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Abstract. The growing availability of data from robotic and laparoscopic sur-
gery has created new opportunities to investigate the modeling and assessment 
of surgical technical performance and skill. However, previously published me-
thods for modeling and assessment have not proven to scale well to large and 
diverse data sets. In this paper, we describe a new approach for simultaneous 
detection of gestures and skill that can be generalized to different surgical tasks. 
It consists of two parts: (1) descriptive curve coding (DCC), which transforms 
the surgical tool motion trajectory into a coded string using accumulated Frenet 
frames, and (2) common string model (CSM), a classification model using a 
similarity metric computed from longest common string motifs. We apply 
DCC-CSM method to detect surgical gestures and skill levels in two kinematic 
datasets (collected from the da Vinci surgical robot). DCC-CSM method classi-
fies gestures and skill with 87.81% and 91.12% accuracy, respectively.  

Keywords: surgical motion, descriptive models, gesture and skill classification, 
geometry, descriptive curve coding, robotic surgery.  

1 Introduction 

Methods that are currently used to assess acquisition and maintenance of surgical skill 
in the training laboratory and operating room suffer from significant shortcomings 
[1]. Existing methods are focused on either subjective global evaluation of perfor-
mance or unstructured, descriptive feedback [1,2]. Some evaluation metrics such as 
total task completion time and path length reasonably correlate with surgical skill but 
are not instructive, i.e. they provide limited information to the trainee on whether and 
how to improve their performance in different stages of the task. On the other hand, 
unstructured, descriptive feedback typically requires the presence of a senior surgeon 
and is inefficient [1,2]. 

The advent of robotic surgery has created new opportunities to automate objective 
assessment of skill acquisition by surgical trainees. Because surgeons may exhibit 
different levels of skill at various stages of the task, automated skill assessment  
requires the detection of gestures that are being performed. Prior approaches to  
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automatically detect surgical skill and gestures have significant performance and utili-
ty limitations (Table 1) [3-9]. For example, Hidden Markov Models (HMMs) and 
other statistical methods such as Linear Dynamical Systems (LDS) were used to 
detect surgical gestures with reasonable accuracy (around 85%). Our objective in this 
paper is to present and evaluate a general approach for signal representation, called 
Descriptive Curve Coding (DCC) using accumulated Frenet frames (AFF) followed 
by analysis of string motifs, which can be used to simultaneously identify both sur-
gical skill and gestures using kinematic data describing surgical motion. 

2 Experiment Setup 

We used two datasets to develop and validate our methods. The first dataset (DS-I) 
has been described in detail elsewhere [5,9]. It contains 39 trials of a four-throw con-
tinuous suturing task (performed by 8 surgeons in multiple sessions) on a bench-top 
model using the da Vinci surgical robot (Intuitive Surgical, Inc., Sunnyvale, Califor-
nia). The second dataset (DS-II), with 110 trials, was collected from 18 surgeons per-
forming interrupted suturing followed by either a square knot or a surgeon’s knot 
using the da Vinci surgical robot [10]. The operators performed multiple sessions over 
several days, repeating the suture/knot-tying task three times in each session.  
The surgical task in DS-II is more complex compared to that in DS-I. 

The data from each task was manually segmented, i.e., the start and the end of 
every gesture in a task were annotated, by watching the endoscopic-video recordings. 
The gesture labels were specified by an experienced surgical educator, and manually 
assigned by two researchers in our lab (88% average chance-corrected-agreement 
between annotators). We used 10 gestures from DS-I (total of 787 sample gestures) 
under the same experiment setup explained in [5]. We used seven gestures from DS-
II: grab needle, grab suture, grab suture-tail, pull needle, pull suture, rotate suture 
once, rotate suture twice. Because kinematic data does not contain information about 
the surgical environment (e.g., object being held), we combined the gestures into 
three context-free groups: grab (722 samples; average duration of 2 sec), pull (431 
samples; average duration of 1.3 sec), and rotate (137 samples; duration of 3.8 sec).  

