
Runtime Verification with Particle Filtering

Kenan Kalajdzic1, Ezio Bartocci1, Scott A. Smolka2,
Scott D. Stoller2, and Radu Grosu1,2

1 Faculty of Informatics, Vienna University of Technology, Austria
2 Department of Computer Science, Stony Brook University, USA

Abstract. We introduce Runtime Verification with Particle Filtering (RVPF), a
powerful and versatile method for controlling the tradeoff between uncertainty
and overhead in runtime verification. Overhead and accuracy are controlled by
adjusting the frequency and duration of observation gaps, during which pro-
gram events are not monitored, and by adjusting the number of particles used
in the RVPF algorithm. We succinctly represent the program model, the program
monitor, their interaction, and their observations as a dynamic Bayesian network
(DBN). Our formulation of RVPF in terms of DBNs is essential for a proper for-
malization of peek events: low-cost observations of parts of the program state,
which are performed probabilistically at the end of observation gaps. Peek events
provide information that our algorithm uses to reduce the uncertainty in the mon-
itor state after gaps.

We estimate the internal state of the DBN using particle filtering (PF) with
sequential importance resampling (SIR). PF uses a collection of conceptual par-
ticles (random samples) to estimate the probability distribution for the system’s
current state: the probability of a state is given by the sum of the importance
weights of the particles in that state. After an observed event, each particle chooses
a state transition to execute by sampling the DBN’s joint transition probability
distribution; particles are then redistributed among the states that best predicted
the current observation. SIR exploits the DBN structure and the current observa-
tion to reduce the variance of the PF and increase its performance.

We experimentally compare the overhead and accuracy of our RVPF algorithm
with two previous approaches to runtime verification with state estimation: an
exact algorithm based on the forward algorithm for HMMs, and an approximate
version of that algorithm, which uses precomputation to reduce runtime overhead.
Our results confim RVPF’s versatility, showing how it can be used to control the
tradeoff between execution time and memory usage while, at the same time, being
the most accurate of the three algorithms.

1 Introduction

Runtime verification does not come for free. It introduces runtime overhead, thereby
altering the timing-related behavior of the program under scrutiny. In applications with
realtime constraints, overhead control may be necessary to reduce overhead to an ac-
ceptable level.

In previous work [5], we introduced Software Monitoring with Controllable Over-
head (SMCO), an overhead-control technique that selectively turns monitoring on and

A. Legay and S. Bensalem (Eds.): RV 2013, LNCS 8174, pp. 149–166, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

150 K. Kalajdzic et al.

off, such that the use of a short- or long-term overhead budget is maximized and never
exceeded. Gaps in monitoring, however, introduce uncertainty in the monitoring results.

To quantify the uncertainty, one can estimate the current state of the program. We de-
veloped a framework for this, called Runtime Verification with State Estimation
(RVSE) [10], in which a hidden Markov model (HMM) is used to succinctly model
the program and compute the uncertainty in predictions due to incomplete information.

While monitoring is on, the observed program events drive the transitions of the
property checker, modeled as a deterministic finite automaton (DFA). They also pro-
vide information used to help correct the state estimates (specifically, state probability
distributions) computed from the HMM transition probabilities, by comparing the out-
put probabilities in each state with the observed outputs. When monitoring is off, the
transition probabilities in the HMM alone determine the updated state estimate after the
gap, and the output probabilities in the HMM drive the transitions of the DFA. Each
gap is characterized by a gap length distribution, which is a probability distribution for
the number of missed observations during that gap.

Our algorithm was based on an optimal state estimation algorithm, known as the
forward algorithm, extended to handle gaps. Unfortunately, this algorithm incurs high
overhead, especially for longer sequences of gaps, because it involves repeated matrix
multiplications using the observation-probability and transition-probability matrices. In
our measurements, this was often more than a factor of 10 larger than the overhead of
monitoring the events themselves!

To reduce the runtime overhead, we developed a version of the algorithm, which we
call approximate precomputed RVSE (AP-RVSE), that precomputes the matrix calcula-
tions and stores the results in a table [1]. Essentially, AP-RVSE precomputes a poten-
tially infinite graph unfolding, where nodes are labeled with state probability distribu-
tions, and edges are labeled with transitions. To ensure the table is finite, we introduced
an approximation in the calculations, controlled by an accuracy parameter ε: if a newly
computed matrix differs from the matrix on an existing node by at most ε according to
the L1-norm, then we re-use the existing node instead of creating a new one. With this
algorithm, the runtime overhead is low, independent of the desired accuracy, but higher
accuracy requires larger tables, and the memory requirements could become problem-
atic. Also, if the set of gap length distributions that may appear in an execution is not
known in advance, precomputation is infeasible.

This paper introduces an alternative approach, called Runtime Verification with Par-
ticle Filtering (RVPF), to control the balance among runtime overhead, memory usage,
and prediction accuracy. In particle filtering (PF) [7], the probability distribution of
states is approximated by the proportion of particles in each state. The particle filtering
process works in three recurring steps. First, the particles are advanced to their suc-
cessor states by sampling from the HMM’s transition probability distribution. Second,
each particle is assigned a weight corresponding to the output probability of the ob-
served program event. Third, the particles are resampled according to the normalized
weights from the second step; this has the effect of redistributing the particles so that
they provide a better prediction of the program events.

To reduce the variance of PF, we exploit the knowledge of the current program event
and the particular structure of the DBN and employ a variant of PF known as sequential

Runtime Verification with Particle Filtering 151

importance resampling (SIR). The resampling step (which is a performance bottleneck)
does not have to be performed in each round, and the particles are advanced to their
successor states by sampling from the HMM’s transition probability distribution condi-
tioned by the current observation. While this conditional probability distribution cannot
be computed in general, it can be computed for HMMs.

