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Preface

This volume contains the proceedings of the 2013 International Conference on
Runtime Verification (RV 2013), held in Rennes, France, during September
24–27. RV 2013 was is the fourth of a series dedicated to the advancement
of monitoring and analysis techniques for software and hardware system exe-
cutions. The previous three editions of the RV conference took place in Malta
(2010), San Fransisco (2011), and Istanbul (2012). The history of RV goes back
to 2001 when it started as a workshop. It continued as an anual workshop series
until 2009 and became a conference in 2010.

RV 2013 attracted 58 submissions (short/regular/tool papers) in response
to the call for papers. Each submission was assigned to at least three mem-
bers of the Program Committee; in many cases additional reviews were solicited
from outside experts. The Program Committee discussed the submissions elec-
tronically, judging them on their perceived importance, originality, clarity, and
appropriateness to the expected audience. The Program Committee selected 24
papers for presentation, leading to an acceptance rate of 41%. In addition, two
tutorials were selected for presentation during the main conference.

Complementing the contributed papers, the program of RV 2013 included
invited lectures by Viktor Kuncak, Martin Leucker, and Klaus Ostermann. RV
2013 was preceded by a tutorial day and, for the first time as a stand-alone
event, by a satellite workshop (SMC 2013, the first workshop on statistical model
checking).

The chairs would like to thank the authors for submitting their papers to RV
2013. We are grateful to the reviewers who contributed to nearly 250 informed
and detailed reports and discussions during the electronic Program Committee
meeting. We also sincerely thank the Steering Committee for their advice. Fi-
nally, we would like to thank our local helpers, Louis-Marie Traonouez and Uli
Fahrenberg, who took care of the website and of the proceedings, Edith Blin,
who helped us with the social events, and Benôıt Boyer and Cyrille Jégourel,
who helped with the organization of the workshop. RV 2013 received sponsor-
ships from INRIA Université de Rennes 1, Région Bretagne, Fondation Métivier,
Rennes Métropole, and SISCOM Bretagne. The submission and evaluation of
papers, as well as preparation if this proceedings volume, were handled by the
EasyChair conference management system.

September 2013 Saddek Bensalem
Axel Legay
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Klaus Havelund Jet Propulsion Laboratory, California Institute

of Technology, USA
Suresh Jagannathan Purdue University, USA
Claude Jard Université de Nantes, France
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Executing Specifications Using Synthesis and

Constraint Solving

Viktor Kuncak, Etienne Kneuss, and Philippe Suter

École Polytechnique Fédérale de Lausanne (EPFL), Switzerland
IBM T.J. Watson Research Center, Yorktown Heights, NY, USA

firstname.lastname@epfl.ch, psuter@us.ibm.com

Abstract. Specifications are key to improving software reliability as
well as documenting precisely the intended behavior of software. Writing
specifications is still perceived as expensive. Of course, writing imple-
mentations is at least as expensive, but is hardly questioned because
there is currently no real alternative. Our goal is to give specifications
a more balanced role compared to implementations, enabling the devel-
opers to compile, execute, optimize, and verify against each other mixed
code fragments containing both specifications and implementations. To
make specification constructs executable we combine deductive synthe-
sis with run-time constraint solving, in both cases leveraging modern
SMT solvers. Our tool decomposes specifications into simpler fragments
using a cost-driven deductive synthesis framework. It compiles as many
fragments as possible into conventional functional code; it executes the
remaining fragments by invoking our constraint solver that extends an
SMT solver to handle recursive functions. Using this approach we were
able to execute constraints that describe the desired properties of inte-
gers, sets, maps and algebraic data types.



Runtime Verification with Data

Martin Leucker

Universtity of Lübeck
Institute for Software Engineering

and Programming Languages
Ratzeburger Allee 160

23562 Lübeck
leucker@isp.uni-luebeck.de

Abstract. In the talk accompanying this abstract several approaches
for verifying properties involving data at runtime are reviewed. Starting
with a typical, mainly academic account to runtime verification based on
linear temporal logic (LTL) we present existing extensions such as LTL
with parameterized propositions and first-order LTL. Moreover, we com-
pare these approaches with further frameworks such as LOLA, RuleR
and Eagle. The goal is to give a comprehensive picture of runtime veri-
fication in the light of data values.



Programming without Borders

Klaus Ostermann

Department of Computer Science and Mathematics
University of Marburg
Hans-Meerwein-Straße

35032 Marburg, Germany
kos@informatik.uni-marburg.de

Abstract. The standard programming model of most programming
environments is characterized by several sharp borders: Compile-time
versus run-time, compiler vs. program, object level vs. meta level, ex-
pressions vs types, and so forth. I argue that we should abandon or at
least weaken these distinctions. To this end, I will present a library for
collections that diffuses the compile-time/run-time distinction, an exten-
sible programming language that unifies compiler extensions and object
level programs, and a type system that coalesces the usual stratification
into universes like terms, types, kinds. In each case, significant expressive
power is gained by making borders permeable.
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Executing Specifications

Using Synthesis and Constraint Solving�

Viktor Kuncak1, Etienne Kneuss1, and Philippe Suter1,2

1 École Polytechnique Fédérale de Lausanne (EPFL), Switzerland
2 IBM T.J. Watson Research Center, Yorktown Heights, NY, USA

{firstname.lastname}@epfl.ch, psuter@us.ibm.com

Abstract. Specifications are key to improving software reliability as
well as documenting precisely the intended behavior of software. Writing
specifications is still perceived as expensive. Of course, writing imple-
mentations is at least as expensive, but is hardly questioned because
there is currently no real alternative. Our goal is to give specifications
a more balanced role compared to implementations, enabling the devel-
opers to compile, execute, optimize, and verify against each other mixed
code fragments containing both specifications and implementations. To
make specification constructs executable we combine deductive synthe-
sis with run-time constraint solving, in both cases leveraging modern
SMT solvers. Our tool decomposes specifications into simpler fragments
using a cost-driven deductive synthesis framework. It compiles as many
fragments as possible into conventional functional code; it executes the
remaining fragments by invoking our constraint solver that extends an
SMT solver to handle recursive functions. Using this approach we were
able to execute constraints that describe the desired properties of inte-
gers, sets, maps and algebraic data types.

1 Introduction

Specifications are currently second class citizens in software development. An
implementation is obligatory; specification is optional. Our goal is to assign to
specifications a more balanced role compared to implementations. For this to
happen, we aim to allow developers to execute specifications, even if such exe-
cution is slower or less predictable than execution of imperative and functional
code. We wish to permit developers to write mixed code fragments containing
both specifications and implementations. They should be able to compile, exe-
cute, optimize, and verify such fragments against each other.

By execution of specifications we mean not only testing whether a constraint
is true for known values of variables (as when checking e.g. assertions), but
also computing a missing value so that the given constraint is satisfied. Such
constraint solving functionality can also be thought as one way of automating

� This work is supported in part by the European Research Council (ERC) Project
Implicit Programming.

A. Legay and S. Bensalem (Eds.): RV 2013, LNCS 8174, pp. 1–20, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



2 V. Kuncak, E. Kneuss, and P. Suter

the remedial action in case of assertion violation [57]. However, we believe that
such constructs should not be treated as a sort of exception mechanism, but as
one of the main ways of describing the desired common behavior.

This paper presents our experience in developing techniques to make such
constraint solving executable. Our current approach combines deductive syn-
thesis with run-time constraint solving, in both cases leveraging modern SMT
solvers. We have built a tool as part of the Leon verification system [9] that
incorporates both techniques and allows us to experiment with their trade-offs.
A version of the Leon platform is publicly available in source code form for fur-
ther experiments at http://lara.epfl.ch/w/leon. The tool decomposes spec-
ifications into simpler fragments using a cost-driven deductive synthesis frame-
work [32,37,40–42]. It compiles as many fragments as possible into conventional
functional code; it executes the remaining fragments by invoking a constraint
solver at runtime. The solver extends a conventional SMT solver with the ability
to handle recursive functions, in a manner similar to our previous systems [38,39].
Using this approach we were able to execute constraints that describe the desired
properties of integers, sets, maps and algebraic data types.

In general, the deductive synthesis framework allows us to recursively split
challenging problems into tractable subproblems and compile some of the sub-
problems into conventional code. If a subproblem remains too challenging for
synthesis, we keep its declarative specification and execute it using run-time
constraint solving. It turns out that in certain interesting cases, the resulting
partial program is well-defined for simple, frequent paths and only relies on
run-time constraint solving for complex cases.

In the rest of this paper we outline our approach, including the functional lan-
guage setup, the run-time constraint solving approach, and synthesis techniques.
We then illustrate our initial experience with combining run-time constraint solv-
ing and synthesis, hinting at some future directions. We finish with a (necessary
biased) survey of related work.

2 Examples

We illustrate the benefits of enabling declarative specifications through a series
of examples. We show how these examples can be effectively handled by our
system. We start by defining a List data-structure with an abstraction function
content from list to a set, and an invariant predicate isSorted.

abstract class List
case class Cons(head: Int, tail: List) extends List
case object Nil extends List

def content(l: List): Set[Int] = l match {
case Cons(h, t) ⇒ Set(h) ++ content(t)
case Nil ⇒ Set()

}

def isSorted(l: List): Boolean = l match {

http://lara.epfl.ch/w/leon
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case Cons(h1, t1 @ Cons(h2, t2)) ⇒ (h1 ≤ h2) && isSorted(t1)
case ⇒ true

}

Thanks to the abstraction function and the invariant, we can concisely specify
an insert operation for sorted lists using a constraint:

def insert(l: List, v: Int) = {
require(isSorted(l))
choose{ (x: List) ⇒ isSorted(x) && (content(x) == content(l) ++ Set(v)) }

}

Our deductive synthesis procedure is able to translate this constraint into the
following complete implementation in under 9 seconds:

def insert(l: List, v: Int) = {
require(isSorted(l))
l match {
case Cons(head, tail) ⇒
if (v == head) {
l

} elseif (v < head) {
Cons(v, l)

} else {
insert(t, v)

}
case Nil ⇒
Cons(v, Nil)

}
}

However, as the complexity of the constraints increases, the deductive procedure
may run short of available time to translate a constraint into complete efficient
implementations. As an example, we can currently observe this limitation of
our system for a red-black tree benchmark. The following method describes the
insertion into a red-black tree.1

def insert(t: Tree, v: Int) = {
require(isRedBlack(t))
choose{ (x: Tree) ⇒ isRedBlack(x) && (content(x) == content(t) ++ Set(v)) }

}

Instead of using synthesis (for which this example may present a challenge), we
can rely on the run-time constraint solving to execute the constraint. In such
scenario, the run-time waits until the argument t and the value v are known,
and finds a new tree value x such that the constraint holds. Thanks to our
constraint solver, which has a support recursive functions and also leverages
the Z3 SMT solver, this approach works well for small red-black trees. It is
therefore extremely useful for prototyping and testing and we have previously

1 We omit here the definition of the tree invariant for brevity, which is rather complex
[15,52], but still rather natural to describe using recursive functions.
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explored it as a stand-alone technique for constraint programming in Scala [39].
However, the complexity of reasoning symbolically about complex trees makes
this approach inadequate for large concrete inputs.

Fortunately, thanks to the nature of our deductive synthesis framework, we
can combine synthesis and run-time constraint solving. We illustrate this using
an example of a red-black tree with a cache. Such a tree contains a red-black tree,
but also redundantly stores one of its elements.

case class CTree(cache: Int, data: Tree)

The specification of the invariant inv formalizes the desired property: the cache
value must be contained in the tree unless the tree is empty.

def inv(ct: CTree) = {
isRedBlack(ct.data) &&
(ct.cache ∈ content(ct.data)) || (ct.data == Empty)

}

The contains operation tests membership in the tree.

def contains(ct: CTree, v: Int): Boolean = {
require(inv(ct))
choose{ (x: Boolean) ⇒ x == (v ∈ content(ct)) }

}

While not being able to fully translate it, the deductive synthesis procedure
decomposes the problem and partially synthesizes the constraint. One of its
possible results is the following partial implementation that combines actual
code and a sub-constraint:

def contains(ct: CTree, v: Int): Boolean = ct.data match {
case n: Node ⇒
if (ct.cache == v) {
true

} else {
choose { (x: Boolean) ⇒ x == (v ∈ content(n)) }

}
case Empty ⇒
false

}

We notice that this partial implementation makes use of the cache in accordance
with the invariant. The code accurately reflects the fact that the cache may not
be trusted if the tree is empty. The remaining constraint is in fact a simpler
problem that only relates to standard red-black trees. Our system can then
compile the resulting code, where the fast path is compiled as the usual Scala
code, and the choose construct is compiled using the run-time solving approach.
In the sequel we give details both for our run-time solving approach and the
compile-time deductive synthesis transformation framework. We then discuss
our very first experience with combining these two approaches.
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3 Language

We next present a simple functional language that we use to explore the ability
to do verification as well as to execute and compile constraints.

3.1 Implementation Language

As the implementation language we consider a Turing-complete Scala fragment.
For the purpose of this paper we assume that programs consist of a set of side-
effect-free deterministic mutually recursive functions that manipulate countable
data types including integers, n-tuples, algebraic data types, finite sets, and
finite maps. We focus on functional code. Our implementation does support
localized imperative features; for more details see [9]. We assume that recursive
functions are terminating when their specified preconditions are met; our tool
applies several techniques to establish termination of recursive functions.

3.2 Function Contracts

Following Scala’s contract notation [51], we specify functions in the implemen-
tation language using preconditions (require) and postconditions (ensuring). The
declaration

def f(x:A) : B = {
body

} ensuring((res:B) ⇒ post(res))

indicates that the result computed by f should satisfy the specification post. Here
res⇒post(res) is a lambda expression in which res is a bound variable; the ensuring

operator binds res to the result of evaluating body. The expression post is itself
a general expression in the implementation language, and can invoke recursive
functions itself.

3.3 Key Concept: Constraints

Constraints are lambda expressions returning a Boolean value, precisely of the
kind used after ensuring clauses. To express that a constraint should be solved
for a given value, we introduce the construct choose. The expression

choose((res:B) ⇒ C(res))

should evaluate to a value of type B that satisfies the constraint C. For example,
an implicit way to indicate that we expect that the value y is even and to compute
y/2 is the following:

choose((res:Int) ⇒ res + res == y)

The above expression evaluates to y/2 whenever y is even. Note that C typically
contains, in addition to the variable res, variables denoting other values in scope
(in the above, example, the variable y). We call such variables parameters of the
constraint.
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4 Solving Constraints at Run-Time

We next describe the baseline approach that we use to execute constraints at
run-time. This approach is general, as it works for essentially all computable
functions on countable domains. On the other hand, it can be inefficient. The
subsequent section will describe our synthesis techniques, which can replace such
general-purpose constraint solving in a number of cases of interest.

4.1 Model-Generating SMT Solver

The main work horse of our run-time approach is an SMT solver, concretely,
Z3 [16]. What is crucial for our application is that Z3 supports model generation:
it not only detects unsatisfiable formulas, but in case a formula has a model,
can compute and return one model. Other important aspects of Z3 are that it
has good performance, supports algebraic data types and arrays [17], supports
incremental solving, and has a good API, which we used to build a Scala layer
to conveniently access its functionality [38].

4.2 Fair Unfolding of Recursive Functions

Although SMT solvers are very expressive, they do not directly support recur-
sive functions. We therefore developed our own procedure for handling recursive
function definitions. Given a deterministic recursive functions f viewed as a re-
lation, assume that f is defined using the fixed point of a higher-order functional
H , which implies the formula D:

D ≡ ∀x. f(x) = H(x, f)

The constraints we solve have the form C ∧ Dk, where both C and Dk are
quantifier-free formulas that we map precisely into the language of an SMT
solver.

We use an algorithm for fair unfolding of recursive definitions [69] to reduce
the formula C ∧D to a series of over-approximations and under-approximations.
From an execution point of view, such approximations describe all the executions
up to certain depth. From a logical perspective, unfolding is a particular form of
universal quantifier instantiation which generates a ground consequence Dk of
the definition D. If C∧Dk is unsatisfiable, so is C∧D. If C∧Dk is satisfiable for
the model x = a then we can simply check whether the executable expression
evaluates to true. In our implementation we have an additional option: we can
use the SMT solver itself, to check whether a model of C ∧Dk depends on the
values of partly interpreted functions denoted by f . To this extent, we instrument
the logical representation of unfolding up to a given depth using propositional
variables that can prevent the execution from depending on uninterpreted values
of functions. We call the value of these variables the control literals B.

Figure 1 shows the pseudo-code of the resulting algorithm for solving con-
straints involving recursive functions. It is defined in terms of two subroutines,
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def solve(C, D) {
(C, D0, B0) = unrollStep(C, D, ∅, 0)
k = 0
while(true) {
decide(C ∧Dk ∧

∧
b∈Bk

b) match {
case ”SAT” ⇒ return ”SAT”
case ”UNSAT” ⇒ decide(C ∧Dk) match {
case ”UNSAT” ⇒ return ”UNSAT”
case ”SAT” ⇒ (C, Dk+1, Bk+1) = unrollStep(C, D, Bk, k) }}

k += 1
}

}

Fig. 1. Pseudo-code of the solving algorithm. The decision procedure for the base
theory is invoked through the calls to decide.

decide, which invokes the underlying SMT solver, and unrollStep. The fair nature
of the unrolling step guarantees that all uninterpreted function values present in
the formula are eventually unfolded, if needs be.

The formula without the control literals can be seen as an over-approximation
of the formula with the semantics of the program, in that it accepts all the
same models plus some models in which the interpretation of some invocations
is incorrect. The formula with the control literals is an under-approximation,
in the sense that it accepts only the models that do not rely on the guarded
invocations. This explains why the UNSAT answer can be trusted in the first
case and the SAT case in the latter.

This algorithm is the basis of the original Leon as a constraint solver and
verifier for functional programs [9, 68, 69].

4.3 Executing Choose Construct at Run-Time

During the compilation of programs with choose constructs, we collect a symbolic
representation of the constraints used. The actual call to choose is then substi-
tuted with a call back to the Leon system indicating both which constraint it
refers to, but also propagating the run-time inputs.

During execution, these inputs are converted from concrete JVM objects back
to their Leon representations, and finally substituted within the constraint. By
construction, the resulting formula’s free variables are all output variables.

Given a model for this formula, we translate the Leon representation of output
values back to concrete objects which are then returned.

4.4 Evaluation

We evaluated the performance of the run-time constraint solving algorithm on
two data structures with invariants: sorted lists and red-black trees. For each
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data structure, we implemented a declarative version of the add and remove
operations. Thanks to the abstraction and predicate functions, the specifications
of both operations are very concise and self-explanatory. We illustrate this by
providing the corresponding code for red-black trees:

def add(t: Tree, e: Int): Tree = choose {
(res: Tree) ⇒ content(res) == content(t) ++ Set(e) && isRedBlackTree(res)

}

def remove(t: Tree, e: Int): Tree = choose {
(res: Tree) ⇒ content(res) == content(t) -- Set(e) && isRedBlackTree(res)

}

Solving is relatively efficient for small data structures: it finds models in under
400ms for lists and trees up to size 4. However, the necessary solving time in-
creases exponentially with the size and goes as high as 35 seconds for synthesizing
insertion into a red-black tree of size 10.

5 Synthesizing Functional Code from Constraints

In this section, we give an overview of our framework for deductive synthesis.
The goal of the approach is to derive correct programs by successive steps. Each
step is validated independently, and the framework ensures that composing steps
results in global correctness.

5.1 Synthesis Problems and Solutions

A synthesis problem, or constraint, is fundamentally a relation between in-
puts and outputs. We represent this, together with contextual information, as a
quadruple

�ā 〈Π � φ〉 x̄�
where:

– ā denotes the set of input variables,
– x̄ denotes the set of output variables,
– φ is the synthesis predicate, and
– Π is the path condition to the synthesis problem.

The free variables of φ must be a subset of ā ∪ x̄. The path condition denotes
a property that holds for input at the program point where synthesis is to be
performed, and the free variables of Π should therefore be a subset of ā.

As an example, consider the following call to choose:

def f(a : Int) : Int = {
if(a ≥ 0) {
choose((x : Int) ⇒ x ≥ 0 && a + x ≤ 5)

} else . . .
}
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The representation of the corresponding synthesis problem is:

�a 〈a ≥ 0� x ≥ 0 ∧ a+ x ≤ 5〉 x� (1)

We represent a solution to a synthesis problem as a pair 〈P |T̄ 〉 where:

– P is the precondition, and
– T̄ is the program term.

The free variables of both P and T̄ must range over ā. The intuition is that,
whenever the path condition and the precondition are satisfied, evaluating φ[x̄ 
→
T̄ ] should evaluate to � (true), i.e. T̄ are realizers for a solution to x̄ in φ given the
inputs ā. Furthermore, for a solution to be as general as possible, the precondition
must be as weak as possible.

Formally, for such a pair to be a solution to a synthesis problem, denoted as

�ā 〈Π � φ〉 x̄�  〈P |T̄ 〉
the following two properties must hold:

– Relation refinement: Π ∧ P |= φ[x̄ 
→ T̄ ]
This property states that whenever the path- and precondition hold, the
program T̄ can be used to generate values for the output variables x̄ such
that the predicate φ is satisfied.

– Domain preservation: Π ∧ (∃x̄ : φ) |= P
This property states that the precondition P cannot exclude inputs for which
an output exists.

As an example, a valid solution to the synthesis problem (1) is given by:
〈a ≤ 5|0〉. The precondition a ≤ 5 characterizes exactly the input values for
which a solution exists, and for all such values, the constant 0 is a valid solution
term for x. The solution is in general not unique; alternative solutions for this
particular problem include 〈a ≤ 5|5− a〉, or 〈a ≤ 5|if(a < 5) a+ 1 else 0〉.

5.2 Inference Rules

The correctness conditions described above characterize the validity of solutions
to synthesis problems. We now show how to derive such solutions. We present
our techniques as a set of inference rules. As a simple first example, consider the
following rule:

�ā 〈Π � φ[x0 
→ t]〉 x̄�  〈P |T̄ 〉 x0 /∈ vars(t)

�ā 〈Π � x0 = t ∧ φ〉 x0 , x̄�  〈P |val x̄ := T̄ ; (t , x̄)〉

As is usual with inference rules, on top are the premisses and below is the goal.
This particular rule captures the intuition that, whenever a term of the form
x0 = t appears as a top-level conjunct in a synthesis problem, the problem can
be simplified by assigning to the output variable x0 the term t. The rule specifies
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both how the subproblem relates to the original one, and how its solution and
precondition are used in the final program.

Another example is the following rule for decomposing disjunctions:

�ā 〈Π � φ1〉 x̄�  〈P1|T̄1〉 �ā 〈Π ∧ ¬P1 � φ2〉 x̄�  〈P2|T̄2〉
�ā 〈Π � φ1 ∨ φ2〉 x̄�  〈P1 ∨ P2|if(P1) {T̄1} else {T̄2}〉

Here, the rule states that a disjunction can be handled by considering each
disjunct in isolation, and combining the solutions as an if-then-else expression,
where the branching condition is the precondition for the first problem. Note that
in the second subproblem, we have added the literal ¬P1 to the path condition.
This reflects the knowledge than, in the final program, the subprogram for the
second disjunct only executes if the first one cannot compute a solution.

In general, a synthesis problem is solved whenever a derivation can be found
for which all output variables are assigned to a program term.

For certain well-defined classes of synthesis problems, we can design sets of
inference rules which, together with a systematic application strategy, are guar-
anteed to result in successful derivation. We have shown in previous work such
complete strategies for integer linear arithmetic, rational arithmetic, or term
algebras [32, 40, 67]. We call these synthesis procedures, analogously to decision
procedures.

As a final example, we now show how our framework can express solutions
that take the form of recursive functions traversing data structures. The next
rule captures one particular yet very common form of such a traversal for Lists.

(Π1 ∧ P ) =⇒ Π2 Π2[a0 
→ Cons(h,t)] =⇒ Π2[a0 
→ t]
�ā 〈Π2 � φ[a0 
→ Nil]〉 x̄�  〈�|T̄1〉�r̄ , h , t , ā 〈Π2[a0 
→ Cons(h,t)] ∧ φ[a0 
→ t, x̄ 
→ r̄]� φ[a0 
→ Cons(h,t)]〉 x̄�  〈�|T̄2〉
�a0 , ā 〈Π1 � φ〉 x̄�  〈P |rec(a0,ā)〉

The goal of the rule is to derive a solution consisting of a single invocation of
a (fresh) recursive function rec, of the following form:

def rec(a0, ā) = {
require(Π2)
a0 match {
case Nil ⇒ T̄1

case Cons(h, t) ⇒
val r̄ = rec(t, ā)
T̄2

}
} ensuring(r̄ ⇒ φ[x̄ �→ r̄])

The rule decomposes the problem into two cases, corresponding to the alterna-
tives in the data type, and assumes that the solution takes the form of a fold
function, fixing the recursive call.
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6 Combining Synthesis and Runtime Constraint Solving

The deductive synthesis framework allows us to split a challenging problem into
tractable sub problems. In the case where the subproblems remain too challeng-
ing, we keep their corresponding declarative specifications and compile them into
the run-time invocation of the constraint. This result in a partially implemented
program. In certain cases, the partial program is well-defined for simple, frequent
paths, and only falls back to run-time solving for complex cases.

As an illustrative example, we give here the partial derivation of the func-
tion contains on CTrees from Section 2 using rules such as the ones described in
Section 5.

We start with the synthesis problem:

�c, d, v 〈inv(CTree(c, d)) � x ⇐⇒ v ∈ content(CTree(c, d))〉 x�
A first step is to perform case analysis on d, the tree. This generates two sub-
problems, for the cases Empty and Node respectively. For Empty, we have:

�c, v 〈inv(CTree(c,Empty))� x ⇐⇒ v ∈ content(CTree(c,Empty))〉 x�
At this point, inv(CTree(c, Empty)) simplifies to � and content(CTree(c, Empty))

simplifies to ∅. The problem thus becomes:

�c, v 〈�� x ⇐⇒ v ∈ ∅〉 x�
which is solved by 〈�|false〉. For the Node branch, we have:

�c, n, v 〈n �= Empty ∧ inv(CTree(c, n))� x ⇐⇒ v ∈ content(CTree(c, n))〉 x�
This is almost the original problem, with the additional contextual information
that the tree is not empty. Given that we have two integer variables in scope, c
and v (the cache and the value for which we are checking inclusion), a potential
tactic is to perform case analysis on their equality. This yields two subproblems.
For the equal case, we have one fewer variable:

�n, v 〈n �= Empty ∧ inv(CTree(v, n))� x ⇐⇒ v ∈ content(CTree(v, n))〉 x�
At this point, because inv(CTree(v,n)) implies that v∈CTree(v,n), the problem is
solved with 〈�|true〉.

For the final subproblem, where d is a Node and the cache does not hold
the value v, our system is currently not efficient enough to derive a solution.
Therefore, it falls back to emitting a run-time invocation of choose. Combining
the solutions for all subproblems, we obtain the partially synthesized function
contains as shown in Section 2.

6.1 Discussion

It is our hope that the combination of two technologies, run-time constraint solv-
ing and synthesis, can make execution of specifications practical. It will be then
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interesting to understand to what extend such complete specifications change the
software development process. Writing data structures using constraints shows
the productivity advantages of using constraints, because data structure invari-
ants are reusable across all operations, whereas the remaining specification of
each individual operation becomes extremely concise. The development process
thus approaches the description of a data structure design from a textbook [15],
which starts from basic invariants and uses them as guiding principle when pre-
senting the implementation of data structure operations. We are thus hopeful
that, among other results, we can soon enable automated generation of efficient
unbounded data structures from high-level descriptions, analogously to recent
breakthrough on cache coherence protocol generation [71].

An exciting future direction is to use run-time property verification tech-
niques to efficiently combine code generated through speculative synthesis and
constraint solving. In many synthesis approaches, due to a heavy use of example-
driven techniques and the limitations of static verification, it is also quite possible
that the automatically generated implementation is incorrect for some of the in-
puts. In such cases, techniques of run-time verification can be used to detect,
with little overhead, the violation of specifications for given inputs. As a result,
synthesis could be used to generate fast paths and likely code fragments, while
ensuring the overall adherence to specification at run time.

In general, we are excited about future interplay between dynamic and static
approaches to make specifications executable, which is related to partial evalu-
ation and to techniques for compilation of declarative programming languages,
as well as static optimization of run-time checks.

7 Related Work

We provide an overview of related work on executing constraints using general-
purpose solvers at run-time, synthesizing constraints into conventional functional
and imperative code, and combining these two extreme approaches by staging
the computation between run-time and compile time.

7.1 Run-Time Constraint Solving

This proceedings volume contains a notable approach and tool Boogaloo [56],
which enables execution of a rich intermediate language Boogie [43]. The orig-
inal purpose of Boogie is static verification [6]. The usual methods to verify
Boogie programs generate conservative sufficient verification, which become un-
provable if the invariants are not inductive. Tools such as Boogaloo complement
verification-condition generation approaches and help developer distinguish er-
rors in programs or specifications that would manifest at run-time from those
errors that come from inductive statements not being strong enough. A run-
time interpreter for the annotations of the Jahob verification system [79] can
also execute certain limited form of specifications, but does not use symbolic ex-
ecution techniques and treats quantifiers more conservatively than the approach
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of Boogaloo. Our current Leon system works with a quantifier-free language;
the developers write specifications using recursion instead of quantifiers. Our
system allows developers to omit postconditions of defined functions and does
not reporting spurious counterexamples. Therefore, it provides the users the ad-
vantages of both sound static verification and true counterexamples in a unified
algorithm. As remarked, however, unfolding recursive functions can be viewed
as a particular quantifier instantiation strategy.

Constraint solving is key for executing programs annotated with contracts be-
cause it enables the generation of concrete states that satisfy a given precondi-
tion. In our tool we use our approach of satisfiability modulo recursive (pure) func-
tions. In a prior work we have focused on constraint programming using such sys-
tem [39], embedding constraint programming with recursive functions and SMT
solvers into the full Scala language and enabling ranked enumeration of solutions.
The Boogaloo approach [56] uses symbolic execution where quantifiers are treated
through a process that generalizes deterministic function unrolling tomore general
declarative constraints. Unfolding is also used in bounded model checking [7] and
k-induction approaches [35]. Symbolic execution can also be performed at the level
of bytecodes, as in the UDITA system that builds on Java Pathfinder and contains
specialized techniques for generating non-isomorphic graph structures [26].

Functional logic programming [3] amalgamates the functional programming
and logic programming paradigms into a single language. Functional logic lan-
guages, such as Curry [47] benefit from efficient demand-driven term reduction
strategies proper to functional languages, as well as non-deterministic operations
of logic languages, by using a technique called narrowing, a combination of term
reduction and variable instantiation. Instantiation of unbound logic variables oc-
cur in constructive guessing steps, only to sustain computation when a reduction
needs their values. The performance of non-deterministic computations depends
on the evaluation strategy, which are formalized using definitional trees [2]. Ap-
plications using functional logic languages include programming of graphical and
web user interfaces [28,29] as well as providing high-level APIs for accessing and
manipulating databases [11]. The Oz language and the associated Mozart Pro-
gramming System is another admirable combination of multiple paradigms [72],
with applications in functional, concurrent, and logic programming. In particu-
lar, Oz supports a form of logical variables, and logic programming is enabled
through unification. One limitation is that one cannot perform arithmetic op-
erations with logical variables (which we have demonstrated in several of our
examples), because unification only applies to constructor terms.

Monadic constraint programming [58] integrates constraint programming into
purely functional languages by using monads to define solvers. The authors define
monadic search trees, corresponding to a base search, that can be transformed by
the use of search transformers in a composable fashion to increase performance.
The Dminor language [8] introduces the idea of using an SMT solver to check sub-
typing relations between refinement types; in Dminor, all types are defined as log-
ical predicates, and subtyping thus consists of proving an implication between two
such predicates. The authors show that an impressive number of common types
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(including for instance algebraic data types) can be encoded using this formalism.
In this context, generating values satisfying a predicate is framed as the type inhab-
itation problem, and the authors introduce the expression elementofT to that end.
It is evaluated by invoking Z3 at run-time and is thus conceptually comparable to
our find construct but without support for recursive function unfolding. We have
previously found that recursive function unfolding works better as a mechanism
for satisfiability checking than using quantified axiomatization of recursive func-
tions [69]. In general, we believe that our examples are substantially more complex
than the experiences with elementof in the context of Dminor.

The ScalaZ3 library [38], used in Leon, integrates invocations to Z3 into a pro-
gramming language.Because it is implementedpurely as a library,wewere thennot
able to integrate user-defined recursive functions and data types into constraints,
so the main application is to provide an embedded domain-specific language to ac-
cess the constraint language of Z3 (but not to extend it). A similar approach has
been taken by others to invoke the Yices SMT solver [20] from Haskell.2

7.2 Synthesis of Functions

Our approach blends deductive synthesis [45,46,61], which incorporates transfor-
mation of specifications, inductive reasoning, recursion schemes and termination
checking, with modern SMT techniques and constraint solving for executable con-
straints. As one of our subroutines we include complete functional synthesis for
integer linear arithmetic [42] and extend it with a first implementation of complete
functional synthesis for algebraic data types [32,67]. This gives us building blocks
for synthesis of recursion-free code. To synthesize recursive code we build on and
further advance the counterexample-guided approach to synthesis [64].

Deductive synthesis frameworks. Early work on synthesis [45, 46] focused on
synthesis using expressive and undecidable logics, such as first-order logic and
logic containing the induction principle.

Programming by refinement has been popularized as a manual activity [5,76].
Interactive tools have been developed to support such techniques in HOL [13].
A recent example of deductive synthesis and refinement is the Specware system
from Kesterel [61]. We were not able to use the system first-hand due to its
availability policy, but it appears to favor expressive power and control, whereas
we favor automation.

A combination of automated and interactive development is analogous to the
use of automation in interactive theorem provers, such as Isabelle [50]. However,
whereas in verification it is typically the case that the program is available, the
emphasis here is on constructing the program itself, starting from specifications.

Work on synthesis from specifications [65] resolves some of these difficulties by
decoupling the problem of inferring program control structure and the problem
of synthesizing the computation along the control edges. The work leverages
verification techniques that use both approximation and lattice theoretic search
along with decision procedures, but appears to require more detailed information
about the structure of the expected solution than our approach.

2 http://hackage.haskell.org/package/yices-easy

http://hackage.haskell.org/package/yices-easy
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Synthesis with input/output examples. One of the first works that addressed
synthesis with examples and put inductive synthesis on a firm theoretical foun-
dation is the one by Summers [66]. Subsequent work presents extensions of the
classical approach to induction of functional Lisp-programs [?, 30]. These ex-
tensions include synthesizing a set of equations (instead of just one), multiple
recursive calls and systematic introduction of parameters. Our current system
lifts several restrictions of previous approaches by supproting reasoning about
arbitrary datatypes, supporting multiple parameters in concrete and symbolic
I/O examples, and allowing nested recursive calls and user-defined declarations.

Inductive programming and programming by demonstration. Inductive (logic)
programming that explores automatic synthesis of (usually recursive) programs
from incomplete specifications, most often being input/output examples [24,49],
influenced our work. Recent work in the area of programming by demonstration
has shown that synthesis from examples can be effective in a variety of domains,
such as spreadsheets [60]. Advances in the field of SAT and SMT solvers inspired
counter-example guided iterative synthesis [27, 64], which can derive input and
output examples from specifications. Our tool uses and advances these techniques
through two new counterexample-guided synthesis approaches.

Synthesis based on finitization techniques. Program sketching has demonstrated
the practicality of program synthesis by focusing its use on particular domains
[62–64]. The algorithms employed in sketching are typically focused on appropri-
ately guided search over the syntax tree of the synthesized program. The tool we
presented shows one way to move the ideas of sketching towards infinite domains.
In this generalizationwe leverage reasoning about equations as much as SAT tech-
niques.

Reactive synthesis. Synthesis of reactive systems generates programs that run
forever and interact with the environment. However, known complete algorithms
for reactive synthesis work with finite-state systems [55] or timed systems [4].
Such techniques have applications to control the behavior of hardware and em-
bedded systems or concurrent programs [73]. These techniques usually take spec-
ifications in a fragment of temporal logic [54] and have resulted in tools that can
synthesize useful hardware components [33, 34]. Recently such synthesis tech-
niques have been extended to repair that preserves good behaviors [23], which is
related to our notion of partial programs that have remaining choose statements.

Automated inference of program fixes and contracts. These areas share the
common goal of inferring code and rely on specialized software synthesis tech-
niques [53, 74, 75]. Inferred software fixes and contracts are usually snippets of
code that are synthesized according to the information gathered about the an-
alyzed program. The core of these techniques lies in the characterization of
runtime behavior that is used to guide the generation of fixes and contracts.
Such characterization is done by analyzing program state across the execution of
tests; state can be defined using user-defined query operations [74,75], and addi-
tional expressions extracted from the code [53]. Generation of program fixes and
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contracts is done using heuristically guided injection of (sequences of) routine
calls into predefined code templates.

Our synthesis approach works with purely functional programs and does not
depend on characterization of program behavior. It is more general in the sense
that it focuses on synthesizing whole correct functions from scratch and does
not depend on already existing code. Moreover, rather than using execution of
tests to define starting points for synthesis and SMT solvers just to guide the
search, our approach utilizes SMT solvers to guarantee correctness of generated
programs and uses execution of tests to speedup the search. Coupling of flexible
program generators and the Leon verifier provides more expressive power of the
synthesis than filling of predefined code schemas.

7.3 Combining Run-Time and Compile-Time Approaches

We have argued that constraint solving generalizes run-time checking, and allows
the underlying techniques to be applied in more scenarios than providing addi-
tional redundancy. The case of optimizing run-time checks also points out that
there is a large potential for speedups in executing specifications: in the limit,
a statically proved assertion can be eliminated, so its execution cost goes from
traversing a significant portion of program state to zero. As is in general the case
for compilation, such static pre-computation can be viewed as partial evaluation,
and has been successfully applied for temporal finite-state properties [10].

Compilation and transformation of logic programs. Compilation of logic pro-
grams is important starting point for improving the baseline of compiled code.
A potential inefficiency in the current approach (though still only a polynomial
factor) is that the constraint solver and the underlying programming language
use a different representation of values, so values need to be converted at the
boundary of constraints and standard functional code. Techniques such as those
employed in Warren’s Abstract Machine (WAM) is relevant in this context [1].
Deeper optimizations and potentially exponential speedups can be obtained us-
ing tabling [14], program transformation [59] and partial evaluation [12, 25].

Specifications as a fallback to imperative code. The idea to use specifications as a
fall-back mechanism for imperative code was adopted in [57]. Dynamic contract
checking is applied and, upon violations, specifications can be executed. The tech-
nique ignores the erroneous state and computes output values for methods given
concrete input values and the method contract. The implementation uses a rela-
tional logic similar to Alloy [31] for specifications, and deploys the Kodkod model
finder [70]. A related tight integration between Java and the Kodkod engine is pre-
sented in [48]. We expect that automated synthesis will allow the developers to use
specifications alone in such scenarios, with a candidate implementation generated
automatically.

Data structure repair. It is worth mentioning that this proceedings also con-
tains new results [78] in the exciting area of data structure repair. This general
approach is related to solving constraints at run-time. The assumption in data
structure repair is that, even if a given data structure does not satisfy the desired
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property, it may provide a strong hint at the desired data structure. Therefore, it
is reasonable to use the current data structure as the starting point for finding the
value that satisfies the desired constraint, hoping that the correct data structure
is close to the current one. Although such approach is slightly more natural in
the context of imperative than functional code, it is relevant whenever the data
manipulated is large enough. The first specification-driven approach for data
structure repair is by Demsky and Rinard [18, 19] where the goal is to recover
from corrupted data structures by transforming states that are erroneous with
respect to integrity constraints into valid ones, performing local heuristic search.
Subsequent work uses less custom constraint solvers instead [21,22]. We believe
that SMT solvers could also play a role in this domain. Researchers [77] have
also used method contracts instead of data structure integrity constraints to be
able to support rich behavioral specifications, which makes it also more relevant
for our scenarios. While the primary goal in most works is run-time recovery of
data structures, recent work [44] extends the technique for debugging purposes,
by abstracting concrete repair actions to program statements performing the
same actions. As in general for run-time constraint solving, we expect that data
structure repair can be productively applied to implementations generated using
“speculative synthesis” that generates a not necessarily correct implementation.
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Abstract Flow policy confinement is a property of programs whose de-
classifications respect the allowed flow policy of the context in which
they execute. In a distributed setting where computation domains en-
force different allowed flow policies, code migration between domains
implies dynamic changes to the relevant allowed policy. Furthermore,
when programs consist of more than one thread running concurrently,
the same program might need to comply to more than one allowed flow
policy simultaneously. In this scenario, confinement can be enforced as
a migration control mechanism. In the present work we compare three
type-based enforcement mechanisms for confinement, regarding precision
and efficiency of the analysis. In particular, we propose an efficient hybrid
mechanism based on statically annotating programs with the declassifi-
cation effect of migrating code. This is done by means of an informative
type and effect pre-processing of the program, and is used for supporting
runtime decisions.

