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Abstract. We propose a method for targeted segmentation that iden-
tifies and delineates only those spatially-recurring objects that conform
to specific geometrical, topological and appearance priors. By adopting
a “tribes”-based, global genetic algorithm, we show how we incorpo-
rate such priors into a faithful objective function unconcerned about its
convexity. We evaluated our framework on a variety of histology and mi-
croscopy images to segment potentially overlapping cells with complex
topology. Our experiments confirmed the generality, reproducibility and
improved accuracy of our approach compared to competing methods.

1 Introduction

Histology and microscopy image analysis plays a crucial role in studying diseases
such as cancer and in obtaining reference diagnosis (e.g. biopsy histopathology).
Automatically segmenting cells in such images is one of the preliminary steps
toward automatic image analysis and computer-aided diagnosis. In spite of re-
cent advances in segmenting cells based on some homogeneity and smoothness
characteristics, segmenting complex cells with a non-homogeneous appearance
(with multiple internal regions) remains challenging. This problem becomes even
more challenging when these complex cells overlap. Previous works addressed cell
overlapping, for single-region cells, using post-processing [T4JI5TT] (e.g. finding
connected components and using parameter sensitive morphological operations
[11]). However, cells in histology and microscopy images typically consist of mul-
tiple regions (e.g. membrane, nucleus, nucleolus), each with a unique appearance
model (intensity, color or texture) and unique geometric characteristics (e.g. cell
size and shape prior). Furthermore, well defined spatial interactions usually exist
between different regions of a cell (e.g. membrane contains nucleus, and nucleus
contains nucleolus). Most existing methods have only considered simple struc-
tured cells and ignored their complex composition [1132].

There are many types of priors that benefit the segmentation of spatially-
recurring cells with appearance inhomogeneity along with cell-overlapping. Many
state-of-the-art image segmentation methods are formulated as optimization
problems, which are capable of incorporating multiple criteria (or priors) as
energy terms in the objective function and examining the relative performance
of different solutions. Incorporating several energy terms enables us to describe
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the problem in more detail and thus obtain a more accurate formulation. On
the other hand, adding more terms to the objective function generally makes it
more complicated and harder to optimize.

In this work, we opt for ensuring the objective function is flexible enough
(even if it is nonconvex) to accurately capture the intricacies of the cell segmen-
tation problem. To optimize such objective function and to deal with imminent
problems like initialization and local optima, we adopt a global optimization
evolutionary computation method, genetic algorithm (GA), which can attain
solutions close to the global optimum, does not require Euler Lagrangian or en-
ergy gradient calculations, is generally parallelizable, and allows for arbitrarily
complex objective functions. Our framework allows us to leverage a variety of
expert knowledge or priors by adding them as additional terms in the objective
function without being overly concerned about convexification. Finally, to deal
with the spatially recurring aspect in cell segmentation, we use genetic algo-
rithms with ¢ribes [I3] to obtain multiple distinct solutions for our framework.

2 Problem Formulation

Given an n-channel 2D image I : 2 C R? — R", the goal is to segment the
objects of interest (cells) in I. We represent the boundary of each object (or each
part of a multi-region object) by X; € (2, where i indicates the i** part/region.
Next, we review the useful priors in microscopy images that we can leverage.

e Shape: When an object has a specific geometrical shape (e.g. circle, ellipse,
rectillipse, etc.) we model it by shape parameters such as b = {radius, major
axis, eccentricity, etc.}. When no clear geometrical representation exists, we
model a shape (e.g. i'" region’s shape) by its statistical (from m training
samples) and vibrational properties as X; ~ X; + S¢b;, where X; is the
average of a set of pose-normalized training shapes and S§ = Sgtqt + 8Syip is
the combined (statistical Ssiqr and vibrational S, ) covariance matrix [Sf4],
B o 1/m is the balancing parameter and b; = (b},---,b)T is a vector of
shape parameters. We use the Mahalanobis distance to measure the validity
of a novel shape X ; by F"(X ;) = e V(X3 =X)T(8) 7 (X=X,

e Appearance: Histology/microscopy images typically have different discrim-

inative color channels, ¢ = {c1, - ,¢q}, where ¢; is a color channel, e.g.
R, G, B, etc. Further, cells (and their constitutive regions) might also have
different discriminative texture, t = {1, -+ ,t,}, where t; is a texture chan-

