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Abstract. Compressed Sensing (CS) takes advantage of signal sparsity or com-
pressibility and allows superb signal reconstruction from relatively few measure-
ments. Based on CS theory, a suitable dictionary for sparse representation of
the signal is required. In diffusion MRI (dMRI), CS methods proposed for re-
construction of diffusion-weighted signal and the Ensemble Average Propagator
(EAP) utilize two kinds of Dictionary Learning (DL) methods: 1) Discrete Repre-
sentation DL (DR-DL), and 2) Continuous Representation DL (CR-DL). DR-DL
is susceptible to numerical inaccuracy owing to interpolation and regridding er-
rors in a discretized q-space. In this paper, we propose a novel CR-DL approach,
called Dictionary Learning - Spherical Polar Fourier Imaging (DL-SPFI) for ef-
fective compressed-sensing reconstruction of the q-space diffusion-weighted sig-
nal and the EAP. In DL-SPFI, a dictionary that sparsifies the signal is learned
from the space of continuous Gaussian diffusion signals. The learned dictionary
is then adaptively applied to different voxels using a weighted LASSO frame-
work for robust signal reconstruction. Compared with the start-of-the-art CR-DL
and DR-DL methods proposed by Merlet et al. and Bilgic et al., respectively, our
work offers the following advantages. First, the learned dictionary is proved to be
optimal for Gaussian diffusion signals. Second, to our knowledge, this is the first
work to learn a voxel-adaptive dictionary. The importance of the adaptive dictio-
nary in EAP reconstruction will be demonstrated theoretically and empirically.
Third, optimization in DL-SPFI is only performed in a small subspace resided by
the SPF coefficients, as opposed to the q-space approach utilized by Merlet et al.
We experimentally evaluated DL-SPFI with respect to L1-norm regularized SPFI
(L1-SPFI), which uses the original SPF basis, and the DR-DL method proposed
by Bilgic et al. The experiment results on synthetic and real data indicate that the
learned dictionary produces sparser coefficients than the original SPF basis and
results in significantly lower reconstruction error than Bilgic et al.’s method.

1 Introduction

Diffusion MRI (dMRI) is a unique non-invasive technique for investigation of white
matter microstructure in the human brain. A central problem in dMRI is to estimate
the Ensemble Average Propagator (EAP) P(R), which describes fully the probabil-
ity distribution of water molecule displacement R, from a limited number of mea-
surements of the signal attenuation E(q) in the q (wave-vector) space. Under narrow

K. Mori et al. (Eds.): MICCAI 2013, Part I, LNCS 8149, pp. 639–646, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



640 J. Cheng et al.

pulse condition, E(q) and P(R) are related by the Fourier transform, i.e., P(R) =∫
R3 E(q) exp(−2πiqT R)dq. Various methods have been proposed for reconstructing the

EAP. The most common method is Diffusion Tensor Imaging (DTI). However, due to
its Gaussian assumption, DTI is incapable of modeling complex non-Gaussian diffusion
resulting from crossing fibers. Diffusion Spectrum Imaging (DSI) acquires measure-
ments for more than 500 discrete points in the q-space and performs Fourier transform
numerically to obtain the EAP, followed by an numerical radial integration to estimate
the Orientation Distribution Function (ODF) [1]. However, the long scanning time (≈
1 hour) required by DSI significantly limits its utility, especially in clinical settings.
Spherical Polar Fourier Imaging (SPFI), by leveraging a continuous representation of
E(q), requires a more moderate number of signal measurements. This continuous repre-
sentation is based on the Spherical Polar Fourier (SPF) basis and provides closed-form
expressions for EAP and ODF computation [2,3].

