Adj(e). col-
umn bypass and row rerouting schemes can be similarly defined. Generally, in
order to reduce the complexity of the switching mechanisms and keep low cost
of physical implementation, it is necessary to keep d small.

2.2 Construct Target Arrays on Selected Rows

Problem R. Given an m×n mesh-connected processor array in which some of
its elements are faulty, find a maximum target array that contains the selected
rows under the row bypass and column rerouting scheme.

Let R1, R2, . . ., Rm be the rows of the given host array. Assume Rr1 , Rr2 ,
. . ., Rrs are the s selected rows to construct a target array, where 1≤ rs ≤ m.
Logical columns can be constructed under column rerouting scheme on selected
rows, and interconnecting these logical columns under row bypass scheme forms
a target array. A logical array T is said to contain Rr1 , Rr2 , · · · , Rrs if each
logical column in T contains exactly one fault-free PE from each of the selected
rows. Note that, if a physical row is not selected for inclusion into target array,
all PEs in the row will be bypassed.

Suppose Cp and Cq(Cp 	= Cq) are two logical columns constructed on the s
selected rows, thus each of them is consists of s PEs such that one and only one
PE lies on each selected row. Let Cp(i) denotes the PE lying in the i-th selected
row of column Cp and Cq(i) denotes the PE lying in the i-th selected row of
column Cq, for (1 ≤ i ≤ s).

1. We say that Cp < Cq if PE Cp(i) in Cp lies to the left-side of PE Cq(i) in
Cq, for 1 ≤ i ≤ s.

2. We say that Cp ≤ Cq if PE Cp(i) in Cp lies to the left-side of, or is identical
to, the PE Cq(i) in Cq, for 1 ≤ i ≤ s.

198 G. Jiang, J. Wu, and J. Sun

3. We say that Cp and Cq are independent of each other if Cp < Cq or
Cq < Cp.

4. We say that Cp and Cq are overlap with each other if neither Cp < Cq nor
Cq < Cp is satisfied.

We define that a logical column, say column Cl, as the left-most column related
to column set A if Cl ∈ A and Cl � Cp for any Cp ∈ A.

The problemR is proved to be optimally solved by an algorithm namedGreedy
Column Rerouting (GCR)[9]. In fact, the target array produced by GCR is
maximum-size under the constraint that the compensation distance d of columns
rerouting scheme is limited to 1, instead of the maximum-size target array for
the problem R. All operations in GCR are carried out on the adjacent sets of
each fault-free PE u in row Rri , defined as Adj(u)={v : v ∈ Rri+1 , v is unused
fault-free PE and |col(u)− col(v)| ≤ 1 }. Adj(u) consists of PEs that PE u can
directly connect to in the next selected row. The PEs in Adj(u) are ordered in
increasing columns index. The PE with the minimum column index in Adj(u) is
called the leftmost connectable PE for u.

2.3 Flexible Rerouting Schemes

As we have discussed before, two types of software rerouting schemes, i.e. bypass
and rerouting schemes, are employed to guide reconfiguration algorithms. In pre-
vious work, the compensation distance d of column rerouting scheme is limited
to 1 to keep low cost of hardware implementation, thus 4-port switches are effec-
tive for reconfiguration. Rerouting schemes provides convenience for designing
algorithms and guarantees that target arrays can be easily implemented using
4-port switches. However, there are considerable un-connectable PEs which are
fault-free but cannot be used in forming a logical target array. Fig.2 shows two
logical arrays constructed from a 5×5 host array. Fig.2(a) shows an logical array
of two logical columns constructed by algorithm GCR under column rerouting
scheme with d=1. The target array formed under flexible rerouting scheme con-
tains 3 logical columns as shown in Fig.2(b). There are 7 un-connectable PEs in
the first target array, but only 2 un-connectable PEs is generated by adopting
flexible rerouting scheme as shown in the second array.

Experimental results show that, under fixed column rerouting scheme with
d = 1, the proportions of un-connectable PEs are up to 17.1%, 34.75% and
52.45% on 64 × 64 host array with fault densities are 10%, 20% and 30%, re-
spectively. In order to to improve the harvest by reducing the number of un-
connectable PEs, we adopt the flexible column rerouting scheme which is formed
as follows. Assume that row Rri and Rri+1 are the i-th and (i + 1)-th selected
rows, and set Ei and Ei+1 contain fault-free PEs in Rri and Rri+1 respectively,
then a PE in Ei can connect directly to any PE in Ei+1 by reconfigure relative
switch status.

Efficiency of Flexible Rerouting Scheme 199

(a) d is limited to 1 (b) under flexible rerouting scheme

fault-free PE

faulty PE

un-connectable PE

Fig. 2. (a) only 2 logical columns are formed under column rerouting scheme with
compensation distance d=1, (b) 3 logical columns can be constructed under flexible
rerouting scheme

3 Maximum-Size Target Array under Flexible Rerouting
Scheme

In this section, we solve problem R under flexible rerouting scheme to further
increase target array size. In another word, given an m × n mesh-connected
processor arrayH in which some of its elements are faulty, let Rr1 , Rr2 , ..., Rrs be
the selected rows, find a target array which consists of the maximum number of
independent logical columns under the row bypass and flexible column rerouting
scheme such that each logical column contains the selected rows. We first present
a heuristic algorithm, denoted as FLX, which is capable of solving problem R
in linear time. Then we prove that the target array constructed by FLX is
maximum-size target array, and the target arrays constructed in this paper is
much larger than that in previous works.

We model the problem R as follows. Suppose that set S contains all logical
columns that can be construct on the selected rows of host array H . Formally,
S={C|C is a logical column on selected rows and |C ∩ Ei|=1 for 1≤i≤s}. Any
column C in S contains exactly one PE from each selected rows. In problem R,
we wish to find a maximum-size subset, say A, of independent logical columns.

We shall solve this problem in several steps, in each step we make choice of
selecting one column for inclusion into A, and we are left with the subproblem
S′: finding a maximum-size subset on subproblem S′. We observe that we need
only to consider the greedy choice, the left-most logical column, in making each
choice. Theorem 1 verifies that the greedy way of making choice leads to optimal
solution, the verification is based on Theorem 2 which indicates that the greedy
choice is always part of some optimal solution. Let Sk = {Ci|Ci∈ S and Ck<Ci}
be the set of logical columns that lie to the right-side of column Ck. If we make
the choice of selecting the left-most column C1, then S1 remains as the only
subproblem to solve. Since C1 is in some optimal solution, we can construct an
optimal solution to the original problem consists of column C1 and all logical

200 G. Jiang, J. Wu, and J. Sun

case 1

case 2 faulty PE

fault-free PE

unconnectable PE

Fig. 3. C1=<e1, e2, e3> is the left-most column, u1 and u2 become un-connectable
after column C1 is constructed

columns in an optimal solution to the subproblem S1. In another word, {C1}∪A′

is an optimal solution to original problem S if A′ is an optimal solution to
subproblem S1.

After constructing the leftmost column, some PEs becomes unconnectable
due to overlap of interconnects. Rerouting on the unconnectable PEs leads to
backtracking, such as in previous algorithm GCR. In order to improve the ef-
ficiency, we adopt the following technique to avoid backtracking. We identify
unconnectable PEs so that columns containing unconnectable PEs will not be
considered in the next stage selection. To exclude these un-connectable PEs out
of sets Ei for 1 ≤ i ≤ s, two type of situations are examined as follows, according
to the newly constructed column Ck. Let Ck(i) and Ck(i + 1) denote two PEs
which lie in the ith selected row and the (i+ 1)th selected row of column Ck.

– case 1: col(Ck(i+ 1)) > col(Ck(i)), then PE u is invalid if row(u) = ri,
col(u) > col(Ck(i)) and col(u) < col(Ck(i + 1)).

– case 2: col(Ck(i)) > col(Ck(i + 1)), then PE u is invalid if row(u) = ri+1,
col(u) > col(Ck(i + 1)) and col(u) < col(Ck(i)).

An example is shown in Fig.3. u1 is un-connectable according to case 1 and u2

is un-connectable according to case 2. Thus, after constructing each left-most
column, un-connectable PEs must be excluded from candidate PEs set.

We implement the algorithm FLX in a iterative way instead of a recursive
manner. The algorithm takes host array H with size of m× n in which some of
its elements are faulty, and the indexes r1, r2, ..., rs that defines the selected rows
as input. It returns a maximum-size subset of independent logical columns which
form a logical target array T . The algorithm works as follows. The variable k
indexes the most resent constructed left-most column,corresponding to the Ck

in algorithm FLX. Then the for loop initialize Ei as the set of fault-free PEs
in row Rri for 1 ≤ i ≤ s. PEs in Ei are sorted initially by increasing column
index. In while loop, the algorithm construct left-most column Ck one by one
and adds Ck into target array T . In each iteration, the algorithm first construct
a left-most column Ck, then update candidate set Ei(1 ≤ i ≤ s) by excluding
un-connectable PEs according to Ck. To see which PEs are un-connectable, two
type of cases are examined as described above.

Now we analyze the complexity of the proposed greedy algorithm. Initialize
candidate set Ei(1 ≤ i ≤ s) runs in O(m · n). In the while loop, each PE is

Efficiency of Flexible Rerouting Scheme 201

Algorithm 1: FLX (H, r1, r2, ..., rs) /* Flexible Column Rerouting Algo-
rithm */

Input: host array H with size of m×n; indexes of selected rows: r1,r2,. . .,rs;
Output: maximum-size target array T .

1 begin
2 for i ← 1 to s do
3 Ei ← set of fault-free elements in Rri ;

4 k ← 1; /* index of current logical column */

5 while (E1 	= φ) do
6 /* construct Ck from candidate sets ∪s

i=1Ei */

7 for i ← 1 to s do
8 if (Ei 	= φ) then
9 e ← the PE with minimum column index in Ei;

10 Ck(i) ← e;
11 mark e as occupied;

12 else
13 stop the while loop;

14 /* exclude unconnectable PEs out of Ei(1 ≤ i ≤ s−1) according to case 1 */

15 for i ← 1 to s− 1 do
16 if col(Ck(i + 1))− col(Ck(i)) > 1 then
17 for j ← col(Ck(i))+1 to col(Ck(i+ 1))−1 do
18 if ei,j ∈ Ei then
19 mark ei,j as un-connectable;

20 /* exclude unconnectable PEs out of Ei(2 ≤ i ≤ s) according to case 2 */

21 for i ← 2 to s do
22 if col(Ck(i − 1))− col(Ck(i)) > 1 then
23 for j ← col(Ck(i)) + 1 to col(Ck(i− 1))− 1 do
24 if ei,j ∈ Ei then
25 mark ei,j as un-connectable;

26 T ← T ∪ {Ck};
27 k ← k + 1;

28 return T ;
29 end

202 G. Jiang, J. Wu, and J. Sun

examined only once, either to include into a left-most column or excluded out of
candidate set Ei, thus the while loop runs in O(m · n). Therefore, the algorithm
FLX construct a maximum-size target array under flexible rerouting schemes in
O(m · n) time.

Theorem 1. Algorithm FLX produces maximum-size target array for problemR.

Proof. Let C1 be the left-most logical column in S, thus for any Cp∈S we have
C1≤Cp. Then, based on theorem 2, there always exist an optimal solution, say A,
whose left-most column is C1. Once the greedy choice C1 is made, the problem
S is reduced to find an optimal solution for subproblem S1 = {Cx|Cx∈ S and
C1<Cx} without have to consider any logical columns that overlap with C1 in
S1. This is because for any Cp∈S, we have C1≤Cp, and C1 is the left-most
column. Thus, all logical columns that are independent with logical column C1

must not overlap with C1, i.e. they certainly belong to S1. Therefore, we can
first construct the left-most column C1, and then try to find an optimal solution,
say A1, for sub-problem S1, thus one optimal solution for the original problem S
could be {C1} ∪ A1. In this way, we could find a maximum-size target array by
making greedy choice at each step. In another word, algorithm FLX produces
maximum-size target array for problem R.

Theorem 2. Consider any nonempty subproblem Sk, and let Cm be the left-
most logical column on selected rows in Sk. Then Cm is included in some
maximum-size subset of independent logical columns of Sk.

Proof. Let Ak be a maximum-size subset of independent logical columns in Sk,
and let Cj be left-most logical column in Ak. If Cj=Cm, we are done, since
we have shown that Cm is in some maximum-size subset of independent logical
columns of Sk. If Cj 	=Cm, let the set A′

k = Ak − {Cj} ∪ {Cm} be Ak but
substituting Cm for Cj . The logical columns in A′

k are independent, which follows
because the columns in Ak are independent, Cj is the left-most column in Ak,
and Cm ≤ Cj . Since |A′

k| = |Ak|, we conclude that A′
k is a maximum-size subset

of independent logical columns in Sk, and it includes Cm. Therefore, Cm is
included in some maximum-size subset of independent logical columns of Sk.

4 Experimental Results and Analysis

In this section, we investigate the efficiency of flexible rerouting scheme by eval-
uating performance of algorithm FLX in comparison with algorithm GCR. To
evaluation metrics, i.e., harvest and degradation, as formulated in [8-10,13-14],
were calculated. The harvest indicates how effectively the non-faulty elements
are utilized in constructing a target array from a host array with fault elements,
whereas the degradation measures the degree of potential performance loss due
to a smaller target array than the original host array.

Efficiency of Flexible Rerouting Scheme 203

harvest =
Size of Target Array

Total number of Nonfaulty PEs in Host Array
× 100%

degradation =
Size of Host Array - Size of Target Array

Size of Host Array
× 100%

For the simplicity, we denote target arrays constructed by algorithms GCR
and FLX as GCRA and FLXA, respectively. The improvement in harvest of the
FLX over algorithm GCR, is calculated by

impr =
harvest of FLXA - harvest of GCRA

harvest of FLXA
× 100%

Table 1. The performance comparison of the algorithms GCR and FLX for random
faults of uniform distribution, averaged over 20 random instances for each case

Host Array Target array

Size Fault
density

Array size harvest (%) degradation (%) impr
(%)GCR FLX GCR FLX GCR FLX

64×64
0.05 64×54 64×55 89.23 89.64 15.23 14.84 0.46
0.10 64×48 64×49 82.91 84.56 25.39 23.91 2.00
0.20 64×33 64×38 65.25 73.85 47.81 40.94 13.25
0.30 64×21 64×30 47.55 66.08 66.72 53.75 39.46

128×128
0.05 128×110 128×111 90.71 91.16 13.83 13.40 0.50
0.10 128×96 128×98 83.29 85.20 25.04 23.32 2.30
0.20 128×68 128×77 66.55 75.64 46.76 39.49 13.74
0.30 128×41 128×61 46.21 67.75 67.66 52.58 46.94

256×256
0.05 256×222 256×224 91.41 92.06 13.16 12.54 0.72
0.10 256×193 256×198 83.57 86.07 24.79 22.54 2.99
0.20 256×137 256×157 66.82 76.83 46.54 38.54 14.99
0.30 256×82 256×123 45.65 68.75 68.05 51.88 50.75

In order to make a fair comparison, we keep the same assumptions as in
[8-14]. Faults are only associated with PEs and communication infrastructure
is assumed to be fault free. This assumption can be justified since the switches
and links use much less hardware resources when compared to the processors
and are thus less vulnerable to defects. Both random fault model and clustered
fault model were considered[7-10,12]. In a random fault model, the faults of a
host array were generated by a uniform random generator. The fault density ρ
of the host array is set from 5% to 30% for the experiments. On the other hand,
without loss of generality, we model the clustered faults as a subarray that has
80% random faults in the host array. In order to focus on the clustered fault
distribution, the fault density out of the subarray is set to 5%, which is far less
than that in the subarray. The location of the subarray is generated randomly
in the host array. Both algorithms were implemented in C++ language running
on a computer with 2.1GHz CPU and 2GB RAM and are compared with each
other on the same input instances. For each case, all physical rows are selected
for inclusion into target array for experiments.

204 G. Jiang, J. Wu, and J. Sun

0 10% 20% 30% 40% 50%
0

60

120

180

240

300

 n
um

be
r

of
 c

ol
um

ns

 GCR

 FLX

 ρ

 (a) comparison of target array size

0 10% 20% 30% 40% 50%
0

20

40

60

80

100

 h
ar

ve
st

 (
%

)

 GCR

 FLX

 ρ

 (b) comparison of harvest

Fig. 4. Comparison of FLX and GCR in terms of target array size and harvest, on
host arrays of 256 × 256 with random faults, averaged over 20 instances for each case

Table 1 shows the performance comparison of algorithms FLX and GCR. For
the case of constructing target array on 64×64 host array with fault density 10%,
the harvest of target array produced by GCR is 82.91%, while it is 84.56% by
algorithm FLX, thus resulting in the improvement of 2% in harvest. When the
fault density increases to 30%, FLX improves GCR by 39.46% on harvest. It is
because, with the increasing fault densities, more PEs become un-connectable
in algorithm GCR while they can be used in FLX to form logical columns. It
is also worth pointing out that, if the fault density exceeds a certain point, i.e.
50% for host arrays with size of 256 × 256, algorithm GCR fails to form any
logical columns as shown in Fig. 4(a). However, algorithm FLX is still capable
of constructing target arrays with no less than 70 columns which corresponding
to a harvest of 56%, as shown in Fig. 4(b). On the other hand, on host arrays
with large fault densities, the improvement in harvest is more significant on large
target arrays than on the relatively small ones. For examples, with fault density
of 30%, the improvements of FLX over GCR are 39.46%, 46.94% and 50.75%
for host arrays with sizes of 64× 64,128× 128 and 256× 256, respectively. It is
because, the increasing size increases the difficulty of forming a logical column
thus leads to decrease in the number of logical columns and results in increase
in the number of un-connectable PEs. This provides more chance for algorithm
FLX to improve the target arrays using flexible column rerouting scheme.

Table 2 shows performance gain of algorithms FLX over GCR for the case of
the clustered faults on 512×512 host arrays with fault density 5%. Our investiga-
tions reveal that, the harvest improvement increased with the increasing number
of clustered fault areas. For example, on host array with 24×24 clustered fault
areas, the improvement of harvest is 5.15% for the case of 8 clustered fault areas,
while it increased to 13.22% and 19.77% on host arrays with 24 and 32 clustered
fault areas, respectively. This is because, as the number of clustered fault ar-
eas increases, fewer logical columns can be constructed by algorithm GCR, thus
leads to more un-connectable PEs which provide more chance for optimization by
FLX. In addition, the improvement for harvest decreases is more significant on
relatively large clustered fault area. This is because logical columns constructed
by GCR cannot go through clustered fault areas, thus large scale clustered fault

Efficiency of Flexible Rerouting Scheme 205

Table 2. The performance comparison of the algorithms GCR and FLX for clustered
faults of uniform distribution on 512×512 host array, averaged over 20 random instances
for each case

Host Array Target array
Cluster Distribution Array size harvest (%) degradation (%) impr

(%)size number GCR FLX GCR FLX GCR FLX

16×16
8 512×419 512×431 86.12 88.58 18.18 15.85 2.87
16 512×400 512×419 82.25 86.09 21.87 18.21 4.72
24 512×381 512×409 78.42 84.06 25.50 20.15 7.23
32 512×369 512×401 75.81 82.41 27.98 21.71 8.73

24×24
8 512×395 512×416 81.29 85.44 22.77 18.83 5.15
16 512×363 512×396 74.69 81.49 29.04 22.59 9.17
24 512×330 512×374 67.86 76.82 35.54 27.02 13.32
32 512×294 512×351 60.40 72.13 42.62 31.47 19.77

32×32
8 512×364 512×392 74.83 80.59 28.92 23.44 7.84
16 512×318 512×364 65.40 74.79 37.87 28.95 14.78
24 512×251 512×322 51.54 66.27 51.04 37.04 28.80
32 512×226 512×315 46.48 64.69 55.84 38.54 40.37

areas decreases the area of PEs that can be used for constructing target arrays
by algorithm GCR. On the other hand, large clustered fault areas increase the
fault density of the host array, thus provide more chance for optimization by
algorithm FLX.

5 Conclusions

Many previous works discuss the reconfiguration problems under column rerout-
ing scheme with fixed compensation distance, resulting in great lose of harvest.
This paper investigate the efficiency of flexible rerouting scheme by developing
an efficient algorithm to reconfigure an multiprocessor array with faults. The
proposed algorithm FLX is able to reduce the number of un-connectable PEs
caused by the interconnection overlaps. It is capable of producing maximum-
size target arrays, resulting in a significant improvement in comparison to the
algorithm GCR. Experimental results show that the size of target array can be
significantly increased. The algorithm FLX is scalable with the array size, as it
is more efficient on large host arrays than on relatively small ones. In addition,
its harvest tends to decrease slowly with the increasing fault density, that is
superior to algorithm GCR whose harvest value decreases rapidly.

Acknowledgments. This work was supported by the National Science Foun-
dation of China under Grant No. 61070136 and No. 61173032, and the Doctoral
Fund of Ministry of Education of China under Grant No. 20100032110041.

206 G. Jiang, J. Wu, and J. Sun

References

1. Murali, S., De Micheli, G.: SUNMAP: A tool for automatic topology selection and
generation for NoCs. In: Proc. of the 41st Design Automation Conference (DAC
2004), pp. 914–919. ACM Press, San Diego (2004)

2. Bertozzi, D., Jalabert, A., Murali, S., Tamahankar, R., Stergiou, S., Benini, L.,
De Micheli, G.: NoC synthesis flow for customized domain specific multiprocessor
systems-on-chip. IEEE Transactions on Parallel and Distributed System 16(2),
113–129 (2005)

3. Modarressi, M., Sarbazi-Azad, H.: Power-aware mapping for reconfigurable NoC
architectures. In: Proc. of the 25th International Conference on Computer Design,
pp. 417–422. IEEE Press, California (2007)

4. Modarressi, M., Tavakkol, A., Sarbazi-Azad, H.: Application-Aware Topology Re-
configuration for On-Chip Networks. IEEE Transactions on Very Large Scale In-
tegration (VLSI) Systems 19(11), 2010–2022 (2011)

5. Chen, Y.Y., Upadhyaya, S.J., Cheng, C.H.: A comprehensive reconfiguration
scheme for fault-tolerant VLSI/WSI array processors. IEEE Transactions Com-
puters 46(12), 1363–1371 (1997)

6. Horita, T., Takanami, I.: Fault-tolerant processor arrays based on the 1.5-track
switches with flexible spare distributions. IEEE Transactions on Computers 49(6),
542–552 (2000)

7. Kuo, S.Y., Chen, I.Y.: Efficient reconfiguration algorithms for degradable
VLSI/WSI arrays. IEEE Transactions Computer-Aided Design 11(10), 1289–1300
(1992)

8. Low, C.P., Leong, H.W.: On the reconfiguration of degradable VLSI/WSI ar-
rays. IEEE Transactions Computer-Aided Design of Integrated Circuits and Sys-
tems 16(10), 1213–1221 (1997)

9. Low, C.P.: An efficient reconfiguration algorithm for degradable VLSI/WSI arrays.
IEEE Transactions on Computers 49(6), 553–559 (2000)

10. Wu, J., Srikanthan, T.: Reconfiguration Algorithms for Power Efficient VLSI Sub-
arrays with 4-port Switches. IEEE Transactions on Computers 55(3), 243–253
(2006)

11. Fukushi, M., Fukushima, Y., Horiguchi, S.: A genetic approach for the reconfigura-
tion of degradable processor arrays. In: Proc. of 20th IEEE International Sympo-
sium on Defect Fault Tolerance VLSI System, pp. 63–71. IEEE Press, Ohio (2005)

12. Wu, J., Srikanthan, T., Han, X.: Preprocessing and Partial Rerouting Techniques
for Accelerating Reconfiguration of Degradable VLSI Arrays. IEEE Transactions
on Very Large Scale Intergration (VLSI) Systems 18(2), 315–319 (2010)

13. Jiang, G., Wu, J., Sun, J.: Non-Backtracking Reconfiguration Algorithm for Three-
dimensional VLSI Arrays. In: Proc. of 2012 IEEE 18th International Conference
on Parallel and Distributed Systems, pp. 362–367. IEEE Press, Singapore (2012)

14. Jiang, G., Wu, J., Sun, J.: Efficient Reconfiguration Algorithm for Three-
dimensional VLSI Arrays. In: Proc. of 2012 IEEE 26th International Parallel and
Distributed Processing Symposium Workshops & PhD Forum, pp. 254–258. IEEE
Press, Shanghai (2012)

An Efficient Crosstalk-Free Routing Algorithm

Based on Permutation Decomposition
for Optical Multi-log2N Switching Networks

Xiaofeng Liu1,3, Youjian Zhao2, and Yajuan Wu3

1 School of Computer Science and Engineering,
University of Electronic Science and Technology of China, Chengdu, China

2 Department of Computer Science and Technology,
Tsinghua University, Beijing, China

3 School of Computer, China West Normal University, Nanchong, China
xhxfliu@163.com, zhaoyoujian@tsinghua.edu.cn, scwuyajuan@yahoo.com.cn

Abstract. Optical switching networks (OSN) based on optical direc-
tional couplers (DC) may be the most promising candidate to provide a
high switching rate when the speed mismatch problem between links (op-
tical fibers) and switches is increasingly serious. Although such switches
have many advantages, the DC suffers from an inherent crosstalk problem
that can greatly aggravate the switching performance. Based on semi-
permutations, a parallel decomposition algorithm,which is called multi-
decomposition, is proposed in this paper for solving the optical crosstalk
problem in optical multi-log2N switching networks. According to the
number of planes in a multi-log2N network, the multi-decomposition
is performed in parallel to partition a permutation into several sub-
permutations, each of which is established without crosstalk within each
plane. We demonstrate that our algorithm can completely remove the
crosstalk in optical multi-log2N networks when n is even, and that it may
be generated only in the stage (n-1)/2 (i.e., the middle stage) when n is
odd, but the corresponding probability of generating crosstalk is to be
less than or equal to 1

2(n+1)/2−1
. In addition, our algorithm can achieve

a low complexity for decomposition a permutation due to its parallelism
so that any permutations can be realized in multi-log2N networks under
the constraint of avoiding crosstalk.

Keywords: Permutation, Optical switching, Multi-log2N networks,
Optical crosstalk.

1 Introduction

The Internet is an important product of the information age. From a high-level
perspective, the entire Internet architecture consists of two parts: communication
links and switching nodes. At present, the capacity of these two parts has an
enormous difference. The speed of communication links has been drastically
increased with the advent of dense wavelength-division multiplexing (DWDM)

C.-H. Hsu et al. (Eds.): NPC 2013, LNCS 8147, pp. 207–219, 2013.
c© IFIP International Federation for Information Processing 2013

208 X. Liu, Y. Zhao, and Y. Wu

technologies, but the progress made in the switches has lagged relatively behind.
In order to solve the speed mismatch problem, the optical switches have been
widely explored in recent years.

A multi-log2N network [1], composed of several single-log2N networks, pos-
sesses many characteristics which are helpful for photonic switching system. As
an optical directional-coupler (DC) is introduced into this switching network to
replace the old (electronic) switching element (SE), the transmission rate of sig-
nals can achieve several T bps if the state (cross or bar) of the DC has been set
up properly. Meanwhile, A blocking, which is called crosstalk-blocking [2] and
differs from link-blocking, is introduced into this switching system by DCs. This
blocking will occur when two light signals pass through the same DC at the same
time. The crosstalk-blocking limits the scalability of switching networks so that
it is not easy to use DCs to construct a larger switching network [3] because two
signals passing through the same DC interact with each other. Therefore, the
crosstalk-blocking is an important factor to affect the quality of communication
in an optical switching network (OSN). Eliminating the crosstalk-blocking in an
OSN is just the main objective of this paper.

In this paper, we propose an efficient algorithm to eliminate the crosstalk-
blocking (abbreviated as crosstalk) of optical multi-log2N switching networks.
The central idea of the proposed algorithm is based on the concept of a
semi-permutation in the literature [4], but we extend this concept to multiple
decomposition of a permutation for the crosstalk-free routing in optical multi-
log2N switching networks, i.e., a permutation is first partitioned into two semi-
permutations, and is further divided into four quarter-permutations and so on.
By so doing, any two different optical signals traversing down two node-disjoint
(or DC-disjoint) paths cannot generate the optical crosstalk problem within each
plane. Thus this multiple decomposition algorithm is named multi-decomposition
in the remainder of the paper.

This paper is followed by four sections. Section 2 describes the crosstalk and
its common solutions. A basic network model and all related preliminaries asso-
ciated with this work are illustrated in section 3. Section 4 presents the multi-
decomposition in detail and then conclusions are given in section 5.

2 Crosstalk and Related Researches

Crosstalk and signal attenuation are the major problems that have been hinder-
ing the development of OSNs all the time. The signal attenuation problem can
be solved by a semiconductor optical amplifier (SOA). However, the crosstalk
cannot be removed by the SOA because the crosstalk is also amplified when the
desirable signal is amplified. Thus we must find the other methods to remove
the crosstalk in an OSN.

Indeed,it is almost impossible to eliminate the optical crosstalk totally unless
only one optical signal passes through a DC at any given time, as shown in
Fig. 1. Both space domain approach [5] and time domain approach [6] are based
on this idea. Essentially, the former adds the number of DCs, while at most

A Crosstalk-Free Routing Algorithm for OSN 209

Fig. 1. Traversing ways in a DC

only one of the two inputs and outputs is active at a time in a DC. Therefore,
hardware cost has been sacrificed to trade the crosstalk-free routing. For the
latter, a permutation is decomposed into several sub-permutations such that all
connections of each sub-permutation can be established simultaneously without
crosstalk, i.e., each time slot is required to route each sub-permutation and all the
connections corresponding the permutation are established within several time
slots in a time-division multiplexed fashion. As such, this approach uses time
cost to exchange the crosstalk-free routing. In addition to these two approaches
above, wavelength dilation [7] is the other one that eliminates the crosstalk in an
OSN. A technology of wavelength grouping method (WGM) [7] is proposed in this
approach, in which the wavelengths are partitioned into several groups so that
the wavelengths in each group are widely separated, with nearby wavelengths
placed in different groups, i.e., the wavelengths are selected should be far enough
apart (a few nanometers) so as not to interact with each other. A drawback of
this approach is that a specific structure is required to select and separate the
wavelength, and then result in increasing the hardware cost. This method is
adopted in [8][9] to remove the crosstalk of optical multi-log2N networks.

The existing methods above removing the crosstalk focus usually on the single-
log2N network ([9] is an exception), and they sacrifice either time cost or hard-
ware cost. Moreover, due to the unique path property of a log2N network, some
sub-permutations can be realized within a log2N network in a single pass whereas
the others cannot [4]. In fact, the spirit of all of these approaches mentioned
above is to avoid two light signals with the same wavelength passing through
a common DC at the same time, and the proposed approach in this paper is
no exception. However, our algorithm uses the idea of multiple decomposition
of any permutation to realize the crosstalk-free routing within each plane of
a multi-log2N network and does not increase time cost and hardware cost for
optical multi-log2N switching networks.

3 Basic Network Model and Preliminaries

3.1 Multi-log2N Network Model

Multi-log2N networks are vertically stacked with multiple log2N networks, N
demultiplexers and N multiplexers. The log2N network has been composed of
N(= 2n) inputs and outputs and n(= log2N) stages. Each stage consists of N /2
2 × 2 DCs and any adjacent stages are connected by N interstage fiber links.
Planes are vertically stacked to N demultiplexers (resp. multiplexers) in input
(resp. output) stage. N denotes the number of source inputs and destination
outputs labeled by 0, 1, · · · , N − 1 from top to bottom, n(= log2N) denotes the

210 X. Liu, Y. Zhao, and Y. Wu

number of stages numbered by 0, 1, · · · , n − 1 from left to right, and m indi-
cates the number of planes contained in a multi-log2N network. Since all log2N
networks including baseline, omega, and banyan-type [10] have the topologically
equivalent feature [11], we use an N×N(N = 2n) baseline network as the repre-
sentative of routing planes in our work. An example of an 8×8 baseline network
is shown in Fig. 2, and the corresponding multi-log2N network is illustrated
in Fig. 3.

(0)000
Stage 0 1 2

(1)001
(2)010
(3)011
(4)100
(5)101
(6)110
(7)111

000(0)
001(1)
010(2)
011(3)
100(4)
101(5)
110(6)
111(7)

Fig. 2. An 8× 8 baseline network

(0)000

(1)001

(2)010

(3)011
(4)100

(5)101

(6)110

(7)111

000(0)

001(1)

010(2)

011(3)

100(4)

101(5)

110(6)

111(7)

plane1

plane2

Fig. 3. An N ×N multi-log2N network (N = 8,m = 2)

3.2 Related Preliminaries

For a log2N network, let u and v be any two SEs in stage i, Sj(u) and Sj(v)
are the two sets of SEs to which u and v can reach in stage (i + j) (0 ≤ i <
n − 1, 1 ≤ j ≤ n − i − 1). Sets Sj(u) and Sj(v) certainly can satisfy one of
the following properties:Sj(u) ∩ Sj(v) = ∅ or Sj(u) = Sj(v) [8]. For Sj(u) and
Sj(v),the equality Sj(u) = Sj(v) holds, which implies that SEs u and v are
sure to share the same SE in stage (i + j), hence light signals passing through
SEs u and v must generate the crosstalk phenomenon at the shared SE in stage
(i + j). Therefore, we call SEs u and v possessing (i, j)-buddy if the equality
Sj(u) = Sj(v) holds.

A Crosstalk-Free Routing Algorithm for OSN 211

A theorem can be obtained immediately from the description of (i, j)-buddy
above.

Theorem 1. Let u and v be two different DCs in stage i. Two optical signals
going through u and v do not generate crosstalk in stage (i+j) (0 ≤ i < n−1, 1 ≤
j ≤ n− i− 1) if u and v do not have the (i, j)-buddy property.

Proof. if u and v don’t have the (i, j)-buddy property, then optical signals going
through u and v do not share any SEs in stage (i + j), so there is no reason to
occur crosstalk in stage (i+ j). ��

4 Multi-decomposition Algorithm of a Permutation

4.1 Decomposition of a Permutation

A permutation is usually adopted to describe a mapping between inputs and
outputs for a switching network. For an N × N network, suppose there is a
permutation P which maps input xi to output yi, i.e., P (xi) = yi where xi, yi ∈
{0, 1, · · · , N − 1} for 0 ≤ i < N − 1. We use the representation as equation (1)
to denote this permutation.

P =

(
x0 x1 · · · xN−1

y0 y1 · · · yN−1

)
(1)

The semi-permutation [4] is the basis of the multi-decomposition algorithm,
so we proceed with the concept of semi-permutation first.

Definition 1 ([4]). For any permutation P of {0, 1, · · · , N − 1}, a partial per-

mutation

(
xi1xi2 · · ·xiN

2

yi1yi2 · · · yiN
2

)
is referred to as a semi-permutation, if {�xi1

2 �, �xi2

2 �,

· · · , �xiN/2

2 �} = {0, 1, · · · , N/2− 1} and {� yi1

2 �, � yi2

2 �, · · · , � yiN/2

2 �} = {0, 1, · · · ,
N/2− 1}.
Since 2(k−1) ≤ xik , yik ≤ 2k−1, k = 1, 2, · · · , N/2, a semi-permutation ensures
that the crosstalk can be removed in the first stage and last stage of a log2N
network, but the crosstalk cannot be always removed in the intermediate stages.
Besides, this approach needs several passes to establish a permutation in a single-
log2N network, and hence the routing time is increased.

To eliminate the crosstalk of each stage in an optical multi-log2N switch-
ing network, we give the definition of the multi-decomposition based on semi-
permutation (i.e., Definition 1) as follows.

Definition 2. For any permutation P of {0, 1, · · · , N−1}, let
(
xi1xi2 · · ·xiN

m

yi1yi2 · · · yiN
m

)

be a partial permutation of P, where m is an integral power of 2. {�xi1

m �,�xi2

m �,· · · ,
�xiN/m

m �} = {0, 1, · · · , N/m− 1} and {� yi1

m �, � yi2

m �, · · · , � yiN/m

m �} = {0, 1, · · · ,
N/m− 1} are used to partition this partial permutation such that the resulting
sub-permutation is smaller than semi-permutation in size.

212 X. Liu, Y. Zhao, and Y. Wu

This decomposition method is referred to as multi-decomposition for the multiple
decompositions. The resulting partial permutation of multi-decomposition of a
permutation is still called sub-permutation from now on.

Note that m denotes the number of sub-permutations into which the full
permutation is divided, and each sub-permutation contains N/m connections of
the full permutation. An example is given to understand this partition process
as follows.

Example 1. For N = 16,m = 4, and a permutation

P =

(
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 0 9 5 6 8 10 13 15 2 3 4 7 11 14 12

)

Step 1. Run the multi-decomposition algorithm (m = 2) to get two semi-
permutations P1 and P2.

P1 =

(
0 3 5 6 8 10 12 15
1 5 8 10 15 3 7 12

)

P2 =

(
1 2 4 7 9 11 13 14
0 9 6 13 2 4 11 14

)
Step 2. For all semi-permutations, run the multi-decomposition algorithm (m =

4) again in parallel to get four quarter-permutations, P11, P12, P21 and
P22.

P11 =

(
0 5 8 12
1 8 15 7

)
, P12 =

(
3 6 10 15
5 10 3 12

)

P21 =

(
1 7 11 13
0 13 4 11

)
, P22 =

(
2 4 9 14
9 6 2 14

)
Step 3. Multi-decomposition ends when the number of sub-permutations is m,

or else goes to step 2. Since m is equal to 4 in this example, the multi-
decomposition algorithm should be stop.

Fig. 4 illustrates the switching of these four quarter-permutations in a multi-
log2N network (N = 16,m = 4).

Now, we answer the following two questions about the multi-decomposition.
The first one is how many times the multi-decomposition algorithm should be
performed when a full permutation needs to be decomposed, i.e., what is the
proper value of m? The other is the effectiveness of this algorithm. The proper
value of m is determined by the number of copies in a multi-log2N network.
Since the rearrangeable nonblocking (RNB) network is considered in our work,
the number of copies which is needed to build a rearrangeable nonblocking multi-
log2N network is 2�n/2	 [1]. Therefore, the value of m is taken 2�n/2	 in this
paper. For the second one, we use the following theorem to give an answer.

Theorem 2. For a multi-log2N network, any permutation P can be partitioned
into m sub-permutations, where n = log2N and m = 2�

n
2 	.

A Crosstalk-Free Routing Algorithm for OSN 213

(a) Switching of P11. (b) Switching of P21.

(c) Switching of P22. (d) Switching of P12.

0
Stage 0 1 2

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

3
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

 0
Stage 0 1 2

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

3
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

0
Stage 0 1 2

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

3
0

2
3
4
5
6
7
8
9
10
11
12
13
14
15

1

0
Stage 0 1 2

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

3
0

2
3
4
5
6
7
8
9
10
11
12
13
14
15

Fig. 4. Switching of four quarter-permutations in a multi-log2N network (N = 16,
m = 4)

Proof. The multi-decomposition is implemented by an iterative manner. A per-
mutation is first partitioned into two semi-permutations, and then each semi-
permutation is further partitioned into its own two semi-permutations and so
on. This partitioning process cannot stop until the number of sub-permutations
is equal to m. According to this partitioning process, this theorem is essentially
equivalent to a proposition that “Any permutation can be decomposed into two
semi-permutations.” This proposition can be easily proved by using the P. Hall’s
distinct system representative [12]. The detailed proof can be found in [4], so we
can use a method similar to one in [4] to prove this theorem. Due to space limi-
tation, the detailed proof is omitted here. ��

Theorem 2 guarantees the feasibility of the multi-decomposition of permutations.
Next, we prove that the multi-decomposition is effective in removing the crosstalk
problem. We first give the following concepts of input set (IS) and output set
(OS).

Definition 3. For an N × N(N = 2n) multi-log2N network, there are n(=
log2N) stages.

(1) If n is even, the N inputs (resp. outputs) of the multi-log2N network
are divided equally into i = 2n/2 input (resp. output) sets from top to bottom.
These sets are referred to as I0, I1, · · · , Ii−1 and O0, O1, · · · , Oi−1, respectively.
As shown in Fig. 5(a).

(2) If n is odd, the N inputs (resp. outputs) of the multi-log2N network are
divided equally into i = 2(n+1)/2 input (resp. output) sets from top to bottom.
These sets are also referred to as I0, I1, · · · , Ii−1 and O0, O1, · · · , Oi−1, respec-
tively. As shown in Fig. 5(b).

214 X. Liu, Y. Zhao, and Y. Wu

(a) n is even (n=4) (b) n is odd (n=5)

…

Stage 0 1 2 3

The first
n/2 stages

The last
n/2 stages

… …

…

I0

I1

0
1
2
3
4
5
6
7

O0

O1

0
1
2
3
4
5
6
7

Stage 0 1 3 4

I0

I1

O0

O1

The first
(n-1)/2 stages

The last
(n-1)/2 stages

2

The middle
stage

…

…

…

…
0
1
2
3
4
5
6
7

0
1
2
3
4
5
6
7

Fig. 5. The diagram of input and output sets

Note that the order of input and output ports in each set is consecutive and
ascending, and that the number of ports is equal. An important fact obtained
from Definition 2 and 3 is that different connections of a sub-permutation always
start from different ISs and end in different OSs. Thus every sub-permutation
does not have any crosstalk in the input and output stage. The following theorem
tells us that the optical crosstalk does not occur in the intermediate stages,
either.

Theorem 3. For an N × N(N = 2n) multi-log2N network, n = log2N , and
m = 2�n/2	. Multi-decomposition guarantees that

(1) The crosstalk never occurs in the optical multi-log2N network when n is
even;

(2) The crosstalk may be possible only in the center stage (i.e., stage-(n-1)/2)
when n is odd, but the probability of generating crosstalk is less than or equal
to 1

2(n+1)/2−1
.

Proof. (1) M is equal to 2n/2 if n is even. According to Definition 3, N input and
output ports are divided evenly into ISs and OSs, and every sub-permutation
contains N/m(= 2n/2) connections. As stated previously, the crosstalk is never
generated in the input stage and output stage (by Definition 2 and 3). We
now prove that the crosstalk does not occur in the intermediate stages. We
first consider the first n/2 stages. If the crosstalk has occurred in stage j (1 ≤
j ≤ n

2 − 1) , there are at least two different DCs u and v in the same IS of
a plane satisfying the (0, j)-buddy (by Theorem 1), but only one connection
in a sub-permutation starts from an IS within each plane at any time. This
contradiction proves our conclusion that no crosstalk occurs in the first n/2
stages. In the last n/2 stages, the crosstalk can also be avoided, which can be
proved by contradiction. Once the crosstalk is generated, some connections in
the same plane will be routed to the same OS, but this case is also impossible.
In fact, these two cases are entirely symmetrical.

(2) If n is odd, m = 2(n−1)/2 . The crosstalk does not occur in the first
(n− 1)/2 stages and last (n− 1)/2 stages, but it possibly emerges in the center

A Crosstalk-Free Routing Algorithm for OSN 215

stage. Take the Fig. 5(b) as an example, two connections (2 → 3) and (7 → 5)
share a common DC at the middle stage, now the crosstalk has occurred, but no
DC can be shared in the first (n−1)/2 stages and last (n−1)/2 stages. Following
a similar argument to the first case (n is even), we can prove that when n is odd,
the crosstalk is never generated in the first (n − 1)/2 stages and last (n − 1)/2
stages. Here we fix our attention on the proof of the probability of generating
crosstalk in the middle stage. ��
For brevity and clarity, we introduce the following definitions of buddy input set
(BIS) and buddy output set (BOS). The set BIS is comprised of all input sets Ik
sharing a common DC at the center stage, and the set BOS is comprised of all
output sets Ok sharing the same DC at the center stage. For example, I0 and
I1 belong to BIS0 because they share the same DC a in the center stage, i.e.,
BIS0 = {I0, I1}; similarly, BOS0 = {O0, O1}. As shown in Fig. 6.

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

I0

I1

I2

I3

I4

I5

I6

I7

O0

O1

O2

O3

O4

O5

O6

O7

Stage 0 1 2 3 4

BIS0

BIS1

BIS2

BIS3

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

a

b

c

d

a

a

a

BOS0

BOS1

BOS2

BOS3

Fig. 6. The baseline network when n is odd (n = 5)

According to the previous definitions, some good characteristics of the multi-
decomposition are summarized as follows:

– It is impossible that two (or more) connections in each plane start from the
same IS and head for the same OS (by Definition 3);

– Two connections sharing the same DC in the center stage should come from
the same BIS and head for the same BOS;

– According to the distinct BISs, all DCs in the center stage are partitioned
into i/2 sections (as the dashed boxes in Fig. 6) such that at most one DC
possibly generates the crosstalk within each section at any time.

216 X. Liu, Y. Zhao, and Y. Wu

These characteristics imply that all DCs in the same section are mutually
exclusive in generating crosstalk, and that the corresponding DCs among distinct
sections are mutually exclusive in generating crosstalk as well. Thus, these i/2
sections possess the identical statistical nature, we may take the first DC a (the
shadow box in Fig. 6) in the first section as the representative to discuss the
probability of generating crosstalk.

Any inputs in each IS can be connected to arbitrary OS with equivalent
probability, i.e., P{Ik → Oj} = 1/i(0 ≤ k, j < i), so the probability of generating
crosstalk in SE a is

Pcrosstalk(a) = P{(I0 → O0, I1 → O1) ∪ (I0 → O1, I1 → O0)}
= P{(I0 → O0, I1 → O1) + P{(I0 → O1, I1 → O0)}
= P{I0 → O0}P{I1 → O1|I0 → O0}+

P{I0 → O1}P{I1 → O0|I0 → O1}
=

1

i
× 1

i− 1
+

1

i
× 1

i− 1

=
2

i(i− 1)
(2)

On the other hand, at most one DC generates crosstalk possibly in each section
in any given time. Then the probability of generating crosstalk in each section,
which is denoted by Pcrosstalk(section), is equal to Pcrosstalk(a). Therefore the
probability of generating crosstalk in entirely plane is

Pcrosstalk(plane) = P{∪i/2
k=0Pcrosstalk(sectionk)}

≤ ∪i/2
k=0Pcrosstalk(sectionk)

= ∪i/2
k=0Pcrosstalk(a)

=
1

i− 1
(3)

Now, substituting i = 2(n+1)/2 into expression (3), we obtain Pcrosstalk(plane) ≤
1

2(n+1)/2−1
.

4.2 Implementation of the Multi-decomposition and Its Analysis

In this subsection, we will discuss the implementation of the multi-decomposition
algorithm of permutations and its time complexity.

There is a permutation as the equation (1), in which input xi is mapped to
output yi (0 ≤ i ≤ N − 1). Based on the semi-permutation [4], we design the
decomposition algorithm of a permutation as Algorithm 1 in order to design our
multi-decomposition algorithm. The Algorithm 1 contains three parameters that
are P, N and k. These parameters denote the permutation to be decomposed,
the number of requests and the decomposition levels, respectively.

The multi-decomposition algorithm can be implemented by calling Algorithm
1 repeatedly. Let m be the integral power of 2, i.e., m = 2k(1 ≤ k ≤ n).

A Crosstalk-Free Routing Algorithm for OSN 217

Algorithm 1. Dichotomy-of-permutation (P,N, k)

Input: Any permutation P contains N request pairs.
Output: Two sub-permutations P1 and P2

1. Two vertex sets VI = {Ai0 , Ai1 , · · · , Ai
N/2k−1

} and

VO = {Ao0 , Ao1 , · · · , Ao
N/2k−1

} are built from the per-

mutation P, where Aij = {xj·2k , xj·2k+1, · · · , xj·2k+2k−1},
AOj = {yj·2k , yj·2k+1, · · · , yj·2k+2k−1}, 0 ≤ j < N/2k

2. Construct a bipartite graph G = (VI , VO, E) based on VI and VO. A
edge e ∈ E is associated with a request pair (xj , yj), where xj ∈ Aij

and yj ∈ Aoj .

3. Traverse the bipartite graph and color the two adjacent edges of the
same vertex with different colors, then all edges with the same color are
grouped into forming a sub-permutation. Since the chromatic number
of the bipartite graph is two [4], the permutation can be partitioned
into two sub-permutations P1 and P2.

The multi-decomposition algorithm becomes semi-permutation decomposition
in [4] when k is 1. One exactly connection is established in each plane when
k equals to n, thus the crosstalk and blocking can be avoided undoubtedly.
In the other cases, Algorithm 1 is called repeatedly k rounds and is executed
2i−1(1 ≤ i ≤ k) times in parallel in each round. The corresponding algorithm is
demonstrated as Algorithm 2. As the Example 1 mentioned earlier, N = 16,m =
4(= 22), and the Algorithm 1 has been called 2 rounds. Two semi-permutations
are obtained after the first round, and four quarter-permutations are got after
the second round.

Algorithm 2. Multi-decomposition of permutations

Input: N requests contained by a permutation P ;

Output: M sub-permutations, m = 2k,k is a natural number.
For i = 1 to k do

For j = 1 to 2i−1 do in parallel
{P [j, 1], P [j, 2]}=Dichotomy-of-permutation (P [j], N, i);

End parallel
End for

A permutation is partitioned into m sub-permutations, and the decomposition
process is similar to that of building a binary tree with m sub-permutations as
leaves. Furthermore, this process is carried out in parallel, so the time complexity
of Algorithm 2 is O(log2m). On the other hand, the Algorithm1 has O(N) time
complexity, so the overall complexity of Algorithm 2 is O(Nlog2m). We will
further improve Algorithm 1 by parallelism in the future so that the time cost
can be reduced much.

218 X. Liu, Y. Zhao, and Y. Wu

5 Conclusions

In this paper, we proposed an efficient algorithm called multi-decomposition
to remove the crosstalk in optical multi-log2N switching networks. A permu-
tation is partitioned into several sub-permutations by using our decomposition
algorithm, which ensures that each sub-permutation can be connected without
crosstalk within each plane of optical multi-log2N networks. Compared with
other approaches, our algorithm does not increase the time cost and hardware
cost. Although semi-permutation [4] is the foundation of our algorithm, we have
extended the concept of semi-permutation to multiple decomposition of a per-
mutation and successfully solved the crosstalk problem of optical multi-log2N
switching networks.

We have proved the validity of the multi-decomposition algorithm. The
crosstalk can be entirely removed in optical multi-log2N networks when n(=
logN) is even. If n is odd, crosstalk may be possible only in the middle stage (i.e.,
stage-(n-1)/2), but the probability of generating crosstalk is proved to be less
than or equal to 1

2(n+1)/2−1
. What’s more, our algorithm has low time complexity

to decompose a permutation due to its parallelism so that any permutations can
be routed without crosstalk in an optical multi-log2N switching network.

Acknowledgments. This work is supported by National Natural Science Foun-
dation of China (No.61073167),National High Technology Development Program
of China (No.2011AA010704),Projects in the National Science & Technology Pil-
lar Program(2011BAK08B05-02) and Major Training Program of China West
Normal University (09A003).

References

1. Lea, C.T.: Multi-log2N networks and their applications in high-speed electronic
and photonic switching systems. IEEE Transactions on Communications 18(10),
1740–1749 (1990)

2. Vaez, M.M., Lea, C.T.: Strictly nonblocking directional-coupler-based switching
networks under crosstalk constraint. IEEE Transactions on Communications 48(2),
316–323 (2000)

3. Hinton, H.S.: An introduction to photonic switching fabrics. Plenum, New York
(1993)

4. Yang, Y., Wang, J., Pan, Y.: Permutation capability of optical multistage inter-
connection networks. Journal of Parallel and distributed Computing 60(1), 72–91
(2000)

5. Padmanabhan, K., Netravali, A.N.: dilated networks for photonic switching. IEEE
Transactions on Communications com-35(12), 1357–1365 (1987)

6. Qiao, C.: A time domain approach for avoiding crosstalk in optical blocking multi-
stage interconnection networks. Jouranl of Lighwave Technology 12(10), 1854–1862
(1994)

7. Sharony, J., Cheung, K.W., Stern, T.E.: The wavelength dilation concept in light-
wave networks – Implementation and system considerations. IEEE Journal of
Lightwave Technology 11(5/6), 900–907 (1993)

A Crosstalk-Free Routing Algorithm for OSN 219

8. Zheng, S.Q., Gumaste, A., Shen, H.: A parallel self-routing rearrangeable non-
blocking multi-log2N photonic switching networks. IEEE Transactions on Network-
ing 18(2), 529–539 (2010)

9. Wong, T.S., Lea, C.T.: Crosstalk reduction through wavelength assignment in
WDM photonic switching networks. IEEE Transactions on Communications 49(7),
1280–1287 (2001)

10. Goke, G.R., Lipovski, G.J.: Banyan networks for partitioning multiprocessor sys-
tems. In: Proceedings of 1st International Symposium on Computer Architecture,
pp. 21–28. ACM Press, New York (1973)

11. Wu, C.L., Feng, T.Y.: On a class of multistage interconnection networks. IEEE
Transactions on Computers C-29(8), 694–702 (1980)

12. Hall, P.: On representatives of subsets. Journal London Mathematical Society
10(1), 26–30 (1935)

Conditional Diagnosability of Complete

Josephus Cubes�

Lishan Lu1 and Shuming Zhou1,2

1 School of Mathematics and Computer Science,
Fujian Normal University, Fuzhou, Fujian, 350007, P.R. China

894729679@qq.com
2 Key Laboratory of Network Security and Cryptology,

Fujian Normal University, Fuzhou, Fujian, 350007, P.R. China
zhoushuming@fjnu.edu.cn

Abstract. The growing size of the multiprocessor system increases its
vulnerability to component failures. The fault diagnosis is the process
of identifying faulty processors in a system through self-testing, and the
diagnosability is an important parameter to measure the reliability of an
interconnection network. As a new measure of fault tolerance, conditional
diagnosability can better evaluate the real diagnosability of interconnec-
tion networks. In this paper, we derive the conditional diagnosability of
the multiprocessor systems in terms of Complete Josephus Cubes CJCn

(n ≥ 8) under the comparison model.

Keywords: Comparison diagnosis, conditional diagnosability, Complete
Josephus Cubes.

1 Introduction

The process of identifying faulty processors in a system by analyzing the out-
comes of available inter-processor tests is called system-level diagnosis. The foun-
dation of system diagnosis and an original diagnostic model, namely the PMC
model, were established in a classic paper by Preparata et al. [11]. Its target is to
identify the exact set of all faulty nodes before their repair or replacement. All
tests are performed between two adjacent processors, and it was assumed that a
test result is reliable (respectively, unreliable) if the processor that initiates the
test is fault-free (respectively, faulty). The comparison-based diagnosis models,
first proposed by Malek [9] and Chwa and Hakimi [1], have been considered to
be a practical approach for fault diagnosis in multiprocessor systems. In these
models, the same job is assigned to a pair of processors in the system and their
outputs are compared by a central observer. Sengupta and Dahbura [12] devel-
oped this comparison approach such that the comparisons have no central unit
involved. Lin et al. [8] introduced the conditional diagnosis under the compari-
son model. By evaluating the size of connected components, they obtained that

� This work was also partly supported by the Natural Science Foundation of Fujian
Province(Nos. 2013J01221, JA12073).

C.-H. Hsu et al. (Eds.): NPC 2013, LNCS 8147, pp. 220–231, 2013.
c© IFIP International Federation for Information Processing 2013

Conditional Diagnosability of Complete Josephus Cubes 221

the conditional diagnosability of Star graph Sn is 3n − 7. Additionally, Hsu et
al. [4] have proved that the conditional diagnosability of hypercube is 3n − 5.
This idea was attributed to Lai et al. [7] who is the first to use a restricted
diagnosis strategy. Recently, the conditional diagnosabilities of cross cubes are
also obtained [18].

The Josephus Cube [5] is a recently proposed novel interconnection network
that has improved topological and exhibits better embedding and communica-
tions performance than the Binary Hypercube and several of its variants[18,20].
Its link-augmented form, Complete Josephus Cubes, can also be applied as
node cluster in an optical-based architecture suitable for large-scale hierarchical
networks[6]. These clustered networks can offer system upgrade on a node clus-
ter basis, improving overall network scalability. Loh and Hsu described a cost
effective fault-tolerant strategy that included a fault-tolerant routing algorithm
with supporting routing hardware.

Based on the fault tolerance of the Complete Josephus Cube CJCn, this
paper establishes the conditional diagnosability of the Complete Josephus Cube
CJCn (n ≥ 8) under the comparison diagnosis model. The rest of this paper
is organized as follows. Section 2 introduces some definitions, notations and the
structure of the Complete Josephus Cube CJCn. Section 3 is devoted to the fault
resiliency of CJCn; and Section 4 concentrates on the conditional diagnosability
of CJCn. Section 5 concludes the paper.

2 Preliminaries

Throughout this paper, we use a graph G = G(V,E) to represent an intercon-
nection network, where each node u ∈ V denotes a processor and each edge
(u, v) ∈ E denotes a link between nodes u and v. Let S be a subset of V (G).
The subgraph of G induced by S, denoted by G[S], is the graph with the vertex
set S ∩ V (G) and the edge set {(u, v) | (u, v) ∈ E(G), u, v ∈ S}. For any subset
F ⊂ V , the notation G \ F (or G − F) represents the graph obtained by re-
moving the vertices in F from G and deleting those edges with at least one end
vertex in F , simultaneously. If G \ F is disconnected, F is called a vertex cut
or a separating set. The components of G \ F are its maximal connected sub-
graphs. For any node u of G, N(u) denotes the set of all its neighboring nodes,
i.e., N(u) = {v | (u, v) ∈ E}. For any set F ⊂ V , let N(F) =

⋃
u∈F N(u)− F ,

N [F] = N(F)∪F . For brevity, N [u] = N(u)∪{u}, N({u, v}) and N [{u, v}] are
written as N(u, v) and N [u, v]. The symmetric difference of any two sets F1 and
F2 is defined as the set F1 � F2 = (F1 − F2) ∪ (F2 − F1).

The n-hypercube, denoted by Qn, is a graph with the vertex set
V (Qn) = {anan−1 · · · a1 | ai ∈ {0, 1}, i ∈ {1, 2, . . . , n}}, and the adja-
cency is defined as follows: A vertex anan−1 · · ·a1 is adjacent to the vertex
anan−1 · · · ai+1āiai−1 · · · a1(i ∈ {1, 2, . . . , n}). For any two vertices x and y, we
use H(x, y) to denote the Hamming distance between x and y, which is the
number of different positions between the binary strings of x and y.

222 L. Lu and S. Zhou

000

0000

1000

010

0010

1010

011

0011

1011

001

0001

1001

100

0100

1100

110

0110

1110

101

0101

1101

111

0111

1111

vertex H−link C−link J−link

(b)

(a)

Fig. 1. The Complete Josephus Cubes (a)CJC3 and (b) CJC4

Remark 1. [16,7] Let any subset S ⊂ V (Qn) (n ≥ 3) with n ≤ |S| ≤ 2n− 3. If
Qn − S is not connected, Qn − S has two components, one of which is trivial,
and the other is of size 2n − |S| − 1.

Now, we formally present the structure of the Complete Josephus Cube CJCn.

Conditional Diagnosability of Complete Josephus Cubes 223

Definition 1. [6] The n-dimensional (n ≥ 3) Complete Josephus Cube, de-
noted by CJCn, is a graph with the vertex set V (CJCn) = {anan−1 · · · a1 | ai ∈
{0, 1}, i ∈ {1, 2, . . . , n}}, and the adjacency is defined as follows: A vertex an · · · a1
is adjacent to

(1) the vertex anan−1 · · · ai+1āiai−1 · · ·a1, where i ∈ {1, 2, . . . , n};
(2) the vertex ānān−1 · · · ā2ā1;
(3) the vertex anan−1 · · · a3ā2ā1.
The edges of type (1) are referred to as Hamming (H) links, the edges of type

(2) are referred to as complementary (C) links or cross links and the edges of
type (3) are referred to as Josephus (J) links. The structures of the CJC3 and
CJC4 are shown in Figure 1.

Definition 2. [13,10] The enhanced hypercube, denoted by EQn,k, is a graph
with the vertex set V (EQn,k) = {anan−1 · · · a1 | ai ∈ {0, 1}, i ∈ {1, 2, . . . , n}},
and the adjacency is defined as follows: A vertex an · · · a1 is adjacent to

(1) the vertex anan−1 · · · ai+1āiai−1 · · ·a1, where i ∈ {1, 2, . . . , n};
(2) the vertex an · · · ak+1ākāk−1 · · · ā2ā1.
If k = n, EQn,k is degrated to the folded cube FQn [19].

Remark 2. By the definition of the Complete Josephus Cubes, it is easy to see
that any n-dimensional Complete Josephus Cube CJCn can be viewed as L⊕R
where L (respectively, R) is subgraph of CJCn with the prefix 0 (respectively,
1) of each vertex. And we have L ∼= R ∼= EQn−1,2. CJCn has the hypercube Qn,
the folded hypercube FQn and the enhanced hypercube EQn,2 as its subgraphs.

Remark 3. (1) The connectivity of hypercube Qn is n[14];
(2) The connectivity of enhanced hypercube EQn,k is n + 1 (when k = n,

EQn,n is Folded cube FQn)[14];
(3) The restricted vertex connectivity of hypercube Qn is 2n− 2[15];
(4) Let S ⊂ V (Qn) such that Qn−S has at least three isolated vertices or an

isolated edge and two isolated edges. Then |S| ≥ 3n− 4[17].

3 Fault Tolerance of CJCn

The connectivity κ(G) of a graph G = G(V,E) is the minimum number of
nodes whose removal results in a disconnected or a trivial (one node) graph. A
k-regular graph is maximally connected if it is k-connected. A k-regular graph
is (loosely) super k-connected if any one of its minimum separating sets is a
set of the neighbors of some vertex. In addition, if the deletion of a minimum
separating set results in a graph with two components (one of which has only
one vertex), then the graph is tightly super k-connected. To compensate for this
shortcoming, Esfahanian introduced the concepts of the restricted cut and the
restricted connectivity of a graph [3]. A restricted vertex set S is a restricted
vertex-cut if G \ S is disconnected, and no component is an isolated vertex.

224 L. Lu and S. Zhou

The restricted vertex connectivity of a graph G, denoted by κ′(G), is the mini-
mum cardinality of a restricted vertex-cut. It has been shown that if a network
possesses the restricted connectivity property, it is more reliable and has the
lower vertex failure comparing to that has only the super connectivity property.

Lemma 1. Let G be a graph, u and v be any two vertices of G such that u and
v have common neighbors. Then we have the following.

(1) If the graph G is hypercube Qn, |N(u) ∩N(v)| = 2[14];
(2) If the graph G is folded cube FQn, |N(u) ∩N(v)| = 2[20];
(3) If the graph G is augment cube AQn, 2 ≤ |N(u) ∩N(v)| ≤ 4[2].

Lemma 2. For any integer n with n ≥ 5, u and v be any two vertices of
the Complete Josephus Cube CJCn such that u and v have common neighbors,
|N(u) ∩N(v)| = 2.

Proof. Let u = anan−1 . . . a2a1. Since CJCn has Qn as its subgraph and AQn

as its supergraph, by Lemma 1(1)(3), we have 2 ≤ |N(u) ∩N(v)| ≤ 4.
(1) H(u, v) = 1.
If v = anan−1 . . . a2ā1 or anan−1 . . . a3ā2a1, |N(u) ∩ N(v)| = 2; otherwise,

v = anan−1 . . . ai+1āiai−1 . . . a2a1, |N(u) ∩N(v)| = 0.
(2) H(u, v) = 2.
By the definition of CJCn, v = anan−1 . . . ai+1āiai−1 . . . ā2a1 or anan−1 . . .

ai+1 āiai−1 . . . a2ā1 0r anan−1 . . . a3ā2ā1 or anan−1 . . . ai+1āiai−1 . . . aj+1ājaj−1

. . . a2a1, the pair of u and v have exactly two common neighbors.
(3) H(u, v) = 3.
If v = anan−1 . . . ai+1āiai−1 . . . a3ā2ā1, |N(u)∩N(v)| = 2; otherwise, |N(u)∩

N(v)| = 0.
(4) H(u, v) = n− 1.
If v = ānān−1 . . . ā3a2a1, |N(u) ∩N(v)| = 2; otherwise, |N(u) ∩N(v)| = 0.
(5) 4 ≤ H(u, v) ≤ n− 3 or H(u, v) = n.
Since there exists no common neighbor of u and v, |N(u) ∩N(v)| = 0.
From the discussion above, it is easy to see that Lemma 2 holds.

Lemma 3. The Complete Josephus Cube CJCn (n ≥ 4) is tightly super n+ 2-
connected.

Proof. Taking into account that CJCn has regular degree n + 2, we need only
to prove that if CJCn − S is disconnected with |S| = n + 2, CJCn − S has
exactly two connected components one of which is an isolated vertex. We denote
SL = S ∩ L and SR = S ∩R.

