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Abstract. We propose a novel two-layer level set approach for segmen-
tation of the left ventricle (LV) from cardiac magnetic resonance (CMR)
short-axis images. In our method, endocardium and epicardium are rep-
resented by two specified level contours of a level set function. Segmen-
tation of the LV is formulated as a problem of optimizing the level set
function such that these two level contours best fit the epicardium and en-
docardium. More importantly, a distance regularization (DR) constraint
on the level contours is introduced to preserve smoothly varying dis-
tance between them. This DR constraint leads to a desirable interaction
between the level contours that contributes to maintain the anatomical
geometry of the endocardium and epicardium. The negative influence of
intensity inhomogeneities on image segmentation are overcome by us-
ing a data term derived from a local intensity clustering property. Our
method is quantitatively validated by experiments on the datasets for the
MICCAI grand challenge on left ventricular segmentation, which demon-
strates the advantages of our method in terms of segmentation accuracy
and consistency with anatomical geometry.

1 Introduction

Non-invasive assessment of left ventricular function is an important part of the
diagnosis and management of cardiovascular disease. Cine MRI has been proven
to be an accurate and reproducible modality for quantitative evaluation of left
ventricular function [1–6]. Relevant measurements include ventricular volume,
mass, and cavity ejection fraction (EF), which are based on the results of de-
lineation of endocardial and epicardial boundaries by segmentation techniques.
However, LV segmentation is still a open problem and is challenging due to poor
contrast between tissues around the epicardium and intensity inhomogeneities
in cine CMR images.
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Active contour models and level set methods have been extensively applied
to image segmentation because they can provide smooth and closed contours
as segmentation results and achieve sub-pixel accuracy for identification of ob-
ject boundaries [7]. They have also been used to segment the LV in [3–6]. Zeng
et al. proposed a coupled surfaces propagation method to extract the LV my-
ocardium [3]. This method was further developed in [4] and [5]. In these methods,
a hard constraint was imposed to force the distance between endocardium and
epicardium to be within a given interval. Chung and Vese proposed a multilayer
level set method to segment images by representing object boundaries as mul-
tiple level sets of a single level set function [6]. However, there is no constraint
on the distance between level contours of the level set function in their method.
In addition, none of the above-mentioned level set methods is able to deal with
intensity inhomogeneities in the images.

In this paper, we propose a novel two-layer level set approach for segmentation
of the LV from cine CMR short-axis images. In our method, the endocardium and
epicardium are represented by two specified level contours of a level set function.
The anatomical geometry of the LV is preserved by a distance regularization
constraint on the level contours. The data term of our method, derived from a
local intensity clustering property, is able to segment the images in the presence
of intensity inhomogeneities [8].

2 Distance Regularized Two-Layer Level Set Method

2.1 Energy Formulation

We consider an image I as a function I : Ω → � defined on a continuous domain
Ω. Let φ : Ω → � be a level set function. We denote by C0 and Ck the 0-level
and k-level contours of φ, i.e. C0 � {x : φ(x) = 0} and Ck � {x : φ(x) = k}. We
use the 0-level contour and k-level contour to represent the endocardium and
epicardium. The contours C0 and Ck separate the image domain Ω into three
regions: Ω1 � {x : φ(x) < 0}, Ω2 � {x : 0 < φ(x) < k}, and Ω3 � {x : φ(x) >
k}. According to the heart anatomy, the regions Ω1 and Ω2 represent the cavity
and myocardium, respectively, and Ω3 the region outside the epicardium. Let H
be the Heaviside function, then the membership functions of these regions can
be expressed as M1(φ(x)) = 1−H(φ(x)), M2(φ(x)) = H(φ(x)) −H(φ(x) − k),
and M3(φ(x)) = H(φ(x) − k), with Mi(φ(x)) = 1 for x ∈ Ωi and Mi(φ(x)) = 0
for x �∈ Ωi.

