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Preface

On behalf of the Technical Program Committee members, we welcome you to the
proceedings of the 32nd International Conference on Computer Safety, Reliability
and Security (SAFECOMP 2013), held in Toulouse, France.

SAFECOMP is a major event that provides a forum for researchers and prac-
titioners from all over the world to present and discuss their latest research results
and experiments on the development, assessment, operation, and maintenance
of safety-related and safety-critical computer systems. Since it was established
in 1979 by the European Workshop on Industrial Computer Systems, Technical
Committee 7 on Reliability, Safety and Security (EWICS TC7), SAFECOMP has
contributed to the progress of the state of the art in dependability of computers
in safety-related and safety-critical systems. SAFECOMP provides ample oppor-
tunity to exchange insights and experience on emerging methods, approaches,
and practical solutions. It is a one-stream conference without parallel sessions,
allowing easy networking.

This year, we received 88 submissions from 24 countries. The review and se-
lection process followed the tradition of thoroughness and rigor of SAFECOMP.
The review process was organized in two phases, mainly relying on the Program
Committee (PC) members for the evaluation of the papers. In the first phase,
each submitted paper was assigned to three members of the PC, which was com-
posed of 51 researchers and industrials from 16 countries (Europe, North and
South America, and Asia). At the end of this phase, a PC meeting was held in
Zürich attended by 29 PC members. The selection process was competitive with
a 28% acceptance rate.

The 25 papers selected in the program include 20 regular papers and five
practical experience reports. This year’s program was organized into 11 sessions,
covering different assessment methods (testing and verification, software reli-
ability, failure mode analysis, safety assurance) and addressing a wide variety
of interesting topics (security, error control code, dependable user interfaces).
The technical program was complemented by keynote presentations from three
distinguished speakers. John Rushby (SRI, USA) gave a talk on logic and episte-
mology in safety cases, Pascale Traverse (Airbus) addressed the dependability in
embedded systems considering the airbus fly-by-wire system as an example, and
finally Sami Haddadin (DLR, Germany) addressed safe human–robot physical
interaction. Additionally, a session for fast abstract presentation was included
in the program to promote interactions on novel ideas or work in progress, or
opinion pieces that can address any issue relevant to SAFECOMP topics of
interest.

We would like to express our deep gratitude to the PC members, who devoted
their time and provided their expertise to ensure the quality of the reviewing and
the shepherding processes. We are also very grateful to the external reviewers
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for their outstanding help and assistance in the review process. Needless to add
that the elaboration of the SAFECOMP 2013 technical program would not have
been possible without the greatly appreciated contribution of all the authors
who submitted their work to the conference.

The support received from the EWICS TC7 committee chaired by Francesca
Saglietti is very much appreciated. Special thanks go to Karama Kanoun for her
continuous support and feedback during the organization of this edition, and to
Frank Ortmeier for his help based on his experience as SAFECOMP general chair
and PC chair in 2012. We would also like to thank Friedemann Bitsch, Matthieu
Roy, Marc-Olivier Killijian, Nicolas Rivière, and Pascal Traverse who were pub-
lication, workshops, fast abstracts, publicity, and industry liaison chairs, respec-
tively. Also special thanks to Christoph Schmitz, who hosted the PC meeting
in Zürich, Zühlke Engineering AG. Finally, we would like to express our grat-
itude to Sonia de Sousa, Yves Crouzet, members of the TSF research group,
the LAAS-CNRS administrative and technical staff, and the sponsors for their
assistance in organizing this event.

We hope that you will benefit from the conference proceedings.

Jérémie Guiochet
Mohamed Kaâniche
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Logic and Epistemology in Safety Cases

John Rushby

Computer Science Laboratory
SRI International

333 Ravenswood Avenue
Menlo Park, CA 94025 USA

Abstract. A safety case must resolve concerns of two different kinds:
how complete and accurate is our knowledge about aspects of the sys-
tem (e.g., its requirements, environment, implementation, hazards) and
how accurate is our reasoning about the design of the system, given our
knowledge.

The first of these is a form of epistemology and requires human experi-
ence and insight, but the second can, in principle, be reduced to logic and
then checked and automated using the technology of formal methods.

We propose that reducing epistemic doubt is the main challenge in
safety cases, and discuss ways in which this might be achieved.

1 Introduction

Different industries take different approaches to software assurance and certifi-
cation, but no matter what form a submission for certification actually takes, it
can be understood and examined within the framework of a safety case. More
specifically, we can suppose there are safety-relevant claims for the system con-
cerned, some evidence about its assumptions, design, and construction, and an
argument, based on the evidence, that the claims are satisfied. The standards and
guidelines on which some certification processes are based often specify only the
evidence to be produced; the claims and argument are implicit, but presumably
informed the deliberations that produced the guidelines. There is current work
to make explicit the safety cases implicit in some guidelines: for example, the
FAA has sponsored work at NASA to do this for the airborne software guidelines
DO-178C [1].

The safety case for any interesting system will be large, and one wonders how
reliable the processes of review and evaluation—and ultimately of certification—
can be for such large artifacts. The Nimrod case demonstrates that these con-
cerns are not idle [2]. In this paper, I propose that modern formal methods
and the techniques of automated deduction allow the argument of a safety case
to be evaluated by systematic and largely automated methods. That is to say,
evaluation of a safety case argument can—and should—largely be reduced to
calculation, in a modern application of Leibniz’ vision:

“If controversies were to arise, there would be no more need of dispu-
tation between two philosophers than between two accountants. For it

F. Bitsch, J. Guiochet, and M. Kaâniche (Eds.): SAFECOMP 2013, LNCS 8153, pp. 1–7, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



2 J. Rushby

would suffice to take their pencils in their hands, to sit down to their
slates, and to say to each other. . . ‘Let us calculate’.”

This proposal is not intended to denigrate or displace human judgment and
insight, but to liberate these from an essentially clerical task so that they may be
focused on areas that really need them. In what follows, I hope to identify those
areas where human judgment is best deployed, and how a formalized safety case
can best be organized to facilitate this.

2 Logic Doubt

The argument of a safety case establishes claims, based on evidence, and this
has obvious parallels with formal proof, which justifies a conclusion, based on
premises. Modern methods of formal specification and verification provide no-
tations adequate to the formalization of premises and conclusions concerning
complex systems, and allow substantial automation to be applied to the con-
struction of formal proofs. By now, formal verification has been applied to many
designs, algorithms, and software for critical systems (e.g., [3–5]), so this invites
the question: “what is the difference between a formalized safety case and a
formal verification?” In my opinion, the answer has two parts.

First, formal verification is generally concerned with correctness, whereas a
safety case is concerned with perfection. Correctness is the more limited notion;
for software systems, it is usually a demonstration that the high-level software
requirements are properly implemented by the corresponding programming lan-
guage source code, which may be in C, SCADE, or Stateflow/Simulink, etc.
Perfection, on the other hand, is an all-encompassing notion: it asks whether
the high-level software requirements are themselves correct (relative to the more
abstract system requirements), and whether the software as it runs (with the
support of the relevant compilers, linkers, middleware, operating system, and
hardware) really has the behavior assumed by the semantics of the program-
ming languages concerned, and satisfies the safety objectives identified in the
system requirements. A perfect system is one that will never suffer a (safety-
relevant) failure. This use of the term “perfection” comes from literature on the
nature of software assurance and the statistical basis for certification [6].

In many industries, assurance of software correctness is performed and as-
sessed by different groups and according to different guidelines than assurance
of perfection for the subsystem of which it is a part. In commercial aircraft,
for example, the system-level requirements are developed and assessed (typi-
cally by systems engineers) relative to the guidelines known as ARP 4761 [7]
and ARP 4754A [8], whereas software is developed and assessed (typically by
software engineers) relative to the guidelines known as DO-178B [9], or its suc-
cessor DO-178C [1]. One of the top-level “objectives” of DO-178B and DO-178C
is to establish that the high-level software requirements are consistent with the
system-level requirement; thereafter, DO-178B is about correctness, all the way
down to the running program.
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The second part of the answer to the difference between a formal verification
and a safety case is that a formal verification generally takes the formalized
premises and conclusion as given and is focused on the demonstration that the
latter follows from the former. A safety case will add to this careful justifica-
tion that the premises are true of the system concerned, and that the formal
conclusion does indeed support the real-world interpretation required of it. An
instructive illustration of these differences between a formal verification and a
“case” is provided by formal verification of the Ontological Argument [10]: this
is a formally correct proof of the existence of God—a claim that will cause most
readers to examine its premises and the formalization of its conclusion with
especial interest.

The two parts to this answer are different sides of the same coin: a safety case
tackles a bigger problem (i.e., perfection) than verification (resp. correctness),
so there is more to do. What is being proposed here may seem like enlarging the
scope of formal verification from correctness to perfection. But, of course, those
topics that traditionally are excluded from formal verification and left to the
larger safety case are (mostly) excluded for good reasons: generally, they do not
lend themselves to formal analysis, or they concern interpretation of the formal
analysis itself. So what is proposed here is not the same as expanding verification
from correctness to perfection but, instead, augmenting formal verification to
include the skeleton of the rest of the safety argument.

By this I mean that we wish to use formal methods to keep track of safety
case claims, and what follows from what, and why, but we do not expect to
reduce those down to self-evident axioms and formalized theories. For example,
to record why some formally verified theorem is considered to discharge an infor-
mally stated safety claim we may employ a proof rule equivalent to “because an
expert says so,” with the expert’s informal justification attached as a comment.
For another example, the top-level of the safety case might be organized as an
enumeration over hazards; this organization could be justified by reference to
a collection of patterns for safety-cases arguments, while the list of hazards is
justified by another “because an expert says so” proof rule, with the process
of hazard discovery attached as a comment. This approach to formalization of
safety cases is developed in more detail in a previous paper [11]. The idea is that
the full resources of automated deduction within a formal verification system be-
come available for the purpose of evaluating the argument of a safety case. The
description in [11] envisaged augmenting a formal verification system to support
this activity (chiefly by providing ways to manage the narrative comments jus-
tifying informal proof steps), but a recent alternative is to use a framework such
as the “Evidential Tool Bus” (ETB) [12], which is designed to assemble formal
claims from multiple sources.

My suggestion is that an approach like this could largely eliminate “logic
doubt” as a concern when evaluating a safety case. Evaluators would have not
only the soundness guarantee of the relevant verification system or ETB, but
could actively probe the argument using “what-if” exploration (e.g., temporar-
ily remove or change an assumption and observe how the proof fails, or inspect
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a counterexample). It is worth noting that proponents of safety cases sometimes
recommend Toulmin’s approach to framing arguments [13] rather than tradi-
tional logic [14]. Toulmin stresses justification rather than inference and adds
“qualifier,” “backing,” and “rebuttal” components to the traditional “warrant”
(i.e., proof) in presenting the derivation of a claim from evidence. Toulmin was
writing in the 1950s, when mechanized support for argument was barely more
practicable than it was in Leibniz’ day and, in my opinion, his approach reflects
the limitations of the technology at his disposal (basically, the printed page),
where the arguer must attempt to anticipate and prepare responses to objec-
tions and challenges by those he would persuade but will not be able to interact
with in real time. Nowadays, automated deduction does allow real-time interac-
tion and I believe this provides a better vehicle for persuasion and exploration
of logic doubt than Toulmin’s approach.

3 Epistemic Doubt

If we now contemplate the tasks facing an evaluator who must appraise a for-
malized safety case of the kind advocated above, we see that “logic doubt” is
largely eliminated and concern will instead focus on the leaves of the argument.
In a conventional formal verification, these would be the formal models and ax-
ioms comprising the premises of the verification, together with questions about
their interpretation and that of the conclusion; in the expanded treatment that
formalizes the safety case, the leaves will also include informal expert justifica-
tion. I claim that all of this leaf-level material is epistemic in nature: that is
to say, it concerns our knowledge about the system and its place in the world,
including its context, requirements, environment, design, construction, hazards,
and everything else that is germane to its safety.

The claim in the previous paragraph makes explicit an observation that I
believe has long been accepted implicitly: there are just two kinds of concern
underlying system safety, and other similar kinds of system analysis: those that
are epistemic in nature (i.e., concerning our knowledge) and those that are about
logic (i.e., our reasoning, based on that knowledge). As evidence, I cite the
traditional partitioning of system assurance into verification and validation: the
former (“did I build the system right?”) is about logic, while the latter (“did I
build the right system?”) is about epistemology.

If mechanically supported formal reasoning allows us to reduce logic doubts,
then the remaining opportunity for improving safety cases is to reduce epistemic
doubt. Thismeans that large informal justifications attached as comments to proof
rules of the flavor “because an expert says so” should be broken into moremanage-
able pieces connected by explicit reasoning. Furthermore, we should strive to find
ways to represent expert knowledge in ways that support examination and valida-
tion while, at the same time, it is directly useful in the formalized argument of the
case. In essence, this means we should represent our knowledge in logic. Software
is logic, so there is, in principle, no obstacle to representing its epistemology (re-
quirements, specification, code, semantics) in logic: that is why formal verification
is feasible—and increasingly practical and cost-effective—for software.
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The world with which the software interacts—the world of devices, machines,
people and institutions—is not (outside of analytic philosophy) typically consid-
ered a manifestation of applied logic, but I believe there are indications that it
can be. It is increasingly common that system developers build models of the
world using simulation environments such as Simulink/Stateflow. These mod-
els represent their epistemology, which they refine and validate by conducting
simulation experiments. Other simulation environments, developed for human-
computer-interaction (HCI) studies, model aspects of human behavior as well
as machines [15, 16], and models of larger human organizations are employed in
many fields ranging from disaster planning to economics and politics.

The simulation environments that support these modeling activities are them-
selves software and they could, with difficulty, be represented within a logic-
based assurance framework (this is already feasible for Simulink, whose models
can be imported into many verification environments [17]). However, this is not
the main obstacle to the use of simulation models within formalized assurance
cases. Rather, the problem is that simulation models are designed for that pur-
pose and simultaneously say too much and too little for the purposes of assurance
and minimization of epistemic doubt. For example, the Simulink model for a car
braking system will provide equations that allow calculation of the exact rate of
deceleration in given circumstances (which is more information than we need),
but will not provide (other than indirectly) the maximum stopping distance—
which is an example of a property that may be needed in an assurance case. The
crucial point is that it should be easier to resolve epistemic doubts about a sim-
ple constraint, such as maximum stopping distance, than the detailed equations
that underlie a full simulation model.

So my proposal is that for the purpose of recording the epistemology of a
safety case, models should be expressed as systems of constraints rather than
as simulation models: less is more. Until fairly recently, it would have been dif-
ficult to validate systems of constraints: unlike simulation models, it was not
feasible to run experimental calculations to check the predictions of the model
against intuition and reality. Fortunately, we now have technology such as “in-
finite bounded model checkers,” based on highly effective constraint solvers for
“satisfiability modulo theories” (SMT) that allow exploration of constraint-based
models (see [18, 19] for some simple examples).

I believe that constraint-based models of this kind could be particularly useful
in validating system-level requirements. All software-related incidents in com-
mercial aircraft have their origin in imperfect system-level requirements, or in
mismatches between the system-level requirements and top-level software re-
quirements [20], both of which may be due, in part, to lack of good nota-
tions and tools for representing and validating system knowledge at this level of
abstraction.

4 Research Directions

The diagnosis and proposals in this paper are deliberately speculative and, per-
haps, provocative. The basic claim is that evaluation of large safety cases will
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benefit from—indeed, requires—automated assistance: as Leibniz said, rather
than contemplation and discussion, “let us calculate.” I argued that there are
just two components, and hence two sources of doubt, in a safety case: our epis-
temology (what we know about the system, its context, and its environment)
and our logic (the validity of our reasoning about the safety of the system, given
our knowledge). Formal verification systems provide tools that can be adapted to
represent, analyze, and explore the logic of our case, thereby largely eliminating
logic doubt, so that the tougher challenge is to represent our epistemology in a
form that can be used by such systems. This can be accomplished by building
models in logic that describe the elements of our knowledge (the behavior of the
environment etc.); these models should be described as systems of constraints
(rather than, say, simulation models) and these can be explored and validated
using modern tools based on SMT solvers.

Suggested research directions are simple: try this out and see if it works.
I suspect that it will be much more difficult to find ways to justify adequate
completeness of our epistemology (e.g., that we have identified all hazards) than
its validity, and that this will pose a challenging research problem.
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Abstract. The paper presents the concept and the mechanism of comparative 
conformance cases which support conformance monitoring in situations where 
a standard or other set of requirements are being implemented at multiple sites. 
The mechanism is enabled by NOR-STA services which implement the 
TRUST-IT methodology and are deployed in the cloud in accordance with the 
SaaS model. In the paper we introduce the concept of comparative conformance 
cases, explain the software services used to implement them and present a case 
study of monitoring the implementation of the EC Regulation No. 994/2010,  
related to risk management of gas supply infrastructures across Europe. 

Keywords: conformance case, conformance monitoring, critical infrastructures 
protection, trust cases, NOR-STA services. 

1 Introduction 

Regulations and standards are among the important mechanisms through which the 
European program of risk governance for the ICT and energy sectors is being imple-
mented [1]. To make these mechanisms effective, it is important not only to promote 
implementation of standards and regulations but also to assess the actually achieved  
level of conformance and to continuously monitor the conformance across the different 
critical infrastructure stakeholders. 

In this paper we introduce comparative conformance case – a mechanism that sup-
ports conformance monitoring in situations where a standard, directive or other set of 
requirements are implemented at multiple sites. Hereafter, we will call the source of 
conformance requirements a ‘standard’. If used by the party in charge of supervising 
implementation of a standard, the mechanism provides means to review the evidence 
supporting conformance and to review and assess the related conformance cases 
against a selected assessment scale. 

Comparative conformance case is based on the concept of a trust case [2, 3] which 
extends the concept of safety case [4] commonly used in the safety-critical domain to 
justify safety properties of various systems, for instance avionic, nuclear, automotive, 
medical, military and so on [5, 6]. The concept of safety case has been extended  
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(under the name assurance case) to cover any critical property to be assured, like 
safety, security, reliability and others [7]. Under the name of trust case it has been 
further generalized and refers to the situations where the focus is on a selected feature 
to be demonstrated, not necessarily being ‘critical’.   

We are particularly interested in situations where a common argumentation struc-
ture is shared by numerous concrete cases. As an example take a standard and the 
question of conformance demonstration. Then, the structure of the conformance case 
may be common for multiple implementations of the standard and the difference be-
tween particular implementations is mostly in the evidence supporting the argument. 
This observation led to the concept of the conformance case template which can have 
multiple instantiations where each instance, after attaching the relevant evidence, 
becomes a complete conformance case [8, 9]. The concept of comparative confor-
mance case builds upon these notions. 

In the paper we outline the TRUST-IT methodology of developing and assessing 
trust cases and the related NOR-STA platform which supports this methodology by 
offering  a set of software services in the computing cloud. Next, we introduce the 
mechanism of comparative conformance cases and the related scenario of its applica-
tion. Then, we present a case study demonstrating implementation of this scenario 
with the objective of supporting monitoring the conformance to the European  
Commission Regulation No. 994/2010 related to risk management of gas supply  
infrastructures in different EU Member States.   

2 TRUST-IT Methodology and NOR-STA Services 

TRUST-IT [2, 3, 8] is an approach to promoting trust by developing, maintaining and 
presenting on-line arguments demonstrating trustworthiness. An argument can be 
published, edited and assessed, and it is visualized in a graphical form together with 
the result of the assessment of its ‘compelling power’. Evidence integrated with an 
argument is kept in digital documents of any form: text, graphics, image, web page, 
video, audio and so on. The evidence supports what an argument postulates about the 
state of the world. In TRUST-IT terminology, such postulates are called ‘facts’. De-
pending on the support given by the evidence to the corresponding facts, the argument 
is more or less convincing. TRUST-IT introduces a model of an argument (following 
[10]), a graphical language for expressing arguments, and a technique for integrating 
arguments with evidence (see Fig. 1). The arrows linking the nodes shown in Fig. 1 
represent the can-be-child-of relationship in the argument tree. The abstract argument 
model of TRUST-IT is similar to GSN [11] and CAE [12], the differences are more 
on a technical and representation levels. 

Argument conclusion is represented by a claim node. A node of type argumenta-
tion strategy links the claim with the corresponding premises and uses a rationale to 
explain and justify the inference leading from the premises to the claim. A premise is 
a sort of assertion and can be of the following type: an assumption represented by  
an assertion assumed to be true which is not further justified; a claim represented by 
an assertion to be further justified by its own premises; and a fact represented by an  
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assertion to be demonstrated by the supporting  evidence. The evidence is integrated 
by nodes of type reference which point to external resources (files of any type, web 
pages, etc.). In addition, information nodes (denoted ) can be used in any place to 
provide explanatory information. This model can generate trees of arbitrary depth 
where the root of the tree is the top-most claim and the leaves are references pointing 
to the evidence supporting facts, assumptions and/or rationales of selected argumenta-
tion strategies (in our experience we are dealing with arguments of up to several  
thousand nodes). 

Rationale

Claim

Argumentation strategy

Premises

FactClaim Assumption Reference

 

Fig. 1. The TRUST-IT model of argument  

By analyzing the inferences and checking the evidence supporting facts, an auditor 
can work out his/her opinion about how strong the argument is towards the conclu-
sion, and where its weaknesses and strengths are. TRUST-IT supports this activity in 
different ways. The most advanced is the argument appraisal mechanism based  
on Dempster-Shafer theory of evidence [13] and the corresponding mechanism of 
visualization of the argument compelling power [14]. Here, the auditor can express 
his/her appraisals referring to so called opinion triangle shown in Fig. 2.  

 

Fig. 2. The opinion triangle for issuing argument appraisals based on Dempster-Shafer theory 

By choosing a position within the triangle, the auditor, after examining the  
evidence supporting a fact, decides to which extent he/she accepts/rejects the fact and 
what is the level of uncertainty associated with this opinion. Similar appraisals can be 
issued with respect to the inferences used in the argument, represented by the related 
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nodes of rationale type. The aggregation rules (see [14] for the details) provide for 
automatic appraisal of all claims of the argument (including the top-most one),  
provided the appraisals of all facts, assumptions and rationales have already been 
issued. 

In addition to the above, TRUST-IT provides for other, user-defined argument ap-
praisal mechanisms (involving different assessment scales and aggregation rules). 
These mechanisms can be activated according to the users’ needs. For instance, in one 
of our case studies of arguments related to standards conformance the stakeholders 
decided that a simple three-state scale {non-compliant, partially-compliant, com-
pliant} was in use. 

TRUST-IT arguments have already been (among others) developed to: analyze 
safety, privacy and security of personalized health and lifestyle oriented services [15], 
monitor the environmental risks [16] and support standards conformance for health, 
business and administration sectors [17].  

Application of TRUST-IT is supported by the NOR-STA platform of software ser-
vices. The services are deployed in accordance with the SaaS (Software as a Service) 
cloud computing model. The scope of functionalities of NOR-STA services includes: 
argument representation and editing using the graphical symbols shown in Fig. 1, 
integration (through references) of various types of evidence, argument assessment 
and visualization of the assessment results, publishing of an argument, and evidence 
hosting in protected repositories. 

3 Comparative Conformance Case 

TRUST-IT approach is generic and can be applied in any context where evidence 
based argumentation brings added value to decision making processes and disputes. 
One such application area is standards conformance where a standard’s user is  
expected to construct and present an argument demonstrating conformance. While 
applied to standards conformance, TRUST-IT introduces additional, more specific 
concepts [8, 9]. Conformance case template is an argumentation structure derived 
from a standard. This structure is common for all conformance cases related to the 
standard. It explicitly identifies placeholders for the supporting evidence and may 
indicate places where more specific, implementation dependent argumentation is to be 
provided. Template development involves domain experts representing the standard’s 
owner and standard’s auditor viewpoints. Conformance case is a complete argument 
which is developed from the template providing the required evidence and possibly 
by appending a more specific argumentation. Conformance assessment is an act  
of assigning appraisals to the conformance argument components to assess their 
‘compelling power’. 

The relationship between the conformance case template and a conformance case 
following the structure of the template is shown in Fig.3. Filled rectangles denote 
nodes already included in the template, the hollow rectangles denote nodes added as 
more specific argumentation and the ovals represent the evidence supporting the con-
formance case. The concept of case template is similar to argument schemes/patterns 



12 J. Górski, A. Jarzębowicz, and J. Miler 

 

[5, 6] used in safety cases (a template suggests how to demonstrate conformance to 
entire set of standard's requirements whereas a pattern suggests how to demonstrate a 
single, specific type of claim). However, the conformance case template is far richer 
than just providing an argumentation scheme. In addition it includes the source  
documentation of the related standard, examples of good practices in structuring the 
evidence, single evidence placeholders referenced in multiple requirements, explicit 
interdependencies between standard fragments and many others. 

Conformance 
case template

Complete conformance 
case argumentation structure

Conformance case
with evidence  

Fig. 3. The conformance case template – conformance case relationship 

Let us assume that a given conformance case template is being used by a number 
of users, and each of them has developed her/his own conformance case based on the 
template. Then, each of the cases can be reviewed in the node-by-node manner, for 
instance, by accessing  the facts and verifying the evidence supporting each fact.  

Now, let us assume that in addition to the users developing their own conformance 
cases, there is a separate body, call it supervisor, who is in charge of monitoring all 
the cases and possibly assessing how strongly the claims and facts listed in the  
conformance case template are supported in different cases. 

The concept of comparative conformance case embodies the idea that having 
a conformance case template in an explicit form, one can point to a selected node of 
the template and in response will have access to the structure demonstrating how this 
node is represented in each conformance case derived from the template. For instance, 
by pointing to a given fact included in the template, the supervisor will be able to 
review, compare and assess the evidence submitted to demonstrate this fact in  
different conformance cases. And by pointing to a claim the supervisor will see the 
assessment results of this claim, for different conformance cases.  

Implementing the concept of comparative conformance case would result in an  
interface with the following functionality: 

• selecting the conformance cases to be compared; 
• selecting a fact (claim) of the conformance case template which results in obtaining 

access to the evidence supporting this node in different conformance cases and to 
the appraisals of how strong this support is; 

• accessing and browsing the evidence; 
• issuing/changing appraisals of the support given by the evidence. 
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The above idea is illustrated in Fig. 4. The arrows shown in the picture point to a se-
lected node of the conformance case template and to the corresponding nodes of the 
supervised conformance cases. 

Conformance case template

Conformance case 1 Conformance case 2 Conformance case 3  

Fig. 4. Illustration of the comparative case concept 

The concept of comparative conformance case brings added value in situations 
where monitoring the implementation of multiple conformance cases is of particular 
business relevance. In such situation, the supervising body can simply activate a  
comparative conformance case and by choosing different claims and facts can get 
immediate insight into the evidence supporting the chosen criterion across selected 
cases. In some cases it can also facilitate appraisals, especially if they are issued in 
relative terms.  

The present scope of functionality of NOR-STA services covers: conformance case 
template management, conformance case management, management of evidence 
repositories, argument appraisal and appraisal comparison management. 

4 Case Study: Monitoring Implementation of EC Regulation 994 

The functionality of comparative conformance cases has been built into NOR-STA 
services to provide support for the monitoring scenario outlined in the previous sec-
tion. In this section we present this scenario applied to monitoring the implementation 
of the European Commission Regulation No. 994/2010 [18]. 

4.1 The Regulation 

The Regulation 994/2010 refers to risk management of gas infrastructures in the EU 
Member States. Below are some citations from this document. 
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Natural gas is an essential component in the energy supply of the European Union, con-
stituting one quarter of primary energy supply and contributing mainly to electricity genera-
tion, heating, feedstock for industry and fuel for transportation. [...] Given the importance 
of gas in the energy mix of the Union, the Regulation aims at demonstrating to gas cus-
tomers that all the necessary measures are being taken to ensure their continuous supply, 
particularly in case of difficult climatic conditions and in the event of disruption. [...] 

This Regulation establishes provisions aimed at safeguarding the security of gas supply 
by ensuring the proper and continuous functioning of the internal market in natural gas, by 
allowing for exceptional measures to be implemented when the market can no longer de-
liver the required gas supplies and by providing for a clear definition and attribution of re-
sponsibilities among natural gas undertakings, the Member States and the Union regarding 
both preventive action and the reaction to concrete disruptions of supply. This Regulation 
also provides transparent mechanisms, in a spirit of solidarity, for the coordination of plan-
ning for, and response to, an emergency at Member State, regional and Union levels. 

The Regulation imposes several obligations on Member States as well as on EU ad-
ministration. The obligations for Member States include: conducting a thorough Risk 
Assessment the results of which should be summarized in an adequate report, and 
establishing Preventive Action Plan and Emergency Plan to be presented to the Euro-
pean Commission. The responsibility of the Commission is to instantiate an effective 
mechanism of monitoring how the regulation is being implemented. 

4.2 Comparative Conformance Case for Regulation 994/2010 

The scenario of implementing the comparative conformance case for Regulation No. 
994/2010 (hereafter called Regulation) involves the following steps (the Users are in 
Member States and the Supervisor acts on behalf of the EU Commission): 

Step 1 - development of the conformance case template by the Supervisor; 
Step 2 - submitting the conformance case template to the Users; 
Step 3 - development of conformance cases by the Users; 
Step 4 - monitoring of conformance cases by the Supervisor. 

Below we illustrate how this scenario is implemented with NOR-STA services. To 
demonstrate the implementation of Step 1 we have developed the conformance case 
template deriving it from the text of the Regulation. Fig. 5 presents an overview of the 
template (the hierarchy of nodes develops from the left to the right) In Fig. 5, the fact 
labeled F1.1.4 is linked to two references labeled December 2011: Information about 
intergovernmental agreements and December 2011: Risk Assessment Report.  
These references point to the places where two different pieces of evidence are to be  
integrated, demonstrating that the party implementing the Regulation has already 
prepared a risk assessment report and that the necessary intergovernmental agree-
ments are in place to reduce risk related to gas supply.  

Implementation of Step 2 is demonstrated by creating, for each user of Regulation, 
a separate space where it can develop its own conformance case. In NOR-STA termi-
nology, such space is called ‘project’. Each such project is initially filled with the 
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conformance case template. In the following text we assume that three such projects 
have been created for three different conformance cases of ‘dummy’ countries A, B 
and C.  

 

Fig. 5. Top-level decomposition of the Regulation conformance case template 

Implementation of Step 3 is demonstrated by developing a separate conformance 
case, for each country. In Fig. 6 we can see the conformance case of Country A, 
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where some pieces of evidence has been already integrated. In the figure, the refer-
ence December 2011: Risk Assessment Report has been selected which resulted in 
opening the window with the referred evidence – the document of the risk assessment 
report. The remaining users (Country B and Country C) could have integrated their 
specific evidence in their own conformance cases in a similar way. 

 

Fig. 6. An example evidence linked to fact F1.1.4 

Implementation of Step 4 is demonstrated by opening the comparative panel for the 
fact F1.1.4. This is illustrated in Fig. 7. The panel gives the name of the related fact 
(region 1) and below (region 2) there are the evidence tiles, one for each country. The 
tiles indicate the format of the related evidence (an image for Country A, a .doc doc-
ument for Country B and .pdf document for Country C). In addition, for each country, 
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the assessment of how well the evidence supports the analyzed fact is shown in the 
form of a colored circle. The colors indicate: acceptance (green), rejection (red) and 
uncertainty (yellow). Region 3 shows the opinion triangle related to the assessment of 
the evidence provided by Country A. The actual assessment is represented by the 
hollow circle in the triangle and the linguistic values corresponding to this assessment 
are presented beside the triangle (it reads: ‘with very high confidence the support 
given by the evidence is tolerable’). The evidence is shown in region 4. 

 

Fig. 7. Comparative panel for fact F1.1.4 

The assessments of facts can be issued either from the comparative panel, or  
otherwise by opening a selected conformance case and browsing its structure. Fig. 8 
presents the conformance case of Country A together with the assessment of the facts 
being the premises of claim CL1.1. The bottom part of the picture gives the details of 
the assessment of fact F1.1.4 which is currently pointed to. 

5 Conclusion and Future Work 

The case study presented in this paper was the starting point for common experiments 
conducted in cooperation with the Institute for Energy and Transport of Joint  
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Research Centre (IET JRC) in Petten, the Netherlands, which is in charge of monitor-
ing implementation of the Regulation 994/2010 in Member States, acting on behalf of 
the European Commission. The final conformance case template and the conformance 
cases for actual Member States are under development. 

Gas distribution and supply is one of the key critical infrastructures requiring par-
ticular attention. With this example we demonstrated how the comparative confor-
mance cases could be used to monitor implementation of the Regulation. For a se-
lected normative document, the initial step is to create a conformance case template 
for this document which becomes a sort of ‘window’ through which the supervising 
body can look at different implementations of the norm to assess and compare the 
submitted evidence. The investment needed to create the template is moderate: in case 
of Regulation 994/2010 the initial  template consisted of some 212 nodes and the total 
effort in its creation consumed 18 person-hours.  

 

 

Fig. 8. Example assessment of the facts related to claim CL1.1 
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Conceptually, the user of a conformance case template can extend it by adding 
more specific argumentation (see Fig. 3). However, our experience with several  
standards (including healthcare related standards [17], standards for secure outsourc-
ing, Common Assessment Framework [19] and others) shows that this option is rarely 
used. In majority of cases the template is being converted into a conformance case 
simply by supplying the evidence supporting particular facts.  

Presently we are researching a possibility to use the comparative case concept to 
support monitoring of multiple cases related to the EU proposed legislation that 
would require oil and natural gas companies to submit emergency response plans and 
potential hazard reports before being given a license to drill offshore. 
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Abstract. By capturing common structures of successful arguments, safety case
patterns provide an approach for reusing strategies for reasoning about safety. In
the current state of the practice, patterns exist as descriptive specifications with
informal semantics, which not only offer little opportunity for more sophisticated
usage such as automated instantiation, composition and manipulation, but also
impede standardization efforts and tool interoperability. To address these con-
cerns, this paper gives (i) a formal definition for safety case patterns, clarifying
both restrictions on the usage of multiplicity and well-founded recursion in struc-
tural abstraction, (ii) formal semantics to patterns, and (iii) a generic data model
and algorithm for pattern instantiation. We illustrate our contributions by appli-
cation to a new pattern, the requirements breakdown pattern, which builds upon
our previous work.

Keywords: Safety cases, Safety case patterns, Formal methods, Automation.

1 Introduction

Safety case patterns are intended to capture repeatedly used structures of successful
(i.e., correct, comprehensive and convincing) arguments, within a safety case [11]. In
effect, they provide a re-usable approach to safety argumentation by serving as a means
to capture expertise, so-called tricks of the trade, i.e., known best practices, successful
certification approaches, and solutions that have evolved over time. The existing notion
of a pattern1 is an extended argument structure, often specified graphically using the
Goal Structuring Notation (GSN) [8], which abstractly captures the reasoning linking
certain (types of) claims to the available (types of) evidence, and is accompanied by a
clear prescription and proscription of its usage.

In current practice, patterns have informal semantics and, in general, they are given as
descriptive non-executable specifications. Specifically, in existing tools, pattern-based
reuse does not go beyond simple replication of a pattern argument structure, and man-
ual replacement of its abstract elements with their concrete instances. Such usage is
not only effort intensive but also unlikely to scale well. Algorithmically instantiating
patterns is a natural solution to address this deficiency. However, to our knowledge,
existing tools provide little to no such functionality, in part, because of the lack of a
formal basis. The latter additionally impedes standardization and tool interoperability.

1 In the rest of the paper we will simply use “pattern” instead of “safety case pattern”.

F. Bitsch, J. Guiochet, and M. Kaâniche (Eds.): SAFECOMP 2013, LNCS 8153, pp. 21–32, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



22 E. Denney and G. Pai

This paper extends the state of the art in safety case research though the follow-
ing contributions: we give a formalization for argument structures elaborating on the
nuances and ambiguities that arise when using the available GSN abstractions [8] for
pattern specification. In particular, we clarify restrictions on the usage of multiplicity
and extend the basic concepts to include a notion of well-founded recursion. Next, we
give a formal semantics to patterns in terms of their (set of) concrete instantiations. We
specify a generic data model and pattern instantiation algorithm, and illustrate their ap-
plication to a new pattern: the requirements breakdown pattern, which builds upon our
previous work [3], [6]. Specifically, both generalize and replace their previous incarna-
tions [3] that mainly operated on requirements and hazard tables.

2 Background

Currently [10], [11], a pattern specification mainly contains:

– Name: the identifying label of the pattern giving the key principle of its argument.
– Intent: that which the pattern is trying to achieve.
– Motivation: the reasons that gave rise to the pattern.
– Structure: the abstract structure of the argument given graphically in GSN.
– Participants: each element in the pattern and its description.
– Collaborations: how the interactions of the pattern elements achieve the desired

effect of the pattern.
– Applicability: the circumstances under which the pattern could be applied, i.e., the

necessary context.
– Consequences: that which remains to be completed after pattern application.
– Implementation: how the pattern should be applied.

In addition, previously known usages, examples of pattern application, and related pat-
terns are also given to assist in properly deploying a particular pattern. A variety of such
pattern specifications can be found in [1], [10], and [15].

We assume that the reader is familiar with the basic syntax of GSN and do not repeat
it here. The GSN standard [8] provides two types of abstractions for pattern specifica-
tion: structural and entity.

Structural abstraction, which applies to the is-solved-by and the in-context-of GSN
relations, is supported by the concepts of multiplicity and optionality. The former gene-
ralizes n-ary relations between GSN elements, while the latter captures alternatives in
the relations, to represent a k-of-m choice, where k ≥ 1. There are, further, two types
of multiplicity: optional, implying zero or one, and many, implying zero or more. Mul-
tiplicity can be combined with optionality: placing a multiplicity symbol prior to the
option describes a multiplicity over all the options. This is equivalent to placing that
multiplicity symbol on all the alternatives after the option [8].

For entity abstraction, GSN provides the notions “Uninstantiated (UI)”, and
“Uninstantiated and Undeveloped (UU)”. The former refers to abstract elements whose
parameters are replaced with concrete values upon instantiation. The latter refers to UI
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entities that are also undeveloped2. Thus, upon instantiation, an abstract UU entity is
replaced with a concrete, but undeveloped, instance.

In addition to these, there are (limited) examples of the use of a recursion abstraction
in the literature [12], although it is not formally part of the GSN standard. Recursion,
in the context of patterns, expresses the notion that a pattern (or a part of it) can itself
be repeated and unrolled, e.g., as part of an optional relation or a larger pattern. Recur-
sion abstractions may or may not be labeled with an expression giving the number of
iterations to be applied in a concrete instance.

3 Formalization

In this section, first we modify an earlier definition of a partial safety case argument
structure [3], [7], adding a labeling function for node contents. Then, we give a for-
mal definition of a pattern, clarifying conditions on multiplicity and recursion. Subse-
quently, we give a formal semantics to patterns as the set of their concrete instances, via
a notion of pattern refinement.

Definition 1 (Partial Safety Case Argument Structure). Let {s, g, e, a, j, c} be the
node types strategy, goal, evidence, assumption, justification, and context respectively.
A partial safety case argument structure S is a tuple 〈N, l, t,→〉, comprising the set
of nodes, N , the labeling functions l : N → {s, g, e, a, j, c} that gives the node type,
t : N → E giving the node contents, where E is a set of expressions, and the connector
relation, →: 〈N,N〉, which is defined on nodes. We define the transitive closure, →∗:
〈N,N〉, in the usual way. We require the connector relation to form a finite directed
acyclic graph (DAG) with the operation isrootN (r) checking if the node r is a root in
the DAG3. Furthermore, the following structural conditions must be met:

(1) Each root of the partial safety case is a goal: isrootN (r) ⇒ l(r) = g
(2) Connectors only leave strategies or goals: n → m ⇒ l(n) ∈ {s, g}
(3) Goals cannot connect to other goals: (n → m) ∧ [l(n) = g] ⇒ l(m) ∈

{s, e, a, j, c}
(4) Strategies cannot connect to other strategies or evidence:

(n → m) ∧ [l(n) = s] ⇒ l(m) ∈ {g, a, j, c}
For this paper, note that in Definition 1 we have excluded the concept of an undeve-

loped node; consequently our definition of a pattern (Definition 2) excludes the notions
of UI or UU nodes. Extending both definitions to include these is straightforward.

Definition 2 (Pattern). A pattern P is a tuple 〈N, l, t, p,m, c,→〉, where 〈N,→〉 is a
directed hypergraph4 in which each hyperedge has a single source and possibly multi-
ple targets, the structural conditions from Definition 1 hold, and l, t, p, m, and c are
labeling functions, given as follows:

2 Annotating an entity as “undeveloped” is part of the main GSN syntax to indicate incomplete-
ness, i.e., that an entity requires further support.

3 A safety case argument structure has a single root.
4 A graph where edges connect multiple vertices.
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m: l..h

m: l..h

Fig. 1. Abstractions in GSN for patterns specification and our proposed modifications

(1) l and t are as in Definition 1 above
(2) p is a parameter label on nodes, p : N ⇀ Id × T , giving the parameter identifier

and type. Without loss of generality, we assume that nodes have at most a single
parameter

(3) m : (→)×N → (N ×N) gives the label on the ith outgoing connector5. Without
loss of generality, we assume that multiplicity only applies to outgoing connectors.
If it is 〈l, h〉 then multiplicity has the range l..h, where l ≤ h. An optional connector
has range 0..1.

(4) c : (→) → N × N , gives the “l..h of n” choice range. We give ranges and omit
the n.

Fig. 1 illustrates the GSN abstractions for pattern specification formalized in Defini-
tion 2. We now give some notational conventions and auxiliary definitions that we will
make use of:

(a) As shown in Fig. 1, pattern nodes take parameters, which reference a set of values
V , partitioned into types, and T ranges over types. We write v :: T , when v is a
value of type T .

(b) A pattern node N is a data node, written as data(N), if it has a parameter, i.e.,
N ∈ dom(p) (nodes G1, S1, G2 and G3 in Fig. 1). Otherwise, a node is boilerplate
(node S2 in Fig. 1). We will write bp(N) when N is a boilerplate node. For certain
nodes, e.g., so-called evidence assertions [14], data may not be available until after
instantiation. Although, strictly speaking, they are data nodes, we consider them to
be boilerplate here (see Section 5 for an example).

(c) The links of the hypergraph, A → B, where A is a single node and B is a set of
nodes, represent choices. We write A → B when A → B and B ∈ B.

(d) The bounds on multiplicity and optionality are represented as ranges. To define
the labeling functions m and c, we treat → as a set with members 〈A,B〉, where
A → B. Then,

– If c(〈A,B〉) = 〈l, h〉 we write A →l..h B (range on choice).

5 Although siblings are unordered in GSN, it is convenient to assume an ordering.
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– If m(〈A,B〉, ) = 〈l, h〉, we write A →l..h B (range on multiplicity).
(e) We write sub(P , A) for the sub-pattern of P at A, i.e., the restriction of P to

N ′ = {X | A →∗ X}, and sub(P , A,B) for the restriction of P to {X | A →∗

X and B 
→∗ X}. Roughly, this is the fragment of P between A and B (including
A, but excluding B and everything below it).

(f) Write multi(P , B) if there exists an A ∈ P such that A →l..h B and h > 1, that
is, pattern node B can be repeated in instances of P . We will write multi(B) when
P is obvious, and often consider multi(G,B), where G is a subgraph of P .

(g) A path, s, in the pattern is a sequence of connected nodes. If s connects A and B,
we write this as s : A →∗ B.

(h) Write A < B if for all paths from the root s : R →∗ B, we have A ∈ s.
(i) Write A →n B when there is a path of length n in the pattern between nodes A and

B. Then we define A →must B, when every path from A that is sufficiently long
must eventually pass through some B ∈ B, i.e., ∃n.∀s : A →n X.∃B ∈ B.B ∈ s.

We now introduce a restriction on the combination of multiplicities and boilerplate
nodes. The intuition is that multiplicities should be resolved by data, and not arbitra-
rily duplicated: it is only meaningful to repeat those boilerplate nodes associated with
distinctly instantiated data nodes.

Definition 3 (Multiplicity Condition). We say that a pattern satisfies the multiplicity
condition when for all nodes B, if multi(B), and not data(B), then there exists a C
such that B →∗ C, data(C), and for all X such that B →+ X →∗ C, not both
multi(X) and bp(X).

In other words, a multiplicity that is followed by boilerplate must eventually be fol-
lowed by a data node, with no other multiplicity in between. This has two consequences:
(i) we cannot have multiplicities that do not end in data, and (ii) two multiplicities must
have intervening data.

In contrast to concrete argument structures, we allow cyclic structures and multiple
parents in patterns. However, we need a restriction to rule out ‘inescapable’ loops, so
that recursion is well-founded.

Definition 4 (Well-foundedness). We say that an argument pattern is well-founded
when, for all pattern nodes A, and sets of nodes B, such that A /∈ B, if A →must B
then it is not the case that for all B ∈ B, B →must A.

We give semantics to patterns in the style of a single-step refinement relation 1.
Intuitively, the idea is to define the various ways in which indeterminism can be resolved
in a pattern. As before (Definition 2), pattern P = 〈N, l, t, p,m, c,→〉 and we describe
the components of P which are replaced in P ′.

Definition 5 (Pattern Refinement). For patterns P , P ′, we say that P 1 P ′ iff any
of the following cases hold:

(1) Instantiate parameters: If p(n) = 〈id , T 〉 and v :: T , then replace node contents, t,
with t′ = t⊕ {n �→ t(n)[v/id ]}.

(2) Resolve choices: If A →l..h B, B′ ⊆ B and l ≤ |B′| ≤ h, then replace A → B
with A → B for each B ∈ B′.
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(3) Resolve multiplicities: If A →l..h B then replace the link A → B with n copies
(that is, disjoint nodes, with the same connections and labels), where l ≤ n ≤ h.

(4) Unfold loops: If A →∗ B, B → A, and A < B, then let S be the sub-pattern of
P at A, sub(P , A). We create a copy of S and replace the link from B to A with a
link from B to the copy of S (i.e., we sequentially compose the two fragments).

Then, P  P ′ iff P ∗
1 P ′.

We will define pattern semantics in terms of refinement to arguments. Formally, how-
ever, a pattern refines to another pattern, so we need to set up a correspondence between
concrete patterns and arguments structures. We define this as an embedding from the
set of argument structures into patterns.

Definition 6 (Pattern Embedding). An embedding E of an argument structure into a
pattern is given as E(〈N, l, t,→〉) = 〈N, l, t, p,m, c,→′〉 where p = ∅, the labeling
functions m and c always return 1..1, and hyperedges have a single target, i.e., for all
nodes A ∈ N , →′ (a) = {→ (a)}.

We can now define the semantics of a pattern as the set of arguments equivalent to
the refinements of the pattern.

Definition 7 (Pattern Semantics). Let P be a pattern, let C andA range over patterns,
and safety case argument structures, respectively. Then6, we give the semantics of P as
[[P ]] = {A | P  C, E(A) = C}.

4 Instantiation

Now, we formalize the concept of a pattern dataset, define a notion of compliance bet-
ween data and a pattern, and specify a generic instantiation algorithm.

4.1 Datasets and Tables

We use sets of values to instantiate parameters in patterns to create instance arguments.
Roughly speaking, data can be given as a mapping from the identifiers of data nodes to
lists of values. However, since a pattern is a graph there can be multiple ways to navigate
through it (due to recursion and nodes with multiple parents) and, therefore, connect the
instance nodes. To make clear where an instantiated node should be connected, we need
to associate each ‘instantiation path’ through the pattern with a join point (or simply
join), indicating where a “pass” through the pattern begins. A join uniquely indicates
the location at which an instantiated branch of the argument structure is to be appended.
In practice, join points can be omitted if the location can be unambiguously determined.

We adopt a liberal notion of pattern instance and do not require all node parameters to
be instantiated. Moreover, uninstantiated nodes do not appear in the resulting instance7.

6 Strictly speaking, this should be defined as a set of equivalence classes of arguments, where
we abstract over node identifiers, but we can safely gloss over that here.

7 Except for special cases where they have been considered as boilerplate (see item (b) on p. 24).
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Definition 8 (Pattern Dataset). Given a pattern, P , define a P-dataset as a partial
function τ : (D × V ) × D ⇀ (N∗ ⇀ V ), where D is the set of data nodes in P , V
is the set of values, and N∗ is the set of indices. We write v ∈r,c τ when for some i,
τ(r, c)(i) = v, and require that values be well-typed, i.e., if v ∈r,c τ and p(c) = 〈id , T 〉
then v :: T .

Data will typically be represented in tabular form where we label columns by data
nodes, D, and rows by D × V pairs, i.e., joins. Entries in the table are represented
as indexed lists of values. The order in which a dataset is tabulated does not actually
provide any additional information, but in order to be processed by the instantiation
algorithm, must be consistent with the pattern, in the following sense: the order of
columns must respect node order8 <, i.e., if A < B then the corresponding columns
are in that order; and for each row 〈D, v〉, we require that v appears in column D in a
preceding row. In the following, we will assume that a consistent order has been chosen
for a dataset, and refer to it as a P-table (see Table 1 for an example).

Definition 9 (Data Compliance). For pattern P and P-table τ , we say that the table
complies with the pattern, τ � P , if the following two conditions hold:

(i) τ meets the cardinality constraints of P , i.e., ∀c . l ≤ |τ(( , ), c)| ≤ h, where
〈l, h〉 = m(i, c′), where c′ →i c.

(ii) τ is upwards-closed, i.e., for each r labeled (D, v) and column c, if v ∈r,c τ and
c ≤ c′ ≤ D, then there exists v′ such that v′ ∈r,c′ τ .

Note that the ordering used in upwards-closure is with respect to the pattern and not the
column order. The intuition behind upwards closure is that, in line with our notion of
partial instantiation and although not all nodes need be instantiated, we do require that
parameters can be instantiated in order from the root. A row, therefore, consists of the
data that instantiates an upward-closed fragment of the pattern, following the paths of
the fragment up until the join (see Fig. 4 for an example).

4.2 Algorithm

Fig. 2 specifies instantiate(P , τ), our generic algorithm for pattern instantiation. We
write new(D.v), to create a new instance node, given by instantiating data node D
with value v. When a boilerplate node B is instantiated, then we reference its instance
simply as B. Let F be the set of argument structure fragments. To connect an instance
node D.v to a fragment f ∈ F , we use a function connect(D.v, f), which sequentially
composes f with the current instance fragment at node D.v.

To instantiate a pattern P , given its P-table τ , we process each row to create a row
instance fragment, which is effectively the assignment of parameter values in the table
to the corresponding data nodes in the pattern. We construct the row instance based
on the ordering of the data nodes in the columns. For each value we add not just the
instantiation of the appropriate data node, but also any boilerplate between that node and
the preceding data node. We give a row instance as RI ∈ N×N×N∗, whereN , N, and
N∗ are the sets of pattern nodes, instance nodes and natural number indices respectively.

8 See item (h) on p. 25.
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1 Instantiate(P: Pattern, τ : P-table)
2 begin
3 foreach row r ∈ table τ do
4 initialize row instance RI ← ∅
5 if row label = 〈root , v〉 then
6 create instance node j ← new(root .v) and assign pattern node current ← root
7 update row instance RI ← RI ∪ 〈current , j, [ ]〉
8 else if row label = 〈C, v〉 then
9 create join instance node j ← new(C.v) and assign current ← C

10 foreach column E ∈ table τ not including root do
11 assign pattern node N ← current
12 foreach (v, index i) ∈ table τ(r,E) do
13 assign fragment f ← boilerplate B ∈ sub(P, current ,E) such that multi(B) ∨ 〈B,B, [ ]〉 /∈ RI
14 if E is first column in row r with data then assign instance node n ← j
15 else find parent node n with index k such that ∃〈N, n, k〉 ∈ RI
16 connect(n, f)
17 foreach boilerplate B ∈ f do update row instance RI ← RI ∪ 〈B,B, i〉
18 if ∃P ∈ sub(P, current ,E) | multi(P) then assign pattern node N ← parent(P)
19 assign pattern node M ← parent(E)
20 assign instance node p ← instance node m ∈ f such that m = M.v
21 connect(p,E.v)
22 update row instance RI ← RI ∪ 〈E,E.v, i〉
23 assign current ← E

Fig. 2. Generic algorithm for pattern instantiation

Multiplicities, especially, require careful consideration: multiple values in the P-table
lead to multiple instances of a data node, but we only repeat those boilerplate nodes
which appear after a multiplicity (see Fig. 4 for an example). We use instance indices to
connect nodes to the correct parent when there are such multiples. At any point in the
algorithm we identify the “current node” as current , and the pattern root as root .

We now state, without proof, the correctness property of the instantiation algorithm.

Correctness: If P is a well-founded pattern that satisfies the multiplicity condition, and
τ � P , then instantiate(P , τ) ∈ [[P ]]. A consequence is that the algorithm produces
well-formed instances.

5 Illustrative Example

To illustrate pattern instantiation, we use the requirements breakdown pattern (Fig. 3),
which we have derived from our ongoing experience with safety case development for
an unmanned aircraft system [2], [4], [6]. It also extends our previous work9 on algorith-
mically deriving argument structure fragments from requirements/hazards tables [3].

The requirements breakdown pattern (Fig. 3) provides a framework to abstractly
represent the argument implicit in a requirements table10. Specifically, it shows how
the claims entailed by requirements can be hierarchically developed and linked to the
supporting evidence produced from the specified verification methods. Due to space
limitations, we do not provide a complete pattern specification.

9 In fact, a P-table similar to Table 1 can be extracted from the tables in [3].
10 See [3] for an example of a requirements table.
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Fig. 3. Requirements breakdown pattern, abstracting the structure of the argument implicit in a
requirements table

Table 1. Example of a populated P-table to instantiate the requirements breakdown pattern

Parameter Type Requirement Lower-level 
requirement

Allocated 
Requirement Source Requirement 

Allocation
Verification 

Method
Verification 
Allocation

          Data node
Join Point        G1 G2 G3 C1 C2 S3 E1

R1 R1.1, R1.2 AR1 S A VM11, VM12 VA11, VA12
(S3, VM12) VA22
(G2, R1.1) VM1.11, VM1.12 VA1.11, VA1.12
(G2, R1.2) R1.2.1, R1.2.2 AR1.2

(G2, R1.2.1) VM1.2.1 VA1.2.1
(G3, AR1.2) AR1.21 VM1.2 VA1.2
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Fig. 4. Application of the generic pattern instantiation procedure (Fig. 2): Concrete instance of the
requirements breakdown pattern (Fig. 3) using the values from the P-table (Table 1), highlighting
row instance fragments, join points and repetition of boilerplate nodes
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In brief, the claim in the root goal (G1) of the pattern is that a safety/system re-
quirement, which is usually made in the contexts of some source (C1), or system, i.e.,
requirement allocation (C2), holds. A choice of three strategies is available to develop
G1: hierarchical decomposition (S1, S2) and appeal to one or more verification me-
thods (S3). The sub-claims (G2, G3) resulting from applying hierarchical decomposi-
tion are semantically similar to the root claim that they refine. Consequently, we can
apply the same strategies to develop them further. Eventually, we support all claims by
verification evidence (E1). The evidence is preceded by an evidence assertion (G4), i.e.,
a minimal proposition directly concerning the source data of the evidence [14].

Table 1 shows a populated P-table for the requirements breakdown pattern with the
columns, labeled by the pattern data nodes, containing example data entries entered
corresponding to the root node and the join points. We have listed the data node
parameter type for clarification purposes and it is not formally part of the data model.

Fig. 4 shows an instance of the pattern derived by applying our generic pattern
instantiation procedure (Algorithm 2) and using the P-table (Table 1). It highlights
the repetition of boilerplate nodes11 after multiplicity, and illustrates how a join point
connects two row instance fragments.

6 Conclusion

We have presented the foundational steps towards, we believe, a rich theory of safety
case patterns that will enable more sophistication in their usage than is currently avai-
lable, e.g., automated instantiation, composition, and transformation-based manipula-
tion. The main benefit of our work from a practitioner’s perspective, we anticipate,
is a reduction in the effort involved in safety case creation/management due to the
raised level of abstraction at which arguments can be formulated, together with im-
proved assurance. Specifically, given the assurance afforded by automated instantiation
that a pattern instance is well-formed and meets its specification, practitioners, i.e.,
safety engineers who create safety arguments, and certification/qualification authorities
who evaluate them, can divert efforts to domain-specific issues, e.g., selecting the ap-
propriate patterns for assurance, evaluating a smaller, abstract argument structure for
fallacies/deficits instead of its larger concrete instantiation, determining the evidence
required to support the claims made, etc.

However, more can be done: as mentioned earlier, the formal definitions and the al-
gorithm can be extended to include the notions of undeveloped, UI and UU. One design
choice in the algorithm was to instantiate only those nodes for which parameters have
values in the data table. An alternative choice could be to use the whole pattern so that
those data nodes that do not take values in the table are also reproduced in the instance
but left as UI or UU, as appropriate. The relationship between modular abstractions,
hierarchies [7], and patterns is, as yet, unclear although there are a few examples of
applying patterns within a modular organization [9]. The goal of formalization, here,
would be to raise the level of abstraction and to increase automation. We use a notion
of sequential composition of patterns. We have also defined a notion of parallel compo-
sition (not given in this paper) to create patterns, such as for requirements breakdown

11 Recall that we consider evidence assertion nodes as boilerplate (see item (b) on p. 24).
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(Fig. 3), from simpler patterns. Future work will involve, in part, extending the formal
basis given in this paper to the topics mentioned above.

We have already implemented the GSN abstractions and our notational extensions for
patterns in our toolset, AdvoCATE [5]; we plan to extend the tool with the algorithm
described here. Clarifying concepts such as patterns and the data for their instantiation
will be necessary to support tool interoperability, which is one of the goals [13] of
emerging safety/assurance case standards.

Acknowledgement. This work has been funded by the AFCS element of the SSAT
project in the Aviation Safety Program of the NASA Aeronautics Mission Directorate.
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Abstract. We present a novel approach for reducing manual effort when testing 
autonomous robot control algorithms. We use procedural content generation, as 
developed for the film and video game industries, to create a diverse range of 
test situations. We execute these in the Player/Stage robot simulator and auto-
matically rate them for their safety significance using an event-based scoring 
system. Situations exhibiting dangerous behaviour will score highly, and are 
thus flagged for the attention of a safety engineer. This process removes the 
time-consuming tasks of hand-crafting and monitoring situations while testing 
an autonomous robot control algorithm. We present a case study of the pro-
posed approach – we generated 500 randomised situations, and our prototype 
tool simulated and rated them. We have analysed the three highest rated  
situations in depth, and this analysis revealed weaknesses in the smoothed  
nearness-diagram control algorithm. 

Keywords: autonomy, robots, faults, simulation, procedural content generation. 

1 Introduction 

There is much work afoot to bring autonomous robots (AR) into public spaces, both 
on the ground and in the air. We therefore need high confidence that their behaviour 
will be safe. This is difficult, however, given the complexity of environments that the 
robots must interact with, and the scope of authority that they need in order to effec-
tively respond to those environments. There have already been minor accidents 
caused by the control software of autonomous vehicles, for example in the DARPA 
Urban Challenge [1], and there are likely to be more as their numbers increase. We 
need ways to verify and validate such control software, finding ways in which it could 
cause an accident, whether due to intrinsic algorithmic limitations or implementation-
specific faults. 

One approach would be testing AR by putting them through linear scenarios, 
represented as a sequence of stimuli, and checking the safety of the resulting  
behaviour. This is inadequate, however: AR will influence their environment, and that 
will influence their own future behaviour. This is true, of course, for any reactive 
system, but AR may have many ways to influence their environment (e.g. movement, 
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manipulator arms, communication) and many ways to respond to those changes 
(through sensing, model-building and prediction). We thus need to understand how 
the behaviour of the AR will develop from a given starting point. We therefore need 
to test AR by generating situations – combinations of maps, peer entities, and mis-
sions or objectives, into which a (simulated) AR can be placed. Rather than providing 
a fixed sequence of stimuli, simulated situations can react to the AR’s actions. Given 
such a situation, we can assess whether the AR achieves safe behaviour.  

For example, one situation might have an autonomous ground vehicle driving 
down an empty motorway to deliver a package. Another might modify the mission to 
have a tight time limit and stationary traffic jam. A third situation might instead pep-
per the motorway with abandoned cars and spilt fuel. Each of these would test differ-
ent aspects of the vehicle’s control software. 

We can observe that a situation-based approach can provide a degree of both veri-
fication (of the implementation against a vehicle behaviour specification) and valida-
tion (of the behaviour specification against the behaviour that we, in retrospect, want 
from it, now that we’ve seen the consequences). 

There are two major obstacles for situation-based testing. First, useful situation-
based testing will require a wide variety of situations, and creating those in a simula-
tion requires considerable effort – for example, engineers need to list the precise posi-
tion, heading and plan of each vehicle involved in each situation. This involves a lot 
of work, perhaps engineer-weeks for a complex situation, and this thus limits the 
range of situations that can be studied. Martin and Hughes report similar problems 
with scenarios for training simulations [2]. 

Second, the diversity of generated situations is important. In particular, we do not 
want biases in the generation of situations that mirror the biases of the designers of 
the control algorithms; we do not want our test set to have the same ‘blind spots’ as 
the software. Research on n-version programming suggests that this is likely – in 
Knight and Leveson’s classic experiment [3], different programmers working from 
the same specification produced programs that had largely similar errors. It may be 
that different situation designers produce situation sets which miss similar challenges. 

A response to these two problems is to generate situations automatically. This is 
the response taken in the simulation-for-training field, where it is called Automatic 
Situation Generation (ASG) e.g. Martin and Hughes [2] and in the video games field, 
where it is called Procedural Content Generation (PCG) e.g. Togelius et al [4, 5]. 
PCG is often used in situations where the manual creation of content would be prohi-
bitively time-consuming or expensive [6]. It also allows highly detailed content to be 
stored extremely efficiently—only the parameter values input into the algorithms 
need to be stored. PCG has the potential to produce output that surprises the PCG 
engine developers; this has often been observed in video game uses [7]. 

In this paper we show how PCG techniques can be adapted to test AR control 
software, and demonstrate this by application to a small case study. In section 2 we 
identify the requirements for such an approach, in section 3 we explain what we have 
implemented, and in section 4 we describe an initial experimental evaluation. Section 
5 compares our approach against previous work; section 6 summarises the paper and 
identifies future possibilities. 
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2 Requirements for a PCG Testing Approach 

The major criterion for evaluating a situation-based testing approach is its ability to 
find the kind of problem behaviours that AR may exhibit. Here, for simplicity, we 
have limited our scope; we only consider how the combination of sensing, sensor 
processing and driving algorithms can lead to dangerous movement behaviour. To 
support this, our situation generator needs the ability to generate static terrain, includ-
ing plausible variations of terrain type such as rocky deserts, cave systems, and urban 
areas. It also needs to generate moving obstacles, such as peer robots, as these are 
particularly difficult to sense and respond to appropriately. 

A key requirement is that the PCG technique generates a wide range of diverse sit-
uations. Beyond mere diversity, it is also important to generate situations that have a 
high likelihood of finding dangerous behaviour; it would be easy for PCG to spend 
most of its time generating safe situations, which is computationally inefficient.  

Regardless of the efficiency of the generator, an effective PCG technique will gen-
erate a great many situations, necessitating a great many simulation runs, and hence 
generating a very large amount of data. We thus need a way to rationalise the output 
before it is presented to human engineers. At a minimum, this must filter out runs that 
are safe and as expected. Beyond that, the tool must prioritise the runs in some way, 
allowing the humans to focus first on the most interesting ones. 

Ideally, we would want to gain confidence that the set of situations generated is in 
some sense ‘complete’, at least for the scope of situations being considered. This 
could be approached by  measuring the “situation coverage” achieved by a set of  
situations – given the range of situations that could potentially be generated, the  
proportion that actually have been generated. This could be composed from a variety 
of components such as potential for pair-wise interactions between entity types, where 
entities include (for example) the AR, peer vehicles, roads, walls, and solid obstacles, 
and interactions include (for example) sensing, proximity, collision avoidance and 
“moving in formation with”. Previous work on agent interaction ontologies (e.g. 
Nguyen [8]) and on road-traffic interaction patterns and accident proximity measures 
(e.g. Archer [9]) will be relevant here. 

Given the proof-of-concept nature of the work described here, we have not  
attempted to address the completeness issue. Instead, we have limited ourselves to the 
assertion that if the method discovers any specification or implementation flaws then 
it has some value. The decision to use it then becomes a return-on-investment  
question.  

3 Proposed Method  

The basic idea is to use PCG to create situations, and then run them in the simulator to 
observe how the robot (specifically, its control software in command of the robot) 
behaves in them. The process takes place in three stages. 

The first stage uses PCG algorithms to create a binary terrain map, i.e., terrain is 
either navigable or obstructed. A mission generator then reads the map and places a 
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number of robots within the environment, ensuring they are initially unobstructed. It 
then assigns each robot a randomised route, which the robot control algorithm must 
follow during the second stage. The output of the first stage is a complete situation: a 
fully-populated environment with robots, obstructions and mission allocations. 

The second stage involves executing a situation within a simulated environment. 
During its execution, the progress and behaviour of the robots within the simulation 
are monitored to determine whether any hazardous behaviour is exhibited. Monitoring 
is done by a daemon process which interfaces with the simulation. The daemon in-
spects the state of the robots to detect whenever an event occurs that corresponds to a 
member of a defined set of unwanted behaviours, such as colliding with a wall. The 
occurrence of such an event would indicate a failure of the control algorithm.  

Once a run is complete, a third stage processes the event log produced by the  
daemon. The processing analyses the sequence of events within the run and ranks its 
overall significance, based on the likelihood that faults or weaknesses of the robot 
control algorithm were exhibited.  

The output of the third stage is a ranked list of situations, ordered by their signific-
ance. A domain expert can use this to indicate which situations are most likely to be 
worth investing further time and resources in, using more labour-intensive techniques. 

In the current work, we used Player/Stage [10] as our implementation platform. 
Player is an abstraction library that provides a standardised interface to robot sensor 
and actuator hardware. Player also features a client/server architecture, allowing con-
trol code to execute across a network connection, rather than only running on-board a 
robot. It is widely used by robotics researchers as it enables a seamless transition  
between simulation and physical hardware. This allows developers to, for example, 
identify a weakness in a control algorithm in simulation, then directly test it in the real 
world to verify that there is really a problem.  

Stage is an open-source robot simulation environment that allows one or more  
robots to explore and interact within a 2D world. It is often used in conjunction  
with the Player project, as it provides virtualised hardware for many of the interfaces 
Player defines. Stage accurately models a range of sensors often found on physical 
hardware, such as laser rangefinders, and it simulates realistic physics with accurate 
collision detection. The limitation to a 2D world is pertinent, but is not a major  
limitation for this proof-of-concept study, and Player is fully compatible with 3D 
simulations including Gazebo (http://www.gazebosim.org/). 

To generate an environment representing terrain and built structures the tool first 
creates a 2D noise map using a Perlin noise process [11]. As with most PCG tech-
niques, this is used as a base for subsequent post-processing. Using a simple pipe-and-
filter architecture, filter effects can be applied and chained arbitrarily to produce the 
final output that represents terrain. In the current tool we use two filters: a pixelisation 
filter to make the noise more granular and a thresholding filter to convert the noise 
into binary occupied/unoccupied. The latter is a wrapped by a coverage constraint 
algorithm that randomly varies the threshold used by the filter until the coverage of 
the space reaches a suitable mix of occupied and unoccupied space (as defined in a 
parameter file). Fig. 1 shows the effects of the filters. 
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(a) Base Noise Map (b) Pixelated (c) Thresholded (d) Constrained 10---
20% 

Fig. 1. Effects of post-processing filters available during environment generation 

The tool is configured by a situation file, which specifies various parameters to use 
during generation, such as the size of the map and the settings for the filters. The 
combination of these parameters and random variation gives rise to several different 
types of environment – examples are given in Fig. 2. 

 

 

 

Cave Neighbourhood Rocky desert 

Fig. 2. Range of possible environments (with suggestive names) 

The mission planning tool takes as input the map generated by the environment 
generator and a second configuration file. The configuration file specifies the number 
of robots that need missions, including any (optional) minimal route length con-
straints. The mission planner then places each robot within the environment, ensuring 
they are not wholly or partially within an obstruction. It then generates a randomised 
route, defined by an ordered sequence of waypoints, for each robot. 

To generate a route, the planner picks an unobstructed point at random, then ap-
plies the A* path-finding algorithm [12] between a robot’s initial position and the 
selected point. If no navigable route can be found then the end point is discarded and 
a new one selected. If a minimum route length is specified in the configuration file, 
additional end points are appended until the constraint is satisfied. In practice, this 
lead to routes that closely traced the edges of terrain features, which is not sensible 
given that the robot needs to maintain useful lines of sight. For the purpose of  
route planning, therefore, we therefore performed a binary dilation on the map to 
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exaggerate the size of terrain objects and thus force the routes to be plotted through 
more open space. 

The pathfinding algorithm generates complete, navigable routes with a great many 
waypoints. The Ramer–Douglas–Peucker1 algorithm is used to reduce the number of 
waypoints, both to reduce storage space for the situation and to force robots to do 
some online global path-planning to avoid obstacles, thus increasing the challenge for 
their movement algorithms. The algorithm’s epsilon parameter, which determines the 
amount by which the simplified path can deviate from the original (and thus the 
amount of global planning that can be required), can be set in the configuration file. 

Failures are detected by a daemon that continuously monitors the simulation envi-
ronment. The daemon is independent of the robot controller code and can detect loi-
tering, route completion, stalls (which are produced by Stage when the robot collides 
with terrain or another robot), waypoint arrival and unsafe proximity (between two 
robots). These are a mixture of safety, mission and performance events; in future 
work we plan to expand the range of safety-specific measures. In effect, it filters the 
fine detail of the simulation to produce a simpler textual representation (an event log) 
of each run.  

The logs are human readable, but very long, and one log is produced for every sit-
uation that is run. In order to guide engineers to the most interesting runs in the log, 
we developed a process for scoring runs according the interestingness (i.e. safety-
significance) of each the log events in that run. The score for each run is derived by 
applying event-specific penalties each time an event is triggered.  

Appropriate values to use for these penalties are subjective and highly dependent on 
both the features of the control algorithm being assessed and the context under which a 
robot will operate. The values used during the case study for this project were tuned 
using trial and error. For example, a penalty of 10 points is added if two robots enter an 
unsafe proximity, and a further penalty of 1 point per second is applied for the duration 
of the proximity. An idea for evolving or learning weights is presented in section 6. 

We can note that any controller that this implementation was applied to would 
have to support the Player/Stage-supplied virtual hardware and 2D environment, but 
otherwise the robot software is independent of our approach and the tool implementa-
tion is completely independent of the specific control software used. It could easily be 
applied to alternative algorithms or rival software designs. 

The full source code for our implementation is available at http://www-
users.cs.york.ac.uk/~rda/arnold_sitgen_src.zip, under a BSD 
licence.  

4 Experiment and Results  

4.1 Experiment 

For the case study, we implemented a simple robot controller that combined simple 
path-following with smoothed nearness diagrams (SNDs) [13] for collision avoidance 
                                                           
1 Also known as the “split-and-merge” algorithm. 
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and basic reactive navigation. SNDs are well-understood and have been designed to 
work in both open and confined environments, including those with dynamic ob-
stacles. This meant that they were suitable for any of the environments created by the 
environment generator and mission planner. SNDs are often used in robotics research, 
thus an implementation is bundled with the Player distribution. Finding any weak-
nesses or faults in that would be evidence in favour the approach taken by this project 
on a real world and well-tested control algorithm, and it would also provide useful 
feedback for the Player developers. 

