
Runtime Monitoring of Temporal Logic
Properties in a Platform Game

Simon Varvaressos, Dominic Vaillancourt, Sébastien Gaboury,
Alexandre Blondin Massé, and Sylvain Hallé�

Laboratoire d’informatique formelle
Département d’informatique et de mathématique

Université du Québec à Chicoutimi, Canada
shalle@acm.org

Abstract. We report on the use of runtime monitoring to automatically
discover gameplay bugs in the execution of video games. In this context,
the expected behaviour of game objects is expressed as a set of tempo-
ral logic formulæ on sequences of game events. Initial empirical results
indicate that, in time, the use of a runtime monitor may greatly speed
up the testing phase of a video game under development, by automating
the detection of bugs when the game is being played.

1 Introduction

The domain of video games is currently booming; a recent Gartner survey re-
vealed that consumer expenses for video games would raise from 67 billion dollars
in 2011 to more than 112 billion by the year 2015 [2]. Similar to all computer
systems, video games have not been spared from programming errors making
their way to the release of a product. For example, in Halo Reach (2010), it is
possible for players to go out of the game’s map in some places, allowing them
to make actions that would otherwise be forbidden [1].

It is therefore important for a designer to detect a maximum of gameplay
errors as soon as possible during the development phase of a game, since for
some systems, correcting an error using an update after the product’s release
is technically impossible. Moreover, video games are a special type of emergent
system: their complexity arises from the combination of multiple simpler parts
like the physics engine, the graphics or the graphical user interface. A minor
problem can bring a bigger one later in the execution. Therefore, to facilitate
debugging, it is important to identify exactly when a bug occurs and report it
as fast as possible.

Typically, video game companies hire manual testers, whose hourly salary
varies from $20 to $100, with the special purpose of discovering gameplay bugs
and manually filing them into a bug tracker database. Obviously, this technique
� With financial support from the Natural Sciences and Engineering Research Council

of Canada (NSERC) and the Fonds de recherche Québec – Nature et technologies
(FRQNT).

A. Legay and S. Bensalem (Eds.): RV 2013, LNCS 8174, pp. 346–351, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Runtime Monitoring of Temporal Logic Properties 347

is time-consuming and far from fail-proof: in some cases, gameplay bugs are
not immediately apparent to the human eye. In this setting, the use of runtime
verification techniques presents the potential for improving the gameplay bug
harvesting step. However, video games rely a lot on fast player inputs and are
much more sensitive to speed and timing than traditional software; it is there-
fore important that the use of a monitor does not slow down the game in any
noticeable way. This paper presents early results on this approach and illustrates
how gameplay bugs of a popular platform game, Infinite Super Mario Bros., can
be specified as temporal logic formulæ and efficiently caught at runtime using
an off-the-shelf monitor.

2 Gameplay as Temporal Logic Constraints

As opposed to most standard software, video games are not entirely driven by the
user. Most games include a physics engine and a form of artificial intelligence to
update the game environment even in the absence of any input from the player.
Moreover, these updates must be executed a minimum of 30 times (called frames)
per second, with 60 frames per second (fps) being a reasonable target for quality
animation. Noticeable disruptions of the frame rate are regarded by players as
bugs and have in the past caused the demise of some video game titles. This
concept is best exemplified by a well-known game called Infinite Mario Bros.
(Figure 1), an open-source reimplementation of the popular platform game Super
Mario World, where various enemies and other game objects move around the
game area independently of the player’s (i.e. Mario’s) actions.

Infinite Mario is made of 6,500 lines of Java code and is available online.1 It
is notable for being the subject of many research works on game testing and
applications of Artificial Intelligence algorithms in the past [5]. It has recently
been used as a testbed for the automated application of condition-action rules
aimed at correcting erroneous game states [7]. A similar approach has been
applied to FreeCol, a free version of the strategy game Civilization [4].

In the following, we push the concept further and attempt to formalize the
expected behaviour of various game objects as temporal logic constraints. In this
context, events represent various changes of state, both of the player’s character
and of the surrounding enemies and objects. Each event is represented as a list
of parameter-value pairs, and has a parameter called name, indicating the type of
the event (e.g. Jump, Stomp, EnemyDead, etc.). The number and name of the
remaining parameters may differ depending on the event’s type. For example,
when Mario stomps on an enemy, the unique ID of that enemy will be included
in the event; when Mario jumps, the height of the jump will be recorded.