Since CJCn −S is disconnected, exactly one of L−SL and R−SR is discon-
nected (otherwise, both L− SL and R− SR are disconnected, by Remark 3(2),
|S| = |SL|+ |SR| ≥ 2n > n for n ≥ 4, a contraction). Without loss of generality,
we assume that L− SL is disconnected and R− SR is connected. Then we have
|SL| ≥ n.

If |SR| ≤ 1, by the fact that |N(v) ∩ R| = 2 for any vertex v ∈ L − SL and
R− SR is connected, CJCn − S is connected, a contraction. Therefore, we have
|SR| = 2 and |SL| = n.

Conditional Diagnosability of Complete Josephus Cubes 225

If there is not isolated vertex in L − SL, let C be arbitrary one connected
component of L − SL with |C| ≥ 2, then C is connected to R − SR (in detail,
|N(C)∩R| ≥ 3 > |SR|, which means that CJCn−S is connected, a contraction).

If there are at least two isolated vertices in L− SL, let v1 and v2 be any two
isolated vertices of L− SL, by Lemma 2, we have

|NL(v1) ∪NL(v2)| = |NL(v1)|+ |NL(v2)| − |NL(v1)| ∩NL(v2)|
= n+ n− 2

> |S|,

a contradiction.
By the discussion above, there is exactly one isolated vertex say v, in L− SL

and NL(v) = SL. Let C be arbitrary one connected component of L− SL − {v}
with |C| ≥ 2, then C is connected to R − SR (in detail, |N(C) ∩ R| ≥ 3 >
|SR|), which means that (L − SL − {v}) ∪ (R − SR) is connected. In addition,
N(v) ∩R = SR (otherwise, N(v) ∩ (R − SR) 	= ∅, v is connected R − SR. Then
CJCn −S is connected, a contraction). Thus, N(v) = S and CJCn −S−{v} is
still connected.

Lemma 4. For any vertex u of V (EQn,2)(n ≥ 6), the connectivity of EQn,2 −
N [u] is κ(EQn,2 −N [u]) = n− 1.

Proof. EQn,2 can be viewed as L⊕R, where L (respectively, R) is subgraph of
EQn,2 with the prefix 0 (respectively, 1) of each vertex. And we have L ∼= R ∼=
EQn−1,2.

Since δ(EQn,2 −N [u]) = n− 1, κ(EQn,2−N [u]) ≤ n− 1. Now, we show that
κ(EQn,2 −N [u]) ≥ n− 1 in the following.

Let S be the subset of V (EQn,2 −N [u]) with |S| = n− 2. Denote SL = S ∩L
and SR = S ∩R. Without loss of generality, we assume that u is in L.

Since |SR| + |N [u] ∩ R| ≤ n− 2 + 1 < n, by Remark 3(2), R −N [u]− SR is
connected. Then we need only to show that any vertex v ∈ V (L−N [u]− SL) is
connected to R−N [u]− SR.

If N(v) ∩ (R −N [u]− SR) 	= ∅, we are done; otherwise, by the fact of

|N(v)| = n+ 1 > |N(v) ∩N(u)|+ |S| = 2 + n− 2,

we have that N(v) ∩ (L − N [u] − SL) 	= ∅. Without loss of generality, we set
v0 ∈ V (N(v) ∩ (L−N [u]− SL)). Then there must exist one vertex

v1 ∈ V (N(v, v0) ∩ (L−N [u]− SL))

such that N(v1)∩ (R−N [u]− SR) 	= ∅ (otherwise, |N(v, v0)∩L| − |SL| ≤ |SR|,
which means that |N(v, v0) ∩ L| < |S|, i.e., 2n − 4 < n − 2, a contradiction).
Therefore, v is connected to R−N [u]−SR and EQn,2−N [u]−S is still connected.

Lemma 5. Let {u, v} be a pair of adjacent vertices of V (CJCn)(n ≥ 6). Then
κ(CJCn −N [u, v]) ≥ n− 2.

226 L. Lu and S. Zhou

Proof. Let S be a subset of V (CJCn−N [u, v]) with |S| = n−3. Let SL = S∩L
and SR = S ∩R.

Case 1. both of u and v are in L (respectively, R).
Since |N(w) ∩ N [u, v]| ≤ 2 for any vertex w ∈ R, by Remark 3(2), we have

that R−N [u, v]− SR is still connected.
If N(x) ∩ (R−N [u, v]− SR) 	= ∅ for any vertex x ∈ L−N [u, v]− SL, we are

done; otherwise, there exists a neighbor of x in L−N [u, v]− SL, say x0. Then
there must exist one vertex

x1 ∈ V (N(x, x0) ∩ (L−N [u]− SL))

such that N(x1)∩ (R−N [u]−SR) 	= ∅ (otherwise, |N(x, x0)∩L| − |SL| ≤ |SR|,
which means that |N(x, x0) ∩ L| < |S|, i.e., 2n − 4 < n − 3, a contradiction).
Thus, x is connected to R through the C − link or H − link of x1. Therefore,
CJCn −N [u, v]− S is still connected.

Case 2. u is in L and v is in R (respectively, u is in R and v is in L).

Subcase 2.1. |SL| ≤ n− 4 and |SR| ≤ n− 4.
Taking into account that

|SL|+ |N(v) ∩ L| ≤ n− 4 + 1 = n− 3

and
|SR|+ |N(u) ∩R| ≤ n− 4 + 1 = n− 3,

by Lemma 4, both of L−N [u, v]−SL and R−N [u, v]−SR are still connected.
Since |L−N [u, v]−SL| > |N [u, v]∩R|+|SR| (i.e., 2n−1−(n+2) > (n+2)+(n−3)
for n ≥ 6), L−N [u, v]−SL is connected to R−N [u, v]−SR, which means that
CJCn −N [u, v]− S is connected.

Subcase 2.2. |SL| = n−3 and |SR| = 0 (respectively, |SR| = n−3 and |SL| = 0).
By Lemma 4, R−N [u, v]−SR is connected. Then we need only to show that

any vertex w ∈ V (L −N [u, v]− SL) is connected to R−N [u, v]− SR.
If N(w) ∩ (R−N [u, v]− SR) 	= ∅, we are done; otherwise, by the fact of

|N(w)| = n+ 2 > |N(w) ∩N(u, v)|+ |S| = 4 + n− 3,

we have that
N(w) ∩ (L−N [u, v]− SL) 	= ∅.

Without loss of generality, we set w0 ∈ V (N(w) ∩ (L − N [u, v] − SL)). Then
there must exist one vertex w1 ∈ V (N(w,w0) ∩ (L−N [u]− SL)) with N(w1) ∩
(R −N [u, v] − SR) 	= ∅ (otherwise, |N(w,w0) ∩ L| − |SL| ≤ |SR|, which means
that |N(w,w0) ∩ L| < |S|, i.e., 2n− 4 < n− 3, a contradiction). Therefore, w is
connected to R−N [u, v]− SR and CJCn −N [u, v]− S is still connected.

Theorem 1. Let S be a subset of at most 3n − 3 vertices of V (CJCn)(n ≥
6). Under the conditional fault model, that is, N(u) � S for any vertex u ∈
V (CJCn), CJCn − S satisfies one of the following conditions:

Conditional Diagnosability of Complete Josephus Cubes 227

(1) CJCn − S is connected; or
(2) CJCn −S has exactly two connected components, one of which is K2 and

the other one has 2n − |S| − 2 vertices.

Proof. Let SL = S ∩ L and SR = S ∩R with the restriction that |S| ≤ 3n− 3.

Case 1. N(u, v) � S for any pair of adjacent vertices {u, v} of CJCn.

Subcase 1.1. Either |SL| ≥ 2n− 2 or |SR| ≥ 2n− 2.
Without loss of generality, we assume that |SR| ≥ 2n− 2. Then |SL| ≤ 3n−

3 − (2n − 2) ≤ n − 1 < κ(EQn−1,2), by Remark 3(1), we have that L − SL is
still connected. Now we show that there exists a path connecting u to L − SL

for any vertex u ∈ R−SR. Let uL and uc be the neighbors of u, which are in L.
If at least one of uL and uc is not in SL, we are done; otherwise, since N(u) �

S, there exists one neighbor v ∈ (R−SR) of u. IfN(v)∩(R−SR) 	= ∅, we are done;
otherwise, since N(u, v) � S, there must exist one vertex w ∈ N(u, v)∩(R−SR)
such that N(w) ∩ (L− SL) 	= ∅ (otherwise, since |N(u, v) ∩R| ≥ 2n− 4 and all
these 2n − 4 vertices have at least 2n − 4 neighbors in L, |SL| ≥ 2n− 4. Then
|S| ≥ 2n − 4 + 2n − 2 > 3n − 2, a contradiction). Therefore, u can connect to
L− SL which means that CJCn − S is connected.

Subcase 1.2. |SL| ≤ 2n− 3 and |SR| ≤ 2n− 3.
If one of two subgraphs L − SL and R − SR is connected, the discussion is

similar to that of Subcase 1.1. Now we assume that both of L− SL and R− SR

are disconnected.

S S S S
L

LL

LR

R

R

R

u uv
v

L−S −{u} L−S −{u}R−S −{v} R−S −{v}

(a) (b)

Fig. 2. Illustration in Theorem 1 for the example of subcase 1.2.1

Subcase 1.2.1. |SL| ≤ 2n− 5 and |SR| ≤ 2n− 5.
In this case, by Remark 1, there must exist one vertex u ∈ L−SL (respectively,

v ∈ R− SR) such that N(u) ∩ L ⊂ SL (respectively, N(v) ∩R ⊂ SR), and both
of L− SL −N [u] and R− SR −N [v] are still connected.

We now show that the four parts {u}, {v}, L−SL−N [u] and R−SR −N [v]
constitute exactly one connected component.

If u is connected to v, by the assumption that N(u, v) � S, either N(u) ∩
(R − SR − {v}) 	= ∅ or N(v) ∩ (L − SL − {u}) 	= ∅ holds (Figure 2(a)). Now

228 L. Lu and S. Zhou

we assume that u and v are not adjacent, by the assumption that N(u) � S
and N(v) � S, N(u) ∩ (R − SR − {v}) 	= ∅ and N(v) ∩ (L − SL − {u}) holds
(Figure 2(b)).

Furthermore, |L− SL −{u}| > |SR ∪ {v}| (i.e., |L| − |SL| − 1 > |SR|+1) and
there exists a perfect matching between L and R, L− SL − {u} is connected to
R− SR − {v}.

By the discussion above, we obtain that CJCn − S is connected.

Subcase 1.2.2. 2n− 4 ≤ |SL| ≤ 2n− 3 or 2n− 4 ≤ |SR| ≤ 2n− 3.
Without loss of generality, we assume that 2n − 4 ≤ |SR| ≤ 2n − 3, then

n ≤ |SL| ≤ n + 1. Since L (respectively, R) has Qn−1 as its subgraph, by
Remark 1, there are exactly two components of L− SL, one of which is trivial,
say {u}. By Remark 3(3)(4), we obtain that in R − SR, there are exactly two
components, one of which is trivial or one isolated edge.

If the smaller one of the two components of R− SR is trivial, say u, then the
discussion is the same as subcase 1.2.1. If the smaller one of the two components
of R − SR is an isolated edge, say {v0, v1}, by the assumption that 2n − 4 ≤
|SR| ≤ 2n − 3, |N(v0, v1)| = 2n − 4. If u is connected to the edge (v0, v1),
|N(u, v0, v1)| = 3n−1 > 3n−3, and {u, v0, v1} is connected to L−SL or R−SR.
If u is not connected to the edge (v0, v1), by the assumption that N(u) � S, u is
connected to R−SR. Since there are 4 neighbors of {v0, v1} in L and n ≤ |SL| ≤
n + 1, {v0, v1} is connected to L − SL. Since |L − SL − {u}| > |SR ∪ {v0, v1}|
(i.e.,|L| − |SL| − 1 > |SR| + 2) and there exists a perfect matching between L
and R, L−SL−{u} is connected to R−SR−{v0, v1}. Therefore we obtain that
CJCn − S is connected.

Case 2. There exists a pair of adjacent vertices {u, v} of G such that
N(u, v) ⊂ S.

Since |S ∩N(u, v)| ≥ |N(u, v)| ≥ 2n, we have

|S −N(u, v)| = |S| − |S ∩N(u, v)| ≤ 3n− 3− 2n = n− 3.

By Lemma 5, CJCn − S − N [u, v] is connected. So the graph CJCn − S has
exactly two components, one of which is K2[u, v], the other is CJCn−S−{u, v}.

4 The Conditional Diagnosability of CJCn

The comparison diagnosis strategy can be modeled as a multi-graphM = (V,C),
where V is the same node set defined as in G, C is the labelled edge set. A
labelled edge (u, v)w is said to belong to C if (u, v) is an edge labeled by w,
which implies that the processors u and v are compared by processor w. Since
different comparators can compare the same pair of processors, M is a multi-
graph. Denote the comparison result as σ((u, v)w) such that σ((u, v)w) = 0 if
the outputs of u and v agree, and σ((u, v)w) = 1 if the outputs disagree. If the
comparator w is fault-free and σ((u, v)w) = 0, the processors u and v are fault-
free; while σ((u, v)w) = 1, at least one of the three processors u, v and w is faulty.
The collection of the comparison results defined as a function σ : C → {0, 1},

Conditional Diagnosability of Complete Josephus Cubes 229

is called the syndrome of the diagnosis. A subset F � V is said to be compatible
with a syndrome σ if σ can arise from the circumstance that all vertices in F are
faulty and all vertices in V \ F are fault-free. A faulty comparator can lead to
unreliable results, so a set of faulty vertices may produce different syndromes.

Let σF = {σ | σ is compatible with F}. Two distinct subsets F1 and F2 of
V (G) are said to be indistinguishable if and only if σF1 ∩ σF2 	= φ; otherwise,
both of F1 and F2 are said to be distinguishable. There are several different ways
to verify whether a system is t-diagnosable under the comparison approach. The
following lemma obtained by Sengupta and Dahbura [12] gives necessary and
sufficient conditions to ensure distinguishability.

Lemma 6. [12] Let G be a graph. For any two distinct subsets F1, F2 of V (G).
(F1, F2) is a distinguishable pair if and only if at least one of the following
conditions is satisfied.

(1) There are two distinct vertices u, w ∈ V (G) − (F1 ∪ F2) and there is a
vertex v ∈ F1ΔF2 such that (u, v)w ∈ C;

(2) There are two distinct vertices u and v ∈ F1 \ F2 and there is a vertex
w ∈ V (G)− (F1 ∪ F2) such that (u, v)w ∈ C; or

(3) There are two distinct vertices u, v ∈ F2 \ F1 and there is a vertex w ∈
V (G)− (F1 ∪ F2) such that (u, v)w ∈ C.

Lin et al. [8] introduced the so-called conditional diagnosability of a system
under the situation that no set of faulty vertices can contain all neighbors of
any vertex in the system. A faulty set F ⊂ V (G) is called a conditional faulty
set if NG(v) � F for every vertex v ∈ V (G). A system G(V,E) is said to
be conditionally t-diagnosable if F1 and F2 are distinguishable for each pair of
distinct conditional faulty set F1 and F2 with |F1| ≤ t, |F2| ≤ t. The maximum
value of t such that G is conditionally t-diagnosable is called the conditional
diagnosability of G, denoted by tC(G). It is trivial that tC(G) ≥ t(G).

Lemma 7. Let F1 and F2 be any two distinct conditional faulty subset of CJCn

with |F1| ≤ 3n − 2 and |F2| ≤ 3n − 2, and H be the maximum component of
CJCn − F1 ∩ F2. Then for any vertex u ∈ F1 � F2, we have u ∈ H.

Proof. Without loss of generality, let u ∈ F1 − F2.
Since F2 is the conditional faulty subset, there is a vertex v ∈ CJCn−F2−{u}

such that (u, v) ∈ E(CJCn). Assume that u /∈ H . Then we have v /∈ H . In other
words, (u, v) is the small component of CJCn − F1 ∩F2. Obviously, |F1 ∩F2| ≤
3n− 3. Since F1 and F2 are two distinct conditional faulty subset of CJCn. By
Theorem 1, (u, v) is a component K2 of CJCn−F1∩F2, and N(u, v) ⊂ F1∩F2.
In addiction, u ∈ F1−F2, so that all the neighbors of v are in F1. However, since
F1 is the conditional faulty subset, so we have u ∈ H .

Lemma 8. [8] Let G be a graph with δ(G) ≥ 2, and let F1 and F2 be any two
distinct conditional faulty subsets of G. If either F1 ⊂ F2 or F2 ⊂ F1, (F1, F2)
is a distinguishable conditional pair under the comparison diagnosis model.

Theorem 2. The conditional diagnosability of the Complete Josephus Cube
CJCn under the comparison diagnosis model is tc(CJCn) = 3n− 2 (n ≥ 8).

230 L. Lu and S. Zhou

Proof. First, we prove that tc(CJCn) ≤ 3n− 2.
There exist three vertices u, v, w ∈ V (CJCn), such that (u,w, v) is in a cycle

of length 3. We set A = N [u, v, w], F1 = A − {w, v}, and F2 = A − {u,w}. We
get |F1| = |F2| = 3(n − 1) + 2 = 3n − 1, and |F1 − F2| = |F2 − F1| = 1. It is
easy to check that F1 and F2 are two conditional faulty sets, and F1 and F2 are
indistinguishable. Hence, we have the result tc(CJCn) ≤ 3n− 2.

Second, we prove that tc(CJCn) ≥ 3n − 2. Suppose that F1 and F2 are two
distinct conditional faulty subsets of CJCn with |F1| ≤ 3n−2 and |F2| ≤ 3n−2.
Then it is suffice to prove that (F1, F2) is distinguished under the comparison
diagnosis model.

By Lemma 8, if one of F2 ⊂ F1 and F1 ⊂ F2 holds, then (F1, F2) is distin-
guishable.

Now we assume F2 � F1 and F1 � F2, which implies that |F1 − F2| ≥ 1 and
|F2 − F1| ≥ 1. We have |F1 ∩ F2| ≤ 3n− 3.

Let H be the maximum component of CJCn − F1 ∩ F2. By Lemma 7, any
vertex in F1 � F2 is in H .

We claim that H has a vertex, say u, outside of F1 ∪F2 that has no neighbor
F1 ∩ F2. Since every vertex of CJCn has degree n+ 2, those vertices in F1 ∩ F2

have at most (n+2)|F1 ∩F2| neighbors in H in total. There are at most 2(3n−
2) − |F1 ∩ F2| vertices in F1 ∪ F2 and at most two vertices of CJCn − F1 ∩ F2

may not belong to H by Theorem 1. Since |F1 ∩ F2| ≤ 3n− 3, we have

2n − (n+ 2)|F1 ∩ F2| − (2(3n− 2)− |F1 ∩ F2|)− 2

≥ 2n − (n+ 1)|F1 ∩ F2| − 2(3n− 2)− 2

≥ 2n − n(3n− 3)− 2(3n− 2)− 2

= 2n − 3n2 − 3n+ 2

> 2 (n ≥ 8).

Thus, there must be some vertex of H outside F1∪F2, which has no neighbors
in S. Let u be such a vertex.

If u has no neighbor in F1 ∪F2, then we can find a path of length at least two
within H to a vertex v in F1 ∪ F2. We may assume that v is the first vertex of
F1ΔF2 on this path, and let q and w be the two vertices on this path immediately
before v (we may have u = q), so q and w are not in F1 ∪ F2. The existence of
the edges (q, w) and (w, v) shows that (F1, F2) is a distinguishable conditional
pair of CJCn by Lemma 6. Now we assume that u has a neighbor in F1ΔF2.
Since the degree of u is at least 3, and u has no neighbor in S, there are three
possibilities:

(1) u has two neighbors in F1 − F2; or
(2) u has two neighbors in F2 − F1; or
(3) u has at least one neighbor outside F2 ∪ F1.

In each subcase above, Lemma 6 implies that (F1, F2) is a distinguishable con-
ditional pair of CJCn under the comparison diagnosis model.

Conditional Diagnosability of Complete Josephus Cubes 231

References

1. Chwa, K.Y., Hakimi, S.L.: On fault identification in diagnosable system. IEEE
Transactions on Computers C-30(6), 414–422 (1981)

2. Chang, N.-W., Hsieh, S.-Y.: Conditional diagnosability of augmented cubes under
the PMC model. IEEE Transations on Dependable and Secube Computing 9(1),
46–60 (2012)

3. Esfahanian, A.H.: Generalized measures of fault tolerance with application to
n-cube networks. IEEE Transactions on Computers 38, 1586–1591 (1989)

4. Hsu, G.-H., Chiang, C.-F., Shih, L.-M., Hsu, L.-H., Tan, J.J.M.: Conditional diag-
nosability of hypercubes under the comparison diagnosis model. Journal of Systems
Architecture 55(2), 140–146 (2009)

5. Loh, P.K.K., Hsu, W.J.: The Josephus Cubes: a novel interconnection network.
Parallel Computing 26, 427–453 (2000)

6. Loh, P.K.K., Hsu, W.J.: Fault-tolerant routing for complete Josephus Cubes. Par-
allel Computing 30, 1151–1167 (2004)

7. Lai, P.-L., Tan, J.J.M., Chang, C.-P., Hsu, L.-H.: Conditional diagnosability mea-
sure for large multiprocessors systems. IEEE Transactions on Computers 54, 165–
175 (2005)

8. Lin, C.-K., Tan, J.J.M., Hsu, L.-H., Cheng, E., Lipták, L.: Conditional diagnos-
ability of cayley graphs generalized by transposition tree under the comparison
diagnosis model. Journal of Interconnection Networks 9, 83–97 (2008)

9. Malek, M.: A comparison connection assignment for diagnosis of multiprocessor
systems. In: Proc. 7th Int. Symp. Comput. Archirecture, pp. 31–35 (1980)

10. Manuel, P.: Minimum average congestion of enhanced and augmented hypercubes
into complete binary trees. Discrete Applied Mathematics 159, 360–366 (2011)

11. Preparata, F.P., Metze, G., Chien, R.T.: On the connection assignment problem
of diagnosable systems. IEEE Transactions on Computers 16, 848–854 (1967)

12. Sengupta, A., Dahbura, A.: On self-diagnosable multiprocessor systems: diagno-
sis by the comparison approach. IEEE Transaction on Computers 41, 1386–1396
(1992)

13. Tzeng, N.-F., Wei, S.Z.: Enhanced hypercubes. IEEE Transactions on Comput-
ers 40(3), 284–294 (1991)

14. Wang, D.: Diagnosability of hypercubes and enhanced hypercubes under the com-
parision diagnosis model. IEEE Transaction on Computers 48(12), 1369–1374
(1999)

15. Xu, J.-M., Zhu, Q., Hou, X., Zhou, T.: On restricted connectivity and extra connec-
tivity of hypercubes and folded hypercubes. J. Shanghai Jiaotong Univ. (Sci.) E-
10(2), 208–212 (2005)

16. Yang, X., Evans, D.J., Megson, G.M., Lai, H.J.: On the maximal connected com-
ponent of a hypercube with faulty vertices III. International Journal of Computer
Mathematics 83, 27–37 (2006)

17. Zhu, Q.: Studies of fault tolerance and diagnosability of interconnection networks.
Ph. D. Thesis, University of Science and Technology of China (2005)

18. Zhou, S.: The conditional diagnosability of crossed cubes under the comparison
model. International Journal of Computer and Mathematics 87(15), 3387–3396
(2010)

19. Zhu, Q., Liu, S.-Y., Xu, M.: On conditional diagnosability of the folded hypercubes.
Information Sciences 178, 1069–1077 (2008)

20. Zhu, Q., Xu, J.-M., Xu, M.: X, On reliability of the folded hypercubes. Information
Sciences 177, 1782–1788 (2007)

Circular Dimensional-Permutations and Reliable

Broadcasting for Hypercubes
and Möbius Cubes

Baolei Cheng1,2, Jianxi Fan1,�, Jiwen Yang1, and Xi Wang1

1 School of Computer Science and Technology, Soochow University,
Suzhou 215006, China

{chengbaolei,jxfan,jwyang,20124027002}@suda.edu.cn
2 Key Laboratory for Computer Information Processing Technology,

Soochow University, China

Abstract. Reliable broadcasting for interconnection networks can be
achieved by constructing multiple independent spanning trees(ISTs)
rooted at the same node. In this paper, we prove that there exists (n−1)!
sets of ISTs rooted at an arbitrary node for Qn and Mn based on cir-
cular dimensional-permutations of 0, 1, . . . , n − 1 and n ≥ 1. At the
same time, we give an parallel algorithm, called BCIST, which is the
further study of IST problem for Qn and Mn in literature. Furthermore,
simulation experiments of ISTs based on JUNG framework and different
sets of disjoint paths between node 1 and any node v ∈ V (0-M4)\{1} for
0-M4 are also presented.

Keywords: dimensional-permutation, reliable broadcasting, hypercube,
Möbius cube, independent spanning tree.

1 Introduction

It is well known that hypercubes are widely used in parallel computing systems,
which have many advantageous properties such as lower node degree and diame-
ter, higher connectivity, symmetry, and etc [21], [24]. Furthermore, by changing
their links between some nodes, the variants of hypercubes, such as Möbius cubes
[9], crossed cubes [20], and twisted cubes [1] were proposed, which have better
properties [12], [13], [14], [16], [29].

Independent spanning trees(ISTs for short) have been used in reliable broad-
casting, secure message distribution [2], reliable communication protocols [17],
one-to-all broadcasting [26], the multi-node broadcasting [3], and diagnosis [6].
Therefore, the problem to construct ISTs for a given network is becoming an
important issue.

However, there is a well-known conjecture on the existence of ISTs for any
network [17][31]:

� Corresponding author.

C.-H. Hsu et al. (Eds.): NPC 2013, LNCS 8147, pp. 232–244, 2013.
c© IFIP International Federation for Information Processing 2013

CDPs and Reliable Broadcasting for Hypercubes and Möbius Cubes 233

Conjecture 1. Let G be an n-node-connected network with n ≥ 1. Then, there
exist n node-independent spanning trees rooted at any node for G.

In what follows, we use independent to represent node-independent. For n ≤ 4,
Conjecture 1 was solved [8], [10], [17], [31], but when n ≥ 5, it has remained
open. Consequently, researchers are interested in the study of ISTs for various
special networks. Conjecture 1 has been solved for some restricted classes of
networks, such as planar networks [15], product networks [23], hypercubes [25],
[28], [30], Möbius cubes [5], [6], locally twisted cubes [22], crossed cubes [4], [7],
twisted cubes [27], even networks [18], odd networks [19], and etc.

We say that a sequence of n integers is a permutation if it contains all integers
from 0 to n−1 exactly once. Considering the results for hypercubes and Möbius
cubes, each paper in literature only considers a set of ISTs for the special network
and lacks the discussion of the relation between the permutations and ISTs.

Question 1. Can all permutations of 0, 1, . . . , n−1 be used to construct spanning
tree and ISTs for the n-dimensional hypercubeQn and the n-dimensional Möbius
cube Mn?

To solve this question, we adopt the definition of circular dimensional-
permutation and prove that any circular dimensional-permutation of 0, 1, . . . , n−
1 can be used to construct n ISTs for Qn and Mn in this paper, which is the
further discussion of spanning trees and ISTs for Qn and Mn comparing with
the results in literature.

The rest of this paper is organized as follows. Section 2 presents some defi-
nitions, graph terminologies and notations. Section 3 discusses the IST problem
for Qn and Mn rooted at any node. We draw the conclusion of the paper in the
last section.

2 Preliminaries

2.1 Definition of Hypercubes, Möbius Cubes, and ISTs

We use a unique binary string of length n to denote the address of each node
in the n-dimensional hypercube Qn and the n-dimensional Möbius cube Mn.
In what follows, nodes and their addresses will be used alternatively. Qn is a
network consists of 2n nodes. Any two nodes of Qn are adjacent whenever their
corresponding addresses differ in exactly one place.

Mn is a variant of the Qn, which has two types, 0-type n-dimensional Möbius
cube and 1-type n-dimensional Möbius cube. We adopt the following definition
of Mn in [11].

Definition 1. [11] 0-M1 and 1-M1 are both the complete graph on two nodes
whose addresses are 0 and 1. For any integer n with n ≥ 2, both 0-Mn and
1-Mn contain one 0-type (n − 1)-dimensional sub-Möbius cube M0

n−1 and one

234 B. Cheng et al.

1-type (n− 1)-dimensional sub-Möbius cube M1
n−1. The nodes in M0

n−1 have a
common prefix 0; the nodes in M1

n−1 have a common prefix 1. For two nodes
x = xn−1xn−2 . . . x0 ∈ V (M0

n−1) and y = yn−1yn−2 . . . y0 ∈ V (M1
n−1), where

xn−1 = yn−1 = 0,

(1) (x, y) ∈ E(0-Mn) if and only if xi = yi, i = 0, 1, . . . , n− 2;
(2) (x, y) ∈ E(1-Mn) if and only if xi = yi, i = 0, 1, . . . , n− 2.

A binary string x of length n is denoted by xn−1xn−2 . . . x0. Suppose that
u = un−1un−2 . . . u0 and v = un−1un−2 . . . ulul−1vl−2vl−3 . . . v0 are two nodes
in Xn ∈ {Qn,Mn}. We say that u and v have a leftmost differing bit at position
l − 1. We use LDF(u, v) to denote the leftmost differing bit of two nodes u
and v. Given two adjacent nodes u and v, if LDF(u, v)=d, we say that v is
the d-neighbor of u or that the edge (u, v) is an edge of dimension d. For this
purpose, let Nd(u) denote the d-neighbor of u. We follow the definitions of path
and ancestor in [7].

Two paths P and P ′ starting from a node u and ending with another node v
are said to be internally disjoint if E(P)∩E(P ′) = ∅ and V (P)∩V (P ′) = {u, v}.
Two spanning trees for a network G are independent if they are rooted at the
same node, said u, and for each node v ∈ V (G)\{u}, the two paths starting at
u and ending with v are internally disjoint. A set of spanning trees of G rooted
at v are called independent spanning trees if they are pairwisely independent.

2.2 Definition of Dimensional-Permutation

The sequence of n integers is called a dimensional-permutation if it contains all
integers from 0 to n − 1 exactly one (Noting that each node in Qn or Mn has
n neighbors, which are 0-neighbor, 1-neighbor, . . ., (n− 1)-neighbor). A circular
dimensional-permutation (CDP for short) is a type of permutation to put all
integers from 0 to n− 1 along a closed circle in the clockwise order [6]. Suppose
that {a0, a1, . . . an−1}= {0, 1, . . . , n− 1}. All cyclic permutations of integers are
equivalent in the circle,

a0 → a1 → . . . → an−1,
a1 → a2 → . . . → an−1 → a0,
. . . ,
an−1 → a0 → a1 → . . . → an−2

belong to the same CDP. The total number of CDPs is n!/n = (n − 1)!. For
example, the six CDPs of 0, 1, 2, 3 are

3 → 0 → 1 → 2,
3 → 0 → 2 → 1,
3 → 1 → 0 → 2,
3 → 1 → 2 → 0,
3 → 2 → 0 → 1,
3 → 2 → 1 → 0.

CDPs and Reliable Broadcasting for Hypercubes and Möbius Cubes 235

3 An Reliable Broadcasting Algorithm Based on ISTs
for Hypercubes and Möbius Cubes

In this section, we point out that every CDP of n integers 0, 1, 2, . . . , n− 1 can
be used to construct ISTs for Xn ∈ {Qn,Mn}. We now present the following
observation.

Observation 1. For the n-dimensional Möbius cube, we proved the correctness
of ISTs rooted at any node based on the descending CDP n− 1, n− 2, . . . , 0 [6].
In essence, the set of optimal ISTs for Qn in [25] can be obtained by
the ascending CDP 0, 1, . . . , n− 1; the set of ISTs in [30] is similar to
that in [28] for Qn, which can be constructed by the descending CDP
n− 1, n− 2, . . . , 0. Thus, the result in this section is the further study
of spanning trees and ISTs for Qn and Mn.

3.1 ISTs for Qn and Mn with Any Circular
Dimensional-Permutation

In what follows, we always let u denote any node in Qn or Mn. Now we present
an algorithm, called BCIST, to construct n ISTs rooted at an arbitrary node
u for Xn ∈ {Qn,Mn}. Fig. 1 demonstrates the construction procedures of n
spanning trees T0, T1, . . . , Tn−1 rooted at node u for Xn ∈ {Qn,Mn} in radial
style.

Algorithm. BCIST

Input: An array S = {a0,a1,..., an−1}, where

the permutation a0, a1, ..., an−1 is a CDP of 0, 1, ..., n− 1;
an arbitrary node u in Xn ∈ {Qn, Mn};

Output: T0,T1,..., Tn−1 rooted at u for Xn;

Begin

1: for i = 0 to n− 1 do in parallel

2: V (Ti) = Nai(u);
/*Nai(u) denotes the ai-neighbor of u.*/

3: E(Ti) = ∅;

4: for l = 0 to n− 1 do

5: for each node v ∈ V (Ti) do in parallel

6: d = S[(i+ l+ 1) mod n];
/*Indexing of S is counted from 0 to n− 1,
where n is length of the array S.*/

7: E(Ti) = E(Ti) ∪ {(v,Nd(v)};
8: V (Ti) = V (Ti) ∪ {Nd(v)};
9: end for

10: end for

11: end for

end

236 B. Cheng et al.

Fig. 1. Construction procedures based on algorithm BCIST

The construction procedures of T0, T1, . . . , Tn−1 are similar. Take T0 for
example, the construction procedures are described as follows (See Fig. 1).

At first, there is only one node Na0(u) in tree T0; during the 1st iteration (l
=0), node Na0(u) in T0 is connected to its a1-neighbor node Na1(Na0(u)). There-
fore, V (T0) = {Na0(u), Na1(Na0(u))} and E(T0) = {(Na0(u), Na1(Na0(u)))};
during the 2nd iteration (l = 1), each node v in T0 is connected to its a2-
neighbor node Na2(v). Thus, the edges (Na1(Na0(u)), Na2(Na1(Na0(u)))) and
(Na0(u), Na2(Na0(u))) are appended to T0 and V (T0) = {Na0(u), Na2(Na0(u)),
Na1(Na0(u)), Na2(Na1(Na0(u)))}; during the 3rd iteration, each node v in T0 is
connected to its a3-neighbor node Na3(v). As a result, it has doubled the number
of nodes in T0; During the l-th iteration, each node v in T0 is connected to its
S[l + 1]-neighbor node NS[l+1](v) with 4 ≤ l ≤ n− 2; in the last iteration, each
node v in T0 is connected to its a0-neighbor node Na0(v).

Consequently, T0 is a spanning tree for Xn ∈ {Qn,Mn}.
More examples will be shown in the next subsection. Now we give the following
lemma about the relation of adjacent nodes in Mn and Qn.

Lemma 1. For any node xn−1xn−2 . . . x0 and its k-neighbor node yn−1yn−2 . . . y0
with 0 ≤ k ≤ n−1 inXn ∈ {Mn, Qn}, we have xn−1xn−2 . . . xk+1 = yn−1yn−2 . . .
yk+1 and xk 	= yk.

Based on Definition 1, the definition of Qn, and Lemma 1, we have the fol-
lowing lemma.

Lemma 2. For any two nodes x, y in V (X
xn−1

n−1), if LDF(x, y) = k with 0 ≤
k ≤ n− 2 and X

xn−1

n−1 ∈ {Mxn−1

n−1 , Q
xn−1

n−1 }, then LDF(Nn−1(x), Nn−1(y))=k and

Nn−1(x), Nn−1(y) ∈ X
xn−1

n−1 .

Lemma 3. [5] Given a walk W : u(0), u(1) = Nm1(u
(0)), u(2) = Nm2(u

(1)), . . . ,
u(k) = Nmk

(u(k−1)) in Mn for any integer k with 1 ≤ k ≤ n, if m1, m2, . . . , mk

differ from one another and 0 ≤ mi ≤ n− 1 for i = 1, 2, . . . , k, then W is a path.
For the convenience of proof, we define a vector < β1, β2, . . . , βn > such that

the set {β1, β2, . . . , βn} equals to the set {0, 1, . . . , n− 1}.

CDPs and Reliable Broadcasting for Hypercubes and Möbius Cubes 237

Lemma 4. Suppose that P : u(0), u(1) = Na1(u
(0)), u(2) = Na2(u

(1)), . . . ,
u(k) = Nak

(u(k−1)) and P ′: u(0), v(1) = Na1
′(u(0)), v(2) = Na2

′(v(1)), . . . ,
v(t) = Nat

′(v(t−1)) are two paths in Xn ∈ {Qn,Mn} for any two integers k, t
with 1 ≤ k, t ≤ n and a1 	= a1

′. If the following conditions hold:
(1) < βi1 , βi2 , . . . , βik >=< a1, a2, . . . , ak >, where 1 ≤ i1 < i2 < . . . < ik ≤ n;
(2) < βj1 , βj2 , . . . , βjt >=< a1

′, a2′, . . . , at′ >, where 1 ≤ j1 < j2 < . . . < jt ≤ n,
then V (path(P, u(1), u(k))) ∩ V (path(P ′, v(1), v(t))) = ∅.

Proof. Suppose that there exists a node v, such that v ∈ V (P) ∩ V (P ′). We
denote v as v = u(i) and v = v(j) with 1 ≤ i ≤ k and 1 ≤ j ≤ t. Let A =
{a1, a2, . . . , ai} and B = {a1′, a2′, . . . , aj ′}. We haveM1 = max((A∪B)\(A∩B)).
By Lemma 2, we can verify that the M1-bit of v in P is different from that of v
in P ′, which is a contradiction. �
Based on Lemma 4, we have the following corollary.

Corollary 1. Suppose that P : u(0), u(1) = Na1(u
(0)), u(2) = Na2(u

(1)), . . . ,
u(k) = Nak

(u(k−1)) = v and P ′: v(0), v(1) = Na1
′(u(0)), v(2) = Na2

′(v(1)), . . . ,
v(t) = Nat

′(v(t−1)) = v are two paths in Xn ∈ {Qn,Mn} for any two integers
k, t with 1 ≤ k, t ≤ n and ak 	= at

′. If the following conditions hold:
(1) < βi1 , βi2 , . . . , βik >=< a1, a2, . . . , ak >, where 1 ≤ i1 < i2 < . . . < ik ≤ n;
(2) < βj1 , βj2 , . . . , βjt >=< a1

′, a2′, . . . , at′ >, where 1 ≤ j1 < j2 < . . . < jt ≤ n,
then V (path(P, u(0), u(k))) ∩ V (path(P ′, v(0), v(t))) = {v}.
Lemma 5. Let the input a0, a1, . . . , an−1 of algorithm BCIST be any
dimensional-permutation of integers 0, 1,. . . ,n − 1 and Xn ∈ {Qn,Mn}. Ti

obtained by Algorithm BCIST is a spanning tree for Xn with integer i =
0, 1, . . . , n− 1.

Proof. Without loss of generality, we consider the tree T0 obtained by algorithm
BCIST. After the n iterations, we have 1+20+21+ ...+2n−1 = 2n nodes in tree
T0. Choosing arbitrary two nodes v(1) and v(2) from T0, the < Na0(u), v

(1) >-
path can be denoted by Na0(u), x

(1) = Nai1
(Na0(u)), x

(2) = Nai2
(x(1)), . . . ,

x(k) = Naik
(x(k−1)) and the < Na0(u), v

(2) >-path can be denoted by Na0(u),

x(1) = Naj1
(Na0(u)), x

(2) = Naj2
(x(1)), . . . , x(m) = Najm

(x(m−1)), where 0 ≤
i1 < i2 < . . . < ik ≤ n − 1 and 0 ≤ j1 < j2 < . . . < jm ≤ n − 1. By algorithm
BCIST, it is easy to verify < Na0(u), v

(1) >-path and < Na0(u), v
(2) >-path

satisfy the conditions in Lemma 4, which implies that v(1) 	= v(2).
Thus, we can say that T0 is a spanning tree rooted at Na0(u) for Xn ∈

{Qn,Mn}. Noting that u is the child of node Na0(u) and the leaf node in T0,
that is, T0 is a spanning tree rooted at u. �
Lemma 6. [4] Let T and T ′ be two spanning trees rooted at node u for a network
G. T and T ′ are independent if and only if for every node v ∈ V (G)\{u}, ancestor
(v, T) ∩ ancestor (v, T ′) = {u} and ancestor (v, T) ∪ ancestor (v, T ′) ⊃ {u}.
Lemma 7. T0, T1, . . . , Tn−1 obtained by Algorithm BCIST are n ISTs for Xn ∈
{Qn,Mn}.

238 B. Cheng et al.

Proof. We have the following two cases.

Case 1. Xn is Mn. By Lemma 5, Ti obtained by Algorithm BCIST is a spanning
tree for V (Mn) for integer i = 0, 1, . . . , n− 1. We only need to prove that Ti and
Tj are independent for 0 ≤ i ≤ j ≤ n− 1.

The trivial cases is n = 1 and n = 2. Now we consider n with n ≥ 3. The
longest path P1 in Ti and the longest path P2 in Tj can be denoted by

P1: u, x0 = Nai(u), x1 = Nai+1(x0), . . . , xn−i−1 = Nan−1(xn−i−2), xn−i =
Na0(xn−i−1), xn−i+1 = Na1(xn−i), . . . , xn = Nai(xn−1) and

P2: u, y0 = Naj(u), y1 = Naj+1(y0), . . . , yn−j−1 = Nan−1(xn−j−2), yn−j =
Na0(yn−j−1), yn−j+1 = Na1(yn−j), . . . , yn = Naj (yn−1),
respectively, where 0 ≤ i < j ≤ n− 1.

Let ac0 = ai and ad0 = aj . By lemma 6, we only need to prove that for any
v ∈ V (Ti)∩V (Tj), ancestor (v, Ti) ∩ ancestor (v, Tj) = {u} and ancestor (v, Ti)
∪ ancestor (v, Tj) ⊃ {u}. Any path in Ti and any path in Tj can be denoted by
P3 and P4, respectively, as follows.

P3: u, x0 = Nac0=ai(u), x1
′ = Nac1 (xi), . . . , xk

′ = Nack
(xk−1

′), xk+1
′ =

Nac0
(xk

′) and
P4: u, y0 = Nad0

=aj (u), y1
′ = Nad1

(yi), . . . , yl
′ = Nadl

(yl−1
′), yl+1

′ =
Nad0

(yl
′),

Without loss of generality, suppose that aj > ai and v ∈ V (P3) ∩ V (P4). Let
v = acw = adz where 1 ≤ u ≤ k and 1 ≤ z ≤ m. Based on P1, P2, P3, and P4,
we define walks W1, W2, W3, and W4 as follows.

W1: ai, ai+1, . . . , an−1, a0, a1, . . . , ai,
W2: aj , aj+1, . . . , an−1, a0, a1, . . . , aj ,
W3: ac0 = ai, ac1 , . . . , acw , and
W4: ad0 = aj , ad1 , . . . , adz .

Since ac0 	= ad0 , we have x0 	= y0, which implies that ancestor (v, P3) ∪
ancestor (v, P4) ⊃ {u}. We only need to prove that ancestor (v, P3) ∩ ancestor
(v, P4) = {u}. We have the following Cases.

Case 1.1. max(V (W3)) 	= max(V (W4)). Since max(V (W4)) ≥ aj , then we have
the following subcases.

Case 1.1.1. max(V (W3)) < aj and max(V (W4)) = aj . Then, each node in
V (P4)\{ym+1

′} and each node in V (P3) have a leftmost different bit at position
aj . Then we have v = ym+1

′ and ancestor (v, P3) ∩ ancestor (v, P4) = {u}.
Case 1.1.2. max(V (W3 ∪W4)) > aj . Then, the max(V (W3 ∪W4))-bit of v in
P3 is different from that of v in P4. It is a contradiction.

Case 1.2. max(V (W3)) = max(V (W4)). Then, we have the following cases.

Case 1.2.1. max(V (W3)) = max(V (W4)) = aj. We can verify that v 	= ym+1
′

and aj 	∈ {ad1 , ad2 , . . . , adm}. We can divide path ancestor (v, P3) into P31 and
P32 as follows.

CDPs and Reliable Broadcasting for Hypercubes and Möbius Cubes 239

P31 : u, x0 = Nac0
(u), x1

′ = Nac1
(x0), . . . , ,xf−1

′ = Nacf−1
(xf−2

′) and
P32 : xf

′ = Nacf
=aj (xf−1

′), xf+1
′ = Nacf+1

(xf
′), . . . , xw

′ = Nacw
(xu−1

′).

By Lemma 2, each node in V (P31) and each node in V (P4) have a leftmost
different bit at position aj . Then, V (P4) ∩ V (P31) = ∅. By Lemma 2, LDF(xf

′,
y0)= max({ac0 = ai, ac1 , . . . , ac(f−1)}). Let A = {acf+1

, acf+2
, . . . , acw} and B =

{ad1, ad2 , . . . , adz}. Furthermore, we have the following cases.

Case 1.2.1.1. max((A ∪B)\(A ∩B)) > LDF(xf
′, y0). Then, by Lemma 2, the

max((A ∪ B)\(A ∩ B))-bit of v in P3 is different from that of v in P4, which is
a contradiction.

Case 1.2.1.2. max((A ∪ B)\(A ∩ B)) = LDF(xf
′, y0). By Algorithm BCIST,

Ti and Tj are constructed based on the same CDP. Then, we can verify that
acw 	= adz . By Corollary 1, V (P4) ∩ V (P32) = {v}.
Case 1.2.1.3. max((A ∪ B)\(A ∩ B)) < LDF(xf

′, y0). Then, by Lemma 2,
the LDF(xf

′, y0) bit of v in P3 is different from that of v in P4, which is a
contradiction.

Case 1.2.2. max(V (W3)) = max(V (W4)) = M1 > aj . We can divide path
sub-path < u, v >-path of P3 into P31 and P32 as follows.

P31 : u, x0 = Nac0
(u), x1

′ = Nac1
(x0), . . . , ,xf−1

′ = Nacf−1
(xf−2

′) and
P32 : xf

′ = Nacf=M1
(xf−1

′), xf+1
′ = Nacf+1

(xf
′), . . . , xw

′ = Nacw
(xu−1

′).

We can divide path sub-path < u, v >-path of P4 into P41 and P42 as follows.
P41 : u, yj = Nad0

=aj (u), y1
′ = Nad1

(yi), . . . , yh−1
′ = Nadh−1

(yh−2
′), and

P42 : yh
′ = Nadh

(yh−1
′), yh+1

′ = Nadh+1
(yh

′), . . . , yz ′ = Naz(yz−1
′),

By Lemma 2, V (P31) ∩ V (P41) = {u}. Clearly, the M1-bit of each node in
V (P42) is different from each node in V (P31), thus V (P42) ∩ V (P31) = ∅. Sim-
ilarly, we have V (P32) ∩ V (P41) = ∅. We only need to prove that V (P32) ∩
V (P42) = ∅. Similarly to Case 1.2.1, we can verify that acw 	= bdz . By Corol-
lary 1, V (P32) ∩ V (P42) = {v}.

As a consequence, we have ancestor (v, P3) ∩ ancestor (v, P4) = {u}.
Case 2. Xn is Qn. The proof is similar to that of Case 1.

Based on the above discussion, by Lemma 6, the lemma holds. �
Since there are (n − 1)! CDPs of 0, 1, . . . , n − 1, based on Lemma 7, we have
the following theorem.

Theorem 1. Based on Algorithm BCIST, there are (n − 1)! sets of ISTs for
Xn ∈ {Qn,Mn}.
Comparing with the result in [25], all the (n− 1)! sets of ISTs can provide
optimal reliable broadcasting for Qn. As far as the symmetry is concerned,
all the (n − 1)! sets of ISTs can also provide optimal reliable broad-
casting for Mn.

240 B. Cheng et al.

(a)

(b)

(c)

(d)

Fig. 2. Simulation experiments of ISTs based on JUNG framework. (a) Initialization;
(b) The 2nd iteration; (c) The 3rd iteration; (d) The 4th iteration.

CDPs and Reliable Broadcasting for Hypercubes and Möbius Cubes 241

1 1 1 10 3 5 9

4 11 4 112 7 13 88 2 6 14

15 10 7 1310 6 14 159 0 2 67 12 12 105 9 0 33 4 10 0

12 13 15 1214 8 3 511 5 9 76 15 11 2

13 14 8 4

0

3

2

1

(a)

(c)

1 1 1 10 3 5 9

8 7 6 114 2 13 82 11 4 14

10 12 7 156 10 12 133 9 0 615 6 14 109 4 2 05 0 10 3

13 13 15 1211 15 3 77 8 11 514 5 9 2

12 14 8 4

0

1

3

2

(b)

1 1 1 1
0 3 5 9

2 2 13 144 11 6 88 7 4 11

10 6 12 1215 15 7 109 4 0 36 10 14 153 0 10 65 9 2 0

13 14 15 1311 5 11 414 12 3 27 8 9 7

12 13 8 5

0

3

1

2

(d)

1 1 1 1
0 3 5 9

4 11 4 118 2 6 142 7 13 8

6 15 12 1010 6 14 153 4 10 012 10 7 125 9 0 39 0 2 6

14 14 15 137 12 11 211 5 9 713 8 3 4

15 13 8 5

0

1

2

3

(e)

1 1 1 1
0 3 5 9

8 7 6 82 11 4 144 2 13 11

12 6 14 107 10 12 125 0 10 310 15 7 159 4 2 03 9 0 6

15 14 15 1313 5 9 26 8 11 411 12 3 7

14 13 8 5

0

2

3

1

(f)

1 1 1 1
0 3 5 9

2 2 13 148 7 4 114 11 6 8

7 10 14 1512 12 7 105 9 2 010 6 12 133 0 10 69 4 0 3

15 13 15 126 8 9 713 15 3 211 5 11 5

14 14 8 4

0

2

1

3

Fig. 3. Example of ISTs rooted at node 1 and disjoint paths between nodes 1 and 13
in 0-M4

3.2 Simulation Experiments of ISTs and Disjoint Paths for 0-M4

As it is well-known that JUNG framework is a software library which provides a
common and extendible language for the modeling, analysis, and visualization of
data that can be represented as a network. Using Java multi-thread and JUNG
framework, we can easily construct ISTs for Qn and Mn. For example, Fig. 2
illustrates some construction procedures of four ISTs rooted at 1 for 0-M4. The
four trees can be obtained by four steps with parallel fashion.

Based on different CDPs, we can obtain multiple sets of ISTs. Thus, there
are different sets of disjoint paths between arbitrary two nodes. Fig. 3(a)–(f)
show six sets of ISTs rooted at 1 for 0-M4 based on the six CDPs mentioned in
Section 2.2. Clearly, there are six sets of n disjoint paths between node 1 and
any node v ∈ V (0-M4)\{1}, among which the total length of four disjoint paths
between node 1 and node v may be different. For example, the four disjoint paths
between nodes 1 and 13 in Fig. 3(a) are

1→ 0→ 8→ 15→ 12→ 13,
1→ 3→ 2→ 10→ 13,

242 B. Cheng et al.

1→ 5→ 13, and
1→ 9→ 14→ 13.

The four disjoint paths between nodes 1 and 13 in Fig. 3(c) are

1→ 0→ 2→ 10→ 13,
1→ 3→ 11→ 12→ 13,
1→ 5→ 13, and
1→ 9→ 14→ 13.

The total length of four disjoint paths between nodes 1 and 13 in Fig. 3(c) is
shorter than that in Fig. 3(a). Thus, basing on CDPs, we may easily obtain a
set of n disjoint paths with better performance between some pairs of nodes.

4 Conclusions

In this paper, we study the circular dimensional-permutations and reliable broad-
casting based on ISTs for the n-dimensional hypercubeQn and the n-dimensional
Möbius cube Mn. We prove that any circular dimensional-permutation of 0, 1,
. . . , n − 1 can be used to construct n ISTs, which is the further discussion of
IST problem for Qn and Mn comparing with the results in literature. Moreover,
we also conduct simulation experiments of ISTs based on JUNG framework and
list some disjoint paths for 0-M4.

Acknowledgment. This work is supported by National Natural Science Foun-
dation of China (No. 61170021), Specialized Research Fund for the Doctoral
Program of Higher Education (No. 20103201110018), Application Foundation
Research of Suzhou of China (SYG201240), the 2011 Program for Postgradu-
ates Research Innovation in University of Jiangsu Province (No. CXZZ11 0100),
the 2012 Science and technology innovation team building program of Soochow
University (SDT2012B02) and sponsored by Qing Lan Project.

References

1. Abraham, S., Padmanabhan, K.: The twisted cube topology for multiprocessors: a
study in network asymmetry. J. Parallel and Distributed Computing 13(1), 104–110
(1991)

2. Bao, F., Igarashi, Y., Öhring, S.R.: Reliable broadcasting in product networks.
Discrete Applied Mathematics 83(1-3), 3–20 (1998)

3. Chen, Y.-S., Chiang, C.-Y., Chen, C.-Y.: Multi-node broadcasting in all-ported 3-
D wormhole-routed torus using an aggregation-then-distribution strategy. J. Syst.
Architect. 50(9), 575–589 (2004)

4. Cheng, B., Fan, J., Jia, X., Zhang, S.: Independent spanning trees in crossed cubes.
Information Sciences 233(1), 276–289 (2013)

5. Cheng, B., Fan, J., Jia, X., Zhang, S., Chen, B.: Constructive algorithm of in-
dependent spanning trees on Möbius cubes. The Computer Journal 123 (2012),
doi:10.1093/comjnl/bxs123

CDPs and Reliable Broadcasting for Hypercubes and Möbius Cubes 243

6. Cheng, B., Fan, J., Jia, X., Jia, J.: Parallel construction of independent spanning
trees and an application in diagnosis on Möbius Cubes. J. Supercomput. 65(3),
1279–1301 (2013)

7. Cheng, B., Fan, J., Jia, X., Wang, J.: Dimension-adjacent trees and parallel con-
struction of independent spanning trees on crossed cubes. J. Parallel and Dis-
tributed Computing 73(5), 641–652 (2013)

8. Cheriyan, J., Maheshwari, S.N.: Finding nonseparating induced cycles and inde-
pendent spanning trees in 3-connected graphs. J. Algorithms 9(4), 507–537 (1988)

9. Cull, P., Larson, S.M.: The Möbius cubes. IEEE Trans. Comput. 44(5), 647–659
(1995)

10. Curran, S., Lee, O., Yu, X.: Finding four independent trees. SIAM J. Com-
put. 35(5), 1023–1058 (2006)

11. Fan, J.: Diagnosability of the Möbius Cubes. IEEE Trans. Parallel Distrib.
Syst. 9(9), 923–928 (1998)

12. Fan, J.: Hamilton-connectivity and cycle-embedding of the Möbius cubes. Inf. Pro-
cess. Lett. 82(2), 113–117 (2002)

13. Fan, J., Jia, X.: Embedding meshes into crossed cubes. Information Sci-
ences 177(15), 3151–3160 (2007)

14. Fan, J., Jia, X., Lin, X.: Optimal embeddings of paths with various lengths in
twisted cubes. IEEE Trans. Parallel Distrib. Syst. 18(4), 511–521 (2007)

15. Huck, A.: Independent trees in planar graphs. Graphs and Combinatorics 15(1),
29–77 (1999)

16. Hsieh, S.-Y., Chen, C.-H.: Pacyclicity on Möbius cubes with maximal edge faults.
Parallel Comput 30(3), 407–421 (2004)

17. Itai, A., Rodeh, M.: The multi-tree approach to reliability in distributed networks.
Inform. Comput. 79(1), 43–59 (1988)

18. Kim, J.-S., Lee, H.-O., Cheng, E., Lipták, L.: Independent spanning trees on even
networks. Information Sciences 181(13), 2892–2905 (2011)

19. Kim, J.-S., Lee, H.-O., Cheng, E., Lipták, L.: Optimal independent spanning trees
on odd graphs. J. Supercomputing 56(2), 212–225 (2011)

20. Kulasinghe, P., Bettayeb, S.: Multiply-twisted hypercube with five or more dimen-
sions is not vertex-transitive. Inf. Process. Lett. 53(1), 33–36 (1995)

21. Lee, S.C., Hook, L.R.: Logic and computer design in nanospace. IEEE Trans. Com-
put. 57(7), 965–977 (2008)

22. Liu, Y.-J., Chou, W.Y., Lan, J.K., Chen, C.: Constructing independent spanning
trees for locally twisted cubes. Theoretical Computer Science 412(22), 2237–2252
(2011)

23. Obokata, K., Iwasaki, Y., Bao, F., Igarashi, Y.: Independent spanning trees of
product graphs and their construction. IEICE Trans. Fundamentals of Electronics,
Communications and Computer Sciences E79-A(11), 1894–1903 (1996)

24. Schlosser, M., Sintek, M., Decker, S., Nejdl, W.: HyperCuP—hypercubes, ontolo-
gies, and efficient search on peer-to-peer networks. In: Moro, G., Koubarakis, M.
(eds.) AP2PC 2002. LNCS (LNAI), vol. 2530, pp. 112–124. Springer, Heidelberg
(2003)

25. Tang, S.-M., Wang, Y.-L., Leu, Y.-H.: Optimal independent spanning trees on
hypercubes. J. Information Science and Engineering 20(1), 143–155 (2004)

26. Tseng, Y.-C., Wang, S.-Y., Ho, C.-W.: Efficient broadcasting in wormhole-routed
multicomputers: A network-partitioning approach. IEEE Trans. Parallel Distrib.
Syst. 10(1), 44–61 (1999)

244 B. Cheng et al.

27. Wang, Y., Fan, J., Zhou, G., Jia, X.: Independent spanning trees on twisted cubes.
J. Parallel and Distributed Computing 72(1), 58–69 (2012)

28. Werapun, J., Intakosum, S., Boonjing, V.: An efficient parallel construction of
optimal independent spanning trees on hypercubes. J. Parallel and Distributed
Computing 72(12), 1713–1724 (2012)

29. Xu, J.-M., Ma, M., Lü, M.: Paths in Möbius cubes and crossed cubes. Inf. Process.
Lett. 97(3), 94–97 (2006)

30. Yang, J.-S., Tang, S.-M., Chang, J.-M., Wang, Y.-L.: Parallel construction of op-
timal independent spanning trees on hypercubes. Parallel Comput. 33(1), 73–79
(2007)

31. Zehavi, A., Itai, A.: Three tree-paths. J. Graph Theory 13(2), 175–188 (1989)

C.-H. Hsu et al. (Eds.): NPC 2013, LNCS 8147, pp. 245–256, 2013.
© IFIP International Federation for Information Processing 2013

Accelerating Parallel Frequent Itemset Mining
on Graphics Processors with Sorting

Yuan-Shao Huang1, Kun-Ming Yu1, Li-Wei Zhou2,
Ching-Hsien Hsu1, and Sheng-Hui Liu2

1 Department of Computer Science and Information Engineering,
Chung Hua University

Hsinchu, Taiwan
2 School of Software,

Harbin University of Science and Technology
Heilongjiang, China

{m10002044,yu,chh}@chu.edu.tw,
172851711@qq.com, hrbust.lsh@126.com

Abstract. Frequent Itemset Mining (FIM) is one of the most investigated fields
of data mining. The goal of Frequent Itemset Mining (FIM) is to find the most
frequently-occurring subsets from the transactions within a database. Many
methods have been proposed to solve this problem, and the Apriori algorithm is
one of the best known methods for frequent Itemset mining (FIM) in a
transactional database. In this paper, a parallel Frequent Itemset Mining
Algorithm, called Accelerating Parallel Frequent Itemset Mining on Graphic
Processors with Sorting (APFMS), is presented. This algorithm utilizes
new-generation graphic processing units (GPUs) to accelerate the mining
process. In it, massive processing units of GPU were used to speed up the
frequent item verification procedure on the OpenCL platform. The experimental
results demonstrated that the proposed algorithm had dramatically reduced
computation time compared with previous methods.

Keywords: Parallel Data Mining, Apriori, Graphic Processing Unit (GPU).

1 Introduction

With the development of information technology, all sectors of society have to handle
massive explosions in their digital databases. The size of datasets has been increased
exponentially in recent years in all fields as speed ups in processing and communication
have greatly improved the capability for data generation and collection. Therefore the
extraction of interesting and meaningful information has become a highly popular
field of study. Data mining, known as Knowledge Discovery in Databases (KDD), is
the process of automatically extracting useful hidden information from very large
databases.

Frequent Itemset Mining (FIM) is one of the main tasks in data mining field which
aims at finding interesting patterns from databases. The data in the database contains

246 Y.-S. Huang et al.

a set of items that are called transactions, each of which is labeled by a unique ID.
The goal of FIM algorithms is to generate all possible itemsets and find the most
frequently-occurring subsets that are bought together in not less than a given, user-
specified threshold. The number of itemsets occurrences is called support, and the
threshold is minimum support.

In recent years, parallel data mining algorithms has been attracted more and more
attention. Modern Graphics Processing Units (GPU) have evolved into powerful
processors that not only support typical computer graphics tasks but are also flexible
enough to perform general purpose computations [6] [7] [10] [13]. Recently, there has
been a trend to accelerate computational data mining algorithm on a GPU + CPU
heterogeneous system which the GPU acts as the computation accelerator. Nowadays,
high level languages have emerged to support easy programming on GPUs. OpenCL
[11] seems to be emerging as an open and cross-vendor standard for exploiting
computational power of both CPUs and GPUs. However, many classical algorithms
have been proposed for single CPU architectures [4] [5]. If CPU-GPU hybrid
architectures are used to speed up the mining purpose, it will improve performance.

In order to best utilize the power computing resources offered by GPUs and extend
traditional, CPU-based data mining algorithms for mapping to CPU-GPU hybrid
architecture, scalable GPU-based parallel evaluation model for speeding up the
computing process was implemented in this study. A solution is proposed that would
have all frequent itemsets sorted after constructing the TID table which will then
greatly reduce the candidate itemsets when using CPU architecture. Suitable GPU
threads were allocated after sorting the itemset in decreasing order. Therefore, the
times of the checking process were reduced, and support counting was time efficient.
The compared results showed that efficiency had been significantly improved.

The remainder of this paper is organized as follows. Section 2 provides an
overview of data mining, describes the Apriori algorithm [2] [12], the Multi-core
Apriori Transaction Identifiers algorithm (MATI) [14] and the Candidate Slicing
Frequent Pattern Mining (CSFPM) [9] algorithm. The proposed algorithm
Accelerating Parallel Frequent Itemset Mining on Graphics Processors with Sorting
(APFMS) is introduced in Section 3. Section 4 presents the experimental results. In
section 5, the conclusion of the paper is given.

2 Related Works

Data mining is a technology used to determine special relationships hidden in large
amounts of data, and efficiency is especially crucial for an algorithm finding frequent
item sets from a large database. Many methods have been proposed to solve this
problem. Among them, parallel computing has become a popular trend, such as grid,
cloud, multi-core or GPU computing platforms.

In this section, the most relevant studies, including Apriori algorithms, the Multi-
core Apriori Transaction Identifiers (MATI) algorithm and the Candidate Slicing
Frequent Pattern Mining (CSFPM) algorithm, are briefly reviewed.

 Accelerating Parallel Frequent Itemset Mining on Graphics Processors with Sorting 247

2.1 Apriori Algorithm

The Apriori Algorithm was proposed by R. Agrawal and R. Srikant in 1994 [2]. It’s a
classic algorithm for frequent itemset mining and association rule learning over
transactional databases. It uses a level-wise behavior, which involves a number of
dataset scans equal to the size of the largest frequent itemset. Apriori iteratively
generates K+1 frequent itemsets by joining frequent K-itemsets. This step is candidate
generation. First, the set of frequent 1-item sets is found by scanning the database to
assess the count for each item, and then collecting the items that satisfy minimum
support, denoted L1. L1 is used to find L2, and L2 to find L3, and this continues, until
all frequent itemsets are found. After generating each new set of candidates, the
algorithm scans the database to count the number of occurrences of each itemsets.
This step is called support counting. The Apriori Algorithm stops when all the
frequent item sets have been generated. However, the algorithm scans datasets many
times and may generate redundant candidate itemsets. When there are many frequent
1-item sets and the frequent patterns are very long, the number of generated candidate
itemsets increases significantly. Therefore, the efficiency of the algorithm deteriorates
significantly.

2.2 Multi-core Apriori Transaction Identifiers

Lately, novel algorithms on frequent pattern mining have been proposed. Yu et al.
propose the MATI algorithm [14] to speed up the computation time of data mining by
enhancing the efficiency of Apriori on multi-core architecture. The algorithm utilizes
the AprioriTID algorithm [1] [8] at the first pass to shorten the database scanning
process by creating the Transaction Identification (TID) tables. In MATI algorithm,
two strategies are proposed, Item set Block and Task Dispatches. In the process of
generating candidate in MATI, frequent itemsets are divided into multiple blocks, all
frequent itemsets with the same prefix are put into the same block, and candidates are
generated in the same block only. The frequent itemsets in the same itemset block will
be generated on the same core avoiding data distributed on different cores.