nel, e.g. multi-scale Gabor or Haar-like features. To leverage cell appearance
(color+texture), we concatenate ¢ and ¢ into a regional appearance vector r
calculated within inner and outer bands around X, any 4 and Qiut’ 4 With
thickness d. This band-localization is important since cells can contain inner
parts (e.g. nucleus) and can be adjacent to other objects (e.g. other cells), both
of which can pollute the regional appearance measures if a band is not used. In
addition, by using an inner versus outer band, we are encoding the boundary
polarity (e.g. dark to bright). We define the appearance fitness function for

object 7 as
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1 1 1
FP(X,) = ( : p(x € Oy)dx + . / p(x € B,»)dac) (1)
! 2 |“an,d| ‘an,d |“Qiut,d‘ Qiut,d

where p(z € O;) and p(x € B;) are the probabilities of a given pixel z €
“an,dugiut,d’ belonging to object 7 (O;) and its background (B;), respectively,
and are estimated by training a random forest (RF) consisting of NV} binary
decision trees. To segment an R-region object in I, R 4+ 1 patches within
R different regions of the object plus background are selected (i.e. regions
L ={0,---,R}) to train the RF. After training, for each pixel x, the feature
channels, r(x), are propagated through each tree resulting in the probability
pi(x € k|r(x)), for the j*" tree, where k € L. These probabilities are combined
into a forest’s joint probability p(x € k|r(x)) = 1\}» Zj\]:bl pj(x € klr(x)) to
determine the probability of & belonging to class k. Note that O;, B; € L.
Edge: Since boundaries of cells and their parts exhibit appearance disconti-
nuities, we incorporate edge information in the image by defining the following
edge fitness term F°4(X ;) = |)éj| ij e 9X5) where g(.) = 1/(e + \), A is
the maximum eigenvalue of the structure tensor J*J (generalizes scalar field
gradients to those of vector fields), where J is the Jacobian matrix of the
weighted feature channels, w’r, and the vector w, resulting from training
the RF, is the importance of each feature channel in discriminating inside
versus outside of an object (i.e. maximizes boundary edge response).

Pose: Each cell has a specific size, orientation and position in the image.

Given the training data, we estimate the average area (A) and the principal
orientation (f) of cells and use them for imposing constraints on the solutions.
We use a cell’s centroid, p = (p®, p¥), to specify its position.

Topological constraints: In addition to the geometrical and appearance
properties of an object (color, texture, edge, shape and pose), in multi-region
objects, meaningful topological relationships typically exist between different
object’s regions, e.g. regions contain/exclude others. To enforce containment
and exclusion between two regions, e.g. X; is contained in X, or, X; and
X ; are excluded from one another, the following constraints are imposed:

contain

D) = 0, Va;jeX;, D(a)=SDM(X,), 2)

exclude

where SDM (X ;) is the signed distance map of X; and is positive inside and
negative outside X ;. Eq. (@) is a general constraint for convex and non-convex
shapes. However, for convex shapes, as we typically have in microscopy images,
we adopt the following simplification for containment: ||p; —;||—||p; —x;'|| >
0, and exclusion: ||p; —;||—||p; —x;’|| < 0, Va; € X, for faster computation,
where x; € p]—:c: NX; and pj = (p;”,p]y-) is the spatial position of X ;.

Inter-part adjacency: In biomedical applications, the minimum (d™") and
maximum (d™**) distances between two adjacent regions of an object are some-
times known. Bounding the minimal and maximal distances between two
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Fig.1. Chromosome structure for (a) a single-region and (b) a two-region object.
The position of the second region, (A7, AY), is computed relative to the first object’s
position. (c) Tribe-based GA. No migration is allowed between tribes.

adjacent boundaries (e.g. ¢ and j) from below and above, respectively, prevents
segmentation leakage and improves the results. We impose these constraints by:

min(fija sz) Z d;;”n ) maX(gijagji) S d;?am’ (3)

where fi; = ming,cx, ming,ex; ||¢; — x;|| and g;; = maxg,ex, ming,ex, ||
x; — x| |. For efficiency, we only calculate and restrict f;; and g;; (not f;; and
gji)-

e User interaction: User interaction is another useful prior. This prior can be
applied on the boundary and/or the region of an object by providing corre-
sponding seed points, sf and s7, and force the solution to satisfy the following

; r i b i i
constraints si € 2, ,_ . and s € $2, , U, . .