1 Introduction

Research in language based security has placed a lot of attention on the study of
information flow properties and enforcement mechanisms [1]. Information flow
security regards the control of how dependencies between information of differ-
ent security levels can lead to information leakage during program execution.
Information flow properties range in strictness from pure absence of information
leaks, classically known as non-interference [2], to more flexible properties that
allow for declassification to take place in a controlled manner [3].

Separating the problems of enabling and of controlling flexible information
flow policies paves the way to a modular composition of security properties that
can be studied independently. Here we consider a distributed setting with run-
time remote thread creation, and the problem of ensuring that declassifications
that are performed by mobile code comply to the flow policy that is allowed at
the computation domain where they are performed. We refer to this property as
flow policy confinement, and treat it as a migration control problem [4,5].

An illustrative scenario could be that of a set of personal mobile appliances,
such as smartphones. Due to their inter-connectivity (web, Bluetooth), they
form networks of highly responsive computing devices with relatively limited
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resources, and that handle sensitive information (personal location, contacts,
passwords). This combination demands for scalable and efficient mechanisms for
ensuring privacy in a distributed setting with code mobility. From an abstract
perspective, each device forms a computation domain with specific capabilities
and restrictions, and in particular information flow policies for protecting data
and other computing threads that are running concurrently in the same domain.
We refer to these policies as the allowed flow policy of the domain. Flow pol-
icy confinement ensures that domains do not execute code that might perform
declassifications that break their own allowed policies.

Let us consider, for example, an application for supporting two users (Alice
and Bob) in choosing the best meeting point and path for reaching each other
by means of public transportation. In order to produce advice that takes into
account the current context (recent user locations, traffic conditions, weather)
threads containing code for building updated travel maps are downloaded by
Alice and Bob during runtime (their travel). The recommended path and meeting
point can be improved by deducing the users’ personal preferences from data that
it collects from the mobile devices (e.g. content of stored images, file types). Users
might, however, have privacy restrictions regarding that data, in the form of
allowed flow policies that the downloaded threads must comply to. The following
naive program creates a thread for gathering data that helps select the meeting
point. Since the meeting point will necessarily be revealed to Bob, this part of
the program should only allowed to run if it respects which private information
Alice accepts to leak to Bob.

1 newthread { // Creates thread at Alice’s device

2 ref zoo=0; ref bookstore=0; // to choose between zoo or bookstore

3 allowed // If allowed by Alice’s policy

4 (L_IMGS < L_BOB /\ // to leak image contents

5 L_FILES < L_BOB) // and file types to Bob

6 flow (L_IMGS < L_BOB /\ // Declares a declassification

7 L_FILES < L_BOB) // with same policy

8 processImgs(zoo); // weighs images with animals

9 searchFiles(bookstore); // weighs e-book files

10 if (zoo > bookstore) // inspects sensitive data...

11 meetAt(ZOO); // and influences meeting point

12 meetAt(BOOKSTORE);

13 meetAt(random); // If not allowed, uses other criteria

14 } at D_ALICE

As the above code is deployed, device D_ALICE must decide whether it is safe to
execute the thread or not. Clearly, the decision must be taken quickly so as to
not disrupt the purpose of the application. Ultimately, it is based on an analysis
of the code, giving special attention to the points where declassifications occur.

This paper addresses the technical problem of how to build suitable enforce-
ment mechanisms that enable domains to check incoming code against their own
allowed flow policies. Previous work [6] introduces, as a proof-of-concept, a run-
time migration control mechanism for enforcing confinement that lacks precision



Informative Types and Effects for Hybrid Migration Control 23

and efficiency. In this paper we look closely at the problem of the overhead that
is implied by using types and effects for checking programs during runtime.

We study three type and effect-based mechanisms for enforcing confinement
that place different weight over static and run time: First, we present a purely
static type and effect system. Second, we increase its precision by letting most
of the control be done dynamically, at the level of the operational semantics.
To this end, the migration instruction is conditioned by a type check by means
of a standard type and effect checking system. Third, we provide a mechanism
for removing the runtime weight of typing migrating programs. It consists in
statically annotating programs with information about the declassifying behavior
of migrating threads, in the form of a declassification effect, and using it to
support efficient runtime checks.

This work is formulated over an expressive distributed higher-order imperative
lambda-calculus with remote thread creation. This language feature implies that
programs might need to comply to more than one dynamically changing allowed
flow policy simultaneously. The main contributions are:

1. A purely static type and effect system for enforcing flow policy confinement.
2. A type and effect system for checking migrating threads at runtime, that is

more precise than the one in point 1.
3. A static-time informative pre-processing type and effect system for annotat-

ing programs with a declassification effect, for a more efficient and precise
mechanism than the one in point 2.

We start by presenting the security setting (Section 2) and language (Sec-
tion 3). The formal security property of Flow Policy Confinement (Section4)
follows. Then, we study three type and effect-based enforcement mechanisms
(Section 5) and draw conclusions regarding their efficiency and precision. Fi-
nally we discuss related work (Section 6) and conclude (Section 7). An extended
version of this article (available from the authors) presents the detailed proofs.

2 Security Setting

The study of confidentiality traditionally relies on a lattice of security levels [7],
corresponding to security clearances, that is associated to information contain-
ers in the programming language. The idea is that information pertaining to
references labeled with l2 can be legally transferred to references labeled with l1
only if l1 is at least as confidential as l2. In this paper we do not deal explicitly
with security levels, but instead with flow policies that define how information
should be allowed to flow between security levels. Formally, flow policies can be
seen as downward closure operators over a basic lattice of security levels [8].

Flow policies A,F ∈ Flo can be ordered according to their permissiveness by
means of a permissiveness relation �, where F1 � F2 means that F1 is at least
as permissive as F2. We assume that flow policies form a lattice that supports a
pseudo-subtraction operation 〈Flo ,�,�,�,�, Ω,�〉, where: the meet operation
� gives, for any two flow policies F1, F2, the strictest policy that allows for
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both F1 and F2; the join operation � gives, for any two flow policies F1, F2,
the most permissive policy that only allows what both F1 and F2 allow; the
most restrictive flow policy � does not allow any information flows; and the
most permissive flow policy Ω that allows all information flows. Finally, the
pseudo-subtraction operation� between two flow policies F1 and F2 (used only
in Subsection 5.3) represents the most permissive policy that allows everything
that is allowed by the first (F1), while excluding all that is allowed by the second
(F2); it is defined as the relative pseudo-complement of F2 with respect to F1,
i.e. the greatest F such that F � F2 � F1.

Considering a concrete example of a lattice of flow polices that meets the
abstract requirements defined above can provide helpful intuitions. Flow policies
that operate over the security lattice where security levels are sets of principals
p, q ∈ Pri provide such a case. In this setting, security levels are ordered by
means of the flow relation ⊇. Flow policies then consist of binary relations on
Pri , which can be understood as representing additional directions in which
information is allowed to flow between principals: a pair (p, q) ∈ F , most often
written p ≺ q, is to be understood as “information may flow from p to q”. New
more permissive security lattices are obtained by collapsing security levels into
possibly lower ones, by closing them with respect to the valid flow policy. Writing
F1 � F2 means that F1 allows flows between at least as many pairs of principals
as F2. The relation is here defined as F1 � F2 iff F2 ⊆ F ∗

1 (where F ∗ denotes
the reflexive and transitive closure of F ): The meet operation is then defined as
� = ∪, the join operation is defined as F1 � F2 = F ∗

1 ∩ F ∗
2 , the top flow policy

is given by � = ∅, the bottom flow policy is given by Ω = Pri ×Pri , and the
pseudo-subtraction operation is given by �= −.

3 Language

The language extends an imperative higher order lambda calculus that includes
reference and concurrent thread creation, a declassification construct, and a
policy-context testing construct, with basic distribution and code mobility fea-
tures. Computation domains hold a local allowed flow policy, which imposes a
limit on the permissiveness of the declassifications that are performed within the
domain. A remote thread creation construct serves as a code migration primitive.

Variables

Reference Names

x

a

∈
∈

Var

Ref

Flow Policies A,F ∈ Flo

Domain Names d ∈ Dom

Values V ∈ Val ::= () | x | a | (λx.M) | tt | ff
Pseudo-values X ∈ Pse ::= V | (�x.X)

Expressions M,N ∈ Exp ::= X | (M N) | (M ;N) | (if M then Nt else Nf ) |
(refθ M) | (! N) | (M := N) | (flow F in M) |
(allowed F then Nt else Nf) | (thread M at d)

Fig. 1. Syntax of Expressions
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3.1 Syntax

The syntax of expressions defined in Figure 1 is based on a λ-calculus extended
with the imperative constructs of ML, conditional branching and boolean values,
where the (�x.X) construct provides for recursive values. Names of references
(a), domains (d), and threads (m,n), are drawn from disjoint countable sets
Ref , Dom �= ∅ and Nam , respectively. References are information containers
to which values of the language pertaining to a given type inTyp can be assigned.

Declassification is introduced in the language by means of flow policy decla-
rations [9]. They have the form (flow F in M), and are used to locally weaken
the information flow policy that is valid for the particular execution context, by
enabling information flows that comply to the flow policy F to take place within
the scope of the delimited block of code M . Expression M is executed in the
context of the current flow policy extended with F ; after termination the current
flow policy is restored, that is, the scope of F isM . For context-policy awareness,
programs can inspect the allowed flow policy of the current domain by means of
the allowed-condition, which is written (allowed F then Nt else Nf ). The con-
struct tests whether the flow policy F is allowed by the current domain and
executes branches Nt or Nf accordingly, in practice offering alternative behav-
iors to be taken in case the domains they end up are too restrictive. For migration
and concurrency, the thread creator (thread M at d) spawns the thread M in
domain d, to be executed concurrently with other threads at that domain.

Networks are flat juxtapositions of domains, each containing a store and a
pool of threads, which are subjected to the allowed flow policy of the domain.
Threads run concurrently in pools P : Nam → Exp, which are mappings from
thread names to expressions (denoted as sets of threads). Stores S : Ref → Val
map reference names to values. Position-trackers T : Nam → Dom , map thread
names to domain names, and are used to keep track of the locations of threads in
the network. The pool P containing all the threads in the network, the mapping
T that keeps track of their positions, and the store S containing all the references
in the network, form configurations 〈P, T, S〉. The flow policies that are allowed
by each domain are kept by the allowed-policy mapping W : Dom → Flo from
domain names to flow policies, which is considered fixed in this model.

3.2 Operational Semantics

The small step operational semantics of the language is defined in Figure 2. The
‘W Σ ’ turnstile makes explicit the allowed flow policy of each domain in the
network, and the reference labeling Σ that determines the type of values that
is assigned to each reference name. Other security-related information, such as
security levels, could be added for the purpose of an information flow analysis.

The call-by-value evaluation order is specified by representing expressions
using evaluation contexts.

Evaluation Contexts E ::= [] | (E N) | (V E) | (E;N) | (refθ E) | (! E)
(E := N) | (V := E) | (if E then Nt else Nf) | (flow F in E)

(1)
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W 
Σ 〈{E[((λx.M) V )]m}, T, S〉 −−→
�E�

〈{E[{x �→ V }M ]m}, T, S〉

W 
Σ 〈{E[(if tt then Nt else Nf )]
m}, T, S〉 −−→

�E�
〈{E[Nt]

m}, T, S〉

W 
Σ 〈E[(if ff then Nt else Nf )]
m}, T, S〉 −−→

�E�
〈{E[Nf ]

m}, T, S〉

W 
Σ 〈{E[(V ;N)]m}, T, S〉 −−→
�E�

〈{E[N ]m}, T, S〉

W 
Σ 〈{E[(�x.X)]m}, T, S〉 −−→
�E�

〈{E[({x �→ (�x.X)} X)]m}, T, S〉

W 
Σ 〈{E[(flow F in V )]m}, T, S〉 −−→
�E�

〈{E[V ]m}, T, S〉

W 
Σ 〈{E[(! a)]m}, T, S〉 −−→
�E�

〈{E[S(a)]m}, T, S〉

W 
Σ 〈{E[(a := V )]m}, T, S〉 −−→
�E�

〈{E[()]m}, T, [a := V ]S〉

W 
Σ 〈{E[(refθ V )]m}, T, S〉 −−→
�E�

〈{E[a]m}, T, [a := V ]S〉, a fresh in S
and Σ(a) = θ

W (T (m))�F

W �Σ 〈{E[(allowed F then Nt else Nf)]
m}, T, S〉 −−→

�E�
〈{E[Nt]

m}, T, S〉

W (T (m)) ��F

W �Σ 〈{E[(allowed F then Nt else Nf)]
m}, T, S〉 −−→

�E�
〈{E[Nf ]

m}, T, S〉

W �Σ 〈{E[(thread N at d)]m}, T, S〉−−→
�E�

〈{E[()]m,Nn}, [n := d]T, S〉,
n fresh in T

W 
Σ 〈P, T, S〉 −→
F

〈P ′, T ′, S′〉 〈P ∪Q,T, S〉 is well formed

W 
Σ 〈P ∪Q,T, S〉 −→
F

〈P ′ ∪Q,T ′, S′〉

Fig. 2. Operational Semantics

We write E[M ] to denote an expression where the sub-expression M is placed
in the evaluation context E, obtained by replacing the occurrence of [] in E by
M . The flow policy that is permitted by the evaluation context E is denoted by
�E�. It consists a lower bound (see Section 2) to all the flow policies that are
declared by the context:

�[]� = �, �(flow F in E)� = F � �E�,
�E′[E]� = �E�, when E′ does not contain flow declarations

(2)

The following basic notations and conventions are useful for defining transi-
tions. For a mapping Z, we define dom(Z) as the domain of a given mapping Z.
We say a name is fresh in Z if it does not occur in dom(Z). We denote by rn(P )
and dn(P ) the set of reference and domain names, respectively, that occur in the
expressions of P . We let fv(M) be the set of variables occurring free in M . We
restrict our attention to well formed configurations 〈P, T, S〉 satisfying the con-
ditions that rn(P ) ⊆ dom(S), that dn(P ) ⊆ dom(W ), that dom(P ) ⊆ dom(T ),
and that, for any a ∈ dom(S), rn(S(a)) ⊆ dom(S) and dn(S(a)) ⊆ dom(W ).
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We denote by {x 
→W}M the capture-avoiding substitution of W for the free
occurrences of x in M . The operation of adding or updating the image of an
object z to z′ in a mapping Z is denoted [z := z′]Z.

The transition rules of our semantics are decorated with the flow policy de-
clared by the evaluation context where the step is performed. The lifespan of the
flow declaration terminates when the expressionM that is being evaluated termi-
nates (that is,M becomes a value). In particular, the evaluation of (flow F inM)
simply consists in the evaluation of M , annotated with a flow policy that is at
least as permissive as F . The flow policy that decorates the transition steps
is used only by the rules for (allowed F then Nt else Nf ), where the choice of
the branch depends on whether F is allowed to be declared or not. The thread
creation construct functions as a migration construct when the new domain of
the created thread is different from that of the parent thread. The last rule
establishes that the execution of a pool of threads is compositional (up to the
expected restriction on the choice of new names). Notice that W , representing
the allowed flow policies associated to each domain, is never changed.

For simplicity, we assume memory to be shared by all programs and every
computation domain, in a transparent form. This does not remove the distributed
nature of the model, as programs’ behavior depends on where they are [6].

4 Security Property

In a distributed setting with concurrent mobile code, programs might need to
comply simultaneously to different allowed flow policies that change dynamically.
The property of flow policy confinement deals with this difficulty by placing
individual restrictions on each step that might be performed by a part of the
program, taking into account the possible location where it might take place.

Compatibility. Since we are considering a higher-order language, values stored
in memory can be used by programs to build expressions that are then executed.
In order to avoid deeming all such programs insecure, memories are assumed to
be compatible to the given security setting and typing environment, requiring
typability of their contents with respect to the relevant type system and param-
eters. Informally, a memory S is said to be (W,Σ, Γ )-compatible if for every
reference a ∈ dom(S) its value S(a) is typable. This predicate will be defined for
each security analysis, and can be shown to be preserved by the semantics.

Flow Policy Confinement. The property is defined co-inductively for located
threads, consisting of pairs 〈d,Mm〉 that carry information about the location
d of a thread Mm. The location of each thread determines which allowed flow
policy it should obey at that point, and is used to place a restriction on the flow
policies that decorate the transitions: at any step, they should comply to the
allowed flow policy of the domain where the thread who performed it is located.

Definition 1 ((W,Σ, Γ )-Confined Located Threads). Consider an allowed-
policy mapping W , a reference labeling Σ, and a typing environment Γ . A set C
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of located threads is a set of (W,Σ, Γ )-confined located threads if the following
holds for all 〈d,Mm〉 ∈ C, for all T such that T (m) = d, and for all (W,Σ, Γ )-
compatible memories S:

– W Σ 〈{Mm}, T, S〉 −→
F
〈{M ′m}, T ′, S′〉 implies W (T (m)) � F and also

〈T ′(m),M ′m〉 ∈ C. Furthermore, S′ is still (W,Σ, Γ )-compatible.
– W Σ 〈{Mm}, T, S〉 −→

F
〈{M ′m, Nn}, T ′, S′〉 implies W (T (m)) � F and also

〈T ′(m),M ′m〉, 〈T ′(n), Nn〉 ∈ C. Furthermore, S′ is still (W,Σ, Γ )-compatible.

Note that for any W , Σ, and Γ there exists a set of (W,Σ, Γ )-confined located
threads, like for instance Dom × (Val × Nam). Furthermore, the union of a
family of sets of (W,Σ, Γ )-confined located threads is a set of (W,Σ, Γ )-confined

located threads. The largest set of (W,Σ, Γ )-confined threads is denoted by CΣ,Γ
W .

We say that a threadMm is (W,Σ, Γ )-confined when located at d, if 〈d,Mm〉 ∈
CΣ,Γ
W . A well formed thread configuration 〈P, T 〉, satisfying the applicable rules

of a well formed configuration, is said to be (W,Σ, Γ )-confined if all located
threads in {〈T (m),Mm〉 | Mm ∈ P} are (W,Σ, Γ )-confined.

Notice that this property speaks strictly about what flow declarations a thread
can do while it is at a specific domain. In particular, it does not restrict threads
frommigrating to more permissive domains in order to perform a declassification.
More importantly, the property does not deal with information flows. So for
instance it offers no assurance that information leaks that are encoded at each
point of the program do obey the declared flow policies for that point. Such an
analysis can be done independently, cf. non-disclosure in [9].

5 Enforcement Mechanisms

In this section we start by studying a type system for statically ensuring that
global computations always comply to the locally valid allowed flow policy. This
type system is inherently restrictive, as the domains where each part of the code
will actually compute cannot in general be known statically (Subsection 5.1). We
then present a more precise type system to be used at runtime by the semantics
of the language for checking migrating threads against the allowed flow policy of
the destination domain (Subsection 5.2). Finally, we propose a yet more precise
type and effect system that computes information about the declassification
behaviors of programs. This information will be used more efficiently at runtime
by the semantics of the language in order to control migration of programs.

5.1 Purely Static Type Checking

We have seen that in a setting where code can migrate between domains with
different allowed security policies, the computation domain might change during
computation, along with the allowed flow policy that the program must comply
to. This can happen in particular within the branch of an allowed condition:

(allowed F then (thread (flow F in M1) at d) else M2) (3)
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[Nil] W ;Γ 
Σ
A () : unit [Bt] W ;Γ 
Σ

A tt : bool [Bf] W ;Γ 
Σ
A ff : bool

[Loc] W ;Γ 
Σ
A a : Σ(a) ref [Var] Γ, x : τ 
Σ

A x : τ

[Abs]
W ;Γ, x : τ 
Σ

A M : σ

W ;Γ 
Σ
A′ (λx.M) : τ

A−→ σ
[Rec]

W ;Γ, x : τ 
Σ
A X : τ

W ;Γ 
Σ
A (�x.X) : τ

[Ref]
W ;Γ 
Σ

A M : θ

W ;Γ 
Σ
A (refθ M) : θ ref

[Der]
W ;Γ 
Σ

A M : θ ref

W ;Γ 
Σ
A (! M) : θ

[Ass]
W ;Γ 
Σ

A M : θ ref W ;Γ 
Σ
A N : θ

W ;Γ 
Σ
A (M := N) : unit

[Seq]
W ;Γ 
Σ

A M : τ W ;Γ 
Σ
A N : σ

W ;Γ 
Σ
A (M ;N) : σ

[Cond]

W ;Γ 
Σ
A M : bool

W ;Γ 
Σ
A Nt : τ

W ;Γ 
Σ
A Nf : τ

W ;Γ 
Σ
A (if M then Nt else Nf ) : τ

[App]
W ;Γ 
Σ

A M : τ
A−→ σ W ;Γ 
Σ

A N : τ

W ;Γ 
Σ
A (M N) : σ

[Flow]
W ;Γ 
Σ

A N : τ A � F

W ;Γ 
Σ
A (flow F in N) :τ

[Allow]

W ;Γ 
Σ
A�F Nt : τ

W ;Γ 
Σ
A Nf : τ

W ;Γ 
Σ
A (allowed F then Nt else Nf ) :τ

[Mig]
W ;Γ 
Σ

W (d) M : unit

W ;Γ 
Σ
A (thread M at d) : unit

Fig. 3. Type and effect system for checking Confinement

In this program, the flow declaration of the policy F is executed only if F has
been tested as being allowed by the domain where the program was started.
It might then seem that the flow declaration is “protected” by an appropriate
allowed construct. However, by the time the flow declaration is performed, the
thread is already located at another domain, where that flow policy might not be
allowed. It is clear that a static enforcement of a confinement property requires
tracking the possible locations where threads might be executing at each point.

Figure 3 presents a new type and effect system [10] for statically enforcing
confinement over a migrating program. The type system guarantees that when
operations are executed by a thread within the scope of a flow declaration, the
declared flow complies to the allowed flow policy of the current domain. The
typing judgments have the form

W ;Γ ΣA M : τ (4)

meaning that expressionM is typable with type τ in typing context Γ : Var →
Typ, which assigns types to variables. In addition to the reference mapping Σ,
the turnstile has as parameter the flow policy A that is allowed by the context,
which includes all flow policies that have been positively tested by the program
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as being allowed at the computation domain where the expressionM is running.
Finally, W represents the mapping of domain names to allowed flow policies.

Types have the standard syntax (t is a type variable)

τ, σ, θ ∈ Typ ::= t | unit | bool | θ ref | τ A−→ σ (5)

where the reference type records the type θ of values that the reference contains,
and the functional type records the latent allowed policy A that is used to type
the application of the function to an argument.

Our type system applies restrictions to programs in order to ensure that
flow declarations can only declare flow policies that are allowed by the con-
text (rule Flow). These restrictions are relaxed when typing the first branch of
allowed conditions, by extending the flow policy allowed by the context with the
policy that guards the condition (rule Allow). In rule Mig, the flow policy al-
lowed by the context is adjusted to that of the destination computation domain
W (d) that is specified by the (thread M at d) construct.

Note that if an expression is typable with respect to an allowed flow policy A,
then it is also so for any more permissive allowed policy A′. In particular, due
to the Abs rule, the process of typing an expression is not deterministic. For

instance, the expression (λx.()) can be given any type of the form τ
F−→ unit.

We refer to the enforcement mechanism that consists of statically type check-
ing all threads in a network according to the type and effect system of Figure 3,
with respect to the allowed flow policies of each thread’s initial domain, using
the semantics represented in Figure 2, as Enforcement mechanism I.

Soundness. Enforcement mechanism I guarantees security of networks with re-
spect to confinement, as is formalized by the following result. The (W,Σ, Γ )-
compatibility predicate that is used to define confinement here requires all ref-
erences a ∈ dom(S) to store a value satisfying W ;Γ Σ

�
S(a) : Σ(a).

Theorem 1 (Soundness of Enforcement Mechanism I). Consider a fixed
allowed-policy mapping W , a given reference labeling Σ and typing environment
Γ , and a thread configuration 〈P, T 〉 such that for all Mm ∈ P there exists τ
such that W ;Γ ΣW (T (m)) M : τ . Then 〈P, T 〉 is (W,Σ, Γ )-confined.

Proof. By showing that the set {〈d,Mm〉 |m ∈ Nam and ∃τ. W ;Γ ΣW (d)M : τ}
is a set of (W,Σ, Γ )-confined located threads, using induction on the inference
of W ;Γ ΣW (d) M : τ .

Precision. Given the purely static nature of this migration control analysis, some
secure programs are bound to be rejected. There are different ways to increase
the precision of a type system, which are all intrinsically limited to what can
conservatively be predicted before runtime. For example, for the program

(if (! a) then (thread (flowF inM) at d1) else (thread (flowF inM) at d2)) (6)

it is in general not possible to predict which branch will be executed (or, in
practice, to which domain the thread will migrate), for it depends on the contents
of the memory. It will then be rejected if W (d2) �� F or W (d1) �� F .
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5.2 Runtime Type Checking

In this subsection we study a hybrid mechanism for enforcing confinement, that
makes use of a relaxation of the type system of Figure 3 during runtime. Migra-
tion is now controlled by means of a runtime check for typability of migrating
threads with respect to the allowed flow policy of the destination domain. The
condition represents the standard theoretical requirement of checking incoming
code before allowing it to execute in a given machine.

The relaxation is achieved by replacing rule Mig by the following one:

[Mig]
Γ ΣΩ M : unit

Γ ΣA (thread M at d) : unit
(7)

The new type system no longer imposes future migrating threads to conform to
the policy of their destination domain, but only to the most permissive allowed
flow policy Ω. The rationale is that it only worries about confinement of the
non-migrating parts of the program. This is sufficient, as all threads that are to
be spawned by the program will be re-checked at migration time.

The following modification to the migration rule of the semantics of Figure 2
introduces the runtime check that controls migration (n fresh in T ). The idea is
that a thread can only migrate to a domain if it respects its allowed flow policy:

Γ ΣW (d) N : unit

W Σ 〈{E[(thread N at d)]
m}, T, S〉 n−−→

�E�
〈{E[()]m, Nn}, [n := d]T, S〉

(8)

The new remote thread creation rule (our migration primitive), now depends on
typability of the migrating thread. The typing environment Γ (which is constant)
is now an implicit parameter of the operational semantics. If only closed threads
are considered, then also migrating threads are closed. The allowed flow policy
of the destination site now determines whether or not a migration instruction
may be consummated, or otherwise block execution.

Notice that, thanks to postponing the migration control to runtime, the type
system no longer needs to be parameterized with information about the allowed
flow policies of all domains in the network, which in practice could be impossible.
The only relevant one are those of the destination domain of migrating threads.

We refer to the enforcement mechanism that consists of statically type check-
ing all threads in a network according to the type and effect system of Figure 3
modified using the new Mig rule represented in Rule (8), with respect to the
allowed flow policies of each thread’s initial domain, using the semantics of Fig-
ure 2 modified according to Rule (7), as Enforcement mechanism II.

Soundness. Enforcement mechanism II guarantees security of networks with
respect to confinement, as is formalized by the following result. The (W,Σ, Γ )-
compatibility predicate that is used to define confinement here requires all ref-
erences a ∈ dom(S) to store a value satisfying Γ Σ

�
S(a) : Σ(a).
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Theorem 2 (Soundness of Enforcement Mechanism II). Consider a fixed
allowed-policy mapping W , a given reference labeling Σ and typing environment
Γ , and a thread configuration 〈P, T 〉 such that for all Mm ∈ P there exists τ
such that Γ ΣW (T (m)) M : τ . Then 〈P, T 〉 is (W,Σ, Γ )-confined.

Proof. By showing that the set {〈d,Mm〉 | m ∈ Nam and ∃τ . Γ ΣW (d) M : τ}
is a set of (W,Σ, Γ )-confined located threads, using induction on the inference
of Γ ΣW (d) M : τ .

Safety, precision and efficiency. The proposed mechanism does not offer a safety
result, guaranteeing that programs never “get stuck”. Indeed, the side condition
of the thread creation rule introduces the possibility for the execution of a thread
to block, since no alternative is given. This can happen in Example 3 (in page 28),
if the flow policy F is not permitted by the allowed policy of the domain of
the branch that is actually executed, then the migration will not occur, and
execution will not proceed. In order to have safety, we could design the thread
creation instruction as including an alternative branch for execution in case the
side condition fails. Nevertheless, Example 3 might have better been written

(thread (allowed F then (flow F in M1) else M2) at d) (9)

in effect using the allowed condition for encoding such alternative behaviors.
Returning to Example 6 (in page 6), thanks to the relaxed Mig rule, this pro-

gram is now always accepted statically by the type system. Depending on the
result of the test, the migration might also be allowed to occur if a safe branch
is chosen. This means that enforcement mechanism II accepts more secure pro-
grams. Because of the possibility of blockage mentioned above, an information
flow analysis might reject some of the programs accepted here, in case for in-
stance the reference a is assigned a “high” security level, and a “low” write is
performed after the test. This issue is however orthogonal to our aims here.

A drawback with this enforcement mechanism lies in the computation weight
of the runtime type checks. This is particularly acute for an expressive language
such as the one we are considering. Indeed, recognizing typability of ML expres-
sions has exponential (worst case) complexity [11].

5.3 Static Informative Typing for Runtime Effect Checking

We have seen that bringing the type-based migration control of programs to run-
time allows to increase the precision of the confinement analysis. This is, how-
ever, at the cost of performance. It is possible to separate the program analysis
as to what are the declassification operations that are performed by migrating
threads, from the safety problem of determining whether those declassification
operations should be allowed at a given domain. To achieve this, we now present
an informative type system [8] that statically calculates a summary of all the
declassification operations that might be performed by a program, in the form of
a declassification effect. Furthermore, this type system produces a version of the
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[NilI] Γ 
Σ () ↪→ () : �, unit [BtI] Γ 
Σ tt ↪→ tt : �, bool [BfI] Γ 
Σ ff ↪→ff : �, bool

[LocI] Γ 
Σ a ↪→ a : �, Σ(a) ref [VarI] Γ, x : τ 
Σ x ↪→ x : �, τ

[AbsI]
Γ, x : τ 
Σ M ↪→ M̂ : s, σ

Γ 
Σ (λx.M) ↪→ (λx.M̂) : �, τ
s−→ σ

[RecI]
Γ, x : τ 
Σ X ↪→ X̂ : s, τ

Γ 
Σ (�x.X) ↪→ (�x.X̂) : s, τ

[RefI]
Γ 
Σ M ↪→ M̂ : s, θ′ θ � θ′

Γ 
Σ (refθ M) ↪→ (refθ M̂) : s, θ ref
[DerI]

Γ 
Σ M ↪→ M̂ : s, θ ref

Γ 
Σ (! M) ↪→ (! M̂) : s, θ

[AssI]
Γ 
Σ M ↪→ M̂ : s, θ ref Γ 
Σ N ↪→ N̂ : s′, θ′ θ � θ′

Γ 
Σ (M := N) ↪→ (M̂ := N̂) : s � s′, unit

[SeqI]
Γ 
Σ M ↪→ M̂ : s, τ Γ 
Σ N ↪→ N̂ : s′, σ

Γ 
Σ (M ;N) ↪→: s � s′, σ

[CondI]

Γ 
Σ M ↪→ M̂ : s, bool
Γ 
Σ Nt ↪→ N̂t : st, τt
Γ 
Σ Nf ↪→ N̂f : sf , τf

τt ≈ τf

Γ 
Σ (if M then Nt else Nf ) ↪→ (if M̂ then N̂t else N̂f ) : s� st�sf , τt�τf

[AppI]
Γ 
Σ M ↪→ M̂ : s, τ

s′−→ σ Γ 
Σ N ↪→ N̂ : s′′, τ ′′ τ � τ ′′

Γ 
Σ (M N) ↪→ (M̂ N̂) : s � s′ � s′′, σ

[FlowI]
Γ 
Σ N ↪→ N̂ : s, τ

Γ 
Σ (flow F in N) ↪→ (flow F in N̂) : s � F, τ

[AllowI]
Γ 
Σ Nt ↪→ N̂t : st, τt
Γ 
Σ Nf ↪→ N̂f : sf , τf

τt ≈ τf

Γ 
Σ(allowed F then Nt else Nf ) ↪→ (allowed F then N̂t else N̂f ) :st�F�sf , τt � τf

[MigI]
Γ 
Σ M ↪→ M̂ : s,unit

Γ 
Σ (thread M at d) ↪→ (threads M̂ at d) : �, unit

Fig. 4. Informative Type and Effect System for obtaining the Declassification Effect

program that is annotated with the relevant information for deciding, at run-
time, whether its migrating threads can be considered safe by the destination
domain. The aim is to bring the overhead of the runtime check to static time.

The typing judgments of the type system in Figure 4 have the form:

Γ Σ M ↪→ M̂ : s, τ (10)

Comparing with the typing judgments of Subsection 5.2, while the flow policy
allowed by the context parameter is omitted from the turnstile ‘’, the security
effect s represents a flow policy which corresponds to the declassification effect :
a lower bound to the flow policies that are declared in the typed expression. The
second expression M̂ is the result of annotating M . The syntax of annotated
expressions differs only in the thread creation construct, that has an additional
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flow policy F as parameter, written (threadF M at d). The syntax of types is
the same as the ones used in Subsections 5.1 and 5.2.

It is possible to relax the type system by matching types that have the same
structure, even if they differ in flow policies pertaining to them. We achieve this
by overloading � to relate types where certain latent effects in the first are at
least as permissive as the corresponding ones in the second. The more general
relation ≈ matches types where certain latent effects differ: Finally, we define an
operation � between two types τ and τ ′ such that τ ≈ τ ′:

τ�τ ′ iff τ = τ ′, or τ = θ
F−→σ and τ ′ = θ

F ′
−→σ′ with F �F ′ and σ�σ′

τ ≈ τ ′ iff τ = τ ′, or τ = θ
F−→ σ and τ ′ = θ

F ′
−→ σ′ with σ ≈ σ′

τ�!τ ′ = τ, if τ = τ ′, or θ F�F ′
−−−→σ � σ′, if τ = θ

F−→σ and τ ′ = θ
F ′
−→σ′

(11)

The � relation is used in rules RefI, AssI andAppI, in practice enabling to
associate to references and variables (by reference creation, assignment and ap-
plication) expressions with types that contain stricter policies than required by
the declared types. The relation ≈ is used in rules CondI andAllowI in order
to accept that two branches of the same test construct can differ regarding some
of their policies. Then, the type of the test construct is constructed from both
using �, thus reflecting the flow policies in both branches.

The declassification effect is constructed by aggregating (using the meet oper-
ation) all relevant flow policies that are declared within the program. The effect
is updated in rule FlowI, each time a flow declaration is performed, and “grows”
as the declassification effects of sub-expressions are met in order to form that of
the parent command. However, when a part of the program is “protected” by an
allowed condition, some of the information in the declassification effect can be
discarded. This happens in rule AllowI, where the declassification effect of the
first branch is not used entirely: the part that will be tested during execution
by the allowed-condition is omitted. In rule MigI, the declassification effect of
migrating threads is also not recorded in the effect of the parent program, as
they will be executed (and tested) elsewhere. That information is however used
to annotate the migration instruction.

One can show that the type system is deterministic, in the sense that it
assigns to a non-annotated expression a single annotated version of it, a single
declassification effect, and a single type.

Modified operational semantics, revisited. By executing annotated programs, the
type check that conditions the migration instruction can be replaced by a simple
declassification effect inspection. The new migration rule is similar to the one in
Subsection 5.2, but now makes use of the declassification effect (n fresh in T ):

W (d) � s

W Σ 〈{E[(threads N at d)]
m}, T, S〉 n−−→

�E�
〈{E[()]m, Nn},[n := d]T, S〉

(12)
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In the remaining rules of the operational semantics the annotations are ignored.
We refer to the mechanism that consists of statically annotating all threads in

a network according to the type and effect system of Figure 4, assuming that each
thread’s declassification effect is allowed by its initial domain, using the seman-
tics of Figure 2 modified according to Rule (12), as Enforcement mechanism III.

Soundness. We will now see that the declassification effect can be used for
enforcing confinement. The (W,Σ, Γ )-compatibility predicate that is used to
define confinement here requires all references a ∈ dom(S) to store a value that
results from annotating some other value V according to Γ Σ

�
V ↪→ S(a) : Σ(a).

Theorem 3 (Soundness of Enforcement Mechanism III). Consider a
fixed allowed-policy mapping W , a given reference labeling Σ and typing en-
vironment Γ , and a thread configuration 〈P, T 〉 such that for all Mm ∈ P there
exist M̂ , s and τ such that Γ Σ M ↪→ M̂ : s, τ and W (T (m)) � s. Then 〈P̂ , T 〉,
formed by annotating the threads in 〈P, T 〉, is (W,Σ, Γ )-confined.

Proof. By showing that the following is a set of (Σ,Γ )-confined located threads

{〈d, M̂m〉 | m ∈ Nam and ∃M, s, τ . Γ Σ M ↪→ M̂ : s, τ and W (d) � s} (13)

using induction on the inference of Γ Σ M ↪→ M̂ : s, τ .

Precision and efficiency. The relaxed type system of Subsection 5.2 for checking
confinement, and its informative counterpart of Figure 4, are strongly related.
The following result states that typability according to latter type system is
at least as precise as the former. It is proven by induction on the inference of
Γ ΣA M : τ .

Proposition 1. Consider a given a typing environment Γ and reference labeling
Σ. If there exist A, τ such that Γ ΣA M : τ , then there exist M̂ , τ ′ and s such

that Γ Σ M ↪→ M̂ : s, τ ′ and A � s with τ � τ ′.

The converse direction is not true, i.e. enforcement mechanism III accepts
strictly more programs than enforcement mechanism II. This can be seen by

considering the secure program where, θ1 = τ
F1−→ σ and θ2 = τ

F2−→ σ:

(if (! a) then (! (refθ1 M1)) else (! (refθ2 M2))) (14)

This program is not accepted by the type system of Section 5.2 because it cannot
give the same type to both branches of the conditional (the type of the derefer-
ence of a reference of type θ is precisely θ). However, since the two types satisfy
θ1 ≈ θ2, the informative type system can accept it and give it the type θ1 � θ2.

A more fundamental difference between the two enforcement mechanisms lays
in the timing of the computation overhead that is required by each mechanism.
While mechanism II requires heavy runtime type checks to occur each time a
thread migrates, in III the typability analysis is anticipated to static time, leaving



36 A. Almeida Matos and J. Cederquist

only a comparison between two flow policies to be performed at migration time.
The complexity of this comparison depends on the concrete representation of
flow policies. In the worst case, that of flow policies as general downward closure
operators (see Section 2), it is linear on the number of security levels that are
considered. When flow policies are flow relations, then it consists on a subset
relation check, which is polynomial on the size of the flow policies.

6 Related Work

Controlling declassification. Most previous mechanisms for controlling declassi-
fication [12] target flexible versions of an information flow property. Departing
from this approach, the work by Boudol and Kolundzija [13] on combining access
control and declassification is the first to treat declassification control separately
from the underlying information flow problem. In [13], standard access control
primitives are used to control the access level of programs that perform declas-
sifications in the setting of a local language, ensuring that a program can only
declassify information that it has the right to read.

Controlling code mobility. A wide variety of distributed network models have
been designed with the purpose of studying mechanisms for controlling code
mobility. These range from type systems for statically controlling migration as
an access control mechanism [5,14], to runtime mechanisms that are based on
the concept of programmable domain. In the latter, computing power is explic-
itly associated to the membranes of computation domains, and can be used for
controlling boundary transposition. This control can be performed by processes
that interact with external and internal programs [15,16,4], or by more specific
automatic verification mechanisms [17]. In the present work we abstract away
from the particular machinery that implements the migration control checks,
and express declaratively, via the language semantics, the condition that must
be satisfied for the boundary transposition to be allowed.

Checking the validity of the declassification effect as a certificate is not simpler
than checking the program against a concrete allowed policy (as presented in
Subsection 5.2), meaning that it does not consist of a case of Proof Carrying
Code. The concept of trust can be used to lift the checking requirements of
code whose history of visited domains provides enough reassurance [17,5]. These
ideas could be applied to the present work, assisting the decision of trusting the
declassification effect, otherwise leading to a full type check of the code.