The controller was implemented on a virtual Pioneer 3-AT robot (http://www. 
mobilerobots.com/ResearchRobots/P3AT.aspx) equipped with a SICK 
LMS200 laser rangefinder; a model for this is provided by Stage. The robot is four-
wheel drive, uses skid-steering and is capable of speeds of up to 0.8m/s. Although 
equipped with a sonar array, we used the laser range finder for obstacle detection as it 
gave us a forward-facing 180° field of view, a maximum sense range of 10m and  
precision to the nearest cm (surpassing the capabilities of the sonar array). 

For the experiment, we generated and ran 500 unique situations, each with rando-
mised parameters such as map size, obstacle density and minimum route lengths. 
Each situation was run as fast as Stage could simulate, before being terminated after 
120 seconds of wall-clock time2. Additionally, each situation contained a single AR 
and between zero and five ‘dumb’ robots; the latter acted as dynamic obstacles. The 
dumb robots had collision avoidance disabled and were only allocated routes that did 
not require any path-planning, i.e., adjacent waypoints could always be reached as the 
crow flies. Failure detection was only performed for the AR; events concerning only 
dumb robots did not contribute to the rating of a situation. 

The source code and Player/Stage configuration files used for the case study are 
included in the code distribution linked earlier. Further details are given in [14]. 

4.2 Results 

The risk scores for the different runs were widely distributed; indeed they appeared to 
follow a power-law distribution with a long tail of low-scoring (low-risk) runs. We 
investigated several of them in detail, and will discuss the highest-scoring three here. 
These scored 3064, 1574 and 988 respectively, versus a mean of 61.0. All of these 
high-scoring runs involved collisions between the AR and one of the dumb robots. 
The maps and initial mission plans for these runs are shown in figures 3-5. Robot 
starting points are shown by squares, robot goals are shown by circles; those for the 
AR are filled shapes, those for the dumb robot are hollow. The green lines represent 
the route plans provided to the robots; those for the AR have been simplified (as de-
scribed in section 3) and thus cannot be completed without obstacle avoidance. 

In run 207 (ranked first), a repeat collision occurred because the AR rounded a 
corner and collided with a dumb robot that was outside its field of view. As the dumb 
robot was still out of view after the collision, the AR continued to try to drive through 

                                                           
2 The final simulation time of each run varied, but it tended to be on the order of 10 minutes, a 

simulation performance of around 5x real time. 
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it, thus continually pushing against it (which was logged as a very large number of 
collisions). This is a simple example of a hazard. 

 

 

Fig. 3. Environment and mission plan for situation 207 

In run 219 (ranked second), the AR and a dumb peer were started very close to 
each other on routes that took them through each other. There was space for them to 
avoid each other and pass successfully, but they started too close for the AR’s avoid-
ance algorithms to work properly. The AR therefore oscillated between trying to pass 
to the left and trying to pass to the right, colliding repeatedly with the dumb robot. 

 

Fig. 4. Environment and mission plan for situation 219 

This is interesting because smoothed nearness diagrams were meant to fix the os-
cillation proneness of the original nearness diagram concept, but here this was de-
feated because the AR could not see enough free space. The problem could be solved 
if the AR could comprehend the problem and back up slightly, but the AR’s control 
system does not have that feature. 

Run 231 (ranked third) was similar to run 207, except that the AR could see the 
dumb robot. It could have avoided a collision by moving at full speed, thus getting out 
of the way before the dumb robot reached it. SND, however, is designed to command 
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low speed in “high risk” areas (ones near obstacles). In this case, the obstacle was 
itself moving towards the SND-equipped robot so high speed was necessary to avoid 
it. SND guided the AR to move slowly, thus colliding with the dumb robot. 

 

 

Fig. 5. Environment and mission plan for situation 231 

Run 231 is perhaps the most interesting of the three runs, as it reveals a weakness 
in the established SND concept, not just with the robot’s perception (run 207) or with 
its specific control implementation (run 219). Despite this, it is only scored at one-
third the value of run 207. It is therefore clear that some fine-tuning of the scoring 
system is desirable; with this in mind, we looked at the overall picture of whether the 
scoring had sorted runs into roughly the right order. 

The three runs described above are examples of true positives – runs scored highly 
that contain accidents. To search for false positives, we randomly sampled 10 runs 
from the top-rated 50 (excluding the three already discussed) and studied them in 
some detail. All of the 10 exhibited accidents or other abnormal behaviour, suggesting 
that the false positive rate was low. 

True negatives (runs that have no accidents and produce a low score) are perhaps 
the least significant category. However, the higher the proportion of true negatives, 
the more situations need to be generated (and runs performed) before problems are 
identified. In total, 227 runs (45% of the total) were assigned a score of less than ten 
points. 10% of these were sampled, and in all cases the low ratings were justified. 
This sampling also suggests that the false negative rate was low.    

5 Related Work 

As noted earlier, there are many applications of procedural generation in video games 
and virtual environment training (e.g. [2, 4-7]). These, however, aim for an optimum 
appearance or a slightly varied play experience, rather than the highly diverse  
challenges that concern us here. The use of Parish and Müller [15] in the CityEngine 
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urban planning system is closer to our concerns, but still not directly applicable to 
creating challenging environments for robots. 

Ashlock et al. [16] presented a technique for generating mazes to test the  
effectiveness of robot path planning algorithms. They evolved mazes which they  
then statically analysed to check they meet specific constraints, such as a minimum 
number of turns or a minimum optimal route length. Unfortunately, they did not  
evaluate any path-planners in the generated mazes – the merely conclude that high 
fitness scores were achieved and that the visualised output was varied and (intuitive-
ly) challenging. 

Nguyen et al. [17] apply a similar approach, using evolutionary optimisation to 
create challenging test situations for an AR. They then take it one step further, putting 
simulated AR within the situations to test how well they perform. The robot’s perfor-
mance is measured using a fitness function based on stakeholder-derived “soft goals”, 
and this is used to guide the optimisation. In this their technique is successful (it  
produces high fitness values), but they do not explore whether the runs are revealing 
diverse faults or merely exploiting progressively worse consequences of a single fault.  

There are a variety of approaches to runtime safety of AR (e.g. Wardziński [18]). 
These are orthogonal to the design-time analysis described in this paper; both are 
necessary for safe AR. Indeed, there would be interesting further work in applying our 
approach to analysis of a system that included such a runtime safety system, looking 
for situations that could cause the runtime system to dangerously fail. 

6 Conclusions  

We have described a PCG approach for generating situations to find faults in robot 
control software, and shown through a small case study that the basic approach can 
find faults in some cases. The case study found faults in the standard SND algorithm, 
without being tuned specifically for application to SND. The method is not fully au-
tomated – it requires a human engineer to study accident runs and discover exactly 
what is causing the problems – but the tool generates situations, executes them, and 
prioritises the results for human attention. 

Because the method tests purely by generating environments, it could be used to 
test any robot that is written for Player/Stage. Similarly, it can be used on a simple 
prototype in order to test and algorithm or an overall control strategy – a lot can  
be learned (fundamental algorithm flaws can be found) without needing a fully  
developed and mature implementation. 

As further work, this approach could be implemented in a higher-fidelity  
simulation. This is perhaps best done by industry or as a commercialisation effort; 
further academic work should focus on refining the situation generation and result 
prioritisation algorithms, and understanding the space of environments that cause 
problems for major AR algorithms and strategies. 

An empirical evaluation of the method’s fault-finding power would be valuable.  
It could be compared to conventional testing approaches, and to manual situation 
generation. The comparative testing work by Nguyen et al [19] is useful template – in 



 Testing Autonomous Robot Control Software 43 

 

particular, note the way that they assess proportion of known faults found rather than 
relying on arbitrary measures such as run scores or search fitness functions. 

As further evaluation, there are many robot algorithms and control strategies that 
this approach could be applied to. One interesting case would be to apply it to the 
initial formulation of Velocity Obstacles, as presented by Fiorini and Shiller [20], and 
check whether it reveals the known flaws in that algorithm (see [21], [22]). 

Although the case study showed the run scoring system producing useful results, it 
is not clear whether it is well-calibrated to the scores that a human expert would as-
sign had they studied the situation in detail. It may be possible to learn or evolve the 
parameters of the scoring system (event weightings) by having human experts rate a 
large set of runs, then letting the learner or optimiser derive a scoring system that 
reproduces those scores for those runs. Such scoring system could be used as a fitness 
function for an optimisation technique that tuned the parameters of the situation gene-
rator. Although trying to maximise the scores achieved might lead to a narrow focus 
on a few high-impact faults, tuning the generator to minimise the number of low 
scores achieved might greatly increase the performance of the approach without com-
promising the diversity.  

Acknowledgements. The authors would like to thank Ibrahim Habli for his com-
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Abstract. The benefits of using aspect oriented programming (AOP) for 
separation of concerns is well-known and has been demonstrated in many 
works, including for dependable computing. In this paper, we use this 
composition capability of AOP to develop micro-aspects that can be combined 
together to realize a given fault tolerance mechanism. The toolbox of micro-
aspects can be used to make mechanisms easily configurable and by the way to 
simplify their update. We show that the composition of micro aspects leads to 
undesirable side effects of the interactions between them, called interferences. 
We propose an approach to detect interferences with executable assertions, 
using an extension of AspectJ called AIRIA that enables control over an aspect 
chain at a shared join point. We finally draw the lessons learnt and discuss to 
what extent AOP can be used to develop fault tolerance mechanisms. 

1 Introduction 

The benefits of using aspect oriented programming (AOP) for separation of concerns 
is well-known and was demonstrated in many works, including for dependability. 
Mechanisms like Time Redundancy and Control Flow Checking have been 
implemented recently in AOP in the automotive context [1]. Fault tolerance 
mechanisms (FTM) can be implemented in separate software components, the 
aspects, and later woven at specific locations of the application code, called join 
points. In practice several mechanisms can be composed together to fulfill different 
fault tolerance properties. But composition may also be used to develop a single 
mechanism. For example, a replication mechanism to tolerate a server crash could be 
designed as the composition of several individual aspects, each of them realizing a 
small task: handling request sending to multiple destinations, handing request 
reception depending on the replica mode of operation, handling checkpointing, 
handling response return to client. This idea leads us to the notion of micro-aspects, 
which is similar to the notion of micro-protocols developed by R. Schlichting et al.  
[2-3]. It is appealing to resilient computing [4] since mechanisms become easier to 
configure and to update. By offering fine-grained, reusable micro-aspects, we intend 
to simplify the job of the developers. The first question we tackle in this paper is thus: 



46 J. Lauret, J.-C. Fabre, and H. Waeselynck 

 

To what extent can fine grain aspects be defined and composed to implement 
reconfigurable fault tolerance mechanisms? 

But the composition of the micro-aspects to realize a replication protocol may also 
lead to undesirable side effects, called interferences. In other words, the aspect chain 
might be incorrect after weaving all micro-aspects into the application code. We need 
to control the composition and provide means to detect undesirable interferences. 

The second question we tackle relates to interactions between aspects and how 
undesirable interferences between aspects can be detected? 

We propose to instrument the aspect chain using executable assertions. The 
proposed approach relies on the concept of resolver provided by an extension of 
AspectJ [5], called AIRIA [6].  

The paper is organized as follows. In section 2, we present the interesting features 
provided by AIRIA to control the composition of aspects. In section 3, we develop a 
replication mechanism using a collection of micro-aspects. In section 4, we present 
our instrumentation approach to detect interferences. In section 5 we discuss the 
benefits and the drawback of using micro-aspects to develop fault tolerance 
mechanisms. Section 6 concludes the paper. 

2 AspectJ and Variants 

AspectJ [5] is our target language in this work. When several aspects are woven at the 
same join point [7], a given ordering is required. AspectJ offers a declare precedence 
statement for this. If no precedence is declared the compiler may choose an arbitrary 
ordering. Precedence works at the granularity of aspects, not advices, which may be 
too coarse-grained. For example, assume an aspect ACrypt has two advices for 
encryption and decryption, and another aspect is used for logging messages. We 
would like to log clear messages, but it is not possible to declare separate precedence 
policies for logging/encryption on the one hand, and decryption/logging on the other 
hand. 

Finer-grained resolution of conflicts can be found in AspectJ extensions, like the 
AIRIA extension [6]. It offers a Resolver construct to define precedence policies for 
advices. A resolver is a kind of around advice (cf. Figure 1) used to control the 
composition of advices at shared join points, i.e. an advice for composing advices. In 
Figure 1, the resolver sender is applied at each join point where the advices 
ALog.logMsg (message), ACrypt.encrypt (message ciphering), AAuth.auth (sender 
authentication), are woven (as specified in the and clause, line 3). The list between 
brackets determines the order of execution for the proceed clause (line 4). In the 
example, AAuth.auth is applied first, then Alog.logMsg is applied and finally 
ACrypt.encrypt encrypts the message before sending. 

More complex policies can be defined by using if-then-else statements to select the 
appropriate proceed clause. Also, multi-level policies are possible with resolvers of 
resolvers. The AIRIA compiler checks that, whatever the join point, a unique root 
resolver manages conflicts at this join point. A total execution order must be obtained 
from the tree of resolvers starting from the root. 
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1  aspect LogEncryptAuth { 
2  void resolver sender(): 
3  and(ALog.logMsg, ACrypt.encrypt, AAuth.auth) {  // pointcut selection 
4  [AAuth.auth, ALog.logMsg, ACrypt.encrypt].proceed();} // order before proceed 
5 } 

Fig. 1. The Resolver construct of AIRIA 

We found resolvers convenient not only for mastering the ordering of advices, but 
also for instrumentation purposes. As undesirable interferences may induce subtle 
failures, we would like to reveal them by means of assertions. Based on the resolvers 
scheduling the conflicting advices of our micro-aspects, we can add instrumentation 
advices to the schedule and precisely control their placement in the execution chain. 

3 Fine-Grained Development of FTM Using Micro-Aspects 

The objective here is to determine a set of reusable micro-aspects to implement an 
exemplary replication protocol (PBR, Primary Backup Replication). In this simple 
example, we assume reliable point-to-point communication channels and that the 
system is synchronous. Some implementation details will be skipped for space 
limitation and also because they are of no interest to define micro-aspects. The 
example given can be seen as too simple, even naïve, but it is complex enough to 
illustrate interferences between micro-aspects during its development.  

3.1 Client-Side Micro-Aspects 

In our simple example, the client handles two communication channels with the 
primary (primary_adr) and with the backup (backup_adr) when the primary fails.  

Any request includes a client_id and a request_number, forming a unique request 
id. An aspect named ANumbering that provides two advices, insert and remove, 
manages request numbers. Similarly, an aspect named AIdentifier that provides two 
advices, insert and remove, manages the client id.  

A third aspect is responsible for the management of requests in progress, called 
ACacheManager, providing an advice addin: ACacheManager.addIn stores the 
request into a cache together with its corresponding timer value.  

When the primary fails, the pending request (stored into the cache) must be resent 
to the alive replica (the former backup that is now the primary). The handling of 
failed requests is done by another aspect called ARequestResend. It provides an 
advice called reload: ARequestResend.reload retrieves the request into the cache and 
reloads it for retry. The pointcut expression for this aspect captures the exception 
raised when the timer expires. The aspect ATimer provides two advices start 
(time_window) and stop.  

The various aspects defined above are mostly weaved at two shared join points, 
namely send() and receive(). Each aspect executes an elementary action. Their correct 
composition implements the expected client behavior (cf. 3.3). 
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3.2 Server-Side Micro-Aspects 

A server replica has two operational modes, primary or backup. We define in this 
section the micro-aspects needed to implement them. The first action is to initialize 
the operational mode of the replica. An AspectJ field introduction is used to set up the 
mode for each replica. A micro-aspect named AServerMode is responsible for the 
initialization of the replica’s mode. It offers a unique advice AServerMode.init. 

Micro-Aspects in Primary Mode. The behavior in primary mode is as follows: 
1) the client sends a request (request_number, client_id, request_body) to the 

primary server that receives it (unless the server replica crashes). 
2) the primary server processes the request, captures the state of the computation 

at the end of the processing step, sends a checkpoint message 
(request_number, client_id, response_body, primary_state) to the backup that 
stores it, and, lastly, forwards the response to the client (request_number, 
client_id, response_body). 

The algorithm presented in Figure 2 is simplified. The response to the client is part of 
the checkpoint message because it is necessary in case of primary crash. Suppose that 
the primary crashes after sending the checkpoint message and just before sending 
back the response to the client. When the timer corresponding to this request expires, 
the client re-sends the request to the new primary (the former backup). In this case, 
the request cannot be processed twice for conservative reasons (Only Once 
Semantics). To this aim, filtering duplicate requests is a mandatory. 

When received, a copy of the request is forwarded to the backup that stores it into a 
cache. When the primary fails, the failure detector triggers the reconfiguration of the 
backup as a new primary. The new primary can process pending requests stored in the 
cache. The above described behavior leads to define the following micro-aspects to 
implement the primary behavior.  

The management of the inter-replica protocol in this example is delegated to a 
micro-aspects named ACheckpoint that provides two advices: 

– ACheckpoint.ForwardRequest forwards the request to the backup; 
– ACheckpoint.BuildCheckpoint first captures the state of the replica and then 

prepares the checkpoint message (request_number, client_id, response_body, 
primary_state) before sending it.  

 
1 variable of the protocole:  mode  // set to primary  
2  
3  receive request 
4  if (mode=primary) { 
5    forward request to backup 
6    remove request number from the request 
7    remove client_id 
8    request processing // new message only 
9    checkpointing :capture state and send checkpoint to backup 
10    insert request number in the response message  
11    send response to client 
12   } 

Fig. 2. Pseudo algorithm of the primary  
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To remove the client_id and the request_id before processing the request 
(request_body), we use: AIdentifier.remove and ANumbering.remove.  

Micro-Aspects in Backup Mode. The behavior in backup mode can be summarized 
as follows: 

• the primary forwards a request (request_number, client_id, request_body) that 
is stored by the backup into a cache; 

• the backup also receives the checkpoint messages from the primary 
(request_number, client_id, response_body, primary_state). The backup 
updates its current state with the primary_state information and stores the 
response into the cache (request_number, client_id, response_body). 

The (request_number, client_id) is a unique index for sorting information into the 
cache that can be seen as a hash table. 

The management of both the copy of the request message and the checkpoint 
message are done by the same aspect ACheckpoint previously defined. To handle both 
messages, we add three more advices in ACheckpoint: 

– ACheckPoint.putInCache stores the request into the cache; 
– ACheckPoint.updateCache stores the checkpoint into the cache; 
– ACheckPoint.updateState updates the backup state with the primary state. 
The receive statement in the backup mode is thus a join point for multiple advices 

depending on the type of message. 
It is worth noting that, in the current implementation, the primary failure event 

raised by the failure detector triggers an event handler that changes the mode of the 
backup replica to primary (with no backup until a new backup is installed). 

3.3 Composition of Micro-aspects 

Micro-aspects Integration for the Client. The micro-aspects ANumbering.insert, 
ACacheManager.addIn, ATimer.start, AIdentifier.insert, are applied at the same shared 
join point, i.e. before the send statement. These are before advices to be applied in the 
following order: ANumbering.insert < ACacheManager.addIn < AIdentifier.insert < 
ATimer.start. The precedence order is determined by the resolver in Figure 3. The 
receive statement is also a shared join point. Figure 4 shows its resolver. 

 
1  aspect sendResolution { 
2  void resolver sender (): 
3  and (AIdentifier.insert, ACacheManager.addIn, ATimer.start, ANumbering.insert) { 
4  [ANumbering.insert, ACacheManager.addIn, AIdentifier.insert, ATimer.start].proceed (); }} 

Fig. 3. Resolution of interactions around the send join point  

1  aspect receiveResolution { 
2  void resolver receive (): 
3  and(ANumbering.remove , ATimer.stop){ 
4  [ANumbering.remove , ATimer.stop].proceed();}} 

Fig. 4. Resolution of interactions around the receive join point 



50 J. Lauret, J.-C. Fabre, and H. Waeselynck 

 

Micro-Aspects Integration for Server Replicas. The behavior of the replica 
depends on the mode, primary or backup. We then use a “resolver of resolver” 
approach. The root resolver RCheckMode.getMode determines the mode and then the 
management of the appropriate advice chain is delegated to a child resolver. A 
resolver called RduplexPrimary.run manages the list of advices in primary mode. A 
resolver called RduplexSecondary.run manages the list of advices in backup mode. 

The RduplexPrimary.run resolver applies the advices around the service in the 
following order: ACheckPoint.forwardRequest < AIdentifier.remove < 
ANumbering.remove < service < ACheckPoint.buildCheckPoint . 

In backup mode, two series of actions must be made, first i) when the request is 
received, and ii) when the checkpoint is received. These actions are performed by the 
RduplexSecondary.run resolver: 

– it determines first whether the received message is a request or a checkpoint; 
– when it is a request the advice ACheckPoint.putInCache is invoked; 
– when it is a checkpoint the advices ACheckPoint.updateCache and 

ACheckPoint.updateState are called. 
Last but not least, the filtering of duplicate requests is delegated to the 

ACheckDuplicate micro-aspect that provides a unique advice named reply. 
ACheckDuplicate.reply first detects duplicate requests and, in this case, extracts the 
response, if any, from the cache. The response is returned to the client. When no 
response is retrieved in the cache, the request needs to be processed. 

Table 1. Resolvers of resolvers summary 

Level Name Triggered advice or resolver 
Resolver level 0 RCheckMode.getmode Resolvers level 1 
Resolver level 1 RduplexPrimary.run 

RduplexSecondary.run 
Each resolver triggers the 

advices defined for each mode 
 
In summary, the final implementation uses two levels of resolvers, the behavior of 
each mode is handled by level 1 resolvers scheduling advices in each case. Level 0 is 
the root resolver handling level 1 resolvers depending on the mode of operation of the 
replica (cf. Table 1). Resolver level 0 (the root resolver) checks the mode and triggers 
RduplexPrimary.run or RduplexSecondary resolvers accordingly. Resolvers 
RduplexPrimary.run and RduplexSecondary trigger in turn the advices defined for 
each mode. 

 
Discussion. In this section we have shown how micro-aspects can be defined and 
integrated together to realize a given replication protocol. This integration leads us to 
insert many micro-aspects at shared join points. The scheduling is managed by 
resolvers, even by resolvers of resolvers. The interesting point here is that many these 
micro-aspects are reusable for different variants of replication protocols (AIdentifier, 
Anumbering, ATimer, AReSend, ACacheManager), some being more specific 
(ACheckpoint). But, even in this simple replication protocol, subtle interactions can 
lead to interferences, i.e. errors. In Section 4, we propose an approach to prevent and 
detect interferences. 
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4 Interference Detection 

An interference is an undesirable interaction between aspects woven at a shared join 
point. During the integration of several micro-aspects at a given join point, some 
assumptions regarding micro-aspects interactions are implicit, potentially leading to 
an interference. These assumptions must be made explicit. These properties are 
transformed into executable assertions in order to verify the composition at runtime. 

4.1 The Interference Problem 

Interferences are always defined by considering the sequential execution of aspects 
woven before, after or around a target instruction in the base code (the shared join 
point). During this sequential execution, side effects occur due to read/write access to 
shared data (data-flow interference) or due to actions affecting the passing of control 
to the next advice or to the base code (control-flow interference). The authors of [8] 
consider four cases of interference, two dataflow and two control-flow ones: 

– Change Before (CB). Aspect A accesses a variable v of the base code, the 
value of which was changed by other aspects executed before A. A’s behavior 
might differ from the one we get if the variable v had kept its original value. 

– Change After (CA). Aspect A accesses a variable of the base code, the value of 
which is later changed by other aspects executed after A. Due to the new value 
of the variable, A’s behavior may be inadequate, or partly cancelled. 

– Invalidation Before (IB). Aspects executed before A bring the system to a state 
which is no longer a join point for A, preventing thus A from executing.  

– Invalidation After (IA). Aspects executed after A bring the system to a state 
which is no longer a join point for A, hence they remove a join point of A. 

In this paper, we stick to these four cases. They are sufficient for illustrating the 
general characteristics of control and data-flow interferences. It is worth noting that 
an interaction is not necessarily a problem. It depends on the intended behavior of 
aspects, i.e. the expected behavior for the user. For example, we may judge that A’s 
purpose is violated if A can be cancelled (IB interference case). We may then augment 
A’s specification by an explicit statement that A’s execution is mandatory: it 
eventually occurs after any arrival at a join point for A. Conversely, for another aspect 
B, it may be acceptable that previously executed aspects put the system in a state no 
longer requiring the execution of B. 

The important questions to be addressed are the following: How to detect 
interactions of multiples aspects at a shared join point? How to specify the expected 
behavior? How to validate composition? 

4.2 Proposed Approach 

The approach is described in detail in [9], we just summarize its main concepts and 
practical steps in this section. The aim is to detect interferences in the integration of 
micro-aspects into an application. 
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Fig. 5. Lifecycle of an around advice 

Overall Principle. First, the designer must declare whether data- or control-flow 
interactions between a set of aspects are expected or not. Then, the resolution implies 
defining the correct order of the application of multiple advices at a shared join point. 
Interferences may induce subtle failures, we propose to reveal them by means of 
assertions. To keep separation of concerns, the assertions should be implemented with 
dedicated aspects that monitor the execution of other aspects. The resolver construct is 
used to this aim. 

Figure 5 exemplifies the lifecycle of an around advice Ai, where several advices are 
attached to a join point jpi. We distinguish Ai from other advices, because it is of interest 
for a non-interference property (e.g., we want to forbid a CB interference on a data read 
by Ai). Transition α represents the passing of control from the base code to the first 
advice, β is the activation of the before part of the distinguished advice, etc. After the 
execution of the join point, conflicting advices are popped in the reverse order of 
precedence (δ’,..., α’). At any time, the control flow may get out of the chain of advices 
(φ transitions). All these transitions must be reified for the instrumentation of the 
composition. For example, to observe a CB, we need to record a data value at α and 
detect its change at β. Unlike AspectJ, AIRIA does expose transfers of control between 
the base level and the aspects, like α and δ, thanks to the resolver construct. In [9], we 
demonstrated that we can precisely control the placement of instrumentation code at any 
transition of Figure 5. We provided a working solution that was prototyped on artificial 
examples with randomly generated trees of resolvers. It allows us to automatically 
instrument the code to detect data- and control-flow interferences. 
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Detection of Data-Flow Interferences. The detection of both CB and CA consists of 
the use of two dedicated aspects. AStorer provides a monitoring advice that stores the 
values of selected variables at some point of the aspect chain. AChecker checks that 
the values are unchanged at some later point of the chain. For example, detection of a 
CB interference affecting the before part of a distinguished before advice Ai involves 
placing the storer at α and the checker at β It is straightforward to apply a similar 
approach to the verification of properties attached to the after part of Ai (e.g., the 
values at transition γ’ should be the same as at δ’), or even to properties spanning the 
before and after parts (e.g., the values at γ’ should be the same as at α). 

Detection of Control-Flow Interferences. The detection of IB and IA uses flags to 
represent the occurrence of expected events in the chain of advices. The initial value 
of a flag indicates that the event has not happened yet. When the event occurs, the 
flag value is changed. At the end of the advice chain, the root resolver is able 
determine whether an expected event happened or not. For example, IB detection 
requires us to verify whether Ai is always executed after transition α. A first advice 
initializes the flag at α and another one sets the flag at β. Pieces of code placed in the 
root resolver expose a φ transition if the flag has not been set. Assume the execution 
chain is broken (e.g., an advice raises an exception, or does not call proceed to pass 
control to the next advice in the chain): whatever happens, control will come back to 
the root resolver so that we are able to detect the unset flag. IA detection follows a 
similar principle.  

4.3 Interference Detection in the PBR Implementation 

Properties Specification. We present first the expected properties for the correct 
integration of the previously defined micro-aspects to implement our duplex protocol 
variant. Our objective is to prevent CB, CA, IB, IA interferences among micro-
aspects. We do not detail here the various steps of the interactive specification process 
but we show some of its result, i.e. the result of the analysis of micro-aspects to be 
combined at a shared join point.  

Let’s take an example, i.e. the client-side use of the advice ANumbering.insert at a 
send join point. The duplex protocol integrator must answer questions concerning the 
weaving of micro-aspects at a send join point.  

For instance, a question can be: “Is there any input variable whose value must not 
be modified from the join point to the execution of ANumbering.insert ?”. The answer 
is yes: variable msgContent from the base code must not be changed before the 
execution of ANumbering.insert. The absence of CB interference must be checked. 
Such an analysis is applied to every micro-aspect used at a given shared join point.  

Integration Properties of Client-Side Micro-Aspects. The properties to be addressed 
when combining micro-aspects used at the client-side are summarized in Table 2. 
Column 1 identifies the advice, column 2 the interference, column 2 the data, if any. 
Row 1 in the table corresponds to the ANumbering.insert advice example. A CA 
detection is attached to the AIdentifier.insert advice, Row 2. In our implementation, it is 
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important to insert first the request number, and then the client id. Row 3 and 4 relate to 
the advices that store the request in a cache and start a timer. If the request is stored and 
the timeout later occurs, but the request was actually not sent, we have an IA 
interference: we want to detect this incorrect behavior. 

Table 2. Forbidden interferences for client-side micro-aspects 

ANumbering.insert CB msgContent 
AIdentifier.insert CA msgContent 

ACacheManager.addin IA -
ATimer.start IA -

Integration Properties of Primary Mode Micro-Aspects. The properties to be 
addressed when combining micro-aspects used for the primary are summarized in 
Table 3. 

For the advice AForwardRequest.forward, we must prevent a CB interference 
through msgContent: no modification of msgContent can be made before the 
execution of AForwardRequest.forward. In addition, we must verify that the join point 
is executed after the request has been forwarded to the backup. This is a possible IA 
interference for AForwardRequest.forward. 

For the advice ACheckPoint.buildCheckPoint, we must prevent a CB (respectively 
CA) interference through msgContent: no modification of msgContent can be made 
before (respectively after) the execution of ACheckPoint.buildCheckPoint. Finally, we 
require that the client id is first removed from the message content, and the request 
number removed last. 

Table 3. Forbidden interferences for primary-side micro-aspects 

AForwardRequest.forward CB,IA msgContent
ACheckPoint.buildCheckPoint CB, CA serviceResult 

ANumbering.remove CA msgContent 
AIdentifier.remove CB msgContent 

Integration Properties of Backup Mode Micro-Aspects. For the backup, the first 
interference is the same as for the primary. For all other advices, 
ACheckPoint.{putInCache, updateCache, updateState}, msgContent must not be 
modified before execution of the advice. 

Thanks to this assertion checking approach, four integration faults have been 
successfully detected during the development of our replication mechanism, two 
genuine ones and two introduced on purpose. 

5 Lessons Learnt  

This idea of using micro-aspects like those defined in this paper can be interpreted as 
pure madness by the reader! In a certain sense it is! Many works in the last 20 years 
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demonstrated that separation of concerns (with meta-objects, aspects, etc.) was an 
important paradigm for dependable computing. Since then, aspect-oriented 
programming moved this idea into practice. Separation of concern is an interesting 
concept, but non-functional actions in a program can correspond to tiny sets of 
statements. To what extend this idea is fine for resilient computing? Evolution of 
software including dependability mechanisms calls for a fine-grain development 
approach: small pieces can be updated or changed according to the needs. However, 
the composition of such small pieces may lead to undesirable side effects.  

We have demonstrated in this work that aspect oriented programming can be used 
to develop resilient fault tolerance mechanisms. Using micro-aspects, one can easily 
understand that developing a variant of a duplex mechanism can be straightforward. 
An active variant of our passive replication can be done simply by just changing the 
ACheckPoint micro-aspect by a ASynchronize micro-aspect. In the active variant, both 
replicas are active and process input requests, only one replica replies to the client. 
The ASynchronize micro-aspect triggers the execution of the request at the backup as 
well, the primary sends a notification of request processing completion to the backup, 
and sends a response to the client (only in primary mode). 

However, the use of micro-aspects may be error prone. In particular, it creates 
many potential sources of interferences between aspects.  

Consequently, we have proposed an approach to prevent and detect undesirable 
interferences. AIRIA’s resolver construct allows controlling the order of conflicting 
advices. It offers finer-grained control than declare precedence in AspectJ. Moreover, 
it forces a total ordering to be defined, hence preventing unspecified cases where the 
AspectJ compiler chooses an arbitrary order. Also, it offers all the observation points 
required to instrument a chain of advices. It makes it possible to automatically 
instrument the code with executable assertions, attaching non-interference 
requirements to the composition of advices. Undesirable interferences are detected by 
inserting additional advices to store values, initialize flags, check conditions, etc. We 
demonstrated the feasibility of the instrumentation for various cases of interferences, 
exemplifying both data-flow and control-flow effects. This approach was used to 
validate our micro-aspects based implementation of a duplex protocol. 

The resolver construct of AIRIA was very beneficial to solve our problem, but in 
practice it was complex when using resolvers of resolvers. The instrumentation of an 
aspect chain is mandatory because the composition is error-prone. We are able to 
instrument automatically an aspect chain, including handled by resolvers of resolvers 
[9]. Nevertheless, simpler solutions should be investigated, as programming resolver 
of resolvers is not an easy task that should be error proof. 

Micro-aspect based design and interference detection are the two sides of the same 
coin! The benefits depend on the capacity to validate the integrated mechanism, i.e. 
the composition of many micro-aspects. The interest of aspects for dependability is 
clearly depending on the validation capability we can propose regarding composition. 
This applied to micro-aspects, at one extreme of the spectrum, but also to the 
composition of macro-mechanisms. Beyond interferences, point cut definition is a 
complex issue. For mechanisms like replication, the point cut is often simple (service 
calls) and should anyway remain simple to convince safety experts. 
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6 Conclusion 

We have done the exercise of using AOP to develop a fault tolerance mechanism 
trying to take advantage or separation of concerns as much as possible. Using the 
micro-aspect approach was successful as it enables changing the protocol easily. 
However, flexibility is not free from a validation viewpoint. The detection of 
interferences between micro-aspects is a difficult problem. AspectJ does not provide a 
fine-grain control over aspect composition at a shared join point. This is why we used 
the resolver construct in the AIRIA extension. From our experience, a hierarchy of 
resolvers may be complex to use, but can be instrumented for detecting errors. 

Our future work will be on the elicitation of conflict resolution policies and 
associated non-interference requirements. We envision a wizard tool aiding operators 
to enter scheduling directives and expected properties, before resolver code 
generation proceeds automatically. We will provide support for this, with an 
interfacing to the instrumentation solution already existing. 
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Abstract. A large class of safety-critical control systems contains mon-
itoring subsystems that display certain system parameters to (human)
operators. Ensuring that the displayed data are sufficiently fresh and non-
corrupted constitutes an important part of safety requirements. However,
the monitoring subsystems are typically not a part of a safety kernel and
hence often built of SIL1–SIL2 components. In this paper, we formalise
a recently implemented industrial approach to architecting dependable
monitoring systems, which ensures data freshness and integrity despite
unreliability of their components. Moreover, we derive an architectural
pattern that allows us to formally reason about data freshness and in-
tegrity. The proposed approach is illustrated by an industrial case study.

Keywords: Fault-tolerance, data monitoring systems, formal modelling,
Event-B, data freshness, data integrity.

1 Introduction

Data Monitoring Systems (DMSs) are typical for a wide range of safety-critical
applications, spanning from nuclear power plant control rooms to individual
healthcare devices. Data monitoring is usually not a part of the system safety
kernel and hence DMSs are often developed using methods prescribed for SIL1
or SIL2 systems. However, data monitoring might have serious indirect safety
implications. Indeed, based on the displayed data the operator should take ap-
propriate and timely decisions. Therefore, we have to guarantee that a DMS
outputs data that are sufficiently fresh and non-corrupted.

One possible solution would be to build a DMS from highly reliable com-
ponents and formally verify its correctness. However, such a solution would be
rather cost-inefficient. Instead, another practical solution has been recently pro-
posed in the industrial setting1. The solution is based on building a networked
DMS over (potentially unreliable) components and utilising diversity and redun-
dancy to guarantee dependability of a DMS.

1 We omit a reference to the actual product due to confidentiality reasons.
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Fig. 1. Distributed monitoring system

In this paper, we aim at giving a formal justification for the proposed indus-
trial solution. We formally define the generic architecture of a networked DMS,
formalise the data freshness and integrity properties, and derive the constraints
that a DMS should satisfy to guarantee them. We use the Event-B [1] formalism
and the associated RODIN platform [2] to formally specify the system architec-
ture and its properties. The proposed specification can be seen as a pattern for
designing a networked DMS. We believe that the presented work gives a good
demonstration of how formal modelling can facilitate validation of an industrial
solution.

2 Industrial Solution to Monitoring Critical Data

In this section, we present a generalised version of the proposed industrial solu-
tion to data monitoring. The main purpose of the system is to display a certain
system parameter (e.g., temperature, pressure, etc.). We start by defining a
generic system architecture.

2.1 Overview of a Distributed DMS Architecture

The monitored parameter is measured by sensors. Each sensor is associated with
the corresponding data processing unit (DPU) that periodically reads sensor
data. The proposed industrial solution is to build a networked DMS to achieve
reliable monitoring of data. The networked DMS contains two types of DPUs
– the ones that are directly connected to the sensors and the others that are
not. Both types of DPUs output data to the displays connected to them, i.e.,
the operator observes several versions of data (typically up to four). A generic
architecture of the system is shown in Fig. 1.

A network built over DPUs allows them to communicate with each other.
The DPUs that are connected to sensors periodically poll sensor data, process
data received from sensors and other DPUs, and output the result to the dis-
plays as well as broadcast the own processed data over the network. The DPUs
that are not connected to sensors perform the same steps, except reading and
processing sensor data. The DPUs run different versions of software, i.e., rely
on software diversity to avoid common errors. The main goal of the system is
to guarantee that each DPU displays only the data that are sufficiently fresh
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and non-corrupted. If a DPU cannot satisfy these properties, it should output a
special predefined error value.

2.2 Data Freshness and Integrity

Let us now discuss the mechanism of achieving data freshness and integrity. Each
DPU has a data pool. In this pool the DPU records the processed sensor data
(if the DPU is connected to a sensor) as well as the data received from the other
units. The DPU puts in the pool only the data that have been checked to be
non-erroneous. For sensor data, this means that the obtained sensor reading has
passed the reasonableness check and the sensor data processing has completed
successfully, i.e., no failure flag was raised. For the data received from the other
units, the check of their attached checksums has to be successful and the received
data packet should not contain an error message.

Each data processing unit has its own local clock. The system periodically
sends a special clock adjusting signal to each DPU to prevent an unbounded
local clock drift. All the data that are processed by the system are timestamped.
Each unit timestamps every data that it processes based on its local clock. To
ensure freshness of the displayed data, before displaying data, the DPU analyses
its data pool and filters out the data that are not fresh enough. To select or
calculate the data item to be displayed, the DPU applies a predefined function
(e.g., maximum) to the set of fresh pool data.

The data are considered to be fresh if the difference between the current (lo-
cal) DPU time and the data timestamp is less than δ time units. Globally, the
freshness property can be formulated as follows: the displayed data are consid-
ered fresh if their timestamp differs by no more than δ + ε time units from the
imaginary global clock, where ε is the upper bound of the local clock drift.

Data freshness and correctness depend on several factors. If the DPU is con-
nected to a sensor, processing sensor data might take excessive time (e.g., due
to a software error) and hence the DPU’s own data might not be fresh anymore.
Due to network delays or slow processing in other DPUs, the received data might
be old as well. Moreover, software errors might corrupt the DPU’s own data. A
received data packet might also get corrupted during transmission. However, de-
spite a potentially large number of various faults, an occurrence of the system
failure, making all DPUs to display an error message, is rather unlikely. Our
modelling formally defines the link between data freshness and data integrity
that allows us to validate this claim.

3 Formal Generic Development of Distributed
Monitoring Systems in Event-B

Let us observe that the generic architecture of DMS described in Section 2 is
a composition of loosely coupled asynchronous components. Indeed, each DPU
has its own display and relies not only on the data received asynchronously from
the other DPUs but also on its own data to produce the displayed data. The
system is modular and behaviour of its modules, DPUs, follows the same generic
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pattern. Therefore, to reason about the overall system, it is sufficient to model
the behaviour of its single module and define its interactions with the other
modules as a part of the environment specification. One of the obvious benefits
of such an approach is clear reduction of the model complexity.

3.1 Abstract Model

Next we will present an Event-B development of a DPU – a generic module of
a DMS. Since it is based on the generic architecture of the system discussed
above, the presented development is also generic and thus can be instantiated
to accommodate for specific details of a concrete monitoring system.

We employ the following refinement strategy. The initial abstract specification
formally describes the essential functional behaviour of a DPU. Nevertheless, this
allows us to formulate (as model invariants) and verify the desired freshness and
correctness properties for the displayed data. The next model (first refinement)
introduces fault-tolerance mechanisms and allows us to formulate and prove the
required data integrity properties. Finally, the second refinement step deals with
the local clock adjustment.

Essentially, the behaviour of a DPU is cyclic. At each cycle, it reads and pro-
cesses sensor data, broadcasts the processed data to the other DPUs, possibly
receives data from them, and finally produces the value to display. These activ-
ities are modelled by the events Environment, Processing, Sending Packet, and
Displaying. The event Receiving Packets models interaction with the environ-
ment – asynchronous receiving of data packets from the other DPUs. The event
Time Progress models progress of the local clock. The dynamic DPU behaviour
is graphically presented in Fig. 2. The solid lines show the passage of control
between the cyclically executed events. Enabledness of asynchronous events is
depicted with the dashed lines. The overall structure of the initial specification,
the machine DPU, is shown in Fig. 3, while Fig. 4 presents its main events.
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machine DPU 
 

variables  main_phase, monitored_value, processed_value, timestamp, displayed_value, curr_time, 
                  time_progressed, packet_sent_flag 
 

invariants 
    main_phase  MAIN_PHASES 
    monitored_value   
    processed_value  0 .. UNIT_NUM → MIN_VAL .. MAX_VAL 
    timestamp  0 .. UNIT_NUM →  
    displayed_value   
    curr_time   
    time_progressed  BOOL 
    packet_sent_flag  BOOL 
    // Freshness1  Freshness2  Correctness 
 

// phases of the unit cyclic behaviour 
// raw sensor readings 
// collected processed data from all DPUs 
// collected timestamp values from all DPUs 
// the output data 
// the current value of the local unit clock 
// the flag to determine time progress 
// the flag to determine sending of a packet 

events 
    INITIALISATION             // initialising variables 
    Environment                       // reading sensor values 
    Processing                          // processing sensor data 
    Sending_Packet                 // broadcasting data packet to other DPUs 
    Displaying                         // outputting data to a display 
    Receiving_Packets            // receiving packets from other DPUs 
    Time_Progress                  // modelling progress of local clock 
end 

Fig. 3. Outline of the abstract specification

In the model, the variable main phase stores the current phase of DPU execu-
tion. The type of main phase is defined as the enumerated set MAIN PHASES
of elements {ENV, PROC, DISP}. Here, the ENV phase stands for environment
(sensor readings), PROC – for data processing, and DISP – for data displaying.
Broadcasting data to the other units is modelled as a part of the DISP phase.

The Environment event models sensor reading. As a result, it updates the
variable monitored value. As a part of the environment action, we also model a
possible adjustment (synchronisation) of the local clock, the value of which is
stored in the variable curr time.

The Processing event specifies a conversion of the sensor data. We use the
abstract function Convert to model generic conversion process. The result of
the conversion is then used to update the DPU data pool. Implicitly, the event
also models a possibility of conversion failure. In this case, the corresponding
data pool value remains unchanged (i.e., the last good value is used instead).

To avoid unnecessary complex data structures, we represent the DPU’s data
pool by two array variables – processed value and timestamp. For each
i ∈ 0..UNIT NUM, the data item processed value(i) contains the data produced
or received from the DPUi, while timestamp(i) contains the corresponding data
timestamp. Here the abstract constant UNIT NUM stands for the maximal in-
dex value of these arrays (i.e., the number of the DPUs of the system). The
value of UNIT NUM can vary for different DMSs. Another generic constants,
MIN VAL and MAX VAL, specify the minimal and maximal valid values for the
processed measurements respectively.

The Sending Packet event models broadcasting the processed DPU data as
data packets to the other DPUs. Each DPU cycle finishes with the execution
of the Displaying event that calculates the value to be displayed. First it filters
(using the relational image operator [...]) the data pool for fresh data and then
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event Receiving_Packets 
    any p  
    where 
      p  PACKET 
      packet_time(p) > timestamp(packet_unit_id(p)) 
      packet_data(p)  MIN_VAL .. MAX_VAL 
      main_phase ≠ ENV 
      time_progressed = TRUE 
    then 
      time_progressed  FALSE 
      timestamp(packet_unit_id(p))  packet_time(p) 
      processed_value(packet_unit_id(p)) 
                                                            packet_data(p) 
  end 
 

  event Processing 
    where 
      main_phase = PROC 
      time_progressed = TRUE 
    then 
      main_phase  DISP 
      time_progressed  FALSE 
      timestamp, processed_value :  
         timestamp'  0 .. UNIT_NUM →  
         processed_value'  0 .. UNIT_NUM → 
                                                   MIN_VAL .. MAX_VAL  
         ((timestamp'(0) = curr_time 
            processed_value'(0) = Convert(monitored_value))  
          (timestamp'(0) = timestamp(0) 
            processed_value'(0) = processed_value(0))) 
  end 
 

  event Sending_Packet 
    any p  
    where 
      main_phase = DISP 
      time_progressed = TRUE 
      packet_sent_flag = FALSE 
      p  PACKET 
      packet_unit_id(p) = 0 
      packet_time(p) = curr_time 
      packet_data(p) = Convert(monitored_value) 
    then 
      time_progressed  FALSE 
      packet_sent_flag  TRUE 
  end 

  event Displaying 
    any ss, DATA_SET  
    where 
      main_phase = DISP 
      time_progressed = TRUE 
      packet_sent_flag = TRUE 
      DATA_SET   
      ss = {x y  i ·  i  dom(timestamp)  x = timestamp(i) 
               y = processed_value(i)} 
               [curr_time−Fresh_Delta .. curr_time] 
      (ss ≠   DATA_SET = ss) 
      (ss =   DATA_SET = {ERR_VAL}) 
    then 
      main_phase  ENV 
      time_progressed  FALSE 
      packet_sent_flag  FALSE 
      displayed_value  Output_Fun(DATA_SET) 
  end 

Fig. 4. Events of the abstract model

applies the abstract function Output Fun on the filtered data to produce the
DPU output value to be displayed. If there are no fresh data in the pool, a pre-
defined error value (modelled by the abstract constant ERR VAL) is displayed.

Obviously, to reason about data freshness, we should model progress of time.
The event T ime Progress forcefully alternates between any cyclic events of the
model and non-deterministically increases the value of the variable curr time.
Event alternation is enforced by using the boolean variable time progressed.

Finally, let us discuss communication between DPUs. It is organised via send-
ing and receiving packets of data. At this level of abstraction, we assume that
each packet includes the following fields: (1) an id (i.e., the identification num-
ber) of DPU that sent the packet; (2) a timestamp, indicating when the packet
was sent; (3) the actual data. We further elaborate of the packet structure, i.e.,
extend it with new fields, at the next refinement steps.

To access the packet fields, we introduce the following abstract functions:

packet unit id ∈ PACKET → 0 ..UNIT NUM,

packet time ∈ PACKET → N,

packet data ∈ PACKET → MIN VAL ..MAX VAL.
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They allow us to extract the corresponding packet fields. The incoming packets
are modelled as parameters of the event Receiving Packets. The extractor func-
tions are then used to decompose these packets. As a result of the event, the
pool values processed value(j) and timestamp(j) may get updated, where j is
the index of the DPU that sent the data. However, the update occurs only if the
received data are fresher than the previously stored values and the packet did
not contain an error flag.

Note that the outgoing packets are constructed (using the same functions) as
the local variables of the event Sending Packet.

Our modelling allows us to formally define and verify the data freshness and
integrity properties. We define them as model invariants as follows:

Freshness 1: main phase = ENV ∧ displayed value = ERR VAL ⇒
(∀i · i ∈ dom(timestamp) ⇒
timestamp(i) /∈ curr time− Fresh Delta .. curr time)

Freshness 2: main phase = ENV ∧ displayed value �= ERR VAL ⇒
¬{x | ∃j · j ∈ dom(timestamp) ∧ x = timestamp(j)} ∩
curr time− Fresh Delta .. curr time = ∅

Correctness: main phase = ENV ∧ displayed value �= ERR VAL ⇒
displayed value = Output Fun({x �→ y |
∃i · i ∈ dom(timestamp) ∧ x = timestamp(i) ∧
y = processed value(i)}[curr time− Fresh Delta .. curr time])

where dom and [...] are respectively the relational domain and image operators,
while Fresh Delta is the pre-defined constant standing for the maximum time
offset while the data is still considered to be fresh.

The first invariant states that the unit displays the pre-defined error value only
when there are no fresh data produced by at least one unit. The second invariant
formulates the opposite case, i.e., it requires that, if some data other than the
pre-defined error value are displayed, they are based on the fresh data from at
least one unit. The third invariant formulates the correctness of the displayed
data – the data are always calculated by applying the pre-defined function (i.e.,
Output Fun) to the filtered fresh data from the unit data pool. The invariant
properties are proved as a part of the model verification process.

3.2 Model Refinements

The First Refinement. The aim of our first refinement step is to introduce
modelling of failures. We explicitly specify the effect of three types of failures:
sensor failures, sensor data processing failures, and communication errors. If the
DPU experiences sensor or sensor data processing failures, it does not update
the value of its own data in the data pool. Similarly, if the DPU detects a
communication error, it does not update the data of the sending process in the
data pool. We also abstractly model the presence of software faults, although
do not introduce explicit mechanisms for diagnosing them. In all these cases,
the mechanism for tolerating the faults is the same: the DPU neglects erroneous
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or corrupted data and relies on the last good values from the DPUs stored in
the data pool to calculate the displayed value (provided it is still fresh at the
moment of displaying).

To implement these mechanisms, first we extend the data packet structure
with two new fields: the one containing the information about the status of the
DPU that sent the packet, and the other one storing a checksum for determining
whether the packet was corrupted during the transmission:

packet status ∈ PACKET → STATUS,

packet checksum ∈ PACKET → N,

where the set STATUS consists of two subsets NO FLT and FLT modelling
the absence or presence of faults of a unit respectively. To calculate a checksum,
we define the function

Checksum ∈ N×MIN VAL ..MAX VAL → N.

The function inputs are the transmitted timestamp and measurement data.
The communication between units is modelled by the event Receiving Packets

(see Fig. 5). The event models a successful reception of packets, i.e., when the
sending DPU has succeeded in producing fresh data and the corresponding packet
was not corrupted during the transmission. If it is not the case, the data pool of
the receiving DPU is not updated, i.e., this behaviour corresponds to skip.

The detection of sensor faults is modelled by the new event Pre Processing. An
excerpt from the specification of this event, shown in Fig. 5, illustrates detection
of the sensor fault “Value is out of range”. The event Pre Processing also intro-
duces an implicit modelling of the effect of software faults by non-deterministic
update of the variable unit status.

At this refinement step, we split the abstract event Processing into two
events: Processing OK and Processing NOK. The event Processing OK mod-
els an update of the DPU’s data pool with the new processed measurements,
i.e., it is executed when no failure occurred. Correspondingly, the event Process-
ing NOK is executed when errors have been detected. In this case, the DPU
relies on the last good value in its further computations.

The performed refinement step allows us to formulate the data integrity prop-
erty as the following model invariants:

Integrity 1: ∀j · j ∈ 0 ..UNIT NUM ⇒
Checksum(timestamp(j) �→ processed value(j)) = checksum(j)

Integrity 2: ∀j · j ∈ 0 ..UNIT NUM ⇒ status(j) ∈ NO FLT

These invariants guarantee that the displayed data are based only on the valid
data stored in the DPU data pool. In other words, neither corrupted nor faulty
data are taken into account to compute the data to be displayed.

The Second Refinement. The aim of our last refinement step is to refine
the mechanism of local clock adjustment. Every k cycles, the DPU receives the
reference time signal and adjusts its local clock according to it. This prevents
an unbounded local clock drift and allows the overall system guarantee “global”
data freshness as discussed in Section 2. For brevity, we omit showing the details
of this specification. The complete development can be found in [3].
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  event Pre_Processing 
    where 
      main_phase = PROC 
      time_progressed = TRUE 
      pre_proc_flag = TRUE 
    then 
      pre_proc_flag  FALSE 
      sensor_fault :  sensor_fault'  BOOL  
          ((monitored_value ≥ Sens_Lower_Threshold 
             monitored_value ≤ Sens_Upper_Threshold) 
          sensor_fault' = FALSE)  
          (¬(monitored_value ≥ Sens_Lower_Threshold 
               monitored_value ≤ Sens_Upper_Threshold) 
          sensor_fault' = TRUE) 
      unit_status :  STATUS 
  end 
 

event Receiving_Packets refines Receiving_Packets  
    any p  
    where 
     // other guards as in the abstract event 
      p  PACKET 
      packet_status(p)  NO_FLT 
      Checksum(packet_time(p) packet_data(p)) =  
                                                   packet_checksum(p) 
    then 
      // other actions as in the abstract event 
      status(packet_unit_id(p))  packet_status(p) 
      checksum(packet_unit_id(p)) 
                                               packet_checksum(p) 
  end 
 

  event Processing_OK refines Processing  
    where 
     // other guards as in the abstract event 
      pre_proc_flag = FALSE 
      sensor_fault = FALSE  unit_status  NO_FLT 
    then 
      // other actions as in the abstract event 
      pre_proc_flag  TRUE 
      processed_value (0)  Convert(monitored_value) 
      checksum(0) 
        Checksum(curr_time Convert(monitored_value)) 
      status :  status'  0 .. UNIT_NUM → STATUS 
        ( x ·  x NO_FLT  status' = status ⩤- {0 x}) 
  end 

  event Processing_NOK refines Processing  
    where 
     // other guards as in the abstract event 
      pre_proc_flag = FALSE 
      ¬(sensor_fault = FALSE 
          unit_status  NO_FLT) 
    then 
      // other actions as in the abstract event 
      pre_proc_flag  TRUE 
  end 

Fig. 5. Events of the first refinement model

Discussion of the Development. Let us point out that the proposed ap-
proach is also applicable to formal modelling and verification of DPUs that are
not connected to a sensor directly (e.g., Data Processing Unitk in Fig. 1). In
this case, we can assume that the DPU operates in the presence of a permanent
sensor fault and, therefore, only relies on the data received from the other units.
The phases related to sensor reading and processing then could be excluded from
the model of such a DPU. In general, DPUs might not be necessarily connected
to displays but rather send the produced data to other (sub)systems.

In our development we have focused on the logical aspects of data monitor-
ing – the data freshness and integrity properties. Implicitly, we assume that the
time-related constraints have been obtained by the corresponding real-time anal-
ysis. Such analysis allows us to derive the constraints on how often sensor data
should be read, the DPU worst case execution time (WCET), the upper bound
of network delay and how often the local clocks should be adjusted. Usually,
this analysis is performed when the system is implemented, i.e., with hardware
in the loop. In our previous work, we have also experimented with the verifi-
cation of real-time properties in Event-B [4] and demonstrated how to assess
interdependencies between timing constraints at the abstract specification level.

In the next section, we overview the industrial case study and then present
the lessons learnt from the development.



66 Y. Prokhorova et al.

4 Validating an Industrial Solution

4.1 Overview of the Industrial Case Study

Our development presented in Section 3 generalises the architecture of a Tem-
perature Monitoring System (TMS). The TMS is a part of the data monitoring
system typical for nuclear power plants. The TMS consists of three DPUs con-
nected to the operator displays in the control room.

The TMS is an instantiation of the generic architecture described in
Section 2 and formally modelled in Section 3. DPUs of the TMS monitor readings
of the temperature sensors installed in a certain module of the plant.

The system is redundant with the architecture 1oo3 (one out of three). The
actual temperature signals are generated by two temperature sensors – Resis-
tance Temperature Detectors [5]. The temperature signal from the first sensor
is transmitted to two different DPUs – Unit A and Unit B. The temperature
signal from the second sensor is transmitted to the third DPU – Unit C.

After obtaining a temperature signal from the sensor, the DPU processes it
and sends the temperature data further to the other DPUs. Then, the trusted
temperature is communicated to the operator displays. Usually, each DPU gets
all three temperature values. The temperature to be shown to the operator is
then chosen as the maximum valid value obtained. If no valid data is available,
then the error message is shown to the operator warning him about a TMS error.

To guarantee that the trusted temperature data is shown to the operator, the
system has to ensure integrity of the temperature data as well as its freshness.
To verify the described system, we instantiate the generic models as follows:

– Variables: monitored value becomes temp sensor value, processed value –
temperature, and displayed value – output. The rest of variables may remain
unchanged, since they are not application-specific.

– Constants: all constants are assigned the values specific for the TMS.

– Functions: we instantiate Output Fun with the function max : the temper-
ature to be displayed should be the highest among the valid measurements.
Moreover, the function Convert can be defined precisely, i.e., the actual
physical law can be provided to convert a raw reading into the temperature.

– Invariants: we instantiate the invariants that guarantee the preservation
of data freshness and data integrity as follows:

Freshness 1: main phase = ENV ∧ output = ERR VAL ⇒
(∀i · i ∈ dom(timestamp) ⇒
timestamp(i) /∈ curr time− Fresh Delta .. curr time)

Freshness 2: main phase = ENV ∧ output �= ERR VAL ⇒
¬{x | ∃j · j ∈ dom(timestamp) ∧ x = timestamp(j) ∩
curr time− Fresh Delta .. curr time = ∅

Integrity 1: ∀j · j ∈ 0 ..UNIT NUM ⇒
Checksum(timestamp(j) �→ temperature(j)) = checksum(j)

Integrity 2: ∀j · j ∈ 0 ..UNIT NUM ⇒ status(j) ∈ NO FLT
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4.2 Lessons Learnt

Next we discuss our experience in applying the proposed generic development
pattern to an industrial case study and describe the constraints that should be
satisfied by the implementation, to guarantee dependability of data monitoring.

Instantiating the Generic Development. Since the formal development
proposed in Section 3 is generic, to model and verify a TMS, we merely had to in-
stantiate it. This simplified the overall modelling task and reduced it to renaming
the involved variables and providing correct instances for generic constants and
functions, while afterwards getting the proved essential properties practically
for free, i.e., without any additional proof effort. This illustrates the usefulness
of involved genericity, where the used abstract data structures (constants and
functions) become the parameters of the whole formal development.

In our case, this allowed us to model and verify a distributed system with an
arbitrary number of units and sensors. Moreover, the introduced constants be-
came the system parameters that may vary from one application to another. For
instance, different sensors may have different valid thresholds, while the error
value to be displayed may also depend on a particular type of a display. Further-
more, the software functions used to convert the temperature or calculate the
output value may differ even within the same system. Nonetheless, the derived
formal proofs of the data freshness and integrity properties hold for any valid
values of the generic parameters. We believe that the presented approach can
also be used in other domains without major modifications.

Validating an Architectural Solution. The generic development approach
has allowed us not only to formally define two main properties of monitoring
systems – data freshness and integrity but also gain a better insight on the con-
straints that the proposed architecture should satisfy to guarantee dependability.

Compositionality and elasticity. Since DPUs should not produce one common
reading, a DMS can be designed by composing independent DPUs, which sig-
nificantly simplifies system design. Such an architecture enables an independent
development and verification of each DPU. It also facilitates reasoning about
the overall system behaviour, since interactions between the components can be
verified at the interface level. Finally, the proposed solution allows the system to
achieve elasticity – since each DPU has a pool of data, it can seamlessly adapt to
various situations (errors, delays) without requiring system-level reconfiguration.

Diversity and fault tolerance. The system has several layers of fault tolerance
– at operator, system, and unit levels. Since the operator obtains several variants
of data, (s)he can detect anomalies and initiate manual error recovery. At the
system level, the system exceeds its fault tolerance limit only if all N modules
fail at once. Finally, at the DPU level, even if all DPUs fail to produce fresh
data, a DPU keeps displaying data based on the last good value until it remains
fresh. At the same time, software diversity significantly contributes to achieving
data integrity – it diminishes the possibility of a common processing error.

Constraints. Our formal analysis has allowed us to uncover a number of the
constraints that should be satisfied to guarantee dependability. Firstly, let us
observe that if a DPU keeps receiving data packets with corrupted or old data
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then after time δ it will start to rely only on its own data. Thus, potentially
the system architecture can reduce itself to a single module. To avoid this, the
designers should guarantee that the WCET of each module is sufficiently short
for the processed data to be considered fresh by the other DPUs. Moreover, we
should ensure that the network delays are sufficiently short and the data do not
become outdated while being transmitted. Furthermore, it should be verified
that the successful transmission rate is high enough for a sufficient number of
packets to reach their destinations non-corrupted. Finally, to guarantee “global”
freshness, we have to ensure that the local clock drift is kept within the limit,
i.e., does not allow DPUs to display old data.

5 Related Work and Conclusions

Traditionally, the problem of data integrity is one of the main concerns in the
security domain, while data freshness is much sought after in the replicated
databases. However, for our work, a more relevant is the research that focuses
on achieving data integrity “from input to output”, i.e., ensuring that a system
does not inject faults in the data flow.

Hoang at al. [6] propose a set of Event-B design patterns including a pattern
for asynchronous message communication between a sender and a receiver. Each
message is assigned a sequence number that is checked by a receiver. Though
Hoang et al. rely on the similar technique (timestamps), the goal of their mod-
elling – ensuring correct order of packet receiving – is different from ours. The
packet ordering problem was insignificant for our study, because a DPU always
checks freshness of received data irrespectively of the order packets are received.

Umezawa and Shimizu [7] explore the benefits of hybrid verification for ensur-
ing data integrity. They focus on finding techniques that would be most suitable
for verifying error detection, soundness of system internal states and output
data integrity. This work can be seen as complementary to ours – it identifies
the techniques that can be used to verify freshness and integrity properties.

In this paper, we have generalised an industrial architectural solution to data
monitoring and proposed a formal generic model of a data monitoring system.We
formally defined and verified (by proofs) the data freshness and integrity prop-
erties. We applied the generic development pattern to verify an industrial imple-
mentation of a temperature monitoring system. The proposed generic develop-
ment pattern can be easily instantiated to verify data monitoring systems from
different domains. As a result of our modelling, we received formally grounded
assurance of dependability of the proposed industrial solution.

As a future work, it would be interesting to experiment with quantitative
system verification, e.g., in order to optimise the performance-reliability ratio.
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Abstract. Wireless vehicle diagnostics is expected to provide great im-
provements to the maintenance of future cars. By using certificates, ve-
hicles can identify diagnostics equipment for a diagnostics session, even
over long distances. However, since the diagnostics equipment contains
authentication keys used to authenticate such sessions, it is critical that
neither the keys nor the equipment is lost. Such a loss can give unautho-
rised access to any vehicle accepting these keys until the theft is detected
and the certificates are revoked. In this paper, we propose a method
to protect vehicles against unauthorised diagnostics sessions. A trusted
third party is introduced to authorise sessions, thus we do not rely solely
on proper identification and authentication of diagnostics equipment.
Our approach enables vehicles to verify the validity of diagnostics re-
quests. It is transparent to the diagnostics protocol being used, supports
different levels of trust, and can control what commands are permitted
during diagnostics sessions.

Keywords: remote diagnostics, connected car, access control, authori-
sation protocol, trusted third party.

1 Introduction

The introduction of wireless vehicular services is just in its infancy. Many new
services will be brought to the vehicle, and remote diagnostics and software
downloads are no exceptions. However, compared to other services, these two are
fundamentally different. Not only do they require access to the safety-critical in-
vehicle network, but they will also deal with sensitive information and be able
to update and change vehicles’ configurations and software. Thus, to prevent
malicious modification of vehicles, diagnostics access must be properly verified.
Currently, such access is only verified through authentication, but this is not
enough to ensure the safety of the vehicle.

Public-key cryptography with certificates is proposed to be used for authen-
tication in Vehicle-to-Vehicle (V2V) communications, but mechanisms for re-
voking these certificates are problematic and are still being researched [1]. Since
perfect revocation cannot be assumed and certificates and cryptographic keys are
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stored in the diagnostics equipment, unauthorised access to diagnostics equip-
ment or their keys, will give access to any vehicle that accepts authentication
through these certificates. Thus, when implementing remote diagnostics and soft-
ware download, vehicles not only need to know which diagnostics equipment they
should communicate with, but also what actions this particular equipment is au-
thorised to perform once its identity has been verified.

In our previous work [2], we have identified the problem of impersonation
due to lost or stolen diagnostics equipment or keys. Unless stolen equipment
or keys are immediately disabled or revoked, they can be used to diagnose and
manipulate vehicles without any further approvals, even over long distances.
An attacker may, for example, try to manipulate all vehicles in a parking area.
The scalability and damage of such manipulations could be great and must be
prevented. Even though the loss of diagnostics equipment may be easy to detect
and the corresponding keys easily be revoked, copied authentication keys are
much harder, if not impossible, to detect since there may be no traces left behind.
Such a key may therefore be used for a much longer time before being identified
as stolen and revoked. In this paper, we present an approach to protect vehicles
against unauthorised diagnostics sessions. A Trusted Third Party (TTP) that
governs authorisation policies is introduced, and a protocol to issue authorisation
tickets for diagnostics sessions is presented. Thus, authentication alone will no
longer be enough to connect to and diagnose a vehicle, but proper authorisation
is also required which essentially eliminates the possibility to attack an arbitrary
vehicle. We also discuss other benefits from such an approach with respect to
different applications and scenarios.

The rest of this paper is outlined as follows. In next section, related research
within the area is presented. In Section 3, we present the diagnostics architecture,
which threats are considered, and we outline our approach to address unautho-
rised access. The details of our approach are then presented in Section 4. The
paper concludes with a discussion in Section 5, followed by our conclusion in
Section 6.

2 Related Work

The problem with offering secure remote vehicular diagnostics and firmware up-
dates have been recognised by many projects and been part of use-cases when ad-
dressing Vehicle-to-X (V2X)-communication. For example, in the EVITA project,
as well as in the standardisation of the Intelligent Transportation Systems (ITS)
platform, both remote diagnostics and remote firmware updates were considered
[3,4].

Within the EVITA project, Idrees et al. [5] describe an approach to perform
firmware updates relying on Hardware Security Modules (HSMs). Authentication
keys are exchanged between the software supplier, the diagnostics equipment, the
Communications Control Unit (CCU) that connects external communications to
the in-vehicle network, and the receiving Electronic Control Unit (ECU). The se-
curity of the communication between the diagnostics equipment and the vehicle
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is ensured by the secret keys stored within the HSMs, however, diagnostics equip-
ment is assumed to be trusted, and unauthorised access and use to perform remote
diagnostics, is not addressed. Only end-to-end protection for firmware updates is
ensured.

Other specificprotocols for secure softwaredownloadandfirmwareupdates have
also been proposed [6,7,8]. Yet, they only ensure secure distribution of software
(i.e., data authenticity, data integrity, data confidentiality, non-repudiation, and
data freshness) and do not address remote diagnostics and authorisation issues.

In [9], Nilsson et al. perform a security assessment of a wireless infrastructure
used for remote diagnostics and software updates over the air. Their wireless
infrastructure consists of a back-end system, a communication link, and the
vehicle, but external diagnostics equipment is not considered. Instead, all com-
munication is conducted directly between the back-end system and the vehicle.

General approaches for implementing authorisation and access control to ser-
vices within vehicular networks have also been proposed [10,11,12]. However,
these proposals address a different problem of authorisation, that of preventing
vehicles from gaining unauthorised access to services offered by the network in-
frastructure. In contrast, we address the opposite problem, namely to prevent
unauthorised access, not by the vehicles, but to the vehicles and services offered
by them.

Even though standard protocols, such as RADUIS [13] and Kerberos [14], are
possible candidates to authorise such access, drawbacks in these protocols make
them less suitable in this context. First, RADIUS already has known vulner-
abilities [15]. It also suffers from scalability issues since each pair of RADIUS
clients and servers must share a secret. Kerberos has other drawbacks. It requires
synchronised clocks and the use of both a ticket-granting ticket and a service
ticket is superfluous. Also, neither of these protocols easily support the delivery
of security policies to the involved parties. We conclude that as adaptations are
in any case needed, a protocol that is tailored for this context is better suited.

3 Background

3.1 Terminology

We use the following definitions:

Authentication: the process of establishing the identity of a subject.
Authorisation: the permission a subject can exercise on an object.
Access Control: the process to determine and enforce a subject’s permission

to an object in accordance to the authorisation.

A typical remote diagnostics session contains the following entities (see Fig-
ure 1): the diagnostics equipment, the vehicle, the back-end system, and an arbi-
trary network that connects the diagnostics equipment both to the vehicle and
to the back-end system. The back-end system is a system owned by the vehi-
cle manufacturer and holds information about vehicles, such as configuration
parameters and versions of software.
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Fig. 1. A typical remote vehicular diagnostics architecture

To perform a diagnostics session, the diagnostics equipment initiates a connec-
tion to the Communications Control Unit (CCU) in the vehicle, and if necessary,
also to the back-end system to retrieve necessary information about the vehicle.
Diagnostics messages are then sent to the CCU, which forwards the messages to
the appropriate ECUs in the in-vehicle network.

3.2 Threat Model

The certificate used for authentication (and its associated private key) in the
diagnostics equipment is critical to the safety of the vehicle, since the loss of
them can lead to impersonation, which can result in unauthorised access to
vehicles. The threats against the diagnostics equipment can be of both physical
and logical nature [2]:

– Physical Threats. An attacker is assumed to be able to steal diagnostics
equipment, which is able to authenticate itself properly to any vehicle at any
time.

– Logical Threats. An attacker is assumed to be able to copy the authenti-
cation keys within the diagnostics equipment. It is then possible to use/have
any type of equipment to authenticate as diagnostics equipment to any ve-
hicle at any time.

An attacker is also assumed to be able to perform the following operations
on all network traffic between the entities in the diagnostics architecture: read,
copy, steal, modify, delete, spoof, delay (a combination of steal and spoof), and
replay (a combination of copy and spoof) [16]. These attacks are threats to
the confidentiality and integrity of the transmitted communication, and to the
availability of the communicating entities.

3.3 Addressing Unauthorised Diagnostics Access

We address the problem of unauthorised access to vehicles in three steps:

1. One or more Trusted Third Parties (TTPs) that govern security policies for
access to vehicles are introduced. The TTPs issue authorisation tickets upon
requests from vehicles. The use of tickets is based on the concept of tickets,
inspired by the Kerberos system [14].
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2. A new authorisation protocol used to request and distribute authorisation
tickets to vehicles is proposed.

3. An approach to implement access control in vehicles using the authorisation
tickets is presented. Diagnostics equipment is only able to connect to a vehicle
after the vehicle has received and verified the issued authorisation ticket.

Before an authorised diagnostics session can be established to a vehicle, a
security policy first needs to be defined and stored in a TTP. The diagnostics
equipment then initiates the authorisation protocol before a “normal” diagnostics
session can be established. The result of the authorisation process is that both
the vehicle and the diagnostics equipment gets a ticket from the TTP. The
ticket contains the cryptographic keys to be used for the diagnostics session and
additional information about the session, such as which diagnostics commands
are allowed, and for how long access is granted.

4 Authorisation of Sessions

In this section, the details of the proposed approach are given. First, the TTP
is introduced. Then, the requirements for the authorisation protocol are given,
followed by a detailed description of the protocol, and a security analysis. Finally,
an approach to implement fine-grained access control in the vehicle, using the
issued authorisation ticket, is given.