Our ground truth for skill assessment consisted of Global Rating Scores (GRS) as-
signed based on the Objective Structured Assessment of Technical Skills (OSATS) 
approach [11]. An experienced surgical educator, who was masked to the identity of 
the operator, assigned the scores by watching video recordings of operators perform-
ing the tasks. The OSATS approach is comprised of six elements; each one scored 
using a Likert scale ranging from 1 to 5. In practice, a single GRS is assigned for the 
entire task, whereas automated assessment can be continuous over the task  
(i.e., assigns a skill level to each gesture in a task). 

We considered trials for which an operator was assigned a score of 3 on at most 
two items and a score 4 or 5 on the other items on the GRS as being at “expert” skill 
level; trials with a score less than 3 on all items on the GRS as being at “novice” skill 
level; and trials that fell in between the expert and novice categories as being at “in-
termediate” skill level. DS-II contains 30 novice-level trials, 37 intermediate-level 
trials, and 43 expert-level trials. 
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3 Methodology 

Our approach is comprised of three steps (Fig. 1): feature extraction (signal represen-
tation through AFF and DCC), training (string-motif-based model, metrics, and classi-
fication), and finally evaluation of the classification on a test dataset. 

 

Fig. 1. Three steps comprising our approach for gesture/skill classification 

3.1 Accumulated Frenet Frames (AFF) 

In [4], we introduced the idea of DCC using Frenet Frames (FF), which assign a local 
coordinate system to each point of a trajectory, based on the local curvature. The cod-
ing system defined on FFs is coordinate-independent and thus independent of the 
surgical setup. However, FFs alone do not adequately represent the curvature of some 
smooth trajectories, as explained below. Therefore, we introduce AFF, which accu-
mulates changes in direction of the motion trajectory over short spatial or temporal 
windows and thus is more sensitive to gradual changes. 

The tool tip movement is represented by a sequence of local frames (Fig. 2a). Each 
frame is comprised of three orthogonal unit vectors: v  follows the tangent of the 
curve (w ), u  is the normal vector following the concavity of the curve, and n  is the 
binormal vector formed as the cross-product of v  and u . In the original FF, v  di-
rectly followed the tangent vector, whereas in AFF, it follows the last considerable 
change of direction (defined in 3.2). The AFF accumulates small changes of direction 
until they are large enough to update the frame orientation. 

3.2 Descriptive Curve Coding (DCC) 

DCC transforms the time series of AFF into a coded string representation of tool mo-
tion by mapping each motion to a small set of canonical directions. Let S ={0,1,…, n} 
be the index set of vectors comprising the coding alphabet. The following equation is 
used to generate an alphabet representing direction changes of π/2 :  
 x  x  x x / x x  | x x 0; x , x x  x  0, v , v u , u v , u , u , v  

For example, Figure 2a shows a set of vectors encoding direction as cardinal direc-
tions (the base case of equation above, p=1). [x]1 contains six orthogonal vectors  
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indicating the possible changes of direction plus no-motion (DCC7): ‘x : no-motion’, 
‘x : forward’, ‘x : left’, ‘x : right’, ‘x : down’, ‘x : up’,‘ x : backward’. [x]2 defines 
a 19-element alphabet (DCC19), which includes all bisectors of DCC7 vectors. Fig. 3 
illustrates differences in representation between FF and AFF and between DCC7 and 
DCC19. The representation by AFF is closer to the original shape than the representa-
tion by FF (Fig. 3). In addition, using a larger alphabet size (DCC19 vs. DCC7)  
results in signal representations that are closer to the original shapes. 

 

Fig. 2. Possible changes in the direction of the motion trajectory at a given point: a) the change 
of direction of the motion trajectory between wi (current window) and wi-1 (previous window) is 
encoded using a set of predefined possible vectors [x]. b) seven element alphabet when changes 
larger than π/4 are of interest (DCC7), or c) nineteen element alphabet when changes larger 
than π/8 are of interest (DCC19). 