Hybrid mechanisms. The use of hybrid mechanisms for enforcing information
flow policies is currently an active research area (see [18] for a review of related
work). The closest to ours is perhaps the study of securing information release
for a simple language with dynamic code evaluation in the form of a string eval
command, which includes an on-the-fly information flow static analysis [19].
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Focusing on declassification control, the idea of using a notion of declassifica-
tion effect for building a runtime migration control mechanism was put forward
in [6] for a similar language with local thread creator and a basic goto migration
instruction. In spite of the restrictions that are pointed out in Subsection 5.1
for a static analysis, the type system presented as part of Enforcement Mech-
anism I is more refined than the proof-of-concept presented earlier. Indeed, in
the previous work, migration was not taken into account when analyzing the de-
classifications occurring within the migrating code. So while there the following
program would be rejected if F was not allowed by W (d1)

(thread (thread (flow F in M) at d2) at d1) (15)

the type system of Figure 3 only rejects it if F is not allowed by W (d2). En-
forcement Mechanism II adopts part of the idea in [6] of performing a runtime
type analysis to migrating programs, but uses a more permissive “checking” type
system. Enforcement Mechanism III explores a mechanism that allows to take
advantage of the efficiency of flow policy comparisons. It uses a type and effect
system for calculating declassification effects that is substantially more precise
than previous ones, thanks to the matching relations and operations that it uses.

The concept of informative type and effect system was introduced in [8], where
a different notion of declassification effect was defined and applied to the problem
of dealing with dynamic updates to a local allowed flow policy.

7 Conclusion

We have considered an instance of the problem of enforcing compliance of declas-
sifications to a dynamically changing allowed flow policy. In our setting, changes
in the allowed flow policy result from the migration of programs during execu-
tion. We approach the problem from a migration control perspective. To this
end, we chose a network model that abstracts away the details of the migration
control architecture. This allows us to prove soundness of a concrete network
level security property, guaranteeing that programs can roam over the network,
never performing declassifications that violate the network confinement property.

While our results are formulated for a particular security property – flow pol-
icy confinement – we expect that similar ideas can be used for other properties.
One could add expressiveness to the property by taking into account the history
of domains that a thread has visited when defining secure code migrations. For
instance, one might want to forbid threads from moving to domains with more
favorable allowed flow policies. This would be easily achieved by introducing a
condition on the allowed flow policies of origin and destination domains.

By performing comparisons between three related enforcement mechanisms,
we have argued that the concept of declassification effect offers a good balance
between precision and efficiency. We believe that similar mechanisms can be
applied in other contexts. For future work, we plan to study others instances of
enabling dynamic changing allowed flow policies.
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Abstract. Compliance policies often stipulate conditions on aggregated
data. Current policy monitoring approaches are limited in the kind of
aggregations that they can handle. We rectify this as follows. First, we
extend metric first-order temporal logic with aggregation operators. This
extension is inspired by the aggregation operators common in database
query languages like SQL. Second, we provide a monitoring algorithm
for this enriched policy specification language. Finally, we experimentally
evaluate our monitor’s performance.

1 Introduction

Motivation. Compliance policies represent normative regulations, which specify
permissive and obligatory actions for agents. Both public and private compa-
nies are increasingly required to monitor whether agents using their IT systems,
i.e., users and their processes, comply with such policies. For example, US hos-
pitals must follow the US Health Insurance Portability and Accountability Act
(HIPAA) and financial services must conform to the Sarbanes-Oxley Act (SOX).
First-order temporal logics are not only well-suited for formalizing such regula-
tions, they also admit efficient monitoring. When used online, these monitors
observe the agents’ actions as they are made and promptly report violations.
Alternatively, the actions are logged and the monitor checks them later, such as
during an audit. See, for example, [6, 18].

Current logic-based monitoring approaches are limited in their support for
expressing and monitoring aggregation conditions. Such conditions are often
needed for compliance policies, such as the following simple example from fraud
prevention: A user must not withdraw more than $10,000 within a 30 day pe-
riod from his credit card account. To formalize this policy, we need an operator
to express the aggregation of the withdrawal amounts over the specified time
window, grouped by the users. In this paper, we address the problem of express-
ing and monitoring first-order temporal properties built from such aggregation
operators.

Solution. First, we extend metric first-order temporal logic (MFOTL) with ag-
gregation operators and with functions. This follows Hella et al.’s [19] exten-
sion of first-order logic with aggregations. We also ensure that the semantics
of aggregations and grouping operations in our language mimics that of SQL.
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As illustration, a formalization in our language of the above fraud-detection
policy is

�∀u. ∀s. [SUMa a. �[0,31)withdraw(u, a)](s;u)→ s � 10000 . (P0)

The SUM operator, at the current time point, groups all withdrawals, in the
past 30 days, for a user u and then sums up their amounts a. The aggregation
formula defines a binary relation where the first coordinate is the SUM’s result
s and the second coordinate is the user u for whom the result is calculated. If
the user’s sum is greater than 10000, then the policy is violated at the current
time point. Finally, the formula states that the aggregation condition must hold
for each user and every time point.

A corresponding SQL query for determining the violations with respect to the
above policy at a specific time is

SELECT SUM(a) AS s, u FROM W GROUP BY u HAVING SUM(a) > 10000 ,

where W is the dynamically created view consisting of the withdrawals of all
users within the 30 day time window relative to the given time. Note that the
subscript a of the formula’s aggregation operator in (P0) corresponds to the a
in the SQL query and the third appearance of a in (P0) is implicit in the query,
as it is fixed by the view’s definition. The second a in (P0) is redundant and
emphasizes that the variable a is quantified, i.e., it does not correspond to a
coordinate in the resulting relation.

Not all formulas in our language are monitorable. Unrestricted use of logic
operators may require infinite relations to be built and manipulated. The second
part of our solution, therefore, is a monitorable fragment of our language. It can
express all our examples, which represent typical policy patterns, and it allows
the liberal use of aggregations and functions. We extend our monitoring algo-
rithm for MFOTL [7] to this fragment. In more detail, the algorithm processes
log files sequentially and handles aggregation formulas by translating them into
extended relational algebra. Functions are handled similarly to Prolog, where
variables are instantiated before functions are evaluated.

We have implemented and evaluated our monitoring solution. For the eval-
uation, we use fraud-detection policy examples and synthetically generated log
files. We first compare the performance of our prototype implementation with
the performance of the relational database management system PostgreSQL [22].
Our language is better suited for expressing the policy examples and our pro-
totype’s performance is superior to PostgreSQL’s performance. This is not sur-
prising since the temporal reasoning must be explicitly encoded in SQL queries
and PostgreSQL does not process logged data in the time sequential manner.
We also compare our prototype implementation with the stream-processing tool
STREAM [2]. Its performance is better than our tool’s performance because, in
contrast to our tool, STREAM is limited to a restricted temporal pattern for
which it is optimized. Although we have not explored performance optimizations
for our tool, it is, nevertheless, already efficient enough for practical use.
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Contributions. Although aggregations have appeared previously in monitoring,
to our knowledge, our language is the first to add expressive SQL-like aggre-
gation operators to a first-order temporal setting. This enables us to express
complex compliance policies with aggregations. Our prototype implementation
of the presented monitoring algorithm is therefore the first tool to handle such
policies, and it does so with acceptable performance.

Related Work. Our MFOTL extension is inspired by the aggregation operators
in database query languages like SQL and by Hella et al.’s extension of first-
order logic with aggregation operators [19]. Hella et al.’s work is theoretically
motivated: they investigate the expressiveness of such an extension in a non-
temporal setting. A minor difference between their aggregation operators and
ours is that their operators yield terms rather than formulas as in our extension.

Monitoring algorithms for different variants of first-order temporal logics have
been proposed by Hallé and Villemaire [18], Bauer at al. [9], and Basin et al. [7].
Except for the counting quantifier [9], none of them support aggregations. Bian-
culli et al. [10] present a policy language based on a first-order temporal logic
with a restricted set of aggregation operators that can only be applied to atomic
formulas. For monitoring, they require a fixed finite domain and provide a trans-
lation to a propositional temporal logic. Such a translation is not possible in our
setting since variables range over an infinite domain. In the context of database
triggers and integrity constraints, Sistla and Wolfson [23] describe an integration
of aggregation operators into their monitoring algorithm for a first-order tempo-
ral logic. Their aggregation operators are different from those presented here in
that they involve two formulas that select the time points to be considered for
aggregation and they use a database query to select the values to be aggregated
from the selected time points.

Other monitoring approaches that support different kinds of aggregations are
LarvaStat [13], LOLA [15], EAGLE [4], and an approach based on algebraic alter-
nating automata [16]. These approaches allow one to aggregate over the events in
system traces, where events are either propositions or parametrized propositions.
They do not support grouping, which is needed to obtain statistics per group of
events, e.g., the events generated by the same agent. Moreover, quantification
over data elements and correlating data elements is more restrictive in these
approaches than in a first-order setting.

Most data stream management systems like STREAM [2] and Gigascope [14]
handle SQL-like aggregation operators. For example, in STREAM’s query lan-
guage CQL [3] one selects events in a specified time range, relative to the current
position in the stream, into a table on which one performs aggregations. The tem-
poral expressiveness of such languages is weaker than our language, in particular,
linear-time temporal operators are not supported.

Organization. In Section 2, we extend MFOTL with aggregation operators. In
Section 3, we present our monitoring algorithm, which we evaluate in Section 4.
In Section 5, we draw conclusions. Additional details are given in the appendix.
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2 MFOTL with Aggregation Operators

2.1 Preliminaries

We use standard notation for sets and set operations. We also use set notation
with sequences. For instance, for a set A and a sequence s̄ = (s1, . . . , sn), we
write A ∪ s̄ for the union A ∪ {si | 1 ≤ i ≤ n} and we denote the length of s̄
by |s̄|. Let I be the set of nonempty intervals over N. We often write an interval
in I as [b, b′) := {a ∈ N | b ≤ a < b′}, where b ∈ N, b′ ∈ N ∪ {∞}, and b < b′.

A multi-set M with domain D is a function M : D → N ∪ {∞}. This defi-
nition extends the standard one to multi-sets where elements can have an infi-
nite multiplicity. A multi-set is finite if M(a) ∈ N for any a ∈ D and the set
{a ∈ D |M(a) > 0} is finite. We use the brackets {| and |} to specify multi-sets.
For instance, {|2 · �n/2� | n ∈ N|} denotes the multi-set M : N → N ∪ {∞} with
M(n) = 2 if n is even and M(n) = 0 otherwise.

An aggregation operator is a function from multi-sets to Q ∪ {⊥} such
that finite multi-sets are mapped to elements of Q and infinite multi-
sets are mapped to ⊥. Common examples are CNT(M) :=

∑
a∈DM(a),

SUM(M) :=
∑

a∈DM(a) · a, MIN(M) := min{a ∈ D | M(a) > 0},
MAX(M) := max{a ∈ D | M(a) > 0}, and AVG(M) := SUM(M)/CNT(M)
if CNT(M) �= 0 and AVG(M) := 0 otherwise, whereM : D → N∪{∞} is a finite
multi-set. We assume that the given aggregation operators are only applied over
the multisets with the domain Q.

2.2 Syntax

A signature S is a tuple (F,R, ι), where F is a finite set of function symbols, R is
a finite set of predicate symbols disjoint from F, and the function ι : F ∪ R→ N
assigns to each symbol s ∈ F ∪ R an arity ι(s). In the following, let S = (F,R, ι)
be a signature and V a countably infinite set of variables, where V∩ (F∪R) = ∅.

Function symbols of arity 0 are called constants. Let C ⊆ F be the set of
constants of S. Terms over S are defined inductively: Constants and variables
are terms, and f(t1, . . . , tn) is a term if t1, . . . , tn are terms and f is a function
symbol of arity n > 0. We denote by fv(t) the set of the variables that occur in
the term t. We denote by T the set of all terms over S, and by T∅ the set of
ground terms. A substitution θ is a function from variables to terms. We use the
same symbol θ to denote its homomorphic extension to terms.

Given a finite set Ω of aggregation operators, the MFOTLΩ formulas over
the signature S are given by the grammar

ϕ ::= r(t1, . . . , tι(r)) | (¬ϕ) | (ϕ ∨ ϕ) | (∃x. ϕ) | (�I ϕ) | (ϕ SI ψ) | [ωt z̄. ϕ](y; ḡ) ,

where r, t and the tis, I, and ω range over the elements in R, T, I, and Ω,
respectively, x and y range over elements in V, and z̄ and ḡ range over sequences
of elements in V. Note that we overload notation: ω denotes both an aggregation
operator and its corresponding symbol. This grammar extends MFOTL’s [20] in
two ways. First, it introduces aggregation operators. Second, terms may also be
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built from function symbols and not just from variables and constants. For ease
of exposition, we do not consider future-time temporal operators.

We call [ωt z̄. ψ](y; ḡ) an aggregation formula. It is inspired by the homony-
mous relational algebra operator. Intuitively, by viewing variables as (relation)
attributes, ḡ are the attributes on which grouping is performed, t is the term on
which the aggregation operator ω is applied, and y is the attribute that stores
the result. The variables in z̄ are ψ’s attributes that do not appear in the de-
scribed relation. We define the semantics in Section 2.3, where we also provide
examples.

The set of free variables of a formula ϕ, denoted fv(ϕ), is defined as expected
for the standard logic connectives. For an aggregation formula, it is defined
as fv

(
[ωt z̄. ϕ](y; ḡ)

)
:= {y} ∪ ḡ. A variable is bound if it is not free. We denote

by f̄v (ϕ) the sequence of free variables of a formula ϕ that is obtained by ordering
the free variables of ϕ by their occurrence when reading the formula from left
to right. A formula is well-formed if for each of its subformulas [ωt z̄. ψ](y; ḡ), it
holds that (a) y �∈ ḡ, (b) fv (t) ⊆ fv(ψ), (c) the elements of z̄ and ḡ are pairwise
distinct, and (d) z̄ = fv(ψ) \ ḡ. Note that, given condition (d), the use of one of
the sequences z̄ and ḡ is redundant. However, we use this syntax to make explicit
the free and bound variables in aggregation formulas. Throughout the paper, we
consider only well-formed formulas.

To omit parenthesis, we assume that Boolean connectives bind stronger than
temporal connectives, and unary connectives bind stronger than binary ones,
except for the quantifiers, which bind weaker than Boolean ones. As syntactic
sugar, we use standard Boolean connectives such as ϕ ∧ ψ := ¬(¬ϕ ∨ ¬ψ), the
universal quantifier ∀x. ϕ := ¬∃x.¬ϕ, and the temporal operators �I ϕ := (p ∨
¬p)SI ϕ, �I ϕ := ¬ �I ¬ϕ, where I ∈ I and p is some predicate symbol of arity 0,
assuming without loss of generality that R contains such a symbol. Non-metric
variants of the temporal operators are easily defined, e.g., �ϕ := �[0,∞) ϕ.

2.3 Semantics

We distinguish between predicate symbols whose corresponding relations are
rigid over time and those that are flexible, i.e., their interpretations can change
over time. We denote by Rr and Rf the sets of rigid and flexible predicate
symbols, where R = Rr ∪ Rf with Rr ∩ Rf = ∅. We assume Rr contains the
binary predicate symbols ≈ and ≺, which have their expected interpretation,
namely, equality and ordering.

A structure D over the signature S consists of a domain D �= ∅ and interpre-
tations fD ∈ Dι(f) → D and rD ⊆ Dι(r), for each f ∈ F and r ∈ R. A temporal
structure over the signature S is a pair (D̄, τ̄ ), where D̄ = (D0,D1, . . . ) is a
sequence of structures over S and τ̄ = (τ0, τ1, . . . ) is a sequence of non-negative
integers, with the following properties.

1. The sequence τ̄ is monotonically increasing, that is, τi ≤ τi+1, for all i ≥ 0.
Moreover, τ̄ makes progress, that is, for every τ ∈ N, there is some index
i ≥ 0 such that τi > τ .

2. All structures Di, with i ≥ 0, have the same domain, denoted D.
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3. Function symbols and rigid predicate symbols have rigid interpretations, that
is, fDi = fDi+1 and pDi = pDi+1 , for all f ∈ F, p ∈ Rr, and i ≥ 0. We also
write fD and pD for fDi and pDi , respectively.

We call the elements in the sequence τ̄ timestamps and the indices of the elements
in the sequences D̄ and τ̄ time points.

A valuation is a mapping v : V→ D. For a valuation v, the variable sequence
x̄ = (x1, . . . , xn), and d̄ = (d1, . . . , dn) ∈ Dn, we write v[x̄ 
→ d̄] for the valuation
that maps xi to di, for 1 ≤ i ≤ n, and the other variables’ valuation is unaltered.
We abuse notation by also applying a valuation v to terms. That is, given a
structure D, we extend v homomorphically to terms.

For the remainder of the paper, we fix a countable domain D with Q∪{⊥} ⊆ D.
We only consider a single-sorted logic. One could alternatively have sorts for the
different types of elements like data elements and the aggregations. Furthermore,
note that function symbols are always interpreted by total functions. Partial func-
tions like division over scalar domains can be extended to total functions, e.g.,
by mapping elements outside the function’s domain to ⊥. Since the treatment
of partial functions is not essential to our work, we treat ⊥ as any other element
of D. Alternative treatments are, e.g., based on multi-valued logics [21].

Definition 1. Let (D̄, τ̄) be a temporal structure over the signature S, with
D̄ = (D0,D1, . . . ) and τ̄ = (τ0, τ1, . . . ), ϕ a formula over S, v a valuation,
and i ∈ N. We define the relation (D̄, τ̄ , v, i) |= ϕ inductively as follows:

(D̄, τ̄ , v, i) |= p(t1, . . . , tι(r)) iff
(
v(t1), . . . , v(tι(r))

)
∈ pDi

(D̄, τ̄ , v, i) |= ¬ψ iff (D̄, τ̄ , v, i) �|= ψ
(D̄, τ̄ , v, i) |= ψ ∨ ψ′ iff (D̄, τ̄ , v, i) |= ψ or (D̄, τ̄ , v, i) |= ψ′

(D̄, τ̄ , v, i) |= ∃x. ψ iff (D̄, τ̄ , v[x 
→ d], i) |= ψ, for some d ∈ D
(D̄, τ̄ , v, i) |= �I ψ iff i > 0, τi − τi−1 ∈ I, and (D̄, τ̄ , v, i− 1) |= ψ
(D̄, τ̄ , v, i) |= ψ SI ψ

′ iff for some j ≤ i, τi − τj ∈ I, (D̄, τ̄ , v, j) |= ψ′,
and (D̄, τ̄ , v, k) |= ψ, for all k with j < k ≤ i

(D̄, τ̄ , v, i) |= [ωt z̄. ψ](y; ḡ) iff v(y) = ω(M),

where M : D→ N ∪ {∞} is the multi-set{∣∣v[z̄ 
→ d̄](t)
∣∣ (D̄, τ̄ , v[z̄ 
→ d̄], i) |= ψ, for some d̄ ∈ D|z̄|∣∣}.

Note that the semantics for the aggregation formula is independent of the order
of the variables in the sequence z̄.

For a temporal structure (D̄, τ̄), a time point i ∈ N, a formula ϕ, a valuation v,
and a sequence z̄ of variables with z̄ ⊆ fv (ϕ), we define the set

�ϕ�(D̄,τ̄ ,i)
z̄,v := {d̄ ∈ D|z̄| | (D̄, τ̄ , v[z̄ 
→ d̄], i) |= ϕ} .

We drop the superscript when it is clear from the context. We drop the subscript
when z̄ = f̄v (ϕ). Note that in this case the valuation v is irrelevant and �ϕ�(D̄,τ̄ ,i)

denotes the set of satisfying elements of ϕ at time point i in (D̄, τ̄ ).
With this notation, we illustrate the semantics for aggregation formulas in

the case where we aggregate over a variable. We use the same notation as in
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x y g

1 b a
2 b a
1 c a
4 c b

x y g

1
2
1

b
b
c

a

4 c b

Fig. 1. Relation pD0 from Example 2. The two boxes represent the multi-set M for the
two valuations v1 and v2, respectively.

Definition 1. In particular, consider a formula ϕ = [ωx z̄. ψ](y; ḡ), with x ∈ V,
and a valuation v. Note that v (and thus also v[z̄ 
→ d̄]) fixes the values of the
variables in ḡ because these are free in ϕ. The multi-setM is as follows. If x �∈ ḡ,
then M(a) = |{d̄ ∈ �ϕ�z̄,v | dj = a}|, for any a ∈ D, where j is the index of x
in z̄. If x ∈ ḡ, then M(v(x)) = |�ϕ�z̄,v| and M(a) = 0, for any a ∈ D \ {v(x)}.

Example 2. Let (D̄, τ̄ ) be a temporal structure over a signature with a ternary
predicate symbol p with pD0 = {(1, b, a), (2, b, a), (1, c, a), (4, c, b)}. Moreover,
let ϕ be the formula [SUMx x, y. p(x, y, g)](s; g) and z̄ = (x, y). At time point 0,
for a valuation v1 with v1(g) = a, we have �p(x, y, g)�z̄,v1= {(1, b), (2, b), (1, c)}
and M = {|1, 2, 1|}. For a valuation v2 with v2(g) = b, we have �p(x, y, g)�z̄,v2 =
{(4, c)} and M = {|4|}. Finally, for a valuation v3 with v3(g) /∈ {a, b}, we have
that �p(x, y, g)�z̄,v3 and M are empty. So the formula ϕ is only satisfied under
a valuation v with v(s) = 4 and either v(g) = a or v(g) = b. Indeed, we have
�ϕ� = {(4, a), (4, b)}. The tables in Figure 1 illustrate this example. We obtain
�[SUMx y, g. p(x, y, g)](s;x)� = {(2, 1), (2, 2), (4, 4)}, if we group on the variable x
instead of g and �[SUMx x, y, g. p(x, y, g)](s)� = {(8)}, if we do not group.

Example 3. Consider the formula ϕ = [SUMa a.ψ](s;u), where ψ is the formula

�[0,31) withdraw (u, a). Let (D̄, τ̄ ) be a temporal structure with the relations

withdrawD0 = {(Alice, 9), (Alice, 3)} and withdrawD1 = {(Alice, 3)}, and the

timestamps τ0 = 5 and τ1 = 8. We have that �ψ�(D̄,τ̄ ,0) = �ψ�(D̄,τ̄ ,1) =

{(Alice, 9), (Alice, 3)} and therefore �ϕ�(D̄,τ̄ ,0) = �ϕ�(D̄,τ̄ ,1) = {(12,Alice)}.
Our semantics ignores the fact that the tuple (Alice, 3) occurs at both
time points 0 and 1. Note that the withdraw events do not have unique
identifiers in this example.

To account for multiple occurrences of an event, we can attach to each
event additional information to make it unique. For example, assume we
have a predicate symbol ts at hand that records the timestamp at each time
point, i.e., tsDi = {τi}, for i ∈ N. For the formula ϕ′ = [SUMa a. ψ

′](s;u)
with ψ′ = �[0,31) withdraw (u, a) ∧ ts(t), we have that �ϕ′�(D̄,τ̄ ,0) = {(12,Alice)}
and �ϕ′�(D̄,τ̄ ,1) = {(15,Alice)} because �ψ′�(D̄,τ̄ ,0) = {(Alice, 9, 5), (Alice, 3, 5)}
while �ψ′�(D̄,τ̄ ,1) = {(Alice, 9, 5), (Alice, 3, 5), (Alice, 3, 8)}. To further distin-
guish between withdraw events at time points with equal timestamps, we
would need additional information about the occurrence of an event, e.g.,
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p ∈ Rf x1, . . . , xι(p) ∈ V are pairwise distinct

p(x1, . . . , xι(p)) ∈ F FLX

ϕ ∈ F p ∈ Rr
⋃ι(p)

i=1 fv(ti) ⊆ fv(ϕ)

ϕ ∧ p(t1, . . . , tι(p)) ∈ F RIG∧
ϕ ∈ F p ∈ Rr

⋃ι(p)
i=1 fv(ti) ⊆ fv(ϕ)

ϕ ∧ ¬p(t1, . . . , tι(p)) ∈ F RIG∧¬

ϕ ∈ F p ∈ Rr
⋃ι(p)

i=1,i�=j fv(ti) ⊆ fv(ϕ) tj ∈ V j ∈ Hp

ϕ ∧ p(t1, . . . , tι(p)) ∈ F RIG′∧

ϕ,ψ ∈ F
ϕ ∧ ψ ∈ F GEN∧

ϕ, ψ ∈ F fv(ψ) ⊆ fv(ϕ)

ϕ ∧ ¬ψ ∈ F GEN∧¬
ϕ, ψ ∈ F fv(ψ) = fv(ϕ)

ϕ ∨ ψ ∈ F GEN∨

ϕ ∈ F
∃x. ϕ ∈ F GEN∃

ϕ ∈ F
�I ϕ ∈ F GEN�

ϕ ∈ F
[ωt z̄. ϕ](y; ḡ) ∈ F GENω

ϕ,ψ ∈ F fv(ϕ) ⊆ fv(ψ)

ϕ SI ψ ∈ F GENS

ϕ,ψ ∈ F fv(ϕ) ⊆ fv(ψ)

¬ϕ SI ψ ∈ F GEN¬S

Fig. 2. The derivation rules defining the fragment F of monitorable formulas

information obtained from a predicate symbol tpts that is interpreted as
tptsDi = {(i, τi)}, for i ∈ N.

The multiplicity issue illustrated by Example 3 also appears in databases. SQL is
based on a multi-set semantics and one uses the DISTINCT keyword to switch to
a set-based semantics. However, it is problematic to define a multi-set semantics
for first-order logic, i.e., one that attaches a multiplicity to a tuple d̄ ∈ D|fv(ϕ)|

for how often it satisfies the formula ϕ instead of a Boolean value. For instance,
there are several ways to define a multi-set semantics for disjunction: the multi-
plicity of d̄ for ψ∨ψ′ can be either the maximum or the sum of the multiplicities
of d̄ for ψ and ψ′. Depending on the choice, standard logical laws become invalid,
namely, distributivity of existential quantification or conjunction over disjunc-
tion. Defining a multi-set semantics for negation is even more problematic.

3 Monitoring Algorithm

We assume that policies are of the form �∀x̄. ϕ, where ϕ is an MFOTLΩ formula
and x̄ is the sequence of free variables of ϕ. The policy requires that ∀x̄. ϕ holds
at every time point in temporal structure (D̄, τ̄). In the following, we assume
that (D̄, τ̄ ) is a temporal database, i.e., (1) the domain D is countably infinite,
(2) the relation pDi is finite, for each p ∈ Rf and i ∈ N, (3) pD is a recursive
relation, for each p ∈ Rr, and (4) fD is computable, for each f ∈ F. We also
assume that the aggregation operators in Ω are computable functions on finite
multi-sets.

The inputs of our monitoring algorithm are a formula ψ, which is logically
equivalent to ¬ϕ, and a temporal database (D̄, τ̄ ), which is processed iteratively.

The algorithm outputs, again iteratively, the relation �ψ�(D̄,τ̄ ,i), for each i ≥ 0.
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As ψ and ¬ϕ are equivalent, the tuples in �ψ�(D̄,τ̄ ,i) are the policy violations at
time point i. Note that we drop the outermost quantifier as we are interested
not only in whether the policy is violated. An instantiation of the free variables
x̄ that satisfies ψ provides additional information about the violations.

3.1 Monitorable Fragment

Not all formulas are effectively monitorable. Consider, for example, the policy
�∀x. ∀y. p(x) → q(x, y) with the formula ψ = p(x) ∧ ¬q(x, y) that we use for
monitoring. There are infinitely many violations for time points i with pDi �= ∅,
namely, any tuple (a, b) ∈ D2 \ qDi with a ∈ pDi . In such a case, �ψ�(D̄,τ̄ ,i)

is infinite and its elements cannot be enumerated in finite time. We define a
fragment of MFOTLΩ that guarantees finiteness. Furthermore, the set of viola-
tions at each time point can be effectively computed bottom-up over the formula
structure. In the following, we treat the Boolean connective ∧ as a primitive.

Definition 4. The set F of monitorable formulas with respect to (Hp)p∈Rr is
defined by the rules given in Figure 2, where Hp ⊆ {1, . . . , ι(p)}, for each p ∈ Rr.

Let � be a label of a rule from Figure 2. We say that a formula ϕ ∈ F is of kind �
if there is a derivation tree for ϕ having as root a rule labeled by �.

Before describing some of the rules, we first explain the meaning of the set Hp,
for p ∈ Rr with arity k. The set Hp contains the indexes j for which we can
determine the values of the variable xj that satisfy p(x1, . . . , xk), given that
the values of the variables xi with i �= j are fixed. Formally, given a temporal
database (D̄, τ̄ ) and a rigid predicate symbol p of arity k > 0, we say that
an index j, with 1 ≤ j ≤ k, is effective for p if for any ā ∈ Dk−1, the set
{d ∈ D | (a1, . . . , aj−1, d, aj , . . . , ak−1) ∈ pD} is finite. For instance, for the rigid
predicate ≈, the set of effective indexes is H≈ = {1, 2}. Similarly, for the rigid
predicate ≺N, defined as a ≺N b iff a, b ∈ N and a < b, we have H≺N

:= {1}.
We describe the intuition behind the first four rules in Figure 2. The meaning

of the other rules should then be obvious. The first rule (FLX) requires that in
an atomic formula p(t̄) with p ∈ Rf , the terms ti are pairwise distinct variables.
This formula is monitorable since we assume that p’s interpretation is always a
finite relation. For the rules (RIG∧) and (RIG∧¬), consider formulas of the form

ϕ ∧ p(t̄) and ϕ ∧ ¬p(t̄) with p ∈ Rr and
⋃ι(p)

i=1 fv(ti) ⊆ fv(ϕ). In both cases,
the second conjunct restricts on the tuples satisfying ϕ. A simple example is
the formula p(x, y) ∧ x + 1 ≈ y. If ϕ is monitorable, such a formula is also
monitorable as its evaluation can be performed by filtering out the tuples in �ϕ�
that do not satisfy the second conjunct. The rule (RIG′

∧) treats the case where
one of the terms ti is a variable that does not appear in ϕ. We require here that
the index j is effective, so that the values of this variable are determined by the
values of the other variables, which themselves are given by the tuples in �ϕ�.
An example is the formula p(x, y) ∧ z ≈ x + y. The required conditions on tj
are necessary. If j is not effective, then we cannot guarantee finiteness. Consider,
e.g., the formula q(x) ∧ x �≈ y. If tj is neither a variable nor a constant, then we
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must solve equations to determine the value of the variable that does not occur
in ϕ. Consider, e.g., the formula q(x) ∧ x ≈ y · y.

The rule (FLX) may seem very restrictive. However, one can often rewrite a
formula of the form p(t1, . . . , tn) with p ∈ Rf into an equivalent formula in F .
For instance, p(x+1, x) can be rewritten to ∃y. p(y, x)∧x+1 ≈ y. Alternatively,
one can add additional rules that handle such cases directly.

We now show that ϕ’s membership in F guarantees the finiteness of �ϕ�.
Lemma 5. Let (D̄, τ̄ ) be a temporal database, i ∈ N a time point, ϕ a formula,
and Hp the set of effective indexes for p, for each p ∈ Rr. If ϕ is a monitorable

formula with respect to (Hp)p∈Rr , then �ϕ�(D̄,τ̄ ,i) is finite.

There are formulas like (x ≈ y) S p(x, y) that describe finite relations but are
not in F . However, the policies considered in this paper all fall into the moni-
torable fragment. They follow the common pattern �∀x̄, ȳ. ϕ(x̄, ȳ) ∧ c(x̄, ȳ) →
ψ(ȳ) ∧ c′(ȳ), where c and c′ represent restrictions, i.e., formulas of the form r(t̄)
and ¬r(t̄) with r ∈ Rr. The formula to be monitored, i.e., ϕ(x̄, ȳ) ∧ c(x̄, ȳ) ∧
¬(ψ(ȳ)∧ c′(ȳ)) is in F if ϕ and ψ are in F , and c, c′ satisfy the conditions of the
(RIG) rules.

Finiteness can also be guaranteed by semantic notions like domain indepen-
dence or syntactic notions like range restriction, see, e.g., [1] and also [7, 12]
for a generalization of these notions to a temporal setting. If we restrict our-
selves to MFOTL without future operators, the range restricted fragment in [7]
is more general than the fragment F . This is because, in contrast to the rules
in Figure 2, range restrictions are not local conditions, that is, conditions that
only relate formulas with their direct subformulas. However, the evaluation pro-
cedures in [1,7,12] also work in a bottom-up recursive manner. So one still must
rewrite the formulas to evaluate them bottom-up. No rewriting is needed for
formulas in F . Furthermore, the fragment ensures that aggregation operators
are always applied to finite multi-sets. Thus, for any ϕ ∈ F , the element ⊥ ∈ D
never appears in a tuple of �ϕ�, provided that pDi ⊆ Dι(p) and fD(ā) ∈ D, for
every p ∈ R, f ∈ F, i ∈ N, and ā ∈ Dι(f), where D = D \ {⊥}.

3.2 Extended Relational Algebra Operators

Our monitoring algorithm is based on a translation of MFOTLΩ formulas in
F to extended relational algebra expressions. The translation uses equalities,
which we present in Section 3.3, that extend the standard ones [1] expressing the
relationship between first-order logic (without function symbols) and relational
algebra to function symbols, temporal operators, and group-by operators. In this
section, we introduce the extended relational algebra operators.

We start by defining constraints. We assume a given infinite set of variables
Z = {z1, z2, . . . } ⊆ V, ordered by their indices. A constraint is a formula
r(t1, . . . , tn) or its negation, where r is a rigid predicate symbol of arity n and the
tis are constraint terms, i.e., terms with variables in Z. We assume that for each
domain element d ∈ D, there is a corresponding constant, denoted also by d. A tu-
ple (a1, . . . , ak) satisfies the constraint r(t1, . . . , tn) iff

⋃n
i=1 fv (ti) ⊆ {z1, . . . , zk}
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and (v(t1), . . . , v(tn)) ∈ rD, where v is a valuation with v(zi) = ai, for all
i ∈ {1, . . . , k}. Satisfaction for a constraint ¬r(t1, . . . , tn) is defined similarly.

In the following, let C be a set of constraints, A ⊆ Dm, and B ⊆ Dn. The
selection of A with respect to C is the m-ary relation

σC(A) := {ā ∈ A | ā satisfies all constraints in C} .
The integer i is a column in A if 1 ≤ i ≤ m. Let s̄ = (s1, s2, . . . , sk) be a sequence
of k ≥ 0 columns in A. The projection of A on s̄ is the k-ary relation

πs̄(A) :=
{
(as1 , as2 , . . . , ask) ∈ Dk

∣∣ (a1, a2, . . . , am) ∈ A
}
.

Let s̄ be a sequence of columns in A×B. The join and the antijoin of A and B
with respect to s̄ and C is defined as

A ��s̄,C B := (πs̄ ◦ σC)(A ×B) and A�s̄,C B := A \ (A ��s̄,C B) .

Let ω be an operator in Ω, G a set of k ≥ 0 columns in A, and t a constraint
term. The ω-aggregate of A on t with grouping by G is the (k + 1)-ary relation

ωG
t (A) :=

{
(b, ā)

∣∣ ā = (ag1 , ag2 , . . . , agk) ∈ πḡ(A) and b = ω(Mā)
}
.

Here ḡ = (g1, g2, . . . , gk) is the maximal subsequence of (1, 2, . . . ,m) such that
gi ∈ G, for 1 ≤ i ≤ k, and Mā : Dm−k → N is the finite multi-set

Mā :=
{∣∣(πh̄ ◦ σ{d≈t}∪D)(A)

∣∣ d ∈ D
∣∣} ,

where h̄ is the maximal subsequence of (1, 2, . . . ,m) with no element in G and
D := {ai ≈ zgi | 1 ≤ i ≤ k}.

3.3 Translation to Extended Relational Algebra

Let (D̄, τ̄ ) be a temporal database, i ∈ N, and ϕ ∈ F . We express �ϕ�(D̄,τ̄ ,i) in
terms of the generalized relational algebra operators defined in Section 3.2.

Kind (FLX). This case is straightforward: for a predicate symbol p ∈ Rf of
arity n and pairwise distinct variables x1, . . . , xn ∈ V,

�p(x1, . . . , xn)�(D̄,τ̄ ,i) = pDi .

Kind (RIG∧). Let ψ ∧ p(t1, . . . , tn) be a formula of kind (RIG∧). Then

�ψ ∧ p(t1, . . . , tn)�(D̄,τ̄ ,i) = σ{p(θ(t1),...,θ(tn))}
(�ψ�(D̄,τ̄ ,i)

)
,

where the substitution θ : fv(ψ) → {z1, . . . , z|fv(ψ)|} is given by θ(x) = zj
with j the index of x in f̄v (ψ). For instance, if ϕ ∈ F is the formula ψ(x, y) ∧
(x− y) mod 2 ≈ 0 then �ϕ�(D̄,τ̄ ,i) = σ{(z1−z2) mod 2≈ 0}�ψ�(D̄,τ̄ ,i).

Kind (GENS). Let ψ SI ψ
′ be a formula of kind (GENS) with f̄v(ψ) = (y1, . . . , yn)

and f̄v (ψ′) = (y′1, . . . , y′
). Then

�ψ SI ψ
′�(D̄,τ̄ ,i) =

⋃
j∈{i′|i′≤i, τi−τi′∈I}

(
�ψ′�(D̄,τ̄ ,j) ��s̄,C

( ⋂
k∈{j+1,...,i}

�ψ�(D̄,τ̄ ,k)
))
,

where (a) s̄ = (1, . . . , n, n + i1, . . . , n + i
) with ij such that (i1, . . . , i
) is the
maximal subsequence of (1, . . . , �) with y′ij /∈ fv(ψ) and (b) C = {zj ≈ zn+h |
yj = y′h, 1 ≤ j ≤ n, and 1 ≤ h ≤ �}. For instance, for f̄v (ψ) = (x, y, z) and
f̄v(ψ′) = (z, z′, x), we have s̄ = (1, 2, 3, 5) and C = {z1 ≈ z6, z3 ≈ z4}.



Monitoring of Temporal First-Order Properties with Aggregations 51

Kind (GENω). Let [ωt z̄
′. ψ](y; ḡ) be a formula of kind (GENω). It holds that

�[ωt z̄
′. ψ](y; ḡ)�(D̄,τ̄ ,i) = ωG

θ(t)

(�ψ�(D̄,τ̄ ,i)
)
,

where f̄v (ψ) = (y1, . . . , yn), for some n ≥ 0, G = {i | yi ∈ ḡ}, and θ : fv(ψ) →
{z1, . . . , zn} is given by θ(x) = zj with j being the index of x in f̄v (ψ). For
instance, for [SUMx+y x, y. p(x, y, z)](s; z), we have G = {3} and θ(t) = z1 + z2.

Other kinds. The case for (RIG∧¬) is similar to the one for (RIG∧). The cases for
(GEN∧), (GEN∧¬), and (GEN¬S) are similar to the one for (GENS). The cases for
(GEN∧¬) and (GEN¬S) use the antijoin instead of the join. The cases for (GEN∨),
(GEN∃), (GEN�) are obvious. Additional details are in the appendix of the full
version of the paper available at the authors’ web pages.

3.4 Algorithmic Realization

Our monitoring algorithm for MFOTLΩ is inspired by those in [7,8,11]. We only
sketch it here. Further details are given in the appendix.

For a formula ψ ∈ F , the algorithm iteratively processes the temporal
database (D̄, τ̄ ). At each time point i, it calls the procedure eval to com-

pute �ψ�(D̄,τ̄ ,i). The input of eval at time point i is the formula ψ, the time point
i with its timestamp τi, and the interpretations of the flexible predicate symbols,
i.e., rDi , for each r ∈ Rf . Note that D̄’s domain and the interpretations of the
rigid predicate symbols and the function symbols, including the constants, do
not change over time. We assume that they are fixed in advance.

The computation of �ψ�(D̄,τ̄ ,i) is by recursion over ψ’s formula structure and
is based on the equalities in Section 3.3. Note that extended relational algebra
operators have standard, efficient implementations [17], which can be used to
evaluate the expressions on the right-hand side of the equalities from Section 3.3.

To accelerate the computation of �ψ�(D̄,τ̄ ,i), the monitoring algorithm main-
tains state for each temporal subformula, storing previously computed interme-
diate results. The monitor’s state is initialized by the procedure init and updated
in each iteration by the procedure eval. For subformulas of the form �I ψ

′, we
store at time point i > 0, the tuples that satisfy ψ′ at time-point i − 1, i.e.,
the relation �ψ′�(D̄,τ̄ ,i−1). For formulas of the form ψ1 S[a,b) ψ2, we store at time

point i, the list of relations �ψ2�(D̄,τ̄ ,j) ��s̄,C
(⋂

j<k≤i�ψ1�(D̄,τ̄ ,k)
)
with j ≤ i

such that τi − τj < b, where s̄ and C are defined as in Section 3.3. By storing
these relations, the subformulas ψ′, ψ1, and ψ2 need not be evaluated again
at time points j < i during the evaluation of ψ at time point i. Further opti-
mizations are possible. For instance, one can store and reuse some of the inter-
mediate relations used for computing the relation �ψ1 S[a,b) ψ2�(D̄,τ̄ ,i) from the
relations stored in the previously mentioned list. Also, when a = 0 and b = ∞,
it is sufficient to store the resulting relation from the previous time point, as
�ψ1 S ψ2�(D̄,τ̄ ,i) = �ψ2�(D̄,τ̄ ,i) ∪

(�ψ1 S ψ2�(D̄,τ̄ ,i−1) �� �ψ1�(D̄,τ̄ ,i)
)
.