4.1 The Trusted Third Party

A Trusted Third Party (TTP) is introduced which governs the security poli-
cies that authorises access to vehicles. The purpose of the TTP is to make it
impossible to use diagnostics equipment to access vehicles, even if it is able to
identify itself using a valid certificate, unless such access also has been granted
by an authority. The TTP issues authorisation tickets to vehicles upon request,
so that the vehicle can validate the access in accordance to the security policy.
The proposed diagnostics architecture, including the TTP, is shown in Figure 2.

The security policies governed by the TTP describe when and for how long a
vehicle should grant access to a remote diagnostics session and optionally also
what diagnostics commands (messages) are allowed. A security policy is defined
by:

Fig. 2. The proposed authorisation architecture
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– a timespan for which the authorisation is valid, (tbegin , tend),
– a set of authorised equipment, {authorised equipment}, and
– a set of authorised messages, {diagnostics message} (optional).

The TTP issues authorisation tickets to the requesting equipment containing a
timespan during which it is valid, which can be used by the vehicle to validate
the equipment and to filter diagnostics messages in accordance to the set of
authorised messages.

The role of a TTP can be undertaken by an organisation external to the auto-
motive company or by a division within the automotive company. Furthermore,
the number of TTPs is not limited to only one, but multiple TTPs are possible
depending on country, service organisation, and other requirements. The only
requirement is that the TTP is acknowledged by the manufacturer, whose vehi-
cles the TTP will serve. The TTP holds a certificate signed by the Certificate
Authority (CA) of the manufacturer, which is used to sign authorisation tickets
to vehicles and diagnostics equipment. Moreover, all TTPs are assumed to be
secure, i.e., unauthorised modifications of security policies are in this context
considered to be impossible.

4.2 Protocol Requirements

The following assumptions are made:

– Certificates. Each device (see Figure 2) is associated with a certificate and
is in possession of the corresponding private key. These certificates have been
issued by a CA within the automotive company (or its appointed contractor)
and all involved devices trust this CA directly or indirectly as a root of trust.
Certificates are not secret and can be distributed without further protection,
only the private key must be kept secret. Furthermore, all devices in the
architecture are assumed to be in possession of, or be able to retrieve, the
certificates needed to perform necessary authentications of other parties.
Even if not mentioned explicitly in this paper, we assume that all certificates
are validated against certificate revocation lists (CRLs) before being used.

– Back-end System (BS). All information needed to diagnose a vehicle is
stored in a BS at the automotive company. Examples of such information are
configuration parameters and the software available for ECUs in a vehicle.
Each automotive company is assumed to have a BS, which can be centralised
to one region or distributed over different regions. The BS is assumed to be
well protected, i.e., unauthorised changes in the system is not possible.

To guarantee security with respect to the threat model (see Section 3.2), the
following security requirements must be fulfilled:

– Integrity. An issued authorisation ticket must be protected during trans-
mission against modification, replay, and delay.

– Confidentiality. The authorisation tickets must be protected against eaves-
dropping (read) during transmission. Furthermore, to protect the privacy
of vehicle owners, the identity of vehicles should also be protected against
eavesdropping during transmission.
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Specific approaches to prevent network-based denial-of-service (DoS) attacks
against the devices are not considered. The vehicle should ignore traffic from non-
authorised equipment and the effect of a network-based DoS attack will only be
that new authorisation tickets will be delayed or may not be issued, thereby
preventing new diagnostics sessions to be established. However, the vehicle is
still protected against unauthorised access.

4.3 The Protocol

The authorisation protocol is shown in Table 1 and the notation used in Table 2.
An illustration of the exchanged messages is given in Figure 3. The protocol is
divided into two phases. The first phase, message 1–3, identifies the location of
the TTP. The second phase, message 4–6, authorises the session between the
diagnostics equipment (DE) and the vehicle (V). The security aspects in the
protocol will be discussed in next section. After successful completion of step
6, the security policy is known by the vehicle and both the vehicle and the
diagnostics equipment will share a common cryptographic session key.

The following messages are exchanged:

1. Initiate. DE sends its certificate together with either the certificate of the
BS or the TTP to V to request a diagnostics session. We assume that most

Table 1. Authorisation Protocol

(1) DE → V CertDE ‖ (CertBS | CertTTP)
(2) V → BS EncBS( VID )
(3) BS → V CertTTP

(4) V → TTP CertDE ‖ EncTTP( VID ‖ nonce1 )
(5) TTP → V EncV( TicketV ‖ nonce1 ) ‖ EncDE( TicketDE )

TicketV = SignTTP( KDE,V ‖ Δt ‖ Vpolicy )
TicketDE = SignTTP( KDE,V ‖ Δt ‖ VID )

(6) V → DE EncDE( TicketDE )

Table 2. Notations

DE Diagnostics Equipment
V Vehicle
BS Back-end System
TTP Trusted Third Party
CertX Certificate of device X
SignX Signature created by device X,

using its private key
EncX Encryption created for device

X, using X’s public key (also
includes a Message Integrity
Code)

Fig. 3. Messages exchanged during autho-
risation
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DEs already know the identity of the TTP to be used for this session, i.e.,
a certain TTP is preconfigured in DE. If so, this certificate can be delivered
at once to V and step 2–3 can be skipped.

2. Request TTP Information. To get the identity of the TTP for this ses-
sion, V encrypts and sends its identity, VID, to BS.

3. TTP Identity. BS uses the vehicle’s ID, VID, to find the TTP to use for
this vehicle and sends its certificate back to V. This completes the first phase
of identifying the TTP.

4. Request Authorisation. V sends its ID and the certificate of DE to TTP.
The time of the request, treq, is recorded by V.

5. Authorisation Response. The TTP uses the vehicle’s ID, VID, to find
the vehicle’s certificate and security policy within its database. A symmetric
session key, KDE,V, to be used by DE and V is generated and the duration
of the authorisation is calculated from the authorised timespan: Δt = tend−
tcurrent. Two authorisation tickets are generated and sent back to V. Vpolicy

is optional and may contain what commands DE is allowed to execute.
6. Protocol Completion. The security policy and the session key are updated

in V and the expiration time of the authorisation is calculated: texp = treq +
Δt. Since the vehicle knows that TicketV is fresh (see next section) and
the time of the request, the clocks in V and the TTP do not need to be
synchronised. Furthermore, to complete the authorisation, the authorisation
ticket is sent encrypted to DE.

4.4 Protocol Security

In this section, we present a security analysis of the authorisation protocol. Each
message is analysed with respect to the threats and the security requirements
identified earlier in Section 3.2 and 4.2, respectively. To protect confidentiality
and integrity of messages, encryption and signatures are used. Furthermore, to
prevent replay attacks, nonces are used, i.e., a random number is added to mes-
sages belonging to a session so that duplicated, delayed, and replayed messages
can be discarded.

The security analysis of each message follows:

1. All certificates have been signed by the CA or an entity trusted by the CA.
A certificate chain and the integrity of those are therefore ensured. These
certificates can be replaced by a man-in-the-middle (MITM), but since any
DE may request an authorisation ticket, the replacement of CertDE will be
regarded as another (but still valid) request. If an authorisation ticket is
issued by the TTP, it will be tied to CertDE and is useless to anyone else
not in possession of the certificate’s corresponding private key. Furthermore,
the replacement of CertBS or CertTTP will just result in a failure, since the
vehicle’s information is not present in other (trusted) BSs or TTPs.

2–3. To ensure confidentiality of the vehicle ID, VID is sent encrypted. Even
though the request can be replaced or replayed, it will only tell the location
of a TTP for a vehicle to an attacker. However, anyone in possession of
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CertBS can generate such a request to find the TTP associated to a VID,
but this information is not considered to be confidential.

4. As discussed in 1), the certificate is already integrity protected and a re-
placement of this certificate will only cause an authorisation ticket to be
issued for another DE. At first, this may seem to be a problem, however any
DE may request an authorisation ticket on behalf of another DE, but the
ticket is only useful for the DE it was issued for. Furthermore, to prevent
replay attacks and to bind the authorisation request to a certain time, treq
is recorded by V and a random number, nonce1, is added to the request.

5. To ensure that the issued tickets were generated by the TTP and to prevent
modification and eavesdropping of these, they are signed and encrypted.
Furthermore, since nonce1 ties the ticket to a specific session, the freshness
of TicketV is guaranteed by the request time, treq.

6. This ticket may be replaced or replayed. However, if it is replaced, the
session key, KDE,V, will not be accepted by V, since the session key was
signed by the TTP and is tied to the specific authorisation session identified
by nonce1 in 5). If the ticket is replayed, it will not be accepted by V after
the authorisation expires, at texp.

4.5 Implementing Fine-Grained Access Control

The security policy distributed in each authorisation ticket enables a fine-grained
access control mechanism to be implemented in the CCU in the vehicle. The
mechanism enforces that only diagnostics equipment for which a valid authori-
sation ticket has been issued, can send diagnostics messages to the ECUs in the
in-vehicle network. It allows the CCU to know what commands this particular
DE is allowed to execute. We propose that such a fine-grained access control
mechanism is implemented at the network and application layers in the CCU.

To identify authorised diagnostics equipment, the symmetric session key,
KDE,V, distributed in the authorisation ticket can be used. By adding an HMAC
to the payload of each IP packet transmitted between the equipment and the
vehicle, mutual authentication can be ensured1. A simple accept/deny filter can
be implemented at the network layer, based on the session key, KDE,V, and the
expiration time, texp. Implementing a diagnostics equipment filter at the network
layer has major advantages. Diagnostics traffic from non-authorised equipment
will be discarded early in the network stack, which limits the exposure of pro-
tocols in higher layers in the stack and the possibility to exploit software bugs
therein. Such an approach is also independent of, and transparent to, the diag-
nostics protocol used at the application layer.

To enforce that only authorised diagnostics messages are delivered, a specific
diagnostics protocol filter can be implemented at the application layer. Such an
approach requires no modification of the diagnostics service, but needs to be
adapted to different diagnostics protocols.

1 The tickets issued by the TTP were encrypted using the public keys of DE and V,
thus only the correct DE and V can recover the shared key.
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5 Discussion

Without proper authorisation of diagnostics sessions, the loss of diagnostics
equipment or its authentication keys can have critical impact on the safety of
vehicles. Attackers who acquire diagnostics equipment or its authentication keys
can potentially manipulate any vehicle accepting these keys for authentication.
By introducing authorisation, such keys cannot be used alone. These keys would
only be usable against vehicles scheduled for diagnostics using the authorised
equipment. Even though authorisation does not offer complete protection, it
prevents large scale attacks and essentially eliminates the possibility to target
an arbitrary vehicle.

Our proposed solution has a set of features, which makes it suitable for a large
scale implementation and is flexible enough to be used in different scenarios:

– Independent of the Diagnostics Protocol Used. The authorisation
protocol will be executed before the diagnostics session begins (as stated in
Section 3.3). Since communication with diagnostics equipment is validated
at the network layer in the CCU, the proposed approach is independent of
the diagnostics protocol being used. Hence, the approach is similar to what
is done in other security protocols, such as in IPSec. First, authentication
is performed and the key material is exchanged (e.g., as in IKE). Then, a
protected session can be established that is transparent to the applications
(e.g, IPSec communication).

– Scalable. The approach is not limited to authorise diagnostics equipment
for just one session at a time. By issuing multiple tickets, the same equip-
ment can establish sessions to multiple vehicles at the same time. Hence, the
approach is usable for large scale diagnostics sessions and software updates,
such as when performing pre-diagnostics of, for example, ten vehicles outside
a repair shop, or when performing firmware updates of hundreds of vehicles
in a remote harbour before being delivered to car dealers.

– Different Levels of Trust. Depending on the diagnostics equipment and
the TTP being used, different authorisation tickets can be issued. Hence,
different levels of trust are possible. For example, it is possible to have a
dedicated TTP for the vehicle inspection authority, which only allows them
to read selected information from the vehicle, while another TTP is used
by a repair shop which allows their mechanics to both diagnose ECUs and
update firmware.

– Supports Encryption. The authorisation ticket issued by the TTP holds
a symmetric encryption key. This key is not limited to provide mutual au-
thentication and to ensure the integrity of messages, but can also be used to
encrypt the whole session between diagnostics equipment and vehicles.

– No Synchronised Clocks Required. Since the vehicle records the time
of request for an authorisation ticket and the vehicle receives the duration
of the authorisation in the ticket from the TTP, no synchronised clocks are
needed. This makes it easy to implement in large scale and in a distributed
environment.
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The number of TTPs are not fixed. This enables the authorisation architecture
to be adapted depending on the situation, the organisation, and regulations. An
important factor that affects the location of a TTP is the privacy concern of the
authorisation information stored. Thus, a TTP within an organisation or even
a local TTP within a particular repair shop can be used, so that privacy-related
information will not be revealed to other parties.

The approach proposed in this paper is not limited to only diagnostics sessions.
The concept of using a TTP to issue authorisation tickets to vehicles is general
enough to be used for any service that is going to be provided by vehicles that
needs to be authorised. Furthermore, the approach is transparent to application
level protocols and is therefore easy to implement.

6 Conclusion

In this paper, we have addressed the problem of lost diagnostics equipment
and the loss of authentication keys by proposing a method to authorise diag-
nostics sessions. Without such a method, an attacker who acquires diagnostics
equipment or its private keys can get access to any vehicle accepting these au-
thentication keys.

Three steps are taken to prevent unauthorised diagnostics access. First, a
trusted third party, which governs security policies and issues authorisation
tickets, is introduced. Secondly, an authorisation protocol to issue authorisa-
tion tickets to vehicles is proposed and analysed. Finally, a fine-grained access
control mechanism that grant access only to authorised diagnostics sessions is
described. The authorisation method ensures mutual authentication and mes-
sage integrity of diagnostics sessions, filtering of specific diagnostics messages,
and supports encryption of diagnostics sessions.

The approach we propose is designed with transparency, adaptation, and min-
imal changes to current diagnostics protocols in mind. The number of trusted
third parties are not limited, which enables them to be placed at different lo-
cations and in different organisations as needed. Furthermore, a fine-grained
policy can be distributed to the vehicle which allows it to control what service
the connecting equipment should get. The filter is transparent to the diagnostics
protocol used.
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K., Yngström, L., Lindskog, S. (eds.) Security and Privacy in Dynamic Environ-
ments. IFIP, vol. 201, pp. 62–73. Springer, Boston (2006)

11. Coronado, E., Cherkaoui, S.: A secure service architecture to support wireless ve-
hicular networks. International Journal of Autonomous and Adaptive Communi-
cations Systems 3(2), 136–158 (2010)

12. Casola, V., Luna, J., Mazzeo, A., Medina, M., Rak, M., Serna, J.: An interoperabil-
ity system for authentication and authorisation in VANETs. International Journal
of Autonomous and Adaptive Communications Systems 3(2), 115–135 (2010)

13. Rigney, C., Willens, S., Rubens, A., Simpson, W.: RFC 2865: Remote Authentica-
tion Dial In User Service (RADIUS) (June 2000)

14. Steiner, J., Neuman, C., Schiller, J.: Kerberos: An authentication service for open
network systems. In: Usenix Conference Proceedings, vol. 191, p. 202 (1988)

15. Hill, J.: An Analysis of the RADIUS Authentication Protocol (November 24, 2001),
http://www.untruth.org/~josh/security/radius/radius-auth.html. (verified
June 6, 2013)

16. Howard, J.D., Longstaff, T.A.: A Common Language for Computer Security Inci-
dents. (Sandia Report: SAND98-8667) (1998)

http://www.untruth.org/~josh/security/radius/radius-auth.html


Vulnerability Analysis on Smart Cards
Using Fault Tree

Guillaume Bouffard, Bhagyalekshmy N. Thampi, and Jean-Louis Lanet

Smart Secure Devices (SSD) Team, XLIM/University of Limoges
123 Avenue Albert Thomas, 87060 Limoges, France

{guillaume.bouffard,bhagyalekshmy.narayanan-thampi}@xlim.fr,
jean-louis.lanet@unilim.fr

Abstract. In smart card domain, attacks and countermeasures are ad-
vancing at a fast rate. In order to have a generic view of all the attacks,
we propose to use a Fault Tree Analysis. This method used in safety
analysis helps to understand and implement all the desirable and unde-
sirable events existing in this domain. We apply this method to Java Card
vulnerability analysis. We define the properties that must be ensured: in-
tegrity and confidentiality of smart card data and code. By modeling the
conditions, we discovered new attack paths to get access to the smart
card contents. Then we introduce a new security api which is proposed
to mitigate the undesirable events defined in the tree models.

Keywords: Smart Card, Security, Fault Tree Analysis, Attacks, Coun-
termeasures.

1 Introduction

A smart card is an intelligent and efficient device which stores data securely
and also ensures a secure data exchange. Security issues and risks of attacks
are ever increasing and continuous efforts to develop countermeasures against
these attacks are sought. This requires clear understanding and analysis of pos-
sible ways of attacks and methods to avoid or mitigate them through adequate
software and/or hardware countermeasures. To further understand the possible
attack paths, a common method is required and in this paper we try to define a
method which can help to sort these issues to an extent.

Often countermeasures are dedicated to an attack and do not take into account
a global point of view. Usually designers use an inductive (bottom-up) approach
where, for each attack a mechanism is added to the system to mitigate the attack.
In such an approach, a probable event is assumed and the corresponding effect
on the overall system is tried to be ascertained. On one hand, this allows to
determine the possible system states from the knowledge of the attacker model
and on the other hand the feasible countermeasures for the attack. Thus, it
leads to several defenses where the final goal is not clearly defined nor ensured.
Moreover the overhead of the defenses is high both in terms of memory footprint
and CPU usage.
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In this paper, we suggest to adopt a deductive approach (top-down) by rea-
soning from a more general case to a specific one. We start from an undesirable
event and an attempt is made to find out the event, and the sequence of events
which can lead to the particular system state. From the knowledge of the ef-
fect, we search a combination of the causes. We postulate a state, in our case a
security property, and we systematically build the chain of basic events.

This approach is based on a safety analysis, often used for safety critical
systems. The safety analysis performed at each stage of the system development
is intended to identify all possible hazards with their relevant causes. Traditional
safety analysis methods include, e.g. Functional Hazard Analysis (FHA) [1],
Failure Mode and Effect Analysis (FMEA) [2] and Fault Tree Analysis (FTA).
FMEA is a bottom-up method since it starts with the failure of a component
or subsystem and then looks at its effect on the overall system. First, it lists all
the components comprising a system and their associated failure modes. Then,
the effects on other components or subsystems are evaluated and listed along
with the consequence on the system for each component’s failure modes. FTA,
in particular, is a deductive method to analyze system design and robustness.
Within this approach we can determine how a system failure can occur. It also
allows us to propose countermeasures with a higher coverage or having wider
dimension.

This paper is organized as follows, section 3 is about Java Card security. Sec-
tion 4 describes smart card vulnerability analysis using FTA. Section 5 presents
an api to mitigate undesirable events. Conclusions and future works are sum-
marized in section 6.

2 Using FTA for Security Analysis: Related Works

FTA is often used for reliability analysis but it can be also used for computer
security. In [3], the authors suggested to integrate FTA to describe intrusions in
an IT software and Colored Petri Net (CPN) to specify the design of the system.
The FTA diagrams are augmented with nodes that describe trust, temporal and
contextual relationships. They are also used to describe intrusions. The models
using CPNs for intrusion detection are built using CPN templates. The FTA
restricts drastically the possible combination of the events. In [4], FTA is used
to assess vulnerability considering the fact that the undesirable events of interest
should already be in a fault tree designed for the purpose of a risk assessment.
They showed how to build specific FTA diagrams for vulnerability assessments.
In [5], an attack tree is used to model potential attacks and threats concerning
the security of a given system. Attack trees are always having the same meaning
as FTA (same gate connectors). They generate attack scenario in a close way to
Unified Modeling Language (UML) scenario for evaluating, for example, a buffer
overflow in the system. Another work [6] described a methodology to analyze
both software and hardware failure in a system and also discussed the use of FTA
affordable for software systems by design, i.e. incorporating countermeasures so
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that the fault can be considered and mitigated during analysis. Byres et al. [7]
used the BDMP1 model to find vulnerabilities in SCADA system.

3 Security of Java Based Smart Cards

Java Card is a kind of smart card that implements the standard Java Card
3.0 [8] specification. Such a smart card embeds a Virtual Machine (VM) which
interprets codes already romized with the operating system or downloaded after
issuance. Java Cards have shown an improved robustness compared to native
applications with respect to many attacks. Java Card is an open platform for
smart cards, i.e. able to load and execute new applications after issuance. For
security reasons, the ability to download code into the card is controlled by a
protocol defined by Global Platform [9]. This protocol ensures that the owner
of the code has the necessary credentials to perform the action. Thus different
applications from different providers can run on same smart card. Using type
verification, the byte codes delivered by the Java compiler and the converter (in
charge of delivering compact representation of Class files name Cap file) are
protected, i.e. and the application loaded is not hostile to other applications in
the Java Card. Furthermore, the Java Card firewall checks permissions between
applications on the card, enforcing isolation between them. Until now it was safe
to presume that the firewall was efficient enough to avoid malicious applications
(applet modified after off-card verification). Nevertheless some attacks have been
successful in retrieving secret data from the card.

Smart cards are designed to resist numerous attacks using both physical and
logical techniques. There are different ways to attack Java Card and many of
them are associated with countermeasures. An attacker can use physical or log-
ical attacks [10,11] or combined attacks [12,13] (combination of physical and
logical). Often ad-hoc countermeasures can only protect the card from a single
type of attacks. So if a manufacturer wants to protect his card against different
types of attacks he must embed several countermeasures. Here we are presenting
a model to avoid embedding unwanted countermeasures which in turn helps to
protect the embedded system against attacks.

4 Smart Card Vulnerability Analysis Using FTA

4.1 Introduction

FTA is an analytical technique (top-down) where an undesirable event is defined
and the system is then analyzed to find the combinations of basic events that
could lead to the undesirable event. A basic event represents an initial cause
which can be a hardware failure, a human error, an environmental condition or
any event. The representation of the causal relationship between the events is
given through a fault tree. A fault tree is not a model of all possible system
failures but a restricted set, related to the property evaluated.
1 Boolean logic Driven Markov Process.
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FTA is a structured diagram constructed using events and logic symbols
mainly and and or gates (Fig. 1). Other logical connectors can be used like
the not, xor, conditional etc. The and gate describes the operation where all
inputs must be present to produce the output event. The or gate triggers the
output if at least one of the input events exists. The inhibit gate describes the
possibility to forward a fault if a condition is satisfied. For readability of FTA
diagrams, a triangle on the side of an event denotes a label, while a triangle used
as an input of a gate denotes a sub tree defined somewhere else (Fig. 5).

In our work, we define four undesirable events that represent the failure of
the smart card system: code or data integrity, code or data confidentiality. Code
integrity is the most sensible property because it allows the attacker to execute
or modify the executable code which not only leads to the code and data confi-
dentiality but also the data integrity. The Java Virtual Machine (JVM) prevents
these events to occur under normal execution. Intermediate nodes in the tree
represent a step in an attack while leafs (basic events) represent either the state
of the system or a known attack. If this attack needs a given state of the system
to succeed then an and gate must bind the attack to the state of the system.
Thus it becomes a condition on the system state. For example, the Eman 2 [13]
attack shown in Fig. 2, modifies the return address. However, it is necessary
to get access to the content of the return address which is represented by the
intermediate node on the top. For modifying the return address, the attacker
must modify the Cap file and thereby the VM allows the execution of ill typed
applet. This latter condition is true if all the basic events are true: absence of an
embedded Byte Code Verifier (BCV), no run time check of the index of the local
variables and absence of integrity check of the system context area in the frame.
The BCV ensures that the applet to be installed is compliance with the Java
Card security rules. The presence of one of these countermeasures is enough to
mitigate the attack.

4.2 Code Integrity

The first property to be analyzed in a smart card for understanding or imple-
menting security features is the code integrity. If the attacker is able to modify
the method area or more generally to divert the control flow of the code to be
executed, then he will have the possibility to read or modify the data and code
stored inside the card. We consider two possibilities here, see Fig. 3, either the
processor executes a new code (execution of an arbitrary shell code) or it exe-
cutes the regular code in such a way that the initial semantics is not preserved.
In the left part of the tree (execution of a shell code), we can obtain it either by
changing the control flow by modifying of the branch condition [13] or the return
address as explained in the previous section. In the right branch of the fault tree
diagram, we modify the execution flow just like a program counter execute an
existing code. These attacks refer to code mutation were operands can be exe-
cuted instead of instructions as explained in [14]. In this class of attack, we can
find the attacks mentioned in [15] concerning the Java exception mechanism,
the attacks are not only related to the modification of the jump offset but also
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Fig. 1. The causal relationship be-
tween events

Fig. 2. Steps for an Eman 2 attack

through a Java Program Counter (jpc) corruption. Then all these intermediate
nodes need to be refined to determine all the causes of the unwanted events.

Fig. 3. Code integrity tree

At that step we need to find the most efficient countermeasure to protect the
code integrity. As described previously, each attack can be mitigated through a
dedicated countermeasures, e.g. for the Eman 2 attack, it can be either through
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the return address stored in a dedicated place (not accessible through a local
variable), a frame integrity mechanism, an embedded verifier, verification of the
indices of the locals during the load time or some run time checks. One can
remark that if the countermeasure is closed to the root of the tree its efficiency
in terms of coverage will be higher which doesn’t mean that the countermeasure
must be close to root. There are other parameters to be taken into account
like the run time cost, the latency, the memory footprint etc. For example the
Dynamic Syntax Interpretation (DSI) has a high coverage as shown in Fig. 4:
this countermeasure is at the top of the tree. A lot of other countermeasures can
also be applied here. This work has been extended to three other undesirable
events.

Fig. 4. An efficient countermeasure for code integrity

4.3 Basic Events: Possible Attacks

Known attacks are considered as basic events. Several authors proposed and
tested different types of attacks which are discussed here.

Abusing shareable interface is an interesting technique to trick the virtual
machine (VM). The principal mode of shareable interface attack [10] is to obtain
type confusion without modifying the Cap files. To accomplish such an attack,
the authors created two applets which are communicated using the shareable
interface mechanism. Each applet uses a different type of array to exchange
data in order to create the type confusion. In this case, the BCV cannot detect
any problem during compilation or while loading the files. In our experience,
most of the cards with an on-card BCV refused to allow applets using shareable
interface mechanism. Since it is impossible for an on-card BCV to detect this
kind of abnormality, Hubbers et al. [10] proposed the hypothesis of shareable
interface.

Another type of attack is the abort transaction, which is very difficult to
implement but it is a widely used concept in database system. The purpose of
this transaction is to make a group of atomic operations. By definition, the roll-
back mechanism should also deallocate any objects allocated during an aborted
transaction and reset the references of such objects to null. However, the authors
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found that some cases where the card keeps the reference to objects allocated
during transaction, even after a rollback.

A fault model is explained in [16,17] to attack the smart card by physical
means. Nowadays, it is also possible to obtain precise byte errors using a laser
beam injection into the smart card memory or to perturb the runtime execution
(like a pipeline modification). Due to this physical fault, a logical attack can
occur which is called a combined attack. Barbu et al. proposed an attack based
on the checkcast instruction [15] which is used to modify the runtime type by
injecting a laser beam. Then this applet gets installed on the card after it has
been checked by an on card BCV and it is considered to be a valid applet. The
aim of this attack is to create a type confusion to forge a reference of an object
and its contents. The authors also explained the principle of instance confusion,
similar to the idea of type confusion where the objective is to confuse an instance
of object A to an object B by inducing a fault dynamically by using a laser beam.

Bouffard et al. described in [13], two methods to change the control flow
graph of a Java Card. The first one is Eman 2, which provides a way to change
the return address of the current function. This information is stored in the
Java Card stack header. Once the malicious function exits during the correct
execution, the program counter returns to the instruction which addresses it.
The address of the jpc is also stored in the Java Card Stack header. An overflow
attack success to change the return address by the address of the malicious byte
code. Since there is no runtime check on the parameter, it allows a standard
buffer overflow attack to modify the frame header.

4.4 Basic Events: Possible Countermeasures

For stack area protection, Girard mentioned in [18], that the system area of
the frame is very sensible. So, he suggested to split the frame and manage the
stack context separately from the stack and the locals of the frame. In [15],
Barbu proposed a real approach by modifying the value of the security context
in case of an illegal modification delegating the control to the firewall. He also
suggested a stack invariant by xor-ing the pushed and popped value. Dubreuil
et al. [14] proposed to use a typed stack without paying the cost of two stacks
manipulation. In the case of method area protection, it is possible to execute
data as program, considering the value to be xor-ed should be dependent to the
type of the variables as suggested in [18]. Here, the data are protected within
the same bounds of possibility. Barbu [15] proposed exactly the same approach,
while Razafindralambo et al. [19] demonstrated that it is possible to recover the
xor value by using a dynamic syntax adding randomization to the xor function.
The implementation of all these countermeasures are during the linking step. In
order to avoid the exploitation of the linker, an algorithm has been proposed
in [14] to efficiently check the usage of the token to be linked by manipulating
the reference location component.

Séré proposed three countermeasures in [20]. The first one is the bit field
method based on the nature of the byte code that must remain non mutable
(i.e. an instruction cannot be replaced by an operand). The second one is the
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basic block method, which is an extension of the work described in [4], where
a checksum is calculated during the execution of a linear code fragment and it
is checked during the exit. The last one is the path check method, a completely
different approach based on the difference between the expected execution paths
and the current one. Any divergence or code creation can be detected by coding
the path in an efficient way.

These countermeasures are of particular interest because they are addressing
the two events of the first level of code integrity. The patent [21] describes a
similar approach to the third countermeasure of Séré, but it is performed at the
applicative level. A similar approach, based on flags and preprocessing is there
to detect unauthorized modification in the control flow, as mentioned in [22]. To
avoid the exploitation of the checkcast attack, an efficient implementation of
this instruction was proposed in [15].

5 Definition of an API to Mitigate the Undesirable
Events

Countermeasures can be implemented at two levels: virtual machine (system)
or an applicative. The main advantage with system countermeasures is that the
protections are stored in the rom memory, which is a less critical resource than
the eeprom. So it is easier to deal with integration of the security data struc-
tures and code in the system. With applicative countermeasures, it is possible
to implement several checks inside the application code to ensure that the pro-
gram always executes a valid sequence of code on valid data. It includes double
condition checks, redundant execution, counter, etc. and are well known by the
developers. Unfortunately, this kind of countermeasures drastically increase the
program size because, besides the functional code, it needs security code and
the data structure for enforcing the security mechanism embedded in the appli-
cation. Furthermore, Java is an interpreted language therefore its execution is
slower than that with a native language. So, this category of countermeasures
experiences bad execution time and adds complexity for the developer. But the
main advantage here is that the developer has a precise knowledge of the sensi-
tive part of his code. A new approach exists, which is driven by an application
and it includes means in the system layer.

This solution presents a good balance between memory footprint and opti-
mization of the countermeasure. This also presents a possibility to offer security
interoperability between several manufacturers who implement this api.

5.1 Model of Attacks

Using the FTA analysis, we defined attack paths that allows a simple laser based
fault injection. They correspond to the effect of a laser fault on the JVM. By
refining the analysis, we discover three new possibilities:

– If the effect of laser affects the value returned by a method it can execute a
code fragment without the adequate authorization or in a conditional evalu-
ation it can change the branch which is to be executed. This attack targets
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the Java Card evaluation stack where the value returned by the function is
stored,

– The effect of fault can also bypass the execution of a given method. By
modifying the jpc one can jump over a method that performs a security
test letting on top of the stack the address of the called object. Of course,
the stack has a high probability to be ill typed (non compatible) at the end
of the current method. Nevertheless an attacker can still send high value
information before being detected,

– It can also modify the address of data to be copied in the i/o buffer or change
the number of byte to be copied. This attack allows to dump memory in an
arbitrary way.

They have been introduced as a new intermediate node: jpc Corruption and
a new basic event: Evaluation Stack Corruption which can be obtained
either by a logical attack or a fault attack. They can be found not only on
different branches of the code integrity tree but also on the code confidentiality
tree like the leafs of the intermediate node Conditional Branch, they are
combined with an and condition to generate the Code De-Synchronization
intermediate node.

Fig. 5. jpc corruption and its effects

With the FTA analysis we were able to determine new potential vulnera-
bilities. The next step is to design efficient countermeasures to ensure a high
coverage with a minimal memory footprint.
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5.2 The INOSSEM API

Since several attacks can be performed against smart cards, an api has been
defined, so that a given application can request to increase security for a code
fragment. For example, to mitigate all the attacks against the stack, (i.e. the
parameters of a called method), it is possible to invoke a method with a signature
added as a parameter. Then, the application at the beginning of the execution
of the called method should verify that the parameters have not been modified
by a fault attack (listing 1.1).

// i n i t i a l i z e the s i gna tu r e o b j e c t wi th the f i r s t parameter
paramChkInstance . i n i t ( f i r stParam ) ;
paramChkInstance . update ( secondParam ) ; // update s i gna tu r e b u f f e r
short paramChk = paramChkInstance . doFinal ( userPIN ) ; // s i gn i t
// invoke the s e n s i t i v e method
s en s i t iv eMeth ( f i r stParam , secondParam , userPIN , paramChk) ;

Listing 1.1. Use of the ParamCheck class to sign parameters

All sensitive methods of the Java Card applet must ensure that no attack
against the integrity of the frame occurred during the call. If the signature does
not match, the card must be blocked, as shown in the listing 1.2

void s en s i t iv eMeth (byte p1 , short p2 ,OwnerPIN p3 , short chk ) {
// i n i t i a l i z e the s i gna tu r e o b j e c t wi th the parameters
paramChkInstance . i n i t ( p1 ) ; paramChkInstance . update ( p2 ) ;
// . . . check the i n t e g r i t y o f the l o c a l s in the frame
i f ( paramChkInstance . doFinal ( p3 ) != chk )

{// something bad occurred take some ac t i on }

Listing 1.2. Use of the ParamCheck class to verify parameters.

The second attack is related with jpc corruption. The control flow of the
program can be modified due to the attack. For mitigating it, we choose to
implement a security automaton into the api. The security automaton represents
the security policy in terms of control flow checks. It is a partial representation
of the control flow of the program, thus providing a redundancy that can be
checked during the execution of the applet. For example, before decrementing
the value of a counter the authentication step must have occurred earlier. So
we included some states’ modification into the code with a call to setState()
method of the api. In the constructor of the applet, we have initialized a structure
representing the security automaton. Each time a call to setState() occurs, the
system checks if the current state allows the transition to the new state, if not
it throws a security exception (listing 1.3).

private void deb i t (APDU apdu) {
this . s e t S t a t e (CRITICAL_SECTION) ; // t r an s i t i o n to a new s t a t e
i f ( ! p in . i sVa l i d a t ed ( ) ) {// d i s a l l ow s i f PIN i s not v e r i f i e d

this . endStateMachine (PIN_VERIFICATION_REQUIRED_STATE) ;
ISOException . throwIt (SW_PIN_VERIFICATION_REQUIRED) ; }

Listing 1.3. The security automaton
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There are also Java classes which are used to protect local variables against
integrity and confidentiality violation. These form a coherent means to protect
the application against the attack that the FTA analysis brought to the fore.

6 Conclusion and Future Works

A Fault Tree Analysis method was proposed and applied in the smart card do-
main which can be used for safety and vulnerability analysis. We have identified
four major undesirable events and refined the analysis to reach till the basic
events representing the effect of either laser attacks, logical attacks or their com-
bination. During the analysis we brought forth three new attacks considering
the effect of a single laser fault. And in the INOSSEM project the partners de-
fined an api that provides protections against these attacks. With this strategy,
a smart card developer can adapt the level of security of the JVM for a given
code fragment of its applet. We are currently considering quantification of the
probability for an attacker to reach his objective in a given time or the overall
mean time for the attack to overcome it. This on going work uses the BDMP
formalism [23] with the models designed in this paper.

Acknowledgements. This work is partly funded by the French project IN-
OSSEM (PIA-FSN2 -Technologie de sécurité et résilience des réseaux).
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Abstract. We present results of an empirical study to evaluate the detection ca-
pability of diverse AntiVirus products (AVs). We used malware samples col-
lected in a geographically distributed honeypot deployment in several different 
countries and organizations. The malware was collected in August 2012: the re-
sults are relevant to recent and current threats observed in the Internet. We sent 
these malware to 42 AVs available from the VirusTotal service to evaluate the 
benefits in detection from using more than one AV. We then compare these 
findings with similar ones performed in the past to evaluate effectiveness of di-
versity with AVs. In general we found that the new findings are consistent  
with previous ones, despite some differences. This study provides additional 
evidence that detection capabilities are improved by diversity with AVs.  

Keywords: Empirical study, Intrusion tolerance, Malware, Measurement  
techniques, Security, Security assessment tools. 

1 Introduction 

All systems need to be sufficiently reliable and secure in delivering the service that is 
required of them. Various ways in which this can be achieved in practice range from 
the use of various validation and verification techniques, to the use of software 
fault/intrusion tolerance techniques and continuous maintenance and patching once 
the product is released. Fault tolerance techniques range from simple “wrappers” of 
the software components [1] to the use of diverse software products in a fault-tolerant 
system [2]. Implementing fault tolerance with diversity was historically considered 
prohibitively expensive, due to the need for multiple bespoke software versions. 
However, the multitude of available off-the-shelf software for various applications 
has made the use of software diversity an affordable option for fault tolerance against 
either malicious or accidental faults. 

Authors in [3] detailed an implementation of an AntiVirus (AV) platform that 
makes use of diverse AVs for malware detection. A similar architecture that uses 
diverse AV email scanners has been commercially available for several years [4]. 
Thus, architectural solutions for employing diverse AV detection engines are already 
known and even commercially deployed. Results from empirical evaluation of the 
effectiveness of diversity for malware detection are, however, much more scarce.  
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The following claim is made on the VirusTotal site [5]: “Currently, there is no so-
lution that offers 100% effectiveness in detecting viruses, malware and malicious 
URLs”. Given these limitations of individual AVs, designers of security protection 
systems are interested in at least getting estimates of the possible gains in terms of 
added security that the use of diversity (e.g. diverse AVs) may bring for their systems. 

Two of the authors of this paper have previously reported [6-8] results from a study 
on the detection capabilities of different AVs and potential improvements in detection 
that can be observed from using diverse AVs. In those studies we reported that some 
AVs achieved high detection rates, but none detected all the malware samples. We 
also found many cases of regression in the detection capability of the AVs: cases 
where an AV would regress from detecting the malware on a given date to not detect-
ing the same malware at a later date(s). We reported significant improvements in the 
detection capability when using two or more diverse AVs. For example, even though 
no single AV detected all the malware in these studies, almost 25% of all the diverse 
1-out-of-2 pairs of AVs successfully detected all the malware. 

The results presented in [6-8] are intriguing. However, they concern a specific 
snapshot in the detection capabilities of AVs against malware threats prevalent in that 
time period (1599 malware samples collected from a distributed honeypot deployment 
over a period of 178 days from February to August 2008). In the security field the 
threat landscape changes rapidly and it is not clear to what extent these findings can 
be generalized to currently spreading malware. It is also not clear whether the diversi-
ty benefits reported in [6-8] are specific to that specific collection environment and 
time period, or whether they are consistent with other environments and time periods. 

Our work is motivated by the following claim from Fred Schneider in [9]: “Expe-
rimentation is the way to gain confidence in the accuracy of our approximations and 
models. And just as experimentation in the natural sciences is supported by laborato-
ries, experimentation for a science of cybersecurity will require test beds where con-
trolled experiments can be run.” In this paper we present results of an empirical study 
about possible benefits of diversity with currently spreading malware and compare 
our findings with those reported in [6-8]. The main aim of our study is to verify the 
extent to which the findings previously reported are true with more recent malware. 
Consistent with the statement in [9], through experimentation and empirical analysis 
our goal is to gain confidence in the accuracy of the claims and help security decision 
makers and researchers to make more informed, empirically-supported decisions 
about the design, assessment and deployment of security solutions. 

The results provide an interesting analysis of the detection capability of the respec-
tive signature-based components, though more work is needed for assessing full  
detection capabilities of the AVs. Also, the purpose of our study is not to rank the 
individual AVs, but to analyze the effectiveness of using diverse AVs.  

The rest of the paper is organized as follows: Section 2 summarizes related work; 
Section 3 describes the data collection infrastructure; Section 4 presents the results of 
our study; Section 5 compares the results reported in this paper with the ones in [6-8]; 
Section 6 discusses the implications of our results on the decision making about secu-
rity protection systems, and presents conclusions and possible further work. 
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2 Related Work 

Studies which perform analysis of the detection capabilities and rank various AVs are 
very common. One such study, which provides analysis of “at risk time” for single 
AVs, is given in [10]. Several sites1 report rankings and comparisons of AVs, though 
readers should be careful about the definitions of “system under test” when compar-
ing the results from different reports. 

Empirical analyses of the benefits of diversity with diverse AVs are much less 
common. Apart from our previous work [6-8] (we refer to the findings reported there 
when we compare them with the findings from this paper in Section 5) we know of 
only one other  published study [3] that has looked at the problem. An initial imple-
mentation of the Cloud-AV architecture has been provided in [3], which utilizes mul-
tiple diverse AVs. The Cloud-AV uses the client-server paradigm. Each machine in a 
network runs a host service which monitors the host and forwards suspicious files to a 
centralized network service. This service uses a set of diverse AVs to examine the 
file, and based on the adopted security policy makes a decision regarding malicious-
ness of the file. This decision is then forwarded to the host. The implementation [3] 
handles executable files only. A study with a Cloud-AV deployment in a university 
network over a six month period is given in [3]. For the files observed in the study, 
the network overhead and the time needed for an AV to make a decision are relatively 
low. The authors acknowledge that the performance penalties could be much higher if 
file types other than just executables are examined, or if the number of new files ob-
served on the hosts is high.  

Apart from Cloud-AV, which is an academic prototype, commercial solutions that 
use diverse AV engines for file and e-mail scanning are also available2. 

3 Experimental Infrastructure 

The malware have been collected on a distributed honeypot architecture using Dio-
naea - a low-interaction honeypot used to emulate common vulnerabilities, capture 
malicious payloads attempting to exploit the vulnerabilities and collect the binary files 
downloaded or uploaded. In summary, the main components of the experimental in-
frastructure and the process of data collection are as follows (full details are available 
in our technical report [11]): 

• Dionaea has been deployed on 1136 public IP addresses distributed in six different 
locations in France, Germany, Morocco and the USA. 

• The subnets do not contain the same number of IP addresses and the configuration 
differs between networks. Many IP addresses belong to the University of Maryland 
(where two of the authors of this paper are based). Note that neither all networks 
apply the same security policies nor are protected in the same way. 

                                                           
1 av-comparatives.org, av-test.org/, virusbtn.com/index 
2 gfi.com/maildefense/,  
   pcworld.com/article/165600/G_data_internet_security.html  
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• We deployed the default configuration of Dionaea which exposes common Internet 
services such as http, ftp, smtp, MS SQL, MySQL, as well as Microsoft Windows 
and VoIP protocols. These services and protocols emulate known vulnerabilities 
and can trap malware exploiting them. Due to the types of vulnerabilities and pro-
tocols emulated, Dionaea mainly collects Windows Portable Executable (PE) files. 

• For this study, one Dionaea instance was deployed on each separate subnet, run-
ning on a different Linux virtual machine. To facilitate the analysis, all the mal-
ware collected by Dionaea and the information relative to their submission were 
merged and centralized on a single server. 

• Every day at midnight a Perl script downloads from the virtual machines running 
Dionaea the binary files and the SQLite database containing the malware capture 
information. This script then submits the whole malware repository to VirusTotal 
[5], which is a web service providing online malware analysis for various AVs. For 
each binary file successfully submitted, VirusTotal returns a scan key. The scan 
key is composed of the binary’s SHA1 hash and the timestamp of the submission. 
To ensure a correct submission of each file and to later retrieve the analysis results 
the script keeps track of the scan keys. 

• A second Perl script retrieves the reports for each malware using the scan keys 
generated by VirusTotal. For each malware, VirusTotal returns an array containing 
the number of AVs that have flagged the file as malicious, the total number of AVs 
used in the analysis, and a hash table mapping the AVs names and versions with 
the signatures name. 

4 Results 

4.1 Basic Statistics from Our Results  

Using the dataset given in Section 3 we explore the potential benefits in malware 
detection from employing diverse AVs. We start with some descriptive statistics. 

Data collection lasted for 23 days: 8-30 August 2012. During this period we col-
lected 922 malware. These malware were sent to VirusTotal where they were ex-
amined by up to 42 AVs. We sent the malware on the first day of observation and 
continued to send them throughout the collection period. However the total number of 
data points is not simply 23 * 922 * 42. It is smaller because: 

• not all malware were observed in the first day of the collection – we continued to 
observe new malware throughout the collection period and we cannot send a newly 
collected malware to older versions of AVs running on VirusTotal; 

• VirusTotal may not always return results for all AVs – we are not sure why this is. 
VirusTotal is a black-box service and its internal configuration is not provided. We 
presume that each AV is given a certain amount of time to respond; if it doesn’t, 
VirusTotal will not return a result for that AV. Additionally a particular AV may 
not be available at the time we submit the malware for inspection. 
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A unique “demand” for the purpose of our analysis is a {Malwarej, Datek} pair which 
associates a given malware j to a given date k in which it was sent to VirusTotal. We 
treat each of the malware sent on a different date as a unique demand. If all 922 mal-
ware were sent to VirusTotal on each of the 23 days of data collection, then we would 
have 922 * 23 = 21,206 demands. But as explained above, due to missing data, the 
number of demands sent to any of the AVs is smaller than 21,206. 

If we now associate a given AVi’s response to a given malware j on a given date k 
then we can consider each of our data points in the experiment to be a unique triplet 
{AVi, Malwarej, Datek}. For each triplet we have defined a binary score: 0 in case of 
successful detection, 1 in case of failure. Table 1 shows the aggregated counts of the 
0s and 1s for the whole period of our data collection. We have considered as success 
the generation of an alert by an AV regardless of the nature of the alert itself. 

Table 1. Counts of detections and failures for triplets {AVi, Malwarej, Datek } 

Value Count 
0 – detection / no failure 766,853
1 – no detection / failure 65,410

4.2 Single AV Results 

Table 2 contains the failure rates of all 42 AVs. The ordering is by the failure rate 
(second column) with the AV with the smallest failure rate appearing first.  

The third column in Table 2 counts the number of “releases” of a given AV rec-
orded by VirusTotal. We presume these are the versions of either the rule set or the 
release version of the detection engine itself. It seems that different products have 
different conventions for this. Amongst the 3 best AVs in our study, AntiVir reports 
only 1 release version whereas ESET-NOD32 and Ikarus have 36 and 27 respectively.  

The fourth and fifth columns of Table 2 report about an interesting phenomenon 
first described in our previous work [8] – some AVs regress on their detection capa-
bility. That is, they detected the malware at first, and then failed to detect the malware 
at a later date(s), probably due to some updates in the respective AV’s rule defini-
tions. The fourth column contains the number of malware on which a given AV re-
gressed, and the fifth column contains the number of instances of these regressions 
(since an AV may have regressed more than once on a given malware: alternated 
between detection and non-detection of a malware several times). We note that even a 
few AVs, which are in the top ten in terms of the overall detection rates, did have 
cases of regressions. Such a phenomenon can be due to various reasons. For instance, 
the vendor might have deleted the corresponding detection signature as a consequence 
of the identification of false positives associated to it, or they might be attempting to 
consolidate the signature based detection rules (i.e. define a smaller number of more 
generic rules) to achieve faster detection. 
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Table 2. Failure rates, number of releases and regression data for each AV 

AV Name Failure rate 
Number of “releases” of 

the AV in VirusTotal 
Count of Malware on 
which AV regressed 

Count of Regression 
Instances 

AntiVir 0.000049 1 0 0 
ESET-NOD32 0.000049 36 0 0 

Ikarus 0.000049 27 0 0 
Kaspersky 0.000050 1 1 1 

Sophos 0.000050 2 0 0 
VIPRE 0.000098 29 0 0 
McAfee 0.000099 1 0 0 
Norman 0.000099 1 0 0 
Emsisoft 0.000208 1 3 3 
Symantec 0.001112 2 0 0 
F-Secure 0.001204 1 0 0 

Avast 0.001211 1 0 0 
BitDefender 0.001232 1 0 0 

PCTools 0.001244 1 0 0 
Jiangmin 0.001286 1 0 0 

AVG 0.001342 1 0 0 
GData 0.001627 1 8 8 

TrendMicroHouseC. 0.001847 2 13 13 
K7AntiVirus 0.001881 19 0 0 

McAfee-GW-Ed. 0.002232 1 43 43 
VirusBuster 0.002256 27 0 0 

nProtect 0.002503 26 0 0 
Microsoft 0.002515 3 0 0 

TheHacker 0.002522 1 1 1 
TrendMicro 0.002530 2 26 26 

DrWeb 0.003517 2 0 0 
ViRobot 0.003518 1 0 0 
Panda 0.003530 1 4 17 

TotalDefense 0.003708 23 0 0 
VBA32 0.006567 2 55 55 
Comodo 0.009233 32 139 151 

CAT-QuickHeal 0.010306 1 1 1 
AhnLab-V3 0.010950 25 105 120 

F-Prot 0.011789 1 1 1 
Commtouch 0.012832 1 1 1 

eSafe 0.165981 1 8 9 
Rising 0.226335 18 10 10 

SUPERAntiSpyware 0.356355 2 0 0 
ClamAV 0.377830 1 0 0 

Antiy-AVL 0.412142 1 1 1 
Fortinet 0.670168 1 5 5 

ByteHero 0.963825 1 33 59 

 

Even though some of the AVs have very good detection rates, none of them have 
detected all the malware in our study. We can also see that some AVs have really low 
detection rates, with the bottom 7 AVs failing to detect more than 10% of all the de-
mands sent to them. We are not certain why this is the case. It could be because the 
AV vendors are failing to keep their AVs in VirusTotal up to date with their latest 
signatures even if their products in commercial installations are up to date (though 
some of these vendors do seem to be updating their products with new release num-
bers, as evidenced from the values in the third column). Alternatively, it could be 
because these AVs genuinely have low detection rates for this dataset. 
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In our previous work [6] we have also observed a similar phenomenon: six of the 
AVs had failure rates higher than 10%. We cannot report if any of these 6 AVs are in 
the subset of the 7 AVs above, since in [6] the AV names were anonymised. Before 
we proceeded with the diversity analysis in [6] we discarded the AVs that had failure 
rates higher than 10%. We justified this by stating “It is inconceivable that any system 
administrator would choose AVs that have such a bad detection rate to be used in 
their system. Hence we decided to remove the 6 worst performing AVs from further 
analysis. The decision was also influenced by our goal to make any results of the 
benefits of diversity appear fairer. A criticism that can be made if these 6 worst per-
forming AVs are included in the analysis is that improvements in detection capability 
through the use of diversity will of course be higher if you have such poorly perform-
ing individual AVs in the mix. By removing them we make our estimates of the bene-
fits of detection via diversity more conservative”. To keep a consistent comparison of 
the results in this paper with those reported in [6-8] we discarded the AVs with failure 
rates greater than 10% from the diversity analysis. The rest of the analysis is based on 
the best 35 AVs from Table 2. 

4.3 Diverse AV Results 

To evaluate the possible benefits in detection capabilities that using diverse AVs may 
bring, we looked at two different types of diversity configurations/setups: 

• 1-out-of-N (or 1ooN), where N is the total number of AVs in a given configuration – 
a malware is deemed to have been detected on a given date as long as at least one of 
the AVs detected it.  

• r-out-of-N (or rooN) where N is the total number of AVs in a given configuration 
and r is the minimum number of AVs that must detect a malware on a given date for 
it to be deemed as detected. We looked at two particular voting options: 

• majority voting: where N is an odd number and r is (N+1)/2 - this allows a tie-
breaker via majority voting; 

• trigger level: where a fixed number r of AVs have to detect a malware (i.e. “be 
triggered”) before the malware is considered to be detected – we will present 
results when the trigger level r equals 2 or 3.  

Of course, many other voting configurations are possible, but we chose these two 
above as they best represent the contrasting tradeoffs between detection rates and 
false alarm rates that decision makers should take into consideration when deciding 
on a diverse system configuration: a 1ooN configuration could be used to maximize 
the detection rates of genuine malware; a majority voting one could be used to curtail 
the false positive rate; the trigger level configurations allow a trade-off between these 
two. Note that since we are dealing with confirmed malware samples we cannot really 
present any data about false positives. However, the rooN results allow us to get ini-
tial estimates of how is the rate of correct detections of confirmed malware affected if 
one uses majority voting or trigger level setup to reduce the false positive rate. 

Due to space limitations we only present a snapshot of the results we obtained. We 
concentrated on showing a graphical representation of the results. The details and the 
tables from which these graphs are generated as well as other detailed results are 
available in [11]. The cumulative distribution functions (cdf) of the failure rate 
achieved for 1ooN, 2ooN, 3ooN and majority voting setups are shown in Figure 1.  
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(a)                         (b) 

  
(c)                         (d) 

Fig. 1. Cumulative distribution of failure rate for a)1ooN, b)2ooN, c)3ooN, and d) rooN setups 

For part (a), (b) and (c) of Figure 1 the legend shows configurations up to N = 22 
23 or 25, but in fact all 1ooN diverse configurations are contained in the graph. For 
1ooN, 2ooN and 3ooN configurations the figures visualize the trend of improving 
failure rates as we add more AV products in diverse configurations. The shape of the 
distributions for the majority voting setup (part (d) of Figure 1) is different and we see 
a decline in the proportion of perfect systems after N=29. This is because majority 
voting setups, which operate with higher degrees of diversity, require more AVs (than 
1ooN, or trigger level setups) to detect a malware before raising an alarm. This re-
quirement, in turn, can deteriorate the detection rate. The main insight is the perfor-
mance of majority voting setups is not improved by adding further AVs. 

Figure 2 presents the difference in the proportion of the non-perfect detection com-
binations in 1ooN and trigger level setups. We can see that to get 90% of all 1ooN 
systems to have a perfect detection of all malware in our dataset we need N to be 
roughly 15 (we can observe this in Figure 2 by following where the x-axis value of 15 
crosses the y-axis value 1.E-01 for the 1ooN line). To get 90% of 2ooN systems to 
detect all malware we need N to be roughly 20, whereas N for 3ooN is roughly 23.  
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Fig. 2. Proportion of diverse systems of size N that have a non-perfect detection rate 

This is another way in which an administrator could measure the added cost of seek-
ing confirmation from 2 or 3 AVs before raising alarms. 

5 Comparison of Results with the Earlier Study 

We now discuss and compare the results of the study presented in this paper with 
those from our previous study [6-8]. In summary: 

• In [6-8] despite the generally high detection rates of the AVs, none of them 
achieved 100% detection rate. 
Our observation: we also observe this with the new dataset. Eight of the AVs in 
our study had failure rates smaller than 1.E-04 but none of them detected all the in-
stances of malware (on all days) in our study either.    

• In [6-8] the detection failures were both due to an incomplete signature databases 
at the time in which the samples were first submitted for inspection, but also due to 
regressions in the ability to repeatedly detect malware as a consequence, possibly, 
of the deletion of some signatures. 
Our observation: we also observe this with the new dataset. Regressions in the de-
tection capabilities were observed even with AVs who are ranked in the top 10 in 
our dataset in terms of their detection capability.  

• In [6-8] considerable improvements in detection rates were observed from employ-
ing diverse AVs: almost 25% of all the diverse pairs, and over 50% of all triplets in 
respective 1-out-of-N configurations successfully detected all the malware. 
Our observation: we observe improvements in 1-out-of-N configurations though 
not as good as those in [6-8]: under 12% of all diverse pairs, and under 24% of all 
diverse triplets detected all the malware in 1-out-of-N configurations. To get over 
50% of all combinations to detect all the malware we need 6 AVs rather than 3. 

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33

Pr
op

or
tio

n o
f d

ive
rs

e s
ys

te
m

s o
f s

ize
 N

 
th

at
 ha

ve
 a 

no
n-

pe
rfe

ct
 de

te
cti

on
 ra

te
 

Number of Diverse AVs (N)

1ooN 
proportion 
of non-
perfect 
systems
2ooN 
proportion 
of non-
perfect 
systems
3ooN 
proportion 
of non-
perfect 
systems



 Does Malware Detection Improve with Diverse AntiVirus Products? 103 

 

• In [6-8], no malware caused more than 14 AVs to fail on any given date. Hence 
perfect detection rate, with the dataset from [6-8], is achieved by using any 15 AVs 
in a 1-out-of-N configuration. 
Our observation: We had malware that failed to be detected by up to 31 AVs in our 
dataset. So to get perfect detection rates with our dataset for all possible instances 
of a diverse configuration, we need 32 AVs.  

• In [7] the detection rates were lower for “trigger level detection” (2-out-of-N and 
3-out-of-N) and majority voting (r-out-of-N) setups compared with 1-out-of-N but 
on average are better than using a single AV. 
Our observation: We confirm that these findings are consistent with what we found 
previously. Additionally we found that the proportion of perfect majority voting 
systems is considerably higher with the new dataset compared with those reported 
in [7]: in the new analysis more than 34% of possible combinations of 14oo27 and 
15oo29 majority voting configurations achieved perfect detection. In [7] the pro-
portion of perfect detection majority voting systems never reached more than 6% 
for any of the combinations in that study. This may have implications on the choice 
of diverse setups that administrators may use; especially if false positives become 
an issue. If the detection capability against genuine malware is not (significantly) 
hampered from a majority decision by diverse AVs, then majority voting setups 
could become more attractive to administrators than 1ooN configurations. 

• In [6] significant potential gains were observed in reducing the “at risk time” of a 
system by employing diverse AVs: even in cases where AVs failed to detect a 
malware, there is diversity in the time it takes different vendors to define a signa-
ture to detect a malware. 
Our observation: This is also supported by the results in our study (though due to 
space limitations we could not elaborate on this here; see [11] for details). 

• In [6] an empirically derived exponential power law model proved to be a good fit 
to the proportion of systems in each simple detection (1ooN) and trigger level de-
tection (2ooN and 3ooN) diverse setup that had a zero failure rate.  
Our observation: we did not explore the modeling aspects in this paper. There do 
appear to be some differences between the shapes of the empirical distributions of 
the proportion of diverse systems of size N that have a non-perfect detection rate 
(Figure 2) from what is presented in [6]. The empirical distributions in Figure 2 do 
look like they follow an exponential power law model (possibly of a different form 
than in [6]), so further work is needed to check whether the model outlined in [6] 
applies to this dataset. A generic model would allow a cost-effective prediction of 
the probability of perfect detection for systems that use a large number of AVs 
based on measurements with systems composed of fewer (say 2 or 3) AVs. 

6 Discussion and Conclusions 

We reported analysis of empirical results about the possible benefits of diversity with 
currently spreading malware and compared and contrasted the findings with those we 
reported previously using a different dataset [6-8]. We verified the extent to which the 
findings from [6-8] are relevant with more recent malware. The new results were in 
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general consistent with those reported in [6-8], though there were differences. The 
consistent results were: 

• None of the single AVs achieved perfect detection rates  
• A number of the AVs regressed in their detection behavior (i.e. failed to detect 

malware which they had successfully detected in the past) 
• Considerable improvements in detection capability when using diversity 
• As expected, a decreasing ordering in the effectiveness of detection capability with 

1-out-of-N, 2-out-of-N, 3-out-of-N and majority voting diverse setups is observed 
• Using diverse AVs helps with reducing the “at risk time” of a system 

The main differences in the results were: 

• Despite significant improvements from diversity with 1-out-of-N, 2-out-of-N and 
3-out-of-N, they are lower than those reported in [6-8]. For example with 1ooN we 
observed that 12% of all diverse pairs and 24% of all diverse triplets detected all 
the malware (compared with approximately 25% and 50% respectively in [6-8]) 

• On the other hand, we observe a much higher proportion of perfect detection ma-
jority voting systems in all setups compared with the results observed in [6-8] 

• The shape of the empirical distribution of non-perfect detection systems as more 
diverse AVs are added seems different from that observed in [6]  

The aim of this work is to provide more evidence on the possible benefits of using 
diverse AVs to help with malware detection and therefore help security decision mak-
ers, and the researchers in the field, to make more informed, empirically-supported 
decisions on the design, assessment and deployment of security protection systems. 

The limitations to this work that require further research and prevent us from mak-
ing more general conclusions are as follows. First, we have no data on false positives. 
Studying the detection capabilities with datasets that allow measurements of false 
positives in addition to false negative rates will allow us a better analysis of the tra-
deoffs between the various 1-out-of-N, trigger level and majority voting detection 
setups. Second, we have only tested the detection capability when subjecting the AVs 
to Windows portable executable files. Further studies are needed to check the detec-
tion capability for other file types e.g. document or media files. Third, the AV prod-
ucts contain more components than just the signature-based detection engine which is 
what the VirusTotal service facilitates. Further studies need to include the detection 
capabilities of these products in full. Fourth, due to lack of space in this paper, we 
have not explored the modeling aspects and modeling for prediction. Our next step is 
to do further work in checking whether a form of the power law distribution observed 
in [6] also applies with this dataset. 

The current work in progress includes studying the patterns with which AVs label 
the malware when they detect them. We are interested in exploring the relationship 
between malware label changes and AVs regressing on their detection capability. In 
addition, we plan to investigate whether polymorphic malware is identified with the 
same labels by the AVs and whether this can aid with diagnosis and recovery from 
malware infections. 
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Abstract. Many software development practices aim at ensuring that
software is correct, or fault-free. In safety critical applications, require-
ments are in terms of probabilities of certain behaviours, e.g. as asso-
ciated to the Safety Integrity Levels of IEC 61508. The two forms of
reasoning – about evidence of correctness and about probabilities of cer-
tain failures – are rarely brought together explicitly. The desirability of
using claims of correctness has been argued by many authors, but not
been taken up in practice. We address how to combine evidence concern-
ing probability of failure together with evidence pertaining to likelihood
of fault-freeness, in a Bayesian framework. We present novel results to
make this approach practical, by guaranteeing reliability predictions that
are conservative (err on the side of pessimism), despite the difficulty of
stating prior probability distributions for reliability parameters. This ap-
proach seems suitable for practical application to assessment of certain
classes of safety critical systems.

Keywords: Correctness, survival probability, conservative bounds,
software safety standards.

1 Introduction

For critical applications of computers, it is important to demonstrate low enough
likelihood that design faults (in particular software faults) cause, in operation,
failures with severe consequences. A form of evidence that can support such
claims is experience from either previous operation, in the same conditions as
those for which the demonstration is needed, or “operational” testing that re-
produced those conditions. Such evidence is often not offered in a suitable form.

Other forms of evidence are usually provided, often generically called “pro-
cess” (or indirect) evidence: that methods believed to reduce the risk of defects
were applied in development and verification and validation; and that the faults
of concern are indeed likely to be absent (e.g., certain properties have been for-
mally proved, stringent inspection or testing methods failed to detect faults, any
fault revealed and considered important was fixed). Such process precautions are
required by most standards for safety-critical (and security-critical) software.

Indeed, the process evidence required by a standard for a given criticality of
the software’s functions is often the only evidence brought to support a claim
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that the software will fail with acceptably low probability. But this use of the
evidence is not supported by current software engineering knowledge [1, 2]. The
methods documented are considered by their proponents to reduce the likelihood
of faults ; but we have really no scientific bases for claiming that a specific set
of precautions will achieve a failure rate, or a probability of failure per demand,
below a specific threshold as required by the system of which the software will
be a part (e.g. a SIL level in IEC61508 [3]). Even if these methods do reduce
the number of faults, fault numbers or fault densities are not sufficient to enable
estimation of a failure rate or pfd.

There is a use of “process” evidence that could directly support claims of
low probability of failure: as supporting belief in absence of faults. The goal of
the process precautions is to avoid faults; and for products that are inherently
simple, this goal might be achieved. Software about which a verifier concludes,
by detailed analysis and/or proof, that it is correct, sometimes is correct. A
fault-free software product has zero failure probability, over any duration of
operation. We cannot generally claim to know that a software product is fault-
free with certainty; but we could bring convincing evidence about a probability
of it being so, and this probability may be high enough to help in proving that
the risk in operation is low enough. A formal introduction to this approach and
more complete arguments in its favour were given many years ago [4]; we return
to it to propose a concrete approach to its application. Advantages of reasoning
this way would include:

– the probability of pfd= 0 is a lower bound on the software’s probability of
failure-free behaviour over any arbitrarily long period of operation (a serious
advantage when making predictions for long-lived systems).

– while probabilities of failure per demand, or failure rates, depend on the
frequencies of the various demands in the environment of use (the operational
profile) of the system, a claim about probability of absence of faults would
accompany a product to each new use for which the range of demands and the
required responses are the same. Such relatively environment-independent
claims would for instance be useful for the practice of ”Safety Element out
of Context” described in ISO26262 [5].

Many different words are used for properties similar to what we discuss, saying
e.g. that the software is “correct”, or “free from faults” (or “from defects”),
or “perfect”. We choose the term “fault-freeness”. Independently of the name
used, to avoid logical fallacies one needs to apply this term carefully according to
the context. We are interested in safety critical, software-based items; then, we
will mean by “software faults” those that would cause behaviours that violate
safety requirements when the software is used in the context of interest; and
by “failures” those with respect to these safety requirements. Similar restrictive
definitions could be applied for the case of software that is critical for security.
Different definitions will apply in different contexts. For instance, a subcontractor
may wish instead to demonstrate that the software it delivers satisfies the written
specifications in its contract, irrespective of whether they are correct, and thus
define “faults” and “failures” with respect to these specifications.
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Assessments of the probability of operating for a period of time without safety
failures are formally reliability predictions (reliability with respect to that subset
of possible failures). In our mathematical treatment, we assume a system for
which the reliability parameter is a probability of failure per demand (pfd); our
approach can easily be extended to systems for which the reliability model is an
exponential, continuous-time model, with a failure rate as its parameter.

In the rest of this paper, Section 2 examines how to use a claimed probabil-
ity of fault-freeness Pp towards claims of actual interest, namely probability of
failure-free operation (reliability) over prolonged operation (possibly a system’s
lifetime). Section 3 discusses how to integrate via Bayesian inference evidence
from failure-free operation to improve the claimed reliability; it shows how to
avoid the crucial difficulty of choosing a prior distribution and obtain predictions
that are guaranteed to be conservative (not to err on the side of optimism). Sec-
tion 4 positions our contribution with respect to other past and ongoing work
on related approaches. Last, Section 5 examines how a claim of a certain Pp can
be supported, and addresses the crucial issue that absolute certainty of fault-
freeness can never bee achieved, even for a product that is indeed fault-free. The
last section discusses the value of the reported results and future work.

2 Reliability Predictions Using a Probability
of Fault-Freeness

An advantage of reasoning with claims of fault-freeness is that they define lower
bounds on long-term reliability, irrespective of the use (demand profile) to which
the item will be subjected.

Reliability predictions based on a claimed probability of fault-freeness take
a simple form: given a probability Pp of fault-freeness, the reliability of the
item at any future time t, R(t), satisfies R(t) ≥ Pp. Thus, in particular, being
able to claim a reasonably high Pp is a desirable option for systems with an
operational life of many demands but that will not receive operational testing
over a comparable number of demands. For instance, let us imagine a system
with an intended lifetime of 10,000 (statistically independent) demands. To be
90% sure that it will not suffer any accident due to the software, we would need
to demonstrate pfd≤ 10−5; but we would get at least the same confidence if we
could claim a 90% probability of fault-freeness.

We expect that claims based solely on probability of fault-freeness would
not be accepted in many application domains: users, regulators and the general
public would want to know some bound on the probability of failure for the
case that the software has faults. But such confidence bounds on the pfd can be
obtained from past operation or operational testing.

For instance, if we had 90% confidence that an item of avionic software has
no faults such as to cause catastrophic failure, this by itself satisfies the regula-
tory requirement that catastrophic failures due to this equipment be “not antici-
pated to occur during the entire operational life of all airplanes of one type”, “usu-
ally expressed” as “probability on the order of 10−9 or less” per flight-hour [6]
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(the often-quoted “10−9” requirement which has been forcefully argued to be in-
feasible to demonstrate statistically [1, 7]). Yet, the possibility that, in the unlikely
(10% probability) case of faults being present, such faults cause a high probability
(say 1%) of failure per flight, would probably seem unacceptable: some evidence
would be required that even if faults are present the pfd would still be low. But
this evidence would not need to demonstrate the 10−9 requirement. A much more
modest claim, together with the probability of fault-freeness, would ensure a fore-
cast of low enough risk during the early life of the aircraft type; and as operation
continues, failure-free operation would increase the likelihood that the software is
indeed fault-free, or if not, that its probability of failure is indeed very small.

We proceed to discuss this combination of evidence from operation or opera-
tional testing with probability of fault-freeness.

3 Inference from Operation or Testing

We examine now how to improve a reliability claim that includes probability of
fault-freeness by adding evidence from operation or testing, if no failures (of the
failure types of interest) have been observed.

Bayesian inference from operational testing is well understood. The unknown
pfd is seen as a random variable, which we will call Q, with a prior probabil-
ity density fQ(q). After observing success on tpast independent demands, the
posterior probability of surviving tfut further demands is:

R (tfut|tpast) =
∫ 1

0 (1− q)
tpast+tfut fQ (q) dq

∫ 1

0
(1− q)

tpast fQ (q) dq
(1)

According to the previous discussion of probability of fault-freeness, the prior
distribution for the unknown pfd has the form

R (tfut|tpast) = fQ (q) = Pp δ (q) + (1− Pp) fQn (q) (2)

where δ(q) is Dirac’s delta function; fQn (q) is itself a probability density
function, for the random variable “value of the system pfd conditional on pfd> 0’.

After observing tpast failure-free demands, the posterior reliability is

∫ 1

0

(
(1− q)tpast+tfut (Pp δ (q) + (1− Pp) fQn (q))

)
dq

∫ 1

0

(
(1− q)

tpast (Pp δ (q) + (1− Pp) fQn (q))
)
dq

=
Pp + (1− Pp)

∫ 1

0 (1− q)
tpast+tfut fQN (q) dq

Pp + (1− Pp)
∫ 1

0
(1− q)tpast fQN (q) dq

(3)

We can describe the operation of Bayesian inference as reducing the values of
the probability density function more for those values of pfd that are less likely
to be true in view of the observed failure-free operation. Thus seeing no failures
reduces the values of the probability density function for high values of pfd, and
shifts probability mass towards the origin (towards pfd = 0).
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3.1 Worst Case Prior Distributions and Worst-Case Reliability

A common problem in applying Bayesian inference is choosing a prior distribu-
tion for the unknown pfd, Q. Arguing from the pfd values observed for similar
software will be difficult: there has been no systematic data collection activity
that would allow this. “Expert judgement” tends then to be used. But all scien-
tific evidence is that experts’ judgement of probabilities tends only to be good
for phenomena of which they have actual experience of prediction followed by
feedback about its accuracy: textbook examples of observed good probability
prediction ability are weather forecasters and horse-racing bookmakers, who on
a daily basis assign probabilities to events and very soon observe whether the
event occurs or not. On this basis, for an expert in critical software to be ac-
curate in assigning a probability density function for a product’s pfd would be
unusual. We can expect an expert’s direct experience to include comparatively
few products, hardly any examples of pfd close to 1, and for those with high
reliability, insufficient information to judge their true value of pfd.