To handle gaps, we extend PF in a manner that is consistent with the one we devised
for the forward algorithm: as long as gaps are the only observations, the particles are
advanced to their successor states by sampling from the HMM’s transition probability
distribution conditioned on the most probable output event. Such output events are cho-
sen by sampling from the output probability distribution of the HMM conditioned on
the previous HMM state. These events are used to drive the DFA transitions.

In contrast to our previous work [10,1], we model the HMM, the DFA, and their
composition in a more elegant and succinct way as a dynamic Bayesian network (DBN).
This allows us to properly formalize a new kind of event, called peek events, which are
inexpensive observations of part of the program state. In many applications, program
states and monitor states are correlated, and hence peek events can be used to narrow
down the possible states of the monitor DFA. We use peek events at the end of moni-
toring gaps to refocus the HMM and DFA states. Our combination of these two kinds
of observations, program events and peek events, is akin to sensor fusion in robotics.

Adjusting the number of particles used by RVPF provides a versatile way to tune the
memory requirements, runtime overhead, and prediction accuracy. With larger numbers
of gaps, the particles get more widely dispersed in the state space, and more particles are
needed to cover all of the interesting states. To evaluate the performance and accuracy of
RVPF, we implemented it along with our previous two algorithms in C and compared
them through experiments based on the benchmarks used in [1]. Our results confirm
RVPF’s versatility. Specifically, we demonstrate in Section 6 that, with the right choice
of the number of particles, RVPF consumes 80–100 times less memory than AP-RVSE
while being twice as fast as RVSE, and the most accurate of the three algorithms.

The rest of the paper is organized as follows. Section 2 provides background. Sec-
tions 3 and 4 define the runtime verification problem we are addressing and system
model, respectively. Section 5 presents the RVPF algorithm. Section 6 describes our
evaluation methodology and the results of our experiments. Section 7 discusses related
work. Section 8 offers concluding remarks and directions for future work.

2 Background

This section provides background information on Bayesian networks, dynamic Bayesian
networks, particle filtering, and runtime verification with state estimation.

A Bayesian network is a directed acyclic graph in which each node corresponds to
a (discrete or continuous) random variable. An edge from node X to node Y indicates
that X has a direct influence on Y , and X is called a parent of Y . Let B be a Bayesian
network over variables X1, . . . , Xn. Each Xi has a conditional probability distribution
P(Xi | Parents(Xi)) that quantifies the influence of the parents on the node [7].

The meaning of B is a joint distribution over its variables. Let P(x1, . . . , xn) abbre-
viate P(X1 = x1 ∧ · · · ∧ Xn = xn), i.e., the conjunction of particular assignments

152 K. Kalajdzic et al.

to each variable. Then P(x1, . . . , xn) =
∏

P(xi | parents(Xi)), where parents(Xi)
denotes the values of Parents(Xi) that appear in x1, . . . , xn.

A dynamic Bayesian Network (DBN) is a Bayesian network that relates random vari-
ables to each other over adjacent time steps. Moreover, some variables are observable,
and some are not. Let Xt denote the set of state variables at time t. State variables are
assumed to be unobservable. Let Ot denote the set of observable variables at time t.
The observation at time t is Ot = ot for some set of values ot.

A Hidden Markov Model (HMM) is a special kind of DBN; specifically, an HMM is
a DBN with a single state variable and a single observable variable. We refer to a value
of the observable variable of an HMM as an observable action.

To construct a DBN, one must specify the prior distribution P(X0), capturing the
initial state distribution; the transition model P(Xt | Xt−1), capturing the dependency
of the next state on the current state; and the observation model P(Ot | Xt), encoding
the dependency of the observation on the current state. The transition and observation
models are represented as a Bayesian network.

Particle filtering (PF) is a sequential Monte Carlo method that can be used to per-
form state estimation in a Bayesian network [7]. PF can be used to estimate the state
probability distribution P(Xt), given an observation sequence o1:t. In one of the most
commonly used forms of particle filtering, known as sequential importance resampling
(SIR), a population of Np particles is first created and assigned initial states by sam-
pling from the prior distribution P(X0). A three-step update cycle is then repeated
for each time step: (i) each particle is propagated forward by sampling the new state
value xt given the previous state xt−1 of the particle, based on the transition model
P(Xt | xt−1); (ii) each particle is weighted by the probability it assigns to the new
evidence, P(ot | xt); (iii) the population is resampled, i.e., a new population of Np

(unweighted) particles is created, where each new particle is selected from the current
population, and the probability that a particular particle is selected is proportional to
its weight. Resampling focuses the particles on the high-probability regions of the state
space, by probabilistically discarding particles with low weight and duplicating parti-
cles with high weight.

One can reduce the variance of PF by using evidence ot in the first step of the update
cycle by sampling the next state xt from the conditional probability distribution P(Xt |
xt−1,ot). As we show in Section 5, this probability distribution can be computed as
P(xt |xt−1, ot) = P(xt |xt−1)·P(ot |xt)/P(ot |xt−1). Precomputing P(ot |xt−1) is
possible if the HMM transition probabilities and observation probabilities are given
explicitly. By reducing the variance, the resampling frequency (which is a considerable
performance bottleneck) can also be reduced.

PF approximates P(xt | o1:t), the probability of state xt after observation sequence
o1:t, by 1

Np

∑N(xt|o1:t)
i=1 wi, where N(xt | o1:t) is the number of particles in state

xt after processing observations o1, . . . ,ot and wi are the weights of the individual
particles which are in state xt.