 

Fig. 3. First row: the original shape. Even columns show the representation of the curve after 
coding by DCC7 or DCC19, respectively. Odd columns show u (red) and v (blue) vectors of 
either FF (second row) or AFF (third row) along the curve. Using AFF with DCC19 clearly 
provides the most detailed approximation to the original shape. 

3.3 Common String Model (CSM) 

DCC encodes each motion trajectory j as a string T  of length m. We hypothesize that 
within this string, there are recurring string patterns (string motifs) that correlate with 
the gesture being performed, and the skill with which it is being performed. Thus, 
within a training set T , we apply an algorithm to extract the ‘Longest Common 
String’ (LCS) for each pair of strings , T  using the dynamic time warping 
approach. LCS returns three values: the longest common motifs (C), number of joint 
occurrences (N), and the set of motif locations in each training string (O). The collec-
tion of triples <  C, N, O  computed by applying LCS to each pair of strings in  
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T  forms the dictionary D. For example, if LCS finds a common motif C between T  and T  and the motif C occurs at elements X,  in T  and element Y in T , the 
entry in the dictionary would be: LCS , T    , 3, X, Y, Z  

If C is found in other pairs of strings, for example in , , then we update the 
dictionary entry for C by summing  and , and merging the sets and . 

3.4 Similarity Metric and Classifier 

We used the following equation to measure the pseudo-similarity value between a 
given string T  and a dictionary D: Similarity T , D 1d log P  w log |C | w log A   C D T  

A  11 ∑ |Y J|J O  

where C  represents each of the d motifs found in both T  and CSM. P  is the fre-
quency of motif C  appearing in the model and |C | represents the length of the motif C . A  is a measure of the mis-alignment between the location of C  in T  (denoted as Y) and the location of C  in the training samples (J). The weight factors w  and w  
are learned using a gradient descent algorithm to optimize the performance of the 
metric for a given classification problem as explained below. The similarity metric 
tends to assign higher values to test strings with longer matching motifs with the 
model. However, it also applies a misalignment penalty for motifs that do not occur 
during corresponding segments of the surgical task.  

3.5 Training 

For a given classification problem, a dictionary is computed for each class of interest. 
For a given set of weights the pseudo-similarity provides a value determining the 
affinity of a given test string to each dictionary. A Support Vector Machine (SVM) 
classifier is trained using a feature vector S (comprised of pseudo-similarities), and 
the performance is tabulated. The weights, w  and w , are optimized to maximize 
the classifier’s performance by tuning the pseudo-similarity to be as discriminative as 
possible for a given task. 

4 Evaluation and Results 

We analyzed DS-I for gesture classification and DS-II for both gesture and skill clas-
sification. For gesture classification in both DS-I and DS-II, we apply three methods 
assuming that the boundaries are known (from manual annotation): HMM [9], LDS 
[5], and DCC-CSM. The HMM method was configured as a 3-state, 3-mixtures 
(3S3M), and a 3-state, 1-mixture (3S1M), along with 9-dimensional linear  
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discriminant analysis (LDA). The LDS algorithm used Martin and Frobenius distance 
metrics, and nearest neighbor (NN) and SVM as classifiers. We tried different orders 
for the dynamical models (range from 3 to 15) and reported the best results 
obtained. We also examine the performance of DCC-CSM under varying conditions – 
using two types of “windows” for encoding the motion trajectory (with resolutions of 
either 0.25mm in the spatial domain or 25ms in the temporal domain), and using al-
phabets of two sizes (DCC7 and DCC19). 

For our evaluations, we used three validation methods – leave-one-session-out 
(“SO”), leave-one-user-out (“UO”), and k-fold cross-validation (leave 20% out). For 
our analyses using DS-I, we under-sampled gesture classes to include 43 samples 
(median of class size) to create balanced (B) training datasets. We also report results 
of our analyses on DS-I using unbalanced (UB) training datasets (except DCC-CSM). 
Tables 2 to 5 include both macro- and micro- averages of correct classification. 