But for safety it is usually acceptable to demonstrate pessimistic predictions.
We can then look for a worst case prior distribution that one could assume for
the inference. We can show that such a worst case does exist, as follows. Consider
a probability density function for the unknown pfd, Q, made of two probability
masses: a mass Pp in Q = 0 and a mass (1− Pp) in Q = qN . Now, if we assume
qN to be close to either end of the interval [0, 1], reliability predictions after
observing failure-free demands will be very high. Indeed, in the two limiting
cases, predicted reliability will be 1: if qN = 1, one test is enough to show that
P (Q = qN ) = 0 and thus Q = 0 with certainty; and if qN = 0, Q = 0 with
certainty to start with.In between these extreme values, successful tests will
reduce P (Q = qN ) and increase P (Q = 0), but still leave a non-zero probability
of future failure. Thus, posterior reliability as a function of qN is highest at the
two ends of the interval, and must have a minimum somewhere in between. 1

A proof of existence of this worst-case prior distribution of pfd has two steps:

1. as a consequence of the Lemma proved in Appendix A, of all the prior
distributions with a probability mass in Q = 0, the worst-case one is indeed
a two-point distribution as above

Ps δ (q) + (1− Ps) δ (q − qN ) (4)

1 These considerations highlight another important point: a prior that is pessimistic
in terms of the reliability it implies may produce optimistic inference. Here, moving
qN closer to 1 implies, before failure-free operation, pessimism: a system likely to
fail in few demands from the start of operation. But then observing it not failing
over even few demands then logically makes it very likely to have 0 pfd (optimism).
Which prior distributions will produce pessimistic posteriors depends both on which
posterior prediction we wish to minimise (e.g. posterior reliability for tfut demands
vs posterior probability of fault-freeness) and on the specific observations (here, the
number of failure-free demands). It would thus be wrong to take from the worst-case
posterior distribution we obtain here any measure different from posterior reliability
for tfut demands, e.g. a certain percentile, or a posterior probability of fault-freeness,
and believe it to be a conservative value for use in further claims about this system.
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so that the posterior reliability (3) has the form

Pp + (1− Pp) (1− qN )
tpast+tfut

Pp + (1− Pp) (1− qN )tpast
(5)

2. among all such two points distribution, we can identify a value of qN ∈ (0, 1)
that yields the lowest posterior reliability. Thus Bayesian inference can be
applied on the basis of only Pp and N , removing the major obstacle of
assessing the whole fQn(q) distribution.

Fig. 1a shows worst case posterior reliability as a function of the ratio
tfut/tpast, for various values of the prior probability of fault-freeness, Pp.

We can read this figure in various ways:

– given a certain amount of observed failure-free operation, the worst-case
reliability predicted for a comparable amount in the future is satisfactorily
higher than Pp. So, for instance, given a prior probability of fault-freeness
Pp = 0.5 for a safety critical system in — say — a car model, after observing
failure-free operation of a car fleet using that system for one year, the worst-
case probability of failure-free operation for another year, for constant fleet
size, is above 80%. Given Pp = 0.9, it would be more than 95%. However,
as the prediction extends further and further into the future, the statistical
evidence becomes less and less adequate for confident prediction, and the
worst-case reliability asymptotically falls back to Pp as tfut tends to infinity;

– given the horizon tfut over which we want to predict reliability, the plot
shows the number of tpast observations that we need to reach for the worst-
case prediction to hit our intended target. For instance, expecting a safety
protection system to have to face 100 demands over its lifetime, Pp = 0.9 and
statistical testing over 1000 demands will give probability of going through
this lifetime without failures upwards of 95%. More detail for scenarios with
very high required worst-case reliability, and extensive operational testing, is
given in Fig. 1b; the y-axis represents the probability of at least one failure
over tfut demands. If the number of test demands is much greater than the
number of demands over the intended operational lifetime2, even modest
values of Pp give substantial confidence in failure-free operational life.

A special case of reliability prediction is the reliability for tfut = 1, i.e. the
system pfd. Fig. 1d shows the number tpast of failure-free demands one needs to
observe to achieve a desired value for the worst case posterior pfd.

4 Related Work

In computer science there has been for a long time an opinion sector opposing
the very idea of software reliability assessment, on the grounds that software can
be made, and thus ought to be made, correct: 100% reliable.

2 An example of current interest concerns plans for testing of the protection system of
the European Pressurised Reactor http://www.hse.gov.uk/newreactors/reports/
step-four/final-res-plans/resolution-plan-gi-ukepr-ci-02.pdf

http://www.hse.gov.uk/newreactors/reports/step-four/final-res-plans/resolution-plan-gi-ukepr-ci-02.pdf
http://www.hse.gov.uk/newreactors/reports/step-four/final-res-plans/resolution-plan-gi-ukepr-ci-02.pdf
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(a) (b)

(c) (d)
Fig. 1.

Several authors [8, 4, 9] have argued for the usefulness of estimating a prob-
ability of correctness. Voas and co-authors [8] argued that given a lower bound
on the pfd that any one fault can produce (“testability”), one can infer from
failure-free testing a probability of correctness. Bertolino and Strigini published
the inference procedure for this case [10, 11]; however, one cannot usually demon-
strate a lower bound on the probability of failure; it is hard to demonstrate
experimentally that an event that is very unlikely to start with, and never ob-
served, is actually impossible. Thus the treatment used here, producing a worst-
case prediction without such assumptions, is a major step towards practical
applicability.

The approach of accepting an incomplete description of prior pfd distribu-
tions, and obtaining conservative predictions by finding – among those prior dis-
tributions that match this description – the one that, combined with the actual
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observations, would yield the worst posterior value for some reliability measure
has been studied: (1) for reliability given a mean pfd [12]; (2) for the mean poste-
rior pfd, given, about the prior distribution of the pfd, (2a) a confidence level on
an upper bound [13], or (2b) some combinations among a probability of pfd= 0,
a confidence level on an upper bound and a certain upper bound [14].

Littlewood and Rushby showed how claims of “perfection” can aid assessment
of fault-tolerant systems made of diverse redundant components [15, 16].

5 Evidence for Fault-Freeness and “Quasi-Fault-Freeness”

Confidence in fault-freeness depends on “process” evidence being backed by ar-
guments about why that process produces fault-free products with high enough
probability. One might for instance reason that:

1. the current product is obtained by a process by which the same organisation
produced a series of previous products (similar in their general requirements
and complexity), that have proved to be fault-free; or

2. the verification steps that show this product to be correct (e.g., proof) are
known by experience to catch a certain, high percentage of all faults, and to-
gether with estimates of the fault numbers to be expected before verification,
this yields a probability of having no faults [17, 18, 19].

There are important difficulties. The relevance of past experience – whether
the current product is somehow an anomaly in the “population” of the past
products considered – is never certain. This is just the underlying difficulty of
all statistically-based prediction, and we need not discuss it for this specific case.
But here, the past experience itself is ambiguous: in argument 1 above, we cannot
know with certainty that such past products were fault-free, but at most that
they were scrutinised in many ways, operated for a long time without failures
or problems that would cast any doubts on their correctness, and so on. As for
argument 2, it assumes that in past experience we reached certainty about the
number of faults in a product, and again such absolute certainty is impossible.

We outline here how this difficulty can be overcome in principle. Regarding for
instance case 1 above, we consider that, if a past product successfully underwent
stringent scrutiny and a long operational life, we cannot declare it fault-free with
certainty, but it has a posterior distribution of pfd where most of the probability
mass is either in 0 of close to it. The Lemma in appendix A shows that for
worst-case reliability prediction, such a distribution can be substituted with a
single probability mass in a point qS close to 0. Similar experience for multiple
similar products will also give confidence, say a probability Ps, that the same
property applies to the current product. So, for the current product, we can use
a pessimistic probability density function of pfd similar to equation 4:

Ps δ (q − qS) + (1− Ps) δ (q − qN ) (6)

(where qN accounts for the possibility that the pfd of the current system is not
as low as that of the previous systems, and could be much worse); and find
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a worst-case value of qN , as in section 3.1. For qS close enough to 0 (in view
of tpast and tfut), again the confidence Ps, together with worst case reasoning,
could give useful reliability predictions, guaranteed to be conservative.

We have outlined this solution as a chain of reasoning steps: obtaining con-
fidence in low pfds of past products; then confidence that similar confidence in
a low pfd applies to the new product; then using the latter for worst-case infer-
ence. This entire chain could instead be formalised in a single Bayesian model,
in which all similar products have pfd distributions with parameters belonging
in their turn to a common distribution, about which the operation of each prod-
uct gives some information. Such models have been studied, e.g. [20]. A natural
next step in this research is to apply them to the current problem, and check
the feasibility of their use in concrete assessment and certification contexts.

6 Discussion and Conclusions

We have shown a way of using the evidence usually collected for assurance about
safety critical systems, together with experience from operation or realistic test-
ing, to achieve reliability predictions that can be proved to be conservative.

This relies on (i) using the process evidence to support a claim of “probability
of fault-freeness”; (ii) applying Bayesian inference from the observation of failure-
free operation and (iii) given strong uncertainty about the prior distributions to
use, applying worst-case reasoning.

This approach reduces the impact of important difficulties with the current
ways of stating quantitative claims about software failure in critical applica-
tions: the lack of scientific bases for deriving claims about pfd from the kinds
of favourable evidence usually produced about such software; the difficulty of
achieving enough operational or test experience to demonstrate very high relia-
bility over long lifetimes; last, the difficulty of choosing convincing prior distribu-
tions for Bayesian inference is obviated by the ability to do worst case inference.

The predictions thus obtained will not always be as high as desired, for at
least two possible reasons: (i) the evidence may simply not be strong enough
(not enough operational experience, not strong enough prior probability of fault-
freeness) to warrant as high a predicted long-term reliability as we seek; (ii) these
methods are intentionally biased towards conservatism; they avoid the risk of er-
roneous optimism by accepting potential errors in the direction of pessimism.
Of course, choosing to err in the direction of pessimism is a two-edged sword; it
avoids dangerous errors but may make the prediction useless. By way of compar-
ison, we show in Fig. 1c the posterior reliability obtained by assuming, together
with a certain probability Pp of fault-freeness, that the pfd, if not zero, has a
uniform distribution. This distribution might indeed be chosen as an “ignorance
prior”, when one does not know what prior to believe, and seem reassuringly
conservative because before observing failure-free demands, it is indeed very pes-
simistic: it means that if there are faults the expected pfd is 0.5. But this prior
conservatism is deceptive. It implies that observing failure-free demands very
quickly builds up confidence in future reliability: comparing Fig. 1c with Fig. 1a
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(and noting the different vertical scales in the two plots) shows how far this as-
sumption is from being conservative. Thus, if one has strong reasons to support
a specific prior distribution conditional on non-fault-freeness, (fQn(q)), by all
means one should use it; but our worst case reasoning will illustrate how much
of the predicted reliability hinges on believing that specific prior.

When performing inference using prior probability of fault-freeness (or of
“quasi-fault-freeness”), failure-free operation gradually builds up confidence (in-
creases predicted reliability). But observing even a single failure will radically
undermine this confidence: the posterior probability of pfd=0 becomes zero; not
being sure about our prior distribution for pfd when not zero (fQn(q)), and wish-
ing to be pessimistic, we must conclude that the pfd is indeed very high. Some
may object to this apparent “fragility” of the approach. We contend that it is an
advantage: it represents correctly the way confidence is gained for many critical
products. Indeed, if a product that was reputed to be practically immune from
design faults suffers a possibly design-caused failure, a normal reaction is to take
it out of service, find the design fault and fix it (creating a new product and a
new prior distribution of pfd); or demonstrate that the failure was not due to
a design fault; or that the design fault exists but brings an acceptably low pfd
in operation. In any case, the previous argument is discarded when the failure
undermines the belief in a pfd so low that the probability of seeing any failure
is also low. Our Bayesian formalisation faithfully represents this effect.

We strongly believe that this approach can improve the way that critical
software-based systems are assessed. However, we acknowledge that we advo-
cate the use of general evidence about the effectiveness of development methods
that is not widely available. For the time being, this approach may be useful to
organisations with strong internal data collection processes: they may well have
enough evidence to build arguments that they will consider sound for their own
risk assessments, or might support a claim made to a client or a safety regulator.
A safety regulator may use our kind of worst-case reasoning to compare against
the predictions that it has to judge in order to approve or reject a claim that
a system is safe enough for operation. A company for which wrongly optimistic
reliability predictions bring large economic risks (e.g. an automobile manufac-
turers, for which a doubt of a possible safety-critical fault may lead to massive
recalls) may use this approach to assess its own risk, both prior to deployment
and at any point in the operational life of its products.

A straightforward extension of this approach is to the case of continuous
reliability with the unknown parameter being a failure rate λ instead of a pfd.

Another important question for further investigation is whether more complex
Bayesian models, taking into account— for instance — experience in comparable
products as in [20] can prove useful in practice, as suggested in Section 5, to
ensure sound inference from “quasi-fault-freeness” of past products.
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Appendix A: General Lemma

If the prior probability density function of the pfd of a system is a mixture of
probability density functions fQi, then substituting any subset of these compo-
nent distributions with a set of single-point probability masses, one for each of
the fQi thus substituted, will yield a pessimistic prediction of posterior reliability
after observing failure-free demands.

Formally: let random variable Q have probability density function (pdf)

fQ(q) =

n∑

i=1

pifQi(q)dq, (7)

where
∫ 1

0
fQi(q)dq = 1; pi > 0, i = 1..n ; and

∑n
i=1 pi = 1.

Then, for any two natural numbers tpast and tfut,

∑n
i=1 pi

∫ 1

0
(1− q)tpast+tfutfQi(q)dq∑n

i=1 pi
∫ 1

0 (1− q)tpastfQi(q)dq
≥ (8)

p1(1− q1)
tpast+tfut +

∑n
i=2 pi

∫ 1

0
(1− q)tpast+tfutfQi(q)dq

p1(1− q1)tpast +
∑n

i=2 pi
∫ 1

0 (1− q)tpastfQi(q)dq
,

(where without loss of generality we have substituted the single component
distribution fQ1 ; the l.h.s. of (8) is the posterior reliability), the value of q1 is

q1 = 1−
(∫ 1

0

(1− q)tpastfQ1(q)dq

) 1
tpast

, i = 1..n, (9)

and the bound (8) is attained if fQ1(q) = δ(q − q1), where δ(x) is Dirac’s delta
function.

Proof

By Hölder’s inequality,

∫ 1

0

(1− q)tpastfQi(q)dq ≤
(∫ 1

0

(1− q)tpast+tfutfQi(q)dq

) tpast
tpast+tfut

,

i.e.

∫ 1

0

(1 − q)tpast+tfutfQi(q)dq ≥ (10)

(∫ 1

0

(1 − q)tpastfQi(q)dq

) tpast+tfut
tpast

= (1 − qi)
tpast+tfut ,

and (10), together with substituting (9) in (8), proves the lemma. QED.
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Abstract. It is difficult to demonstrate that safety-critical software is complete-
ly free of dangerous faults. Prior testing can be used to demonstrate that the un-
safe failure rate is below some bound, but in practice, the bound is not low 
enough to demonstrate the level of safety performance required for critical 
software-based systems like avionics. This paper argues higher levels of safety 
performance can be claimed by taking account of: 1) external mitigation to pre-
vent an accident: 2) the fact that software is corrected once failures are detected 
in operation. A model based on these concepts is developed to derive an upper 
bound on the number of expected failures and accidents under different assump-
tions about fault fixing, diagnosis, repair and accident mitigation. A numerical 
example is used to illustrate the approach. The implications and potential  
applications of the theory are discussed. 

Keywords: safety, software defects, software reliability, fault tolerance, fault 
correction. 

1 Introduction 

It is difficult to show that software has an acceptably low dangerous failure rate for a 
safety-critical system. The work of Butler and Finelli [4] and Littlewood and Strigini 
[21] suggests that there is a limit on the rate that can be demonstrated by testing. Giv-
en the difficulty of testing the software under realistic conditions, it is often claimed 
that this limit is likely to be around 10−4 to 10−5 failures per hour [18]. As these tests 
would typically be completed without any failures, we do not know what proportion 
of the failures are likely to be dangerous, so we have to use the bound derived from 
testing as the upper bound for the dangerous failure rate as well.  

The safety requirement for a software-based system can be far more stringent than 
the bound established by testing the software, e.g. a target of 10−9 per hour for catas-
trophic failures is required for an individual avionics function [12, 13]. The magni-
tude of the gap between the demonstrable failure rate and such targets can be illus-
trated in the following example. With a demonstrable catastrophic failure rate of 
10−4/hr per system, 100 critical systems per aircraft and 5×107 flight hours per year for 
civil jet airliners world-wide, around 500,000 fatal aircraft accidents could occur 
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every year. In practice, statistics on aircraft accidents [2] show that there are around 
40 airliner accidents per year worldwide from all causes (including pilot error). 

It is clear that real avionics systems perform far better than we are entitled to ex-
pect based on testing alone [25], but the actual performance can only be determined 
after the system has been deployed. What we need is a credible argument that would 
convince a regulator that a software-based system is suitable for use in a safety-
critical context before it is deployed in actual operation [11].  

One alternative to empirical test evidence is the claim that compliance to estab-
lished standards for safety-critical software will result in software with a tolerable 
dangerous failure rate. For example, compliance to IEC 61508 Level 4 is linked with 
dangerous system failure rates as low as 10-9/hr [9]. Unfortunately there is very little 
empirical evidence to support such a claim.  

More credibly, it may be possible to support a claim of perfection if the software is 
proved correct using formal methods [8]. In this case any failure rate target, even a 
stringent target like 10-9 per hour, would be achievable and the Probabilistic Safety 
Assessment (PSA) of the overall system could assume the software had a dangerous 
failure rate of zero. In practice however, few systems have been constructed using 
formal proof methods, and even these systems cannot be guaranteed to be fault free 
(e.g. due to errors in requirements or faults in the proof tools [6, 20]). 

Another alternative is a risk-informed based design approach [19] which focuses 
on reducing dangerous failure modes rather than seeking software perfection. Poten-
tially hazardous failure modes are identified and safeguards against these failures are 
included in the design. However there is no guarantee that a hazard-based approach 
will identify all potential hazards in the real-world environment, and a convincing 
safety argument would need to show that the hazard identification is complete. 

Safety assurance can also be achieved by the use of fault tolerance techniques [1], 
[14] like design diversity [22] that mitigates failures from individual software compo-
nents. Software design diversity can reduce the dangerous failure rate of the composite 
system as the same failure has to occur in more than one software component before it 
becomes dangerous. These techniques have been used in a range of safety-critical sys-
tems [3, 15]. 

It should be noted that all these strategies for producing safe software are vulner-
able to an error in the original specification, i.e. when there is a mismatch between the 
software requirement and the real world need. This unfortunately also limits the po-
tential for accelerated testing of software against the requirement to reduce the dan-
gerous failure rate bound as the tests will omit the same key features of real-world 
behaviour. 

In practice, systems designers use the defence-in-depth principle to mitigate the 
impact of dangerous failures in subsystems [7, 10, 20], for example,  

• A nuclear protection system failure is covered by an independently designed sec-
ondary protection system, manual shutdown and post incident control measures. 

• A flight control system failure is covered by diverse flight controls and pilot  
intervention. 
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As a result of these strategies, the dangerous failure rate of the system function can be 
lower than that of any individual software component. This can be formalized as: 

 λλ accacc p=  (1) 

where λacc is the accident rate, pacc is the probability that a dangerous subsystem fail-
ure will cause an accident and λ is the bound on the dangerous software failure rate 
established by testing. 

The problem lies in achieving and justifying an appropriate value of pacc. Empirical 
studies of software fault tolerance techniques like design diversity [16, 26] suggest 
that reductions of no more than two orders of magnitude can be achieved, while hu-
man intervention under stress may only result in another order of magnitude reduction 
in the dangerous failure giving a total reduction of 10−3

. If a dangerous failure rate of 
10−4/hr can be demonstrated from actual flight testing, it might be argued that the 
accident rate due to failure of the avionics subsystem is no worse than 10−7/hr, but this 
could still be insufficient to demonstrate the required target (e.g. 10−9/hr for an avion-
ics function). 

In this paper we will present a probabilistic software failure model that can be used 
to claim a lower contribution to the accident rate from dangerous software faults. This 
approach is novel and potentially controversial as it requires certification bodies to 
accept an argument based on a low average risk over the system lifetime, but with the 
possibility of a higher instantaneous risk when the system is first introduced. 

2 Basic Concept 

Software failures need to be handled in a different way to hardware failures because a 
systematic software defect can be fixed—once we know what the problem is, it can be 
removed. In the best case, each software fault need only fail once if it is successfully 
fixed in all instances immediately after failure, so we consider that it is inappropriate 
to use a fixed failure rate for software in a safety justification. We also need to take 
account of the fact that software failures need not be catastrophic (i.e. cause an acci-
dent), because there can be mitigations outside the software-based component. 

In the most basic representation of this idea, we consider the failures caused by a 
single fault in the software (the impact of multiple faults will be considered later).  

Clearly the number of failures that occur before the fault is successfully fixed de-
pends on the probability of diagnosing a fault and then repairing it correctly [24]. In 
the basic model, we make the following assumptions. 

• The conditional probability that a fault is diagnosed when a software failure occurs 
is pdiag. 

• The conditional probability that a fault is repaired correctly after diagnosis is prepair.  
• The success of diagnosis and repair is independent of the number of previous  

failures. 
• No further failures can occur in any software instance until the fix attempt has 

finished.  
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Given the independence assumptions made on diagnosis and repair, the probability of 
a fault being successfully fixed after each failure is: 

 repairdiagfix ppp =  (2) 

Given the assumption that no failures can occur during a fix, a simple transition mod-
el can be used to model the fixing process as illustrated in Fig 1.  
 

Fail(1) 

OK 

pfix 

Fail(2) 

OK 

pfix 

1-pfix 
Fail(3) 

OK 

pfix 

1-pfix 
Fail(n) 

 
Fig. 1. Fault correction model 

So for pfix = 0.5, there is a 50% chance of removing a fault after the first failure; 25% 
after the second failure; and so on. The mean length of this failure sequence, nfail, is: 
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Using a standard result for this geometric series [27], this reduces to: 

 
fix

fail p
n

1=  (4) 

This represents the expected number of failures over an infinite period of time, caused 
by a single software fault operating within the whole fleet of software-based units. If 
there are N faults that cause dangerous failures, then the expected number of fleet 
failures due to these faults is bounded by: 

 
fix

fail p

N
n ≤  (5) 

The other element of the model is based on the fact that safety-related computer-based 
systems typically operate within a fault-tolerant architecture (as discussed earlier). We 
can represent this external mitigation of a dangerous software failure by the probabili-
ty pacc that an accident occurs after a dangerous software failure. 

It follows that the expected number of accidents over the lifetime of the fleet due to 
N dangerous faults is bounded by: 

 
fix

acc
acc p

Np
n ≤  (6) 
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This equation implies that if N<<pfix,/ pacc, the expected number of accidents nacc<<1. 
This represents the case where there is a high probability that all N dangerous faults 
will be diagnosed and removed before the first accident occurs. A value of nacc well 
below unity is effectively equivalent to the probability of an accident over the lifetime 
of the fleet due to failures of the software component.  

Given the assumption that no further software failures occur during a fix attempt, 
the failure rate of the software has no impact on the maximum number of accidents in 
the fleet. This assumption could be satisfied if all failures resulted in an instantaneous 
fix attempt, or more realistically, it could be met if the fleet was grounded immedi-
ately after failure while the fix attempt is made. 

This independence between the upper bound on failure rate and the number of  
accidents is particularly useful in cases where the failure rate bound has not been 
estimated correctly, e.g. due to a flaw in the specification. Such a flaw would invali-
date any failure rate estimate based on testing, but the accident bound derived from 
equation (6) would still be valid provided N included an estimate for dangerous speci-
fication flaws. This differs from hardware where the instantaneous failure rate is often 
assumed to be constant, so expected accidents always increase with fleet usage. 

3 Impact of Delayed Fixing 

The basic model makes a strong assumption that no further failures will occur after a 
dangerous failure is observed. In many cases however, the fleet containing the soft-
ware components will continue to operate after the failure has occurred. Clearly, if 
repair is delayed, further failures could occur within the fault fixing interval.  

Initially we will consider the case of a single fault (extension to N faults will be 
addressed later). Let us define: 

 
λ as the upper bound on the software failure rate 
Δtfix as the time needed to perform diagnosis and repair 
τ(t) as the total execution time of the software fleet at elapsed time t 

 
We further assume that: 

• No new faults are introduced when the software is fixed. 
• The failure rate bound λ is unchanged if the fix attempt is not successful. 

These assumptions are also quite strong. New faults are known to occur occasionally 
but if the new fault is in the same defective code section, it can be modeled as the 
same fault with a reduced pfix value.  

The second assumption is conservative if the rate actually decreases after a repair 
(e.g. due to a partial fix). An increase in failure rate would not be conservative, but it 
might be argued that the rate is bounded by the execution probability of the faulty 
code section. The assumption that the failure rate is unchanged by unsuccessful fixes 
makes this process mathematically equivalent to fixing a fault with failure rate λ with 
probability pfix at a time Δtfix after a failure was observed. 



 Does Software Have to Be Ultra Reliable in Safety Critical Systems? 123 

 

To estimate the impact of delayed fixing, we first define the time needed before an 
average length failure sequence terminates, tfail, as the value that satisfies the equation: 

 failfail nt =)(λτ  (7) 

From equation (4), this is equivalent to: 

 
fix

fail p
t

1
)( =λτ  (8) 

It can be shown using Jensen’s Inequality [17] that, if the execution time function τ(t) 
is convex (i.e. the gradient is constant or increases over calendar time), the total num-
ber of failures, nfixedl, when the fix delay is included is bounded by:  

 )( fixfailfixed ttn Δ+≤ λτ  (9) 

We now consider a situation where there are N dangerous faults. Most reliability 
models assume the failures of the individual faults occur independently. If this as-
sumption is made, the failure rates sum to λ, but we will take a worst case scenario 
where: 

• The failure rate of each fault is λ. 
• Failures occur simultaneously for N faults. 
• Only one fault can be fixed after a failure. 

In this worst case scenario there will N times more failures than a single fault and the 
failures will occur at the same frequency, λ, as the single fault case. This failure se-
quence is equivalent to having a single fault with a pfix probability that is N times 
worse, i.e. where:  

 
N

p
p fix

fix =′  (10) 

The bound in equation (9) can therefore be generalised to N faults as: 

 )( fixfailfixed ttn Δ+′≤ λτ  (11) 

where: 
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fail p
t

′
=′ 1

)(λτ  (12) 

So from equation (10), t′fail has to satisfy the relation: 
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It follows that the worst scale factor k due to delayed fixing, is: 
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The basic principle for scaling the bound is illustrated in Fig 2. Without fixing, the 
expected number of failures increases to infinity. With fixing and no delay, the num-
ber cannot exceed the basic bound, and would take a time t′fail for the bounding num-
ber of failures to occur. With a fix delay, the bound is increased to allow for the addi-
tional failures that can occur in the extra time Δtfix

 needed for fault repair. 
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t'fail Δtfix

λτ(t)

Ν /pfix
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Fig. 2. Effect of fix delay on the expected number of failures 

We can also compare the expected number of failures with fault fixing (nfixed) against 
the expected number without fault fixing, (n unfixed), namely: 

 )( fleetunfixed tn λτ=  (15) 

where tfleet is the calendar time that the software is in operation in the fleet. So the 
failure reduction (and hence accident reduction), r, achieved by fault fixing is: 
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Application to Demand-based Systems. Equation (6) is directly applicable to any 
demand-based system if the fleet is grounded during a fix attempt. The increase k 
caused by delayed fixing can be calculated for demand-based systems using equations 
(13) and (14) provided we can derive an equivalent failure rate bound λ.  
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For example, if we know there is an average demand rate of d demands per unit of 
execution time and the upper bound on the probability of failure on demand is f (e.g. 
from accelerated testing), the effective failure rate per unit of execution time is: 

 fd=λ  (17) 

4 Theory Applied to an Avionics Example 

To illustrate the potential gains achievable by including fault fixing, we will apply the 
theory to a hypothetical avionics example with the following parameters 

 
 c 10 unit sales per month 
 u 0.6 (fraction of time in use)  
 N 1 
 λ 10−4 failures/ hour  
 pfix 0.1 
 pacc 0.001 
 

Note that the figures used are only estimates, but are considered to be realistic. The 
number of dangerous faults N is taken to be one as we assume thorough levels of 
testing and analysis (especially for the safe-critical portions of the software). The 
assumed failure rate represents a year of realistic flight testing (e.g. in ground based 
tests and actual test flights). The probability of an accident pacc is assumed to be small 
because an aircraft is engineered to tolerate failures of specific components (via 
standby systems, pilot override, etc). The pfix probability is actually the product of 
diagnosis and repair probabilities, i.e. pfix = pdiag⋅prepair. For critical software we expect 
the repair probability achieved by the software support team to be close to unity, so 
pfix is largely determined by the diagnosis probability, which is estimated to be around 
0.1 as any hazardous incidents will occur in-flight, and diagnosis relies on later recon-
struction of events based on in-flight recording data.  

If the fleet is grounded after a dangerous failure, the basic model applies and we 
would expect 10 failures (from equation (3)) and 0.01 accidents (from equation (6)) 
over the fleet lifetime. 

If there is delayed fixing, the k value has to be computed using the execution time 
equation. With a linear growth in the fleet of avionics units at c per month the execu-
tion time function can be shown to be: 

 2

2
)( t

cu
t =τ  (18) 

We can use equations (13) and (14) and the execution time function (18) to com-
pute the scale-up factor k. The impact of different fix delay times (Δtfix) on k and the 
expected number of accidents is shown in Table 1. 
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Table 1. Expected Accidents Over Infinite Time for Different Software Fix Times 

Δtfix (months) k nfixed nacc

0 1 10 0.010 
1 1.3 13 0.013 
2 1.7 17 0.017 
3 2.1 21 0.021 

 
With a 3 month delay in fixing, the bound on the expected number of fleet accidents 
is only double the number predicted by the basic model (with no fix delay). 

The upper bound on the mean accident rate λacc over the fleet lifetime is:  

 
fleet

acc
acc T

n≤λ  (19) 

where Tfleet is the total execution time of all the avionics units.  
From equation (18), if unit sales continued for 5 years, the total number of operat-

ing hours, Tfleet, is around 1.6×107 hours. So the upper bound on the mean accident 
rate λacc over the fleet lifetime for a 3 month fix delay is: 

 
 λacc ≤ 1.3×10-9 accidents per hour 
 

This bound on the mean accident rate is close to the target of 10−9 accidents per hour 
required in avionics standards [12][13]. The bound could be reduced to less than 10−9 
accidents per hour if a shorter fix delay is used (e.g. 1 month).  

By comparison, if we only relied on external accident mitigation, the bound on the 
mean accident rate would be the same as the initial rate paccλ. For the avionics exam-
ple, the expected rate would be 1×10-7 accidents per hour. 

So for this choice of model parameters, the inclusion of a fault removal model has 
reduced the expected accident rate over the fleet lifetime by two orders of magnitude. 
Clearly the reduction varies with the parameters used. Table 2 shows the accident 
reduction r achieved by fault fixing for different failure rates assuming a 3 month 
delay in fixing and a 5 year operating period. 

Table 2. Accident Reduction for Different Software Failure Rates 

λ 
(per hr) 

Mean Accidents / hr Reduction  
factor r (no fix) (fix) 

  10−3   10−6 3.5×10−9    0.0035 
  10−4   10−7 1.3×10−9    0.013 
  10−5   10−8 0.8×10−9    0.08 

 
It is apparent that the greatest reduction occurs when the software failure rate λ is 
high. This is not surprising as the mean accident rate is relatively stable (regardless of 
λ) when there is fault fixing, but it increases linearly with λ without fault fixing. 
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5 Discussion 

The fault fixing model predicts an upper bound on the total number of software fail-
ures (and associated accidents) over the fleet lifetime. The impact of fault fixing is 
greatest in large fleets where the expected number of failures without fixing would 
greatly exceed the expected number with fault fixing. In the avionics example, the 
claimed accident rate can be two orders of magnitude less than would be predicted 
from testing alone. In particular, once a relatively modest (and demonstrable) level of 
software reliability is achieved, further reductions in failure rate make little difference 
to the ultimate number of failures and accidents.  

This type of probabilistic argument is not currently accepted in safety standards or 
by certification and regulatory bodies. Early users of the system could be placed at 
greater risk if the instantaneous failure rate is close to the limit established by testing. 
However it might be more acceptable as a support to a primary argument such as a 
claim of zero faults in critical portions of the software. The supporting argument 
would be that, even if the claim of zero dangerous faults is invalid, there is high prob-
ability that a software fault never causes any accident over the lifetime of the fleet 
(e.g. 98% in our avionics example). 

If the theory is valid, equation (6) can also be helpful in choosing design trade offs. 
We note that an order of magnitude change in the predicted number of accidents can 
be achieved by an order of magnitude change in either: N, pdiag, or pacc. Knowing the 
contribution of these parameters, design trade-offs can be based on cost and technical 
feasibility. For example, sending extra data to a shared black-box data recorder to 
improve pdiag might be more cost effective than additional effort to reduce N. Alterna-
tively installing a backup system using different technology might double the cost but 
improve pacc by orders of magnitude. 

The theory also shows that the operational context can affect the accident probabil-
ity. Obviously the repair probability pdiag directly affects the number of accidents, and 
we can minimise the scale-up k due to delayed fixing by considering equations (13) 
and (14). For example k might be reduced by decreasing the fix delay time Δtfix or by 
reducing the growth in usage τ(t) for some trial period. 

To successfully apply the model, evidence will be needed to show that the model 
parameter estimates are either realistic or at least conservative. Values, like N, could 
be derived from past experience with similar systems, (e.g. analysing FAA directives 
[5, 25]) but further research is needed on quantifying the model parameters.  

More generally, the same theory should be applicable to any systematic design 
fault that is amenable to fault fixing such as software security vulnerabilities, hard-
ware design faults or requirements faults.  

6 Summary and Conclusions 

This paper has presented a basic fault-fixing model that shows there is an upper 
bound on the expected number of dangerous software failures if faults are diagnosed 
and fixed. If the fault fixing is immediate, this bound is independent of the software 
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failure rate. When this bound on failures is combined with external failure mitigation, 
there can be a high probability that an accident is never caused by dangerous software 
failure regardless of the size of the fleet using the software-based component. 

We have also presented a refinement of the basic model that allows the bound to be 
increased to allow for a delay in fixing a detected fault. This revised bound is depen-
dent on the software failure rate, but the increase is typically quite small. 

The theory was illustrated by an aircraft avionics example where fault fixing re-
duced the expected number of accidents by around two orders of magnitude over the 
fleet lifetime.  

If the assumptions behind the theory are valid, it could provide an additional means 
of arguing that critical software-based systems are safe prior to deployment even 
though ultra high reliability of the software cannot be demonstrated by prior testing. 

The theory might also be helpful in making design and support trade-offs to mini-
mize the probability of an accident. 

We also suggest that the theory could be applicable to any systematic fault (e.g. in 
requirements, hardware, software or mechanical components).  

Further empirical research is recommended to validate the model assumptions and 
quantify the model parameters.  
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Abstract. This paper describes a tooling platform that supports reasoning about 
railway capacity while ensuring system safety. It uses a Domain Specific Lan-
guage (DSL) that allows signalling engineers to design stations and junctions, to 
check their safety and to evaluate the potential improvements of capacity while 
applying various alteration patterns that change the railway schemas. The plat-
form uses a combination of model checking and SMT solving to verify system 
safety in the most efficient and user-friendly way. It includes several plug-ins 
that evaluate various capacity parameters. The tool uses the Eclipse technology, 
including its EMF and GMF frameworks. It has been developed in close coop-
eration with the Invensys Rail engineers and applied in a variety of medium-
scale projects, which has demonstrated its ability to help understand the effects 
that changes in the plans and schemas can potentially have on capacity. 

Keywords: Domain-specific language, Eclipse, EMF, GMF, Event-B, ProB, 
SMT solvers, model transformation, capacity-improving patterns. 

1 Introduction 

Ensuring railway safety has been an area of successful application of formal methods 
and tools (the most famous example being the use of B by Matra for developing the 
automated metro line 14 in Paris [1]). There is a substantial body of work on formal 
verification of railway safety. For example, paper [2] defines a model-based devel-
opment method for railway control systems that uses a domain-specific notation from 
which the models of the controllers and the domain are generated to be used to verify 
the safety properties by model checking. Another domain-specific language (DSL), 
called the Train Control Language (TCL), is in the core of the method in [3], used to 
verify and validate the safety of stations; this is achieved by transforming the TCL 
models into the Alloy models used for constraint solving. These two methods are 
supported with tools, while the models are created in DSLs and automatically mapped 
into a formal notation used for safety verification. 

There are many reasons why improving railway capacity is now one of the top pri-
orities for the railway industry, including the need to satisfy passengers’ requirements, 
tackle global warming and save running costs. Clearly, any improvements in capacity 
must not undermine system safety. Except for the work conducted by our collabora-
tors in the SafeCap project [4, 5], the existing work on formal verification of railway 
safety does not address safety and capacity in an integrated way.  
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2 The SafeCap Approach  

Designing railway nodes (junctions and stations) for high capacity is an art: experi-
enced engineers know the patterns that lead to success or failure and are aware of the 
bottlenecks that exist within their designs. However, such an intuitive approach lacks 
scientific foundations, which are the basis of any advanced engineering practice. To 
this end, the SafeCap project [5] aims to provide a scientifically sound framework that 
will allow railway engineers to study railway nodes as well as design patterns, ad-
dressing safety and capacity in an integrated way 

The general approach in SafeCap consists of the following steps. First, engineers 
model a junction or a station and evaluate its capacity. At the second step, they try to 
improve capacity by applying alteration patterns (in effect model transformations). 
These patterns can capture various changes in the route design, track layout and sig-
nalling, etc. At the next step the capacity of the modified model is evaluated. The 
safety of models is formally proven at every step. This approach allows the engineer 
to experiment with various designs to achieve better capacity.  

The importance of tool-supported formal reasoning is well recognised by both en-
gineers and academics. This is why in the SafeCap project we have been developing a 
tooling platform that can support domain experts, including signalling engineers, in 
making rigorous decisions about improving capacity. To make our tool more accept-
able for industrial users, we follow the push-button approach, in which safety verifi-
cation and capacity evaluation are conducted in a transparent fashion. Another choice 
we made in designing the platform is the exclusive use of a graphical and intuitive 
DSL, saving engineers from the need to understand intricate formal notations. One 
more feature of the tool is extensive support for representing and reusing modelling 
patterns that capture best practice and experience. All this should help the platform to 
be widely accepted by industry. 

3 Domain Specific Language  

SafeCap offers a fairly compact core DSL. The basic element of a SafeCap schema is 
the definition of railway topology. The main concepts of the DSL are tracks, nodes, 
ambits (train detection units), routes, lines and rules. The SafeCap DSL is a formal 
language: a schema is interpreted as a hybrid transition model - a model mixing con-
tinuous and discrete behaviours. The discrete part is employed to derive static verifi-
cation conditions (theorems) and, as a supplementary technique, to help discover tran-
sition traces leading to the violation of safety conditions. The continuous part refines 
the discrete part with the notions of train acceleration/deceleration, point switching 
and driver reaction times, and so on. 

Static verification conditions are logical constraints over the elements of a schema 
expressing requirements to schema topology, formation of routes, placement of speed 
limits and signalling rules of routes and points. If all such conditions are discharged, it 
is guaranteed that the schema is safe for any possible rail traffic. Together, the condi-
tions form the theory of the SafeCap schemas [6].  
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4 The SafeCap Tooling Platform 

The following aims were set for building the tool support. Our plan was to use an 
industry-strength modern technology that would allow us to create a tooling environ-
ment that is open for extensions and supports graphical modelling using our DSL. The 
technology should have mature support for model transformation, to allow us to deal 
with different representations of the schemas. We wanted to use a technology that 
smoothly supports tool development on various operating systems. 

We have decided to use Eclipse as the basis for our tool. Eclipse is a mature and 
extensible IDE framework that offers a powerful and flexible customisation frame-
work. The concept of proving extra functionality via self-contained plug-in projects 
makes it easier to support and maintain a large project with a team of developers.  

The SafeCap platform uses the Eclipse Modelling Framework (EMF) - a versatile 
tool for the implementation of a custom domain-specific language. We have found it 
sufficient to capture the static part of SafeCap DSL. 

We use the Eclipse Graphical Modelling Framework (GMF) that builds on top of 
the EMF to provide means for the rapid construction of graphical editors manipulat-
ing EMF models. The GMF offers a layer of abstraction above the code level to de-
fine core properties of editors. This is how the SafeCap editor is built.  

Openness is the key property of the platform. To make the tool truly open and cus-
tomisable, it was decided to support a scripting language that executes directly within 
the platform and is used to implement its main functionalities (verification, capacity 
assessment and improvement patterns). This frees users from having to learn Java and 
Eclipse API in order to customise the platform logic. The Epsilon family of languages 
[7] was deemed perfectly suitable for the task. Among other things, the SafeCap plat-
form uses Epsilon to support creation and application of user-defined patterns for 
transformation of schemas. At the moment, these are used during modelling and ca-
pacity improvement. We plan to extend the application of patterns to support auto-
matic search for transformations that improve capacity. 

5 Safety Verification Architecture 

Safety is verified by formulating railway schema properties and operational principles 
in a rigorous notation. The desire to have a strict mathematical foundation spanning 
the principal aspects of railway operation has led to a distinctive four-layered archi-
tecture of the verification back-end. 

In this architecture, the first (schema topology theory) layer is responsible for veri-
fying logical conditions expressed over schema physical topology (i.e., track connec-
tions, point placement) and logical topology (i.e., routes and lines as paths through a 
schema). These verification conditions include connectivity of track topology (no 
isolated pieces of track), continuity of routes and lines, etc. Typically these conditions 
do not uncover problems with an existing track layout, for any such defect would 
have a profound effect on the overall integrity - something unlikely to not have been 
discovered in an operational railway. It is the automated and semi-automated altera-
tion and generation of track layouts (e.g., via the improvement patterns) that necessi-
tates a careful inspection of these basic properties.  
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In the control table theory layer the conditions for operational safety are defined. 
These are derived, via formal proof, from a set of discrete (inertia-less) train move-
ment rules into a set of theorems over the properties of control tables. We depart from 
the convention of associating control rules with trackside signals. Instead, we consider 
a more general situation where differing set of signalling rules are applied depending 
upon the ultimate train destination or train type. The conditions proven for a control 
table demonstrate such properties as the absence of potential collision (as may hap-
pen, for instance, when a proceed aspect is given while a protected part of track is still 
occupied) and derailment (due to incorrect point setting or point movement under a 
train). Certain properties, notably the control of the approach speed by means of the 
timed occupation of a track section, are not verified at this stage, as formalisation at 
this layer does not capture train inertia. Speed limit conformance and other time-
related properties are formulated at the fourth layer. 

The first two formalisation layers do not define the notion of a train. However, 
there is a link between the conditions over control tables expressed in the second layer 
and the notion of train movement. The definition of the latter is the purpose of the 
third (discrete driving model) layer. This layer defines principal events that are ob-
served during railway operation: train movement, route reservation, point locking, 
route cancellation and so on. On the basis of these one can state operational safety 
principles by using safety invariants (e.g., trains are not overlapping) or by explicitly 
modelling possible operation faults, e.g., uncontrolled carriage movement on an adja-
cent route (to ensure the correctness of flank protection). Apart from its role in the 
validation of the first two layers, the discrete operational rules of the third layer are 
used to visually animate train movements over a given schema. There are two main 
applications for such an animation: replaying the results of model checking of discrete 
driving rules in order to pinpoint the source of an error in a topology or a control ta-
ble; and helping an engineer to understand how trains may travel through a schema 
with a given set of control rules.  

Train inertia is the focus of the final modelling (inertial driving model) layer. This 
layer is built from the same primitives as the rules of the third layer, with the main 
difference that discrete rules are defined as atomic sequences of primitive steps (for 
instance, a train head movement, in one step, moves the train head position, unlocks 
an ambit and, sometimes, resets a signal to red), whereas the more detailed inertial 
model accounts for the duration of every action and executes concurrent actions in a 
more realistic way than the lock-step fashion of the discrete model. This transition to 
inertial, timed transformation uncovers a wealth of concerns. The most essential one, 
perhaps, is whether the properties of operational safety still hold for the inertial 
model. There is not an unconditional answer to this question. In fact, one can show a 
certain railway configuration accepted by the inertial model to be unsafe. The ability 
to run a detailed simulation (with a fixed service pattern) that accurately deals with 
track gradient, engine performance, train weight, etc., gives access to rich information 
about realistic node performance. The current version of the tool provides an imple-
mentation of the inertial models used is simulation only. The on-going work will sup-
port the full approach for analysing both safety and capacity. 
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The primary mechanism for verifying safety is constraint solving. After the schema 
is defined, the platform mechanically derives verification conditions and translates 
them into an Event-B model that serves as an input notation for an SMT-LIB-
compliant SMT solver (Yices [8]). One downside of applying constraint solving in 
our context is that we cannot always receive a useful feedback to indicate the source 
of a problem should an error be discovered. To compensate for this, whenever a SMT 
solver detects a problem, the tool runs the ProB model checker [9]. Unlike solvers, the 
model checker explores the state space of a discrete transition system that gives se-
mantics to the SafeCap schemas represented as the Event-B model with the DSL  
axioms defined in the machine context. It is thus able to report a sequence of steps 
(discrete train movements, point switching, etc.) that leads to violation of a safety 
condition (e.g. a collision or derailment). In most cases, such a sequence can be visu-
ally replayed by the tool platform to help the user debug the schema.  

This approach to safety verification is superior to the traditional analysis that uses 
model checkers in terms of efficiency and of the size of the models analysed. Another 
advantage is that the feedback received by users is expressed in the DSL.  

6 Reasoning about Capacity  

Depending on the objectives of modelling, the capacity assessment is conducted by 
calculating a value according to one of the predefined formulae or by running a de-
tailed simulation of train movements. The platform has a range of plug-ins supporting 
various capacity metrics. Below we introduce some of the capacity plug-ins. 

Theoretical line capacity. This criterion assesses the capability of a line to support 
a certain amount of traffic irrespective of signalling constraints and safety require-
ments. The plug-in calculates a theoretical line capacity in trains per second. 

Critical section. One obvious weakness of the theoretical capacity method is its in-
ability to capture the notion of shared or intersecting track and hence the interference 
of traffic on crossing lines that leads to decreased capacity. The plug-in calculates the 
maximum time a train on a given line occupies the critical section.  

Wasted track capacity. One could take a different viewpoint and try to assess how 
efficiently the existing signalling makes use of the available track. Assuming a certain 
traffic pattern, the plug-in measures the minimum amount of free track observed dur-
ing a traffic scenario. The fundamental idea is that line interference and inefficient 
signalling tend to increase train headways. 

Cumulative travelled distance. This plug-in measures the total distance travelled 
by all the trains that have entered the junction. The measurement is done for a set 
period of time and starts after a certain delay in an attempt mitigate the effect of the 
initial absence of traffic. The guiding intuition here is that a more efficient layout and 
signalling favour a balance between higher average speed and less wasted capacity.  

Satisfaction of schedule. If there is a detailed specification of a desired traffic pat-
tern through a junction then one may take the ability to satisfy the pattern as a meas-
ure of capacity. A service pattern defines train kinds and the times trains appear at  
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boundary nodes of a schema during a period known as pattern duration. The plug-in 
checks schedule satisfaction by running a timed simulation of the hybrid model.  

7 Experience of Using the Platform  

To evaluate the SafeCap platform, we developed two large-scale examples modelling 
the existing UK stations. The primary objective for modelling the case studies was to 
improve and evaluate the scalability and usability of the tool. The first case study 
modelled is a fragment of the Thameslink line around the Kentish Town station. The 
fragment is 5.5 km long, with the model containing 90 ambits and 63 routes. The 
modelling took 37 man-hours. Our main activity was the translation of traditional 
railway diagrams into the SafeCap DSL using the platform. 

 

 

Fig. 1. Carlisle central station and junctions on approaches 

The second case study is the Carlisle Citadel station with the North, South, and 
Caldew junctions (see Fig. 1). The modelled fragment is 2.6 km long and is made of 
70 ambits and 79 routes. The translation activity took 45 man-hours. The safety veri-
fication of the schema topology requires 35 minutes on a modern computer and goes 
through 877 individual instantiated conditions. Fig. 2 shows the editing mode of the 
SafeCap platform for this model. The main view gives a visual representation of the 
track layout and some signalling mark-up for the Carlisle station platforms.  

The platform provides a blocking diagram tool that tries to reduce the time of 
schedule satisfaction by identifying and reducing the wasted track capacity. This was 
used to conduct a short capacity-improvement experiment (Fig. 3). The total time 
during which a set of trains on particular lines (a service pattern) travels through the 
schema was taken as a measurement of capacity. Using the tool to identify a bottle-
neck made it possible to improve the capacity by 5%. (We should note here that we 
could not claim that this will always improve the capacity of the real station, as there 
are many factors to be considered, such as cost or validity of our assumptions.) 
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Fig. 2. Model of Carlisle station 

 
Fig. 3. Blocking diagram 

8 Conclusion and Future Work 

The SafeCap layered architecture proved to be useful for efficient railway modelling 
using formal techniques developed by computer scientists. We are now training a 
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group of engineers to get their feedback, understand how this tooling fits into their 
current practice and capture their best practice in a set of capacity-improving patterns. 

The open nature of the platform will allow us to substantially extend its function-
ality in the near future. We are already working on adding plug-ins for reasoning 
about energy and cost. This will be an important step in making the SafeCap approach 
practical, as capacity improvements should be always evaluated against their cost and 
energy implications. Another potential extension is to integrate tool support for rea-
soning about line capacity in Timed CSP [4] to allow us to add extra capabilities of 
capacity measuring using timed-based formal reasoning. 

One of the advantages of applying formal modelling in the railway domain is that it 
makes it equally easy to verify the existing operational principles and novel, untested 
ideas. The level of confidence a formal approach brings is especially valuable in overcom-
ing the healthy scepticism towards novelty in the field known for its conservatism. Thus, it 
perhaps makes sense to make a step further and claim that a set of uniform operational 
principles demanding the same signalling practice homogeneously deployed across a net-
work is no longer a relevant approach at the age when most railway aspects are controlled 
by a computer. In-cab signalling and radio-based train position detection, like that of 
ETCS Level 3, can be used to implement a dynamically reconfigurable signalling logic 
that adapts, nearly instantaneously, to real-time capacity demands and emerging traffic 
patterns. Adapting our layered approach to deal with the task of dynamically generating 
formalisation layers will be an exciting technological challenge.  

More information, including demos, examples, videos and documentation, can be 
found on the platform site (safecap.sourceforge.net). The tool is developed on 
SourceForge and publicly distributed. A users’ and developers’ community will be 
created to ensure the platform quality and to improve its applicability.  
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Abstract. Road traffic signals are used to signal information to drivers (e.g., red 
signal to stop). A controller residing in a local cabinet is managing the traffic 
signal. Depending on the desired traffic situation, the corresponding traffic 
signal is switched on or off via the power line. For the time being, there is no 
programmable logic included in each traffic signal. As a result, there is a single 
type for each application available e.g., due to different power supply levels or 
light output. In addition, functionality of traffic signals is limited so that its 
status information cannot be retrieved. 

This paper presents an approach to traffic signals for safety-critical 
applications based on an embedded system. It includes a presentation of safety-
related hardware and a microcontroller with embedded safety-related firmware. 
The result is a platform to be used in various applications and meeting safety 
and performance requirements according to standard EN 50556 and VDE 0832.  

Keywords: Safety-related embedded system, safety standard, road traffic 
signals. 

1 Introduction 

Road traffic signal systems are a common way to control traffic in urban areas via 
optical traffic signals. Often they are installed at intersections to allow vehicles and 
pedestrians passing the intersection in a safe way. Such a system typically consists of 
a road-side controller located in a cabinet at the intersection, traffic signals, and traffic 
sensors and detector (cf. Fig. 1). Depending on the application, the controller may be 
linked to a traffic management center.  

The system can work in a periodic manner or demand driven. In case of the first 
option the road side controller uses the same time schedule for each direction 
throughout a predefined period. For example, each direction gets 45seconds a green 
signal. The second option means that depending on the traffic flow or someone 
pressing a button the status of the traffic signal is changed. 

In general, a road traffic signal used to signal drivers includes three traffic signal 
modules (TSM) (red, yellow, green), others only consist of two TSM (e.g., at 
pedestrians crossings). A TSM is turned on or off when the road-side controller 
switches power supply on or off. Getting information on the status of a TSM 
(broken/not broken, on/off) is handled by the level of current. As long as the current is 
above a predefined value, the TSM is considered to be working. 
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Fig. 1. Road traffic signal system 

TSMs across Europe and especially worldwide differ in their size, but also in the 
electrical characteristics, maximum brightness or way of application. E.g., there are 
TSMs with 24V or 40V available. Today’s TSM are based on LED technology (cf. 
Fig. 2). Therefore, the TSM consists of 1-5 LEDs (e.g., depending on the light output 
or supplier of TSMs) placed on a LED-board. They are driven by a PWM-controller 
including non-programmable logic. Finally, a red TSM signaling “STOP” is 
considered to be safety-critical because a malfunction can lead to dramatic causalities. 
According to European and national standards such as EN50556 [2] or the German 
standard VDE 0832 [1], road traffic signals have to fulfill a number of requirements 
relating to the hardware, the software, the application, the integration within an 
overall system and the engineering process. 

 

 

Fig. 2. Traffic signal module  

The objective of this paper is to present a LED-based traffic signal module 
platform with an embedded system that meets the requirements of EN 50556 and of 
VDE 0832. Benefit of such an approach is that  

• a variety of applications with a single platform can be supported, 
• an embedded firmware can provide functionality to exchange data with a road-side 

controller, 
• detailed information of failures in traffic signal modules can be sent to a road-side 

controller, 
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• a reduction in energy consumption of traffic signal system because the level of 
current to detect “working TSM” can be reduced significantly, 

• the increased functionality (e.g., counting working hours) can support maintenance 
activities. 

The remainder of the paper is structured as follows: Section 2 gives an overview of 
relevant parts of the standards VDE 0832 and EN 50556, respectively. Section 3 
presents a hazard analysis using HAZOP analysis. Section 4, in turn, introduces the 
embedded system platform architecture derived from the safety and domain specific 
requirements. In addition, Section 5 proves the architecture by going through a typical 
use-case. The main steps within the architecture are highlighted. Finally, Section 6 
concludes by summarizing the key facts of the work carried out. 

2 Standard 

The German standard VDE 0832 consists of seven parts (100, 110, 200, 300, 310, 
400, 500) and defines requirements on the development, construction, validation and 
maintenance of road traffic signals. In contrast to generic standards like IEC 61508 
[3], this standard is relating to a defined product.  

Part 100 of the standard is identical with the German version of EN 50556 
including a national foreword. It is relevant for the hardware related part of the 
embedded platform. 

The prestandard part 500 gives requirements on the safety-related firmware of road 
traffic control systems. This part is mainly referring to IEC 61508 and its 
requirements. Put succinctly, it specifies non-functional and functional measures for 
the various lifecycle stages to ensure a certain level of software integrity. 

VDE 0832 does not mention risk analysis, but assumes that every critical fault can 
be either detected within a predefined time frame (e.g., 50ms in case of a TSM) or 
leads to a safe state not causing any harm to the user.  

With all the facts in mind, designing a TSM as an embedded system is a 
challenging task. First, safety requirements coming from the related standard have to 
be met. These include the detection of safety-critical faults within a predefined time 
interval. Second, strict timing requirements have to be considered (e.g., a blinking 
TSM means that power is turned on and off every second) to guarantee synchronously 
running traffic signals. Additionally, the life-time of a traffic light system is up to 30 
years. Hence, a new TSM must comply with legacy systems to support retrofit.  

3 Hazard Analysis 

Before starting with the hazard analysis, the scope of hazard analysis has to be 
specified as addressed e.g., in the IEC 61508-1 life-cycle model. The equipment 
under control to be looked at is a Traffic Signal Module (TSM). It shall  

• be based on an embedded system (microcontroller with firmware), 
• provide functionality to communicate with a road-side controller, 
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• provide support to parameterize e.g., voltage level or maximum level of brightness, 
• support additional features such as compensation of degradation of LEDs as added 

value. 

The TSM displays a red signal. The application area of the TSM shall be at an 
urban intersection. The TSM is controlled by a road side controller via a protocol 
(e.g., to receive status information from TSM) and the power lines to switch on/off.  

Table 1. HAZOP of function “Switch on red traffic signal module” 

Guideword Deviation (Possible) Cause Effect 

MORE Brightness level of 
LEDs higher than 
expected  

LED current too 
high 

Brightness level 
not as intended  

LESS Brightness level of 
LEDs lower than 
expected 

LED current too 
low 

Brightness level 
not as intended 

REVERSE LEDs are switched off, 
but shall be switched on 
(“Red signal” is not 
displayed) 

Broken LED TSM 
unintentionally 
switched off 

NO No LEDs are switched 
on (“Red signal” is not 
displayed) 

No LED current TSM 
unintentionally 
switched off 

LATE LEDs are switched on 
too late (“Red signal” 
displayed too late) 

Blocking function 
in the firmware 
(deadlock) 

TSM 
unintentionally 
switched off 

 
This hazard analysis is relating to hazards causing harm to the user. Therefore, the 

display as interface to the user (e.g., a driver on the road) is of interest. Beyond the 
scope of the analysis is data exchange by means of a protocol between a TSM and a 
road-side controller because various approaches and implementations are already 
available [7]. 

Since the impact of failures to the environment shall be investigated, a hazard and 
operability (HAZOP) study is a proper approach. A HAZOP study according to Def-
Standard 00-58 [4] is a well-defined method to analyze a system at its boundaries. 
The HAZOP includes pre-defined keywords that are applied to specify the deviation 
from the expected result, the cause of the deviation and the (negative) effect on the 
system or environment. 

In Table 1 the HAZOP of the function “Switch on red TSM” is presented in a 
general way. The content of the column “effect” mentions the consequence of a 
deviation to be seen on the interface to the user. The column “possible cause” 
includes the typical faults that have to be address by safety measures.  



142 T. Novak and C. Stoegerer 

 

4 Embedded System Architecture 

The architecture of the embedded platform has to adhere to product specific and 
safety requirements. Additionally, constraints posed on the platform coming from the 
legacy system have to be taken into consideration. In the following, a general 
hardware and software architecture of the embedded platform is being presented. 

4.1 Hardware Architecture 

The architecture consists of two major parts as shown in Fig. 3: Power Supply Unit 
(PSU) and LED unit. The PSU is responsible to supply the LED unit with an adequate 
level of current and voltage. In addition, it takes care of monitoring the LED unit and 
providing an interface to a road-side controller. The LED unit, in turn, includes a 
control loop to supply LEDs with a constant level of current. 

 

 

Fig. 3. Hardware achitecture the embedded platform 

In detail, the hardware architecture has to support 

• the control of the input power and the LED current: After turning on power supply 
at the road-side controller, the microcontroller starts and is sensing input voltage 
(U) till it reaches the predefined voltage level. Next, the microcontroller starts the 
analogue switching regulator and triggers the value for the regulated output voltage 
(Usoll). At the same time the LED current is triggered through the low dropout 
regulator (Isoll) and measured with the microcontroller functionality (Iist). 

• monitoring of LED: The LED voltage (Iist) is monitored by the microcontroller 
(LED fail).  

• entering a safe state by means of a fuse: The microcontroller is supplied with 
power over a fuse. At startup the fuse will be activated if the microcontroller does 
not bypass the fuse within a predefined time interval (see dashed line in Fig. 3). In 
case of any safety-critical failure, the bypass is switched off and deactivates the 
microcontroller instantly. 

Interface to 

Road Side 
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4.2 Firmware Architecture 

The safety-related firmware is running on a microcontroller embedded in the power 
supply unit (cf. Fig. 3). It is a 3-tier structure as illustrated in Fig. 4. The lower layer 
called “driver layer” comprises the hardware related functionality. The application 
layer includes the management functionality required to run and monitor the system. 
The application is located at the upper layer and is triggering the required 
functionality. 

 

 

Fig. 4. Firmware architecture 

Driver Layer. It consists of seven modules. Timer is mainly used to trigger the 
digitalization of input current/voltage and input current within the ADC module. The 
PWM is used to control the LED current. The Monitor module includes functionality 
to trigger the safe state via the physical I/O in case of a critical failure. The reason for 
a safe state or parameter values are written to the non-volatile memory within memory 
access module. Finally, the UART is used to send or receive bytes. 

Application Layer. It includes five modules. LED control and LED monitor are 
called by the application to turn the LED on/off and to check their status, respectively. 
External communication provides the functionality to exchange data with the road-
side unit. The parameterization includes all parameters (e.g., voltage level) and 
functionality to read/write data in the memory. In the end, the I/O module gives the 
opportunity to set/reset the physical I/O. 

Application. It incorporates a state-machine to trigger the different functionality of 
the TSM. Moreover, procedures of parameterization and an initialization of 
component values are included in the layer. 

5 Safety Measures 

The objective of this section is to show that the safety and safety integrity 
requirements are met. Consequently, it is demonstrated that adequate safety measures 
are implemented and hazards mentioned in Table 1 are sufficiently addressed. For that 
reason, the use-case “switch on red traffic signal module” is taken as an example. 

It is assumed that the traffic signal module (TSM) is part of a traffic signal 
consisting of “red”, “yellow” and “green” and is installed at an intersection. A road 
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side controller residing in a cabinet next to the intersection is managing the traffic 
signals. It is connected to each TSM at the intersection via a twisted-pair cable for 
communication and a power line cable. In case of a safety-critical failure, the safe 
state is always “switch off” and the level of current is less than 5mA.  

Before the deployment the TSM is configured via the factory calibration interface 
according to the field of application. Typically, the required voltage level and the 
maximum LED current (i.e., the maximum level of brightness) are set. Moreover, the 
maximum number of broken LEDs is specified (e.g., more than one broken LED 
leads to a safe state). The installation and commissioning of the safety-related product 
is a crucial point [8]. It has to be ensured that the right configuration parameters are 
uploaded correctly to the microcontroller. A possible solution is outlined in [6]. 

At operation phase the road-side controller is turning on power to switch on the red 
TSM. By doing so, the microcontroller is booting. It is checking its memory via error 
correction codes (hamming code) to ensure the integrity of the memory and to avoid a 
malfunction of the firmware (e.g., control of LED current not working). Next, the 
status of the fuse is retrieved via the I/O functionality. If the fuse is operational (i.e., 
no safe state), the fuse is started to be triggered periodically. In case of a deadlock in 
the firmware triggering is stopped immediately and the safe state is entered. As a 
further step, the status of each LED is verified by reading information from the 
memory. If no LEDs or fewer LEDs than defined are broken, the microcontroller 
enables the supply of LEDs with the required current.  

During the on-phase the microcontroller is measuring the LED current and the 
voltage. It compares the value with the predefined one set during the commissioning 
phase. As long as the values are in a specified range, LEDs are working properly. 
When the LED current drops, a fault of a LED is detected. In case of a non safety-
critical failure, information of the new status is sent via protocol to the road-side 
controller. And LED current is increased to provide same level of luminosity as 
before. If the number of broken LEDs is above the limit, the safe state is entered. I.e., 
the microcontroller stops triggering the supply of the LED current and the fuse. 
Hence, the input current is reduced to a low level and the road-side controller realizes 
a malfunction in the TSM. In addition, microcontroller writes error code into the 
memory and sends it to road-side controller in order to ease finding the reason for the 
failure. The road-side controller turns power off to switch off TSM. Consequently, 
microcontroller is actively stopping to trigger LED supply and continues triggering 
fuse. It writes new status into memory.  

Aforementioned safety measures and the presented flow of actions are an efficient 
solution where safety integrity of the TSM (see Table 2) is ensured according to 
requirements given by VDE 0832.  

Table 2. Measures to ensure safety integrity 

Integrity of 
display 

Integrity of 
communication line 

Data integrity of 
microcontroller 

Software integrity 

Measuring LED 
current and voltage 

Provided by safety-
related protocol 

Error correcting 
codes 

Triggering fuse 
periodically 



 Embedded System Platform for Safety-Critical Road Traffic Signal Applications 145 

 

Finally, it must be mentioned that developing safety-related embedded platform for 
these applications requires additional effort not covered by this work that is also part 
of a safety development. Whereas the paper presents a general technical solution, an 
overall safety development needs – among other things – detailed documentation of 
requirements and design. And a verification and validation approach has to be 
specified and executed as presented in [5].  

6 Conclusion 

The paper presented an embedded system platform for safety-critical LED-based road 
traffic signal applications in contrast to traditional approaches with a non-
programmable logic. A resource efficient and safety-related hard- and firmware 
design was required tailored to the safety, timing and costs demands. It gives the 
possibility to support a variety of applications with a single platform. Moreover, in 
new installations a reduction in energy consumption of traffic signal system can be 
reached because input current is not a means of signaling failures any longer. 
Increased functionality (e.g., logging of working hours) can be mentioned as a further 
advantage of the presented solution. 

Integrating intelligence into a TSM might be used in future applications to 
decentralize a traffic light system or send the status of the TSM (e.g., display 
remaining time of green phase) directly to cars passing by with the help of car-to-
infrastructure communication. 
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Abstract. Improving the security of computing systems embedded into
commercial airplanes has become a major concern for the avionics in-
dustry. This paper deals with one of the techniques that can be applied
to improve the security of such systems: vulnerability assessment. More
precisely, this paper presents experiments carried out on an experimental
embedded operating system in order to assess vulnerabilities in its low-
level implementation layers. The main characteristics of this embedded
system, the platform used to carry out our experiments, as well as the
first results of these experiments are described.

Keywords: Avionics embedded systems, vulnerability assessment.

1 Introduction

Improving the security of computing systems embedded into commercial air-
planes has become a major concern for the avionics industry, malevolence being
now considered as a significant potential cause of failures, with potential casu-
alties (airplane passengers). This concern is raised by the expected evolution of
on-board computing systems. Indeed, to reduce production and operation costs,
these systems tend to:

– Be open to applications and equipment provided by the clients (airline com-
panies) and to open networks (e.g., for digital air traffic control management,
airline company information systems, passenger access to the Internet);

– Share computing resources among different applications, possibly with dif-
ferent safety requirements;

– Use COTS hardware and software components.

To satisfy safety requirements, avionics manufacturers have applied formal
development and verification methods for decades, at least for the most critical
parts of avionics. Currently, these methods target design faults, in particular
software bugs. The approach is based on the ARINC 811 decomposition of the
information system into several domains with different levels of criticality. They
do not address explicitly security concerns, such as deliberately-introduced ma-
licious logic, intrusions, or denial-of-service attacks. This has changed recently,
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as malicious actions are becoming a major concern to be taken into account for
safety-critical systems.

To improve security of these avionics systems, it is necessary to apply or adapt
methods and techniques that have proven their efficiency in other contexts:

– Formal methods for specification, development and verification: such meth-
ods are recommended, for instance by the ISO/IEC 15408 Common Criteria
(CC), to achieve high levels of assurance1.

– Security mechanisms and tools: firewalls, VPNs, access control, intrusion
detection, etc.

– Vulnerability assessment and countermeasure provision.

This paper focuses on this latest technique. Let us note that vulnerability
assessment cannot be covered easily by current formal methods because there
is no model suitable for expressing both the desired high-level properties (con-
fidentiality, integrity, availability) and the implementation of subtle hardware
mechanisms (control of address space [1], interruptions, handling, or hardware
management functions such as ACPI [2], or even protection mechanisms [3]). For
instance, formal approaches that apply successive refinements of models (e.g.,
B method [4]) cannot descend to the level of COTS processors [5]. In addi-
tion, formal verification is based on assumptions about the underlying layer that
may be wrong in operating environment and can lead to vulnerabilities. In fact,
experience shows that even formally proven systems may have exploitable vul-
nerabilities ([5], [6]). It is therefore necessary to analyze vulnerabilities, even at
the lowest abstraction levels, and provide solutions able to counter them.

This paper presents some experiments run in the context of the French ANR
project SOBAS (Securing On-Board Aerospace Systems), using an experimen-
tal embedded avionics operating system, compliant with the current avionics
specification standards. This operating system, described in Section 2, was sup-
plied by Airbus France, partner of the project. Section 3 gives an overview of
the hardware platform that we use to inject low-level attacks to this embedded
system. Section 4 describes the experiments we have run up to now as well as
the corresponding results. Section 5 concludes the paper.

2 Overview of the Avionics Embedded Operating System
under Study

The embedded operating system we use for our experiments has been designed
and developed according to the ARINC 653 avionics standard (Avionics Ap-
plication Software Standard Interface). The ARINC 653 is a standard interface
for time and space partitioning of embedded systems resources. It is compli-
ant with the IMA (Integrated Modular Avionics) trend. The main objective of
IMA is to simplify the integration of avionics software, by proposing the use of

1 These criteria enable to evaluate the security of a product according to predefined
profiles.
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a set of shared hardware and software ressources. According to the IMA trend,
each avionics function is not implemented any more on a dedicated computer but
may share hardware or software computing resources with other functions. These
computing resources communicate through a redundant deterministic Ethernet
network called AFDX.

Furthermore, each computing resource (implemented according to the ARINC
653 API) must provide an efficient temporal and spatial partitioning so that it
can host applications with different levels of criticality.

The embedded system we studied is thus composed of :

– The kernel, which is the core software; it schedules the different partitions
and enforces their memory and spatial isolation.

– The application partitions, which are tasks with a low level of criticality.
– The system partitions, which are tasks with a high level of criticality.
– The system specific functions such as drivers, downloading code, debug and

tests functions.

The kernel is designed to schedule partitions under real-time constraints
through the use of three important hardware components: MPIC (Multicore
Programmable Interrupt Controller), caches and MMU (Memory Management
Unit). The MPIC and the MMU are used by the kernel in order to implement
the spatial and temporal isolation between the different partitions, whereas the
caches are used to improve the memory access speed. Furthermore, the allocation
of memory and time for the partitions is made statically at build-time, through
a specific configuration tool.

More precisely, the kernel starts by initializing itself and then the different
partitions, which are to be executed in a predefined static order. The MPIC
generates an interruption each time a dedicated counter reaches a specific value.
The kernel uses the MPIC to implement the temporal partitioning between appli-
cations: an interrupt is generated each time a time slot allocated for a particular
partition ends up. The dedicated counter is then set to zero, the context of the
current partition is backed-up and the context of the next partition to be exe-
cuted is restored. Regarding the memory isolation, the MMU is used for spatial
partitioning: it controls the memory accesses in such a way that a partition
cannot read or write application data used in the context of another partition.

3 Platform Description

We realized our experiments on a P4080 hardware platform provided by Freescale.
This platform has been purposely chosen because it is included in a list of hardware
platforms currently under study in the SOBAS project. More precisely, in this
project, an experimental platform has been designed around the P4080 using, in
addition, a CodeWarrior IDE, a JTAG probe and a laptop.

The P4080 is a platform that can be used in different ways. It is a powerful
platform and it has typically been designed to be integrated in powerful net-
working equipments, since it includes important features to accelerate packets
processing and filtering.
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We used CodeWarrior as an Integrated Development Environment (IDE) that
provides a visual and automated framework to accelerate the development, de-
bugging, compilation, uploading and execution of complex programs on different
hardware platforms. This tool is very useful in our experiments to observe the
behavior of the software as well as to inject low-level attacks on our P4080 plat-
form. CodeWarrior is executed on a laptop connected to the P4080 through a
JTAG interface.

There are two diffent kinds of JTAG probe: USB and Gigabit. The USB probe
is slower than the Gigabit probe, which uses Ethernet port. For our experiments,
we have used the USB probe so far.