2.3 Candidate Slicing Frequent Pattern Mining

Candidate Slicing Frequent Pattern Mining (CSFPM) [9] is proposed by Lin et al.
This algorithm uses the Transaction Identification (TID) table to store the itemsets
which shorten the database scanning process, as shown in Table 1. Corresponding to
the TID table, two elements, the TID value table and the TID index table are created
with GPU-FPM [15]. In Fig.1, TID value table stores the itemsets associated with
their transaction numbers in GPU threads, TID index table stores the location
numbers in GPU threads corresponded to its itemset. As numbers in the table starts
from 0, the first itemset A contains 1, 2 in the TID value table, then in the TID index
table the number is 0 to 1, and the itemset B contains 1, 2, 3, so the index number
range 2 to 4, this process continues until all the itemsets have been dispatched.

248 Y.-S. Huang et al.

The CSFPM algorithm divides candidate into smaller units with parallel computing
on each GPU thread. Each GPU thread is only responsible checking for its own one
candidate itemset in the TID value table. The GPU thread only checks and compares
the numbers whether are equal or not. If the values are equal, then returns result 1,
else result 0 is returned instead. The checking process is shown in Fig. 2. Item A and
Item B has the common transaction value 1 and 2, then the output returns double 1.
After the first computation finished, the result was returned with an array of 1110100,
and then the number of 1 was calculated; all the numbers of 1 were summed to
compare with the minimum support checking whether the candidate itemset was
frequent or not, as shown in Fig.2 and Table 2.

Table 1. TID table

Items TID Value

A 1 2

B 1 2 3

C 1 4

Fig. 1. TID value and TID index tables

Fig. 2. Candidate items of GPU computing

 Accelerating Parallel Frequent Itemset Mining on Graphics Processors with Sorting 249

Table 2. Computing the candidate number of repetitions per item

Item Time
AB 2
AC 1
BC 1

The CSFPM algorithm is an implementation on CPU-GPU architecture based on
the Apriori algorithm, and reducing the counting time of the GPU support to speed up
the total computing time. In order to achieve better load balancing performance, the
algorithm parallelizes the candidate itemsets and divides them into the GPU threads,
assign one thread only checking to its own one transaction in a candidate item. This
strategy can reduce the processor waiting time since the load between processing
units is more balanced.

3 Proposed Algorithm

Since the information in a data stream is large, the implementing of an efficient
algorithm based on the Apriori algorithms has been the focus of many researchers.
Due to the great advantages of GPUs, they have evolved become highly parallel,
multithreaded with tremendous computational horsepower and very high memory
bandwidth. In this paper, an Accelerating Parallel Frequent Itemset Mining on
Graphics Processors with Sorting (APFMS) algorithm is presented. It is based on the
advantages of CSFPM and MATI utilizing the sorting of the 1-frequent item sets from
the dataset after constructing the TID table in order to cut down on computing time
for better performance.

The APFMS algorithm was optimized by using the dividing method of CSFPM
and the merging method of MATI. The MATI algorithm uses the follow technique.
Unlike the original Apriori algorithm, the (k+1)-itemset is generated only by the k-
itemset with the same k-1 prefix itemset. Fig. 3 illustrates the procedure for MATI, in
the example, k=2 and itemset AB and AC are the 2-itemsets which were frequent,
when the 3-itemset was be generated, the 2-itemset merged with each other to satisfy
the (2-1=1) prefix, as AB and AC had the same prefix. A, thus AB and AC merged
with each other to generate candidate 3-itemset, ABC. However, the AC and BC did
not merge with each other as they did not have the same prefix. Therefore, it was not
necessary to generate all possible itemsets as in the original Apriori algorithm; the
MATI algorithm filtered the redundant itemsets which were not frequent and only
merge the useful frequent itemsets.

GPU threads were allocated by the number of TID values in the Candidate Slicing
Frequent Pattern Mining (CSFPM) algorithm. Therefore, the higher the TID value,
the more GPU threads were allocated. Fig. 4 shows the processing of CSFMP in
comparing the TID value. Owing to the varying TID values, the GPU threads did not

250 Y.-S. Huang et al.

Fig. 3. Generating itemsets in MATI

Fig. 4. CSFMP method

Fig. 5. APFMS method

 Accelerating Parallel Frequent Itemset Mining on Graphics Processors with Sorting 251

compute efficiently. As a result, the APFMS algorithm proposed a strategy sorting all
1-frequent itemsets after constructing the TID table with the support of 1-frequent
itemset each and in the decreasing order, and then the GPU threads were allocated
according the new TID value after sorting. Therefore, the time complexity was
reduced when the GPU checked the itemsets; whether they had the same prefix
in order to merge so that the next rank candidate itemsets could be generated.
The processing of the APFMS algorithm when comparing the TID values is presented
in fig. 5.

As in fig. 5, when compared with the CSFMP algorithm in fig. 4, the APFMS
algorithm sorted all frequent itemsets in descending order after constructing the TID
table in CPU cores, and the results were transferred to the TID value tables in the
GPU threads in the same order; Then, the larger itemsets were mapped in the front in
the TID value tables. Due to this, the numbers of checking process support counting
steps were reduced. Therefore, the support counting time will reduce as well.
Following, are several basic steps for applying the APFMS algorithm.

Procedure

1. First, Scan the database, transform the transaction items to a TID table and
build the corresponded TID value table and TID index table.

2. Calculate the Tidset and count the support number of each 1-candidate
itemset, prune the non-valid itemsets and generate the 1-frequent itemset.

3. Sort the 1-frequent itemset in decreasing order.
4. Use the MATI merge function in CPU cores, that all K+1 itemsets are

generated from K itemsets with the same K-1 prefix
5. Let the GPU cores calculate the support counting step, all datasets are

transfer from CPU cores to GPU cores, dynamic GPU threads are allocated
to calculate the item in the TID value table and its corresponding TID index
table.

6. Return the 0-1 arrays from GPU cores to CPU cores, use CPU cores to
calculate the number of 1 and compare with the threshold.

7. Generate the next rank candidate itemsets, repeat the step above until all the
frequent itemsets are found.

The pseudo code of APFMS is shown in fig. 6.

CPU: Main Function (C++)
Database is D, merge round is N, candidate itemsets in N round is Cn, Frequent
pattern is Fn.
Cnis candidate patterns and more than 1.
Fn is frequent pattern and more than 1.
GPU thread is GT.

Fig. 6. The pseudo code of APFMS

252 Y.-S. Huang et al.

Input a threshold
Compile the .CL and build GPU device
Scan and structure a TID table

if (the number of orders in any item <Threshold){
Delete the item
}

QuickSort(frequent itemsets, left, right) //from largest to smallest

Transform the TID table into a TID Value and TID Index
Allocate memory space in GPU for TID Value and TID Index
Stores arrays TID Value and TID Index into GPU memory

For (K = 2 ; ; K++){
Using MATI to generate Cn

Do {
If (size of Cn>GT)

Portion the Cn= PCn
Allocate memory space in GPU for PCn
Store PCn in GPU
Allocate memory space in GPU to save the results
Wait until GPU finishes its program execution.

Calculate the number of nonzero entries of each PCn comparison.
If (this number ≧ the threshold)

The pattern is frequent and save into Fn
} while(size of Cn ≠ 0)
If(candidate cannot be combined)

Break;
Else

Fn Combine the candidate to next level (N+1).
}
GPU: Kernel Function (.CL)
Receive the candidate
Intidx = get_glonal_id(0) // idx = GPU Thread id number
Intgpu_thread_value = identify the corresponding TID Value
if (gpu_thread_value == TID Value of Other candidate pattern)

result = 1;
Else if (gpu_thread_value>TID Value of Other candidate pattern)

result = 0;

Fig. 6. (continued)

 Accelerating Parallel Frequent Itemset Mining on Graphics Processors with Sorting 253

4 Experimental Results

In this section, the experiments are conducted to verify the performance of the
APFMS method and the comparison with CSFPM on GPU are presented. In the
experiments, the same hardware and software configurations were used and the Input
data was from the IBM data generator [3] shown in Table 3.

Table 3. Hardware and software configurations

Items Description
CPU Intel Core i7-3960X 3.3GHz
Memory 16G DDR3 memory
GPU NVidia GTX 580 1536MB GDDR5
OS Microsoft Windows 7
Compiler Microsoft Visual C++ 2010
SDK OpenCL 1.1

In the experiment, the computation time shown in Fig. 7 indicates that with the

dataset (T10I4D100KN100K) and the threshold 0.1%, the APFMS algorithm needed
less time than the CSFPM algorithm, and hence resulted in higher efficiency with
300% speedup when the GPU was set at 65536 threads.

This experiment compared the computation time of APFMS with that of CSFPM
with the same threshold of 0.1%, but with different methods, number of transactions
and number of threads (153837). As in Fig. 8, APFMS performed better than CSFPM
on the same platform.

Fig. 9 shows the execution time of CSFPM and APFMS with different GPU
threads when the dataset was T10I4D1000KN100K, and the threshold 0.1%. In this
experiment, with the transaction numbers increasing, the execution time of the
APFMS increased as well. However, with the number of GPU threads getting higher
than 153837, the checking times and the time complex of CSFPM were increasing.
The CSFPM did not even finish computing when the number of GPU threads was set
as more than 153837.

Using the same dataset as the CSFPM algorithm, the APFMS algorithm had a
better speedup performance. Further, with the number of GPU threads increasing, the
computing time increased as well, causing the CPU cores having to finish
computation with more space and bandwidth. However, when the computing time
delay exceeded the GPU thread limit time, the CSFPM algorithm stopped and jumped
out of the GPU computing. By contrast, the APFMS went on go accelerating
computation until finished. Therefore, the APFMS was proven to be more suitable
with better performance.

254 Y.-S. Huang et al.

0

10

20

30

40

50

60

70

80

16384 32768 65536

Ti
m

e
(s

ec
.)

GPU Thread

T10I4D100KN100K, T0.1%

APFMS

CSFPM

Fig. 7. Runtime with different number of GPU threads

0

50

100

150

200

250

300

D200K D300K D400K D500K D600K D700K D800K

Ti
m

e
(s

ec
.)

Number of transactions

T10I4DXKN100K, T0.1%, Thread 153837

APFMS

CSFPM

Fig. 8. Runtime with same number of GPU threads

 Accelerating Parallel Frequent Itemset Mining on Graphics Processors with Sorting 255

260

270

280

290

300

310

320

330

340

121070 153837 242140

Ti
m

e
(s

ec
.)

GPU Thread

T10I4D1000KN100K, T0.1%

APFMS

CSFPM

Fig. 9. Runtime with different number of GPU threads using APFMS and CSFPM with dataset
T10I4D1000KN100K

5 Conclusions

Recently, with GPU providing extremely high parallelism and high bandwidth in
memory transfer, its hybrid architectures are starting to be used for data mining.
However, it is not easy to parallelize existing algorithms to achieve good performance
on these hybrid architectures. Therefore, it is necessary to examine to what extent
traditionally CPU-based data mining problems can be mapped to the GPU
architecture.

In this paper, the Accelerating Parallel Frequent Itemset Mining on Graphics
Processors with Sorting (APFMS) algorithm is proposed in order to improve the
performance of a CSFPM.APFMS algorithm based on the advantages of CSFPM and
MATI. The sorting of the 1-frequent item sets from the dataset after constructing the
TID table is used in order to cut down computing time and the time complexity of
GPU computing. The experiment results indicated that when the dataset was
T10I4D100KN100K, with a threshold of 0.1%, the implementation had a 300% speed
up compared the CSFPM, and a better load balancing performance was achieved with
the increase of transaction numbers.

Future work on the research includes utilizing different types of GPU for better
performance. As a result, in order to achieve heterogeneity in the GPU architecture,
the different performance allocation will be considered with different candidate
itemsets with different types of GPU.

256 Y.-S. Huang et al.

Acknowledgment. This paper is partial supported by the National Science Council of
Taiwan, under grant number NSC 100-2632-E-216-001-MY3.

References

[1] Agawal, R., Imilinski, T., Swami, A.: Mining Association Rules between Sets of Items in
Large Database. In: Proceeding of the 1993 ACM SIGMOD International Conference on
Management of Data, vol. 22(2), pp. 207–216 (June 1993)

[2] Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: International
Conference on Very Large Data Bases, pp. 487–499 (1994)

[3] Agrawal, R., Srikant, R.: Quest Synthetic Data Generator. IBM Almaden Research
Center, San Jose (2009)

[4] Bodon, F.: A trie-based APRIORI implementation for mining frequent item sequences.
In: OSDM 2005 Proceedings of the 1st International Workshop on Open Source Data
Mining: Frequent Pattern Mining Implementations, pp. 56–65 (2005)

[5] Borgelt, C.: Frequent Item Set Mining. Wiley Interdisciplinary Reviews: Data Mining
and Knowledge Discovery 2(6), 437–456 (2012)

[6] Fang, W., Lu, M., Xiao, X., He, B., Luo, Q.: Frequent itemset mining on graphics
processors. In: DaMoN 2009 Proceedings of the Fifth International Workshop on Data
Management on New Hardware, pp. 34–42 (2009)

[7] Gainaru, A., Slusanschi, E., Trausan-Matu, S.: Mapping data mining algorithms on a
GPU architecture: a study. In: Kryszkiewicz, M., Rybinski, H., Skowron, A., Raś, Z.W.
(eds.) ISMIS 2011. LNCS, vol. 6804, pp. 102–112. Springer, Heidelberg (2011)

[8] Li, Z.-C., He, P.-L., Lei, M.: A high efficient AprioriTid algorithm for mining association
rule. Machine Learning and Cybernetics 3(3), 1812–1815 (2005)

[9] Lin, C.-Y., Yu, K.-M., Ouyang, W., Zhou, J.: An OpenCL Candidate Slicing Frequent
Pattern Mining algorithm on graphic processing units. In: Proceedings of the IEEE
International Conference on Systems, Man and Cybernetics, pp. 2344–2349 (2011)

[10] Ma, W., Agrawal, G.: A translation system for enabling data mining applications on GPUs.
In: ICS 2009 Proceedings of the 23rd International Conference on Supercomputing,
pp. 400–409 (2009)

[11] OpenCL. “OpenCL”, http://www.khronos.org/opencl/
[12] Park, J., Chen, M., Yu, P.: An effective hash-based algorithm for mining association

rules. ACM SIGMOD Record 24(2), 175–186 (1995)
[13] Silvestri, C.: gpuDCI: Exploiting GPUs in Frequent Itemset Mining. In: 2012 20th

Euromicro International Conference on Parallel, Distributed and Network-Based
Processing (PDP), February 15-17, pp. 416-425 (2012)

[14] Yu, K.-M., Wu, S.-H.: An Efficient Load Balancing Multi-core Frequent Patterns Mining
Algorithm. In: 2011 IEEE 10th International Conference on Trust, Security and Privacy
in Computing and Communications (TrustCom), pp. 1408–1412 (2011)

[15] Zhou, J., Yu, K.-M., Wu, B.-C.: Parallel frequent patterns mining algorithm on GPU. In:
IEEE International Conference on Systems Man and Cybernetics, pp. 435–440 (2010)

Asymmetry-Aware Scheduling in Heterogeneous

Multi-core Architectures

Tao Zhang1,2, Xiaohui Pan3, Wei Shu1,2, and Min-You Wu1

1 Shanghai Jiao Tong University, Shanghai, China
{tao.zhang,shu,mwu}@sjtu.edu.cn

2 University of New Mexico, Albuquerque, USA
{zhang,shu}@ece.unm.edu

3 Shanghai University of Political Science and Law, China
panxiaohui@shupl.edu.cn

Abstract. As threads of execution in a multi-programmed comput-
ing environment have different characteristics and hardware resource
requirements, heterogeneous multi-core processors can achieve higher
performance as well as power efficiency than homogeneous multi-core
processors. To fully tap into that potential, OS schedulers need to be
heterogeneity-aware, so they can match threads to cores according to
characteristics of both. We propose two heterogeneity-aware thread sched-
ulers, PBS and LCSS. PBS makes scheduling based on applications’ sen-
sitivity on large cores, and assigns large cores to applications that can
achieve better performance gains. LCSS balances the large core resource
among all applications. We have implemented these two schedulers in
Linux and evaluated their performance with the PARSEC benchmark on
different heterogeneous architectures. Overall, PBS outperforms Linux
scheduler by 13.3% on average and up to 18%. LCSS achieves a speedup
of 5.3% on average and up to 6% over Linux scheduler. Besides, PBS
brings good performance with both asymmetric and symmetric work-
loads, while LCSS is more suitable for scheduling symmetric workloads.
In summary, PBS and LCSS provide repeatability of performance mea-
surement and better performance than the Linux OS scheduler.

Keywords: Scheduling, Heterogeneous, Asymmetric, Multi-core.

1 Introduction

Multi-core processors have become mainstream since they have better perfor-
mance per watt and larger computational capacity than complex single-core
processors. To efficiently utilize on-chip resource, recent research [13] [15] [17]
advocates heterogeneous (or asymmetric) multi-core architectures consisting of a
combination of cores with different computational capabilities. These processors
are attractive because they have the potential to improve system performance,
to reduce power consumption[1], and to mitigate Amdahl’s law [3]. Since a het-
erogeneous multi-core architecture consists of a mix of different cores, it can
better cater for heterogeneous workloads [2]. People could execute cpu-intensive

C.-H. Hsu et al. (Eds.): NPC 2013, LNCS 8147, pp. 257–268, 2013.
c© IFIP International Federation for Information Processing 2013

258 T. Zhang et al.

threads on fast cores and memory-intensive threads on slow cores to achieve
better energy efficiency.

The heterogeneity of such architectures can be classified into three levels:
high, medium and low. A high-heterogeneity processor consists of cores of dif-
ferent instruction set architectures. A typical example is AMD FUSION APU
[20] which incorporates CPU cores and GPU(Graphics Processing Unit) cores. A
medium-heterogeneity processor integrates cores of overlapping instruction set
architectures, such as IBM CELL [21]. A Cell processor contains a power proces-
sor element (PPE) with several synergistic processor elements (SPEs). Finally, a
low-heterogeneity processor contains cores of same instruction set architectures
but different performances. Such cores are called fast and slow cores [16], or big
and small cores [17] in previous study.

Despite their benefits in energy and performance, heterogeneous architectures
pose significant challenges on the design of operating systems or programming
environments, which has traditionally assumed homogeneous hardware [17]. A
key challenges is scheduling [7]. Current parallel programming environments such
as MIT Cilk [4], Cilk++ [5], OpenMP [6], and the default Linux OS scheduler
[7] still assume all cores provide equal performance (Asymmetry-unaware). As
a result, the default linux scheduler will schedule these threads in a random
fashion, resulting in non-optimal performance [7] [16] [22]. In general, there are
two issues: the scheduling is not optimal; system repeatability is low. Different
run of the same application(s) has different performance. This phenomenon is
called completion time jitter [22].

This paper presents Preference Based Scheduling (PBS) and Large Core Split-
ting Scheduling (LCSS) for arranging multiple multi-threaded applications on
heterogeneous multi-core systems. LCSS is simpler and requires no scheduling
hints, but less effective. On the contrary, PBS needs application preference to
make scheduling decisions, and improves application performance more signifi-
cantly than LCSS. Overall, the two proposed scheduling schemes improve per-
formance and repeatability of application performance measurement over the
Linux scheduler.

2 Preference Based Scheduling (PBS)

2.1 Application Preference

We define application preference as the degree of performance improvement as it
receives more large cores. In general, asymmetry-aware schedulers should allocate
more large cores to high-preference applications, and more small cores to low-
preference applications. More specifically, we define the speedup of running an
application (all its threads) on large cores compared to half large, half slow cores
as α, and define the speedup of running an application (all its threads) on half
large, half slow cores compared to slow cores as β, then:

Asymmetry-Aware Scheduling in Heterogeneous Multi-core Architectures 259

– An application has a high-preference if α and β are big and almost identical.
– An application has a low-preference if α is much larger than β.
– An application has a medium-preference if it falls between high-preference

and low-preference.

2.2 Correlation between Application Preference and Fork-join

From the applications in PARSEC benchmark, we observed correlation be-
tween application preference and its fork-join structures. Applications in high-
preference category and low-preference have only one fork-join structure.
However, they distinguish from each other by the execution time of the sequen-
tial part versus the parallel part. For high-preference applications, the sum of
sequential part takes longer time than the parallel part. Given more large fast
cores, the performance of high-preference applications increases proportionally.
On the contrary, for low-preference applications, the parallel part dominates the
total execution time of each application. Therefore, application performance is
limited by the slowest thread in the parallel phase. Applications in this category
can not benefit significantly when receiving more large cores. On the other hand,
the medium-preference applications have multiple fork-join structures. There-
fore, their performance is limited not only by the slowest thread in each parallel
phase, but also by the sequential phase. In general, their performance sensitivity
for number of large cores is between high-preference and low-preference category.

Let α be the summed time of all sequential parts of an application, and β be
the summed time of all parallel parts, then we have an alternative definition of
application preference:

– An application has a high-preference if it has only one fork-join structure,
and α ≥ β.

– An application has a low-preference if it has only one fork-join structure,
and α < β.

– An application has a medium-preference if it has multiple fork-join struc-
tures.

2.3 Preference Based Scheduling

Preference Based Scheduling(PBS) allocates processor core resource to appli-
cation threads according to their preference. Application threads with higher
preference have higher priority for large cores. A complete scheduling scheme
should contain a policy for initial assignment, a policy for wake up assignment
and a policy for load balancing [16]. In this work, we consider the case that the
total number of application threads (in contrast to system threads) does not
exceed the number of cores. High performance computing is such a case that
there is at most 1 application thread running on each core.

260 T. Zhang et al.

Input: The set of all large cores in a system: C = {l1, l2, ..., lk1}
Input: The set of all small cores in a system: S = {s1, s2, ..., sk2}
Input: The set of applications to schedule: A = {a1, a2, ..., aN}

1 Func. UThreads(ai): return the number of unscheduled threads of ai;

2 if a1.preference = a2.preference = ... = aN .preference then
3 Assign large cores to threads in first come first serve manner
4 else

5 Q =
∑N

i=1 UThreads(ai);
6 while C 	= φ and Q > 0 do
7 find aj ∈ A with the highest preference;
8 X = UThreads(aj);
9 if |C| ≥ X then

10 assign X large cores U to aj;
11 C = C − U ;
12 A = A− {aj};
13 else
14 assign C to aj ;
15 C = φ;
16 end
17 update Q;
18 end

19 if Q > 0 then
20 for each ai ∈ A do
21 X = UThreads(ai);
22 assign X small cores U to ai;
23 S = S − U ;
24 A = A− {ai};
25 end
26 end
27 end

Algorithm 1. Preference Based Assignment (PBA) policy

Preference Based Assignment(PBA) Policy: The policy assigns cores to
threads based on the application’s preference. Threads within an application
inherit its preference. Large cores are assigned to threads with the highest pref-
erence, one to each thread. In case there are large cores available, but the re-
maining applications all have the same preference, then this policy works in First
Come First Serve(FCFS) fashion. That is, the first application in task queue re-
ceives large cores, then the second application, and so on. The detailed process
is described in Algorithm 1.

Wake up on Previous Core (WPC) Policy: When a thread is woken up,
it is assigned to the core on which it was previously running. In case that core
is occupied by a new thread, then the new thread is migrated to another core
following the load balancing rule explained in Algorithm 2.

Asymmetry-Aware Scheduling in Heterogeneous Multi-core Architectures 261

Input: The set of idle large cores in a system: C
Input: The set of idle small cores in a system: S
Input: The set of applications to schedule: A = {a1, a2, ..., aN}.
Input: A vector recording current core occupation status: which core is

used by which thread of which application

1 Func. UThreads(ai): return the number of unscheduled threads of ai;
2 Func. SThreads(ai): return the number of threads of ai that running on
small cores;

3 Func. LThreads(ai): return the number of threads of ai that running on
large cores;

4 if a1.preference = a2.preference = ... = aN .preference then
5 Assign large cores to threads in first come first serve manner;
6 else
7 Sort A in descending order of ai.preference;
8 for i=1,..,N do
9 Q = UThreads(ai) + SThreads(ai);

10 if Q > 0 then
11 if |C| > Q then
12 allocate Q large cores U to ai;
13 C = C − U ;
14 else
15 allocate C to ai;
16 Q = Q− |C|;
17 C = φ;
18 j = N ;
19 while Q > 0 and j > i do
20 P = LThreads(aj);
21 if P > 0 then
22 X = P > Q?Q : P ;
23 give aj ’s X large cores to ai ;
24 Q = Q−X ;
25 end
26 j = j - 1;
27 end
28 end
29 end
30 end

31 for each ai ∈ A do
32 X = UThreads(ai);
33 assign X small cores U to ai;
34 S = S − U ;
35 A = A− {ai};
36 end
37 end

Algorithm 2. Preference Based Balancing (PBB) Policy

262 T. Zhang et al.

Preference Based Balancing (PBB) Policy: When performing load bal-
ancing, large cores will be assigned to threads with the highest preference. In
case remaining applications have a same preference, PBB assigns large cores in
First Come First Serve manner, just like the preference based assignment(PBA)
policy. This policy ensures: large cores are always busy as long as there are
applications; high preference application receives priority in getting large cores.

Load balancing with the PBB policy is made in two steps. The first step
constructs a new thread to core mapping according to Algorithm 2. The second
step is to migrate old threads or assign new threads onto cores to reach that
mapping.

3 Large Core Splitting Scheduling (LCSS)

Large Core Splitting Scheduling (LCSS) tries to distribute large cores among
multi-thread applications equally. It is designed to be simple and provide a mod-
est performance.

3.1 Thread Assignment Policy

Large Core Splitting Assignment (LCSA):GivenK large cores in a system,
then N applications will get K/N large cores each unless an application has less
than K/N threads. In that case, spare large cores will be distributed equally
among the rest applications. The scheduling algorithm will allocate one core for
each thread.

3.2 Wake up Assignment Policy

Wake up on Previous Core (WPC) Policy: When a thread is woken up, it
is assigned to the core on which it was previously running. In case that core is
occupied by a new thread, then the new thread is migrated to another core.

3.3 Load Balancing Policy

Large Core Splitting Balancing (LCSB) Policy: This policy maintains
the evenly distribution of large cores among applications through adjusting the
number of large cores of each application. The load balancing is done in two
steps. The first step is to construct a new thread to core mapping. The second
step is to migrate old threads or assign new thread onto cores to reach that
mapping.

4 Experimental Methodology

4.1 Simulation Methodology

We use the Gem5 simulator to construct various heterogeneous systems of desired
heterogenity. The Gem5 simulator is an event-driven architecture simulator with

Asymmetry-Aware Scheduling in Heterogeneous Multi-core Architectures 263

proved accuracy [9]. We simulate two types of cores, large and small. A large core
(L) is an Out-of-Order, 7-stage pipeline core while a small core (S) is a simple
In-order core. Each core has a 32KB i-cache and a 64KB d-cache, both 2-way
associative. All cores share an 8-way associative 2MB L2 cache. All caches use
64 byte lines. There is 4GB external memory. The performance of a large core is
roughly twice of a small core. The area of a large core is around 2.5× that of a
small core. And we use three heterogeneous multi-core architectures of roughly
the same area: 8 large cores and 8 small cores (8L8S), 6 large cores and 13 small
cores (6L13S), and 4 large cores and 18 small cores (4L18S).

Gem5 simulator supports full-system simulation which runs a commodity OS
and user applications on the simulator. We ran Linux 2.6.27 on the simulator.
Besides, we modified and integrated the Clavis tool [14] to control the Linux
scheduler to follow our scheduling schemes.

4.2 Workload

We use combinations of applications from the PARSEC benchmark [8] to test
our system. The workloads are described in Table 1. There are applications of
high, low and medium preference with or without the supplement data. Canneal,
Freqming, and Dedup are memory intensive, computation intensive, and commu-
nication intensive, respectively. We assign explicit value 3, 6, 9 to low, medium,
and high preference, respectively. In addition, we assign value +1,−1,−1 to
computation intensive, communication intensive, and memory intensive, respec-
tively. The initial value of application preference and the supplement data are
then summed to get a final preference value. In summary, the BF and BB are
asymmetric workloads since the two applications in BF or BB have an difference
of 3 in preference value. However, the BS and DC are symmetric workloads be-
cause applications in BS or DC have identical preference value. Finally, the CF
is a weakly asymmetric workload since Canneal and Freqmine have an difference
of 2 in overall preference value. All applications are 8 threaded, and their order
in the “description” column indicates their order in task queue. For example
blackscholes sits before freqmine in task queue.

Table 1. Experiment Workloads

Workloads Description Preference Supp. Data Symmetry

BF Blackscholes and Freqmine Low + high N.A. Asymmetric
BB Bodytrack and Blackscholes Medium + Low N.A. Asymmetric
CF Canneal and Freqmine High + High Mem. + Commp. Weakly Asymmetric
BS Blackscholes and Swaptions Low + Low N.A. Symmetric
DC Dedup and Canneal High + High Commu. + Mem. Symmetric

4.3 Performance Comparison Metric

We use the makespan of all applications as the performance metric. We also per-
form repeatability test to ensure the correctness of our results. Since application

264 T. Zhang et al.

performance with LIN varies from one run to another, we use the average per-
formance of at least 5 runs with LIN in comparison. The performance of PBS,
LCSS and Linux OS scheduler (LIN) will be compared.

5 Results

5.1 Evaluation on Repeatability

To evaluate the repeatability of application performance with PBS and LCSS,
we ran the BF and BS workloads for multiple times with PBS and LCSS sched-
uler respectively, and recorded their execution time. Figure 1 shows the results.
For both schedulers, all the execution time is generally within {97%, 103%} of
the average execution time. There are many reasons that could cause this vari-
ation of execution time. For example, the difference in scheduling activity, the
stochastic interaction between threads, and the interference of system threads
(in OS) to application threads. Considering the relative small percent (6%) of
time variation, we think that PBS and LCSS provide acceptable repeatability
for application performance.

0.7
0.8
0.9
1

1.1

xe
cu

tio
n

Ti
m

e

Evaluate Repeatability

LCSS-BF

LCSS-BS

PBS BF

0.3
0.4
0.5
0.6

1 2 3 4 5 6 7 8 9N
or

m
al

iz
ed

 E
x PBS-BF

PBS-BS

Fig. 1. Evaluation of Repeatability

Scheduler performance on a 8L8S architecture

0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

ed
 E

xe
cu

tio
n

Ti
m

e

PBS

LCSS

LIN

0.40
0.45
0.50
0.55

BF BB CF BS DC

N
or

m
al

iz
e LIN

Fig. 2. Execution Time on 8L8S

5.2 Performance Comparison of Schedulers

The performance of PBS, LCSS and LIN scheduling schemes on three hetero-
geneous architectures are presented in Figure 2, Figure 3, and Figure 4, respec-
tively. Overall, PBS outperforms LIN by 13.3% on average and up to 18%. LCSS
has a speedup of 5.3% on average and up to 6% over LIN.

1 00

Scheduler performance on a 6L13S architecture

0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

ze
d

Ex
ec

ut
io

n
Ti

m
e

PBS

LCSS

LIN

0.40
0.45
0.50
0.55

BF BB CF BS DC

N
or

m
al

iz LIN

Fig. 3. Execution Time on 6L13S

Scheduler performance on a 4L18S architecture

0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

ed
 E

xe
cu

tio
n

Ti
m

e

PBS

LCSS

LIN

0.40
0.45
0.50
0.55

BF BB CF BS DC

N
or

m
al

iz LIN

Fig. 4. Execution Time on 4L18S

Asymmetry-Aware Scheduling in Heterogeneous Multi-core Architectures 265

Of the 15 cases (5 workloads on 3 architectures), PBS scheduler outperforms
others in 10 cases. PBS& LCSS work equally best in 2 cases, and LCSS& LIN lead
together in another 2 cases. Finally, LCSS win the remaining 1 case. For asymmet-
ric workloads BF, BB and weakly asymmetric workload CF, PBS always achieves
the best performance. PBS still works best on the asymmetric workload BS. How-
ever, LCSS Outperforms PBS on the asymmetric workload DC.

In summary, PBS is more efficient for asymmetric and weakly asymmetric
workloads, while LCSS and LIN are more suitable for symmetric workloads. In
some cases, PBS performs better or equally with LCSS on symmetric workloads.
As the number of large cores decreases, the platform becomes more and more
homogeneous, thus the performance difference among schedulers becomes less
prominent.

5.3 Effectiveness of the Load Balancing Policies

To evaluate the effectiveness of the load balancing policies, we compared the
performance of PBS and LCSS with and without load balancing, as shown in
Figure 5 and Figure 6 respectively. The execution time is the average on three
architectures(8L8S, 6L13S, 4L18S). Without load balancing, threads generally
run to completion on initially allocated cores, possibly leaving large cores idle
and lowering system performance.

0.85
0.90
0.95
1.00

on
 T

im
e

Evaluate PBS Load Balancing No load balancing
With load balancing

0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85

BF BB CF BS DC

N
or

m
al

iz
ed

 E
xe

cu
tio

Fig. 5. PBS Load Balancing

1 00
Evaluate LCSS Load Balancing No load balancing

with load balancing

0 60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

ze
d

Ex
ec

ut
io

n
Ti

m
e

with load balancing

0.40
0.45
0.50
0.55
0.60

BF BB CF BS DC

N
or

m
al

iz

Fig. 6. LCSS Load Balancing

In Figure 6, not surprisingly, performance of all workloads gets better with
load balancing. The essentially balanced resource assignment of the LCSS is
non-optimal for asymmetric workloads, and load balancing is a remedy. This is
illustrated by the substantial improvement with load balancing on the BF and
BB workload. On average, employing load balancing improves the performance
by 9.2%, which includes the thread migration cost. For the BF workload, the
performance of LCSS was improved by 14.4% with core reallocation.

In Figure 5, on average, core reallocation improves the performance by 9.9%,
including the thread migration cost. For the DC workload, the performance
was improved by 26.3%. Although the average improved performance is close to
LCSS’s, there are some differences. For LCSS, all five workloads were improved
by around 9%. However, for PBS, the DC workload was improved by 26.3%
while the other four workloads were improved by less than 7%. This means that

266 T. Zhang et al.

LCSS has a larger space to improve after the initial thread assignment. Since
the average performance of the PBS algorithm is better than LCSS (see Figure
2, Figure 3, and Figure 4), we can conclude that the initial thread assignment
of PBS is better than LCSS on the BF, BB, and CF workloads.

6 Related Work

Effective task scheduling algorithms are essential for multi-thread applications
to make good use of heterogeneous multi-core architectures. Many previous work
use DVFS to emulate heterogeneous multi-core systems [7] [10] [15] [16]. They
tune the frequencies of cores to get different numbers of large/fast and small/slow
cores, and they keep a constant total number of cores in a system. On the
contrary, our simulated system consists of large Out-of-Order cores and small In-
Order cores, thus having larger micro-architecture differences (eg. heterogeneity).
Besides, our system keeps a constant area while the number of cores varies. Our
heterogeneous system is similar to that in [17] [18].

Many studies on scheduling in heterogeneous multi-core systems focus on
achieving high system throughput by balancing the hardware resources (e.g.,
cores, caches) among different applications [1] [16] [17] [18] [19]. They make
scheduling decision based on runtime profiling/monitoring. Becchi’s IPC driven
algorithm [18] periodically samples threads’ instructions per cycle (IPC) on cores
of both types and gives threads that have a higher fast-to-slow IPC ratio prior-
ities in running on the fast cores. Kumar et al. [1] proposes a similar technique,
except that he uses more than one sample per core type per thread to improve
accuracy. Lakshminarayana et al. [16] proposes age-based scheduling to sched-
ule the threads with larger remaining time to fast cores. The remaining time of
threads is predicted at runtime. Koufaty et al. [17] proposes a bias scheduling
which matches threads to the right type of cores through dynamically monitoring
the bias of the threads in order to maximize the system throughput.

There are some existing scheduling schemes that make no runtime profil-
ing/sampling. Li et al. [7] designed a heterogeneity-aware scheduler for Linux,
AMPS, that makes sure the load on each core is proportional to its power and
that fast cores are never under-utilized. AMPS needs no scheduling hints, just
as our LCSS. However, AMPS does not guarantee optimal performance. For ex-
ample, it may run a memory-intensive thread on a fast core and lose efficiency.
Shelepov et al. [10] proposed HASS that also puts more load on faster cores,
but makes this decision based on the offline architectural signature of threads.
The architectural signature includes thread information such as cpu-intensive
versus memory-intensive, cache miss-rate and so on. This information is gener-
ated offline and provided to the scheduler as a hint before scheduling. Similarly,
our PBS scheme requires estimated or offline profiled information as scheduling
hints, named application preference. Application preference reflects its ability
to boost performance through more and more large, fast cores. Our experiment
results show that PBS has better performance over LCSS and Linux scheduler.

Asymmetry-Aware Scheduling in Heterogeneous Multi-core Architectures 267

7 Conclusion

We proposed the PBS and LCSS scheduling schemes to map symmetric and
asymmetric workloads efficiently onto heterogeneous architectures. LCSS em-
ploys the Large Core Splitting (LCS) idea and aims to balance the large core
resource among applications. In contrast, PBS adopts the Preference Based
Scheduling policy and aims to assign large cores to applications that can achieve
greater performance improvement. LCSS is simpler, and needs no scheduling
hints. PBS requires scheduling hints, and provides more significant performance
improvements over the Linux OS scheduler. Both scheme ensure that the large
cores are always busy unless there are insufficient tasks. Besides, LCSS and PBS
guarantee repeatability that the Linux OS scheduler can not provide.

The experiment results show that PBS and LCSS provide better performance
than Linux OS scheduler with asymmetric and symmetric workloads on different
heterogeneous architectures. Overall, PBS outperforms Linux scheduler by 13.3%
on average and up to 18%. LCSS has a speedup of 5.3% on average and up to 6%
over Linux scheduler. The results also manifest that PBS can work with both
asymmetric, weakly asymmetric and symmetric workloads, although the speedup
with asymmetric or weakly asymmetric workloads is bigger. On the contrary,
LCSS is more suitable for symmetric workloads. Although we presented only
the results for two applications running together, our algorithms are applicable
to more than two applications.

Acknowledgment. The authors would like to thank Linghe Kong, Sandy Har-
ris and anonymous reviewers for their fruitful feedback and comments that have
helped us improve the quality of this work. This work is supported by Program
for Changjiang Scholars and Innovative Research Team in University (IRT1158,
PCSIRT), China.

References

1. Kumar, R., Tullsen, D.M., Ranganathan, P., Jouppi, N.P., Farkas, K.I.: Single-isa
heterogeneous multi-core architectures for multithreaded workload performance.
In: Proceedings of the 31st Annual International Symposium on Computer Archi-
tecture (ISCA 2004). IEEE Computer Society (2004)

2. Balakrishnan, S., Rajwar, R., Upton, M., Lai, K.: The impact of performance
asymmetry in emerging multicore architectures. In: Proceedings of the 32nd Annual
International Symposium on Computer Architecture (ISCA 2005), pp. 506–517.
IEEE Computer Society (2005)

3. Hill, M., Marty, M.: Amdahl’s law in the multicore era. J. Computer 41(7), 33–38
(2008)

4. Blumofe, R.D., Joerg, C.F., Kuszmaul, B.C., Leiserson, C.E., Randall, K.H., Zhou,
Y.: Cilk: An efficient multithreaded runtime system. Journal of Parallel and Dis-
tributed Computing 37(1), 55–69 (1996)

5. Leiserson, C.: The Cilk++ concurrency platform. In: Proceedings of the 46th An-
nual Design Automation Conference, pp. 522–527. ACM (2009)

268 T. Zhang et al.

6. Ayguade, E., Copty, N., Duran, A., Hoeflinger, J., Lin, Y., Massaioli, F., Teruel,
X., Unnikrishnan, P., Zhang, G.: The design of openmp tasks. IEEE Transactions
on Parallel and Distributed Systems 20(3), 404–418 (2009)

7. Li, T., Baumberger, D., Koufaty, D.A., Hahn, S.: Efficient Operating System
Scheduling for Performance-Asymmetric Multi-Core Architectures. In: Proceedings
of the 2007 ACM/IEEE Conference on Supercomputing (SC 2007). ACM (2007)

8. Bienia, C.: Benchmarking Modern Multiprocessors. Ph.D. Thesis, Princeton Uni-
versity (2011)

9. Binkert, N., Beckmann, B., Black, G., Reinhardt, S.K., Saidi, A., Basu, A., Hest-
ness, J., Hower, D.R., Krishna, T., Sardashti, S., Sen, R., Sewell, K., Shoaib, M.,
Vaish, N., Hill, M.D., Wood, D.A.: The gem5 simulator. SIGARCH, Computer
Architecture News 39, 1–7 (2011)

10. Shelepov, D., Saez, J.C., Jeffery, S.: HASS: a Scheduler for Heterogeneous Multicore
Systems. ACM Operating System Review 43(2) (2009)

11. Zhuravlev, S., Blagodurov, S., Fedorova, A.: Addressing shared resource contention
in multicore processors via scheduling. In: Proceedings of the International Con-
ference on Architectural Support for Programming Languages and Operating Sys-
tems, ASPLOS (2010)

12. Luk, C.K., Cohn, R., Muth, R., Patil, H., Klauser, A., Lowney, G., Wallace, S.,
Reddi, V.J., Hazelwood, K.: Pin: Building customized program analysis tools with
dynamic instrumentation. In: Programming Language Design and Implementation,
PLDI (2005)

13. Saez, J.C., Shelepov, D., Fedorova, A., Prieto, M.: Leveraging workload diversity
through OS scheduling to maximize performance on single-ISA heterogeneous mul-
ticore systems. Journal of Parallel and Distributed Computing (JPDC) (2011)

14. Blagodurov, S., Fedorova, A.: A. User-level scheduling on NUMAmulticore systems
under Linux. In: Linux Symposium (2011)

15. Chen, Q., Cheny, Y., Huangy, Z., Guo, M.: WATS:Workload-Aware Task Schedul-
ing in Asymmetric Multi-core Architectures. In: IEEE 26th International Parallel
& Distributed Processing Symposium (IPDPS). IEEE (2012)

16. Lakshminarayana, N., Lee, J., Kim, H.: Age based scheduling for asymmetric mul-
tiprocessors. In: Proceedings of the Conference on High Performance Computing
Networking, Storage and Analysis, pp. 25–36 (2009)

17. Koufaty, D., Reddy, D., Hahn, S.: Bias scheduling in heterogeneous multi-core ar-
chitectures. In: Proceedings of the 5th European Conference on Computer Systems
(EuroSys 2010), pp. 125–138. ACM (2010)

18. Becchi, M., Crowley, P.: Dynamic Thread Assignment on Heterogeneous Multipro-
cessor Architectures. In: Proceedings of the 3rd Conference on Computing Fron-
tiers. ACM (2006)

19. De Vuyst, M., Kumar, R., Tullsen, D.: Exploiting unbalanced thread scheduling
for energy and performance on a cmp of smt processors. In: IEEE International
Parallel and Distributed Processing Symposium (IPDPS 2006), pp. 10–20. IEEE
(2006)

20. Brookwood, N.: Amd fusion family of apus C enabling a superior, immersive pc
experience. AMD white paper,
http://www.amd.com/us/Documents/48423_fusion_whitepaper_WEB.pdf

21. Kahle, J.A., Day, M.N., Hofstee, H.P., Johns, C.R., Maeurer, T.R., Shippy, D.: In-
troduction to the Cell Multiprocessor. IBM J. Research and Development 49(4/5),
589–604 (2005)

22. Fedorova, A., Vengerov, D., Doucette, D.: Operating System Scheduling on Het-
erogeneous Core Systems. In: First Workshop on Operating System Support for
Heterogeneous Multicore Architectures (2007)

http://www.amd.com/us/Documents/48423_fusion_whitepaper_WEB.pdf

Scalable-Grain Pipeline Parallelization Method

for Multi-core Systems�

Peng Liu1, Chunming Huang1,2, Jun Guo1,
Yang Geng1, Weidong Wang1, and Mei Yang1,3

1 Department of ISEE, Zhejiang University, Hangzhou 310027, China
{liupeng,guojun007,wdwang}@zju.edu.cn, doriru.simon@gmail.com

2 Baidu Co. LTD., Shanghai 201203, China
hcm198611@yahoo.com.cn

3 Department of ECE, University of Nevada Las Vegas, Las Vegas, USA
meiyang@unlv.edu

Abstract. How to parallelize the great amount of legacy sequential pro-
grams is the most difficult challenge faced by multi-core designers. The
existing parallelization methods at the compile time due to the obscured
data dependences in C are not suitable for exploring the parallelism
of streaming applications. In this paper, a software pipeline for multi-
layer loop method is proposed for streaming applications to exploit the
coarse-grained pipeline parallelism hidden in multi-layer loops. The pro-
posed method consists of three major steps: 1) transform the task depen-
dence graph of a streaming application to resolve intricate dependence,
2) schedule tasks to multiprocessor system-on-chip with the objective
of minimizing the maximal execution time of all pipeline stages, and 3)
adjust the granularity of pipeline stages to balance the workload among
all stages. The efficiency of the method is validated by case studies of
typical streaming applications on multi-core embedded system.

1 Introduction

With the continuous advance of semiconductor technology, the enormous num-
ber of transistors available on a single chip enables the integration of tens or
hundreds of processing cores on a multiprocessor system-on-chips (MPSoCs).
These processing cores could be homogeneous or heterogeneous, such as pro-
cessors, digital signal processor cores, memory blocks, etc. To efficiently utilize
these parallel resources available on an MPSoC, one challenge is how to paral-
lelize the legacy sequential programs. However, most research and development
efforts in MPSoCs are on the hardware architectural side. Research in applica-
tion program parallelization and parallel programming for MPSoCs is far more
behind.

� This work is supported in part by National Natural Science Foundation of China
under the grants 60873112 and 61028004, National High Technology Research and
Development Program of China under the grant 2009AA01Z109, and the Huawei
Innovation Research Program under the grant YJCB2011033RE.

C.-H. Hsu et al. (Eds.): NPC 2013, LNCS 8147, pp. 269–283, 2013.
c© IFIP International Federation for Information Processing 2013

270 P. Liu et al.

Existing efforts to exploit pipeline parallelism in C programs are mostly fine-
grained [10,12]. Some approaches partition individual instructions across pro-
cessors, such as the decoupled software pipeline (DSWP) method [10], while
others are dedicated to parallelizing scientific and numerical applications, such
as DOALL [1] and DOACROSS [4]. The HELIX project [2] is a generation of
the DOACROSS scheme. HELIX satisfies only the necessary loop-carried data
dependences. The synchronization required for loop-carried dependences is im-
plemented using a per-thread memory area which resides in the system’s shared
memory. For streaming applications, these techniques are not sufficient, because
the pipeline parallelism in streaming applications is coarse-grained and more
complex than that in scientific/numerical applications. To resolve intricate de-
pendency, the fine-grained methods may usually merge those tasks which take
part in a dependence cycle. Other work on integration of parallelization tech-
niques [7,11,17] includes the speculation DSWP [17], which mainly focuses on
cutting dependences caused by loop conditional statements but cannot cut the
inter-iteration dependences, and the parallel-stage DSWP [11] which integrates
DSWP with DOALL. However, these approaches are not suitable for exploiting
course-grained parallelism and cannot manage multi-layer loop structures.

Unfortunately, currently no method can solve the problem of extracting coarse-
grained pipeline parallelism well [13]. The method to exploiting coarse-grained
pipeline parallelism in C programs proposed in [16] is a language-extension ap-
proach, which imposes the burden of parallelism extraction on programmers. The
Paralax [18] is a compiler-based parallelization framework which focuses on the
dependence analysis but lacks transformation for multi-layer loops. MAPS [3]
is a framework for semi-automatic parallelism extraction from sequential legacy
code and extended to support parallel dataflow programming.

Programmers have been familiar with sequential programming languages like
C for a long time. Instead of using a language/model, an evolutionary paral-
lelization methodology for sequential codes will be more significant. Streaming
applications represent a large set of MPSoC applications, such as video, audio,
cryptographic, wireless baseband processing, etc. These programs are character-
ized by heavy use of pointers, multi-layer loop structures, and streaming data
input. The parallelism within these programs usually is implicit [13]. Extracting
the pipeline parallelism hidden in loops becomes very critical for the rich loop
control-flow constructions in the C programs of streaming applications. Our fo-
cus is on exploiting coarse-grained pipeline parallelism in the C programs of
streaming applications, which are characterized by multi-layer loop structures
with intricate dependence relations and fixed data flow.

In this paper, a scalable-grain pipeline parallelization (SPP) method is pro-
posed, which exploits the coarse-grained pipeline parallelism hidden in multi-
layer loops existing in streaming applications. These applications are described
by a block diagram with a fixed flow of data and the regular communication pat-
tern. We exploit coarse-grained pipeline parallelism by using the source program
transformation for embedded applications that can overcome the traditional bar-
riers. The proposed method first resolves intricate dependency by transforming

Scalable-Grain Pipeline Parallelization Method 271

the task dependence graph, which is then scheduled to the target MPSoC to
minimize the maximal execution time of a pipeline stage. The experimental re-
sults of the parallel programs of the applications on an eight-core platform justify
that this method is efficient in parallelizing C sequential programs.

The rest of this paper is organized as follows. The problem to be solved
is formulated in Section 2. Section 3 presents the framework of the proposed
method. Section 4 presents the experimental result. Section 5 concludes.

2 Problem Formulation

The MPSoC under consideration is modeled as an architectural characterization
graph. For a streaming application, its task dependence graph is extracted from
the source code of the application.

Definition 1. An MPSoC architectural characterization graph (ACG), ACG =
(P,L), is a undirect graph, where a vertex pi ∈ P represents one processing
element (PE) in MPSoC, with m(pi) denoting the memory space of pi and tp(pj)
denoting the type of pi, an arc lij ∈ L represents the link between pi and pj,
with r(lij) denoting the link bandwidth. An MPSoC architecture has r(lij) = R,
∀lij ∈ L, and m(pi) = M , ∀pi ∈ P .

Definition 2. A task dependence graph (TDG), TDG = (V,E,Wv,We), is a
directed graph, which represents the dependence relation of a program, where V
represents the set of nodes, each representing a task of the program, E repre-
sents the set of edges, each representing the dependence relation between two
tasks. The sets Wv and We represent the properties of nodes in V and edges
in E, respectively. For each ni ∈ V , the predecessor node set of ni is defined
as pre(ni), and the successor node set of ni is defined as succ(ni). For an edge
eij = (ni, nj) ∈ E, then ni ∈ pre(nj) and nj ∈ succ(ni). There are two types
of dependences: data and control dependences. Data dependences are caused by
data transfer. Control dependences are evoked by the conditional statements or
loop statements.

These are four types of nodes in set V: Control node set VC , Branch node set
VB, Loop node set VL, and Ordinary node set VO. The edges in E are sorted into
three groups: Control edge set EC , Inter-iteration edge set EI , and Ordinary
edge set EO. The properties of Wv and We are listed in Table 1.

Definition 3. The dependence distance ddep indicates the number of iterations
between two loop nodes forming the inter-iteration dependences. ∀eij ∈ EI ,
ni, nj ∈ VL, if ni is the kth iteration of the loop and nj is the lth iteration
of the loop, then ddep(eij) = l − k.

Definition 4. A strongly-connected component (SCC) of a graph is a maximal
strongly connecter sub-graph, in which there exists a path from each vertex to
every other vertex in the sub-graph. A directed graph is acyclic if and only if it
has no SCC. Given two nodes ni and nj in a TDG, the SCC distance ds(ni, nj)
indicates the number of SCCs between SCCs.

272 P. Liu et al.

Table 1. Properties of Node and Edge

Wv

l ∀n ∈ V , l(n) denotes the type label of node n
m ∀n ∈ V , ∀p ∈ P , m(n) denotes the memory requirement of task n
s ∀n ∈ V , s(n) denotes the number of strongly-connected components that task n belongs to
ib ∀n ∈ VB , ib(n) denotes the branch information of task n
il ∀n ∈ VL, il(n) denotes the loop information of task n
t ∀n ∈ V , ∀p ∈ P , t(n, pi) denotes the execution time of task n on the PE pi. If pi, pj ∈ P

satisfy tp(pi) = tp(pj), then t(n, pi) = t(n, pj)
We

c ∀eij ∈ E ∩ eij /∈ EC , c(eij)denotes the data traffic amount of edge eij
ddep ∀eij ∈ EI , ddep(eij) denotes the dependence distance of edge eij

Definition 5. A TDG after transformation, TDG′ = (V ′, E′,W ′
v, E

′
e), is an

acyclic directed graph, in which each SCC in the TDG is merged into a single
vertex and the control dependences are removed. V ′ is the union of vertex sets
V ′
B, V

′
L, and V ′

O. The edge set E′ does not include any branch/loop control edge,
which is the union of edge sets E′

I and E′
O. The node set W ′

v and edge set W ′
e

properties are defined as the same as the set Wv and We in TDG.

Using these definitions, the problem to be solved can be formulated as below.
Given an application TDG = (V,E,Wv,We) and a target MPSoC platform
ACG = (P,L), find a transformation T : TDG → TDG′(V ′, E′,W ′

v,W
′
e) and a

scheduling function S : V ′ → P , so that the total execution time of the parallel
program is minimized. As streaming applications are executed in pipelined way,
the pipeline execution time is bounded by the slowest stage. Hence, the objective
is minimizing the maximum runtime (including the execution and communica-
tion time) among all pipeline stages, i.e.,

min(max(
∑
i1

t(n′
i1 , p1) +

∑
i1

∑
n′
k1

∈succ(n′
i1

)

(c(ei1k1)/R),

∑
i2

t(n′
i2 , p2) +

∑
i2

∑
n′
k2

∈succ(n′
i2

)

(c(ei2k2)/R), ...,

∑
i|p|

t(n′
i|P | , p|P |) +

∑
im

∑
n′
k|P |

∈succ(n′
i|P |)

(c(ei|P |k|P |)/R)))

(1)

subject to

S(n′
ij) = pj (2)

∀pj ∈ P, ∀n′
kj
, n′

ij ∈ V ′, ∀e′ijkj
∈ E′,

∑
S

m(n′
ij) ≤ mp(pj) (3)

where R is the bandwidth of each link between processing elements in P, each
sum term calculates the execution time of pipeline stage i, including the exe-
cution time of the tasks scheduled on processor pi and communication time for

Scalable-Grain Pipeline Parallelization Method 273

the traffic send to the successor tasks. Condition 2 restricts that one task is only
scheduled to one processing element. Condition 3 ensures that the total memory
consumption of all tasks that are assigned to processing elements that should
not exceed the memory space of pj .

3 Framework

Given the C program of a streaming application, the following steps as shown
in Figure 1 will be performed under the framework of parallelizing sequential
program:

Step1: Select the computing hot-spot region (CHR), which is the procedure
with the maximum execution time, of the whole program through dynamic
profiling. The source code in computing hot-spot region is scanned to find the
relations of parameters, pointers with data structure, data dependence and
control dependence between statements through a top-down method using
in-house developed tools. Then build the TDG of the computing hot-spot
region. The main procedure of a program is usually chosen as the initial
computing hot-spot region.

Step2: Transform the TDG to a directed acyclic graph TDG′ to eliminate the
control dependences and inter-iteration data dependences (P1).

Step3: Allocate and schedule each node in the TDG′ to a proper processing
element in the ACG to form a thread (P2). A pipeline stage consists of one
or more threads.

Step4: Apply split/merge parallelizing technique to balance the workload
among all pipeline stages (P3).

Step5: Evaluate the execution time of the scheduled pipeline. The objective of
scheduling is to minimize the maximum runtime among all pipeline stages.
To further reduce the execution time, choose the bottleneck stage with the
largest runtime to be the new computing hot-spot region, then jump to
step 1.

Step6: Based on the final scheduling result, generate the parallel program for
the application and compile the codes to get the executable files for the
hardware platform.

The sub-problems dependence transformation (P1), task scheduling (P2),
and workload balancing (P3) will be defined and the solutions to these sub-
problems will be discussed in the next subsections.

3.1 Dependence Transformation

The sub-problem P1 is defined as: Given the TDG of an application, find a
transformation method T : TDG → TDG′, which removes the redundant de-
pendences to make the output graph satisfying the following requirements: 1)
No control dependence edge. 2) No dependence cycle, i.e. no SCC composed of
more than one node. Thus TDG′ is an acyclic directed graph with only data
dependences.

274 P. Liu et al.

Exec file for
PE 0

Exec file for
PE 1

Exec file for
PE n-1

. . .

Code Generation Choose a new
CHR

Hardware paltform

Real-Time Operating System
Code Execution

Profiling

Source code

Computing Hotspot
Region (CHR)

Dependence Analyzing

Transformation for TDG

Branch control dependences
Loop control dependences
Inter-iteration dependences

Task Dependence
Graph(TDG)

TDG'

Program
Analysis

Architectural
Characterization

Graph (ACG)

Assign TDG' to processing
elements to form threads

Scheduling Result

Workload
balance?

Split the sequential
code to parallel parts.

Parallel
code

Compile the codes
with cross-compiler

Yes

P2: Task
Scheduling

P1:
Dependence

Transformation

Split/Merge

Workload
balance?

No

No

P3: Workload
Balancing

Fig. 1. Framework of parallelizing sequential code

Branch Control Dependence. For branch control dependence, it is important
to focus on the mutually exclusive branch tasks. The tasks in different branch
paths controlled by conflicting conditions are mutually exclusive. Once a branch
path is selected to execute, the other branch path will not be executed. For every
branch task, the branch exclusive array is updated according to the following
steps.

First, scan the branch information ib of every branch node of which the
type label l(n) is n∈VC , or n∈VC∩VB , or n∈VB∩VL. Assume nj ∈ VB ,
ib(nj).branch level = N . Search branch label[i] and branch condition[i] of
ib(nj) starting from i = 0.

Second, traverse the ith level branch control nodes outgoing control edges
and find the other nodes controlled by it. Check the branch label and
branch condition of these nodes with those of node nj to determine whether
they are mutually exclusive. If so, add these nodes into the branch exclusive
array of node nj .

Third, the ith level branch control node is combined with the branch node
nj . Let i = i + 1, repeat steps 2 and 3 until i = N .

Finally, after finishing process all the branch nodes, delete all the branch
control nodes in TDG.

Through this transformation, each branch control node is merged with its
successive branch nodes in different branch paths to form new nodes.

Scalable-Grain Pipeline Parallelization Method 275

Loop Control Dependence. Due to their repeating characteristics, loops are
the important structures to explore for parallelizing a program. According to
the conventional methods [3,12,14] , all tasks in a loop should be merged into
one large task to eliminate the loop control dependences. Indubitably this will
impede exploiting the parallelism of the tasks in the loop. In addition, the large
task is likely to become the bottleneck of parallelization.

We apply the speculation technique to remove the loop control dependences.
Provided that the loop runs fixed times or many iterations, the loop is regarded as
biased. As a matter of fact, through profiling, many loop behaviors of streaming
applications are highly predictable. The following steps are performed to resolve
loop control dependences.

First, check the values of loop level, loop label, and loop num to see whether
this loop is biased, i.e., if there exists loop num[i] > 0 (ith level loop is biased).
The loop control dependences of this type of loop are seen as highly predictable,
and they are chose to speculate.

Second, remove the selected ith level loop control edges. Insert code to detect
the mis-speculation.

– Insert an unconditional branch statement, such as while (true), in all the
loop tasks that are dependent on this loop control task. If loop num[i] is
known by profiling, a counter is inserted in every loop task.

– A mis-speculation procedure needs to be inserted in the last task of this loop,
when loop num[i] is a variable. The mis-speculation detection is achieved by
copying and updating the computing results of last iteration of the cur-
rent iteration which is running. If the predicted loop is not taken, the mis-
speculation procedure is responsible for recovering data and jumping to the
loop exit path.

Resolving Inter-iteration Dependence. The mechanism for resolving inter-
iteration dependences is as follows. First, on the transformed TDG, provisionally
remove all the inter-iteration dependence edges with their dependence distance
greater than 1. Next, merge tasks which belong to a SCC in the transformed
TDG into one SCC node. Then, identify the SCC distance ds of each task.

We can identify the set of inter-iteration edges that satisfy any one of the
following rules. Assume an inter-iteration dependence edge eij exists, eij repre-
senting the dependence from task ni to task nj .

– If ddep(eij) > ds(ni, nj) ≥ 1, the inter-iteration dependences can be ignored
by the pipeline stages built on current SCCs. When the next stage is going
to be executed, the inter-iteration dependence relation it relied on has been
already satisfied. Thus, removing eij does not affect the parallel scheduling
on the current SCCs.

– If ddep(eij) = 1, check the ds(ni, nj) of this edge. If ds(ni, nj) = −1, it means
task ni and nj are in the same SCC and eij can be ignored. If ds(ni, nj) = 0,
actually this is the special case, eij can be removed.

276 P. Liu et al.

The inter-iteration dependence edges that satisfy any of the above rules are
regarded as redundant and are allowed to be removed. All other provisionally
inter-iteration dependences are not allowed to be removed and are added back
to the TDG before invoking the transformation.

Finally, grouping the tasks and data dependence edges which are involved in
a dependence cycle, then the acyclic directed graph TDG′ has been built.

3.2 Scheduling

The scheduling sub-problem is to find a scheduling function S : V ′ → P with
the objective of minimizing the maximum run time among all pipeline stages.
The constraint of the memory space at each processor need be be satisfied. A
heuristic scheduling approach is used here which allocates the tasks in TDG′ to
the processors such that the workload on each processor is kept balanced.

Two-level priorities are defined to indicate the order of scheduling. A task
batch is the group of tasks which can be executed in parallel according to their
dependence relations. Each task batch has a queue structure to load the tasks,
and a corresponding batch priority to indicate the execution order of the task
batch. Every task in the task batch has a task priority to indicate its order in
the same task batch in case of resource confliction.

The batch priority (TP) of a task batch is set according to the dependence
relations through a breadth first search method. The smaller its batch priority
value, the earlier the task batch can be executed. Once a task is assigned to
a processing element, the batch priority values of its successor tasks will be
updated. Thus, the batch priority can be seen as a dynamic priority.

The task priority of a task ni in a task batch queue is defined as a linear
function of three major factors. The larger its task priority value, the higher
priority of the task is in the task batch. Given TDG′ = (V ′, E′,W ′

v,W
′
e), ACG =

(P,L), ∀n′
i ∈ V ′

TP (n′
i) = α× bl(n′

i) + β ×DMem(n′
i) + γ × SMem(n′

i) (4)

where the major factors are defined below.

– bl(n′
i): the bottom level of n′

i is the length of the longest path starting from
n′
i [14]. If the bl(n′

i) is high, it implies that n′
i is a critical task and should

be given a high priority corresponding to a larger task priority.
– DMem(n′

i): the consumption of the communication buffers for task n′
i. The

DMem(n′
i) =

∑
j

c(e′ij), where edge e′ij originates from ni, c(e
′
ij) represents

the communication traffic of the dependence edge e′ij . If DMem(n′
i) is high,

it means that the inter-processor communication traffic may be large. The
task with grater value of dynamic memory should be allocated to the pro-
cessor with a higher priority.

– SMem(n′
i): the memory requirements of instruction and static data, which

are obtained at the profiling time.

Scalable-Grain Pipeline Parallelization Method 277

ALGORITHM 1. Parallel Scheduling (TDG′, ACG)

Input: Graph TDG′(V ′, E′,W ′
v,W

′
e), and target MPSoC ACG(P,L).

Output: Schedule tasks to processors in ACG.
Part One:
Calculate the batch priority of each node in V ′ and insert each node into the
associated task batch queue through a breadth first search procedure;
for each task batch bj ∈ B do

Calculate the TP for each task in bi according to Equation 4;
Sort tasks in a task queue in the decreasing order of TP as n′

π0
, n′

π1
,..., n′

π|bj |−1
;

end
Sort the task batches in a task batch queue in the increasing order of batch priority
as b′π0

, b′π1
,..., b′π|bj |−1

;

Part Two:
for (k = 0; k < |B|; k ++) do

for (l = 0; l < |bk|; l ++) do
PESelect(task n′

πl
in bπk , P);

Delete the task n′
π from V ′;

for each task n′
i ∈ succ(n′

πl
) do

Reassign n′
i into a proper task batch bj ∈ B, according to dependence

relations in graph TDG′;
end

end

end

– The scale coefficients of α, β, and γ are used to normalize the elements. The
three coefficients are defined as:

α = 1/len(cp), β = 1/(R×min(t(n′
i, pj))), γ = 1/M

where len(cp) indicates the length of the critical path (cp), which is longest
path in TDG′, R represents the link bandwidth between processors, M rep-
resents the memory space of processing element.