Theorem 6. Let (D̄, τ̄) be a temporal database, i ∈ N, and ψ ∈ F . The proce-

dure eval(ψ, i, τi, Γi) returns the relation �ψ�(D̄,τ̄ ,i), whenever init(ψ), eval(ψ, 0,
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� ∀u.∀s. [SUMa a, i. �[0,31) ψ(u, a, i)](s;u) → s � 10000 (P1)

� ∀u.∀s. [SUMa a, i. �[0,31) ψ(u, a, i)](s;u) ∧ (¬limit off (u) S limit on(u)) →
s � 10000

(P2)

� ∀u.∀s.∀m. [AVGa a, i. �[0,91) ψ(u, a, i)](s;u)∧
[MAXa a. �[0,8) withdraw(u, a)](m;u) → m � 2 · s (P3)

� ∀s. [AVGu u, c. [CNTi a, i. �[0,31) ψ(u, a, i)](c; u)](s) → s � 150 (P4)

� ∀u.∀c. [CNTj v, p, j. [AVGa a, i. �[0,31) ψ(u, a, i)](v;u)∧
�[0,31) ψ(u, p, j) ∧ 2 · v ≺ p](c;u) → c � 5

(P5)

Fig. 3. Policy formalizations, where ψ(u, a, i) abbreviates withdraw(u, a) ∧ ts(i).

τ0, Γ0), . . . , eval(ψ, i− 1, τi−1, Γi−1) were called previously in this order, where
Γj = (pDj )p∈Rf

is the family of interpretations of flexible predicates at j, for
every time point j ∈ N.

4 Experimental Evaluation

We compare our prototype implementation, which extends our monitoring tool
MonPoly [5] for MFOTL, with the relational database PostgreSQL [22] and
the stream-processing tool STREAM [2]. For our evaluation, we consider the
following five policies. Figure 3 contains their MFOTLΩ formalizations.

(P1) The sum of withdrawals of each user over the last 30 days does not exceed
the limit of $10,000.

(P2) Similar to (P1), except that the withdrawals must not exceed $10,000 only
when the flag for checking the limit is set.

(P3) The maximal withdrawal of each user over the last seven days must be
at most be twice as large as the average of the user’s withdrawals over
the last 90 days.

(P4) The average of the number of withdrawals of all users over the last 30 days
should be less than a given threshold of 150.

(P5) For each user, the number of peaks over the last 30 days does not exceed
a threshold of 5, where a peak is a value at least twice the average over
some time window.

Note that in the formalization of the policy (P2), the event limit on(u) sets the
limit flag for the user u, while limit off (u) unsets it.

We use synthetically generated logs1 with different time spans (in days). The
logs contain withdraw events from 500 users, except for (P5), for which we con-
sider only 100 users. Each user makes on average five withdrawals per day. Table 1
shows the running times of the three tools on a standard desktop computer with

1 Our prototype, the formulas, and the input data are available as an archive at
https://projects.developer.nokia.com/MonPoly/files/rv13-experiments.tgz.

https://projects.developer.nokia.com/MonPoly/files/rv13-experiments.tgz
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Table 1. Running times (STREAM/MonPoly extension /PostgreSQL) in seconds

���������policy
time span

400 800 1200 1600 2000

(P1) 8 / 9 / 76 9 / 19 / 279 11 / 29 / 610 12 / 39 / 1065 14 / 48 / 1650

(P2) 21 / 10 / 247 23 / 20 / 1646 24 / 30 / 5233 26 / 40 / 11989 28 / 50 / 23260

(P3) † / 22 / 168 † / 44 / 604 † / 66 / 1230 † / 88 / 2251 † / 110 / 3458

(P4) 12 / 9 / 75 15 / 19 / 280 15 / 29 / 612 17 / 38 / 1068 19 / 48 / 1650

(P5) 24 / 76 / 83 33 / 157 / 337 41 / 234 / 745 49 / 313 / 1351 59 / 395 / 2099

8GB of RAM and an Intel Core i5 CPU with 2.67GHz. The SQL queries for
PostgreSQL and the CQL queries for STREAM were manually obtained from
the corresponding MFOTLΩ formulas. For the considered policies and logs, the
semantic differences between the languages are not substantial. In particular,
the tools output the same violations. PostgreSQL’s running times only account
for the query evaluation, performed once per log file, and not for populating the
database. For MAX aggregations, STREAM aborts with a runtime error, and we
mark this with the symbol †.

Note that the formulas in Figure 3 vary in their complexity: e.g., they contain
different numbers of aggregations and temporal operators, with time windows
of different sizes. STREAM and our tool scale linearly on these examples with
respect to the time spans of the logs. This is not the case for PostgreSQL. Over-
all, our tool’s performance is between STREAM’s and PostgreSQL’s on these
examples.

We first focus on the performance of our tool. (P2) is only slightly slower to
monitor than (P1) because the relations for the additional subformula are not
large: they contain around 50 tuples, as the limit flag is toggled for each user,
on average, every 10 days. (P3) takes longer to monitor for two reasons. First,
it contains a significantly larger time window. Second, the join of two relations
is computed, which is also the case for (P5). For (P3), the two input relations
and the output relation each have size n, where n is the number of users. For
(P5), the size of the input relations is approximately 31mn, where m is the
average number of withdrawals per day of a user, while the output relation is
approximately of size 312m2n. This explains why (P5) takes longer to monitor
than (P3). Since aggregating over a relation does not increase its size, the nesting
of aggregation operators has only a minor impact on the running times, compare
(P1) and (P4).

PostgreSQL performs worst in these experiments. This is not surprising as
PostgreSQL is not designed for this application domain. In particular, Post-
greSQL has no support for temporal reasoning and we must treat time as just
another data value. In more detail, we load log files into database tables that
have two additional attributes to represent the time point and the timestamp
of an event occurrence, and we adapt the standard embedding of temporal logic
into first-order logic to represent MFOTLΩ formulas as SQL queries. Treating
time as data has the following disadvantages. First, it is not suited for online
processing of events: query evaluation does not scale, because the query must be
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reevaluated on the entire database each time new events are added. Second, even
for offline processing (as done in our experiments), the query evaluation proce-
dure does not take advantage of the temporal ordering of events. This deficiency
is most evident when evaluating the SQL query for (P2).

In contrast to PostgreSQL, STREAM is designed for online event processing.
However, temporal reasoning in STREAM is limited. In particular, CQL’s only
temporal construct collects all event tuples within a specified time range relative
to the current time. It roughly corresponds2 to the �I operator in MFOTLΩ,
where I is of the form [0, t) with t ∈ N∪{∞}. We cannot select only tuples from
a time window that is strictly in the past. It is therefore not clear how to handle
temporal properties of the form �I ϕ with 0 /∈ I. It is also not clear how to handle
nested temporal operators as this also requires handling time windows that do
not contain the current time point. Finally, it is also not obvious how to check
that certain event patterns happen at every time point in a given time window.
Consider, e.g., the policy stating that a user may not make large withdrawals
if he is continuously in an over-withdrawn state during the last seven days. In
MFOTLΩ, the policy is naturally expressed as

� ∀u.
(
�[0,8)(¬out-debt(u) S in-debt(u))

)
→ ¬∃a. withdraw(u, a) ∧ a " 1000 .

Note that the subformula ¬out-debt(u) S in-debt(u) can be encoded in CQL by
requiring for each user u that at the current time the total number of out-debt(u)
events is smaller than the total number of in-debt(u) events. We have used such
an encoding for (P2). We remark that the addition to (P1) of the since sub-
formula in (P2) has a larger impact on STREAM’s performance than on our
tool.

While MFOTLΩ has a richer tool set than CQL to express temporal patterns,
STREAM’s performance is consistently better than our tool’s. Nevertheless, the
differences are not as large as one might expect for a prototype implementation.
Our prototype has not yet been systematically optimized. We expect substan-
tial performance improvements by carefully adapting data structures and query
evaluation techniques used in databases and stream processing.

5 Conclusion

Existing logic-based policy monitoring approaches offer little support for aggre-
gations. To rectify this shortcoming we extended metric first-order temporal logic
with expressive SQL-like aggregation operators and presented a monitoring algo-
rithm for this language. Our experimental results for a prototype implementation
of the algorithm are promising. The prototype’s performance is in the reach of
optimized stream-processing tools, despite its richer input language and its lack
of systematic optimization. As future work, we will investigate performance

2 CQL’s time model differs from that of MFOTLΩ . In CQL, there is no notion of time
point and query evaluation is performed for each timestamp τ ∈ N. Furthermore,
CQL has a multi-set semantics.
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optimizations for our monitor. In general, it remains to be seen how logic-
based monitoring approaches can benefit from the techniques used in stream
processing.

Acknowledgements. This work was partially supported by the Zurich Infor-
mation Security and Privacy Center. It represents the views of the authors.
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8. Basin, D., Klaedtke, F., Zălinescu, E.: Algorithms for monitoring real-time prop-
erties. In: Khurshid, S., Sen, K. (eds.) RV 2011. LNCS, vol. 7186, pp. 260–275.
Springer, Heidelberg (2012)
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18. Hallé, S., Villemaire, R.: Runtime enforcement of web service message contracts
with data. IEEE Trans. Serv. Comput. 5(2), 192–206 (2012)

19. Hella, L., Libkin, L., Nurmonen, J., Wong, L.: Logics with aggregate operators. J.
ACM 48(4), 880–907 (2001)

20. Koymans, R.: Specifying real-time properties with metric temporal logic. Real-
Time Syst. 2(4), 255–299 (1990)

21. Owe, O.: Partial logics reconsidered: A conservative approach. Form. Asp. Com-
put. 5(3), 208–223 (1993)

22. PostgreSQL Global Development Group. PostgreSQL, Version 9.1.4 (2012),
http://www.postgresql.org/

23. Sistla, A.P., Wolfson, O.: Temporal conditions and integrity constraints in active
database systems. In: Proceedings of the 1995 ACM SIGMOD International Con-
ference on Management of Data, pp. 269–280 (1995)

A Appendix

The pseudo-code of the procedures init and eval is given in Figure 4. Our pseudo-
code is written in a functional-programming style with pattern matching. The
symbol 〈〉 denotes the empty sequence, ++ sequence concatenation, and h :: L
the sequence with head h and tail L.

We describe the eval procedure in the following in more detail. The cases corre-
spond to the rules defining the set of monitorable formulas. The pseudo-code for
the cases corresponding to non-temporal connectives follows closely the equali-
ties given in Section 3.3 and also given in the appendix of the full version of the
paper. The predicates kind rig and kind rig’ check whether the input formula ϕ
is indeed of the intended kind. The get info ∗ procedures return the parameters
used by the corresponding relational algebra operators. For instance, get info rig
returns the singleton set consisting of the constraint corresponding to the restric-
tions p(t̄) or ¬p(t̄). Similarly, get info rig’ returns the effective index correspond-
ing to the only variable that appears only in the right conjunct of ϕ. The proce-
dure reval(p, k, ā) returns the set {d ∈ D | (a1, . . . , ak−1, d, ak, . . . , an−1) ∈ pD},
for any ā ∈ Dn−1, where n is the arity of the rigid predicate symbol p.

The case for the formulas of the form �I ψ is straightforward. We recursively
evaluate the subformula ψ, we update the state, and we return the relation
resulting from the evaluation of ψ at the previous time point, provided that the
temporal constraint is satisfied. Otherwise we return the empty relation.

The case for the formulas ϕ of the form ψ SI ψ
′ or ¬ψ SI ψ

′ is more involved.
It is mainly handled by the sub-procedure eval since, given in Figure 5. The
notation λx.f(x) denotes a function f . For the clarity of the presentation, we

http://www.postgresql.org/
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proc init(ϕ)

for each ψ ∈ sf(ϕ) with ψ = ψ SI ψ′ do
Lψ ← 〈〉

for each ψ ∈ sf(ϕ) with ψ = �I ψ′ do
Aψ ← ∅
τψ ← 0

proc eval(ϕ, i, τ , Γ )
case ϕ = p(x1, . . . , xn)

return Γp

case ϕ = ψ ∧ p(t1, . . . , tn) & kind rig(ϕ)
case ϕ = ψ ∧ ¬p(t1, . . . , tn) & kind rig(ϕ)

A ← eval(ψ, i, τ , Γ )
C ← get info rig(ϕ)
return σC(A)

case ϕ = ψ ∧ p(t1, . . . , tn) & kind rig’(ϕ)
A ← eval(ψ, i, τ , Γ )
k ← get info rig’(ϕ)
R ← ∅
for each ā ∈ A

R ← R ∪ reval(p, k, ā)
return R

case ϕ = ψ ∧ ¬ψ′

case ϕ = ψ ∧ ψ′

A ← eval(ψ, i, τ , Γ )

A′ ← eval(ψ′, i, τ , Γ )
C, s̄ ← get info and(ϕ)

if ϕ = ψ ∧ ψ′ then
return A �C,s̄ B

else
return A �C,s̄ B

case ϕ = ψ ∨ ψ′

A ← eval(ψ, i, τ , Γ )

A′ ← eval(ψ′, i, τ , Γ )

return A ∪ A′

case ϕ = ∃x̄. ψ
A ← eval(ψ, i, τ , Γ )
s̄ ← get info exists(ϕ)
return πs̄(A)

case ϕ = [ωt z̄. ψ](y; ḡ)
A ← eval(ψ, i, τ , Γ )

H, t′ ← get info agg(ϕ)

return ωH
t′ (A)

case ϕ = �I ψ

A′ ← Aϕ

Aϕ ← eval(ψ, i, τ , Γ )

τ ′ ← τϕ
τϕ ← τ

if i > 0 and (τ − τ ′) ∈ I then

return A′

else
return ∅

case ϕ = ¬ψ SI ψ′

case ϕ = ψ SI ψ′

A ← eval(ψ, i, τ , Γ )

A′ ← eval(ψ′, i, τ , Γ )

return eval since(ϕ, τ , A, A′)

Fig. 4. The init and eval procedures

proc eval since(ϕ, τ , A, A′)
b ← interval right margin(ϕ)
drop old(Lϕ, b, τ)
C, s̄ ← get info and(ϕ)

case ϕ = ¬ψ SI ψ′ then
f ← λB.B �s̄,C A

case ϕ = ψ SI ψ′ then
f ← λB.B �s̄,C A

g ← λ(κ, B).(κ, f(B))
Lϕ ← map(g, Lϕ)

Lϕ ← Lϕ ++ 〈(τ, A′)〉
return fold left(aux since, ∅, Lϕ)

proc drop old(L, b, τ)
case L = 〈〉

return 〈〉
case L = (κ,B) :: L′

if τ − κ ≥ b then

return drop old(L′, b, τ)
else return L

proc aux since(R, (κ,B))
if (τ − κ) ∈ I then return R ∪ B
else return R

Fig. 5. The eval since procedure

assume that ϕ = ψ SI ψ
′, the other case being similar. The evaluation of ϕ

reflects the logical equivalence ψ SI ψ
′ ≡

∨
d∈I ψ S[d,d] ψ

′. Note that we abuse
notation here, as the right-hand side is not necessarily a formula, because I may
be infinite. The function interval right margin(ϕ) returns b, where I = [a, b) for
some a ∈ N and b ∈ N ∪ {∞}.
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The state at time point i, that is, after the procedure eval(ϕ, i, τi, Γi) has
been executed, consists of the list Lϕ of tuples (τj , R

i
j) ordered with j ascending,

where j is such that j ≤ i and τi − τj < b and where

Ri
j := �ψ′�(D̄,τ̄ ,j) ��s̄,C

(⋂
j<k≤i�ψ�(D̄,τ̄ ,k)

)
,

with s̄ and C defined as in Section 3.3. We have

�ϕ�(D̄,τ̄ ,i) =
⋃

j≤i,τi−τj∈I R
i
j .

The computation of this union is performed in the last line of the eval since
procedure. Note that, in general, not all the relations Ri

j in the list Lϕ are

needed for the evaluation of ϕ at time point i. However, the relations Ri
j with j

such that τi − τj �∈ I, that is τi − τj < a, are stored for the evaluation of ϕ at
future time points i′ > i.

We now explain how the state is updated at time point i from the state at time
point i−1. We first drop from the list Lϕ the tuples that are not longer relevant.
More precisely, we drop the tuples that have as first component a timestamp τj
for which the distance to the current timestamp τi is too large with respect to
the right margin of I. This is done by the procedure drop old. Next, the state is
updated according to the logical equivalence α S β ≡ (α ∧ � (α S β)) ∨ β. This
is done in two steps. First, we update each element of Lϕ so that the tuples in the
stored relations also satisfy ψ at the current time point i. This step corresponds to
the conjunction in the above equivalence and it is performed by the map function.
The update is based on the equality Ri

j = Ri−1
j ��s̄,C �ψ�(D̄,τ̄ ,i). Note that the

join distributes over the intersection. The second step, which corresponds to
the disjunction in the above equivalence, consists of appending the tuple (τi, R

i
i)

to Lϕ. Note that Ri
i = �ψ′�(D̄,τ̄ ,i).

Finally, we note that the proof of Theorem 6 follows the above presentation
of the algorithm, and is done by induction using the lexicographic ordering on
tuples (i, |ϕ|), where i ∈ N and |ϕ| denotes ϕ’s size, defined as expected. Further-
more, the proof of Lemma 5 is straightforward. It follows by induction on the
formula structure and from the equalities given in Section 3.3, as each relational
algebra operator produces a finite relation when applied to finite relations.
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Abstract. The main purpose of this paper is to introduce a first-order temporal
logic, LTLFO, and a corresponding monitor construction based on a new type of
automaton, called spawning automaton.

Specifically, we show that monitoring a specification in LTLFO boils down to
an undecidable decision problem. The proof of this result revolves around specific
ideas on what we consider a “proper” monitor. As these ideas are general, we out-
line them first in the setting of standard LTL, before lifting them to the setting of
first-order logic and LTLFO. Although due to the above result one cannot hope to
obtain a complete monitor for LTLFO, we prove the soundness of our automata-
based construction and give experimental results from an implementation. These
seem to substantiate our hypothesis that the automata-based construction leads to
efficient runtime monitors whose size does not grow with increasing trace lengths
(as is often observed in similar approaches). However, we also discuss formulae
for which growth is unavoidable, irrespective of the chosen monitoring approach.

1 Introduction

In the area of runtime verification (cf. [17,16,12,8]), a monitor typically describes a de-
vice or program which is automatically generated from a formal specification capturing
undesired (resp. desired) system behaviour. The monitor’s task is to passively observe
a running system in order to detect if the behavioural specification has been satisfied
or violated by the observed system behaviour. While, arguably, the majority of runtime
verification approaches are based on propositional logic (or expressively conservative
parametric extensions thereof; cf. §6 for an overview), there exist works that have con-
sidered full first-order logic (cf. [16,5,4]). Monitoring first-order specifications has also
gained prior attention in the database community, especially in the context of so called
temporal triggers, which correspond to first-order temporal logic specifications that are
evaluated wrt. a linear sequence of database updates (cf. [10,11,23]). Although the un-
derlying logics are generally undecidable, the monitors in these works usually address
decidable problems, such as “is the so far observed behaviour a violation of a given
specification ϕ?” Additionally, in many approaches,ϕmust only ever be a safety or do-
main independent property for this problem to actually be decidable (cf. [10,4]), which
can be ensured by syntactic restrictions on the input formula, for example.
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As there exist many different ways in which a system can be monitored in this ab-
stract sense, we are going to put forth very specific assumptions concerning the prop-
erties and inner-workings of what we consider a “proper” monitor. None of these as-
sumptions is particularly novel or complicated, but they help describe and distinguish
the task of a “proper” monitor from that of, say, a model checker, which can also be
used to solve monitoring problems as we shall see.

The two basic assumptions are easy to explain: Firstly, we demand that a monitor
is what we call trace-length independent, meaning that its efficiency does not decline
with an increasing number of observations. Secondly, we demand that a monitor is
monotonic wrt. reporting violations (resp. satisfication) of a specification, meaning that
once the monitor returns “SAT” to the user, additional observations do not lead to it
returning “UNSAT” (and vice versa). We are going to postulate further assumptions,
but these are mere consequences of the two basic ones and are explained in §2.

At the heart of this paper, however, is a custom first-order temporal logic, in the
following referred to as LTLFO, which is undecidable. Yet we outline a sound, albeit
incomplete, monitor construction for it based on a new type of automaton, called spawn-
ing automaton. LTLFO was originally developed for the specification of runtime veri-
fication properties of Android “Apps” and has already been used in that context (see
[6] for details). Although [6] gave a monitoring algorithm for LTLFO based on formula
rewriting, it turns out that the automata-based construction given in this paper leads to
practically more efficient results.

As our definition of what constitutes a “proper” monitor is not tied to a particular
logic we will develop it first for standard LTL (§2), the quasi-standard in the area of
runtime verification. In §3, we give a more detailed account of LTLFO than was avail-
able in [6], before we lift the results of §2 to the first-order setting (§4). The automata-
based monitor construction for LTLFO along with experimental results is described in
§5, related work in §6. Detailed proofs can be found in [7].

2 Complexity of Monitoring in the Propositional Case

In what follows, we assume basic familiarity with LTL and topics like model checking
(cf. [3] for an overview). Despite that, let us first state a formal LTL semantics, since
we will consider its interpretation on infinite and finite traces. For that purpose, let AP
denote a set of propositions, LTL(AP) the set of well-formed LTL formulae over that
set, and for some set X set X∞ = Xω ∪ X∗ to be the union of the sets of all infinite
and finite traces overX . When AP is clear from the context or does not matter, we use
LTL instead of LTL(AP). Also, for a given trace w = w0w1 . . ., the trace wi is defined
as wiwi+1 . . .. As a convention we use u, u′, . . . to denote finite traces, by σ the trace
of length 1, and w for infinite ones or where the distinction is of no relevance.

Definition 1. Let ϕ ∈ LTL(AP), w ∈ (2AP)∞ be a non-empty trace, and i ∈ N0, then

wi |= p iff p ∈ wi, where p ∈ AP,
wi |= ¬ϕ iff wi |= ϕ does not hold,

wi |= ϕ ∧ ψ iff wi |= ϕ and wi |= ψ,
wi |= Xϕ iff |w| > i and wi+1 |= ϕ,

wi |= ϕUψ iff there is a k s.t. i ≤ k < |w|, wk |= ψ, and for all i ≤ j < k,wj |= ϕ.
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And if w0 |= ϕ holds, we usually write w |= ϕ instead. Although this semantics, which
was also proposed in [21], gives rise to mixed languages, i.e., languages consisting of
finite and infinite traces, we shall only ever be concerning ourselves with either finite-
trace or infinite-trace languages, but not mixed ones. It is easy to see that over infinite
traces this semantics matches the definition of standardLTL. Recall, LTL is a decidable
logic; in fact, the satisfiability problem for LTL is known to be PSpace-complete [22].

As there are no commonly accepted rules for what qualifies as a monitor (not even
in the runtime verification community), there exist a myriad of different approaches
to checking that an observed behaviour satisfies (resp. violates) a formal specification,
such as an LTL formula. Some of these (cf. [17,5]) consist in solving the word prob-
lem (see Definition 2). A monitor following this idea can either first record the entire
system behaviour in form of a trace u ∈ Σ+, where Σ is a finite alphabet of events, or
process the events incrementally as they are emitted by the system under scrutiny. Both
approaches are documented in the literature (cf. [17,15,16,5]), but only the second one
is suitable to detect property violations (resp. satisfaction) right when they occur.

Definition 2. The word problem for LTL is defined as follows.
Input: A formula ϕ ∈ LTL(AP) and some trace u ∈ (2AP)+.
Question: Does u |= ϕ hold?

In [21], a bilinear algorithm for this problem was presented (an even more efficient
solution was recently given in [19]). Hence, the first sort of monitor, which is really
more of a test oracle than a monitor, solves a classical decision problem. The second
sort of monitor, however, solves an entirely different kind of problem, which cannot be
stated in complexity-theoretical terms at all: its input is an LTL formula and a finite
albeit unbounded trace which grows incrementally. This means that this monitor solves
the word problem for each and every new event that is added to the trace at runtime. We
can therefore say that the word problem acts as a lower bound on the complexity of the
monitoring problem that such a monitor solves; or, in other words, the problem that the
online monitor solves is at least as hard as the problem that the offline monitor solves.

There are approaches to build efficient (i.e., trace-length independent) monitors that
repeatedly answer the word problem (cf. [17]). However, such approaches violate our
second basic assumption, mentioned in the introduction, in that they are necessarily
non-monotonic. To see this, consider ϕ = aUb and some trace u = {a}{a} . . .{a}
of length n. Using our finite-trace interpretation, u �|= ϕ. However, if we add un+1 =
{b}, we get u |= ϕ.1 For the user, this essentially means that she cannot trust the
verdict of the monitor as it may flip in the future, unless of course it is obvious from
the start that, e.g., only safety properties are monitored and the monitor is built merely
to detect violations, i.e., bad prefixes. However, if we take other monitorable languages
into account as we do in this paper, i.e., those that have either good or bad prefixes (or
both), we need to distinguish between satisfaction and violation of a property (and want
the monitor to report either occurrence truthfully).

1 Note that this effect is not particular to our choice of finite-trace interpretation. Had we used,
e.g., what is known as the weak finite-trace semantics, discussed in [14], we would first have
had u |= ϕ and if un+1 = ∅, subsequently u �|= ϕ.
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Definition 3. For any L ⊆ Σω, u ∈ Σ∗ is called a good prefix (resp. bad prefix) iff
uΣω ⊆ L holds (resp. uΣω ∩ L = ∅).
We shall use good(L) ⊆ Σ∗ (resp. bad(L)) to denote the set of good (resp. bad)
prefixes of L. For brevity, we also write good(ϕ) instead of good(L(ϕ)), and do the
same for bad(L(ϕ)).

A monitor that detects good (resp. bad) prefixes has been termed impartial in [12]
as it not only states something about the past, but also about the future: once a good
(resp. bad) prefix has been detected, no matter how the system would evolve in an
indefinite future, the property would remain satisfied (resp. violated). In that sense,
impartial monitors are monotonic by definition. Moreover in [8], a construction is given,
showing how to obtain trace-length independent (even optimal) impartial monitors for
LTL and a timed extension called TLTL. The obtained monitor basically returns � to
the user if u ∈ good(ϕ) holds,⊥ if u ∈ bad(ϕ) holds, and ? otherwise. Not surprisingly
though, the monitoring problem such a monitor solves is computationally more involved
than the word problem. It solves what we call the prefix problem (of LTL), which can
easily be shown PSpace-complete by way of LTL satisfiability.

Definition 4. The prefix problem for LTL is defined as follows.
Input: A formula ϕ ∈ LTL(AP) and some trace u ∈ (2AP)∗.
Question: Does u ∈ good(ϕ) (resp. bad(ϕ)) hold?

Theorem 1. The prefix problem for LTL is PSpace-complete.

Proof. For brevity, we will only focus on bad prefixes. It is easy to see that u ∈ bad(ϕ)
iff L(u0 ∧Xu1 ∧XXu2 ∧ . . .∧ϕ) = ∅. Constructing this conjunction takes polynomial
time and the corresponding emptiness check can be performed in PSpace [22]. For
hardness, we proceed with a reduction of LTL satisfiability. Again, it is easy to see that
L(ϕ) �= ∅ iff σ �∈ bad(Xϕ) for any σ ∈ 2AP. This reduction is linear, and as PSpace =
co-PSpace, the statement follows. $%

We would like to point out the possibility of building an impartial though trace-
length dependent LTL monitor using an “off the shelf” model checker, which accepts
a propositional Kripke structure and an LTL formula as input. Note that here we make
the assumption that Kripke structures produce infinite as opposed to finite traces.

Definition 5. The model checking problem for LTL is defined as follows.
Input: A formula ϕ ∈ LTL(AP) and a Kripke structure K over 2AP.
Question: Does L(K) ⊆ L(ϕ) hold?

As in LTL the model checking and the satisfiability problems are both PSpace-complete
[22], we can use a model checking tool as monitor: given that it is straightforward
to construct K, s.t. L(K) = u(2AP)ω , in no more than polynomial time, we return
� to the user if L(K) ⊆ L(ϕ) holds, ⊥ if L(K) ⊆ L(¬ϕ) holds, and ? if neither
holds. One could therefore be tempted to think of monitoring merely in terms of a
model checking problem, but we shall see that as soon as the logic in question has
an undecidable satisfiability problem this reduction fails. Besides, it can be questioned
whether monitoring as model checking leads to a desirable monitor with its obvious
trace-length dependence and having to repeatedly solve a PSpace-complete problem
for each new event.
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3 LTLFO—Formal Definitions and Notation

Let us now introduce our first-order specification language LTLFO and related concepts
in more detail. The first concept we need is that of a sorted first-order signature, given
as Γ = (S,F,R), where S is a finite non-empty set of sorts, F a finite set of function
symbols and R = U ∪ I a finite set of a priori uninterpreted and interpreted predicate
symbols, s.t. U ∩ I = ∅ and R ∩ F = ∅. The former set of predicate symbols are
referred to as U-operators and the latter as I-operators. As is common, 0-ary functions
symbols are also referred to as constant symbols. We assume that all operators in Γ
have a given arity that ranges over the sorts given by S, respectively. We also assume an
infinite supply of variables, V, that also range over S and where V∩ (F∪R) = ∅. Let
us refer to the first-order language determined by Γ as L(Γ ). While terms in L(Γ ) are
made up of variables and function symbols, formulae of L(Γ ) are defined as follows:

ϕ ::= p(t1, . . . , tn) | r(t1, . . . , tn) | ¬ϕ | ϕ ∧ ϕ | Xϕ | ϕUϕ | ∀(x1, . . . , xn) : p. ϕ,

where t1, . . . , tn are terms, p ∈ U, r ∈ I, and x1, . . . , xn ∈ V. As variables are sorted,
in the quantified formula ∀(x1, . . . , xn) : p. ϕ, the U-operator pwith arity τ1×. . .×τn,
defines the sorts of variables x1, . . . , xn to be τ1, . . . , τn, with τi ∈ S, respectively. For
terms t1, . . . , tn, we say that p(t1, . . . , tn) is well-sorted if the sort of every ti is τi.
This notion is inductively applicable to terms. Moreover, we consider only well-sorted
formulae and refer to the set of all well-sorted L(Γ ) formulae over a signature Γ in
terms of LTLFO

Γ . When a specific Γ is either irrelevant or clear from the context, we will
simply write LTLFO instead. When convenient and a certain index is of no importance
in the given context, we also shorten notation of a vector (x1, . . . , xn) by a (bold) x.

A Γ -structure, or just first-order structure is a pair A = (|A|, I), where |A| = |A|1∪
. . .∪ |A|n, is a non-empty set called domain, s.t. every sub-domain |A|i is either a non-
empty finite or countable set (e.g., set of all integers or strings) and I an interpretation.
I assigns to each sort τi ∈ S a specific sub-domain τIi = |A|i, to each function symbol
f ∈ F of arity τ1 × . . . × τl −→ τm a function f I : |A|1 × . . .× |A|l −→ |A|m, and
to every I-operator r with arity τ1 × . . . × τm a relation rI ⊆ |A|1 × . . . × |A|m. We
restrict ourselves to computable relations and functions. In that regard, we can think
of I as a mapping between I-operators (resp. function symbols) and the corresponding
algorithms which compute the desired return values, each conforming to the symbols’
respective arities. Note that the interpretation of U-operators is rather different from
I-operators, as it is closely tied to what we call a trace and therefore discussed after we
introduce the necessary notions and notation.

We model observed system behaviour in terms of actions: Let p ∈ U with arity τ1×
. . .×τm and d ∈ Dp = |A|1×. . .×|A|m, then we call (p,d) an action. We refer to finite
sets of actions as events. A system’s behaviour is therefore a finite trace of events, which
we also denote as a sequence of sets of ground terms {sms(1234)}{login(“user”)} . . .
when we mean the sequence of tuples {(sms, 1234)}{(login, “user”)} . . . Therefore
the occurrence of some action sms(1234) in the trace at position i ∈ N0, written
sms(1234) ∈ wi, indicates that, at time i, sms(1234) holds (or, from a practical point
of view, an SMS was sent to number 1234). We follow the convention that only sym-
bols from U appear in a trace, which therefore gives these symbols their respective
interpretations. The following formalises this notion.
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A first-order temporal structure is a tuple (A, w), where A = (|A0|, I0)(|A1|, I1)
. . . is a (possibly infinite) sequence of first-order structures and w = w0w1 . . . a cor-
responding trace. We demand that for all Ai and Ai+1 from A, it is the case that
|Ai| = |Ai+1| for all f ∈ F, f Ii+1 = f Ii , and for all τ ∈ S, τIi = τIi+1 . For any
two structures, A and A′, which satisfy these conditions, we write A ∼ A′. Moreover
given some A and A, if for all Ai from A, we have that Ai ∼ A, we also write A ∼ A.
Finally, the interpretation of an U-operator p with arity τ1 × . . . × τm is then defined
wrt. a position i in w as pIi = {d | (p,d) ∈ wi}. Essentially this means that, unlike
function symbols, U- and I-operators don’t have to be rigid.

Note also that from this point forward, we consider only the case where the policy to
be monitored is given as a closed formula, i.e., a sentence. This is closely related to our
means of quantification: a quantifier in LTLFO is restricted to those elements that appear
in the trace, and not arbitrary elements from a (possibly infinite) domain. While certain
policies cannot be expressed with this restriction (e.g., “for all phone numbers x that
are not in the contact list, r(x) is true”), this restriction bears the advantage that, when
examining a given trace, functions and relations are only ever evaluated over known
objects. The advantages of this type of quantification in monitoring first-order languages
have also been pointed out in [16,5]. In other words, had we allowed free variables, a
monitor might end up having to “try out” all the different domain elements in order to
evaluate such policies, which runs counter to our design rationale of quantification.

In what follows, let us fix a particular Γ . The semantics of LTLFO can now be defined
wrt. a quadruple (A, w, v, i) as follows, where i ∈ N0, and v is an (initially empty) set
of valuations assigning domain values to variables:

(A, w, v, i) |= p(t1, . . . , tn) iff (tIi1 , . . . , t
Ii
n ) ∈ pIi ,

(A, w, v, i) |= r(t1, . . . , tn) iff (tIi1 , . . . , t
Ii
n ) ∈ rIi ,

(A, w, v, i) |= ¬ϕ iff (A, w, v, i) |= ϕ is not true,
(A, w, v, i) |= ϕ ∧ ψ iff (A, w, v, i) |= ϕ and (A, w, v, i) |= ψ,

(A, w, v, i) |= Xϕ iff |w| > i and (A, w, v, i+ 1) |= ϕ,

(A, w, v, i) |= ϕUψ iff for some k ≥ i, (A, w, v, k) |= ψ,

and (A, w, v, j) |= ϕ for all i ≤ j < k,

(A, w, v, i) |= ∀(x1, . . . , xn) : p. ϕ iff for all (p, d1, . . . , dn) ∈ wi,

(A, w, v ∪ {x1 
→ d1, . . . , xn 
→ dn}, i) |= ϕ,

where terms are evaluated inductively and xI treated as v(x). If (A, w, v, 0) |= ϕ, we
write (A, w, v) |= ϕ, and if v is irrelevant or clear from the context, (A, w) |= ϕ.

Later we will also make use of the (possibly infinite) set of all events wrt. A, given
as (A)-Ev =

⋃
p∈U{(p,d) | d ∈ Dp}, and take the liberty to omit the trailing (A)

whenever a particular A is either irrelevant or clear from the context. We can then de-
scribe the generated language of ϕ, L(ϕ) (or simply the language of ϕ, i.e., the set of
all logical models of ϕ) compactly as L(ϕ) = {(A, w) | wi ∈ 2Ev and (A, w) |= ϕ},
although, as before, we shall only ever concern ourselves with either infinite- or finite-
trace languages, but not mixed ones. Finally, we will use common syntactic “sugar”,
including ∃(x1, . . . , xn) : p. ϕ = ¬(∀(x1, . . . , xn) : p. ¬ϕ), etc.
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Example 1. For brevity, cf. [6] for some LTLFO example policies formalised in LTLFO.
However, to give at least an intuition, let’s pick up the idea of monitoring Android
“Apps” again, and specify that “Apps” must not send SMS messages to numbers not
in a user’s contact database. Assuming there exists an U-operator sms, which is true
/ appears in the trace, whenever an “App” sends an SMS message to phone number x,
we could formalise said policy in terms of G∀x : sms. contact(x). Note how in this
formula the meaning of x is given implicitly by the arity of sms and must match the
definition of contact in each world. Also note how sms is interpreted indirectly via
its occurrence in the trace, whereas contact never appears in the trace, even if true.
contact can be thought of as interpreted via a program that queries a user’s contact
database, whose contents may change over time.

4 Complexity of Monitoring in the First-Order Case

LTLFO as defined above is undecidable as can be shown by way of the following lemma.
It basically helps us reduce finite satisfiability of standard first-order logic to LTLFO.

Lemma 1. Let ϕ be a sentence in first-order logic, then we can construct a correspond-
ing ψ ∈ LTLFO s.t. ϕ has a finite model iff ψ is satisfiable.

Theorem 2. LTLFO is undecidable.

Proof (Sketch). Follows from Lemma 1 and Trakhtenbrot’s Theorem (cf. [20, §9]).

Let’s now define what is meant by Kripke structures in our new setting. They either
give rise to infinite-trace languages (i.e., have a left-total transition relation), or repre-
sent finite traces (i.e, are essentially linear structures). For brevity, we shall restrict to the
definition of the former. Note that we will also skip detailed redefinitions of the decision
problems discussed in §2, since the concepts transfer in a straightforward manner.

Definition 6. Given some A, a (A)-Kripke structure, or just first-order Kripke structure,
is a state-transition system K = (S, s0, λ,→), where S is a finite set of states, s0 ∈ S
a distinguished initial state, λ : S −→ Â× Ev, where Â = {A′ | A′ ∼ A}, a labelling
function, and→⊆ S × S a (left-total) transition relation.

Definition 7. For a (A)-Kripke structure K with states s0, . . . , sn, the generated lan-
guage is given as L(K) = {(A, w) | (A0, w0) = λ(s0) and for all i ∈ N there exist
some j, k ∈ [0, n] s.t. (Ai, wi) = λ(sj), (Ai−1, wi−1) = λ(sk) and (sk, sj) ∈→}.

The inputs to the LTLFO word problem are therefore an LTLFO formula and a linear
first-order Kripke structure, representing a finite input trace. Unlike in standard LTL,

Theorem 3. The word problem for LTLFO is PSpace-complete.

The inputs to the LTLFO model checking problem, in turn, are a left-total first-order
Kripke structure, which gives rise to an infinite-trace language, and an LTLFO formula.



66 A. Bauer, J.-C. Küster, and G. Vegliach

Theorem 4. The model checking problem for LTLFO is in ExpSpace.

The reason for this result is that we can devise a reduction of that problem to LTL model
checking in exponential space. While the PSpace-lower bound is easy, e.g., via reduc-
tion of the LTLFO word problem, we currently do not know how tight these bounds are
and, therefore, leave this as an open problem. Note also that the results of both Theo-
rem 3 and Theorem 4 are obtained even without taking into account the complexities of
the interpretations of function symbols and I-operators; that is, for these results to hold,
we assume that interpretations do not exceed polynomial, resp. exponential space.

We have seen in §2 that the prefix problem lies at the heart of an impartial monitor.
While in LTL it was possible to build an impartial monitor using a model checker (albeit
a very inefficient one), the following shows that this is no longer possible.

Lemma 2. Let A be a first-order structure and ϕ ∈ LTLFO, then L(ϕ)A = {(A, w) |
A ∼ A, w ∈ (2Ev)ω, and (A, w) |= ϕ}. Testing ifL(ϕ)A �= ∅ is generally undecidable.

Theorem 5. The prefix problem for LTLFO is undecidable.

Proof (Sketch). As in Theorem 1: (A, σ) ∈ bad(Xϕ) iff L(ϕ)A = ∅ for any σ ∈ Ev.