4 Experiments

For the rest of this paper, we are considering the following four attack assump-
tions: (1) an attacker has no physical access at run-time to the systems; (2)
some actors are trusted: pilots, maintenance, crew; (3) many other actors can
be potentially malicious: passengers, personnel of airline companies, equipment
manufacturers; (4) consequently, we consider the possibility that a non-critial ap-
plication partitions is malevolent and may carry out malicious actions in order
to corrupt critical partitions or even the kernel itself.

We are running experiments in order to assess vulnerabilities in such a com-
pliant ARINC 653 system. Our objective is to elaborate attacks that target 1)
the core functions of the system and 2) the fault tolerance mechanisms imple-
mented for safety reasons in the system. The core functions are the standard
components of an avionics operating system, such as processor, memory man-
agement, process management, scheduling, communications, time management,
cryptography and ancillary functions. The fault tolerance mechanisms are usu-
ally classified into fault handling and error handling functions [7]. They are an
interesting target for an attacker because their corruption may be an efficient
way, for instance, to provoke a denial of service of the system. As an illustra-
tion, if an attacker is able to corrupt a critical functions (replicated on several
modules for safety reasons) in such a way that the all redundant copies always
disagree, it can provoke such a denial of service.

In the next subsections, we present three different attacks that we carried
on our experimental kernel. Two of the attacks target the core functions of the
system, more precisely, the memory management and the time mangement. The
third attack target the fault tolerance mechanisms.

4.1 Attacks on Memory Management

A corruption of the memory management may allow a malevolent partition to
access sensitive data used by the kernel or by other partitions. We describe in
the following such an example. The kernel configures the P4080 platform using a
memory area of 16 MBytes, called the Configuration Control and Status Registers
(CCSR).
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This region contains sensitive registers used to configure various platform
components. After analyzing the source code of our experimental kernel, we have
discovered that the read/write accesses to the CCSR area region were authorized
for the kernel but also for the partitions. This configuration was chosen deliber-
ately so that the different partitions can directly use network peripherals (and
network peripherals configuration) without any intervention of a shared driver.
However, this design is particularly risky as it allows any malicious partition to
fill registers of the CCSR area with random values. For our experiments, we in-
jected some purposely chosen values in this area, from the malevolent partition,
in order to provoke a denial of service of the platform. We could provoke such a
denial of service using the Security Engine (SEC) and the Run Control/Power
Management (RPCM). In the following, we only describe the experimentation
using SEC.

The security engine is a cryptographic hardware accelerator, implementing
RSA, DES, AES, SHA algorithms and other cryptographic functions. Its config-
uration is made through a dedicated memory region in the CCSR. The security
engine is managed by the security monitor component of the P4080. The secu-
rity monitor is in charge of checking the system for errors and controlling the
cryptographic keys used to securely boot the system. If an error is raised when
checking the system at startup-time, the security monitor enters into a failed
state, which blocks the cryptographic keys and sets them all to zero. At this
stage, the system may restart if the security monitor was configured to do so
after such an error. This configuration is made by setting some registers of the
CCSR area. As any partition can access in write mode the CCSR area, a ma-
licious partition is perfectly able to purposely modify these registers and then
provoke an error in order to restart the P4080 platform. These experiments are
interesting because they actually show that the CCSR area is a critical region
of memory that must be protected. This region must only be writable by the
kernel (with supervisor privilege). Otherwise, a malicious partition is perfectly
able to provoke a denial of service of the system.

These protections on the CCSR area can be configured through the MMU,
which actually offers the possibility to precisely set access rights for different
regions of memory.

4.2 Attacks on Time Management

An attack on time management consists, for a malevolent partition, in being
able to modify the execution duration of a critical partition. These execution
durations are very important in such hard real-time embedded systems and any
modification of these durations is, at least for safety, not acceptable.

The execution duration for each task is based on the WCET (Worst Case Ex-
ecution Time) computation. At the end of each execution duration, an interrupt
is generated so that a new partition can be scheduled. To modify the execu-
tion duration of a critical partition from a non-critical malevolent partition, we
identified three possibilities: (1) modify the CCSR area, in which the execution
durations for all the tasks are specified; (2) generate an interrupt before the
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end of the execution duration of the critical task; or (3) execute kernel code to
delay as much as possible the end of the execution the non-critical task (and as
a consequence, to reduce the execution duration of the next critical task, if we
suppose that the critical tasks are scheduled immediately after the non-critical
task).

We do not detail the first possibility because it consists in an attack target-
ing the memory management, which has already been explained in the previous
subsection. The second possibility consists in being able to generate an inter-
rupt before the end of the execution duration of a particular task. The only
possibility to generate such an interruption is to modify the MPIC, which re-
quires supervisor privilege. It is thus impossible to carry out this attack on our
platform. The third possibility consists, for a non critical task, in provoking the
execution of kernel code just before the end of its execution duration. Since the
kernel code is executed with supervisor privilege and as consequence, cannot be
interruped, it is possible for a task T1 to increase its own execution duration,
and as a consequence, to reduce the execution duration of the following task
T2 to be scheduled. If T1 is non-critical and T2 is critical, this attack allows a
non-critical task to modify the execution duration of a critical task. The main
problem of this attack is to identify and call some kernel code that is actually
able to significantly exceed the execution duration of a partition. Another prob-
leme is that the only way for a partition to execute kernel code is to provoke
an exception. Thus, we carried out experiments in which we purposely provoke
exceptions at the end of a non-critical partition. More precisely, we implemented
a loop specifically dedicated to stop just before the end of the duration partition,
and then we provoked an exception by using an illegal instruction.

For our experiments, we used two partitions P0 and P1. P0 lasts 600 microsec-
onds and P1 lasts 500 microseconds. We modified the P0 partition to provoke
an exception at the end of its execution duration in such a way that a kernel
function is called. In this experiment, the consequence was the direct reduction
of execution duration of the partition P1 to 460 microseconds. This may have
serious consequences or not, depending of the applications. Anyway, this exper-
iment showed that there is actually a possibility for a non-critical partition to
modify the execution duration of a critical partition. Different countermeasures
can be imagined in order to prevent a partition from delaying its own execu-
tion duration, either by modifying the kernel design or by introducing margin
in the calculation of the execution durations of the user partitions. Regarding
the kernel modification, it may consist in allowing the kernel to receive some
interrupts (especially the timer interrupts) or strongly the duration of exception
management in the kernel.

4.3 Attacks on Fault Tolerance Mechanisms

The fault tolerance mechanisms can be classified in two categories: error han-
dling (error detection and then rollback, rollforward or compensation recovery)
and fault handling (diagnosis, isolation, reconfiguration, reinitialization) [7]. A
non critical malevolent partition may target the fault tolerance mechanisms in
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order to make these mechanisms constantly detect errors and restart the system,
provoking in this way a denial of service.

A typical fault tolerance mechanism is the exception management of the ker-
nel. This mechanism can provoke a module restart when errors considered as
unrecoverable occur. If a malevolent partition is able to generate this kind of
exceptions, it may provoke the module restart at any moment. In order to test
the exception management, we decided to implement a crashme2 program that
executes random instructions. Such a program could be used by a malicious par-
tition to test if some sequences of instructions are able to force a core module
to stop or restart, or provoke a kernel crash for instance. We created a crashme
program in a partition which generates random instructions and executes them.
The crashme was executed during 1 043 806 application cycles (each application
cycle is 5ms). A hundred random instructions were executed during each cycle.
This experimentation showed that, among the set of 22 exceptions, only one of
them represents more than 99% of the exceptions raised, seven of them represent
only 1% and the other 14 exceptions are never called.

Moreover, we noticed that 16 out of 22 exceptions provoked a kernel restart,
kernel stop or a module restart. It means that a non-critical partition executing
such crashme program has many chances to stop or restart the module, provoking
in this way a denial of service since the module stops delivering services for the
aircraft. This experiment was particularly interesting because it put the emphazis
on the fact that the current exception management in the experimental operating
system under study must be improved in such a way that it drastically reduces
the number of situations that lead to a module stop or restart.

For that purpose, the origin of the exception has to be precisely identified so
that not to restart the whole module or the kernel unless it is strictly necessary.

5 Perspectives

In this paper, we have described a set of experiments carried out on an exper-
imental avionics embedded system, in order to assess some low-level vulnera-
bilities : 1) the modification by non-critical partition of some sensitive areas of
memory ; 2) the modification of the duration of a partition under some cir-
cumstances and 3) the abuse of the exception management in order to restart
the kernel. These first experiments are promising as they permit to identify a
set of vulnerabilities in the kernel and a set of improvements that should be
implemented in order to increase the security level of the global system.

We are currently investigating other experiments. The first one consists in
abusing the update of data in the flash of the P4080. Thus process is performed
thanks to the cooperation between two user applications. We plan to check
whether the corruption of one of these applications could provoke the flashing
of purposely corrupted data. A second attack consists in using a core to execute
malicious code. Actually, only one core is currently used in our experimental
platform but we want to test the level of difficulty that is required to activate

2 http://crashme.codeplex.com

http://crashme.codeplex.com
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another core. If such an activation can be easily done by a malevolent partition,
then some malicious code could be injected and executed. The third attack con-
sists in considering two P4080 platforms, each one executing a set of partitions
and communicating through an AFDX network. We plan to test whether it is
possible or not for a malevolent partition of one of the platform, to send mali-
cious data through AFDX communication to a partition of the other platform,
in order to provoke its corruption.
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Abstract. Compliance with the automotive standard ISO 26262 requires the 
development of a safety case for electrical and/or electronic (E/E) systems 
whose malfunction has the potential to lead to an unreasonable level of risk. In 
order to justify freedom from unreasonable risk, a safety argument should be 
developed in which the safety requirements are shown to be complete and satis-
fied by the evidence generated from the ISO 26262 work products. However, 
the standard does not provide practical guidelines for how it should be devel-
oped and reviewed. More importantly, the standard does not describe how the 
safety argument should be evaluated in the functional safety assessment proc-
ess. In this paper, we categorise and analyse the main argument structures re-
quired of a safety case and specify the relationships that exist between these 
structures. Particular emphasis is placed on the importance of the product-based 
safety rationale within the argument and the role this rationale should play in 
assessing functional safety. The approach is evaluated in an industrial case 
study. The paper concludes with a discussion of the potential benefits and chal-
lenges of structured safety arguments for evaluating the rationale, assumptions 
and evidence put forward when claiming compliance with ISO 26262. 

Keywords: Safety cases, safety arguments, ISO 26262, automotive safety. 

1 Introduction 

Critical functions in road vehicles are increasingly being implemented using electrical 
and/or electronic (E/E) systems. The malfunctioning behaviour of these systems can 
contribute to the safety risk to the vehicle occupants and/or other road users. As such, 
it is necessary to provide assurance that any unreasonable residual risks have been 
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avoided. The safety standard ISO 26262 has been developed to address this necessity 
by providing guidance, in the form of requirements and processes, for avoiding unrea-
sonable residual risk caused by the malfunctioning behaviour of E/E systems [1]. Like 
many safety standards that cover complex software-based systems, ISO 26262 defines 
requirements for the creation of work products i.e. outputs from the safety lifecycle, 
and leaves it to the developers to interpret these requirements in the context of their 
products [2]. In order to provide a product-specific justification, compliance with the 
ISO 26262 standard requires the development and evaluation of a safety case for the 
safety-related items. The standard defines an item as a “system or array of systems to 
implement a function at the vehicle level” [1]. In order to justify freedom from unrea-
sonable risk, a safety case argument should be developed in which the safety require-
ments are shown to be complete and satisfied by the evidence generated from the 
ISO 26262 work products. However, the standard does not provide practical guidance 
on the development and review of the safety argument, nor does it describe how the 
safety argument should be evaluated in the functional safety assessment process. 

In this paper, we build on the experience of the authors in developing and evaluat-
ing safety cases in the context of ISO 26262. We examine the significance and nature 
of the product-based safety rationale within the argument and the role this rationale 
should play in assessing functional safety. The paper also builds on existing work on 
safety cases across different domains [3-5], and in the automotive industry in particu-
lar [6], [7], taking into account issues related to product-based and process-based 
assurance [8], the process of compliance [9] and assessment of confidence [10], [11].  

The paper is organised as follows. In Section 2, we categorise and analyse the main 
argument structures of a safety case and the relationships that exist between the safety 
case and the ISO 26262 functional safety assessment. The approach is evaluated in an 
industrial case study in Section 3. In Section 4, we discuss the potential benefits and 
challenges of structured safety arguments for evaluating the rationale, assumptions 
and evidence put forward when claiming compliance with the ISO 26262 standard. 

2 Safety Argument Categories in ISO 26262 

ISO 26262 defines a safety case as an “argument that the safety requirements for an 
item are complete and satisfied by evidence compiled from work products of the safety 
activities during development” [1]. That is, the argument should play a central role in 
justifying why the available evidence, in the form of work products (e.g. design and 
analysis artefacts), has achieved a set of safety requirements and, therefore, why an 
acceptable level of safety has been achieved. Compliance with ISO 26262, based on 
the normative parts of the standard, mandates the satisfaction of a specific set of ob-
jectives by the generation of a concrete set of work products. As a result, all E/E sys-
tems that are compliant with the standard share a common safety argument structure 
linking the top-level safety requirements to the available evidence. Unfortunately, this 
common argument structure is implicit and is not documented in the standard. 
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2.1 Implicit Safety Argument in ISO 26262 

The implicit safety argument in ISO 26262 is centred on the following chain of rea-
soning (Fig. 1). A sufficient and an acceptable level of safety of an E/E system is 
achieved by demonstrating absence of unreasonable risk associated with each hazard-
ous event caused by the malfunctioning behaviour of the item (other hazard causes are 
outside the scope of the standard). This is achieved by defining safety goals to avoid 
unreasonable risk through the prevention or mitigation of the identified hazardous 
events. A hazardous event is the occurrence of a hazard in particular operational situa-
tions. Each hazardous event is assigned an Automotive Safety Integrity Level (ASIL), 
based on the combination of three parameters: severity (extent of human harm), prob-
ability of exposure (to operational situations) and controllability (ability for persons at 
risk to take action to avoid harm). Claims are then asserted that each safety goal is 
satisfied by the development of a functional safety concept. The functional safety 
concept specifies safety measures within the context of the vehicle architecture, in-
cluding fault detection and failure mitigation mechanisms, to satisfy the safety goals. 
Two further hierarchies of claim are defined for asserting how the functional safety 
concept is adequately refined and satisfied by a technical safety concept and hardware 
and software components (again to the required ASIL). As a result, the implicit argu-
ment follows a hierarchy of claims that can be grouped as follows: 

• Safety Goals (hierarchy 1) – the vehicle in its environment; 
• Functional Safety Requirements (hierarchy 2) – the vehicle and its systems; 
• Technical Safety Requirements (hierarchy 3) – the E/E system; and 
• Hardware and software requirements (hierarchy 4) – component and part level. 

For each hierarchy, ISO 26262 prescribes evidence, in the form of work products, 
for substantiating these claims. Additionally, the standard identifies methods for gen-
erating these work products in accordance with the required ASIL. For example, in 
order to substantiate a claim that the technical safety requirements have been correctly 
implemented at the hardware-software level, evidence should be provided through 
methods such as a requirements-based test, fault injection test or back-to-back test 
(Table 1, Part 4). This evidence should be captured in an Integration Testing Report 
(Work Product 8.5.3, Part 4). 

The implicit safety argument in ISO 26262 has two main categories of claim: 
product claims and process claims. Based on the hazard analysis and risk assessment, 
the product claims focus primarily on the safety goals and safety requirements (i.e. 
specifying and demonstrating behaviour which is free from unreasonable risk). The 
process claims focus on the adequacy of the organisations, people, lifecycles, methods 
and tools involved in the generation of the work products. The nature of these process 
claims and the rigour of the evidence needed to support them vary with the ASIL 
assigned to the safety goals and their corresponding safety requirements (i.e. high 
levels of risk require high levels of process rigour).  

Compliance with ISO 26262 and the evaluation of the above implicit argument is 
demonstrated, in part, using two types of confirmation measures: functional safety 
audit and functional safety assessment. The requirements for both, and the necessary 
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reducing the probability of the hazardous malfunction. Other risk reduction strategies 
related to reducing severity, improving controllability and/or reducing exposure (typi-
cally through a measure “external” to the item, which can be another E/E system) can 
be taken into account. For example, if a safety goal stipulates that the system shall 
transition to a safe state in the presence of faults that could otherwise cause the corre-
sponding hazardous event, then an argument and evidence for why the specified safe 
state is considered to be adequately safe should be provided. This can be achieved by 
justifying that, were the vehicle behaviour in the safe state to be subject to ISO 26262 
hazard classification criteria, then it would be classified ‘QM’ (Quality Management). 
QM in ISO 26262 denotes a risk that does not require the satisfaction of any specific 
safety requirements, thereby implying that the level of risk is reasonable and no fur-
ther risk reduction is necessary. The main claim here would be that the residual risk 
associated with the hazardous event, after achieving the safety goal, has been reduced 
to a level that is reasonable. The subsequent argument used to support such a claim 
would then need to explicitly assert which risk parameters (‘controllability’, ‘severity’ 
or ‘exposure’) would be reduced if the residual risk were classified in this way.  

A typical approach may be to provide an argument that some reconfiguration or 
degradation scheme is capable of placing a system into a safe state such that the con-
trollability of any reaction, e.g. to an undemanded drive torque, is effectively C0 (con-
trollable in general) whereas the hazardous event itself will have been classified with 
the controllability parameter taking a value of C1, C2 or C3. Another approach may 
be to place a system in a safe state by preventing a vehicle exceeding a speed thresh-
old upon detection of a fault that can cause the hazardous event such that the exposure 
parameter that could be associated with the safe state is effectively E0 (incredible). 
Such reasoning is product-specific and the implicit safety argument in ISO 26262 
does not prescribe any product-specific safety rationale.  

The safety argument structure in Fig. 1 includes references to five product-specific 
safety rationale sub-arguments. These sub-arguments should provide justification for 
the inferential transition from one hierarchy of safety claims to another. For instance, 
the functional safety concept rationale argument should include a justification for why 
the deployment of safety measures such as fault detection, failure mitigation and/or 
driver warnings should lead to the satisfaction of the corresponding safety goals. 

3 Industrial Case Study 

This case study is based on a typical electric vehicle architecture (technology-specific 
details have been abstracted for reasons of commercial sensitivity), in which a basic 
Item Definition and hazardous event are considered. The purpose of the case study is 
to examine the product-based safety rationale arguments, discussed in Section 2, for 
the corresponding Safety Goal and Functional Safety Concept. 

3.1 Item Definition 

The Item Definition is shown in Fig. 2. The pertinent nominal operation is as follows: 
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• Driver requests positive longitudinal vehicle acceleration by depressing accelerator 
pedal 

• Accelerator pedal provides a low voltage electrical signal to indicate pedal position 
to the Controller 

• Controller reads this pedal signal and places a corresponding torque demand on the 
High Voltage Power Inverter (HVPI) via the Controller Area Network (CAN) 

• HVPI converts a certain quantity of electrical energy from the High Voltage Bat-
tery to high voltage electrical power supplied to the Electric Machine, according to 
the torque demand from the Controller 

• High voltage electrical power supplied to the Electric Machine induces a mechani-
cal torque in the Electric Machine, which is transferred through the transmission to 
the vehicle’s rear wheels. 

 

Fig. 2. Electric Vehicle Propulsion System 

3.2 Hazard Analysis and Risk Assessment 

This case study focuses on the Hazardous Event ‘Unintended vehicle acceleration 
during a low speed manoeuvre amongst pedestrians’, which is classified as ASIL B 
based on values of E3 (medium probability), S2 (severe and life-threatening injuries, 
survival probable), C3 (difficult to control or uncontrollable) for the Exposure, Sever-
ity and Controllability parameters respectively. The rationale for this classification 
requires a detailed description of the vehicle, the operational and environmental con-
straints and peer systems and as such it has not been included for brevity. 

3.3 Safety Goal and Its Rationale Argument 

The safety goal that has been defined to address the risk associated with the Hazard-
ous Event is ‘Vehicle positive longitudinal acceleration shall not exceed driver de-
mand by > 1.5 m s2 for longer than 1 s’. However, the question that a safety assessor 
may rightly ask is why by meeting this safety goal is unreasonable risk avoided? It is 
not typical within industry for the answer to questions of this type to be documented, 
but doing so should help the engineer to be clear about why the safety goal achieves 
freedom from unreasonable risk, and to communicate that to the safety assessor. 

The argument for this particular case study, presented in Goal Structuring Notation 
(GSN) [12] in Fig. 3, is based on improving controllability; specifically if the  
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unintended acceleration is kept below the stated threshold, the driver is able to slow 
and stop the vehicle before a collision with the pedestrian occurs. Within this argu-
ment, the ‘Absence of Unreasonable Residual Risk’ strategy is generic, and could be 
applied to any safety goal, whereas the ‘Residual Risk Controllability Classification’ 
strategy is specific to this particular safety goal.  
 

 

Fig. 3. Safety Goal Rationale Argument 

3.4 Functional Safety Concept and Its Rationale Argument 

The functional safety concept that has been chosen to achieve the safety goal, named 
‘Distributed detection and mitigation of torque errors’, is based on degradation; 
whereby all faults that can lead to excessive acceleration are detected within an ac-
ceptable time interval. On detection of a fault, the vehicle acceleration is limited to a 
value below that specified in the safety goal. The concept is based on the assertion 
that only malfunctioning behaviour of the Item that can violate the safety goal (which 
is specified in terms of vehicle-level behaviour; acceleration) is the delivery of  
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excessive torque to the Transmission; behaviour which is specified at the Item-level. 
The concept features are as follows (Fig. 4): 

1. Detection of all faults that would otherwise lead to excessive torque delivery: 
(a) Controller detects accelerator pedal faults by comparing and arbitrating be-

tween the outputs from two independent pedal position measurement sensors 
(b) Controller self-detects torque-request errors by comparing its final torque re-

quest to the HVPI (output) with the accelerator pedal position (input) 
(c) HVPI self-detects torque-demand errors by comparing the quantity of high 

voltage electrical power supplied to the Electric Machine (output) with the 
torque request from the Controller (input) 

2. Upon detection of errors, outputs are electronically ‘limited’ to a fixed value that 
ensures that the magnitude of excessive torque delivered to the Transmission is be-
low that required to violate the safety goal’s acceleration criteria. 

 

Fig. 4. Functional Safety Concept Rationale Argument 

Typically, a company would document the failure modes of the concept in an analysis 
report, e.g. using Failure Mode and Effects Analysis (FMEA), and manage safety goal 
and functional safety requirements in a requirements database. It would also have 
vehicle test reports or simulations demonstrating that the safety goals had been met. 
However, the rationale explaining how this evidence fits together is not often  
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documented. This means that whoever performs the Functional Safety Assessment 
has to deduce this for themselves by ‘reading between the lines’, and for complex and 
highly interconnected systems, tenuous leaps may need to be made. The added value 
of formally documenting the rationale, as in Fig. 4, is not only that it helps the engi-
neers to identify potential deficiencies in the safety argument, but also that it eases the 
subsequent task of performing the Functional Safety Assessment, and may highlight 
the need for further work. 
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Fig. 5. Item Functional Safety Argument 

3.5 Item Functional Safety Argument 

The two arguments presented in Fig. 3 and Fig. 4 can be referenced as ‘Away Goals’ 
[12] within the complete safety argument for the Item (Fig. 5). Other structures within 
the complete safety argument should include confidence-based process claims that 
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refer to the ASIL-specific processes used to develop the work products. The complete 
argument would also require further development to justify how the functional safety 
concept has been implemented by the chosen technical safety concept and subse-
quently by the hardware and software safety requirements. Although this has not been 
the focus of this paper, it has been found that the argument structure at the level of 
safety goals and functional safety concept can be successfully repeated at lower lev-
els, with the capability to partition the argument to represent the distributed develop-
ment commonly seen between a vehicle manufacturer and its suppliers. 

4 Analysis and Discussion 

Without a clear safety argument structure, a checklist approach to safety assurance, 
based on the creation of work products and requirements traceability, tends to be 
used. Important as this is, the rationale behind the requirements is often not docu-
mented. An important aspect of capturing the product-based safety rationale is that it 
helps the engineers identify potential deficiencies in the argument in a timely manner 
and supports the subsequent task of performing the Functional Safety Assessment. In 
this section, we reflect on the insights gained from different engineering perspectives. 

4.1 Original Equipment Manufacturer (OEM) Perspective 

Typically, a large list of safety requirements and work products is presented to an 
OEM, i.e. the vehicle manufacturer, for which there may be traceability to the safety 
goals but no, or only tenuous, basis for understanding whether and how the safety 
goals have been fully satisfied. Consequently the adequacy of the deliverables can 
only be determined by extensive question and answer sessions. This often reveals that 
the important safety rationale is not documented and only exists in the heads of the 
engineers. It also often reveals that there are many undocumented assumptions which 
need to be validated and would be better treated as safety requirements. Where the 
approach presented in this paper is adopted, engineers gain a deeper understanding of 
the system they are designing. Further, documentation is generated at a more appro-
priate lifecycle stage to enable effective and timely assessment. 

Because of the hierarchical nature of the explicit safety argument, and the observa-
tion that its structure repeats between levels, the argument lends itself to being ‘split’ 
between organisations. For example, an OEM may typically develop the safety argu-
ment down to, and including, the level of functional safety concept. The supplier re-
sponsible for developing the technical safety concept and hardware and software 
safety requirements can then develop the relevant downstream rationale in a similar 
manner to the OEM in order to justify the safety requirements they have developed. 

4.2 Supplier Perspective 

E/E system suppliers are heavily dependent on requirements received from the OEM, 
as the OEM has a complete view of the vehicle, its systems and their dependencies. 
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However, by developing an E/E system and hardware and/or software components, a 
supplier will generally own a high proportion of the faults that can contribute to haz-
ardous events. As such, suppliers will be responsible for the design requirements, 
safety analysis and verification of the E/E system to support the claim that vehicle 
level safety will be assured and that the requirements of the functional safety concept 
have been achieved. With this partitioning of responsibilities comes the need to dem-
onstrate accountability i.e. the need for suppliers to provide a safety argument to jus-
tify that their design/implementation supports certain safety goals at the vehicle level. 
A structured argument provides this much needed visibility between parties at the 
different assessment stages. 

Further, suppliers traditionally develop common E/E platforms prior to OEM en-
gagement. For example, a supplier developing an engine management system for 
future vehicle emission legislation will identify requirements years before involving 
OEMs. It is important that any safety-related component/element, which is developed 
without a specific application context, is assessed. The supplier will need to capture 
assumptions, most likely based on previous experience, and possibly in isolation. 
These assumptions and the safety rationale are very well suited to an argument struc-
ture that clearly identifies product safety claims in relation to assumed hazards, safety 
goals and concepts. A clearly defined argument structure improves the engagement of 
customers with new applications not only to provide the safety justification but also to 
identify assumptions that require confirmation, redress and also the allocation of risk 
mitigation responsibilities to customers when needed. 

4.3 Safety Assessor Perspective 

In the infancy of ISO 26262, early project assessments have been based solely on 
work products and processes. This has resulted in lengthy protracted assessments, 
trawling through documentation and relying heavily on interviews to discover un-
documented rationale. This has highlighted the need to have a safety case with a clear 
structure and purpose. It has also been found that it is both possible and beneficial to 
assess the ‘top down’ safety argument iteratively, as the design of an item evolves. 
For example, the safety assessor can review the safety goal rationale argument in  
Fig. 1 before the functional safety or technical safety concepts have been developed, 
rather than waiting until the later lifecycle stages. This helps to identify weaknesses in 
the eventual safety argument earlier on in the project lifecycle, reducing the cost and 
effort resulting from any subsequent rework. 

Finally, the automotive industry like many other domains is driven by tight mar-
gins and time constraints. Once a project is underway, momentum increases quickly. 
It is therefore essential that the visibility of the project’s technical and assurance at-
tributes and any infringements identified early so that undesired consequences are 
addressed. This leads to the conclusion that the review and assessment of the safety 
case at key product gateways will not only keep focus on the emergence of the pro-
ject’s and product’s safety attributes, but is more likely to have a safety case at the 
final functional safety assessment that is legible and more readily analysable. 
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5 Concluding Remarks 

Safety case development is a relatively new concept for many safety practitioners in 
the automotive industry. The timely generation of well-focussed safety cases is capa-
ble of bringing considerable benefit in the context of development and assessment, 
and thus of contributing to the safety assurance of automotive E/E systems. Our ex-
perience to date suggests that the primary focus of many documented safety cases for 
ISO 26262-compliant systems and components remains on processes. In extreme 
cases, this can result in bulky documentation that does little more than render explicit 
the standard’s implicit arguments or, even, recapitulate its requirements in a different 
form. Broadly, we perceive an educational challenge to exist in this area even among 
automotive safety engineers with considerable experience in other areas. 

Other characteristics have reduced the effectiveness of certain safety cases  
produced to meet the requirements of ISO 26262. These include: lack of focus and 
brevity; unnecessary repetition of information available elsewhere; and the use of 
inappropriate means of expression (e.g. use of GSN where a table might be more 
effective and vice versa). Similarly, safety cases in the automotive industry are as 
susceptible as those in other industries to deficiencies such as fallacies and failures to 
acknowledge limitations. These weaknesses are found in safety cases in other indus-
tries but, we believe, may best be countered by didactic material that is targeted  
specifically at the automotive industry in order to improve outreach. 
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Abstract. ISO 26262 - ”Road vehicles-Functional Safety” is a stan-
dard for the automotive industry, administered in an attempt to pre-
vent potential accidents due to systematic and random failures in the
Electrical/Electronic-system. ISO 26262 is based on the principle of re-
lying on safety requirements as the main source of information to en-
force correctness of design. We show that the contract theory from the
SPEEDS FP6 project provides a suitable foundation to structure safety
requirements in ISO 26262. Contracts provide the necessary support to
separate the responsibilities between a system and its environment by
explicitly imposing requirements on the environment as assumptions, in
order to guarantee the safety requirements. We show this by character-
izing two levels of safety requirements with contracts for an industrial
system where we also show how contract theory supports the verification
of consistency and completeness of safety requirements.

1 Introduction

The standard ISO 26262-”Road vehicles-Functional Safety” [1] is, in essence, a
domain-specific systems engineering approach with a focus on functional safety.
ISO 26262 is based on the principle of relying on safety requirements as the
main source of information to enforce correctness of design and implementa-
tion throughout the development process. A system and its elements are in ISO
26262 characterized by being logically and technically separated from their en-
vironment in the form of a detailed interface specification and separation of
responsibilities. Although not mentioned explicitly, these principles are similar
to the notion of a contract [2], namely: based on a well-defined system bound-
ary, the responsibilities between an environment and a system are split into a
guarantee that models desired properties of a system, under the influence of
an assumption, modeling expected properties of an environment. In this paper,
we explore a possibility to capitalize on this similarity, by using contracts to
structure safety requirements in ISO 26262.

Out of three contributions, the first contribution is that we show that the
theory of contracts can enrich safety specifications as it provides the necessary
support to separate the responsibilities between a system and its environment by
explicitly imposing requirements on the environment as assumptions, in order to
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guarantee the safety requirements. We show this by using the theory of contracts
from the SPEEDS FP6 project1 to characterize two levels of safety requirements
for a real industrial system. Secondly, we show that the theory of contracts
provides a foundation to argue for, and verify properties of safety requirements
such as consistency and completeness as required by ISO 26262. Thirdly, we
show that a modification to the contract theory where assumptions can model
properties of an environment that are not limited to the system boundary is
needed, in order to conform with the principles in ISO 26262.

Several publications associated with the project CESAR2, see e.g. [3] and [4],
discuss the use of contracts with respect to requirements engineering and safety
standards, including ISO 26262, in general. In [5], this connection is elaborated
on and a few examples (although not automotive) are shown where contracts
could in fact be useful with respect to ISO 26262. However, none of [3], [4] nor
[5] apply the theory on a real industrial system and mainly hypothesize about
its usefulness when developing safety-critical systems. In this paper, we go in to
further depths, showing an explicit use of contracts with respect to ISO 26262
by characterizing safety requirements as contracts for an industrial application
example, namely the Fuel Level Display (FLD)-system, present on all heavy
trucks from the manufacturer Scania.

The link between requirements engineering and contract theory is touched
upon in [6,7,8], and more notably in [9], where properties of requirements, e.g.
consistency, are described in a context of contracts. However, none of [6,7,8,9]
address properties of safety requirements as described in ISO 26262 and the
notion of completeness is not addressed to a full extent. In this paper, we estab-
lish a more elaborate connection between requirements engineering and contract
theory by showing how consistency and completeness of safety requirements in
ISO 26262 can be ensured through properties of contracts.

2 Illustrative Example - The Fuel Level Display-System

In this section, we introduce the illustrative example that will be used in Sec. 3
to exemplify a case where ISO 26262 relies on contract-inspired principles, and
also in Sec. 5 to characterize safety requirements in ISO 26262 as contracts.

The FLD-system provides an estimate of the fuel volume in the fuel tank
to the driver along with a warning if the fuel volume drops below a predefined
value. The functionality provided by the FLD-system is distributed across three
Electronic Control Unit (ECU)-systems, i.e. an ECU with sensors and actuators,
in the Electronic/Electrical (E/E)-system: Engine Management System (EMS),
Instrument Cluster (ICL), and Coordinator (COO). The ECU-systems also in-
teract with the fuel tank that is outside of the E/E-system. COO estimates the
fuel volume in the tank by relying on the output of a Kalman filter that, in turn,
relies on a signal of a sensor measuring the fuel level in the tank and an estimate
of the current fuel consumption provided by EMS, as inputs. The estimated fuel

1 http://www.speeds.eu.com/
2 http://www.cesarproject.eu/

http://www.speeds.eu.com/
http://www.cesarproject.eu/
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volume is sent over CAN to ICL, where it is displayed to the driver along with
a warning if the fuel volume in the tank is below 10%.

A development according to ISO 26262 revolves around an item which is in
[1] described as ”a system that implements a function at a vehicle level”. For the
analysis in this paper, COO, CAN, and ICL are chosen to be the item, as shown
in Fig. 1, where we also illustrate the system boundary of the item.

Fig. 1. System architecture of the FLD-system. The blocks represent actual ECUs, the
fuel sensor, the fuel tank, and the display. The connectors represent physical cables.
The borders (cross-hatched lines) represent the ECU-systems and the item.

3 Motivation - Contract-Inspired Principles in ISO 26262

In this section, we motivate our research using two rather explicit cases where
ISO 26262 relies on principles similar to those of contracts from: 3-5 Item defi-
nition; and 10-8 Safety element out of context in [1].

Item Definition Prior to forming safety requirements, ISO 26262 first requires
a description of the item as presented in 3-5 Item definition in [1]. We consider
one of its requirements and apply it to the FLD-system, i.e. requirement 5.4.2:

”The boundary of the item, its interfaces, and the assumptions con-
cerning its interaction with other items and elements, shall be defined
considering: ... d) functionality required by other items, elements and
the environment; e) functionality required from other items, elements
and the environment...” [1]

Concerning sub-requirement 5.4.2d); a basic functionality of the FLD-system
is to provide an accurate estimation of the fuel volume to the driver, who is part
of the environment. We can formalize this functionality by the requirement: the
indicated fuel volume, shown by the fuel gauge, shall not deviate more than ±5
percent from the actual fuel volume in the tank. We hence consider a deviation
within ±5 as acceptably accurate. However, in order for the item to be able to
guarantee this functionality, the item needs information regarding the fuel con-
sumption, which is provided by EMS, external to the item. Hence, concerning
requirement 5.4.2e), we impose a requirement on EMS as an assumption: the
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estimated fuel consumption, provided by EMS, does not deviate more than ±1
percent from the actual fuel consumption. In conclusion, the item definition in-
cludes an interface specification with clear separation of responsibilities between
the environment and the item - much like a contract.

System Element out of Context A System Element out of Context (SEooC) is
a safety-related (i.e. assumed to be required to implement a safety requirement)
element which is developed in isolation, that is, without the context of a specific
item. Therefore, assumptions are made on the context of a SEooC, in the form
of requirements that are likely to be allocated to its environment. The difference
between a regular element (part of an item) and a SEooC is that a SEooC makes
assumptions on a general environment while an element is to be integrated in a
specific environment. The concept of SEooC addresses the need of subcontract-
ing - an important aspect since companies in the automotive industry tend to
rely on sub-systems developed external to the company. The concept of SEooC
is similar to a description of contracts in a context of a distributed systems de-
velopment environment where each supplier is given a design task in the form
of a guarantee, subject to constraints under the responsibility of other actors of
the company/supplier chain that are offered to this supplier as assumptions [2].

4 The Contract Theory of SPEEDS

The original use of contracts [10] as a pair of pre- and post-conditions as state
predicates [11,12] has been extended from software to e.g. Component-Based
Design and hardware [13,14]. In this paper, we choose to apply the contract
theory of SPEEDS. The reason for this is that ISO 26262 is centered on the
development of E/E-Systems, which encompasses both hardware and software.
In the contract theory of SPEEDS, contracts are formed for Heterogeneous Rich
Components (HRCs) [15], which can represent entities of software, hardware,
mechanical, etc. while the other approaches are typically used only in software.

In the following sections, we will hence present the theory of contracts as
described in [2],[6], [9],[8] and [7] with inspiration from [16], [17], [18], and [19].
The intent is to present the theory in accordance with these papers; however,
there might be slight deviations from the original papers since only a subset
deemed relevant for the present paper is presented.

The presented theory of contracts will be used in Sec. 5.1 and 5.2 to model
the architecture of the FLD-system and characterize safety requirements as con-
tracts, and then in Sec. 5.4 to support the verification of requirements properties.

4.1 Assertions and Runs

Let P = (x1, . . . , xNP ) be an ordered set of variables where each variable is a
function of time. Consider a trajectory of values assigned to a variable xi in P
over a whole time window. A tuple of such trajectories, one for each variable in
P , is called a run for P . An assertion B over P is a set of runs for P . These
notions correspond to similar definitions in [2],[6], [9] and [7].



170 J. Westman, M. Nyberg, and M. Törngren

Dissimilar Sets of Variables. Given an assertion B over P ′, and another
set P ⊆ P ′, the projection of B onto P , written projP ′,P (B), is the set of runs
obtained when each run in B is restricted to the set of variables P . Using notion
of relational algebra [20] we have projP (B) = πP (B).

Given an assertion B over P ′, and another set P ⊇ P ′, the inverse projection
of B onto P , written proj−1

P (B), is the set of runs obtained when each run in
B is extended with all possible runs for P \P ′. We can also express this as that
the projection of all runs in proj−1

P (B) onto P ′ must be in B, i.e. proj−1
P (B) =

{xP |xP is a run for P, projP ′ ({xP }) ⊆ B}.

Receptiveness of Assertions. Let ΩP be the set of all possible runs for P .
An assertion B is said to be P -receptive if projP (B) = ΩP . This corresponds to
[2],[6], and [7] where the notion of receptiveness is described as the ability of an
assertion to accept any history of values offered to a subset of its ports.

4.2 Components and Contracts

A contract C modeled over a set of ordered variables P is a pair of assertions
(A,G) where both A, the assumption, and G, the guarantee, are assertions over
P . In practice, it can be useful to split a guarantee G or an assumption A
into separate ’sub-assertions’ G.1, . . . , G.N or A.1, . . . , A.N , respectively. Sub-
assertions, e.g. G.1, . . . , G.N , are combined by intersection to form an assertion,
e.g. G =

⋂N
i=1 G.i.

An implementation M , sometimes also called a design, modeled over a set of
ordered variables P ′, is a pair (P ′, BM ) where BM 
= ∅ is an assertion over P ′.

A component I is a tuple (P ,Mtot, Ctot, Isub), where

– P is a pair (Pu, Pc) where Pu and Pc are non-empty mutually disjoint ordered
sets of variables;

– Mtot is a set of Pu-receptive implementations {M1, . . . ,MNI} where each
Mi is modeled over Pu ∪ Pc;

– Ctot is a set of contracts {C1, . . . , CNC} where each Cj is modeled over Pu∪Pc;
and

– Isub is a set of components {I1, . . . , INsub
} where each component Ik =(Pk,Mk

tot, Ck
tot, Ik

sub

)
is a sub-component of I and where P k

c ∈ Pk of each
sub-component and Pu are mutually disjoint.

Any variable in Pu∪Pc is called a port of I. In addition, a port in Pu is called
uncontrolled and a port in Pc is called controlled. As mentioned in [2], uncon-
trolled/controlled ports correspond to the typical classification3 of input/output
ports, respectively.

3 The ports are explicitly partitioned into uncontrolled and controlled ports in the
component instead of relying on profiles to partition the ports of implementations,
contracts, and components as in [2], [6] and [7], although the same principles apply.
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Properties of Contracts. A contract C = (A,G) of a component with ports
Pu ∪ Pc is said to be port-compatible if A is Pc-receptive and port-consistent if
G is Pu-receptive as described in [2,6,7], but where we add the prefix ”port-” to
avoid ambiguity in terminology with respect to ISO 26262 (see Sec. 5.4).

For an implementation M = (P,BM ) and a contract C = (A,G) modeled
over the same ports, M is said to satisfy C, written M |= C, if

A ∩BM ⊆ G. (1)

In accordance with [8], given a port-compatible and -consistent contract C =
(A,G) of a component I with sub-components I1, . . . , INsub

where there exists
a port-compatible and -consistent contract Ck = (Ak, Gk) for each Ik, C is said
to dominate {C1, . . . , CN}, if

A ∩ (

Nsub⋂

j=1,j �=k

Gj) ⊆ Ak for k = 1, . . . , Nsub (2) A ∩ (

Nsub⋂

k=1

Gk) ⊆ G (3)

where the assertions are extended to a common set of variables, as described
in Sec. 4.1, prior to applying set-theoretic operations (e.g. ∩) or comparing as-
sertions with relations (e.g. ⊆).

5 Structuring Safety Requirements in ISO 26262 Using
Contract Theory

In order to specify contracts for an item and its elements, we first need to model
an item and its environment as components as presented in Sec. 4.2. That is,
using the FLD-system as an example, we model the item and its environment
as two tuples

(P item,Mitem
tot , Citem

tot , Iitem
sub

)
and (Penv,Menv

tot , Cenv
tot , Ienv

sub ), respec-
tively where COO, CAN and ICL are elements in Iitem

sub , and fuel tank and EMS
are elements in Ienv

sub , as shown in Fig. 2. We only model variables as ports to
the components if we need to refer to them in an assumption or guarantee. For
example, the indicated fuel volume, shown by the fuel gauge, is modeled as the
controlled port indicatedFuelVolume[%] of the item.

We assume that the item only implements the functionality of the FLD-
system. In reality, the ECU-systems (COO and ICL) also implement other func-
tionalities; e.g. COO also implements Cruise Control. We also assume that a
more general contract is already in place concerning power delivery to the ECU-
systems and we therefore model the status of the ignition (ignition[Bool]) as
a port on all ECU-systems.

5.1 Characterizing Safety Goals as a Contract

In this section, we show how we can characterize Safety Goals (SGs), i.e. top-level
safety requirements, in ISO 26262 using contracts, by specifying safety goals for
an item as a guarantee, given explicit requirements on its environment, expressed
by an assumption. To illustrate these principles, we specify a contract Citem ∈
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Fig. 2. A representation of the item (COO, CAN, and ICL) and the environment (Fuel
Tank and EMS) modeled as components using a SysML internal block-diagram. Inputs
and outputs to the blocks correspond to uncontrolled and controlled ports, respectively.
Since we assumed that CAN delivers its signals immediately and with perfect accuracy
(see Sec. 5.2), we choose to model signals over CAN as one variable.

Citem
tot for the FLD-system in Table 1 where the guarantee Gitem is a Safety

Goal, and the assumption Aitem expresses requirements on the environment of
the item. The Safety Goal Gitem can be interpreted as: the FLD-system shall
not provide misguiding information to the driver while driving. The assumption
Aitem can be interpreted as: the fuel sensor shall be correctly installed and that
the EMS shall provide an accurate estimate of the fuel consumption. The contract
Citem therefore imposes, through Aitem, its requirements on the environment
in order to achieve its Safety Goal. That is, if e.g. the fuel sensor is installed
incorrectly, the item cannot guarantee the Safety Goal Gitem.

In Table 1, we formalize the notion of driving as a state of the vehicle when
the fuel volume derivative is less than zero. We further let the Safety Goal
Gitem

FLDS be characterized by three safe states (while driving): the indicated-

FuelVolume[%], shown by the fuel gauge, is less than actualFuelVolume[%];
the warning lowFuelVolumeWarning[Bool] is functioning correctly; and the in-
dicatedFuelVolume[%] is less than 0% (degraded state).

The assumption Aitem in Table 1 is split up into three sub-assumptions where
we assume a relation between actualFuelVolume[%] and sensedFuelLevel[%]

from the fuel sensor, and between the derivative of actualFuelVolume[%] and
the estimated fuel consumption (estFuelConsumption[%]) and its signal status
(estFuelConsumptionError[%]), respectively. The assumed relation between
ignition[Bool] and the fuel volume derivative may seem redundant; it is, how-
ever, motivated in Sec. 5.4.

5.2 Characterizing Functional Safety Requirements as Contracts

In the same manner in which we characterized a Safety Goal as a contract in Sec.
5.1, we can characterize FSRs as contracts for the elements of an item. Applying
this concept to the FLD-system results in three contracts CCOO, and CICL,
and CCAN , with FSRs as guarantees, given assumptions on their environment.
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Table 1. Contract of the item, characterizing the Safety Goal for the FLD-system

Aitem

1 If the derivative of actualFuelVolume[%] is less than 0, then ignition[Bool] is on (true).
2 If the derivative of actualFuelVolume[%] is less than or equal to 0, then sensedFuelLevel[%] shall
not deviate more than ±10% from actualFuelVolume[%] in the fuel tank.

3 If the derivative of actualFuelVolume[%] is less than or equal to 0, then
estFuelConsumption[litres/h] shall not deviate more than ±1% from the derivative of actual-

FuelVolume[%]; or
estFuelConsumptionError[Bool] shall be set to true.

Gitem (Safety Goal)
1 If the derivative of actualFuelVolume[%] is less than 0,

indicatedFuelVolume[%], shown by the fuel gauge, shall be less than actualFuelVolume[%]; or
indicatedLowFuelLevelWarning[Bool] shall be active (true) when the actualFuelVolume[%] is

below 10%; or
indicatedFuelVolume[%], shown by the fuel gauge, shall show a value below 0%.

The contracts CCOO and CICL are shown in Tables 2 and 3, respectively. The
contract CCAN is not included due to space restrictions, but can be found in
[21].

The FSR GCOO in Table 2 expresses that COO shall: provide an estimate
of the fuel volume (estimatedFuelVolume[%]) that is less than or equal to
actualFuelVolume[%] and a Boolean signal (lowFuelVolumeWarning[Bool])
indicating if actualFuelVolume[%] is below 10%; or set the signal status of
the estimated fuel volume (estimatedFuelVolumeError[Bool]) to erroneous
(true). Note that assumption ACOO in Table 2 is identical to Aitem in Table 1.

Table 2. Contract for COO, characterizing a FSR for the FLD-system

ACOO

1 If the derivative of actualFuelVolume[%] is less than 0, then ignition[Bool] is on (true).
2 If the derivative of actualFuelVolume[%] is less than or equal to 0, then sensedFuelLevel[%] shall
not deviate more than ±10% from actualFuelVolume[%] in the fuel tank.

3 If the derivative of actualFuelVolume[%] is less than or equal to 0, then
estFuelConsumption[litres/h] shall not deviate more than ±1% from the derivative of actual-

FuelVolume[%]; or
estFuelConsumptionError[Bool] shall be set to true.

GCOO

1 If the derivative of actualFuelVolume[%] is less than 0, then
estimatedFuelVolume[%] shall be less than actualFuelVolume[%] and if actualFuelVolume[%] is

below 10%, then lowFuelVolumeWarning[Bool] shall be active (true); or
estimatedFuelVolumeError[Bool] is set to true

Table 3. Contract for ICL, characterizing FSRs for the FLD-system

AICL

1 estimatedFuelVolume[%], including its signal status estimatedFuelVolumeError[Bool], sent from
COO is immediately received by ICL without loss of accuracy.

2 lowFuelVolumeWarning[Bool] sent from COO is immediately received by ICL without loss of accu-
racy.

GICL

1 If ignition[Bool] is on (true) and estimatedFuelVolumeError[Bool] is false, then
indicatedFuelVolume[%], shown by the fuel gauge, shall correspond to the estimatedFuelVol-

ume[%]; or
indicatedFuelVolumeWarning[Bool] shall correspond to lowFuelVolumeWarning[Bool];

2 If ignition[Bool] is on and estimatedFuelVolumeError[Bool] is true, then indicatedFuelVolume[%]
shall show a value below 0%.
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As presented in Table 3, ICL basically acts like an actuator without any
substantial additional logic. It assumes that the CAN-signals sent from COO
are delivered immediately with perfect accuracy, as modeled by AICL. When
ignition[Bool] is on, GICL expresses that the fuel gauge shall display est-

imatedFuelVolume[%] as indicatedFuelVolume[%] and lowFuelVolumeWar-

ning[Bool] as indicatedLowFuelVolumeWarning[Bool] in case the signal sta-
tus of the estimated fuel volume is valid (estimatedFuelVolumeError[Bool]=
false). In case it is erroneous, the fuel gauge shall indicate a value below 0%.

The set of FSRs GCAN where each FSR is a sub-guarantee, expresses that all
CAN-signals are delivered immediately and with perfect accuracy. The guarantee
GCAN is hence equal to the assumption AICL in Table 3. This is of course not
realistic, but for this system, safety aspects are not highly affected due to slight
delays over CAN and such a simplification is therefore deemed to be justifiable.
CAN does not impose any requirements on its environment and the assumption
ACAN is thus receptive to its input ports (see Sec. 4.1).

5.3 Modification of the Contract Theory of SPEEDS and Its
Implications

In Table 1 and 2, it can be noted that the assumptions Aitem and ACOO, and
guarantees Gitem and GCOO are not limited to the system boundary, i.e. to the
ports, of the item and COO, respectively. This is necessary since ISO 26262
requires that properties of an environment, not limited to the system boundary
of the item/element, are taken into consideration, see e.g. requirement 5.4.2e)
from 3-5 Item definition in Sec. 3. Hence, the limitation that a contract must
be modeled over the ports of its component (see Sec. 4.2) has been relaxed.

As a result of this, using the requirements on the low fuel volume warning in
Table 1 as an example, we are able to express the (sub-)requirement in Gitem

that the warning shall be active when the actual fuel volume is below 10%, given
the assumption Aitem that EMS shall provide an accurate estimation of the
fuel consumption and that the fuel sensor has been installed correctly. If we, in
contrast, restrict contracts to be modeled over the ports of its component, it is
impossible to express the assumption Aitem and the Safety Goal Gitem, since the
actual fuel volume is not a port of the item, see Fig. 2. In the case of Aitem, for
example, we cannot express that there is in fact a relation between the signal
provided by the fuel sensor and the actual fuel volume.

This modification has a slight impact on the properties of contracts as pre-
sented in Sec. 4.2. The relation in (1) is generalized in the sense that the con-
straint that BM , A, and G must be modeled over the same ports is removed.
An implementation BM and the assertions A and G must therefore be extended
to a common set of variables before applying intersection and comparing with
the subset relation (see Sec. 4.1). We let PΩ be the universal set of all ports
and PintP the set of all ports of all sub-components Ii of I and of all sub-
components of each Ii, and so forth. We say that a contract C = (A,G) of a
component I is port-consistent if G is PΩ \ Pc-receptive and port-compatible if
A is Pc ∪ (PintP \ Pu)-receptive.
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5.4 Verififying Consistency and Completeness of Safety
Requirements

ISO 26262 is based on the principle of relying on requirements as the main source
of information to enforce correctness of design and implementation throughout
the development process. This amounts to verifying properties of requirements
and of sets of requirements as mentioned in 8-6 The specification and manage-
ment of safety requirements in [1]. One of these properties is consistency of
requirements, which means that ”an individual requirement does not contradict
itself” (internal consistency) and that ”a set of requirements do not contradict
each other”[1] (external consistency). Another property is completeness, which
means that ”the safety requirements at one requirement level fully implement all
safety requirements of the previous level” [1].

We show, in the following, that the contract theory of SPEEDS supports the
verification of consistency and completeness of safety requirements - as required
by ISO 26262. As indicated in Sec. 5.1 and 5.2, we consider a safety require-
ment or a set of safety requirements as a guarantee G of a contract C for an
element/item, where A expresses the requirements on its environment. With in-
spiration from [9], we consider a safety requirement G of a contract C, to be
internally consistent if G 
= ∅, i.e. if there exists at least one run in G. As in-
dicated in Theorem 1, internal consistency of a safety requirement G can be
ensured through a port-consistent contract (A,G) (see [21] for proof).

Theorem 1. If a contract C = (A,G) of a component I is port-consistent (see
Sec. 4.2 and 5.3), then the safety requirement G, is internally consistent.

The dominance property of contracts in Sec. 4.2 can be used to support the
verification of completeness and external consistency as indicated in Theorem 2
(see [21] for proof). Since we consider the use of safety requirements in a context
of contracts, external consistency does not only amount to showing that a set
of safety requirements {G1, . . . , GN} are not contradictory, but also not contra-
dictory with respect to their corresponding assumptions {A1, . . . , AN}. We thus
consider a set of safety requirements {G1, . . . , GN} with corresponding assump-
tions {A1, . . . , AN} where Ai, Gi ∈ a contract Ci to be externally consistent if

(
⋂Nsub

i=1 Ai) ∩
⋂Nsub

i=1 Gi 
= ∅.
We consider completeness for a scenario where we have a contract C = (A,G)

of a component I with sub-components I1, . . . , INsub
and there exists a contract

Ck = (Ak, Gk) for each Ik. We say that a set of safety requirements {G1, . . . , GN}
is complete with respect to G if for any implementation Mk of each Ik that
satisfies its contract, i.e. if Mk |= Ck, then A ∩ (

⋂Nsub

k=1 Mk) ⊆ G.

Theorem 2. Let C = (A,G), be a port-compatible and -consistent contract
of a component I with sub-components I1, . . . , INsub

, and Ck = (Ak, Gk) be
a port-compatible and -consistent contract of each Ik. Furthermore, if G and
{G1, . . . , GNsub

} are safety requirements, then {G1, . . . , GNsub
} are externally

consistent and complete with respect to G if C dominates {C1, . . . , CN}.
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If we investigate the FLD-system example, we see that the contract CCAN (see
[21]) and all contracts in Tables 1, 2, and 3 are port-consistent and -compatible
since they respect the constraints in Sec. 4.2 and 5.3, see [21] for further clarifi-
cation. Internal consistency is hence ensured through Theorem 1. We can verify
the external consistency and completeness of the set of FSRs GCAN (see [21]),
GCOO, and GICL (See Tables 2 and 3) with respect to the Safety Goal GItem

in Table 1 through Theorem 2, if we can show that:

AItem ∩ (
⋂

j �=i

Gj) ⊆ Ai for i = COO,CAN, ICL and (4)

AItem ∩ (GCOO ∩GCAN ∩GICL) ⊆ GItem. (5)

Relation (4) is trivially true, since AItem = ACOO, GCAN = AICL, and
ACAN is receptive to the set of universal ports PΩ . Concerning relation (5),
since we have assumed that the fuel volume derivative is always negative when
ignition[Bool] is on (see AItem in Table 1), we can conclude that when in-

dicatedFuelVolume[%] is less than zero and ignition[Bool] is on (see GICL

in Table 3) corresponds to a safe state of the item, see GItem in Table 1. If
estimatedFuelVolumeError[%]=false and ignition[Bool] is on, ICL will ei-
ther display the fuel warning (indicatedLowFuelVolumeWarning[Bool]) in case
actualFuelVolume[%]< 10% or indicatedFuelVolume[%] that is less than
actualFuelVolume[%], since this is guaranteed by the contracts of CAN and
COO (see [21] and Table 2). These states both correspond to safe states of the
item and hence relation (5) is also true. Through Theorem 2, we can hence claim
that the FSRs, expressed by GCOO, GCAN , and GICL, are externally consistent
and complete with respect to the Safety Goal, expressed by Gitem.

6 Conclusions

We have shown in Sec. 5.1 and 5.2 that safety requirements can be charac-
terized as contracts for an item and its elements, with guarantees that con-
stitute the safety requirements, given explicit requirements on their environ-
ments as assumptions. A Contract therefore enriches a safety specification for
an item/element by explicitly declaring what each element/item expects from
the environment to ensure that the safety requirements are satisfied.

We have also shown in Sec. 5.4 that consistency and completeness of safety re-
quirements can be ensured through verifying the dominance property of
contracts.

However, these achievements were only made possible due to a modification
of the contract theory of SPEEDS, as presented in Sec. 5.3. The modification
relaxes the constraint that a contract must be modeled over the ports of its
component.

We hence conclude that the principles of contracts provide a suitable founda-
tion to structure safety requirements in ISO 26262.
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Abstract. Unequal Error Control (UEC) codes provide means for handling  
errors where the codeword digits may be exposed to different error rates, like in 
two-dimensional optical storage media, or VLSI circuits affected by intermit-
tent faults or different noise sources. However, existing UEC codes are quite  
rigid in their definition. They split codewords in only two areas, applying dif-
ferent (but limited) error correction functions in each area. This paper introduc-
es Flexible UEC (FUEC) codes, which can divide codewords into any required 
number of areas, establishing for each one the adequate error detection and/or 
correction levels. At design time, an algorithm automates the code generation 
process. Among all the codes meeting the requirements, different selection  
criteria can be applied. The code generated is implemented using simple logic 
operations, allowing fast encoding and decoding. Reported examples show their 
feasibility and potentials. 

Keywords: error detection and correction codes, information redundancy,  
unequal error control codes. 

1 Introduction 

Error correction codes (ECCs) are widely used in today’s computer systems to pro-
vide reliable delivery and storage of digital data over unreliable communication chan-
nels and memories. Most ECCs are based on the premise that all bits in a codeword 
require the same error control level. However, this vision of the problem is not valid 
for application domains where the bit error rate (BER) does not homogeneously affect 
to all codeword bits [1]. Far from being marginal, the problem of variable BER 
(vBER) is getting more and more important. For instance, intermittent faults in VLSI 
circuits appear repeatedly and non-deterministically in the same place. They only 
increase the BER of the affected locations, but not the BER of the rest of the bits in 
the word. Although the specific causes leading to this trend are out the scope of this 
paper, it is worth noting that, nowadays, 6.2% of errors in memory subsystems [2], 
and 39% of hardware errors in microprocessors reported to operating systems have an 
intermittent nature [3]. vBER problem also applies to Volume Holographic Memories 
(VHM) and other two dimensional optical storage, where the BER of readout data 
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from the edge is much higher than that from the center of the media [4]. This threat 
must be taken into account as this technology for data-storage hierarchy presents short 
access time, high aggregate data-transfer rate, and large storage capacity. 

The aforesaid examples motivate the increasing interest that asymmetric error con-
trol has in current, and will have in future, computer-based systems. Unequal error 
control (UEC) codes [1] establish different error control levels in diverse codeword 
areas. In practice, existing UEC codes simply split codewords in two parts. They ap-
ply either full error correction (i.e. fixing all the possible errors affecting that word 
area) [1] or burst error correction (i.e. fixing burst errors of a given length affecting 
that area) [5] in the strongly controlled area. In contrast, only single error correction 
(and sometimes double error detection) is applied in the weakly controlled area. 

The limitation of using full error correction in the strongly controlled area is the 
high level of redundancy required. In contrast, burst error correction, although less 
redundancy demanding, does not cover some classical error patterns, such as double 
random errors (two errors separated beyond the controlled burst length). On the other 
hand, single error correction may be insufficient even for a weakly controlled area, as 
multiple errors are becoming more and more frequent in today's systems [6]. Thus, the 
main drawback of existing UEC codes is their lack of flexibility, as designers cannot 
use different error control functions on each area, according to the specifications of 
each system, application or context of use. 

This paper proposes Flexible UEC (FUEC) codes, a new type of UEC codes en-
hanced for flexibility. They allow to establish any desired number of control areas in a 
codeword, in relation to the needs, and to deploy the adequate error control strategy in 
each part. The focus will be placed on how to combine single, multiple and burst error 
correction and/or detection capabilities, and selectively apply them in each identified 
codeword area. In case of multiple solutions, different selection criteria can be used. 

The rest of this paper is organized as follows. Section 2 introduces the very basic 
notions related to ECCs and UEC codes, while Section 3 details the methodology to 
generate FUEC codes. In Section 4, the feasibility and potentials of FUEC codes are 
discussed. Finally, Section 5 provides some conclusions and ideas for future work. 

2 UEC Codes: Background 

UEC codes are a type of linear block codes, a kind of ECCs. For a better understand-
ing of their potentials, this section introduces some important notions. Basics will be 
first applied to ECCs and then extended to UEC codes. 

2.1 Basics on Encoding and Decoding 

An (n, k) binary ECC encodes a k-bit input word in an n-bit output word [7]. Fig. 1 
synthesizes the encoding and decoding processes. The input word u=(u0, u1, …, uk–1) 
is a k-bit vector which represents the original data. The codeword b=(b0, b1, …, bn–1) 
is a vector of n bits, where the code adds the required redundancy. It is transmitted 
across the channel which delivers the received word r=(r0, r1, …, rn–1). The error  
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vector e=(e0, e1, …, en–1) models the error induced by the channel. If no error has oc-
curred in the ith bit, ei=0; otherwise, ei=1. In this way, r can be interpreted as r=b⊕e. 

The parity-check matrix H of a linear block code defines the code. For the encod-
ing process, b must accomplish the requirement H·bT=0. For syndrome decoding, the 
syndrome is defined as sT=H·rT, and it exclusively depends on e: 

 sT = H·rT = H·(b ⊕ e)T = H·bT ⊕ H·eT = H·eT (1) 

There must be a different s for each correctable e. If s=0, then e=0. So, r is correct. 
Otherwise, the syndrome decoding is performed by addressing a lookup table relating 
each s with the decoded error vector ê . By XORing ê  from r, the decoded code-
word b̂  is obtained: erb ˆˆ ⊕= . If s is non-zero, but the lookup table has no entry for 
that syndrome, the error is detected, but cannot be corrected. 
 

 

Fig. 1. Encoding, channel crossing and decoding process 

Encoding and decoding functions are similar for UEC codes (although b is divided 
in two areas and the n–k redundant bits added to b are differently located). Such func-
tions and their implementation can be deduced from H, as exemplified in Section 3.2. 
The encoding and decoding circuits can be implemented using XOR trees. 

Let us focus now on the various types of errors typically addressed using ECCs and 
UEC codes. It must be noted that an accurate modeling of such errors is essential to 
reduce the level of redundancy induced in the resulting codeword, and thus the num-
ber of bits required in such a word to limit its length. 

2.2 Error Models 

As previously stated, the difference between b and r is induced by an unreliable 
channel that introduces e. This section describes the error models used in this work. 

The term random error refers to one or more bits in error, distributed randomly in 
b. Random errors can be single (only one bit is affected) or multiple. Single errors are 
commonly produced by single event effects (SEEs) [8]: single event upsets (SEUs, in 
random access memories), single event transients (SETs, in combinational logic), etc. 

Multiple errors are becoming more frequent as integration scales increase [6][9], 
although they usually manifest as burst errors, rather than randomly [10]. A burst 
error is a multiple error that spans l (named burst length) bits in a word [1], i.e. a 
group of adjacent bits where, at least, the first and the last bits are in error. The physi-
cal causes of a burst error are diverse [9][10]: crosstalk effects induced between 
neighbor wires in parallel buses, noise affecting several bits in a serial transmission, 
high energy cosmic ray that hits some neighbor positions in storage elements, etc. 

Let us introduce now some notation about error vectors used from now on. 
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Let *E  be the set of all possible error vectors. Its cardinality is n2* =E . The 
elements in this set can be grouped in different subsets. For example, let wE  be the 
set of error vectors with Hamming weight w (the Hamming weight is the number of 
1s in a binary word). For example, if n=3 and w=1, 1E = {(100), (010), (001)}. 

Regarding burst errors, let BlE  be the set of burst error vectors, where l is the burst 
length. For example, if n=6 and l=4, the 4BE  set is composed by these error vectors: 

 

4BE ={ (111100), (011110), (001111), (101100), (010110), (001011),} 

4BE ={ (110100), (011010), (001101), (100100), (010010), (001001),} 
 

Let us now consider +E  as the set of all error vectors that determine which errors can 
be corrected by a given code, including the no-error subset ( 0E ). When using syn-
drome decoding, +E  determines the minimum number of syndromes required to 
correct the selected errors, i.e. the condition kn−

+ ≤ 2E  must be satisfied. 
The minimum set of error vectors to be detected (excluding those in +E ) is 

represented by ΔE . Nevertheless, other error vectors, not included in ΔE , may be 
detected. This set is used to indicate the minimum detection requirements of a code. 

When related to UEC codes, the previous definitions do not apply to the whole 
word, but to a subset of bits, defining a control area. Superscript numbers are then 
used to distinguish areas ( 0..7E* , for example). These error subsets will be useful to 
define different error control functions in distinct areas of a codeword. 

2.3 Unequal Error Control vs. Unequal Error Protection Codes 

UEC codes are developed considering that some bits require higher error control than 
others. Although they share some common features with Unequal Error Protection 
(UEP) codes, they must not be confused, since their definitions, objectives and  
applications are quite different. 

UEP codes [11], typically used in multimedia and control communications, protect 
some digits in a codeword against a higher number of errors than others. UEP codes 
ensure the correct decoding of the strongly protected part, and accept the eventual 
incorrectly decoding of the weakly protected part, i.e. the integrity of the whole  
codeword is desired but not required. 

Conversely, UEC codes consider distinct error control levels in a codeword, in 
such a way that a part of the word is more strongly controlled against errors than the 
rest. UEC codes enable different error control functions to be applied to distinct parts 
of a codeword, but error protection is applied to the whole word, thus making unac-
ceptable the incorrect decoding of any part of such word. 

Thus, from a protection level viewpoint, UEP codes are different from UEC codes. 
UEC codes decode correctly the word if the error requirements are met; otherwise, the 
whole word can be corrupted. UEP codes tolerate a wrong decoding if it is “good 
enough”, i.e. errors in the weakly protected bits are acceptable. So, UEP codes have 
different protection levels, while UEC codes protect all codeword bits equally. 

From a control level standpoint, UEP codes usually consider the codeword  
as a whole, all bits having the same error rate (under a given number of errors,  
some bits are guaranteed to be correctly decoded, while others could be in error or 
miscorrected). UEC codes commonly consider multiple areas, and different error 
control levels are applied to each area (while fault hypothesis are met, errors are  
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covered and the whole word is correctly decoded; otherwise, the integrity of the  
codeword cannot be guaranteed). From this perspective, UEC codes have various 
control levels, while UEP codes can only have one. 

The aforementioned differences obviously establish different contexts of use for 
UEP and UEC codes. On one hand, UEP codes are used when some information in 
part of the word is more important than in other parts (e.g. control information in 
communication messages or headers in multimedia transmission). On the other hand, 
UEC codes are appropriate in scenarios where constant bit error rates cannot be  
assumed (e.g. VHM or VLSI circuits affected by intermittent faults). 

As motivated in Section 1, the increasing importance of vBER problem is making 
UEC codes a more and more interesting solution. Nevertheless, existing UEC codes 
have some limitations, mainly related to both the limited number of parts and the 
options for the error control functions applied on each part. This work proposes 
FUEC codes to solve them. 

3 Flexible Unequal Error Control Codes 

Existing UEC codes split codewords only in two parts, and they offer limited error 
control functions. Full error correction in the strongly controlled area requires a high 
level of redundancy, whereas burst error correction does not cover some classical 
error patterns. Single error correction may be insufficient even for a weakly controlled 
area. So, the main drawback of existing UEC codes is their lack of flexibility. 

For the sake of understanding, a simple design example will be introduced to  
provide an overview of FUEC codes, and present their features and potentials. 

3.1 Overview 

Let us consider a two-dimensional optical storage with vBER [1]. In VHM, for exam-
ple, the BER of readout data from the edge of the media is much higher than that from 
the center [4]. Asymmetric error control would reduce the redundancy-coverage ratio. 
Two control levels are applied in [1]; nevertheless, the BER has not only two levels in 
VHM actually. In fact, the BER is proportional to the distance from the center of the 
media [4]. Hence, more than two areas should be considered. 

Let us study a simple example. For the sake of simplicity, words are 12-bit long, 
divided in three 4-bit areas, as presented in Fig. 2(a). This methodology can be ap-
plied to a higher number of bits, as it will be shown in Section 4. 
 
 

Higher 
BER 

Medium 
BER 

Lower
BER 

4 bits 4 bits 4 bits 

u0..u3 u4..u7 u8..u11 

Strongly 
controlled

Moderately
controlled 

Weakly 
controlled 

4 bits 4 bits 4 bits 5 redundant 
bits 

b0..b3 b4..b7 b8..b16 
(a) (b) 

Fig. 2. Layout of the input word (a) and the encoded word (b) 
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The following fault hypothesis are considered: i) all 1-bit errors and all 2-bit burst 
errors should be corrected, and all 2-bit errors and 3-bit burst errors should be de-
tected in the strongly controlled area (the one with higher BER); ii) all 1-bit errors and 
all 2-bit burst errors must be corrected in the moderately controlled area, with no ad-
ditional detection; iii) 1-bit error correction and 2-bit burst error detection will be 
implemented in the weakly controlled area (the one with lower BER). 

The value of k for the code to be designed is 12. The selection of the number of re-
dundant bits (which finally determines the value of n) must allow finding an H matrix 
which solves the error control requirements. It is possible to estimate the number of 
redundant bits depending on these requirements, as explained later. Next, the metho-
dology used to generate FUEC codes is applied to this example. 

3.2 Methodology Description 

Several parameters must be set to design a code: the data length (k), the encoded word 
length (n), the set of error vectors to be corrected ( )+E  and detected ( )ΔE . For 
FUEC codes, other parameters have to be considered to define +E  and ΔE : the 
number of control areas of the codeword, the boundaries (that is, the first and last bits) 
of each area, and the error control level to apply to each area. 

With these parameters, it is possible to obtain an ((n–k)× n) H matrix able to cor-
rect and detect the selected errors, if it exists. The methodology proposed consists on 
considering all possible matrices. As stated above, s exclusively depends on e (see 
(1)). H must satisfy condition (2), as there must be a different syndrome for each cor-
rectable error. The condition for additional error detection is (3). 

 jiji
T
j

T
i eeeeeHeH ≠∈∀⋅≠⋅ + |,; E  (2) 

 +Δ ∈∈∀⋅≠⋅ EE ji
T
j

T
i eeeHeH ,;  (3) 

That is, each detectable error must generate a syndrome which is different to all the 
syndromes generated by the correctable errors. However, several detectable errors 
may have the same syndrome. 

Searching H can be considered a Boolean satisfiability (SAT) problem. Previous 
proposals to solve this problem [10][12] are focused on specific applications. Our 
proposal is more general: in three successive steps, our algorithm is able to find any 
binary linear block code, if it exists, just selecting the set of error vectors to be cor-
rected. So, the first step is to determine +E  and ΔE . Then, the algorithm tries to 
find an H matrix able to solve conditions (2) and (3). Finally, as several solutions can 
be found, one of them can be selected using different criteria. 