In the ideal case that the thickness of the myocardium is a constant, the
distance between the 0-level and the k-level contours of the level set function
that represent the endocardial and epicardial contours is a constant. The equal
distance between these two level contours can be ensured by the constraint that
|�φ(x)| is a constant. However, the actual thickness of myocardium is primarily
smoothly varying. In this case, we force |�φ(x)| to be a smooth function α(x)
by imposing a constraint on φ as an energy functional, defined by

R(φ, α) = μ

∫
1

2
(|�φ(x)| − α(x))2dx+ ω

∫
|�α(x)|2dx, (1)
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where μ > 0, ω > 0 are the weighting coefficients. The first term forces |�φ|
to be a smooth function α(x), and the smoothness of α(x) is ensured by the
second term. This energy R(φ, α) is used as the distance regularization term
in conjunction with a data term and a length term, as defined below, in the
proposed variational framework. It is worth noting that this DR term with α = 1
was originally used by Li et al. in [9] to force the level set function to be close
to a signed distance function, thereby eliminating the need for re-initialization
in conventional level set methods. In this paper, the DR term is used for a
different purpose, namely, to maintain smoothly varying distance between two
level contours.

Note that, the distance between the 0-level and k-level contours depends on
the values of k and |∇φ|. For a given value of k, the values of |∇φ| can be
adaptively changed in the energy minimization process, such that the distance
between the 0-level and k-level contours matches the actual distance between
the endocardium and epicardium. Therefore, the choice of the level k is flexible,
and the result of our method is not sensitive to the choice of k. We set k = 15
for all the images in the experiments presented in this paper.

Due to the intensity inhomogeneities in CMR, the distributions of the inten-
sities in the regions Ω1, Ω2, and Ω3 often overlap, which is a major challenge
when using intensity based segmentation methods. To overcome this difficulty,
we exploit the property of intensities in a relatively small circular neighborhood,
in which the slowly varying bias can be ignored. This neighborhood can be de-
fined by Oy � {x : |x − y| ≤ ρ}. The partition {Ωi}3i=1 of the entire domain Ω
induces a partition of the neighborhood Oy, i.e., {Oy ∩Ωi}3i=1 forms a partition
of Oy. For the slowly varying bias, image intensities in Oy ∩ Ω1, Oy ∩ Ω2, and
Oy ∩Ω3 can be approximated by three constants, denoted by f1(y), f2(y), and
f3(y). Therefore, the intensities in the set Iyi = {I(x) : x ∈ Oy ∩ Ωi} form a
cluster with cluster center mi ≈ fi(y), i = 1, 2, 3. This property of local inten-
sities directs us to apply K-means clustering to classify these local intensities.
Therefore, as in [8], we define a clustering criterion for classifying the intensities
in Oy as follows

Ey =

3∑
i=1

λi

∫
Oy∩Ωi

Kρ(x− y)|I(x) − fi(y)|2dx (2)

where λ1, λ2, and λ3 are the weighting coefficients and Kρ is a kernel function
Kρ : �n → [0,+∞), defined by Kρ(u) = a for |u| ≤ ρ and Kρ(u) = 0 for
|u| > ρ, where a > 0 is a normalization factor such that

∫
|u|≤ρKρ(u) = 1. A

desired segmentation can be achieved by seeking an optimal partition {Ωi}3i=1

and optimal fitting functions f1(y), f2(y), and f3(y), such that Ey is minimized
for all y ∈ Ω. Since Kρ(x− y) = 0 for x �∈ Oy, we can rewrite Ey as

Ey =

3∑
i=1

λi

∫
Kρ(x− y)|I(x) − fi(y)|2Mi(φ(x))dx, (3)

where Mi(φ(x)) is the membership functions of the region Ωi as defined earlier.
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As mentioned earlier, the energy Ey should be minimized for all y ∈ Ω. This
can be achieved by minimizing the integral of Ey with respect to the neighbor-
hood center y, which is the energy functional E defined by

E(φ, f1, f2, f3) =
3∑

i=1

λi

∫ (∫
Kρ(x− y)|I(x) − fi(y)|2Mi(φ(x))dx

)
dy. (4)

As in most active contour models, we smooth the contours by penalizing their
lengths. Therefore, we define

L(φ) = ν1

∫
|�H(φ(x))|dx + ν2

∫
|�H(φ(x) − k)|dx, (5)

where the first term and the second term compute the arc lengths of the 0-level
and k-level contours, respectively.