Runtime Verification with State Estimation (RVSE) [10] is an algorithm for runtime
verification in the presence of observation gaps. In RVSE, a Hidden Markov Model
of the monitored program is constructed, monitored event sequences are treated as ob-
servation sequences of the HMM, and an extension of the optimal forward algorithm

Runtime Verification with Particle Filtering 153

for HMM state estimation [7] is used to estimate the state of the HMM and the moni-
tor DFA. We extended the forward algorithm to handle observation gaps, by using the
HMM to estimate the unobserved states and events. The time complexity of the RVSE
algorithm for a single observation is O(N2

h ·Nd) for a non-gap event and O(N2
h ·N2

d)
for a gap event, where Nh and Nd are the numbers of states of the HMM and the
DFA, respectively. The approximately precomputed RVSE (AP-RVSE) algorithm, de-
scribed briefly in Section 1, significantly reduces the runtime overhead of RVSE by pre-
computing and storing the results of the matrix calculations performed by RVSE [1].

3 Problem Statement

The problem statement is based closely on [10]. A problem instance is defined by an
HMM H modeling the monitored system, an observation sequence o1:T , and a temporal
property φ over sequences of actions of the monitored system.

The observation sequence contains events that are occurrences of actions performed
by the monitored system. In addition, it may contain the symbol gap(L) denoting a pos-
sible gap whose length is drawn from a length distribution L, a probability distribution
over the natural numbers: L(�) is the probability that the gap has length �. In the rest of
this paper, we consider a simpler definition of gaps, with gap symbols of form gap(�),
where the length � of each gap is encoded in the trace.

The HMM H models the monitored system. The HMM need not be an exact model
of the system; it simply embodies the available information about the system’s behav-
ior. It can be learned automatically from complete traces using standard learning algo-
rithms [7]. Let SH denote the set of states of the HMM, i.e., the set of possible values
of its state variable.

The property φ is represented by a DFA M = 〈SM ,minit , A, δ, F 〉, consisting of a
set SM of states, an initial state minit , an alphabet A, a transition relation δ, and a set
F of final (also called “accepting”) states. The alphabet A is a subset of the observable
actions of the HMM; actions not in A leave the DFA’s state unchanged. 1

The goal is to computeP(φ | o1:T), that is, the probability that the system’s behavior
satisfies φ, given observation sequence o1:T . This probability is computed from the
probability distribution on composite states, where a composite state (x, s) is a pair
containing an HMM state x and a DFA state s. Specifically,

P(φ | o1:t) =
∑

xt∈SH ,st∈F P(xt, st | o1:t)/
∑

xt∈SH ,st∈SM
P(xt, st | o1:t)

where P(xt, st | o1:t) is the probability that the HMM is in state xt and the DFA is in
state st after observation sequence o1:t.

4 System Model

The composition of the HMM H modeling the monitored system and the monitor DFA
M defines a DBN D representing the entire system. This DBN is illustrated in Figure 1.
It shows dependencies among the state variables and observation variables during the
t’th time step as well as the dependencies of the state variables Xt and St from the

1 In Section 5 we use a different, HMM-like notation for the DFA.

154 K. Kalajdzic et al.

previous states Xt−1 and St−1, respectively. These relationships hold for consecutive
observations, without gaps.

Fig. 1. DBN D composed from the HMM H and the monitor DFA M . Xt and Ot denote the
state and observation variables of H at time t, respectively, and St denotes the state variables of
M , at time t. Note that Ot is also M ’s input.

4.1 Peek Operations

When a gap occurs, the missing observations cause uncertainty in the state of the DFA.
Our algorithm performs a peek operation, which is a lightweight procedure that inspects
a part of the monitored system’s state immediately after a gap, and can be regarded as an
event which is used to reduce the uncertainty in the state of the DFA. Which part of the
program state is considered during a peek operation depends on the particular problem
and is built into the definition of the procedure that implements the peek operation.

Specifically, peek events are useful for applications in which certain DFA states are
known to be inconsistent with certain program states. In such situations, the probabili-
ties associated with composite states containing DFA states which are inconsistent with
the partial program state provided by the peek operation can be zeroed, after which the
probabilities associated with other composite states are renormalized so that they sum
to 1. The additional dependencies between the variables are represented by the DBN in
Figure 2.

Because our algorithm uses peek events to reduce uncertainty in the DFA state, we
characterize the result of a peek operation qt by a probability distribution P(Qt | St),
which is the probability that a peek operation returns Qt given that the DFA is in state
St. Using Bayes’ rule, after a peek operation that returns qt after a gap, the probability
that the DFA is in state st is P(st | qt) = αP(qt | st)P(st), where α is a constant
factor used for normalization, and P(st) is the probability that the DFA is in state st
after processing the gap and before processing the peek event.

We do not directly use peek events to reduce uncertainty in the state of the HMM,
because generally we do not know a correspondence between concrete program states
(provided by peek events) and states of the HMM. This is because the HMM is typically
an abstract model learned automatically from traces. However, if such a correspondence
is known, then peek events can be used to reduce uncertainty in the state of the HMM,
in the same way they are used to reduce uncertainty in the state of the DFA.

Runtime Verification with Particle Filtering 155

� � � ����

����

����� � �

��

�

��

��	�

��	�

��	�

� � �

� � �

�

Fig. 2. DBN D composed from the HMM H and the monitor DFA M , when observation ot is
missing due to a gap, and peek event qt provides information about possible states of the DFA at
time t

Fig. 3. DFA used to detect violations of a locking discipline

4.2 Running Example

Consider a monitor for a locking discipline for a structure type S in a program. The
structure type S contains a lock field (i.e., a field that refers to a lock), protected fields,
and unprotected fields. There is a monitor instance for each combination of a thread and
a structure of type S. The monitor checks that, when the thread accesses a protected
field of the instance of S, the thread holds the lock associated with the instance. The
DFA is shown in Figure 3; the parameterization by a thread and a structure is implicit.

���������	

�����������	

��

���

���
���������

�

�
���������	�

�����������	�

��

���

���
�����������

��

������������

����������� � ����

��

��

���!