Determining +E  and ΔE  Error Vector Sets. Taking the example presented in 
Section 3.1, the set of correctable errors is 0..7EEEE 210 B∪∪=+ . It includes the no-
error vector ( )0E , all single bit errors ( )1E  and all 2-bit burst errors in the areas 
with higher and medium BER ( )0..7E 2B . As stated above, the condition kn−

+ ≤ 2E  
must be satisfied. In this case, 12

210 271 −
+ ≤++=++= n

B n0..7EEEE . From this 
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expression, 17≥n , that is, at least 5 redundant bits are required. If n = 17, 25=+E  
and 322 =−kn . The layout of the encoded word is shown in Fig. 2(b), and the vectors 
representing the errors to be corrected are included in Table 1. 

Positioning the redundant bits in the weakly controlled area is not a requirement. 
The methodology allows positioning them in any area, considering that the number of 
error vectors to be included may increase, and probably the number of redundant bits 
(n–k) too. In fact, the position of redundant bits depends on the design specifications. 

Let us define now ΔE . As decided in the requirements of this example, 
7..160..30..30..3 EEEEE 2322 )( BBB ∪∪−=Δ . The seven (32–25) syndromes not used for 

correction are employed for the detection of these error vectors, grouped in Table 2. 
This is just an example. In the same way, other sets of error vectors can be generat-

ed, depending on the requirements of the code to be designed. 

Table 1. Vectors representing the errors to be corrected in the considered example 

Correctable errors (E+) Error subset 
(00000000000000000) No error (E0) 

(10000000000000000) (01000000000000000) (00100000000000000)
(00010000000000000) (00001000000000000) (00000100000000000)
(00000010000000000) (00000001000000000) (00000000100000000)
(00000000010000000) (00000000001000000) (00000000000100000)
(00000000000010000) (00000000000001000) (00000000000000100)

(00000000000000010) (00000000000000001)

Single bit errors (E1) 

(11000000000000000) (01100000000000000) (00110000000000000)
(00011000000000000) (00001100000000000) (00000110000000000)

(00000011000000000) 

2-bit burst errors in the areas with 
higher and medium BER ( 0..7E 2B ) 

Table 2. Vectors representing the errors to be detected in the considered example 

Detectable errors (E∆) Error subset 

(10100000000000000) 
(10010000000000000) 
(01010000000000000) 

2-bit random errors in the area 
with higher BER, excluding cor-

rectable errors ( 0..30..3 EE 22 B− ) 

(1x100000000000000) (01x10000000000000) 
3-bit burst errors in the area with 

higher BER ( 0..3E 3B ) 

(00000001100000000) (00000000110000000) (00000000011000000) 
(00000000001100000) (00000000000110000) (00000000000011000)
(00000000000001100) (00000000000000110) (00000000000000011)

2-bit burst errors in the areas with 
lower BER ( 7..16E 2B ) 

 

Computing the Parity-check Matrix (H). After determining +E  and ΔE , the al-
gorithm has to find an H matrix that satisfies the conditions (2) and (3) with the pre-
viously selected set of error vectors. As all the matrices have to be considered, it may 
require a huge computational effort. A recursive backtracking algorithm has been 
developed to lighten the process. It checks partial matrices and adds a new column 
only if the previous matrix satisfies the requirements. 

In this way, the algorithm starts with a partial_H matrix, with n–k rows and only 
one column. Then, it is checked that this matrix accomplishes the requirements. If it 
does, new columns are added recursively. Both the initial and the added columns must 
be non-zero, so there are 12 −−kn  combinations for each column. The pseudo code 
of the partial matrix checker procedure is presented in Fig. 3. 
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Procedure CheckPartialMatrix partial_H (n-k) × ncols   /* ncols ∈ [1..n] */ 
 SyndromeSet = {} 
 For each error vector e in E+ 
  partial_e = (e1, e2, ..., encols) 
  If HammingWeight(e) = HammingWeight(partial_e) 
   newSyndrome = CalculateSyndrome(partial_H × Transpose(partial_e)) 
   If newSyndrome in SyndromeSet then Return    /* Not valid partial matrix */ 
   Else Add newSyndrome to SyndromeSet 
  End if 
 End for 
 For each error vector e in EΔ 
  partial_e = (e1, e2, ..., encols) 
  If HammingWeight(e) = HammingWeight(partial_e) 
   newSyndrome = CalculateSyndrome(partial_H × Transpose(partial_e)) 
   If newSyndrome in SyndromeSet then Return    /* Not valid partial matrix */ 
   Else Do Nothing    /* newSyndrome not stored in this case */ 
  End if 
 End for 
 If ncols = n  
  Add partial_H to SolutionsSet 
  Return 
 Else 
  For each possible new_column /* n-k bits, excluding the all 0 combination: 2n-k-1 possible values */ 
   CheckPartialMatrix [partial_H | new_column] (n-k) × (ncols+1) 
  End for 
 End if 
End procedure 

Fig. 3. Partial matrix checker procedure 

The Hamming weight indicates the number of 1s in a vector. It is used to check if 
the error vectors have all their 1s in the first ncols bits, because it is impossible to 
calculate the syndrome for an error vector with 1s in columns not included in the par-
tial matrix. As new columns are added, more error vectors can be processed. 

The first loop generates syndromes for all selected error vectors, and they are add-
ed to SyndromeSet. When a new syndrome is generated, it is verified if it has been 
previously added. In this case, two different error vectors generate the same syn-
drome, so partial_H cannot be part of a valid solution. If the algorithm arrives at the 
end of the first loop, all selected error vectors have different syndromes. 

Then, a second loop calculates syndromes for the detectable errors. Now, it is 
tested whether these syndromes have been previously added to SyndromeSet (i.e. the 
syndrome is associated to a correctable error). In this case, partial_H cannot be part 
of a valid solution. Unlike the first loop, the calculated syndromes are not added to 
SyndromeSet, as these syndromes are not associated only to one detectable error. If 
the algorithm arrives at the end of the second loop, all selected correctable errors have 
non-equal syndromes, and the detectable errors have distinct syndromes from those 
used for correction. 

Now, if partial_H has n columns, then a solution has been found, and it is added 
to SolutionsSet. If it has fewer columns, a new column has to be added. A third loop 
for all possible combinations calls recursively the checker procedure. 

Although the condition kn−
+ ≤ 2E  was satisfied, it does not guarantee the exis-

tence of a code with the selected requirements. If no solution is found, SolutionsSet is 
empty, and hence the searched code does not exist. This only can be solved in two 
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ways: increasing the redundancy (i.e. a bigger value of n, maintaining k), or reducing 
the error control (that is, decreasing the number of error vectors to be corrected or 
detected). Once SolutionsSet is obtained, a solution can be chosen according to dif-
ferent criteria. Let us introduce here some of them: 

• First found: this option allows reducing the H generation time. 
• Smallest Hamming weight of H: this solution commonly offers circuits with the 

lowest number of logic gates in a hardware implementation, for example. 
• Smallest Hamming weight of the heaviest row of H: the logic depth of each parity 

or syndrome bit generator circuit usually depends on the Hamming weight of the 
associated row. The heaviest row determines the speed of the encoder and the  
decoder circuits. 

It is worth noting that other criteria can be applied, depending for example on the 
technology and requirements of the implementation of encoding and decoding. 

Next paragraph presents the code obtained for our case study, applying the smallest 
Hamming weight of H criterion. 

Code Implementation. Attending to the error vectors in Table 1 and Table 2, and 
selecting a solution with smallest Hamming weight in H, one possible solution is: 

 

As stated in Section 2.1, once calculated H, encoding and decoding formulas can 
be obtained easily from it. In this case, u is part of b, and the parity bits are located in 
the columns with only one 1. Each parity bit is calculated by XORing the bits with a 1 
in its row. For example, bit b13 of the codeword is a parity bit, because the corres-
ponding column in H has only one 1, in the second row. Searching the other 1s in the 
same row, they are in the columns corresponding to u1, u3, u6, u8 and u9. 

Similarly, s is calculated using r. Each row generates a syndrome bit by XORing 
the bits in positions with a 1 in each row. The formulas for the proposed code are: 
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(4) 

The syndrome bits determine the next step. If they are all 0, r is assumed to be cor-
rect. If not, s can be associated to a correctable error. In this case, the bit(s) affected 
are corrected; otherwise, the “error detected” condition is achieved. Table 3 shows the 
association syndrome-correction/detection for the proposed example. 

b/r0 b/r1 b/r2 b/r3 b/r4 b/r5 b/r6 b/r7 b/r8 b/r9 b/r10 b/r11 b/r12 b/r13 b/r14 b/r15 b/r16 
u0 u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 u11 See (4) 
1 0 1 0 0 1 0 0 1 1 1 1 1 0 0 0 0 
0 1 0 1 0 0 1 0 1 1 0 0 0 1 0 0 0 
0 0 1 0 1 0 1 1 1 0 1 0 0 0 1 0 0 
1 0 0 1 1 0 1 0 0 1 0 1 0 0 0 1 0 
0 1 0 0 1 1 0 1 0 0 1 1 0 0 0 0 1 
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Table 3. Syndrome lookup table (estimated errors) for the proposed code 

s4 s3 s2 s1 s0 Error in…  s4 s3 s2 s1 s0 Error in…  s4 s3 s2 s1 s0 Error in…  s4 s3 s2 s1 s0 Error in… 
0 0 0 0 0 No error  0 1 0 0 0 bit r15 1 0 0 0 0 bit r16 1 1 0 0 0 Detection 
0 0 0 0 1 bit r12  0 1 0 0 1 bit r0 1 0 0 0 1 bit r5 1 1 0 0 1 bit r11 
0 0 0 1 0 bit r13  0 1 0 1 0 bit r3 1 0 0 1 0 bit r1 1 1 0 1 0 bits r6, r7 
0 0 0 1 1 Detection  0 1 0 1 1 bit r9 1 0 0 1 1 Detection 1 1 0 1 1 bits r0, r1 
0 0 1 0 0 bit r14  0 1 1 0 0 Detection 1 0 1 0 0 bit r7 1 1 1 0 0 bit r4 
0 0 1 0 1 bit r2  0 1 1 0 1 bits r4, r5 1 0 1 0 1 bit r10 1 1 1 0 1 Detection 
0 0 1 1 0 Detection  0 1 1 1 0 bit r6 1 0 1 1 0 bits r3, r4 1 1 1 1 0 Detection 
0 0 1 1 1 bit r8  0 1 1 1 1 bits r2, r3 1 0 1 1 1 bits r1, r2 1 1 1 1 1 bits r5, r6 

 
These functions are easily implementable. Encoding is as simple as a XOR tree or 

equivalent circuitry or algorithm per parity bit. s is calculated in the same way. Cor-
rection can be implemented using a 5-to-32 binary decoder and some logic gates. It is 
important to note that no correction is performed in case of “error detection”. 

Experimental Validation. The error coverage provided by this FUEC code has been 
evaluated by using a software-based implementation of its encoder and decoder cir-
cuits. Results show that all errors in +E  are successfully corrected and all those in 

ΔE  are correctly detected. A similar experimentation has been carried out for all 
codes included in this paper. 

4 Comparison with Existing Codes and Discussion 

FUEC codes have some features which cannot be found in other codes, mainly the 
ability to deploy the desired error control functions in each part of a codeword. This 
hinders comparing them with other existing codes. 

Let us consider the (72, 64) SEC-F7EC proposed in [1]. This UEC code has 
7..710..6 EEE 1∪=+ * , i.e. it has full error correction in the strongly controlled area and 

single error correction in the weakly controlled area. Under different fault hypothesis, 
UEC alternatives are very limited, but FUEC codes allow a great flexibility. 

Two FUEC codes proposals are presented here, with the same values of n and k 
(i.e. the same redundancy). Their encoder and decoder circuits induce similar area and 
temporal overhead, compared to the (72, 64) SEC-F7EC. The first one has also two 
areas, with 0..60..60..6 EEEEEEE 432210 BB ∪∪∪∪∪=+ , i.e. it corrects double and 
triple random errors, as well as 4-bit burst errors, in the strongly controlled area; and 
2-bit burst errors in the weakly controlled area. Its parity-check matrix is: 
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11011101101101100101011010100100101000000100100100100000000100000 0000001
01110010110110110000010010001001010101010001010000100101000000010 0000010
01101100000101001011000100001010000010010001000010001000010001010 0000101
10110011001010000100101001010011000000100010000101001000000001001 0001010
00101101010000111000100101100100011010101000010000010010000000100 0010100
10100100010010001001101000000000101001011010101001000110010010000 0101000
01000010101001000010001110111010010101100110101000010010100000000 1010000
00010000100100110110010001010101100110001101001001011100001000000 1100000

H
 

The second FUEC alternative divides the codeword in three areas (of lengths 7, 20 
and 45 bits), and with .32543210

7..267..260..60..60..60..6 EEEEEEEEE BBBB ∪∪∪∪∪∪∪=+  

The parity-check matrix obtained in this case is: 
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=

111110000111111000000000010000000000000000111 10010011000100100100 0000001
000111111000000000001111110000000000000001000 00101010011001001001 0000010
111010111000000111110000000000111110000010000 10100011010000001001 0000101
000001000000111011110011100111000000000100001 10010101110000100011 0001010
000001001011001100011100001011000110001000000 11001001100001010100 0010100
001000010000010100100100101101011000010000010 01001101000010000101 0101000
010000000101000001000001001000101010100000000 10110100101010110010 1010000
100100100110100010001010000110110101000000000 11011011000110010010 1100000

H
 

These are just two examples of how single, multiple and burst error control can be 
combined in a code using our methodology, and how to divide the codeword in dif-
ferent number of areas, maintaining an accurate level of redundancy. In addition, 
encoder and decoder circuits are simple, fast and easy to implement from H. These 
are the main features of our proposal. 

On the other hand, the computational effort to calculate H is a question being im-
proved. The computational time required to completely execute the H generation 
process, as all the possible ((n–k)× n) H matrices to check are (2n–k–1)n. In fact, as the 
backtracking algorithm generates partial matrices and uses branch & bound, a lot of 
combinations are discarded in early phases. However, a full algorithm execution 
might be unaffordable, especially with big values of n (≥64). Partial executions and 
some tricks can be used to reduce the execution time of the algorithm. Anyway, it 
only affects to the design time, but not to the encoding and decoding time. 

5 Conclusions and Future Work 

This paper presents Flexible Unequal Error Control (FUEC) codes. The purpose of 
these codes is to provide enough flexibility to establish any desired number of control 
areas in a codeword, and to deploy in each one the adequate error control capabilities, 
combining single, multiple and burst error correction and/or detection. 

This challenge is of great interest when the bit error rate (BER) is variable along 
the same codeword. In addition to VHM, FUEC codes may also result of interest in 
automotive, aerospace or avionics industries, where different sources of interference, 
noise or process variations may result in areas with variable BER (vBER). In these 
applications, intermittent faults in VLSI circuits increase the fault rate in the affected 
bits. In addition, the occurrence of multiple faults makes necessary to consider diverse 
error patterns in data storage and transmission. 

To show the capabilities of FUEC codes, some examples have been included in the 
paper. Also, we have shown the flexibility, feasibility and potentials of FUEC codes 
with regard to existing UEC codes. Moreover, the methodology proposed to generate 
FUEC codes allows optimizing the silicon area and/or the speed of the encoding and 
decoding circuits. 

An important question related to FUEC codes generation is the computational time 
required to complete the algorithm. Although partial executions and sub-optimal solu-
tions can be achieved, the performance of current version has to be improved. To 
cope with this challenge, a parallel version of the algorithm is currently under devel-
opment. However, the FUEC codes included in the paper have been obtained using 
the sequential version. 
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A final important remark relates to the type of (spatial and/or temporal) variability 
exhibited by the BER in different scenarios. For instance, VHM presents only spatial 
variability, since the BER depends on the error position in the storage media. On the 
other hand, intermittent faults show both spatial and temporal BER variability, since 
errors may vary not only their location but also their frequency or duration. In this 
latter case FUEC codes are also necessary, but they require adaptive detection and 
tolerance mechanisms. This is indeed the next big challenge to cope with our research. 
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Abstract. Safety transformations transform unsafe original software
into safe software that, in contrast to the unsafe version, detects if its
execution was incorrect due to execution errors. Especially transforma-
tions based on arithmetic codes such as an AN- or ANB-code apply
complex and error-prone transformations, while at the same time aim-
ing for safety- or mission-critical applications. Testing and error injection
are used so far to ensure correctness and error detection capabilities. But
both are incomplete and might miss errors that change functionality or
reduce error detection rates. Our research provides tools for a complete
analysis of AN-encoding safety transformations. This paper presents our
analysis tools and results for the AN-encoded operations. While we were
able to demonstrate functional correctness, we discovered bugs that pre-
vent propagation of errors almost completely for AN-encoded divisions
and reduce propagation significantly for logical bitwise operations.

1 Introduction

The reliability of hardware is decreasing due to decreasing feature and increasing
system size [5]. Thus, we need to be able to build reliable systems from unreliable
(hardware) components.

Safety transformations transform unsafe original software into safe software
that, in contrast to the unsafe version, detects if its execution was incorrect
due to errors in the infrastructure used. This error detection facilitates error
tolerance. Several safety transformations were developed recently:
– solutions using replicated execution and voting (e. g., [18,17])
– solutions based on arithmetic encoding (e. g., [21,19])

These solutions are about to enter the market for safety- and mission-critical
systems, e. g., SIListra Systems (http://www.silistra-systems.com) is providing
solutions based on replication and arithmetic encoding as well.

Objective. So far, safety transformations are just claimed and believed to be
correct, since the applied techniques of replication or arithmetic encoding are
well known. However, the implementation is complicated in many places. Hence,
there is no guarantee that the resulting safe software produces the same results
as the unsafe original software in an error-free execution or that the imple-
mentation ensures the best error detection theoretically possible. Thus, before
applying these transformations in safety–critical applications, we need to check
the following properties:

F. Bitsch, J. Guiochet, and M. Kaâniche (Eds.): SAFECOMP 2013, LNCS 8153, pp. 190–201, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Safety Transformations: Sound and Complete? 191

soundness of implementation i. e., original software and safe software are
semantically equivalent as long as no error disturbs the execution.

completeness of error detection i. e., safe software indeed detects all exe-
cution errors that are determined by the technique implemented with the
expected probability. A bad implementation of the error detection technique
might prevent this. Note that safety transformations provide probabilistic
error detection, i. e., they might miss errors with a certain probability.

To the best of our knowledge, existing research has assessed both problems
by means of testing and error injections, e. g., [20] for arithmetic encoding or [7]
for replication, arithmetic encoding and assertion-based techniques. However,
testing as well as error injection are far from providing the completeness of
verification required for safety- and mission-critical systems.

In contrast, formal methods promise completeness. Our goal is to evaluate
how well formal methods are suited to verify soundness and completeness of
safety transformations. However, safety transformations are still under active
development. Thus, the verification techniques developed will have to be fully
automated and suited for daily usage, e. g., in nightly tests, by developers that
are not experts in formal verification. In this paper, we will focus on the AN-
encoding as presented in [21] (see Section 2 for a short introduction). Due to the
complexity of the task at hand we divided it into two parts:
1. Verify the safe implementations of basic AN-encoded operations.
2. Verify the actual safety transformation, i. e., replacing original instructions

with AN-encoded versions of the instructions and generation of glue code.
This paper will focus on step 1 by verifying the soundness of implementation and
partly the completeness of error detection of basic AN-encoded operations such
as arithmetic operations (see Section 5). To make these verifications feasible we
implemented an automated abstraction that reduces the number of test cases
considerably (see Section 4). See the related work in Section 3 for our evaluation
of the suitability of other methods for the described task.

Our contributions are
– Automated abstraction of the basic AN-encoded operations (arithmetic and

logical operations, casts, bit modifications, comparisons, select instruction,
and 128-bit integer arithmetic instructions) with the help of a user-supplied
heuristic for abstracting integer constants used in the implementations.

– Complete testing of the soundness of implementation and error propagation
capabilities of these abstracted AN-encoded operations’ implementations.

– We found and diagnosed issues preventing error propagation for all divisions
and all bitwise logical operations.

2 AN-Encoding in a Nutshell

Arithmetic codes add redundancy to processed data which results in a larger
domain. This domain of possible words contains valid code words and non-code
words. Arithmetic codes are conserved by correct arithmetic operations, i. e., a
correctly executed operation taking valid code words as input produces valid
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code words. On the other hand, faulty arithmetic operations destroy the code
with a very high probability, i. e., result in a non-code word [3]. Operations
executed on non-code words most likely produce non-code words.

The AN-code is one of the most widely known arithmetic codes. Encoding is
done by multiplying data xf stored in variable x with a constant A. Thereby, the
encoded version xc = A∗xf is obtained. Only multiples of A are valid code words
and every operation processing AN-encoded data has to conserve this property.
Code checking is done by computing the modulus with A, which is zero for a
valid code word. The code of any output of an AN-encoded program is checked.

For storing the AN-encoded version of the data, variable x is assigned a larger
type than it had originally. An AN-encoded program processes exclusively AN-
encoded variables. If a program originally adds two variables x and y with the
values xf and yf , its AN-encoded version adds xc + yc = A ∗ xf +A ∗ yf which
is equal to A ∗ (xf + yf ), which is a code word.

So, what is so complex about AN-encoding that we doubt the correctness of
its implementation? Varying reasons make AN-encoded operations complex:
– ensuring behavior that is semantically equivalent to the unencoded version

and produces an AN-code word, and
– operations not natively supported by AN-encoding.
AN-encoding was originally designed for arithmetic operations using infinite

integers (no native support for floating point at all). However, the size of integers
processed by CPUs is restricted and over- or underflows are happening. Most
programs expect these over- and underflows to happen, e. g., the realization of
signed integer operations with the two’s complement relies on correct overflows.
Ensuring this behavior for addition, subtraction and multiplication adds com-
plexity. Furthermore, for some operations AN-encoding leads to intermediate
results whose size is larger than the natively supported data types, so that soft-
ware implementations for big, e. g. 128-bit, integers are required for AN-encoded
multiplications and divisions.

Other operations such as logical operations or bit manipulations are not na-
tively supported by AN-encoding and need to be implemented as AN-encoded
versions that ensures error detection. Operations such as division are in princi-
ple supported by AN-encoding but additional instructions are required to ensure
that the result is again an AN-code word and no intermediate decoding happens.

We are verifying AN-encoded operations that use 64-bit integers as encoded
values and a 32-bit integer for the encoding parameter A. All operations exist
for functional values of 8-, 16-, and 32-bit integers. The implementations for the
different type sizes are equivalent apart from constants, e. g., constants used to
correct the overflow behavior. See [24] for details on AN-encoded operations.

3 Related Work

Testing and Error Injection are used the most to verify the correctness of
software. Testing exists in quite different flavors from unit to integration testing.
A special form of testing for dependable systems is error injection which arti-
ficially introduces errors to an execution. However, even when using elaborate
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test case generation tools, testing and error injection are always incomplete and
can only be used for finding bugs but not for verifying the absence of bugs.

Static Analysis tools such as Polyspace by MathWorks [14]1 and Astrée2 aim
at proving absence of runtime errors. They analyze source code to find bugs such
as faulty pointer dereferences or infinite loops amongst others. However, they are
not aiming for proving general correctness.

Formal Verification. In contrast to testing, formal verification, i. e., proving
the correctness of software, is complete and establishes a high level of trust.
However, it is time consuming and requires specialists. Even if powerful tools
are used, these tools are usually interactive and require a specialist to guide the
proof. However, we aim for a complete automation to be able to easily re-verify
the software after each modification.

The verification of a C compiler can give us an idea, how expensive the verifi-
cation of a safety transformation would be: Leroy presents the formally verified
C compiler CompCert in [13] whose verification without verifying front- and
back-end took five years according to the author.

However, some theorem provers can prove some problems completely auto-
mated if the problem is simple enough. Thus, they could be used to verify
the correctness of AN-encoded operations. We tried to prove the simplest AN-
encoded operation, the addition using KeY [1]. KeY works directly on Java code
and, thus, would be easy to integrate in the development process. We would
have preferred a tool for C, but we are not aware of one and translating the
C-implementations of the AN-encoded operations into Java is a straight-forward
process which requires only some string replacements. We are no theorem prov-
ing specialists and used the KeY tutorial [2] to provide the required verification
conditions. However, KeY is not able to prove the addition without a request for
help in picking a proof rule. We expect similar results for other theorem provers
and other, more complex, AN-encoded operations.

Model Checking. Another verification technology promising completeness is
model checking. Because the AN-encoded operations are implemented in C, we
researched specifically model checkers that are able to check C code: LLBMC [15]
(version 2012.2a) and CBMC [8] (version 4.2 from 2012). Both are bounded
model checkers that transform the checked program and the negated property
into a symbolic expression. For generating the symbolic expression, the checker
unrolls loops and recursions n times. Thus, bounded model checking might be
incomplete if a loop cannot be unrolled completely. However, the AN-encoded
operations do contain neither loops nor recursions.

Then, the checker hands the generated symbolic expression to an SMT solver
that checks if the expression is satisfiable. If so, a solution for the negated prop-
erty was found, i. e., the property cannot always be true and, thus, was proven
wrong. LLBMC uses the Boolector [6] SMT solver. CBMC supports several

1 http://www.mathworks.se/products/polyspace/
2 http://www.astree.ens.fr/

http://www.mathworks.se/products/polyspace/
http://www.astree.ens.fr/
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Fig. 1. Verification times of model checking the AN-encoded 32-bit addition with dif-
ferent model checkers and size restrictions for parameters and A

solvers: Z3 [9], MathSAT [10] and Boolector [6]. A similar but not available tool
is Calysto [4] with its own SMT solver SPEAR.

We again tried to verify the AN-encoded addition, because it is the simplest
of the AN-encoded operations. We used LLBMC and CBMC with different SMT
solvers. However, symbolic expressions describing the correctness of AN-encoded
operations contain non-linear arithmetic, which is not well supported by current
SMT solvers. Thus, we expect problems due to state explosion. Indeed, for veri-
fying the addition, we had to restrict the size of the three input parameters: two
operands of the addition and the encoding parameter A. Thus, the verification
is incomplete because many parameter combinations remained unchecked. We
measured the runtime of these checks for different size restrictions. For both
model checkers, the verification time is dominated by SMT solving. The results
depicted in Figure 1 clearly show a state explosion with exponentially growing
verification times (note that the y-axis is in log-scale) and the impossibility to
solve this verification task completely using these checkers.

Similar results were obtained using Symbolic Execution in combination with
the STP SMT solver as presented in [22]. Due to state explosion a complete
verification was also not achieved.

Symbolic Error Injection. Several projects try to provide more complete
results than simple error injection provides by using symbolic error injection:
[11,16] They combine symbolic expressions of the analyzed software, error checks
and possible errors into one model. Then, they check if all modeled errors are
detected using model checking [16] or symbolic execution of the analyzed pro-
gram [11]. However, both projects demonstrate their approaches only for small
examples and quite restricted error models such as bit flips.

In [23] a system is presented which allows the user to model error injection
experiments by describing error types and picking error injection points. The sys-
tem will then automatically execute all possible injections. However, a complete
test of reasonable sized systems is impossible.
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4 Automatic Abstraction by Downscaling

As we described in Section 3, we were not able to verify the AN-encoded op-
erations using formal or semi-formal verification approaches. The general idea
of our alternative approach is to drastically reduce the number of test cases by
automatically abstracting the AN-encoded operations and to execute complete
tests using the resulting so-called downscaled operations. Our abstraction has to
preserve the structure of code and processed data to ensure that bugs are not
removed. See Figure 2 for an overview of our approach.

General Approach. Since the application domain of AN-encoded operations
is restricted to transforming integer values using arithmetic operations and bit
modifications, we can reduce the amount of test cases exponentially by using
smaller integer types, e. g., instead of 64-bit integers, we can use 8-bit integers.
Due to the structural equivalence of different integer types, downscaled imple-
mentations are functionally equivalent to unscaled implementations, that is, the
downscaling transformation preserves all necessary properties of operations, such
as overflows, underflows, special values, e. g. division by zero. However, the do-
main size and the under-/overflow bounds change when downscaling an m-bit
integer type to an n-bit integer type:
– The overflow bound changes from 2m to 2n and
– The sign under-/overflow bound changes from 2m−1 to 2n−1.

Implementation in LLVM. We implemented the necessary code transforma-
tions using the compiler framework LLVM [12]. We apply the following changes:
– downscale types of variables, function parameters and return values, and
– downscale values of constants.

We also change the type information of all LLVM instructions, which also results
in the correct functional behavior according to the type, e. g., for overflows.

Furthermore, the pass supports, exclusion of data and functions calls from
downscaling. We use this to support output operations such as printf in the
downscaled code. All data depending on excluded data is also not downscaled.
If a non-scaled function takes downscaled variables as input, these are up-casted
to the original type for calls to this function.

Types. We support the downscaling of function types, integer types, pointer
types and aggregate types such as arrays and structures. Since the AN-encoded

Fig. 2. System overview



196 U. Schiffel

operations do not use floating point types, we do not need to support their down-
scaling. Thus, we also do not need to downscale any instruction using floating
point types. Note that currently AN-encoded programs that use floating points
are realized using software-implemented floating point instructions.

For downscaling integer types, we reduce their size according to our used
scale factor. For sizes below 8 bit, we use 8-bit integers and after all instructions
executed on these values, we execute a modulo with 2typeSize on the result to
ensure correct overflow behavior.

For pointer types, we scale the pointed to type according to our rules. For
aggregate types, we scale each element type separately. Thus, the number of
elements of a structure does not change, only their size changes. For arrays, the
number of elements is determined by a constant that is scaled according to the
rules for scaling constants. Thus, the number of elements might change or not
depending on the rules detailed in the next paragraph.

For function types, types of parameters and the type of the return value are
scaled according to our rules and all calls are adapted except for functions that
the user excluded from scaling.

Constants. How the values of constants are downscaled depends on their se-
mantics, which only the user of our framework knows. Therefore, we provide a
framework that helps the user of the downscaling transformation to
– classify the constant, and
– provide rules for its downscaling.

For classification, the user can use information about the constant, such as,
its type, value, properties of the value (e. g. is a power of two) and context of
usage (e. g. used as a comparison for a jump). He combines this information into
a conditional expression that is associated with a transformation rule that is
also provided by the user. The user builds these rules using basic rules that we
provide, such as, scale power of two or keep value but scale type.

For downscaling all AN-encoded operations, we wrote 31 such classification-
rule pairs. These facilitated the scaling of 604 constant usages. Note these might
have the same value, but different contexts may result in different scaling.

5 Verifying Encoded Operations

We use the downscaled versions of the AN-encoded operations to execute com-
plete tests for two properties: functional correctness and propagation of errors.
The downscaling, generation of required test code and execution of tests is com-
pletely automated. Execution times are short enough to facilitate regular testing.

5.1 Complete Testing of Functional Correctness

Test Setup. For testing the functional correctness, we use the downscaled ver-
sions of AN-encoded operations. We test them completely, that is, we test them
with all possible combinations of the downscaled encoding parameter A and the
downscaled operation parameters that are valid code words for this A. Since the
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encoded operations represent native operations of the processor, we use these
native operations (for the matching downscaled type) to compute the expected
result. We encode the expected result using the currently tested A and compare
with the obtained result. If the values are not equivalent, we found a bug.

Result. For testing functional correctness, we scaled down all types by the factor
4. Testing and analyzing all 73 operations takes approximately 30 minutes on
an Intel Core 2 Duo with 2.40GHz. We found no functional error.

5.2 Complete Testing of Error Propagation

Test Setup. Encoded operations should propagate errors that modified data
to ensure the detection of these errors once the code of a result is checked.
For testing error propagation, we test all possible inputs for parameters and A.
We ignore test cases where all parameters are valid code words for the tested
A, because we are interested in how well errors propagate to the output. Using
the tested A, we check if the obtained result is a valid code word. If so, a
non-propagation was detected. Note that a certain amount of not propagating
errors is normal, because an AN-code detects errors only with a probability of
approximately 1 − 1

A . Thus, we have to check if the amount of not propagated
errors is considerably larger than expected.

For complete error propagation testing, we scaled down by factor 8, because
factor 4 did not reduce the number of test cases sufficiently. This resulted in
non-native types such as 4-bit integers. After operations on these, we add ex-
plicit modulo operations to ensure the correct overflow behavior.

Result. The question is: How do propagation rates for downscaled and unscaled
implementations relate to each other? Can we draw conclusions from these mea-
surements? To estimate the differences, we executed randomized propagation
tests for additions and divisions for versions downscaled by 2 and 4, and the
original non-scaled implementations. For each scale factor, we executed 400000
tests for 100 different As for both operations. Figure 3 shows exemplary results.
We observe:
1. Measurements for downscaled implementations seem to provide a good pre-

diction for the propagation rate of non-scaled implementations, since all
curves are similar.

2. Furthermore, while for the addition the propagation probability relates as
expected to A, the division does not propagate most errors.

We executed complete propagation tests for all operations. For most opera-
tions, we see non-propagation rates similar to the approximately expected 1

A .
However, signed and unsigned divisions for all types do not propagate most of
the errors. Furthermore, the 16-bit bitwise logical operations starting with a
certain size of A are propagating less errors than theoretically expected. See
Figure 4 for the results for some of the operations.

We identified the reason for the reduced propagation for the logical operations
by looking at their source code: For understanding, it is necessary to know that,
due to performance reasons, the logical operations are not executed AN-encoded



198 U. Schiffel

0 50 100 150 200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

rate of propagation for add32

encoding parameter A

ra
te

 o
f p

ro
pa

ga
tio

n

●

●

●

●

●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

scaled by 8
scaled by 4
scaled by 2

unscaled
1−1/A

0 50 100 150 200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

rate of propagation for udiv32

encoding parameter A

ra
te

 o
f p

ro
pa

ga
tio

n

●

●

●

●

●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

scaled by 8
scaled by 4
scaled by 2

unscaled
1−1/A

Fig. 3. Propagation rates for unscaled implementations and implementations scaled
by factors 2, 4 and 8, and approximately expected propagation rate 1− 1

A

2 3 4 5 6 7

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

A

ra
te

 o
f n

on
−p

ro
pa

ga
tio

n

●

●

●

●

●
●

●
●

● ●
●

●

●

●

1/A
add16
mul16
sdiv16

srem16
sub16
udiv16
urem16

(a) Arithmetic operations.

2 3 4 5 6 7

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

A

ra
te

 o
f n

on
−p

ro
pa

ga
tio

n

●

●

●

●

●
●

●

●

● ● ● ●

●

●

1/A
and16

or16
xor16

(b) Logical operations.

Fig. 4. Rate of not propagating errors (for a selection of operations)

but replicated within one variable of sufficient size. This requires transforming
the AN-encoded operands into this format and transforming the result back into
the AN-code. This is done in a seemingly safe way, that is, for a non-code word
we would expect unequal replicas. However, the larger A is the more probable
it is that during this transformation overflows from one replica into the other
neutralize erroneous input. In addition, in contrast to xor, and and or neutralize
some mismatches in the replicas. We clearly see this effect in Figure 4b: and and
or have higher rates of not propagating errors than xor.

To aid debugging non-propagation, we plotted the parameter combinations
for which no error propagation occurred. For exemplary results, see Figure 5.
For easier accessibility, we reduced the graphs here to the domain of values that
represent functional values (identified by the rectangular markings) and left out
code words that represent larger than permitted functional values. Note that for



Safety Transformations: Sound and Complete? 199

A= 5

0 5 15 25

0
5

15
25 A= 7

0 5 15 25
parameter 2

pa
ra

m
et

er
1

(a) 16-bit integer addition.
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(b) 16-bit signed integer division.

Fig. 5. Invalid inputs that result in outputs that are code-words, exemplary for addition
and signed division. Note that the domains are also downscaled.

the propagation rate generally also the non-depicted parts of the input domains
matter since an error could easily result in these values.

For the addition, we see a pattern that tells us that non-propagation is the
result of the two parameters adding up to a multiple of A, i. e., an AN-code-word.
As expected, with increasing A the space between not propagated combinations
grows. However, for the division, we see that most of the combinations do
not propagate. There are only a few combinations where propagation occurs.
Careful analysis of the patterns helped us to identify and fix the problem which
was caused by the code that ensured the divisibility of the AN-code words.

Executing and analyzing (i. e., generating the plots) the full propagation tests
for all 16- and 32-bit operations takes 27 minutes. If we leave out the three-
operand select operation, we can reduce the time to 14 minutes.

6 Conclusion

Summary and Results. We presented our fully automated simple abstraction
which facilitates complete testing. Furthermore, we compared our approach to
formal and semi-formal approaches. Note that the simplicity of the approach
comes at the price: the generalization is limited. However, the framework can be
used to test other complex libraries with a clearly defined interface, for exam-
ple, the SafeInt library, or the library of ANB-encoded operations, or software-
implemented floating point operations.

Applying our automatic abstraction to AN-encoded operations used by the
safety transformation described in [21], we completely verified the functional
correctness of these implementations. In contrast to existing formal and semi-
formal approaches, we were also able to use the same approach to completely test
the error propagation properties of these implementations. Thereby, we found
and diagnosed two serious flaws that reduced error propagation, in one case even
prevented propagation completely. We diagnosed both bugs with the help of our
graphical representation of the results.
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Future Work. Our next steps will be to build on these results and use and
adapt translation validation approaches to prove the complete AN-encoding
safety transformation correct (or find flaws in it).
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It Is (Almost) All about Human Safety:

A Novel Paradigm
for Robot Design, Control, and Planning

Sami Haddadin, Sven Parusel, Rico Belder, and Alin Albu-Schäffer

Robotics and Mechatronics Center, DLR

Abstract. In this paper we review our work on safe control, acting, and
planning in human environments. In order for a robot to be able to safely
interact with its environment it is necessary to be able to react to unfore-
seen events in real-time on basically all levels of abstraction. Having this
goal in mind, our contributions reach from fundamental understanding of
human injury due to robot-human collisions as the underlying metric for
“safe” behavior, various interaction control schemes that ground on the
basic components impedance control and collision behavior, to safe real-
time motion planning and behavior based control as an interface level for
task planning. Based on this foundation, we also developed joint interac-
tion planners for role allocation in human-robot collaborative assembly,
as well as reactive safety oriented replanning algorithms. A very recent
step was the development of novel programming paradigms that act as a
simple yet powerful interface between programmer, automatic planning,
and the robot. A significant amount of our work on robot safety and
control has found found its way into international standardization com-
mittees, products, and was applied in numerous real-world applications.

1 Introduction

Finally, first robotic systems gained sufficient control capabilities to perform del-
icate and complex manipulation and physical human-robot interaction (pHRI)
tasks that require the dynamic exchange of physical forces between the robot
and its environment. The fully torque-controlled DLR Lightweight Robot III
(LWR-III) is such a device [1] and was recently commercialized by the robot
manufacturer KUKA (KUKA LWR) [4]. This step made it possible to automate
difficult and up to now still manually executed assembly tasks. In particular, the
achieved sensitive and fast manipulation capabilities [3,14,20,23] of the robot
prevent damage from the handled potentially fragile objects and humans di-
rectly interacting with the device. Recently, there is strong interest in making
classical safety barriers, as e.g. fences or light barriers, obsolete for these interac-
tive devices in order to enable direct physical cooperation between human and
robot. For understanding the risks of this undertaking we performed a series of
safety investigations [10,9,11,8,12,13,21], which led to fundamental insight into
the potential injury a human would suffer due to a collision with a robot. Fur-
thermore, we developed human-friendly interaction control and motion schemes

F. Bitsch, J. Guiochet, and M. Kaâniche (Eds.): SAFECOMP 2013, LNCS 8153, pp. 202–215, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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LWR-I LWR-II LWR-III KUKA LWR

Fig. 1. The generations of DLR light-weight robots (LWR-I, LWR-II, and LWR-III)
and the commercialized version (KUKA LWR)

that enable the robot to show sophisticated real-time responses on interaction
force level, motion planning, and real-time task planning [24,6,14,18,15,22,16].
Generally, our approach of embodying reactivity on all levels of robot design
and control is to our understanding the core to safe acting and manipulation in
human environments. Consequently, the careful design and selection of methods
that satisfy this requirement was our main premise.

In this paper we give an overview of the developed analysis tools, control
schemes, motion planners, real-time behaviors, interaction planning, and pro-
gramming paradigms for robots that are sought to act and manipulate in human
environments. We intend to give a “bird’s eye” view on the available repertoire
of tools and how the developed methodologies, insights, and algorithms impact
robotics in general.

2 Technologies and Methods

2.1 Lightweight and Mechatronic Robot Design

The most basic step for building robots that interact with dynamic environments
is to design them compact, light-weight, and with high payload. Only light struc-
tures are capable of appropriate physical reaction to external forces, i.e. have low
intrinsic impedance. Secondly, the robot’s proprioceptive sensorization is a key
element. Apart from standard motor position sensing, joint torque sensing to-
gether with accurate flexible joint dynamics modeling enable real torque control
and the sensation of contact forces. In this line of thinking we have developed
a series of torque controlled lightweight robots at DLR that are suitable for a
diverse range of applications involving space, industry, medical, and domestic
use. Figure 1 shows the history of the DLR Lightweight robots, resulting in its
commercialized version: the KUKA LWR [4] (and more recently the LBR iiwa).
Apart from minor modifications, this manipulator has exactly the same design
as the 3rd generation of the DLR Lightweight robots [1], which are kinemati-
cally redundant, 7-DoF, joint-torque controlled flexible joint robots. The current
version is the result of 15 years of research that produced three consecutive gen-
erations. Since the LWR-III weighs 13.5 kg and is able to handle loads up to
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15 kg, an approximate load-to-weight ratio of 1 is achieved1. The robot is a mod-
ular system and the joints are linked via carbon-fiber structures. The electronic
parts, including power converting elements are integrated into the structure of
the arm. Each joint is equipped with a motor position and a joint-torque sensor.
Additionally, a 6-DoF force sensor can be embedded in the wrist. All electron-
ics, motors, and gears are integrated into the arm, which makes the robot very
compact and portable.

2.2 Interaction and Manipulation Control

Apart from reducing the reflected mechanical impedance of a robot in order to
“make the mechanics sensitive”, the design of interaction control schemes is an
essential step for sensitive force exchange with the environment. The most widely
used control approach to physically interact with robots is probably impedance
control and its related schemes, introduced in the pioneering work of Neville
Hogan [19] and extended to flexible joint robots in [7,2,26,3,20]. This type of
controller imposes a desired physical behavior with respect to external forces on
the robot. For instance the robot is controlled to behave like a Cartesian second
order mass-spring-damper system, see Fig. 2.

Fext = Mx(ẍ− ẍd) +Dx(ẋ− ẋd) +Kx(x− xd), (1)

where x,xd ∈ R6 are the current robot and desired tip position, Fext ∈ R6

is the external wrench and Mx,Kx, Dx ∈ R6×6 are the desired Cartesian in-
ertia, stiffness, and damping tensors2. Consequently, impedance control allows
to realize compliance of the robot by means of active control. Interaction with
an impedance controlled robot is robust and intuitive, since in addition to the
commanded trajectory, a (local) disturbance response is defined. A major ad-
vantage of impedance control is that discontinuities like contact-non-contact do
not create such stability problems as they occur with for example hybrid force
control [5]. However, important open questions still need to be tackled from a
control point of view, such as how to automatically and/or adaptively adjust the
impedance parameters according to the current task. First work in this direction
can be found in [25,23].

Apart from nominal interaction control, a robot sharing its workspace with
humans and physically interact with its environment should be able to quickly
detect collisions and safely react to them. In the absence of external sensing,
relative motions between robot and environment/human are unpredictable and
unexpected collisions may occur at any location along the robot arm. Various
algorithms for coping with this problem were developed and evaluated. Efficient

1 Please note that the nominal payload for the KUKA LWR is 7 kg, but it is able to
handle up to 15 kg for research purposes.

2 Please note that for the LWR-III we leave the inertia unshaped in order to preserve
passivity of the controller. In turn, damping design becomes an important issue since
the eigenfrequency is due to the Operational space mass matrix position dependent.
Details can be found in [3].
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Fext

Mx

Kx Dx

xd

Fig. 2. Desired mechanical behavior expressed by mass-spring-damper

collision detection methods that use only proprioceptive robot sensors and pro-
vide also directional information for a safe robot reaction after collisions were
introduced and validated [6,14].

Since our collision detection method gives not only binary contact informa-
tion but an accurate estimation of the external torques, this information can
be used to classify the sensed contact according to its severity. Based on this
information it is possible to design application specific reaction patterns that
are automatically executed if the required stimulus is sensed. Basically, a sever-
ity mapping sm : τext → s can be designed either as a fixed stimulus type
→ reaction or a rather complex decision algorithm. In particular, this local
interpretation of contact can classify the intensity and hardness of the contact
based on contact frequencies and force amplitudes. This enables the robot to
act locally very quickly, if unexpected interaction forces occur and act accord-
ing to specified patterns (some details on this are given in Sec. 2.6). This can
e.g. be used for activating automatic recovery strategies during identified failed
grasping of objects, especially for avoiding the risk of damaging them.

The Cartesian impedance controller as well as the collision detection and re-
action methods are already integrated in the KUKA LWR, i.e. available as a
commercial product. Important to notice is that these novel features are consid-
ered as the key to enable safe pHRI by industry.

2.3 Injury Based Safety Analysis

During unexpected collisions with humans, various injuries, e.g. due to fast blunt
impacts, dynamic and quasi-static clamping, or cuts by sharp tools may occur.
In order to assemble a larger picture of this problem, we discussed and analyzed
various worst-case scenarios in pHRI according to the following scheme

1. Select and/or define and classify the impact type
2. Select the appropriate injury measure(s)
3. Evaluate the potential injury of the human
4. Quantify the influence of the relevant robot parameters
5. Evaluate the effectiveness of countermeasures for injury reduction and

prevention
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Fig. 3. Collision experiments with an LWR-III, HIII dummy (upper) and human
(lower)

Attempts to investigate real-world threats via impact tests at standardized crash-
test facilities and to use the outcome to analyze safety issues during physical
human-robot interaction were carried out. In order to quantify the potential
danger emanating from the LWR-III, impact tests at the Crash-Test Center of
the German Automobile Club (ADAC) were conducted and evaluated, see Fig. 3
(upper). Consecutive work extended the initial analysis for various other robot
types, clamping, and even to sharp contact [16], see Fig. 3 (lower). Generally, the
analysis provides unique data that helps explaining the characteristics of robot-
human impacts, which in turn can be used for safer robot design and control as
described next. Furthermore, the results are used as an input for future service
robotics standards that define “safe” behavior of robots in human environments.

2.4 Biomechanically Safe Velocity

As already explained, the definition of injury, as well as understanding its gen-
eral dynamics are essential in order to quantify what safe behavior really means.
This insights can then be applied to control robots such that injury prevention
is explicitly taken into account. For systematically bridging this gap, we ap-
proached the problem from a medical injury analysis point of view in order to
formulate the relation between robot mass, velocity, impact geometry, and re-
sulting injury qualified in medical terms [16]. We transformed these insights into
processable representations and propose a motion supervisor that utilizes injury
knowledge for generating safe robot motions. The algorithm, coined Safe Motion
Unit (SMU), takes into account the reflected inertia, velocity, and geometry at
possible impact locations. The proposed framework forms a basis for generating
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Fig. 4. DLR Lightweight-Robot III equipped with the end-effector that is used in the
experiments (left). Trajectory for the “line test” (right).
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Fig. 5. SMU experiment “line test” with a Cartesian point-to-point motion

truly safe velocity bounds that explicitely consider the dynamic properties of
the manipulator and human injury.

Figure 4 and Fig. 5 give an example for such a velocity scaling, where an
LWR equipped with a possibly dangerous endeffector is commanded to move
on a straight line between two configurations. The desired velocity is set to
1.5 m/s, whereas the SMU scales down the velocity such that according to its
internal injury knowledge no injury would occur if the robot would accidentally
collide with a human. The basic idea of our method currently finds its way into
an ISO technical specification that defines safety requirements for collaborative
industrial robots.

2.5 Real-Time Motion Planning

Up to now, we discussed rather the design and low-level control schemes for our
robots. However, the real-time planning and execution of motions in a dynamic
and partially unknown environment is fundamental for autonomous and safe
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no contact pushing collision retract reaching goal

Fig. 6. Automatic recovery from physical collisions with real-time motion planning
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problem



It Is (Almost) All about Safety 209

Fig. 8. Real-time motion planning and full-arm collision avoidance for dynamically
moving obstacles

acting. If contact is desired or inevitable, also motion planning should be able
to robustly and safely handle it, see Fig. 6. However, typically this is only ap-
proached as a pure control problem. Nonetheless, we believe this to be a rather
artificial separation that misses the chance of designing more sophisticated re-
sponses to contact on trajectory level as well. Especially physical Human-Robot
Interaction (pHRI) is a field in which such behavior is certainly desired. As hu-
man and robot shall collaborate very closely, the problem of generating “human-
friendly” motions is of large interest. We developed several methods for dealing
with obstacles and contact in real-time [18,15] on motion planning level. We
could show for several problems, which were typically a domain for global sam-
pling based planners that they can be solved in hard real-time3 with local meth-
ods only, see Fig. 7. This is due to the fact that these algorithms have favorable
convergence properties. Another key feature of these schemes is the unified treat-
ment of virtual and physical forces, which allows the systematic fusion of obstacle
avoidance with collision retraction or exploratory tactile behavior, see Fig. 6.

Fig. 8 shows our more recent results on extending the schemes with predic-
tive multi-agent systems that evaluate candidate paths in real-time and produce
significantly better results (right) compared to the original version of the algo-
rithm (left). In particular, a set of basic task related cost functions facilitate the
separation of good candidate paths from less favorable ones.

2.6 Behavior Based Control for Safe Acting and Manipulation

Due to the diversity and complexity of the developed control capabilities and
their sheer number it is non-trivial to design, implement and switch between
them consistently under the premise of ensuring safe behavior. For that rea-
son we developed a control architecture and a formal representation structure
for interactive robots, which contains and consistently combines a wide set of

3 Our current implementation runs at 500 Hz. Presumably, the high parallelizability
of our algorithm will enable us to further speed up the scheme.
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Fig. 9. Simple discrete planner for realizing context sensitive behavior of a robot. This
example scheme enables the robot to behave differently during free motion and object
manipulation phase. In this example R1, R2 are the nominal behaviors in zone A and
zone B, respectively. inZoneA and inZoneB indicate whether the robot is operating in
free space or close to the object, defined by a encapsulated surface of certain maximum
distance to the object. S1 denotes the safety reflex behavior for stopping abruptly and
S2 for switching to torque control with gravity compensation. CF , HF1, and HF2
denote human confirmation and contact severity level.

strategies for safe manipulation and human-friendly behavior [17,22]. We de-
signed an encapsulated low-level control framework, which provides a discrete
atomic action interface, which smallest primitive is defined as atomic action :=
(command, behavior). command can be e.g. atomic-move2, switch-behavior, or
a simple stop. This is a rather classical approach. However, in contrast to other
robots, the behavior is in our case a very complex data structure that defines
the “overall” control activation the robot occupies. It defines a minimal rep-
resentation of the activated interaction, motion, and local decision capabilities
of the robot. This intuitive level of abstraction gives the task programmer or
task planner a very powerful interface to the robot. Furthermore, we distinguish
between operational behavior and reflex behavior.

– Operational behaviors: a formal high-level parametrization of the robot
capabilities that defines its particular motion, control, and safety properties.
This fully determines the nominal motion control and disturbance response
of a robot. The atomic components of any general task automaton are oper-
ational behaviors.

– Reflex behaviors: a formal parameterization of a real-time reflex behavior
of a robot that is associated with a real-time activation signal. This repre-
sents either the indication of a certain stimulus or a fault4. Reflexes override

4 Stimuli are general perception inputs, whereas faults are detected either by processed
stimuli (observation of external torques, proximity information, . . . ) or general sys-
tem malfunctions, as e.g. communication collapse or run-time violations.
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the currently active operational behavior and execute a low-level strategy.
Complex reflex patterns are directed reflex graphs, which represent a deci-
sional component in the inner most control loop.

Figure 9 depicts a simple example for illustrating the concept. Generally, the
described approach intends to tightly couple the block world and control world,
i.e. leaving the common separation based designs. The presented design is from
our point of view a missing link between control and task planning for interactive
robots.

2.7 Joint Assembly and Interaction Planning

In order to profit from the collaboration of human and robot by combining the
flexibility, knowledge and sensory skills of a human with the efficiency, strength,
endurance and accuracy of a robot, according interactive assembly planners were
developed to plan their joint actions for a common goal. For this, a basic ques-
tion to be addressed is how high-level actions need to be assigned to human
and robot, respectively. We developed a formal problem formulation for human-
robot task allocation in the context of assembly tasks and analyzed standard
optimization techniques from state-space search with respect to their applica-
bility and performance characteristics. These methods found also their way into
our integrated robot control architecture, see Fig. 10.

Apart from planning joint plans, it is crucial to equip robots with capa-
bilities to perform local task replanning quickly and safely, as various faults
may arise in the course of action. Exploiting, however, the complex capabili-
ties of sophisticated interaction control schemes also on a decisional level was
treated only marginally so far. Figure 11 depicts our approach to the problem of

Fig. 10. Joint Assembly and Interaction Planning
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Fig. 11. Reactive Robot Control Framework

dynamic action and behavior learning, adaptation, and selection. We developed
an algorithmic framework for learning high-dimensional, interactive robot ac-
tions based on an extended version of optimal adaptive learning for extensive
support of dynamic, however, still human-friendly action generation. The scheme
utilizes a concept for modeling interaction based on an interaction world and
safety related metrics (similar to the ones for safe velocity planning). In addition,
we designed an online behavior selection and adaptation algorithm that enables
the robot to locally adapt its behavior such that human safety can be ensured
in case of undesired and potentially dangerous events. The developed framework
intends to bridge the gap between non-realtime task/interaction planners and
hard real-time robot control algorithms for complex robotic systems.

3 Dynamic Programming Paradigms

Since planning of complex tasks is still at an early stage, robot programming
on task level is still a major topic, in particular for interactive robots. In or-
der to program tasks involving manipulation and interaction for such complex
robots as the LWR, it is also important to be able to easily integrate new plan-
ning and perception components. Furthermore, robot programming needs to be
intuitive, but yet powerful and flexible. The simple programming of reactive ac-
tion generation patterns and their encapsulation is a highly desirable feature for
reuse of already designed control programs. We developed a robot programming
software framework that allows for designing control programs and distributed
computation on various levels of abstractions and, if desired, with various under-
lying paradigms. see Fig. 12. It supports parallelism, seamless hierarchy, flexible
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Fig. 12. Robot programming framework

integration of and communication with external components such as sensors,
planners, or observers. Another important feature of the system is the ability to
change programs at runtime, either based on a planner or actively by the user.
This allows an online development of tasks while the robot executes the current
program. However, apart from serving as a programming tool, the framework
acts also as a graphically programmable planner that allows for optimal inter-
action with the real-time control framework and in particular with the safety
planning and control core of our robots.

4 Summary

The potential impact of the presented work is manifold. First, the understanding
of human injury in robotics is a novel research field that has created a world-
wide community working on it. It forms an interdisciplinary complex involving
robotics, biomechanics, and medicine. Furthermore, our results contribute to a
basis for new industrial and service robotics standards that are currently being
created for regulating acting and manipulation in human environments. Together
with our work on physical Human-Robot Interaction in design, control, real-time
motion planning, and real-time task planning, it seems that we are only a blink
away from having first complex manipulation and interaction real-world scenar-
ios. These would start from fundamentally new manufacturing processes with
moderate interaction in the automobile sector to full scale pHRI tasks, incor-
porating dynamic interaction for complex processes. On this basis, we can also
lay the ground to pursue real-world domestic applications that would heavily
benefit from the experiences made in the industrial sectors. However, in both
application areas one of the main concerns with respect to robots coming to ev-
eryday life is whether they could be able to harm humans. This is a factor that
can significantly hinder the success of robotics in everyday life. In our research
we take this concern very serious and make it our central task.
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Abstract. FRAM has been proposed as a method for the analysis of complex 
socio-technical systems, which may be able to overcome the limitations of tra-
ditional methods that focus on simple cause and effect relationships.  FRAM on 
its own may be most useful for modeling the system at a high level of abstrac-
tion.  There is less evidence about its utility for modeling interactions at greater 
levels of detail. We applied different modeling approaches to investigate situa-
tions that may give rise to functional resonance in an avionics case study.  
FRAM was used to model higher-level dependencies, HAMSTERS was used to 
provide a deeper understanding of human functions, and ICO-Petshop was used 
to model technical system functions. The paper describes preliminary results of 
the application of this federation of models, and highlights potential benefits as 
well as challenges that may have to be overcome. 

Keywords: Modeling approaches, Avionics, Socio-technical systems. 

1 Introduction 

The causality of accidents in modern transportation systems may be difficult to 
determine.  Investigations of past accidents and incidents have led to the development 
of improved system defences, which have significantly reduced the incidence of fatal 
accidents.  When accidents occur they tend to exhibit complex causalities.  Reason [1] 
referred to such accidents in modern well-defended systems as organizational 
accidents.  These accidents are typically multi-faceted, and they may involve 
unexpected interactions or unforeseen propagation of failures [2].     

In order to deal with the characteristics of modern transportation systems as well as 
other industrial safety-critical systems, paradigm changes to the existing safety engi-
neering approaches have been proposed [3, 4].  Proponents of resilience engineering, 
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for example, have suggested regarding safety not simply as the absence of accidents, 
but rather as the ability to succeed under varying conditions [5].   

The concept of functional resonance, developed within the resilience-engineering 
paradigm, describes accidents as the detectable “signal” that emerges from the unin-
tended interaction of everyday variability.  The Functional Resonance Analysis Me-
thod (FRAM) [6] is a corresponding modeling approach that has been put forward as 
a novel way of modeling and understanding the behavior of complex systems.  FRAM 
has been used in a number of contexts including air traffic management [7], railway 
traffic management [8], healthcare [9] and financial services [10].         

The functional description used by FRAM may be particularly useful for describ-
ing and analyzing systems at higher levels of abstraction.  There is relatively little 
empirical evidence to demonstrate the application of FRAM to the detailed analysis of 
complex systems at different levels of abstraction.  A possible strength of FRAM may 
be to make explicit the link between task-based and technical system descriptions, 
resulting in a federation of different modeling approaches.    

The aim of this paper is to explore whether and how such a federation of different 
models can provide greater understanding of functional resonance in a real-world 
scenario.  Section 2 provides a brief description of the avionics case study.  Section 3 
describes the learning generated through the application of FRAM.  Sections 4 and 5, 
respectively, describe the learning generated from the application of a task-based 
modeling approach (HAMSTERS) and a petri-net based approach (ICO).  Section 6 
integrates and discusses the findings generated by this federation of models.  Section 
7 provides conclusions and suggestions for future research.   

2 Weather Radar Interactive System 

Weather radar (WXR) is an application currently deployed in many cockpits of 
commercial aircrafts. It provides support to pilots’ activities by increasing their 
awareness of meteorological phenomena during the flight journey, allowing them to 
determine if they may have to request a trajectory change, in order to avoid storms or 
precipitations for example.  Annex 1 shows, on the cockpit of the Airbus A380, the 
distribution of various components dealing with weather radar.  

Fig. 1 presents a screenshot of the weather radar control panel, used to operate the 
weather radar application. This panel provides two functionalities to the crew. The 
first one is dedicated to the mode selection of weather radar and provides information 
about status of the radar, in order to ensure that the weather radar can be set up cor-
rectly. The operation of changing from one mode to another can be performed in the 
upper part of the panel.  

The second functionality, available in the lower part of the window, is dedicated to 
the adjustment of the weather radar orientation (Tilt angle). This can be done in an 
automatic way or manually (Auto/manual buttons).  Additionally, a stabilization func-
tion aims to keep the radar beam stable even in case of turbulences. The right-hand 
part of Fig. 1 presents an image of the controls used to configure radar display, partic-
ularly to set up the range scale (right-hand side knob with ranges 20, 40, … nautical 
miles).  
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Fig. 1. Image of a) the weather radar control panel b) of the radar display manipulation 

 

Fig. 2. Screenshot of weather radar displays 

Fig. 2 shows screenshots of weather radar displays according to two different range 
scales (40 NM for the left display and 80 NM for the right display). Spots in the mid-
dle of the images show the current position, importance and size of the clouds. 

The next three sections describe the learning for safety analysis generated by using 
complementary modeling approaches combined as a federation of models.   

3 Functional Representation - FRAM 

The safety analysis using FRAM is based on a functional representation of the system.  
Each function is described using six aspects - TROPIC (Time, Resource, Output, 
Precondition, Input, Control).  The analysis using FRAM aims to investigate how the 
variability of the output of functions may propagate through the system, and how this 
propagation of variability may contribute to situations of functional resonance.     

Fig. 3 graphically illustrates the functions identified for this case study. FRAM 
does not explicitly differentiate between the actors that perform a function.  In the 
figure we have included an explicit representation of actors through the use of differ-
ent levels of grey.  Human functions are represented in light grey (continuous line for 
pilot functions while dotted for the air traffic controller).  Functions performed by 
technical systems are represented in dark grey.  Interactive functions are represented 
in medium grey. The functional description is hierarchical, so that functions can be 
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represented at higher levels of abstraction or with greater detail as required. For  
example, in Fig. 3 and Fig. 4 there is a function “Check weather conditions”, which  
is an abstraction of several lower-level functions (not represented in Fig. 3 above  
due to space constraints). This “macro” function includes system, human and  
interactive functions.  Such an abstraction provides support for the representation  
of a larger number of functions while keeping the graphical model representation 
understandable. 

 

 

Fig. 3. Excerpt of FRAM functions for the weather radar socio-technical system 

The FRAM instantiation shown in Fig. 4 describes a scenario where the pilot rece-
ives a clearance from the ATCO to change heading.  The pilot checks the current 
weather situation and realizes that weather perturbations require a different route.  
Subsequently, the pilot requests a new clearance, which is eventually provided by the 
ATCO (who has to handle the impact of the refusal to implement the clearance on 
potential conflicts).  In this scenario, the provision of the clearance also defines the 
timing parameter for executing the clearance, including checking the weather situa-
tion.  Prior to executing a clearance the crew should check the weather conditions 
hence the latter function is a precondition for the former.   

This simplified FRAM representation allows us to reason about the propagation of 
variability.  For example, the provision of the clearance could vary in terms of its 
timing aspect, i.e. it could be provided late (for instance according to complex con-
flicts in the sector).  In this case, there is less than adequate time available to execute 
the clearance.  In such a situation, there may be a trade-off between efficiency and 
thoroughness in such a way that the weather check may be omitted (i.e. the precondi-
tion between execute clearance and check weather conditions) in order to save time.  
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This would lead to an execution of the clearance, rather than to the more appropriate 
request for a new clearance.   

The functions provide clearance and request clearance use a shared resource, i.e. 
the communication link, which typically has limited bandwidth.  A variation in the 
availability of this resource will again have implications for the timing of the func-
tions.  So, the assessment based on the FRAM representation suggests that variability 
due to timing and resource aspects may lead to potentially hazardous situations.  The 
limitation of this approach is that without further models of human and technological 
systems behaviors, it is very difficult to explore and explain this potentially hazardous 
situation further.  The next two sections will describe examples of such complementa-
ry modeling approaches that together may provide greater analytical power especially 
exhibiting quantitative information.  

 

 

Fig. 4. FRAM instantiation (change heading clearance not feasible due to weather conditions)  

4 Representing Operators’ Tasks Using HAMSTERS 

HAMSTERS1 is a tool-supported graphical task-modeling notation aiming at 
representing human activities in a hierarchical and ordered way. Goals can be decom-
posed into sub-goals, which can in turn be decomposed into activities, and the output 
of this decomposition is a graphical tree of nodes. Nodes can be tasks or temporal 
operators. 

Tasks can be of several types (as illustrated in Fig. 5) and contain information such 
as a name, information details, critical level… Only the high-level task type are pre-
sented here (due to space constraints) but they are further refined (for instance the 
cognitive tasks can be refined in Analysis and Decision tasks [1]). 
 

                                                           
1 http://www.irit.fr/recherches/ICS/softwares/hamsters/index.html 
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Fig. 5. High-level task types in HAMSTERS 

Temporal operators are used to represent temporal relationships between sub-goals 
and between activities. Some of them are represented in the task models below. Main 
ones are >> for sequence, ||| for concurrent, [> for interruptions and [] for exclusive 
choice.  

Tasks can also be tagged by temporal properties to indicate whether or not they are 
iterative, optional or both [1]. Composition and structuration mechanisms have been 
introduced in order to provide support for description of complex activities [11]. One 
main element of these mechanisms is subroutine. A subroutine is a group of activities 
that a user performs several times possibly in different contexts and which might ex-
hibit different types of information flows. A subroutine can be represented as a task 
model and a task model can use a subroutine to refer to a set of activities. This ele-
ment of notation enables the distribution of large amount of tasks across different task 
models and factorization of the number of tasks. 

HAMSTERS also provides support for representing how particular objects (data, 
information, knowledge ...) are related to particular tasks. 

Fig. 6 illustrates the three relationships (input, output or input/output) between ob-
jects and tasks that can be expressed with HAMSTERS notation. Objects may be 
needed as an input to accomplish a particular task (as illustrated in Fig. 6a) by the 
incoming arrow). Particular tasks may generate an object or modify it (as illustrated in 
Fig. 6b and 6c)). According to the case study, the pilot has two main goals:  
“Keep awareness of weather situation” which includes the sub-goal “Checking 
weather conditions” (Fig. 7) and “Change heading” (not detailed here but involved in 
the execution of the considered clearance).  

The task model in Fig. 7 represents crew activities performed in order to check 
weather conditions. At the higher level of the tree, there is an iterative activity  
(circular arrow symbol) to “detect weather targets” that is interrupted (operator [>) by a 
cognitive task “mental model of current weather map is built”. 

 

a) b) c)  

Fig. 6. Relationships between tasks and objects in HAMSTERS 
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Fig. 7. HAMSTERS task model of the “Check weather conditions” goal 

 

 

Fig. 8. HAMSTERS task model of the subroutine “Manage weather radar” task 
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Other human tasks include perception (task “Perceive image”) and motor (task 
“Turn knob”). Connection between crew’s activities and cockpit functions is made 
through interactive tasks (as input “Turn knob” and output “Rendering of radar infor-
mation”). The time required for performing the latter heavily depends on the radar 
type. Such behavioral aspects of systems can be modeled using ICO notation and Pet-
Shop tool as detailed in section 5. The task “Manage weather radar” is a subroutine 
task detailed in Fig. 8 and is performed after selecting a range and before analyzing the 
image produced by the weather radar. This task model corresponds to the manipulation 
of the user interface presented in Fig. 1 a). From these models we can see that the tasks 
to be performed in order to check weather conditions in a given direction are rather 
complex. The time required to perform them depends on 3 elements: the operator’s 
performance in terms of motor movements, perception and cognitive processing. Hu-
man performance models such as the one proposed in [12] can be used to assess diffi-
culties and delays but the overall performance of the socio-technical system involves 
interaction and system execution times. Next section proposes a modeling approach for 
representing these two aspects while performance issues are presented in section 6. 

5 Representing Technical Systems Using ICO Models 

ICO [13] is used in this case study to model behavioral aspects of the system subpart 
of the interactive cockpit applications dealing with the weather radar. The following 
sections detail two models representing the interaction for controlling the weather 
radar parameters.  

Mode Selection and Tilt Angle Setting 
The first model presented here describes how it is possible to handle the weather radar 
configuration of both its mode and its tilt angle. Fig. 1 shows the interactive means 
provided to the user to: 

• Switch between the five available modes (upper part of the figure) using radio 
buttons (the five modes being WXON to activate the weather radar detection, OFF 
to switch it off, TST to trigger a hardware checkup, STDBY to switch it on for test 
only and WXA to focus detection on alerts). 

• Select the tilt angle control mode (lower part of the figure) amongst three modes (fully 
automatic, manual with automatic stabilization and manual selection of the tilt angle). 

Fig. 9 presents the description of the behavior of this part of the interactive cockpit 
using the ICO formal description technique and may be divided into two parts. 

• The Petri net in the upper part handles events received from the 5 radio buttons. The 
current selection (an integer value from 1 to 5) is carried by the token stored in 
MODE_SELECTION place and corresponds to one the possible radio buttons (OFF, 
STDBY, TST, WXON, WXA). The token is modified by the transitions (new_ms = 
3 for instance) using variables on the incoming and outgoing arcs as formal parame-
ters of the transitions. Each time the mode value is changed, the equipment part 
(represented by the variable wxr within the token) is set up accordingly. 

• The Petri net in the lower part handles events from the four buttons and the text 
field (modify tilt angle). Interacting with these buttons changes the state of the 
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Fig. 9. Behavior of the WRX mode selection and tilt angle setting 

application. In the current state, this part of the application is in the state fully au-
tomatic (a token is in AUTO place). To reach the state where the text field is avail-
able for the angle modification, it is necessary to bring the token to the place 
STABILIZATION_OFF by successively fire the two transitions switchManual_T1 
and switchStabOff_T1 (by using the two buttons MANUAL and OFF represented 
by Fig. 1), making transition change_Angle_T1 available. The selected angle must 
belong to the correct range (-15 to 15), controlled by the three transitions angleIs-
Low, angleIsCorrect and angleIsHigh. When checked, the wxr equipment tilt angle 
is modified, represented by the method called wxr.setTiltangle. 
 

Range Selection  
The setting of the range detection of the weather radar is done using a FCU physical 
knob (see Fig. 1b) by switching between 6 values (from 1 to 6). Each time the value is set 
an event is raised (holding this value) by the knob and received by a dedicated part of the  

 

 

Fig. 10. Behavior of the range selection  
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cockpit application. This part of the application is represented by the model of Fig. 10 
that maps the value (form 1 to 6) into a range value that is sent to the WRX equipment. 

The event is received and the selected value is extracted by one of the two  
transitions called valueChanged_T1 and valueChanged_T2. The place RangeMapping 
contains the mapping between a value and the corresponding range (for instance 1 
corresponds to range 10, 2 to 20…). Finally, the wxr equipment range is set with the 
selected range by the firing of transition mapIndexToRange. 

6 Time and Performance Aspects 

To allow performance assessment we have to address timing issues at three levels: the 
operator side using the task models presented in section 4, the system side exploiting 
the ICO behavior models in section 5, the interaction side related to the graphical 
interface described also in ICOs in section 5. 
 

Operators’ Performance from Task Models 
To qualitatively evaluate the performance of the weather radar graphical interface, we 
first restricted the study to the interaction with the weather radar control panel (see 
Fig. 1a), which is handled using a trackball (the other part being handled using the 
knob). One of the evaluation approaches used in human factors domain is based on 
Fitts’s law [14] which is suitable for assessing motor movements. Fitts’s law is pre-
sented in Formula (1) representing an index of difficulty for reaching a target (of a 
given size) from a given distance. Movement time for a user to access a target  
depends on width of the target (W) and the distance between the start point of the 
pointer and the center of target (A). 

MT = a + b log2(1+2A/W) (1)
For predicting movement time on the systems under consideration constants are set 

as follows: a=0 and b=100ms (mean value for users).  
Fig. 11 presents the set of interactive widgets used within the weather radar control 

panel. For each widget, it provides a short name used for the following tables and  
the size used as the width for the Fitts’s law (we use the minimum value between the 
width and the height to provide the assessment of the maximum difficulty to reach the 
considered widget). 

Fig. 12 provides the distances from the center to each widget and between each 
widget. These distances are used to apply the Fitts’s law when reaching a widget with 
a start point that can be the center of the control panel or any widget. 