With the energy terms R(φ, α), E(φ, f1, f2, f3), and L(φ) defined above, we
propose to minimize the following energy functional:

F(φ, α, f1, f2, f3) = R(φ, α) + E(φ, f1, f2, f3) + L(φ). (6)

2.2 Energy Minimization

Minimization of the energy F(φ, α, f1, f2, f3) can be achieved by alternately
minimizing F with respect to each of its variables. The energy minimization
process starts with an initialization of the level set function φ and the smooth
function α. The smooth function α can be initialized as a constant function, i.e.
α = c with c > 0 being a constant. After a number of iterations of the level set
function, the function is updated as the minimizer of the energy R(φ, α) given
the updated φ in previous iteration. The minimization of R(φ, α) with respect to
α can be achieved by solving the gradient flow equation derived from the energy
R(φ, α), which is a standard heat equation. The heat equation can be solved
approximately by a convolution of the function |�φ| with a Gaussian kernel.
For a fixed level set function φ, we minimize F(φ, α, f1, f2, f3), or equivalently
minimize E(φ, f1, f2, f3), with respect to f1, f2, and f3, since the energy R(φ, α)
and L(φ) are independent of f1, f2, and f3. It can be shown that the energy E
is minimized by

fi =
Kρ(x) ∗ [Mi(φ(x))I(x)]

Kρ(x) ∗Mi(φ(x))
i = 1, 2, 3. (7)

For fixed f1, f2, and f3, we minimize the energy functional F with respect to
φ using the standard gradient descent method and obtain

∂φ

∂t
= λ1e1(x)δ(φ(x)) − λ2e2(x)(δ(φ(x)) − δ(φ(x) − k))− λ3e3(x)δ(φ(x) − k)

+ (ν1δ(φ(x)) + ν2δ(φ(x) − k)) div

(
�φ(x)
|�φ(x)|

)

+ μ

(
�2φ(x) − α(x)div

(
�φ(x)
|�φ(x)|

))
(8)
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(a) End-diastole (b) End-systole

Fig. 1. Results of our method (right column) and ground truth (middle column) for
the images from case SC-HF-NI-11 at end-diastole shown in (a) and end-systole in (b).
Each row shows one of three slices in an 3D image in the left column.

where ei(x) =
∫
Kσ(y − x)|I(x) − fi(y)|2dy, i = 1, 2, 3 and δ is the Dirac

delta function, which is the derivative of H . In the implementation, we use the
smooth function Hε(x) = [1+(2/π)arctan(x/ε)]/2 to approximate the Heaviside
function H with ε = 1 and use δε(x) = (ε/(ε2+x2))/π to approximate the Dirac
delta function δ as in [8].

3 Results and Discussions

We implemented the level set evolution in Eq. (8) by using standard finite dif-
ference scheme as in [8]. Time step �t used in the approximation of tempo-
ral derivative is set to �t = 0.1. For the data used in this paper, we set the
other parameters ρ = 6, μ = 1, ω = 1, λ1 = 0.25, λ2 = 1.5, λ3 = 0.1, and
ν1 = ν2 = 0.05× 255× 255.

Our method has been validated on the datasets from the MICCAI chal-
lenge on left ventricular segmentation (http://smial.sri.utoronto.ca/LV_
Challenge/Home.html), which consist of 15 training datasets and 15 validation
datasets from a mix of patients and pathologies: healthy (SC-N), hypertrophy
(SC-HYP), heart failure with infarction (SC-HF-I), and heart failure with non-
ischemic disease (SC-HF-NI). Fig. 1 shows our segmentation results and the
ground truth for case SC-HF-NI-11 from the datasets. Note that there is no
ground truth provided in the challenge for epicardial contour at end-systole.
The obtained contours appear to be quite close to the ground truth.