The scheduling algorithm is divided into two parts: 1) sort the tasks in the
TDG′ in task batches and calculate the batch priorities and task priorities, and
2) assign each task to a proper processing element to form a thread according
to both batch priority and task priority. Each processing element is responsible
for one thread at one time. This approach focuses on good workload balance,
and also takes into account mutually exclusive branch tasks identified in earlier
phases and data locality optimization. Algorithm 1 outlines the scheduling algo-
rithm. For each task it is necessary to determine which processing element the
task should be scheduled to and the time slot the task will be execute on the
processing element. The principle of processor selection is according to (5).

278 P. Liu et al.

∀n′
i ∈ V ′,∀pj ∈ P

AvailableFactor(n′
i, pj) = λ×DL(n′

i, pj)−max(DRT (n′
i), PEAT (n′

i, pj)) − t(n′
i, pj)

(5)

where DL(n′
i, pj) represents the data locality factor which indicates the data

reuse time and reduction of communication time, when assigning task n′
i to pro-

cessing element pj, λ represents the proportion of DL adjusting factor, DRT (n′
i)

represents the data ready time of task n′
i, PEAT (n′

i, pj) represents the avail-
able time of the processing element pj for task n′

i, and t(n′
i, pj) represents the

execution time of task n′
i on the chosen processing element pj .

In selecting the suitable processing element for a task, the processing element
with the maximum value of AvailableFactor is chosen. The larger this value is,
the higher available level the processing element has. As described above, the
principle for selecting a proper processing element also takes into account the
mutual exclusive of the branch tasks. The main difference between scheduling
of the branch tasks and that of the ordinary tasks is the computation of the
AvailableFactor as mentioned before. The computing about PEAT (n′

i, pj) and
t(n′

i, pj) for the branch tasks should take more attention on the mutual exclusive
property.

3.3 Workload Balancing

In this step, the basic software pipeline technique is applied in conjunction with
the split and merge technique to further balance the workload. Given the initial
scheduling result, split and merge the stages to further reduce the execution
time of the computing hot-spot region. It is achieved by assigning more threads
to large stages and merging small stages into one stage so that the workload
balance and efficiency to the processing elements can be improved.

If the outer-most loop of a program as a computing hot-spot region is split into
several task sets in a pipeline style, then each task set is called a stage. Usually
one stage can be assigned to one or more threads. If the inner loop of a program
or a stage of a computing hotspot region is spilt task sets in a pipeline style, then
each task set is called a sub-stage. Usually the stage consists of one or more sub-
stages. If the minimum execution cost among processing elements account of less
than 50% of the maximum one, or the estimated pipeline execution time does
not satisfy the user’s requirement, the scheduling result is regarded as workload
imbalanced, then the granularity of the pipeline stages need be adjusted.

A heuristic approach is used here which operates in three steps. First, check
whether the loop in the largest stage can be split into several independent iter-
ations without further profiling. If so, split the largest stage and apply DOALL
to assign the iterations to different threads. Second, merge those small stages
into one processing element or insert them into the spare time of other working
processing elements. Third, after the simple split/merge processing, the stage
with largest runtime is selected as the new CHR. Then repeat the steps of trans-
formation and scheduling as shown in Figure 1.

Scalable-Grain Pipeline Parallelization Method 279

Table 2. Software Tool

Program Profiling
valgrind [9] get information about function call and computing cost of sequential code
gcov [6] get the branch selecting information
Dependence Analysis–developed in-house
VarAnalyzer analysis the information of variables in a function, including type, size, define-

use chain, and life time.
DepViz analysis the data dependences and control dependences among functions.
Cross Compiler
mipsisa32el-gcc compiler for MIPS32 compatible architecture
compiler option -O0 -march=4rkc -nostdinc -g -fno-delayed-branch

Table 3. Characteristics of Benchmark

AES
Characteristic 128-bit plaintext and 128-bit encrypt key
T264 Decoder
Version 0.14
Sequence forman, akiyo, container
Input Size QCIF, 176x144, 300 frames
Characteristic 99 macroblocks/frame, two B frames between P frames, no rate control, deblock,

CAVLC entropy coding

4 Experimental Results

To evaluate speedups of our method, the parallelization framework in Figure 1 is
applied to the sequential C programs to produce the parallel codes. Table 2 lists
the software tool chains that we have used through the parallelization. Our ex-
periments are conducted on the multi-FPGA-based networks-on-chip emulation
platform [8]. Eight 32-bit compatible MIPS4Kc RISC cores were instantiated
on the platform, which can be configured to 2, 4, and 8 cores. Each processor
core is attached to the advanced microcontroller bus architecture bus in order
to connect with peripheral memory, communication, and debugging interfaces.
A 3x3 mesh of routers is used to interconnect RISC cores, which implemented
with deterministic routing algorithm. Each router consists of five input/output
ports, 16-depth first-in first-out buffers, and two virtual channels for each port.
The proposed method is applied to two realistic streaming programs: Advanced
Encryption Standard (AES) [5] and T264 decoder [15]. The characteristics of
programs are shown in Table 3.

T264 decoder [15] is one of the open source video codecs based on H.264 stan-
dard. The T264 decoder carries out the complementary processes of decoding,
inverse transform, and reconstruction to produce a decoded video sequence. It
processes frames of video sequence in units of a macroblock and each macroblock
of 16x16 pixels. The outer program loop is responsible for decoding each frame
of the video sequence, while the inner loop deals with every macroblock of a
frame. T264 dec parse slice function is responsible for decoding the frames. It is
also the computing hot-spot region. In the T264 dec parse slice function, there
is an inner-loop to do the decoding work of macroblocks in the frame. Actually
there are complicated dependences among macorblocks and frames. The TDG
and TDG′ of T264 dec parse slice function are shown in Figure 2. The arcs for

280 P. Liu et al.

Fig. 2. TDG and TDG′ of T264 dec parse slice function

Fig. 3. Scheduling for T264 dec parsc slice function

inter-iteration dependences are represented with red solid lines. Control depen-
dences are represented with dashed lines. Data dependences are represented with
black solid lines. Every node is recorded the global variable, local variable, and
extern parameters and their sizes. The node for stands for the loop control node,
which computation and storage cost are not accounted.

If we use conventional parallelization method to deal with the multi-layer
loop structure which makes the inner-loop one large SCC or one large task, the
parallelism in the loop cannot be exploited fully. And when the tasks are assigned
to stages, the workload balance will be very poor as shown in Figure 3. The T264
dec parse slice is split into two stages, each is assigned to one thread. The first
stage is the inner loop which does the decoding work for macro blocks, while the
second stage extracts the prediction information from the current frame for the
later frames.

Using the proposed method, the intricate dependences are resolved and the
inner-loop is split into 4 sub-stages. At the same time, we partition the data
transferred from stage 1 to stage 2 to make sure that each thread of stage 2 is
only given the ownership of a dedicated block of data. Each stage 2 thread follows
one part of the thread of stage 1 as shown in Figure 4. With one thread assigned
to stage 1 and 3 threads assigned to stage 2, the speedup can be improved
further. Through analyzing the inner loop we find it that the frame-decoding
operation can be partitioned into blocks which consist of several macroblocks.
So we gather the dependent macroblocks into one thread and schedule them on
the eight-core platform. We assign 8 threads to T264 decoder program which
are in a pipeline style, and each thread is mapped to a processing element.

Scalable-Grain Pipeline Parallelization Method 281

3,4_1 4_2 4_3
4_41 2 5 6,7,8

Stage

SCC

77.72%22.28%

P1

P2

P3

P0

STAGE1 STAGE1 STAGE1

SUB2-1 SUB2-1 SUB2-1

SUB2-2

SUB2-3

SUB2-2

1 2 3

Data Communication

Fig. 4. (a) Scheduling for T264 decoder at inner loop level, (b) Mapping result for
stages to processing element. The SUB2-1 represents the first thread of stage2.

0

1

2

3

4

5

6

AES T264

Sp
ee
du
p

2-core 4-core 8-core

0

20

40

60

80

100

AES T264

Ef
fic
ien
cy
(%
)

2-core 4-core 8-core

Fig. 5. Speedup and efficiency of the parallelization result

Figure 5 shows that through the proposed method, a speedup can be achieved
on the two case studies. The baseline is the conventional parallelization method
which merges control dependences into one task and only explores the parallelism
of the outer program loops. The 4-core and 8-core represent the parallelization
result on a four cores and eight cores platform respectively. Under the proposed
parallelization method, the speedup is 5.48x for T264 decocder and 5.12x for
AES program respectively. As shown in the figure, the parallel scheme on four
cores platform makes full use of the hardware of which the efficiency is more
than 80%. Since the workload balance of the parallelization scheme is affected
by the characteristic of application, the efficiency of processors on eight cores
platform is smaller than on four cores platform.

5 Conclusions

In this article, we have proposed method for embedded system applications to
exploit the coarse-grained pipeline parallelism hidden in multi-layer loops. The
method first resolves intricate dependency by transforming the task dependence

282 P. Liu et al.

graph, which is then scheduled to the target MPSoC in parallel to minimize the
maximal execution time of a pipeline stage. The parallel scheme is adjusted in a
heuristic way to further improve performance. The experimental results of two
typical applications confirm the efficiency of the method in practical. The method
will be applied to parallelizing other embedded applications on multicore embed-
ded systems. The sequential program parallelization needs to be integrated with
these techniques, such as eliminating redundant dependences, task scheduling,
and independent multi-threading to extracting the pipeline parallelism.

References

1. Allen, R., Kennedy, K.: Optimizing Compilers for Modern Architectures: A
Dependence-based Approach. Morgan Kaufmann (2001)

2. Campanoni, S., Jones, T., Holloway, G., Reddi, V.J., Wei, G.Y., Brooks, D.: HE-
LIX: Automatic Parallelization of Irregular Programs for Chip Multiprocessing.
In: Proc. Int’1 Symp. on Code Generation and Optimization, pp. 84–93 (2012)

3. Ceng, J., Castrillón, J., Sheng, W., Scharwächter, H., Leupers, R., Ascheid, G.,
Meyr, H., Isshiki, T., Kunieda, H.: MAPS: An Integrated Framework for MPSoC
Application Parallelization. In: Proc. Design Automation Conf., pp. 754–759 (2008)

4. Cytron, R.: Doacross: Beyond Vectorization for Multiprocessors. In: Proc. Int’l
Conf. on Parallel Processing, pp. 836–844 (1986)

5. Specification for the Advanced Encryption Standard, AES (2001),
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

6. Gcov - Using the GNU Compiler Collection, GCC (2012),
http://gcc.gnu.org/onlinedocs/gcc/Gcov.html

7. Huang, J., Raman, A., Jablin, T.B., Zhang, Y., Hung, T.H., August, D.I.: De-
coupled Software Pipelining Creates Parallelization Opportunities. In: Proc. Int’l
Symp. on Code Generation and Optimization, pp. 121–130 (2010)

8. Liu, Y., Liu, P., Jiang, Y., Yang, M., Wu, K., Wang, W., Yao, Q.D.: Building a
Multi-FPGA-based Emulation Framework to Support Networks-on-Chip Design
and Verification. International Journal of Electronics 97(10), 1241–1262 (2010)

9. Nethercote, N., Seward, J.: Valgrind: A Framework for Heavyweight Dynamic Bi-
nary Instrumentation. In: Proc. of the ACM SIGPLAN Conf. on Programming
Language Design and Implementation, pp. 89–100 (2007)

10. Ottoni, G., Rangan, R., Stoler, A., August, D.I.: Automatic Thread Extraction
with Decoupled Software Pipelining. In: Proc. Int’l Symp. on Microarch., pp. 105–
116 (2005)

11. Raman, S., Ottoni, G., Rangan, A., Bridges, M.J., August, D.I.: Parallel-stage
Decoupled Software Pipelining. In: Proc. Int’1 Symp. on Code Generation and
Optimization, pp. 114–123 (2008)

12. Rangan, R., Vachharajani, N., Vachharajani, M., August, D.I.: Decoupled Software
Pipelining with the Synchronization Array. In: Proc. Int’l Conf. on Parallel Arch.
and Compilation Techniques, pp. 177–188 (2004)

13. Ryoo, S., Ueng, S.Z., Rodrigues, C.I., Kidd, R.E., Frank, M.I., Hwu, W.M.W.:
Automatic Discovery of Coarse-grained Parallelism in Media Applications. Trans-
actions on High-Performance Embedded Architectures and Compilers 1, 194–213
(2007)

http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://gcc.gnu.org/onlinedocs/gcc/Gcov.html

Scalable-Grain Pipeline Parallelization Method 283

14. Sinnen, O.: Task Scheduling for Parallel Systems. John Wiley & Sons (2007)
15. T264 Decoder (2005), http://sourceforge.net/project/t264
16. Thies, W., Chandrasekhar, V., Amarasinghe, S.: A Practical Approach to Exploit-

ing Coarse-grained Pipeline Parallelism in c Programs. In: Proc. Int’l Symp. on
Microarch., pp. 356–369 (2007)

17. Vachharajani, N., Rangan, R., Raman, E., Bridges, M.J., Ottoni, G., August, D.I.:
Speculative Decoupled Software Pipelining. In: Proc. Int’l Conf. on Parallel Arch.
and Compilation Techniques, pp. 49–59 (2007)

18. Vandierendonck, H., Rul, S., Bosschere, K.D.: The Paralax Infrastructure: Auto-
matic Parallelization with a Helping Hand. In: Proc. Int’l Conf. on Parallel Arch.
and Compilation Techniques, pp. 389–400 (2010)

http://sourceforge.net/project/t264

C.-H. Hsu et al. (Eds.): NPC 2013, LNCS 8147, pp. 284–297, 2013.
© IFIP International Federation for Information Processing 2013

An Effective Approach for Vocal Melody Extraction
from Polyphonic Music on GPU

Guangchao Yao1,2, Yao Zheng1,2, Limin Xiao1,2, Li Ruan1,2,
Zhen Lin1,2, and Junjie Peng3

1 State Key Laboratory of Software Development Environment,
Beijing 100191, China

2 School of Computer Science and Engineering, Beihang University,
Beijing 100191, China

3 School of Computer Engineering and Science, Shanghai University,
Shanghai 200444,China
ruanli@buaa.edu.cn

Abstract. Melody extraction from polyphonic music is a valuable but difficult
problem in music information retrieval. The extraction incurs a large computa-
tional cost that limits its application. Growing processing cores and increased
bandwidth have made GPU an ideal candidate for the development of fine-
grained parallel algorithms. In this paper, we present a parallel approach for sa-
lience-based melody extraction from polyphonic music using CUDA. For 21
seconds of polyphonic clip, the extraction time is cut from 3 seconds to 33 mil-
liseconds using NVIDIA GeForce GTX 480 which is up to 100 times faster.
The increased performance allows the melody extraction to be carried out for
real-time applications. Furthermore, the evaluation of the extraction on huge da-
tasets is also possible. We give insight into how such significant speed gains are
made and encourage the development and adoption of GPU in music informa-
tion retrieval field.

1 Introduction

In the field of music information retrieval (MIR), the extraction of acoustic features is
always the first step. After extraction, the features are then utilized by further applica-
tions. Melody, the fundamental frequency (F0) contour of the polyphonic music’s
lead vocal [1], has been a remarkable feature owing to its numerous applications in
the past few years. Having melodies, we can use them in many ways: the most attrac-
tive one may arise from the field of query by humming [2], where the melody frag-
ment of humming as a query will be fuzzily searched in the feature database. Apart
from that, they are also frequently used in singing voice separation, singer identifica-
tion and extraction of musical structure, etc.

Unfortunately, the promising applications cannot hide the difficulty of the melody
extraction from polyphonic music. The complexity of the task is twofold — firstly,
due to the superposition of all instruments which play simultaneously, the accuracy of
the extraction is still hovering at a relatively low level. This can be seen from the

 An Effective Approach for Vocal Melody Extraction from Polyphonic Music on GPU 285

results of the melody extraction of Music Information Retrieval Evaluation eXchange
(MIREX) [3] in recent years. Secondly, most methods submitted to MIREX are very
time-consuming [1]. The inherent high computational complexity of audio signal
processing is the chief culprits. At the same time, for better evaluation of the algo-
rithm, the corpora is becoming larger and larger, which may contain as many as thou-
sands (or even millions, in the case of some commercial databases) of audio files. All
these factors hinder the development and application of the melody. The progressing
rate of the extraction could be greatly improved if the execution time was reduced
sharply enough to allow a quicker evaluation and tuning of algorithm parameters.

The solution to the above problem relies on the improvement of the computational
capability. Some researchers [4] use FPGA to accelerate the extraction of the acoustic
features. However, this method features a long developing cycle and is very difficult.
Clusters are another common way to solve this problem. Marsyas is used to imple-
ment efficient distributed audio analysis algorithms [5]. But the construction of a
cluster is expensive and inefficient. Besides the distributed parallel method, there are
some on-chip parallel ones, i.e. multi-core and many-core methods. Owing to much
more cores on many-core architecture than that on multi-core one, the former can
provide a tremendous amount of computational capability than the latter. A typical
many-core is GPU. The latest NVIDIA card, e.g. GTX 690 has up to 3072 cores. The
availability of programming models such as CUDA has also made GPU a strong can-
didate for performing many computation intensive tasks.

The adoption of GPU has permeated almost all areas which require significant
computational resources. Many applications ranging from general signal processing
or physics simulation to computational finance or computational biology can be acce-
lerated by GPU. Battenberg [6] uses the multi-core and many-core to accelerate the
non-negative matrix factorization for audio source separation, and the result reveals
that the many-core architecture has more advantages than the multi-core’s. Specific to
the extraction of acoustic feature field, Schmädecke [7] accelerates six different ex-
emplary features, which are among the time domain, frequency domain, and on the
autocorrelated signal. However, all these features are the most basic ones of music,
not including the melody feature. Although some features can be used to compute the
melody, they can only work for pure voice instead of polyphonic music.

Melody extraction from polyphonic music, as mentioned above, remains a chal-
lenging and unsolved task, the overall accuracy is around 70 % which is lower com-
pared with melody extraction from MIDI files. Since classic features cannot estimate
the melody accurately, more complicated approaches are proposed. There are some
designs based on the source/filter model [8], which is sufficiently flexible to capture
the variability of the singing voice and the accompaniment in terms of pitch range and
timbre. Some use the salience-based method [9] to extract the melody. As for accura-
cy, the salience-based approaches give a better performance. But no matter which
method is adopted, significant computational resources are necessarily needed. These
arise from the nature of audio signal processing because the audio signal is usually
partitioned into a large number of frames and the computation cost at every frame
is high.

286 G. Yao et al.

In this paper, we will use GPU to present a salience-based melody extraction ap-
proach to demonstrate the dramatic speedup achieved by GPU and to encourage MIR
researchers to develop and reuse high performance parallel implementations of impor-
tant MIR procedures. Actually, the system won’t be built from scratch. For example,
the extraction methods using Expectation Maximization (EM) can benefit from Ku-
mar’s work [10]. The methods using Support Vector Machine (SVM) will find it use-
ful of Catanzaro’s work [11].

In section 2, the salience-based melody extraction method will be described in
more details. The GPU’s hardware implementation, thread hierarchy and its different
kinds of memories will be stated in section 3. Section 4 will introduce our melody
extraction approach on CUDA. Section 5 presents the experimentation results on
different GPUs and different aspects of melody extraction. Finally we propose con-
cluding remarks and future work to be pursued in Section 6.

2 Salience-Based Melody Extraction

The salience-based design has a common structure: at first, get the spectral represen-
tation of the signal. The most popular technique is the short time Fourier transform
(STFT). Secondly, use the spectral representation to compute the F0 candidates.
There exist many different strategies to compute the candidates, [12] uses the harmon-
ic summation of the spectral peaks with assigned weights, while [13] lets the possible
F0 to compete for harmonics based on expectation-maximization (EM) model. At last,
the melody is chosen from the candidate F0 using different methods.

The procedure to compute the candidates presents significant diversities, and our
approach is based on the generation of melody contours [9]: firstly, the pitch salience
at every frame will be computed by utilizing the spectral peaks, which is called multi-
pitch extraction. Secondly, a set of pitch contours are created using the salient candi-
date pitches. Then the corresponding contour characteristics will be defined, which
can be used to discriminate whether the contour belongs to the melody at the melody
identification stage. At the last stage – post-processing stage, vocal melody is chosen
out of all contours in a three-step singing voice detection stage with the help of con-
tour characteristics. Fig. 1 outlines these three stages through a block diagram. More
details can be found in our previous work [9].

For better comparison with the parallel melody extraction and identifying any po-
tential performance bottlenecks, it’s necessary to perform an intensive analysis of the
serial approach. We will use a polyphonic music clip with duration 21 s to verify the
necessity of acceleration. Table 1 shows the execution time of the main parts of
the algorithm using Intel(R) Core(TM) i5 CPU 750. From the table, it can be easily
seen that the extraction of melody from polyphonic music is so time-consuming that it
can hardly be used in real-time applications because the extraction will be finished in
seconds. For another, the parts occupying the majority of execution time can be easily
found—sinusoid extraction and pitch salience on which most attention will be paid
when achieving the parallel approach. The slowness of the sinusoid extraction arises
from the relative high time complexity. By contrast, the calculation of pitch salience
runs slowly because of its intensive floating point operation.

 An Effective Approach for Vocal Melody Extraction from Polyphonic Music on GPU 287

Fig. 1. Block diagram of our approach, it includes stages: Multi-pitch Extraction, Melody Iden-
tification and Post Processing. The output of first stage is salience peaks which are used to
construct the contours in second stage. At the last stage, the melody is generated.

Table 1. Execution time of every part (ms)

 Sinusoid
extraction

Spectral
peaks filter

Pitch
salience

Salience
peaks filter

Melody
identification

Post
processing

Total
time

Running
time

307.8 9.7 2611.8 4.1 0.2 7.7 2941.9

Proportion 10.5% 0.3% 88.8% 0.1% 0 0.3% 1.0

3 GPU Programming Model

For higher throughput and better organization of so many cores, NVIDIA has done a
lot of innovations on its GPU. The first to be mentioned will be its hierarchy program-
ming model, which provides more choice at choosing different parallel granularities.
Additionally, the diverse device memories are also very important in GPU program-
ming. Each has its own special property and if used properly, they will bring an ob-
vious promotion to the performance.

Multi-pitch
Extraction

Spectral peaks

Singing voice
contours

Iterative Melody

Salience peaks

Sinusoid
extraction

Pitch
salience

Spectral
peaks filter

Pitch
 contours

Singing voice
detection

Contour
characteristics

Octave error
remove

Melody
selection

Pitch outlier
remove

Salience
peaks filter

Melody Iden-
tification

Post
Processing

288 G. Yao et al.

3.1 Programming Model

The NIVIDA GPU hardware is implemented as a set of streaming multiprocessors
(SM), which manage a set of scalar processor cores (SP). The SPs at the same SM are
equal peers and share some important memories. CUDA has a special programming
model catering the hardware—Grid-Block-Thread model, i.e. the simple instruction
multiple thread (SIMT) model. Users must group threads into blocks and construct a
grid of some number of thread blocks. A block will be executed on a single SM. If all
the threads in one block finish their job, a new block (if any) will be activated on the
idle SM. One or more thread blocks to be processed by an SM are partitioned into
warps with a size of normally 32 threads. These warps are then scheduled by the SM
schedule unit for its execution. All the threads activated at a SM can be larger than the
actual SPs for hiding the memory latency. Furthermore, threads in the same block can
be synchronized for correctness.

3.2 Memory Hierarchy

In Table 2, the frequently-used memories and their properties are listed. Texture
memory and local memory are rarely used under the circumstances of general purpose
computation, so they are not included in the table. Actually, as long as we make good
use of the memories listed in the table, the best optimization effect can be achieved.

Registers scattered on the SPs have the fastest memory access speed. But they can
only be used by a single thread and cannot be used in inter-thread communication. For
communication between threads, shared memory residing in the SM that is shared by
the whole threads in one block can be used. Owing to its on-chip property, it also has
a fast access speed. This makes it a key point for acceleration. It can be regarded as
the cache, small but fast.

Besides the above, others are the off-chip device memories which often have a rel-
ative slow access speed. The global memory owns the biggest capacity which usually
has several GBs, and its bandwidth is also higher than the bandwidth of CPU’s
memory. From compute capability 2.0 and above, the on-chip cache makes it more
efficient. Furthermore, it’s shared by all the blocks. Constant memory, as its name
suggests, is used to save the constant variables. As it has on-chip cache, its access
speed is very fast. From [14], the constant cache often has higher bandwidth than
shared memory in spite of the off-chip property. This conclusion inspires us to use
constant memory to save read-only variables.

Table 2. Properties of the frequently used memories

Name Action Scope Speed Cached

Register Thread Fastest N

Shared Memory Block Fast N

Global Memory Grid Slow Compute Capability 2.0 and above

Constant Memory Grid Slow Y

 An Effective Approach for Vocal Melody Extraction from Polyphonic Music on GPU 289

After the introduction of GPU, conclusion can be drawn that GPU is very suitable
for problems which have a two-level data parallelism—one level for different blocks,
and another level for different threads. If a problem doesn’t show a two-level paral-
lelism, it can also be applied on GPU as long as it has at least one-level parallelism
but maybe need more tricky works. For example, the classic matrix multiplication
problem must be fragmented to small square matrices to create the two-level paral-
lelism factitiously. For another, merging two sorted arrays [15] must use more diffi-
cult techniques to transplant the problem into GPU’s platform. Fortunately, in the area
of audio signal processing, the problems often show a great parallelism. For an inde-
pendent music, it’s usually processed by frame. The inter-frame is one level paral-
lelism at which the weak scaling [16] can be applied, and if the problem can also be
processed parallel inner-frame, this is the other level parallelism at which the strong
scaling will be applicable. If a frame cannot be processed parallel, we can still get one
level parallelism from different music. In a nutshell, MIR is a perfect field that GPU
can show its extraordinary computing capability.

4 Parallel Implementation

From Table 1, the parts which most need acceleration can be easily seen. Fortunately,
these parts are also the easiest parts to be parallelized. At the first stage—Multi-pitch
Extraction, the main job is to transform the music data and to calculate the pitch sa-
lience. In sinusoid extraction part, CUFFT [17] is a good choice to achieve the FFT
on CUDA, which is an efficient official library. In pitch salience computation part,
the key operation is to calculate the salience of different frequencies at every frame.
Because the salience computation of a specific frequency has no contact with the
others, the computation reveals a perfectly strong scaling which can be mapped to
different threads in a one-to-one mapping. Besides these two time-consuming parts,
there will be two filter parts. They occupy only a small proportion of the runtime, so
they can be put on CPU. But considering their stay between the sinusoid extraction
and the pitch salience computation, parallelizing them on GPU will reduce the com-
munication time between CPU and GPU. Hence we will parallelize all parts of the
first stage on GPU.

In Melody Identification stage, the main job is to create a series of pitch contours
and to calculate the contour characteristics. These operations have a strong data de-
pendency. What’s more, this stage occupies only a very little proportion of the whole
runtime as illustrated in Table 1. So this stage will be finished on CPU.

In the last post processing stage, the operation deals with the octave error and the
pitch outlier using “melody pitch mean”. The calculation of melody pitch mean is
finished with the help of smoothing filter which needs a lot of computation. This
filter has less data dependency and it can be parallelized on GPU even the proportion
of this stage is also small. Different blocks will smooth different positions, and
the threads in the same block will calculate the value of the same position using
reduction.

290 G. Yao et al.

The complete heterogeneous algorithm is shown below (Note that the first stage is
included for completeness). In the following section, we will focus on specific parts
of the algorithm as some stages execute on CPU.

4.1 Sinusoid Extraction

Before transforming, the music data should be transferred from host memory space to
device memory space, and then rearranged to fit for FFT and consequent operations, as
depicted in Fig. 2. The reason for rearrangement is to make the data suitable for
CUFFT functions. The rearrangement is executed after the transfer because less data
will be transferred and the rearrangement can be implemented in parallel.

Afterwards, the rearranged frames will be multiplied by Hann window. Then
cufftPlan1d and cufftExecR2C are used to transform the frames. The results of FFT
will be complex. The real part and the imaginary part of complex are used to get the
module of the transform result. At the same time, as transform is symmetric, only half
of the result at one frame will be useful.

Algorithm. Hybrid Melody Extraction from Polyphonic Music

Input: Polyphonic Music pm
Output: Melody m
1: Stage I: Pre-Processing CPU ::
2: CPU :: read the polyphonic music to CPU memory
3: CPU → GPU :: transfer the music to GPU memory
4: Stage II: Multi-pitch Extraction GPU ::
5: GPU :: rearrange the music data
6: for every frame f parallel do
7: GPU :: sinusoid extraction
8: GPU :: spectral peaks filter
9: GPU :: pitch salience computation

10: GPU :: salience peaks filter
11: endfor
12: Stage III: Melody identification CPU ::
13: GPU → CPU :: read salience peaks to CPU memory
14: CPU :: pitch contour
15: for every contour c do
16: CPU :: contour characteristics
17: CPU :: singing voice detection
18: endfor
19: Stage IV: Post Processing mainly on CPU ::
20: for i=1:3 do
21: CPU → GPU → CPU :: melody pitch mean
22: CPU :: remove octave error
23: CPU :: remove pitch outlier
24: endfor
25: CPU: return the melody

 An Effective Approach for Vocal Melody Extraction from Polyphonic Music on GPU 291

Fig. 2. Rearrangement of the original audio (For music with 44.1 kHz sample rate, frame length
is 2048, hop size is 441, FFT length is 8192, zero padding is 6144)

In this part, many operations just transform the frame data from one form to anoth-
er, so the pattern concurs with each other—transform the data one by one in every
frame. Therefore, we adopt the same strategy to parallelize them: all the threads in
one block will deal with an individual frame and different blocks will process differ-
ent frames. This is a good example of strong scaling and weak scaling.

4.2 Spectral Peaks Filter

The spectral peaks of transform encompass the possible pitches and are extracted for
further dispose. The key of the filter is getting all the peaks first. For traditional serial
algorithm, it’s a very easy goal to achieve as it just traverses the array forward and
returns the found peaks. When transplanting to GPU platform, the complexity appears.
Although different frames can be processed in parallel, the parallelism in a frame can-
not be utilized well. The difficulty is not how to find the peaks but how to save them. If
merely counting the numbers, the different threads in a block can count the peaks on
shared memory and count them all using efficient reduction method. But if we need to
save the peaks at the same time, the story will be different. There is a possibility that
some threads in a warp find the peaks simultaneously and the conflict happens when
saving them. The problem here is that counting variable will be visited simultaneously
by different threads in a block. One solution relies on the use of atomic operation
which serializes the visit of memory. Unfortunately, this solution has a severe draw-
back—reducing the access efficiency, so does the speed.

In order to balance the efficiency and the correctness, different strategies are
adopted to specific length of frames. For the original transform result, the frame length
is half of the FFT length plus one, i.e. 4097. The order of magnitude of the peaks will
stabilize at 102 levels. For the sake of high efficiency, the “space for time” strategy is
used. More specifically, the equal sized array with the original frame is allocated for
holding the peaks, as depicted in Fig. 3. The found peaks will be put in position which
has the same index with the peaks in the original frame. In this way, the threads can
save the peaks without the access conflict. The reason we waste the space to save the
peaks is that the peaks will be further disposed, and none of all will be saved.

Original

audio

FFT length

Frame length Hop size

Zero padding

292 G. Yao et al.

Fig. 3. Space for time strategy for finding the peaks (All elements in allocated frames are zero
except the peaks)

The consequent work is to find the max peak which is used to carry out the filter.
Finding the max value of an array is a classic problem on CUDA which can be finished
using the CUBLAS [18] library or achieved by ourselves using reduction. Once getting
the max peak, we can perform the filter of peaks. The problems here are the same as
finding peaks, namely how to save the remaining peaks. But unlike the previous
finding peaks, the order of magnitude of the peaks has reduced to 101 levels from expe-
riment, so this means the remaining peaks in the array is rather sparse (length of thou-
sands of array has dozens of peaks). From the above result, the probability of conflict
when the threads in a warp save the peaks simultaneously will be low. In this case, we
can use atomic operation to finish the filter.

Although the atomic operation assures the correctness of counting, the result of
atomic operation cannot be used directly as it may be added by another thread before
saving the peaks. The solution is using the return value of the atomic function of
CUDA. Because it returns the old value and incrementing the old value will exactly be
the right position for the remaining peak. In addition, owing to the fast access speed
and shared by the whole threads in a block, the shared memory is a good place to put
the counting variable. The part of salience peaks filter is the same as the spectral peaks
filter, so it will not be described in detail.

4.3 Pitch Salience

After filtering the spectral peaks, they will be used to calculate the pitch salience. The
calculation reveals a perfect parallelization as the calculation of each bin has no data
dependency with other bins’ calculation. So it can be easily transplanted to GPU plat-
form, the strategy is different blocks process different frames, and threads in a block
dispose a frame’s calculation of 480 different pitch saliences. On one hand, due to the
frequent access of spectral peaks and their small size, putting them in shared memory
is a good idea to accelerate the access speed. On the other hand, because the calcula-
tion of pitch salience has so many floating point operations, the requirement for regis-
ters are huge and this will limit the threads number activated at the same time. Our
solution is to use the constant memory to hold the constant variables needed in calcula-
tion. This is a good approach to optimize. The other used optimizations comprise the

Allocated frames

Original frames

 An Effective Approach for Vocal Melody Extraction from Polyphonic Music on GPU 293

extraction of common sub-expressions and loop unrolling, etc. Although no advanced
techniques are adopted, we can still achieve a high speed-up from the following
evaluation.

5 Evaluation

Various experiments are presented to clarify the effectiveness of GPU in our ap-
proach. At first, the overall performance of the system and the parallelized parts on
each hardware platform are presented. After this, the performance along with the
music length is evaluated. Furthermore, the efficiency of our peaks filter is demon-
strated. At last, the influence to the ultimate accuracy is tested.

We have implemented our algorithm on two different commodity GPUs, whose
hardware specifications are listed in Table 3. The CPU version runs on an Intel(R)
Core(TM) i5 CPU 750 platform.

The corpus used to evaluate the efficiency of the system is from MIR-1k which is a
publicly available dataset proposed in [19]. It has 1000 song clips with a duration
ranging from 3 to 12 seconds, and the total length is up to 133 minutes.

Table 3. GPU Specifications

Properties GTX 285 GTX 480

Number of cores 240 480

SMs 30 15

Cores per SM 8 32

Global Memory(GB) 1 1.5

Memory Bandwidth (GB/s) 159 177

Shared Memory (KB) 16 48

Register (KB) 16 32

GPU core clock rate (MHz) 648 700

Compute Capacity 1.3 2.0

5.1 Overall Performance

The same polyphonic music clip as in performance analysis of serial approach is used
to measure the overall performance of the system and the parallelized parts. The run-
time of the parallelized parts and the whole system on different platforms is demon-
strated in Fig. 4.

From Fig. 4, we can see all accelerated parts achieve a positive speed up, especially
two most time-consuming parts. In the pitch salience computation part, the runtime is
reduced from seconds to lower than 10ms. This is a huge acceleration. The high acce-
leration can attribute to the perfect parallelism and the use of shared memory. Inspired
by these two parts, the whole system also gets a considerable acceleration—for a

294 G. Yao et al.

length of 21 s audio clip, the extraction time is reduced to less than 40 ms on GTX
480. The speedup is nearly to 100 times. This implementation is sufficient for real-
time applications, such as query by humming. What’s more, our system can be
applied to massive datasets which are often used to verify the effectiveness of algo-
rithms. The approach can reduce the time to tune the variables or to develop new
methods dramatically. So researchers can pay more attention to the algorithm itself
rather than the performance.

Except the two parts mentioned above, other parts get a relative small acceleration.
Even though they occupy a small proportion of execution time, it’s meaningful to find
out a reasonable explanation. In post processing stage, a 2-times acceleration is
achieved approximately on GTX 285 platform. The final cause is shown in two as-
pects: at first, the proportion which can be accelerated is only 70 %. This means the
speed-up upper bound is only 3.3 times according to the Amdahl’s law. Secondly, the
algorithm complexity of smoother filter is only O(n), so the ratio of operations to
elements transferred is O(1). Performance benefits can only be more readily achieved
when this ratio is higher. Furthermore, although a high parallelization exists in the
smooth filter, the time is wasted on the space allocation on GPU and transfer between
the host and the device. So we can reach such a conclusion that a high proportion of
parallelizable part and computation complexity are the prerequisites for high speed-
up. The reason pitch salience computation can also achieve a very high speed-up even
its computation complexity is O(n) is that it has no transfer between the host and the
device. In addition, the previous hidden coefficient is large. The peaks filter part will
be better explained in detail later.

Fig. 4. Performance comparison of different parts and the whole system (Time for CPU and
GTX 480 is marked for clarity)

5.2 Influence of Music Length

As the melody extraction is processed mostly frame by frame, the extraction time will
increase gradually with the growing of audio length, as illustrated in Fig. 5. Although
the entire trend of the line growth is incremental, there still exist some points which

307.8

9.7

2611.8

4.1
7.7

2949.8

9.3

2.2
6.5

1.7 2.8

32.1

1

10

100

1000

10000

Sinusoid
extraction

Spectral
peaks filter

Pitch
salience

Salience
peaks filter

Post
processing

Total time

R
un

ti
m

e
(m

s)

CPU GTX285 GTX480

 An Effective Approach for Vocal Melody Extraction from Polyphonic Music on GPU 295

descend with the growing of audio length. This is because of the influence of specific
audios. That means the extraction procedure has different levels in difficulty. It is
obvious that polyphonic music with lower energy of background will be much easier
to extract the melody than the music with a strong energy of background intuitively as
the former has less candidate pitches, and this will reduce the computation time of
pitch salience.

Fig. 5. Extraction time along with the growing of audio length on different platforms

5.3 Efficiency of Parallelized Finding Peaks

From Fig. 4, we can also see that the two peak filter parts have a relative low speed-
up. This phenomenon arises from the massive space allocation on device memory
under the situation of no transfer between the device and the host, and the low algo-
rithm complexity. For a problem with a low computation complexity, the execution
time will be dominated by the space allocation on GPU and transfer between the host
and the device. Under such a circumstance, reusing GPU device memory will be im-
portant and it’s also possible to reuse previous allocated space to put the found peaks.
For example, the space for rearrangement of original audio is large enough to hold the
peaks. In this way, the time of release and allocation space can be reduced once.

The peaks filter can be divided into more fine-grained steps: firstly, find all the
peaks, and then the max peak. Thirdly, execute the first level peaks filter. At last, do
the second level peaks filter. If just ignoring the space allocation to compare the com-
putation time, we can still see the positive effect of our parallelization, as illustrated in
Table 4.

Table 4. Execution Time of Each Step at the Spectral Peaks Filter (ms)

Hardware Find peaks Max peak First filter Second filter

CPU 8.54 0.29 0.38 0.44

GTX 285 1.26 0.32 0.29 0.07

GTX 480 0.24 0.38 0.11 0.03

1

10

100

1000

10000

5 8 11 14 17 20 23

R
un

ti
m

e
(m

s)

Audio length (s)

CPU GTX285 GTX480

296 G. Yao et al.

Owing to the “space for time” strategy, the operation of finding peaks achieves an
obvious speed-up. The classic problem of finding max doesn’t demonstrate a speed-
up, and the too few data are to blame. The filter using atomic operation shows a small
speed-up. It is understandable that few data and access conflict both exist in the ex-
traction. The second filter works better than the first one as the possibility of conflict
is smaller than that in the first filter. From Table 4, we can also see that the allocation
and release time occupy a big proportion if adding up all the time and comparing it
with Fig. 4.

5.4 Influence to the Accuracy

The operation of double-precision floating point on GPU is time-consuming, so the
single-precision floating point is adopted in our system. Although the precision is
reduced, the accuracy doesn’t drop. The overall accuracy on our parallel system
is 73.7 %, the same as the serial approach on dataset MIR-1k. But the extraction time
is reduced from nearly one hour to less than one minute. This promotes the efficiency
of development tremendously. So we can spend more time on the improvement of the
accuracy of the algorithm itself, and do not need to concern about the performance.

6 Conclusions and Future Work

Melody extraction from polyphonic music is a valuable problem because the melody
can be used in many valuable applications. However, the relative long extraction time
and the low accuracy limit its extensions. The extraction can be accelerated by GPU
due to its high computation capability. In this paper a fast extraction approach based
on GPU is presented. The results show that GPUs are well suited for audio signal
processing problems as its characteristic is that the frame is processed one by one.
Our parallel implementation reduces computation times by nearly two orders of mag-
nitude on GTX 480. The acceleration is so tremendous that our system can be applied
to some real-time applications, such as query by humming. Moreover, another benefit
from acceleration is that it can greatly reduce the development time, so we can take
more time to improve the accuracy of melody extraction.

In the future, we will implement a real query by humming application using our
parallel extraction approach. At the same time, the tune of parameters and new me-
thods about melody extraction will be verified on GPU platform deeply.

Acknowledgments. This research was funded by the Hi-tech Research and Develop-
ment Program of China (863 Program) under Grant No.2011AA01A205, the National
Natural Science Foundation of China under Grant No.61232009, the Doctoral Fund of
Ministry of Education of China under Grant No.20101102110018, Beijing Natural
Science Foundation under Grant No.4122042, the fund of the State Key Laboratory of
Software Development Environment under Grant No.SKLSDE-2012ZX-07 and Shang-
hai Science and Technology Innovation Action Plan under Grant No.11511500400.

 An Effective Approach for Vocal Melody Extraction from Polyphonic Music on GPU 297

References
1. Poliner, G.E., Ellis, D.P.W., Ehmann, F., Gómez, E., Steich, S., Ong, B.: Melody tran-

scription from music audio: Approaches and Evaluation. IEEE Trans. on Audio, Speech
and Language Process. 15(4), 1247–1256 (2007)

2. Dannenberg, R.B., Birmingham, W.P., Pardo, B., Hu, N., Meek, C., Tzanetakis, G.: A com-
parative evaluation of search techniques for query-by-humming using the MUSART
testbed. J. of the American Soc. for Inform. Science and Technology 58(5), 687–701 (2007)

3. Downie, J.S.: The music information retrieval evaluation exchange 2005–2007: A window
into music information retrieval research. Acoustical Science and Technology 29(4), 247–
255 (2008)

4. Schmidt, E.M., West, K., Kim, Y.E.: Efficient Acoustic Feature Extraction for Music In-
formation Retrieval Using Programmable Gate Arrays. In: Proceedings of the 2009 Inter-
national Society for Music Information Retrieval Conference. ISMIR, Kobe (2009)

5. Bray, S., Tzanetakis, G.: Distributed audio feature extraction for music. In: Proceedings of
the International Conference on Music Information Retrieval, pp. 434–437 (2005)

6. Battenberg, E., Wessel, D.: Accelerating nonnegative matrix factorization for audio source
separation on multi-core and many-core architectures. In: International Society for Music
Retrieval Conference (2009)

7. Schmädecke, I., Mörschbach, J., Blume, H.: GPU-based acoustic feature extraction for
electronic media processing. In: Proc. 14th ITG Conf. Electronic Media Technology,
Dortmund, Germany (2011)

8. Ozerov, A., Philippe, P., Bimbot, F., Gribonval, R.: Adaptation of bayesian models for
single-channel source separation and its application to voice/music separation in popular
songs. IEEE Trans. on Audio, Speech, and Language Process. 15(5), 1564–1578 (2007)

9. Guangchao, Y., Yao, Z., Limin, X., Li, R., Yongnan, L.: Efficient Vocal Melody Extrac-
tion from Polyphonic Music Signals. Electronics and Electrical Engineering 19(6), 103–
108 (2013)

10. Kumar, N.S.L.P., Satoor, S., Buck, I.: Fast parallel expectation maximization for gaussian
mixture models on gpus using cuda. In: Proceedings of the 2009 11th IEEE International
Conference on High Performance Computing and Communications, pp. 103–109. IEEE
Computer Society, Washington, DC (2009)

11. Catanzaro, B., Sundaram, N., Keutzer, K.: Fast Support Vector Machine Training and
Classification on Graphics Processors. In: Proceedings of the 25th International Confe-
rence on Machine Learning, pp. 104–111 (2008)

12. Klapuri, A.: Multiple fundamental frequency estimation by summing harmonic amplitudes.
In: Proc. 7th Int. Conf. on Music Inform. Retrieval, Victoria, Canada, pp. 216–221
(October 2006)

13. Goto, M.: A real-time music-scene-description system: predominant-f0 estimation for
detecting melody and bass lines in real-world audio signals. Speech Communication 43,
311–329 (2004)

14. Yang, Y., Xiang, P., Mantor, M., Zhou, H.: Fixing Performance Bugs: An Empirical Study of
Open-Source GPGPU Programs. In: International Conference on Parallel Processing (2012)

15. Green, O., McColl, R., Bader, D.A.: GPU merge path: a GPU merging algorithm. In: Proc.
ICS, pp. 331–340 (2012)

16. NVIDIA, CUDA C Best Practices Guide 4.1 (2012)
17. NVIDIA, CUFFT Library 4.1 (2012)
18. NVIDIA, CUDA CUBLAS Library 4.1 (2012)
19. Hsu, C.L., Jang, J.S.: On the improvement of singing voice separation for monaural

recordings using the MIR-1K dataset. IEEE TASLP 18, 310–319 (2010)

Modified Incomplete Cholesky Preconditioned

Conjugate Gradient Algorithm on GPU
for the 3D Parabolic Equation�

Jiaquan Gao1, Bo Li1, and Guixia He2

1 College of Computer Science and Technology, Zhejiang University of Technology,
Hangzhou 310023, China

gaojq@zjut.edu.cn
2 Zhijiang College, Zhejiang University of Technology, Hangzhou 310024, China

Abstract. In this study, for solving the three-dimensional partial differ-
ential equation ut = uxx + uyy + uzz, an efficient parallel method based
on the modified incomplete Cholesky preconditioned conjugate gradi-
ent algorithm (MICPCGA) on the GPU is presented. In our proposed
method, for this case, we overcome the drawbacks that the MIC pre-
conditioner is generally difficult to be parallelized on the GPU due to
the forward/backward substitutions, and thus present an efficient paral-
lel implementation method on the GPU. Moreover, a vector kernel for
the sparse matrix-vector multiplication, and optimization of vector op-
erations by grouping several vector operations into a single kernel are
adopted. Numerical results show that our proposed forward/backward
substitutions and MICPCGA on the GPU both can achieve a signif-
icant speedup, and compared to an approximate inverse SSOR pre-
conditioned conjugate gradient algorithm (SSORPCGA), our proposed
MICPCGA obtains a bigger speedup, and outperforms it in solving the
three-dimensional partial differential equation.

Keywords: conjugate gradient algorithm, modified incomplete Cholesky
preconditioner, parabolic equation, GPU.

1 Introduction

The conjugate gradient (CG) algorithm is one of the best known iterative meth-
ods. With a suitable preconditioner, the performance of the CG algorithm can
be dramatically improved. The preconditioned conjugate gradient (PCG) algo-
rithm has proven its efficiency and robustness in a wide range of applications.
Following the introduction of CUDA (Compute Unified Device Architecture) by
NVIDIA in 2007 in rent years [1], Graphic Processing Units (GPUs) have drawn
much attentions. Many researchers have attempted to develop the suitable and
flexible PCG algorithm for the GPU architecture. Related work can be found
in [2–5].

� The research has been supported by the Chinese Natural Science Foundation under
grant number 61202049 and the Natural Science Foundation of Zhejiang Province,
China under grant number LY12A01027.

C.-H. Hsu et al. (Eds.): NPC 2013, LNCS 8147, pp. 298–307, 2013.
c© IFIP International Federation for Information Processing 2013

MICPCGA on GPU for the 3D Parabolic Equation 299

For a PCG algorithm, the key is how to parallel solve the equationMz = r (M
is the preconditioned matrix) on GPUs when shifting it to the GPU platform.
For the modified incomplete Cholesky factorization (MIC) preconditioning,M =
LDLT , where L is a lower triangular matrix. As we know, for solving the equation
LDLT z = r, the following two steps are required. First, LDv = r is solved
for v by the forward substitution, and then DLT z = Dv is solved for z by
the backward substitution. It is obviously observed that the forward/backward
substitutions are not easy to implement on GPUs if L does not have especial
characteristics.

Due to the forward/backward substitutions, the MIC preconditioning is dif-
ficult to be parallelized on GPUs. In this study, we present an efficient method
for parallelizing the forward/backward substitutions on the GPU, which is the
main contribution. The reminder of this paper is organized as follows. In
the second section, the problem and the MIC PCG algorithm are described.
In the third section, some GPU kernels for the MIC PCG algorithm are pro-
posed. Numerical results are presented in the fourth section. The fifth section
contains our conclusions and points to our future research direction.

2 Problem and MIC PCG Algorithm

2.1 Problem Description

In this study, we consider the following partial differential equation (PDE):

⎧⎪⎨
⎪⎩
ut = uxx + uyy + uzz, (x, y, z, t) ∈ Ω × [0, T],

u(x, y, z, 0) = φ(x, y, z), (x, y, z) ∈ Ω,

u(x, y, z, t) = 0, (x, y, z, t) ∈ ∂Ω × [0, T],

(1)

where u is the solution, φ(x, y, z) is a function of variables x, y and z, Ω is a
regular three-dimensional domain and ∂Ω denotes the boundary of Ω.

Here we utilize the discrete variational derivative method (DVDM) to dis-
cretize the PDE (1). As compared to the finite difference method (FDM), The
DVDM can guarantee that the constructed numerical scheme retains the en-
ergy dissipation or conservation properties. According to the strategy of the
DVDM to construct a dissipative scheme, we define an energy G(u, ux, uy, uz) =
(ux)

2/2+(uy)
2/2+(uz)

2/2 of the PDE (1) and then obtain the numerical scheme
as follows.

ut
i,j,k − ut−1

i,j,k

Δt
=δ

(2)
i

(
ut
i,j,k + ut−1

i,j,k

2

)
+ δ

(2)
j

(
ut
i,j,k + ut−1

i,j,k

2

)

+ δ
(2)
k

(
ut
i,j,k + ut−1

i,j,k

2

)
,

(2)

300 J. Gao, B. Li, and G. He

Fig. 1. A 4 × 2 × 2 three-dimensional grid

where

δ
(2)
i ui,j,k =

ui+1,j,k − 2ui,j,k + ui−1,j,k

(Δx)2
,

δ
(2)
j ui,j,k =

ui,j+1,k − 2ui,j,k + ui,j−1,k

(Δy)2
,

δ
(2)
k ui,j,k =

ui,j,k+1 − 2ui,j,k + ui,j,k−1

(Δz)2
.

Assume that a 4 × 2 × 2 three-dimensional grid, shown in Fig. 1, is defined,
the scheme (2) can be written as the following linear system for a certain time
t ∈ [0, T].

Au = b, (3)

where the coefficient matrix A is denoted as follows:⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∗ ∗ ∗ ∗∗ ∗ ∗ ∗ ∗∗ ∗ ∗ ∗ ∗∗ ∗ ∗ ∗∗ ∗ ∗ ∗∗ ∗ ∗ ∗ ∗∗ ∗ ∗ ∗ ∗∗ ∗ ∗ ∗∗ ∗ ∗ ∗∗ ∗ ∗ ∗ ∗∗ ∗ ∗ ∗ ∗∗ ∗ ∗ ∗∗ ∗ ∗ ∗∗ ∗ ∗ ∗ ∗∗ ∗ ∗ ∗ ∗∗ ∗ ∗ ∗

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

a sparse, symmetric, positive definite, seven-diagonal, diagonally dominant 16×
16 matrix of regular structure, b is a vector of size 16, and u is an unknown
solution vector of size 16. Therefore, it can be obviously seen that the key is to
solve the linear system (3) for solving the 3D PDE (1).

2.2 MIC PCG Algorithm

For solving the symmetric linear system similar to (3), the PCG algorithm has
proven its efficiency and robustness in a wide range of applications. Its detailed
procedure is shown in Algorithm 1.

For the above linear system (3), the preconditioned matrixM = LDLT , where
L is a lower triangular matrix with nonzero values along the main diagonal

MICPCGA on GPU for the 3D Parabolic Equation 301

Algorithm 1. PCG algorithm for the linear system Au = b
Input: A, b; Output: u

01 k = 0
02 u = [1, 1, · · · , 1]T , r = b− Au,Mz = r, p = z, ρ0 = zT r
03 Repeat
04 q = Ap,α = ρ0/p

T q
05 u = u+ αp
06 r = r − αq
07 Mz = r
08 ρ1 = zT r, β = ρ1/ρ0, ρ0 = ρ1
08 p = r + βp
09 k = k + 1
10 Until (k < maxiter and rT r > tol)

and at off-diagonal locations only where A has nonzero entries. Generally, the
forward/backward substitutions both need n (n is the element number of the
solution vector) steps to finish calculations of elements. However, we observe
that the forward/backward substitutions for this case both can be finished in 6
steps instead of 16 steps according to the progressions shown in Fig. 2.

Fig. 2. Progression of the forward substitution

The computational grid in Fig. 2 is the same as in Fig. 1, and arrows represent
dependencies between elements of the grid. The calculation of an element in
each step does not only depend on its adjacent row and column neighbors, but
also depends on its adjacent layer neighbors. For example, the element 14 is
dependent to its adjacent row and column elements 10 and 13 and its adjacent
layer element 6. However, not all elements have these neighbor elements and the
number of neighbors varies with the location of the element. Moreover, for any
element, its dependent neighbors must be calculated earlier than it in order to
start its calculation. Moreover, the elements of each step are independent each

302 J. Gao, B. Li, and G. He

other and can be concurrently calculated. All these things are helpful for shifting
the forward/backward substitutions to the GPU platform.

3 GPU Kernels and Optimization

The primary kernels used in the implementation of Algorithm 1 are explained
in this section. The kernels represented here perform mathematical operations
used in Algorithm 1. Following Algorithm 1, the basic operations are sparse
matrix-vector multiplications, vector operations and the forward/backward sub-
stitutions.

3.1 Sparse Matrix-Vector Multiplication

Here the sparse matrix A is stored with the compressed sparse row (CSR) format:
(1) the array a contains all the nonzero elements of A; (2) the array colidx
contains column indices of these nonzero elements; and (3) entries of array rowstr
point to the first element of subsequent row of A in arrays a and colidx.

Sparse matrix-vector multiplications (SpMVs) represent the dominant cost in
the PCG algorithm for solving large-scale linear systems. Fortunately, the SpMV
for the CSR format is easy to be parallelized on the GPU. A straightforward
CUDA implementation, which is referred to as the scalar kernel, uses one thread
per row. However, its performance suffers from several drawbacks. The most
significant among these problems is that threads with a warp (a bunch of 32
CUDA threads) can not access the arrays a and colidx in a coalesced manner.
In [6], An alternative to the scalar kernel, called the vector kernel, assigns one
warp to each matrix row. For the vector kernel, it accesses the arrays a and
colidx contiguously, and therefore overcomes the principal deficiency of the scalar
kernel.

Thus, here we will utilize the vector kernel to compute the SpMV on the
GPU, and refer the readers interested in the detailed GPU implementation of
the vector kernel to the literature [6].

3.2 Vector Operations

As we can see in Algorithm 1, the vector operations are the vector copy, the scalar
vector product, the saxpy operation and the inner product of vector. In order
to optimize these operations, we try to group several operations into a single
kernel. For example, the saxpy operation as well as the vector copy are grouped
in the same kernel. On the other hand, we perform the inner products needed
for the computation of α and the inner products involved in the β computation
in single kernels.

3.3 Forward/Backward Substitution

In this section, we will exhibit our proposed method of the forward/backward
substitutions on the GPU. In order to better show our proposed method, the
4× 2× 2 grid in Fig. 1 are extended to a 64× 48× 3 grid.

MICPCGA on GPU for the 3D Parabolic Equation 303

Since the implementation technique of the forward substitution is also suitable
for the backward substitution for this case, here we only discuss the forward
substitution. Assume that each thread block is assigned with x × y solution
elements, the number of required thread blocks can be calculated by the following
formula:

N tb =

[
NROW

x

]
×
[
NCOL

y

]
×NLAY. (4)

By Eq.(4), 36 thread blocks are required if each thread block is assigned with
16×16 (x = 16 and y = 16) solution elements for the 64×48×3 three-dimensional
grid. A way of possible grouping of 36 thread blocks on the GPU is illustrated
in Fig. 3.

Fig. 3. 4× 9 sized grid of GPU thread block

According to the progression of the forward substitution in Fig. 2, it is ob-
viously found that the amount of data must be almost transferred between two
adjacent thread blocks from the same layer and from the neighboring layers.
For example, consider calculations of elements in thread block 18. To start its
execution, on one hand, the thread block 18 must wait for transmission from its
adjacent thread blocks 14 and 17 to which it is independent in the same layer;
on the other hand, it also waits for transmission from its adjacent thread block
6 on which it depends in the neighboring layer. The total amount of data to be
received from the same layer is (x+ y). However, the total amount of data to be
received from the neighboring layers is (x× y). Since the data exchange between
thread blocks must be performed on the GPU global memory, the transmissions
will be the primary source of the overall communication latency.

Here in order to decrease the amount of exchanged data between thread blocks
from the neighboring laryers, we utilize the share memory to store the values
calculated by a thread block, and the thread blocks which are located in differ-
ent layers and whose position are the same are mapped to a thread block. For
example, thread block 1 in the first layer, thread block 13 in the second layer

304 J. Gao, B. Li, and G. He

and thread block 25 in the third layer can be mapped to a thread block in Fig. 3.
If so, the data exchange between thread blocks of the adjacent layers will be no
longer required because they are located in the same thread block. Thus, the
amount of exchanged data required is to decrease from (x× y+x+ y) to (x+ y)
when the elements in a thread block are calculated. For example, when calculat-
ing elements in thread block 18 in Fig. 3, only the data transmissions from its
adjacent thread blocks 14 and 17 in the same layer are required, and thus the
total amount of exchanged data is 32 rather than 288. At the same time, the
number of required thread blocks is also reduced and can be calculated as

N tbnew =

[
NROW

x

]
×
[
NCOL

y

]
. (5)

Therefore, the number of required thread blocks for this case is decreased from
36 to 12. Figure 4 summarizes the progression of the forward substitution with
12 active thread blocks.

Fig. 4. Progression of the forward substitution with 12 active thread blocks

Furthermore, in order to decrease the frequency of reading data from the GPU
global memory, we allocate a two-dimensional (x + 1) × (y + 1) array in shard
memory instead of (x×y) to store data for a x×y sized thread block. The extra
row and column are allocated for dependent data from neighbor thread blocks in
the same layer. Moreover, to manage the dependencies between adjacent thread
blocks, we store a matrix in the GPU global memory where each thread block
can check the status of adjacent thread blocks to which it is dependent. A thread
block waits for a spinlock until the dependent thread blocks finish calculations
and write results to the global memory. Then it reads these results and continues
with its calculations.

4 Numerical Results

All experiments in this section are conducted on the environment which is based
on GNU/Linux Ubuntu v10.04.1 with an Intel Xeon Quad-Core 2.66 GHz, 12GB
RAM (CPU) and NVIDIA Tesla C2050, 448 CUDA Cores, 6GB RAM (GPU).

MICPCGA on GPU for the 3D Parabolic Equation 305

Firstly, the following seven three-dimensional grid models, 800 × 800 × 30,
480 × 480 × 80, 480 × 480 × 320, 128 × 128 × 480, 512 × 512 × 256, 128 ×
128×1440, 1440×1440×80, are chosen to test the performance of our proposed
forward substitution (GPUFBS). We respectively add up the computational time
of GPUFBS and the CPU implementation of the forward/backward substitutions
and then show them in Table 1. The time unit is microsecond denoted by ms.

Table 1. Speedups of GPUFBS

Grid model CPU (ms) GPU (ms) Speedup

800× 800× 30 1020 125 8.16
480× 480× 80 1058 101 10.47
480× 480× 320 4784 278 17.20
128× 128× 480 458 39 11.74
512× 512× 256 3958 256 15.38
128× 128× 1440 1463 67 21.83
1440 × 1440 × 80 9560 893 10.70

From Table 1, we can see that GPUFBS achieves a significant speedup for all
seven three-dimensional grid models due to high utilization of GPU. As observed
from Fig. 4, the thread blocks have high concurrency and the concurrency of
thread blocks is improved as the number of layers increases.

By observing 480× 480× 80 and 480× 480× 320 grid models, it can be found
that when the column and row sizes are given, GPUFBS with high number of
layers has a bigger speedup than that of with low number of layers. Similarly,
it can also seen that for a given number of layers, GPUFBS with a big size of
column×row achieves a higher speedup than that with a small size of column×
row by comparing the 480×480×80 grid model with the 1440×1440×80model.
Furthermore, as observed from the 128 × 128 × 1440 and 128 × 128 × 480 grid
models, for the same size of column× row (128× 128), the speedup obtained by
GPUFBS with 1440 layers is nearly 2 times of the speedup obtained by GPUFBS
with 480 layers. However, we compare the 480 × 480 × 80 grid model with the
1440 × 1440 × 80 grid model and find that for the same number of layers 80,
the speedup obtained by GPUFBS with 1440 × 1440 (column × row) is only
1.02 times of the speedup obtained by GPUFBS with 480×480 (column×row).
Therefore, we can conclude that the number of layers and the column and row
sizes both have an impact on the performance of GPUFBS, but the number of
layers for GPUFBS has a larger impact than the column and row sizes.

Secondly, we test the validity of our proposed MIC PCG method on GPU
(MICPCGA) for solving the 3D PDE comparing with the PCG algorithm on
the GPU (SSORPCGA) suggested in [3]. Let Ω = {(x, y, z)|0 ≤ x ≤ 1, 0 ≤
y ≤ 1, 0 ≤ z ≤ 1}, φ(x, y, z) = 3 sinπx sinπy sinπz for the PDE (1), and define
the error (ER) = max |ui,j,k − ũi,j,k|, where ui,j,k and ũi,j,k respectively denote
the exact solution and the approximate solution at the point (xi, yj, zk). For

306 J. Gao, B. Li, and G. He

this case, the exact solution is u(x, y, z, t) = 3e−3π2t sinπx sin πy sinπz, and
the following five grid models, 100 × 100× 100 (M21), 250× 250 × 100 (M22),
250 × 250 × 250 (M23), 100 × 100 × 250 (M24), 100 × 100 × 1000 (M25), are
chosen. In the following, taking x = 0.5, y = 0.5(z = 0.1, 0.3, 0.5, 0.7, 0.9) for
example, Table 2 shows the errors of MICPCGA and SSORPCGA. The speedups
of MICPCGA and SSORPCGA are summed in Table 3.

Table 2. Errors of MICPCGA and SSORPCGA (t = 0.1)

Method 0.1 0.3 0.5 0.7 0.9

Exact solution(10−1) 0.4799 1.2565 1.5531 1.2565 0.4799

ER MICPCGA M21(10−5) 1.1236 1.2342 1.4347 1.2358 1.2362
ER MICPCGA M22(10−5) 1.1192 1.1331 1.3019 1.1376 1.1164
ER MICPCGA M23 (10−5) 0.5786 0.8941 1.1893 0.8937 0.5734
ER MICPCGA M24 (10−5) 1.0304 1.1343 1.2184 1.1342 1.0328
ER MICPCGA M25 (10−5) 1.0122 1.1121 1.1834 1.0101 1.0152

ER SSORPCGA M21 (10−5) 5.5632 5.9822 6.2876 5.9896 5.5617
ER SSORPCGA M22 (10−5) 4.9127 5.3939 5.9918 5.3908 4.9103
ER SSORPCGA M23 (10−5) 2.3243 2.4232 3.1967 2.4234 2.3253
ER SSORPCGA M24 (10−5) 5.1342 5.1458 5.7633 5.1442 5.1354
ER SSORPCGA M25 (10−5) 4.7482 4.8294 5.2304 4.8261 4.7476

Table 3. Speedups of MICPCGA and SSORPCGA

Method and Model CPU (s) GPU (s) Speedup

MICPCGA M21 3.71 0.40 9.27
MICPCGA M22 23.91 2.43 9.83
MICPCGA M23 63.58 5.21 12.20
MICPCGA M24 9.62 0.93 10.34
MICPCGA M25 39.36 3.51 11.21

SSORPCGA M21 3.92 0.42 9.33
SSORPCGA M22 25.40 2.60 9.76
SSORPCGA M23 65.19 7.02 9.28
SSORPCGA M24 10.13 1.03 9.83
SSORPCGA M25 41.80 4.24 9.85

From Table 3, we can see that for models M21 and M22, MICPCGA has
a comparable speedup with SSORPCGA, and for models M23, M24 and M25,
MICPCGA obtains a bigger speedup than SSORPCGA. Furthermore, it can
be found that MICPCGA can obtain better approximate solutions than SSOR-
PCGA for all cases. Therefore, we can conclude that MICPCGA outperforms
SSORPCGA for this case.

