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Abstract. Extracting centerlines of coronary arteries is a challenging
but important task in clinical applications of cardiac CTA. In this pa-
per, we propose a model-guided approach, the directional minimal path,
for the centerline extraction. The proposed method is based on the min-
imal path algorithm and a prior coronary model is used. The model is
first registered to the unseen image. Then, the start point and end point
for the minimal path algorithm are provided by the model to automate
the centerline extraction process. Also, the direction information of the
coronary model is used to guide the path tracking of the minimal path
procedure. This directional tracking improves the robustness and accu-
racy of the centerline extraction. Finally, the proposed method can auto-
matically recognize the branches of the extracted coronary artery using
the prior information in the model. We validated the proposed method
by extracting the three main coronary branches. The mean accuracy of
the 56 cases was 1.32±0.81 mm and the detection ratio was 88.7%.

1 Introduction

Cardiac Computer Tomography Angiography (CTA) is widely used in clinical
routine for coronary artery studies. Extracting centerlines of the coronary artery
is important in the coronary related clinical applications. Since manual extrac-
tion and annotation can be time-consuming and skill-demanding, automating
this process is becoming increasingly desirable. Many works [1-4, 8] focused on
extracting the complete tree of the coronary artery. However, it is difficult to au-
tomatically recognize and discriminate the branches of the coronary tree without
manual interactions. The methods [5-7] based on the minimal path have been
used to extract the centerline of a specific vessel or a coronary branch, but the
start point and end point, also known as seed points, are commonly manually
selected. The detection methods also tend to fail when the seed points are off the
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Fig. 1. The flowchart of the proposed directional minimal path

coronary or when the branch has discontinues segments due to bypass surgeries
or image artifacts.

In this paper, we propose a new method, the model-guided directional minimal
path (DMP), for extracting centerlines of the main branches of the coronary
artery. The path tracking in the DMP incorporates the direction information
of a prior coronary model, to achieve fast and robust coronary tracking. The
start point and the end point required in the minimal path framework are also
provided from the prior model. Finally, with the prior information in the model,
the branches of the extracted coronary centerlines are automatically recognized,
resulting in a fully automated centerline extraction method.

2 Proposed Method

The proposed directional minimal path method incorporates a prior model into
the framework of the traditional minimal path method [5-7], to extract the cen-
terlines of the coronary artery. The model consists of a cardiac CTA volume,
referred to as the CTA model, and the coronary centerlines, referred to as the
coronary model. The directional minimal path extraction framework has three
key stages: model establishment, model-guided centerline extraction, and model
correction, as Fig. 1 shows:

a) In the model establishment, the model is registered to the unseen image,
to provide the start point as well as the initial direction for the minimal path.

b) In the model-guided centerline extraction, the start point and the direction
from the prior model is incorporated into the framework.

c) The model correction is used to optimize the direction for the model-guided
centerline extraction.

The model-guided centerline extraction and model correction are repeated
iteratively until the algorithm reaches the neighbor region of the end point of
the coronary model or maximal iteration steps.
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2.1 Model Establishment

In model establishment, the CTA model is first registered to the unseen image
using a deformable registration scheme [11,12]. The registration consists of three
steps, i.e. global affine registration for localization of the whole heart, locally
affine registration method for initialization of substructures such as the four
chambers and great vessels, and the active control point status free-form defor-
mation registration for refinement of local details. The resultant transformation
is then used to map the coronary model onto the image space of the unseen
image. The established model provides the start point and the initial direction
of the coronary artery for the following directional minimal path procedure. The
ideal start point should be the ostia for coronary artery extraction. However,
the volumetric registration algorithm tends to produce mismatch of ostia due to
its relative small size of volume in the whole heart structure, resulting in less
robust coronary extraction. We therefore propose to define the start point to the
mean position of the left ostium and the right ostium, for extracting both the
left coronary artery and the right coronary artery.

2.2 Model-Guided Centerline Extraction

The model-guided centerline extraction is implemented in the framework of the
minimal path method, where the cost function of path incorporates the direc-
tional information of the coronary model. This is why we call the method the
directional minimal path.