The rules used to express the properties to monitor are represented with LTL-
FO+, an extension of Linear Temporal Logic (LTL). For example, the following
expression indicates that globally, if an enemy gets hit by a fireball that Mario

1 http://mojang.com/notch/mario/

http://mojang.com/notch/mario/

348 S. Varvaressos et al.

Fig. 1. The GUI of the modified version of Infinite Mario Bros

threw (event name EnemyFireballDeath), the next event should indicate the
disappearance of the fireball so that it does not hit anything else.

G (name = EnemyFireballDeath → X name = FireballDisappear)

The presence of first-order quantifiers is necessary for two reasons: the same
parameter may occur multiple times in the same event (such as when multiple
enemy IDs are killed by Mario at the same time), and some gameplay properties
may affect a single element across multiple events, as in the following expression.

G ((name = Stomp ∧ isWinged = true) →
∀x ∈ id : X (id = x → name �= EnemyDead))

In a normal playthrough, if Mario jumps on a flying enemy, it should lose
its wings. In this formula, we make sure that a winged enemy cannot die after
Mario stomps on it, as it should only stop flying. Since we are keeping the
corresponding id in a variable named x, we can check the next event related
to the same enemy to make sure it’s respecting the normal flow of the game.
However, one can see that, for this correlation between object IDs to be possible,
first-order quantification on event parameters is necessary. As a matter of fact,
we discovered early on that propositional Linear Temporal Logic is not expressive
enough to represent but the simplest gameplay properties.

Runtime Monitoring of Temporal Logic Properties 349

3 Empirical Results

Once a number of game properties were formalized as LTL-FO+ formulæ, we
devised an experimental setup to assess the performance of our runtime monitor-
ing approach in actual runs of the game.2 As we have seen, any errors caught by
a monitor should be identified before the next frame, yielding an upper bound
of 17 to 33 ms for the processing of each batch of events. Any processing time
slower than this would either slow down the game and cause jerky animation, or
have the monitor increasingly lag on the current game state and fill some event
buffer.

The BeepBeep runtime monitor3 [3] was selected to be inserted into the game,
since it was developed in Java and uses LTL-FO+ formulæ as its input language.
The BeepBeep monitor accepts events in the form of XML strings. Some strings
are constant, while others like this one are dynamically created based on the
specific parameters of the event (enemy IDs, etc.). For example, the following
shows the instrumentation to generate an event indicating that some enemy died:

MonitorTimer.Instance().updateWatchers("
<action>
<name>
EnemyDead

</name>
<id>
"+id+"

</id>
</action>

");

The game’s code was manually instrumented to produce these events; about 30
locations in the code had instruction of this kind inserted. We could have chosen
AspectJ [6] to facilitate the instrumentation but we decided not to because this
solution is Java-specific, and most games use languages like C++ or even unique
ones like UnrealScript. Relying on AspectJ would not faithfully represent the
restrictions one shall face when monitoring video games in general.

To keep track of the different outcomes for each property, we also added some
elements to the game’s GUI. First, circles of colour, each representing a property,
can be found on the lower left part of the screen. A green dot indicates a property
evaluates to true on the sequence of events received so far, while red indicates
it evaluates to false. Since each monitor is constantly queried on a finite trace
prefix, the value of some properties may not be defined yet; this is indicated by a
yellow dot. For debugging purposes, we also print the last two events produced at
the top of the window. The lower-right corner displays in real time the overhead
incurred by the presence of the monitors.

Finally, in order to make sure that our monitor can actually intercept game-
play bugs, we manually performed modifications to the game’s code to create
2 The instrumented version of Inifinite Mario and the runtime monitor can be down-

loaded from http://github.com/sylvainhalle/BeepKitu
3 http://beepbeep.sourceforge.net

http://github.com/sylvainhalle/BeepKitu
http://beepbeep.sourceforge.net

350 S. Varvaressos et al.

specific problems, such as removing instructions that handle the killing of some
enemies. We then performed numerous runs of the game and computed various
metrics on the game’s and the monitor’s execution.

