
Logic and Epistemology in Safety Cases

John Rushby

Computer Science Laboratory
SRI International

333 Ravenswood Avenue
Menlo Park, CA 94025 USA

Abstract. A safety case must resolve concerns of two different kinds:
how complete and accurate is our knowledge about aspects of the sys-
tem (e.g., its requirements, environment, implementation, hazards) and
how accurate is our reasoning about the design of the system, given our
knowledge.

The first of these is a form of epistemology and requires human experi-
ence and insight, but the second can, in principle, be reduced to logic and
then checked and automated using the technology of formal methods.

We propose that reducing epistemic doubt is the main challenge in
safety cases, and discuss ways in which this might be achieved.

1 Introduction

Different industries take different approaches to software assurance and certifi-
cation, but no matter what form a submission for certification actually takes, it
can be understood and examined within the framework of a safety case. More
specifically, we can suppose there are safety-relevant claims for the system con-
cerned, some evidence about its assumptions, design, and construction, and an
argument, based on the evidence, that the claims are satisfied. The standards and
guidelines on which some certification processes are based often specify only the
evidence to be produced; the claims and argument are implicit, but presumably
informed the deliberations that produced the guidelines. There is current work
to make explicit the safety cases implicit in some guidelines: for example, the
FAA has sponsored work at NASA to do this for the airborne software guidelines
DO-178C [1].

The safety case for any interesting system will be large, and one wonders how
reliable the processes of review and evaluation—and ultimately of certification—
can be for such large artifacts. The Nimrod case demonstrates that these con-
cerns are not idle [2]. In this paper, I propose that modern formal methods
and the techniques of automated deduction allow the argument of a safety case
to be evaluated by systematic and largely automated methods. That is to say,
evaluation of a safety case argument can—and should—largely be reduced to
calculation, in a modern application of Leibniz’ vision:

“If controversies were to arise, there would be no more need of dispu-
tation between two philosophers than between two accountants. For it

F. Bitsch, J. Guiochet, and M. Kaâniche (Eds.): SAFECOMP 2013, LNCS 8153, pp. 1–7, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



2 J. Rushby

would suffice to take their pencils in their hands, to sit down to their
slates, and to say to each other. . . ‘Let us calculate’.”

This proposal is not intended to denigrate or displace human judgment and
insight, but to liberate these from an essentially clerical task so that they may be
focused on areas that really need them. In what follows, I hope to identify those
areas where human judgment is best deployed, and how a formalized safety case
can best be organized to facilitate this.

2 Logic Doubt

The argument of a safety case establishes claims, based on evidence, and this
has obvious parallels with formal proof, which justifies a conclusion, based on
premises. Modern methods of formal specification and verification provide no-
tations adequate to the formalization of premises and conclusions concerning
complex systems, and allow substantial automation to be applied to the con-
struction of formal proofs. By now, formal verification has been applied to many
designs, algorithms, and software for critical systems (e.g., [3–5]), so this invites
the question: “what is the difference between a formalized safety case and a
formal verification?” In my opinion, the answer has two parts.

First, formal verification is generally concerned with correctness, whereas a
safety case is concerned with perfection. Correctness is the more limited notion;
for software systems, it is usually a demonstration that the high-level software
requirements are properly implemented by the corresponding programming lan-
guage source code, which may be in C, SCADE, or Stateflow/Simulink, etc.
Perfection, on the other hand, is an all-encompassing notion: it asks whether
the high-level software requirements are themselves correct (relative to the more
abstract system requirements), and whether the software as it runs (with the
support of the relevant compilers, linkers, middleware, operating system, and
hardware) really has the behavior assumed by the semantics of the program-
ming languages concerned, and satisfies the safety objectives identified in the
system requirements. A perfect system is one that will never suffer a (safety-
relevant) failure. This use of the term “perfection” comes from literature on the
nature of software assurance and the statistical basis for certification [6].

In many industries, assurance of software correctness is performed and as-
sessed by different groups and according to different guidelines than assurance
of perfection for the subsystem of which it is a part. In commercial aircraft,
for example, the system-level requirements are developed and assessed (typi-
cally by systems engineers) relative to the guidelines known as ARP 4761 [7]
and ARP 4754A [8], whereas software is developed and assessed (typically by
software engineers) relative to the guidelines known as DO-178B [9], or its suc-
cessor DO-178C [1]. One of the top-level “objectives” of DO-178B and DO-178C
is to establish that the high-level software requirements are consistent with the
system-level requirement; thereafter, DO-178B is about correctness, all the way
down to the running program.