MICPCGA on GPU for the 3D Parabolic Equation 307

5 Conclusion

In this study, we present an efficient parallel method for the forward/backward
substitutions on the GPU, and thus propose a MIC PCG algorithm on the
GPU. Numerical results show that our proposed MIC PCG algorithm has a
good behavior, and outperforms the PCG algorithm suggested by Helfenstein
and Koko.

For GPUFBS, its efficiency has been validated in this study. Next, we will
extend the constructing idea of GPUFBS to other PCG algorithms with the
following preconditioners, the incomplete-LU factorization (ILU), the modified
incomplete-LU factorization (MILU) and their variants, and furthermore do re-
search for the three-dimensional partial differential equation.

References

1. NVIDIA Corporation: Cuda programming guide 2.3. Technical Report, NVIDIA
(2009)

2. Buatois, L., Caumon, G.: Concurrent number cruncher: a GPU implementation
of a general sparse linear solver. Int. J. Parallel Emergent Distrib. Syst. 24(3),
205–223 (2009)

3. Helfenstein, R., Koko, J.: Parallel preconditioned conjugate gradient algorithm on
GPU. J. Comput. Appl. Math. 236(15), 3584–3590 (2012)

4. Gravvanis, G.A., Filelis-Papadopoulos, C.K., Giannoutakis, K.M.: Solving finite
difference linear systems on GPUs: CUDA parallel explicit preconditioned bicon-
jugate conjugate gradient type methods. J. Supercomput. 61(3), 590–604 (2012)

5. Galiano, V., Migallón, H., Migallón, V.: GPU-based parallel algorithms for sparse
nonlinear systems. J. Parallel Distrib. Comput. 72(9), 1098–1105 (2012)

6. Bell, N., Garland, M.: Efficient sparse matrix-vector multiplication on CUDA.
Technique report, NVIDIA (2008)

C.-H. Hsu et al. (Eds.): NPC 2013, LNCS 8147, pp. 308–321, 2013.
© IFIP International Federation for Information Processing 2013

Partition-Based Hardware Transactional Memory
for Many-Core Processors

Yi Liu1, Xinwei Zhang1, Yonghui Wang1, Depei Qian1, Yali Chen2, and Jin Wu2

1 Sino-German Joint Software Institute, Beihang University, Beijing 100191, China
2 Huawei Technologies Co., Ltd, Shenzhen 518129, China

yi.liu@jsi.buaa.edu.cn

Abstract. Transactional memory is an appealing technology which frees pro-
grammer from lock-based programming. However, most of current hardware
transactional memory systems are proposed for multi-core processors, and may
face some challenges with the increasing of processor cores in many-core sys-
tems, such as inefficient utilization of transactional buffers, unsolved problem
of transactional buffer overflow, etc. This paper proposes PM_TM, a hardware
transactional memory for many-core processors. The system turns transactional
buffers that are traditionally private to processor cores into shared by moving
them from L1-level to L2-level, and uses partition mechanism to provide logi-
cally independent and dynamically expandable transactional buffers to transac-
tional threads. As the result, the solution can utilize transactional buffers more
efficient and moderate the problem of transactional buffer overflow. The system
is simulated and evaluated using gems and simics simulator with STAMP
benchmarks. Evaluation results show that the system achieves better perfor-
mance and scalability than traditional solutions in many-core processors.

Keywords: Transactional Memory, Partition, Many-core.

1 Introduction

Among works to improve programmability of parallel systems, transactional memory
is an attractive one. Compared to traditional lock-based programming models, trans-
actional memory can improve programmability, avoid deadlock and furthermore,
promote performance of concurrent programs.

Most of current hardware transactional memory (HTM[1]) systems are proposed
for multi-core processors, and may face some challenges with the increasing of pro-
cessor cores in many-core systems: firstly, utilization of transactional buffers are inef-
ficient since those buffers are private to processor cores while generally only part of
cores execute transactions simultaneously in many-core processors; secondly, the on-
going challenge of transactional buffer overflow for HTMs is still unsolved.

In this paper, we propose PM_TM, an architecture of hardware transactional mem-
ory for many-core processors. The main idea consists of two points: firstly, turns pri-
vate transactional buffer into shared by moving them from L1-level to L2-level;
secondly, uses partition mechanism to provide logically independent and dynamically

 Partition-Based Hardware Transactional Memory for Many-Core Processors 309

expandable transactional buffers to transactional threads, and furthermore, to isolate
access-interferences among large number of processor cores. As the result, the system
can utilize transactional buffers more efficient and moderates the problem of transac-
tional buffer overflow in many-core processors.

The rest of this paper is organized as follows. Section 2 analyzes problems of tradi-
tional hardware transactional memory in many-core environment and then gives an
introduction to our solution. Section 3 presents the architecture of our proposed sys-
tem. Section 4 evaluates the system with benchmarks. Section 5 introduces related
works. And section 6 concludes the paper.

2 Challenges in Many-Core Processors and Our Solution

2.1 Problem Analysis

Most of current hardware transactional memory systems are proposed for multi-core
processors, and may face some challenges in many-core systems.

Firstly, transactional buffers are inefficiently utilized and resources are wasted.
Traditionally, transactional buffer is located inside processor cores in parallel with L1
data cache, which means it’s private for the core. Processor core accesses transaction-
al buffer only in transactional state, i.e. on executing transactions. However, in many-
core processors, there will be a large number of processor cores, and generally only
small part of them execute transactions simultaneously, while most of transactional
buffers are not used at all.

Secondly, Problem of transactional buffer overflow is still unsolved. Generally,
size of transactional buffer is fixed in each processor cores, when a transaction
reads/writes too many data, buffer overflow will occur. This “buffer overflow prob-
lem” is one of ongoing challenges for hardware transactional memory. Despite some
solutions have been proposed, most of them rely on co-working between cache-level
transactional buffer and main memory or virtual memory, and need complex hard-
ware/software operations.

This problem will even cause some kind of contradictions in many-core processors.
On one hand, transactional buffers are inadequate in some processor cores that cause
transactional buffer overflows due to some “long transactions”, while on the other
hand, transactional buffers in other processor cores may not be used at all.

2.2 Our Solution: An Overview

Based on the above discussions, we propose an architecture of hardware transactional
memory, called PM_TM, for many-core processors. In our proposed solution, the trans-
actional buffer is “logically independent” because that the transactional cache is parti-
tioned into multiple partitions, each of them corresponds to one transactional thread and
can only be accessed by it. The transactional buffer is “dynamically expandable” because
that each partition is initially allocated a buffer with basic size, and can be expanded if
the corresponding thread accesses excessive data speculatively in a transaction.

The advantages of the proposed solution include:

(a) Transactional buffers can be utilized more efficiently. In many-core environ-
ment, generally only part of processor cores execute transactions at the same time,

310 Y. Liu et al.

that is, most of transactional buffers will be idle if they are private for cores. By turn-
ing them from private to shared, all of transactional buffers can be utilized by ongoing
transactions, and the waste of resources can be reduced greatly.

(b) The problem of transactional buffer overflow is moderated. Since the transac-
tional buffers are shared by all of the processor cores, and generally only part of cores
execute transactions simultanously, by managing transactional buffers with partition
mechanism and expanding partitions when necessary, a transaction can have much
bigger transactional buffer than traditional private buffer. As the result, the possibili-
ties of transactional buffer overflow are smaller.

In addition, from the implementation point of view, it is easier to integrate much
bigger L2-level transactional buffer into processors than L1-level.

(c) Context switch and migration of transactional threads are easier to implement.
For some long-transactions or transactions with system-calls, the operating system
will suspend the transactional thread inside a transaction and schedule other threads to
run on the core. After a while, the original transactional thread will be re-scheduled to
run on either the same or a different core. Traditionally, this is a problem for HTMs
since the transactional thread may face either a damaged or a totally new transaction
context. In our proposed solution, the transactional buffer are shared by all of the
cores and bound to transactional threads instead of cores, so the context switch and
migration of transactional threads can be easily supported.

3 Partition-Based Hardware Transactional Memory
Architecture

3.1 System Architecture

Fig.1 shows the architecture of tile-based[2],[12] many-core processors with support
of our proposed hardware transactional memory. The system is composed of three
types of tiles: the first type is tiles of processor cores plus private L1 cache and
routing mechanism; the second is tiles of L2 cache banks; and the third is tiles of
transactional cache (TC). All of the tiles are connected with an on-chip network, and
both L2 cache and transactional cache are shared by all of the processor cores.

Fig. 1. System architecture

 Partition-Based Hardware Transactional Memory for Many-Core Processors 311

The transactional cache is used to buffer the data accessed by transactions specula-
tively, and as shown in Fig.2, its structure is similar to L2 cache and data is also stored
by line. The difference is that the transactional cache holds both old and new version of
data for each line, where the old version is the data that the transaction started with,
and the new version is the current version updated by the transaction speculatively.
Detailed introduction to consistency and conflict detection are given in section 3.3.

In addition, to support efficient nesting of transactions, the system uses a partial
rollback mechanism which was proposed in our previous works [11]. The mechanism
uses n-bits read and write vector for each line to indicate whether the line has been
read or written speculatively, with each bit in the vector corresponding to one level of
nested transactions. By adding limited hardware, conditional partial rollback can be
implemented, that is, when a transaction needs to roll back due to a conflict, instead
of rolling back to the outermost transaction as in commonly-used flattening model,
the system can just rolls back to the conflicted transaction itself or one of its outer-
level transactions if given conditions are satisfied.

Fig. 2. Structure of transaction cache

In architecture level, transactional cache is in parallel with L2 cache. Commonly a
processor core accesses L2 cache, and once a transaction is started, it switches to
access transactional cache in order to guarantee that all the speculative accessed data
are buffered and not valid until commit of the transaction.

3.2 Partition Mechanism

(1) Overview
Partition mechanism is a method to manage hardware resources in multi-/many-

core processors. In our proposed system, partition mechanism is used to establish
multiple logically independent transactional buffers, i.e. partitions, in shared transac-
tional cache, furthermore, to make these transactional buffers dynamically expanda-
ble. In the system, transactional caches are allocated to partitions in partition-unit
(PU) which corresponds to multiple successive lines in the transactional cache. Each
partition corresponds to one transactional thread, and is created with one PU initially
that can expand to multiple successive PUs if it is needed.

Partitions are created only for threads that execute transactions, called transactional
thread. Once a thread executes a transaction at the first time, a partition is created with
only one PU, and along with the increasing of read/write data set of a transaction,
more PUs can be allocated to the partition dynamically if its transactional buffer over-
flows. After the commit of the first transaction, the partition is reserved and used by
subsequent transactions of the thread, and finally released when the thread is finished.

312 Y. Liu et al.

It is noted that the owner of a partition is transactional thread rather than processor
core. The reason is that transactional threads may be suspended during its execution
and scheduled to run in another core after it is waked up later. In other words, migra-
tion of transactional threads can be supported by binding partitions with transactional
threads instead of cores.

(2) Partition Access
When a thread starts to execute a transaction, it switches to access its transactional

buffer (i.e. partition) instead of L2 cache. As Fig.3 shows, an associative buffer is
used to store information of partitions including starting address, partition size and
owner thread, with each entry corresponding to one partition. Based on this hardware
infrastructure, the transactional buffer of a thread can be located quickly by means of
the thread ID.

Fig. 3. Structure of transaction cache

(3) Partition Management
As mentioned above, a partition starts with one PU and may expand along with the

execution of the transactional thread if excessive data are accessed in a transaction
speculatively, and to simplify the management of partitions, it is limited that all of the
PUs of a partition must be successive in transactional cache. In order to leave spaces
at the end of partitions for potential expansions in the future, it’s better to allocate
partitions dispersedly in transactional cache.

According to above discussions, the system allocates the first partition from the
beginning of transactional cache, and subsequent partitions are allocated in the fol-
lowing policy: searching for the biggest free area in the transactional cache, and allo-
cating the PU in the middle of the area to the new partition.

Table 1 shows the addresses that will be allocated to partitions one by one, where B
is the total size of transactional cache in lines, N is the number of processor cores, and
the size of partition unit PU=B/N.

Table 1. Address allocation of partitions

Seq. of creation Start address Initial end address
0 0 PU - 1
1 B/2 B/2 + PU - 1
2 B/4 B/4 + PU - 1
3 3B/4 3B/4 + PU - 1
4 B/8 B/8 + PU - 1
...

 Partition-Based Hardware Transactional Memory for Many-Core Processors 313

A partitioning example is shown in Fig.4. In Fig.4(a), four partitions are created
one by one for transactional thread T0--T3, and T0 has successfully expanded its
partition in 1 PU; in Fig.4(b), thread T0 and T3 finish their execution and partitions
are released, after that, a new partition is created for thread T4.

Fig. 4. Partitioning example

In addition, it is necessary to consider some extreme situations. Since partitions are
created and maintained for transactional threads instead of processor cores, in some
cases, there may be too many transactional threads in the system, or there may be
some long-running transactional threads that occupy large amount of transactional
cache permanently, so the associative table or transactional cache may be used out. At
this time, a LRU-like (Least Recently Used) discard policy can be used to discard and
release the partition that was not accessed for the longest time, the difference with the
LRU policy is that, to make things simple, the partition is discarded instead of swap to
main memory as in LRU. If the owner thread of the discarded partition re-accesses its
partition later, a new partition will be created for it.

3.3 Consistency and Conflict Detection

The system uses lazy data version management and eager conflict detection policy,
that is, all of the data modified in a transaction are buffered in the transactional buffer
and invisible to other processor cores until commit of the transaction; and each
memory access of a transaction is checked to identify if there is a conflict among
transactions.

(1) Consistency and Directory
When a processor core starts to execute a transaction, it flushes data in L1 data

cache and L2 cache to lower level and main memory in order to guarantee data con-
sistency. In addition, write-through policy is used for L1 cache to write data directly
into transactional buffer.

To achieve scalability in many-core processors, the consistency among multiple L1
data cache and transactional buffers(partitions) is maintained by distributed cache
directory. As Fig.5(a) shows, structure of the directory is the same with ordinary

B

T0

T0

B T3

T1

T2
3

0

B

B/

B/

T1

T2
3

0

B

T2

T4

(a) (b)

314 Y. Liu et al.

cache directory except that the sharer list in each entry is extended to record not only
which L1 cache but also which transactional buffer(partition) stores a copy of the line,
as shown in Fig.5(b).

Once a line of L1 cache is updated, an invalidate message will be sent to each di-
rectory that stores a copy of the updated line. If such an invalidate message is re-
ceived by directory of transactional cache, one or more conflicts will be triggered,
depending on the number of partitions that store copy of the line. As the result, the
corresponding transactions will abort their execution and roll back. Similarly, there
also is a directory with the same structure in transactional cache. Once a line of trans-
actional buffer is updated, an invalidate message is also sent to other sharers.

(a) cache directory (a) sharer list

Fig. 5. Structure of cache directory

 (2) Conflict Detection
Method to detect conflicts among transactions is: when a processor P reads/writes

address A in a transaction, the cache controller sends a share-/exclusive-request to
transactional cache directory, once the reply is received, it sets status of the transac-
tional cache line to shared or exclusive; meanwhile, if another processor Q accesses
address A too, the request is forwarded to processor P to identify if there is a write-
write or read-write conflict, and consequently, to approve or reject the request.

Fig.6 shows examples of conflict detection:

(a) Transaction startup: processor P starts a transaction and switches to access
transactional buffer.

(b) Writing data: P writes address A0 which is not in its transactional buffer, firstly
it sends a get-exclusive request to directory, which is approved with the requested
data, then P stores the data to its transactional buffer and sets write-flag, finally it
replies an ACK to directory.

(c) Reading data: P reads address A1 which is not in its transactional buffer, the
procedure is the similar to (b) except that the request is get-shared instead of get-
exclusive.

(d) Transaction conflict: processor Q reads the address A0 which was just written
by P, firstly it sends a get-shared request to directory, which is forwarded to P and
identified as a read-write conflict, then a NACK is sent back to Q; Q deals with the
conflict after receiving the NACK and replies a NACK to directory.

(e) Successful shared reading: processor Q reads the address A1 which was just
read by P, the request is identified as conflict-free and approved.

which L1 cache which TM partition

 Partition-Based Hardware Transactional Memory for Many-Core Processors 315

Fig. 6. Examples of Conflict Detection

3.4 Execution of Transactions

When a processor core starts to execute a transaction, it flushes data in L1 data cache
and L2 cache to lower level and main memory, and switches to access transactional
buffer instead of L2 cache.

During execution of a transaction, all of the data accessed by the transaction are
buffered temporarily in its transactional buffer(partition). When a data is accessed for
the first time in the transaction, it is loaded to both old and new version of the line in
transactional buffer, subsequent updates to the data are just stored to new version, and
R/W status are set at the same time.

Once the read/write-set of a transaction exceeds the partition size, a transactional
buffer overflow occurs. At this time, the system tries to expand the partition by allo-
cating one more PU in transactional cache. If the successive PU at the end of the par-
tition is free, the partition can be successfully expanded and memory accesses are
continued, otherwise it stalls for a short period of time and tries again. If there is still
no free PU, the expanding operation fails and a global lock is set, the overflowed
transaction continues exclusively without conflict until its commit. Of couse, the per-
formance will be suffered in this situation.

If a transaction needs to roll back in case of conflict, data in transactional buffer are
copied from old to new line by line, at the same time, R/W status are cleared, after
that, all of the lines in L1 data cache are set to invalidate.

When a transaction finishes its execution and commit, all of the updated data in
transactional buffer(partition) are written to main memory.

3.5 ISA Extensions and Programming Interface

As a hardware transactional memory, PM_TM supports transparent execution of
transactions with no restriction on programming languages. Only two instructions are
extended to specify the start and end of a transaction, as shown in Table 2. Program-
mers just need to identify program statements that must be executed atomically in
their applications, and define them as transactions by inserting appropriate API at the
beginning and the end of each transaction.

316 Y. Liu et al.

Table 2. Address allocation of partitions

Instruction Description Programming interface
XB Trans. start BEGIN_TRANSACTION()
XC Trans. end COMMIT_TRANSACTION()

4 Experiments and Evaluation

4.1 Experimental Environment

The proposed system is simulated in GEMS[13] and Simics[14], and by extending the
simulator, our partition mechanism and consistency protocol are implemented on
SPARC-architecture processors in the simulator.

We evaluate PM_TM system using Stanford STAMP[15] benchmark, and experi-
mental results are compared with LogTM[5] and a native HTM, called NativeTM, in
which transactional buffers are in L1-level and private to each processor core.

Table 3 summarizes parameters of the simulated target system.

Table 3. Configuration of target system

Processors Ultrasparc-iii-plus, 1GHz
Cache size L1: 64KB L2: 4MB
Size of cache line 64 bytes
Memory 1GB 80-cycle latency
Cache coherence protocol MESI_CMP_filter_directory
Interconnection network Tiled NoC; X-latency:1, Y-latency:2
Transactional cache PM_TM: 1/2/4 MB; NativeTM: 8KB/core
Operation System Solaris 10

The evaluation uses 4 applications that vary in size of read/write data set, length of

transactions and contention degree among transactions, as in Table 4.

Table 4. Applications from STAMP benchmark

Application R/W Set Len. of transactions Contention
intruder medium short high
kmeans small short low
vacation large medium low

bayes large long high

4.2 Results and Analysis

(1) Performance
Fig.7 shows average execution time of applications in PM_TM, LogTM and Nati-

veTM with 4--128 processor cores. Each application is executed with number of
threads equaling to processor cores.

 Partition-Based Hardware Transactional Memory for Many-Core Processors 317

We can see from Fig.7 that PM_TM behaves not very well in less processor cores.
The main reason is that access latency of transactional buffers in PM_TM is longer
than others due to its L2-level location. Along with the increasing of processor cores,
PM_TM achieves better performance than two other systems, since that less transac-
tional buffer overflow occur in PM_TM, and contentions among transactions are also
handled more efficient in PM_TM.

Fig.7 also shows that results of different applications are not quite the same due to
their characteristics. Kmeans has not only less transactions but also small read/write
data set, so there is few transactional buffer overflows during the execution. As the re-
sult, the performance of Kmeans in PM_TM is not improved by the partition mechan-
ism, instead, the performance is influenced by the long access latency of transactional
buffers. Compared with kmeans, the intruder application has bigger read/write data set
and higher contentions among transaction. So PM_TM achieves better performance
along with the increasing of processor cores. Vacation has almost the same size of
read/write data set with intruder, but vacation has some long transactions and contention
in vacation is lower than intruder. Compared to other applications, the bayes has bigger
read/write data set and longer transactions. Contention is also higher than the others.

(a) kmeans (b) intruder

(c) vacation (d) bayes

Fig. 7. Average execution time of applications

318 Y. Liu et al.

Table 5. Transaction overflows

Application System
Transactional

buffer size

Number of processor cores

4 8 16 32 64 128

kmeans

NativeTM 8KB/core 0 0 0 0 0 0

PM_TM

1MB 0 0 3 5 6 8

2MB 0 0 2 3 5 6

4MB 0 0 0 0 2 5

intruder

NativeTM 8KB/core 12 24 48 96 192 384

PM_TM

1MB 0 0 4 8 29 52

2MB 0 0 3 4 9 31

4MB 0 0 0 0 3 7

vacation

NativeTM 8KB/core 19 33 56 131 263 477

PM_TM

1MB 0 6 13 18 45 104

2MB 0 0 7 11 18 47

4MB 0 0 0 5 9 21

bayes

NativeTM 8KB/core 361 733 1307 1891 3249 4811

PM_TM

1MB 173 267 661 1081 2033 4795

2MB 30 181 277 649 1213 2258

4MB 0 24 190 307 636 1309

(2) Transactional Buffer Overflows
Table 5 gives transaction overflow statistics of applications in NativeTM and

PM_TM. LogTM is not included in this table because transactional data of LogTM is
stored in the memory directly. From the table we can see that most applications over-
flow less in PM_TM than in NativeTM except kmeans, which has not only less trans-
actions but also small read/write data set. Furthermore, with the increasing of L2-level
transactional cache, the overflow times reduce significantly. As discussed in section
2.2, from the implementation point of view, it is easier to integrate much bigger L2-
level transactional buffer into processors than L1-level buffer.

(3) Conflict and Rollback
Fig.8 shows transaction rollbacks of applications. LogTM uses bloom filter[16] to

store transaction read/write data set, that may produce false-conflicts, and further-
more, the cost of abort in LogTM is much higher due to its eager version manage-
ment. Compared to LogTM, PM_TM uses bit-set to record data set of transactions so
that there is no false-conflict in it. And due to this reason, the number of conflicts in
NativeTM is the same with PM_TM, and omitted in the figure.

In kmeans, transactions are small and shared data among transactions are few, so
frequency of conflict is much lower than other programs. Transactions in intruder are
slightly larger than kmeans, but frequency of conflict is much higher. Although vaca-
tion has some large transactions, competition between transactions in vacation is low-
er than intruder. As for bayes, PM_TM system is much better than LogTM in rollback
test. Bayes has the largest R/W set among the four programs, so overflow times of
bayes is the most.

 Partition-Based Hardware Transactional Memory for Many-Core Processors 319

(a) kmeans (b) intruder

(c) vacation (d) bayes

Fig. 8. Transaction rollbacks

5 Related Works

Transactional memory was firstly proposed in [1], since then, lots of hardware trans-
actional memory (HTM) systems have been proposed that support atomicity of trans-
actions by hardware, and achieves high performance. On the other hand, HTMs are
often bounded by space and time constraints, i.e. transactional buffer overflow and
transaction migration.

Some solutions have been proposed to deal with transactional buffer overflow. The
simplest solution is partial-commit or in-place commit which uses a global lock or
things like that to prevent other transactions to commit, until commit of the over-
flowed transaction [2],[7],[8]. Beside partial-committing, some solutions deal with
overflows by co-working between transactional buffer and memory[5],[6]; some solu-
tions support unbounded transactions by means of complex hardware mechan-
ism[4],[10]; hybrid transactional memory[9] has also been proposed, which integrates
both hardware and software transactional memory, and switches to software mode in
case of buffer overflow.

TM systems for many-core processors have also been proposed. TM2C[17] is a
software TM system which provides two services: the application service and the

320 Y. Liu et al.

Distributed TM service. The former connects transaction with the application and
controls the transactional runtime. The latter grants a data access to the requesting
transactions through distributed locking. The main contribution of TM2C lies in gua-
ranteeing starvation-freedom with low overhead.

LogTM[5] is a log-based HTM system. It saves old values in a log and puts new
values in target address. When transaction commits, values in target address become
visible and log is abandoned directly. This will accelerate the process of transaction
committing. When rollback occurs, it simply copies old values in the Log to the target
address. LogTM uses directory-based Cache consistency protocol to guarantee data
consistency and eager conflict detection to find conflict between transactions.

6 Conclusion

Transactional memory is an appealing technology to improve programmability of
multi-core and many-core processors. However, most of current hardware transac-
tional memory systems are proposed for multi-core processors, and may face some
challenges with the increasing of processor cores in many-core systems: firstly, utili-
zation of transactional buffers are inefficient since those buffers are private to proces-
sor cores while generally only part of cores execute transactions simultaneously in
many-core processors; secondly, the on-going challenge of transactional buffer over-
flow for HTMs is still unsolved.

This paper proposes an architecture of hardware transactional memory for many-
core processors, called PM_TM. The main idea consists of two points: firstly, turns
private transactional buffer into shared by moving them from L1-level to L2-level;
secondly, uses partition mechanism to provide logically independent and dynamically
expandable transactional buffers to transactional threads, and furthermore, to isolate
access-interferences among large number of processor cores. As the result, the system
can utilize transactional buffers more efficient and moderates the problem of transac-
tional buffer overflow in many-core processors. The system is simulated and eva-
luated using gems and simics simulator with STAMP benchmarks. Evaluation results
show that the system achieves better performance and scalability than traditional solu-
tions in many-core processors.

Acknowledgements. This work was supported by National Science Foundation of
China under grant No. 61073011, 61133004, and National Hi-tech R&D program(863
program) under grant No. 2012AA01A302.

References

1. Herlihy, M., Moss, J.E.B.: Transactional Memory Architectural Support for Lock-Free Da-
ta Structure. In: 20th International Symposium on Computer Architecture, pp. 289–300.
IEEE (1993)

2. Moscibroda, T., Mutlu, O.: A Case for Bufferless Routing in On-Chip Networks. In: 36th
International Symposium on Computer Architecture, pp. 196–207. IEEE (2009)

 Partition-Based Hardware Transactional Memory for Many-Core Processors 321

3. Hammond, L., Wong, V., Chen, M., et al.: Transactional Memory Coherence and Consisten-
cy. In: 31th International Symposium on Computer Architecture (ISCA 2004), pp. 53–65.
IEEE CS Press (2004)

4. Scott Ananian, C., Asanovic, K., Kuszmaul, B.C., et al.: Unbounded Transactional Memo-
ry. In: 11th International Symposium on High-Performance Computer Architecture
(HPCA 2005), pp. 316–327. IEEE CS Press (2005)

5. Moore Kevin, E., Jayaram, B., Moravan Michelle, J., et al.: LogTM: log-based transac-
tional memory. In: 12th International Symposium on High-Performance Computer Archi-
tecture (HPCA 2006), pp. 258–269. IEEE CS Press (2006)

6. Ceze, L., Tuck, J., et al.: Bulk Disambiguation of Speculative Threads in Multiprocessors.
In: 33rd International Symposium on Computer Architecture, pp. 227–238 (2006)

7. Shriraman, A., Spear, M.F., et al.: An Integrated Hardware-Software Approach to Flexible
Transactional Memory. In: 34th Annual International Symposium on Computer Architec-
ture, pp. 104–115. ACM (2007)

8. Shriraman, A., Dwarkadas, S., Scott, M.L.: Flexible Decoupled Transactional Memory
Support. In: 35th International Symposium on Computer Architecture, pp. 139–150. IEEE
& ACM (2008)

9. Kumar, S., Chu, M., Hughes, C.J., et al.: Hybrid Transactional Memory. In: 11th ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming, pp. 209–220.
ACM Press (2006)

10. Rajwar, R., Herlihy, M., Lai, K.: Virtualizing Transactional Memory. In: 32nd Internation-
al Symposium on Computer Architecture, pp. 495–505. IEEE CS Press (2005)

11. Liu, Y., Su, Y., Zhang, C., Wu, M., Zhang, X., Li, H., Qian, D.: Efficient Transaction
Nesting in Hardware Transactional Memory. In: Müller-Schloer, C., Karl, W., Yehia, S.
(eds.) ARCS 2010. LNCS, vol. 5974, pp. 138–149. Springer, Heidelberg (2010)

12. Taylor, M.B., Lee, W., Miller, J., et al.: Evaluation of the raw microprocessor: An ex-
posed-wire-delay architecture for ILP and streams. In: 31st Annual International Sympo-
sium on Computer Architecture, pp. 2–13 (2004)

13. Martin, M.M.K., Sorin, D.J., Beckmann, B.M., et al.: Multifacet’s General Execution-
driven Multiprocessor Simulator (GEMS) Toolset. SIGARCH Computer Architecture
News, 92–99 (November 2005)

14. Magnusson, P.S., Christensson, M., Eskilson, J., et al.: Simics: A full system simulation
platform. IEEE Computer Society 35(2), 50–58 (2002)

15. Minh, C.C., Chung, J., Kozyrakis, C., et al.: STAMP: Stanford Transactional Applications
for Multi-Processing. In: 2008 IEEE International Symposium on Workload Characteriza-
tion, pp. 35–46. IEEE CS Press (2008)

16. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Communications
of the ACM, 422–426 (1970)

17. Gramoli, V., Guerraoui, R., Trigonakis, V.: TM2C: a Software Transactional Memory
for Many-Cores. In: ACM European Conference on Computer Systems (EuroSys 2012),
pp. 351–364 (2012)

C.-H. Hsu et al. (Eds.): NPC 2013, LNCS 8147, pp. 322–331, 2013.
© IFIP International Federation for Information Processing 2013

Roadside Infrastructure Placement for
Information Dissemination in Urban ITS

Based on a Probabilistic Model

Bo Xie, Geming Xia, Yingwen Chen, and Ming Xu

Dept. of Network Engineering, Computer School,
National University of Defense Technology,

Changsha, China
{xiebo,xuming}@nudt.edu.cn, xiageming@126.com,

csywchen@gmail.com

Abstract. Information dissemination is an important application in VANETs
for traffic safety and efficiency. In urban area, roadside infrastructure nodes can
be deployed for information dissemination. However, it is inefficient and
uneconomical to cover the whole urban area. How to find the optimal locations
to place DPs is a research problem. Some works on this issue have to collect
accurate trajectories of all the vehicles, which is not practical in the real
environment. In this paper, we propose a novel approach for DPs placement in
grid road networks without knowing trajectories. Based on the analysis of path
number between two intersections, a probabilistic model is proposed to get the
trajectories estimation of vehicles. The theoretical optimal algorithm (OA) and
two heuristic algorithms (called KP-G and GA) are developed for the problem.
Simulation results reveal that GA is scalable and has the highest coverage ratio
on average.

1 Introduction

Information dissemination based on Vehicular Ad hoc Networks (VANETs) is
intended to the support traffic safety and efficiency, as well as services for drivers
[1–3]. In this paper, we deal with information dissemination from roadside
infrastructure to passing vehicles, tackling the specific issue of deploying an
intelligent transport system infrastructure that efficiently achieves the dissemination
goal. For example, transport department can disseminate some traffic news to
vehicles. We refer to the vehicles who have received the disseminated information as
informed vehicles. Our goal is to maximize the number of informed vehicles. In other
words, we aim at maximizing the coverage ratio of information dissemination.

In principle, an information dissemination system could leverage both vehicle-to-
vehicle (V2V) and vehicles-to-infrastructure (V2I) communications. When only a few
of roadside units (RSUs) are deployed, V2V communications could enable data
sharing thus increasing the coverage ratio of information dissemination. However, the
gain achieved through V2V communication strictly depends on the network topology

 Roadside Infrastructure Placement for Information Dissemination in Urban ITS 323

and the particular cooperation paradigm, and it is difficult to evaluate in the general
case. In this paper, we analyze the problem of optimally placing infrastructure nodes
(e.g. IEEE 802.11 access points or RSUs) only considering V2I communications.

We refer to the infrastructure nodes as Dissemination Points (DPs). A DP serves for
the vehicles that pass through the dissemination range of the DP. In other words, the
vehicles who pass through a DP could be served (i.e., covered). However, it is difficult,
in terms of infrastructure cost, to cover all roads with a large number of DPs, especially
during the rollout of ITS. In our approach, DPs are placed at intersections which prove
to be much better locations than road segments for DPs deployment in [4]. We could
describe this problem as follows: in a given urban area which has N intersections with
a limited number of k DPs (k N≤), what is the best deployment strategy to maximize
the coverage ratio of information dissemination.

We could model the problem as a Maximum Coverage Problem (MCP). However,
traditional approaches of MCP may not be suitable for this problem for three reasons.
First, the DPs deployed in the area neither have to necessarily form a connected
network, nor provide a continuous coverage of the road topology. Second, vehicles
move among these different DPs rather than be stationary. Third, vehicles may cross
more than one intersection, thus they may be served by more than one DPs. The
problem presented in this paper differs from traditional problems.

This problem could be solved through heuristic algorithms if we could get the
accurate trajectory of every vehicle as in [4]. However, the drivers may not be willing
to share their trajectories for privacy concerns. As a consequence, it is not practical to
collect every vehicle’s accurate trajectory for decision-making. Moreover, because the
trajectories of all vehicles and the traffic pattern may change from time to time, the
placement based on trajectories may not be stable. It means that the optimal placement
based on a certain set of trajectories may not be optimal in another set of trajectories.
Meanwhile, in real communication environments, it could not assure that a vehicle
could receive the information from a DP when it passes the DP. We introduce a
parameter ps to represent the probability that a vehicle could successfully receive
information from a DP. The probability ps is a feature of a wireless link and may affect
the deployment of DPs. Our scheme deploys DPs at the most appropriated locations
based on ps rather than improving ps.

In this paper, we propose a novel approach to solve the problem without using
vehicles’ accurate trajectories. Instead of vehicles’ accurate trajectories, we only need
the road network topology, and vehicles’ origin points and destination points. Note
that in a certain observation time, most vehicles except taxis have specific origin
points and destination points in one journey. Based on the analysis on the statistical or
historical data, we could get the distributions of the numbers of vehicles at origin
points and destination points. Then the trajectories estimation of vehicles could be
derived. Then, we propose a theoretical optimal algorithm (OA) and two heuristic
algorithms (called KP-G and GA) for the problem.

The remainder of this paper is organized as follows. Section 2 reviews the previous
work. Section 3 presents a probabilistic model, and proposes an optimal algorithm as
well as two heuristic algorithms. Performance evaluations are presented in Section 4.
Section 5 concludes this paper.

324 B. Xie et al.

2 Related Work

Wireless access point or base station placement is a well known research topic. In the
context of sensor networks, several studies have considered the optimal node
placement schemes which are always NP-hard. To tackle such complexity, several
heuristics have been proposed to find sub-optimal solutions [5, 6] in presence of
stationary nodes.

In VANETs and mesh networks, there are several studies on roadside units (RSUs)
placement problem. Lochert et al. [7] have tackled the problem of sparse roadside
units placement for data aggregation but not information dissemination. Sun et al. [8]
propose cost-efficient RSUs deployment scheme for short-time certificate updating.
In this scheme, OnBoard Units (OBUs) in any place could communicate with RSUs
in certain driving time, and the extra overhead time used for adjusting routes to update
short-time certificates is small. Pan et al. [9] address the problem of optimally placing
one or multiple gateways in both 1-D and 2-D vehicular networks to minimize the
average number of hops from APs. They also give some analytical results for finding
the optimal placement of multiple gateways in 2-D vehicular grid networks and
discuss how to minimize the total power consumption. Abdrabou et al. [10] present an
analytical framework to statistically estimate the maximum packet delivery delay
from a vehicle to an RSU for a low density VANET via vehicle-to-vehicle
communications. Aoun et al. [11] propose a polynomial time near-optimal algorithm
which recursively computes minimum weighted Dominating Sets (DS), while
consistently preserving QoS requirements across iterations. Trullols et al. [4] have
done the closest work to ours. They propose three heuristic deployment algorithms
MCP-g, MCP-sz and KP-P for information dissemination in intelligent transportation
systems. However, their heuristic algorithms need the accurate trajectory of every
vehicle. The difference between our work and [4] is that we could make approximate
optimal DPs placement only based on road network topology and vehicles’ origin
points and destination points. We also consider the probability of vehicles served.

3 Probabilistic Model and Placing Algorithms

3.1 Problem Statement

We consider an urban grid road network. As in many Chinese cities, the road
networks are very regular which could be mapped into grid road networks. Literature
[4] reveals that intersections prove to be much better locations than road segments for
DPs deployment. Thus, we also place DPs at intersections. We assume that each DP
cover only one intersection, which means that only vehicles cross it could be served
(i.e., covered). Our goal is to place the k DPs for maximizing the number of informed
vehicles. However, we would not need vehicle’s accurate trajectories for two reasons.
As first important, vehicles may not share their trajectories for privacy concerns, and
it is also impossible and unpractical to collect those sensitive individual data. On the

 Roadside Infrastructure Placement for Information Dissemination in Urban ITS 325

other hand, the placements based on trajectories are not stable due to trajectories may
change time to time. It is not flexible to deploy DPs in real world.

We propose a probabilistic model based on the distributions of the origin points
and destination points of vehicles in an urban environment. As we know, most
vehicles except taxis have specific origin points and destination points in one journey.
For example, during 7:00am and 8:00am, they drive from their home to offices. Then
they park their vehicles near their offices. The residence is the origin point, and the
parks near offices are the destination points. While the path from origin point to
destination point is uncertain for different reasons. For example, they could choose
the path according to the real time traffic, or according to their favor, or by GPS-
based navigation systems, and so on. We study the probability of vehicles crossing
each intersection by random path selection.

3.2 Number of Paths

In a given grid road network, the number of paths between two intersections is needed
to be calculated. We assume that vehicles always select the shortest paths. Traditional
approaches search the shortest paths using graph theory such as Dijkstra algorithm.
However, it is not sufficient for grid networks due to so many paths with the same
shortest distance. As shown in Fig.1, we assume the length of each segment is the
same.

Let 1 1 2 2FP((,)(,))i j i j denote the number of paths between 1 1(,)i j and 2 2(,)i j .

To reduce the dimension of FP, we use a integer x to represent the intersection
(,)i j in m n× grid road network, where (1)x i n j= − ⋅ + . Therefore,

1 1 1 1FP((,)(,))i j i j could be denoted as 1 2(,)fp x x .

Fig. 1. 4 4× Grid Road Network

1 2(,)fp x x could be calculated as Eq.(1).

1 2 1 1 2 2

()
(,) ((,)(,)) (,)

! !

i j
fp x x FP i j i j F i j

i j

Δ + Δ= = Δ Δ =
Δ Δ

 (1)

In Eq.(1), 1 2| |i i iΔ = − , and 1 2| |j j jΔ = − . For example, (1,12) FP((1,1)(3,4))fp =
F(2,3) 10= = .

326 B. Xie et al.

3.3 Origin Points and Destination Points

The origin points and destination points will be any places on the road segment;
however, we could map these points into the intersections. For example, as shown in
Fig. 2, a vehicle named A starts from point a where located at north of the road
segment. The circle line figures out the dissemination range of each DP. The origin
point of vehicle A is out range of any DPs. According to the traffic rule, vehicles
should run on the right side, therefore, we regard the origin point of vehicle A as
intersection (2,2). It is the similar for destination points. If a vehicle’s destination
point is out range of any DP, we regard the last intersection which it has crossed as its
destination point. We use matrices G and D to denote the distributions of the numbers
of vehicles at origin points and destination points.

Fig. 2. Mapping Origin Point into Intersection

3.4 Probabilistic Model and Algorithms

In the m n× grid network, let (,)k ki j denote the original address of intersection

kx . Here, 1 ki m≤ ≤ , 1 kj n≤ ≤ and (1)k k kx i n j= − ⋅ + . We introduce several

probabilities as listed Table 1.
We use Coverage Ratio (CR) to evaluate the final performance of the algorithms.

CR means the proportion of the number of vehicles served by DPs to the number of
total vehicles during the observation time. We could use Eq.(2) to compute CR.

Table 1. Probability Symbols

Symbol Description

xps The probability that a vehicle is served when it crosses x

xpa The probability that a vehicle has once appeared at x

xpg The probability that a vehicle starts from x

xpd The probability that a vehicle disappears at x

o dx xpod The probability that a vehicle is start from ox and disappears at dx

xpp The probability that a vehicle passes through the intersection x but
neither starts from nor disappears at x

1(,...,)
c cpf x x The probability that a vehicle passes through these c intersections,

1c >

 Roadside Infrastructure Placement for Information Dissemination in Urban ITS 327

1

1

| |
i i

i i

i k i kx xi
x x

i

V ps
CR pa ps

NVT

= =
=

=

⋅
= < ⋅

 (2)

In Eq.(2),
ixV means the set of vehicles that cross ix , and NVT means the total

number of vehicles during the observation time. Therefore,
1

| |
i i

i k
x xi

V ps
=
= ⋅ means

the total number of vehicles that have been served by one or more of DPs which are
placed at these k intersections. However, it is quite difficult to compute the accurate

CR. It is obvious that CR is fewer than
1 i i

i k
x xi

pa ps
=
= ⋅ which could be used as

approximate value and obtained with less computation. According to the above
analysis, we propose an optimal algorithm OA, and two heuristic algorithms KP-G and
GA. The optimal algorithm OA could only be used in small scale situations due to its
high computational complexity.

The optimal algorithm OA and heuristic algorithm KP-G are listed as following,
respectively.

Algorithm 1. OA
1: Initialize, {1,..., }U N= .

2: for every subset 1{ ,..., }kx x U⊆ do

3: calculate the accurate CR as Eq.(2).
4: compare the CR, find the largest CR and 1{ ,..., }kx x .

5: end for

Algorithm 2. KP-G
1: Initialize, {0}v = .

2: for every intersection ix do

3:
i ii x xv pa ps= ⋅ .

4: end for
5: sort v in descending order, select the first k intersections

Obviously, 1 2...k kpf pf pf pa−< < < < , 2pf plays a more important role in

Eq.(2) than other cpf with 2c > . In large grid road networks, cpf are relatively

small. Therefore, in GA, we use 2pf to approach the accurate CR. It will lose some
performance comparing with OA, but it has quite low computational complexity.

We use 3k = to explain how to compute CR with 2pf as Eq.(3).

328 B. Xie et al.

1 1

2 2

3 3

1 2

1

1

2 1 2 2 1 3

2 1 2 2 2 3

2 1 3 2 2 3

2 1 2

2 1 3

| |

((,) (,))
((,) (,))
((,) (,))

(,) (1 (1) (1))
(,) (1 (1) (1

i i

i k
x xi

x x

x x

x x

x x

x

V ps
CR

NVT
pa pf x x pf x x ps
pa pf x x pf x x ps
pa pf x x pf x x ps

pf x x ps ps
pf x x ps

=
= ⋅

=
 ≈ − − ⋅
 + − − ⋅
 + − − ⋅
 + ⋅ − − ⋅ −
 + ⋅ − − ⋅

3

2 32 2 3

))
(,) (1 (1) (1))

x

x x

ps
pf x x ps ps

−
 + ⋅ − − ⋅ −

 (3)

The heuristic algorithm GA is listed as following.

Algorithm 3. GA
1: Initialize, S φ= , 0c = , {1,..., }U N= .

2: while c k< do
3: 1c c= + .
4: for every ix U∈ do

5: () iS c x= .

6: compute the CR of S as Eq.(3).
7: end for
8: select ix that maximizes CR, () iS c x= .

9: iU U x= − .
10:end while

4 Performance Evaluation

In this section, we conduct simulations to evaluate the performance of the proposed
algorithms. Note that, we do not concern ourselves with low-level issues in wireless
communications.

In [4], a heuristic algorithm KP-P is proposed based on the knowledge of the
number of vehicles crossing each intersection. KP-P sorts the intersections in
descending order by their crossing vehicles, and selects the first k intersections to place
DPs. Using the trajectories generated by our simulator, we could implement KP-P.
Therefore, the results of KP-P could be regarded as the simulation results of our KP-G.
The CR of GA, KP-G, OA, and KP-P are evaluated in this section. Therefore, we
compare the four algorithms in the following subsections.

4.1 Small Scale Scenarios

In this subsection, we use small m, n, k, and we compare the four algorithms. Due to
computational complexity, OA is computationally feasible only for small values of k
in very small scale scenarios. We use 4 4× grid road network as shown in Fig. 1.
When 4k > , the computational complexity is too high to obtain the optimal solution.
We give the CR of OA with 2,3,4k = . We use the same xps for every intersection.

 Roadside Infrastructure Placement for Information Dissemination in Urban ITS 329

As shown in Fig. 3, we could get the following conclusions. First, both simulation
results of OA and KP-G are excellently agree with the analytical results. It
demonstrates the accuracy of our model. Second, GA is much better than KP-G and
KP-P, and even has the same performance as OA. For a given CR, GA needs fewer
DPs, and for a certain number of DPs, GA could achieve higher CR. However, with the
decline of ps, the performance benefit of GA becomes more unremarkable, and the
overall CRs of all algorithms become smaller. In real environment, we always attend to
increase the probability ps, therefore GA is much more useful than other algorithms.

We then study the detailed placements of the four algorithms. For example, Table 2
shows the placements with 1ps = . The integers represent the intersection sequence

numbers as shown in Fig. 1. When 2k = , the placements of the four algorithms are
respectively {11,6} , {11,10} , {10,7} , {6,11} . When 4k = , the placements are

respectively {11,6,8,9} , {11,10,7,6} , {11,7,10,6} ,{4,7,10,13}. With the increment
of k, we only need to add additional points into the original sets for GA, KP-G, KP-P,
whereas we have to change all the points of OA. In other words, GA, KP-G, KP-P
could yield incremental placements, whereas OA has to compute the results for
different k. The difference between the placements of KP-G and KP-P is not
remarkable. Note that, CR of GA reaches 1 for 6k = , whereas KP-G and KP-P both
need 8 DPs for 1CR = . For GA, the placements listed in Table 2 is not unique for

8k = . The last two intersections could be replaced by any other intersections.

1 2 3 4 5 6 7 8

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of DPs

C
ov

er
ag

e
R

at
io

GA
KP−G
KP−P
OA in Analysis
OA in Simulation

1 4 7 10 13 16

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of DPs

C
ov

er
ag

e
R

at
io

GA
KP−G
KP−P
OA in Analysis
OA in Simulation

 (a) 1ps = (b) 0.8ps =

Fig. 3. CR versus the number of DPs deployed, for 4 4× grid road network

Table 2. Placement of Every Algorithm

Algorithm Placement
GA {11, 6, 8, 9, 3, 14, 16, 1}
KP-G {11, 10, 7, 6, 15, 2, 14, 8}
KP-P {11, 7, 10, 6, 14, 15, 2, 3}
OA {6, 11}, {6, 11, 16}, {4, 7, 10, 13}

4.2 Large Scale Scenarios

For a large grid network of 6 9× , there are 54N = intersections. We study more
DPs as 27k = which is half of N. Because OA could not be solved within acceptable

330 B. Xie et al.

time even when 2k = in this large network, we only compare GA with KP-G and
KP-P. We generate a pair of random 6 9× matrices of G and D which are referred to
as 2G and 2D , and generate another symmetrical pair of matrices as 3G and 3D .

In 3G and 3D , all vehicles start from and also disappear at the borders of the grid. It
is an extreme special case.

There are similar conclusions with that in small scale scenarios. Furthermore, from
Fig. 4, we could find that different G and D cause different performances. However,
GA is still better than KP-G and KP-P. In Fig. 4(b), CRs of KP-G and KP-P have
remarkable difference for some k due to its extreme special 3G and 3D . Whatever
the different G and D are, the benefit of GA is very remarkable, especially with
3 13k< < .

1 4 7 10 13 16 19 22 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of DPs

C
ov

er
ag

e
R

at
io

GA
KP−G
KP−P

1 4 7 10 13 16 19 22 25

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of DPs

C
ov

er
ag

e
R

at
io

GA
KP−G
KP−P

(a) 2G , 2D (b) 3G , 3D

Fig. 4. CR versus the number of DPs deployed, for 6 9× grid road network, 1ps =

5 Conclusion

In this paper, we proposed a novel maximum coverage approach for disseminating
information to vehicles in intelligent system in urban area without using vehicles’
trajectories. We proposed a probabilistic model based on the distributions of the
numbers of vehicles at origin points and destination points to get the trajectories
estimation of the vehicles. We applied this model to compute the coverage ratio. Next,
an optimal algorithm OA and two heuristic algorithms KP-G and GA were proposed. It
was not practical to adopt OA due to high computational complexity. Our results
proved that GA had better performance than the other algorithms in most of scenarios.
However, we still remarked that in different scenarios with different parameters and
conditions, it was better to compare the algorithms and choose the best one.

In fact, the road networks of many cities are not regular grid. We could still map
the road networks into grids through some mechanisms which will be our future
work. Drivers may choose paths with the different probabilities, thus other path
selection models will also be considered in our future work.

 Roadside Infrastructure Placement for Information Dissemination in Urban ITS 331

Acknowledgment. This research is partially supported by the National Science
Foundation of China under Grant No. 61070211, No. 61272485, No. 61070201 and
No. 61003304; and Hunan Provincial Natural Science Foundation of China under
grants No. 09JJ4034.

References

1. Dikaiakos, M.D., Iqbal, S., Nadeem, T., Iftode, L.: Vitp: an information transfer protocol
for vehicular computing. In: Proceedings of the 2nd ACM International Workshop on
Vehicular Ad Hoc Networks, VANET 2005, pp. 30–39. ACM, New York (2005)

2. Mak, T.K., Laberteaux, K.P., Sengupta, R.: Amulti-channel vanet providing concurrent
safety and commercial services. In: Proceedings of the 2nd ACM International Workshop
on Vehicular Ad Hoc Networks, VANET 2005, pp. 1–9. ACM, New York (2005)

3. Yang, X., Liu, L., Vaidya, N., Zhao, F.: A vehicle-to-vehicle communication protocol for
cooperative collision warning. In: The First Annual International Conference on Mobile
and Ubiquitous Systems: Networking and Services, MOBIQUITOUS 2004, pp. 114–123
(August 2004)

4. Trullols, O., Fiore, M., Casetti, C., Chiasserini, C., Barcelo Ordinas, J.: Planning roadside
infrastructure for information dissemination in intelligent transportation systems.
Computer Communications 33(4), 432–442 (2010)

5. Arkin, E.M., Efrat, A., Mitchell, J.S., Polishchuk, V., Ramasubramanian, S., Sankararaman,
S., Taheri, J.: Data transmission and base-station placement for optimizing the lifetime of
wireless sensor networks. Ad Hoc Networks (in press)

6. Capone, A., Cesana, M., Donno, D.D., Filippini, I.: Deploying multiple interconnected
gateways in heterogeneous wireless sensor networks: An optimization approach. Computer
Communications 33(10), 1151–1161 (2010)

7. Lochert, C., Scheuermann, B., Wewetzer, C., Luebke, A., Mauve, M.: Data aggregation
and roadside unit placement for a vanet traffic information system. In: Proceedings of the
Fifth ACM International Workshop on VehiculAr Inter-NETworking, VANET 2008, pp.
58–65. ACM, New York (2008)

8. Sun, Y., Lin, X., Lu, R., Shen, X., Su, J.: Roadside units deployment for efficient short-
time certificate updating in vanets. In: 2010 IEEE International Conference on
Communications (ICC), pp. 1–5 (May 2010)

9. Li, P., Huang, X., Fang, Y., Lin, P.: Optimal placement of gateways in vehicular networks.
IEEE Transactions on Vehicular Technology 56(6), 3421–3430 (2007)

10. Abdrabou, A., Zhuang, W.: Probabilistic delay control and road side unit placement for
vehicular ad hoc networks with disrupted connectivity. IEEE Journal on Selected Areas in
Communications 29(1), 129–139 (2011)

11. Aoun, B., Boutaba, R., Iraqi, Y., Kenward, G.: Gateway placement optimization in
wireless mesh networks with qos constraints. IEEE Journal on Selected Areas in
Communications 24(11), 2127–2136 (2006)

Relay Hop Constrained Rendezvous Algorithm

for Mobile Data Gathering in Wireless Sensor
Networks

Wenjun Liu, Jianxi Fan�, Shukui Zhang, and Xi Wang

School of Computer Science and Technology, Soochow University,
Suzhou, 215006, China

{w-jliu,wangxi0414}@163.com, {jxfan,zhansk}@suda.edu.cn

Abstract. Recent research shows that significant energy saving can be
achieved in wireless sensor networks (WSNs) by introducing mobile col-
lector (MC). One obvious bottleneck of such approach is the large data
collection latency due to low mobile speed of MC. In this paper, we
propose an efficient rendezvous based mobile data gathering protocol for
WSNs, in which the aggregated data will be relayed to Rendezvous Node
(RN) within bounded hop d. The algorithm design in the protocol jointly
considers MC tour and data routing routes in aggregation trees. The ef-
fectiveness of the approach is validated through both theoretical analysis
and extensive simulations.

Keywords: Wireless Sensor Networks, NP-Hard, Mobile collector,
Rendezvous node.

1 Introduction

In recent years Wireless Sensor Networks (WSNs) have become an attractive
technology for a large number of applications, ranging from monitoring [1], lo-
calization [2], to target tracking [3]. To design and deploy sophisticated WSNs,
many issues need to be resolved such as node deployment, energy conservation,
routing in dynamic environments, and so on. Specifically, most of these exist-
ing solutions for data collection take advantage of multi-hop routing to relay
data. One obvious drawback of this schema is that it leads to unbalanced energy
consumption among the sensors on the transmission path to sink [4].

Recent research has shown a rapid transition from traditional data gathering
pattern to introduction of mobile elements, which can improve energy efficiency,
connectivity, and reliability effectively [5]. A typical application scenario is that
a forest ranger who equipped with handheld device roams in the network and
gathers the information of detective area. In such an application, mobile user can
visit different regions in the network and communicate with the sensors nearby
in single hop paradigm, which reduces not only contention and collisions, but
also the message loss. However, due to the low velocity of the mobile collector,

� Corresponding author.

C.-H. Hsu et al. (Eds.): NPC 2013, LNCS 8147, pp. 332–343, 2013.
c© IFIP International Federation for Information Processing 2013

Relay Hop Constrained Rendezvous Algorithm for MDG in WSNs 333

usually 0.5-2m/s, e.g. Packbot [6], it would incur long latency if every node is
traveled in data gathering [5]. Obviously, it can not meet the requirement of
time-sensitive applications.

In order to shorten data gathering latency, integrating multi-hop transmis-
sion scheme into mobile data gathering is an effective approach [7], in which a
subset of sensors is selected as Rendezvous Node (RN). In this pattern, at every
transmission hop each node aggregates the local data from its affiliated sensors,
until delivers to RN which caches and uploads data to the mobile collector (MC)
when it arrives. However, it is necessary that the transmission hop should be con-
strained as a proper level for several reasons. First, energy saving is considered
as the most important concern in WSNs. Adopting multi-hop routing to relay
data can easily result in unbalanced energy consumption among sensors, and it
is adverse for energy-limited nodes. Second, a big relay hop means that the node
acting as RN should have high performance to aggregate and cache data before
MC arrives. Third, time-sensitive applications often require the sensing data to
be delivered with certain deadline. For instance, in the application of forest fire
monitoring, the fire should be detected and reported instantly.

The main contributions of this paper can be summarized as follows: 1) We
define the mobile data gathering problem based on RN as MDG-RN, which
jointly considers MC tour and routes in aggregation trees, and prove it is NP-
Hard. 2) We develop two efficient algorithms to solve the MDG-RN problem. The
former is a heuristic algorithm which always selects the node with maximum load
from the d-hop neighbors of the current farthest node to BS. The latter caters
to the characteristic of WSNs, and selects RN iteratively in distributed manner.
On the basis of selected RNs, using algorithm for Traveling Salesman Problem
(TSP) to produce MC tour, along which MC periodically visits these RNs and
picks up the cached data. 3) Simulation results show that both algorithms can
achieve satisfactory performance comparing with existing schemes.

The rest of the paper is organized as follows: Section 2 reviews related work.
Section 3 introduces the network model and problem definition. The major con-
tributions are introduced in Section 4 and Section 5. The simulation results are
presented in Section 6. Finally, Section 7 concludes this paper.

2 Related Work

Recently, many research efforts have appeared in the literature to explore
mobility-enable data collection in sensor networks [5-13]. These approaches may
be classified as uncontrollable or controllable in general [5]. The former is ob-
tained by attaching a collector node on certain mobile entity such as an animal
or a bus; the latter is achieved by intentionally adding a mobile entity e.g., a
mobile robot or an unmanned aerial vehicle, into the network to carry the col-
lector. Clearly, a controlled mobility gives more flexibility for designing a data
collection scheme.

The major performance bottleneck of such mobility-enabled WSNs is the in-
creased latency in data collection. There are many approaches address to the

334 W. Liu et al.

delay problem. The first category is using the single hop transmission scheme. It
is not difficult to conclude that direct-contact data collection is generally equiva-
lent to the NP-complete TSP. Nesamony et al. [8] formulated the traveling prob-
lem as TSP with Neighborhood, where a MC needs to visit the neighborhood
of each sensor exactly once. He et al. in [9] proposed a progressive optimization
approach, called CSS, to reduce the tour length, and thus the data collection
latency. This kind of approach minimizes the network energy consumption by
one hop transmission, but it incurs high latency when collecting data from large
sensing fields due to the slow speed of MC.

In second category multi-hop transmissions is adopted. Ma et al. [10] gave a
moving path planning algorithm by finding some turning points, which is adap-
tive to the sensor distribution and can effectively avoid obstacles on the path.
In [11], Gatzianas et al. optimized data gathering performance by presenting a
distributed maximum lifetime routing algorithm, where a mobile collector se-
quentially visits a set of anchor points and each sensor transmits data to the
mobile collector at some anchor points via multi-hop paths. Such type of ap-
proach reduces latency effectively. However, without the hop count constraint,
the unbalanced energy consumption leads to untimely network partition.

The last category is a hybrid approach with constraint conditions that usually
jointly considers multi-hop data transmissions and the moving tour of MC in data
collection. Xing et al. [12] proposed a rendezvous-based data collection approach
under the constraint that the tour length of the mobile collector is no longer than
a threshold. With the relay hop constraint, Zhao et al. [13] proposed a polling-
based mobile data gathering scheme that minimize the tour length of MC and
data gathering latency. They give two algorithms to find a set of PPs among
sensors. In [7], Rao et al. establishes bounds for multi-hop routing as a function
of sensor and MC parameters such as data generation rate, sink speed and sensor
density. They developed a framework to parameterizes multi-hop routing using a
hop-bound factor k. Their model revealed that for stable mobile sink operation,
there exists a feasible range of the hop-bound factor k. The approach studied in
this paper falls into this category.

3 Preliminary

3.1 Network Model

We assume N sensor nodes are scattered randomly over the interest area and left
unattended to continuously sense and report events. There is a static BS located
in the center of sensing area and a mobile collector (MC) moved in controlled
mobility. MC knows its own physical locations through the GPS units on it.
However, for generality, we do not make such assumption on sensor nodes. Under
the consideration of same communication range, the communication links are
symmetric. We consider WSN as a undirected graph G(V,E), where the vertex
set V represents all the sensors and the edge set E represents the communication
links. Two vertices, u and v in V , are adjacent if there is a edge e=(u,v)∈ E,
then we say u is neighbor of v, and vice versa. A path P = < v1, v2, · · · , vl > of

Relay Hop Constrained Rendezvous Algorithm for MDG in WSNs 335

length l - 1 for l ≥ 2 in G is a sequence of distinct vertices such that any two
consecutive vertices are adjacent. The neighbors of a vertex v, denoted by N(v),
is the set of all vertices adjacent to v in G. The d-hop neighbors of node v is
denoted by d-N(v).

In data-centric WSNs, data from sources will be sent to RN or BS continu-
ously, thus the data routes should be created in advance. On the basis of under-
lying topology G, a set of directed aggregation tree T = {Ti} represents logic
communication topology. For any Ti, 0 < i < N , its root is the node ri in RN.
For any link e ∈ G, the communication cost is represented by its Euclidean
distance. In addition,we assume the N -to-one aggregation model is adopted, in
which a node can aggregate multiple data packets it received into one packet
before relaying it [14].

3.2 Definitions

In the data collection schema, the RNs cache the data originated from sources
and send to the MC via short-range transmissions when it arrives. The require-
ment is that the total length of MC tour should be minimized under the relay
hop constraint. We refer to this problem as Mobile Data Gathering based on
Rendezvous Nodes (MDG-RN) which is defined as follow:

Definition 1. Given a set of sensors S = {s1, s2, . . . , sN} and relay hop d, look
for 1) A set of RN R; 2) A MC tour U connected all nodes in R and BS such
that

∑
(u,v)∈U | uv | is minimized, where (u, v) is a line segment on U and | uv |

is its Euclidean distance; 3) A set of aggregation trees {Ti(Vi, Ei)} with height
at most d that are rooted at ri ∈ R such that ∪iVi = S and

∑
i

∑
(u,v)∈Ei

| uv |
is minimized.

From the definition of MDG-RN problem, the distribution of RNs and the
data routes in each aggregation tree with the hop constraint should be jointly
considered in order to find optimal solution. Thus the MDG-RN problem in this
case can be formulated as:

Minimize
∑

(u,v∈U)

|uv| (1)

Subject to
chsi,ri = 1, ∀si ∈ S, ∀ri ∈ R, 0 ≤ h ≤ d. (2)∑

ri∈R

chsi,ri = 1, ∀si ∈ S, 0 ≤ h ≤ d. (3)

|siri| ≤ |sirj |, ∀si ∈ S, ∀ri ∈ R, ri 	= rj (4)

For nodes r, v ∈ V in G, we claim r covers v, if there is a path from v to r. A
node v is d-hop covered by r if this path has the length no lager than d, written
as cdv,r. A set of sensors are covered by r means an aggregation tree rooted at r is
produced. The d-hop cover guarantees that any packet from the sources can be

336 W. Liu et al.

sent to rendezvous node r within d hops. As aforementioned, in ideal N -to-one
aggregation mode, the total length of communication edges in an aggregation
tree is more worthy of attention comparing with the number of nodes associated
with RNs. We define the transmission cost as load formally. The load of a node
v, written as Load(v), is the total edge length associated with it in aggregation
tree T in network. If the height of aggregation tree rooted at v is d then its load
is called d-hop load, written as d−Load(v). For node v, its uncovered d-hop load
is the d-hop load except the edge length connecting the covered nodes in T , and
it is written as unC−d−Load(v).

Theorem 1. The MDG-RN problem is NP-hard.

Proof. This problem can be shown to be NP-hard by a polynomial-time reduc-
tion from the Euclidean Traveling Salesman Problem. Specifically, a special case
of the decision version of MDG-RN problem is to ask if there exists a set of RNs
such that all the sources must be RNs. This can be done by modifying the node
transmission range Rt. When Rt is small enough, nodes are unreachable from
each other. In such case, the relay hop d is equal to 0, and then MC must visit
all the RNs to collect data. Thus the MDG-RN problem is NP-hard. ��

4 Algorithm for MDG-RN Problem

Due to the NP-hardness of the MDG-RN problem, in this section, we develop a
Load Priority based RN Determination Algorithm (LP-RDA) for this problem.
The basic idea of algorithm is to determine a set of RNs such that its total
number is minimum and its distribution is near the BS as much as possible under
the constraint of relay hop counts, and that the load of RNs is also optimized.
The LP-RDA algorithm can be described as the following 3 steps:

STEP 1: INITIALIZATION

for any node si ∈ S

si.status := not−Covered;
computes si.dist−to−BS base on received signal strength;

sends FB−Msg(si.ID, dist−to−BS, hopC) to BS hop-by-hop;

At beginning, static BS broadcasts “BEACON” message network-wide at a
certain power. Each node computes the approximate distance to BS, dist−to−BS,
base on the received signal strength. After that, every node sends message
FB−Msg() to BS hop-by-hop. BS obtains the information of nodes in network
after receiving these feedback messages.

