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Abstract. New magnetic resonance imaging (MRI) sequences are enabling 
clinical study of the in vivo spinal cord’s internal structure. Yet, low contrast-to-
noise ratio, artifacts, and imaging distortions have limited the applicability of 
tissue segmentation techniques pioneered elsewhere in the central nervous 
system. Recently, methods have been presented for cord/non-cord segmentation 
on MRI and the feasibility of gray matter/white matter tissue segmentation has 
been evaluated. To date, no automated algorithms have been presented. Herein, 
we present a non-local multi-atlas framework that robustly identifies the spinal 
cord and segments its internal structure with submillimetric accuracy. The 
proposed algorithm couples non-local fusion with a large number of slice-based 
atlases (as opposed to typical volumetric ones). To improve performance, the 
fusion process is interwoven with registration so that segmentation information 
guides registration and vice versa. We demonstrate statistically significant 
improvement over state-of-the-art benchmarks in a study of 67 patients. The 
primary contributions of this work are (1) innovation in non-volumetric atlas 
information, (2) advancement of label fusion theory to include iterative 
registration/segmentation, and (3) the first fully automated segmentation 
algorithm for spinal cord internal structure on MRI.  

Keywords: Spinal Cord Parcellation, Multi-Atlas Segmentation, Non-local 
Correspondence Models, Registration Refinement.  

1 Introduction 

The spinal cord is an essential and vulnerable component of the central nervous 
system [1, 2]. Differentiating and localizing pathology/degeneration of the gray matter 
(GM) and white matter (WM) plays a critical role in assessing therapeutic impacts 
and determining prognoses [3, 4]. Automated methods have localized the cord [5] and 
semi-automated segmentation has been used for internal segmentation [6]. Yet, 
automated GM/WM delineation has not been reported. Increased automation is 
necessary for routine volumetric assessment of the cord structures. Given the small 
size and artifacts of spinal cord MRI, the feasibility of an approach has only recently 
come to light using magnetization transfer (MT) MRI of the spinal cord in vivo [2].  
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Fig. 1. Flowchart of the proposed iterative Non-Local STAPLE (iNLS) multi-atlas framework. 
Using an iterative atlas-target registration refinement framework, we expand the range of 
anatomical variability that can be reliably segmented. 

Over the past decade, multi-atlas segmentation has come to prominence for its 
ability to rapidly and robustly generalize from labeled examples (i.e., atlases) [7, 8]. 
Unfortunately, as medical imaging researchers move out of the cranial vault towards 
more highly variable anatomical structures, the traditional registration followed by 
label fusion multi-atlas model [9-13] becomes increasingly problematic, as we are 
dependent upon reasonable atlas-target registrations. 

Herein, we present the first fully-automated approach for GM/WM segmentation of 
the spinal cord through extension of a recently proposed non-local statistical fusion 
algorithm (Non-Local STAPLE – NLS [14]). We demonstrate submillimetric 
accuracy and show statistical improvement over other state-of-the-art approaches. The 
primary theoretical contributions of this work are: (1) we apply slice-based — as 
opposed to volumetric — atlases; (2) we adapt the NLS non-local correspondence 
model to use the locally normalized correlation coefficient (LNCC) to reduce the need 
for accurate intensity normalization [9]; and (3) we apply iterative registration 
refinement to lessens the impact of registration failures (Figure 1).  

2 Theory 

First, we describe the theoretical basis for the iterative non-local STAPLE (iNLS) 
framework and how it differs from the original NLS. Consider a target gray-level 
image represented as a vector, ࡵ א Թேൈଵ. Let ࢀ א  ேൈଵ be the latent representation ofࡸ
the true target segmentation, where ࡸ ൌ ሼ0, … , ܮ െ 1ሽ  is the set of possible labels. 
Consider a collection of ܴ registered atlases with associated intensity values,  ࡭ א Թேൈோ, and label decisions, ࡰ א ࣂ ேൈோ. Letࡸ א Թோൈ௅ൈ௅ parameterize the raters 
(registered atlases) performance level. Each element of ߠ ,ࣂ௝௦ᇲ௦, represents  
the probability that rater ݆ observes label ݏԢ given that the true label is ݏ at a  
given target voxel and the corresponding voxel on the associated atlas —  
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i.e., ߠ௝௦ᇲ௦ ؠ ௝כ௜ܦ൫݌ ൌ ,ᇱݏ ห࡭ ௜ܶ ൌ ,ݏ  is the voxel on atlas ݆ that corresponds כ݅ ൯, whereࡵ
to target voxel ݅. Throughout, the index variables ݅, ݅כ and ݅ᇱ will be used to iterate 
over the voxels, ݏ and ݏԢ over the labels, and ݆ over the registered atlases. 