Fig. 4. Graphical representation of the transition and observation probability distributions of an
HMM model of a system that usually follows the locking discipline

156 K. Kalajdzic et al.

The alphabet contains four types of events: LOCK, UNLOCK, PROT (representing an
access to a protected field) and UNPROT (representing an access to an unprotected
field). The states of the monitor have the following interpretation: s1 – initial state, s2
– lock is held, s3 – lock is not held, s4 – error state (i.e., violation of locking discipline
has been detected).

In general, after a gap, the joint probability distribution P(Xt, St) may contain non-
zero probabilities for all composite states, reflecting uncertainty in the current state of
the DFA. The monitor can, however, quickly peek at the state of the lock to check
whether it is held by the associated thread. If so, the DFA can only be in states s2 or
s4, so probabilities of composite states containing s1 or s3 can be set to zero. If not,
the DFA can only be in states s1, s3, or s4, so the probabilities of composite states
containing s2 can be set to zero. For example, some sample entries in the probability
distribution for peek events are P(s2 | held) = 1 and P(s2 | notHeld) = 0.

Figure 4 shows in a graphical way the transition and observation probability distri-
butions of an HMM model of a system that usually follows this locking discipline but
has a small chance of violating it.

5 RVPF Algorithm

This section describes our RUNTIMEVERIFICATIONPARTICLEFILTERING (RVPF) al-
gorithm, which performs approximate state estimation based on particle filtering. Like
the original RVSE algorithm [10], RVPF estimates the probability that the system is
in a composite state (xt, st) at time t. Let (x(i)

t , s
(i)
t) denote the state, also called the

“position”, of the i’th particle at time t.

5.1 The Precomputation Phase

In Line 1 of the RVPF algorithm, whose pseudo code is given on page 157, the prob-
abilities P(Ot |Xt−1) and P(Xt |Xt−1, Ot) are precomputed so they can be accessed
quickly by the rest of the algorithm. The exact details of the precomputation are shown
in algorithm PRECOMPUTEPROBABILITIES.

Algorithm PRECOMPUTEPROBABILITIES

Input: System Model HMM H =(X,O,P(Xt |Xt−1),P(Ot |Xt),P(X0))
Output: P(Ot |Xt−1), P(Xt |Xt−1, Ot)

1 P(Ot |Xt−1) = P(Xt |Xt−1)P(Ot |Xt)
2 for i = 1 to |dom(X)| do
3 for j = 1 to |dom(X)| do
4 for k = 1 to |dom(O)| do
5 P(Xt = xi |Xt−1 = xj , Ot = ok) =

P(Xt = xi |Xt−1 = xj) · P(Ot = ok |Xt = xi) /P(Ot = ok |Xt−1 = xj)
6 end
7 end
8 end
9 return [P(Ot |Xt−1), P(Xt |Xt−1, Ot)]

Runtime Verification with Particle Filtering 157

Algorithm RUNTIMEVERIFICATIONPARTICLEFILTERING

Input: System Model HMM H =(X,O,P(Xt |Xt−1),P(Ot |Xt),P(X0)),
Monitor DFA M =(S,Q,P(St |St−1),P(Qt |St),P(S0), F),
Program Events o1:T , Peek Events q1:T , Number of particles Np

Output: Joint probability distribution P(XT , ST |o1:T , q1:T) after seeing o1:T and q1:T

1 [P(Ot |Xt−1), P(Xt |Xt−1, Ot)] = PRECOMPUTEPROBABILITIES(H)
2 (x0, s0,w0) = INITIALIZEPARTICLEDISTRIBUTION(P(X0), P(S0), Np)
3 for t = 1 to T do
4 if ot �= gap then
5 for i = 1 to Np do
6 SAMPLE x

(i)
t FROM P(Xt |x(i)

t−1, ot)

7 SAMPLE s
(i)
t FROM P(St | s(i)t−1, ot)

8 w
(i)
t = w

(i)
t−1 · P(o

(i)
t |x(i)

t−1)
9 end

10 else
11 � = LENGTH OF GAP

12 (xt−1, st−1,wt−1) = RESAMPLE(xt−1, st−1,wt−1)
13 for i = 1 to Np do
14 (x′

0, s
′
0, w

′
0) = (x

(i)
t−1, s

(i)
t−1, w

(i)
t−1)

15 for k = 1 to � do
16 SAMPLE o′k FROM P(O′

k |x′
k−1)

17 SAMPLE x′
k FROM P(X ′

k |x′
k−1, o

′
k)

18 SAMPLE s′k FROM P(S′
k | s′k−1, o

′
k)

19 w′
k = w′

k−1 · P(o′k |x′
k−1)

20 end
21 (x

(i)
t , s

(i)
t , w

(i)
t) = (x′

k, s
′
k, w

′
k)

22 end
23 for i = 1 to Np do w

(i)
t = w

(i)
t · P(qt | s(i)t) /* handling a peek event qt */

24 end
25 NORMALIZE WEIGHTS wt

26 m = 0
27 for i = 1 to Np do m = m+w2

i

28 if 1/m � Np ∨ qt �= ∅ then (xt, st,wt) = RESAMPLE(xt, st,wt)
29 end
30 INITIALIZE MATRIX P(XT , ST |o1:T , q1:T) WITH ZEROS

31 for i = 1 to Np do P(x
(i)
T , s

(i)
T | o1:T , q1:T) = P(x

(i)
T , s

(i)
T |o1:T , q1:T) + w

(i)
T

32 return P(XT , ST |o1:T , q1:T)

On Line 1 of PRECOMPUTEPROBABILITIES, the matrix P(Ot |Xt−1) is obtained
through a straightforward matrix multiplication of P(Xt |Xt−1) and P(Ot |Xt). This
is followed by the construction of the 3D-array P(Xt |Xt−1, Ot) in Lines 2–8.