 

radio
button

off

radio
button
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Fig. 11. Interactive widgets width used for the Fitts’s law application 

r1 r2 r3 r4 r5 b1 b2 b3 b4 t1
c 104 130 115 100 87 77 17 128 104 132  b) 

r1 r2 r3 r4 r5 b1 b2 b3 b4 t1
c 110 119 114 108 103 77 32 97 89 105  

Fig. 12. Distance from the control panel center a) Temporal values (in ms) for user interaction 
using Fitts’s b) 



226 C. Martinie et al. 

 

Model Transition Duration (ms) 
WXR control panel model Off_T1 500 

Stdby_T1 200 
Wxa_T1 500 

Wxon_T1 1000 
Tst_T1 1000 

angleIsLow 2000-4000 
angleIsCorrect 2000-4000 
angleIsHigh 2000-4000 

Range selection model mapIndexToRange 200 

Fig. 13. Delays introduced by interaction 

In addition to these motor values cognitive and perceptive values have to be used in 
order to cover all the elements of the task models. From [12] we know that the mean 
time for performing a comparison at the cognitive level is 100ms (ranging from 25ms to 
170ms) while eye perception mean is 100mn too (ranging from 50ms to 200ms).  

Weather Radar System Time (Associated to ICO Models) 
In the ICO Petri net dialect, time is directly related to transition, which invokes ser-
vices from the weather radar system (this is the case for transition off_T1 on Fig. 9 
which switches off the equipment). The duration of each invocation is presented on 
Fig 13 (each value is coarse grain and depends on the type of weather radar). The 
2000-4000ms value corresponds to the time required by the weather radar to scan the 
airspace in front of the aircraft (two or three scans are needed to get a reliable image). 

Using the task models in Fig. 7 and Fig. 8 and the values above we can estimate the 
overall performance of the crew to perform the “check weather condition” task. The over-
all time cannot be less than 30 seconds provided that several ranges have to be checked in 
turn. Going back to FRAM model presented on Fig. 4 the function “check weather condi-
tion” is a strong bottleneck and influences the entire socio technical system. 

7 Conclusion 

The paper outlined how a federation of three complementary modeling paradigms could 
be a useful approach in order to explore situations of functional resonance within socio-
technical systems.  FRAM provided a high-level view of possible dependencies in the 
system under consideration.  These dependencies were then further explored using 
HAMSTERS for human activities, and ICO-Petshop for technical systems covering both 
interaction techniques on the user interfaces and the underlying hardware and software 
systems. The analysis presented in this paper represents a first step and the results are 
preliminary.  A possible limitation of the approach is that there is no clear algorithm for 
how the three models can interact.  At present, this relies on the skill of the analyst.  This 
may pose problems in the analysis of large systems, where a greater level of tool support 
may be required for the analysis but it is important to note that most of the modeling 
activities are supported by tools and that performance evaluation techniques are partially 
available as for ICOs with Petri nets theory [15] and HAMSTERS with dedicated tools 
presented in [11]. Future research should investigate the generalizability of this case study 
to larger systems. The possibility of formalizing the interaction between the models at the 
different levels of analysis should be explored further. Lastly, variability and resonance 
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can also occur through system failure occurs or operators errors. We aim at integrating 
previous work we have done in the area of systems reconfiguration [16] and systematic 
account for human error using task models [17] to address variability for all the 
components of the socio-technical system. 
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Abstract. A realistic user interface is rigorously developed for the US
Food and Drug Administration (FDA) Generic Patient Controlled Anal-
gesia (GPCA) pump prototype. The GPCA pump prototype is intended
as a realistic workbench for trialling development methods and tech-
niques for improving the safety of such devices. A model-based approach
based on the use of formal methods is illustrated and implemented within
the Prototype Verification System (PVS) verification system. The user
interface behaviour is formally specified as an executable PVS model.
The specification is verified with the PVS theorem prover against rel-
evant safety requirements provided by the FDA for the GPCA pump.
The same specification is automatically translated into executable code
through the PVS code generator, and hence a high fidelity prototype is
then developed that incorporates the generated executable code.

Keywords: Formal methods, Model-based development, Medical
devices, User interface prototyping.

1 Introduction and Motivation

Infusion pumps are medical devices used to deliver drugs to patients at precise
rates and in specific amounts. The current infusion pumps incorporate sophis-
ticated software, of around tens of thousands of lines of program code [9]. This
complexity may make infusion pumps flexible and configurable, but it introduces
new risks as software correctness is hard to verify. Traditional manual verifica-
tion and validation activities based on manual inspection, code walkthroughs
and testing are insufficient for catching bugs and design errors in such com-
plex software. Unfortunately there are currently no widely accepted techniques
for development and verification of software for medical devices, nor standard
guidelines to ensure that a device meets given safety requirements [8].

Numerous adverse events have been reported that are associated with infusion
pumps. Reports from the US Food and Drug Administration (FDA) show that
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some of these incidents are due to use errors and software failures caused by poor
software design [5]. Because of this, several device recalls have been issued: for
instance, 87 models of infusion pump, affecting all infusion pump manufacturers,
were recalled over 2005 to 2009 in the US [5].

The FDA is promoting the development of so-called Generic Infusion Pump
(GIP) models and prototypes as a way to demonstrate how rigorous development
methods can substantially improve confidence in the correctness of software. For
instance, in [1], the FDA presents a research prototype for generic design of
Patient Controlled Analgesia (PCA) pumps, called the Generic PCA (GPCA)
pump. We explain PCA pumps more fully below.

The GPCA itself is not yet a real medical device. However, because its func-
tionalities and details closely resemble those of a real medical device, it can be
used as a realistic workbench. Successful application of methods and tools to the
GPCA prototype should indicate that they are viable for commercial devices.

The importance of user interface design is well understood by regulators [21].
However, hardly any concrete examples of model-based development of user in-
terfaces have been explored that take account of human factors or human factors
engineering. In our previous work, we illustrated how verification tools could be
used to verify the design of commercial infusion pump user interfaces against
properties that capture human factors concerns [4, 6, 13, 14] and safety require-
ments [12]: potential issues were identified precisely, and verified design solutions
that could fix the identified issues were presented. This work builds on our pre-
vious work, and extends it by introducing a model-based development approach
for rapid prototyping of medical device user interfaces that are verified against
given safety requirements. The approach presented in this paper is illustrated
through the development of core parts of the user interface of the GPCA.

Contributions. The main contribution of this paper is the detailed model-
based development of a data entry system for the GPCA user interface within
Prototype Verification System, PVS [18]. The specification of the data entry sys-
tem of the GPCA user interface incorporates safety features that can mitigate
use errors, and the specification is formally verified against safety requirements
provided by the FDA within PVS, a standard system commonly used for this
purpose. The verified model is then automatically transformed into executable
code through the PVS code generator, and the generated code is then incorpo-
rated in a prototype that can be executed.

2 Related Work

In this paper, the model-based approach is implemented using the Prototype
Verification System (PVS) [18]. PVS is a state-of-the-art verification tool that
provides an expressive specification language based on higher-order logic, a lan-
guage mechanism for theory interpretation [19], a verification engine based on
automated theorem proving, and a code generator for automatic translation of
PVS specifications into executable code [23].

PVS is only one approach of course, and other tools could have been used
to develop the prototype. Our choice was guided by pragmatics linked to best
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(a) GPCA architecture (b) The original GPCA user interface in Matlab

Fig. 1. Schematic of the FDA’s Generic PCA infusion pump prototype

current development practices — the need to specify safety requirements inde-
pendently, expressiveness of the specification language (here, PVS), and auto-
mated code generation from verified specifications. In [10], different tools are
used to generate a prototype of the GPCA pump controller with a model-based
approach: safety requirements are formalised as properties of a Uppaal model of
the GPCA controller, and the Times code generator is used for translating the
model into platform-independent C code. In [27], a model of the Generic Insulin
Infusion pump controller are developed in Event-B using the Rodin platform.
The model is verified against selected safety requirements related to timing is-
sues. The development of a prototype from the verified model was not in the
scope of that work. In [3], model-based development is used to generate a run-
time software monitor that validates the behaviour of an insulin infusion pump
against safety requirements. Petri Nets are used to specify the behaviour of the
monitor, and then the specification is manually translated into Java code.

No prior work addresses model-based development of realistic user interfaces
for infusion pumps.

3 The Generic PCA (GPCA) Pump

PCA pumps are a class of infusion pump used to administer pain relief medica-
tion. They are employed for self-administration where a patient is able to request
pain relief in controlled amounts when they need it. The patient interacts with
the PCA pump using a single button, which is used to request additional pre-
defined doses of drug. The intended infusion parameters are programmed in
advance by clinicians. In the current generation of infusion pumps, clinicians
program infusion parameters by interacting with buttons on the user interface.

The FDA has developed a Matlab Simulink/Stateflow model of the Generic
PCA (GPCA) pump that captures the core functionalities of PCA pumps in gen-
eral. The GPCA model has a layered architecture (see Figure 1(a)). The top layer
is the user interface, which presents the state of the infusion pump and allows users
to program infusion parameters. The software controller is the middle layer in the
architecture, and includes two components: a state controller and alarm detec-
tion component. The state controller drives the drug administration process and
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supervises communication among the modules of the GPCA pump. The alarm
detection component handles alarms and warnings. The lowest layer models the
hardware components, such as the delivery mechanism (peristalitic motors and
air bubble sensors, etc) and power unit (includind the battery charger, etc).

The GPCA user interface, as provided with the original model [21], has the
layout shown in Figure 1(b). The user interface includes the following elements:
a programming unit and pump console, which renders information about the
pump state and allows users to set infusion parameters; and a keypad, which
allows users to send commands to the pump. Human factors were not considered
when developing this original user interface [21], as the user interface was used
primarily for development and debugging purposes.

3.1 GPCA Safety Requirements

The FDA has released an initial set of 97 GPCA safety requirements [1]. They
are formulated in natural language, and grouped into 6 main categories: infusion
control, which are dedicated to safety features and constraints that can mitigate
hazards resulting from incorrectly specified infusion parameters (e.g., flow rate
too high or too low); user interface, which describe constraints on user interface
functionalities that can help avoid accidental modification of infusion parame-
ters; error handling, which are dedicated critical alarming conditions; drug error
reduction, which define drug library functionalities; power and battery opera-
tions and system environment, which are dedicated to constraints on operating
conditions.

The GPCA safety requirements describe essential safety features and con-
straints that guarantee a minimum level of pump safety. The requirements were
obtained by reasoning about mitigation actions that could contrast identified
hazards associated with PCA pumps, as well as related causes of the identified
hazards. For instance, an identified hazard of PCA pumps is overinfusion, and
one of the causes is that the programmed flow rate is too high. A suggested
mitigation for this hazard is to make the flow rate programmable within given
rate bounds only. Starting from this suggested mitigation, corresponding GPCA
safety requirements are then formulated that can help check the mitigation
barrier in the pump.

The GPCA safety requirements were designed on the basis of a preliminary
hazard analysis for the controller of the pump. We found that almost half of
the requirements can be related to user interface functionalities, and correctly
capture basic human factors concerns. However, a hazard analysis specifically
addressing user interface functionalities is needed to cover a more complete set
of aspects related to human factors. We are currently starting this hazard anal-
ysis. Some examples of safety features and constraints that are currently not
considered in the GPCA safety requirements and can potentially make the user
interface design safer follows.

Illegal keying sequences shall be blocked during interactive data entry. An ille-
gal keying sequence is a sequence of key clicks resulting in an illegal value (e.g.,
a value out of range) or illegal number format (e.g., a number with two decimal
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Fig. 2. The adopted model-based development approach

dots). Blocking an illegal keying sequence means that interaction is halted when
a key click results in an illegal keying sequence, and feedback is provided to the
user. Results presented in [4] and [25] show that this safety feature can create
useful mitigation barriers against keying slip errors.

Numbers rendered on the display shall follow the ISMP rules [7]. The Institute
for Safe Medical Practices (ISMP) promoted the adoption of two basic rules to
design correctly formatted dosage values: leading zeros (e.g., 0.1 mL) are always
required for fraction dose values; and trailing zeros (e.g., 1.0 mL) are always
avoided. These rules are distilled from best practice (e.g., 1.0 may be misread as
10) and aim to reduce medication errors through standardised formatting and
clear presentation.

Numbers rendered on displays shall follow the NPSA recommendations [26].
The UK National Patient Safety Agency (NPSA) recommends adherence to
the following guidelines to facilitate a correct identification of dosage values,
including: digits after the decimal point are rendered in smaller font size; the
visual salience of the decimal point is increased; using “TallMan” lettering for
names and units.

4 Development of the GPCA User Interface

A GPCA user interface (hereafter, GPCA-UI) prototype is now developed using
a model-based approach. Within model-based development approaches, models
are used as primary artefacts during the whole development cycle: they present
a design specification that can be checked against given requirements, and then
code generation techniques are used to transform the model into a concrete
implementation for a specific platform. The adopted model-based development
approach consists of the following phases (as shown in Figure 2):

Specification. A GPCA-UI model is specified that defines the interactive be-
haviour of the GPCA user interface. The specification is given in the form of an
executable model, that is a model whose specification is rich enough that it can
be systematically translated into a concrete code implementation.
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Verification. The developed GPCA-UI model is verified against a formalisation
of selected GPCA safety requirements. This is done through an approach based
on theory interpretation. It is based on the idea of formalising safety require-
ments as axioms of an abstract model (which we call the reference model); proof
obligations that need to be verified on the GPCA-UI model are automatically
generated by mapping functionalities of the abstract model into functionalities
of the GPCA-UI model; a formal verification is then performed to discharge the
generated proof obligations. With this approach, safety requirements can be de-
veloped independently from the GPCA-UI model.

Prototyping. A user interface prototype is developed. The prototype incorpo-
rates software code automatically generated from the verified GPCA-UI model
through code transformation. The prototype has a back-end that defines the
functionalities of the GPCA-UI, and a front-end that defines the visual appear-
ance of the GPCA-UI. The back-end is executed within a verified execution envi-
ronment to ensure that correctness properties verified on the formal specification
are preserved at run-time when executing the generated code. The front-end just
renders information returned by the back-end. The prototype can be used for
validation purposes. The prototype implementation in PVS is further elaborated
in the following sub-sections.

4.1 Specification

The model is developed as a finite state machine. The state of the state machine
defines information observable on the GPCA-UI (e.g., values shown on a display)
and internal variables (e.g., values held by timers). State transitions of the state
machine define interactive functionalities activated by the operator (e.g., button
clicks) and internal events generated by the GPCA-UI (e.g., timer events).

The GPCA-UI model includes the typical functionalities provided by the cur-
rent generation of commercial PCA pump user interfaces. Due to space limita-
tions, only a qualitative description of the functionalities included in the model
is provided here without going into the specific details of the PVS model. The
full PVS model can be found at [2].

The GPCA-UI programming unit specifies the behaviour of a “5-key” number
entry [4, 17], as widely used in commercial infusion pumps. A different choice
could have been made (chevron keys, number pad, or others). Two functions
(up and down) edit the entered value by an increment step. The increment step
is proportional to the position of a cursor. Two functions (left and right) edit
the position of the cursor. The accuracy of the entered value is limited to two
decimal digits, and legal values are below between 0 and 99999. These limits
reflect those of commercial PCA pumps. Whenever these limits are violated,
interaction is halted and an alert message displayed.

The GPCA keypad specification defines the basic behaviour of typical com-
mands made available to the operator to control the state of the pump: turn
the pump on and off; start and stop an infusion. Additional functionalities not
implemented in this first version of the model include: edit infusion parameters;
view pump status; deliver an additional limited amount of drug upon demand.
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The model developed includes a specification of the communication protocol
with the GPCA controller developed by Kim et al in [10]. In the current version,
the protocol specification includes the sequence of commands to boot-strap the
pump controller.

4.2 Verification

Within the verification approach, safety requirements formulated in natural lan-
guage are formalised as predicates (see Figure 2). These predicates define the
functionalities of a logic-based model, which we call the reference model, which
encapsulates the semantics of the safety requirements by construction. The ref-
erence model is used for the verification of the GPCA-UI model by means of
a technique called theory interpretation [19], which is a verification approach
based on the idea of establishing a mapping relation between an abstract model
and a concrete model. The mapping relation is used to systematically translate
properties that hold for the abstract model into proof obligations that need to be
verified for the concrete model. In our case, the abstract model is the reference
model, and the concrete model is the GPCA-UI model. Hence, safety require-
ments encapsulated in the specification of the reference model are systematically
translated into proof obligations for the GPCA-UI model. Being able to discharge
the generated proof obligations through formal proof is a demonstration that the
GPCA-UI model meets the safety requirements. The GPCA-UI specification de-
veloped is then formally verified against the following GPCA requirements that
are relevant to the data entry system.

GPCA 1.1.1. The flow rate of the pump shall be programmable.
GPCA 1.1.2. At a minimum, the pump shall be able to deliver primary

infusion at flows throughout the range fmin and fmax mL per hour.
GPCA 1.3.1. The volume to be infused settings shall cover the range from

vmin to vmax mL.
GPCA 1.3.2. The user shall be able to set the volume to be infused in j mL

increments for volumes below x mL.
GPCA 1.3.3. The user shall be able to set the volume to be infused in k mL

increments for volumes above x mL.

Example. Requirement 1.3.1 is formalised and verified to exemplify the verifica-
tion approach. A logic expression is created by extracting the relevant concepts
presented in the textual description: VTBI settings range (where VTBI means
volume of drug to be infused), vmin and vmax. As shown in Listing 1.1, these
concepts are used to define an uninterpreted predicate vtbi settings range in
PVS higher-order logic, and two symbolic constants v min and v max of type
non-negative real numbers. The state of the reference model is specified with a
new uninterpreted type, ui state.

Listing 1.1. Part of the Reference Model

ui_state : TYPE
vtbi_setting_range(vmin ,vmax: noneg_real )(st:ui_state ): boolean
vmin ,vmax: noneg_real
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(a) Architecture (b) GPCA-UI layout (HTML & JavaScript)

Fig. 3. The GPCA-UI prototype

The predicate and constants are then encapsulated in the reference model by
formulating a property that always holds for the reference model (i.e., an axiom).
In PVS, axioms are boolean expressions annotated with the AXIOM keyword. Ax-
ioms can be formalised in a way that facilitates proof by structural induction. For
the considered example, the formalisation is as follows (see Listing 1.2). The ini-
tial state of the reference model (predicate init?) satisfies vtbi settings range

(the induction base); given a state st0 of the reference model that satisfies vtbi
settings range, any state st1 reachable from st0 through a transition function
(trans) of the referencemodel satisfiesvtbi settings range (the induction step).

Listing 1.2. Axiom used to specify requirement R1

R1_Axiom : AXIOM
FORALL (st , st0 , st1: ui_state ):
(init?(st) IMPLIES vtbi_settings_range(vmin ,vmax)(st)) AND
(( vtbi_settings_range(vmin ,vmax)(st0) AND trans (st0 , st1))

IMPLIES vtbi_settings_range(vmin ,vmax)(st1))

A relation is then defined that specifies how vtbi settings range is mapped
into the GPCA-UI model. In this case, the relation maps vtbi settings range

into a function that checks the vtbi range supported by the GPCA-UI model
(the second LAMBDA function in Listing 1.3). Through this mapping, PVS is
able to automatically generate proof obligations that must be verified on the
GPCA-UI model in order to demonstrate compliance with the reference model
(and, hence, show that the safety requirement is met). The syntax for specify-
ing a theory interpretation in PVS is that of a PVS theory importing clause
(keyword IMPORTING followed by the model name, reference model th in this
case) with actual parameters specifying the mapping relation (a list of substitu-
tions provided within double curly brackets). Listing 1.3 gives a snippet of the
PVS theory interpretation specified for the considered requirement: it states that
the uninterpreted state of the reference model (ui state) is mapped onto the
state of the GPCA-UI model (gpcaui state). The uninterpreted predicate that
recognises the initial state of the reference model (init?) is mapped into the
interpreted predicate that recognises the initial GPCA-UI concrete model state
(gpcaui init?). The uninterpreted predicate that identifies the set of transitions
of the reference model (trans) is mapped into a function that enumerates the
transition functions of the GPCA-UI concrete model (the first LAMBDA expres-
sion in the specification snippet shown in Listing 1.3; in the expression, st prime

identifies the next state obtained after applying a transition function).
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Listing 1.3. Theory interpretation

IMPORTING reference_model_th
{{ ui_state := gpcaui_state ,

init? := gpcaui_init ?,
trans := LAMBDA (st , st_prime : gpcaui_state):

st_prime = click_up (st) OR %...
vmin := 0, vmax := 99999 ,
vtbi_settings_range

:= LAMBDA (vmin , vmax: nonneg_real )(st: gpcaui_state):
vmin <= display (st) AND display (st) <= vmax
AND vmin <= vtbi(st) AND vtbi(st) <= vmax }}

Given this theory interpretation, PVS automatically generates the proof obli-
gation in Listing 1.4, which then needs to be discharged. The proof obligation
requires we show that, for all reachable states, it is always true that the display
and the VTBI range have values between v min and v max (0–99999 in this case).

Listing 1.4. Proof obligation

IMP_reference_model_th_R1_Axiom_TCC1: OBLIGATION

FORALL (st, st0 , st1: gpcaui_state):

(gpcaui_init?(st) IMPLIES

0 <= st ‘display AND st‘display <= 99999

AND 0 <= st‘vtbi AND st‘vtbi <= 99999)

AND ((0 <= st0 ‘display AND st0‘display <= 99999 AND 0 <= st0 ‘vtbi

AND st0 ‘vtbi <= 99999 AND st1 = click_up (st0) OR %...)

IMPLIES 0 <= st1 ‘display AND st1 ‘display <= 99999

AND 0 <= st1‘vtbi AND st1‘vtbi <= 99999);

The generated proof obligation can be discharged within the PVS theorem
prover thanks to using implicit subtype constraints [24] declared for the vtbi

type and the display type in the GPCA-UI model. (In PVS, implicit subtype
constraints are made explicit by using the command typepred.) After making
subtype constraints explicit, the proof can be completed in less than a second
with assert, a predefined decision procedure of the PVS theorem prover that
simplifies expressions using decision procedures for equalities and linear inequal-
ities. Alternatively, PVS can perform the proof automatically in seconds with
its command grind, a powerful predefined decision procedure that repeatedly
applies definition expansion, propositional simplification, and type-appropriate
decision procedures.

4.3 Prototyping

An interactive GPCA-UI prototype is now presented that incorporates the ver-
ified PVS specification. The utility of the prototype is that it allows validating
the behaviour of the generated code, and verifying aspects of the UI that are
not formalised in the specification (e.g., the guidelines illustrated in Section 3.1).
Additionally, the prototype can be used by formal methods experts to engage
with domain experts such as human factors specialists.

The GPCA-UI prototype can be downloaded at [2]. The prototype architec-
ture is split into a front-end and a back-end, as shown in Figure 3(a). The front-
end is deployed on a tablet, which makes it possible to do realistic interaction
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with the buttons on the user interface. The back-end is deployed on a server with
the PVSio [15] prototyping environment. Code automatically generated from the
PVS specification is executed exclusively on the back-end within the Lisp execu-
tion environment of PVS. This gives us confidence that the safety requirements
verified for the GPCA-UI specification are preserved when executing the Lisp
code automatically generated from the verified GPCA-UI specification.

The design choices for the front-end and back-end are valid for the illustrative
purpose of this work, that is to generate a realistic user interface for a research
prototype from a verified model:

The GPCA-UI front-end is responsible for the visual appearance of the GPCA-
UI. A “5-key” number entry layout based on navigation buttons has been chosen
because it is widely used in the current generation of commercial PCA pumps. A
different choice could have been made (chevron keys, number pad, or others). The
front-end is executed within a web browser, which very conveniently allows using
HTML code to render the GPCA-UI layout and using JavaScript to capture user
interactions with buttons and translate them into function calls for the PVSio
environment executed on the back-end. This translation from user actions to
commands is performed on the basis of mappings between interactive areas of
the GPCA-UI and function names in the PVS specification of the GPCA-UI.
An example mapping that has been defined is the following: a button click of
the up arrow key triggers a call to function click up in the PVS specification.
JavaScript is used to render the user interface state returned by PVSio: it renders
numbers in the GPCA-UI display in a way that is compliant with the ISMP and
NPSA recommendations given in Section 3.1. This can be validated through
visual inspection. Note that the developed HTML and JavaScript code do not
add new behaviours to the GPCA-UI — they are just used to send commands
and render the state returned by the back-end.

The GPCA-UI back-end is responsible for the interactive behaviour of the
GPCA-UI. The core of the back-end is the PVSio [15] prototyping environ-
ment. It provides an interactive command prompt that accepts higher-order
logic expressions. The expressions are evaluated in the Lisp execution environ-
ment of PVS: Lisp code is generated on-demand, and then executed. A result
is returned symbolically every time an expression is evaluated. The returned
expression is a GPCA-UI model state, in this case. For instance, writing the
expression click up(init) in the PVSio command prompt results in the eval-
uation of function click up of the GPCA-UI specification starting from state
init. Lisp code is automatically generated, the function is executed, and a new
state returned. A web-server presents the PVSio command prompt as a service
of the GPCA-UI back-end. WebSockets, a standard protocol for bidirectional
low-latency communication between two endpoints over a TCP connection, are
used to enable communication between the front-end and the back-end.

5 Conclusions

Making medical devices safer involves a constructive dialogue among stakehold-
ers (manufacturers, regulators, clinicians), and a verification approach based on
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these generic models can help to make this dialogue precise, as well as having
the advantages of being computerized and runnable.

We have presented a model-based development approach for building a realis-
tic user interface for the GPCA pump prototype. Although the user interface is
a research prototype and not a real medical device, the functionalities and level
of detail used in the specification are very similar to those of commercial PCA
pumps. Because of this, it is evident that the specification can be used as a real-
istic workbench, and the model-based developed approach used can in principle
be used as part of the development of real medical device user interfaces.

The model-based approach incorporates several concepts promoted by medical
device regulators and which should be directly applicable to the development of
real medical devices. For instance, in [21] and [9], the FDA Office of Science and
Engineering Lab (OSEL) engineers have promoted the formalisation of safety
requirements as generic models that can be used for verification of real devices.

The model-based approach introduced here has some limitations that need
to be considered and should be the subject of further work: the formalisation
of safety requirements as predicates does not allow a formal verification of the
consistency of the safety requirements (e.g., contradictory safety requirements
can be formalised); the verification technique based on theory interpretation
allows the creation of mappings that are syntactically correct but semantically
wrong (e.g., visible display elements of the reference model can be mapped into
state variables of the concrete model that are not rendered on the display);
code generation is limited to Lisp code (new code generators that translate PVS
models into C [20] and Java [11] are still under development). Further work
is needed to demonstrate the approach for the entire user interface (we have
illustrated the approach just for the data entry system). We have started to
explore solutions to these limitations in [22] and [16].

Acknowledgements. This work is supported in part by the EPSRC (CHI+
MED, EP/G059063/1), NSF CNS-1035715, and NSF CNS-1042829.
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Abstract. Prior works on model-based Failure Modes and Effects Anal-
ysis (FMEA) automatically generate a FMEA table given the system
model, a set of failure modes, and a set of possible effects. The last
requirement is critical as bias may occur: since the considered failure ef-
fects are restricted to the anticipated ones, unexpected effects - the most
interesting ones - are disregarded in the FMEA.

In this paper, we propose and investigate formal concepts that aim to
overcome this bias. They support the construction of FMEA tables solely
based on the system model and the failure modes, i.e., without requiring
the set of effects as input. More concretely, given a system specification
in the Architecture Analysis and Design Language (AADL), we show
how to derive relations that characterize the effects of failures based on
the state transition system of that specification. We also demonstrate
the benefits and limitations of these concepts on a satellite case study.

1 Introduction

Safety and dependability assessments are imperative for the engineering of safety-
critical systems. In particular, a clear understanding of how failures emerge, how
they propagate and how these are dealt with is key towards trustworthy oper-
ation of the system itself. Methods such as Failure Modes and Effects Analysis
(FMEA) and Fault Tree Analysis (FTA) contribute to this. These two techniques
relate faults to failures and failures to effects. In current engineering practice,
these analyses are conducted manually. With the advent of model-based engi-
neering, the trend is towards more automated techniques. In [2], an approach
is used that generates an FMEA table from a system model expressed in the
Architecture and Analysis Design Language (AADL). The concepts described in
this paper improve upon it by reducing bias and allow for a more explorative
analysis of failures and their effects.

This paper is organized as follows. Section 2 introduces our modeling language,
a dialect of AADL. Then Section 3 describes and explains effect relations and
effect matrices, which are our primary contributions. In Section 4, our proto-
typical tool is explained and our concepts are validated on a satellite case study
based on [6]. Sections 5, 6 and 7 respectively deal with related work, future work,
and conclusions.
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2 Preliminaries

The Architecture Analysis and Design Language (AADL) is an industry standard
for modeling safety-critical system architectures, and is designed and governed
by the Society of Automotive Engineers (SAE) [1]. The AADL dialect that we
are using in this paper, just referred to as AADL in the following, has been
developed within a project entitled Correctness, Modeling and Performance of
Aerospace Systems (COMPASS) that was funded by the European Space Agency
(ESA) [3]. It provides a cohesive and uniform approach to model heterogeneous
systems, consisting of software and hardware components, and their interac-
tions. Furthermore, it has been drafted and enhanced with the following essential
features in mind:

– Modeling both the system’s nominal and faulty behavior. To this aim,
primitives are provided to describe software and hardware faults, error prop-
agation (that is, turning fault occurrences into failure events), sporadic (tran-
sient) and persistent faults, and degraded modes of operation (by mapping
failures from architectural to service level).

– Modeling (partial) observability and the associated observability require-
ments. These notions are essential to deal with diagnosability and Fault
Detection, Isolation and Recovery (FDIR) analyses.

– Specifying timed and hybrid behavior. In particular, in order to analyze phys-
ical systems with non-discrete behavior, such as mechanics and hydraulics,
the modeling language supports continuous real-valued variables with (lin-
ear) time-dependent dynamics.

– Modeling probabilistic aspects, such as random faults, repairs, and stochastic
timing.

A complete AADL specification consists of three parts, namely a description
of the nominal behavior, a description of the error behavior and a fault injec-
tion specification that describes how the error behavior influences the nominal
behavior. These three parts are discussed in order below.

Nominal Behavior. The system model is hierarchically organized into compo-
nents, distinguished into software (processes, threads, data), hardware (proces-
sors, memories, devices, buses), and composite components (called systems).
Components are defined by their type and their implementations.

The component type specifies the ports through which the component com-
municates with its environment. There are two kinds of ports, namely event and
data ports. Event ports enable components to synchronize their state upon each
other whereas data ports are used to expose component variables to neighboring
components.

A component implementation (such as the one given in Listing 1) describes
the internal structure of a component through the definition of its subcompo-
nents (lines 2–3), their interaction through (event and data) port connections,
the (physical) bindings at runtime and the behavior via modes (lines 4–6) and



Characterization of Failure Effects on AADL Models 243

transitions (lines 7–10) between them. This behavior, which basically is a fi-
nite state automaton, describes how the component evolves from mode to mode
while being triggered by events, or by spontaneously triggering events at the
ports. Upon a transition, data components (like integer, real and Boolean vari-
ables) may change values due to transition assignments. Modes can be further
annotated with invariants (e.g. the expressions after while on lines 5–6) on the
value of data components (continuous or clock variables), restricting for example
residence time. They furthermore may contain trajectory equations, specifying
how continuous variables evolve while residing in a mode. (Here energy’ refers
to the first derivative of the energy value.) This is akin to timed and hybrid
automata. Mode transitions may give rise to modifications of a component’s
configuration: subcomponents can become (de-)activated and port connections
can be (de-)established. This depends on the “in modes” clause, which can be
declared along with port connections and subcomponents.

Listing 1. An example battery component implementation.

1 system implementation Battery.Imp
2 subcomponents
3 energy: data continuous default 1.0;
4 modes
5 charged: activation mode while energy’ = -0.02 and energy >= 0.2;
6 depleted: mode while energy’ = -0.03 and energy >= 0.0;
7 transitions
8 charged -[then voltage := 2.0 * energy + 4.0]-> charged;
9 charged -[empty when energy = 0.2]-> depleted;

10 depleted -[then voltage := 2.0 * energy + 4.0]-> depleted;
11 end Battery.Imp;

Error Behavior. Error models are an extension to the specification of nominal
models and are used to conduct safety, dependability and performability analyses.
For modularity, they are defined separately from nominal specifications. Akin
to nominal models, an error model is defined by its type and its associated
implementations.

An error model type defines an interface in terms of error states and (incoming
and outgoing) error propagations. Error states are employed to represent the
current configuration of the component with respect to the occurrence of errors.
Error propagations are used to exchange error information between components.

An error model implementation (such as the one given in Listing 2) provides
the structural details of the error model. It defines a (probabilistic) machine over
the error states declared in the error model type. Transitions between states
(lines 6–10) can be triggered by error events (lines 2–5), reset events, and error
propagations. Error events are internal to the component; they reflect changes
of the error state caused by local faults and repair operations, and they can be
annotated with occurrence distributions to express probabilistic error behavior.
Moreover, reset events can be sent from the nominal model to the error model
of the same component, trying to repair a fault that has occurred. Whether or
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not such a reset operation is successful has to be modeled in the error imple-
mentation by defining (or respectively omitting) corresponding state transitions.
Outgoing error propagations report an error state to other components. If their
error states are affected, the other components will have a corresponding incom-
ing propagation.

Listing 2. An example battery error model implementation.

1 error model implementation BatteryFailure.Imp
2 events
3 die: error event occurrence poisson 0.001;
4 works: error event occurrence poisson 0.2;
5 fails: error event occurrence poisson 0.8;
6 transitions
7 ok -[die]-> dead;
8 dead -[reset]-> resetting;
9 resetting -[works]-> ok;

10 resetting -[fails]-> dead;
11 end BatteryFailure.Imp;

Fault Injections. As error models bear no relation with nominal models, an error
model does not influence the nominal model unless they are linked through fault
injections. They describe the effect of the occurrence of an error on the nominal
behavior of the system. More concretely, a fault injection specifies the value
update that a data element of a component implementation undergoes when its
associated error model enters a specific error state.

Multiple fault injections between error models and nominal models are pos-
sible. An automatic procedure, the so-called model extension, is employed to
integrate both models and the given fault injections. It yields a combined speci-
fication that represents both the nominal and the faulty behavior of the system.
Its semantics is formally defined by a transition system (cf. Definition 1) whose
states are determined by the current modes and error states of all components,
together with the current values of their data elements. Its transitions are derived
from both the (nominal) mode and the (faulty) error state transitions, attaching
a unique transition label to each. The latter can be used by the subsequent anal-
yses, such as the failure effect analysis which is described in the present paper,
to distinguish different types of transitions. More details on the specification
language and its formal semantics can be found in [2].

3 Characterizing Effects

The two main contributions of this paper are described in this section, namely
effect relations and effect matrices. A simple algorithm shall be sketched for
computing these.



Characterization of Failure Effects on AADL Models 245

3.1 Effect Relations

We determine effect relations over a formal model of an AADL specification
called a transition system, which captures all its possible behaviors. It is defined
as follows:

Definition 1 (Transition System). A transition system is a tuple 〈S, T, −→ , I〉
where

– S is a set of states,
– T is a set of transition labels,
– −→ ⊆ S × T × S is the transition relation, and
– I ∈ S is the initial state.

Here the set T contains AADL transition labels. These are the transitions occur-
ring syntactically in the AADL model. For example, line 8 in Listing 1 yields one
transition label, as well as lines 9 and 10 in the same example. Also transitions
in the error model are part of T , e.g. each of lines 7–10 in Listing 2.

Notationwise, we use several shorthands. A transition 〈s, t, s′〉 ∈ −→ is also
noted as s t−→ s′. It means that the AADL transition (labelled as t ∈ T ) was
applied to s to reach state s′. Also, we use t(s) which, given t ∈ T and s ∈ S,
is defined as t(s) = s′ if s t−→ s′. Otherwise t(s) = ⊥, i.e. undefined, where that
t(⊥) = ⊥. This shorthand assumes that the transition system is deterministic
with respect to the set of labels T . This assumption holds for AADL, since
non-deterministic behavior cannot be expressed in a single AADL transition.
Furthermore, we describe the set of active transitions A(s) as {t ∈ T | ∃s′ :
s t−→ s′} (assuming that A(⊥) = ∅). Now we can define a binary effect relation
over transitions in T :

Definition 2 (Effect Relation). Given s ∈ S and t1, t2 ∈ T , t1 and t2 can be
in relation Independent (‖), Dependent (∦), Conflict (#) or Enable (�). These
relations are defined as

– t1 ‖ t2 if t1(t2(s)) = t2(t1(s)) and t1(t2(s)) 
= ⊥.
– t1 ∦ t2 if t1(t2(s)) 
= t2(t1(s)) and t1(t2(s)) 
= ⊥ and t2(t1(s)) 
= ⊥.
– t1 # t2 if t1, t2 ∈ A(s) and t2 
∈ A(t1(s)).
– t1 � t2 if t2 
∈ A(s) and t2 ∈ A(t1(s)).

Otherwise, the transitions are unrelated in s. For �� ∈ {‖, ∦,#,�}, the notation
s � t1 �� t2 means that in state s, the transitions t1 and t2 are in relation ��.

The effect relations are depicted in Figure 1. Intuitively, the independency re-
lation indicates that the transitions do not affect each other. Observe that this
relation is symmetric, i.e. t1 ‖ t2 if and only if t2 ‖ t1. The dependency relation
means that the related transitions affect each other, i.e. that changing the order
in which they occur results in different states. Also this relation is symmetric.
The conflict relation means that one transition disables another. Thus when
t1#t2, transition t2 is disabled and thus inactive after execution of transition t1.
The enable relation is of most interest to our application, namely characterizing
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t1 ‖ t2

t1 t2

t2 t1

t1 ∦ t2

t1 t2

t2 t1

t1 # t2
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¬t2

t1 � t2

t1 ¬t2

t2

Fig. 1. The four effect relations ‖, ∦,# and �

failure effects. This relation intuitively expresses that one transition can cause
another to happen. Hence when t1 � t2, it means that t2 is caused by t1. Both
the conflict and the enable relations are generally non-symmetric.

Until now, the effect relation is defined for unsynchronized transitions. In
our AADL dialect, transitions can however synchronize. The above definitions
can easily be lifted to support this by generalizing the definition of a transition
relation to the type −→ ⊆ S×T×(T ∪{ε})×S. Here s t,t̄−−→ s′ means that t̄ is the
rendez-vous transition interacting with t. In case t is unsynchronized, t̄ = ε. The
definition for effect relations are then lifted similarly as well. Due to page limit
constraints, we refer the reader to [5] for the lifted definition. In the remainder
of this paper we concentrate on unsynchronized transitions, since this keeps the
notations simpler. We will bear in mind that all the techniques described in the
following can easily support synchronized transitions by lifting definitions.

Furthermore, it is important that no transitions are left unnoticed in the
effect relation, meaning that in any state s, any pair of transitions t1 ∈ A(s) and
t2 ∈ A(s)∪A(t1(s)) are related by exactly one of the independency, dependency,
conflict or enable relations. The proof of these results is given in [5], and the
interested reader is referred to this publication due to lack of space.

3.2 Effect Matrix

Given the definition for effect relations, we now determine how one transition
affects another. This can be done by traversing the transition system and, in each
state, determining which effect relation applies to all pairs of active transitions.
The results are then accumulated in a matrix which we call the effect matrix.

Definition 3 (Effect Matrix). Given a transition system 〈S, T, −→ , I〉 with
T = {t1, . . . , tn}, the effect matrix M�� for relation �� ∈ {‖, ∦,#,�} is given by:

M�� := (m��
ij )1≤i,j≤n where m��

ij = {s ∈ S | ti 
= tj ∧ s � ti �� tj}

A simple procedure to compute M�� given a transition system is shown in
Algorithm 1. The time complexity for constructing M�� is polynomial in the
number of states |S| and transitions |T |. This (rather naive) algorithm traverses
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Algorithm 1. Compute effect matrix M��.
Input: 〈S, T, −→ , I〉
Output: M��

1: mij := ∅ ∀ti, tj ∈ T
2: for all s ∈ S do
3: for all ti ∈ A(s) do
4: for all tj ∈ A(s) ∪A(ti(s)) do
5: if s � ti �� tj then
6: m��

ij := m��
ij ∪ {s}

all states in S (line 2) and then determines for all pairs of active transitions in
two transition steps (lines 3 and 4) how they are related (line 5). This is the
algorithm we implemented. In the worst case, all transitions in T are always
active, resulting in a time complexity of O(|S|× |T |2). However, in practice only
a small fraction of the transitions T are active, making the size of the state space
|S| the most important factor. The set of active transitions A(s) is pre-computed
during state space generation, and hence does not add additional costs.

The effect matrix is key to estimating effects, and failure effects in particular.
Especially the enable relation (�) is of importance for that. If a pair of transitions
only occurs as t1 � t2 in the state space, then t1 and t2 can be considered as
causally related. Typically, t1 would be an error transition originating in the
AADL error model and t2 would be a change to the nominal data ports or
subcomponents as consequence to the error. This is demonstrated in the next
section, where we report on our case study.

4 Experimental Evaluation

In the following, we detail on our implementation of the concepts introduced in
Section 3 and demonstrate their usefulness on an adaptation of the satellite case
study described in [6].

4.1 Tool

We developed a prototypical tool in Java that takes an AADL model as input,
and then computes the effect matrix (see Definition 3 and Algorithm 1) as result.
Inside the tool, it uses our AADL-to-Promela translator [10] to have the SPIN
model checker [9] generate the transitions system. This transition system, in
explicit-state representation, is dumped to disk as a file. All computations are
then performed on that state space.

4.2 Case Study

We computed effect matrices for adaptations of a satellite case study as
described in [6]. The adaptation reduces the original case to only cover the
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Attitude & Orbit Control System (AOCS) and its fault management system,
making its size (16008 states) more amenable to validating our approach. The
AOCS is a control system responsible for maintaining the satellite’s orientation.
It is equipped with sensors (e.g. gyroscopes, Earth trackers, Sun trackers, mag-
netometers) to determine its current orientation. It uses actuators (e.g. reaction
wheels, magnetic torquers, thrusters) to modify its orientation if required. These
components may however degrade and/or fail due to space hazards, in particular
radiation. So during the design of the AOCS, fault-tolerant aspects need to be
incorporated. For example, components are redundantly equipped and failure
compensation techniques are integrated. In our case study, we are in particu-
lar interested in the failure detection, isolation and recovery (FDIR) procedures.
These procedures continuously monitor the system for non-nominal phenomena.
If one is detected, FDIR attempts to determine its cause and subsequently initi-
ates a corresponding (recovery) procedure. A minimal downtime is desired while
doing so.

For demonstrating and validating our approach, we focus on one of the re-
covery procedures, namely the one that handles Earth tracking sensor failures.
These sensors may for example fail to provide signals to the remainder of the
AOCS. If this situation is left unhandled, it may cause the system to attain an
incorrect orientation. The involved AOCS subsystems are

– Primary Earth Sensor (ES_A)
– Secondary Earth Sensor (ES_B)
– Control and Data Unit (CDU), containing

• Processor Module (PM)
• On-Board Data Handling software (OBDH), containing

∗ Earth Sensors Control Software (ES_CTRL)
∗ Earth Sensors Failure Detection, Isolation and Recovery Software

(ES_FDIR)

There are many more components present, but we omit them here. Further-
more, the satellite may reside in particular modes of operation. In normal con-
ditions, it is in the Nominal Mode. Upon failures, it is expected to switch to the
Degraded Mode. If the recovery is successful, the satellite is expected to return
to Nominal Mode. If not, it should switch to Safe Mode, in which ground con-
trol takes further action. There is also an Orbit Control Mode during which the
satellite performs trajectory corrections. While switching to different modes, the
topology of the system is reconfigured by disabling/enabling components and
rerouting data and command streams from disabled to enabled components.

A particular recovery procedure consists of the following sequence of transi-
tions (indicated by ti), starting with error transition t1 that causes the failure:

t1: Injection of signal loss error in primary Earth sensor.
t2: ES_FDIR detects signal loss.
t3: ES_FDIR changes AOCS mode from Nominal to Degraded.
t4: ES_FDIR isolates the failure and initiates switch-over of Earth sensors.
t5: ES_CTRL disables primary Earth sensor.
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t6: ES_A sets its status flag to off.
t7: ES_CTRL enables secondary Earth sensor.
t8: ES_B checks its power and sets its status flag to on.
t8: ES_FDIR changes AOCS mode from Degraded to Nominal.

This recovery procedure triggers transitions in manifold components (e.g.
ES_FDIR, ES_CTRL, ES_A, ES_B), which are part of the AOCS, CDU, PM
and OBDH subsystems. The satellite model captures all these interrelations. The
Earth sensor FDIR component furthermore includes many more behaviors (and
thus more transitions) to cover other scenarios, like the transition to Safe Mode
after a signal loss of the secondary Earth sensor while being in Orbit Control
Mode. Another example is the switch-over that is initiated when the primary
Earth sensor has failed while being in that mode. This makes the FDIR com-
ponent tightly coupled with a major part of the overall system. It is therefore
imperative to understand which effects the FDIR component has on the system,
and under which (isolated) conditions these effects apply. This aims to avoid
undesired behaviors.

When we computed the effect matrix for a scenario in which the primary
Earth sensor fails, we were able to determine the exact recovery procedure chain,
namely that t1 � t2 � . . . � t8. The effect matrix also showed that this order is
strict, i.e., there are no cases where those transitions were executed in another
order (e.g. t7 � t5). This proves that the recovery procedure as implemented in
the model is indeed restricted to the occurrence of the failure, namely transition
t1. The effect matrix can thus be distilled to a FMEA table entry where upon
the occurrence of a primary Earth sensor signal loss, the effect is the chain of
transitions from t2 up to t8. More entries can be distilled by computing effect
matrices for the models with different fault configurations, like a secondary Earth
sensor failure.

In the first runs on this case study, we loaded up models in which the primary
Earth sensor failed while the system was in Nominal Mode. What we then ex-
pected to see in the effect matrix were the effects t1 � . . . � t8. The effect matrix
however also exhibited t4 � tocm and t4 � team, which involve the Telemetry
Tracking & Control (TT&C) component that is used for communication with
the satellite:

tocm: TT&C changes AOCS mode from Orbit Control to Nominal.
team: TT&C changes AOCS mode from Earth Acquisition to Nominal.

The effects t4 � tocm and t4 � team were unexpected to us because t4 should
only be occurring while being in Degraded Mode (due to transition t3). Somehow,
there was an interleaving in between that caused a transition to the Orbit Control
Mode or to the Earth Acquisition Mode. The effect matrices furthermore showed
that other transitions in the TT&C were enabled by other unexpected transitions.
This indicated that our model did not handle the mutual exclusion of the TT&C
with other components correctly. This was corrected in our final model.
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4.3 Scalability

To obtain an impression of the scalability of our prototypical tool, we made a
few adaptions of the satellite case study entailing varying sizes of the state space.
The results are as follows:

Number of states Generate state space [min] Compute M�� [sec]

10792 46 6
21584 86 14
31044 206 30

The column “Generate state space” gives the time needed for generating the state
space by SPIN. The column “Compute M��” lists the time needed for computing
the effect matrix once the state space is generated. As we expected, the majority
of time is necessary for generating the state space itself (which happens within
an order of hours). Once this is accomplished, the state space is loaded into
memory and is traversed in linear time. As shown in the table, this proceeds in
an order of seconds. We also experimented with models beyond 31044 states, but
for those our machine (2.1 GHz processor, 192 GB of RAM) runs out of memory
during state space generation.

5 Related Work

Our concepts relate closely to approaches towards existing FMEA table gener-
ation techniques [2, 8]. With respect to [2], our approach overcomes the need
to specify a set of expected failure effects as an input, and instead the effect
matrix can be used to discover failure effects. This was the motivation of this
work. With respect to [8], our approach uses the variant of AADL described
in [2], which contrary to [8] incorporates behavioral aspects beyond the original
AADL and its Error Model Annex. Furthermore, their approach appears (as
details are scarce) to extract FMEA table entries from state space traces, and
post-processes those entries using user-defined filters. Our effect matrix consid-
ers effect relations across multiple traces that globally hold in the state space,
and hence is more fine-grained. Our concepts are not alternative to [2, 8], but
rather complementary because of their ability to study finer effect relations.

Our approach borrows and incorporates concepts from existing works. The
(in-)dependency relations are inspired by Mazurkiewicz trace equivalences [4],
which capture both aspects. The conflict relation is inspired by the theory of
event structures [11]. The enable relation is inspired by dynamic partial order
reduction [7]. These concepts on their own are thus not novel, but their combina-
tion is, in particular when used for characterizing failure effects using an effect
matrix.

6 Future Work: Entangled Effects

During our experimental evaluation, we observed failure effects whose faults are
intertwined with other (not necessarily failure) effects. We call them entangled
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effects. We developed experimental approaches whose refinement and applicabil-
ity require further investigation.

We observed that in the effect matrix, two transitions are not strictly in one
relation throughout the state space. For example, it could occur that there exists
a state sk where sk � ti � tj while in another state sl it holds that sl � ti#tj .
Thus, in one state one transition enables the other while in another state they
conflict. With regard to the effect matrix, this means that both m�

ij and m#
ij are

non-empty. These deviating effects can be understood by comparing states sk
and sl. We believe that constructing two paths, one leading to state sl and the
other to sk, and then comparing them helps to understand the deviating effects.
The two paths can be found by a backwards synchronized breadth-first search
from sk and sl that proceeds until a common ancestor state is identified. Both
paths, say πk = s0, . . . , sk and πl = s0, . . . , sl, can then be sliced to emphasize
the differences between the visited states. This may help for long paths or for
states that are determined by many variables. The differences are computed by
checking the valuations of variables between states.

Entanglement can also originate from effects caused by a combination of faults.
Such a notion is useful for enhancing single-fault FMEA with multiple-failure
configurations. In case of independent multiple failures, our concepts captures
those as independent transitions which all enable a common effect.

A similar conceptualisation for multiple dependent failures is more involved.
For this, we need to relate transitions by transitivity. In this paper, our definition
of effect relations only considers pairs of transitions that directly follow each
other in the state space. This led us to distill the effect relation of t1 � . . . � t8
in our case study. However, this logically means by transitivity that t1 � t8. The
latter relation is however not detectable by our current definition.

t1 t2

t3 t3

t4

We have been experimenting with transitive effect rela-
tion definitions in [5] to overcome this. However, we have
not yet developed a suitable definition in which effect re-
lations do not become over-approximated. For example, a
transitive rule stating that t1 � t3 ∧ t3 � t4 implies that
t1 � t4 does not generally hold. The figure on the right
exemplifies this situation. It shows that transitions t1 and
t4 are in conflict rather than enabling each other. Hence
we regard this topic as future work.

7 Conclusion

In this paper, we propose an approach for characterizing failure effects on AADL
models by automatically detecting effect relations over the state space underly-
ing the AADL model. This is of particular value to the automated generation
of precise FMEA tables, although not being limited to this application. Our ap-
proach is also not limited to AADL models, but is of a more general nature. An
effect matrix can be computed for any model equipped with a formal semantics
that describes its behavior by means of a labeled transition system. Furthermore,
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the effect matrix is not limited to characterizing failure effects. It also captures
nominal effects, yet we believe it is of most applicable value to the safety and de-
pendability domain. This is also demonstrated by our evaluation using a satellite
case study.

Our work also revealed directions for future work In particular, entangled
effects through transitivity are of immediate practical and theoretical interest.
The overall outcome so far demonstrates and validates our concepts that aid in
constructing precise fault-failure effect relations (e.g. FMEA tables) as rigorously
and automatically as possible.
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Abstract. Within the Austrian national security research programme KIRAS, a 
study on security against electromagnetic threats was conducted. Apart from a 
survey on existing literature about respective events and analyses on existing 
threats and possible protection measures, a novel risk analysis method was de-
veloped, based on a qualitative FMEA (Failure modes and effects analysis). The 
traditional FMEA sheet was split into several tables taking advantage from the 
limited set of electromagnetic interference causes and a general set of high-level 
consequences. The resulting tables of risk priority numbers allowed a good 
overview on which defence and which protection measures should be priori-
tized. Finally, the method was validated based on three scenarios of road vehi-
cle convoys with respect to its applicability. This paper describes the approach 
developed for the modified FMEA method and its application to three vehicle 
convoy scenarios, discussing the value of the method and interpreting the re-
sults of the validation. 

Keywords: Hazard analysis, FMEA, HAZOP, Critical Infrastructures, Inten-
tional Electromagnetic Interference, Risk Priority Number. 

1 Introduction 

In recent years, infrastructures like energy supply or communication networks have 
attracted the attention of government authorities as their continuous and correct  
functioning is considered increasingly important. Infrastructures whose functioning  
is essential for the population and the institutions of the state are called critical  
infrastructures (CI); examples are energy grids, communication networks, govern-
mental institutions or healthcare. National as well as European programs for critical 
infrastructure protection have been developed, cf. [1] and [2], which aim to raise 
awareness among the persons responsible, to set up CI risk management, and to  
support CI providers in establishing protective and reactive measures. In this context, 
the Austrian Federal Ministry for Transport, Innovation and Technology (bmvit) has 
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established a dedicated research program for CI protection in Austria, called KIRAS1, 
by which also the research presented in this publication has been funded. 

The reasons for CI failure can be twofold: Unintentional failure can be caused by 
wear-out of system parts, aging of components or human error. On the other hand 
intentional malfunctions through criminal or terroristic acts must also be considered. 
Attacks against CI can be committed with physical violence, for example as bomb 
attacks or as sabotage. But in recent years, attacks by electromagnetic interference 
with various frequency spectra and energy densities have become a non-negligible 
threat. Cyber-criminality is one way of compromising CI security by highly-
sophisticated abuse of electromagnetic means. Disturbing radio transmissions by 
jamming is another. Moreover, irradiation of electronic systems with electromagnetic 
energy can cause malfunctions: Temporary failure by forcing an emergency re-boot of 
computer-controlled systems or even a permanent outage through thermal or voltage 
overload of sensitive electronic systems. 

The project SEMB2 analysed the threat potential which IEMI (intentional electro-
magnetic interference) poses to CI in Austria. The non-classified study analysed 
freely available literature on respective events, available IEMI weapons and their cost, 
and the state of the art with respect to technical protective measures.  In addition, an 
appropriate risk analysis method was developed, which was intended to support CI 
providers in judging where in the infrastructure to prioritize improvements of protec-
tive measures. This paper describes the selection and adaptation of the risk analysis 
method, explains the effort-saving way of data capturing and shows how the risk as-
sessment results are presented. Finally, some of the results are shown, which were 
obtained in the verification of the method on the basis of three vehicle convoy scenar-
ios. The conclusions comprise a judgment on the benefit of the method and an outlook 
on further research planned. 

2 Intentional Electro-Magnetic Interference IEMI 

One of the most frequently used terms for electromagnetic threats is IEMI (Intentional 
Electro-Magnetic Interference). Wik und Radasky [3] give the following definition: 
“Intentional, malicious generation of electromagnetic energy, leading to coupling of 
noise or signals into electrical and electronic systems. This causes interception,  
disturbance or damage of such systems for criminal or terrorist purposes.” 

IEMI devices are also used in legal contexts, namely by security and military 
forces, for instance for stopping non-cooperative vehicles or for jamming communica-
tion with radio-controlled bomb triggers in order to ensure security for a vehicle  
convoy passing by.  

The project SEMB treated most kinds of known IEMI devices with the only excep-
tion of nuclear bombs (for the NEMP = nuclear electromagnetic pulse), whose effects 

                                                           
1  KIRAS is an artificial word combined from Greek kirkos (cycle) and asphaleia (security). 
2  The work described in this paper was funded by the Austrian Federal Ministry for Transport, 

Innovation and Technology (bmvit) within the Austrian national security research programme 
KIRAS (www.kiras.at). 
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were considered disastrous to such an extent that particular protection measures for 
single critical infrastructures seemed unrewarding. The following list enumerates the 
treated IEMI sources: 

• Jammers 
• Tasers (electroshock gun) 
• ESD gun (electron-stream drilling gun) 
• HPM (high-power microwave) 
• UWB (ultra wide band) 
• LEMP (lightning electromagnetic pulse) 
• Security attack against communication and systems 

Accidental, unintentional electromagnetic influences were normally not in scope 
with the only exception of geomagnetic storms. And the LEMP (lightning electro-
magnetic pulse) was considered as analogon for the effects of the HEMP. 

With few exceptions, most IEMI weapons are operated in the frequency range be-
tween 25 MHz and 6 GHz, corresponding to free-space wavelengths between 12 m 
and 5 cm. This is due to the fact that – for coupling in - electromagnetic waves need 
slots or wires as antennas in the magnitude of a quarter wave length. 
The probability that IEMI weapons are used is – among other aspects - associated 
with the availability of the devices, their cost, and the technical difficulty for con-
structing or manufacturing them. In the following, short descriptions of the mentioned 
classes of IEMI devices are given with indications how potential perpetrators can 
purchase or construct them. 

Jammers. 
Jammers are transmitters used to disturb radio communication by interfering the  
useful signal with a signal of higher power density at the same frequency. Devices 
have mostly multi-band or broadband characteristics and are available in different 
sizes (handheld, bag-sized or van-transportable boxes) and signal strengths (a few 
Watts up to Kilowatts with coverage from some tens of meters up to kilometres). 
They are legally available for military, security companies and authorities, but also 
easily purchasable for non-authorized users via internet from dubious sources. 

Tasers. 
Usually driven by a pressurized gas, the Taser fires two dart-like electrodes with 
barbed hooks at the target, which remain connected with the gun by isolated wires. 
Electroshock guns are normally used by police or security forces in order to paralyze 
a perpetrator with a short high voltage pulse at a peak current of typically several 
Amperes. Once the electrodes have hit the target, repeated application of electro-
shocks is possible. For unauthorized users, Tasers are available on the black market. 

ESD guns. 
ESD (electron-stream drilling) guns are commercially available tools which are nor-
mally used in EMC (electromagnetic compatibility) laboratories for testing electronic 
devices with respect to robustness against electrostatic discharges. In conformance 
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with different applicable standards, e.g. [4], ESD guns use a capacitor of 150pF or 
330pF and a resistor of 330Ω or 2kΩ for discharge of energy in the magnitude of 
some tens of mJ at peak voltages of up to 30 kV. 

HPM.  
HPM (high-power microwave) devices are often narrow-band generators operating at 
a fixed microwave frequency and are based on magnetrons; they can be constructed 
from RADAR units (pulsed magnetron) or by modifying a microwave oven (continu-
ous wave). The radiation can be bundled very well by parabolic reflectors yielding 
very high energy densities at remarkable distances. Military versions in the size of 
vans can operate at distances of kilometres with pulse powers in the range of  
MW. HPM devices can destroy electronic devices; they are normally not available  
for unauthorized persons but can be built by modifying a commercially available 
microwave oven, provided some technical abilities. 

Another narrowband source is the Marx generator, which uses a high voltage pulse 
coming from capacitors which are charged and switched in series to produce a 
damped sine signal in the range of MHz or GHz at peak power values of MW. Con-
structing a Marx generator requires advanced technical capabilities. 

UWB.  
An example for UWB (ultra wide band) devices is the EPFCG (Explosively Pumped 
Flux Compression Generator). It produces a high energy pulse with a short rise time 
using a high voltage peak created by a sudden change of the applied magnetic flux in 
a current-carrying coil; this is achieved by compressing the coil by an explosion. Such 
weapons are for one-shot use only but can be constructed relatively small in size and 
thus as portable devices. 

3 Risk Evaluation 

This section gives an introduction to metrics and analysis methods for risk evaluation 
and presents finally the decision for a risk analysis method for critical infrastructures. 

3.1 The Term Risk 

Risk is defined as the combination of the probability of occurrence of an unwanted 
event, and the damage caused by it; mathematically formulated it is the product of 
them (cf. [5]). The probability of occurrence is a dimensionless value between 0 (for 
“occurs never”) and 1 (indicating “occurs surely”).  The extent of the damage is 
measured in the number of casualties or of fatalities or as the financial damage. 
Though it sounds cynical, the damage through fatalities is often given as the “value of 
statistical life”, cf. [7], i.e. how much society is willing to pay to prevent the loss of 
one human life, or, in other words, the marginal cost of avoiding one fatality. The 
value depends strongly on the gross domestic product of the country and varies  
extremely between developed and third world countries. 
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3.2 Risk Assessment 

Two methods for determining the risk level in a risk assessment are commonly used 
in safety standards: Risk matrix and Risk Priority Number. 
 
Risk Matrix. 
The Risk matrix helps evaluate if a risk given by an estimated probability of occur-
rence (frequency) and a classification of the damage (consequence) is acceptable or 
not; Fig. 1 shows an example for a risk matrix. 
 

 

Fig. 1. Risk matrix (Source: IEC 61508-5 ed.2) 

Risk Priority Number RPN.  
As can be seen in equation (1), the RPN is defined as the product of probability of 
occurrence O, severity S and “detection” D; the latter term may be misleading as it 
stands actually for the probability that the hazard or the faulty state remains undiscov-
ered before it results in a failure. 

 RPN = O ⋅ S ⋅ D (1) 

O, D and S are estimated by a team of experts who rank the considered hazard with 
respect to the three factors of the RPN, each in a range between 1 and 10. It is evident, 
that the term “probability” used in this context is not equivalent to the mathematical 
value defined in probability calculus. It is in fact a qualitative rank where 1 stands for 
the least harmful value, 10 for the worst. As a result, the RPN is computed as a nu-
meric value between 1 and 1,000. In this metric, “1” stands for an event with no haz-
ardous consequences which is always detected in advance but never occurs. “1,000” 
means a catastrophic event which happens regularly or continuously and is never 
detected before the catastrophe occurs. 

3.3 Selection of an Appropriate Risk Analysis Method 

For analysis and assessment of the risks through electromagnetic threats, an appropri-
ate risk analysis method had to be selected, which is generally applicable to different 
kinds of infrastructures and fits well for the specific requirements and conditions.  
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In the CI analysis we assumed to be faced with a high degree of uncertainty and com-
plexity, and, apart from risk identification, we expected results wrt. consequences, 
probability of occurrence, level of risk, and the possibility to avoid the hazard. 

In literature, many risk analysis methods can be found with varying level of detail 
and for different degree of knowledge about the system under consideration, for in-
stance in [8]. ISO/IEC 31010:2009 [6] treats 31 risk analysis methods without making 
claims of being exhaustive. The standard contains short descriptions and provides 
guidance which technique is appropriate for obtaining certain result values in a par-
ticular setting with specific influencing factors (cf. tables A.1 and A.2 in [6]). Apply-
ing the above mentioned selection criteria to the tables in [6], we identified only five 
basically adequate methods: HAZOP [hazard and operability] study, SWIFT (Struc-
tured “What-if” technique), Scenario analysis, FMEA [Failure modes and effects 
analysis], and Cause-consequence analysis. We finally looked more closely at 
HAZOP and FMEA, two detailed methods which we were familiar with, and we had 
to choose between them. 

The HAZOP study was originally developed for the chemical process industry. 
The analysis team applies a set of so-called guidewords (like “OTHER THAN” or 
“MORE”) to each combination of a process step (for instance a vessel) with a pa-
rameter (e.g. temperature) and analyses possible deviations from design or process 
intent expressed by the combinations with respect to causes, consequences, and  
existing detection as well as risk mitigation measures; finally, further risk reduction 
measures are recommended if necessary. 

However, a reasonable interpretation can be found only for part of the combina-
tions; the rest is meaningless and must be dropped. A short description of the HAZOP 
study can be found in [6] and [8]; there are also specific standards available like [9] 
describing the procedure in detail. It has to be mentioned that HAZOP studies are 
today used for a wide variety of systems including electrical, electronic and computer 
controlled systems. 

FMEA was originally developed by the US department of defence for military 
purposes; today it is one of the first choices for performing a system safety analysis. It 
shall be mentioned that, apart from this System FMEA, there are also variants for 
process improvement called Process FMEA. According to the system structure, all 
components are analysed with respect to possible failures, and – similar to the 
HAZOP study - causes, consequences, and detection as well as risk mitigation meas-
ures are analysed and improvements proposed. Unlike the HAZOP, however, FMEA 
uses neither parameters nor guidewords but relies on the expertise and creativity of 
the analysis team to discover all potential failure modes of the system components. 

Two basic variants of a system FMEA can be distinguished, depending on  
knowledge about failure probabilities: 

• A quantitative FMEA, which calculates the risk for each single failure mode using 
a numeric failure probability value, which can be derived from own statistical data 
with comparable systems or components if such data is available, or, otherwise, 
from catalogues for failure prediction like for instance [10] or [11]. 

• A qualitative FMEA, which follows basically the same procedure as the quantita-
tive variant but qualifies the probability of occurrence according to a qualitative 
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scheme ranging from “extremely improbably or never” until “extremely frequent 
or always”. For risk ranking, the above described risk matrix and the risk priority 
number can be used. 

Both, HAZOP and FMEA, allow hazard analyses of systems at different levels of 
detail and are basically adequate for the purpose. Considerations about analysis effort 
and expected benefit of the technique, however, lead us to a conclusive decision. 

The analysis of IEMI threats to hardware differs in several aspects from a classical 
safety analysis, which targets mainly at stochastic failures of system components due 
to aging and wear-out: 

1. The set of (high-level) causes considered is well-known and limited to few kinds of 
intentional electromagnetic attacks. 

2. Applicable electro-technical protective measures are widely independent of the  
individual infrastructure; they are rather associated with the types of electronic 
control and supervision equipment used. 

3. In the absence of sufficient statistical data3, computations with failure rates in  
the sense of expected values as used in probability calculus are not applicable. 
Moreover, political situation, expected criminal energy and local accessibility play 
a role. 

The first difference makes clear that the high coverage of potentially unknown de-
viations revealed in a HAZOP study brings no additional value, while the - according 
to our own experience – high number of meaningless combinations causes significant 
additional effort. The first two differences yield potential for an effort-saving  
approach in which causes and risk prevention are treated on a general level. The  
third difference indicates that - in the absence of statistical failure probabilities - a 
quantitative approach is not feasible. 

Therefore a qualitative FMEA using RPN for risk ranking has been chosen, which 
was, in addition, modified, avoiding redundant data input for the above mentioned 
general data. 

4 Adaptation of FMEA for CI 

The main goal was to identify the most critical subsystems or components, for which 
protection measures should be prioritized. As indicator for this decision, the risk pri-
ority number was used. 

Protection measures can be of technical nature like for instance overvoltage protec-
tion, but also organizational security measures are in scope. Observations of trends in 
the criminal and terrorist scene can deliver additional information on the expected 
kinds of threats. It is therefore of interest to look at the total risk for single compo-
nents as well at the risk potential through certain kinds of electromagnetic threats. For 
obtaining this information, we needed RPN mean values for single IEMI threats as 
well as for single endangered components. 
                                                           
3  In the non-classified study SEMB, we had no access to classified material. Therefore, we do 

not know if useful statistical data is available at all. 
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Project: Version: Date: 

System: Subsystem: Teamwork leader: 

Id. 
Comp 
onent 

Function 
Failure 
mode 

Failure 
cause 

Local 
effects 

Global 
effects 

S O D RPN 
Corrective 

actions 

            

            

Fig. 2. Typical qualitative FMEA sheet (Source: M. Rausand, NTNU) 

Our attempts to create an appropriate risk analysis method started from a qualita-
tive FMEA, for which a typical work sheet is shown in Fig. 2. 

It is evident that this table becomes confusingly large when it is filled with all 
IEMI induced failure modes, all IEMI causes, and all protective measures, and it be-
comes hard to identify trends for certain IEMI threats or the total risk potential for 
certain components. As mentioned in the above section, the risk analysis method was 
therefore adapted to the specific needs of IEMI threat analysis and with view to effort 
optimization. 

One simplification we could make was the confinement to two kinds of global con-
sequences (actually, our analysis focused on global consequences): 

• Temporary failures, which disappear when the IEMI influence ends or when the 
system reboots, and 

• Permanent failures due to damage of electronic components. 

Both consequences were handled in separate sets of tables, the latter are described in 
the following. 

Instead of the classical FMEA table we chose to collect data in separate tables, one 
for Occurrence, one for Detection and one for Severity. The Occurrence and the De-
tection tables had each one column per endangered component and one row for each 
IEMI threat. For Severity, the table had one row per endangered component, and col-
umns for local and global effects of temporary and persistent failures as well as col-
umns for reparability and replacement. From this data we computed tables with the 
RPN including mean values for each IEMI threat and for each endangered compo-
nent. The following section on the validation of the method contains examples for 
each of the mentioned tables.  

5 Validation of the Risk Analysis Method 

As a final step, the derived hazard analysis method described above was validated for 
one kind of critical infrastructure, namely vehicle convoys. 
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5.1 Selected Scenarios 

It was agreed among project partners that civil and military convoys should be in 
scope, so three different scenarios were selected: 

• a VIP convoy for  a state visit within Vienna without police road blocks, 
• a convoy of fire trucks driving to a disaster operation  (inundation), 
• a convoy of military trucks driving to a field manoeuvre in Austria. 

5.2 Data Capturing 

As, according to our literature analysis, no statistically relevant amount of empirical 
data about IEMI events was available, risk had to be determined by estimation. For 
this purpose, an analysis team comprising all relevant stakeholders (including person-
nel of the CI operator) should evaluate the risks in analysis meetings. However, effort 
in the magnitude of person-weeks or even person-months would have to be spent for 
this purpose. For a first validation, this effort-consuming involvement of CI operators, 
who were themselves not project partners, should be avoided. For this reason,  
the estimation was performed by personnel of the research institute AIT only. For the 
concrete RPN tables obtained in the validation, we therefore have to state that the 
values are provisional and should be seen as examples only. 

The estimated probabilities were based on assumptions on the risk for typical tech-
nical equipment in Austria. The following tables show examples of data we captured. 

 

Table 1. Estimation of the probability of a temporary failure in a VIP convoy 
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Jamming 2 2 4 4 4 1 1 1 1 
Taser 1 2 2 1 1 1 1 1 1 

ESD gun 1 1 2 1 1 1 1 1 1 
HPM 3 4 5 4 4 1 1 2 2 
UWB 3 4 5 4 4 1 1 2 2 
LEMP 2 3 4 3 3 1 1 1 1 

Security attack 1 1 5 5 1 1 1 1 1 
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Table 2. Assessment of detection values for a fire truck convoy 

Detection - fire 
truck convoy 
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IEMI threats 
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Jamming 10 10 10 10 10 10 10 10 10 
Taser 1 1 1 1 1 1 1 1 1 

ESD gun 1 1 1 1 1 1 1 1 1 
HPM 9 9 9 9 9 9 9 9 9 
UWB 9 9 9 9 9 9 9 9 9 
LEMP 1 1 1 1 1 1 1 1 1 

Security attack 3 3 3 3 3 3 3 3 3 
 
 
Note: Very high values for HPM, UWB and Jamming in Table 2 point at the fact 

that – due to the long way - it is hardly possible to detect these threats in advance. 
 

Table 3. Consequences of a failure in the fire trucks convoy 

Effect Temporary failure Permanent failure 
Affected 
component 

Local 
effects 

Global 
effects 

Local 
effects 

Global 
effects 

Repa-
rability 

Replacement 

Safety-critical 
control unit 

2 2 5 7 n/a 
spare truck 

within 2 hours 
Non-safety-critical 
control unit 

1 1 4 5 n/a 
spare truck 

within 2 hours 
Built-in 
TETRA radio set 

3 3 4 5 n/a 
spare truck 

within 2 hours 
Mobile TETRA 
radio set 

n/a 3 3 5 n/a 
spare device 

within 2 hours 
Mobile analogue 
radio set 

n/a 3 4 5 n/a 
spare device 

within 2 hours 
Special equipment  not 
needed for mission 

1 1 1 2 n/a n/a 

Special equipment  
needed for mission 

1 1 5 6 n/a 
spare truck 

within 2 hours 
Permanently mounted 
emergency light 

1 1 2 2 n/a 
Later replace-

ment sufficient. 