The results were positive. Every formula we used could be monitored using
our method, without slowing down the game in any noticeable way. A surprising
finding of our study is that in a normal playthrough, the game generated roughly
2.9 events per second (Figure 2a). This event rate is very small compared to
rates in typical runtime verification works. One can see that an event could take
9 milliseconds to process for 10 different properties (Figure 2b). It is possible to
see a drop in the time required as the game progress, since monitors for properties
that evaluate to true or false no longer need any updating. Even if, in a worst
case scenario, no properties were resolved and each event took 9 milliseconds to
handle, we can safely assume that it would not affect gameplay since 27 spare
milliseconds are left before reaching the threshold time for 30 fps.

��

���

���

���

���

����

����

����

�� �	 ��� ��	 ��� ��	 �
� �
	 ��� ��	 �	�

��

��

���
���

��
��
�

�������

(a)

��

��

��

��

��

��

��

��

�	

�

�� ��� ��� ��� �	� ���� ���� ����

��

��
�

��

�����������

(b)

Fig. 2. Experimental results on the monitoring of Infinite Mario Bros. a) Number of
events generated in a sample run of the game; b) Monitor processing time for each
event.

Finally, since video game companies keep track of their bugs in a database,
we implemented a similar functionality using a MySQL server. We instrumented
the code in such a way that, upon violation of some temporal property, the
monitor sends an SQL query to the server, thereby automatically filing various
metadata about the discovered violation: name of property violated, occurrence
time, event trace prefix leading to the violation.

4 Conclusion

Overall, the results we obtained were conclusive as a first step in the applica-
tion of runtime monitoring to video games. We succeeded in the monitoring of
different properties using LTL-FO+ in a video game without affecting the game
experience. We also provided the game with a GUI that easily shows the out-
comes for each monitored property. If one of them becomes violated, indicating
a problem in the expected gameplay, the monitor automatically saves informa-
tion about the bug in a database, something that could help in video game
development.

Runtime Monitoring of Temporal Logic Properties 351

Some improvements to the method could be implemented. For example, man-
ual instrumentation of the game is tedious and error prone; it is believed that
one could make good use of the game loop present in every video game to sim-
plify its instrumentation: instead of manually finding and inserting the events
to monitor, one could keep track of the game objects’ state by interpreting the
differences from one game loop iteration to the next. Moreover, compiling the
monitor within the game does not seem a desirable choice for a larger-scale ap-
plication of monitoring, as one would have to change the monitor to fit every
game’s implementation language. Finally, the game’s graphical API made it hard
to integrate monitor controls within its own GUI and limited the amount of in-
formation that could be input from (or displayed to) the user. As future work,
we are currently working on a much larger open source game, drawing from the
lessons learnt when monitoring Infinite Mario Bros.

References

1. Worst videogame bugs of all time: From game-ending glitches to data-destroying
nightmares, http://bit.ly/GLySq

2. Biscotti, F., Blau, B., Lovelock, J.-D., Nguyen, T.H., Erensen, J., Verma, S., Liu,
V.K.: Market trends: Gaming ecosystem. Technical report, Gartner Group. Report
G00212724 (2011)

3. Hallé, S., Villemaire, R.: Runtime enforcement of web service message contracts
with data. IEEE Trans. Services Computing 5(2), 192–206 (2012)

4. Hamann, L., Gogolla, M., Kuhlmann, M.: OCL-based runtime monitoring of JVM
hosted applications. ECEASST 44 (2011)

5. Karakovskiy, S., Togelius, J.: The Mario AI benchmark and competitions. IEEE
Trans. Comput. Intellig. and AI in Games 4(1), 55–67 (2012)

6. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.G.: Get-
ting started with AspectJ. Commun. ACM 44(10), 59–65 (2001)

7. Lewis, C., Whitehead, J.: Repairing games at runtime or, how we learned to stop
worrying and love emergence. IEEE Software 28(5), 53–59 (2011)

http://bit.ly/GLySq

	Runtime Monitoring of Temporal Logic Properties in a Platform Game
	1 Introduction
	2 Gameplay as Temporal Logic Constraints
	3 Empirical Results
	4 Conclusion
	References