Building upon the seminal Simultaneous Truth And Performance Level Estimation 
(STAPLE) algorithm [11], NLS reformulates the statistical fusion framework from a 
non-local means perspective. The goal of any non-local correspondence model is to 
estimate ݂൫ܣ௜ᇲ௝หܫ௜൯ – the probability that voxel ݅ᇱ on atlas ݆ directly corresponds to the 
target image at voxel ݅. Originally, NLS used a Gaussian difference model [10, 12, 
13] which has been shown to be highly successful for whole-brain segmentation [10, 
12, 14]. Herein, we modify this correspondence model to be: ݂൫ܣ௜ᇲ௝หܫ௜൯ ؠ ௝௜ᇲ௜ߙ ൌ 1ܼఈ exp ൭ܥܥܰܮ ೛ࣨ൫ܣ௜ᇲ௝, ௜൯߳ܫ ൱ exp ቆെ ࣟ௜௜ᇲଶ2ߪௗଶቇ (1)

where the first distribution is the intensity similarity model governed by locally 
normalized correlation coefficient between a patch on atlas ݆ centered at voxel ݅ᇱ and 
the target image centered at voxel ݅, the second distribution is the spatial compatibility 
model, and ܼఈ is the partition function. In the intensity similarity model, we use the 
notation ܥܥܰܮ ೛ࣨሺ·,·ሻ to indicate the locally normalized coefficient using a patch 

window defined by ௣ࣨ, and ߳ is the weight factor for the exponential similarity. In the 
spatial compatibility model, ࣟ௜௜ᇲ  is the Euclidean distance between voxels i and ݅ᇱ in 
image space, and ߪௗ is the corresponding standard deviation. The partition function ܼఈ enforces the constraint that ∑ א௝௜ᇲ௜௜ᇲߙ ೞࣨሺ௜ሻ ൌ 1, where ௦ࣨሺ݅ሻ is the set of voxels in 
the search neighborhood of a given target voxel. Through this constraint, ߙ௝௜ᇲ௜ can be 
directly interpreted as the probability that voxel ݅ᇱ on atlas ݆ is the latent 
corresponding voxel, ݅כ, to a given target voxel, ݅. 

Using Eq. 1, we can estimate the latent performance level parameters based upon 
the assumed lack of atlas-target correspondence. By taking the expected value across 
the search neighborhood, ௦ࣨሺ݅ሻ, and assuming conditional independence between the 
intensity-label relationships, the performance level parameters can be approximated as ݂ሺܦ௜כ௝ ൌ ,ᇱݏ |௝࡭ ௜ܶ ൌ ,ݏ ௜ܫ , ௝௦ᇲ௦ሺ௞ሻߠ ሻ ൎ ௝หࡰ൫݂ൣܧ ௜ܶ ൌ ,ݏ ௜൯൧ൌܫ௝ห࡭௝௦ሺ௞ሻ൯݂൫ࣂ ෍ א௝௦ᇲ௦ሺ௞ሻ௜ᇲߠ௝௜ᇲ௜ߙ ೞࣨሺ௜ሻ  (2)

We can then integrate the approximation provided in Eq. 2, directly into the 
Expectation-Maximization (EM) algorithm governing the statistical fusion 
framework. First, in the E-step, we estimate ࢃ א Թ௅ൈே, where ௦ܹ௜ represents the 
probability that the true label associated with voxel ݅ is label ݏ, given the provided 
information. Using a Bayesian expansion and conditional independence between the 
atlases, the solution for ࢃ on iteration ݇ is ௦ܹ௜ሺ௞ሻ ؠ ݂൫ ௜ܶ ൌ ,ࡰหݏ ,࡭ ,ࡵ ሺ௞ሻ൯ൌࣂ ݂ሺ ௜ܶ ൌ ሻݏ ∏ ∑ א௝௦ᇲ௦ሺ௞ሻ௜ᇲߠ௝௜ᇲ௜ߙ ೞࣨሺ௜ሻ௝∑ ݂ሺ ௜ܶ ൌ ݊ሻ ∏ ∑ א௝௦ᇲ௡ሺ௞ሻ௜ᇲߠ௝௜ᇲ௜ߙ ೞࣨሺ௜ሻ௝௡