Recovering a latent function from a small number of samples in Fourier domain
is a classic problem in Compressed Sensing (CS) theory [4], where a good basis that
allows sparse representation is crucial for the reconstruction. Although some analytic
bases, including discrete basis like wavelets [5] and continuous basis like the SPF basis,
have been proposed as sparse bases for EAP estimation, based on CS theory, a sparser
basis can be learned from well chosen exemplars via Dictionary Learning (DL) tech-
niques [8,9]. Bilgic et al. [10] learns a discrete dictionary via the K-SVD [8] approach
and uses it in the FOCal Underdetermined System Solver (FOCUSS) algorithm for EAP
estimation. This strategy dramatically reduces the number of samples and scanning time
required by DSI. However, Bilgic et al.’s approach suffers from numerical errors sim-
ilar to DSI because their dictionary is composed of a set of discrete basis vectors. On
the other hand, Merlet et al. [7] learns a continuous dictionary, parametrized as a linear
combination of some atoms adopted from SPF basis, from synthetic Gaussian signals.
The learned basis allows conversion of the diffusion signals to the respective ODFs and
EAPs using close-form expressions modified from [3]. However, the method proposed
in [7] have some inherent limitations in both theoretical analysis and practical usage.
For example, they learned the scale parameter ζ associated with the SPF basis from the
training data, instead of the testing data. We shall show in the current paper that the
optimal scale ζ should be adaptively estimated from testing data. In addition, they have
also neglected isotropic exemplars in the training data, causing over-fitting problems in
less anisotropic areas such as the grey matter.

In this paper, we propose a novel CR-DL approach, called Dictionary Learn-
ing - Spherical Polar Fourier Imaging (DL-SPFI), for effective compressed-sensing
reconstruction of the diffusion signal and the EAP. Our approach offers a num-
ber of advantages over [7]. First, we dramatically reduce the dimensionality of the
optimization problem by working in a small subspace of the SPF coefficients, instead
of q-space as done in [7]. Second, the dictionary learned using our approach can be ap-
plied optimally and adaptively to each voxel by voxel-dependent determination of the
optimal scale parameter. In contrast, both [7] and [10] do not consider inter-voxel vari-
ation. Third, we consider the constraint E(0) = 1 during both learning and estimation
processes. Section 2 provides a brief overview of SPFI and shows how the constraint
E(0) = 1 can be incorporated in SPFI. Section 3 demonstrates the equivalence between
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dictionary learning and estimation regularization and provides details on DL-SPFI.
Section 4 validates DL-SPFI in comparison with L1-SPFI using the original SPF ba-
sis and FOCUSS with/without DL, as implemented in [10].

2 Spherical Polar Fourier Imaging (SPFI) Revisited

The SPF basis is a continuous complete basis that can represent sparsely Gaussian-like
signals [2,3]. If E(q) is represented by the SPF basis {Bnlm(q)} = {Gn(q)Ym

l (u)}, i.e.,

E(qu) =
N∑

n=0

L∑

l=0

l∑

m=−l

anlmBnlm(q), Bnlm(q) = Gn(q|ζ)Ym
l (u) (1)

where Gn(q|ζ) =
[

2
ζ3/2

n!
Γ(n+3/2)

]1/2
exp
(
− q2

2ζ

)
L1/2

n ( q2

ζ ) is the Gaussian-Laguerre polyno-

mial, Ym
l (u) is the real Spherical Harmonic (SH) basis, and ζ is the scale parameter,

then the EAP P(R) is represented by the Fourier dual SPF (dSPF) basis in Eq. (2),
where Bdual

nlm (R) was proved to be the Fourier transform of Bnlm(q). The definition of the
dSPF basis can be found in [3].