STEP 2: ITERATION

BS determines a appropriate starting node x;

for any node sj ∈ d-NG(x)

find a new RN ri which has maximum unC−d−Load(sj).
ri sends Declar−Msg() to d-N(ri) and rj.status:= Covered;

Relay Hop Constrained Rendezvous Algorithm for MDG in WSNs 337

13

2 3 4

5 6
7

8

10 11
12

13

14

18 19 20

9

15
16 17

1 2 3 4

5 6
7 8

10 11
12

9

15
16

17

1 2 3 4

5 6
7

8

10 11
12

13

14

18

9

15
16

17

20 20

14

19 1918

1

(a) (b) (c)

Fig. 1. An example to illustrate LP-RDA algorithm (N=20, d=2). (a) Initial topology.
(b) The cover after the first RN is determined. (c) The final RNs, aggregation trees,
and MCs tour.

for any sj receiving Declar−Msg() from ri
if sj.status = not−Covered then

it joins its RN and sj.status := Covered;

The iterative process to determine node status as shown in STEP 2. De-
pending on whether it is d-hop covered by RN, each node is set in one of
two states: “Covered” or “not−Covered”. Initially, all nodes are in the state
of “un−Covered”. The node with maximum hopC, x, is selected as the starting
node. For the same hopC, the node with little dist−to−BS is selected. For d-
N(x), each node computes its unC−d−Load() by local message exchange. Next,
algorithm tests the nodes in d-N(x) toward the direction of BS such that the
node with maximum unC−d−Load() is determined as new RN. The selected RN
declares its identity by sending declaration message within its d-hop neighbors.
Those uncovered nodes received this message will register as its member node
and mark itself as covered. While there are uncovered nodes in the network,
algorithm selects a new starting node again. Repeat this process, until all the
nodes are covered by RNs.

STEP 3: OPTIMIZATION

for any sj receiving Declar−Msg() from ri
if sj.status = Covered and |sjri | < |sjrj |) then

changes its RN from rj to ri when receives ri’s message;

We notice that a part of nodes in d-N(ri) may have become the member
of other tree Tj, j < i already. In order to optimize the load of aggregation
tree, if these covered nodes are closer to a new RN ri, then they will disaffiliate
themselves from original roots and join ri. The optimization pseudo-code as
shown in STEP 3 above.

An example demonstrates the execution of LP-RDA as shown in Fig. 1. The
solid circles represent sensors and the black ones indicate that they are covered
by RNs. The gray line segments show the connectivity, and the directed line
segments represent the data routes in aggregation trees. Initially, no node is
covered. Although 18 and 1 have the same 4 hops, the former with smaller

338 W. Liu et al.

dist−to−BS is selected as the starting node. Its uncovered 2-hop neighbor set is
{10, 11, 15, 19}. 11 is the desirable one which will send Declar−Msg() to recruit
its members. After its neighbors at most 2-hop away joining in this RN, they
are covered as shown in Fig. 1b. Similarly, node 1 with 4 hops is selected as the
next starting node. In the process of construction of aggregation trees, a part
of nodes change their routes whenever shorter distance to new RN arises, e.g.,
node 8 changes its RN from 3 to 13, with which the optimization is accomplished.
Fig. 1c gives the final result which produce the data gathering tour of MC as
highlighted by the red line segments.

Theorem 2. LP-RDA has the time complexity of O(N2+Nd), where N is the
number of sensors in network, d is the relay hop.

Proof. During the initial stage, every node sends feedback message to BS hop by
hop after receiving the BS’s “BEACON” message. It takes O(N) time for BS to
gather network information. Next, BS starts the iterative RN selection process.
At every turn, LP-RDA selects the farthest node v as the starting node, it will no
larger than N even in the worst case. Moreover, in each turn it takes O(d) time
for v’s d-hop neighbors d-N(v) compute their load, the RN declares its identify,
and the MN joins new RN, respectively. Thus the iteration requires O(dN) time.
Finally, adopting existing approximate algorithm for TSP to produce the MC
tour will take O(N2) time. Thus, the total time spent is O(N) + O(3dN) +
O(N2). The time complexity of LP-RDA is O(N2 + dN). ��

5 Distributed Algorithm for MDG-RN Problem

According to the assumption above, every node only knows the existence of its
direct neighbors, thus the information acquisition of d-hop neighbors is mainly
completed via d-hop information exchange. The execution of Algorithm needs
BS’s schedule and it can not be executed in fully distributed pattern. In the
following, we present a Tree based Distributed RN Determination Algorithm
(T-DRDA), which can be identified as 3 steps.

STEP 1: INITIALIZATION

Construct SDT T under the constraint of Rt;

si.status:= Suspensive;

The initialization pseudo-code executed by each senor as shown in STEP 1.
Initially, each node has the same status “Suspensive”. We claim the branches of
a node in T are its sub-trees rooted at its direct children, and the local height of
a branch (LHB) is the tree height from current node to its known farthest child
in local message exchange. For any node x, its LHB of i-th branch is noted as
x.br−LHB[i]. Every node sends local exchange message Exg−Msg() to its father
within d hops along T . When any node in the network receives messages from
its children, it will perform relevant statistics and then forward or destroy the
message depending on specific conditions. After d-hop message propagation, each
node has the information of its d-hop neighbors.

Relay Hop Constrained Rendezvous Algorithm for MDG in WSNs 339

(a) (b) (c)

2 3 4

5 6 7 8

10 11 12
13

14

18 19 20

9

15
16

17

1 23

22

21

2 3 4

5 6
7 8

10 11 12
13

14

18 19 20

9

15 16
17

1

22

23

21

2 3 4

5 6
7 8

10 11 12 13

14

18 19 20

9

15 16

17

1

21

23

22

Fig. 2. An example to illustrate T-DRDA (N=23, d=2). (a) Initial topology. (b) RNs
and their MNs after iteration 1. (c) The final RNs, aggregation tree, and MC tour.

STEP 2: STATUS DETERMINATION

if si.status = Suspensive then

for each branch of si
if si.br−LHB[j] < d-1 and si.parNode != Null then

si.status:= MN;

else if si.br−LHB[j] = d-1 or (si.parNode = Null and

si.br−LHB[j] < d-1) then

si.status:= RN and sends Declar−Msg() to d-N(si) in T;

According to the obtained local information, each node makes decision of its
status as shown the code in STEP 2. If the LHB of each branch is less than d and
its parent is not null, then this node becomes a member node (MN), then it will
wait for a Join−Msg(). If there is a node whose LHB is exactly d, or it includes
a branch whose LHB is less than d and its parent is null, then node turns into
RN, and send declaration message Declar−Msg() to recruit its members within
d hops range along tree including its parent and children. However, if current
node’s LHB is lager than d, then its status is still undetermined.

STEP 3: JOIN−RN
Upon receiving Declar−Msg(rj, h) in T

if si.status = Suspensive then

si.status:= MN and sends Join−Msg() to register as MN with rj;

For STEP 3, whenever nodes receive Declar−Msg(), they change their status
as “Covered”, and register as MN with the sender. If multiple such messages are
received, the nearest sender is chosen. Next, MN sends Join−Msg() to inform
RN of its joining. After receiving the join messages, RN registers these nodes as
its members and performs necessary maintenance and management. Note that
when any MN determines a RN, it will be deleted from T . The remainder nodes
in sub-tree repeat this procedure until every node becomes a RN or MN.

Fig. 2 illustrates the execution of distributed algorithm. The gray, red and
black nodes represent MN, RN and undetermined nodes, respectively. Fig. 2a
shows the initial network topology under the constraint Rt. Fig. 2b depicts
the node statuses after the first iteration. Fig. 2c gives the final statuses of

340 W. Liu et al.

all nodes and the MC tour. Finally, we give the following properties which show
the complexity of the T-DRDA algorithm.

Theorem 3. T-DRDA has the time complexity of O(N), where N is the number
of sensors.

Proof. T-DRDA adopts SDT T as underlying communication topology which
can be constructed in O(1) time. In the worst-case, sensor will experience N/d
iterations at most. In each iteration, it takes O(d) time for node to obtains d-hop
neighbors information by local exchange. With the gathered information, each
node makes its decision independently by O(1) time. After that, RN and MN
will send declaration and join messages with O(d) time, respectively. Therefore,
The total time complexity in T-DRDA is O(1)+O(N/d)∗O(3d+1) = O(N). ��
Theorem 4. T-DRDA has the message exchange complexity of O(N + d) per
node, where N is the number of sensors, and d is the relay hop counts.

Proof. SDT T in T-DRDA can be constructed with message complexity O(N).
During each iteration, each node generates d messages at most which are sent to
its parent within d-hop in T . In the decision stage, each RN sends a declaration
message to its d-hop neighbors in T . After receiving the declaration, its neighbors
register with this node as MN by sending a join message. Both messages are
restricted in d hop during the broadcast. That is, the number of messages that
forwarded by single node in T will no more than d. Therefore, the total number
of messages that a node has to handle is at most d + 1 + d. Thus the message
complexity of T-DRDA is O(N) +O(d) = O(N + d) per node. ��

6 Performance Evaluation

In this section, we evaluate the performance of proposed algorithms and present
the simulation results. The performance metrics are mainly the number of RNs
(NRN), the iterations, and the tour length of MC (LMCT). We first evaluate
the performance by varying the parameters, and then compare them with two
existing mobile data gathering schemes, SPT-DGA and PB-PSA [13]. SPT-DGA
is a centralized algorithm, in which within the relay hop bound it iteratively finds
an set of PPs among the sensors on a shortest path tree. Whereas, PB-PSA
obtains the desirable solution in a distributed manner. We adopt the Nearest-
Neighbor (NN) algorithm [15] in the simulation to determine the moving tour.

Fig. 3 shows the performance of LP-RDA and T-DRDA under different trans-
mission ranges (Rt). We can see that NRN in both algorithms decreases quickly
with the increase of Rt. The reason is that under the same node density a big
Rt leads to the d-hop neighbors of a sensor increasing significantly, which means
that less RNs can cover all nodes in the network. Obviously, in such case the load
of each RN will increase with decrease of NRN . The increase of Rt makes hopC
reduced. Therefore, for the iterations in LP-RDA, it is consistent with hopC, and
decreases dramatically in Fig. 3b. It is worth pointing out that small iterations

Relay Hop Constrained Rendezvous Algorithm for MDG in WSNs 341

0

30

60

90

120

150

10 20 30 40 50 60

Transmission Ranges (Rt)

T
he

 n
um

be
r

of
 R

N
s

LP-RDA

T-DRDA

0

15

30

45

60

10 20 30 40 50 60

Transmission Ranges (Rt)

Ite
ra

tio
ns

LP-RDA

T-DRDA

Fig. 3. Performance of LP-RDA and T-DRDA under different transmission ranges Rt.
(a) The number of RNs versus Rt. (b) The iterations versus Rt.

0

40

80

120

160

200

0 1 2 3 4 5

Relay Hop Counts (d)

T
he

 n
um

be
r o

f R
N

s

LP-RDA

T-DRDA

Fig. 4. The number of RNs

0

10

20

30

40

50

50 100 150 200 250 300 350 400

Network Sizes (N)

Ite
ra

tio
ns

SPT-DGA
PB-PSA
LP-RDA
T-DRDA

Fig. 5. The iterations versus network sizes

are at the cost of a large of local exchange messages. However, T-DRDA adopts a
distributed approach to determine RNs, thus its iterations are influenced mainly
by the height of tree T .

Fig. 4 plots the relationship between NRN and d. In the figure, under fixed Rt

= 30m, NRN in both algorithms decreases with d. The revelation of this result is
that a tradeoff should be made between local message overhead and latency. On
one hand, under fixed Rt a small relay hop means the data can be aggregated
to RNs quickly, but MC tour length will increase inevitably, which will cause a
long latency. On the other hand, if the relay hop is too large, then the load of
RNs will increase, accordingly, which not only calls for high node performance,
but also result in unbalanced energy consumption.

In the following, we simulate the performance of LP-RDA and T-DRDA com-
paring with PB-PSA and SPT-DGA under different network sizes. Fig. 5 depicts
the iterations of different algorithms as a function of network nodes N . We can
see that comparing with that the iterations of centralized algorithms increasing
with network sizes significantly, distributed schemes keeps a low growth and has
excellent efficiency. For example, T-DRDA needs only 1 iteration when N is less

342 W. Liu et al.

than 100. Even under the caseN = 400, algorithm needs 3.15 rounds on average.
The reason LP-RDA excels SPT-DGA is that at every turn the former selects RN
from the node with maximum d-hop load within its uncovered d-hop neighbors,
which produces as less NRN as possible. Furthermore, during the execution, the
iteration of algorithm is scheduled by BS, which has unlimited functionality.

0

20

40

60

80

100

50 100 150 200 250 300 350 400

Network Sizes (N)

T
he

 n
um

be
r

of
 R

N
s

SPT-DGA
PB-PSA
LP-RDA
T-DRDA

400

600

800

1000

1200

50 100 150 200 250 300 350 400
Network Sizes (N)

To
ur

 L
en

gt
h

SPT-DGA PB-PSA

LP-RDA T-DRDA

Fig. 6. Performance of LP-RDA and T-DRDA under different network sizes. (a) The
number of RNs versus networks. (b) Tour length versus network sizes.

Finally, Fig. 6 depicts NRN and LMCT under different network sizes N . By
contrast, the centralized algorithm receives more optimized NRN . In order to
ensure a short MC tour, the selection of RN in algorithm design mainly considers
two factors: one is approaching its location to static BS, the other is decreasing
their number. Under fixed d, a smaller LMCT means a short latency of data
gathering. We can see that the centralized algorithms are superior to distributed
algorithms and the proposed algorithms outperform the other two algorithms.

7 Conclusions

In this paper, we study relay constrained mobile data gathering with mobile col-
lector. We develop two efficient rendezvous based data gathering algorithms. One
is a heuristic algorithm which always selects the node with maximum load from
the d-hop neighbors of the current farthest node to BS. The other caters to the
characteristic of WSNs, and selects RN iteratively from far to near in distributed
manner. Both of them jointly consider MC tour and data routing routes in ag-
gregation trees. The effectiveness of our algorithms is validated through both
theoretical analysis and extensive simulations.

Acknowledgments. This work is supported by National Natural Science Foun-
dation of China (61170021), Specialized Research Fund for the Doctoral Pro-
gram of Higher Education (20103201110018), Natural Science Foundation of
Jiangsu (BK2011376), Application Foundation Research of Suzhou of China

Relay Hop Constrained Rendezvous Algorithm for MDG in WSNs 343

(SYG201240, SYG201118), Program for Postgraduates Research Innovation in
University of Jiangsu Province (CXZZ12−0817), Science and Technology Innova-
tion Team Building Program of Soochow University (SDT2012B02), and Project
for Excellent Doctoral Dissertation Topic in Soochow University (23320216).

References

1. Xu, N., Rangwala, S., Chintalapudi, K.K., Ganesan, D., Broad, A., Govindan, R.,
Estrin, D.: A Wireless Sensor Network for Structural Monitoring. In: Proc. of ACM
SenSys, pp. 13–24 (2004)

2. Yang, Z., Liu, Y.H.: Quality of Trilateration: Confidence based Iterative Localiza-
tion. IEEE Trans. Parallel Distrib. Syst. 21(5), 631–640 (2010)

3. Samarah, S., Al-Hajri, M., Boukerche, A.: A Predictive Energy-Efficient Technique
to Support Object-Tracking Sensor Networks. IEEE Trans. Veh. Technol. 60(2),
656–663 (2011)

4. Batalin, M.A., Rahimi, M., Yu, Y., Liu, D., Kansal, A., Sukhatme, G.S., Kaiser,
W.J., Hansen, M., Pottie, G.J., Srivastava, M., Estrin, D.: Call and Response:
Experiments in Sampling the Environment. In: Proc. of SenSys, pp. 25–38 (2004)

5. Francesco, M.D., Das, S., Anastasi, G.: Data Collection in Wireless Sensor Net-
works with Mobile Elements: A Survey. ACM Trans. Sensor Netw. 8(1) (2011)

6. Somasundara, A.A., Ramamoorthy, A., Srivastava, M.B.: Mobile Element Schedul-
ing with Dynamic Deadlines. IEEE Trans. Mobile Comput. 6(4), 395–410 (2007)

7. Rao, J., Biswas, S.: Analyzing Multi-hop Routing Feasibility for Sensor Data Har-
vesting using Mobile Sink. J. Parallel Distrib. Comput. 72(6), 764–777 (2012)

8. Nesamony, S., Vairamuthu, M.K., Orlowska, M.E.: On Optimal Route of a Cali-
brating Mobile Sink in a Wireless Sensor Network. In: Proc. of INSS, pp. 61–64
(2007)

9. He, L., Pan, J.P., Xu, J.D.: A Progressive Approach to Reducing Data Collection
Latency in Wireless Sensor Networks with Mobile Elements Sinks. IEEE Trans.
Mobile Comput. 12(7), 1308–1320 (2013)

10. Ma, M., Yang, Y.: SenCar: An Energy-Efficient Data Gathering Mechanism for
Large-Scale Multihop Sensor Networks. IEEE Trans. Parallel Distrib. Syst. 18(10),
1476–1488 (2007)

11. Gatzianas, M., Georgiadis, L.: A Distributed Algorithm for Maximum Lifetime
Routing in Sensor Networks with Mobile Sink. IEEE Trans. Wireless Com-
mun. 7(3), 984–994 (2008)

12. Xing, G.L., Li, M.M., Wang, T., Jia, W.J., Huang, J.: Efficient Rendezvous Algo-
rithms for Mobility-Enabled Wireless Sensor Networks. IEEE Trans. Mobile Com-
put. 11(1), 47–60 (2012)

13. Zhao, M., Yang, Y.Y.: Bounded Relay Hop Mobile Data Gathering in Wireless
Sensor Networks. IEEE Trans. Comput. 61(2), 265–277 (2012)

14. Madden, S., Franklin, M.J., Hellerstein, J.M., Hong, W.: TAG: A Tiny Aggregation
Service for Ad-Hoc Sensor Networks. In: Proc. of OSDI, pp. 131–146 (2002)

15. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
2nd edn. The MIT Press (2001)

Energy Efficient Task Scheduling in Mobile

Cloud Computing

Dezhong Yao1, Chen Yu1, Hai Jin1, and Jiehan Zhou2

1 Services Computing Technology and System Lab
Cluster and Grid Computing Lab

School of Computer Science and Technology
Huazhong University of Science and Technology, Wuhan 430074, China

{dyao,yuchen,hjin}@hust.edu.cn
2 Department of Computer Science and Engeering University of Oulu,

Oulu 90014, Finland

Abstract. Cloud computing can enhance the computing capability of
mobile systems by offloading. However, the communication between the
mobile device and the cloud is not free. Transmitting large data to cloud
consumes much more energy than processing data in mobile device, espe-
cially in a low bandwidth condition. Further, some processing tasks can
avoid transmitting large data between mobile device and server. Those
processing tasks (encoding, rendering) are as the compress algorithm,
which can reduce the size of raw data before it is sent to server. In this
paper, we present an energy efficient task scheduling strategy (EETS)
to determine what kind of task with certain amount of data should be
chosen to be offloaded under different environment. We have evaluated
the scheduler by using an Android smartphone. The results show that
our strategy can achieve 99% of accuracy to choose the right action in
order to minimize the system energy usage.

Keywords: Mobile cloud computing, Energy-efficient, Task scheduling,
Offloading.

1 Introduction

With a rapid development of embedded systems, high speed wireless networks
and could computing, mobile devices (e.g., smartphone, tablets, wearable de-
vices, etc.) are increasingly becoming a common stuff of human daily life. We
use mobile devices to do many of our jobs that we used to do on desktop. Mobile
cloud computing technique allows those ideas to become a reality. Nonetheless,
the more mobile devices we have, the less happiness we are with the battery life-
time. This is because we are still using the traditional power supplying method
and materials.

Computing offloading technique is proposed with the objective to migrate
the complex computation works from resource-limited devices to powerful ma-
chines. This avoids taking a long application execution time on mobile devices

C.-H. Hsu et al. (Eds.): NPC 2013, LNCS 8147, pp. 344–355, 2013.
c© IFIP International Federation for Information Processing 2013

Energy Efficient Task Scheduling in Mobile Cloud Computing 345

which results in large amount of power consumption. However, current offloading
studies do not consider about the energy consumption used by data transport.
Offloading mechanisms just focus on avoiding use local CPU resource in order
to save energy spent on processing. They pay limit attention on long time data
transmission problem and they consider best case scenarios: ideal high speed
networks. Unfortunately, long wireless network latencies are a fundamental ob-
stacle [1]. Some researches [2,3] prove that it can significantly save energy when
we minimize the use of network. For example, speech recognition utility is a
heavy processing task, it should be processed in cloud servers according the of-
floading scheduling algorithm [4]. While voice data is usually larger than text
data, it will take more energy to send the big data to server than to process the
recognition algorithm locally and then send the text result to server.

In this paper, we propose an energy efficient task scheduling strategy (EETS)
which focuses on reducing the amount of data transmission. Our goal is to iden-
tify which kind of task is suitable for offloading and which is not. To address
this problem we build an energy consumption model for each task. At last, we
give an evaluation work on a suite of Mediabench [5] programs to show the effi-
ciency of our scheduling mechanism. Our main contributions of this paper are as:
1)We present a task allocation algorithm which is based on a task’s input/output
data’s size and storage path. 2)We study the data compression that is helpful
to achieve energy saving between mobile device and cloud. 3)We give an energy
consumption model for each task. Using this model, we can calculate the energy
consuming difference between offloading or not offloading. We prove our model
using real data from Android phones.

The rest of the paper is organized as follows. Section 2 presents the related
work. Section 3 introduces task execution scenario. In section 4, we describe
energy consumption modeling technique for application task and explain task
scheduling algorithm. Then we carry out a performance evaluation of all con-
sidered methods in section 5. Section 6 discusses our work and future works,
whereas our conclusions are drawn in section 7.

2 Related Work

Could computing can provide computing resource, and users can use these to
reduce the amounts of computation on mobile systems and save energy. Thus,
cloud computing can save energy for mobile users through computation offload-
ing [6,7]. However, to migrate large amount of data in a low-bandwidth network
will cost much more energy than local computation.

Offloading [6] is a method to offload part of the computation from mobile
device to another resource rich platform. A number of recent works propose
different methodologies to offload computation for specific applications [8,9]. In
another part, lots of works discuss on how to pre-estimate the actual gain in
terms of energy [10]. For a code complication, offloading might consume more
energy than that of local processing when the size of codes is small [11].

The research work [7] suggests a program partitioning based on the estima-
tion of the energy consumption (communication energy and computation energy)

346 D. Yao et al.

before the program execution. The optimal program partitioning for offloading is
calculated based on the trade-off between the communication and computation
costs. To do offloading in the dynamic environments, Tang et al. [12] consider
three common environmental changes: power level, connection status and band-
width. But they just explain the suitable solutions for offloading for different
environments separately. Chun et al. [13] present a system to partition an appli-
cation in dynamic environments. The proposed system follows three steps with
different requirements related to the application structuring, the partitioning
choice, and the security. Cuervo [14] introduces an architecture to dynamically
partition an application at a runtime in three steps. However, all those works do
not consider more about the task input and output data, which may cost a lot
of energy in communication. None of the previous works related to mobile cloud
computing explicitly studies the actual input data and output data location
problem. They assume that the data comes from local and to be stored in local
device. Otherwise, we need to spend much energy on useless data transmission
work.

3 Task Execution Scenario

Simple task does not take too much time to execute, so it does not need offloading
[7]. Complex applications will consume more energy than the simple one. So in
this section we will classify the applications with complex computation task.

With the offloading’s help, we can put the rendering work on cloud, as shown
in Fig. 1(a). After the rendering result is ready, the data will be sent back to
mobile device. The energy spent on computation part will be saved with an extra
cost of data communication. Sometimes, it is not worth to offload rendering work
from mobile client to server when the data size is big and the network bandwidth
is slow. The mobile device will keep communication with cloud servers for a long
time. For some compression like applications, we would better to do compress
work on mobile device than to do it on the cloud servers. The data size can
be reduced after it is processed. So the communication time will be saved. This
progress is shown in Fig. 1(b).

Mobile Device

OS

App1

P

D

App0

P

D
Cloud Service

P D

P: Instruction part of an application
D: Data part of an application

(a) Offloading: mobile device needs to
transmit all data to server

Mobile Device

OS

App1

P

D

App0

P

D
Cloud Service

P D

P: Instruction part of an application
D: Data part of an application

(b) Non-offloading: the mobile device just
transmits the executed data

Fig. 1. Offloading scheme

Energy Efficient Task Scheduling in Mobile Cloud Computing 347

4 Energy Efficient Task Scheduler

In this section, we will talk about the energy consumption model. Our proposed
task scheduler makes following assumptions: 1) Each task can be processed on
mobile device. 2) Each task has a fixed compress ratio of input data and output
data. 3) The network bandwidth between mobile device and remote cloud is
fixed and stable. 4) The computational power required by a task has a liner
relationship with the processing time.

4.1 Energy Model

Energy consumption of mobile devices depends on the computation and commu-
nication loads. To explore the energy consumption of each task, we suppose the
task computation requires I instructions. The task needs to deal with D bytes
of data and will generate D′ bytes result. We use B to stand for current network
bandwidth. It will task D/B seconds to transmit and receive data. We define
our task as follows:

Definition 1. [Application Task] T (I,D,D′). A mobile application task T has
I instructions to be executed. The task uses D bytes input data and generates
D′ bytes output data.

The mobile system consumes Pc (watt per instruction) for computing and Ptr

(watt per second) for sending and receiving data.
If we choose to execute our task using offloading, we need to send our code

and data to server, as shown in Fig. 1(b). So the total energy consumption is:

Eoff = Ptr ∗ D

B
(1)

Suppose the output data D′ is k times smaller than the original data D, we
use compress ratio k to describe the relationship between input data and output
data: (D′ = D ∗ k). In order to simplify the compression algorithm impact on
the size of output data when the size of input data is different, we just consider
the application task with fixed compression ratio. If the mobile device performs
the task, the energy consumption is:

Enonoff = Pc ∗ I + Ptr
D′

B
(2)

Definition 2. [Energy saving value S] The amount of energy that can be saved,
when the task chooses to do offloading.

The amount of energy saved is:

S = Eoff − Enonoff (3)

= Ptr ∗ D

B
− Pc ∗ I − Ptr ∗ D′

B
= Ptr ∗ D

B
− Pc ∗ I − Ptr ∗ D ∗ k

B

= Ptr ∗ (1− k)
D

B
− Pc ∗ I (4)

348 D. Yao et al.

If offloading use less energy to finish a task than non-offloading, this formula
produces a negative result: S < 0. It’s better to choose offloading. When we try
to transmit large amount of data D for a compression task (k < 1), Eq. (3) will
be positive. It means that it is better to execute the task locally.

4.2 Execution Model

It is a big advantage to do offloading in cloud environment, if a task has to
download a large number of data from remote servers. In the previous studies,
researchers focus on determining whether to offload computation by predicting
the relationships among the three factors: network bandwidth B, the amount of
processing instructions I and the amount of data to be transmitted D. However,
there is a fundamental assumption underling this analysis: the server does not
already contain the input data and all the data must be sent to the server to do
offloading. The mobile client has to offload the program code and data to the
server. Now, cloud computing changes this assumption. Many mobile devices
have cloud storage service. Offloading can use the data stored in the cloud.
This will significantly reduce the energy consumption on data transmission. The
execution workflow is shown in Fig. 2. The input file of an application could come
from local files or remote storage service. The execution code is only on mobile
device. Then, we can choose to offload computation task to virtual machine
or run locally in mobile device. How to store the output result data of the
application is depended by user settings.

Processing

Cloud Storage

Cloud VMs

Mobile Client Server Client

Fig. 2. Execution workflow of a mobile application

The detail of each possible workflow is listed in Fig. 3. The computing code is
only stored in local mobile device. Compare with offloading and non-offloading
mechanism, the main difference is processing code in cloud or in mobile device.

Energy Efficient Task Scheduling in Mobile Cloud Computing 349

Processing Processing

Processing Processing

Offloading Non-Offloading

a b c d

e f g h

Input
Data:

Output
Data:

Local

Cloud

Local Cloud Local Cloud

Processing Processing

Processing Processing

Fig. 3. Execution mode for different input/output situation

There are 8 executing mode depending on where we get the input data and where
we store the output data. In the next section, we will present a cost model for
how much energy can be saved for the same input and same output situation.

4.3 The Cost Graph

In this section, we will consider the energy consumption cost for each situation
shown in Fig. 3. We use the energy consumption model in section 4.1 to describe
the power spent on computation part and data transmission part.

Fig. 4 shows the cost map of data communication with different data storage.
Task is executed on the mobile device while the other shown task runs on the
cloud server after offloading. The input data of task could be Dm in the local
mobile device or Ds from cloud storage service. As the instruction code is usually
smaller than the data, the cost of transmitting code could be ignored. The cost of
transmitting the input data is described as Di,j(i, j ∈ m, s). After the execution,
the result data, D′

j,l(j, l ∈ m, s), needs to be transported to the target place. As
we process the same code in mobile device and VM, it will generate the same
result. The size of data file should be the same.

Based on above discussion, we calculate the energy consumption for each
suitable shown in Fig. 3. The data stored in mobile device and in cloud are
the same. So we have Dm = Ds. The cost of transport data from mobile to
cloud and from cloud to mobile are the same, Dms = Dsm. The data transport
within the mobile device cost nothing, Dmm = 0. The data does transport from
storage datacenter to virtual machine (VM) also do not cost energy consumption

350 D. Yao et al.

Mobile Cloud Server

P

Non-offloading

P P P P

Offloading

D`
D` D`

D`

Fig. 4. Graph based cost map of data communication for offloading and non-offloading

in mobile device, Dss = 0. For the output data, which does not need to be
transported to another place, it will not consume the energy on mobile device.
So we have D′

mm = D′
ss. As the result computed by the VM is the same data

have computed in the mobile, the data exchange between mobile and server is
equal: D′

ms = D′
ms.

Table 1. The energy saved S for different storage place

�������Output
Input

Local(j = m) Cloud(j = s)

Local(i = m) Ptr ∗ (1 + k)Dms
B
− Pc ∗ I Ptr ∗ (1− k)Dms

B
− Pc ∗ I

Cloud(i = s) Ptr ∗ (k − 1)Dms
B
− Pc ∗ I Ptr ∗ (−1− k)Dms

B
− Pc ∗ I

Following the energy saving computation model in Eq. (4), we calculate the
amount of energy saving for the 8 situations described in Fig. 3. Table 1 presents
the different energy saving results according to the place data stored. If the
energy is saved, the formula should be negative. Table 1 shows that:

1. Input data comes from local and output data to be stored in local.
Offloading could take a great advantage in saving energy when computation
work consumes more power than data communication. Otherwise, we should
not choose offloading.

2. Input data comes from local and output data to be stored in cloud.
Offloading can save lots of energy when the task compression ratio is above
1. It means that when the output data is larger than the input one, we should
choose offloading. When the compression ratio is below 1, it also depends on
the amount of data to be transmitted, network bandwidth and the amount
of processing time.

3. Input data comes from cloud and output data to be stored in local.
It is a little different with above situation. The offloading can save energy

Energy Efficient Task Scheduling in Mobile Cloud Computing 351

Procedure Task_Scheduler

Input: (1) costgraph (2) task_profile

Output: offloading decision for each task

Procedure:

I, D, k, input_path, output_path

Procedure Scheduler(task_profile)

...

If the task can be processed

if input_path is local

if output_path is local

use costgraph evaluate energy saved value S

if S>0

return False

else

return True

else

use costgraph evaluate energy saved value S

if S>0

return False

else

return True

else

...

Fig. 5. Cost graph based task scheduling algorithm

when the compression ratio is below 1. When the task compression ratio is
above 1, it is more valuable to do offloading when computation part uses
more energy than data transmission.

4. Input data comes from cloud and output data to be stored in cloud.
In this situation, it should always choose to do offloading that can save large
amount of energy.

4.4 Task Scheduling Strategy

In this section, we will present a cost graph based task scheduling algorithm
for saving energy on mobile devices. The scheduling algorithm, as shown in
Fig. 5, will decide whether the task should be processed locally or offloading. If
the answer is true then the task is placed in the scheduling queue. Otherwise,
the task will be executed locally. Part of the algorithm is presented as produce
Task Scheduler in Fig. 5, which uses cost-graph and task profile as input data.
The scheduling algorithm will be executed before each task. After check if current
task is suitable for offloading, the scheduler will decide where to process the
task.

352 D. Yao et al.

5 Experiments Results

Our experiments are based on an Android-based platform device. In this section
we describe the experiment setup, and performance evaluation results of all
execution models as shown in Fig. 3. As processing time is also an important
consideration for the use, there is a tradeoff between performance and energy
consumption. In our paper, we only focus on energy issues on smartphone.

5.1 Experiments Setup

In the experiments, we assume that the WiFi network is always connected. In
addition, we use dropbox [15] as our cloud data storage service. The software
clones is running on virtual machines supplied by Amazon EC2 [16] platform.
We use ”Google Nexus One” as our test-device. Before each test program, the
device will be continued charging for 2 hours after it is fully charged. The Android
OS is restored to the factory settings to start a new test in order to make sure
that there is only one test program installed. We use the percentage changes of
the battery to show how much energy is used by the program.

5.2 Performance Evaluation

We implement our algorithm in Java and C using Android NDK. The task
scheduler and data transmission parts use Java and the computation part uses
C. To obtain a preliminary evaluation of the effectiveness of our method, we
manually apply our algorithm to a suite of Mediabench [5] programs.

Test Programs. We select 9 execution models: h264edc, h264dec, cjpeg, djpeg,
rawcaudio, rawdaudio, ghostscript, mpeg2encode, and mpeg2decod. The pro-
cessing time for the application is measured at mobile device. Our task scheduling
algorithm will determine determine to do offloading according to current data
file size, data path, compression ratio and bandwidth.

In our performance studies, we will compare our method with offloading and
non-offloading as described in Eq. (1) and Eq. (2).

Test Measurement. By applying our algorithm to the 9 programs, we find that
6 of those 9 programs can get better energy saving by offloading. We evaluate
our programs for four different groups which has different path of input data
and output data. Then, we arrange each of our programs to do offloading and
execute locally. After that, we use our proposed task scheduling algorithm to
determine whether to do offloading. For each processing step, we record how
much energy used before task finished. In Android mobile, we use how much
percentage changes after the phone is fully charged. There is no other application
running on the mobile device except system applications.

We use dropbox [15] as our cloud storage service, which has 100kbps network
bandwidth. From Fig. 6(a), the offloading uses much more energy when the data
is stored on mobile devices. The x-axis lists the test programs. The y-axis tells us

Energy Efficient Task Scheduling in Mobile Cloud Computing 353

0%

2%

4%

6%

8%

10%

12%

14%

Pe
rc

en
ta

ge
 o

f e
ne

rg
y

co
ns

um
pt

io
n

Benchmark programs

Offloading Non-offloading EETS

(a) Input=mobile and output=mobile

0%

5%

10%

15%

20%

25%

30%

Pe
rc

en
ta

ge
 o

f e
ne

rg
y

co
ns

um
pt

io
n

Benchmark programs

Offloading Non-offloading EETS

(b) Input=cloud and output=mobile

0%

5%

10%

15%

20%

25%

Pe
rc

en
ta

ge
 o

f e
ne

rg
y

co
ns

um
pt

io
n

Benchmark programs

Offloading Non-offloading EETS

(c) Input=mobile and output=cloud

0%

5%

10%

15%

20%

25%

30%

35%

Pe
rc

en
ta

ge
 o

f e
ne

rg
y

co
ns

um
pt

io
n

Benchmark programs

Offloading Non-offloading EETS

(d) Input=cloud and output=cloud

Fig. 6. Energy consumption on benchmark

354 D. Yao et al.

how much percentage of energy used on test-phone to archive different programs.
From Fig. 6(b) and Fig. 6(c), the complex application will cost lots of energy
when they are running on mobile device. It is better to do offloading. When we
use the cloud data, we would use offloading to save our energy, which is shown
in Fig. 6(d). As we can see from those figures, the proposed method also uses
the minimum energy consumption to achieve the work.

For the case: “input=mobile&output=mobile”, the data does not need to be
transmitted to the server, so our proposed strategy (EETS) performs like non-
offloading case, as shown in Fig. 6(a). H264 and MPEG are complex video encod-
ing/decoding algorithms, they always use the most energy on smartphone. Those
algorithms need to encode/decode each frame in a video. So they will use more
energy than the jpeg algorithms. When those methods run on remote server,
the smartphone only spends energy on data communication. EETS chooses the
right strategy to schedule the data. Fig. 6(b), Fig. 6(c) and Fig. 6(d) are the
some situations.

Efficiency Analysis. Based on the experimental results, we can conclude how
efficient of our algorithm. First, we will try to find which one costs the minimum
energy consumption to execute the task. We use a minimum function to calcu-
late the smaller value between offloading and non-offloading: min(percentage
of offloading, percentage of nonoffloading). Then we compare the minimum
value with the proposed task scheduling method. The accuracy of our proposed
schemer is above 99% in average, which means our scheduling algorithm effi-
ciently choose the best solution to allocate the tasks.

6 Discussion and Future Work

The proposed task scheduler is limited in some respects by it initially setups.
It needs to collect the profile information of each task at the beginning. After
learned the compression ratio and processing time, the scheduler can deal with
new tasks. To solve this problem, we need to try some test programs to collect
execution information or learn from system record after the task executed once.

The framework presented in this paper does not consider the power consump-
tion on idle time waiting for task result and disk usage. While the task dose
not execute for a long time, we think the power consumption is as same as the
normal usage. The power consumption on disk usage is related to the type of
storage device. HDD device uses much more energy than flash storage device.
We plan to add this impact to our determine strategy in our future works.

7 Conclusion

In this paper, we present a novel energy aware dynamic task allocation strat-
egy over mobile cloud computing environment. This scheme introduces a cost
graph to determine offloading the work or not. The evaluation work shows that,
our strategy can efficiently choose to offload or not on mobile device with 99%
accuracy. The energy consumption on mobile device is controlled in minimum.

Energy Efficient Task Scheduling in Mobile Cloud Computing 355

Acknowledgements. The work is supported by NSFC (No.61003220).

References

1. Satyanarayanan, M., Bahl, P., Caceres, R., Davies, N.: The case for vm-based
cloudlets in mobile computing. IEEE Pervasive Computing 8(4), 14–23 (2009)

2. Dinh, H.T., Lee, C., Niyato, D., Wang, P.: A survey of mobile cloud computing:
architecture, applications, and approaches. Wireless Communications and Mobile
Computing (2011)

3. Baliga, J., Ayre, R., Hinton, K.: Green cloud computing: Balancing energy in
processing, storage, and transport. Proceedings of the IEEE 99(1), 149–167 (2011)

4. Barbera, M.V., Kosta, S., Mei, A., Stefa, J.: To offload or not to offload? the
bandwidth and energy costs of mobile cloud computing. In: Proc. of the IEEE
INFOCOM (2013)

5. Lee, C., Potkonjak, M., Mangione-Smith, W.H.: Mediabench: a tool for evaluating
and synthesizing multimedia and communicatons systems. In: Proc. of the 30th
Annual ACM/IEEE International Symposium on Microarchitecture, pp. 330–335.
IEEE Computer Society (1997)

6. Yang, K., Ou, S., Chen, H.H.: On effective offloading services for resource-
constrained mobile devices running heavier mobile internet applications. IEEE
Communications Magazine 46(1), 56–63 (2008)

7. Kumar, K., Lu, Y.H.: Cloud computing for mobile users: Can offloading computa-
tion save energy? Computer 43(4), 51–56 (2010)

8. Portokalidis, G., Homburg, P., Anagnostakis, K., Bos, H.: Paranoid android: ver-
satile protection for smartphones. In: Proc. of the 26th Annual Computer Security
Applications Conference, pp. 347–356. ACM (2010)

9. Chen, E.Y., Itoh, M.: Virtual smartphone over ip. In: Proc. of the IEEE Inter-
national Symposium on a World of Wireless Mobile and Multimedia Networks
(WoWMoM), pp. 1–6. IEEE (2010)

10. Wen, Y., Zhang, W., Luo, H.: Energy-optimal mobile application execution: Tam-
ing resource-poor mobile devices with cloud clones. In: Proc. of the 2012 IEEE
INFOCOM, pp. 2716–2720. IEEE (2012)

11. Rudenko, A., Reiher, P., Popek, G.J., Kuenning, G.H.: Saving portable computer
battery power through remote process execution. ACM SIGMOBILE Mobile Com-
puting and Communications Review 2(1), 19–26 (1998)

12. Tang, M., Cao, J.: A dynamic mechanism for handling mobile computing environ-
mental changes. In: Proc. of the 1st International Conference on Scalable Informa-
tion Systems, p. 7. ACM (2006)

13. Chun, B.G., Maniatis, P.: Dynamically partitioning applications between weak de-
vices and clouds. In: Proc. of the 1st ACM Workshop on Mobile Cloud Computing
& Services: Social Networks and Beyond, p. 7. ACM (2010)

14. Cuervo, E., Balasubramanian, A., Cho, D.K., Wolman, A., Saroiu, S., Chandra,
R., Bahl, P.: Maui: making smartphones last longer with code offload. In: Proc. of
the 8th International Conference on Mobile Systems, Applications, and Services,
pp. 49–62. ACM (2010)

15. Dropbox, http://dropbox.com
16. AmazonEC2, http://aws.amazon.com/ec2

http://dropbox.com
http://aws.amazon.com/ec2

BotInfer: A Bot Inference Approach by

Correlating Host and Network Information�

Yukun He, Qiang Li��, Yuede Ji, and Dong Guo

College of Computer Science and Technology, Jilin University,
Changchun 130012, China

{heyk12,jiyd12}@mails.jlu.edu.cn, {li qiang,guodong}@jlu.edu.cn

Abstract. Botnet is widely used in cyber-attacks and becomes a seri-
ous threat to network security. Existing approaches can detect botnet
effectively in certain environments, however problems still exist in using
host or network detection approaches respectively, such as robustness in
detection tools, difficulties in global deployment and low precision rate.
To solve the above problems, a novel detection approach called BotIn-
fer is proposed. In BotInfer approach, host-based bot detection tools are
deployed on some of the hosts; network flow of all the hosts is captured
and analyzed; host detection result and flow information are correlated
by the bot inference engine. Through the experiments, BotInfer can ef-
fectively detect the hosts in the network. When the deployment rate of
bot detection tools in the network reaches 80%, the precision rate of the
hosts with detection tools is about 99%, and the precision rate of the
hosts without detection tools is about 86%.

Keywords: bot detection, cluster, flow analysis, inference algorithm.

1 Introduction

In order to achieve malicious purposes, attackers would inject particular mali-
cious codes in a large number of hosts by various means and remotely control
these hosts through command and control channel (C&C). The network com-
posed of these controlled hosts is known as botnet. The host controlling these
compromised hosts is known as botmaster. The malicious code is known as bot.
Botnet has become a serious threat to the Internet, which can cause various
cybercrimes, such as spreading attack codes and commands, spamming, infor-
mation theft, phishing and DDoS attacks.

In recent years, a large number of researches have been conducted to detect
and prevent botnet. According to the detection location, existing bot and botnet
detection approaches can be divided into two categories: (1) Host-based bot
detection approaches utilize the abnormal behaviors on hosts to detect bots,

� Supported by the National Natural Science Foundation of China under Grant
No.61170265; Fundamental Research Fund of Jilin University under Grant No.
201003035, No. 201103253.

�� Corresponding author.

C.-H. Hsu et al. (Eds.): NPC 2013, LNCS 8147, pp. 356–367, 2013.
c© IFIP International Federation for Information Processing 2013

BotInfer: A Bot Inference Approach by Correlating Host and Network 357

including abnormal behaviors in registry modification, file system information,
system calls, etc. For example, Stinson et al. proposed BotSwat approach [1],
Lei Liu et al. proposed BotTracer approach [2] and Young Park et al. proposed
BotTee approach [3]. (2) Network-based botnet detection approaches utilize the
flow information captured in the network. Such as S.Nagaraja et al. proposed
BotGrep[4] which utilizes structure graphs. B. Coskun et al. proposed a approach
utilizing friends of an enemy [5].

However, there are still some defects either in host-based detection or network-
based detection approaches. Host-based detection approaches need to deploy
detection tools on each host, which will bring direct impact on the performance
of hosts. And once the host detection tool is damaged, the detection result of the
host would be inaccurate. While the network-based detection approaches need to
collect the users’ network flow information, which may invade the users’ privacy.
Due to the limitations of the approaches purely based on hosts or network, Zeng
et al. [6] proposed a botnet detection approach, which is the first to combine
host and network information. The approach of Zeng can effectively detect the
botnets which are based on IRC, HTTP and P2P. However global deployment
is still needed, because the approach can be effective only when all hosts in the
network have been installed host detection tools.

During the procedures of bot detection, detection tools may have the problem
of robustness in host detection, the need of global deployment and low detection
rate. Robustness which means when bot detection tools were damaged on hosts,
detection tools would get the error detection result. Global deployment means
detection tools should be deployed on all the hosts in the local network, or there
wouldn not be any detection results about the hosts. While in this paper, we
propose a novel bot inference approach (BotInfer) which can solve the above
problem to a certain extent. Our works make the following three contributions:

1. We propose BotInfer approach. BotInfer has the higher robustness com-
pared with purely host-based bot detection approach. If bot detection tools on
some hosts have been damaged by malwares, BotInfer can still obtain the de-
tection results of other hosts and the flow similarity information between hosts
in the network to generate the final detection results. BotInfer doesn not need
global deployment. Not all hosts need to be deployed with bot detection tools
in the entire local network. When the deployment rate reaches a certain point,
reliable detection results can be generated through the existing hosts detection
information and network flow analysis.

2. We extract 13 features from network flow to calculate the host-flow sim-
ilarity. Through correlating host-flow similarity and host detection result, bot
inference algorithm can infer whether all the hosts in the local network infected
bot or not.

3. We implement a detection prototype based on BotInfer approach. And our
approach was evaluated by using mixed network flow which is from captured
lab flow in multiple time windows and the CERNET network during a day. Our
experimental results show that the proposed approach can detect different types
of bots with high robustness and property deployment rate.

358 Y. He et al.

The remainder of this paper is outlined as follows: Section 2 is related works.
Section 3 introduces the design of BotInfer, including the problem statement
and assumptions, and the overall architecture of BotInfer. Section 4 implements
a model based on BotInfer, including host detection, network flow analysis and
bot inference engine. Section 5 experimentally analyzes this approach in terms
of accuracy and the rate of deployment. Section 6 is discussion about limitation
of BotInfer and the conclusion.

2 Related Works

Currently, primary host-based bot detection approaches include: (1) BotSwat
[2], proposed by Stinson et al., which can distinguish between bot behaviors
and benign programs. (2) BotTracer [7], proposed by Lei Liu et al., which is
to judge bot infection from the three indispensable stages in the process of bot
attacking. (3) BotTee [1], proposed by Younghee Park et al., which extracts the
suspicious system call sequences to match with the bot command patterns. (4)
JACKSTRAWS [8], proposed by Jacob et al., uses machine learning to identify
C&C connection accurately. (5) Konrad Rieck et al. [9] used the machine learning
algorithm to automatically analyze malware behavior. (6) Fatemeh Karbalaie et
al. [10] used data miner approache to detect host malwares.

Network detection approaches include flow graph analysis, flow features clus-
tering, machine learning, the analysis of activities of network flow. (1) BotFinder
proposed by Florian Tegeler et al. [11], used the machine learning to divide the
captured network flow into two types: benign and malicious and the final model
generated will decide whether the flow generated by hosts is malicious or not.
(2) Leyla Bilge et al. proposed DISCLOSURE approach [12], using large-scale
network flow data, extracting flow features to detect C&C server in botnet. (3)
Francois et al. proposed Bottrack approach [13], analyzing bots’ communication
patterns via NetFlow data analysis and PageRank algorithm.

In host-based approaches, any damage on bot detection tools will completely
fail the detection, so detection tools must be deployed on all hosts. Besides, bot
detection tools need to monitor system information of the user hosts, and it will
decrease the performance of user hosts. In network detection approaches, they
rely only on network flow and do not consider the hosts detection information,
so the detection accuracy is low. In our BotInfer approach, hosts detection in-
formation and network flow analysis information are effectively correlated, the
above problems are solved to a certain extend.

3 Bot Inference Approach

3.1 Problem Statement and Assumptions

Botmaster spreads commands to bots via C&C channel. After receiving com-
mands, the bots on hosts will perform malicious behaviors, in such areas as, the
allocation of file resources, generation of registry, network flow on hosts and so

BotInfer: A Bot Inference Approach by Correlating Host and Network 359

on. As a result, we can monitor the information on hosts to analyze whether
the host has been infected. For all the flows of bots are generated automatically
in the background, rather than through artificial operations, so there are great
similarities in communication flows between botmaster and bots. For example, in
the centralized architecture, the bots receive commands almost simultaneously
from the centralized server, and their communication flows are very similar with
each other in the aspects of the number of packets, the size of packets. While, in
the distributed architecture, the commands from botmaster need to be spread
among hosts, so the flows between hosts infected with the same bot also have
great similarity. Using the results detected on hosts and the information of flow
similarity obtained by flow analysis, we can finally infer whether the hosts are
bots or not through inference algorithm. BotInfer is a bot detection approach
used in a local network based on the above assumptions. BotInfer mainly targets
at a large local network to effectively detect bots, which use IRC, HTTP and
P2P as their C&C channels, when the deployment rate of host detection tools
reaches a certain point. The detection accuracy for unknown bot mainly depends
on the accuracy of the host detection tools.

3.2 Architecture of BotInfer

In Figure 1, the approach of BotInfer is mainly divided into three sections. S1
is the host detection, which deploys detection tools on some of the hosts in
the network. When detection tools find out bot activities on hosts, they will
immediately generate detection results and suspicious degrees, which will be
sent to the bot inference engine. S2 is the network analysis, which obtains the
communication flows of all hosts in the network and filters safe IP address got
from the known safe URLs (such as, www.microsoft.com, www.google.com).
We believe that the communication activities between hosts and these URLs
are benign behaviors. Flow features are extracted from filtered flows, such as
flow duration, packet size and packet quantity. Then according to the features
of host flows, the hosts with similar flow in a certain period are put into the
same cluster and the similarity degree is calculated. S3 is the most important
part of the BotInfer approach , which is used to correlate the detection results
generated in S1 and the data sets got by S2 to obtain the final results.

4 Implementation

A prototype is implemented based on BotInfer approach. Existing bot detection
tools are used to get host detection result. Network flow is filtered and clus-
tered. Algorithms are implemented in network flow similarity calculation and
bot inference engine.

4.1 Host Detection

Host-based detection approaches are in large numbers, which mainly analyze
the abnormal behaviors of hosts [14] [15] [16] [17]. Instead of doing in-depth

www.microsoft.com
www.google.com

360 Y. He et al.

Fig. 1. BotInfer architecture

researches on host-based detection approaches, we pay more attention to anal-
yse the network flow and the inference engine. In the experiments, traditional
antivirus tools are used to get the detection results on hosts.

4.2 Network Analysis

In order to obtain the similarity degree of the hosts’ communication flows, the
communication flows of hosts in entire network need to be captured in a time
window, and then do the work of flow filtering, extracting flow features, clustering
analysis and calculating flow similarity degree.

Flow Capture and Filter. When extracting flow features, we only care about
the overall statistics of hosts’ communication flows and do not research the
specific content of communication packets, so this will not involve users’ privacy
data. For the acquired data of flows, it can be filtered by the white list of the
IP addresses. It is believed that it is secure for user hosts to communicate with
the hosts in white list, such as www.facebook.com and www.microsoft.com.
The flows generated from the IP on white list can be filtered, then the data
quantity is decreased greatly when analyzing network flow, which is sure to cut
the calculation overhead to a great extend. We won not filter the flows of internal
hosts in a local network, because in botnet, which uses P2P as C&C channel,
the internal hosts also communicate with each other and their flows are similar.

Flow Feature Extraction and Cluster. For the data of network flow after
filtering process, the feature information of flows can be extracted according to
the IP addresses in flows. Due to the fact that the bots on hosts usually generate
less flows, if we simply collect the flows between a host and other hosts, the
flows generated by bots and botmaster will be covered by other processes, and
the features of flows generated by bots will not be obvious. As a result, it is not

www.facebook.com
www.microsoft.com

BotInfer: A Bot Inference Approach by Correlating Host and Network 361

Table 1. Host flow feature

IP IP IP of two hosts (no distinction between source and target host)
totalFlows total flows between two hosts
totalPackets total packets of the flows between two hosts
totalbytes total bytes of the flows between two hosts
totalDuration total durations of the flows between the two hosts
packetsVariance the variance of packets number in each flow
bytesVariance the variance of bytes number in each flow
durationVariance the variance of durations number in each flow
packetsPerFlow the number of packets per flow
bytesPerFlow the number of bytes per flow
durationPerFlow the duration per flow
numberOfPort total number of ports used in communication
numberOfTcp total number of TCP flows in communication
numberOfUdp total number of UDP flows in communication

conducive to obtaining flow similarity of different hosts in a same time window.
Therefore, we do not consider the direction of flows, that is, do not distinguish
the IP between the source hosts and the target hosts of flows. We analyze all
communication information of two hosts within a time window to generate a
vector composed of 13 features. Table 1 shows all the information contained in
a feature vector. According to the feature, the similar flows can be put into the
same cluster by using the approach of hierarchical clustering, Davies-Bouldin
(DB) [18], which chooses an appropriate height to split the dendrogram.

Flow Similarity Calculation. This part mainly calculate the similarity of host
communication flows in the same time window and the same cluster through the
use of similarity information of flows between different hosts. P and F are used
to record the flows information between two hosts within a time window. P is
composed of the IP of two hosts and F is the vector composed of the 13 features
of flows between two hosts. For instance, the communication flows between host
A and B can be expressed as (PAB , FAB). Their similarity is calculated through
the distance of features, for features j and k, their similarity is:

Sjk =

∣∣∣∣∣∣
∑13

i=1(xij − xj)(xik − xk)√∑13
i=1(xij − xj)2

√∑13
i=1(xik − xk)2

∣∣∣∣∣∣ (1)

xij denotes the ith feature of j, xik denotes the ith feature of k, xj =
1
13

∑13
i=1 xij ,

xk = 1
13

∑13
i=1 xik.

For the two flow-features in a cluster (PAB , FAB) and (PCD, FCD), the sim-
ilarity SABCD between two flow features can be obtained by calculating FAB

and FCD. When analyzing the IP of hosts, the similar flows can be divided into
two types: (a) and (b) in Figure 2. The similar flows in (a) are generated by
four different hosts and this type is regular in distributed botnet using P2P as

362 Y. He et al.

Fig. 2. Flow similarity

HA
SAC

SBD

SBE

SAD

HB

Fig. 3. Inference algorithm

C&C protocol. HS is used to represent the host similarity, so we can get the
HS between hosts A and C, A and D, B and C, and B and D, for example, in
Figure 3 HSAC = HSAD = HSBC = HSBD = SABCD. The similar flows in (b)
are generated by the same host. As shown in (b), A and C is the same host and
this host may be a botmaster. This situation is regular in centralized botnets
using IRC or HTTP as C&C protocol. So, we can get the host similarity of hosts
B and D: HSBD = SABCD. FS is used to represent the final similarity between
hosts, that is FSAB = max(HSAB).

4.3 Bot Inference Engine

According to the results of host detection and flow similarity analysis, bot infer-
ence engine can calculate the suspicion degree of the hosts without reporting
detection results. As shown in the Figure 3, there are five hosts in a clus-
ter, A,B,C,D and E. The detection results of A and B are HA and HB,
hosts C,D and E report nothing. SAC represents the calculation results of
similarity between A and C. Host D has no detection result, due to the fact
that it has similar communication flows with hosts A and B, what’s more,
bots have been found out on hosts A and B, then the final detection result
of host D is: FD = (HASAD + HBSBD)/(SAD + SBD). So a reliable detec-
tion result for the hosts without detection tools or with invalid detection tools
is infered. If the host D has reported its detection result HD and the result
shows that host D has been infected with bots, however the degree of suspi-
cion is not very high, we could not accurately judge whether host D has re-
ally been infected with bots, and there may be the possibility of activities of
benign programs leading to the inaccurate report by detection tools. We can
calculate the final detection result of host D more accurately through bot infer-
ence engine to combine flows similarity information of other hosts in network,
FD = (HD + (HASAD + HBSBD)/(SAD + SBD))/2. Meanwhile, if there are

BotInfer: A Bot Inference Approach by Correlating Host and Network 363

a large number of hosts in the network, which have similar flows with host D
and send their detection reports, the detection results could be more accurate
through bot inference engine.

For more general situations, X represents any host in network and it is in
cluster N(X). The similarities between all hosts in N(X) are in a certain range.
HX represents the detection results generated by host X , and SKX means the
similarity between host K and host X . Finally, the detection result of host X
through inference engine is

FX =

⎧⎨
⎩

∑
K∈N(X)HKSKX/

∑
K∈N(X) SKX , HX = 0

(HX +
∑

k∈N(X) HKSKX/
∑

K∈N(X) SKX)/2 , HX 	= 0
(2)

The range of HX is between 0 and 1, and the larger the value, the greater the
suspicion degree of whether the host has been infected with bots. The range of
host flows similarity SKX is also between 0 and 1 and the larger the value, the
greater the flows similarity between two hosts. Analyzing the above inference
algorithm, it is easy to obtain the final detection result FX , which also ranges
from 0 to 1, and the larger the value, the greater the probability to be infected
with bots.

5 Experiment

According to the algorithm proposed, we design and implement the prototype
based on BotInfer and analyze its accuracy and deployment rate through exper-
iments. For host detection, we use the average detection result of those acquired
through several existing tools as the suspicion degree of whether the host is in-
fected by bots. In network analysis, the fprobe1 [19] and flow-tools [20] are used
to capture the flows of the whole network. According to the IP information, the
captured host flows are filtered by safe-browling [21] proposed by google and top
1,000,000 URLs [22] proposed by alexa. Then the data is processed and ana-
lyzed by hclust [23] package and Python language. The final detection result is
obtained through inference engine.

5.1 Environment Setup

In the experiment, a controllable local network is built. User hosts are deployed in
VMware virtual machines with Windows XP Professional. BotInfer is deployed
in a Windows XP Professional host which has been equipped with quad core
2.40GHz CPU and 2G RAM. The network information collector and analyzer
are deployed in a Ubuntu 10.10 host equipped with 2.40GHz CPU and 2G RAM,
and this host is used as the gateway of the entire lab network. The topology of
experiment environment is shown in Figure 4.

1 NetFlow probes: fprobe and fprobe-ulog, http://fprobe.sourceforge.net/

http://fprobe.sourceforge.net/

364 Y. He et al.

Fig. 4. Experiment architecture

To evaluate the effectiveness of the algorithm in detecting bot host, the bot
programs are installed in only some of user hosts and the botmaster is installed
in a host in a public network. Because of the uncontrollability of P2P botnet,
we only use HTTP and IRC bots, including SdBot, AgoBot, RBot and Nugache.
In order to better simulate the real environment of user hosts, we install and
run softwares like mIRC, pcAnywhere, Firefox, eMule and uTorrent, etc. in user
hosts and let them use the network as usual. For the network flow analysis, we
capture the network flow of a certain backbone at the CERNET network during
a day as the background data. There are 755,255 flow records in a time window of
10 minutes. After filtration, we get the information of 63,589 hosts. We integrate
the filtered information of features in the public network with the flow features
captured in local network. This will better evaluate the effectiveness of cluster
analysis when distinguishing bot flows.

5.2 Experimental Result and Analysis

The Accuracy. We use 40 VMware machines as user hosts which have been
installed with Windows XP Professional. The hosts are deployed in the same
network which is 192.168.1.1-192.168.1.40/24. Bot instances in the hosts, host
detection tools and the running of benign softwares are shown in Table 2. We
guarantee that the deployment rate of host detection tools deployed on bot
infected hosts comes to 80%, that the benign softwares on hosts can access
the network and the botmaster can communicate with bots in C&C channel

Table 2. Host configurations

Host IP Bot Host Detection Tools Common Software

192.168.1.1-192.168.1.24 yes yes yes
192.168.1.25-192.168.1.30 yes no yes
192.168.1.31-192.168.1.40 no no yes

BotInfer: A Bot Inference Approach by Correlating Host and Network 365

Table 3. The accuracy of BotInfer

Bot name Average FP Average FN Average TP Average TN Duration

SdBot 0 0.02 0.98 1 24h
AgoBot 0 0.04 0.96 1 24h
RBot 0 0.04 0.96 1 24h
Nugache 0 0.05 0.95 1 24h

as usual. The commands we use include dns, open, download, redirect, etc. On
the network flow collector and analyzer, feature filtering and feature extraction
processes are both in a time window of 10 minutes. Then mixed flow-features
which are extracted from lab network flows and background are used to do
cluster analysis and similarity calculation. Finally we get the detection result of
the entire network through BotInfer. Table 3 shows the average detection results
of the 4 bot instances being detected respectively in individual time windows
during 24 hours.

Deployment Rate. BotInfer has improved bot detection accuracy to a certain
extent. Detection tools need not to be deployed on all the hosts in the entire
network. It can get all hosts detection results through bot inference engine,
avoid the failure caused by bot detection tools’ failure on some of the hosts in
the network, so as to improve the robustness. In normal user hosts, we regularly
adjust the number of hosts infected with bots, the number of benign hosts and the
number of hosts being installed with detection tools, and we analyze multiple bot
instances in IRC and HTTP botnets. Figure 5 shows the influence of deployment
rate of host detection tools on the overall test results. When the deployment
rate is over 50%, the accuracy of the test results of the entire network will be

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

Deployment rate(%)

P
re

ci
si

on
 r

at
e(

%
)

Deployment rate and precision rate

Final precision rate
Precision rate for hosts
deployed detection tool

Precision rate for hosts
not deployed detection tool

Fig. 5. Deployment rate and precision rate

366 Y. He et al.

significantly improved; when deployment rate is over 80%, the detection accuracy
rate of hosts without detection tools increases to more than 86%.

6 Conclusion

Although there are a lot of ways to analyze network flows, there are still many
challenges. When it comes to flow analysis, the following questions have been
solved in this paper: how to select the flow-features to distinguish benign flows
from malicious flow efficiently; how many clusters needed is reasonable when
partition flow-features; the storage of the final results. At the same time, we
also have figured out the differences between the final results generating from
the inference engine of hosts with detection tools and those of hosts without
detection tools.

Through analyzing the architecture of BotInfer, the results acquired by infer-
ence engine still depend on the results of host detection tools to a large extent.
Pure network analysis is unable to get the degree of suspicion for hosts in the
network directly. What’s more, the detection of unknown botnet also mainly de-
pends on the efficiency of host detection tools. In order to reduce the influence
of host detection results on correlation results, a possible way is to deploy more
than one detection tools in the networks to improve the efficiency of host detec-
tion, another way is to get the network detection result using machine learning
or other graph algorithm to analyse the captured network flow.

With botnets evolving, a large number of hosts are still suffering from bots.
In this paper, BotInfer is able to infer hosts infected with bot in the entire
network efficiently when the deployment rate of host detection tools reaches a
certain point in the local network. We have picked up 13 features of the collected
flows and calculate the flow similarity between hosts so as to distinguish the
flow of benign programs from that of bots in C&C communication. Finally,
through inference engine to combine the results of host detection and that of
network flow analysis, the detection report can be acquired for all hosts in the
network including the hosts with and without detection tools. In Botinfer, we
have conducted experiments in the lab, and analyzed them in multiple aspects.