 (3)
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Finally, the resulting performance level parameters (M-step) are obtained by 
maximizing the expected value of the conditional log likelihood function. ߠ௝௦ᇲ௦ሺ௞ାଵሻ ൌ ∑ ቀ∑ א௝௜ᇲ௜௜ᇲߙ ೞࣨሺ௜ሻ:஽೔ᇲೕୀ௦ᇲ ቁ ௦ܹ௜ሺ௞ሻ௜ ∑ ௦ܹ௜ሺ௞ሻ௜ . (4)

2.1 Iterative Global Refinement Using the Previously Estimated Segmentation 

In the first iteration of iNLS, registration is based on normalized correlation between 
the atlas and target image intensity using a 3 degree-of-freedom rigid body transform. 
For subsequent iterations, we iteratively refine the registration by maximizing overlap 
between the atlas segmentation and the current segmentation estimation. Specifically,  ઴௝ோ ൌ arg max઴ೕೃ ෍ ߜ ቀܦ઴ೕೃሺ௜ሻ௝, Ψ௜ቁ௜  (5)

where ઴௝ோ represent the parameters associated with the rigid transformation (i.e., 
translation and rotation) between the current estimated segmentation, Ψ௜, and the 
transformed atlas labels, ܦ઴ೕೃሺ௜ሻ௝, and ߜሺ·,·ሻ is the kronecker delta function. 

2.2 Initialization and Convergence 

For all experiments, iNLS was initialized using a 2mm isotropic search neighborhood, 
a 1mm isotropic patch neighborhood, and the weight factor, ߳, was set to 0.2. These 
parameter values were obtained by performing leave-one-out cross-validation using 
the provided atlases. The remaining parameters remain identical to the original NLS 
approach [14]. For the iterative global refinement procedure, convergence was 
detected when the rigid transformation parameters ceased to change across the atlases 
(less than 5 iterations for all presented results).  

3 Methods and Results 

3.1 Experimental Design 

We study a dataset consisting of 67 MR images of the cervical spinal cord. All data 
were obtained on a 3T Philips Achieva (Philips Medical Systems, Best, The 
Netherlands) using a single channel body coil for transmission and a 16 channel 
neurovascular coil for signal reception. The center of the imaging volume was aligned 
to the space between the 3rd and 4th cervical levels.  T2*w data were obtained using a 
3D gradient echo (TR/TE/a = 121/12ms/9°) with a 3-shot EPI covering a field of view 
of 190 x 224 x 90 mm3 with nominal resolution of 0.6 x 0.6 x 3 mm3. Fat saturation 
was implemented by using a 1331 binomial excitation (ProSet), 2 signal averages, and 
a SENSE factor of 2.  This acquisition was a part of an MT experiment where the 
same parameters would be performed with the addition of an MT prepulse. 
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Due to the highly variable nature of the spinal cord and the difficulty in performing 
consistent high degree-of-freedom registration [15], all multi-atlas segmentations 
were performed on a slice-by-slice basis. A collection of 85 slice atlases were 
randomly selected from the 2,010 (67 volumes × 30 slices) available slices. Note that 
atlas slices from the volume of interest were excluded during the leave-one-out 
segmentation to prevent biasing the results.  

As benchmarks, we compare iNLS to a majority vote (MV) [8], an LNCC-
weighted locally weighted vote (LWV) [9], STAPLE [11], non-local voting (NLV) 
[13], and a single iteration of NLS. For STAPLE, NLS and iNLS, “consensus voxels” 
(i.e., voxels where all registered atlases agree) were ignored. For fairness of 
comparison, the same non-local correspondence model was used for NLV, NLS, and 
iNLS. For all benchmarks, the presented results use all available atlases (up to 85) 
with a pairwise rigid 3 degree-of-freedom alignment using FLIRT [16]. Quantitative 
accuracy of each of the benchmarks was assessed on a volumetric basis using the Dice 
Similarity Coefficient (DSC), bi-directional mean surface distance error (MSDE), the 
bi-directional Hausdorff distance error (HDE). 