We investigated the following using DCC-CSM on DS-II: gesture classification for 
a known skill level, skill classification for a known gesture, and simultaneous gesture 
and skill classification (assuming neither is known). For simultaneous classification of 
gesture and skill, we trained nine models (3 gestures times 3 skill levels). The model 
that is most similar to the test sample represents both gesture and skill.  

Table 1. Gesture detection performance with unknown boundaries – micro averages of correct 
frames- reported in the literature for various algorithms using dataset DS-I. *=one-trial-out. 

Suturing task HMM- 3S3M S-LDS [9] HMM-HLDA [9] FA-HMM [9] SHMM [6] 
SO 72%* 80.79% 74.13% 78.27% 81.1% 
UO 69% 67.1% N/A 57.2% 67.8% 

Table 2. Gesture classification performance, assuming known boundaries, macro (top number) 
and micro (bottom number) averages, percentage of correct segments on DS-I (chance=10%) 

Suturing task 
HMM 
3S3M 

HMM 
3S1M 

 LDS 
NN Mar 

LDS 
NN Fro 

LDS 
SVM Mar

LDS 
SVM Fro

DCC7, 
spatial 

DCC7, 
temporal

DCC19, 
spatial 

DCC19, 
temporal 

SO 
B 

67.49 
71.69 

85.98 
87.12 

66.97 
74.60 

74.59 
80.00 

72.46 
80.12 

82.53 
87.69 

- - - - 

UB 
68.43 
73.68 

88.72 
91.81 

67.10 
82.22 

74.29 
83.65 

64.88 
81.62 

80.23 
90.01 

79.92 
80.10 

86.79 
85.26 

82.92 
81.39 

77.88 
83.23 

UO 
B 

49.54 
56.45 

59.61 
64.04 

54.77 
63.28 

58.41 
65.66 

62.16 
69.35 

68.07 
75.76 

- - - - 

UB 
48.67 
57.08 

63.49 
71.60 

55.77 
69.02 

56.98 
70.10 

59.63 
75.41 

69.82 
81.39 

74.70 
78.18 

75.88 
79.92 

79.65 
78.56 

72.28 
80.81 

 
On DS-I, previous algorithms for gesture classification, assuming unknown boun-

daries, achieved a classification accuracy of up to 81% (Table 1). In contrast, assum-
ing known boundaries, most variants of HMM, LDS, and DCC-CSM methods 
achieved comparable or better gesture classification accuracies on the same dataset 
(Table 2). Specifically, HMM with the simpler model (3S1M), LDS (SVM Fro), and 
DCC7 (temporal) appear to perform better than the other methods we evaluated. Since 
DCC-CSM memorizes the performed pattern, its performance decreases significantly 
with smaller classes. Those insignificant performances were excluded from Table 2.  

On DS-II, DCC-CSM methods (DCC7, temporal) classified gestures more  
accurately than HMM and LDS methods within nearly all skill levels (Table 3).  
All methods were sensitive to training with data leaving-one-user-out. 
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Our findings on gesture classification using DS-I are not directly comparable to 
those using DS-II. However, the near perfect gesture classification by DCC-CSM 
methods on DS-II suggests that these methods are sensitive to size of the training 
sample. DCC-CSM methods using temporal windows were more accurate than those 
using spatial windows. We believe that the differential performance between temporal 
and spatial windows is because the former captures change over time, which is a 
component of velocity of the motion trajectory. DCC19 was not consistently more 
accurate than DCC7, as we anticipated this maybe because DCC19 yields shorter 
strings than DCC7 that are then commonly seen for each gesture.  

Table 3. Gesture classification performance (with known skill level), macro (top number) and 
micro (bottom number) averages, percentage of correct segments on DS-II (chance=33%). 