In the minimal path framework, the path of the coronary artery is extracted
by finding the minimal accumulated cost between the start and end points. The
energy function of the path (or curve) C can be define as follows:

E(C) =

∫
Ω

(P (C(t)) + ω)dt. (1)

where P (x) denotes the potential or cost at the location x, ω is a regularization
factor, and t is the arch length.

In the directional minimal path, we propose the cost function to include three
terms: vesselness [9] v(x) based on eigenvalues of the Hessian, similarity [10]
s(x) based on intensity, and direction d(x) based on the prior coronary model.
We redefine the cost function P (x) as follows:

P (x) =
1

v(x)α ∗ s(x)β ∗ d(x)γ + ε
. (2)

where ε is a small positive value to prevent the singularities, and the parameters
α, β, and γ, which all set to 1 in our experiments, are used to control the cost
contrast. The similarity term s(x) can be defined as follows:

s(x) =

{
e−

1
2 (

I(x)−μca
σca

)2 , I < μca

1, I ≥ μca.
(3)



Model-Guided Directional Minimal Path 545

Fig. 2. The model-guided centerline extraction and model correction

where μca and σca are the intensity mean and standard deviation of the coronary
lumen. As the intensity information of the coronary lumen in the unseen image
is unknown, we propose to estimate them using the intensity information of the
prior model and the intensity information of the contrast enhanced chambers
in the unseen image. In the prior model, the mean intensity of the coronary
artery, μmca, and the enhanced chambers, μme, can be accurately computed
before the extraction. The contrast enhanced chambers in the unseen image
can be identified in the model establishment, where the enhanced chambers
in the CTA model were mapped onto the unseen image by the registration.
Given the intensity mean of the enhanced chambers of the unseen image, μue, is
computed, by assuming a constant linear relationship between the intensity value
of the contrast enhanced chambers and that of the coronary artery segments,
the intensity mean of the coronary artery in the unseen image, μuca, is then
estimated as follows:

μca = μue + (μmca − μme). (4)

In Eq. (2), d(x) is determined by the angle θ(x) between the coronary model
and the current path in the minimal path method:

d(x) = e
− 1

2 (
G(x)−μd

σd
)2
,

G(x) =

{
cos(θ(x)), if cos(θ(x)) > 0

0, else.

(5)

where μd = 1, and σd = 0.5 in our experiments.
The angle between the coronary model and the current path is obtained by the

piecewise method as illustrated in Fig. 2 (left), where a coronary artery branch
of interest is divided into several segments. In a coronary segment, Ui and Ux

denote the start point and the current point in the minimal path process. Mi

and Mi+1 denote the start point and the end point of the current segment in
the coronary model. The length of each segment SiSi+1 can be set as a fixed
value. The end point of current segment is regarded as the start point in the
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next segment. Also, to compute the direction information for each candidate
path point x, one needs to obtain the corresponding segment from the coronary
model and employs the direction information of the model for the computation
of θ(x). This is achieved by the model correction process.

2.3 Model Correction

The prior model gives a good initial estimation after its establishment. How-
ever, due to the registration error and the variance of the cardiac anatomy, it
is difficult to achieve an accurate match between the coronary model and the
corresponding coronary branches in the unseen image. Model correction is em-
bedded with the model-guided centerline extraction to optimize the direction
information provided from the model, as follows:

a) For current start point Ui, search a point on the coronary model, which is
the closest point to Ui. This closest point is referred to as M c

i .
b) Remap (correct) the coronary model to the unseen image space by aligning

M c
i to current start point Ui.
c) Search along the coronary model to find a point M c

i+1 whose geodesic
distance to M c

i is the predefined length of a segment.
For each candidate path point x, θ(x) is then defined to the included angle

between vector,
−−−−−−→
M c

i M
c
i+1, and vector,

−−−→
UiUx as illustrated in Fig. 2 (right). It

should be noted that this realignment in model correction does not change the
orientation of the coronary model. Instead, it helps to select a better segment
from the model to provide more accurate direction for the next iteration, as this
selected segment is expected to be more similar to the current coronary segment
in the unseen image.

3 Experimental Results

We tested the proposed DMP method on eight cardiac CTA volumes, to extract
the three main branches of the coronary artery, including the right coronary
artery (RCA), left anterior descending artery (LAD), and left circumflex artery
(LCX). The centerlines of the coronary branches of interest had been manually
annotated in each subject, providing the gold standard for the evaluation.