3.2 Experimental Results 

iNLS demonstrated statistically significant improvement over each of the considered 
benchmarks in terms of DSC, MSDE, and HDE for both gray matter and white matter 
segmentation (Figure 2). Importantly, iNLS is the only algorithm that provides a 
MSDE of less than 0.5 mm for all 67 subjects. In addition, iNLS results in a 
substantial decrease in outliers – particularly for the surface distance based metrics.  
 

 

Fig. 2. Quantitative analysis on GM/WM segmentation of the spinal cord. iNLS provides 
significant improvement over all of all considered benchmarks. 
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As an aside, despite highly competitive results in terms of DSC and MSDE, NLV 
results in highly sub-optimal HDE values due to its susceptibility to outliers in the 
estimation process (i.e., outlier registrations result in “speckle noise” in the 
background of the estimate).  

Qualitative results in terms of slice-wise accuracy (Figure 3) and volumetric 
surface distance error (Figure 4) support the quantitative improvement. iNLS 
provides visual (along with numeric) improvements over the initial NLS estimate. 
These can be appreciated in the precision with which the convoluted shape of the 
GM/WM boundary within the spinal cord. In Figure 4, it is evident that only iNLS 
provides estimates that are consistently less than 2mm on a voxelwise basis.   

 

Fig. 3. Slice-wise qualitative analysis of GM/WM segmentation of the spinal cord. Due to the 
lack of non-rigid registration, all of the non-local methods provide valuable accuracy 
improvements. However, only the proposed method, iNLS, is able to consistently maintain the 
complex shape of the GM/WM structures within the spinal cord.  
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Fig. 4. Voxelwise surface distance error for spinal cord GM segmentation accuracy. The 
proposed iterative Non-Local STAPLE algorithm provides consistent volumetric improvement 
over the considered benchmarks in terms of voxelwise surface distance error. 

4 Discussion 

Accurate GM/WM delineation of the spinal cord plays a critical role in understanding 
the pathophysiological nature of spinal cord disease and assessing therapeutic 
interventions. Herein, we demonstrate an effective segmentation framework 
specifically targeting spinal cord GM/WM. We extend the recently proposed NLS 
algorithm with two critical advancements that enable robust GM/WM segmentation of 
the spinal cord. First, we reformulate the non-local correspondence model using the 
LNCC similarity metric to limit the need for accurate intensity normalization and to 
minimize the impact of imaging artifacts (e.g., intensity inhomogeneity). Second, we 
describe a new iterative atlas-target registration refinement process. Together, these 
advancements dramatically reduce the impact of initial registration failures, and, thus, 
significantly increase the robustness and accuracy of the resulting segmentation. We 
assessed the accuracy of the proposed iNLS framework against several of the current 
state-of-the-art benchmark algorithms and demonstrated statistically significant 
improvement in terms of DSC, MSDE, and HDE (Figure 2). Additionally, we 
provide both slice-wise (Figure 3) and volume-wise (Figure 4) qualitative examples 
that demonstrate the type of improvement exhibited by the proposed framework. 

While the proposed framework is not the first algorithm to use the LNCC similarity 
metric (e.g., [9]) or the first approach to use segmentation-based registration 
refinement (e.g., [17, 18]), the provided joint-framework is novel. For example, [18] 
used iterative segmentation/registration to form group-wise consistent atlas 
representations while [17] used segmentation information in a deformable registration 
cost function. A fortunate consequence of moving to slice-wise registration is the 
speed of the individual registrations (i.e., seconds per slice as opposed to 
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minutes/hours per volume); hence, many more simple registrations were evaluated in 
the iNLS framework than would have been pragmatic in a volumetric one. In fact, we 
evaluated the use of high degree-of-freedom registration tools, but these consistently 
resulted in catastrophic failures (i.e., no label overlap) when applied to the raw MRI 
of the spinal column (data not shown). In conclusion, our efforts demonstrate that we 
can achieve submillimetric segmentation accuracy in spite of the severe distortion, 
inhomogeneity, low-contrast, and small-scales involved in spinal cord MRI. 
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