5 Monitoring LTLFO

A corollary of Theorem 5 is that there cannot exist a complete monitor for LTLFO-
definable infinite trace languages. Yet one of the main contributions of our work is
to show that one can build a sound and efficient LTLFO monitor using a new kind of
automaton. Before we go into the details of the actual monitoring algorithm, let us
first consider the automaton model, which we refer to as spawning automaton (SA).
SAs are called that, because when they process their input, they potentially “spawn” a
positive Boolean combination of “children SAs” (i.e., subautomata) in each such step.
Let B+(X) denote the set of all positive Boolean formulae over the set X . We say
that some set Y ⊆ X satisfies a formula β ∈ B+(X), written Y |= β, if the truth
assignment that assigns true to all elements in Y and false to all X − Y satisfies β.

Definition 8. A spawning automaton, or simply SA, is given by A = (Σ, l,Q,Q0, δ→,
δ↓,F), whereΣ is a countable set called alphabet, l ∈ N0 the level ofA,Q a finite set of
states, Q0 ⊆ Q a set of distinguished initial states, δ→ a transition relation, δ↓ what is
called a spawning function, and F = {F1, . . . , Fn | Fi ⊆ Q} an acceptance condition
(to be defined later on). We have δ→ : Q ×Σ −→ 2Q and δ↓ : Q × Σ −→ B+(A<l),
where A<l = {A′ | A′ is an SA with level less than l}.

Definition 9. A run ofA over inputw ∈ Σω is a mapping ρ : N0 −→ Q, s.t. ρ(0) ∈ Q0

and ρ(i + 1) ∈ δ→(ρ(i), wi) for all i ∈ N0. ρ is locally accepting if Inf(ρ) ∩ Fi �= ∅
for all Fi ∈ F , where Inf(ρ) denotes the set of states visited infinitely often. It is called
accepting if l = 0 and it is locally accepting. If l > 0, ρ is called accepting if it is
locally accepting and for all i ∈ N0 there is a set Y ⊆ A<l, s.t. Y |= δ↓(ρ(i), wi) and
all automataA′ ∈ Y have an accepting run, ρ′, over wi. The accepted language of A,
L(A), consists of all w ∈ Σω, for which it has at least one accepting run.
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5.1 Spawning Automata Construction

Given some ϕ ∈ LTLFO, let us now examine how to build the corresponding SA,Aϕ =
(Σ, l,Q,Q0, δ→, δ↓,F) s.t. L(Aϕ) = L(ϕ) holds. To this end, we set Σ = {(A, σ) |
σ ∈ (A)-Ev}. If ϕ is not a sentence, we write Aϕ,v to denote the spawning automaton
for ϕ in which free variables are mapped according to a finite set of valuations v.2 To
define the set of states for an SA, we make use of a restricted subformula function,
sf|∀(ϕ), which is defined like a generic subformula function, except if ϕ is of the form
∀x : p. ψ, we have sf|∀(ϕ) = {ϕ}. This essentially means that an SA for a formula ϕ
on the topmost level looks like the generalised Büchi automaton (GBA, cf. [3]) for ϕ,
where quantified subformulae have been interpreted as atomic propositions.

For example, if ϕ = ψ ∧ ∀x : p. ψ′, where ψ is a quantifier-free formula, then Aϕ,
at the topmost level n, is like the GBA for the LTL formula ψ ∧ a, where a is an atomic
proposition; or in other words, Aϕ handles the subformula ∀x : p. ψ′ separately in
terms of a subautomaton of level n− 1 (see also definition of δ↓ below).

Finally, we define the closure of ϕ wrt. sf|∀(ϕ) as cl(ϕ) = {¬ψ | ψ ∈ sf|∀(ϕ)} ∪
sf|∀(ϕ), i.e., the smallest set containing sf|∀(ϕ), which is closed under negation. The
set of states of Aϕ, Q, consists of all complete subsets of cl(ϕ); that is, a set q ⊆ cl(ϕ)
is complete iff

• for any ψ ∈ cl(ϕ) either ψ ∈ q or ¬ψ ∈ q, but not both; and
• for any ψ ∧ ψ′ ∈ cl(ϕ), we have that ψ ∧ ψ′ ∈ q iff ψ ∈ q and ψ′ ∈ q; and
• for any ψUψ′ ∈ cl(ϕ), we have that if ψUψ′ ∈ q then ψ′ ∈ q or ψ ∈ q, and if
ψUψ′ �∈ q, then ψ′ �∈ q.

Let q ∈ Q and A = (|A|, I). The transition function δ→(q, (A, σ)) is defined iff

• for all p(t) ∈ q, we have tI ∈ pI and for all ¬p(t) ∈ q, we have tI �∈ pI ,
• for all r(t) ∈ q, we have tI ∈ rI and for all ¬r(t) ∈ q, we have tI �∈ rI .

In which case, for any q′ ∈ Q, we have that q′ ∈ δ→(q, (A, σ)) iff

• for all Xψ ∈ cl(ϕ), we have Xψ ∈ q iff ψ ∈ q′, and
• for all ψUψ′ ∈ cl(ϕ), we have ψUψ′ ∈ q iff ψ′ ∈ q or ψ ∈ q and ψUψ′ ∈ q′.

This is similar to the well known syntax directed construction of GBAs (cf. [3]), except
that we also need to cater for quantified subformulae. For this purpose, an inductive
spawning function is defined as follows. If l > 0, then δ↓(q, (A, σ)) yields⎛⎝ ∧

∀x:p.ψ∈q

⎛⎝ ∧
(p,d)∈σ

Aψ,v′

⎞⎠⎞⎠ ∧
⎛⎝ ∧

¬∀x:p.ψ∈q

⎛⎝ ∨
(p,d)∈σ

A¬ψ,v′′

⎞⎠⎞⎠ ,
where v′ = v ∪ {x 
→ d} and v′′ = v ∪ {x 
→ d} are sets of valuations, otherwise
δ↓(q, (A, σ)) yields �. Moreover, we set Q0 = {q ∈ Q | ϕ ∈ q}, F = {FψUψ′ |

2 Considering free variables, even though our runtime policies can only ever be sentences, is
necessary, because an SA for a policy ϕ is inductively defined in terms of SAs for its subfor-
mulae (i.e., Aϕ’s subautomata), some of which may contain free variables.
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Level 0

{u → 1, ip → 2.3.4.1, u
′ → 3, ip

′ → 2.3.4.3}

¬eq(u, u
′ )

eq(ip, ip
′ )

{u → 1, ip → 2.3.4.1, u
′ → 1, ip

′ → 2.3.4.1}

¬eq(u, u
′ )

eq(ip, ip
′ )

{u → 2, ip → 2.3.4.2, u
′ → 3, ip

′ → 2.3.4.3}

¬eq(u, u
′ )

eq(ip, ip
′ )

{u → 2, ip → 2.3.4.2, u
′ → 1, ip

′ → 2.3.4.1}

¬eq(u, u
′ )

eq(ip, ip
′ )

¬eq(u, u
′ ) ¬eq(u, u

′ )
¬eq(u, u

′ ) ¬eq(u, u
′ )

Level 1

{u → 1, ip → 2.3.4.1}

(∀(u′ , ip′ ) : send.
eq(u, u

′ ) ⇒ eq(ip, ip
′ ))

logout(u, ip)

{u → 2, ip → 2.3.4.2}

(∀(u′ , ip′ ) : send.
eq(u, u

′ ) ⇒ eq(ip, ip
′ ))

logout(u, ip)

Level 2

∀(u, ip) : login. ((
∀(u′ , ip′ ) : send. e

q(u, u
′ ) ⇒ eq(ip, ip

′ ))Ulogout(u, ip
))

Fig. 1. Spawning on {login(1, 2.3.4.1), login(2, 2.3.4.2), send(3, 2.3.4.3), send(1, 2.3.4.1)}

ψUψ′ ∈ cl(ϕ)} with FψUψ′ = {q ∈ Q | ψ′ ∈ q ∨ ¬(ψUψ′) ∈ q}, and l = depth(ϕ),
where depth(ϕ) is called the quantifier depth of ϕ. For some ϕ ∈ LTLFO, depth(ϕ) =
0 iff ϕ is a quantifier free formula. The remaining cases are inductively defined as
follows: depth(∀x : p. ψ) = 1 + depth(ψ), depth(ψ ∧ ψ′) = depth(ψUψ′) =
max(depth(ψ), depth(ψ′)) and depth(¬ϕ) = depth(Xϕ) = depth(ϕ).

Lemma 3. Let ϕ ∈ LTLFO (not necessarily a sentence) and v be a valuation. For each
accepting run ρ inAϕ,v over input (A, w), ψ ∈ cl(ϕ), and i ≥ 0, we have that ψ ∈ ρ(i)
iff (A, w, v, i) |= ψ.

Theorem 6. The constructed SA is correct in the sense that for any sentence ϕ ∈
LTLFO, we have that L(Aϕ) = L(ϕ).

Example 2. Consider the graphical representation of an SA for ϕ = G(∀(u, ip) :
login. ((∀(u′, ip′) : send. eq(u, u′) ⇒ eq(ip, ip′))Ulogout(u, ip))) in Fig. 1. In a
nutshell, ϕ states that once user u has logged in to the system from IP-address ip, she
must not send anything from an IP-address other than ip until logged out. While ϕ is
not meant to represent a realistic security policy as is, it does help highlight the features
of an SA: We first note that level l ofAϕ is given by depth(ϕ) = 2. As ϕ is of the form
G∀(u, ip) : login. ψ, Aϕ’s individual state space is de facto that of an ordinary GBA
for an LTL formula of the form Gp. Let’s now assume that σ = {login(1, 2.3.4.1),
login(2, 2.3.4.2), send(3, 2.3.4.3), send(1, 2.3.4.1)} is an event, which we wantAϕ to
process. Due to ϕ’s outmost quantifier, the two login-actions will lead to the spawning
of a conjunction of two subautomata of respective levels l− 1 (downward dotted lines).
The individual state space of these subautomata is de facto that of an ordinary GBA for
an LTL formula of the form aUb as one can see in Fig. 1, level 1. These SAs also keep
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track of a quantified formula, hence the two send-actions will also spawn a conjunction
of subautomata, basically, to check if eq(u, u′)⇒ eq(ip, ip′) holds. The respective valu-
ations are given below each SA, whereas the respective current states are marked in grey.

5.2 Monitor Construction

Before we look at the actual monitor construction, let us first introduce some additional
concepts and notation: For a finite run ρ inAϕ over (A, u), we call δ↓(ρ(j), (Aj , uj)) =
oblj an obligation, where 0 ≤ j < |u|, in that oblj represents the language to be
satisfied after j inputs. That is, oblj refers to the language represented by the positive

Boolean combination of spawned SAs. We say oblj is met by the input, if (A
j
, uj) ∈

good(oblj) and violated if (A
j
, uj) ∈ bad(oblj). Furthermore, ρ is called potentially

locally accepting, if it can be extended to a run ρ′ over (A, u) together with some infinite
suffix, such that ρ′ is locally accepting.

The monitor for a formula ϕ ∈ LTLFO can now be described in terms of two mutu-
ally recursive algorithms: The main entry point is Algorithm M. It reads an event and
issues two calls to a separate Algorithm T: one for ϕ (under a possibly empty valuation
v) and one for ¬ϕ (under a possibly empty valuation v). The purpose of Algorithm T
is to detect bad prefixes wrt. the language of its argument formula, call it ψ. It does
so by keeping track of those finite runs in Aψ,v that are potentially locally accepting
and where its obligations haven’t been detected as violated by the input. If at any time
not at least one such run exists, then a bad prefix has been encountered. Algorithm T,
in turn, uses Algorithm M to evaluate if obligations of its runs are met or violated by
the input observed so far (i.e., it inductively creates submonitors): after the ith input, it
instantiates Algorithm M with argumentψ′ (under corresponding valuation v′) for each
Aψ′,v′ that occurs in obli and forwards to it all observed events from time i on.

Algorithm M (Monitor). The algorithm takes a ϕ ∈ LTLFO (under a possibly empty
valuation v). Its abstract behaviour is as follows: Let us assume an initially empty
first-order temporal structure (A, u). Algorithm M reads an event (A, σ), prints “�”
if (AA, uσ) ∈ good(ϕ) (resp. “⊥” for bad(ϕ)), and returns. Otherwise it prints “?”,
whereas we now assume that (A, u) = (AA, uσ) holds.3

M1. [Create instances of Algorithm T.] Create two instances of Algorithm T: one with
ϕ and one with ¬ϕ, and call them Tϕ,v and T¬ϕ,v, respectively.

M2. [Forward next event.] Wait for next event (A, σ) and forward it to Tϕ,v and T¬ϕ,v.
M3. [Communicate verdict.] If Tϕ,v sends “no runs”, print⊥ and return. If T¬ϕ,v sends

“no runs”, print � and return. Otherwise, print “?” and go to M2. ❚

Algorithm T (Track runs). The algorithm takes a ϕ ∈ LTLFO (under a corresponding
valuation v), for which it creates an SA,Aϕ,v. It then reads an event (A, σ) and returns,
if Aϕ,v, after processing (A, σ), does not have any potentially locally accepting runs,
for which obligations haven’t been detected as violated. Otherwise, it saves the new
state of Aϕ,v, waits for new input, and then checks again, and so forth.

3 Obviously, the monitor does not really keep (A, u) around, or it would be necessarily trace-
length dependent. (A, u) is merely used here to explain the inner workings of the monitor.
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T1. [Create SA.] Create an SA, Aϕ,v, in the usual manner.
T2. [Wait for new event.] Let (A, σ) be the event that was read.
T3. [Update potentially locally accepting runs.] Let B and B′ be (initially empty)

buffers. If B = ∅, for each q ∈ Q0 and for each q′ ∈ δ→(q, (A, σ)): add
(q′, [δ↓(q, (A, σ))]) to B. Otherwise, set B′ = B, and subsequentlyB = ∅. Next,
for all (q, [obl1, . . . , obln]) ∈ B′ and for all q′ ∈ δ→(q, (A, σ)): add (q′, [oblnew,
obl1, . . . , obln]) to B, where oblnew = δ↓(q, (A, σ)).

T4. [Create submonitors.] For each (q, [oblnew, obl1 . . . , obln]) ∈ B: call Algorithm M
with argument ψ (under corresponding v′) for each Aψ,v′ that occurs in oblnew.

T5. [Iterate over candidate runs.] Assume B = {b0, . . . , bm}. Create a counter j = 0
and set (q, [obl0, . . . , obln]) = bj to be the jth element of B.

T6. [Send, receive, replace.] For all 0 ≤ i ≤ n: send (A, σ) to all submonitors corre-
sponding to SAs occurring in obli, and wait for the respective verdicts. For every
returned� (resp.⊥) replace the corresponding SA in obli with � (resp. ⊥).

T7. [Corresponding run has violated obligations?] For all 0 ≤ i ≤ n: if obli = ⊥,
remove bj from B and go to T9.

T8. [Obligations met?] For all 0 ≤ i ≤ n: if obli = �, remove obli.
T9. [Next run in buffer.] If j ≤ m, set j to j + 1 and go to step T6.

T10. [Communicate verdict.] If B = ∅, send “no runs” to the calling Algorithm M and
return, otherwise send “some run(s)” and go back to T2. ❚

For a given ϕ ∈ LTLFO and (A, u), let us use Mϕ(A, u) to denote the successive
application of Algorithm M for formula ϕ, first on u0, then u1, and so forth. We then
get

Theorem 7. Mϕ(A, u) = � ⇒ (A, u) ∈ good(ϕ) (resp. for ⊥ and bad(ϕ)).

5.3 Experimental Results

To demonstrate feasibility and to get an intuition on runtime performance we have im-
plemented the above.4 The only liberty we took in deviating from our description is
the following: since the SAs for ϕ ∈ LTLFO on the different levels basically con-
sist of ordinary GBAs for the respective subformulae of ϕ, we have used an “off the
shelf” GBA generator, lbt5. Moreover, our algorithm bears the advantage that it is pos-
sible to precompute the SAs that are required at runtime (i.e., we replaced step T1
in Algorithm T with a look-up in a precomputed table of SAs and merely use a new
valuation each time). We also compared our implementation with the somewhat naive
(but, arguably, easier to implement) approach of monitoring, described in [6]. There,
we used formula rewriting, sometimes referred to as progression (cf. [2]): a function,
P , continuously “rewrites” a formula ϕ ∈ LTLFO using an observed event, σ, s.t.,
σw |= ϕ⇔ w |= P (ϕ, σ) holds.

As a benchmark for our tests, we have used several formulae derived from the well-
known specification patterns [13], and added quantification to crucial positions.

4 Available as open source Scala project on
https://github.com/jckuester/ltlfo2mon

5 http://www.tcs.hut.fi/Software/maria/tools/lbt/

https://github.com/jckuester/ltlfo2mon
http://www.tcs.hut.fi/Software/maria/tools/lbt/
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G∀x : w. ¬p(x)

G(∃x : w. q(x) ⇒ G∀y : w. ¬p(y))

G∀x : w. ((q(x) ∧ (¬r(x) ∧ (Fr(x)))) ⇒ (¬p(x)Ur(x)))

G∀x : w. (q(x) ⇒ (F(q(x) ∧ (Fp(x)))))

G∀x : w. ((q(x) ∧ (¬r(x) ∧ (Fr(x)))) ⇒ (p(x)Ur(x)))

G∀x : w. ((q(x) ∧ (¬r(x) ∧ (Fr(x)))) ⇒ ((p(x) ⇒ (¬r(x)U(s(x)∧ ¬r(x))))Ur(x)))

G∀x : w. p(x) ⇒ (¬q(x) ∧ ¬r(x))U(r(x)∨
((q(x) ∧ ¬r(x))U(r(x)∨ ((¬q(x) ∧ ¬r(x))U(r(x)∨ ((q(x) ∧ ¬r(x))U(r(x)∨ (¬q(x)Wr(x)∨ Gq(x)))))))))

G∀x : w. ((q(x) ∧ ¬r(x)) ⇒ ¬r(x)U∃y : w. (p(x, y) ∧ ¬r(x))))
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Fig. 2. Difference in space consumption at runtime: SA-based monitor vs. progression

Some of the results are visualised in Fig. 2. For each LTLFO formula corresponding
to a pattern, we randomly generated 20 traces of lengths 100, 1000, and 10000, respec-
tively, and passed them to both algorithms. We then measured the average space con-
sumption of each algorithm at different trace lengths. For progression this is measured
simply in terms of the length of the formula at a given time, whereas for the SA-based
monitorMϕ,v it is determined recursively as follows: Recall, Mϕ,v first creates two in-
stances of Algorithm T, Tϕ,v and T¬ϕ,v, each of which creates a buffer, call it Bϕ, resp.
B¬ϕ. Let B = Bϕ ∪ B¬ϕ, and (qi, [obli,0, . . . , obli,n]) be the i-th element of B, then

|Mϕ,v| =
∑|B|−1

i=0 |(qi, [obli,0, . . . , obli,n])| =
∑|B|−1

i=0 (1 + |õbli,0| + . . . + |õbli,n|),
where |õbli,j| = |obli,j |+

∑
Aψ,v∈obli,j

|Mψ,v|, i.e., the sum of the top-level monitor’s
constituents as well as that of all of its submonitors. Finally, we also need to add the
total size of the precomputed GBA look-up table.

The end markers on the left of each horizontal bar show how much bigger in the
worst case an SA-based monitor is for a given formula compared to the corresponding
progression-based monitor (and vice versa for the right markers). The small shapes in
the middle denote the average size difference of the two monitors over the whole length
of a trace. This difference is most striking for ϕ2 on longer traces (e.g., Δ ≥ 10000
for traces of length 10000), where the average almost coincides with the worst case.
As such, this example brings to surface one of the potential pitfalls of progression,
namely that a lot of redundant information can accumulate over time: If ∃x : w. q(x)
ever becomes true, then P , which operates purely on a syntactic level, will produce a
new conjunct G∀y : w. ¬p(y) for each new event, even though semantically it is not
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necessary. Hence, the longer the trace, the greater the average difference in size (similar
in case of ϕ3 and ϕ4).

At first glance, it may seem a curious coincidence that the left markers of each bar
align perfectly, because this indicates that for all three traces that belong to a given
formula, the SA-based monitor is in the worst case by exactly the same constant k
bigger than the progression-based one, irrespective of the trace. However, it makes sense
if we consider when this worst case occurs; that is, whenever the SA-based monitor (and
consequently also the progression-based one) does not have to memorise any data at all,
in which case the size of the SA-based monitor’s look-up table weighs the most; that is,
the size of the look-up table is almost equal to k. Usually this happens when monitoring
commences, hence, there is a perfect alignment on all traces. On the other hand, the
worst case for progression arises whenever the amount of data to be memorised by the
monitor has reached its maximum. As this depends not only on the formula, but also on
the content of the randomly generated traces (and in some of the examples also on their
lengths, as seen in the previous example), we generally don’t observe alignment on the
right.

For those examples that, on average, favour progression, note that the difference
in size is less dramatic—a fact, which may be slightly obfuscated by the pseudo-
logarithmic scale of the x-axis. Again, the differences in these examples (ϕ1, ϕ5, ϕ6,
and ϕ7) can be mostly explained by the fact that an SA-based monitor generally wastes
more space for “book keeping”. Naturally, all examples are also exposed to a degree of
randomness due to the generated traces, which would also deserve closer investigation.
Hence, these tests are indicative as well as promising, but certainly not conclusive yet.

6 Related Work

This is by no means the first work to discuss monitoring of first-order specifications.
Motivated by checking temporal triggers and temporal constraints, the monitoring prob-
lem for different types of first-order logic has been widely studied, e.g., in the database
community. In that context, Chomicki [10] presents a method to check for violations
of temporal constraints, specified using (metric) past temporal operators. The logic in
[10] differs from LTLFO, in that it allows natural first-order quantification over a sin-
gle countable and constant domain, whereas quantified variables in LTLFO range over
elements that occur at the current position of the trace (see also [16,5]). Presumably, to
achieve the same effect, [10] demands that policies are what is called “domain indepen-
dent”, so that all statements refer to known objects. As such, domain independence is
a property of the policy and shown to be undecidable. In contrast, one could say that
LTLFO has a similar notion of domain independence already built-in, because of its
quantifier. Like LTLFO, the logic in [10] is also undecidable; no function symbols are
allowed and relations are required to be finite. However, despite the fact that the pre-
fix problem is not phrased as a decision problem, its basic idea is already denoted by
Chomicki as the potential constraint satisfaction problem. In particular, he shows that
the set of prefixes of models for a given formula is not recursively enumerable. On the
other hand, the monitor in [10] does not tackle this problem and instead solves what we
have introduced as the word problem, which, unlike the prefix problem, is decidable.
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Basin et al. [4] extend Chomicki’s monitor towards bounded future operators using
the same logic. Furthermore, they allow infinite relations as long as these are repre-
sentable by automatic structures, i.e., automata models. In this way, they show that the
restriction on formulae to be domain independent is no longer necessary. LTLFO, in
comparison, is more general, in that it allows computable relations and functions. On
the other hand, LTLFO lacks syntax to directly specify metric constraints.

The already cited work of Hallé and Villemaire [16] describes a monitoring algo-
rithm for a logic with quantification identical to ours, but without function symbols or
arbitrary computable relations. The resulting monitors are generated “on the fly” by us-
ing syntax-directed tableaux. In our approach, however, it is possible to pre-compute the
individual BAs for the respective subformulae of a policy/levels of the SA, and thereby
bound the complexity of that part of our monitor at runtime by a constant factor.

Sistla and Wolfson [23] also discuss a monitor for database triggers whose conditions
are specified in a logic, which uses an assignment quantifier that binds a single value or
a relation instance to a global, rigid variable. Their monitor is represented by a graph
structure, which is extended by one level for each updated database state, and as such
proportional in size to the number of updates.

Finally, there are works dealing with so called parametric monitoring which, al-
though not based on first-order logic, offer support for monitoring traces carrying data
(cf. [1,24,9]). The approach followed by [9] is to “slice” a trace according to the pa-
rameters occurring in it and then to forward the n (effectively propositional) subtraces
to n monitor instances of the same specification; for example, one per logged-in user
or per opened file. In [1], a similar technique is applied for matching regular expres-
sions with the program trace, when restricted to the symbols declared in an expression.
All approaches allow the user to add variables to a specification, but only [24] offers
quantifiers. However, to restrict their scope, they must directly precede a positive so
called parameterised proposition, which is ensured by syntactic rules that prohibit arbi-
trary nesting or use of negation that could otherwise help to get around this constraint.
None of the approaches support arbitrary nesting of quantifiers and temporal operators,
use of negation, or function symbols to name just some important restrictions. How-
ever, on the plus side, one is able to use optimised monitoring techniques, developed in
the propositional domain, and apply them—with these restrictions in mind—to traces
carrying data. For Java, a widely used such implementation is JavaMOP [18].

7 Conclusions

To the best of our knowledge, our algorithm is the first to devise impartial monitors,
i.e., address the prefix problem instead of a (variant of the) word problem, for policies
given in an undecidable first-order temporal logic. Moreover, unlike other approaches,
such as [23,16] and even [6], we are even able to precompute most of the state space
required at runtime as the different levels of our SAs correspond to standard GBAs that
can be generated before monitoring commences. As required, our monitor is monotonic
and in principle trace-length independent. The latter, however, deserves closer exami-
nation. Consider formula ϕ8 in Fig. 2: once the left hand side of the implication holds,
it basically forces the monitor to memorise all occurrences of x for all events and keep
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Table 1. Overview of complexity results

Satisfiability Word problem Model checking Prefix problem

LTL PSpace-complete < Bilinear-time PSpace-complete PSpace-complete

LTLFO Undecidable PSpace-complete ExpSpace-membership,
PSpace-hard

Undecidable

them around until the right hand side of the U-operator holds. If the right hand side of
the U-operator never holds (or not for a very long time), the space consumption of the
monitor is bound to grow. Hence, unlike in standard LTL, trace-length dependence is
not merely a property of the monitor, but also of the specification.

We conjecture that trace-length dependence is generally undecidable. However, if
the formula is not trace-length dependent, then our monitor is trace-length indepen-
dent, as desired. Given a ϕ ∈ LTLFO of which we know that it is trace-length in-
dependent in principle, our monitor’s size at runtime at any given time is bounded
by O(|σ|depth(ϕ) · 2|ϕ|), where σ is the current input to the monitor: Throughout the
depth(ϕ) levels of the monitor, there are a total of O(|σ|depth(ϕ)) submonitors, which
are of size O(2|ϕ|), respectively. In contrast, the size of a progression-based monitor,
even for obviously trace-length independent formulae, such as ϕ2 in Fig. 2 is, in the
worst case, proportional to the trace length.

In Table 1 we have summarised the main results of §2–§4, highlighting again the dif-
ferences of LTL compared to LTLFO. Note that as far as trace-length dependence goes,
for LTL it is always possible to devise a trace-length independent monitor, irrespective
of the specification at hand (cf. [8]).

Acknowledgements. Our thanks go to Patrik Haslum, Michael Norrish and Peter
Baumgartner for helpful comments on earlier drafts of this paper.
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Abstract. Visibly pushdown automata (VPAs) express properties on
structures with a nesting relation such as program traces with nested
method calls. In the context of runtime verification, we are interested
in the following problem: given u, the beginning of a program trace,
and A, a VPA expressing a property to be checked on this trace, can
we ensure that any extension uv of u will be accepted by A? We call
this property right-universality w.r.t. u. We propose an online algorithm
detecting at the earliest position of the trace, whether this trace is ac-
cepted by A. The decision problem associated with right-universality is
ExpTime-complete. Our algorithm uses antichains and other optimiza-
tions, in order to avoid the exponential blow-up in most cases. This is
confirmed by promising experiments conducted on a prototype imple-
mentation.

1 Introduction

Program traces describe the control flows of program executions, including sub-
routine calls and returns. Some properties of program traces are specific to the
nesting structure of calls and returns, as for instance reentrant locks [BYBC10].
These properties are not captured by regular languages, but can be expressed
by visibly pushdown languages [AM09]. These latter languages rely on a parti-
tioning of the input alphabet into internal letters, call letters, and return letters,
which naturally fits to program traces. A language over such a partitioned al-
phabet is visibly pushdown if there exists a visibly pushdown automaton (VPA)
recognizing it. VPAs are pushdown automata, where operations on the stack are
driven by the letter type: call letters can only push, return letters can only pop,
while internal letters do not have access to the stack.

Runtime verification amounts to check a property during a program execu-
tion. In this paper we are interested in finding the earliest point during the
execution where the property can be asserted, for properties defined by VPAs.
More formally, given a word u over a partitioned alphabet and a VPA A, we
say that A is right-universal w.r.t. u if, for every possible continuation v of u,
the word uv is accepted by A. Hence, if u is a prefix of the trace w and A is
known to be right-universal w.r.t. u, then it can be asserted that w verifies the
property described by A, without reading w entirely. Our aim is to check right-
universality incrementally after each incoming event of the trace w, as described

A. Legay and S. Bensalem (Eds.): RV 2013, LNCS 8174, pp. 76–93, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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Algorithm 1 Checking right-universality incrementally

function Incremental-right-universality(A)
u ← ε
while trace w is not completely read do

a ← next letter of w
u ← ua
if A is right-universal w.r.t. u then

return True
end if

end while
return False

end function

in Algorithm 1. By incremental, we mean that some information is propagated
from one event (reading a letter in w) to the next one (reading the next letter in
w), avoiding repeated identical computations. Note that our algorithm will not
store u, but enough information for asserting right-universality of A w.r.t. u.

For safety properties, right-universality allows to know at the earliest time
point, whether the execution is sure, and thus whether controls can be stopped.
This is typically the case for properties looking for a pattern (potentially com-
plicated) that must occur during the execution. For properties to be avoided,
this permits to stop the program before it enters an unsafe configuration, hence
avoiding potential attacks [BJLW08].

These questions started to be addressed in the context of XML through earli-
est query answering of XPath expressions [BYFJ05, GNT09]. Indeed, XML doc-
uments also entail a nesting structure, similarly to program traces, and properties
(or queries) over these documents can be expressed using VPAs. An algorithm
asserting at the earliest time point, whether an XML document is accepted by
a deterministic VPA has been proposed in [GNT09]. This algorithm runs in
polynomial time at each incoming event. For non-deterministic VPAs, however,
the decision problem associated with right-universality (i.e. given A and u, is A
right-universal w.r.t. u?) is known to be ExpTime-complete [GNT09].

Algorithms that incrementally check right-universality of non-deterministic
VPAs are challenging in several aspects. First, VPAs are usually an intermediate
object, resulting from the translation of a property expressed in some logics, like
XPath for XML documents. Such translations rely on non-determinism, as for in-
stance when referring to any call inside a given procedure call (which corresponds
to the descendant axis in XPath). Any VPA can be determinized, but the proce-
dure yields VPAs of exponential size [AM09]. Second, right-universality w.r.t. u
can be considered as a variant of universality, parameterized by u. Recent tech-
niques have been proposed to check universality of non-deterministic VPAs effi-
ciently [TO12, FKL13, BDG13]. Among them, antichains have been successfully
applied to decision problems related to non-deterministic automata: universal-
ity and inclusion for finite word automata [DDHR06], and for non-deterministic
bottom-up tree automata [BHH+08]. Whether these techniques also apply to
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incrementally check right-universality is an interesting issue. Third, the algo-
rithm proposed in the deterministic case [GNT09] does not directly generalize
to the non-deterministic case.

Our contributions are the following. We propose an efficient incremental algo-
rithm checking right-universality of a non-deterministic VPA A. This algorithm
relies on the progressive computation of safe sets of configurations, the configu-
ration of a VPA being a state together with a stack content. It avoids to enterily
determinize the given VPA. This algorithm uses antichains in order to get a
compact representation of safe sets of configurations. We also propose efficient
operators and data structures for saving useless computation. We report on some
experiments, performed on randomly generated VPAs, and also on VPAs result-
ing from a translation from XPath expressions. These results exhibit the benefits
of our optimizations.

Verification of traces with a nesting structure has already been addressed,
through different aspects. Let us mention some of them. In [AEM04], the logic
CaRet over words with a nesting structure is introduced, and a model check-
ing algorithm is proposed. An extension is presented in [RCB08], with a cor-
responding monitor synthesis algorithm. VPAs are also sometimes used as an
intermediate model to express properties on program traces [CA07, FJJ+12].

The paper is structured as follows. In Section 2 we introduce VPAs and right-
universality. Safe sets of configurations are defined in Section 3. Our antichain-
based algorithm is described in Section 4, and further optimizations in Section 5.
Experiments are reported in Section 6.

2 Visibly Pushdown Automata and Right-Universality

Visibly pushdown automata (VPAs) are pushdown automata working on a par-
titioned alphabet where only call symbols can push, return symbols can pop,
and internal symbols can fire transitions without considering the stack [AM04,
AM09].

In this paper, we consider trees, instead of words with a nesting structure
(i.e. their linearization). Such a mapping is illustrated in Figure 1. Each call and
its matching return are mapped to a node, and the calls and returns directly
nested under this call correspond to the children of this node. These trees are
unranked, as the number of children of a node is not determined by its label. We
use VPAs as unranked tree acceptors, operating on their linearization [GNR08].
In particular these VPAs do not use internal symbols.

2.1 Unranked Trees

We here recall the standard definition of unranked trees, as provided for instance
in [CDG+07]. Let Σ be a finite alphabet, and Σ∗ (resp. Σ+) be the set of all
words (resp. non empty words) over Σ. The empty word is denoted by ε. Given
two words v, w ∈ Σ∗ over Σ, v is a prefix (resp. proper prefix ) of w if there exists
a word v′ ∈ Σ∗ (resp. v′ ∈ Σ+) such that vv′ = w.
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call(g)
call(g)
return(g)
call(g)
call(f)
return(f)
return(g)
return(g)

Fig. 1. Representation of a program trace as a tree t

An unranked tree t over Σ is a tree such that its nodes are labeled by a letter
of Σ and have an arbitrary number of children (the children are ordered from
left to right). We call a-node a node with label a ∈ Σ. The set of all unranked
trees over Σ is denoted by TΣ. A hedge h over Σ is a finite sequence (empty or
not) of unranked trees over Σ. The empty hedge is denoted by ε, and the set of
all hedges over Σ is denoted by HΣ.

Trees can be described by well-balanced words which correspond to a depth-
first traversal of the tree. An opening tag is used to notice the arrival on a node
and a closing tag to notice the departure from a node. For each a ∈ Σ, let a
itself represent the opening tag and a the related closing tag. The linearization
[t] of t ∈ TΣ is the well-balanced word over Σ ∪ Σ, with Σ = {a | a ∈ Σ},
inductively defined by: [t] = a [t1] · · · [tn] a, with a is the label of the root and
t1, . . . , tn are its n subtrees (from left to right). The linearization is extended to
hedges as follows. Let h = t1 · · · tn be the sequence of trees ti, 1 ≤ i ≤ n. Then
[h] = [t1] · · · [tn]. We denote by [TΣ ] (resp. [HΣ ]) the set of linearizations of all
trees in TΣ (resp. hedges in HΣ). Consider for instance the tree t in Figure 1:
its linearization is the word [t] = ggggffgg. Let Pref (TΣ) denote the set of all
prefixes of [TΣ ]: Pref (TΣ) = {u ∈ (Σ ∪Σ)∗ | ∃v ∈ (Σ ∪Σ)∗, uv ∈ [TΣ ]}.

2.2 Visibly Pushdown Automata

Definition 1. A visibly pushdown automaton A over a finite alphabet Σ is a
tuple A = (Q,Σ, Γ,Qi, Qf , Δ) where Q is a finite set of states containing initial
states Qi ⊆ Q and final states Qf ⊆ Q, a finite set Γ of stack symbols, and a

finite set Δ of rules. Each rule in Δ is of the form q
a:γ−−→ q′ with a ∈ Σ ∪ Σ,

q, q′ ∈ Q, and γ ∈ Γ .

The left-hand side of a rule q
a:γ−−→ p ∈ Δ is (q, a) if a ∈ Σ, and (q, a, γ) if

a ∈ Σ. A VPA is deterministic if it has at most one initial state, and it does not
have two distinct rules with the same left-hand side. We provide an example of
deterministic VPA in Figure 2a.

A configuration of a VPA A is a pair (q, σ) where q ∈ Q is a state and σ ∈ Γ ∗ a
stack content. A configuration is initial (resp. final) if q ∈ Qi (resp. q ∈ Qf ) and

σ = ε. For a ∈ Σ ∪Σ, we write (q, σ)
a−→ (q′, σ′) if there is a transition q

a:γ−−→ q′

in Δ verifying σ′ = γ · σ if a ∈ Σ, and σ = γ · σ′ if a ∈ Σ. We extend this
notation to words u = a1 · · ·an, by writing (q0, σ0)

u−→ (qn, σn) whenever there

exist configurations (qi, σi) such that (qi−1, σi−1)
ai−→ (qi, σi) for all 1 ≤ i ≤ n.
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(a) VPA A over alphabet Σ = {f, g}.

(0, ε) (1, γ0) (1, γ1γ0)
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(2, γ1γ0) (2, γ0) (2, ε)
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g f

f

g g

(b) Run of A on [t].

Fig. 2. An automaton and one of its runs

A run of a VPA A on a linearization [t] = a1 · · ·an of t ∈ TΣ is a sequence
(q0, σ0) · · · (qn, σn) of configurations such that (q0, σ0) is initial, and for every

1 ≤ i ≤ n, (qi−1, σi−1)
ai−→ (qi, σi). Such a run is accepting if (qn, σn) is final.

A tree t is accepted by A if there is an accepting run on its linearization [t].
The set of accepted trees is called the language of A and is written L(A).1 For
instance, given a tree t, the VPA of Figure 2a checks whether t has a g-node
with an f -child. An accepting run on [t] for the tree t of Figure 1, is depicted in
Figure 2b.

2.3 Universality and Right-Universality

We conclude the section of preliminaries with the notions of universality2 and
right-universality, that we will study in the remainder of the paper.

Definition 2. A VPA A over Σ is said universal if A accepts all trees t ∈ TΣ,
i.e. L(A) = TΣ. Let u ∈ Pref (TΣ) \ {ε} be a non empty prefix of [t0] for some
tree t0 ∈ TΣ. The VPA A is said right-universal w.r.t. u if for all trees t ∈ TΣ,
if u is a prefix of [t], then t is accepted by A.

In other words, right-universality w.r.t. u allows to assert that any tree lin-
earization beginning with u is accepted by the automaton. In this definition,
notice that when u = [t0], then A is right-universal w.r.t. u iff t0 is accepted by
A. Moreover, as a universal VPA is right-universal w.r.t. all non empty words
u ∈ Pref (TΣ), we assume in the sequel that VPAs are not universal.

In this article, our objective is to propose an incremental algorithm for right-
universality of a VPA A, in the sense described in the introduction (see Algo-
rithm 1). More precisely, the linearization [t0] of a given tree t0 is read letter
by letter3, and while A is not right-universal w.r.t. the current read prefix u of
[t0], the next letter of [t0] is read. When processing a new letter, we try to reuse

1 VPAs considered in this article are tree acceptors, with acceptance on empty stack.
2 This notion of universality is different from the one proposed for usual VPAs, where
a VPA is universal if it accepts all words of (Σ ∪Σ)∗ (and not only linearizations of
trees).

3 [t0] is the trace w of Algorithm 1.



Right-Universality of Visibly Pushdown Automata 81

prior computations as much as possible. In the sequel t0 always refers to this
particular tree.

We recall that the right-universality problem is ExpTime-complete for VPAs,
but in PTime for deterministic VPAs [GNT09]. A dual problem to right-uni-
versality w.r.t. u is to ask whether every word starting with u is rejected by a
given VPA. This problem is in PTime, even when the VPA is not deterministic.
Indeed, this amounts to check whether no configuration reached after reading u
can reach a final configuration.

2.4 Towards an Algorithm

In this section we consider several approaches for addressing right-universality of
VPAs, and justify our choice of considering safe sets of configurations. Readers
not familiar with the related litterature can skip this section at first reading.
As explained in the introduction, we discard the naive approach consisting in
determinizing the VPA and then applying the algorithm in [GNT09], in order
to avoid state-space explosion.

The algorithm given in [GNT09] for deterministic VPAs is a progressive com-
putation of safe states, with the property that the VPA is right-universal w.r.t.
u iff the state reached after reading u is safe. Note that safe states cannot be
determined statically: a state can be safe at some position of the word, but not
at another one. A first idea for the non-deterministic case is a subset construc-
tion, using sets of safe states instead of safe states, but this direct adaptation is
not correct. Hence, safe sets of configurations will be the basis of our algorithm,
instead of safe states. This point raises new questions, as the configuration space
is infinite, unlike the state space. In fact we will see that at each event, safe sets
of configurations have the same stack height as the depth of the word u leading
to this event, and are thus of finite (but potentially huge) cardinality at each
time point.

