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Abstract. In this study, we propose an efficient non-rigid MR-TRUS de-
formable registration method to improve the accuracy of targeting suspi-
cious locations during a 3D ultrasound (US) guided prostate biopsy. The
proposed deformable registration approach employs the multi-channel
modality independent neighbourhood descriptor (MIND) as the local
similarity feature across the two modalities of MR and TRUS, and a
novel and efficient duality-based convex optimization based algorithmic
scheme is introduced to extract the deformations which align the two
MIND descriptors. The registration accuracy was evaluated using 10 pa-
tient images by measuring the TRE of manually identified corresponding
intrinsic fiducials in the whole gland and peripheral zone, and perfor-
mance metrics (DSC, MAD and MAXD) for the apex, mid-gland and
base of the prostate were also calculated by comparing two manually
segmented prostate surfaces in the registered 3D MR and TRUS images.
Experimental results show that the proposed method yielded an over-
all mean TRE of 1.74 mm, which is favorably comparable to a clinical
requirement for an error of less than 2.5 mm.

Keywords: Non-rigid Image Registration, Convex Optimization,
MR-TRUS prostate registration, MIND Similarity Measurement.

1 Introduction

Prostate cancer is the most common non-skin cancer in men of developed coun-
tries, with a large and increasing incidence in most countries, and the third lead-
ing cause of death due to cancer. It is estimated to affect 26,500 men in Canada
in 2012 [1], 238,590 in United States in 2013 [2] and is the most common cancer
in men in UK (40,975 new cases in 2010) [3]. To this end, transrectal ultrasound
(TRUS) guided prostate biopsy is the standard approach for definitive diagno-
sis and guiding biopsy needles to suspicious regions in the prostate, due to its
real-time and radiation-free imaging capability, low cost and operation simplicity
[4]. However, its lack of image contrast to clearly visualize early-stage prostate
cancer results in false-negative rates for systematic sextant biopsies ranging up
to 30% [5] and thereby increasing the number of repeat biopsies.

Recent developments in Magnetic Resonance Imaging (MRI) have demon-
strated a high sensitivity and specificity for the detection of early stage prostate
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cancer [6]. Reports have shown that MRI can achieve a high accuracy of diagnos-
ing prostate cancer at approximately 72-76% [7]. Although MR prostate imaging
is advancing, it cannot yet replace TRUS guided needle biopsy, especially when
real-time guidance is required, due to the high cost and time consuming proce-
dure associated with performing MR imaging and targeting. In this regard, MR-
TRUS registration technique provides an effective way to use TRUS to target
biopsy needles toward regions of the prostate containing MR identified suspicious
lesions [8]. However, efficient and accurate 3D non-rigid MR-TRUS registration
is a challenging task due to the totally different image appearances of these two
image modalities, in spite of its great clinical interests in practice. Few works
to date have contributed to this task. Hu et al. [9] used a patient-specific finite
element-based statistical motion model trained by biomechanical simulations and
registered the model to 3D TRUS images, which was done by maximizing the
likelihood of a particular model shape given a voxel intensity-based feature that
provided an estimate of surface normal vectors at the boundary of the gland.
Mitra et al. [10] proposed a 2D thin-plate spline-based non-linear regularization
approach to align the sampled points of the segmented prostate contours, which
essentially match the Bhattacharyya distance of the applied statistical shape
contexts; however, the proposed framework only worked in 2D, which limits its
application in practice.

Contributions: In this work, we propose a novel duality-based approach to
computing the challenging 3DMIND-based non-rigid MR-TRUS deformable reg-
istration. A coarse-to-fine scheme is applied to capture the large deformations,
and at each resolution level, an efficient multiplier-based algorithm is employed
to compute an updated incremental deformation field. We performed the pro-
posed method to register 10 patient images. Our results demonstrate that the
proposed method yields clinically sufficient accuracy with less user interactions,
while the segmentation of prostate boundaries is not required. A mean TRE of
1.74 mm is obtained, which is favorably comparable to a clinical requirement for
an error of less than 2.5 mm.

2 Method

The modality independent neighbourhood descriptor (MIND) introduced by
Heinrich et al. [11] presents an image descriptor independent of the modality,
contrast and noise of various image modalities, while sensitive to the inherent
image features such as image corners or edges etc. It is actually based on the
local image self-similarity feature, which was originally introduced by Buades
et al. [12] for image denoising. In [11], Heinrich et al. demonstrated for image
registration, especially with different image modalities, the point-wise MIND de-
scriptor performs superior to the other proposed image information descriptors,
such as the normalized mutual information (NMI) [13] or patch-based entropy
descriptor [14] etc. In this work, we utilize MIND as the cross-modality mea-
sure to the introduced 3D non-rigid MR-TRUS deformable registration. Let
IM (x) and IR(x) be the input 3D MR image and TRUS image respectively.