P(Rr) =
N∑

n=0

L∑

l=0

l∑

m=−l

anlmFnl(R)Ym
l (r) Bdual

nlm (R) = Fnl(R)Ym
l (r) (2)

The SPF coefficients a = (a000, . . . , aNLL)T can be estimated from the signal attenu-
ation measurements {Ei} via least square fitting with l2-norm or l1-norm regularization,
where the constraint E(0) = 1 can be imposed by adding artificial samples at q = 0 [3,6].
Here we propose an alternative continuous approach to impose this constraint. From
E(0) = 1, we have

∑N
0 anlmGn(0) =

√
4πδ0

l , 0 ≤ l ≤ L, −l ≤ m ≤ l. Based on this, we
can separate the coefficient vector a into a = (aT

0 , a
′T )T , where a0 = (a000, . . . , a0LL)T ,

a′ = (a100, . . . , aNLL)T , and represent a0 using a′, i.e.,

a0lm =
1

G0(0)

⎛
⎜⎜⎜⎜⎜⎝
√

4πδ0
l −

N∑

n=1

anlmGn(0)

⎞
⎟⎟⎟⎟⎟⎠ , 0 ≤ l ≤ L, −l ≤ m ≤ l (3)

Based on Eq. (1), the l1-norm regularized estimation of a′, called l1-SPFI [6], can be
formulated as

min
a′
‖M′a′ − e′‖22 + ‖Λa′‖1 (4)

M′ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
G1(q1 |ζ)−G1 (0|ζ)

G0 (0|ζ) G0(q1 |ζ)
)
Y0

0 (u1) ···
(
GN (q1 |ζ)−GN (0|ζ)

G0 (0|ζ) G0(q1 |ζ)
)
YL

L (u1)

...
.. .

...(
G1(qS |ζ)−G1 (0|ζ)

G0 (0|ζ) G0(qS |ζ)
)
Y0

0 (uS ) ···
(
GN (qS |ζ)− GN (0|ζ)

G0 (0|ζ) G0(qS |ζ)
)
YL

L (uS )

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, e′ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

E1− G0 (q1)
G0 (0)

...
ES − G0 (qS )

G0 (0)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (5)

where ‖ · ‖p denotes the lp-norm, {Ei}Si=1 are the S signal attenuation measurements
in q-space, and the regularization matrix Λ can be devised as a diagonal matrix with
elements Λnlm = λll2(l + 1)2 + λnn2(n + 1)2 to sparsify the coefficients, where λl and
λn are the regularization parameters for the angular and radial components. Note that

E(q) − G0(q)
G0(0) = E(q) − exp(− q2

2ζ ) is the signal with the isotropic Gaussian part removed,

and
(
Gn(q) − Gn(0)

G0(0)G0(q)
)

Ym
l (u) is the basis Gn(q)Ym

l (u) with the isotropic Gaussian part
removed. After estimating a′, a0 can be obtained using Eq. (3), and the estimated EAP
a satisfies E(0) = 1.
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3 Dictionary Learning and Regularization

Equivalence between Dictionary Learning and Regularization Design. It was
shown in [6] that a well-designed regularization matrix enhances coefficient sparsity
for better reconstruction. A better regularization matrix can be learned from a set of
given signals {e′i }. In fact, learning the regularization matrix from data is equivalent to
the so-called dictionary learning, i.e.,

min
A′,Λ,ζ

∑

i

‖Λa′i‖1 s.t. ‖M′a′j − e′j‖2 ≤ εDL, ∀ j

︸���������������������������������������������������︷︷���������������������������������������������������︸
Regularization Design

↔ min
C,D,ζ

∑

i

‖ci‖1 s.t. ‖M′Dc j − e′j‖2 ≤ εDL, ∀ j

︸��������������������������������������������������︷︷��������������������������������������������������︸
Dictionary Learning

(6)

where A = (a′1, . . . , a
′
Q) is the SPF coefficient matrix. The transform matrix D will result

in a transformed SPF basis M′D that can be used for even sparser representation of the
signal. C = (c1, . . . , cQ) is the new coefficient matrix in association with the transformed
basis. Here, we include the scale parameter ζ of the SPF basis as a parameter to be
learned. More discussion on this in the next section. Our formulation is more general
than the formulation in [7] for two reasons. First, it can be proved that all atoms in the
dictionary used in [7] can be represented as a finite linear combination of the SPF basis
used in Eq. (6); the opposite, however, is not true.1 Hence, the space spanned by the
atoms in [7] is just a subspace of the space spanned by the SPF basis. Second, based
on the equivalence in Eq. (6), we can further devise a regularization matrix after DL to
weight the atoms differently for more effective reconstruction.