References

1. Park, Y., Reeves, D.S.: Identification of bot commands by run-time execution mon-
itoring. In: 2009 Annual Computer Security Applications Conference, pp. 321–330
(2009)

2. Stinson, E., Mitchell, J.: Characterizing Bots Remote Control Behavior. In: 4th
DIMVA Conference (July 2007)

3. Liu, L., Chen, S., Yan, G., Zhang, Z.: BotTracer: Execution-Based Bot-Like Mal-
ware Detection. In: International Conference on Information Security (2008)

4. Coskun, B., Dietrich, S., Memon, N.: Friends of An Enemy: Identifying Local Mem-
bers of Peer-to-Peer Botnets Using Mutual Contacts. In: 2010 ACSAC Conference
(2010)

BotInfer: A Bot Inference Approach by Correlating Host and Network 367

5. Nagaraja, S., Mittal, P., Hong, C.-Y., Caesar, M., Borisov, N.: BotGrep: Finding
P2P bots with structured graph analysis. In: USENIX Security Conference (August
2010)

6. Zeng, Y., Hu, X., Shin, K.G.: Detection of Botnets Using Combined Host- and
Network-Level Information. In: DSN (2010)

7. Liu, L., Chen, S., Yan, G., Zhang, Z.: BotTracer: Execution-Based Bot-Like Mal-
ware Detection. In: Wu, T.-C., Lei, C.-L., Rijmen, V., Lee, D.-T. (eds.) ISC 2008.
LNCS, vol. 5222, pp. 97–113. Springer, Heidelberg (2008)

8. Jacob, G., Hund, R., Kruegel, C., Holz, T.: JACKSTRAWS: Picking Command and
Control Connections from Bot Traffic. In: USENIX Security Symposium (2011)

9. Rieck, K., Trinius, P., Willems, C.: Automatic analysis of malware behavior using
machine learning. Journal of Computer Security 19(4) (2011)

10. Karbalaie, F., Sami, A., Ahmadi, M.: Semantic Malware Detection by Deploying
Graph Mining. International Journal of Computer Science Issues 9(1(3)) (2012)

11. Tegeler, F., Fu, X., Vigna, G., Kruegel, C.: BotFinder: Finding Bots in Network
Traffic Without Deep Packet Inspection. In: CoNEXT (2012)

12. Bilge, L., Balzarotti, D., Robertson, W.: DISCLOSURE: Detecting Botnet Com-
mand and Control Servers Through Large-Scale NetFlow Analysis. ACM (2012)

13. François, J., Wang, S., State, R., Engel, T.: Bottrack: Tracking Botnets Using
Netflow and Pagerank. In: Domingo-Pascual, J., Manzoni, P., Palazzo, S., Pont,
A., Scoglio, C. (eds.) NETWORKING 2011, Part I. LNCS, vol. 6640, pp. 1–14.
Springer, Heidelberg (2011)

14. Gu, G.: Correlation-based Botnet Detection in Enterprise Networks. Doctor Thesis,
GIT (2008)

15. Park, Y.H., Zhang, Q., Douglas, S., Reeves, D.: AntiBot: Clustering Common Se-
mantic Patterns for Bot Detection. In: COMPSAC (2010)

16. Kwon, T., Su, Z.: Modeling High-Level Behavior Patterns for Precise Similarity
analysis of Software. Technical Reports, University of California, CSE-2010-16
(2010)

17. Wang, X., Jiang, X.: Artificial Malware Immunization based on Dynamically As-
signed Sense of Self. In: Burmester, M., Tsudik, G., Magliveras, S., Ilić, I. (eds.)
ISC 2010. LNCS, vol. 6531, pp. 166–180. Springer, Heidelberg (2011)

18. Halkidi, M., Batistakis, Y., Vazirgiannis, M.: On Clustering Validation Techniques.
JIIS 17(2-3), 107–145 (2001)

19. NetFlow probes: fprobe and fprobe-ulog, http://fprobe.sourceforge.net/
20. flow-tools, http://www.splintered.net/sw/flow-tools/docs/flow-tools.html
21. Safe Browsing API - Google Developers,

https://developers.google.com/safe-browsing/

22. Alexa Top 500 Global Sites, http://www.alexa.com/topsites
23. R: Hierarchical Clustering,

http://stat.ethz.ch/R-manual/R-patched/library/stats/html/hclust.html

http://fprobe.sourceforge.net/
http://www.splintered.net/sw/flow-tools/docs/flow-tools.html
https://developers.google.com/safe-browsing/
http://www.alexa.com/topsites
http://stat.ethz.ch/R-manual/R-patched/library/stats/html/hclust.html

On-Demand Proactive Defense against Memory

Vulnerabilities

Gang Chen, Hai Jin, Deqing Zou, and Weiqi Dai

Services Computing Technology and System Lab
Cluster and Grid Computing Lab

School of Computer Science and Technology
Huazhong University of Science and Technology, Wuhan, 430074, China

hjin@hust.edu.cn

Abstract. Memory vulnerabilities have severely affect system security
and availability. Although there are a number of solutions proposed to
defense against memory vulnerabilities, most of existing solutions protect
the entire life cycle of the application or survive attacks after detecting
attacks. This paper presents OPSafe, a system that make applications
safely survive memory vulnerabilities for a period of time from the start-
ing or in runtime with users’ demand. OPSafe can provide a hot-portable
Green Zone of any size with users’ demand, where all the subsequent al-
located memory objects including stack objects and heap objects are
reallocated and safely managed in a protected memory area. When users
open the green zone, OPSafe uses a comprehensive memory manage-
ment in the protected memory area to adaptively allocate buffers with
multiple times of their defined sizes and randomly place them. Combined
with objects free masking techniques, OPSafe can avoid overrunning each
other and dangling pointer errors as well as double free or invalid free
errors. Once closing the green zone, OPSafe clears away all objects in
the protected area and then frees the protected area. We have devel-
oped a Linux prototype and evaluated it using four applications which
contains a wide range of vulnerabilities. The experimental results show
that OPSafe can conveniently create and destruct a hot-portable green
zone where the vulnerable application can survive crashes and eliminate
erroneous execution.

Keywords: Memory Vulnerabilities; Proactive Defense.

1 Introduction

Memory bugs severely affect system security and availability. Programs written
in unsafe languages like C and C++ are particularly vulnerable because attackers
can exploit memory errors to control vulnerable programs. These vulnerabilities
can also cause programs failures. According to a survey conducted by IT industry
analyst firms [10], the average business loss of an hour of IT system downtime is
between US $84,000 and US $108,000. However, previous study showed that the
average time to diagnose bugs and generate patches is 28 days. During this long

C.-H. Hsu et al. (Eds.): NPC 2013, LNCS 8147, pp. 368–379, 2013.
c© IFIP International Federation for Information Processing 2013

On-Demand Proactive Defense against Memory Vulnerabilities 369

time vulnerable window, users have to either stop running the program which
cause the costly program downtime, or continuing running the program which
experience problems such as potential crashes and attacks. Neither of the two
behaviors is desirable. Therefore, it is significant to survive attacks to preserve
system availability.

There are a number of solutions have been proposed to protect programs
against memory vulnerabilities. One direction is for buffer overflow prevention,
including return address defense on the stack [4,6], array bounds checking, point-
ers protection via encrypting pointers, and address obfuscation via randomizing
memory layout [2]. These approaches can improve the safety while drop the
availability. The reason is that programs are always terminated when detecting
attacks. The other direction is for heap-related bug prevention [1,5], which well
balances the safety and availability of the applications. However, these techniques
cannot be applied for protecting against stack buffer overflow attacks.

Previous solutions on protecting against memory vulnerabilities had to pro-
tect the entire life cycle of the application, or survive attacks after detecting
attacks. However, users only need protection for a period of time at most times,
especially for desktop applications. For example, when users use a browser to
submit works, they need the browser not occurring any faults until the works
have been submitted successfully.

In this paper, we propose a on-demand proactive protection system called
OPSafe, which can make applications safely survive memory vulnerabilities for
a period of time from the starting or in runtime with users’ demand. When
users need to protect the program against memory vulnerabilities, OPSafe can
dynamically reallocate all the subsequent allocated memory objects in an pro-
tected memory area, called Green Zone, and it can also conveniently break away
from the program to terminate the protection when users will not protect the
program. In the green zone, OPSafe adopts the memory randomization technique
in the protected memory area, which adaptively allocates buffers with multiple
times of their defined sizes and places semantically infinite distance between
memory objects to provide an probabilistic memory safety. This technique can
greatly avoid overrunning between memory objects as well as dangling pointer
errors. By omitting invalid free, OPSafe can mask double-free and invalid free
errors. When closing green zone, OPSafe clears away the objects in the pro-
tected area and then frees the protected area. Our green zone is hot-portable
with a feature of conveniently creating and destructing for running applications.
As a result, OPSafe can provide a hot-portable green zone of any size for an
application with users’ demand.

To demonstrate the effectiveness of OPSafe, we have implemented a Linux
prototype and evaluated it using four applications that contain a wide range
of memory vulnerabilities including stack smashing, heap buffer overflow, double-
free and dangling pointer. Our experimental results show that OPSafe can
protect applications against memory vulnerabilities in the green zone with a
reasonable overhead.

370 G. Chen et al.

In summary, we make the following contributions.

– We propose OPSafe, an on-demand proactive protection system to make ap-
plications safely survive memory bugs for a period of time from the starting
or in runtime with users’ demand.

– We propose a concept, a hot-portable green zone of any size with users’
demand, which can conveniently protect the applications at any times. It
can protect the applications from the beginning or in runtime, and slice
away from applications at any times, both decided by users.

– We have implemented OPSafe on a Linux system, and evaluated its effec-
tiveness and performance using four applications that contain a wide ranges
of memory vulnerabilities.

The rest of the paper is organized as follows. The OPSafe overview, including
the motivation, the background, the architecture, the workflow and important
steps of OPSafe, are introduced in section 2. Section 3 describes the impor-
tant implementation techniques. The experimental and analytical results are
presented in section 4. Section 5 gives an overview of related work. Finally, we
summarize our contributions in section 6.

2 OPSafe Overview

In this section, we first introduce our motivation, and then give an overview of
the architecture and workflow of OPSafe.

2.1 Motivation

Memory vulnerabilities have severely affected system security and availability.
Full life-cycle protection for an application is common most of times. However,
sometimes we may need the application to be secure and reliable only for a
period of time, especially for desktop applications. For example, when we write
an important email via an email client, we need the client not crashed in the
writing. However, we may not mind crashing in normal use because restarting
the client is also convenient. Moreover, we even do not want to use the protection
tool to protect the client in normal use because they affect the use of the client
more or less from the performance or the function.

A great number of solutions on handling with memory vulnerabilities have
been proposed, but they are designed from the view on how to respond to at-
tacks without considering the users’ demand. They can be classified into three
categories: proactive full life-cycle protections which protect the application from
the starting to the termination, fail-stop approaches which terminate the appli-
cation for security when detecting a fault, and self-healing approaches which
learn from the fault and automatically temporarily fix the bugs. All of these
solutions should always monitor the application and not conveniently slice away
from the application.

On-Demand Proactive Defense against Memory Vulnerabilities 371

Take the email client as an example again. A user wants a green zone and
also can conveniently control the size of the green zone for the email client.
The green zone can only be opened with the user demand. When writing the
important email, the user can open the green zone. In this green zone, the user
does not mind using more resource to make sure the security and availability of
the application. When the resource occupied by the protection tool is needed to
do other things, the user can conveniently close the green zone. Therefore, we
need an on-demand proactive defense mechanism which can safely and effectively
survive memory vulnerabilities in the green zone and have no effect outside of
it for an application.

The memory management of OPSafe is based on our previous work SafeStack
[11] and Memshepherd [12]. SafeStack proposes the memory access virtualization
mechanism to reallocate stack objects into a protected memory area. Memshep-
herd integrates the memory access virtualization mechanism into DieHard’s de-
sign on the probabilistic safe heap memory allocator to reallocate heap objects
into a safe heap space. In this heap space, memory objects are randomly placed
in large chunks called miniheaps. However, Memshepherd should manage all the
memory objects from the starting of the application, which can incur a high
overhead and make the performance of the application degrade.

2.2 OPSafe Architecture

The architecture of OPSafe is illustrated in Figure 1a. OPSafe consists of several
components, including a Stack Objects Information Extractor used to extract
the information of stack buffers from the binaries, a Control Unit used to respond
users’ demand to generate a green zone (i.e., a protection window to protect and
to end protection for the application), a Memory Allocator Extension used to
reallocate all memory objects including stack objects and heap objects into the
protected memory area, and a Memory Free Extension used to free the protected
memory area.

Based on a dynamic instrumentation infrastructure, OPSafe can generate a
hot-portable green zone for the application, including allocating and freeing
memory objects. To reallocate the stack objects into the protected memory ar-
eas, OPSafe should get the location and size information of the original stack
objects, which is gained by the static analysis from the Stack Objects Informa-
tion Extractor.

2.3 Workflow of OPSafe

The workflow of OPSafe is illustrated in Figure 1b. Users can arbitrarily open or
close the green zone on demand. The stack buffer information can be extracted
from binaries before opening the green zone.

When users request to open the green zone, OPSafe creates a protected mem-
ory area and uses the Memory Allocator Extension to dynamically reallocate
all the memory objects into the protected memory area with the dynamic in-
strumentation infrastructure. The memory allocation contains two parts. One is

372 G. Chen et al.

(a) Architecture (b) Procedure

Fig. 1. OPSafe Design

stack access redirection which is the basis of memory access virtualization. It is
used to reallocate the stack objects into the protected memory area and redi-
rect the memory access from the original address to the corresponding protected
memory address. In this redirection, OPSafe should locate the original address
of stack objects which can be gained from the buffer information. The other is
heap reallocation which is used to intercept the heap allocation functions and
replace them with our allocation functions to make all the heap objects be al-
located in the protected memory area. In the protected memory area, OPSafe
maintains stack objects of a function until the function exits and marks the the
memory area of an heap object can be used when the application frees it.

When users request to close the green zone, OPSafe uses the Memory Free
Extension to restore the memory management of the application and gradu-
ally frees all the memory objects in the protected memory area. OPSafe firstly
removes all the reallocation instruments for stack objects and heap objects real-
location. In addition, OPSafe checks all miniheaps to free the unused miniheaps.
If there are miniheaps in use, OPSafe then continues to monitor them. Once
all the rest of miniheaps have been freed, OPSafe destructs the green zone by
removing all the free operation instruments and gracefully slicing away from the
application. After that, the green zone is closed.

3 OPSafe Implementation

In our implementation, our protected memory area is a heap space which is
managed in the same way as Memshepherd. We should note that our protected
memory area is not tied with Memshepherd’s memory management, but also
can be combined with other safe memory management mechanisms. In this sec-
tion, we discuss the stack buffer information extraction, the green zone creation,
maintenance and destruction.

On-Demand Proactive Defense against Memory Vulnerabilities 373

3.1 Stack Buffer Information Extraction

The stack buffer information consists of the function level information and the
variable level information. The function level information contains the function
name, the starting code address and the number of stack buffer variables. The
variable level information contains the variable name, size, offsets from the frame
pointers for each local variables and parameters for buffers. As Memshepherd
extracts stack buffer information according to the memory objects access pat-
tern, the information is not accurate. However, if the program is compiled with
debugging option (-g in GCC), the compiler adds debugging information about
all variables in the program binaries. We extend Memshepherd’s buffer informa-
tion extractor with debugging information for the applications compiled with
debugging option.

OPSafe uses TIED [13] with an extension to extract debugging information for
stack buffers. TIED cannot extract the stack buffer information from function
main as the offset is relative to the stack pointer. OPSafe organizes all the
buffer related information according to TIED, but makes some changes to the
data structure of the buffer related information for future effective diagnoses,
and also OPSafe does not need to rewrite the program binaries with the buffer
related information as TIED does.

3.2 Green Zone Creation

When users request to open the green zone, OPSafe uses the dynamic instru-
mentation tool to intercept the memory allocation operations, including stack
objects allocation and heap objects allocation. In addition, OPSafe creates
the protected memory area which is allocated adaptively according to usage
requirements.

For stack objects allocation, OPSafe only redirects the stack buffers in the
subsequent called functions into the protected memory area. To redirect these
stack buffers access, OPSafe should firstly locate the original addresses of stack
buffers according to the stack buffer information, and then map the original
addresses to the new corresponding addresses in the protected area. This is done
when the register ESP becomes smaller. As the stack buffers have not been
initiated at that time, OPSafe can benefit from avoiding copying data from the
original memory addresses to the new corresponding addresses. For the stack
buffers in the current stack, OPSafe maintains the original memory access to
these stack buffers.

For heap objects allocation, OPSafe intercepts all the heap allocation func-
tions in libc and replaces them with OPSafe’s heap allocation functions, such
as the function malloc. OPSafe only reallocates the subsequent heap objects re-
quests after green zone creation, and the management for the previous allocated
heap objects is still maintained by the application.

374 G. Chen et al.

3.3 Green Zone Maintenance

After memory objects reallocation, OPSafe maintains the life cycle of these mem-
ory objects in the green zone. For the memory objects outside of the green zone,
OPSafe leaves them into the management of the application.

For the stack buffers access, there are three types of access for them in the
memory access virtualization, including direct access, indirect access and pointer
access. The access mode is “Base plus Offset” for direct access and “Base plus
Index plus Offset” for indirect access. The base is the base register, i.e., EBP
or ESP, the offset is the offset is the value between the starting address of the
array and the base register, and the index is the index register which stores the
stack buffer index. For these two cases, OPSafe calculates the starting address of
the stack buffer and replaces with the corresponding protected memory address.
The pointer access means stack buffer is accessed by pointers, such as a stack
buffer is passed an argument to a function. As there must be an instruction to
get the address of the stack buffer, OPSafe can replace it without continuing
to map the memory access from the pointer. When a function returns, OPSafe
frees all the stack buffers of the function in the protected memory area.

For the heap object access, there are no extra memory mapping operations.
When freeing a heap object, OPSafe checks whether it is in the green zone or
not. If so, OPSafe then checks whether the heap object has been freed or the
address of the heap object is invalid. For the double-free or invalid free, OPSafe
can mask this error by omitting these memory free operations. If the heap object
is outside of the protected memory area, OPSafe leaves the management of these
objects and make the application to call the original libc function free to free it.

3.4 Green Zone Destruction

When users request to close the green zone, OPSafe enters into the green zone
destruction phrase to gradually free all the memory objects in the green zone
and restore the memory management of the application.

In this phrase, OPSafe firstly checks all the miniheaps in the green zone to
determine which the miniheap can be freed. If there are miniheaps which are
unused (i.e., do no store any memory objects), OPSafe frees these miniheaps.
For the miniheaps which are in use, OPSafe should wait until all the memory
objects of a miniheap have been freed. The memory objects in a miniheap con-
sists of stack objects and heap objects. OPSafe frees stack objects of a function
when the function returns and frees heap objects when the application call the
libc function free to free them. In addition, OPSafe does not need to redirect
the subsequent stack objects of new called functions and intercept the memory
allocation operations of the application.

Finally, when all the miniheaps has been freed, OPSafe destructs the green
zone by removing all the instrumentation for the application to restore the mem-
ory management of the application. After that, the application runs as original.

On-Demand Proactive Defense against Memory Vulnerabilities 375

Table 1. Applications and bugs used in evaluation

Application Version Vulnerabilities ID Bug Description

ProFTPD 1.3.3b CVE-2010-4221 Stack Overflow FTP Server

Null-HTTPd
0.5.0

CVE-2002-1496 Heap Overflow
Web Server

Null-HTTPd-df Manually Injected Double Free

Pine 4.44 CVE-2002-1320 Heap Overflow Email Client

M4 1.4.4 - Dangling Pointer Macro Processor

4 Experimental Evaluation

We have implemented a Linux prototype system with the operating system ker-
nel Linux 2.6, and Pin 2.12-56759 is used as our dynamic instrumentation in-
frastructure. Our evaluation platform consists of two machines connected with
100Mbps Ethernet. One machine is configured with the Intel E5200 dual core
2.5GHz processors and 4GB memory. They are used to deploy OPSafe and our
test suite. The other is configured with Intel E7400 dual core 2.8GHz processors
and 4GB memory. It is used to run clients for testing servers and servers for
testing desktop clients.

We first describe the details of our test suite which are a range of multi-process
and multi-threaded applications. Then we present the results of the evaluation
on the effectiveness of OPSafe under our test suite. To test the effectiveness, we
use OPSafe to protect our test suite to survive memory vulnerabilities. Finally,
we discuss the performance evaluation.

4.1 Overall Analysis

Our test suite contains four applications, including a ftp server ProFTPD, a
web server Null-HTTPd, an email client Pine and a macro processor GNU M4,
which are listed in Table 1. All these applications contain various types of bugs,
including stack overflow, heap overflow, double free and dangling pointer. Four
of the vulnerabilities are real-world vulnerabilities, and the double free bug is
manually injected into the web server Null-HTTPd, named Null-HTTPd-df in
Table 1.

Exploit CVE-2010-4221 in ProFTPD enables attackers corrupt memory to
crash the ftp server or execute arbitrary code by sending data containing a large
number of Telnet IAC commands to overrun stack buffers in the vulnerable func-
tion pr cmd read. OPSafe can avoid overrunning the control structures in the
stack by moving the stack buffers of the vulnerable function into the protected
memory area.

Exploit CVE-2002-1496 in Null-HTTPd is caused by improper handling of
negative Content-Length values in HTTP header field. By sending a HTTP re-
quest with a negative value in the Content-Length header field, a remote attacker

376 G. Chen et al.

could overflow a heap buffer and cause the web server to crash or execute arbi-
trary code in the system. OPSafe can avoid attackers gain control by segregating
all the heap metadata from the heap in the protected memory area. In addition,
OPSafe can avoid the vulnerable heap objects overrunning other heap objects
with high probability by multiple times of their defined sizes and a random
placement strategy.

Exploit manually injected in Null-HTTPd-df is caused by a piece of injected
vulnerable code. It frees a heap object which has already been freed. OPSafe can
mask this double free error by intercepting the free operation, checking it and
omitting invalid free operation.

Exploit CVE-2002-1320 in Pine enables attackers send a fully legal email
message with a crafted From-header to force Pine to core dump on start-up. The
only way to launch pine is manually removing the bad message either directly
from the spool, or from another mail user agent. Until the message has been
removed or edited there is no way of accessing the INBOX using Pine. The heap
overflow is caused by the incorrect calculation of string length in the function
est size, a message’s header “From:” which contains a long string of escaped
characters can cause a buffer used by the function addr list string to overflow.
OPSafe can allocate an object with multiple times of defined size and a random
placement strategy to avoid overrunning with high probability.

Exploit the dangling pointer in GNU M4 causes an misbehavior such as print-
ing out misleading information when a macro whose arguments are being col-
lected is redefined or deleted. Through deleting the definition from the symbol
table, it can leave dangling pointers in the local variable sym of the function
expand macro and then use dangling pointers leading M4 misbehavior. OPSafe
can avoid this misbehavior as it does not really free a heap object in the green
zone. It holds the content of the object and only marks the memory space be
used. Fortunately, the random placement strategy of OPSafe can make it unlikely
that a newly freed object will soon be overwritten by a subsequent allocation.
Therefore, OPSafe can avoid this dangling pointer attacks with high probability.

4.2 Effectiveness Evaluation

We evaluate the capability of fault tolerance by comparing OPSafe with the
restart method. We use a lightweight web server Null-HTTPd in this experiment.
We adopte the apache benchmark ab to test the web server throughput and a
network traffic and bandwidth usage tool nload to get a real time throughput
with a 100ms interval. In addition, malicious requests are sent every 5s to crash
the web server. All these two cases have adopted the restart method which
restarts the web server when it crashes, and the results are shown in Figure 2a.

From the figure, we can see that OPSafe can survive the heap overflow attacks
to make the web server continually serve the clients in the green zone with a
modest performance degradation. Once closing the green zone, the web server
still crashes when attacks occurring.

On-Demand Proactive Defense against Memory Vulnerabilities 377

(a) Comparison between Restart and
OPSafe

(b) Overhead for Normal Execution

Fig. 2. OPSafe Evaluation

4.3 Performance Evaluation

We evaluated the normal execution overhead caused by OPSafe with these four
applications. In this experiment, we use a ftp client to download a 300MB file
from the ProFTPD server. For the web server Null-HTTPd, we use the Apache
web benchmark ab to get the result. For the Email client Pine, we use it to send
an email whose size is 9.5MB. For the GNU M4, we use its example test file
foreach.m4 as the workload. We compared the average response time for server
applications and the execution time for desktop applications.

We show the overhead of OPSafe in Figure 2b. It ranges from 8.77% for Null-
HTTPd-df to 97.87% for GNU M4 with an average of 37.28%. Although OPSafe
incurs a modest overhead, it provides a flexible protection mechanism with users’
demand.

5 Related Work

In this section, we compare OPSafe with other solutions in preventing and re-
sponding to memory vulnerabilities attacks.

5.1 Proactive Defense Methods

Failure-oblivious computing [8] tolerates memory vulnerabilities via manufactur-
ing values for “out-of-bound read” and discarding “out-of-bound write”.
However, it should modify the source codes of the application with its spe-
cific compiler. Moreover, it may cause an unpredicted behavior which is an new
threat for the application.

DieHard [1] adopts the randomized allocation technique to give the appli-
cation an approximation of an infinite sized heap, which can provide an high
probabilistic memory safety. However, it should protect the application from the
beginning and it is incapable for surviving stack smashing attacks.

378 G. Chen et al.

5.2 Fail-Stop Methods

There are a number of solutions proposed to defend against memory vulnera-
bilities in a fail-stop fashion, especially for stack smashing bugs. StackGuard [4]
checks the integrity of canaries which are inserted around the return address.
Address space layout randomization technique is proposed to protect applica-
tions against memory bugs exploits with a source-to-source transformation [2].
These solutions have to use the compiler to analyze or modify source codes
via extending the GNU C compiler. However, OPSafe can protect applications
without extending the compiler.

A binary rewriting defense technology [6] is proposed to protect the return
address. It inserts the return address defense codes into binaries of applications
which can protect the integrity of the return address with a redundant copy.
However, it is powerless for heap-related vulnerabilities.

5.3 Self-healing Methods

Rx [7] combines the checkpoint/rollback mechanism and a changing execution
environment to survive bugs. Especially for the stack smashing bugs, Rx drops
the malicious users’ requests.

ASSURE [9] proposes the error virtualization and rescue point technique to
bypass faulty region of codes. ASSURE may cause the application not function
well, our previous works SHelp [3] applies weighted rescue points and extends
it to a virtualization computing environment. However, all of these techniques
unsafely speculate on programmer’s intentions which may introduce new threats.

First-Aid [5] tolerates a bug via identifying the bug types and bug-triggering
memory objects, and generating runtime patches to apply them to a small set
of memory objects. However, it cannot deal with the stack smashing bugs.

6 Conclusion

In this paper we present a new system OPSafe which can provide a hot-portable
Green Zone of any size with users demand for applications where applications
can safely survive memory bugs for a period of time from the starting or in
runtime with users’ demand. Once the green zone is opened, OPSafe takes over
memory management of the application to make all the subsequent allocated
memory objects including stack objects and heap objects reallocated and safely
managed in a protected memory area, where the memory vulnerabilities can
be prevented with high probability. Once closing the green zone, OPSafe clears
away all objects in the protected area and then frees the protected area. We
have developed a prototype system and evaluated the system’s effectiveness using
four applications with a wide range of memory vulnerabilities. The experimental
results demonstrate that our system can conveniently create and destruct a hot-
portable green zone where the vulnerable application can survive crashes and
eliminate erroneous execution.

On-Demand Proactive Defense against Memory Vulnerabilities 379

Acknowledgment. This paper is supported by National High-tech R&D Pro-
gram (863 Program) under grant No. 2012AA012600.

References

1. Berger, E., Zorn, B.: DieHard: Probabilistic Memory Safety for Unsafe Languages.
In: Proceedings of the 2006 ACM SIGPLANConference on Programming Language
Design and Implementation, pp. 158–168. ACM (2006)

2. Bhatkar, S., Sekar, R., DuVarney, D.: Efficient Techniques for Comprehensive Pro-
tection from Memory Error Exploits. In: Proceedings of the 14th Conference on
USENIX Security Symposium, pp. 271–286. USENIX (2005)

3. Chen, G., Jin, H., Zou, D., Zhou, B., Qiang, W., Hu, G.: SHelp: Automatic Self-
healing for Multiple Application Instances in a Virtual Machine Environment. In:
Proceedings of the 2010 IEEE International Conference on Cluster Computing, pp.
97–106. IEEE (2010)

4. Cowan, C., Pu, C., Maier, D., Hintony, H., Walpole, J., Bakke, P., Beattie, S.,
Grier, A., Wagle, P., Zhang, Q.: StackGuard: Automatic Adaptive Detection and
Prevention of Buffer-overflow Attacks. In: Proceedings of the 7th Conference on
USENIX Security Symposium, pp. 63–78. USENIX (1998)

5. Gao, Q., Zhang, W., Tang, Y., Qin, F.: First-Aid: Surviving and Preventing Mem-
ory Management Bugs During Production Runs. In: Proceedings of the 4th ACM
European Conference on Computer Systems, pp. 159–172. ACM (2009)

6. Prasad, M., Chiueh, T.: A Binary Rewriting Defense Against Stack Based Buffer
Overflow Attacks. In: Proceedings of the 2003 USENIX Annual Technical Confer-
ence, pp. 211–224. USENIX (2003)

7. Qin, F., Tucek, J., Sundaresan, J., Zhou, Y.: Rx: Treating Bugs as Allergies—
A Safe Method to Survive Software Failures. In: Proceedings of the 20th ACM
Symposium on Operating System Principles, pp. 235–248. ACM (2005)

8. Rinard, M., Cadar, C., Dumitran, D., Roy, D., Leu, T., Beebee Jr., W.: Enhancing
Server Availability and Security Through Failure-Oblivious Computing. In: Pro-
ceedings of the 6th Conference on Symposium on Operating Systems Design and
Implementation, pp. 303–316. USENIX (2004)

9. Sidiroglou, S., Laadan, O., Perez, C., Viennot, N., Nieh, J., Keromytis, A.: AS-
SURE: Automatic Software Self-healing Using REscue points. In: Proceedings of
the 14th International Conference on Architectural Support for Programming Lan-
guages and Operating Systems, pp. 37–48. ACM (2009)

10. Vision Solutions Staff, Assessing the Financial Impact of Downtime. Vision Solu-
tions, Inc. (2010)

11. Chen, G., Jin, H., Zou, D., Zhou, B., Liang, Z., Zheng, W., Shi, X.: SafeStack: Au-
tomatically Patching Stack-based Buffer Overflow Bugs. To be appeared in IEEE
Transactions on Dependable and Secure Computing. IEEE (2013)

12. Zou, D., Zheng, W., Jiang, W., Jin, H., Chen, G.: Memshepherd: Comprehensive
Memory Bug Fault-Tolerance System. To be appeared in Security and Communi-
cation Networks. John Wiley & Sons, Ltd. (2013)

13. Avijit, K., Gupta, P., Gupta, D.: TIED, LibsafePlus: Tools for Runtime Buffer
Overflow Protection. In: Proceedings of the 13th USENIX Security Symposium,
pp. 45–56. USENIX (2004)

C.-H. Hsu et al. (Eds.): NPC 2013, LNCS 8147, pp. 380–392, 2013.
© IFIP International Federation for Information Processing 2013

Mahasen: Distributed Storage Resource Broker

K.D.A.K.S. Perera1, T. Kishanthan1, H.A.S. Perera1, D.T.H.V. Madola1,
Malaka Walpola1, and Srinath Perera2

1 Computer Science and Engineering Department, University Of Moratuwa, Sri Lanka
{shelanrc,kshanth2101,ashansa.perera,hirunimadola,

malaka.uom}@gmail.com
2 WSO2 Lanka, No. 59, Flower Road, Colombo 07, Sri Lanka

srinath@wso2.com

Abstract. Modern day systems are facing an avalanche of data, and they are be-
ing forced to handle more and more data intensive use cases. These data comes
in many forms and shapes: Sensors (RFID, Near Field Communication, Weath-
er Sensors), transaction logs, Web, social networks etc. As an example, weather
sensors across the world generate a large amount of data throughout the year.
Handling these and similar data require scalable, efficient, reliable and very
large storages with support for efficient metadata based searching. This paper
present Mahasen, a highly scalable storage for high volume data intensive ap-
plications built on top of a peer-to-peer layer. In addition to scalable storage,
Mahasen also supports efficient searching, built on top of the Distributed Hash
table (DHT)

1 Introduction

Currently United States collects weather data from many sources like Doppler readers
deployed across the country, aircrafts, mobile towers and Balloons etc. These sensors
keep generating a sizable amount of data. Processing them efficiently as needed is
pushing our understanding about large-scale data processing to its limits.

Among many challenges data poses, a prominent one is storing the data and index-
ing them so that scientist and researchers can come and ask for specific type of data
collected at a given time and in a given region. For example, a scientist may want to
search for all Automated Weather data items collected in Bloomington area in June 15
between 8am-12pm.

Although we have presented meteorology as an example, there are many similar
use cases. For instance, Sky server [1] is one of the best examples that illustrate the
use case of large data generation. This project expects to collect 40 terabytes of data
in five years. In its data collection, the photometric catalog is expected to contain
about 500 distinct attributes for each of one hundred million galaxies, one hundred
million stars, and one million quasars. Similarly many sciences, analytic processing
organizations, data mining use cases etc., would want to store large amount of data
and process them later in a selective manner. These systems often store data as files
and there have been several efforts to build large scale Metadata catalogs [2][3] and

 Mahasen: Distributed Storage Resource Broker 381

storage solutions[4][5] to support storing and searching those data items. One such
example is AMGA metadata catalog [6] which was an effort to build replication and
distribution mechanism for metadata catalogs.

As we discuss in the related work section, most of the metadata catalog implemen-
tations use centralized architectures and therefore have limited scalability unlike Ma-
hasen. For example, Nirvana Storage [7] has a centralized metadata catalog which
only supports scalability through vendor’s mechanism such as Oracle Real Applica-
tion clusters. XML Metadata Concept catalog (XMC Cat) [8] is another centralized
metadata catalog which stores hierarchical rich metadata. This paper presents Maha-
sen, a scalable metadata catalog and storage server built on top of a P2P technology.
Further, it is built by distributing an open source centralized Data registry (WSO2
Registry).

Mahasen (Distributed Storage Resource Broker) is a Data Grid Management Sys-
tem (DGMS) that can manage a large volume of distributed data. It targets high vo-
lume data intensive applications. The architecture of Mahasen has been designed to
present a single global logical namespace across all the stored data, and it maintains a
metadata structure which can be used to search files based on its’ attributes. It is a
network of storage servers that plays the dual purpose of a metadata catalog and a
storage server. Mahasen will solve the huge data storage problem and fault tolerance
in data intensive computing through aggregating low cost hardware while having both
metadata and actual resources distributed without single point of failure. Metadata
management will ensure the capability of searching files based on attributes of the
stored resources. Mahasen has a metadata catalog, which is highly distributed and
well scalable. The metadata layer ensures fault tolerance by keeping replicas of meta-
data.

The rest of the paper is organized as follows. The next section will discuss the re-
lated work in Metadata catalogs and Storage servers while comparing and contrasting
them with Mahasen. The following section will discuss Mahasen architecture. The
next section will present the performance evaluation of Mahasen. Finally the discus-
sion section discusses limitations, other potential solutions and directions.

2 Related Work

2.1 Nirvana Storage

Nirvana SRB [7] is a middleware system that federates large heterogeneous data re-
sources distributed across a network. The ability to access, manage, search and organ-
ize data across the entire SRB Federation is provided via a Global Namespace.
MCAT is the centralized metadata repository which maintains two types of records –
system- and user-metadata. Scalability of MCAT is achieved using database vendor’s
mechanisms [9], hence limited by Relational DB scalability Limits.

Storage/Replication. The stored resources are divided as Physical resources, Logical
resources and Cluster resources. Replication of resources across multiple servers
ensures the availability and recoverability of resources during failovers.

382 K.D.A.K.S. Perera et al.

Retrieve. Data stream routing is handled by SRB and TCP/IP, making the data trans-
fer process transparent to the users..

Search. Searching is done based on metadata attributes which are extracted and ma-
naged by the SRB.

Add/Update. Data can be added in two ways: Registration and Ingestion. Registra-
tion does not transfer any data but only creates a pointer to the data in MCAT. Inges-
tion is similar to registration but also transfers the data to an SRB storage resource.

Delete. If a file shadow object is used as a data object to ingest a file resource to SRB
then file will be removed from MCAT but not from the physical location.

2.2 Apache OODT

OODT[10] is a middleware system for metadata that provides transparent access to
the resources. It facilitates functionalities such as store, retrieve, search and analyze
distributed data, objects and databases jointly. OODT provides a product service and
profile service which manage data and metadata respectively.

Storage/Replication. OODT stores data product in a file-based storage in a distri-
buted manner. They classify storage into three categories: on-line, near-line or off-line
storage.

Retrieve. When OODT receives a request for retrieving a file, it issues a profile query
to a product server that helps in resolving resources that could provide data. The re-
sponse will include the target product server address in the form of a URI. The OODT
issues a product query based on the profile query results to get the data, and it will
actually retrieve data from the product server in a MIME-compliant format.

Search. OODT uses the profile server and the product server for searching the meta-
data and retrieve the products, and it has multiple of each type of server. OODT is
based on client server architecture and it promotes REST-style architectural pattern
for search and retrieve data. The profile or a subset of profile is returned for retrieval.

Add/Update. OODT provide data management including manage files and folders
with the implementation of javax.sql.datasource interface.

Delete. The file management component of a Catalog and Archive Service support
the delete of resource files and metadata through the implementation of ja-
vax.sql.datasource interface.

2.3 WSO2 Governance Registry

WSO2 Governance Registry [11] is a repository that allows users to store resources in
a tree-structured manner, just like with a file system. However, unlike a file system,

 Mahasen: Distributed Storage Resource Broker 383

users may annotate resources using their custom properties, and also WSO2 Registry
has built in metadata management features like tagging, associating resources.

However, WSO2 registry is backed by a Relational Database system, and it uses
database features to store data, metadata, to manage them, and to search. Hence it
has a centralized architecture. Mahasen extends that architecture to a distributed
architecture.

Replication. There is no inbuilt mechanism to do the replication of resources in
WSO2 registry.

Search. The WSO2 registry provides two types of searches. One is searching for a
resource with their name, metadata etc., and it is implemented using underline rela-
tional database system. The second one is searching the content of resources, and
implemented using Lucene [12]. The second search is only applicable to resources
with textual content.

Add/Update. Adding of resources to registry can be done in two ways. First one is
adding via the web interface provided by the registry. When adding a new resource, it
is also possible to add additional metadata such as tags, properties of name value
pairs, which later will be useful to search for that resource. The other way to add
resources is by writing your own way by extending the registry API and exposing it as
a web service.

The major limitation with registry, when storing resources, is the amount of memory
available. Since it uses the java heap memory to buffer the resources before storing
them, large files cannot be stored as the available memory is only limited to few
hundred of megabytes.

2.4 Hadoop Distributed File System

Apache Hadoop Distributed File System is (HDFS)[13] is a file system designed to
run on commodity hardware. HDFS has a master slave architecture that consists of a
single NameNode as master and number of DataNodes. The NameNode is responsible
of regulating access to files by client and managing the namespace of the file system.
Generally DataNodes are deployed one per node in the cluster, and is responsible of
managing storage attached to that node.

Storage / Replication. Hadoop supports hierarchical file organization where user can
create directories and store files. It splits the file in to chunks with the default size of
64MB and stores them as sequence of blocks, and those blocks are stored in underly-
ing file system of DataNodes. Those blocks are replicated for fault tolerance and the
block size and the replication factor of data are configurable.

384 K.D.A.K.S. Perera et al.

Retrieve. Applications that run on HDFS need streaming access to their data sets.
Data nodes will be responsible for the read requests that issued from a user to retrieve
data from the system.

Search. Hadoop Distributed File System does not provide a comprehensive search for
users or applications, and it just fulfill the requirement of a distributed file system
by supporting to locate the physical location of the file using the system specific
metadata.

Add/Update. Writing to HDFS should be done by creating a new file and writing
data to it. Hadoop addresses a single writer multiple readers’ model. Once the data is
written and file is closed, one cannot remove or alter data. Data can be added to the
file by reopening the file and appending new data.

Delete. When a file is deleted by a user or from an application, the particular resource
is not immediately removed from HDFS. The resource will be renamed and copied in
to /trash directory giving the possibility to restore as long as it remains in the trash.

Mahasen’s main differentiation from above systems comes from its scalability. It can
scale significantly than Nirvana Storage that depends on relational databases to scale
the system, since the Mahasen metadata layer is natively distributed using a
DHT.WSO2 Registry provides the clustering as the scalability option, but it is not
optimized for large file transfers and storing as it uses an ATOM based resource
transfers. Furthermore, Mahasen provides users a comprehensive metadata model for
managing the distributed resources they stored with user-defined metadata, unlike the
HDFS, which only focuses on creating a Distributed file system. Further Mahasen's
metadata layer is natively distributed and fault tolerant while HDFS has a single name
node which can make fault tolerant only with an active passive failover configuration.

3 High Level Architecture

3.1 Mahasen High Level Architecture

As shown by Figure 1, Mahasen consists of several storage nodes which are con-
nected as peers to a logical ring via FreePastry. Each node consists of a registry to
store metadata and a file system to store physical file parts. Once connected to the
ring each node contributes to the metadata space as well as file storage capacity, scal-
ing the system dynamically with new node additions. Nodes use underline DHT
(FreePastry) routing protocol to communicate efficiently with each other.

Mahasen uses a WSO2 registry and the file system in each node and DHT based
architecture is used to connect the nodes to a one unit.

Mahasen has a distributed metadata layer that stores data about the distributed files
in Mahasen peer to peer network. The metadata catalog is used to broker the stored
resources in the network and to assist the user to locate the files in Mahasen distri-
buted environment abstracting the metadata management from the user.

 Mahasen: Distributed Storage Resource Broker 385

Fig. 1. Mahasen High Level Architecture

Mahasen stores two main types of metadata, which are system-defined metadata
and user-defined (descriptive) metadata. System defined metadata is mainly used for
server side resource handling. File name, file size, stored node IPs of file are exam-
ples of the system-defined metadata. User defined metadata is used to provide users
the searching capability on those metadata. User can add tags and properties (name,
value pairs) to the files that are uploaded.

Fig. 2. Metadata Object Structure of Mahasen

When a file is uploaded connecting to a Mahasen node the file will be temporarily
saved in that node. Then the node will act as the master node and split the file into
pre-defined sized chunks and the split parts are stored in a selected set of the neigh-
borhood nodes of master node through parallel transfer. Then the metadata object
created by master node will be stored with replicas using PAST storage implementa-
tion of Free pastry. We have rewritten PAST node’s persistent storage such that the
data will be stored in the WSO registry in that node.

386 K.D.A.K.S. Perera et al.

After storing the metadata, the nodes that received file parts act as worker nodes
and replicate their file parts in parallel according to the replicate request issued by the
master node. Each worker node will update the metadata object with stored locations
of the file parts which were replicated after replicating their file parts using the capa-
bility of concurrent access to metadata objects, and Mahasen handles them using the
locking system provided by the lock manager of DHT.

User can request to download a file from any Mahasen node and the node will first
generate the resource ID for the requested and retrieve the metadata object. Then it
extracts the locations of Mahasen nodes that contain the file parts from the metadata
object and retrieve those parts to the local machine. The parts will be merged to create
the original file after retrieving all the parts and the file will be streamed to the user.

Deletion can be performed with a single command across a heterogeneous storage
system. When a delete request for a file is issued, by following the same method of
retrieving the file, Mahasen finds nodes that store parts of the file and deletes them.
Finally the metadata object will also be deleted with replicas.

When user needs to update the user-defined metadata, the node that receives the
update request retrieves the metadata object for the file from the DHT, updates it, and
stores it back in the DHT.

Using this model, Mahasen has built a complete decentralized metadata system that
handles metadata management in a highly scalable and efficient manner.

Mahasen keeps replicas of both actual files and metadata objects. The main pur-
pose of keeping replicas is for fault tolerance and failover recovery. We ensure
the high availability of metadata while ensuring the scalability using free pastry’s
underlying DHT.

3.2 Mahasen Search

When the amount of data in the system grows, the complexity of the search increases.
Mahasen builds a distributed data structure using the underlying DHT, which can
improve the performance of different search options that Mahasen supports.

The resources in Mahasen are associated with metadata and for each tag or proper-
ty in system, we maintain an index pointing to all resources which have that tag or
property. This is implemented as a TreeMap [16] and the property trees are stored in
the DHT which handles replicas of it.

When a user sends a search request, Mahasen extracts the requested search and in-
itiate the execution of relevant search method. Then the resource IDs of the files
which match with the given input are retrieved from the relevant property tree. Ex-
tracting the relevant resource IDs are done as follow.

Users can send search requests to any Mahasen node, and when a node receives a
search request, Mahasen takes the property name given by the client and generates the
property tree ID for that property. If the current node has the index for the property, it
receives matching resource IDs for that property and sends them to the client. If not,
the node acts as a master node and gets the node handles of the nodes which are hav-
ing the specific property tree and routs Mahasen search messages with the required

 Mahasen: Distributed Storage Resource Broker 387

Fig. 3. A Property Tree Stored in Mahasen Memory Storage

parameters to the node handles. Then those node handles will get the relevant re-
source IDs from the property trees in their memory storage and send back to the
master node.

The property values in the property tree are sorted, so that if the search is a range
based search, we can simply take the sub map between the initial and final property
values and retrieve the set of resource IDs mapped to each of the node in the sub tree.
Since these resource IDs represents the files having the given property values, Maha-
sen can look up for the metadata objects with those resource IDs and extract the file
names to present to for the user. The operation of extracting the file names for the
resource IDs has a high cost than extracting the matching resource IDs for the given
search query.

Complete Data Structure built for Mahasen can support property based search,
range based search, tag based search and Boolean operations for the properties such
as AND operation and OR operation. The advanced search provided by Mahasen is
capable of providing the search based on set of different properties and tags.

Mahasen Search utilizes the continuation model support by FreePastry in results
retrieving and transferring. Therefore when a search request is issued, the application
sends requests to look up node handles, which contain the particular TreeMap object
to request results. Then the application will collect the first result incoming and
resume action from the previous execution point.

3.3 File Handling

File Transfer. Mahasen is a network of storage nodes and users will be given a client
which is the Mahasen Client to access and transfer files to the network. The Mahasen
Client that is built using the Apache HttpClient [17] uses HTTP methods for transfer-
ring files to the network. First the client initiates a connection with one of the node in
the network. An authenticated client is capable of uploading downloading, deleting,
updating or searching for the files in the network. The File content will be added as an
entity to the HTTP POST method and streamed to the target address. The receiving
end will read the file stream and write it to the repository.

388 K.D.A.K.S. Perera et al.

Replica Management. To achieve fault tolerance and failover recovery, the file will
be split into a set of predefined chunks and each part will be replicated and stored in
different nodes according to predefined replication factor. The placement of replicas
is a critical part which affects the reliability and performance of the system. The pur-
pose of having a policy for placement of replicas is for data reliability, availability,
and network bandwidth utilization. The current policy of Mahasen is to store the rep-
licated files in leaf nodes set to the initial node. The selection of nodes in the leaf set
will be calculated using cost evaluation function which focus on the distance of the
node.

After successfully transferring the file to the initial node, the client will be notified
about the status of the file transfer and initial node will then replicate and transfer the
file to other nodes. The number of copies kept for a file is called the replication factor
of that file and will be decided by the Mahasen system.

File Splitting and Parallel Transfer. Mahasen storage network is designed to store
large files reliably across distributed nodes. When storing the file it will be split into
blocks of fixed size and these blocks will be replicated across the network for fault
tolerance. The transferring of replicated file blocks will be done in parallel to other
nodes in order to utilize the bandwidth and to save time.

When focusing on the retrieval of a file by using the metadata object the system
will then select a node which is closest to the reader node and download the blocks to
the client. Downloading of file blocks will also be done in parallel and then the blocks
will be merged to create the complete file.

3.4 Mahasen API

Mahasen provides a complete API to perform CRUD operations and search. Users
can develop external clients apart from the default client Mahasen provides and inte-
grate with existing systems to perform resource management and search operations.

4 Performance Analysis

The Mahasen System Scalability was tested by running a system with M nodes and
N parallel clients. Here the value for M was 1, 6, 12, 18, 24 and N was 1, 5, 10, 15,
20. Each client carried out upload, download, delete and search operations for 10
times and the average was taken. The system configuration that was used in this test
are, Two machines with Intel(R) Xeon(R) CPU E5-2403 1.80GHz 4 Core ma-
chines having 24GB RAM and One machine with Intel(R) Xeon(R) CPU E5-2470
2.30GHz 8 Core machines having 63GB RAM. Following Figures (from 4 to 7)
depicts the results of this test. In the upload test, 500MB size files were used by
each client.

 Mahasen: Distributed Storage Resource Broker 389

Fig. 4. Upload test results

In the results it is observed that when the number of client increases, the upload
time is also increasing. We believe that this is due to the network congestion and
background processes of data replication across nodes. When the number of nodes
increased to 18 or 24, a reduction in upload time were observed. This was an expected
behaviour, because the node which client selects to upload, distributes replica man-
agement task for other nodes in the p2p ring.

Fig. 5. Download test results

When download files using Mahasen client, it is observed that with the increase of

number of client, the single node setup has a significant growth in the download time.
In the performance test, a single node was chosen to send the client request while it
coordinates the file transfer from other nodes in the setup. Therefore when there are
multiple nodes in the system you can download file parts from other available nodes,
which reduces the download time.

390 K.D.A.K.S. Perera et al.

Fig. 6. Delete test results

When Mahasen performs a Delete on a resource, it involves 3 operations such as

deleting metadata, deleting entries from search index, and deleting the physical file.
When more nodes are in the system, each node can participate in deleting its own files
in parallel, making the system more scalable and efficient.

Fig. 7. Search test results

Search results illustrate that Mahasen can perform well even with more nodes add-

ed to the system. Usually single node should have the lowest possible time as it does
not have to search across the p2p ring. But with multiple nodes, it has to aggregate
results and present it to the client. This can be observed from the figure that, when
more clients are in the system, results tend to converge into a lower value due to cach-
ing as we requested search operation through the same node.

 Mahasen: Distributed Storage Resource Broker 391

5 Discussion and Future Work

Mahasen provides a highly scalable metadata structure with its peer-to-peer architec-
ture in the metadata catalog. Unlike the existing metadata catalogs that use centralized
architecture, Mahasen distributes metadata across the nodes in the system with the
replication making the overall system scalable and fault tolerant.

Mahasen keeps replicas of both metadata objects and property trees as well. The
DHT of FreePastry is used to store these objects in the system which provides easy
access of them. Keeping replicas of metadata objects and property tree objects do not
cost as much as keeping replicas of actual files which are very large in size compared
to metadata and property tree objects. By having these objects with replicas in the
system, Mahasen has been able to ensure the correct functioning of many of the Ma-
hasen operations even in the conditions like node failures.

An important contribution of Mahasen is developing a distributed indexing structure
on top of the DHT for searching data products using different properties associated with
data products. Since Mahasen needed to support range based queries, we evaluated
earlier effort to build such index structures. Skip Tree Graph [18] was one of the best
candidates we selected for search assisting data structure, which can efficiently support
range based queries over a DHT. Since we had different properties and data structure
had to grow in two dimensions, one in number of properties and the other one in num-
ber of entries for one property we were forced to create different DHTs for different
properties. Therefore we needed to evaluate a much less complex solution since main-
taining different DHTs could have been very expensive in terms of resources.

When the system scales up with the large number of nodes, it will be more costly
to issue a search operation on the available raw metadata stored. Therefore Mahasen
developed a combined data structure with DHT and TreeMap as explained earlier.

When a Mahasen node fails, and it is detected by the existing nodes in the network,
Mahasen replicates all the metadata objects and the property tree objects which were
in the failed node to the existing Mahasen node reading them from other replicas.
Mahasen helps in preserving the availability of metadata objects and property tree
objects by maintaining the replication factor of them a constant.

Current Mahasen design has several limitations, which we plan to handle as future
works. Currently Mahasen stores each property indexes in one Mahasen node and
assumes that it will fit within the memory of that node. This may not be major con-
cern for simple cases, and even NoSQL storages like Cassandra makes similar as-
sumptions. Dividing the property tree into parts and storing them in different nodes
when it is larger than a given size can solve this problem. We can predefine the max-
imum size of a part that will be residing in one node.

Another challenge is that search based multiple properties where at least one is a
common property would force Mahasen to join large data sets, and one potential solu-
tion is to negotiate the size of data sets before start the data merging.

To summarize, Mahasen project builds a scalable storage solution by making a
group of existing open source registries work as a one unit. It provides a one logical
global namespace, and users may talk to any node of the group and perform any
operations.

392 K.D.A.K.S. Perera et al.

Mahasen connects nodes (registries) using PAST, a storage overlay implemented
on top of Pastry DHT algorithm. Furthermore, Mahasen builds a distributed indexing
structure on top of DHT to support property-based search of data items.

A user can benefit from the Web Service API provided and effectively utilize for
batch processing of file uploading task through a custom client or basic client pro-
vided by Mahasen.

References

1. Szalay, A.S., Kunszt, P., Thakar, A., Gray, J., Slutz, D., Brunner, R.J.: Designing and Min-
ing Multi-Terabyte Astronomy Archives: The Sloan Digital Sky Survey. In: SIGMOD
2000 Proceedings of the 2000 ACM SIGMOD International Conference on Management
of Data (2000)

2. Baru, C., Moore, R., Rajasekar, A., Wan, M.: The SDSC Storage Resource Broker (1998)
3. Moore, R.W.: Managing Large Distributed Data Sets using the Storage Resource Broker

(2010)
4. DeCandia, G., Hastorun, D., Jampani, M.: Dynamo.: Amazon’s Highly Available Key-

value Store (2010)
5. Ghemawat, S., Leun, S.-T., Gobioff, H.: The Google File System
6. Nuno Santos, B.K.: Distributed Metadata with the AMGA Metadata Catalog
7. Nirvana Storage - Home of the Storage Resource Broker (SRB®) (2011),

http://www.nirvanastorage.com/index.php?module=htmlpages
&func=display&pid=1

8. XML Metadata Concept Catalog (XMC Cat), Data to Insight Center, Indiana University
Pervasive Technology Institute, http://d2i.indiana.edu/xmccat

9. Nirvana Performance,
http://www.nirvanastorage.com/index.php?module=htmlpages
&func=display&pid=54

10. ApacheTM OODT (2011), http://oodt.apache.org/
11. WSO2 Governance Registry - lean.enterprise.middleware - open source SOA | WSO2

(2011), http://wso2.com/products/governance-registry/
12. Apache Lucene - Overview,

http://lucene.apache.org/java/docs/index.html
13. HDFS Architecture Guide (2011),

http://hadoop.apache.org/docs/r1.0.4/hdfs_design.html
14. Pastry - A scalable, decentralized, self-organizing and fault-tolerant substrate for peer-to-

peer applications, http://www.freepastry.org/
15. Druschel, P., Rowstron, A.: PAST: A large-scale, persistent peer-to-peer storage utility.

In: HotOS VIII, Schoss Elmau, Germany (2001)
16. TreeMap (Java 2 Platform SE 5.0) (2011),

http://download.oracle.com/javase/1.5.0/docs/api/java/
util/TreeMap.html

17. HttpClient - HttpComponents HttpClient Overview (2011),
http://hc.apache.org/httpcomponents-client-ga/

18. Beltrán, A.G., Sage, P., Milligan, P.: Skip Tree Graph: a Distributed and Balanced Search
Tree for Peer-to-Peer Networks

C.-H. Hsu et al. (Eds.): NPC 2013, LNCS 8147, pp. 393–404, 2013.
© IFIP International Federation for Information Processing 2013

Probabilistic QoS Analysis of Web Services

Waseem Ahmed and Yong Wei Wu

Department of Computer Science and Technology,
Tsinghua University, Beijing, China

amw.inbox@gmail.com

Abstract. In such a competitive world, quality assurance can make the differ-
ence between a successful business and bankruptcy. For Internet services, the
presence of low performance servers, high latency or overall poor service quali-
ty can translate into lost sales, user frustration and customers lost. In this paper,
we propose a novel method for QoS metrification based on Hidden Markov
Models. The techniques we show can be used to measure and predict the beha-
vior of Web Services under several criteria, and can thus be used to rank servic-
es quantitatively rather than just qualitatively. We demonstrate the feasibility
and usefulness of our methodology by drawing experiments on real world data.
Our results have shown how our proposed methods can help the user to auto-
matically select the best available Web Service based on several metrics, among
them system predictability and response times variability.

Keywords: Hidden states, Probability, Quality of Service.

1 Introduction

The Internet made the world a smaller place. Companies from all around the world
may now compete over different service offerings not only with their local adversa-
ries, but do now under a global scale. Escalating the competition and lead in industry
segment can often be a matter of offering and, perhaps even most importantly, assur-
ing the good quality of the services offered. In the Web this should be no different;
controlling quality for Web Services (WS) is done by enforcing Quality of Service
(QoS) policies and assuring needed quality conditions are always met.

 On the user's side, the increased number of services means more and more offer-
ings to choose from. Unfortunately, due the explosive growth in the number of WSs
available in the world, selecting the best WS to solve a given task has become a quite
challenging task. Currently, users cast their choice based on the reviews and expe-
riences of other users. User-created ranks are often the first resource for finding relia-
bility information regarding a particular service, often given in terms of response
time, throughput, availability, security and reliability. Interestingly enough, data qual-
ity has never been considered as a key factor when analyzing QoS parameters.

There is no standard way, however, for the users to weigh their options directly and
individually, for themselves. This paper aims to fill this gap providing a standard way
to measure and assess WS quality using Hidden Markov Model (HMM). Although

394 W. Ahmed and Y.W. Wu

web service reliability can be defined as producing cohesive results when invoked by
different users with similar parameters [1], even though, sometimes web service even
with best rank provides different results to end users. Systems which are designed to
produce different results to different users at same time interval are out of the scope of
this paper.

Existing papers such as [1-6] have discussed in detail QoS attributes of web servic-
es in terms of response time, throughput, reliability, availability. Nonetheless, there is
still a lack of analyzing quality of data received from web services. Users across the
IT industry associate bad quality of data or difference in response of web services
against same request at same time with improper use of technology such as:

• Improper use of instance variables
• Incorrect caching
• Wrong mapping of data in lookup tables (in case of DB operation)
• Service is unable to recognize received category
• Servers are behind cluster and node responsible for reply during time t be-

haves badly
• Improper or mutated coding

However, as web services are owned and hosted by other organizations, most of
the above mentioned aspects are difficult to monitor. In this paper we have designed a
framework based on Hidden Markov Model (HMM) that will help end users to find a
relation among web service responses and different hidden states producing them.
Later, we have further extended this framework to predict behavioral patterns of these
hidden states that will help users in making decision for web service selection.

In our framework, we have randomly selected web services with similar functio-
nality (e.g. in our case it represent weather forecasting) from the list provided by [4]
(who have claimed to have almost all available services by crawling web) and web-
serviceslist.com to analyze quality of data, that were ranked as best by different users
around the world (as shown in table1). Status of all selected web services with similar
functionality is more or less similar as described in [4].

Table 1. Web services with similar functionality along with their Ranks

Web Services Count
Total web services with similar functionality(Weather forecasting) 23
Available 11
Broken link 8
Resource Cannot be found 3
Security exception 1

With HMM QoS attribute of WS in terms of data can be analyzed in two stages.

• Stage one will require us finding relations among hidden states in a remote WS
and different data categories produced by web services.

• The second stage requires us to use this information to find probability of
result produced by hidden states in future.

 Probabilistic QoS Analysis of Web Services 395

Our contribution in this paper can be summarized as below:

• We have analyzed the reason of variation in data generated by web service
when invoked by different users at the same time with same input parameters.

• Defined a mechanism to build a relation among web service response / result
and various hidden states responsible for producing it.

• Predicted the probability of variation in data / response of web services during
nth time interval to select WS with better QoS attributes in terms of data.

The rest of the paper is organized as follows: section 2 introduces related work sec-
tion 3 describes details about our conceptual framework section 4 presents our
experiment and results and finally section 5 concludes the paper.

Table 2. Independent Variables Table 3. Common Hidden States

 # Independent variables
1. Status (S)
2. Temperature (T)
3. Visibility (V)
4. Due Point (D)
5. Humidity(H)
6. Wind(W)
7. Pressure (P)

Hidden States
1 Wrong Data Mapping

2 Bad Node in server clustering

3 Mutated coding

4 Composite WS

2 Related Work

Analyzing QoS attributes of remote web service is one of the important research areas
in SOA based distributed applications. Most of the researchers have analyzed these
attributes and proposed frameworks to facilitate end users for selecting or integrating
web service with better QoS attributes. In this section we have presented a review of
existing methods or framework proposed by different researchers. S. Maheswari and
G.R. Karpagam [5] have proposed a framework that considered seven QoS attributes
i.e. Response time, Execution Time, throughput, scalability, reputation, accessibility,
and availability for better web service selection. Yilei Zhang and Zibin Zheng [3]
have proposed model-based QoS prediction framework called WSPred. Their main
contribution was time-aware personalized QoS prediction approach that analyzes
latent features of users, service and time by performing tensor factorization. Emra and
Pinar [1] proposed a method where they tracked QoS parameters automatically when
required. However the issue with this approach is that, they did not consider network
latency or communication delay in their calculations. Daniel A. Menascé [6] have
proposed a way to calculate throughput of web services that have been used in single
web service to accomplish its task. Ping Wang [7] has used fuzzy logic to locate and
select web services based on user ratings. Other papers that have been produced to
estimate QoS attributes to select better web service for integration are San-Yih
Hwang [8], Vuong Xua [9], Xifeng [10] ,Hong Qing [11], Chunli [12], Wei, Z. [13].

396 W. Ahmed and Y.W. Wu

Hidden Markov Model has already been used in analyzing quality factors of distri-
buted computing systems. Nonetheless, they have their own issues, constraints and
shortcomings. For instance Vathsala and Hrushikesha [14] have used HMM for pre-
dicting response time pattern of web services for different network’s hidden states,
however they did not consider the reliability of various hidden states with in the re-
mote web service as discussed in Table 2. As survivability also affects performance
of any application, LeiLei Chen [15] has designed a framework to evaluate survivabil-
ity of SOA based application using Hidden Markov Model. The main idea of their
framework revolves around monitoring activities based on service logs or run time
statistics provided by service provider. The problem with this approach is that it is
restricted to statistics which have been provided by the service provider itself. Be-
sides, the author did not provide a discussion about the possible hidden states and
other probabilistic characteristics inherent to WSs. The HMM has also been success-
fully used in the prediction of other QoS aspects for SOA applications. One of such
works is the work by Rahnavard and Meisam [16], who have used HMMs to detect
WS anomalies, such as intrusion detection. However, their strategy could not be used
to gauge arbitrary QoS attributes of WSs. Similarly, Flex Selfner [17] has proposed
the use of HMMs to categorize and distinguish error patterns leading to failures. This
author also suggested a mechanism for predicting the future occurrence of failures or
errors. Zaki Malik[18] has used HMM to assess failures during certain time in future.
In short HMM has been successfully used to analyze various aspects in distributed
computing systems. The reliability of a WS can be established only once the reliabili-
ty of hidden states have been ensured [20]. In this paper we have design a framework
based on HMM for estimating probabilistic insight details of web service.

3 HMM Based Quality of Service Estimation

For probabilistic QoS analysis of web services in terms of data variation, our strategy
is based on following steps:

• Analyzing variation among data values of web services response when in-
voked by a number of users with similar input parameters.

• Estimating current state of internal system of WS using HMM and then defin-
ing probabilistic relationship among data values and various hidden states.

• Predicting behavioral pattern of hidden states for analyzing data variance
during nth time interval.

3.1 Similarity Analysis

Estimating QoS attribute in terms of data variance requires us to elucidate web service
response into a set of independent variables. This will help us to analyze data varia-
tion in more detail. For instance in case of weather forecasting, the consequent re-
sponse can be divided into N number of different independent variables as defined in
table 2. As each web service is being invoked by M number of users and we have K
number of web services having similar functionalities. To find the similarity among

 Probabilistic QoS Analysis of Web Services 397

such data values we can represent above information in 3-dimentional N x M x K
matrix. Web services with higher rank were invoked by 500 parallel threads with
same input parameters in distributed environment and results were analyzed as shown
in Fig. 1. It is apparent from Fig.1 that web services even with higher rank are reply-
ing with uncertain results during time interval t. Fig.1a shows variation in status
(Sunny, Rainy, Partially cloudy, Cloudy) received by different users for same request
parameters, whereas Fig.1 (b, c and d) depicts variation in independent variables
(Wind, Visibility, and Temperature). For proof of concept we have shown only some
independent variables, nonetheless, we have found variation in all independent va-
riables. Region specific WS for instance weather forecast (US only) have produced
better performance in comparison to other web services.