P(Xt |Xt−1, Ot) can be best thought of as an array of transition probability matrices
P(Xt |Xt−1), one for each observation symbol ot. This layout makes it possible for the
RVPF algorithm to choose the appropriate transition probability distribution depending
on the observation symbol generated by the HMM.

158 K. Kalajdzic et al.

5.2 Initial Particle Distribution

The function INITIALIZEPARTICLEDISTRIBUTION, which is invoked on Line 2 of the
RVPF algorithm, distributes Np particles in the state space based on the initial proba-
bility distributions P(X0) and P(S0) of the HMM and DFA, respectively.

In the code for this function, variable Di,j holds the number of particles in HMM

state xi and DFA state sj . The rationale for using �Np · P(x
(i)
0) · P(s

(j)
0)� on Line 3

is to guarantee that every state with a non-zero initial probability will contain at least
one particle. The code in Lines 1–5 is guaranteed to generate at least Np particles. If
the number of generated particles exceeds Np, the number is reduced in Lines 6–9 by
removing individual particles from the richest states.

Algorithm INITIALIZEPARTICLEDISTRIBUTION

Input: Initial probability distributions P(X0) and P(S0) of the HMM and DFA, respectively,
Number of particles Np

Output: Initial positions x0, s0 and weights w0 of particles

1 for i = 1 to |dom(X0)| do
2 for j = 1 to |dom(S0)| do
3 Di,j = �Np · P(x

(i)
0) · P(s

(j)
0)�

4 end
5 end
6 while

∑| dom(X0)|
i=1

∑| dom(S0)|
j=1 Di,j > Np do

7 FIND a, b FOR WHICH Da,b = max(D)
8 Da,b = Da,b − 1
9 end

10 n = 1
11 for i = 1 to |dom(X0)| do
12 for j = 1 to |dom(S0)| do
13 for k = 1 to Di,j do
14 (x

(n)
0 , s

(n)
0 , w

(n)
0) = (xi, sj , 1/Np)

15 n = n+ 1
16 end
17 end
18 end
19 return (x0, s0,w0)

5.3 Deriving the Optimal Importance Density Function

The simplest form of the SIR particle filter, known as the bootstrap filter, uses the
transition prior P(Xt |xt−1) as the importance density function, i.e., the probability
distribution from which new particle positions are drawn. Subsequent weight calcula-
tions are performed based on the observation probabilities P(ot |xt), and the particles
are then moved to the interesting regions of the state space through resampling. This
approach, however, gives poor results in our setting.

The probability distributions of our learned HMMs often have large transition prob-
abilities of xt−1 associated with small observation probabilities of xt, and small tran-
sition probabilities of xt−1 associated with large observation probabilities of xt. As a

Runtime Verification with Particle Filtering 159

consequence, if the observation ot corresponds to a low probability transition in xt−1,
drawing particles from P(Xt |xt−1) moves all particles in the “wrong” direction (i.e.,
contrary to the information provided by the observation), and resampling will have a
hard time to move them back to the interesting states.

The solution is to draw new particle positions from an importance density function
that takes the observation ot into account. It has been shown in [3] that the target distri-
bution P(Xt |xt−1, ot) minimizes the variance of importance weights wt conditioned
on x1:t−1 and o1:t. In practice, it is often difficult to sample from P(Xt |xt−1, ot). For-
tunately, in our case, it is possible to obtain P(Xt |Xt−1, ot) in closed form [4], which
leads to an optimal filter.

5.4 The Forward Step

The loop in Lines 3–29 of the RVPF algorithm estimates the state of the system af-
ter each observation. Lines 5–9 handle the regular case in which an observation ot is
available. Lines 11–23 handle gaps.

Handling Program Events. If an observation ot is available, each particle currently in
(xt−1, st−1) is moved first to (xt, st−1) by sampling from P(Xt |xt−1, ot) in Line 6.
In next step, the particle is moved to (xt, st) by sampling from P(St | st−1, ot). Note
that P(St | st−1, ot) is a conditional probability table which corresponds to the DFA
transition function δ. Therefore, the sampling step in Line 7 is guaranteed to return
st = δ(st−1, ot). Subsequently, in Line 8, the importance weight of each particle is up-
dated by multiplying its current weight with the value from the precomputed matrix
P(Ot |Xt−1), where Ot = ot and Xt−1 = xt. If the number of particles with signif-
icant weights becomes too low (which is estimated in Lines 26–28), the particle posi-
tions are resampled in Line 28, based on the weight distribution w. This concentrates
the particles in the more probable regions of the state space.

Handling Gaps. Upon encountering a gap of length � in the trace, the RVPF algo-
rithm moves each particle, from current state (xt−1, st−1), � steps forward to state
(xt+�−1, st+�−1), following the probability distributions in the HMM. A single step
consists of: sampling an observation ot from P(Ot |xt−1) in Line 16; sampling next
HMM state xt from P(Xt |xt−1, ot) in Line 17; sampling next DFA state st from
P(St | st−1, ot) in Line 18 (which, again, corresponds to advancing the DFA using
st = δ(st−1, ot)); and updating the particle weight on Line 19 using the same equation
as on Line 8.

Handling Peek Events. Peek events help correct the movement errors introduced by
using the HMM model during gaps. After each gap, a peek operation inspects a variable
or a set of variables in the program state and returns an observation qt. On Line 23, each
particle i is weighted by P(qt | s(i)t), the probability DFA state s

(i)
t assigns evidence qt.

Particles with impossible DFA states are assigned a weight of zero, and particles with
possible DFA states are assigned a weight of 1. The resampling in Line 28 redistributes
all particles across the possible DFA states.