Logic and Epistemology in Safety Cases 3

The second part of the answer to the difference between a formal verification
and a safety case is that a formal verification generally takes the formalized
premises and conclusion as given and is focused on the demonstration that the
latter follows from the former. A safety case will add to this careful justifica-
tion that the premises are true of the system concerned, and that the formal
conclusion does indeed support the real-world interpretation required of it. An
instructive illustration of these differences between a formal verification and a
“case” is provided by formal verification of the Ontological Argument [10]: this
is a formally correct proof of the existence of God—a claim that will cause most
readers to examine its premises and the formalization of its conclusion with
especial interest.

The two parts to this answer are different sides of the same coin: a safety case
tackles a bigger problem (i.e., perfection) than verification (resp. correctness),
so there is more to do. What is being proposed here may seem like enlarging the
scope of formal verification from correctness to perfection. But, of course, those
topics that traditionally are excluded from formal verification and left to the
larger safety case are (mostly) excluded for good reasons: generally, they do not
lend themselves to formal analysis, or they concern interpretation of the formal
analysis itself. So what is proposed here is not the same as expanding verification
from correctness to perfection but, instead, augmenting formal verification to
include the skeleton of the rest of the safety argument.

By this I mean that we wish to use formal methods to keep track of safety
case claims, and what follows from what, and why, but we do not expect to
reduce those down to self-evident axioms and formalized theories. For example,
to record why some formally verified theorem is considered to discharge an infor-
mally stated safety claim we may employ a proof rule equivalent to “because an
expert says so,” with the expert’s informal justification attached as a comment.
For another example, the top-level of the safety case might be organized as an
enumeration over hazards; this organization could be justified by reference to
a collection of patterns for safety-cases arguments, while the list of hazards is
justified by another “because an expert says so” proof rule, with the process
of hazard discovery attached as a comment. This approach to formalization of
safety cases is developed in more detail in a previous paper [11]. The idea is that
the full resources of automated deduction within a formal verification system be-
come available for the purpose of evaluating the argument of a safety case. The
description in [11] envisaged augmenting a formal verification system to support
this activity (chiefly by providing ways to manage the narrative comments jus-
tifying informal proof steps), but a recent alternative is to use a framework such
as the “Evidential Tool Bus” (ETB) [12], which is designed to assemble formal
claims from multiple sources.

My suggestion is that an approach like this could largely eliminate “logic
doubt” as a concern when evaluating a safety case. Evaluators would have not
only the soundness guarantee of the relevant verification system or ETB, but
could actively probe the argument using “what-if” exploration (e.g., temporar-
ily remove or change an assumption and observe how the proof fails, or inspect



4 J. Rushby

a counterexample). It is worth noting that proponents of safety cases sometimes
recommend Toulmin’s approach to framing arguments [13] rather than tradi-
tional logic [14]. Toulmin stresses justification rather than inference and adds
“qualifier,” “backing,” and “rebuttal” components to the traditional “warrant”
(i.e., proof) in presenting the derivation of a claim from evidence. Toulmin was
writing in the 1950s, when mechanized support for argument was barely more
practicable than it was in Leibniz’ day and, in my opinion, his approach reflects
the limitations of the technology at his disposal (basically, the printed page),
where the arguer must attempt to anticipate and prepare responses to objec-
tions and challenges by those he would persuade but will not be able to interact
with in real time. Nowadays, automated deduction does allow real-time interac-
tion and I believe this provides a better vehicle for persuasion and exploration
of logic doubt than Toulmin’s approach.

3 Epistemic Doubt

If we now contemplate the tasks facing an evaluator who must appraise a for-
malized safety case of the kind advocated above, we see that “logic doubt” is
largely eliminated and concern will instead focus on the leaves of the argument.
In a conventional formal verification, these would be the formal models and ax-
ioms comprising the premises of the verification, together with questions about
their interpretation and that of the conclusion; in the expanded treatment that
formalizes the safety case, the leaves will also include informal expert justifica-
tion. I claim that all of this leaf-level material is epistemic in nature: that is
to say, it concerns our knowledge about the system and its place in the world,
including its context, requirements, environment, design, construction, hazards,
and everything else that is germane to its safety.

The claim in the previous paragraph makes explicit an observation that I
believe has long been accepted implicitly: there are just two kinds of concern
underlying system safety, and other similar kinds of system analysis: those that
are epistemic in nature (i.e., concerning our knowledge) and those that are about
logic (i.e., our reasoning, based on that knowledge). As evidence, I cite the
traditional partitioning of system assurance into verification and validation: the
former (“did I build the system right?”) is about logic, while the latter (“did I
build the right system?”) is about epistemology.