We compared our segmentation results with the ground truth provided by
the MICCAI challenge. The metrics for quantitative evaluation include average

http://smial.sri.utoronto.ca/LV_
Challenge/Home.html
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Table 1. Detected and good percentages from the results of different methods

Training Validation

detected (%) good (%) detected (%) good (%)

Method endo epi endo epi endo epi endo epi

[11] - - - - 77.8±17.4 85.7±14.1 72.5±19.5 81.1±14.0

[12] - - - - 99.7±1.4 100 86.4±11.0 94.2±7.0

[13] - - 88.4±10.2 92.9±6.5 - - 92.3±6.1 92.2±5.0

[10] 100 100 96.9±7.6 99.1±3.6 100 100 94.3±9.9 95.6±6.9

Ours 100 100 95.4±5.9 100 100 100 92.8±9.2 96.6±8.1

‘-’ means no value was reported in this paper.

Table 2. Comparison of contour accuracy in terms of average perpendicular distance
and dice coefficient

Training Validation

APD (mm) DM APD (mm) DM

Method endo epi endo epi endo epi endo epi

[11] - - - - 2.07±0.61 1.91±0.63 0.89±0.03 0.94±0.02

[12] - - - - 2.29±0.57 2.28±0.39 0.89±0.03 0.93±0.01

[13] 2.04±0.47 2.35±0.57 0.89±0.04 0.92±0.02 2.04±0.47 2.35±0.57 0.89±0.04 0.92±0.02

[10] 2.09±0.53 1.88±0.40 0.88±0.06 0.93±0.01 2.44±0.62 2.05±0.59 0.88±0.03 0.93±0.02

[14] 2.03±0.34 2.28±0.42 0.90±0.04 0.93±0.02 2.10±0.44 1.95±0.34 0.89±0.04 0.94±0.01

[15] 3.00±0.59 2.60±0.38 0.86±0.04 0.93±0.01 3.00±0.59 2.60±0.38 0.86±0.04 0.93±0.01

Ours 1.82±0.48 1.73±0.43 0.89±0.06 0.94±0.02 1.93±0.37 1.64±0.42 0.89±0.04 0.94±0.02

‘-’ means no value reported in this paper; in [13] and [15], only one APD and one DM were
provided and there was no clarification about the datasets: training, validation, or together.

perpendicular distance (APD) and the dice metric (DM). In the evaluation crite-
rion, if the APD between the ground truth and the detected contour is less than
5mm, the detected contour is graded as good. The quotient formed by dividing
the number of detected contours by the number of contours from the ground
truth is named as detected percentage. Division of the number of good contours
by the number of detected contours is called the good percentage. Although eight
methods were evaluated in the challenge, only four provided the detected and
good percentage statistic for their methods. These results are shown together
with ours in Table 1. We obtained the highest detected percentage, which is
exactly 100% both for endocardial (endo) and epicardial (epi) contours on the
training and validation datasets. Although the good percentage for our endo-
cardial contours is 1.5 percent lower than the method in [10], we achieved the
highest good percentage for the epicardial contour.

Six out of the eight methods in the challenge provided APDs and DMs for their
methods, shown in Table 2 together with these measurements obtained using
our method. The statistics of the DMs for our method are similar to the other
methods in both the training and validation datasets; however, the statistics of
the APDs for our method are the smallest: 1.82±0.48 mm and 1.73±0.43 mm for
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Fig. 2. Regression curves and Bland-Altman plots for EF and left ventricular mass

the training datasets and 1.93±0.37 mm and 1.64±0.42 mm for the validation
datasets. This demonstrates that our contours are closest to the ground truth.

Linear regression and Bland-Altman plots for the EF and LV mass obtained
by our method are shown in Fig. 2. In this challenge, the linear regression and
Bland-Altman plots for EF and LV mass are provided in [10], in which the slope,
regression coefficient, and bias on Bland-Altman plots were 1.17, 0.92, -5.22%
for EF and 0.77, 0.72, 18.38 grams for LV mass. The corresponding metrics for
our method are overall better than those provided in [10].

4 Conclusion

We have proposed a distance regularized two-layer level set model for segmen-
tation of LV from CMR short-axis images. The distance regularization term in
our method has a desirable effect of maintaining the smoothly varying distance
between the two specified level contours that represent the endocardium and
epicardium. We have validated our method on the MICCAI challenge datasets.
Quantitative evaluation and comparison with other state-of-the-art methods
demonstrate the advantages of our method in terms of segmentation accuracy
and the ability to preserve the anatomical geometry of the extracted endocardial
and epicardial contours.
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