160 K. Kalajdzic et al.

5.5 Resampling

Resampling plays a crucial role in maintaining the diversity among particles. Resam-
pling relies on drawing particles from their corresponding weight distribution. To do
so, Lines 1–5 of algorithm RESAMPLE compute a distribution containing prefix sums
of particle weights: Ci is the sum of weights w1, w2, ..., wi. In each iteration of the loop
in Lines 6–9, new particle positions are drawn by sampling from C.

Algorithm RESAMPLE

Input: Particle positions and weights (x, s,w)
Output: Particle positions and weights after resampling (x̃, s̃, w̃)

1 C0 = 0
2 Np = dimx
3 for i = 1 to Np do
4 Ci = Ci−1 + w(i)

5 end
6 for i = 1 to Np do
7 SAMPLE PARTICLE INDEX k FROM C

8 (x̃(i), s̃(i), w̃(i)) = (x(k), s(k), 1/Np)
9 end

10 return (x̃, s̃, w̃)

5.6 Calculating the Probability Distribution

After T time steps, the probability distribution P(XT , ST |o1:T , q1:T) is estimated on
Lines 30–31 by summing the weights of particles in each state.

6 Evaluation

In this section, we evaluate the performance of the RVPF algorithm by comparing it to
the RVSE and AP-RVSE algorithms. We conducted multiple experiments focusing on
three important factors: execution time, memory usage, and state-estimation accuracy.
All our experiments were carried out under Fedora Linux 17 on a computer with 4GB
of RAM and a quad-core Intel R© CoreTM i5-2500 CPU running at 3.3GHz. For these
experiments, we adapted the existing implementation of AP-RVSE and created new im-
plementations of RVSE and RVPF, reusing relevant parts from the code for AP-RVSE.
All three programs are written in C.

The micro-benchmark is a multi-threaded application developed for the purpose of
experimental evaluation of the AP-RVSE algorithm [1]. It consists of five threads con-
currently accessing 100 objects. Each thread can perform four possible operations on
any of the objects: LOCK, UNLOCK, PROT, and UNPROT. Threads choose which of
these operations to execute according to the HMM in Figure 4. The DFA in Figure 3 is
used to check for proper access to the protected fields of each object.

To offer a fair comparison, all three algorithms were evaluated on the same set of
micro-benchmark-generated traces (event sequences), which contain gaps of varying fre-
quency (measured as the percentage of trace elements that are gap symbols) and length.

Runtime Verification with Particle Filtering 161

Moreover, each of the algorithms performed state estimation using the same HMM that
was used to generate the traces in the first place (i.e., the HMM of Figure 4). In this
way, we eliminated the imprecision that might have occurred as a result of re-learning
an HMM from the traces, thereby giving each algorithm the opportunity to perform state
estimation as accurately as it can. The fact that we used a predefined HMM to drive the
micro-benchmark from which we collected the traces allowed us to also log the current
state of the HMM and the DFA along with each emitted observation symbol.

6.1 Execution Time and Memory Usage

We conducted experiments aimed at understanding how the number of particles affects
the execution time and memory usage of the RVPF algorithm, and how RVPF compares
to RVSE and AP-RVSE in terms of these performance measures. For all our experi-
ments, we used both the original HMM (Figure 4) and an additional 10-state HMM
learned from the micro-benchmark-generated traces using the Baum-Welch algorithm.

One of our first tests was to measure the execution time of AP-RVSE for different gap
lengths (GLs) and gap frequencies (GFs). As expected, in all cases, AP-RVSE always
had nearly the same execution time, and was faster than RVPF and RVSE. This was true
even when there were no gaps and only two particles were used by RVPF.

The speed of AP-RVSE, however, comes at a price of high memory usage, which is
several orders of magnitude higher than that of RVSE and RVPF.

Table 1. Memory consumption in bytes of RVSE, AP-RVPF (with accuracy parameter ε = 0.1)
and RVPF (for 150 and 350 particles)

Algorithm RVSE AP-RVSE RVPF (Np = 150) RVPF (Np = 350)

Original 5-state HMM 480 361,240 3,380 6,580

Learned 10-state HMM 960 764,560 5,960 9,160

As Table 1 shows, RVSE uses a relatively small amount of memory, only for storing
the HMM and DFA matrices. For RVPF, the amount of required memory is a linear
function of the number of particles Np and was measured to be 16 · Np + 980 bytes
in case of the original 5-state HMM and 16 · Np + 3560 bytes in case of the learned
10-state HMM. In case of the original HMM, with 150 particles RVPF requires around
100 times less memory than AP-RVSE. For the learned HMM and 350 particles, the
memory consumption of RVPF is still around 80 times lower than that of AP-RVSE.

We also compared the speed of RVPF to the speed of RVSE. Instead of reporting abso-
lute execution times, we used the execution time of RVSE as the basis for the comparison
and determined the number of particles for which RVPF runs exactly as fast as RVSE.
For varying GFs and GLs 1-3, we first measured the execution time of RVSE. We then
measured the execution time of RVPF with an increasing number of particles until we
found the number of particles for which RVPF is exactly as fast as RVSE.

Figure 5 shows that the execution time of RVPF relative to RVSE improves mono-
tonically with respect to the GF, leveling off and reaching a maximum value at a GF of

162 K. Kalajdzic et al.

 0

 50

 100

 150

 200

 250

 300

 350

 0 10 20 30 40 50

N
um

be
r

of
 p

ar
tic

le
s

Frequency of gaps

gap length 1
gap length 2
gap length 3

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 10 20 30 40 50

N
um

be
r

of
 p

ar
tic

le
s

Frequency of gaps

gap length 1
gap length 2
gap length 3

Fig. 5. The number of particles for which RVPF is exactly as fast as RVSE, measured for different
GFs and GLs. The figure on the left shows the results for the original 5-state HMM. The figure
on the right shows the results for the learned 10-state HMM.