3.1 Evaluation Using Synthetic Models

In this experiment, ten synthetic coronary models are generated for each subject,
resulting in 80 cases. The synthetic models were generated by moving the start
and end points of the gold standard centerlines, and then deforming the whole
coronary. The moving distance was random values between 0-15 mm, and the
deformation is computed as follows:

FM (i) = VS
n− 1− i

n− 1
+ VE

i

n− 1
, i ∈ (0, n− 1). (6)
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Table 1. The results of the two compared methods using synthetic models

Methods Mean(mm) Std(mm) Max(mm) Detect Ratio

Directional Minimal Path 0.904 0.524 2.273 97.5%
Vesselness Minimal Path 1.093 0.555 2.332 50.0%

Fig. 3. Box-whisker plots of the centerline extraction results (mm)

where n is the number of points of a gold standard centerline, i is the index of
centerline points, VS and VE are the displacements of the start and end points.
The deformed coronary was then used as the established coronary model for the
DMP algorithm.

The vesselness-based minimal path (VMP) method [7] was also evaluated for
comparisons with the proposed DMP method. The start point for the VMP
method was manually labeled on the ostia, while the end point was given by
the same way as the DMP method. This is because the VMP failed in most of
the cases when the start points were the random values as the DMP used. The
mean distance between the gold standard and the final results of the successful
cases [8] were presented in Table 1, and the box-whisker plots of the two groups
of results were given in Fig. 3 (left). Compared with the VMP method, the
proposed DMP achieved no worse mean distance on the successful cases, but
the detection ratio (success rate of extraction process) was much higher, 97.5%
VS 50%. It should also be noted that the DMP was fully automatic, while the
compared VMP required manual input of the start points.

3.2 Evaluation Using Real Models

In this experiment, we employed the leave-one-out strategy, by considering one
of the eight subjects as the prior model and the rest as the test dataset, resulting
in 56 cases. Fig. 4 provides the visualization result of an extraction result. Table
2 provides the quantitative results and Fig. 3 (right) shows the box-whisker plots
of the mean accuracies. The overall extraction accuracy was promising, thought
it was slightly worse than the synthetic experiment due to the large difference
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Table 2. The results of directional minimal path method using deformable registration

Branches Mean(mm) Std(mm) Max(mm) Detect Ratio

Right Coronary Artery 1.217 0.662 2.966 92.9%
Left Anterior Descending 1.245 0.787 3.285 82.1%
Left Circumflex Artery 1.490 0.980 3.776 91.1%

Table 3. The results of directional minimal path method using affine registration

Branches Mean(mm) Std(mm) Max(mm) Detect Ratio

Right Coronary Artery 1.081 0.557 2.564 85.7%
Left Anterior Descending 1.085 0.595 2.518 83.9%
Left Circumflex Artery 1.416 0.922 3.660 87.5%

Fig. 4. The maximal intensity projection of the vesselness with extracted centerlines

of shapes (direction information) between the model and the unseen cases. Also,
the maximal errors were generally within the maximal lumen diameters. Finally,
the DMP method also demonstrated good robustness against the real cases,
as the detection ratios were 92.9%, 82.1%, and 91.1% for the three branches
respectively.

Meanwhile, in order to evaluate the effects under the different register meth-
ods, the original registration scheme, including affine and nonrigid registration,
was replaced by an affine registration method, for the model establishment. The
extraction results of this method were presented in Table 3. The detect ratios of
the method only using affine registration were worse in RCA and LCA extrac-
tion, and marginally better in LAD extraction, compared to the original method
which used the deformable registration. However, the accuracy of the centerline
extraction of the two methods was not significantly different, as the p-values of
them were 0.284 (RCA), 0.095 (LAD), and 0.741 (LCX).
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4 Conclusions

In this paper, we presented a novel coronary extraction algorithm, the model-
guided directional minimal path (DMP). This approach allows fully automatic
extraction of coronary arteries, including the labeling of the main branches. The
experiments showed the proposed DMP was robust and accurate in extract-
ing the three main branches. The future work includes extending the DMP for
whole coronary tree extraction and validating the algorithm using more clinical
datasets.
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