Convex Optimized Non-rigid MR-TRUS Registration 197

M(x) := (m1(x), . . . ,mk(x))
T and R(x) := (r1(x), . . . , rk(x))

T be the computed
k-channel MIND descriptor at x associated with the MR image IM (x) and the
TRUS image IR(x), where k is the dimension of the applied MIND descrip-
tor. We aim to minimize a difference measure between M(x) and the deformed
R(x+ u) over the deformation field u(x) = (u1(x), u2(x), u3(x))

T, which can be
essentially formulated as

min
u

P (M(x),R(x + u)) :=

k∑

i=1

∫
pi(mi(x)− ri(x+ u)) dx , (1)

where the penalty function pi(v), i = 1 . . . k, is often positive and convex. For

example, when pi(v) = |v|2 /2, i = 1 . . . k, the above formulation defines the
sum of squared difference measure (SSD). Clearly, the minimization of (1) is
ill-posed, for which a smoothness regularization of the deformation field u(x)
is often added to (1) to restrict the solution space of u(x). In this paper, we

consider the convex regularization term G(u) :=
∑3

i=1

∫ |∇ui|2 dx, which results
in the following minimization problem

min
u

P (M(x),R(x + u)) + αG(u) (2)

where α > 0 is constant.

2.1 Linearization and Primal-Dual Optimization Approach

Note the function R(x+u) is often highly non-smooth, hence the energy function
of (2). To efficiently address the challenging minimization problem of (2), we first
linearize and approximate R(x+ u) := (r1(x+ u), . . . , rk(x+ u)) by

ri(x + u) � (ri +∇ri · u)(x) , i = 1 . . . k . (3)

Therefore, we have the linearized approximation of (2) which amounts to

min
u

k∑

i=1

∫
pi

((
(mi − ri)−∇ri · u

)
(x)

)
dx + αG(u) . (4)

Let p∗i (w), i = 1 . . . k, be the conjugate of the convex function pi(v) such that

pi(vi(x)) = max
wi(x)

vi(x) · wi(x) − p∗i (wi(x)) . (5)

However, we also have

αG(u) = max
q

3∑

j=1

〈div qj , uj〉 − 1

2α

3∑

j=1

∫
q2j (x) dx . (6)

In view of (3)-(6), through simple computation, we have the following dual
formulation to the convex minimization problem (4):

max
w,q

E(w, q) :=
k∑

i=1

〈wi,mi − ri〉 −
k∑

i=1

∫
p∗i (wi(x)) dx − 1

2α

3∑

j=1

∫
q2j (x) dx

(7)
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subject to

Fj(x) :=
k∑

i=1

wi(x) · ∂jri(x) − div qj(x) = 0 ; j ∈ {1, 2, 3} , ∀x ∈ Ω . (8)

By modern convex optimization theories, it is easy to prove that

Proposition 1. The convex minimization problem (4) and the dual optimiza-
tion formulation (7) are equivalent to each other, i.e. (4) ⇐⇒ (7).

In fact, each component of the deformation field (u1(x), u2(x), u3(x))
T just works

as the multiplier function to the respective linear equalities (8) under the per-
spective of primal and dual. Therefore, we can derive an efficient duality-based
Lagrangian augmented algorithm, see [15,16] for details of the modern dual op-
timization theory and applications in image processing.

2.2 Coarse-to-Fine Incremental Scheme

To capture the large deformations, a coarse-to-fine scheme is applied. First, we
construct a coarse-to-fine pyramid of each MIND descriptor function: let M1(x)
. . .ML(x) be the L-level coarse-to-fine pyramid representation ofM(x) from the
coarsest resolution M1(x) to the finest resolution ML(x) = M(x); and R1(x)
. . .RL(x) the L-level coarse-to-fine pyramid representation of R(x).

At each � level, � = 1 . . . L, we compute the deformation field u�(x) based on
the two MIND functions M�(x) and R�(x+ u�−1) at the same resolution level,
where R�(x+u�−1) is warped by the deformation field u�−1(x) computed at the
previous level �− 1. For the coarsest level, i.e. � = 1, the so-called previous-level
deformation is set to be 0.

3 Experiments and Evaluation

Manual Initialization. The MR image is first resampled to have the same di-
mensions and voxel size as the TRUS image. We initialize the registration using
3 manually placed approximately corresponding landmarks and the centroid of
the three points as a default point on the 3D TRUS and MR images to generate
a rigid transform as initial alignment. These manually selected landmarks are
closely associated with geometric features that can be observed on both modali-
ties. Fig. 1 shows an example of the landmarks on the prostate boundary on the
axial MR and 3D TRUS slices, which correspond to the image with the largest
view of the prostate.