Fitness Function: The overall fitness function (for an R-region cell) is con-
structed by integrating all above mentioned information as

R

Fiotal(X) = Z (th(X) + F""(M; (X)) + Fed(./\/li(X))), subject to (4)
i=1

geometry : |bf| < 3\/)\2 10; — 0;] < 3\/)\‘? |Area(X ;) — A;] < 3\/)\;4

user interaction : s; € Qz’noo si.’ € Qz’ne U Qfmt’e

topology : eq.@) adjacency : eq.@)

where X = X + 8, M;(X) = 5,R; X + 7; is a similarity transformation with
rotation R, scaling s, and translation 7, ] is the j'" eigenvalue of i'" region’s
covariance matrix and A\# and \¢ are the area and orientation variance of "
region, respectively, obtained from the training data.

To find the best fit for such a complex fitness function ), we adopt GA as
a global optimization tool. Although GA does not strictly guarantee the global
solution, our results confirm the ability of this approach to accurately segment
the spatially-recurring, multi-region cells with partial overlap. In GA, each indi-
vidual solution is represented by a chromosome consisting of several genes (Fig.
M(a)). The first four genes describe the individual’s pose information, p? and pY
are the spatial position of i*” region and 6;, s; and b}, - -- , bt are its orientation,
scale and shape parameters.
Encoding Multi-region Object’s Information into GA: For simplicity
and to conserve space, here we consider a two-region object scenario. Assuming
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Fig. 2. Fish blood cells segmentation

a cell consists of two regions: X1 and X5, where X; contains X5, we compute
A and 0, as well as the shape parameters, b, for X; and X, separately, as
described before. We represent the cell while encoding the interaction between
its regions by concatenating the two chromosomes of X; and X . However, the
position of X, (p3,pY), is computed relative to X1’s position, (pf, p¥), and its
corresponding genes are replaced by A, and A, (Fig.0(b)). A, and A, allow X
to move in small distances around its relative position to (p§, py). The average
relative distance between X; and X as well as limits on A, and A, are learned
from the training data.

Each object (cell) typically recur in different parts of the image domain. To
deal with such spatially recurring aspect of cell segmentation, we use GA with
tribes to obtain multiple distinct solutions (i.e. cells). In tribes-based GA, the
whole population is grouped into several tribes. During the GA evolution and in
the gene crossover phase, any two selected parents must be from the same tribe.
In fact, tribes are too choosy about who is allowed to join them (Fig.i(c)); they
do not accept any stranger (no migration is allowed) and even children who are
not similar to the tribe’s population are rejected. This tribes-based GA allows
for the desired multiple distinct solutions. We choose the tribes’ membership
based on the spatial position of each member (cell), i.e. (p®, p¥).

Initialization and Implementation: We used 6 channels of colors (RGB+
HSV) and 3-channel Gabor features as our regional cues. Gabor filters were
calculated in 8 different orientations and 3 different scales and were summed up
across orientations to obtain rotational-invariance texture features. For RF, we
used N, = 50 binary trees. We randomly spread 10,000 random chromosomes
over the image wherever the probability of existing cells obtained from RF is large
enough, i.e. p(x € Olr(z)) > 0.6 (Fig. &(b)). dj}"™ and dj}** were set based on
the training dataset. Although our method can handle user interaction, none was
used in our experiments. The crossover and mutation rates were fixed to 0.7 and
0.01, respectively, in all of our experiments. Individuals that are within a distance
of ¢ pixels from each other establish a tribe (Fig. lc)). We implemented our
method in MATLAB in a way that all individuals are evaluated simultaneously in
parallel. After convergence, Fig.[2[(d), the best solution in each tribe is examined
(Fig.[X(e)). We use the final fitness measure as a confidence measure, where the
user can request displaying e.g. the top 10% confident segmentation. According
to our fitness function, the ideal fitness score is 3. In all of our experiments we
kept the solutions that are higher than 2.4 (top 20% confident segmentation) as
the final solution (Fig. B(f)).
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3 Experiments