Efficient, Optimal, and Adaptive Dictionary Learning. Although it is possible to
learn a dictionary from real data, as done in DL-FOCUSS [10], the learned dictionary
may be significantly affected by noise and the small sample size. An alternative solution
to this is to perform DL using some synthetic data that approximate well the real signal.
Similar to [7], we propose to learn a continuous basis using mixtures of Gaussian sig-
nals. Compared with the DL strategy in [7], our method introduces several theoretical
improvements. 1) Instead of using the DL formulation in Eq. (6), we propose to solve

min
C,D,ζ

∑

i

‖ci‖1 s.t. ‖Dc j − a′j‖2 ≤ εDL, ∀ j, (7)

which, due to the orthogonality of the SPF basis, is equivalent to Eq. (6) if N and
L are large enough. In [7] {ei} was generated using thousands of samples, resulting
in a high-dimensional minimization problem. In contrast, Eq. (7) works in the small
subspace resided by the SPF coefficients and hence significantly reduces the complexity
of the learning problem. Note that ζ in Eq. (7) is contained inside {a′j}. 2) In [7], a
constraint was placed on the sparsity term ‖ci‖1, instead of the fitting error term, as is
done Eq. (7). Since there is no prior knowledge on the level of sparsity, it is better to
place the constraint on the fitting error. Threshold εDL can be chosen simply as 0.01 for
unit-norm normalized {a′j}. 3) It is not necessary to generate a large sample of signals
randomly from the mixture of tensor models, like what is done in [7]. We proved in
Theorem 1 that the single tensor model is sufficient to learn a dictionary which sparsifies
multi-Gaussian signals. That is, the training data {e j} can be generated simply from
{E(q|T) = exp(−4π2τq2uT Tu) | T ∈ Sym3

+}, where Sym3
+ is the space of 3 × 3 positive

1 All proofs in this paper are omitted due to space limitation, available upon request.
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symmetric matrices, and τ is the diffusion time. 4) Compared with the classical DL
described in [8,9], the DL formulation in Eq. (6) is more difficult to solve because M′

is dependent on ζ. In [7] ζ and there D are iteratively updated using the Levenberg-
Marquardt algorithm, which is actually problematic. Theorems 2 and 3 show that ζ
should be determined adaptively from testing signals, not from training signals.

Theorem 1 (Sparsity of Mixture of Tensors). Let (D∗, ζ∗) be the optimal dictionary
learned in Eq. (7) using signals generated from the single tensor model. Let {c′i }pi=1 be
the p sparse coefficients under arbitrarily given p SPF coefficients {a′i}pi=1 and (D∗, ζ∗).
Let c′∗ be the sparse vector corresponding to SPF coefficient a′ =

∑p
i=1 wia′i and (D∗, ζ∗),

with
∑

i wi = 1, wi ≥ 0. Then we have ‖c′∗‖1 ≤ max(‖c′1‖1, . . . , ‖c′p‖1).

Theorem 2 (Optimal Scale). If {ei} is generated from the single tensor model with
fixed mean diffusivity (MD) d0, then for large enough N, fixed L, and small enough εDL,
the optimal scale ζ for the DL problem in Eq. (6) is ζ∗ = (8π2τd0)−1.

Theorem 3 (Optimal Dictionary). For signals generated from the single tensor model
using a range of MD value [d0, td0], t ≥ 1, if the dictionary {D0, ζ0} is the optimal
solution for (7), then for another range of [d1, td1], {D0, ζ1} is still optimal if ζ0d0 = ζ1d1.