Materials. In this study, T2-weighted MR images using a body coil and corre-
sponding 3D TRUS images from 10 patients were acquired. The MR images were
obtained at 3 Tesla using a GE Excite HD MRI system (Milwaukee, WI, USA)
at an image size of 512× 512× 36 voxels with a voxel size of 0.27 × 0.27× 2.2
mm3. The 3D TRUS images were acquired using a 3D TRUS mechanical scan-
ning system developed in our laboratory, using a Philips HDI-5000 US machine
with a Philips C9-5 transducer. The 3D TRUS image size is 448 × 448 × 350
voxels with a voxel size of 0.19× 0.19× 0.19 mm3.
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(a) (b)

Fig. 1. Red dots indicate corresponding anatomical landmarks on the MR (a) and
TRUS images (b)

Evaluation. We measured the target registration error (TRE) as the overall
misalignment of manually marked corresponding intrinsic fiducials in MR and
3D TRUS images. We selected 41 fiducial pairs, of which 17 were within the
peripheral zone (PZ), in which up to 80% of the tumors can be located. The PZ
is subject to the deformation caused by the US transducer during the biopsy,
which must be corrected to allow accurate biopsy targeting. We also measured
the fiducial localization error (FLE) [17] to allow determination whether fidu-
cial identification dominates the TRE. We also compared the registered MR
and corresponding 3D TRUS images by calculating the Dice similarity coeffi-
cient (DSC) [18], the mean absolute surface distance (MAD), and the maximum
absolute surface distance (MAXD) [19]. All validation metrics were separately
calculated for three prostate sub-regions: the apex, mid-gland and base, selected
along the apex-base axis of the manual segmented TRUS prostates (0.3, 0.4, 0.3
of the length of the base-apex axis respectively) [20].

Accuracy. The frequency distributions of the TREs for the PZ, central gland
(CG) and whole gland (WG) are plotted in Figure 3 and the mean TRE results
are summarized in Table 1. The results of FLE are 0.21 mm for 3D TRUS and
0.18 mm for MR. Table 2 shows the mean DSC, MAD and MAXD for WG,
apex, mid-gland, and base, respectively.

Computation Time. The proposed non-rigid MR-TRUS registration algo-
rithm was implemented using parallel computing architecture (CUDA, NVIDIA
Corp., Santa Clara, CA), and the user interface was developed in Matlab (Nat-
ick, MA). The experiments were conducted on a Windows desktop with an Intel
i7-3770 CPU (3.4 GHz) and a GPU of NVIDIA Geforce 680GTX. The mean
registration time of our method per patient was 90 ± 5s in addition to 30 ± 5s
for initialization.
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Fig. 2. Examples of axial (left column), coronal (middle column) and sagittal (right
column) views through registered MR (top row) and 3D TRUS (bottom row) images

(a) (b)

Fig. 3. WG (black) and PZ (white) frequency distributions of: (a) initial alignment
TRE between all 41 fiducial pairs, and (b) non-rigid registration TRE

Table 1. Peripheral zone (PZ), central gland (CG) and whole gland (WG) mean TRE
results for non rigid MR-TRUS registration

PZ CG WG

TRE (mm) 1.97 ± 0.86 1.58± 0.82 1.74± 0.84

Table 2. Results of DSC, MAD and MAXD for 10 patient images

Apex Mid Base WG

DSC (%) 83.0 ± 5.6 92.9 ± 2.6 80.1± 4.7 85.6 ± 2.5

MAD (mm) 2.09 ± 0.69 1.36 ± 0.44 2.38± 0.63 1.79 ± 0.36

MAXD (mm) 9.22 ± 2.84 4.81 ± 0.76 10.12 ± 2.99 7.86 ± 2.99
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4 Discussion and Conclusion

In this work, we propose a convex optimization approach to non-rigid image-
based MR-TRUS registration, which yielded PZ, CG and WG TRE values of
1.97 mm, 1.58 mm and 1.74 mm respectively (less than the clinically acceptable
maximum TRE of 2.5 mm [21]). The higher value in PZ is due to the deformation
caused by the US probe. Figure 3(b) shows that 80% of the TRE values for WG
and 76% for PZ are below the desired values. The FLE was 0.21 mm for 3D
TRUS images, and 0.18 mm for MR. Thus, the FLEs did not dominate the
overall TRE. Table 2 shows that the proposed method generated a favorable
DSC value of 92.9 ± 2.6% for the mid-gland, 83.0 ± 5.6% for the apex, and
80.1± 4.7% for the base. The lower DSC values for the apex and base compared
to the mid-gland were caused by the low degree of structure recognition in these
regions for MR and especially TRUS images. In addition, our method delivers
similar consistent results of MAD and MAXD to the DSC. The mean TRE of
1.74± 0.84 mm is higher than the value of 1.60± 1.17 mm in Mitra et al. [10].
However, their method needed a segmented prostate surface for both MR and
TRUS images, and also required the established MR-TRUS slice correspondence,
which is difficult to achieve in practice. A median Root Mean Square (RMS) TRE
of 2.4 mm was achieved in Hu et al. [9]; however, their biomechanical modeling
required the additional segmentations of the MR prostate gland and lesion for
the assistance (about 45 mins per patient).

In conclusion, to reduce the false negative rate for prostate biopsy, we devel-
oped an alternate approach using 3D TRUS images registered with MR images
with targets identified to guide the biopsy. An efficient dual optimization ap-
proach is proposed to extracting the non-rigid MR-TRUS deformation field by
registering the given two MIND descriptors, which does not require the segmen-
tation of the prostate boundaries. Experimental results demonstrate that the
proposed method yields clinically sufficient accuracy with less user interactions.
In computation, once the deformation field is discretized, a dynamic prima-
dual scheme [22] can also be adapted to extract the discrete-valued voxelwise
correspondences.
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