In our first experiment, we evaluated our method on stained breast cancer
tissue images used in ICPR 2010’s HIMA contest on ‘Counting Lymphocytes
on Histopathology Images’ [7]. We benchmarked our results against the state-
of-the-art methods, including the contest’s finalists. We used the centroid of
the segmented cells to compare our results against the expert annotated ground
truth (GT). Fig. Bla) quantitatively compares our results against the compet-
ing methods. The evaluation criteria are based on the Euclidean distance, dg,
between the GT and segmented lymphosytes, as well as the absolute difference,
N, between the true number of cells in GT and detected cells. m and s in Fig.
Bi(a) are mean and standard deviation, respectively. In Fig. B(a), Bernardis et
al. [2] reported results for different thresholds, p, on the same dataset. While
for some cases (e.g. p = 2) they achieved better distance accuracy, dg, than our
method, they found less true cells (bigger N). On the other hand, they obtained
better detection rate (smaller N) for p = 5 but with less accuracy, dg. We em-
phasize that their method has been designed for single-region cells only. Fig.
Bi(b) demonstrates how our method distinguishes the merged cells. Our method
can not only detect and segment the single-region cells but also delineate the
different boundaries of a multi-region cell.

To further showcase our method, we ran a second experiment on another
dataset, MICR, consisting of 20 different histology and microscopy images with
multi-region cells. Our results in Fig. @l verify the use of proposed constraints
(topology, thickness and shape) as compared to ubiquitous unconstrained image
segmentation methods; graph cuts (GC), and constrained methods; Delong and
Boykov [5] (DB). While GC is not designed to segment cells, its results show the
issues and difficulties involved in segmenting complex, multi-region cells. Delong
and Boykov’s method incorporates containment constraint in the GC framework,
however, their method is unable to segment the targeted objects solely (Fig. [)).
Fig. Bl(c) quantitatively compares our method with watershed (WS), GC and
DB on both HIMA and MICR datasets using Dice similarity coefficient (DSC).

Due to the random initialization and evolution in GA, they may not always
produce the same result. To examine the reproducibility of the proposed ap-
proach, in our third experiment, we ran our method 20 times on sample im-
ages and monitored the fitness and DSC vs. generation (Fig. Bl). The results
confirm that our method converges to almost similar results (similar DSC) al-
though we randomly initialized the population at each run. From Fig. Bl the
fitness values for the 1°¢ and 2"? cells are lower than the 3"¢ simply because the
first two cells overlap. The variations between different runs can be reduced by
increasing the size of initial population but at the cost of computational com-
plexity. Runtime: Using non-optimized MATLAB code on standard 2.3 GHz
CPU, the running time of our algorithm ranged between 60-300 s/image, which
depended primarily on the number of cells per image, which varied between 2-60
for both HIMA and MICR.
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Fig. 3. (a) Comparison against state-of-the-art methods on HIMA dataset [7]. (b) Sam-
ple results. Red contours: our segmentation result; small gold + sign: our segmentation
centroid; green dots: ground truth. (¢) Accuracy comparison with WS, GC and DB
methods using DSC (mean =+ std).
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Fig. 4. Sample results on MICR dataset. Note how the proposed method segments
only the targeted cells. Same data term was used for all experiments.

(a)

7 3 z 3
8 8
o S

£25| e §25| mm——
a | a2 |
i) cen i, [ cen2

1 _ 1 — —
508 = o8l
©06 206

50 0 50
(b) Generation (c) Generation

w

Fitness score (best)

0 081
206
0 50
(d) Generation

Fig. 5. Sample segmentation shown in Fig. @l (b-d) Fitness and DSC of the best
individual of each tribe vs. generation number for the three tribes (1°*, 2" and 3"%)
corresponding to the three cells in (a), for 20 different runs on (a).

4 Conclusion

Segmenting spatially recurring complex objects consisting of different regions
with varying shapes, colors and textures remains a challenging problem in
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biomedical image segmentation. Another layer of complexity is added once these
multi-region objects overlap. In this paper we showed how to address this com-
plexity holistically by incorporating several intuitive priors into an objective
function without being overly concerned about its optimization. The proposed
high level priors help us to segment only the targeted objects (cells) in an image.
Fully parallelizing the proposed method is in our agenda as future work.