Recently, several authors have proposed efficient algorithms to check univer-
sality of VPAs [TO12, FKL13, BDG13]. The method that we give in [BDG13]
computes in an incremental way the set R of accessibility relations for all hedges
(i.e. {relh | h ∈ HΣ} in the present paper, also called summaries in [AM04]).
It uses antichains to get smaller objects to manipulate (in particular to limit
R to a strict smaller subset) and to avoid an explicit determinization step. It
can be easily adapted for checking right-universality of VPAs [BDG12, Section
3.4]. However we face the problem of computing the whole set R (instead of a
strict subset): experiments indicate that this step is too much time consuming
[BDG13]. For this reason we do not follow this approach, but use antichains over
safe sets of configurations rather than accessibility relations. This approach is
developed in the next section.

3 Safe Sets of Configurations

In this section, [t0] is a fixed tree whose linearization is read letter by letter,
and u denotes the current read prefix. We introduce the new notion of safe set
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of configurations related to u. We show how safe sets of configurations can be
defined from such sets associated to smaller prefixes u′ of [t0]. This property will
be useful to derive an incremental algorithm for checking right-universality of
a VPA.

3.1 A Notion of Safety for Right-Universality

Definition 3. Let A be a VPA and C ⊆ Q × Γ ∗ be a non empty set of config-
urations. Let u ∈ Pref (TΣ) \ {ε} be a non empty prefix of t0.

– C is safe for u if for every v such that uv ∈ [TΣ ], there exist (q, σ) ∈ C and

p ∈ Qf such that (q, σ)
v−→ (p, ε) in A.

– C is leaf-safe for u if for every v = av′ with a ∈ Σ such that uv ∈ [TΣ], there

exist (q, σ) ∈ C and p ∈ Qf such that (q, σ)
v−→ (p, ε) in A.4

Let Safe(u) = {C | C is safe for u} and LSafe(u) = {C | C is leaf-safe for u}.

Intuitively, as stated in Theorem 1 below, if C is the set of configurations
reached in A after reading u, then A is right-universal w.r.t. u iff C is safe for u.
Indeed, for every possible v, one can find in C at least one configuration leading
to an accepting configuration after reading v. Before stating this theorem, let
us give the next definition. Let Reach(u) denote the set of configurations (q, σ)

such that (q0, σ0)
u−→ (q, σ) for some initial configuration (q0, σ0) of A.

Theorem 1. A is right-universal w.r.t. u iff Reach(u) ∈ Safe(u).

Let us illustrate this on the VPA A depicted in Figure 2a. Recall that this
VPA checks that the tree has a g-node with an f -child. After opening a g-root,
the set of safe configurations is Safe(g) = {{(q2, γ1)}, {(q2, γ0)}}, which does
not contain the set of reached configurations, as Reach(g) = {(q1, γ0)}. Indeed,
A is not right-universal w.r.t. g, as no f -node has been encountered yet un-
der a g-node. For the word gf , as expected, the situation differs: Safe(gf) =
{{(q2, γ1γ0)}, {(q2, γ0γ0)}}, and Reach(gf) = {(q2, γ0γ0)} is a safe set of config-
urations. By Theorem 1, A is right-universal w.r.t. gf .

Hence, an algorithm computing both Reach(u) and Safe(u) can decide right-
universality w.r.t. u. The set Reach(u) is easy to compute, just by firing tran-
sitions of the VPA. In Sections 3.2-3.4, we detail how the set Safe(u) can be
defined from the set Safe(u′) with u′ a proper prefix of u. In this way, while
reading the linearization [t0] of a given tree t0, the set Safe(u) with u �= ε prefix
of [t0], can be incrementally defined. In Section 4, we turn this approach into an
algorithm.

4 The name “leaf-safe” comes from the fact that we only consider suffixes starting
with a Σ symbol, and thus continuations of the tree that do not add children to the
current node.
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3.2 Starting Point

We begin with Safe(a) with a ∈ Σ, for which we recall the definition.

Safe(a) = {C ⊆ Q×Γ ∗ | ∀h∈HΣ , ∃qf∈Qf , ∃(q, σ)∈C : (q, σ)
ha−→ (qf , ε)} (1)

3.3 Reading a Letter a ∈ Σ

Suppose that we are reading an a ∈ Σ and we have to compute Safe(ua). Two
cases occur : either ua �= [t0], or ua = [t0]. Let us study these two cases and
show how to manage them from an algorithmic point of view.

If ua �= [t0], we can retrieve safe sets configurations from prior computed
such sets: Safe(ua) = Safe(u′) where u′ �= ε is the unique prefix of u such
that u = u′a[h], with h ∈ HΣ . Indeed as shown by Lemma 1 below, we have
Safe(u′a[h]a) = Safe(u′). Hence, from an algorithmic point of view, we just have
to use a stack S to store these safe sets of configurations. When opening a, we
put Safe(u′) on the stack, and when closing a, we pop it. As h is a hedge, the
stack before reading a is exactly the stack after reading a.

Lemma 1. If h ∈ HΣ, then Safe(u[h]) = Safe(u) and LSafe(u[h]) = LSafe(u).

If ua = [t0], the previous argument is no longer correct since u′ = ε and
Safe(u′) is not defined for the empty word. Nevertheless, by definition Safe(ua) =
{C ⊆ Q× Γ ∗ | ∃(q, ε) ∈ C with q ∈ Qf}. Therefore we can again use stack S as
described before if it is initialized with the set

Init = {C ⊆ Q × Γ ∗ | ∃(q, ε) ∈ C with q ∈ Qf }. (2)

3.4 Reading a Letter a ∈ Σ

Let us now consider the much more involved case of sets Safe(ua) with a ∈ Σ.
When reading an a ∈ Σ, two successive steps are performed, with leaf-safe sets
of configurations as intermediate object:

Safe(u)
Step 1−−−−→ LSafe(ua)

Step 2−−−−→ Safe(ua)

For this purpose, we introduce the notion of predecessor. Let C ,C ′ be two
sets of configurations, let a ∈ Σ and h ∈ HΣ .

– C is an a-predecessor of C ′ if ∀(q′, σ′) ∈ C ′, ∃(q, σ) ∈ C , (q, σ)
a−→ (q′, σ′).

– C is a h-predecessor of C ′ if ∀(q′, σ′) ∈ C ′, ∃(q, σ) ∈ C , (q, σ)
[h]−−→ (q′, σ′).

Let Preda(C ′) = {C | C is an a-predecessor of C ′} and Predh(C ′) = {C |
C is a h-predecessor of C ′}.

The next proposition can be used to perform Step 1 and Step 2. It states
that safe sets of configurations are only among predecessors of prior safe sets of
configurations.
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Proposition 1. Let ua ∈ Pref (TΣ).

C ∈ LSafe(ua) ⇐⇒ ∃C ′ ∈ Safe(u), C ∈ Preda(C
′) (3)

C ∈ Safe(ua) ⇐⇒ ∀h ∈ HΣ, ∃C ′ ∈ LSafe(ua), C ∈ Predh(C
′) (4)

However, to get an algorithm, we face the problem that the number of hedges
to consider in Equivalence (4) is infinite. We use relations to overcome this.
Also the size of Safe(u) may be huge and not all configurations of Safe(u) are
crucial for checking right-universality w.r.t. u. We use antichains to get a compact
representation of Safe(u). These two concepts are explained in the following
section.

4 An Antichain-Based Algorithm for Right-Universality

In this section, we give an antichain-based algorithm for incrementally checking
right-universality of a VPA, that uses the approach given in Sections 3.2-3.4.

Let us summarize this approach. Let [t0] be the linearization of a given tree
t0. We initialize a stack S with set Init defined in (2) and we start by computing
Safe(u) with u being the first letter of [t0] (see (1)). Suppose that Safe(u) has
been computed from the current read prefix u of [t0]. Then, if the next letter
read in [t0] is a ∈ Σ, we compute Safe(ua) from Safe(u) by Steps 1 and 2, and we
put Safe(u) on the stack S. If the next letter read in [t0] is a ∈ Σ, then we pop
the stack S. The element that has been popped is the set Safe(u′) = Safe(ua)
where u′ is the unique prefix of u such that u = u′a[h] (except if ua = t0 in
which case the popped set is equal to Init = Safe(ua)), see Section 3.3. At each
computation of Safe(u), we check whether Reach(u) ∈ Safe(u) (see Theorem 1).

4.1 Finite Number of Hedges

We begin by showing that only a finite number of hedges has to be considered
in Equivalence (4). The reason is that a hedge h does not change the stack of

a configuration during a run of a VPA, that is (q, σ)
[h]−−→ (q′, σ). So h can be

considered as a function mapping each state q to the set of states obtained when
traversing h from q. Formally, for every h ∈ HΣ , relh is the function from Q

to 2Q such that q′ ∈ relh(q) iff (q, σ)
[h]−−→ (q′, σ) for some σ ∈ Γ ∗. The number

of such functions is finite, and bounded by |Q| · 2|Q|. These functions naturally
define an equivalence relation of finite index over HΣ :

h ∼ h′ ⇐⇒ relh = relh′ .

Let us note H for a subset containing one hedge per ∼-class. We have |H | ≤
|Q| · 2|Q|. The next lemma indicates that the computation of h-predecessors can
be limited to h ∈ H .

Lemma 2. For every h ∈ HΣ, C is a h-predecessor of C ′ iff there exists h′ ∈ H
with h ∼ h′, such that C is a h′-predecessor of C ′.

The set H can be computed by a saturation method based on the VPA rules.
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4.2 Antichains

Let us now introduce antichains. Consider the set 2Q×Γ∗
of all sets of configura-

tions, with the ⊆ operator. An antichain is a set of pairwise incomparable sets
of configurations with respect to ⊆. Given a set α of sets of configurations, we
denote by �α� the ⊆-minimal elements of α. The set α is ⊆-upward closed if for
all C ∈ α and C ⊆ C ′, we have C ′ ∈ α. From their definition, it is immediate
that Safe(u), LSafe(u), Preda(C ) and Predh(C ) are ⊆-upward closed sets.

The idea is to compute the antichain �Safe(u)� (resp. �LSafe(u)�) instead of
the whole ⊆-upward closed set Safe(u) (resp. LSafe(u)). The next corollary of
Theorem 1 indicates that such a limited computation is enough to check whether
a VPA A is right-universal w.r.t. u.

Corollary 1. A is right-universal w.r.t. u iff there exists C∈�Safe(u)� such that
C⊆Reach(u).

Moreover, it can be shown that the antichains �Safe(u)� and �LSafe(u)� are
finite and only contain finite sets C of configurations such that C ⊆ Q× Γ k for
some k. We now try to use these antichains at the starting point, and in Steps 1
and 2 of our approach.

4.3 Starting Point with Antichains

Let us explain how to compute Safe(a). Clearly, by definition of H and using
(1) (see Section 3.2), we can compute �Safe(a)� as follows:

�Safe(a)� =
⌊{

C | ∀h ∈ H, ∃qf ∈ Qf , ∃(q, σ) ∈ C : (q, σ)
ha−→ (qf , ε)

}⌋
. (5)

4.4 Step 1 with Antichains: From �Safe(u)� to �LSafe(ua)�

For the two steps, the goal is to adapt Proposition 1 so that it uses �Safe(.)�
instead of Safe(.), and �LSafe(.)� instead of LSafe(.). We begin with Step 1.
Implication (⇒) of Equivalence (3) can be directly adapted.

C ∈ �LSafe(ua)� =⇒ ∃C ′ ∈ �Safe(u)� , C ∈ Preda(C
′). (6)

Implication (6) gives us a way to compute �LSafe(ua)� from �Safe(u)�: it
suffices to take all a-predecessors of elements of �Safe(u)� and then limit to
those predecessors that are ⊆-minimal. We can even only consider minimal a-
predecessors of �Safe(u)� in the following sense: C is a minimal a-predecessor of
C ′ if for all C ′′ a-predecessor of C ′, C ′′ ⊆ C =⇒ C ′′ = C . We finally obtain:

�LSafe(ua)� = �{C | C is a minimal a-predecessor of C ′ ∈ �Safe(u)�}� . (7)
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4.5 Step 2 with Antichains: From �LSafe(ua)� to �Safe(ua)�
The second step for computing �Safe(ua)� from �Safe(u)� relies on the intro-
duction of antichains in Equivalence (4). Implication (⇒) holds with antichains:

C ∈ �Safe(ua)� =⇒ ∀h ∈ HΣ , ∃C ′ ∈ �LSafe(ua)� , C ∈ Predh(C
′). (8)

Similarly to Implication (6), we can restrict h-predecessors to only consider
minimal ones: C is a minimal h-predecessor of C ′ if for all C ′′ h-predecessor
of C ′, C ′′ ⊆ C =⇒ C ′′ = C . Moreover, by Lemma 2, we can limit the
computations to hedges h ∈ H whereH is the finite set introduced in Section 4.1.
Therefore, we obtain the next equality.

�Safe(ua)� =⌊{
C | C =

⋃
h∈H

Ch with Ch a minimal h-predecessor of C ′ ∈ �LSafe(ua)�
}⌋

(9)

4.6 Algorithm

We are now able to give our antichain-based algorithm (see Algorithm 2). It
uses a stack S (initially empty) as recalled at the beginning of this section. The
computation of �H� is considered as a preprocessing, as its value only depends
on A and not on [t0]. The used results are mentioned inside the algorithm.

5 Improvements and Implementation

Section 4 resulted in a first algorithm for incrementally testing whether a VPA
is right-universal. In this section, we show how this algorithm can be improved
by limiting hedges to consider, and optimizing operators and predecessors to be
computed. We also give the improved algorithm in a more detail way than in
Algorithm 2, as well as the underlying data structures.

5.1 Minimal Hedges

A first improvement is obtained by further restricting hedges to consider. Indeed
it suffices to consider minimal hedges wrt their function relh. Formally, let us
write h ≤ h′ whenever relh(q) ⊆ relh′(q) for every q ∈ Q. We denote by �H� the
≤-minimal elements of H . From the definition of h-predecessor, we have:

C h-predecessor of C ′ and h ≤ h′ =⇒ C h′-predecessor of C ′ (10)

This property can be used to replace h ∈ H in (9) by h ∈ �H�:

�Safe(ua)� =⎢⎢⎢⎣⎧⎨⎩C | C=
⋃

h∈�H�
Ch with Ch a minimal h-predecessor of C ′∈�LSafe(ua)�

⎫⎬⎭
⎥⎥⎥⎦
(11)
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Algorithm 2 Checking right-universality incrementally with antichains

function Antichain-Based Incremental-Right-universality(A, �H�)
Push(S , �Init�) % by (2), S being a stack
u ← first letter of [t0]
R ← 〈Compute Reach(u)〉
α ← 〈Compute �Safe(u)�〉 % by (5)
if ∃C ∈ α : C ⊆ R then

return True % Corollary 1
end if
while [t0] is not completely read do

a ← next letter of [t0]
u ← ua
R ← 〈Compute Reach(u) from R〉
if a ∈ Σ then

α ← Pop(S)
else

Push(S , α)
α ← 〈Compute �Safe(u)� from α〉 % by (7) and (9)

end if
if ∃C ∈ α : C ⊆ R then

return True % by Corollary 1
end if

end while
return False

end function

and similarly for the starting point:

�Safe(a)� =
⌊{

C | ∀h ∈ �H� , ∃qf ∈ Qf , ∃(q, σ) ∈ C : (q, σ)
ha−→ (qf , ε)

}⌋
(12)

5.2 An Appropriate Operator

Equation (11) expresses that every set of configurations C in �Safe(ua)� is the
union of Ch with h ∈ �H�. We introduce a new operator to improve the reada-

bility and find new properties. Let S be a finite set, and A,B ∈ 22
S\{∅}. The set

A %B ∈ 22
S

is defined by

A %B = {a ∪ b | a ∈ A and b ∈ B}.

Operator % builds sets obtained by taking one set of each of its operands, and
performing their union. It is obviously associative and commutative. Notice that
the elements of A,B are supposed to be non empty sets. This is always the case
in the algorithms using this operator.

When combined with operator �.�, operands of the % operator can be splitted,
so that % is to be computed on smaller sets:

�A %B� = �(A ∩B) ∪ (A \B % B \A)� (13)
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We experimentally observed that a good strategy to evaluate an expression A1%
. . . % An is to process sets Ai with increasing cardinality.

Equation (11) can now be rewritten in a simpler way as follows.

�Safe(ua)� =⎢⎢⎢⎣ ⊔
h∈�H�

{Ch | Ch is a minimal h-predecessor of C ′ ∈ �LSafe(ua)�}

⎥⎥⎥⎦ (14)

We can go further by reconsidering the notions of minimal a- and h-prede-
cessor with the new operator %. From the definition of minimal predecessor,
we immediately get that C is a minimal a-predecessor of C ′ iff C belongs to

the set
⌊⊔

(q′,σ′)∈C ′

{
{(q, σ)} | (q, σ) a−→ (q′, σ′)

}⌋
, and similarly for h-minimal

predecessors. A similar improvement can be provided for �Safe(a)�.

5.3 Using a SAT Solver to Find Minimal Predecessors

The operator % allows to compute Step 1 and Step 2. Equation (13) accelerates
these computations. In this section, we propose a method to compute Step 1
based on a SAT solver (a similar approach also works for Step 2).

A SAT solver is an algorithm used to efficiently test the satisfiability of a
boolean formula ϕ, that is, to check whether there exists a valuation v of the
boolean variables of ϕ that makes ϕ true. In this case we say that v is a model
of ϕ, denoted by v |= ϕ.

In Step 1, the computation of set �LSafe(ua)� from �Safe(u)� is given in (7):

�LSafe(ua)� = �{C | C is an a-predecessor of C ′ ∈ �Safe(u)�}� .

We recall that C is an a-predecessor of C ′ if for all (q′, σ′) ∈ C ′, there exists

(q, σ) ∈ C such that (q, σ)
a−→ (q′, σ′). We also recall that C ∈ �LSafe(ua)� is

a finite object such that C ⊆ Q × Γ k for some k. Let us associate a boolean
variable xc to each configuration c ∈ Q× Γ k.

We consider the following boolean formula ϕa :

ϕa =
∨

C ′∈�Safe(u)�

∧
c′∈C ′

∨
c

a−→c′

xc,

Let vC be the valuation such that vC (xc) = 1 iff c ∈ C . We immediately obtain
that:

vC |= ϕa iff C ∈ LSafe(ua) ∩Q× Γ k.

We define an ordering over valuations as follows, in a way to have a notion of
minimal models equivalent to ⊆-minimal elements of LSafe(ua).

Let V be a set of boolean variables, let v and v′ be two valuations over V .
We define v′ ≤ v iff for all variables x ∈ V , v′(x) = 1 =⇒ v(x) = 1. We denote
v′ < v if v′ ≤ v and v′ �= v. Given ϕ a boolean formula over V , we say that a
model v of ϕ is minimal if for all model v′ of ϕ, we have v′ ≤ v =⇒ v′ = v. We
get the next characterization.
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Lemma 3. vC is a minimal model of ϕa iff C ∈ �LSafe(ua)�.

We can now explain how to compute all the minimal models of formula ϕa.
Let ϕ be a boolean formula over V .
First, we explain, knowing a model v of ϕ, how to compute a model v′ of ϕ such
that v′ < v (if it exists). Consider the next formula ϕ′:

ϕ′ = ϕ ∧ (
∧

x∈V0

¬x) ∧ (
∨

x∈V1

¬x)

where V0 (respectively V1) is the set of all variables x ∈ V such that v(x) = 0
(resp. v(x) = 1). If ϕ′ has a model v′, it follows from the definition of ϕ′ that
v′ is a model of ϕ such that v′ < v. Otherwise, v is a minimal model of ϕ. So
from a model of ϕ we can compute a minimal model of ϕ by repeating the above
procedure.
Second, let us explain how to compute all the minimal models of ϕ. Suppose that
we already know some minimal model v of ϕ, and let V1 be the set of variables
x ∈ V such that v(x) = 1. Consider the formula

ϕ′ = ϕ ∧ (
∨

x∈V1

¬x).

Then a model v′ of ϕ′, if it exists, is a model of ϕ such that neither v′ < v (since
v is minimal) nor v < v′ (by definition of ϕ′). With the previous procedure,
we thus get a minimal model of ϕ that is distinct from v. In this way we can
compute all minimal models of ϕ.

5.4 Improved Algorithm and Data Structures

Let us come back to Algorithm 2 by indicating the underlying data structures
and the improvements resulting from the previous three sections.

As explained in Section 5.1, we restrict the computations to the set �H� of
minimal hedges. Notice that the algorithm that computes the set {relh | h ∈ H}
can be easily adapted to compute the set of its ≤-minimal elements. In the main
loop of Algorithm 2, Steps 1 and 2 can be computed either with the new operator
% or with a SAT solver (see Sections 5.2 and 5.3 resp.).

Efficient data structures are used both for the relations associated to minimal
hedges and for the antichains �H�, �Safe(u)� and �LSafe(u)�. A relation relh,
with h ∈ �H�, is stored as an array of bit-vectors. In this way the composition is
computed efficiently using bit-operations, as well as the number of elements of
the relation. A hash table is used to store each antichain, such that elements with
different weights are stored in different lists. In the case of �H�, the weight is the
number of elements of relh ∈ �H�. In the case of �Safe(u)� (resp. �LSafe(u)�),
the weight is the number of elements of C ∈ �Safe(u)� (resp. C ∈ �LSafe(u)�).
In this way, comparing a new element with the elements of the antichain is made
more efficient, by limiting the comparison with elements of the same weight.
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(a) Size of �H�. (b) Time to compute �H�.

Fig. 3. Space and time consumption for computing �H� on 50 VPAs of various densi-
ties, |Q| = 10, |Σ| = |Γ | = 3, and timeout of 60s

6 Experiments

We have implemented Algorithm 2 in a prototype tool together with the data
structures and improvements proposed in Section 5 (following both approaches,
using operator % and a SAT solver). We mainly use Python, with C binding to
the Glucose SAT solver (first ranked in recent SAT competitions) [Glucose].

The experimental tests are performed on two different benchmarks, one com-
posed of randomly generated VPAs, and another one based on the translation of
XPath expressions to VPAs. The experiments were run on a PC equipped with
an Intel i7 2.8GHz processor, 6 GB of RAM and running Linux Ubuntu 3.2.

6.1 Randomly Generated VPAs

During the random generation of VPAs A = (Q,Σ, Γ,Qi, Qf , Δ), |Qi| is fixed
to 1, and several parameters vary: the sizes |Q|, |Σ| and |Γ |, the density of final

states
|Qf |
|Q| , and the transition density5. Our online algorithm for checking right-

universality needs to compute the set �H� of minimal hedges as a preprocessing.
This set can be huge and thus lead to a timeout. In Figure 3a (resp. Figure 3b), we
indicate the average size of �H� (resp. the averageexecution time to compute it) for
randomly generatedVPAs with variable transition density (from 1 to 19) and vari-
able final state density. In this test, we distinguish universal automata from non-
universal ones since a universal VPA is right-universalw.r.t all u ∈ Pref (TΣ)\{ε}.
The two figures show that timeout happens for instances with transition density
around 12, and that the density of final states has few influence.

In the next experiment, we study the behavior of our algorithm on 90 ran-
dom instances of size 10 (resp. 20, 30), with fixed transition density 8 (resp.

5 Equal to the number of outgoing transitions per state and per symbol.
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Table 1. Number for each type (universal, right-universal, null relh, timeout) among 90
instances, with a timeout of 300s, and various number of states and transition densities.
Average (preprocessing/online) time is given in parentheses (in s).

|Q| universality right-universality null relh ti
m
e
o
u
t

(p
re
p
ro

c
.)

ti
m
e
o
u
t

(o
n
li
n
e
)

tr. density: 8 tr. density: 16 8 16 8 16 8 16 8 16
10 12 (0.59/0.01) 40 (1.19/0.01) 22 (16.62/9.36) 44 (11.00/1.10) 52 (0.67/0.01) 0 2 2 2 4
20 13 (9.35/0.01) 29 (0.86/0.01) 14 (20.44/30.85) 41 (5.18/1.07) 46 (9.62/0.01) 0 14 17 3 3
30 9 (20.22/0.01) 34 (13.39/0.01) 11 (21.23/5.85) 34 (27.31/3.43) 40 (1.23/0.01) 0 30 21 0 1

Table 2. Time and data structures size on random VPAs, with transition density of
16, |Q| = 20, |Σ| = |Γ | ∈ {2, 3, 4}, and timeout of 300s

VPA id Response Time (s.) | �H� | |Reach(u)| | �Safe(u)� |
q20-a02-x02-o16-c16-f0.5-00 right-universal w.r.t. a1 0.03 3 4 33
q20-a02-x04-o16-c16-f0.5-02 right-universal w.r.t. a1 0.07 3 8 53
q20-a02-x04-o16-c16-f0.5-06 right-universal w.r.t. a0 0.06 3 5 54
q20-a03-x02-o16-c16-f0.5-06 right-universal w.r.t. a2 0.13 12 4 32
q20-a03-x03-o16-c16-f0.5-06 right-universal w.r.t. a0 0.37 23 4 59
q20-a03-x03-o16-c16-f0.5-09 right-universal w.r.t. a2a0 1.74 13 14 179
q20-a03-x04-o16-c16-f0.5-07 right-universal w.r.t. a2 1.02 44 5 116
q20-a04-x02-o16-c16-f0.5-03 right-universal w.r.t. a3 0.71 71 5 75
q20-a04-x02-o16-c16-f0.5-07 right-universal w.r.t. a0 1.07 81 5 74
q20-a04-x03-o16-c16-f0.5-03 right-universal w.r.t. a2 15.88 359 5 447

16) and fixed density 0.5 of final states6. The considered tree t0 is a complete
binary tree up to height 3 filled with randomly generated letters of Σ. We only
comment the experiment using a SAT solver since it outperforms the approach
with operator %. We observe several behaviors (see Table 1): many automata are
either universal, or right-universal w.r.t. u with |u| = 1 (except 7 cases where
|u| = 2), or exhibits a hedge h with relh being the null relation7; the number of
timeout increases with |Q|. Table 2 indicates, for some representative VPAs, the
execution time and the sizes of �H�, Reach(u) and �Safe(u)�.

When it declares that a given VPA is right-universal w.r.t. u, our algorithm has
the nice property that it reproduces the same execution (thus with the same time)
for each tree t0 such thatu is prefixof [t0].This is clearlynot the case for themember-
ship algorithm that computesReach([t0]) and checks if it contains a final configura-
tion.For instance, ona randomVPAwith size |Q| = 20and transitiondensity 8, our
algorithm consumes less than 5s to declare that the automaton is right-universal
w.r.t. a, whereas the membership algorithm takes more than 300s as soon as the
height of a binary tree t0 with an a-root is equal to 8.

6 To deal with managable and not too small sets �H�.
7 This means that the automaton is never right-universal w.r.t. u, for any proper
prefix u of [t0]. Therefore, in such cases, our algorithm is slower that the membership
algorithm.
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(a) With the �H� average time curve. (b) Without the �H� average time curve.

Fig. 4. Average time for computing Safe(u), LSafe(u) and Reach(u) and overall com-
putation for 15 random trees

6.2 VPAs Resulting from XPath Translation

Our second benchmark is based on VPAs obtained from queries over XML doc-
uments expressed in the XPath language, and then translated into VPAs. This
translation was performed by the QuiXProc tool, as described in [GN11]. This
family of XPath expressions yields VPAs of linear size increase (VPA with id i
has 16+11i states), and looks for some complex patterns in the tree. In Figure 4
we report the time used by our algorithm on randomly generated trees, for this
family of VPAs. This shows that for real-world VPAs, the size of �H� is outside
the hardness threshold exhibited in Figure 3. For instance, for the VPA with id
9 and size |Q| = 115, �H� is computed in about 120s. Moreover, Figure 4b shows
the efficiency of our online algorithm (less than 0.8s).

Acknowledgements. We thank Grégoire Sutre for useful discussions, and the
QuiXProc team for translating XPath expressions of our benchmark to VPAs.
We also thank one of the reviewers who helped us to improve the presentation
of this article. The second author is supported by a grant from FRIA. This work
was also partially supported by CNRS SOSP project.
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Abstract. Security information and event management (SIEM) systems usually
consist of a centralized monitoring server that processes events sent from a large
number of hosts through a potentially slow network. In this work, we discuss how
monitoring efficiency can be increased by switching to a model of aggregated
traces, where monitored hosts buffer events into lossy but compact batches. In
our trace model, such batches retain the number and types of events processed,
but not their order.

We present an algorithm for automatically constructing, out of a regular finite-
state property definition, a monitor that can process such aggregated traces. We
discuss the resultant monitor’s complexity and prove that it determines the set of
possible next states without producing false negatives and with a precision that is
optimal given the reduced information the trace carries.

1 Introduction

In this work, we consider a common scenario to which runtime monitoring is nowa-
days often applied, namely that of security information and event management (SIEM)
systems [9]. Such systems, mainly designed for intrusion detection or the discovery of
insider attacks, usually comprise a centralized monitoring server that processes events
sent from a large number of hosts within a local company network. At peak times, these
hosts might be slowed down significantly, as they block while trying to synchronously
send off event information to an overloaded monitoring server [11].

We address this problem by proposing a trace model in which the monitored hosts
can aggregate parts of the event stream, retaining the number and types of events pro-
cessed, but not their order. Discarding ordering information allows event streams to be
compressed effectively, whilst retaining event frequencies and types maintains a certain
level of precision. In comparison to related work [5, 12], this trace model is not prob-
abilistic and does not allow for “gaps” in the event stream—every occurring event is
indeed accounted for. The aggregated trace rather provides an over-approximation that
implicitly includes all permutations of the original trace it represents.
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As the main contribution of this paper, we define an algorithm to automatically de-
rive, from a finite-state property definition, a runtime monitor that can process such
aggregated traces. We prove that the current formulation of our algorithm produces
monitors that are guaranteed not to miss property violations. As we also show, the mon-
itor processes the compressed event stream in bounded time, while not producing more
false positives than a naı̈ve monitor that traverses the original property state machine
using all possible permutations of the original event trace. Our algorithm can be eas-
ily parameterized with different acceptance conditions that can decrease the number of
warnings further while allowing for some missed violations.

To summarize, this paper presents the following original contributions:

– a general trace model in which trace producers supply, for certain periods of time,
aggregated information about events that occurred during those periods,

– an algorithm that automatically constructs a monitor for such traces from a finite-
state property definition,

– a proof that the algorithm always converges and that the resulting monitor is guaran-
teed not to miss any actual violations and is optimally precise given the aggregated
trace information it receives, and

– a complexity estimation for the resulting monitoring algorithm.

The remainder of this paper is structured as follows. Section 2 presents a motivating
example, leading to a description of constraint automata in Section 3. Section 4 defines
a process for translating finite state automata into constraint automata, and Section 5 re-
gards complexity and implementation considerations. The paper discusses related work
in Section 6 and concludes in Section 7.

2 Introductory Example

Consider the automaton illustrated in Figure 1. We follow the model of a trace classi-
fier, where different accepting states can cause different error messages, for instance as
implemented through JavaMOP [8]. In this example, both the event sequences logout ·
login and login · logout are in the language of the automaton, yet they lead to dif-
ferent states, which in our model means that they would be classified differently.

S

A1 A2

B1 B2 B3

logout

login

login

logout logout

Fig. 1. A deterministic automaton
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In this work, we consider the situation where monitored hosts in a distributed system
wish to compress data to decrease the load on the network. One of the most effective
ways to compress an event trace is to aggregate all occurring events in a data structure
that captures the events’ types and frequencies but discards their order. In our example,
the host could retain the number of times that login and logout events were observed.
The monitor would then face the challenge that, on receiving a compressed batch of two
events, the next state would be uncertain (A2 or B2). Importantly, though, receiving a
subsequent logout event would confirm that the automaton must be in state B3, and
would cause the automaton to converge onto a single state.

A naı̈ve approach to processing such “compressed traces” with incomplete informa-
tion about ordering constraints would be to define a special transition procedure over an
unmodified finite-state property automaton. In such a model, on receiving an aggregated
batch of events, one would be able to determine the possible next states by traversing
the automaton with each legal permutation of events that satisfies the aggregated input,
be it through brute-force generation of traces, or by using the automaton as a genera-
tor. Using the example illustrated in Figure 1, consider the case where the monitor has
observed the following compressed batch of events:

{〈logout, 2〉 , 〈login, 1〉}
This signifies the arrival of two logout events and one login event, without any in-
formation on the order in which they were received. In a different scenario, one might
consider aggregate traces that only record N, that is, the number of events that occurred,
without even recording their type. For such a model, any state reachable within N steps
of the current state is a potential next state. Preserving the type restricts the possible
next state set to a subset of these states. In general, the larger the window and number
of aggregated events, the greater the uncertainty of the end state, as the automaton will
have potentially progressed to a greater depth.

The problem with determining the next state set via naı̈ve traversal is that the run-
ning time will grow exponentially with the number of observed events. Thus, this work
proposes an ahead-of-time automaton transformation of finite-state property automata
into a data structure which, on being presented with a current state and an input of ag-
gregated events, computes the set of possible and valid next states efficiently, within a
time bounded by the size of the structure rather than that of the input.

3 Constraint Automata

The following section introduces the notions of constraints and constraint automata,
defining their structure, evaluation and traversal.

3.1 Overview

The transitions in a finite-state automaton determine the number, type and order of input
elements required to move between states. In the scenario we consider, compressed in-
puts are unordered, containing information only pertaining to each element’s frequency.
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The problem of computing the set of next states can be reformulated in terms of
reachability. Each state can be seen as having a set of associated conditions, or con-
straints, on the input. If a constraint evaluates to true, then the system can transition
into that state. To compute a complete set of next states, one has to check these condi-
tions for every reachable state.

S 0 S 1 S 2
a a

State Constraint
S 0 #v

a = 0
S 1 #v

a = 1
S 2 #v

a = 2

Fig. 2. A linear automaton with constraints on a trace v received at S 0

Figure 2 illustrates a very simple linear automaton, and the conditions required for
entering each other state when starting from S 0. The function #v

a returns the frequency
with which symbol a appears in trace v. The constraints defined are strict and unam-
biguous, referring to specific frequencies. Thus, for example, if one a is observed at S 0,
then the system can only be in state S 1.

S 0 S 1 S 2
a a

a State Constraint
S 0 #v

a = 0
S 1 #v

a ≥ 1
S 2 #v

a ≥ 2

Fig. 3. Modified constraints on introducing a loop at S 1

Precision becomes an issue once loops enter the equation. Figure 3 illustrates an au-
tomaton similar to that shown in Figure 2, yet the addition of a self-loop has weakened
the conditions, which can now only place a lower bound on the number of observed
events. However, as can be seen in the example illustrated in Figure 4, loops do not al-
ways introduce ambiguity; in this example, the automaton goes to a unique state under
any input despite the presence of loops.

S 0 S 1 S 2
a

a

a

State Constraint
S 0 #v

a = 0
S 1 #v

a ≥ 1 ∧ (#v
a − 1) mod 2 = 0

S 2 #v
a ≥ 2 ∧ (#v

a − 2) mod 2 = 0

Fig. 4. A flip-flop automaton. Following a mandatory single input, the automaton oscillates be-
tween S 1 and S 2, with the final state depending on whether an even or odd number of inputs has
been received

In general, fixed sequences of transitions precisely define the number of elements
that must be observed for the end state to be reached. Loops consume elements in
multiples of the number of elements along their path. For instance, the self-loop on S 1
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in Figure 3 consumes a symbols in multiples of one, while the loop formed between S 1

and S 2 in Figure 4 consumes a symbols in multiples of two. In the presence of loops,
fixed sequences outside of loops will set a lower bound on the number of elements that
must be consumed.

3.2 The Constraint Automaton Model

The examples illustrated defined constraints with respect to a single start state. By con-
sidering every state as an initial state, one may construct a constraint automaton that
accepts aggregated event sets instead of single event inputs. A constraint automaton has
a state for each state in the original automaton, and a transition (and consequently a
constraint) for each pair of connected states. This allows the constraint automaton to
deduce the next states from any configuration, facilitating the processing of sequences
of compressed traces.

A constraint automaton is evaluated as a subset automaton, i.e., the “next state” is
modelled as a set of states, as the loss of event ordering may lead to multiple valid
traversals. In general, shorter compressed traces leave less room for ambiguity. Vary-
ing the degree of compression may help re-converge the automaton in instances where
the current state set is large (note that a sequence of aggregated event sets that are all
singletons is essentially equivalent to a regular trace).

Losing event ordering makes analysis inherently incomplete. More specifically, if a
trace leads to a final state in a given finite-state automaton, then its compressed version
may lead to multiple states in the derived constraint automaton. As will be seen in
Section 6, while certain alternative approaches apply statistical methods to determine
the most likely next state, a loss of information will generally introduce uncertainty.
Given that this incompleteness cannot be eliminated, it is more relevant to reason in
terms of relative precision, that is, if the permutations of a given trace lead to a certain
set of next states in a finite state automaton, then that trace’s compressed version must
return exactly the same set of next states in the constraint automaton.

Before progressing any further, we first define the notion of an aggregated event set,
and transforming a trace into such a set, as follows:

Definition 1 (Aggregated Event Set). An aggregated event set for an alphabet Σ is a
set of pairs mapping elements to frequencies, with one pair defined for each element in
Σ. The set of possible aggregated events for alphabet Σ, denoted by AΣ , is defined as:

AΣ def
= {s |s ∈ 2Σ×N, |s| = |Σ|,

c1 ∈ s, c2 ∈ s, c1 = 〈a1, n1〉 , c2 = 〈a2, n2〉 , (c1 � c2) → (a1 � a2)}
Definition 2 (Trace to Aggregated Count). The aggregated event set for a trace v over
events Σ, denoted by ↓#v

Σ , is defined as:

↓#v
Σ

def
=
{〈

a, #v
a
〉 | a ∈ Σ}

3.3 Regular Expressions as Constraints

Based on the defined constraint-automaton model, the next step is to devise a method for
representing, deriving and evaluating the constraints. One possible constraint represen-
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tation would be as regular expressions. For each pair of states in the original automaton,
one would derive regular expressions that encompass all paths that lead from one state
to the other. Several algorithms for deriving regular expressions from automata exist,
such as the one described by Brzozowski [7]. Given any two states q and q′ in an au-
tomaton, regexD(q, q′) will return a regular expression for the set of strings which,
starting from q, lead to q′, or ⊥ if there are no paths between the two states.

To evaluate a compressed trace against a regular expression constraint, one would
check whether the expression matches at least one legal permutation of the elements in
the compressed trace. However, this procedure is computationally expensive, making
regular expressions inadequate for representing constraints in a monitoring context.

3.4 Constraints and Constraint Expressions

Given the inadequacy of regular expressions for representing constraints, the remain-
der of this section details constraint expressions, which are more amenable to direct
comparisons with compressed traces. Section 4 then describes a rewriting system for
converting regular expressions into such constraint expressions.

Definition 3 (Basic Constraint). A basic constraint C is a tuple of the form 2NN·Σ con-
sisting of a set of moduli, a numerical offset, and the symbol being constrained.

Example 1. The constraint on entering state S 1 from S 2 in the automaton illustrated in
Figure 4 would be expressed as the following basic constraint:

{2}1·a
For an observed aggregate input v, this constraint would be true when at least one a
symbol has been observed (denoted by the subscript), and when #v

a − 1 is a multiple of
2. The precise evaluation procedure will be described in Section 3.5.

Definition 4 (Well-formed Constraint Vector). A constraint vector
−→
C is a set of basic

constraints. For a constraint vector to be well-formed with respect to an automaton
with alphabet Σ, it must contain exactly one basic constraint for each element of Σ.

Example 2. A well-formed constraint vector for an automaton with Σ
def
= {a, b}.

{{2}1·a, ∅3·b}
Definition 5 (Constraint Expression). A constraint expression Ĉ is a logical formula
of the form

Ĉ :=
−→
C | Ĉ ∨ Ĉ | Ĉ · Ĉ | Ĉn | Ĉ∗ | ⊥

The empty constraint expression is represented by ⊥, and Ĉ ∨ ⊥ ≡ ⊥ ∨ Ĉ ≡ Ĉ · ⊥ ≡
⊥ · Ĉ ≡ Ĉ, whereas ⊥∗ ≡ ⊥n ≡ ⊥
Definition 6 (Disjunctive Constraint Expression). A Disjunctive Constraint Expres-
sion (DCE) is a constraint expression consisting solely of well-formed constraint vec-
tors and ∨ operators.
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Example 3. Two examples of constraint expressions on an automaton with Σ
def
= {a, b},

the latter being a DCE.