50%. These results also provide a useful guide for choosing the number of particles that
maximizes RVPF’s accuracy while maintaining its performance advantage over RVSE.

Figure 5 justifies our choice of 150 and 350 particles in Table 1. Namely, with 150
particles RVPF outperforms RVSE for all GLs from 10% to 50% in case of the original
5-state HMM. The same is true for 350 particles when the learned 10-state HMM is
used instead.

6.2 Accuracy of State Estimation

Since we recorded the HMM and DFA states in our traces, we can use these values to
determine the accuracy of each algorithm’s state estimation. We consider first the DFA
state. Figure 6 contains our results for estimating the probability for DFA state s2. The
gray line in the graphs serves as a reference value, showing exactly when the DFA was
in state s2. These results are for the worst-case scenario in which there is a gap after
each observation symbol (GF = 50%).

The number of particles used for RVPF in obtaining these results was determined
as follows. To guarantee that RVPF would always be about twice as fast as RVSE, a
significant speed-up, we used the results of Figure 5 to choose the number of particles
for RVPF to be half of the value for which it matched RVSE’s execution time.

Although we performed state estimation for each DFA state, for presentation pur-
poses, we show only the results for the estimation of DFA state s2. Even though we
are usually interested in state s4 of the DFA, which is the error state, this state has a
very low probability of being reached. The estimated probability of s4 is therefore al-
most always zero and rises very slowly. Also, state s4 is a trap-state, meaning that once
entered, the DFA will remain in the state forever. These considerations make s4 less
suitable for measuring accuracy of state estimation. In contrast, s2 is entered and exited
frequently and is thus much more suitable for measuring accuracy of state estimation.

The effect of a 50% GF can be seen in Figure 6 as a form of jitter in the graphs for all
three algorithms. Each available observation symbol helps the algorithms increase their
certainty, whereas each gap introduces uncertainty. The repeated alternation between
visible symbols and gap symbols thus causes the estimated probability to oscillate.

Runtime Verification with Particle Filtering 163

0.0

0.5

1.0

P(s2)

 0 20 40 60 80 time t

DFA in s2
RVSE

AP-RVSE
RVPF

0.0

0.5

1.0

P(s2)

 0 20 40 60 80 time t

DFA in s2
RVSE

AP-RVSE
RVPF

Fig. 6. Measuring accuracy of RVSE, AP-RVSE and RVPF in estimating probability of DFA state
s2 for GF = 50% and GL = 1 (top) and GL = 2 (bottom)

Table 2. Accuracy of RVPF, AP-RVPF and RVSE in estimating probability of DFA state s2
expressed as L1-norm of the distance between estimated probability and actual probability at 100
consecutive points in the trace

Algorithm RVSE AP-RVSE RVPF

Gap length 1 (Figure 6 (top)) 19.9740 22.5312 17.6149

Gap length 2 (Figure 6 (bottom)) 27.1269 24.4361 18.2829

Gap length 2 with peek events (Figure 7) 10.6527 10.2417 8.2252

For each algorithm, we also calculated the L1-norm of the difference between the
estimated probability and the actual probability of DFA state s2, at 100 consecutive
points in the trace. The results are summarized in rows 1 and 2 of Table 2. As the
table shows, RVPF gives more accurate results than both RVSE and AP-RVSE in both
considered cases (gap length 1 and 2). The reason for this lies in the fact that RVSE
and AP-RVSE tend to spread their estimates across all of the states, whereas the limited
number of samples drives the estimates of RVPF to the most probable parts of the state
space. The RVPF curves in Figure 6 thus show much less jitter and follow the reference
curve better than those of RVSE and AP-RVSE. The spreading of estimates across the
entire state space in case of RVSE significantly reduces its accuracy as the gap length
grows. This can be observed by comparing the results for RVSE and AP-RVSE in the
upper two rows of Table 2.

164 K. Kalajdzic et al.

6.3 Estimation Accuracy with Peek Events

To show how peek events help correct estimation errors due to gaps, consider again the
results of Figure 6 (bottom), where monitoring is turned off two thirds of the time; i.e.,
each observation symbol is followed by a gap of length 2. Since, in general, none of
the algorithms performs well in this case, we repeated the same test, this time allowing
each algorithm to perform a peek operation on the lock after each gap. The noticeable
improvements are visible in Figure 7 and quantified in row 3 of Table 2. As expected,
peeking results in nearly the same accuracy for RVSE and AP-RVSE, with RVPF being
more accurate than both of them for the same reasons given in the previous section (i.e.
less jitter and concentration of the estimates in most probable parts of the state space).

0.0

0.5

1.0

P(s2)

 0 20 40 60 80 time t

DFA in s2
RVSE

AP-RVSE
RVPF

Fig. 7. Estimation of probability of DFA state s2 for GF = 50% and GL = 2 after correction
through peek operations

Peek operations also allow RVPF to correct the estimation of the current state of the
HMM. Even though peek events are used only to exclude DFA states from the belief
space, the link between a peek observation and the state of the HMM is established
through the DBN (Figure 2). This connection allows the peek observation to affect
(correct) the estimated probability of the state of the HMM. Figure 8 illustrates the
effect of peeking on the estimation of an HMM state by all three algorithms. Recall that
we recorded the actual state of the HMM in the traces, depicted in the figures as the
gray (reference) curve.