3.2 Quality of Service Analysis with Hidden Markov Model

Similarity analysis shows that independent variables can have different values within
one observation when invoked in parallel with same request parameters. To figure out
consequent data categories, it is therefore essential to analyze QoS attributes in terms
of data variance. Then computing most likely hidden states and observation sequence
using HMM, these categories can be linked with certain hidden states inside a WS.
For instance, if observations for weather forecasting WS (as shown in table 2), pro-
duced by finite number of hidden states (as shown in table 3), then HMM can help us
to establish a probabilistic relation between hidden states and consequent sequence of
observations. There are two fundamental assumptions in our approach:

• Consequent observations are linked with execution pattern of hidden states
with in a remote web service. This linkage can give us probability of possible
scenarios used in implementation of WS. “Execution pattern” defines situation
where sometime more than one hidden state is producing similar observations.

a. Variance in Status variable (as mentioned in table2) b. Variance in wind

c. Variance in Visibility d. Variance in temperature

Fig. 1. Variance in result when WS invoked by more than 500 parallel threads

398 W. Ahmed and Y.W. Wu

It is important to analyze relevant hidden states along with other QoS attributes
such as response time and throughput, which will further help us to predict
probability of scalability of hidden states in future.

• States responsible for generating data are hidden and unknown.

The HMM have been successfully used in pattern recognition applications[17]. The
first assumption is based on the fact that every hidden state has some special functio-
nality linked with it. For instance, sometimes it is required to connect with database to
verify certain results or call another web service or performing heavy calculations etc.
Based on the execution of a certain hidden state the system may lead to a similar
pattern of data output. As per first assumption these states can be identified by recog-
nizing execution pattern. Whereas the second assumption perfectly matches with defi-
nition of HMM, as these states are hidden and produce results in time t. Furthermore,
any hidden state can generate results when invoked during WS execution or access
from other hidden states during error propagation, so model is of ergodic type. Based
on these assumptions we have used HMM to find insight details of remote web service.

Estimating QoS attribute of WS in terms of data variance requires analyzing re-
sponse time, throughput and quality of result produced. Response time represents
duration which a web service is taking in executing some operation excluding net-
work latency and communication delay. Throughput is the amount of work done by
the web service within specified period of time. It is possible for certain hidden states
to produce similar observations despite of having different implementation. Thus for a
given time interval during various service invocations we can define feature vector
including values defined in table 3 and by considering WS description to predict
probability of implementation of hidden states. Because of difference in implementa-
tion of hidden states clear identification among feature values is required which in
machine learning is referred to as Feature Normalization [21]. These features may be
categorized in terms of data mapping, server clustering, mutated coding, calling other
web services. This will help to define initial transition and emission probabilities of

Fig. 2. Mappy variance in generating results to hidden markov model

 Probabilistic QoS Analysis of Web Services 399

Fig. 3. Training sequence

hidden states. Fig.2 shows general implementation of a web service with different
observation symbols dependent on hidden states. In our framework, status(s) (as de-
fined in table 2) can be further divided into sub categories such as sunny, rainy,
partially cloudy, and mostly cloudy. At the time user receives inconsistent data set
underlying hidden state transits to an unreliable state, labeled as Surel. Any state de-

fined in Table 3 can be transit to an unreliable state. By initializing HMM parameters
it can be ensured that the model transits to unreliable state once inconsistent data oc-
curs in the training sequence. Emission probabilities are represented by relevant hid-
den state and output value. For instance, probability of output value “Mostly Cloudy”
from hidden state “mutated coding” is represented by b_m(M). Here b represents
observation probability matrix, m shows “mutated coding and M represents output
value “Mostly Cloudy”. So we can define various parameters of HMM as:

• States: S number of states where each state will have unique output dependent
on its functionality (Fig. 2).

• Observations: Distinct output observations V i.e. categories defined in table 1,
such that output observation at time t is Ot where sequence of observation is
O= O1, O2,..., Ot

• Ai,j represents transitional probability of hidden state Si following Sj.
• Bi,jrepresents probability of hidden state generating output being produced from

state Sj.
• Initial state distribution π

States as defined in table 3 may exist in one web service or there may have at least
one or more states available. As per definition of HMM we have:

 λ = (A, B,π) (1)

3.3 Data Quality Prediction

State of WS during time interval t producing data D can be considered as vector of
probabilities that WS is in hidden state Si during time interval having observations
o={O1, O2,..., On}. Current state of WS can lead us to predict Purel (sk) of WS during kth
time interval under various operational conditions. Where Purel (sk) is the probability
of state sk that the Markov process defined by Hidden states produces data dk during
time interval k is unreliable. Current state of WS during time interval t can be com-
puted with the help of HMM i.e using VITERBI algorithm:

)(it =

1,...,2,1 nHSHSHS
Max P (HS1, HS2,…, HSn-1, HSn = i , O1, O2,..., On |)

(2)

400 W. Ahmed and Y.W. Wu

Here δt (i) represents the state of WS i.e. it represent maximum probability (compu-
ting maximum over all possible hidden states sequences) that the model went through
hidden states HS1, HS2 ,…, HSn-1 and the system is in state i at hidden state n. i.e. HSn= i
while observing O1, O2,..., On. To detect data quality one has to define valid data values
for each data element collected so that the system would know what we are measuring
against. In our framework, we are concerned only with data variance so we counted
them where independent variables had differences in values when invoked by same
input parameters by multiple threads (as shown in Fig.1). The data with maximum
count i.e. received by most of the users in parallel invocation is considered to be reli-
able. Later we linked each of the counted value with corresponding hidden state using
Eq.2. Now if we define criteria for valid data values then it can be analyzed that
which particular state is not producing data as required. However in this paper, we are
dealing only with data variance and this can be computed by verifying data values of
all independent variables available in the data as defined in Section III-A using rela-
tion below:

Rel (D) = 1 -
=0i

n (iV / kD) (3)

Here Vi represents the number of independent variable (as mentioned in table-1) in
data Dk produced during time interval k. The eq.3 can be used recursively to find data
variance in whole data D. The Rel(D) will be considered as unreliable, provided one
or more independent variable in eq.3 will have invalid value. The probability Purel(sk)
is calculated by “First Passage Time Distribution”. Let Tk be the time (known as First
Passage Time) when hidden state sk produces data Dsk then:

kT = MIN (Rel (Dsk): Sk = Surel) (4)

Where Surel represents the unreliable state, which implies hidden state Sk has produced
unreliable data Dsk during time interval k. Probability distribution among hidden
states can be computed as below:

urelP (
k

S) =
=0i

n P (kT ≤ n | jS = i) P (jS = i) s. t. j=0 (5)

Where P (Sj= i) is the probability that WS is in hidden state j at current time as com-
puted in eq.2, and P (Tk <= n | Sj = i) is the probability of going through hidden state
Surel and computing data reliability during kth time interval starting from j=0 which
can be recursively computed with the help of the Baum-Welch algorithm[19]. The
eq.5 represents probability distribution that the system produces unreliable results Surel
during nth time interval at time k which can be further scrutinized using dynamic
programming to efficiently compute for various time intervals.

3.4 Training the Model

To train the model we have used observation sequences obtained during real web
services invocations as described in similarity analysis section i.e. Section 3.1. These
sequences are first labeled as “unreliable” using Eq.3, where at least one observation

 Probabilistic QoS Analysis of Web Services 401

symbol i.e. independent variable has inconsistent value. In our framework such res-
ponses are modeled and represented by hidden state Surel as shown in Fig.2. Whenev-
er data with uncertain results is obtained, underlying state transits to unreliable state,
i.e. Surel. The hidden state Surel can be any state which is defined in Table 3. Observa-
tion sequence having uncertain values is shown in Fig.1 (b, c and d) where occurrence
of uncertainty is indicated by difference in values. Training sequences from this in-
formation can be obtained by defining ‘R’ for reliable and ‘UR’ for unreliable value
in observation sequence using the strategy defined in Section 3.4 as shown in Fig.3.
Each column in Fig.3 represents the data consistency of the WS invocations. Each
row in Fig.3 represents responses of single service invoked by 500 parallel threads;
however, for proof of concept we have shown only a few values. Then by initializing
HMM parameters in Eq.1 i.e. initial, transition and emission probabilities, such that
states representing as unreliable Surel are the only states that produce results with “UR’,
it can be ensured that model transits to unreliable state when uncertainty appears in
the training sequence.

4 Experiments and Results

Based on domain information about implementation complexity of various computing
techniques as described in table 1, initial guesses for probabilities can be exploited to:

• Adjust model parameters and determine current state of the system. Find the
relation among output value and hidden states

• Predict QoS attributes of various hidden states using training sequences based
on real data for various web services having similar functionality and select the
WS with better QoS attribute.

In our experiment we have selected two web services with higher rank as mentioned
in table-2 and invoked them using 500 parallel threads in a distributed environment.
Fig.4b and Fig.5b represent data variance of independent variables Wind and Status
(sunny, rain, cloudy, partially cloudy) respectively, as defined in table-1. Purpose of
this experiment was to use our proposed model for analyzing their QoS attribute in
terms of variance of data for selecting better web services and to predict their QoS
values for anytime in the future.

4.1 Adjusting the Model Parameters

To predict the QoS attribute of hidden states, it is necessary to train the model to get
estimated transition and emission probabilities. These values are then used in eq.2 to
compute most probable hidden state sequences. Purpose of training the model is to
find the optimal HMM parameters i.e. A, B & π such that the model best fits the train-
ing sequences. Baum-Welch algorithm a particular case of expectation-maximization
(EM) is used to train the model. It iteratively improves the basic model which pro-
vides convergence to local optima. After training the model, current and future state is
predicted using VITERBI algorithm as discussed above.

402 W. Ahmed and Y.W. Wu

b. # of records for each independent variable d. # of records emitted by each hidden state

f. Predicted records emitted by each hidden state h. Actual records emitted by each hidden state

Fig. 4. QoS attribute of Web services (WS1)

4.2 Current State

The state of component web service during time interval t is a vector of probabilities
that system is in the hidden state HSi when observation Oi is observed. VITERBI al-
gorithm is used to calculate the most probable hidden state sequence (as discussed in
section 3.3) that has generated the training sequence as shown in Fig.4 & Fig.5.
Fig.4d and Fig.5d represent the current state of various hidden states of two web ser-
vices W1 and W2 respectively. It can be analyzed that both web services produce
variance in data because of inconsistent behavior of hidden states 1 and 2. Although
these services are ranked as best by service users, even though both the services are
producing over 50% data variance when invoked in parallel with same input parame-
ters at the same time. To select better WS we further elucidated received results in
more detail i.e. which particular hidden state of both web services is producing rela-
tively better result. For instance, State1 of WS2 in Fig.5d shows that it has produced
44% of successful results whereas State1 of WS1 in Fig.4d indicates that it has pro-
duced 30% of overall successful result. This implies that if we can analyze or predict
QoS attribute of each hidden state during the nth time interval, then we can select a
better WS among the list of functionally equivalent web services.

4.3 Predicting Data Variance in Terms of Hidden States

As HMM is normally used to recognize patterns, therefore to predict behavior of the
hidden states, idea is to classify suspicious data patterns i.e. patterns with observation
symbols “UR”. This classification will indicate upcoming suspicious patterns. As per
proposed technique, data values in a training sequence are divided into equal lengths
slots. These slots having observations symbol “UR” are termed as “unreliable”.

First the model is trained using training sequences. Then based on trained HMM
current status of the hidden state’s behavior is analyzed using VITERBI algorithm.
Later, based on current state, future behavior of hidden states is predicted by calculat-
ing “first passage time distribution” into unreliable state. Fig.4 (f and h) and

 Probabilistic QoS Analysis of Web Services 403

Fig.5 (f and h) represent the predicted and actual state of hidden states of web services
WS1 and WS2 respectively. It can be observed from the predicted value of WS1 in
Fig.4f that only State1 and State3 will produce consistent results during time interval
t. Nonetheless, State2 and State4 will produce inconsistent results. These predictions
will help end users to design their system in a way that can entertain responses pro-
duced by only State1 and State3. Fig.4h shows actual values of the same web services
W1 during time interval t. It can be seen that predicted values are almost similar to
actual values except some consistent values which were also produced by State4.
However, this is a small number which can be ignored to make the system reliable.
Whereas, Fig.5f and h shows predicted and actual values of web service WS2 res-
ponses during time interval t. Predicted and actual values are almost similar in num-
bers except a marginal difference which can be ignored, however, in this case State2
and State4 have inconsistent behavior. Both the states are randomly generating con-
sistent and inconsistent results which are hard to ignore during the live execution of
the system. Therefore, it will be easy for end users to decide which particular web
service can incorporated in the system. Such as in this case study WS1 appears to be
more suitable compared to WS2. With these results it is apparent that HMM can pre-
dict probabilistic QoS attributes of remote WS in terms of data variance, for any time
interval in the future. Our model can be used to further analyze probabilistic scalabili-
ty of various hidden states under specified circumstances such as by increasing user
load or increasing communication delay.

5 Conclusion

In this paper we have explained with experiments how HMM can be used to analyze
and predict QoS attribute of a web services in terms of data discrepancy. Predicting
QoS attributes will then help end users to select a better web service among the list of
functionally equivalent web services. We have performed our experiments on real
world web services. Later, we have analyzed in detail the behavior of web services for
a different set of users having similar input parameters. Our framework gives infor-
mation about the probabilistic insight of any remote web service. It can further predict
QoS attribute of these hidden states in terms of data variance and can help to further
examine scalability of these hidden states.

b. # of records for each

independent variable

d. # of records emitted

by each hidden state

f. Predicted records

emitted by each hidden

state

h. Actual records emit-

ted by each hidden state

Fig. 5. QoS attribute of Web service (WS2)

404 W. Ahmed and Y.W. Wu

Acknowledgment. I am extremely grateful to Cesar Roberto de Souza (Federal Uni-
versity of Sao Carlos) and for his support, encouragement & proofreading of the draft
version of my paper.

References
[1] Askaroglu, E., Senkul, P.: Automatic QoS evaluation method for web services. In: 2012

IEEE Symposium on Computers and Communications, ISCC (2012)
[2] D’Ambrogio, A.: A Model-driven Approach to Describe and Predict the Performance of

Composite Services. In: WOSP 2007, Buenos Aires, Argentina, February 5-8 (2007)
[3] Yilei, Z., Zibin, Z., Lyu, M.R.: WSPred: A Time-Aware Personalized QoS Prediction

Framework for Web Services. In: 2011 IEEE 22nd International Symposium on Software
Reliability Engineering, ISSRE (2011)

[4] Zibin, Z., Yilei, Z., Lyu, M.R.: Distributed QoS Evaluation for Real-World Web Services.
In: 2010 IEEE International Conference on Web Services, ICWS (2010)

[5] Maheswari, S.: QoS Based Efficient Web Service Selection. European Journal of Scientif-
ic Research (2011)

[6] Menasce, D.A.: QoS issues in Web services. IEEE Internet Computing 6(6), 72–75 (2002)
[7] Ping, W., et al.: A Fuzzy Model for Selection of QoS-Aware Web Services. In: IEEE In-

ternational Conference on e-Business Engineering, ICEBE 2006 (2006)
[8] San-Yih, H., et al.: A probabilistic approach to modeling and estimating the QoS of web-

services-based workflows. Inf. Sci. 177(23), 5484–5503 (2007)
[9] Tran, V.X., Tsuji, H., Masuda, R.: A new QoS ontology and its QoS-based ranking algo-

rithm for Web services. Simulation Modelling Practice and Theory 17(8), 1378–1398 (2009)
[10] Xifeng, W., et al.: Ontology-Based Reliability Evaluation for Web Service. In: 2011 IEEE

35th Annual Computer Software and Applications Conference, COMPSAC (2011)
[11] Hong Qing, Y., Reiff-Marganiec, S.: A Method for Automated Web Service Selection. In:

IEEE Congress on Services - Part I (2008)
[12] Chunli, X., Bixin, L., Xifeng, W.: A Staged Model for Web Service Reliability. In: 2011

IEEE 35th Annual Computer Software and Applications Conference, COMPSAC (2011)
[13] Wei, Z., et al.: QoS-Based Dynamic Web Service Composition with Ant Colony Optimi-

zation. In: 2010 IEEE 34th Annual Computer Software and Applications Conference,
COMPSAC (2010)

[14] Vathsala, A.V., Hrushikesha, M.: Using HMM for predicting response time of web ser-
vices. In: Proceedings of the CUBE International Information Technology Conference.
ACM, Pune (2012)

[15] Leilei, C., et al.: Evaluating the Survivability of SOA Systems Based on HMM. In: Pro-
ceedings of the 2010 IEEE International Conference on Web Services. IEEE Computer
Society (2010)

[16] Rahnavard, G., Najjar, M.S.A., Taherifar, S.: A method to evaluate Web Services Anoma-
ly Detection using Hidden Markov Models. In: 2010 International Conference on Com-
puter Applications and Industrial Electronics, ICCAIE (2010)

[17] Salfner, F.: Predicting Failures with Hidden Markov Models. In: Proceedings of 5th Eu-
ropean Dependable Computing Conference (2005)

[18] Malik, Z., Akbar, I., Bouguettaya, A.: Web Services Reputation Assessment Using a Hid-
den Markov Model. In: Baresi, L., Chi, C.-H., Suzuki, J. (eds.) ICSOC-ServiceWave
2009. LNCS, vol. 5900, pp. 576–591. Springer, Heidelberg (2009)

[19] Ramage, D.: Hidden Markov Models Fundamentals (2007)
[20] Ahmed, W., Wu, Y.W.: A survey on reliability in distributed systems. Journal of Comput-

er and System Sciences (2013) ISSN 0022-0000, doi:10.1016/j.jcss.2013.02.006
[21] Hoecke, S.V.: Modeling the performance of the Web service platform using Layered

Queueing Networks. In: Proceedings of Software Engineering Research and Practice,
pp. 627–633 (2005)

C.-H. Hsu et al. (Eds.): NPC 2013, LNCS 8147, pp. 405–416, 2013.
© IFIP International Federation for Information Processing 2013

A Novel Search Engine to Uncover Potential Victims
for APT Investigations

Shun-Te Liu1,2, Yi-Ming Chen1, and Shiou-Jing Lin2

1 Department of Information Management, National Central University,
Taoyuan, Taiwan, R.O.C

2 Information & Communication Security Lab, TL, Chunghwa Telecom Co., Ltd.
Taoyuan, Taiwan, R.O.C

{rogerliu,sjlin}@cht.com.tw,
cym@cc.ncu.edu.tw

Abstract. Advanced Persistent Threats (APT) are sophisticated and target-
oriented cyber attacks which often leverage customized malware and bot
control techniques to control the victims for remotely accessing valuable infor-
mation. As the APT malware samples are specific and few, the signature-based
or learning-based approaches are weak to detect them. In this paper, we take a
more flexible strategy: developing a search engine for APT investigators to
quickly uncover the potential victims based on the attributes of a known APT
victim. We test our approach in a real APT case happened in a large enterprise
network consisting of several thousands of computers which run a commercial
antivirus system. In our best effort to prove, the search engine can uncover the
other unknown 33 victims which are infected by the APT malware. Finally, the
search engine is implemented on Hadoop platform. In the case of 440GB data,
it can return the queries in 2 seconds.

1 Introduction

The cyber attacks become more and more sophisticated. Recently, this kind of target-
oriented, covered and long-term attacks is labeled as advanced persistent threat (APT)
[1-5]. Much research considers that APTs are the sophisticated and target-oriented
cyber attacks which often leverage customized malware and bot control techniques to
remotely control the victims.[1-5]. The victims will become the stepping stones for
the attackers to access valuable information inside the enterprise network [6]. There-
fore, the sooner we find the APT malware-infected computers, the smaller the loss
caused by the APTs.

HTTP requests log is a valuable data for determining APT malware [7]. As Web-
related protocols are allowed almost everywhere, the APT malware is mostly
equipped with remote-controlled ability under the HTTP-based command and control
(C&C) infrastructure to facilitate the attacks on the intranet [8-10]. Although much
research can detect bot-infected computers [11, 12] or detect bot behavior [13-16],
they require more bot samples to train a feasible model. This is a big problem to these
approaches because the APT malware samples are few and often customized.

406 S.-T. Liu, Y.-M. Chen, and S.-J. Lin

Fig. 1. The working concept of the search engine

In this paper, rather than detecting the APT malware, we take a more flexible strat-
egy: developing a search engine for searching the potential victims to respond to
APTs quickly. The working concept of our idea is shown in Fig 1. Each computer’s
HTTP requests are logged by proxy and sent to the search engine periodically. Once
an APT malware is found, by giving the attributes of the malicious HTTP requests
invoked by the APT malware, the search engine can search and rank the potential
C&C servers and malware-infected computers from the historical HTTP requests.
This approach is very useful for the APT investigation. We test our approach in a real
APT case happened in a large enterprise network consisting of several thousands of
computers, which run a commercial anti-virus system. The three known C&C servers
are ranked in top 10 of the web sites. Meanwhile, in our best effort to prove, the
search engine can find the other 18 C&C servers and the other 33 APT malware-
infected computers. In addition, to process the huge volume of proxy logs quickly, the
search engine is implemented on Hadoop platform. In the case of 440GB HTTP logs,
it can return the queries in 2 seconds.

This paper contributes to network security in the following areas:

1. Propose a rank mechanism to rank the potential APT victims and C&C servers.
2. Develop a search engine on Hadoop platform to process the huge volume of

HTTP requests.
3. Prove the usefulness of our approach in a real APT investigation case.

The organization of this paper is described as follows: Section 2 describes the pre-
vious research in APTs and botnet detection. In Section 3, we propose a ranking me-
chanism to rank the websites. Section 4 describes the prototype of the search engine.
Section 5 shows experimental results. Section 6 will conclude and describe the future
work.

2 Previous Research

2.1 APT Characteristics

As the name implies, advanced persistent threat (APT) uses highly targeted method
persistently for compromising the data security, but the definition of APT in academic

 A Novel Search Engine to Uncover Potential Victims for APT Investigations 407

research is still unclear today. To understand that, we extract the APT characteristics,
as shown in Table 1, described in the reports and the studies according to intrusion
phases [17]. In reconnaissance phase, the targets are highly profiled including organi-
zation, people and computer environments before being attacked. The attackers do
their best efforts to find out the weakness of their targets. In gaining access phase, the
APT attackers use not only uncovered software vulnerabilities (zero day exploits) but
also human weakness (social engineering attacks) to compromise the targets. This
means that APT almost can bypass the conventional signature-based detection ap-
proaches. In maintaining access phase, the attackers often leverage bot control tech-
niques to control the victims in the target’s enterprise network. Finally, the objectives
of the APT attackers are valuable information of their targets.

The research [18] analyzed a large corpus of targeted attacks identified by Syman-
tec during the year 2011. The results show that only 5% malware used in APTs were
identified by antivirus software. This means that preventing the APTs in gaining
access phase is very difficult, especially when the zero day exploits are used in the
attacks. Once the attack success, the signature-based intrusion detection approaches
are often fail because they can’t recognized the malware used. For these reasons, the
reaction of APTs becomes more and more important for the enterprises to reduce the
damages. Therefore, we focus on the characteristics of APT in maintaining phase and
give APT a definition as follows:

Table 1. The APT characteristics extracted from the studies, where phase 1 is reconnaissance,
phase 2 is gaining access, phase 3 is maintaining access and phase 4 is achieve objectives

Phase Characteristics [19] [20] [18] [4] [21] [5] [22] [9] [23] [8] [24]
1 Target-oriented V V V V V V V

Highly profile V V V V V V V
2 Zero day

exploit
V V V V V V V V V

Coordinative V V V V V V V V V
Social
engineering

V V V V V V V V

Combine sever-
al attack skill

V V V V V V V V V

3 Slow and
stealthy

 V V

Remote access V V V V V V V V V
Customized
malware

V V V V V V V V V V

Command and
control server

V V V V V V V V

Encrypt control
traffic

V V V V

4 Valuable
information

V V V V V V V V V V

SCADA control V V V
Underground
economy

 V V

Political V

408 S.-T. Liu, Y.-M. Chen, and S.-J. Lin

APT is a sophisticated and target-oriented cyber attack which often leverage cus-
tomized malware and bot control techniques to remotely access valuable information.

This definition indicates a key point that the APT attackers must maintain the
access channels to control the victims remotely. In the cases of APT incidents, the
investigations point out that these access channels are constructed by bot control
techniques. The victims become the stepping stones for the attackers to access the
valuable information inside the enterprise network [6]. Therefore, bot detection
approaches may be applied to APT detection and investigation.

2.2 Bot Attributes and Detection

Based on the control methods, bot can be divided into several types such as IRC and
HTTP bot. As web-related protocols are allowed almost everywhere, the APT mal-
ware is often equipped with remote- controlled ability under the HTTP-based C&C
infrastructure to facilitate the attacks on the intranet[8, 9, 19]. Therefore, the HTTP
bot detection approaches may be useful for detecting the APT malware.

In [11], the authors leverage the IRC nickname to detect bot contaminated hosts.
They can also detect the HTTP bot by the common strings in URL of the bot servers.
Based on the observation of the pre-programmed activities related to C&C, Botsniffer
[16] capture the spatial-temporal correlation in network traffic and utilize statistical
algorithms to detect botnets. Botzilla [13] capture malware traffic to detect the “phon-
ing home” behavior. The phoning home traffic will be tokenized to generate the sig-
nature for detecting the malware-infected computer. In [15], the authors present a
malware clustering system. They analyze the structural similarities among malicious
HTTP traffic and automatically generate HTTP-based malware signatures for further
detection. In [14], the authors focus on detecting C&C channels masquerading as web
traffic. They use 2v-gram based anomaly detection approach to distinguish the C&C
traffic from web traffic. The summary of these studies is shown in Table 2.

Table 2 shows that the above approaches focus on detection rather than investiga-
tion. Meanwhile, except Botzilla, these approaches require a lot of malware samples
to train a feasible model for detection. This is a big problem for these approaches
because the APT malware samples are often few and specific. Furthermore, Botzilla
leverages network level traffic for bot detection. It’s almost impossible to retrospect
the data for APT investigation because the size of historical network level traffic is
much larger than that of application level traffic. Therefore, it is required a new ap-
proach to deal with this problem.

Table 2. The summary of HTTP bot detection approaches

Item [11] [16] [13] [15] [14]
Objective Bot

detection
Bot
detection

Bot
detection

Bot
detection

C&C
detection

Traffic level Application Application Network Application Application
Match function RE NG NG NG or RE NG
Require many-
malware samples

Yes Yes No Yes Yes

RE: Regular Expression NG: N-Gram.

 A Novel Search Engine to Uncover Potential Victims for APT Investigations 409

3 The Ranking Mechanism

3.1 Overview

In the enterprise network, HTTP proxy acts as an intermediary for HTTP requests
from clients seeking resources from the websites. The structure of the logged HTTP
requests is illustrated in Fig 2. We leverage HTTP logs to rank the websites by the
probability of being C&C servers. The probability is determined based on two obser-
vations: 1) C&C servers often contain much few information than legitimate websites.
Therefore, the higher diversity of a web site is, the higher probability it is a legitimate
server, and vice versa, 2) to pretend the user behavior, the malware often active-
ly invokes HTTP requests to the C&C servers to acquire the commands for the further
actions. Therefore, to rank the websites, two scores are introduced: reversed diversity
score (d) and continuity score (p) of a website.

3.2 Reversed Diversity Score

Diversity score is a quantitative measure that increases when the number of types into
which a set of entities has been classified increases. To estimate the diversity score of
a website, the entities can be file types of the web pages. However, the logs only pro-
vide the web pages requested by the computers, not all the web pages of a website. In
this case, as it looks likely the sample survey in ecology and information science, the
popular diversity index Shannon-Wiener (H’) [25] are used to determine the diversity
score of a website.

Let HTTP requests R consist of a set H of hostname, a set G of web pages, a set F
of file types and a set S of source IP. Let the number of web pages and number of web
pages with file type j of a website i be Gi and gi,j. The diversity of the website i is
calculated by Shannon-Wiener (H’) as follows:

1

' log
F

i j j
j

H f f
=

= − , where fj = gi,j/Gi. (1)

H’ value is ranged from 0 to 4.5. As the higher diversity often means higher probabili-
ty of being a legitimate website, the probability (d) of a website being a C&C server is
calculated by reversing the diversity:

4.5 '

4.5
i

i

H
d

−= (2)

For the example of Table 3, the H’ value and the reversed diversity score d of the
three websites are:

H’1=-(0.99/(log0.99) + 0.01(log0.01)) = 0.056 d1 = (4.5-0.056)/4.5 = 0.987
H’2=-(0.5/(log0.5) + 0.5(log0.5)) = 0.693 d2 = (4.5-0.693)/4.5 = 0.846
H’3=-(0.33/(log0.33)+0.33/(log0.33)+0.33/(log0.33))= 1.1 d3 = (4.5-1.1)/4.5 = 0.755

410 S.-T. Liu, Y.-M. Chen, and S.-J. Lin

Fig. 2. HTTP log structure, where t is the timestamp, s is source IP, m is method, h is hostname,
p is protocol, n is port, l is path and e is web page’s file type

Table 3. An example of three websites that have three file types and the number of
corresponding files

Website HTML ASP JPG
W1 99 1 0
W2 50 50 0
W3 33 33 33

3.3 Continuity Score

The continuity score p measures how often a website is connected by a computer. It
increases when the frequency of the HTTP requests to a website increases. In this
paper, we leverage the histogram approach to calculate the continuity score of a
websites.

Let a period of time be L, which is divided into k bins. The count function Cs(i,j) is
equal to 1 if the website i appears in the HTTP requests, which is located on j bin and
invoked by computer s , otherwise it is equal to 0. Let Ms be the number of non-zero
bins on computer s. The continuity score of website i is defined as follows:

,
1

 ,where = (,)
k

i
s i i s

js

C
p C C i j

M =

= (3)

For the example of Table 4, the timeline is divided into six parts. As the computer
has no any HTTP request in t5, Ms is equal to be 5. The continuity score of the
websites is:

ps,1 = (1+1+0+0+0)/5 = 0.4
ps,2 = (1+1+1+1+0)/5 = 0.8
ps,3 = (0+0+1+1+1)/5 = 0.6

3.4 Ranking the Websites

The websites are ranked by the probability of being C&C servers. The higher the
reversed diversity score and continuity score of a website, the higher probability it is a

Table 4. An example of calculating continuity score

W t1 t2 t3 t4 t5 t6
W1 1 1 0 0 0 0
W2 1 1 1 1 0 0
W3 0 0 1 1 0 1

 A Novel Search Engine to Uncover Potential Victims for APT Investigations 411

Fig. 3. Example of HTTP requests

C&C server. Meanwhile, the continuity score of a website is provided from the com-
puters that have connected to it. We average them to be the final continuity score of a
website. Therefore, the ranking score of a website i is defined as:

,
1

() / '
S

i d i p s i
s

W w d w p S
=

= ⋅ + ⋅ (4)

where wd and wp are the weight of reversed diversity score and continuity score and S’
is the number of the non-zero ps,i.

Fig. 3 is an example of HTTP requests, three source IP S1, S2 and S3 connect to
websites H1, H2, H3 and H4, each of which reversed diversity score is d1, d2, d3, and d4.
As S1 connects to website H1 and H3, it will give the continuity score p1,1 and p1,3 to
H1 and H3 individually. S2 connects to H1, H2 and H3, so S2 will give three continuity
scores to the three websites. Therefore, the ranking score of H1 and H2 will be:

1 1 1,1 2,1() / 2d pW w d w p p= ⋅ + ⋅ +

2 2 2,2() /1d pW w d w p= ⋅ + ⋅

4 Design and Implementation

4.1 Design Overview

To realize the goal of responding to APTs quickly, two design issues are considered:
1) how to calculate the ranking score by E.q (4) quickly from the huge volume of
HTTP logs (more than 30 GB per day); 2) how to extract the hit HTTP requests
quickly when searching. To solving the first issue, we implement the ranking mechan-
ism as MapReduce [26] jobs on Hadoop platform [27]. The second issue is solved by
Lucene [28]. The high level working architecture of the system is shown in Fig. 4.

At first, the HTTP logs are duplicated, one for indexing and another for ranking.
For indexing, the logs are filtered by a white list (known as legitimate website), the
residual logs are indexed as the structure in Fig. 2 by Lucene with the keywords
“time,” “ip,” “method,” “protocol,” “hostname,” “port,” “path,” and “type”. The que-
rying mechanism is also completed by Lucence. The user can input the query state-
ment with the keywords to look for searching the specific HTTP requests. Meanwhile,
hostname and path provides “begins with,” “ends with,” “contains,” and “equal to”
operators, the other keywords only provide an “equal to” operator.

412 S.-T. Liu, Y.-M. Chen, and S.-J. Lin

Fig. 4. High level working architecture

When users input a query to the system, the hostnames of the hit HTTP requests
are extracted and ranked by the corresponding website’s ranking score, and the sys-
tem then shows the ranked results to the users.

4.2 The MapReduce Jobs

The ranking scores are calculated by the MapReduce jobs. In step 1, the map function
extracts hostname, path and file type from the logs to be the keys. The reduce function
in step 2 sorts and removes the duplicated keys. In step 3, as the files with the same
file name but located in different directory are considered different files, the reduce
function makes hostname and file type as the key, and the value starts from 0 and is
added by one when reducer reads a record with the same key. The final value will be
the number of files with the same file types of a websites. The reduce function in step
4 calculates the reversed diversity score of the websites by E.q (2) and output the
results.

In step 5, the map function extracts timestamp, source IP and hostname to be the
key, where timestamp is divided by the length of bin as described in section 3.3. The
reduce function in step 6 sorts and removes the duplicated keys. In step 7, the reduce
function ignores the hostname and makes timestamp and source IP as key to count the
number of non-zero size bins Ms. Step 8 is another branch from step 6, it makes
source IP and hostname as the key and calculates Ci. Step 9 refers to the outputs of
step 7 and step 8 to calculate the continuity score of a website by E.q (3). Finally, step
10 calculates the ranking score by E.q (4) based on the results of step 4 and step 9.

5 Experiments and Evaluation

5.1 The Experiments Setup

To evaluate the effectiveness of our approach, we collected the proxy logs of the en-
terprise network consisting of several thousands of computers for two weeks, from
October 11 to October 24, 2011, as the experimental data. The attributes of the expe-
rimental data are shown in Table 5. The experimental data consists of three C&C
servers and the HTTP requests of five malware-infected computers which were found
in December 14, 2011. Two reasons make us believe this is an APT attack: 1) the
computer is a stepping stone and the footprints can be traced back to 8 months ago

 A Novel Search Engine to Uncover Potential Victims for APT Investigations 413

Table 5. The attributes of the experimental data

Data Size Source IP Hostname HTTP requests

440GB 19,633 267,962 273,195,451

and 2) the malware has the similar abilities, such as remote access, key logger, packet
forward, DLL injection and so on, as described in [1, 6, 8, 29]. Meanwhile, as we
don’t know how many computers were infected actually in the data, in our best effort,
we investigate all potential victims detected by our approach manually. The investiga-
tions are used for evaluating the accuracy of the search engine.

Finally, the performance of the search engine is a key point in this study. Five
servers, one for the Hadoop master and four for the slaves, ran on CentOS 5.4 with a
2.26 GHz Intel Xeon CPU and 12 GB RAM. The version of Hadoop used was 1.0.1
and that of Lucene was 3.5. The log files for two weeks were fed to our system to
evaluate the performance of indexes building, ranking scores calculation and query.

5.2 Determine the Weights

The weight wd and wp in Eq. (4) should be determined at first. We select the first
week’s logs to observe the reversed score and continuity score of the websites. We set
L to be one week and k to be 1 hour. Fig. 5 depicts the distribution of the reversed
diversity score and continuity score. Over 70% website’s reversed diversity score is
between 1~0.9. This is because 1) proxy servers can’t log the details of HTTPS re-
quests, the reversed diversity scores of all the HTTPS websites are equal to 1 and 2)
some websites are connected for only a few times, so their reversed diversity scores
are also equal to 1.Therefore, we ignored the HTTPS websites and the lower traffic
websites (less than 10 HTTP requests).

The continuity score of most websites is lower than 0.1 (over 94%). The continuity
score of the known C&C servers is between 0.8~1.0. However, the number of the
websites with continuity score between 0.9 and 1.0 is larger than that of the websites
with continuity score between 0.8 and 0.9. It is because some websites are connected

Fig. 5. The distribution of the reversed diversity score and continuity score

414 S.-T. Liu, Y.-M. Chen, and S.-J. Lin

by a few clients and their IP also only connect to these websites. To deal with this
problem, we remove the continuity score which is given from the source IPs with
Ms<12, which means that in the two weeks the hours that a computer invoked HTTP
requests are less than 12. Finally, as the impact of continuity score is larger than re-
versed diversity score, we set wd to be 0.2 and wp 0.8 in the further experiments.

5.3 Experiment Results

To evaluation the accuracy of the search engine, the experimental data is fed to the
search engine. We set L to be two weeks and k to be one hour. The known malicious
HTTP request rm:=<m=GET, p=http, n=443, l=/FC001/xxx, e=- > invoked by APT
malware are the references of the queries. To form the queries, we fix method, proto-
col and port and give three statements, where Q1 = path contains “FC001”, Q2= type
is equal to “-“ and Q3= any path and type. The ranking results in Table 6 show that the
search engine can find the three known C&C servers by Q1. Meanwhile, it also finds
the other 6 unknown C&C servers. According to the found C&C servers, we find the
other 11 potential victims which are real victims proved by investigations.

The search engine returns more websites by Q2. Since the precise rate of being
C&C server in top 20 websites is lower than the results by Q1, Q2 finds the other four
C&C servers. The legitimate websites in top 20 are consisted of three types: web
game, availability test of a website and flash video. In the test of Q3, the search engine
returns more websites than Q1 and Q2. Notably, the precise rate in top 20 websites of
Q3 is higher than that of Q2. Meanwhile, the other five C&C servers are found by Q3.
This is because a new APT malware invokes the HTTP request r’m:=<GET, http, 443,
/90ad.asp, asp>, which is unknown before the experiments. For further investigation,
33 of 38 potential victims are proved being infected by the unknown malware.

In performance evaluation, the results in Table 7 show that the execution time of
building index and calculating ranking score is more than 21 hours. This doesn’t in-
clude the time for uploading log files to the servers. On average, the daily logs can be
processed in 3.5 hours. We also test the system responding time by above three que-
ries. The results show that the three queries can be completed in 2 second. The execu-
tion time of Q2 and Q3 are longer than that of Q1. This is because the more websites
hit, the more time the search engine requires to display them.

Table 6. The ranking results of the three queries

Queries Q1 Q2 Q3
Number of hit websites
(excluding the three known C&C servers)

9 39 98

The rank of the three known C&C servers 1, 2, 7 1, 2, 7 1, 2, 10
The number of C&C servers in top 20 websites 9 13 18
The precise rate of C&C servers in top 20 websites 100% 65% 90%
The false positive rate of C&C servers in top 20 websites 0% 35% 10%
Number of potential victims 11 48 38
Number of real victims 11 24 33

 A Novel Search Engine to Uncover Potential Victims for APT Investigations 415

Table 7. The performance of the search engine

MapReduce job Execution Time
Building index 21 hours
Calculating ranking score 27 hours
Querying by Q1 < 0.6 second
Querying by Q2 < 1.6 second
Querying by Q3 < 2 second

6 Conclusion

This paper develops a search engine on Hadoop platform to search potential C&C
servers and victims for APT investigation. In the real APT investigation, we prove
that the search engine can rank the known C&C servers in top 10 websites. The
search engine also finds out the other C&C servers and potential victims. Meanwhile,
the responding time of each query is less than 2 second.

The future work may include: 1) if the malware communicates with the C&C server
through HTTPS, our approach may fail to find them. The statistical-based approaches
may be a chance to improve the ranking mechanism; 2) the fast flux botnet changes
the domain name frequently, so the websites may be ignored because of fewer HTTP
requests. The ranking mechanism may be improved by introducing other supplemen-
tal attributes, such as TTL value or domain name location.

Acknowledgments. The authors would like to thank reviewers' helpful comments.
This research is partially supported by the Information & Communication Security
Lab, Telecommunication Laboratories, Chunghwa Telecom co., Ltd, the National
Science Council of Taiwan, ROC under Grant No. NSC101-2218-E-008-004.

References

1. Daly, M.K.: The Advanced Persistent Threat. In: USENIX (ed.) 23rd Large Installation
System Administration Conference. USENIX, Baltimore (2009)

2. http://www.damballa.com/knowledge/
advanced-persistent-threats.php

3. HPGary, inc.,
http://www.issa-sac.org/info_resources/ISSA_20100219_HBGary_
Advanced_Persistent_Threat.pdf

4. Juels, A., Yen, T.F.: Sherlock Holmes and The Case of the Advanced Persistent Threat. In:
Proceedings of the 5th USENIX Conference on Large-Scale Exploits and Emergent
Threats, p. 2. USENIX Association, San Jose (2012)

5. Winder, D.: Persistent and Evasive Attacks Uncovered. Infosecurity 8, 40–43 (2011)
6. McAfee, http://www.mcafee.com/us/resources/white-papers/

wp-operation-shady-rat.pdf
7. Liu, S.-T., Chen, Y.-M., Hung, H.-C.: N-Victims: An Approach to Determine N-Victims

for APT Investigations. In: Lee, D.H., Yung, M. (eds.) WISA 2012. LNCS, vol. 7690,
pp. 226–240. Springer, Heidelberg (2012)

8. SANS Institute,
http://www.sans.org/reading_room/whitepapers/malicious/
detailed-analysis-advanced-persistent-threat-malware_33814

416 S.-T. Liu, Y.-M. Chen, and S.-J. Lin

9. Li, F., Lai, A., Ddl, D.: Evidence of Advanced Persistent Threat: A case study of malware
for political espionage. In: 2011 6th International Conference on Malicious and Unwanted
Software, pp. 102–109. IEEE, Fajardo (2011)

10. Liu, S.T., Chen, Y.M.: Retrospective Detection of Malware Attacks by Cloud Computing.
In: 2010 International Conference on Cyber-Enabled Distributed Computing and Know-
ledge Discovery, pp. 510–517. IEEE, Huangshan (2010)

11. Goebel, J., Holz, T.: Rishi: identify bot contaminated hosts by IRC nickname evaluation.
In: Proceedings of the First Conference on First Workshop on Hot Topics in Understand-
ing Botnets, p. 8. USENIX Association, Cambridge (2007)

12. Brustoloni, J., Farnan, N., Villamarin-Salomon, R., Kyle, D.: Efficient Detection of Bots in
Subscribers’ Computers. In: IEEE International Conference on Communications, pp. 1–6.
IEEE, Dresden (2009)

13. Rieck, K., Schwenk, G., Limmer, T., Holz, T., Laskov, P.: Botzilla: detecting the “phoning
home” of malicious software. In: Proceedings of the 2010 ACM Symposium on Applied
Computing, pp. 1978–1984. ACM, Sierre (2010)

14. Warmer, M.: Detection of web based command & control channels. Mathematics and
Computer Science. University of Twente (2011)

15. Perdisci, R., Lee, W., Feamster, N.: Behavioral clustering of HTTP-based malware and
signature generation using malicious network traces. In: Proceedings of the 7th USENIX
Conference on Networked Systems Design and Implementation, p. 26. USENIX Associa-
tion, San Jose (2010)

16. Gu, G., Zhang, J., Lee, W.: BotSniffer: Detecting botnet command and control channels in
network traffic. In: Proceedings of the 15th Annual Network and Distributed System Secu-
rity Symposium, San Diego, CA (2008)

17. Larson, R.E.: CCSP: Cisco Certified Security Professional Certification All-in-One Exam
Guide. McGraw Hill, New York (2003)

18. Thonnard, O., Bilge, L., O’Gorman, G., Kiernan, S., Lee, M.: Industrial Espionage and
Targeted Attacks: Understanding the Characteristics of an Escalating Threat. In: Balzarotti,
D., Stolfo, S.J., Cova, M. (eds.) RAID 2012. LNCS, vol. 7462, pp. 64–85. Springer, Hei-
delberg (2012)

19. Sood, A., Enbody, R.: Targeted Cyber Attacks - A Superset of Advanced Persistent
Threats. IEEE Security & Privacy 99, 1–3 (2012)

20. Sood, A., Enbody, R., Bansal, R.: Cybercrime: Dissecting the State of Underground Enter-
prise. IEEE Internet Computing 99, 1 (2012)

21. Baize, E.: Developing Secure Products in the Age of Advanced Persistent Threats. IEEE
Security & Privacy 10, 88–92 (2012)

22. Tankard, C.: Advanced Persistent threats and how to monitor and deter them. Network Se-
curity, 16–19 (2011)

23. Gordon, T.: APTs: a poorly understood challenge. Network Security, 9–11 (2011)
24. Dempsey, K., Chawla, N.S., Johnson, A., Johnston, R., Jones, A.C., Orebaugh, A., Scholl,

M., Stine, K.: Information Security Continuous Monitoring (ISCM) for Federal Informa-
tion Systems and Organizations. National Institute of Standards and Technology U.S. De-
partment of Commerce, U.S.A. (2011)

25. Jost, L.: Entropy and diversity. Oikos 113, 363–375 (2006)
26. Dean, J., Ghemawat, S.: MapReduce: Simplified data processing on large clusters. Com-

munications of the ACM 51, 107–113 (2008)
27. http://hadoop.apache.org/
28. http://lucene.apache.org
29. SANS Technology Institute,

https://www.sans.edu/student-files/projects/
JWP-Binde-McRee-OConnor.pdf

Author Index

Ahmed, Waseem 393

Bai, Yuebin 1

Cai, Ye 155
Cao, Jian 71
Cao, Yang 1
Chen, Gang 368
Chen, Jianhai 118
Chen, ShuMing 39
Chen, Xianchu 130
Chen, Yali 308
Chen, Yi-Ming 405
Chen, Yingwen 322
Cheng, Baolei 61, 232
Chu, Wanming 179
Cui, Jianqun 83

Dai, Weiqi 368
Dang, Ping 83
Deng, Yuhui 94
Ding, Chen 13

Fan, Jianxi 61, 232, 332
Feng, Kai 143

Gao, Chengxi 106
Gao, Jiaquan 298
Geng, Yang 269
Gong, Yili 143
Guo, Dong 356
Guo, Jun 269

He, Guixia 298
He, Qinming 118
He, Yukun 356
Hsu, Ching-Hsien 245
Huang, Chunming 269
Huang, Dawei 118
Huang, Min 106
Huang, Neng 49
Huang, Wei 143
Huang, Yuan-Shao 245
Huo, Yuanhong 27

Ji, Weixing 27
Ji, Yuede 356
Jiang, Guiyuan 194
Jin, Hai 49, 344, 368

Kishanthan, T. 380
Kong, Chang 155

Li, Bo 298
Li, Minglu 71
Li, Qiang 356
Li, Yamin 179
Lin, Shiou-Jing 405
Lin, Xiao-Hui 155
Lin, Zhen 284
Liu, Bingyi 83
Liu, Guoqiang 155
Liu, Lei 13
Liu, Peng 269
Liu, Sheng-Hui 245
Liu, Shun-Te 405
Liu, Wei 39
Liu, Wenjun 61, 332
Liu, Xiaofeng 207
Liu, Yi 27, 308
Lu, Lishan 220
Luo, Qiuming 155

Ma, Wentao 143
Madola, D.T.H.V. 380

Nei, Lei 83
Ning, Xi 39

Pan, Xiaohui 257
Peng, Junjie 130, 284
Perera, H.A.S. 380
Perera, K.D.A.K.S. 380
Perera, Srinath 380

Qian, Depei 308
Qian, Ziqiang 167
Qu, Peng 167

Ruan, Li 284

418 Author Index

Shao, Zhiyuan 49
Shi, Feng 27
Shu, Wei 257
Sun, Jizhou 194
Sun, Zhenxi 1

Walpola, Malaka 380
Wang, Hongwei 167
Wang, Songyang 1
Wang, Weidong 269
Wang, Xi 61, 232, 332
Wang, Xingwei 106
Wang, Yan 61
Wang, Yizhuo 27
Wang, Yonghui 308
Wu, Jigang 194
Wu, Jin 308
Wu, Libing 83
Wu, Min-You 257
Wu, Shuang 118
Wu, Yajuan 207
Wu, Yong Wei 393

Xia, Geming 322
Xiao, Limin 130, 284
Xie, Bo 322
Xie, Junjie 94

Xu, Ming 322
Xu, Shubin 1

Yang, Jiwen 232
Yang, Mei 269
Yao, Dezhong 344
Yao, Guangchao 284
Yao, Yan 71
Yu, Chen 344
Yu, Kun-Ming 245

Zhang, Kai 39
Zhang, Qing 143
Zhang, Shukui 332
Zhang, Tao 257
Zhang, Xinwei 308
Zhang, Youhui 167
Zhang, Zhenzhong 130
Zhao, Youjian 207
Zheng, Weimin 167
Zheng, Yao 284
Zhou, Jiehan 344
Zhou, Ke 94
Zhou, Li-Wei 245
Zhou, Shuming 220
Zhou, Yuanyuan 155
Zhu, Liangwei 118
Zou, Deqing 368

	Preface
	Organization
	Table of Contents
	Session 1: Parallel Programming and Algorithms
	A Virtual Network Embedding Algorithm Basedon Graph Theory
	1 Introduction
	2 Related Work
	3 Network Model and Problem Description
	3.1 Substrate Network Description
	3.2 Resources of Substrate Network
	3.3 Network Description
	3.4 VN Embedding Problem Description
	3.5 Objectives

	4 Algorithms of VN Embedding
	5 Performance Evaluations
	5.1 Simulation Environments
	5.2 Result Analysis

	6 Conclusions and Future Work
	References

	Access Annotation for Safe Program Parallelization
	1 Introduction
	2 Access Annotation
	2.1 The Execution Model
	2.2 Data Copy and Merge
	2.3 Access Annotation

	3 Correctness Checking
	3.1 Semantics Checking
	3.2 Determinism Checking

	4 Discussion
	5 Evaluation
	6 Related Work
	7 Summary
	References

	Extracting Threaded Traces in SimulationEnvironments
	1 Introduction
	2 Extracting Threaded Traces in Simulation Environments
	2.1 Basic Idea
	2.2 How to Obtain Traces
	2.3 Instruction Patterns

	3 Evaluation
	3.1 Evaluation Method
	3.2 Results

	4 Related Work
	5 Conclusion
	References

	A Fine-Grained Pipelined Implementation of LUDecomposition on SIMD Processors
	1 Introduction
	2 SIMD Architecture
	3 LU Decomposition
	4 Fine-Grained Pipelined LU Decomposition
	5 Experiment Results
	6 Conclusions
	References

	FRESA: A Frequency-Sensitive Sampling-BasedApproach for Data Race Detection
	1 Introduction
	2 Motivation
	3 FRESA Algorithm
	3.1 Frequency Statistics
	3.2 Adaptive Sampling
	3.3 Theoretical Accuracy and Slowdown

	4 Performance Evaluation
	4.1 Implementation
	4.2 Effectiveness of Data Race Detection
	4.3 Time and Space Overheads

	5 Related Work
	6 Conclusions and Future Work
	References

	One-to-One Disjoint Path Covers in DCell
	1 Introduction
	2 Preliminaries
	3 MainResults
	4 Conclusions
	References

	Session 2: Cloud Resource Management
	A Network-Aware Virtual Machine Allocation in CloudDatacenter
	1 Introduction
	2 Related Work
	3 VM Allocation Problem in Cloud Datacenters
	4 VM Allocation Algorithm
	4.1Problem Formulation
	4.2 MCNVMA Algorithm
	4.3 Example and Analysis

	5 Evaluation
	5.1 Experiment Settings
	5.2 Experiment Results

	6 Conclusions and Future Work
	References

	Research on the RRB+ Tree for Resource Reservation
	1 Introduction
	2 Related Works
	3 The RRB+ Tree
	3.1 Tree Node Structure
	3.2 Algorithms

	4 Comparative Experiments
	4.1 The Loop Time Slot Array
	4.2 Experimental Environment
	4.3 Results and Analysis

	5 Conclusions
	References

	Totoro: A Scalable and Fault-Tolerant Data CenterNetwork by Using Backup Port
	1 Introduction
	2 Totoro Interconnection Network
	2.1 Totoro Architecture
	2.2 Totoro Building Algorithm

	3 Totoro Routing
	3.1 Totoro Routing Algorithm (TRA)
	3.2 Totoro Broadcast Domain (TBD)
	3.3 Totoro Fault-Tolerant Routing (TFR)

	4 Experiment Evaluation
	4.1 Evaluating Path Failure
	4.2 Evaluating Network Structure

	5 Conclusion
	References

	A Cloud Resource Allocation Mechanism Based on Mean-Variance Optimization and DoubleMulti-Attribution Auction
	1 Introduction
	2 System Framework
	3 Auction Model
	3.1 Resource Provider
	3.2 Resource Consumer
	3.3 Auction Organizer

	4 Price Prediction
	4.1 SVM Algorithm
	4.2 Price Prediction Method Based on SVM Algorithm

	5 Multi-Attribution Processing
	5.1 BP Neural Network Algorithm
	5.2 Multi-Attribution Processing Method Based on BP Neural Network Algorithm

	6 Resource Allocation
	6.1 MVO Algorithm
	6.2 Resource Allocation Based on MVO Algorithm

	7 Simulation and Evaluation
	7.1 The Comparison of Resource Utilization Rate of Resource Providers
	7.2 The Comparison of the Amount of Resource Consumers Whose Demands Are Satisfied
	7.3 The Comparison of the Execution Time

	8 Conclusion
	References

	ITC-LM: A Smart Iteration-Termination CriterionBased Live Virtual Machine Migration
	1 Introduction
	2 Background and Motivation
	2.1 Terminating Conditions
	2.2 The Problems of Common Terminating Conditions

	3 Algorithm Design
	3.1 Terminating Condition Based on Remaining Dirty Pages
	3.2 Iteration-Termination Criterion
	3.3 ITC-LM Algorithm

	4 Evaluation
	4.1 Experimental Environment
	4.2 Overview of Workload
	4.3 Experiment Results

	5 Related Work
	6 Conclusions and Future Work
	References

	A Scheduling Method for Multiple Virtual MachinesMigration in Cloud
	1 Introduction
	2 Related Work
	3 Problem Analysis and Formulation
	3.1 Analysis of Multiple Virtual Machines Migration Problem
	3.2 Formal Description of the VM Schedule Problem
	3.3 The VM Scheduling Method

	4 Design and Implementation
	4.1 Host Selection Algorithm for Virtual Machine
	4.2 The Migration Order and Parallelization of Multiple VMs Migration

	5 Experiment and Evaluation
	5.1 Verify the Effectiveness of Our Algorithm
	5.2 Verify the Versatility of Our Algorithm

	6 Conclusion and Future Work
	References

	Session 3: Parallel Architectures
	Speeding Up Galois Field Arithmeticon Intel MIC Architecture
	1 Introduction
	2 Related Work
	3 Erasure Codes and Galois Fields Arithmetic
	4 512-Bit SIMD Instructions
	5 Galois Field Arithmetic on MIC
	5.1 Calculating yA in GF(24)
	5.2 Calculating yA in GF(28)
	5.3 Calculating yA in GF(216)
	5.4 Calculating yA in GF(232)

	6 Performance Evaluation
	7 Conclusion and Future Work
	References

	Analyzing the Characteristics of Memory Subsystemon Two Different 8-Way NUMA Architectures
	1 Introduction
	2 Experimental Setup
	2.1 Hardware
	2.2 Software and Benchmarks
	2.3 Measurement and Methodology

	3 Experimental Data of Memory Performance
	3.1 Local and Remote Bandwidth for One Single IMC
	3.2 Local and Remote Memory Contention on One IMC
	3.3 Total Memory Bandwidth
	3.4 Cross Pattern
	3.5 Split Pattern

	4 Discussion and Conclusion
	References

	Software/Hardware Hybrid Network-on-ChipSimulation on FPGA
	1 Introduction
	2 Related Work
	3 System Design
	3.1 The Internal Design
	3.2 The Configuration and Result-Collection Interface
	3.3 Performance Model

	4 Implementation and Evaluation
	4.1 Implementation
	4.2 Usage Examples and Tests

	5 Conclusions
	References

	Total Exchange Routingon Hierarchical Dual-Nets
	1 Introduction
	2 The Hierarchical Dual-Net
	3 Routing on HDN
	4 Total Exchange Routing on HDN
	5 Concluding Remarks
	References

	Efficiency of Flexible Rerouting Schemefor Maximizing Logical Arrays
	1 Introduction
	2 Preliminaries
	2.1 Fault-Tolerant Architecture and Rerouting Schemes
	2.2 Construct Target Arrays on Selected Rows
	2.3 Flexible Rerouting Schemes

	3 Maximum-Size Target Array under Flexible Rerouting Scheme
	4 Experimental Results and Analysis
	5 Conclusions
	References

	An Efficient Crosstalk-Free Routing Algorithm Based on Permutation Decompositionfor Optical Multi-log2N Switching Networks
	1 Introduction
	2 Crosstalk and Related Researches
	3 Basic Network Model and Preliminaries
	3.1 Multi-log2N Network Model
	3.2 Related Preliminaries

	4 Multi-decomposition Algorithm of a Permutation
	4.1 Decomposition of a Permutation
	4.2 Implementation of the Multi-decomposition and Its Analysis

	5 Conclusions
	References

	Conditional Diagnosability of CompleteJosephus Cubes
	1 Introduction
	2 Preliminaries
	3 Fault Tolerance of CJCn
	4 The Conditional Diagnosability of CJCn
	References

	Circular Dimensional-Permutations and Reliable Broadcasting for Hypercubesand M¨obius Cubes
	1 Introduction
	2 Preliminaries
	2.1 Definition of Hypercubes, M¨obius Cubes, and ISTs
	2.2 Definition of Dimensional-Permutation

	3 An Reliable Broadcasting Algorithm Based on ISTs for Hypercubes and M¨obius Cubes
	3.1 ISTs for Qn and Mn with Any CircularDimensional-Permutation
	3.2 Simulation Experiments of ISTs and Disjoint Paths for 0-M4

	4 Conclusions
	References

	Session 4: Multi-core Computing and GPU
	Accelerating Parallel Frequent Itemset Miningon Graphics Processors with Sorting
	1 Introduction
	2 Related Works
	2.1 Apriori Algorithm
	2.2 Multi-core Apriori Transaction Identifiers
	2.3 Candidate Slicing Frequent Pattern Mining

	3 Proposed Algorithm
	4 Experimental Results
	5 Conclusions
	References

	Asymmetry-Aware Scheduling in HeterogeneousMulti-core Architectures
	1 Introduction
	2 Preference Based Scheduling (PBS)
	2.1 Application Preference
	2.2 Correlation between Application Preference and Fork-join
	2.3 Preference Based Scheduling

	3 Large Core Splitting Scheduling (LCSS)
	3.1 Thread Assignment Policy
	3.2 Wake up Assignment Policy
	3.3 Load Balancing Policy

	4 Experimental Methodology
	4.1 Simulation Methodology
	4.2 Workload
	4.3 Performance Comparison Metric

	5 Results
	5.1 Evaluation on Repeatability
	5.2 Performance Comparison of Schedulers
	5.3 Effectiveness of the Load Balancing Policies

	6 Related Work
	7 Conclusion
	References

	Scalable-Grain Pipeline Parallelization Methodfor Multi-core Systems
	1 Introduction
	2 Problem Formulation
	3 Framework
	3.1 Dependence Transformation
	3.2 Scheduling
	3.3 Workload Balancing

	4 Experimental Results
	5 Conclusions
	References

	An Effective Approach for Vocal Melody Extractionfrom Polyphonic Music on GPU
	1 Introduction
	2 Salience-Based Melody Extraction
	3 GPU Programming Model
	3.1 Programming Model
	3.2 Memory Hierarchy

	4 Parallel Implementation
	4.1 Sinusoid Extraction
	4.2 Spectral Peaks Filter
	4.3 Pitch Salience

	5 Evaluation
	5.1 Overall Performance
	5.2 Influence of Music Length
	5.3 Efficiency of Parallelized Finding Peaks
	5.4 Influence to the Accuracy

	6 Conclusions and Future Work
	References

	Modified Incomplete Cholesky Preconditioned Conjugate Gradient Algorithm on GPUfor the 3D Parabolic Equation
	1 Introduction
	2 Problem and MIC PCG Algorithm
	2.1 Problem Description
	2.2 MIC PCG Algorithm

	3 GPU Kernels and Optimization
	3.1 Sparse Matrix-Vector Multiplication
	3.2 Vector Operations
	3.3 Forward/Backward Substitution

	4 Numerical Results
	5 Conclusion
	References

	Partition-Based Hardware Transactional Memoryfor Many-Core Processors
	1 Introduction
	2 Challenges in Many-Core Processors and Our Solution
	2.1 Problem Analysis
	2.2 Our Solution: An Overview

	3 Partition-Based Hardware Transactional Memory Architecture
	3.1 System Architecture
	3.2 Partition Mechanism
	3.3 Consistency and Conflict Detection
	3.4 Execution of Transactions
	3.5 ISA Extensions and Programming Interface

	4 Experiments and Evaluation
	4.1 Experimental Environment
	4.2 Results and Analysis

	5 Related Works
	6 Conclusion
	References

	Session 5: Miscellaneous
	Roadside Infrastructure Placement for Information Dissemination in Urban ITSBased on a Probabilistic Model
	1 Introduction
	2 Related Work
	3 Probabilistic Model and Placing Algorithms
	3.1 Problem Statement
	3.2 Number of Paths
	3.3 Origin Points and Destination Points
	3.4 Probabilistic Model and Algorithms

	4 Performance Evaluation
	4.1 Small Scale Scenarios
	4.2 Large Scale Scenarios

	5 Conclusion
	References

	Relay Hop Constrained Rendezvous Algorithm for Mobile Data Gathering in Wireless SensorNetworks
	1 Introduction
	2 Related Work
	3 Preliminary
	3.1 Network Model
	3.2 Definitions

	4 Algorithm for MDG-RN Problem
	5 Distributed Algorithm for MDG-RN Problem
	6 Performance Evaluation
	7 Conclusions
	References

	Energy Efficient Task Scheduling in MobileCloud Computing
	1 Introduction
	2 Related Work
	3 Task Execution Scenario
	4 Energy Efficient Task Scheduler
	4.1 Energy Model
	4.2 Execution Model
	4.3 The Cost Graph
	4.4 Task Scheduling Strategy

	5 Experiments Results
	5.1 Experiments Setup
	5.2 Performance Evaluation

	6 Discussion and Future Work
	7 Conclusion
	References

	BotInfer: A Bot Inference Approach byCorrelating Host and Network Information
	1 Introduction
	2 Related Works
	3 Bot Inference Approach
	3.1 Problem Statement and Assumptions
	3.2 Architecture of BotInfer

	4 Implementation
	4.1 Host Detection
	4.2 Network Analysis
	4.3 Bot Inference Engine

	5 Experiment
	5.1 Environment Setup
	5.2 Experimental Result and Analysis

	6 Conclusion
	References

	On-Demand Proactive Defense against MemoryVulnerabilities
	1 Introduction
	2 OPSafe Overview
	2.1 Motivation
	2.2 OPSafe Architecture
	2.3 Workflow of OPSafe

	3 OPSafe Implementation
	3.1 Stack Buffer Information Extraction
	3.2 Green Zone Creation
	3.3 Green Zone Maintenance
	3.4 Green Zone Destruction

	4 Experimental Evaluation
	4.1 Overall Analysis
	4.2 Effectiveness Evaluation
	4.3 Performance Evaluation

	5 Related Work
	5.1 Proactive Defense Methods
	5.2 Fail-Stop Methods
	5.3 Self-healing Methods

	6 Conclusion
	References

	Mahasen: Distributed Storage Resource Broker
	1 Introduction
	2 Related Work
	2.1 Nirvana Storage
	2.2 Apache OODT
	2.3 WSO2 Governance Registry
	2.4 Hadoop Distributed File System

	3 High Level Architecture
	3.1 Mahasen High Level Architecture
	3.2 Mahasen Search
	3.3 File Handling
	3.4 Mahasen API

	4 Performance Analysis
	5 Discussion and Future Work
	References

	Probabilistic QoS Analysis of Web Services
	1 Introduction
	2 Related Work
	3 HMM Based Quality of Service Estimation
	3.1 Similarity Analysis
	3.2 Quality of Service Analysis with Hidden Markov Model
	3.3 Data Quality Prediction
	3.4 Training the Model

	4 Experiments and Results
	4.1 Adjusting the Model Parameters
	4.2 Current State
	4.3 Predicting Data Variance in Terms of Hidden States

	5 Conclusion
	References

	A Novel Search Engine to Uncover Potential Victimsfor APT Investigations
	1 Introduction
	2 Previous Research
	2.1 APT Characteristics
	2.2 Bot Attributes and Detection

	3 The Ranking Mechanism
	3.1 Overview
	3.2 Reversed Diversity Score
	3.3 Continuity Score
	3.4 Ranking the Websites

	4 Design and Implementation
	4.1 Design Overview
	4.2 The MapReduce Jobs

	5 Experiments and Evaluation
	5.1 The Experiments Setup
	5.2 Determine the Weights
	5.3 Experiment Results

	6 Conclusion
	References

	Author Index