{{5}2·a, ∅3·b}∗ (1)

{{5}2·a, ∅3·b} ∨ {∅3·a, {2}2·b} (2)

3.5 Evaluating Constraints

The function evalv(Ċ) evaluates a DCE Ċ on an aggregated event input v, and is defined
as follows:

evalv(⊥)
def
= false

evalv(
−→
C)

def
= ∀Mi·a ∈ −→C . (M = ∅ ∧ #v

a = i
)∨(

M � ∅ ∧ #v
a ≥ i ∧ loops(#v

a − i,M)
)

evalv(
−→
C1 ∨ −→C2 ∨ . . . ∨ −→Cn)

def
= evalv(

−→
C1) ∨ evalv(

−→
C2) ∨ . . . ∨ evalv(

−→
Cn)

Assuming that Modsi returns the member of Mods at position i based on some ordering,
loops is defined as:

loops(N,Mods)
def
= ∃k ∈ N|Mods|.

|Mods|∑
i=1

Modsi × ki = N

The predicate loops holds when there exists a set of coefficients such that, when mul-
tiplied by members of Mods, will result in the sum of the products being equal to N.

Example 4. loops(7, {2, 3}) is true, as 2k1 + 3k2 = 7 for k1 = 2, k2 = 1.

3.6 Traversing a Constraint Automaton

Algorithm 1 details a general approach to traversing a constraint automaton. The algo-
rithm is designed for online use, with the blocking nextInputEventCount() function
returning aggregated event counts collected by the monitoring system. Naturally, this
can readily be adapted for offline inputs.

When traversing an automaton, the algorithm must evaluate the constraint expression
for each transition leaving the current state (line 9). Multiple constraint expressions may
evaluate to true simultaneously, which results in a set of possible next states. Thus, the
current automaton state must be modelled as a set of states, with the automaton poten-
tially being in any of those states. This non-determinism may arise even if the original
automaton was deterministic. For example, while the automaton illustrated in Figure
1 is deterministic, it has branches that accept two traces with differing order but equal
event frequencies. Its constraint automaton (Figure 5) is thus afflicted by ambiguity, as
an aggregated input of two events would lead to the automaton potentially being in ei-
ther A2 or B2. A subsequent event would cause the automaton to converge onto B3. As
we detail in Section 5, determinizing the constraint automaton would not help, as the
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Algorithm 1 On-line Traversal of a Constraint Automaton 〈Q, q0, Σ, F, Γ〉
1: Current ← {q0} � Start at initial state
2: loop � Perpetual loop
3: if (Current ∩ F � ∅) then � Check if potentially in a final state
4: reportError(Current) � Report current state set
5: end if
6: v ← nextInputEventCount() � Get next map of aggregated events
7: nextQ ← ∅ � Reset next state set
8: for all c ∈ Current do � Determine next states for each current state
9: nextQ ← nextQ ∪

{
c′ | (c, Ċ, c′) ∈ Γ, evalv(Ċ)

}
10: end for
11: Current ← nextQ � Update with computed next states
12: end loop

S

A1 A2

B1 B2 B3

{∅1·logout , ∅0·login
}

{∅0·logout , ∅1·login
}

{∅1·logout , ∅1·login
}

{∅1·logout , ∅1·login
}

{∅0·logout , ∅1·login
}

{∅1·logout , ∅0·login
} {∅1·logout , ∅0·login

}

{∅2·logout , ∅1·login
}

Fig. 5. The constraint automaton derived from the automaton in Figure 1

resulting deterministic automaton would still require a transition function that evaluates
the same set of transition constraints.

The size of Current may grow as well as shrink, the latter occurring when parallel
traversals converge onto a state, or when members of the set do not lead to valid next
states under the observed input. As presented, the algorithm never halts, instead report-
ing an error whenever Current contains some final state. This policy over-approximates
error states, which may lead to false alarms. To reduce them, one may consider using
other policies, such as reporting errors only when Current is composed entirely of final
states. Alternatively, one may augment the automaton with probabilistic information,
terminating based on the likelihood that the system is in an actual error state.

4 Constructing a Constraint Automaton from a Property FSA

The following defines the process of deriving constraint automata from finite state prop-
erties. The transformation is performed in two phases. In the first phase, regular expres-
sions are constructed for every pair of states in the property. In the second phase, each
regular expression is subsequently transformed into a constraint on frequencies.

4.1 Translating Regular Expressions into Constraint Expressions

The process of translating a regular expression into a constraint expression involves
two steps. The first step transforms the regular expression into an initial constraint
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expression, and is performed by applying the regex-to-constraint expression operator
Σ−⇁, defined as follows.

Definition 7 (Regex-To-CE). Given a regular expression R, one can derive a con-
straint expression Ĉ, whose vectors are well-formed with respect to an alphabet Σ. This
is denoted by R Σ−⇁ Ĉ def

= Ĉ = �R�Σ, where ��Σ is defined as:

�R1R2�Σ → �R1�Σ · �R2�Σ �R1 | R2�Σ → �R1�Σ ∨ �R2�Σ

�Rn�Σ → �R�n
Σ �R∗�Σ → �R�∗Σ

�an�Σ → {∅n·a} ∪
⋃

e∈Σ\{a}
∅0·e

The transformation replaces operators from the regex domain into that of constraint
expressions, and transforms alphabetic symbols into well-formed constraint vectors.

Example 5. a2b {a,b}−−−⇁ ({∅2·a} ∪ {∅0·b}) · ({∅1·b} ∪ {∅0·a}) ≡ {∅2·a, ∅0·b} · {∅0·a, ∅1·b}

4.2 From Constraint Expressions to DCEs

As can be seen in Example 5, the constraint expression produced by Σ−⇁ will not nec-
essarily be a DCE (in this case, because it contains a concatenation operator), yet the
constraint evaluation function described in Section 3.5 is only defined for DCEs. The
remainder of this section defines the� operator, which must be repeatedly applied to
a constraint expression until a DCE is obtained. Before defining this operator, we first
define the mod-union operator ∪m for two sets M,N ∈ 2N, as follows:

M ∪m N
def
= (M ∪ N) \ {m | m, n ∈ (M ∪ N),m mod n = 0,m � n}

When joining two sets under mod-union, values which are divisible by others in the
resultant set are removed. This decreases the number of unnecessary computations that
must be performed by loops, as multiples of values in a modulo set would produce the
same verdict.

Example 6. The following are two applications of the mod-union operator, the second
of which leads to a reduction in the resultant set.

{7} ∪m {3} def
= {7, 3} \ {} ≡ {7, 3} (1)

{3} ∪m {6} def
= {3, 6} \ {6} ≡ {3} (2)

Definition 8 (Distribution of Concatenation over Disjunction). We define � such
that concatenation distributes over disjunctions of expressions:

Ĉ ·
(
Ĉ1 ∨ Ĉ2 ∨ . . . ∨ Ĉn

)
�
(
Ĉ · Ĉ1

)
∨
(
Ĉ · Ĉ2

)
∨ . . . ∨

(
Ĉ · Ĉn

)
Definition 9 (Concatenating Constraints). Two constraint vectors can be concate-
nated by adding the corresponding basic constraints’ offsets and modulo sets:

−→
C1 · −→C2 �

{
(m1 ∪m m2)(n1+n2)·a | a ∈ Σ,m1n1·a ∈

−→
C1,m2n2·a ∈

−→
C2

}
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Definition 10 (Bounded Repetition). The reduction of expressions repeated for a fixed
number of times is defined for a single constraint vector and a disjunction of constraint
expressions, as follows:

−→
C

k �
{
m(n×k)·a | mn·a ∈ −→C

}
(
Ĉ1 ∨ Ĉ2 ∨ . . . ∨ Ĉn

)k
�

∨
i1+i2+...+in=k

Ĉ
i1
1 · Ĉ

i2
2 · . . . · Ĉ

in
n

Definition 11 (Unbounded Repetition). The reduction of expressions within unbounded
repetition is defined for a single constraint vector and a disjunction of constraint expres-
sions, as follows:

−→
C
∗ �
{
(m ∪m {n})0·a | mn·a ∈ −→C

}
(
Ĉ1 ∨ Ĉ2 ∨ . . . ∨ Ĉn

)∗
�
(
Ĉ
∗
1 · Ĉ∗2 · . . . · Ĉ∗n

)∗

4.3 Building the Constraint Automaton

Based on the previous definitions, we can now define a construction for transforming a
finite-state automaton into a constraint automaton.

Definition 12 (Regular Expression to Constraint Expression). Given a regular ex-
pression R, CΣ(R) will return a DCE Ċ whose vectors are well-formed with respect to
Σ, such that R Σ−⇁ Ĉ�∗

Ċ.

Definition 13 (FSA to CA). Given a finite-state automaton D def
= 〈Q, q0, Σ, F, Γ〉 with

Q states, initial state q0 ∈ Q, alphabet Σ, final states F ⊆ Q, and Γ ⊆ Q × Σ × Q, one
can construct a constraint automaton CA def

= 〈Q, q0, Σ, F, Γ′〉, where

Γ′ def
=
{
(q, Ċ, q′) | q, q′ ∈ Q,R = regexD(q, q′),R � ⊥, Ċ = CΣ(R)

}

The construction considers each pair of states, deriving the regular expressions and
converting them into constraint expressions. Each state in CAwill thus have a transition
to every other state with the corresponding constraint expression, provided that a path
between those states exists in D.

4.4 Examples

Example 7. The following example shows the derivation of a constraint from state S 0

to S 2 in Figure 7, which involves a repeated set of identical transitions, equivalent to
the bounded iteration of a group of regular expressions related via concatenation. As
with multinomial expansion, raising a DCE with m terms to a power n will result in a
constraint expression of

(
n+m−1

n

)
terms. In this example, the terms are reduced further,

yet in general, bounded iteration will produce long DCEs.
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S 0 S 1 S 2

{{2}1·a}
{{2}1·a}

{{2}1·a}

{{2}2·a}

{{2}0·a}{{2}0·a}
Fig. 6. Unambiguous constraint automaton for the flip-flop defined in Figure 4

S 0 S 1 S 2

a3b

a5b

a7b

a3b

a5b

a7b

Fig. 7. Automaton for (a3b | a5b | a7b)2

(a3b | a5b | a7b)2

Σ−⇁ ({∅3·a, ∅1·b} ∨ {∅5·a, ∅1·b} ∨ {∅7·a, ∅1·b})2
Regex-to-CE, Bounded Repetition,

Catenation (7, 10, 9)

� {∅3·a, ∅1·b}0 · {∅5·a, ∅1·b}0 · {∅7·a, ∅1·b}2 ∨
{∅3·a, ∅1·b}0 · {∅5·a, ∅1·b}2 · {∅7·a, ∅1·b}0 ∨
{∅3·a, ∅1·b}2 · {∅5·a, ∅1·b}0 · {∅7·a, ∅1·b}0 ∨
{∅3·a, ∅1·b}1 · {∅5·a, ∅1·b}1 · {∅7·a, ∅1·b}0 ∨
{∅3·a, ∅1·b}1 · {∅5·a, ∅1·b}0 · {∅7·a, ∅1·b}1 ∨
{∅3·a, ∅1·b}0 · {∅5·a, ∅1·b}1 · {∅7·a, ∅1·b}1 Bounded Repetition (10)

� {∅14·a, ∅2·b} ∨ {∅10·a, ∅2·b} ∨ {∅6·a, ∅2·b} ∨({∅3·a, ∅1·b} · {∅5·a, ∅1·b})∨({∅3·a, ∅1·b} · {∅7·a, ∅1·b})∨({∅5·a, ∅1·b} · {∅7·a, ∅1·b})
Bounded Repetition,

Power0 elimination (10)

� {∅14·a, ∅2·b} ∨ {∅10·a, ∅2·b} ∨ {∅6·a, ∅2·b} ∨
{∅8·a, ∅2·b} ∨ {∅10·a, ∅2·b} ∨ {∅12·a, ∅2·b} Catenation (9)

= {∅14·a, ∅2·b} ∨ {∅10·a, ∅2·b} ∨ {∅6·a, ∅2·b} ∨
{∅8·a, ∅2·b} ∨ {∅12·a, ∅2·b} Removal of duplicates

Example 8. The following example shows the derivation of a constraint from state S 0 to
S 2 in Figure 8a, involving a loop sandwiched between two compulsory single-element
transitions, thus demonstrating the use of modulo sets.

a(a5b3)∗a
Σ−⇁ {∅1·a, ∅0·b} · {∅5·a, ∅3·b}∗ · {∅1·a, ∅0·b} Regex-to-CE (7)

� {∅1·a, ∅0·b} · {{5}0·a, {3}0·b} · {∅1·a, ∅0·b} Unbounded Repetition (11)

� {{5}2·a, {3}0·b} Catenation (9)
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S 0 S 1 S 2
a

a5b3

a

(a) Automaton for a(a5b3)∗a

S 0 S ′
1

S 1

S 2
a

a a

a5b3

a

(b) Automaton for a(a(a5b3)∗a)∗a

Fig. 8. Example automata showing loops and nested repetition

Example 9. The final example shows the derivation of a constraint from state S 0 to
S 2 in Figure 8b, which showcases a nested repetition, demonstrating the effect of un-
bounded iteration on non-empty modulo sets.

a(a(a5b3)∗a)∗a
Σ−⇁ {∅2·a, ∅0·b} · ({∅2·a, ∅0·b} · {∅5·a, ∅3·b}∗)∗ Regex-to-CE, Catenation (7, 9)

� {∅2·a, ∅0·b} · ({{5}2·a, {3}0·b})∗ Result of Example 8

� {∅2·a, ∅0·b} · {{2, 5}0·a, {3}0·b} Unbounded Repetition (11)

� {{2, 5}2·a, {3}0·b} Catenation (9)

5 Computational Complexity

The purpose of constraint automata is to determine the precise set of next states for un-
ordered input traces efficiently. Thus, it is important to analyze the computational cost
of using the involved structures.

Consider the conversion of an input automaton D, with states Q and an alphabet
Σ, into a constraint automaton CA. The size of the resultant constraint automaton is
influenced by three factors, namely (i) the connectivity ofD, with a fully connected au-
tomaton leading to an out-degree of |Q| for each state in CA, thus requiring a maximum
of |Q| constraint expressions to be evaluated with each step in the constraint automa-
ton, (ii) the number of choice operators in the regular expressions derived from the
automaton, which affects the number of constraint vectors in the derived constraint ex-
pressions, and (iii) the number of cycles in the regular expressions, which will cause
basic constraints’ modulo-set sizes to grow.

A sparsely-connected input automaton would tend to have fewer outgoing transitions
per state (as fewer states would be reachable from other states), whereas a densely-
connected automaton containing many loops of differing length would increase the size
of constraints’ modulo sets. As the constraint vectors in the automaton must be well-
formed, they will each contain |Σ| basic constraints.

Furthermore, as the current state is a set of possible states, the set of next states would
have to be computed whilst taking each current state into consideration. The size of the
current state set can be at most |Q|, which would only occur when the automaton is po-
tentially in any state. Hence, the number of operations performed when computing the
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next state, assuming the worst-case scenario of a fully-connected aggregate automaton
and a full current state set, is:

|Q|︸︷︷︸
current
states

× |Q|︸︷︷︸
constraint

expressions

× vecs︸︷︷︸
vectors
/CE

× |Σ|︸︷︷︸
basic

constraints
/CV

× ( mods!︸︷︷︸
modulo
set size
/BC

+ 1︸︷︷︸
offset

comparison

)

As noted earlier, the magnitude of mods and vecs is dependent on the form of the ex-
tracted regular expressions, specifically the number of cycles and choice operators, re-
spectively. Evaluating the modulo set requires calls to loops(), which has a worst-case
running time that is factorial to the input size. As will be discussed in Section 6, in
practice, one can lower the average running time by ordering the evaluation of con-
straints based on their weakness, and by using more sophisticated techniques for solving
loops().

Implementation Considerations

A notable feature of constraint automata is that the running time is independent of
the number of events encoded in an aggregated event burst. An indirect correlation
may exist, as a large number of such events would be more likely to lead to multiple
next states, which would consequently enlarge the current state set. The use of a set
of current states could be eliminated by making the automaton deterministic, yet this
generally results in an exponential growth in states, increasing the number of constraint
expressions to be evaluated at every state by an equivalent degree. By maintaining a
dynamic set of current states, one can thus reduce the average traversal time, as only
the outgoing transitions from potential current states are evaluated.

In this work, we have opted to use regular expressions to produce an initial constraint
automaton so as to modularize the transformation stages. It is possible that some per-
formance gains may be obtained by generating constraint expressions directly from the
original automaton. More specifically, this may allow the detection of sub-expressions
that are shared across constraints, facilitating the caching and reuse of partial results
during constraint evaluation. Optimizations could also extract common sub-expressions
among constraint expressions emanating from states, rather than evaluating each out-
going transition in isolation. Such considerations could give rise to interesting future
work.

A system implementing constraint automata would most likely benefit from chang-
ing the representation from the one used into one that is more amenable to comparisons.
For example, constraints could be organized in a tree structure based on their offset val-
ues, speeding up evaluation by excluding branches which do not meet the minimum.

6 Related Work

Instrumentation is recognized as a source of overhead in runtime verification. This over-
head can be reduced by decreasing the amount of instrumentation, or sampling, that is
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performed. Statistical methods can then be employed to infer the most probable se-
quence of state transitions that occurred during the time in which sampling was sus-
pended. For instance, Stoller et al. [12] consider the scenario where instrumentation is
suspended for some period of time, leaving a gap in the sequence of observed events.
Their approach focused on reconstructing the missed events via probabilistic models,
which estimate the next state based on traces that were observed previously. This ap-
proach differs from that explored in this work, as the gaps are devoid of information,
not even specifying the number of missed events. In contrast, our work only considers
unordered traces, and still requires that the number and type of events be logged.

Bodden et al. [5, 6] provide an implementation of efficient time-triggered automata,
which consider gaps of events during monitoring. The approach explored can report
false positives (but not false negatives) if continuously monitoring “skip” events that
prevent an error state from being reached.

Bartocci et al. [2] extend the concept of probabilistically monitoring gaps in events,
and introduce the notion of criticality levels, which vary based on the probability that
a system reaches an error state. Criticality levels can then be used to determine the
degree of instrumentation performed, with the system increasing sampling to determine
the precise system state. A similar concept could be integrated into the construction
examined in this work. For example, sampling could be increased on detecting that the
current state set contains a final state.

Another approach, adopted by Basin et al. [3], is to handle the uncertainty brought
about by incomplete traces using a three-valued logic, whereby the property’s evalua-
tion function is modified to also reason about indeterminate results.

Bauer et al. [4] present a multi-valued logic that is able to express not only whether a
violation has taken place, but also whether a violation would occur if the trace terminated
right now. One could easily combine such acceptance conditions with our approach.

The choice of algorithm when generating regular expressions from a finite-state au-
tomaton will affect the size and complexity of the resultant expressions [10]. Bounded
iteration with choice produces constraint expressions with multiple constraint vectors.
In broad terms, unbounded iteration will cause the offset value to be added to the mod-
ulo set. Subsequent nesting of an iterated expression within unbounded iterations will
have no further effect on the constraint expression’s size. Ideally, the algorithm em-
ployed would thus minimize the number of choice operators in the output expressions.
Nevertheless, the upper-bound on running time remains independent of the number of
missed events. In addition, by isolating the inefficient component of the constraints into
modulo sets, one may choose to apply existing results and libraries addressing the Sat-
isfiability Modulo Theories problem [1] to speed up the computation.

7 Conclusion

We have presented a trace model that allows for the monitoring of distributed systems
by compressing partial event streams before they are sent to the monitoring server.
We described an algorithm for constructing ahead-of-time a monitor that can deal with
compressed event streams in such a way that it provably recognizes property violations
without false negatives. We have further shown that the resulting automaton is as precise
as possible, and has a complexity low enough to promise performance gains in practice.
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A regular expression R with N atoms of the form ak, P power operators, and C
concatenation operators, will produce an initial constraint expression Ĉ under Σ−⇁ with
an equal number of P and C operators in the constraint expression domain, and each of
the N atoms will be replaced with a constraint vector. The number of disjunctions in the
expression is not directly relevant for the purposes of convergence.

The transformation� is defined for all constraint expression operators, only stop-
ping once a constraint expression is a DCE. In addition, � will itself produce a con-
straint expression, thus showing that the system will always progress while there are
operators left to be reduced. The next step is thus to demonstrate that repeated applica-
tions of�will reduce P and C to zero. This is done by case analysis on each constituent
definition of the operator, as follows:

– Concatenation of two vectors will reduce C by 1.
– Distributing · over ∨ has the immediate effect of increasing C by the number of

disjuncts, yet the composite expressions will subsequently undergo concatenation,
giving an overall reduction in C of 1.

– Bounded Repetition on constraint vectors will reduce P. Bounded repetition on a
disjunctions of constraint expressions will itself produce a disjunction of constraint
expressions. The index is transferred to the individual, simpler disjuncts. These dis-
juncts would either consist of constraint vectors, in which case P would be reduced,
or further disjunctions. Yet in the latter case, the nesting depth must be finite (due
to the expression being finite).

– Unbounded Repetition of a constraint vector leads to an immediate reduction of
1 from P. For a disjunction of constraint vector, the transformation will result in
each disjunct being raised to an unbounded power, and hence an initial increase in
P and C by the number of disjuncts. Yet if the sub-terms are constraint vectors,
then P and C will be reduced, as per the previous definitions. If, alternatively, the
terms are themselves disjunctions of expressions, then the terms would be further
expanded until concatenations of basic vectors are reached, at which point P and C
will be reduced.

Theorem 2 (Equal Aggregate Event Vectors). Given that Perms(s) returns the set of
permutations of a trace s, if s ∈ Σ∗, then ∀p ∈ Perms(s). ↓#p

Σ = ↓#s
Σ

Proof. As the alphabet Σ is fixed for all the permutations of s, the function will always
return a set containing Σ maps, with one for each element of Σ. Since the permutation
operation only affects the order of symbols within a trace, the symbol counts remain
unaffected.

Theorem 3 (Equivalent Evaluations of Regex and Constraint Expressions). The
constraint automaton cannot produce false negatives, and is also maximally precise
given the reduced information it receives, i.e., won’t produce more false warnings than
a solution based on the explicit automaton traversal using all string permutations. It
holds that ∀s ∈ Σ∗.

[
eval↓#s

Σ
(CΣ(R)) ↔ (∃p ∈ Perms(s). match(p,R))

]

Each direction of the bi-implication is proven separately, and is presented as two
proofs. Prior to the proofs, we state the following lemmas:
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Lemma 1 (Permutations of a regular expression). Given that Perms(R) returns all
permutations of the sub-expressions of a regular expression R such that any sub-
expressions R1 and R2 can be reordered using R1R2 ≡ R2R1 and R1|R2 ≡ R2|R1, it
holds that ∃p ∈ Perms(s). match(p,R) ↔ ∃p ∈ Perms(s). ∃r ∈ Perms(R). match(p, r)

Lemma 2 (Regex decomposition). Decomposed strings match sub-expressions, that
is, ∀s ∈ Σ∗. match(s,R1 R2) → ∃p1 p2 = s. match(p1,R1) ∧ match(p2,R2), and
∀s ∈ Σ∗. match(s,R1|R2) → match(s,R1) ∨ match(s,R2)

Proof (Evaluation → Match). Every basic constraint, constraint vector and DCE can
be reconstructed into a regular expression, as follows:

Rec({m1,m2, . . . ,mk}n·a) = an(am∗
1am∗

2 . . . am∗
k )∗

Rec({C1,C2, . . . ,Ck}) = Rec(C1) Rec(C2) . . . Rec(Ck)

Rec(
−→
C1 ∨ −→C2 ∨ . . . ∨ −→Ck) = Rec(

−→
C1) | Rec(−→C2) | . . . | Rec(−→Ck)

If Ċ is a DCE which holds for ↓#s
Σ , then one can rebuild a string a#s

a b#s
b . . . z#s

i , for
a, b . . . z ∈ Σ, that will contain a symbol for each element in Σ with a frequency
equal to its value in the aggregated input. Given the definition of Rec(), it follows
that ∃p ∈ Perms(a#s

ab#s
b . . . z#s

i ). match(p, Rec(Ċ)). By using Lemma 1, the fact that
Perms(a#s

a b#s
b . . . z#s

i ) = Perms(s), and by substituting Ċ with CΣ(R), the statement to be
proven can be reformulated as:

∃p ∈ Perms(s). match(p, Rec(CΣ(R))) → ∃p ∈ Perms(s). ∃r ∈ Perms(R). match(p, r)

The relation will be demonstrated through case analysis on the different forms of
regular expressions. Given that Lemma 2 holds, it is sufficient to show that the operators
hold on the basic elements of regular expressions and then induce on the length of the
regular expression.

R CΣ(R) Rec(CΣ(R))

anbm {∅n·a, ∅m·b} anbm ∈ Perms(R)
an|bm {∅n·a, ∅0·b} ∨ {∅0·a, ∅m·b} an|bm ∈ Perms(R)
an∗ {{n}0·a} a0an∗ ∈ Perms(R)

(an|bm)∗ {{n}0·a, {m}0·b} an∗bm∗
Matches R for permutation of s

(an∗ |bm∗
)k {{n}0·a, {m}0·b} an∗bm∗

Matches R for permutation of s

Proof (Match → Evaluation). Recall that CΣ() is evaluated in two phases, first trans-
forming the input into an initial constraint expression (Definition 7), and then iteratively
reducing the expression into a DCE. The initial transformation simply changes the op-
erators into those of the constraint-expression domain, whilst replacing alphabetic sym-
bols into basic constraints. It is evident that ∀a ∈ Σ. s ∈ Σ∗. ∀n ∈ N. match(s, an) ↔
eval↓#s

Σ
(∅n·a), since the LHS will only be true for sequences of as of length n, which

also holds for the RHS. The task is thus to demonstrate that expressions obtained by
reductions using � will also evaluate to true. This is done via case analysis on the
operators, as follows:
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– Concatenation of two constraint vectors is performed by summing the offsets and
performing a union of modulo sets for every basic constraint. The result will thus
consume at least the same amount of input events as the constituent vectors would
in isolation.

– Distributing · over ∨ preserves truth due to the design of the eval() procedure, as
each disjunct will also include the concatenated outer disjunct.

– Bounded Repetition of a constraint vector
−→
C raised to a power k is equivalent to

concatenating a sequence of k consecutive
−→
C vectors. The modulo sets thus remains

unchanged, whilst the offsets of each basic constraint are multiplied by a factor k.
Bounded repetition of a disjunction of constraint is performed by expanding the
disjunction as a multinomial, discarding the coefficients. This produces a disjunc-
tion of sequences with every combination of the terms, essentially unravelling the
loop.

– Unbounded Repetition resolves to a concatenation of zero or more constraint ex-
pressions. If a single constraint vector is being raised to a power, then its offset is
added to its modulo set, thus matching when the original expression is taken one
or more times. In the case of an unbounded repetition of a DCE, each disjunct
can be taken an unbounded number of times, forming a sequence of constraint ex-
pressions. Equivalent sequences can be formed by changing the disjunctions into
concatenations, whilst simultaneously placing each concatenated expression in an
unbounded loop.
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Abstract. We study the correctness of automated synthesis for concurrent mon-
itors. We adapt sHML, a subset of the Hennessy-Milner logic with recursion, to
specify safety properties of Erlang programs, and define an automated transla-
tion from sHML formulas to Erlang monitors so as to detect formula violations
at runtime. We then formalise monitor correctness for our concurrent setting and
describe a technique that allows us to prove monitor correctness in stages; this
technique is used to prove the correctness of our automated monitor synthesis.

Keywords: runtime verification, monitor synthesis, concurrency, actors, Erlang.

1 Introduction

Runtime Verification (RV) [3], is a lightweight verification technique for determining
whether the current system run observes a correctness property. Two requirements are
crucial for the adoption of this technique. First, runtime monitor overheads need to be
kept to a minimum so as not to degrade system performance. Second, instrumented
monitors need to form part of the trusted computing base of a system by adhering
to an agreed notion of monitor correctness; amongst other things, this normally in-
cludes a guarantee that runtime checking corresponds (in some sense) to the property
being checked for. Monitor overheads and correctness are occasionally conflicting con-
cerns. For instance, in order to lower monitoring overheads, engineers increasingly use
concurrent monitors [11,22,28] so as to exploit better the underlying parallel and dis-
tributed architectures pervasive to today’s computers. However concurrent monitors are
also more susceptible to elusive errors such as non-deterministic monitor behaviour,
deadlocks or livelocks which may, in turn, affect their correctness.

Ensuring monitor correctness is non-trivial. One prominent obstacle is the fact that
system properties are typically specified using one formalism, e.g., a high-level logic,
whereas the respective monitors checking these properties are described using another
formalism, e.g., a programming language—this makes it hard to ascertain the semantic
correspondence between the two descriptions. Automated monitor synthesis can miti-
gate this problem by standardising the translation from the property logic to the monitor
formalism. It also gives more scope for a formal treatment of monitor correctness.

In this work, we investigate the correctness of synthesised monitors in a concur-
rent setting, whereby (i) the system executes concurrently with the synthesised monitor
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(ii) the system and the monitor themselves consist of concurrent sub-systems and sub-
monitors. Previous work on correct monitor synthesis[17,27,4] abstracts away from
the internal working of a system, representing it as a string of events/states (execu-
tion trace). It also focusses on a logic that is readily amenable to runtime analysis,
namely Linear Temporal Logic (LTL)[8]. Moreover, it expresses synthesis in terms of
abstract or single-threaded monitors—using pseudocode or automata—executing wrt.
such trace. By contrast, we strive towards a more intensional formal definition of online
correctness for synthesised concurrent monitors whereby, for arbitrary property ϕ, the
synthesised monitor Mϕ running concurrently wrt. some system S (denoted as S ‖ Mϕ)
observes the following condition:

S violates ϕ in the current execution iff S ‖ Mϕ detects the violation (1)

The setting described in (1) brings to the fore a number of additional issues:

(i) Apart from the formal semantics of the source logic (used to specify the property
ϕ), we also require a formal semantics for the target languages of both the system
and the monitor executing in parallel, i.e., S ‖ Mϕ. In most cases, the latter may
not always be available.

(ii) A property logic semantics is often defined over systems rather than traces, which
may not lend itself well to the formulation of correctness runtime analysis outlined
in condition (1) above. In the case of concurrent systems, this aspect is accentu-
ated by the fact that systems may behave non-deterministically and typically have
multiple execution paths as a result of different thread interleavings scheduled at
runtime.

(iii) Concurrent monitors may also have multiple execution paths. Condition (1) thus
requires stronger guarantees than those for single-threaded monitors so as to en-
sure that all these paths correspond to an appropriate runtime check of system
property being monitored. Stated otherwise, correct concurrent monitors must al-
ways detect violations, irrespective of their runtime interleaving.

(iv) Online monitor correctness needs to ensure that monitor execution cannot be in-
terfered by the system, and viceversa. Whereas adequate monitor instrumentation
typically prevents direct interferences, condition (1) must consider indirect inter-
ferences such as system divergences [25,18], i.e., infinite internal looping making
the system unresponsive, which may prevent the monitors from progressing.

(v) Ensuring correctness along the lines of condition (1) can be quite onerous because
every execution path of the monitor running concurrently with the monitored sys-
tem, S ‖ Mϕ, needs to be analysed so as to ensure consistent detections along
every thread interleaving. Consequently, one needs to devise scalable techniques
facilitating monitor correctness analysis.

We conduct our study in terms of actor-based [19] concurrent monitors written in Er-
lang [7,2], an industry strength language for constructing fault-tolerant systems; we also
restrict ourselves to the monitoring of systems written in the same language. We limit
ourselves to reactive properties describing system interactions with the environment and
focus on the synthesis of asynchronous monitors, performing runtime analysis through
the Erlang Virtual Machine (EVM)’s tracing mechanism. Despite the typical drawbacks
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Actor Systems, Expressions, Values and Patterns

A, B,C ∈ Actr ::= i[e � q]m | A ‖ B | (ν i)A q, r ∈ MBox ::= ε | v : q

e, d ∈ Exp ::= v | self | e!d | rcv g end | e(d) | spw e | case e of g end | x = e, d | . . .
v, u ∈ Val ::= x | i | a | μy.λx.e | {v, . . . , v} | l | exit | . . . l, k ∈ Lst ::= nil | v : l

p, o ∈ Pat ::= x | i | a | {p, . . . , p} | nil | p : x | . . . g, f ∈ PLst ::= ε | p→ e; g

Fig. 1. Erlang Syntax

associated with asynchrony, e.g., late detections, our monitoring setup is in line with the
asynchrony advocated by the actor concurrency model, which facilitates scalable cod-
ing techniques such as fail-fast design patterns [7]. Asynchronous monitoring has also
been used in other RV tools, e.g., [9,12], and has proved to be less intrusive and easier
to instrument than synchronous monitoring setups. It is also more feasible for monitor-
ing distributed systems[14,11]. More importantly, though, we expect most of the issues
investigated to carry over in straightforward fashion to purely synchronous settings.

As an expository logic for describing reactive properties, we consider an adaptation
of sHML [1]—a syntactic subset of the more expressive logic μ-calculus, describing
safety, i.e., monitorable[21], properties. Our choice for this logic was, in part, motivated
by the fact that the full μ-calculus had already been adapted to describe Erlang program
behaviour in [16], albeit for model-checking purposes. Given the usual drawbacks asso-
ciated with full-blown model checking, our work contributes towards an investigation of
lightweight verification techniques for μ-calculus properties of Erlang programs. More
importantly, though, it illustrates well the correctness monitoring issues arising in actual
implementations, as discussed earlier for (1).

The rest of the paper is structured as follows. Sec. 2 discusses the formal seman-
tics of our systems and monitor target language. Sec. 3 discusses reformulations to
the logic facilitating the formulation of monitor correctness, discussed later in Sec. 4.
Sec. 5 describes a synthesis algorithm for the logic and a tool built using the algorithm.
Subsequently, Sec. 6 proves the correctness of this monitor synthesis. Sec. 7 concludes.

2 The Language

We require a formal semantics for both our monitor-synthesis target language, and the
systems we intend to monitor. We partially address this problem by expressing both in
terms of the same language, i.e., Erlang, thus only requiring one semantics. However, we
still need to describe the Erlang tracing semantics we intend to use for our asynchronous
monitoring. Although Erlang semantic formalisations exist, e.g., [30,16,6], none de-
scribe this tracing mechanism. We therefore define a calculus—following [30,16]—for
modelling the tracing semantics of a (Turing-complete) subset of the Erlang language
(we leave out distribution, process linking and fault-trapping mechanisms).

Figure 1 outlines the language syntax, assuming disjoint denumerable sets of pro-
cess/actor identifiers i, j, h ∈ Pid, atoms a, b ∈ Atom, and variables x, y, z ∈ Var.
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An executing Erlang program is made up of a system of actors, Actr, composed in
parallel, A ‖ B, where some identifiers are local (scoped) to subsystems of actors, and
thus not known to the environment, e.g., i in a system A ‖ (ν i)B. Individual actors,
denoted as i[e � q]m, are uniquely identified by an identifier, i, and consist of an expres-
sion, e, executing wrt. a local mailbox, q (denoted as a list of values). Actor expressions
typically consist of a sequence of variable binding xi = ei, terminated by an expression,
efinal:

x1 = e1, . . . , xn = en, efinal

An expression ei in a binding xi = ei, ei+1 is expected to evaluate to a value, v, which
is then bound to xi in the continuation expression ei+1. When instead ei generates an
exception, exit, it aborts subsequent computations1 in ei+k. Apart from bindings, ex-
pressions may also consist of self references (to the actor’s own identifier), self, outputs
to other actors, e1!e2, pattern-matching inputs from the mailbox, rcv g end, or pattern-
matching for case-branchings, case e of g end (where g is a list of expressions guarded
by patterns, pi → ei), function applications, e1(e2), and actor-spawning, spw e, amongst
others. Values consist of variables, x, process ids, i, recursive functions,2 μy.λx.e , tuples
{v1, . . . , vn} and lists, l, amongst others.

Remark 1. The functions fv(A) and fId(A) return the free variables and free process
identifiers of A resp. and are defined in standard fashion. We write λx.e and d, e for
μy.λx.e and y = d, e resp. when y � fv(e). In p→ e, we replace x in p with whenever
x � fv(e). We write μy.λ(x1, . . . xn).e for μy.λx1. . . . λxn.e. We elide mailboxes, i[e],
when empty, i[e � ε], or when they do not change in the transition rules that follow.

Specific to our formalisation, we also subject each individual actor, i[e � q]m, to a
monitoring-modality, m, n ∈ {◦, •, ∗}, where ◦, • and ∗ denote monitored, unmonitored
and tracing actors resp. Modalities play a crucial role in our language semantics, defined

as a labelled transition system over systems, A
γ−−→ B, where actions γ ∈ Actτ, include

bound output labels, (h̃)i!v, and input labels, i?v and a distinguished internal label, τ. In
line with the reactive properties we consider later, our formalisation only traces system
interactions with the environment (send and receive messages) from monitored actors.
Thus, whereas unmonitored, •, and tracing, ∗, actors have standard input and output
transition rules

SndU
m ∈ {•, ∗}

j[i!v � q]m i!v−−−→ j[v � q]m
RcvU

m ∈ {•, ∗}
i[e � q]m i?v−−−→ i[e � q:v]m

actors with a monitored modality, ◦, i.e., actors j and i in rules SndM and RcvM below,
produce a residual message reporting the send and receive interactions ({sd, i, v} and
{rv, i, v} resp.) at the tracer’s mailbox i.e., actor h with modality ∗ in the rules below; this
models closely the tracing mechanism offered by the Erlang Virtual Machine (EVM)
[7]. In our target language, the list of report messages at the tracer’s mailbox constitutes
the system trace to be used for asynchronous monitoring.

1 Because of exit exceptions, variable bindings cannot be encoded as function applications.
2 The preceding μy denotes the binder for function self-reference.
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SndM

j[i!v � q]◦ ‖ h[d � r]∗
i!v−−−→ j[v � q]◦ ‖ h[d � r:{sd, i, v}]∗

RcvM

i[e � q]◦ ‖ h[d � r]∗
i?v−−−→ i[e � q:v]◦ ‖ h[d � r:{rv, i, v}]∗

Our LTS semantics assumes well-formed actor systems, whereby every actor iden-
tifier is unique; it is termed to be a tracing semantics because a distinguished tracer
actor, identified by the monitoring modality ∗, receives messages recording external

communication events by monitored actors. Formally, we write A
γ−−→ B in lieu of

〈A, γ, B〉 ∈−→, the least ternary relation satisfying the rules in Fig. 2. These rules
employ evaluation contexts, denoted as C (described below) specifying which sub-
expressions are active. For instance, an expression is only evaluated when at the top
level variable binding, x =C, e or when the expression denoting the destination of an
output has evaluated to a value, v!C; the other cases are also fairly standard.3 We denote
the application of a context C to an expression e as C[e].

C ::= [−] | C!e | v!C | C(e) | v(C) | caseC of g end | x =C, e | . . .
Communication in actor systems happens in two stages: an actor receives messages,
keeping them in order in its mailbox, and then selectively reads them at a later stage
using pattern matching—rules Rd1 and Rd2 describe how mailbox messages are tra-
versed in order to find the first one matching a pattern in the pattern list g, releasing
the respective guarded expression e as a result. We choose only to record external com-
munication at tracer processes, i.e., between the system and the environment, and do
not trace internally communication between actors within the system, irrespective of
their modality (see Com); structural equivalence rules, A ≡ B, are employed to simplify
the presentation of our rules—see rule Str and the corresponding structural rules. In
Par, the side-condition enforces the single-receiver property, inherent to actor systems;
for instance, it prevents a transition with an action j!v when actor j is part of the actor
system B. Finally, spawned actors inherit monitorability when launched by a monitored
actor, but are launched as unmonitored otherwise (see Spw). The rest of the transition
rules are fairly standard; consult [15] for details.

Remark 2. Our tracing semantics sits at higher level of abstraction than that offered by
the EVM [7] because trace entries typically contain more information. For instance,
the EVM records internal communication between monitored actors, as an output trace
entry immediately followed by the corresponding input trace entry; we here describe
sanitised traces whereby consecutive matching trace entries are filtered out.

Example 1 (Non-deterministic behaviour). Our systems exhibit non-deterministic be-
haviour through either internal or external choices [23,18]. Consider the actor system:

A � (ν j1, j2, h)
(
i[rcv x→ obs!x end � ε]◦ ‖ j1[i!v]◦ ‖ j2[i!u]◦ ‖ h[e � q]∗

)
3 In our formalisation, expressions are not allowed to evaluate under a spawn context, spw [−].