References

1. Ali, S., Veltri, R., Epstein, J.I., Christudass, C., Madabhushi, A.: Adaptive energy
selective active contour with shape priors for nuclear segmentation and gleason
grading of prostate cancer. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI
2011, Part I. LNCS, vol. 6891, pp. 661-669. Springer, Heidelberg (2011)

2. Bernardis, E., et al.: Pop out many small structures from a very large microscopic
image. MedIA 15(5), 690-707 (2011)

3. Cheng, L., Ye, N., Yu, W., Cheah, A.: Discriminative segmentation of microscopic
cellular images. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011, Part
1. LNCS, vol. 6891, pp. 637-644. Springer, Heidelberg (2011)

4. Cootes, T.F., et al.: Combining point distribution models with shape models based
on finite element analysis. Image Vis. Comp. 13(5), 403-409 (1995)

5. Delong, A., et al.: Globally optimal segmentation of multi-region objects. In: ICCV,
pp. 285-292 (2009)

6. Graf, F., Grzegorzek, M., Paulus, D.: Counting lymphocytes in histopathology
images using connected components. In: Unay, D., Cataltepe, Z., Aksoy, S. (eds.)
ICPR 2010. LNCS, vol. 6388, pp. 263-269. Springer, Heidelberg (2010)

7. Gurcan, M.N., Madabhushi, A., Rajpoot, N.: Pattern recognition in histopatho-
logical images: An ICPR 2010 contest. In: Unay, D., Cataltepe, Z., Aksoy, S. (eds.)
ICPR 2010. LNCS, vol. 6388, pp. 226-234. Springer, Heidelberg (2010)

8. Hamarneh, G., Jassi, P., Tang, L.: Simulation of ground-truth validation data via
physically-and statistically-based warps. In: Metaxas, D., Axel, L., Fichtinger, G.,
Székely, G. (eds.) MICCAI 2008, Part I. LNCS, vol. 5241, pp. 459-467. Springer,
Heidelberg (2008)

9. Kuse, M., Sharma, T., Gupta, S.: A classification scheme for lymphocyte segmen-
tation in H&E stained histology images. In: Unay, D., Cataltepe, Z., Aksoy, S.
(eds.) ICPR 2010. LNCS, vol. 6388, pp. 235-243. Springer, Heidelberg (2010)

10. Kuse, M., et al.: Local isotropic phase symmetry measure for detection of beta cells
and lymphocytes. J. Pathol. Inf. 2 (2011)

11. Mao, K.Z., et al.: Supervised learning-based cell image segmentation for p53 im-
munohistochemistry. IEEE TBE 53(6), 1153-1163 (2006)

12. Panagiotakis, C., Ramasso, E., Tziritas, G.: Lymphocyte segmentation using the
transferable belief model. In: Unay, D., Cataltepe, Z., Aksoy, S. (eds.) ICPR 2010.
LNCS, vol. 6388, pp. 2563—-262. Springer, Heidelberg (2010)

13. Turner, A., et al.: Obtaining multiple distinct solutions with genetic algorithm
niching methods. In: Ebeling, W., Rechenberg, 1., Voigt, H.-M., Schwefel, H.-P.
(eds.) PPSN 1996. LNCS, vol. 1141, pp. 451-460. Springer, Heidelberg (1996)

14. Wu, X., et al.: Embedding topic discovery in conditional random fields model for
segmenting nuclei using multispectral data. IEEE TBE 59(6), 1539-1549 (2012)

15. Yang, L., Tuzel, O., Meer, P., Foran, D.J.: Automatic image analysis of histopathol-
ogy specimens using concave vertex graph. In: Metaxas, D., Axel, L., Fichtinger, G.,
Székely, G. (eds.) MICCAIT 2008, Part I. LNCS, vol. 5241, pp. 833-841. Springer,
Heidelberg (2008)



	Segmentation of Cells with Partial Occlusion and Part Configuration Constraint Using
Evolutionary Computation
	1 Introduction
	2 Problem Formulation
	3 Experiments
	4 Conclusion
	References