If mechanically supported formal reasoning allows us to reduce logic doubts,
then the remaining opportunity for improving safety cases is to reduce epistemic
doubt. Thismeans that large informal justifications attached as comments to proof
rules of the flavor “because an expert says so” should be broken into moremanage-
able pieces connected by explicit reasoning. Furthermore, we should strive to find
ways to represent expert knowledge in ways that support examination and valida-
tion while, at the same time, it is directly useful in the formalized argument of the
case. In essence, this means we should represent our knowledge in logic. Software
is logic, so there is, in principle, no obstacle to representing its epistemology (re-
quirements, specification, code, semantics) in logic: that is why formal verification
is feasible—and increasingly practical and cost-effective—for software.



Logic and Epistemology in Safety Cases 5

The world with which the software interacts—the world of devices, machines,
people and institutions—is not (outside of analytic philosophy) typically consid-
ered a manifestation of applied logic, but I believe there are indications that it
can be. It is increasingly common that system developers build models of the
world using simulation environments such as Simulink/Stateflow. These mod-
els represent their epistemology, which they refine and validate by conducting
simulation experiments. Other simulation environments, developed for human-
computer-interaction (HCI) studies, model aspects of human behavior as well
as machines [15, 16], and models of larger human organizations are employed in
many fields ranging from disaster planning to economics and politics.

The simulation environments that support these modeling activities are them-
selves software and they could, with difficulty, be represented within a logic-
based assurance framework (this is already feasible for Simulink, whose models
can be imported into many verification environments [17]). However, this is not
the main obstacle to the use of simulation models within formalized assurance
cases. Rather, the problem is that simulation models are designed for that pur-
pose and simultaneously say too much and too little for the purposes of assurance
and minimization of epistemic doubt. For example, the Simulink model for a car
braking system will provide equations that allow calculation of the exact rate of
deceleration in given circumstances (which is more information than we need),
but will not provide (other than indirectly) the maximum stopping distance—
which is an example of a property that may be needed in an assurance case. The
crucial point is that it should be easier to resolve epistemic doubts about a sim-
ple constraint, such as maximum stopping distance, than the detailed equations
that underlie a full simulation model.

So my proposal is that for the purpose of recording the epistemology of a
safety case, models should be expressed as systems of constraints rather than
as simulation models: less is more. Until fairly recently, it would have been dif-
ficult to validate systems of constraints: unlike simulation models, it was not
feasible to run experimental calculations to check the predictions of the model
against intuition and reality. Fortunately, we now have technology such as “in-
finite bounded model checkers,” based on highly effective constraint solvers for
“satisfiability modulo theories” (SMT) that allow exploration of constraint-based
models (see [18, 19] for some simple examples).

I believe that constraint-based models of this kind could be particularly useful
in validating system-level requirements. All software-related incidents in com-
mercial aircraft have their origin in imperfect system-level requirements, or in
mismatches between the system-level requirements and top-level software re-
quirements [20], both of which may be due, in part, to lack of good nota-
tions and tools for representing and validating system knowledge at this level of
abstraction.

4 Research Directions

The diagnosis and proposals in this paper are deliberately speculative and, per-
haps, provocative. The basic claim is that evaluation of large safety cases will



6 J. Rushby

benefit from—indeed, requires—automated assistance: as Leibniz said, rather
than contemplation and discussion, “let us calculate.” I argued that there are
just two components, and hence two sources of doubt, in a safety case: our epis-
temology (what we know about the system, its context, and its environment)
and our logic (the validity of our reasoning about the safety of the system, given
our knowledge). Formal verification systems provide tools that can be adapted to
represent, analyze, and explore the logic of our case, thereby largely eliminating
logic doubt, so that the tougher challenge is to represent our epistemology in a
form that can be used by such systems. This can be accomplished by building
models in logic that describe the elements of our knowledge (the behavior of the
environment etc.); these models should be described as systems of constraints
(rather than, say, simulation models) and these can be explored and validated
using modern tools based on SMT solvers.

Suggested research directions are simple: try this out and see if it works.
I suspect that it will be much more difficult to find ways to justify adequate
completeness of our epistemology (e.g., that we have identified all hazards) than
its validity, and that this will pose a challenging research problem.

Acknowledgements. This work was supported by NASA under contract
NNA13AB02C with Drexel University and by the DARPA HACMS program
under contract FA8750-12-C-0284 with AFRL. The content is solely the respon-
sibility of the author and does not necessarily represent the official views of
NASA or DARPA.