Mobile emergency light 1 1 2 2 n/a 
Later replace-

ment sufficient. 
Legend: n/a = not applicable.  
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5.3 Results 

Table 4 shows, as an example, the calculated risk priority numbers for the global 
effects of temporary failures caused by IEMI in the VIP convoy scenario. 

Table 4. RPN results example: Temporary failures caused by IEMI in the VIP convoy scenario 
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Jamming 60 40 120 120 120 10 10 10 10 56 
Taser 3 4 6 3 3 1 1 1 1 3 

ESD gun 3 2 6 3 3 1 1 1 1 2 
HPM 72 64 120 96 96 8 8 16 16 55 
UWB 72 64 120 96 96 8 8 16 16 55 
LEMP 6 6 12 9 9 1 1 1 1 5 

Security attack 9 6 45 45 9 3 3 3 3 14 
Mean value 32 27 61 53 48 5 5 7 7 27 
 
The mean values indicate that risks by Jamming, HPM and UWB were considered 

highest, those by Tasers and ESD guns, in turn, almost negligible. As for vulnerable 
devices, the radio equipment got the biggest RPN with control units not far behind it. 
Due to their partly easier accessibility (cf. power mirrors), non-safety-critical control 
units were ranked almost as risky as safety-critical ones. 

As can be seen in Table 5, the mean values for the three scenarios were in a relatively 
small range, with a minor advantage for the military convoy, which is due to the better 
hardening of military equipment and the positive image of the military in Austria. Gener-
ally, the higher vulnerability of components in respect to temporary failures is widely, if 
not fully, compensated by the more severe consequences of permanent failures. 

As mentioned in section 5.2, the results presented here have been derived from 
provisional data; for obtaining reliable and up-to-date results, periodic analysis up-
dates by a multi-disciplinary team including the CI operator would be necessary.  

Table 5. Mean value of RPN for the three scenarios for temporary / permanent stop 

Scenario             
Failure 

Temporary Permanent ∅ temporary/permanent 

VIP convoy 27 29 28 
Military convoy 20 19 20 
Fire truck convoy 20 31 25 
∅ all convoys 22 26 24 
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6 Conclusions and Further Research 

The modified FMEA analysis enabled simplified data capturing and an easy compari-
son of the average risk for single IEMI weapons as well for single endangered  
devices. Moreover, the use of general failure modes proved effort-saving.  

A weakness of the adapted method is comparability between analysis results of  
different critical infrastructures. Qualitative FMEA sessions by different expert teams 
yield normally different results even when analysing the same critical infrastructure. 
A more objective and therefore more comparable method seems therefore advisable. 

A possible approach to overcome this problem could be to split the estimation of 
the probability of occurrence extracting criminal energy and political influences on 
the probability of IEMI attacks as well as availability and cost of IEMI weapons as 
separate factors. The remaining part of the failure probability is then associated with 
objective technical conditions comprising local accessibility and electro-technical 
properties. Based on available EMC research results, the electro-technical vulnerabil-
ity could be modelled. With this model and a standardized questionnaire, filled in by 
the CI providers, comparable risk priority numbers should be obtained. 
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Abstract. This paper presents the results of an extensive experimental study of 
bit-flip errors in instruction set architecture registers and main memory 
locations. Comprising more than two million fault injection experiments 
conducted with thirteen benchmark programs, the study provides insights on 
whether it is necessary to consider double bit-flip errors in dependability 
benchmarking experiments. The results show that the proportion of silent data 
corruptions in the program output, is almost the same for single and double bit 
errors. In addition, we present detailed statistics about the error sensitivity of 
different target registers and memory locations, including bit positions within 
registers and memory words. These show that the error sensitivity varies 
significantly between different bit positions and registers. An important 
observation is that injections in certain bit positions always have the same 
impact regardless of when the error is injected. 

Keywords: out-of-context dependability benchmarking, fault injection, single 
bit-flips, double bit-flips, error sensitivity. 

1 Introduction 

Fault injection is an effective and widely used method for test, assessment and depen-
dability benchmarking of fault-tolerant and fail-safe systems. The inclusion of fault 
injection as a highly recommended assessment method in the recently published ISO 
26262 standard [1] for functional safety of road vehicles is an example of the increas-
ing use and importance of fault injection in the embedded systems industry. 

One important use of fault injection is out-of-context benchmarking of the error 
sensitivity1 of software components. In this type of benchmarking, fault injection 
experiments are conducted in a test bench that provides an artificial environment to 
the software component. Out-of-context dependability benchmarking provides a way 
to build a library of pre-validated software components, which allows the cost of the 
fault injection experiments to be amortized over several systems and products. 

                                                           
1  We define error sensitivity as the likelihood that a software component will produce a silent 

data corruption, as a result of a hardware error. 
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Two common forms of out-of-context dependability benchmarking of software 
components are i) robustness testing [2], i.e., testing the ability of a software compo-
nent to handle input errors, and ii) assessment of the error sensitivity of a software 
component with respect to hardware faults in the processor and main memory. This 
paper addresses the latter form of dependability benchmarking.  

In general, the ability of a computer system to detect and recover from hardware 
errors depends on both the hardware architecture and the machine code of the ex-
ecuted software. Hence, when we conduct out-of-context fault injection experiments 
to assess a software component’s ability to handle hardware errors, we must run the 
experiments on a hardware platform that is similar to the one used in the real product. 
However, to generalize the benchmarking outcome, different hardware platforms 
should be considered. 

A common objective of such benchmarking is to measure the error sensitivity of a 
software component, and identify ways to harden the component against such errors 
by means of software-implemented hardware fault tolerance (SIHFT) techniques.  

This type of benchmarking experiments is often conducted by injecting bit-flip er-
rors in main memory words and instruction set architecture (ISA) registers. The injec-
tion of such bit-flips is used as an engineering approximation to mimic errors that 
originate from transistor-level faults in real systems. Examples of such faults include 
particle-induced single event upsets, and those caused by hardware aging mechanisms 
such as gate-oxide breakdowns and negative bias temperature instability (NBTI) [3]. 

In this paper, we present the result of an extensive fault injection study aimed at 
providing insights into how such bit-flips effect the execution of different programs. 
To this end, we have conducted a large number of fault injections with thirteen 
benchmark programs, among which eleven are programs from MiBench suit [4].  

The study has two main objectives. First, we investigate differences in the impact 
of single bit-flips vs. double bit-flips injected in the same target location. (A target 
location is either an ISA register or main memory word.) This part of the study in-
tends to provide insights to an important open question, namely, whether the single 
bit-flip model provides optimistic or pessimistic estimates of error sensitivity. Second, 
we provide statistics about the error sensitivity of target registers and memory words, 
including individual bit positions.  

The first part of our study is partly motivated by the fact that researchers in the 
field of reliability physics predict that single event upsets (i.e., bit errors caused by 
strikes of single ionizing particles, such as cosmic neutrons) will be likely to generate 
multiple-bit upsets (MBUs) in circuits that will become available within a few year 
from now [5]. While it is still an open question how these MBUs will manifest at the 
ISA-level in detail, it is clear that we can expect an increasing rate of hardware errors 
that will manifest as multiple bit errors in main memory words and CPU registers. 
Although our study only addresses on double bits errors, we believe it provides valu-
able insights in to the problem of defining multiple-bit fault models for dependability 
benchmarking experiments. 

The remainder of this paper is organized as follows. In Section 2, we describe the 
target programs and the input sets that are processed by the programs during fault 
injection. Section 3 describes the fault models and the fault locations of our fault  
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injection experiments. The experimental setup is explained in Section 4. The results 
of the experiments are studied in Section 5. In Section 6 we present some discussions. 
Section 7 describes related work. Finally, we provide conclusions in Section 8. 

2 Target Programs 

We mainly target programs from the automotive package of the MiBench suite [4] 
(see Table 1). We select a diverse set of programs with respect to implementation, 
size, input type/size and functionality, as shown in Table 2. For each program, we 
choose nine different inputs to represent real applications and to cover all parts of the 
source code. Since the way a source code programmer (or source code generator) 
chooses to implement an algorithm changes the executable code — and thus its error 
sensitivity — we also select different implementations of two algorithms, namely, Bit 
Count and Quick Sort.  

3 Target Locations and Fault Models  

The following locations are targeted by our fault injection experiments: 

• Instruction Set Architecture registers (ISA registers). General purpose registers 
(including the stack pointer), the program counter register, and miscellaneous reg-
isters (including condition register, link register, and integer exception register). 

• Static Random Access Memory (SRAM) sections. Stack, data, sdata, bss, and sbss. 
For simplicity we refer to SRAM locations as memory words in this paper. 

Table 1. Target programs 

Target  
Programs 

Descriptions 

Cyclic 
Redundancy 
Check(CRC) 

This algorithm is a software implementation of the well known 32-bit cyclic redundancy check 
used in the Ethernet protocol. This program is from the telecomm package of MiBench suite. 

Secure Hash 
Algorithm 
(SHA-1) 

This algorithm generates a 160-bit digest from inputs. It is widely used in security protocols 
such as SSL and SSH. The MiBench implementation of SHA-1 uses dynamic memory alloca-
tion, which is rarely used in automotive embedded systems. Since our research focuses on such 
systems, we use an implementation that avoids dynamic memory allocation. 

Quick Sort 

We use three different quick sort programs, each corresponding to a different implementation 
of the well known quick sort algorithm. The first corresponds to the original MiBench imple-
mentation in which the input set is an array of string elements; it uses the built-in C language 
function qsort. The second changes the input set to be an array of integers. The third is a 
recursive implementation of the quick sort algorithm. 

Binary to 
Integer 

This program converts a binary number encoded as a string of “0” and “1” characters into its 
equivalent integer value. 

Bit Count 
This algorithm counts the number of ones in the binary representation of its input. We use five 
different implementations of this algorithm. 

Square Root 
Calculator 

This program calculates the square root of the input. 

Cubic 
Equation 

Calculator 

This program calculates roots of a cubic equation using floating point arithmetic implemented 
in software. 
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Table 2. Size and input range of each target program 

Program Size (bytes) Input Range 
CRC 644 

Strings of 0 to 99 characters. 
SHA1 3325 

QSort_Mib_Stct 3932 Arrays of 0, 10, 20, 30, and 40 string elements that are half sorted. 
QSort_Mib_Int 3228 

Permutations of 6 integer elements from totally sorted to totally unsorted. 
QSort_Int 964 
BinToInt 959 Binary strings of 0 to 31 characters. 
BitCnt1 540 

Variables of type long with 0 to 31 1’s in their binary format. 
BitCnt2 680 

BitCnt3_BW 592 
BitCnt3_AR 684 

BitCnt4 576 

Isqrt 652 
Unsigned long variables selected to ensure variations in the number of 
executed machine instructions.  

Cubic 27472 
Coefficients of type double chosen to ensure variations in the number of 
executed machine instructions. 

 
We use single bit-flips in our first set of fault injections, where we randomly flip one 
bit from a target ISA register or memory word. In our second set of fault injections, 
we use double bit-flips as one variation of multiple-bit upset, where we randomly flip 
two bits within one ISA register or memory word.  

4 Experimental Setup 

Programs under test are executed on a PowerPC-based microcontroller from Freescale 
(MPC565). Our fault injection tool, Goofi-2 [6], uses a debugger with a NEXUS [7] 
interface to inject faults into the ISA registers and memory. 

We define a fault injection experiment to be the injection of one fault (either a sin-
gle bit-flip or double bit-flip, according to the fault model) and the monitoring of its 
impact on the program. A fault injection campaign is a set of fault injection experi-
ments using the same fault model on a given workload. 

Goofi-2 defines faults as time-location pairs according to a fault-free execution of a 
workload. Here locations are randomly selected bits to be flipped from the ISA regis-
ters or the memory words, and time is a point in the execution trace. 

To avoid experiments that would not have an observable impact on the program, 
we employ Barbosa et al.’s analysis [8] to exclude unreachable locations from the 
fault space; in other words, faults are only injected in a target location immediately 
before the location is read by an instruction. 

5 Experimental Results 

For each of the 13 target programs, we conducted nine campaigns with the single bit-
flip and double bit-flip models. Each campaign consists of 12,000 experiments running 
a program on a fixed set of inputs. In total, the study comprises 2,808,000 experiments. 
The corresponding 95% confidence intervals are between ±0.06% and ±0.3%. The 
outcome of each experiment is classified into one of the following categories: 
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• No Impact. The program terminates normally and the error does not affect the  
output of the program. 

• Hardware Exception. The processor detects an error by raising a hardware  
exception. 

• Timeout. The program fails to terminate within a predefined time (which is set to 
be approximately 10 times larger than the execution time of the workload).  

• Silent Data Corruption (SDC). The program terminates normally, but the output is 
erroneous and there is no indication of failure. 

5.1 Single Bit Flips vs. Double Bit Flips 

Here we compare differences in the impact of single bit flips and double bit flips, 
including the error sensitivity for different target registers and memory locations. 

5.1.1 Average Results of Single and Double Bit Flips 
Fig. 1 shows the average results over all campaigns for single bit flips, Fig. 1 (a), and 
double bit flips, Fig. 1 (b). The most noticeable differences between the two fault 
models are in Hardware Exception and No Impact categories. While Hardware excep-
tions are eight percentage points higher for double bit flips, the percentage of experi-
ments in the No Impact category is six percentage points lower for the double bit 
flips. The difference for the SDC category is only two percentage points. The percen-
tage of SDC is lower for the double bit-flip model for approximately 75% of the cam-
paigns. For all of these campaigns, the difference between the two fault models is 
around three percentage points. However, for the remaining 25% of the campaigns, 
we observe a difference of around only half a percentage point between the two fault 
models, on average. There is no significant difference between the two fault models 
for the Timeout category. In fact, for approximately 90% of the campaigns the differ-
ence is less than one percentage point. 

Table 3 shows variations in the fault injection outcomes for different programs. For 
example, for the single bit-flips, QSort_Mib_Stct and SHA1 have the lowest (16%) 
and the highest (42.4%) SDCs, respectively. Whereas QSort_Int and Isqrt have the 
lowest (15.8%) and the highest (39.7%) SDCs for the double bit-flips. 

 

Fig. 1. Average outcome distributions over all programs 
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Exception

39%

TimeOut
2%

(a) Single bit flip
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(b) Double bit flip
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Table 3. Average outcome distributions for different programs 

  
No Impact 

(%) 
Silent Data  

Corruption (%) 
Hardware  

Exception (%) 
TimeOut 

(%) 

  Single Double Single Double Single Double Single Double 
CRC 23.4 15.7 31.2 30.1 44.4 52.9 1.1 0.6 
SHA1 15.8 10.3 42.4 38.1 40.3 50.0 1.5 1.4 
QSort_Int 30.4 24.0 19.2 15.8 46.3 55.9 4.1 4.3 
QSort_Mib_Int 34.3 29.4 18.0 16.5 46.6 52.7 1.2 1.3 
QSort_Mib_Stct 38.3 33.9 16.0 16.1 43.3 48.3 2.3 1.7 
BinToInt 35.9 31.5 20.3 19.0 41.0 47.0 2.8 2.5 
BitCnt1 23.0 22.7 39.1 28.0 32.1 39.1 5.9 10 
BitCnt2 31.8 21.7 33.1 34.5 35.0 43.7 0.2 0.1 
BitCnt3_AR 27.6 18.8 34.5 34.1 37.7 47.0 0.2 0.1 
BitCnt3_BW 35.2 27.5 26.5 25.4 38.0 47.0 0.2 0.1 
BitCnt4 21.5 15.9 31.0 26.8 46.0 54.7 1.4 2.5 
Isqrt 27.5 21.8 41.3 39.7 30.7 37.6 0.6 0.8 
Cubic 43.0 35.3 25.8 25.9 30.0 37.6 1.1 1.1 

 
Comparing the results of different workloads, we observe that there is a higher  

variation in the double bit-flips for the Hardware Exception, while the single bit-flips 
show higher variation in the No Impact and SDC categories. In order to find the  
reasons behind variations of results in the two fault models, in the next section, we 
analyze how different target locations contribute to each outcome category.   

5.1.2 Comparing Single and Double Bit-Flips According to Fault Locations 
Fig. 2 (a) shows that the program counter register is the main contributor to the 
Hardware Exception. In average, more than 73% and 92% of the injections in the 
program counter register are detected by the hardware exceptions for single and 
double bit-flips, respectively. The majority of the detections are due to attempts to 
execute instructions that are not implemented or accesses to illegal addresses. 

With respect to the injections in general purpose registers and memory (Fig. 2 (b) 
and (c)), in general, the results are biased towards generating SDC and No Impacts. 
This is due to the nature of general purpose registers and memory words where they 
can be used to store data or addresses. Generally, errors in address values are more 
probable to be detected by hardware exceptions, while errors in data values seem to 
be more difficult to be detected. Therefore, injecting faults in locations holding data 
values are more probable to be classified as SDC or No Impact. An interesting obser-
vation here is the variation in the outcomes of different bit count implementations. 
Even though, the variation is not significant for program counter register, we see sig-
nificant variations in the outcomes for general purpose registers and memory. 

5.2 Error Sensitivity for Bit Positions within Registers and Memory Words 

In this section, we present results regarding the error sensitivity of bit positions in the 
program counter, stack pointer, general purpose registers and main memory locations. 
All results are presented as aggregated data over all target programs. For general pur-
pose registers and main memory words, the data is also aggregated over all registers 
and memory words used during program execution. 
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We enumerate the bits 1 to 32 and present outcome distributions for each bit posi-
tion. All data presented in this section are from injections of single bit errors. One 
reason for conducting this study is to understand some of the reasons behind the dif-
ferences between the outcomes of the single and double bit errors that we observed in 
the previous section. The number of injections in each bit varies from around 2,000 
up to almost 18,000 depending on the target register or memory, see Table 4. Hence, 
the statistical confidence of the results is fairly high. 

 
 

Fig. 2. Outcome distributions for different programs. For each program: Left bar: Single bit-
flips, Right bar: Double bit-flips. 
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Table 4. The average number of fault injections (per bit) for target registers and memory 

Target Location Average number of fault injections (per bit) 
Program Counter Register 17037

Stack Pointer Register 1942
General Purpose Registers 17842

Memory 4631

 
Program counter register (Fig. 3 (a)). We see that injections in bit 1 and 2 in al-

most all cases have no impact. The reason for this is that the PowerPC architecture 
does not use these bits when the processor fetches instructions from main memory. 
With respect to the errors injected in bits 3 to 16, we see that the percentage of errors 
detected by hardware exceptions increases with increasing bit numbers, while the 
percentage of No Impact experiments decreases. Every error injected in bits 17 to 32 
is detected by hardware exceptions. 

In general, the first (least significant) bit that is fully covered by hardware excep-
tions is highly dependent on the program size. For example, for BitCnt1, which is the 
smallest program, all errors injected in bit 11 and higher are detected by hardware 
exceptions. For Cubic, which is the largest program, all errors injected in bit 17 and 
higher are detected by hardware exceptions. 

Stack pointer (Fig. 3 (b)). For the stack pointer, results vary between different bits, 
except for bits 17 to 22. For these six bits, all injected faults are detected by hardware 
exceptions. This can be explained by studying the internal memory block of our target 
setup. The internal memory is 4Mbytes that resides in 0x0000 0000 to 0x003F FFFF 
address block and the SRAM is located from the address 0x3F7000 to 0x3FFFFF. 
The stack pointer always contains an address to the SRAM area. Therefore, all the 
addresses referring to the SRAM contain 1 in bits 17 to 22. Flipping any of these bits 
from 1 to 0 will result in an address smaller than the SRAM base address which trig-
gers hardware exceptions. We also expected accesses above the SRAM upper bound 
to be detected by hardware exceptions. However, as we can see the errors in bits 23 to 
32 are not always detected by hardware exceptions. The reason for this behavior is 
likely to be related to implementation of the address decoding logic on the processor 
board that we use for our experiments. 

General purpose registers and memory (Fig. 3 (c) and (d)). The outcome distribu-
tions for general purpose registers and memory follow a similar trend. These locations 
typically store either data or addresses. If they hold an address, the impact of an error 
is likely to be similar to the impact of errors in the stack pointer, where errors in bit 17 
to 22 always raise a hardware exception. (Note that the results for the stack pointer 
register (R1) are not included in this data.) 

We see a similar result for the general purpose registers, where the proportion of 
errors detected by hardware exceptions is significantly higher for bits 17 to 22 com-
pared to other bit positions. This trend is also seen for the memory words, although it 
is less pronounced compared to the general purpose registers. This result suggests that 
the general purpose registers more often holds addresses than the main memory words 
do. This observation is also supported by the fact that silent data corruption is the 
dominating outcome for all bit positions in the memory words. 
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Fig. 3. Outcome distributions over the 32-bits registers and memory 

6 Discussion 

In the first part of our results, we saw that the main difference in the impact of single 
bit errors and double bit errors was in the proportions of the outcomes No Impact and 
Hardware Exception. The double bits errors had a much higher percentage of errors 
detected by hardware exceptions, and a lower percentage of errors having no impact 
or causing silent data corruption, compared to the single bit errors.  

0%

20%

40%

60%

80%

100%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

(a) Program Counter Register

0%

20%

40%

60%

80%

100%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

(b) Stack Pointer Register

0%

20%

40%

60%

80%

100%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

(c) General Purpose Registers 

0%

20%

40%

60%

80%

100%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

(d) Memory



274 F. Ayatolahi et al. 

 

This result can partially be explained by the observations we made in the second 
part of the study where we looked at the error sensitivity of individual bits in different 
target locations. When we look at results presented in Fig. 3, it is clear that we are 
likely to increase the chance of detecting an error by means of a hardware exception if 
we increase the number of bit-flips injected in the target locations. This is especially 
obvious for the stack pointer and the program counter register, where bit-flips in  
certain bit positions are always detected by a hardware exception.  

Furthermore, we see a potential to improve the pre-injection analysis by avoiding 
the injections in high significant bits of program counter depending on the size of the 
program. Also, the two least significant bits can be removed due to the high percen-
tage of experiments resulted in No Impact. In addition, we can exclude bits 17 to 22 
of the stack pointer due to full detection by hardware exceptions. 

In favor of the effectiveness of our fault injection assessment, the pre-injection 
analysis removes several miscellaneous registers bits from the experiments. Thus we 
ignore these registers from our analysis. However, it is worth noting that the link reg-
ister, which contains return address of a function, almost shows a similar trend as the 
program counter register. Also with respect to the condition register, in some pro-
grams, the injections are distributed over all bits, whereas in others, the focus has 
been given to some specific bits. 

7 Related Work 

Various fault injection tools have been developed in the past decades to assess depen-
dability properties of computer systems. Popular fault injection techniques include pin 
level injection [9], software implemented [10], fault injection via debug interfaces 
such as Nexus [11] [6], hardware implemented [12], and simulation-based [13]. 

The results of fault injection experiments depend on several parameters such as the 
inputs processed by a program [14] [15], level of compiler optimization [16], fault 
model [13], implementation of a program, etc. In this paper we study the impact of 
single bit-flip and double bit-flip fault models. 

The impact of device-level faults which manifest as single bit-flips in the ISA reg-
isters and main memory has been studied in literature [14] [17]. Some recent studies 
have targeted SRAMs and DRAMs to multiple-bit upsets (MBUs) [18] in order to 
investigate geometric effect of MBU faults. In addition, the authors of [13] investi-
gated the impact of single/multiple bit-flips in the LEON2 processor using fault injec-
tion in a VHDL simulation model. We study another level of abstraction where we 
mimic bit-flips in ISA registers and memory of a real hardware platform. Although 
there are some fundamental differences between our work and theirs, they also ob-
served that the percentage of No Impact experiments is higher for the single bit-flip 
model, while the percentage of Hardware Exception experiments is lower for the sin-
gle bit-flip model. However, they showed that the percentage of experiments classi-
fied as SDC was higher for the double bit-flip model, which is not the case in at least 
75% of our campaigns. In fact, we observed that in some campaigns, the percentage 
of experiments classified as SDC is 15 percentage points lower for the double bit-flip 
model compared to single bit-flip model. 
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8 Conclusions and Future Work 

We have presented results from an extensive fault injection study that investigates the 
impact of bit-flip errors in ISA-registers and main memory for thirteen programs. The 
purpose of the study is to provide insights into differences in impact between single-
bit and double-bit errors. The intended audience for this research is individuals and 
organizations who are interested in experimental benchmarking of the error sensitivity 
of software components. 

Such benchmarking experiments aim to measure the likelihood that the executable 
code of a software component exhibit silent data corruptions (SDCs) for hardware 
errors that propagate to instruction set architecture (ISA) registers and main memory 
locations. The purpose of such measurements is to identify weaknesses in the execut-
able code, and thereby finding ways of hardening the code against hardware errors by 
means of software-implemented hardware fault tolerance techniques.  

This type of benchmarking is traditionally conducted by injection of single-bit er-
rors in ISA registers and main memory words. The main objective of the study was to 
investigate whether it would be meaningful to include experiments with double bit 
errors when measuring the error sensitivity of software components. The inclusion of 
double bit-flip injections would be motivated if we can see that such errors would 
reveal weaknesses that are not exposed by single bit-flip injections.  

Based on the discussion in Section 6, we believe the use of double and multiple bit 
injections mainly would lead to fewer observations of silent data corruptions. This 
suggests that it is unlikely that experiments with double-bit errors would expose 
weaknesses that are not revealed by single bit-flips injection. To further assess wheth-
er single bit flips can be trusted to generate the most pessimistic results (the highest 
number of SDCs), our future work will include experiments where bit-flips will be 
injected in different target locations at the same time. 

In the second part of the study, we investigated, for single bit-flips, how different 
bit positions contributed to each of the four outcome categories (No Impact, Hardware 
Exception, Timeout, and Silent Data Corruption). This analysis gave us useful in-
sights that can help us reduce the fault space of future experiments through a more 
elaborate strategy for selecting target locations. One such observation was that bit-
flips in certain bit positions in registers holding addresses always were detected by a 
hardware exception. This suggests that the memory map of the target system should 
be considered in the pre-injection analysis. 

Our future research will also encompass comparative studies with different compiler 
optimizations, hardware platforms, and different programming languages. Another im-
portant part of this work is to extend our study with experiments on target programs that 
are equipped with software-implemented hardware fault tolerance (SIHFT) techniques. 
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Abstract. In this paper, we present OpenMADS, an open source tool
for modeling and analysis of distributed systems. OpenMADS generates
comprehensive availability models by using the input of SysML specifica-
tions and MARTE annotations, which are automatically translated into
deterministic and stochastic Petri nets. The integrated use of analytic
models (e.g., Petri Nets or Markov chains) with semi-formal modeling
languages, like SysML or UML, can provide important insights to the de-
signers regarding different distributed infrastructures, and consequently,
allows them to choose the infrastructure that fits the company budget
or satisfies a given service level agreement. To show the applicability of
OpenMADS, we demonstrate the process of availability modeling and
evaluation based on the example of a Web server system.

Keywords: Distributed Systems, MARTE, SysML and DSPN.

1 Introduction

Over recent years, distributed systems such as cloud computing and grid com-
puting have grown significantly in functionality, scale and complexity. Although
this rapid growth has allowed these systems to provide a wide range of services
as well as has increased the number of users, it has also increased the occurrence
of system failures due to high complexity and the existence of strongly coupled
components. Therefore, modeling and evaluation of such computing systems are
important steps in the design process of distributed systems.

Analytic models such as Markov chains and stochastic Petri nets are useful
to study a wide range of systems, but they are not easy to use by designers who
do not have expertise in stochastic modeling. An important and challenging is-
sue is to enable designers to develop analytic models representing distributed
system configurations and behaviors. In order to address this issue, we advo-
cate the use of Systems Modeling Language (SysML) [13] and MARTE (UML
profile for Modeling and Analysis of Real-Time and Embedded systems) [14] to
generate Deterministic and Stochastic Petri Nets (DSPNs) [5]. SysML is used
for various engineering design purposes and supports more friendly and intuitive
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notation methods. However, SysML itself does not provide support to quantita-
tive notations. Quantitative notations are especially important when modeling
performance/availability concepts of distributed systems. Thus, we adopted the
combination of SysML and MARTE annotations for a complete design of dis-
tributed systems. Still the combination of SysML diagram and DSPNs needs an
appropriate tool to be practicable.

There are several commercial and open source tools which support the use of
SysML diagrams, such as Papyrus [16] for SysML (open source eclipse modeling
tool), ARTiSAN Software Tools [15] and ParaMagic (InterCAX) [11]. Besides
that, many other tools have been developed to support the evaluation of analytic
models. Examples include: SPNP [10], TimeNET [3] and ASTRO [4]. Some tools
also have been developed to support the integrated use of semi-formal models and
analytic models, e.g., ADAPT [1], LSC2CPN [12] and ArgoSPE [6]. However, to
the best of our knowledge, there are no tools which allow the integrated use of
SysML diagrams, MARTE annotations and DSPNs for modeling and analysis of
distributed systems.

In this paper, we present OpenMADS, an open source tool for modeling and
analysis of distributed systems, considering dependability aspects. It extends
and implements the features given in our previous work [9,7]. So, the distributed
system is designed using SysML diagrams, annotated according to the MARTE
profile, which are automatically translated into DSPNs. After that, the model
can be evaluated to compute a set of availability measures such as system steady-
state availability and downtime. The remainder of the paper is organized as
follows: Section 2 presents the software architecture of OpenMADS. Section 3
details an example and its results. Section 4 concludes the paper and discusses
further work.

2 Architecture of OpenMADS

OpenMADS has been developed to support both the translate process from
SysML diagrams to DSPNs and their evaluation. This tool allows designers, who
do not have expertise in formal model, to design and analyze distributed systems
on a cloud computing platform. The designers can use OpenMADS to: (i) design
the system infrastructure using SysML diagrams and MARTE annotations, (ii)
generate the availability model through the translation process, and (iii) study
different distributed system infrastructures. It allows designers, for example, to
choose the service infrastructure that fits their budget or satisfies a given Service
Level Agreement (SLA). OpenMADS can be accessed in [8].

Figures 1 and 2 show screenshots of OpenMADS GUI. The graphical user
interface for OpenMADS has been completely written in Java, and therefore,
can run in both Unix- and Windows-based environments. It is composed of
three main parts: a menu bar (top), drawing area (bottom), and a SysML and
MARTE annotation bar or a stochastic Petri Net bar (middle). The upper row
of the window contains some menus with commands for file handling, editing,
and other model specific commands. A toolbar at the middle contains model



OpenMADS: An Open Source Tool for Modeling and Analysis 279

elements that are available for the current SysML diagram or stochastic Petri
net model. The drawing area at the bottom displays the current model. The
main functionalities implemented in the tool are detailed as follows.

– SysML and MARTE editor: Designers can build models for distributed
system configurations and maintenance operations using the draw area of
OpenMADS. It supports three SysML diagrams: internal block (SysML-
IBD), state machine (SysML-STM) and activity (SysML-AD). SysML-IBD
is used to describe the static system configuration of distributed systems,
such as logical function, process structure, hardware with and without their
redundances. SysML-STM describes the state transitions of a specific system
element, e.g., a server failure-recovery behavior. SysML-AD describes the
process flow of administrative operations which may affect the system state
(e.g., backup, server restart, etc). OpenMADS also provides MARTE anno-
tation which can be assigned to states and transitions. One should note that
only a subset of MARTE annotation is provided by our tool. The stereotype
PAStep and tagged value HostDemand are used. The stereotype describes
an action, while tagged values consist of a property name and an assigned
value.

– DSPN editor and Simulator: Regarding DSPN models, OpenMADS al-
lows dependability evaluation utilizing simulation techniques, such as tran-
sient and stationary. Time-dependent metrics are obtained through transient
simulations, while steady-state metrics are result of stationary simulations.
Figure 2 depicts the DSPN editor, in which the models can be obtained from
a high level model translation or created by the user from scratch.

– ASTRO-Mercury and TimeNET integration: In order to allow various
analysis and simulations of the DSPNs, considering distinct levels of accu-
racy, we have integrated OpenMADS to ASTRO-Mercury [4] and TimeNET
[3] tools. That is, OpenMADS allows designers to generate input files for
these tools. ASTRO-Mercury and TimeNET are analytic modeling tools that
provide user-friendly graphical interfaces for hybrid models which include
Petri Nets, Reliability Block Diagrams (RBDs) and Data Center High-Level
models.

Figure 3 presents the software architecture of OpenMADS. From the SysML
diagrams, annotated according to the MARTE, OpenMADS creates a parame-
terized XML file that will be an input for the Translator Module. The Translator
Module implements the translation process from the parameterized XML model
into the DSPN formalism. OpenMADS implements the translation theory pro-
posed in [9,7]. In the translation process, each element in SysML diagrams is
translated into a part of the availability model, and these parts are assembled
and synchronized together to construct the whole availability model in the form
of DSPNs. The resulting DSPN model XML file is used to perform availabil-
ity analysis through transient and stationary simulation techniques. The results
of such availability evaluation are displayed in the GUI. For DSPN models,
OpenMADS implements an Integrator Module, which generates input files for
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Fig. 1. SysML and MARTE editor Fig. 2. DSPN editor
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Fig. 3. Software architecture

ASTRO-Mercury and TimeNET tools. It is worth to highlight that OpenMADS
is not integrated with other SysML modeling tools, but it can be done by im-
plementing a module that adapts the parameterized XML file as input file for
the target tool.

3 An Illustrative Example

In order to show the applicability of OpenMADS, we present an illustrative
example of a Web server system composed of one load balance server, six Web
application servers, and one database server deployed in a Data Center (see
Figure 4). This example is a typical virtualized distributed system in which each
server runs on its own Virtual Machine (VM) and shares the resource of the
Data Center. A load balance server distributes the user requests evenly among
the Web application servers, avoiding that a single VM becomes overloaded
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Fig. 4. Web server system

while the others are idle. There are six virtual machines running the same Web
application. Three of those VMs are in Hot Standby state. If a primary Web
application server stops, a Hot Standby Web server replaces the one which is
no longer available. Once the primary Web server is repaired, then a working
server returns to the Hot Standby state. We assumed that the minimum number
of running Web servers is 3 and it is maintained by an automatic monitoring
application. If a Web server become unavailable, the monitoring application
automatically increases the number of Web servers up to 3 in order to meet
the performance requirements. Besides, the Web application servers access a
Database server running in the same Data Center to store information.

Due to the lack of space, the SysML diagrams and the corresponding DSPNs
are briefly detailed. Figure 5 (e) presents the SysML-IBDs for the Web server
system deployed in a Data Center. The number ”6” in the Web Server block
means the level of redundancy of the system component. Multiple standard com-
partments can be used to describe the block characteristics. The Load Balancer
has the Mean time to Failure (MTTF) of 8760 hours, and the Mean Time to Re-
pair (MTTR) of 120 hours based on the block properties. The allocatedFrom and
�hosted� allocations are used to represent relationships among the SysML di-
agrams. An allocatedFrom allocation between a block and a SysML-STM is used
to detail the block in terms of states, while an allocatedFrom allocation between
a block and a SysML-AD is used to represent administrative operations (i.e.:
rejuvenation, backup or restart) which may affect the states of a system ele-
ment. A �hosted� allocation represents a hosted dependency between system
elements. If the hosting element (Data Center) goes down, the hosted elements
(Load balance, Web Servers and Database Server) becomes unavailable at the
same time.

The blocks Data Center, Web Server and Database Server are respectively
detailed in terms of state transitions in Figures 5 (b), (c) and (d). Note that stm
Database State Machine and stm Data Center State Machine have the same
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Fig. 5. SysML diagrams for the Web server system

failure/repair behavior. However, they have different time restrictions assigned
to the transitions (MARTE notations). The failure/repair behavior of the Web
Server is also similar to the ones in Figures 5 (b) and (d). The difference for
the SysML-STM is that there is a Hot Standby state and two SysML transi-
tions connecting the Web UP state to the Hot Standby state (failover and fail-
back operations). The SysML transitions Failover and Failback are stereotyped
with �control�. That means an administrative operation (i.e., ad Web Server
Monitor) may affect the system states.

The SysML-AD used to represent the behavior of the Web Server Monitor is
depicted in Figure 5 (a). This administrative operation is deployed in the Web
Servers. The Web Server Monitor checks the data center every 5 minutes. If
the data center is not working properly, an alert message is issued to system ad-
ministrators who are responsible for manual maintenance operations. Otherwise,
the number of available Web servers is checked and it is adjusted, if necessary.
We introduced the stereotype �control� to the actions Failover a Server and
Stop a Server. That is, the Web Server states (see Figure 5(c)) are affected by
the execution of the action nodes Stop a Server and Failover a Server of the
respective SysML-AD.

The following procedure is adopted to obtain the DSPN models from the
SysML diagrams depicted in Figure 5. First, OpenMADS translates the SysML
diagrams into parts of the availability model called model components. Next,
OpenMADS assembles the model components generated from SysML-IBD and
SysML-STM using the allocation notation or block properties. The resulting
DSPN is called System Net. Finally, OpenMADS synchronizes the System Net
and Activity Net (which is a model component generated from a SysML-AD)
and supports the generation of guard functions. Note that the DSPNs models
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Table 1. Steady-state availability and
downtime

Availability Downtime

Load Balance 0.9998313 1.477812
Web Server 0.9989158 9.497242

Database Server 0.9993347 5.828028
Data Center 0.9996610 2.969640

System (Asys) 0.9986098 12.178152

Fig. 6. Sensitivity analysis

are obtained by simple clicking in the translation button. These models were
omitted due to lack of space. Details regarding the applicability and correctness
of the translate process can be found in [9,7,17]. However, it is important to high-
light that OpenMADS extends our previous work by taking into account both
dependability constraints described through MARTE annotations and different
types of allocations.

OpenMADS was used to compute system availability of the DSPNs generated
by the translation process. We use arbitrary (but reasonable) input parameters,
since the purpose of this example is to show the applicability of OpenMADS.
Note that all these parameters are defined through MARTE annotations and
block properties and they are assumed to be exponentially distributed except
by the monitoring trigger interval to check the Data Center status, which is
deterministic. The availability and downtime (hours per year) of the Web Server
system and each of its components are shown in Table 1. One should note that
Asys is not equal to the product of the availability for each component because
they are not independent. The results show that the Web Servers have the lowest
availability among all components in the system, being therefore one of the
dependability bottlenecks in the modeled environment.

We conducted sensitivity analysis by varying the time interval of the Web
Server Monitor. As it can be seen from Figure 6, if the monitoring trigger inter-
val is close to zero, the Web servers are checked constantly avoiding downtime,
and consequently, yields higher system availability. On the other hand, as the
monitoring trigger interval increases, the system availability drops, since out-
ages of the Web servers may take longer to be detected. The annual downtime
increases from 12 hours to 15.5 hours, if we change the monitoring interval from
5 minutes to 200 minutes. This is an example of many important conclusions
which can be obtained by using OpenMADS to model distributed systems.

4 Conclusions

We have presented OpenMADS, an open source tool for modeling and analy-
sis of distributed systems. It is not easy for designers to make a comprehensive
availability model from scratch. The use of tools which support the modeling and
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evaluation of distributed systems is essential. OpenMADS generates an availabil-
ity model by using the input of SysML descriptions and MARTE annotations.
The proposed tool translates the elements of SysML diagrams, annotated ac-
cording to the MARTE profile, into DSPNs. After that, the model is evaluated
to compute a set of availability measures in the earliest stages of the design
process of distributed systems. We have demonstrated the process of availability
modeling and evaluation based on the exemple of a Web server system. In future
work, we plan to model and evaluate other types of distributed systems.
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Abstract. In safety analysis for safety-critical embedded systems, methods such 
as FMEA and fault trees (FT) are strongly established in practice. However, the 
current shift towards model-based development has resulted in various new 
safety analysis methods, such as Component Integrated Fault Trees (CFT). In-
dustry demands to know the benefits of these new methods. To compare CFT to 
FT, we conducted a controlled experiment in which 18 participants from indus-
try and academia had to apply each method to safety modeling tasks from the 
avionics domain. Although the analysis of the solutions showed that the use of 
CFT did not yield a significantly different number of correct or incorrect solu-
tions, the participants subjectively rated the modeling capacities of CFT signifi-
cantly higher in terms of model consistency, clarity, and maintainability. The 
results are promising for the potential of CFT as a model-based approach.  

1 Introduction 

Fault Trees (FT) [1] are widely used in industry to calculate hazard occurrence proba-
bilities in the certification of avionic systems according to ARP 4754 [2] and DO-
178C [3]. This is done by analyzing the propagation of faults through a system, iden-
tifying the causes (events) of the hazards, and calculating the probability of the  
hazards from the probabilities of the basic events. With the advent of model-based 
development languages such as SysML [4], which were introduced to tame the com-
plexity of, e.g., avionic systems, the question arose of whether and how safety analy-
sis can also benefit from the model-based paradigm. A whole series of new analysis 
techniques and adaptations of existing ones have been proposed, such as semantic 
transformation [5], fault injection [6], and failure logic modeling [7] approaches. 
However, the effectiveness and the advantages of most approaches have only been 
argued or validated in single case studies. None of them is widely used in industry; 
not least due to the fact that they lack thorough empirical evaluation. To provide this 
evidence for Component Integrated Fault Trees (CFT) [8][9], namely a Failure Logic 

                                                           
* At the time of the experiment, the author was with the University of Kaiserslautern, Germany. 
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Modeling approach, we performed a controlled experiment with participants from 
academia and practitioners from Cassidian, an EADS company. The experiment com-
pared CFTs with FTs in analyzing an avionic system modeled as SysML block dia-
grams [4]. The participants solved four analysis tasks with each method and gave 
feedback on both approaches by means of a questionnaire. 

This paper is structured as follows. Chapter 2 presents related work, i.e., experi-
ments on safety-related aspects. In Chapter 3, we describe our experiment and analyze 
the results. In Chapter 4, we discuss the threats to validity and present lessons learned 
in Chapter 5. In Chapter 6, we summarize the paper and conclude our work. 

2 Related Work 

Although studies have been published on safety analysis approaches, controlled expe-
riments are rarely reported. Stålhane and colleagues published a set of controlled ex-
periments with students comparing different approaches in the area of security and 
safety with respect to the subjects’ performance, i.e., the number of identified hazards. 
They compared misuse cases (MUC) with FMEA [10], MUC with textual use cases 
(TUC) [11], and system sequence diagrams (SSD) with TUC [12]. Like FT, FMEA 
can be used for failure propagation analyses, but it is used here for hazard identifica-
tion. Learning from those experiments, the assessment of participants’ perception is 
an appropriate complement to objective metrics such as number of correct solutions. 

Briand et al. [13] investigated the impact of SysML design slices on inspectors’ 
decision correctness and effort, which is important for safety certification, in a con-
trolled experiment with 20 graduate students. The results show a significant decrease 
in effort and an increase in the correctness and level of certainty of the decisions. Pai 
and Dugan [14] empirically evaluated their Bayesian network (BN) model, relating 
object-oriented software metrics to software fault content and fault proneness, by 
using a public domain data set from a software subsystem. 

In conclusion, empirical work and some controlled experiments have been pub-
lished in the safety domain, but their focus is on other aspects such as hazard identifi-
cation or security and not on model-based failure propagation analyses like the  
controlled experiment described in this paper for fault trees. 

3 Experiment 

FT (Fig.1a) and CFT (Fig.1b) model Boolean formulas as trees with top events such 
as hazards as roots, Boolean gates such as And and Or as nodes, and basic failure 
modes such as component failures as leaves. CFT and FT provide the same qualitative 
and quantitative analyses, such as calculating hazard occurrence probabilities and 
minimal cut sets. However, FT show one separated tree for each top event. In con-
trast, CFT [8][9] modularize many trees into fault tree components with many input 
and output failure modes according to the structure of a component model such as 
SysML block diagrams or Matlab/Simulink subsystems. CFT are nested as compo-
nents. In addition, a CFT is formally as well as graphically integrated with the model 
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of a component by corresponding associations. The same is true for the in-/output 
failure modes of a CFT and the input and output interfaces (ports) of its associated 
component. The CFT representation is thus closer to the model of a system and its 
components, and should facilitate both traceability between the system and the safety 
model and safety analysis. In the experiment, the purpose of our research was to 
check whether the quality of the modeling results obtained from the application of 
CFT differs from those obtained using FT, and whether the participants would favor 
CFT over FT. Thus, we specified research questions RQ1 and RQ2:  

RQ1: Will the application of the CFT yield the same quality of the resulting safety 
model compared to a model built with FT? RQ1 relates to the performance of the 
techniques and was investigated by analyzing the quality of the participants’ results in 
modeling tasks performed with the two techniques. We define quality as correctness 
with three instances: number of correct solutions (all task solutions that are complete-
ly correct or follow the correct logic), number of incorrect solutions (all attempts of 
task solutions that do not follow the correct logic, use the wrong system element, or 
are incomplete), and number of missing solutions (all tasks that were not worked on 
by the participant, meaning that no marks or attempts to solve the problem are visi-
ble). For this comparison, we stated the following hypothesis1: 

• H1: When using CFT, participants will produce results with a different 
level of quality compared to when they use FT.  

• H1.1: # correct solutions CFT  ≠  # correct solutions FT 
• H1.2: # incorrect solutions CFT  ≠  # incorrect solutions FT 
• H1.3: # missing solutions CFT  ≠  # missing solutions FT 

 
 

 

Fig. 1. a) Two FT and b) corresponding CFT integrated with its component 

RQ2: Is CFT perceived different than FT with regard to consistency, clarity, and 
maintainability? To answer RQ2, the participants were asked to provide their opinion 
in a questionnaire after each modeling task. Subjective perception focuses on three 
important fault tree qualities: consistency (the system design model and the fault tree 
describe the same system), clarity (the graphical presentation of the system supports 

                                                           
1 Due to space limitations, we omit stating the null hypothesis for all presented hypotheses. 
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keeping an overview of the system), and maintainability (changes in the fault trees 
due to updated system models are easy to administer). Ratings were given on a scale 
from one (lowest) to five (highest). We stated three hypotheses:  

• H2: When using CFT, consistency between system description and safety 
analysis model is perceived differently than when using FT2.  
(H2: µCFT ≠ µFT) 

• H3: When using CFT, the clarity of safety analysis models developed 
with CFT is perceived differently than when using FT. (H3: µCFT ≠ µFT) 

• H4: When using CFT, the maintainability of safety analysis models de-
veloped with CFT is perceived differently than when using FT.  
(H4: µCFT ≠ µFT) 

To test the hypotheses, we used the McNemar Test for H1 and the Wilcoxon 
signed-rank test (a non-parametric test used for dependent samples) for H2-H4 on a 
significance level of 0.95 (α = 0.05).  

The study was designed as a three-hour experiment under laboratory conditions in-
cluding a 40-minute tutorial session about SysML, CFT, and FT before the actual 
study started. To provide deep cognitive processing of the two methods, we designed 
four tasks according to typical activities performed by safety engineers. In task 1, the 
participants were asked to include two missing elements (“basic events”) in the given 
fault tree and perform the corresponding changes. In task 2, a new, additional functio-
nality of the system was to be included in the given error analysis model. For the  
solution of task 3, the participants had to implement an additional component in the 
system and transfer all necessary changes in the corresponding fault trees or compo-
nent fault trees, respectively. In task 4, an additional analog input component was 
added to an already existing component in the model. The four tasks were presented 
in two versions to all participants: version “a” for CFT and version “b” for FT (for 
reasons of comparability, the tasks for applying either the CFT or the FT method were 
identical). To avoid ordering effects such as practice, learning effects, or fatigue, the 
sequence of the eight tasks was randomized for each participant, resulting in a differ-
ent task order for each individual (within-subject design). Before proceeding with the 
next task, the participants had to complete a questionnaire consisting of 11 items 
(=statements) to assess the subjective rating of the perceived consistency (4 items), 
clarity (4 items), and maintainability (3 items) on an ordinal 5-point Likert scale 
(1=strongly disagree to 5=strongly agree) for each task. Depending on the task type (a 
or b), the items contained either the term “CFT” or “FT”. 

Although FT and CFT are usually applied with PC software tools, the study was 
implemented for paper & pencil use to avoid effects caused by the usability of a tool. 
The participants were instructed to draw missing elements directly in the diagrams 
provided and cross out non-essential elements. Blank pages were provided to redraw 
elements. In addition, the system model was provided as a reference document. 

After a pilot with several colleagues, the experiment was conducted with 7  
academic staff members from the computer science department of the University of 

                                                           
2 µ symbolizes the mean value of a variable. 



 A Controlled Experiment on Component Fault Trees 289 

 

Kaiserslautern (TU KL) and 11 practitioners from Cassidian (sample n=18). The aca-
demic staff members are PhD students with experience in FT and CFT. All Cassidian 
employees (8 aerospace engineers, 2 mathematicians, 1 physicist) have several years 
of experience in safety and FT. Due to company restrictions, no further information 
was collected. Participation was on a voluntary basis without any compensation.  

To answer RQ1, a total of 144 task solutions (18 participants*4 tasks*2 methods) 
were analyzed by applying a coding scheme based on the definition of correct, incor-
rect, and missing solutions. The total numbers for the three categories for CFT and FT 
are shown in Table 1. FT has a higher number of correct solutions but also a slightly 
higher number of incorrect solutions, whereas CFT has a higher number of missing 
task solutions. We used the McNemar Test (two-tailed; α = 0.05) to test the differenc-
es between CFT and FT. Regarding the number of correct solutions (H1.1) as well as 
the number of incorrect solutions (H1.2), there is no significant difference between 
CFT and FT (p = 0.126; p = 0.688). For both we retain the null hypothesis: by using 
CFT, the participants did not produce significantly more or fewer correct as well as 
incorrect solutions. Concerning the number of missing task solutions (H1.3), the null 
hypothesis can be rejected, meaning that CFT and FT differ significantly in terms of 
the number of missing task solutions (p = 0.006; p < α). 

Table 1. Number of correct, incorrect or missing solutions 

Method used # correct solutions # incorrect solutions # missing task solutions 
CFT 52 6 14 
FT 59 8 5 
p 0.126 0.688 0.012 

For RQ2 we analyzed the participants’ subjective ratings about the two methods 
with respect to the three qualities consistency, clarity, and maintainability. Based on 
the results of the statistical reliability analysis for the measurement instrument, all 
items for one quality were merged (sum of values divided by number of items) into 
one value representing the participants’ perception of this quality3. The descriptive 
results of the three computed values for the four tasks are shown in Table 2. Although 
mean values are not used for statistical inference analyses here, it can be seen that 
CFT received higher assessments for all four tasks with respect to all qualities. Only 
for task 4, the assessment of maintainability does not show any difference.  

Regarding H2-H4, we compared CFT and FT across tasks 1-4 combined with the 
two-tailed Wilcoxon signed-rank test (α = 0.05). The participants rated the consisten-
cy (H2) of CFT significantly higher (Mdn = 4) than that of FT (Mdn = 4), z = -2.02,  
p = 0.04, r = -0.34. The null hypothesis is rejected because p < α. Regarding variable 
clarity (H3), CFT was also rated significantly higher (Mdn = 4) than FT (Mdn = 3),  
z = -1.98, p = 0.04, r = -0.33. Again, the null hypothesis is rejected. In terms of main-
tainability (H4), the participants assessed CFT significantly higher (Mdn = 4) than FT 
(Mdn = 3.5), z = -2.15, p = 0.03, r = -0.36. Here, too, the null hypothesis is rejected. 

                                                           
3 The statistical reliability analysis revealed good to excellent reliability of the developed items 

(Cronbach’s α > 0.84). 
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Table 2. Descriptive results of the subjective ratings 

  
Task 1 Task 2 Task 3 Task 4 Task 1-4 

combined 
CFT FT CFT FT CFT FT CFT FT CFT FT 

Consistency 
Median 4 4 4 3 4 4 4 4 4 4 
Mean 3.75 3.51 3.59 2.98 3.85 3.60 3.79 3.57 3.75 3.42 
SD 0.93 0.99 0.96 1.03 0.99 0.98 0.99 1.02 0.97 1.00 

Clarity  
Median 4 3.5 4 3 4 3.5 4 3 4 3 
Mean 3.53 3.12 3.60 2.92 3.79 3.32 3.81 3.32 3.68 3.17 
SD 1.09 1.11 1.16 1.05 1.13 0.94 0.93 1.02 1.08 1.03 

Maintainability 
Median 4 3 3 3 4 4 4 4 4 3.5 
Mean 3.63 3.29 3.53 3.04 3.92 3.55 3.71 3.73 3.70 3.40 
SD 1.15 1.03 0.99 1.00 1.07 0.96 1.03 0.96 1.06 0.99 

4 Threats to Validity 

Concerning the internal validity of the study, maturation effects (e.g., fatigue) on the 
assessment of the two methods may be excluded because of the randomized order of 
the tasks. Standardized instructions were used to minimize influences caused by expe-
rimenter expectancies towards the assessment of the two methods. Furthermore, the 
participants were told to base their ratings on the experiences of the tasks and not on 
experiences outside the study. An “independent” researcher led the experiment. 

With regard to the external validity of the study, we are aware that due to the ex-
ample used and the sample selected, the results are only valid for the avionics domain. 
The tasks, although small in size and complexity, were developed together with prac-
titioners to ensure realism. Moreover, the laboratory conditions as well as the use of 
paper & pencil are limiting factors. Some information regarding the participants’ 
experience (e.g., company affiliation time) was not allowed to be collected.  

In terms of conclusion validity, appropriate statistical test procedures were used. 
One possible threat to construct validity is reactivity to the experimental situation. We 
reduced experimenter interactions with the participants by including all relevant in-
structions and materials (tasks and corresponding questionnaires) in one package 
(“test booklet”). The test booklet was self-explanatory so that after the tutorial ended, 
no interaction between experimenter and participant was necessary. Furthermore, 
anonymity and confidentiality were assured. The study procedure, material, and in-
strumentation were tested in three pilot studies, yielding improvements concerning 
understandability, task descriptions, and procedure.  

5 Lessons Learned 

Based on the results and taking into consideration the threats to validity, we conclude 
that our participants rated CFT subjectively better than FT, although the use of CFT 
yielded neither significantly more correct nor more incorrect solutions. One problem 
in comparing the task results for CFT and FT is the large number of missing solutions 
in the CFT condition (14 out of 72) compared to the FT one (5 out of 72).  

One possible explanation is that some participants already had more experience with 
FT, whereas CFT was unknown before. They may have felt uncertain in applying CFT 



 A Controlled Experiment on Component Fault Trees 291 

 

and preferred not to provide a solution instead of making a mistake. Not solving an 
experimental task means in practice that the task is still open and more resources or 
information must be incorporated to solve the task. This procedure is safe and avoids 
wrong solutions that might negatively affect system safety. This assumption is sup-
ported by the fact that the number of correct solutions for CFT did not differ significant-
ly from the number of correct solutions for FT and the results of the other hypotheses. 
Taking into consideration the short duration of the tutorial (approx. 40 min), we interp-
ret this result in favor of CFT and hypothesize that with a more detailed tutorial and 
hands-on experience, even better results for CFT could have been achieved. However, it 
should be investigated in future studies whether this assumption is true. If in another 
context engineers were to produce wrong instead of missing task solutions, this might 
affect system safety negatively and must be avoided. 

The similarity of the graphical representation of the system design model and the 
CFT-based fault tree is reflected in the subjective ratings. Regarding the three main 
qualities (consistency, clarity, and maintainability), CFT was subjectively assessed as 
being significantly better than FT. We believe that software engineers will prefer 
software development methodologies, for safety analysis as well as for software in 
general, which are intuitively closer to people’s cognitive skills [15]. 

Based on the results, we conclude that CFT, being more similar to model-based de-
sign approaches than FT, can be beneficial for employees with little or no experience 
in FT. However, if employees have experience in FT, the implementation effort for 
introducing CFT has to be balanced against a possible positive outcome regarding 
employees’ positive subjective assessment and the quality of the safety analysis.  

6 Summary and Conclusion 

In this paper, we have presented a controlled experiment comparing CFT, which adhere 
to the graphical logic of the system design model, to standard FT, which follow a com-
pletely different graphical approach. The experiment consisted of the analysis of a real 
avionic system, performed by PhD students and practitioners with many years of work 
experience from Cassidian, an EADS company. Our research question addressed two 
aspects: 1) the quality (completeness and correctness) of modeling task solutions and 2) 
the participants’ subjective perception with regard to the clarity, consistency, and main-
tainability of the methods. We developed an empirical study design in a laboratory set-
ting with realistic tasks and a realistic system model from the avionics domain. The 
results of the study showed that when applying CFT, the participants did not produce 
significantly more or fewer correct and incorrect solutions compared to FT. A larger 
number of missing task solutions for CFT might be attributed to uncertainty in applying 
the CFT method compared to the well-known FT. In terms of subjective assessment of 
the two methods, CFT was rated higher regarding consistency, clarity, and maintainabil-
ity: The participants favored CFT over FT. Because this subjective perception is based 
on experiences, it might indicate that CFT could also show advantages with regard to 
the quality of analysis results for larger and more complex systems than those we were 
able to analyze in the experiment. To analyze this question, a long-term study would be 
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recommended, which is our aim for future work in addition to improving the method 
and the experiments for such methods. 
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Abstract. Effective risk management is a key to ensure that our nuclear
power plants, medical equipment, and power grids are dependable; and
it is often required by law. Fault Tree Analysis (FTA) is a widely used
methodology here, computing important dependability measures like sys-
tem reliability. This paper presents DFTCalc, a powerful tool for FTA,
providing (1) efficient fault tree modelling via compact representations;
(2) effective analysis, allowing a wide range of dependability properties
to be analysed (3) efficient analysis, via state-of-the-art stochastic tech-
niques; and (4) a flexible and extensible framework, where gates can eas-
ily be changed or added. Technically, DFTCalc is realised via stochastic
model checking, an innovative technique offering a wide plethora of pow-
erful analysis techniques, including aggressive compression techniques to
keep the underlying state space small.

1 Introduction

Risk analysis is a key feature in reliability engineering: in order to design and
build medical devices, smart grids, and internet shops that meet the required
dependability standards, we need to assess at design time how dependable these
systems are, and take appropriate measures if they are not dependable enough.

Fault Trees. Fault tree analysis (FTA) [19] is a graphical technique that is often
used in industry. Fault trees (FTs) model how component failures lead to system
failures: the leaves of a FT are basic events (BEs) that represent component
failures; the other nodes express how failures propagate through the system via
AND and OR gates. Discrete time FTs equip each BE with a probability p,
representing the probability that the component fails within a certain discrete
time interval. We consider continuous FTs. Here, each BE is equipped with a
probability distribution f showing how the failure behaviour evolves over time,
i.e. F (t) represents the probability that the BE is still running at time point t.
The root of the tree, called the top-level event, represents a system failure. FTA
typically computes for a given FT the system reliability, i.e. the probability that
the system has not failed within a given mission time T , the mean time to failure
(MTTF), i.e. the expected time of a failure to occur, and the availability, i.e. the
time that the system is up in the long run.

F. Bitsch, J. Guiochet, and M. Kaâniche (Eds.): SAFECOMP 2013, LNCS 8153, pp. 293–301, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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Dynamic Fault Trees (DFTs) extend standard (or static) fault trees with a
number of intuitive gates. These gates facilitate the modelling of often recurring
concepts in reliability engineering: spare management, functional dependencies,
and order-dependent behaviour.

DFTCalc. DFTCalc is a powerful tool for modelling and analysis of DFTs.
It can efficiently model DFTs and provides means to compute various depend-
ability metrics, given BEs whose failure probabilities are given by exponential
and phase type distributions. The major innovation of DFTCalc is the deploy-
ment of stochastic model checking (SMC) techniques [4]: SMC is an innovative
technique to systematically explore the state space of a stochastic system. SMC
provides a wide plethora of powerful analysis techniques, with fully-fledged tool
support. By deploying SMC, DFTCalc can handle DFTs with BEs that are
statistically dependent; in fact, the FDEP gate has specifically been designed to
model interdependent events. Repairs, however, have not yet been included.

The main problem in time-dependent reliability analysis is its complexity: The
state space of models of real systems can grow arbitrarily large [15] and, thus,
highly efficient techniques are required to yield results in a feasible time. Fur-
thermore, an accurate modelling of all dependencies in these inherently complex
systems requires an ever growing diversity of new gates. DFTCalc constitutes
an architectural framework that addresses both challenges.

Related Work. A wide range of FTA methods exists: Classically, one obtains
the minimal cut sets in the FT [5]. This enables to order components based
on their structural importance. Further, with additional information one can
compute the system reliability. A popular technique is to exploit Bayesian net-
works, which are useful both in discrete time [9] and in continuous time [8]. Our
approach focuses on continuous timed systems, with currently no maintenance.
Therefore, we will translate DFTs into continuous time Markov chains (CTMCs)
and use state of the art techniques as described in [2,3]. This allows us to com-
pute reliability measures by use of efficient techniques for transient analysis of
CTMCs.

A wide number of commercial and academic tools for static fault tree analysis
are available. Some are merely drawing tools, while others provide probabilistic
analysis, like the popular FaultTree+ package from Isograph [14]. Dynamic FTA
is supported by tools like Windchill [18], NASA’s Galileo/ASSAP software [11],
and the simulation tool DFTSim [10]. A first implementation of DFT analysis
using I/O-IMCs was realized in Coral [7], the predecessor of DFTCalc.

Organisation of the Paper. Section 2 presents DFTCalc’s modelling and
analysis capabilities and Section 3 the architecture and internal structure. In
Section 4 we provide experimental results and Section 5 concludes the paper.
Due to space constraints, we refer to [1] for more details of our main results and
case studies.
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Fig. 1. Dynamic fault tree gates

2 DFTCalc: Modelling and Analysis

DFT Modelling. Dynamic fault trees (DFTs) model the failure propagation in
complex systems. The leaves of a DFT are labeled with basic events and the
non-leaves with gates. The root is called top-level event.

Basic Events. A basic event (BE) represents the failure behaviour of a basic
system component, and can be in three different modes: dormant, active and
failed. The component is in dormant mode, if it is not in use. In this mode, the
failure rate of a BE is decreased by a dormancy factor α ∈ [0, 1]. In case α = 0
the BE cannot fail (cold BE) and in case α = 1 the failure rate is the same as
in active mode (warm BE). The component is in active mode, when it is in use.
If the component breaks down, it is in failed mode.

Gates. A gate expresses how component failures induce a system failure. Gates
consist of one or more inputs, and one output. Fig. 1 depicts the DFT gates.

(a) The OR gate fails when at least one input fails.
(b) The AND gate fails when all of its inputs fail.
(c) The VOTING gate fails when at least k out of n inputs fail.
(d) The PAND gate fails when all of its inputs fail from left to right.
(e) The SPARE gate consists of a primary input and one or more spare inputs.

At system start, the primary is active and the spares are in dormant mode.
When the primary input fails, one of the spare inputs is activated and re-
places the primary. If no more spares are available, the SPARE gate fails.
Note that a spare component can be shared among several spare gates.

(f) The FDEP (functional dependency) gate consists of one trigger event and
several dependent events. When the trigger event occurs, all dependent events
fail. The FDEP has a ”dummy” output, which is represented by a dotted line
and ignored in calculations.

Example 1. Fig. 2 depicts a DFT representing a cardiac assist system (CAS) [9]
consisting of three subsystems: the CPU, the motor and pump units. If either
one of these subsystems fails, then the entire CAS fails, as modelled by the top
level OR gate. The CPU unit consists of a primary (P) and a backup (B) CPU,
as indicated by the SPARE gate. The primary and backup CPU are subject to
a common cause failure, modelled by the CPU FDEP gate: if either the crossbar
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Fig. 2. The cardiac assist system DFT

switch (CS) or the system supervisor (SS) fails, the primary and backup CPU
become unavailable. The motor unit consists of a primary (MA) and a backup
(MB) motor. If the primary fails, the motor switching component (MS) will turn
on the backup motor. Because of the PAND gate the failure of the switching
component can then be ignored. Finally, the pump unit consists of two pumps
(PA and PB), which share a common cold spare (PS).

DFT Analysis. DFTCalc can compute a number of different reliability met-
rics, namely all metrics that can be expressed as reachability properties in the
logic CSL. This includes properties such as: (1) Timed-Reliability: the probabil-
ity that the system fails until a given time point T or in a given interval [T, T ′];
(2) Mean time to failure: the expected time to a system failure; (3) Reliability:
the probability that the system fails in the long-run. In case of non-determinism,
we calculate the minimum and maximum values for the above metrics. Each of
these properties can either be evaluated from the initial state (i.e. the system
is fully functional), or by setting evidence (i.e certain components have failed
already).

DFTCalc fruitfully exploits the technique of compositional aggregation, see
Fig. 6. Whereas traditional FTA methods translate a DFT into a large and
monolithic CTMC, we do this in a stepwise fashion: First, DFTCalc translates
each element (i.e., gate or BE) into an input-output interactive Markov chain
(I/O-IMC), implementing the methodology from [6,7]. Then, we obtain the un-
derlying CTMC by composing all I/O-IMCs. We compose these I/O-IMCs one-
by-one, and employ aggressive state space compression technique in each step,
to keep the state space minimal. This compositional approach has four major
advantages:

– Increased modelling power. Compared to earlier DFT tools, DFTCalc’s
input language is more powerful and imposes fewer syntactic restrictions:
DFTCalc allows any DFT to be a spare component or a trigger, and not
only a BE, as in [16]. This is a big advantage in practice, since spare com-
ponents and triggers are often complete subsystems.
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Fig. 3. DFTCalc web-tool interface

– Increased analytical power. SMC enables DFTCalc to analyse a wide range
of dependability metrics, namely those expressed in a large subset of the logic
CSL. Also, as argued in [6], certain DFTs give rise to non-determinism. If so,
the I/O-IMC leads to a continuous time Markov decision process (CTMDP).

– Efficiency. The compositional aggregation technique leads to significant speed
ups of several orders of magnitude.

– Flexibility. The compositional aggregation approach makes the framework
very extendable. In order to change the behaviour of a gate or even add new
gate types, we only need to provide the underlying I/O-IMC model.

Web Interface. DFTCalc can be used by downloading a stand-alone version,
and via a web interface. Both are accessible at http://fmt.cs.utwente.nl/

tools/dftcalc/. DFTCalc is open source, but requires a license for CADP,
which is free for academic institutions. The web interface extends the download-
able version with a GUI as well as the plot function and is shown in Fig. 3. It
allows the user to (1) input DFT models via a text screen, the topmost box in
Fig. 3; (2) select the dependability metrics. This can be (a) the reliability for
one or more mission times x, or (b) the probability on a system failure during an
interval [T 1, T 2], or (c) the mean time to failure; (3) set various options: which
model checker to use; the error bound, the level of verbosity, and whether to
color output. The results can be given either by numbers, via the button show

DFT dft2lntc .exp

.lnt

.svl

CADP .bcg

imc2ctmdp

bcg2imca

.ctmdpi

.lab

.ma

MRMC

IMCA

DFTCalc

Reliability

Fig. 4. The DFTCalc tool-chain

http://fmt.cs.utwente.nl/tools/dftcalc/
http://fmt.cs.utwente.nl/tools/dftcalc/
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Fig. 6. Graphical overview of the compositional aggregation of DFT models

result, or as a plot, via the button plot result. The input and configuration of the
web interface can be saved via the button permalink.

3 DFTCalc’s Internal Structure

Architecture. DFTCalc combines dedicated code and state-of-the-art model
checkers. The architecture is displayed in Fig. 4 and the processing steps in Fig. 5:
First, dft2lntc translates a DFT in Galileo format into .lnt format, a process
calculus enriched with data that is input to CADP. Technically, this step trans-
forms each DFT element into an I/O-IMC representing the element’s behaviour.
Additionally, a .exp file is generated that defines the interaction between compo-
nents. The clear distinction between local component and global system informa-
tion together with the compositional semantics of I/O-IMCs makes DFTCalc
highly flexible: New components can be added or existing components adapted
by specifying their behaviour in .lnt format and adding them to the tool’s
library. In the next step, the CADP tool set [12] uses the compositional aggre-
gation method to generate the state space of the system, which is a I/O-IMC
representation of the whole DFT. The output of CADP is a .bcg file. This for-
mat is translated either into a .ctmdpi file, which is input to the Markov Reward
Model Checker MRMC [15], or into an .ma file, which is the input of the Inter-
active Markov Chain Analyzer IMCA [13]. Finally, the requested dependability
metrics are computed.

Compositional Aggregation. Compositional aggregation of I/O-IMCs lies at
the heart of DFTCalc. As depicted in Fig. 6, after transforming each DFT
element into an I/O-IMC, we iteratively compose the obtained I/O-IMCs: We
take two I/O-IMCs, compose them, hide all action labels that are no longer
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needed for synchronisation, and then minimise the composition via bisimulation
minimisation. This process continues until a single I/O-IMC remains. The order
of the aggregation process heavily influences the number of states in the obtained
I/O-IMC, and is determined by a smart heuristic. Compositional aggregation
yields reductions up to several orders of magnitude [7].

4 Case Studies

We show the applicability of DFTCalc by three case studies: a multiprocessor
computing system (MCS) [17,7] which consists of two computing modules (CMs),
a bus, a power supply and a spare memory module; the cardiac assist system
(CAS) [9,8] from Fig. 2; and a fault-tolerant parallel processor (FTPP) [7] of a
redundant computer system consisting of four groups of n processors. The MCS
and CAS models were originally developed for discrete time models [17,9], but
were analyzed, as we do, for continuous time models in [7,8].

All our experiments were conducted on a single core of a 2.7 GHz Intel
Core2Duo processor with 2GB RAM running on Linux. Fig. 7 presents the in-
creasing failure probability over time as well as the expected failure time. Table 1
shows the scalability. We compare Coral and DFTCalc: Since DFTCalc is up
to three times faster than Coral it also outperforms earlier tools like Galileo [7].
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Fig. 7. Reliability plots for the case studies

Table 1. Results of the case studies

Model Tool Time (s) P(fail) States Transitions Speedup

MCS 2CMs, t=10000 Coral 131.492 0.998963 18 55 1

DFTCalc 55.395 0.998963 18 55 2.37371

MCS 4CMs, t=10000 Coral 339.752 0.997927 151 992 1

DFTCalc 201.461 0.997927 151 992 1.68644

CAS, t=10000 Coral 135.155 0.0460314 16 50 1

DFTCalc 51.267 0.0460314 16 50 2.64794

FTPP-4 , t=1 Coral 491.114 0.0192186 142 923 1

DFTCalc 234.905 0.0192186 72 386 2.09069

FTPP-5, t=1 Coral 730.761 0.0030616 2167 27438 1

DFTCalc 603.630 0.0030616 400 3369 1.21061



300 F. Arnold et al.

5 Conclusion

We have presented an efficient tool chain which allows to model and analyse
DFTs with a number of prominent dependability metrics. The flexible architec-
ture of DFTCalc exploits state-of-the-art techniques to compose, compress and
analyse DFTs, and is easily extendable. We have conducted several case studies
demonstrating DFTCalc’s high performance in the analysis of DFTs.

As future work, we aim to include cost structures and repairable basic events.
Moreover, we will use DFTCalc’s flexible architecture to implement additional
gates to broaden DFTCalc to other formalisms like attack trees.
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Ilić, Dubravka 57

Jarz ↪ebowicz, Aleksander 8
Jedlitschka, Andreas 285
Jesty, Peter 154
Johansson, Roger 265
Jung, Jessica 285

Karlsson, Johan 265
Kleberger, Pierre 70

Laibinis, Linas 57
Lamedschwandner, Kurt 253
Lanet, Jean-Louis 82
Latvala, Timo 57
Lauret, Jimmy 45
Lee, Insup 228
Lopatkin, Ilya 130

Maciel, Paulo 277
Martinie, Célia 216
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