The above theorems indicate that the optimal dictionary can be learned by using the
single tensor model set with a range of MD values. The dictionary can then be applied
adaptively to each voxel by adjusting the scale ζ. In this work, we fixed ζ0 = (8π2τd0)−1,
where d0 = 0.7 × 10−3 mm2/s, and generated the signals using the single tensor model
with MD in range [0.5, 0.9]× 10−3, FA in range [0, 0.9], and with the tensor orientated
in 321 directions equally distributed on S2. The corresponding SPF coefficients {a′j}
in Eq. (7) were then computed with N = 4, L = 8 via numerical inner product. Efficient
DL was then performed using the online method in [9] to learn D, which is initial-
ized using the identity matrix. By solving Eq. (7), we learned 250 atoms. Including the
isotropic atoms {Bn00(q)}Nn=1, we have a total of 254 atoms. Note that the isotropic atoms
are important so that grey matter and the CSF can be sparsely represented; this is not
considered in [7]. Given a testing signal vector e, which represents a partial sampling
of the q-space, our method, called DL-SPFI for brevity, reconstructs the entire q-space
by first setting the scale ζ based on the estimated MD for the signal vector and then
computing the signal-space coding coefficients c by solving

min
c
‖M′Dc − e′‖22 + ‖Λc‖1 (8)

Note that additional regularization is imposed via Λ, which is devised as a diagonal
matrix with elements Λi =

S
hi
λ, where λ is the regularization tuning parameter, S is the

dimension of e′, and hi is the energy of i-th atom, which essentially penalizes atoms
with low energy. After estimating c, the SPF coefficients a = (aT

0 , a
′T )T are obtained by

first computing a′ = Dc and then computing a0 using Eq. (3). Finally, the EAP/ODF
can be obtained using closed-form expressions [3,11].

4 Experiments
We compared the proposed DL-SPFI with l1-FOCUSS (without DL) and DL-FOCUSS,
both described in [10]. The DSI dataset and the codes provided by Bilgic2 were used.

2 http://web.mit.edu/berkin/www/software.html

http://web.mit.edu/berkin/www/software.html
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Signal Sparsity. The theorems were first validated. First, fixing MD value d1 =

0.6×10−3 mm2/s and using FA range [0, 0.9], we generated sample signals from the sin-
gle tensor model and the mixture of tensor model with the tensors orientated in random
directions. The coefficients a′ for each sample were calculated via numerical integral
with N = 4, L = 8, ζ = ζ0 = (8π2τd0)−1. Coefficients c were then obtained via Eq. (7),
based on a′, ζ0, and the learned dictionary D. The signal sparsity with respect to the
SPF basis and the learned DL-SPF basis was then evaluated by counting the number of
coefficients in a′ and c with absolute values larger than 0.01‖a′‖ and 0.01‖c‖, respec-
tively. The top left subfigure in Fig. 1 shows that signal sparsity associated with the
SPF basis decreases as FA increases, whereas sparsity for DL-SPF basis is quite consis-
tent for both single- and multi-tensor samples, if MD value d1 is within the MD range
used during DL. This experiment validated Theorem 1. Second, we used MD value
d2 = 1.1 × 10−3 mm2/s and evaluated the signal sparsity of two bases associated with
ζ0 and adaptive scale ζ = (8π2τd2)−1 for the mixture of tensor model using different FA
values. The top right subfigure in Fig. 1 shows that even though the MD value d2 of the
testing signal is not within the MD range used in the training data, by adaptively setting
the scale for the testing data, the signal can still be sparsely represented by the learned
DL-SPF basis, thanks to theorem 3. Note that we have shown that it is not necessary
to use mixture of tensors to learn the basis, as was done in [7]. Moreover, in [7] spar-
sity evaluation was performed using the estimated signal from a very limited number of
noisy samples, while in fact the evaluation should be done using the original signal.