Evaluation 
method 

Known 
skill level

HMM 
3S3M 

HMM 
3S1M 

 

NN Mar NN Fro SVM Mar SVM Fro 
DCC7 
spatial 

DCC7 
temporal 

DCC19 
spatial 

DCC19 
temporal 

k-fold 

Novice 
59.98 
61.35 

73.05 
75.78 

70.97 
69.92 

70.82 
71.18 

71.93 
75.27 

74.78 
78.75 

90.77 
91.83

96.94 
98.35

75.77 
75.85 

79.87 
80.89 

Inter 
70.31 
67.81 

81.14 
83.46 

71.45 
72.03 

71.80 
71.99 

71.12 
74.38 

76.63 
78.10 

76.62 
83.78

98.81 
99.25

92.14 
91.17 

82.74 
83.80 

Expert 
69.41 
69.13 

80.26 
81.96 

66.44 
66.76 

69.91 
68.54 

63.64 
70.00 

67.34 
71.74 

87.78 
91.38

94.81 
95.90

86.14 
87.46 

88.35 
92.15 

UO 

Novice 
53.89 
55.73 

64.17 
63.93  64.15 

67.08 
64.56 
65.70 

66.53 
71.14 

75.42 
74.78 

69.38 
67.99

74.18 
83.39

47.32 
55.40 

85.33 
89.58 

Inter 
75.17 
68.63 

74.02 
78.63  69.28 

69.87 
66.95 
69.48 

70.19 
73.18 

72.90 
76.01 

63.88 
54.91

70.03 
74.07

70.94 
70.18 

74.23 
75.76 

Expert 
52.95 
59.62 

71.14 
76.05  57.72 

60.60 
61.29 
64.92 

53.13 
62.08 

64.96 
72.38 

57.06 
45.71

88.32 
89.73

71.66 
78.57 

75.52 
78.08 

DCC-CSM methods achieved nearly 98% skill classification accuracy for the 
“pull” gesture (Table 4). DCC-CSM methods simultaneously classified both gesture 
and skill with nearly 97% accuracy (k-fold; Table 5), which was sensitive to training 
with data leaving out one user. 

Table 4. Skill classification performance 
(with known performed gesture), macro/micro 
averages on DS-II (chance=33%) 

Table 5. Simultaneous gesture and skill 
classification performance (with no prior 
knowledge) on DS-II (chance=11%) 

Evaluation 
method 

Known 
gesture 

DCC7 
spatial 

DCC7 
temporal  

DCC19 
spatial 

DCC19 
temporal  

k-fold 

 grab 90.85 
91.14 

84.78 
86.16 

88.26 
89.10

82.74 
83.45

 pull  90.20 
90.00 

97.85 
97.86 

90.66 
90.68

96.85 
96.85

 rotate 90.25 
91.60 

93.13 
93.60 

88.64 
89.00

95.23 
95.80

UO 

 grab 63.17 
64.22 

91.88 
91.45 

40.41 
42.44

78.60 
78.73

 pull  72.52 
73.20 

86.26 
86.71 

68.45 
70.10

71.29 
71.10

rotate 85.29 
85.87 

75.39 
76.09 

72.02 
71.74

74.76 
75.00

 

Evaluation 
method 

DCC7  
spatial 

DCC7 
temporal 

DCC19 
spatial 

DCC19 
temporal  

k-fold 
94.98 
96.62

84.78 
96.92

88.48 
91.37 

92.41 
91.37 

UO 
66.05 
67.47

70.91 
78.35

47.46 
50.30 

58.83 
68.64 

 

5 Conclusion 

We evaluated DCC-CSM methods, and compared them with existing HMM and  
LDS methods, for detection of surgical gestures and skill on two datasets using two  
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cross-validation approaches. DCC-CSM methods were at least as accurate or were 
more accurate than HMM and LDS methods under most experimental conditions on 
both datasets. Whereas HMM and LDS methods relied on a detailed kinematic repre-
sentation of surgical tool motion, DCC-CSM methods used only position and orienta-
tion of the tool-tip. DCC-CSM methods offer a way to seamlessly classify both  
gesture and skill. The sensitivity of DCC-CSM methods to detect various surgical 
gestures, in other datasets, using alternate similarity metrics and different methods to 
assign the ground-truth for skill has yet to be evaluated. 
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