References

1. Requirements and Technical Concepts for Aviation (RTCA) Washington, DC: DO-
178C: Software Considerations in Airborne Systems and Equipment Certification
(2011)

2. Haddon-Cave, C.: The Nimrod Review: An independent review into the broader is-
sues surrounding the loss of the RAF Nimrod MR2 Aircraft XV230 in Afghanistan
in 2006. Report, The Stationery Office, London, UK (2009),
http://www.official-documents.gov.uk/document/hc0809/hc10/1025/

1025.pdf

3. Klein, G., Elphinstone, K., Heiser, G., Andronick, J., Cock, D., Derrin, P., Elka-
duwe, D., Engelhardt, K., Kolanski, R., Norrish, M., et al.: seL4: Formal verifica-
tion of an OS kernel. In: Proceedings of the ACM SIGOPS 22nd Symposium on
Operating Systems Principles, pp. 207–220. ACM (2009)

4. Miner, P., Geser, A., Pike, L., Maddalon, J.: A unified fault-tolerance protocol.
In: Lakhnech, Y., Yovine, S. (eds.) FORMATS/FTRTFT 2004. LNCS, vol. 3253,
pp. 167–182. Springer, Heidelberg (2004)

5. Narkawicz, A., Muñoz, C.: Formal verification of conflict detection algorithms for
arbitrary trajectories. Reliable Computing 17, 209–237 (2012)

6. Littlewood, B., Rushby, J.: Reasoning about the reliability of diverse two-channel
systems in which one channel is “possibly perfect”. IEEE Transactions on Software
Engineering 38, 1178–1194 (2012)

http://www.official-documents.gov.uk/document/hc0809/hc10/1025/1025.pdf
http://www.official-documents.gov.uk/document/hc0809/hc10/1025/1025.pdf


Logic and Epistemology in Safety Cases 7

7. Society of Automotive Engineers: Aerospace Recommended Practice (ARP) 4761:
Guidelines and Methods for Conducting the Safety Assessment Process on Civil
Airborne Systems and Equipment (1996)

8. Society of Automotive Engineers: Aerospace Recommended Practice (ARP) 4754:
Certification Considerations for Highly-Integrated or Complex Aircraft Systems
(1996), Also issued as EUROCAE ED-79; revised as ARP 4754A (December 2010)

9. Requirements and Technical Concepts for Aviation (RTCA) Washington, DC: DO-
178B: Software Considerations in Airborne Systems and Equipment Certification
(1992), This document is known as EUROCAE ED-12B in Europe

10. Rushby, J.: The Ontological Argument in PVS. In: Shilov, N. (ed.) Fun With
Formal Methods, St Petersburg, Russia (2013), Workshop in association with CAV
2013

11. Rushby, J.: Formalism in safety cases. In: Dale, C., Anderson, T. (eds.) Making
Systems Safer: Proceedings of the Eighteenth Safety-Critical Systems Symposium,
Bristol, UK, pp. 3–17. Springer (2010)

12. Cruanes, S., Hamon, G., Owre, S., Shankar, N.: Tool Integration with the Eviden-
tial Tool Bus. In: Giacobazzi, R., Berdine, J., Mastroeni, I. (eds.) VMCAI 2013.
LNCS, vol. 7737, pp. 275–294. Springer, Heidelberg (2013)

13. Toulmin, S.E.: The Uses of Argument, Updated edition. Cambridge University
Press (2003) (the original is dated 1958)

14. Bishop, P., Bloomfield, R., Guerra, S.: The future of goal-based assurance cases.
In: DSN Workshop on Assurance Cases: Best Practices, Possible Obstacles, and
Future Opportunities, Florence, Italy (2004)

15. Pritchett, A.R., Feigh, K.M., Kim, S.Y., Kannan, S.: Work Models that Compute
to support the design of multi-agent socio-technical systems. IEEE Transactions
on Systems, Man, and Cybernetics, Part A: Systems and Humans (under review)

16. Bolton, M.L., Bass, E.J.: Evaluating human-automation interaction using task an-
alytic behavior models, strategic knowledge-based erroneous human behavior gen-
eration, and model checking. In: IEEE International Conference on Systems, Man,
and Cybernetics, Anchorage, AK, pp. 1788–1794 (2011)

17. Miller, S.P., Whalen, M.W., Cofer, D.D.: Software model checking takes off. Com-
munications of the ACM 53, 58–64 (2010)

18. Rushby, J.: A safety-case approach for certifying adaptive systems. In: AIAA In-
fotech@Aerospace Conference, Seattle, WA, American Institute of Aeronautics and
Astronautics (2009) AIAA paper 2009-1992

19. Bass, E.J., Feigh, K.M., Gunter, E., Rushby, J.: Formal modeling and analysis for
interactive hybrid systems. In: Fourth International Workshop on Formal Methods
for Interactive Systems: FMIS 2011, Limerick, Ireland. Electronic Communications
of the EASST, vol. 45 (2011)

20. Rushby, J.: New challenges in certification for aircraft software. In: Baruah, S.,
Fischmeister, S. (eds.) Proceedings of the Ninth ACM International Conference
on Embedded Software: EMSOFT, Taipei, Taiwan, pp. 211–218. Association for
Computing Machinery (2011)


	Logic and Epistemology in Safety Cases
	1 Introduction
	2 Logic Doubt
	3 Epistemic Doubt
	4 Research Directions
	References