7 Related Work

Particle filtering (PF) has recently been applied to hybrid systems for monitoring and
diagnosis purposes, and in particular to estimate the hidden hybrid discrete-continuous
state from a set of available measurements [6,2,8,9]. In [6], PF is applied to a class of
distributed hybrid systems with autonomous transitions, non-linear system dynamics,
and non-Gaussian noise. They demonstrate their approach on a cryogenic propulsion
system. In [2], the authors present a PF-based method for discrete-time stochastic hy-
brid systems, where each particle has two components: a Euclidean component rep-
resenting the continuous state and a discrete component representing the mode. Their
approach combines exact conditional mode probabilities, given the observations, with

Runtime Verification with Particle Filtering 165

0.0

0.5

1.0

P(x3)

 0 20 40 60 80 time t

HMM in x3
RVSE

AP-RVSE
RVPF

0.0

0.5

1.0

P(x3)

 0 20 40 60 80 time t

HMM in x3
RVSE

AP-RVSE
RVPF

Fig. 8. Estimation of probability of HMM state x3 with GF = 50% and GL = 1 before and after
correction through peek operations

the use of particles to estimate the Euclidean component, showing that this technique
works significantly better than standard PF.

Sistla et al. use PF to investigate the effectiveness of algorithms for monitorability
and strong monitorability of partially observable stochastic systems [8,9]. Familiarity
with PF is assumed and no further details, except for the number of particles used, are
provided. This application of PF is closest in nature to RVPF but there are significant
differences, as witnessed by the contrasting goals of RVPF. In particular, we seek to
show how PF can be a highly effective technique for runtime verification, and give a
detailed presentation of the RVPF algorithm and its experimental evaluation. Further-
more, we extend PF to handle gaps and peek events. Our experimental results, which
compare the accuracy and overhead of RVPF with those of RVSE [10] and approximate
precomputed RVSE [1], confirm RVPF’s versatility.

The problem we consider—estimating the probability that a safety property is vio-
lated by a program execution when monitoring gaps may be present—was introduced
in [10]. There an optimal but compute-intensive solution based on the forward algo-
rithm was given. In this paper, we additionally consider peek events, which required us
to reformulate the problem in terms of DBNs. We also show how to enhance our RVPF
algorithm with the sequential importance resampling (SIR) strategy using an optimal
importance density function, to reduce the variance in state estimation in our setting.

166 K. Kalajdzic et al.

8 Conclusions

This paper introduces RVPF, a versatile method for runtime verification with state es-
timation in which the balance among runtime overhead, memory usage, and prediction
accuracy can be controlled by varying the number of particles RVPF uses for state es-
timation. Our benchmarking results confirm RVPF’s flexibility and its superiority over
RVSE and AP-RVSE in terms of state-estimation accuracy.

Although RVPF cannot match the speed of AP-RVSE, its relatively low memory
footprint gives it an advantage in the context of embedded systems, where memory
resources are limited. Our results also show that RVPF can be configured to outperform
RVSE without significantly impacting the accuracy of state estimation.

As future work, we are developing a version of RVPF where the number of particles
used for state estimation can vary at runtime. This would allow for dynamic control of
the tradeoff involving estimation accuracy, memory consumption, and speed.

Acknowledgements. We thank Justin Seyster for introducing the concept of peek
events and developing the micro-benchmarking facility on which our experimental re-
sults are based.

References

1. Bartocci, E., Grosu, R., Karmarkar, A., Smolka, S.A., Stoller, S.D., Zadok, E., Seyster, J.:
Adaptive runtime verification. In: Qadeer, S., Tasiran, S. (eds.) RV 2012. LNCS, vol. 7687,
pp. 168–182. Springer, Heidelberg (2013)

2. Blom, H.A.P., Bloem, E.: Particle filtering for stochastic hybrid systems. In: Proceedings of
43rd IEEE Conference on Decision and Control, CDC 2004, vol. 3, pp. 3221–3226 (2004)

3. Doucet, A.: Monte Carlo Methods for Bayesian Estimation of Hidden Markov Models. Ap-
plication to Radiation Signals. Ph.D. Thesis (1997)

4. Doucet, A.: On sequential simulation-based methods for bayesian filtering. Technical Report
CUED-F-ENG-TR310, University of Cambridge, Department of Engineering (1998)

5. Huang, X., Seyster, J., Callanan, S., Dixit, K., Grosu, R., Smolka, S.A., Stoller, S.D., Zadok,
E.: Software monitoring with controllable overhead. STTT 14(3), 327–347 (2012)

6. Koutsoukos, X.D., Kurien, J., Zhao, F.: Estimation of distributed hybrid systems using par-
ticle filtering methods. In: Maler, O., Pnueli, A. (eds.) HSCC 2003. LNCS, vol. 2623,
pp. 298–313. Springer, Heidelberg (2003)

7. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach, 3rd edn. Prentice-Hall
(2010)

8. Sistla, A.P., Žefran, M., Feng, Y.: Runtime monitoring of stochastic cyber-physical systems
with hybrid state. In: Khurshid, S., Sen, K. (eds.) RV 2011. LNCS, vol. 7186, pp. 276–293.
Springer, Heidelberg (2012)

9. Sistla, A.P., Žefran, M., Feng, Y.: Monitorability of stochastic dynamical systems. In:
Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 720–736. Springer,
Heidelberg (2011)

10. Stoller, S., Bartocci, E., Seyster, J., Grosu, R., Havelund, K., Smolka, S., Zadok, E.: Runtime
verification with state estimation. In: Khurshid, S., Sen, K. (eds.) RV 2011. LNCS, vol. 7186,
pp. 193–207. Springer, Heidelberg (2012)

	Runtime Verification with Particle Filtering
	1 Introduction
	2 Background
	3 Problem Statement
	4 System Model
	4.1 Peek Operations
	4.2 Running Example

	5 RVPF Algorithm
	5.1 The Precomputation Phase
	5.2 Initial Particle Distribution
	5.3 Deriving the Optimal Importance Density Function
	5.4 The Forward Step
	5.5 Resampling
	5.6 Calculating the Probability Distribution

	6 Evaluation
	6.1 Execution Time and Memory Usage
	6.2 Accuracy of State Estimation
	6.3 Estimation Accuracy with Peek Events

	7 Related Work
	8 Conclusions
	References