RMSE in Cylinder Model. We also evaluated the DL-SPF basis using the Söderman
cylinder model [12] different from the tensor model used in our DL process. Using the
same DSI-based sampling scheme described in [10] (bmax = 8000s/mm2, 514 q-space
signal measurements), we generated a ground truth dataset using the cylinder model
with the default parameters in [12]. Utilizing the evaluation method described [10], we
estimated the DL-SPF coefficients from the an under-sampled version of the ground
truth dataset (generated using a power-law density function R = 3 [10]) and recon-
structed the q-space signals in the all 514 directions. Reconstruction accuracy was eval-
uated with respect to the ground truth dataset using the root-mean-square error (RMSE).
The same evaluations was repeated by adding Rician noise with signal-to-noise ratio
(SNR) of 20. For DL-SPFI and l1-SPFI, we set λ = λl = λn = 10−8 for the noise-free
dataset and 10−5 for the noisy dataset. The subfigures in the second row of Fig. 1 in-
dicates that DL-SPFI yields the lowest RMSE in both noiseless and noisy conditions,
whereas the RMSE of l1-SPFI increases significantly when the signal is noisy.

RMSE in Real DSI Data. We performed a similar evaluation using the real DSI data
provided by Bilgic. In [10], the dictionary of DL-FOCUSS was learned from one slice
and reconstruction was performed on the other slice. The dictionary of DL-SPFI was
learned from the synthetic signals and was applied directly to the testing slice. Due to
noise, comparing the estimated signal to the real signal is not a proper way of evaluation.
In [10], the RMSE was computed with respect to a dataset with 10 averages, which is
however not released. Therefore, we opted to report two types of RMSEs. The first is
the RMSE (2.82%) between the signal estimated from the under-sampled data with 170
samples and the signal estimated from the fully-sampled dataset with 514 samples. The
second is the RMSE (9.81%) between the signal estimated from under-sampled data and
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Fig. 1. Synthetic Experiments. The first row shows the average number of non-zero coefficients
associated with the SPF basis and the DL-SPF basis for the single- and multiple-tensors and with
and without adaptive scales. The second row shows the RMSE values of various methods using
the Söderman cylinder model with and without noise.

l1-FOCUSS: 16.34% DL-FOCUSS: 8.09% DL-SPFI: 2.82% DL-SPFI: 9.81%

Fig. 2. Real Data. From left to right: the RMSE images for l1-FOCUSS [10], DL-FOCUSS [10],
DL-SPFI between estimations using the under-sampled dataset and the fully-sampled dataset, and
DL-SPFI between the estimation from under-sampled data and the fully-sampled data.

the measured signal. Note that the outcomes for these two types RMSEs are identical
for DL-FOCUSS because the estimated signal from the fully-sampled dataset is simply
the fully-sampled dataset itself due to the discrete representation. In this sense, the CR-
DL is much more difficult than DR-DL. Since the first type of RMSE is small, we can
conclude that, by using DL-SPFI, the under-sampled dataset is sufficient for reasonable
EAP reconstruction. The scanning time can hence be significantly reduced.
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5 Conclusion

In this paper, we have demonstrated that DL-SPFI is capable of reconstructing the q-
space signal accurately using a reduced number of signal measurements. In DL-SPFI,
an optimal dictionary is learned from exemplar diffusion signals generated from the sin-
gle tensor model and can be applied adaptively to each voxel for effective signal recon-
struction. Compared with the DR-DL based method in [10], DL-SPFI avoids numerical
errors by using a continuous representation of the q-space signal, allowing closed-form
computation of ODF and EAP. Compared with the CR-DL method in [7], DL-SPFI is
significantly more efficient because DL optimization is performed in a small dimen-
sional subspace of SPF coefficients, while DL in [7] is performed in a high dimensional
space of fully sampled diffusion signal measurements in q-space. Experimental results
based on synthetic and real data indicate that DL-SPFI yields superb reconstruction
accuracy using data with significantly reduced signal measurements.
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