This differs from standard Erlang semantics but allows a lightweight description of function
application spawning; an adjustment in line with Erlang spawning would be straightforward.
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SndM
j[C[i!v] � q]◦ ‖ h[d � r]∗

i!v−−→ j[C[v] � q]◦ ‖ h[d �
(
r:{sd, i, v})]∗

RcvM
fv(v) = ∅

i[e � q]◦ ‖ h[d � r]∗
i?v−−−→ i[e � q:v]◦ ‖ h[d �

(
r:{rv, i, v})]∗

SndU
m ∈ {•, ∗}

j[C[i!v] � q]m i!v−−→ j[C[v] � q]m
RcvU

m ∈ {•, ∗} fv(v) = ∅
i[e � q]m i?v−−−→ i[e � q:v]m

Scp
A

γ−−→ B

(ν j)A
γ−−→ (ν j)B

j �
(
obj(γ)∪ sbj(γ)

)
Opn

A
(h̃)i!v−−−−→ B

(ν j)A
( j,h̃)i!v−−−−−→ B

i � j, j ∈ sbj
(
(h̃)i!v

)

Com
j[C[i!v] � q]m ‖ i[e � q]n τ−→ j[C[v] � q]m ‖ i[e � q:v]n

Par
A

γ−−→ A′

A ‖ B
γ−−→ A′ ‖ B

obj(γ) ∩ fId(B) = ∅

Rd1
mtch(g, v) = e

i[C[rcv g end] � (v : q)]m τ−→ i[C[e] � q]m

Rd2
mtch(g, v) = ⊥ i[C[rcv g end] � q]m τ−→ i[C[e] � r]m

i[C[rcv g end] � (v : q)]m τ−→ i[C[e] � (v : r)]m

Cs1
mtch(g, v) = e

i[C[case v of g end]]m τ−→ i[C[e]]m
Cs2

mtch(g, v) = ⊥
i[C[case v of g end]]m τ−→ i[C[exit]]m

Ass
v � exit

i[C[x = v, e]]m τ−→ i[C[e{v/x}]]m
Ext

i[C[x = exit, e]]m τ−→ i[C[exit]]m

App
i[C[μy.λx.e (v)]]m τ−→ i[C[e{μy.λx.e/y}{v/x}]]m

Slf
i[C[self]]m τ−→ i[C[i]]m

Spw
(m = ◦ = n) or (n = •)

i[C[spw e] � q]m τ−→ (ν j)
(
i[C[ j] � q]m ‖ j[e � ε]n) Str

A ≡ A′ γ−−→ B′ ≡ B

A
γ−−→ B

sCom
A ‖ B ≡ B ‖ A

sAss
(A ‖ B) ‖ C ≡ A ‖ (B ‖ C)

sCtxP
A ≡ B

A ‖ C ≡ B ‖ C

sExt
i � fId(A)

A‖ (ν i)B ≡ (ν i)
(
B‖A
) sSwp

(ν i)(ν j)A ≡ (ν j)(ν i)A
sCtxS

A ≡ B
(νi)A ≡ (νi)B

Fig. 2. Erlang Semantics for Actor Systems
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Actors j1, j2 and h are local, thus not visible to the environment. The monitored actor i
may receive value v from actor j1, read it from its mailbox, and then output it to some
environment actor obs, while recording this external output at h’s mailbox (the tracer).

A
τ−−−→ · τ−−−→ · obs!v−−−−−→ (ν j1, j2, h)

(
i[v � ε]◦ ‖ j1[v] ‖ j2[i!u] ‖ h[e � q : {sd, obs, v}]∗ )

But if actor j2 sends its value to i before j1, we observe a different external behaviour

A
τ−−−→ · τ−−−→ · obs!u−−−−−→ (ν j1, j2, h)

(
i[u � ε]◦ ‖ j1[i!v] ‖ j2[u] ‖ h[e � q : {sd, obs, u}]∗ )

i.e., A outputs u instead of v to obs (accordingly monitor h would hold the entry
{sd, obs, u} instead); these behaviours amounts to an internal choice.

External choice results when A receives different external inputs: we can derive

A
i?v1−−−→ B1, but also A

i?v2−−−→ B2. Subsequently, B1 can only produce the external output

B1
τ−−→∗ obs!v1−−−−−→ whereas from B2 can only produce B2

τ−−→∗ obs!v2−−−−−→. Note that, in the first
case, h’s mailbox is appended by entries {rv, i, v1} : {sd, obs, v1} whereas, in the second
case, it is appended by {rv, i, v2} : {sd, obs, v2}. �

3 The Logic

To specify reactive properties of the systems we consider an adaptation of SafeHML[1]
(sHML) , a sub-logic of the Hennessy-Milner Logic (HML) with recursion.4 It assumes
a denumerable set of formula variables, X, Y ∈ LVar, and is defined by the grammar:

ϕ, ψ ∈ sHML ::= ff | ϕ∧ψ | [α]ϕ | X | max(X, ϕ)

The formulas for falsity, ff, conjunction, ϕ∧ψ, and action necessity, [α]ϕ, are inherited
from HML[18], whereas variables X and the recursion construct max(X, ϕ) are used to
define maximal fixpoints; as expected, max(X, ϕ) is a binder for the free variables X
in ϕ, inducing standard notions of open and closed formulas. We only depart from the
logic of [1] by limiting formulas to basic actions α, β ∈ BAct, including just input, i?v,
and unbound outputs, i!v, so as to keep our technical development manageable.

Remark 3. The handling of bounded output actions, (h̃)i!v, is well understood [24] and
does not pose problems to monitoring, apart from making action pattern matching cum-
bersome; it also complicates instrumentation (see Sec. 4 and 5). Silent τ labels can also
be monitored using minor adaptations; they however increase substantially the size of
the traces recorded, unnecessarily cluttering the tracing semantics of Section 2.

The semantics of our logic is defined for closed formulas, using the operation ϕ{ψ/X},
which substitutes free occurrences of X in ϕ with ψ without introducing any variable
capture. It is specified as the satisfaction relation of Def. 1 (adapted from [1]). In what

follows, we write weak transitions A ===⇒ B and A
α
==⇒ B, for A

τ−→∗
B and A

τ−→∗ · α−→
· τ−→∗

B resp. We let s, t ∈ (BAct)∗ range over lists of basic actions and write sequences

of weak actions A
α1
=⇒ · · · αn

=⇒ B, where s = α1, . . . , αn, as A
s
==⇒ B (or as A

s
==⇒ when B

is unimportant).

4 HML with recursion has been shown to be equally expressive to the μ-calculus[20].
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Definition 1 (Satisfiability). A relation R ∈ Actr× sHML is a satisfaction relation iff:

(A, ff) ∈ R never

(A, ϕ∧ψ) ∈ R implies (A, ϕ) ∈ R and (A, ψ) ∈ R
(A, [α]ϕ) ∈ R implies (B, ϕ) ∈ R whenever A

α
==⇒ B

(A,max(X, ϕ)) ∈ R implies (A, ϕ{max(X, ϕ)/X}) ∈ R
Satisfiability, |=s, is the largest satisfaction relation; we write A |=s ϕ for (A, ϕ) ∈ |=s.5

Example 2 (Satisfiability). Consider the safety formula

ϕsafe � max(X, [α][α][β]ff∧ [α]X ) (2)

stating that a satisfying actor system cannot perform a sequence of two external actions
α followed by the action β (through the subformula [α][α][β]ff), and that this needs to
hold after every α action (through [α]X); effectively the formula states that sequences
of α-actions greater than two cannot be followed by a β-action.

A system A1 exhibiting (just) the behaviour A1
αβ
==⇒ satisfies ϕsafe, as would a system

A2 with just the (infinite) behaviour A2
α
=⇒ A2. System A3 with a trace A3

ααβ
===⇒ does not

satisfy ϕsafe. However, if at runtime, A3 exhibits the alternate behaviour A3
β
=⇒ (through

an internal choice) we would not be able to detect the fact that A3 �|=s ϕsafe. �

Since actors may violate a property along one execution but satisfy it along another,
the inverse of |=s, i.e., A �|=s ϕ, is too coarse to be used for a definition of monitor
correctness along the lines of (1) discussed earlier. We thus define a violation relation,
Def. 2, characterising actors violating a property along a specific execution trace.

Definition 2 (Violation). The violation relation, denoted as |=v, is the least relation of
the form (Actr × BAct∗ × sHML) satisfying the following rules:6

A, s |=v ff always

A, s |=v ϕ∧ψ if A, s |=v ϕ or A, s |=v ψ

A, αs |=v [α]ϕ if A
α
==⇒ B and B, s |=v ϕ

A, s |=v max(X, ϕ) if A, s |=v ϕ{max(X, ϕ)/X}
Example 3 (Violation). Recall the safety formula ϕsafe defined in (2). Actor A3, from
Ex. 2, together with the witness violating trace ααβ violate ϕsafe, i.e., (A3, ααβ) |=v ϕsafe.
However, A3 together with trace β do not violate ϕsafe, i.e., (A3, β) �|=v ϕsafe. Def. 2 relates
a violating trace with an actor only when that trace leads the actor to a violation: if A3

cannot perform the trace αααβ, by Def. 2, we have (A3, αααβ) �|=v ϕsafe, even though
the trace is prohibited by ϕsafe. A violating trace may also lead a system to a violation
before its end, e.g., (A3, ααβα) |=v ϕsafe according to Def. 2. �

5 It follows from standard fixed-point theory that the implications of satisfaction relation are
bi-implications for Satisfiability.

6 We write A, s |=v ϕ in lieu of (A, s, ϕ) ∈ |=v. It also follows from standard fixed-point theory
that the constraints of the violation relation are bi-implications.
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Despite the technical discrepancies between the two definitions, e.g., maximal versus
minimal fixpoints, a different model semantics etc., we show that Def. 2 corresponds,
in some sense, to the dual of Def. 1.

Theorem 1 (Correspondence). ∃s.(A, s) |=v ϕ iff A �|=s ϕ

Proof. For the if case we prove the contrapositive, i.e., that ∀s.A, s �|=v ϕ implies A |=s ϕ
by co-inductively showing that R = {(A, ϕ) | ∀s.A, s �|=v ϕ} is a satisfaction relation. For
the only-if case we prove ∃s.A, s |=v ϕ implies A �|=s ϕ by rule induction on A, s |=v ϕ.
See [15] for details.

4 Correctness

Specifying online monitor correctness is complicated by the fact that, in general, we
have limited control over the behaviour of the systems being monitored. For starters, a
system that does not satisfy a property may still exhibit runtime behaviour that does not
violate it, as discussed earlier in the case of system A3 of Ex. 2 and Ex. 3. We deal with
system non-determinism by only requiring monitor detection when the system performs
a violating execution: this can be expressed through the violation relation of Def. 2.

At runtime, a system may also interfere with the execution of monitors. Appropriate
instrumentation can limit system effects on the monitors. In our asynchronous actor
setting, direct interferences from the system to the monitors can be precluded by (i)
locating the monitors at process identifiers not known to the system (ii) preventing the
monitors from communicating these identifiers to the system. These measures inhibit
the system’s ability to send messages to the monitors.

A system may also interfere with monitor executions indirectly by diverging, i.e.,
infinite internal computation (τ-transitions) without external actions. This can prevent
the monitors from executing and thus postpone indefinitely violation detections [25].
In our case, divergence is handled, in part, by the EVM itself, which guarantees fair
executions for concurrent actors [7]. In settings where fair executions may be assumed,
it suffices to require a weaker property from monitors, reminiscent of the condition in
fair/should-testing[26]. Def. 3 states that, for an arbitrary basic action α, an actor system
A satisfies the predicate should-α if, for any sequence of internal actions, there always
exists an execution that can produce the action α; in the case of monitors, the external
should-action is set to a reserved violation-detection action, e.g., fail!.

Definition 3 (Should-α). A ⇓α def
=
(

A ==⇒ B implies B
α
==⇒ )

We limit monitoring to monitorable systems, where all actors are subject to a moni-
torable modality.

A ≡ (ν h̃)
(
i[e � q]m ‖ B

)
implies m = ◦

This guarantees that (i) they can be composed with a tracer actor (ii) all the basic actions
produced by the system are recorded as trace entries at the tracer’s mailbox.7 Monitor
correctness is defined for (unmonitored) basic systems, satisfying the condition:

7 Due to asynchronous communication, even scoped actors can produce visible actions by send-
ing messages to environment actors.
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A ≡ (ν h̃)
(
i[e � q]m ‖ B

)
implies m = •

which are instrumented to execute in parallel with the monitor. Our instrumentation
is defined through the operation �−�, Def. 4, converting basic systems to monitorable
ones using trace/2 and set on spawn Erlang commands [7]; see Lemma 1. Im-
portantly, instrumentation does not affect the visible behaviour of a basic system; see
Lemma 2.

Definition 4 (Instrumentation). �−� :: Actr→ Actr is defined inductively as:

�i[e � q]m� def
= i[e � q]◦ �B ‖ C� def

= �B� ‖ �C� �(ν i)B� def
= (ν i)�B�

Lemma 1. If A is a basic system then �A� is monitorable.

Lemma 2. For all basic actors A where i � fId(A):

A
α−−−→ B iff

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
(ν i)
(�A� ‖ i[e � q]∗

) j!v−−−−→ (ν i)
(�B� ‖ i[e � q : {sd, j, v}]∗) if α = j!v

(ν i)
(�A� ‖ i[e � q]∗

) j?v−−−−→ (ν i)
(�B� ‖ i[e � q : {rv, j, v}]∗) if α = j?v

(ν i)
(�A� ‖ i[e � q]∗

) τ−−−→ (ν i)
(�B� ‖ i[e � q]∗

)
if α = τ

We are now in a position to state monitor correctness, for some predefined violation-
detection monitor action fail!, Def. 5; in what follows, fail is always assumed to be
fresh. We restrict our definition to expressions e located at a fresh scoped location i
(not used by the system, i.e., i � fId(A)) with an empty mailbox, ε; expression e may
then spawn concurrent submonitors while executing. The definition can be extended to
generic concurrent monitors, i.e., multiple expressions, in straightforward fashion.

Definition 5 (Correctness). e ∈ Exp is a correct monitor for ϕ ∈ sHML iff for any
basic actors A ∈ Actr, i � fId(A), and execution traces s ∈ (Act \ {fail!})∗:

(ν i)
(�A� ‖ i[e]∗

) s
==⇒ B implies

(
A, s |=v ϕ iff B ⇓fail!

)
Def. 5 states that e correctly monitors property ϕ whenever, for any trace of environ-

ment interactions, s, of a monitored system, (ν i)
(�A� ‖ i[e � ε]∗

)
, yielding system B, if

s leads A to a violation of ϕ, then system B should always detect it, and viceversa.

5 Automated Monitor Synthesis

We define a translation from sHML formulas to Erlang monitors that asynchronously
analyse a system and flag an alert whenever they detect violations by the current sys-
tem execution (for the respective sHML formula). This translation describes the core
algorithm for a tool automating monitor synthesis from sHML formulas [29].

Despite its relative simplicity, the sHML provides opportunities to perform con-
current monitoring. The most obvious case is the translation of conjunction formulas,
ϕ1∧ϕ2, whereby the resulting code needs to check both sub-formulas ϕ1 and ϕ2 so as to
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ensure that neither is violated.8 A translation in terms of two concurrent (sub)monitors,
each analysing different parts of the trace so as to ensure the observation of its respec-
tive sub-formula, constitutes a natural synthesis of the conjunction formula in our tar-
get language: it adheres to recommended Erlang practices advocating for concurrency
wherever possible [7], but also allows us to benefit from the advantages of concurrent
monitors discussed in the Introduction.

Example 4 (Conjunction Formulas). Consider the two sHML formulas

ϕno dup ans � [αcall]
(
max(X, [βans] [βans] ff ∧ [βans] [αcall] X)

)
ϕreact ans � max(Y, [βans] ff ∧ [αcall] [βans] Y )

Formula ϕno dup ans requires that call actions αcall are at most serviced by a single answer
action βans, whereas formula ϕreact ans requires that answer actions are only produced in
response to call actions. Although one can rephrase the conjunction of the two formulas
as a formula without a top-level conjunction, it is more straightforward to use two con-
current monitors executing in parallel (one for each sub-formula in ϕno dup ans∧ϕreact ans).
There are also other reasons why it would be beneficial to keep the sub-formulas sepa-
rate: for instance, keeping the formulas disentangled improves maintainability and sep-
aration of concerns when subformulas originate from distinct specifying parties. �

Multiple conjunctions also arise indirectly when used under fix-point operators.
When synthesising concurrent monitors analysing separate branches of such recursive
properties, it is important to generate monitors that can dynamic spawn further sub-
monitors themselves as required at runtime, so as to keep the monitoring overheads to
a minimum.

Example 5 (Conjunctions and Fixpoints). Recall ϕsafe, from (2) in Ex. 2. Semantically,
the formula represents the infinite-depth tree with an infinite number of conjunctions,
depicted in Fig. 3(a). Although in practice, we cannot generate an infinite number of
concurrent monitors, ϕsafe will translate into possibly more than two concurrent moni-
tors executing in parallel. �

Our monitor synthesis, �−�m :: sHML → Exp , takes a closed, guarded9 sHML
formula and returns an Erlang function that is then parameterised by a map (encoded as
a list of tuples) from formula variables to other synthesised monitors of the same form.
The map encodes the variable bindings introduced by the construct max(X, ϕ); it is used
for lazy recursive unrolling of formulas so as to minimize monitoring overhead. For in-
stance, when synthesising formula ϕsafe from Ex. 2, the algorithm initially spawns only
two concurrent submonitors, one checking for the subformula [α][α][β]ff, and another
one checking for the formula [α]X, as is depicted in Fig. 3(b). Whenever the rightmost
submonitor in Fig. 3(b) observes the action α and reaches X, it unfolds X and spawns an
additonal submonitor as depicted in Fig. 3(c), thereby increasing the monitor overheads
incrementally.

8 Since conjunctions are found in many monitoring logics, the concepts discussed here extend
directly to other RV settings.

9 In guarded sHML formulas, variables appear only as a sub-formula of a necessity formula.
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(a) Denotation of ϕsafe defined in (2)
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[α]
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monitors for ϕsafe where
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∧
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ff

[α]

∧

[α]

[α]
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[α]
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(c) First expansion of the
constructed monitor for ϕsafe

Fig. 3. Monitor Combinator generation for ϕsafe of Ex. 2
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Definition 6 (Synthesis). �−�m is defined on the structure of the sHML formula:

�ff�m def
= λxenv.fail!

�ϕ∧ψ�m def
=

⎧⎪⎪⎨⎪⎪⎩
λxenv. ypid1 = spw

(
�ϕ�m(xenv)

)
, ypid2 = spw

(
�ψ�m(xenv)

)
,

fork(ypid1, ypid2)

�[α]ϕ�m def
= λxenv.rcv

(
tr(α) → �ϕ�m(xenv); → stop

)
end

�max(X, ϕ)�m def
= λxenv. ymon = �ϕ�m, ymon({′X′, ymon} : xenv)

�X�m def
= λxenv. ymon = lookUp(′X′, xenv), ymon(xenv)

Auxiliary Function definitions and meta-operators:

fork
def
= μyrec.λ(xpid1, xpid2).rcv z→ (xpid1!z, xpid2!z

)
end, yrec(xpid1, xpid2)

lookUp
def
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

μyrec.λ(xvar, xmap).case xmap of ({xvar, zmon} : ) → zmon

: ztl → yrec(xvar, ztl)

nil → exit

end

In Def. 6, the monitor for the formula ff immediately reports a violation to some
supervisor actor identified as fail, handling the violation. Conjunction, ϕ1∧ϕ2, trans-
lates into spawning the respective monitors for ϕ1 and ϕ2 and subsequently forwarding
any trace messages to these spawned monitors through the auxiliary function fork. The
translated monitor for [α]ϕ behaves as the monitor translation for ϕ once it receives a
trace message encoding the occurrence of action α, using the function:

tr(i?v)
def
= {rv, i, v} tr(i!v)

def
= {sd, i, v}

Importantly, the monitor for [α]ϕ terminates if the trace message does not correspond
to α. The translations of max(X, ϕ) and X are best understood together. The monitor for
max(X, ϕ) behaves like that for ϕ, under the extended map where X is mapped to the
monitor for ϕ, effectively modelling the formula unrolling ϕ{max(X, ϕ)/X} from Def. 2.
The monitor for X retrieves the respective monitor translation bound to X in the map
using function lookUp, and behaves like this monitor. Closed formulas guarantee that
map entries are always found by lookUp, whereas guarded formulas guarantee that
formula variables, X, are guarded by necessity conditions, [α]ϕ— this implements the
lazy recursive unrolling of formulas and prevents infinite bound-variable expansions.

Mon
def
= λxfrm.zpid = spw

(
�xfrm�m(nil)

)
, mLoop(zpid)

mLoop
def
= μyrec.λxpid.rcv zmsg → (xpid!zmsg

)
end, yrec(xpid)

Monitor instrumentation, performed through the function Mon (defined above), spawns
the synthesised function initialised to the empty map, nil, and then acts as a message
forwarder to the spawned process, through the function mLoop (defined above), for any
trace messages it receives through the tracing semantics discussed in Sec. 2.
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We have constructed a tool [29] that implements the monitor synthesis of Def. 6:
given an sHML formula it generates a monitor that can be instrumented with minimal
changes to the system code, as discussed earlier in Sec. 4. The performance of our
synthesised monitor was evaluated through a simulated server that launches individual
workers to handle a series of requests from individual clients; we also injected faults
making certain workers non-deterministically behave erratically. We synthesised mon-
itors to check that each worker observes the no-duplicate-reply property from Ex. 4:

ϕwrkr � [wrk?req]
(
max(X, [clnt!rply] [clnt!rply] ff ∧ [clnt!rply] [wrk?req] X)

)
and calculated the overheads incurred for varying number of client requests (i.e., con-
current workers); we also compared this with the performance a monitor that checks for
property violations in sequential fashion. Tests were carried out on an Intel Core i7 pro-
cessor with 8GB of RAM, running Microsoft Windows 8 and EVM version R15B02.
The result, summarised in the table below, show that our synthesised concurrent moni-
toring yields acceptable overheads that are consistently lower than those of a sequential
monitor. We conjecture that this discrepancy can be increased further when monitoring
for recursive properties with longer chains of necessity formulas.

Unmonitored Sequential Concurrent
No of. Reqs. Time(μs) Time (μs) Ovhd(%) Time(μs) Ovhd.(%) Improv.(%)

250 117.813 121.667 3.27 118.293 0.40 2.86
350 185.232 202.500 9.32 194.793 5.16 4.16
450 237.606 248.333 4.51 242.380 2.01 2.51
550 286.461 319.167 11.42 308.853 7.82 3.60
650 345.543 372.232 7.72 354.333 2.54 5.18

6 Proving Correctness

The preliminary results obtained in Sec. 5 advocate for the feasibility of using concur-
rent monitors. We however still need to show that the monitors synthesised are correct.
Def. 5 allows us to state one of the main results of the paper, Theorem 2.

Theorem 2 (Correctness). For all ϕ ∈ sHML, Mon(ϕ) is a correct monitor for ϕ.

Proving Theorem 2 directly can be an arduous task: for any sHML formula, it re-
quires reasoning about all the possible execution paths of any monitored system in
parallel with the instrumented monitor. We propose a formal technique for alleviating
the task of ascertaining the monitor correctness of Def. 5 by teasing apart three separate
(weaker) monitor-conditions: they are referred to as Violation Detectability, Detection
Preservation and Monitor Separability. These conditions are important properties in
their own right— for instance, Detection Preservation requires the monitor to behave
deterministically wrt. violation detections. Moreover, the three conditions pose advan-
tages to the checking of monitor correctness: since these conditions are independent to
one another, they can be checked in parallel by distinct analysing entities; alternatively,
the conditions that are inexpensive to check may be carried out before the more expen-
sive ones, thus acting as vetting phases that abort early and keep the analysis cost to a
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minimum. More importantly though, the three conditions together imply our original
monitor-correctness criteria.

The first sub-property is Violation Detectability, Lemma 3, guaranteeing that every
violating trace s of formula ϕ is detectable by the respective synthesised monitor,10 (the
only-if case) and that there are no false detections (the if case). This property is easier
to verify than Theorem 2 since it requires us to consider the execution of the monitor in
isolation and, more importantly, requires us to verify the existence of an execution path
that detects the violation; concurrent monitors typically have multiple execution paths.

Lemma 3 (Violation Detectability). For basic A ∈ Actr and i � fId(A), A
s
=⇒ implies:

A, s |=v ϕ iff i[Mon(ϕ) � tr(s)]∗
fail!
===⇒

Detection Preservation (Lemma 4), the second sub-property, is not concerned with
relating detections to actual violations. Instead it guarantees that if a monitor can po-
tentially detect a violation, further reductions do not exclude the possibility of this de-
tection. In the case where monitors always have a finite reduction wrt. their mailbox
contents (as it turns out to be the case for monitors synthesised by Def. 6) this condition
guarantees that the monitor will deterministically detect violations.

Lemma 4 (Detection Preservation). For all ϕ ∈ sHML, q ∈ Val∗

(
i[Mon(ϕ) � q]∗

fail!
===⇒ and i[Mon(ϕ) � q]∗ ==⇒ B

)
implies B

fail!
===⇒

The third sub-property is Separability, Lemma 5, which implies that the behaviour of
a (monitored) system is independent of the monitor and, dually, the behaviour of the
monitor depends, at most, on the trace generated by the system.

Lemma 5 (Monitor Separability). For all basic A ∈ Actr, i � fId(A), ϕ ∈ sHML, and
s ∈ (Act \ {fail!})∗,
(ν i)
(�A� ‖ i[Mon(ϕ)]∗

) s
==⇒ B implies ∃B′, B′′s.t.

B ≡ (ν i)
(
B′ ‖ B′′

)
and A

s
=⇒ A′ s.t. B′ = �A′� and i[Mon(ϕ) � tr(s)]∗ ==⇒ B′′

These three properties suffice to show monitor correctness.

Theorem 2 (Correctness). For all ϕ ∈ sHML, Mon(ϕ) is a correct monitor for ϕ.

Proof. According to Def. 5 we have to show:

(ν i)
(�A� ‖ i[Mon(ϕ)]∗

) s
==⇒ B implies

(
A, s |=v ϕ iff B ⇓fail!

)
For the only-if case, we assume

(ν i)
(
A ‖ i[Mon(ϕ)]∗

) s
==⇒ B (3)

A, s |=v ϕ (4)

10 We elevate tr to basic action sequences s in pointwise fashion, tr(s), where tr(ε) = ε.
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To show B ⇓fail!, by Def. 3 we also assume B ==⇒ B′, for arbitrary B′, and then be

required to prove that B′
fail!
==⇒. From (3), B ==⇒ B′ and Lemma 5 we know

∃B′′, B′′′s.t. B′ ≡ (ν i)
(
B′′ ‖ B′′′

)
(5)

A
s
==⇒ A′ for some A′ where �A′� = B′′ (6)

i[Mon(ϕ) � tr(s)]∗ ===⇒ B′′′ (7)

From (6), (4) and Lemma 3 we obtain i[Mon(ϕ) � tr(s)]∗
fail!
==⇒ , and from (7) and

Lemma 4 we get B′′′
fail!
==⇒. Hence, by (5), and standard transition rules for parallel

composition and scoping, Par and Scp, we can reconstruct B′
fail!
===⇒, as required.

For the if case we assume:

(ν i)
(�A� ‖ i[Mon(ϕ)]∗

) s
==⇒ B (8)

B ⇓fail! (9)

and have to prove A, s |=v ϕ. From (9) we know B
fail!
===⇒. Together with (8) this implies

∃B′ s.t. (ν i)
(�A� ‖ i[Mon(ϕ)]∗

) s
==⇒ B′ fail!−−−→ (10)

From Lemma 5 and (10) we obtain

∃B′′, B′′′s.t. B′ = (ν i)
(
B′′ ‖ B′′′

)
(11)

A
s
==⇒ A′ for some A′ where �A′� = B′′ (12)

i[Mon(ϕ) � tr(s)]∗ ==⇒ B′′′ (13)

From (10), (11) and the freshness of fail! to A we deduce that B′′′
fail!−−→, and subsequently,

by (13), we get imtr[Mon(ϕ) � tr(s)]
fail!
==⇒. Therefore, by (12) and Lemma 3 we obtain

A, s |=v ϕ, as required. � 

7 Conclusion

We have studied a more intensional notion of correctness for monitor synthesis in a con-
current online setting; we worked close to the actual implementation level of abstraction
so as to enhance our confidence in the correctness of our instrumented monitors. More
precisely, we have identified a number of additional issues raised when proving mon-
itor correctness in this concurrent setting, illustrating them through a case study that
builds a tool [29] automating monitor synthesis from a reactive property logic (sHML)
to asynchronous monitors in a concurrent language (Erlang). The specific contributions
of the paper, in order of importance, are:

1. A novel formal definition of monitor correctness, Def. 5, dealing with issues such
as system non-determinism and system interference.
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2. A proof technique teasing apart aspects of the monitor correctness definition, Lem. 3,
Lem. 4 and Lem. 5, allowing us to prove correctness in stages. We subsequently ap-
ply this technique to prove the correctness of our tool, Thm. 2.

3. An alternative violation characterisation of the logic, sHML, that is more amenable
to runtime analysis and reasoning about monitor correctness, together with a proof
of correspondence for this reformulation, Thm. 1.

4. An extension of a formalisation for Erlang describing its tracing semantics, Sec. 2.
5. A formal monitor synthesis definition from sHML formulas to Erlang code, Def. 6.

Related Work: The aforementioned work, [17,27,4], discusses monitor synthesis from a
different logic, namely LTL, to either pseudocode, automata or Büchi automata; none of
this work considers online concurrent monitoring, circumventing issues associated with
concurrency and system interference. There is considerable work on runtime monitor-
ing of web services, e.g., [13,5] verifying the correctness of reactive (communication)
properties, similar to those expressed through sHML; to the best of our knowledge, none
of this work tackles correct monitor synthesis from a specified logic. In [9], Colombo
et al. develop an Erlang RV tool using the EVM tracing mechanism but do not con-
sider the issue of correct monitor generation. Fredlund [16] adapted a variant of HML
to specify correctness properties in Erlang, albeit for model checking purposes. There
is also work relating HML formulas with tests, namely [1]. Our monitors differ from
tests, as in [1], in a number of ways: (i) they are defined in terms of concurrent actors,
as opposed to sequential CCS processes; (ii) they analyse systems asynchronously, act-
ing on traces, whereas tests interact with the system directly, forcing certain system
behaviour; (iii) they are expected to always detect violations when they occur whereas
tests are only required to have one possible execution that detects violations.

Future Work: The monitoring semantics of Section 2 can be used as a basis to formally
prove existing Erlang monitoring tools such as [9,10]. sHML can also be extended to
handle limited, monitorable forms of liveness properties (often termed co-safety prop-
erties [21]). It is also worth exploring mechanisms for synchronous monitoring, as op-
posed to asynchronous variant studied in this paper. Erlang also facilitates monitor dis-
tribution which can be used to lower monitoring overheads [11]. Distributed monitoring
can also be used to increase the expressivity of our tool so as to handle correctness prop-
erties for distributed programs. The latter extension, however, poses a departure from
our setting because the unique trace described by our framework would be replaced by
separate independent traces at each location, where the lack of a total ordering of events
may prohibit the detection of certain violations [14].
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Abstract. The rigorous and comprehensive verification of communication-based
software is an important engineering challenge in distributed systems. Drawn
from our industrial collaborations [33,28] on Scribble, a choreography descrip-
tion language based on multiparty session types, this paper proposes a dynamic
verification framework for structured interruptible conversation programming.
We first present our extension of Scribble to support the specification of asyn-
chronously interruptible conversations. We then implement a concise API for
conversation programming with interrupts in Python that enables session types
properties to be dynamically verified for distributed processes. Our framework
ensures the global safety of a system in the presence of asynchronous interrupts
through independent runtime monitoring of each endpoint, checking the confor-
mance of the local execution trace to the specified protocol. The usability of our
framework for describing and verifying choreographic communications has been
tested by integration into the large scientific cyberinfrastructure developed by the
Ocean Observatories Initiative. Asynchronous interrupts have proven expressive
enough to represent and verify their main classes of communication patterns, in-
cluding asynchronous streaming and various timeout-based protocols, without re-
quiring additional synchronisation mechanisms. Benchmarks show conversation
programming and monitoring can be realised with little overhead.

1 Introduction

The main engineering challenges in distributed systems include finding suitable speci-
fications that model the range of states exhibited by a system, and ensuring that these
specifications are followed by the implementation. In message passing applications, rig-
orous specification and verification of communication protocols is particularly crucial:
a protocol is the interface to which concurrent components should be independently
implementable while ensuring their composition will form a correct system as a whole.
Multiparty Session Types (MPST) [17,6] is a type theory for communication-oriented
programming, originating from works on types for the π-calculus, towards tackling this
challenge. In the original MPST setting, protocols are expressed as types and static type
checking verifies that the system of processes engaged in a communication session (also
referred to as a conversation) conforms to a globally agreed protocol. The properties en-
joyed by well-typed processes are communication safety (no unexpected messages or
races during the execution of the conversation) and deadlock-freedom.
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Fig. 1. Scribble methodology from global specification to local runtime verification

In this paper, we present the design and implementation of a framework for dynamic
verification of protocols based on MPST, developed from our collaboration with indus-
try partners [33,28] on the application of MPST theory. In this ongoing work, we are
motivated to adapt MPST to dynamic verification for several reasons. First, session type
checking is typically designed for languages with first-class communication and con-
currency primitives, whereas our collaborations use mainstream engineering languages,
such as Python and Java, that lack the features required to make static session typing
tractable. Distributed systems are also often heterogeneous in nature, meaning that dif-
ferent languages and techniques (e.g. the control flow of an event-driven program is
tricky to verify statically) may be used in the implementation of one system. Dynamic
verification by communication monitoring allows us to verify MPST safety properties
directly for mainstream languages in a more scalable way. Second, a system may use
third-party components or services for which the source code is unavailable for type
checking. Third, certain protocol specification features, such as assertions on specific
message values, can be precisely evaluated at runtime, while static treatments would
usually be more conservative.

Framework Overview. Figure 1 illustrates the methodology of our framework. The
development of a communication-oriented application starts with the specification of
the intended interactions (the choreography) as a global protocol using the Scribble
protocol description language [34], an engineering incarnation of the formal MPST
type language. The core features of Scribble include multicast message passing and
constructs for branching, recursive and parallel conversations. These features support
the specification of a wide range of protocols, from domains such as standard Internet
applications [18], parallel algorithms [27] and Web services [12].

Our toolchain validates that the global protocol satisfies certain well-formedness
properties, such as coherent branches (no ambiguity between participants about which
branch to follow) and deadlock-freedom (between parallel flows). From a well-formed
global protocol, the toolchain mechanically generates (projects) Scribble local proto-
cols for each participant (role) defined in the protocol. A local protocol is essentially a
view of the global protocol from the perspective of one role, and provides a more direct
specification for endpoint implementation than the global protocol.
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When a conversation is initiated at runtime, the monitor at each endpoint generates
a finite state machine (FSM) representation of the local communication behaviour from
the local protocol for its role. In our implementation, the FSM generation is an ex-
tension of the correspondence between MPST and communication automata in [13] to
support interruptible sessions (discussed below) and optimised to avoid parallel state
explosion. The monitor tracks the communication actions performed by the endpoint,
and the messages that arrive from the other endpoints, against the transitions permitted
by the FSM. Each monitor thus works to protect both the endpoint from illegal actions
by the environment, and the network from bad endpoints. In this way, our framework is
able to ensure from the local verification of each endpoint that the global progress of the
system as a whole conforms to the original global protocol [7], and that unsafe actions
by a bad endpoint cannot corrupt the protocol state of other compliant endpoints.

This MPST monitoring framework has been integrated into the Python-based run-
time platform developed by the Ocean Observatories Initiative (OOI) [28]. The OOI is
a project to establish a cyberinfrastructure for the delivery, management and analysis of
scientific data from a large network of ocean sensor systems. Their architecture relies on
the combination of high-level protocol specifications of network services (expressed as
Scribble protocols [29]) and distributed runtime monitoring to regulate the behaviour of
third-party applications within the system [31]. Although this work is in collaboration
with the OOI, our implementation can be used orthogonally as a standalone monitoring
framework for distributed Python applications.

Contributions and Summary. This paper demonstrates the application of multiparty
session types, through the Scribble protocol language, to industry practice by presenting
(1) the first implementation of MPST-based dynamic protocol verification (as outlined
above) that offers the same safety guarantees as static session type checking, and (2) a
use case motivated extension of Scribble to support the first construct for the verification
of asynchronous communication interrupts in multiparty sessions.

We developed the extension of Scribble with asynchronous interrupts to support a
range of OOI use cases that feature protocol structures in which one flow of interactions
can be asynchronously interrupted by another. Examples include various service calls
(request-reply) with timeout, and publish-subscribe applications where the consumer
can request to pause, resume and stop externally controlled sensor feeds. Although the
existing features of Scribble (i.e. those previously established in MPST theory) are suf-
ficiently expressive for many communication patterns, we observed that these important
structures could not be directly or naturally represented without interrupts.

We outline the structure of this paper, summarising the contributions of each part:

§ 2 presents a use case for the extension of Scribble with asynchronous interrupts. This
is a new feature in MPST, giving the first general mechanism for nested, multi-
party session interrupts. We explain why implementing this feature is a challenge
in session types. The previous works on exceptions in session types are purely the-
oretical, and are either restricted to binary session types (i.e. not multiparty) [11],
do not support nesting and continuations [11,10], or rely on additional implicit syn-
chronisation [9]. A formal proof of the correctness of our design is given in § 5.

§ 3 discusses the Python implementation of our MPST monitoring framework that we
have integrated into the OOI project, and demonstrates the global-to-local
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projection of Scribble protocols, endpoint implementation, and local FSM genera-
tion. § 3.1 describes a concise API for conversation programming in Python. The
API decorates conversation messages with the runtime session information required
by the monitors to perform the dynamic verification. § 3.2 discusses the monitor im-
plementation, how asynchronous interrupts are handled, and the key architectural
requirements of our framework.

§ 4 evaluates the performance of our monitor implementation through a collection of
benchmarks. The results show that conversation programming and monitoring can
be realised with low overhead.

The source code of our Scribble toolchain, conversation runtime and monitor, per-
formance benchmarks and further resources are available from the project page [35].

2 Communication Protocols with Asynchronous Interrupts

This section expands on why and how we extend Scribble to support the specification
and verification of asynchronous session interrupts, henceforth referred to as just inter-
rupts. Our running example is based on an OOI project use case, which we have distilled
to focus on session interrupts. Using this example, we outline the technical challenges
of extending Scribble with interrupts.
Resource Access Control (RAC) Use Case. As is common practice in industry, the cy-
berinfrastructure team of the OOI project [28] manages communication protocol speci-
fications through a combination of informal sequence diagrams and prose descriptions.
Figure 2 (left) gives an abridged version of a sequence diagram given in the OOI doc-
umentation for the Resource Access Control use case [29], regarding access control
of users to sensor devices in the ION Cyberinfrastucture for data acquisition. In the
ION setting, a User interacts with a sensor device via its Agent proxy (which interacts
with the device via a separate protocol outside of this example). ION Controller agents
manage concerns such as authentication of users and metering of service usage.

For brevity, we omit from the diagram some of the data types to be carried in the
messages and focus on the structure of the protocol. The depicted interaction can be
summarised as follows. The protocol starts at the top of the left-hand diagram. User
sends Controller a request message to use a sensor for a certain amount of time (the int
in parentheses), and Controller sends a start to Agent. The protocol then enters a phase
(denoted by the horizontal line) that we label (1), in which Agent streams data messages
(acquired from the sensor) to User. The vertical dots signify that Agent produces the
stream of data freely under its own control, i.e. without application-level control from
User. User and Controller, however, have the option at any point in phase (1) to move
the protocol to the phase labelled (2), below.

Phase (2) comprises three alternatives, separated by dashed lines. In the upper case,
User interrupts the stream from Agent by sending Agent a pause message. At some
subsequent point, User sends a resume and the protocol returns to phase (1). In the mid-
dle case, User interrupts the stream, sending both Agent and Controller a stop message.
This is the case where User does not want any more sensor data, and ends the protocol
for all three participants. Finally, in the lower case, Controller interrupts the stream by
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1 global protocol ResourceAccessControl(role User as U,
2 role Controller as C, role Agent as A) {
3 req(duration:int) from U to C;
4 // U requests the device for some duration
5 start() from C to A;
6 interruptible { // U, C and A in scope
7 rec X {
8 interruptible { // U and A in scope
9 rec Y {

10 data() from A to U;
11 continue Y;
12 }
13 } with { // Interrupts A in Y
14 pause() by U;
15 }
16 resume() from U to A;
17 continue X;
18 }
19 } with { // Interrupts A and C/U in X
20 stop() by U; // Any time within the duration
21 timeout() by C; // Duration is up
22 }
23 }

Fig. 2. Sequence diagram (left) and Scribble protocol (right) for the RAC use case

sending a timeout message to User and Agent. This is the case where, from Controller’s
view, the session has exceeded the requested duration, so Controller interrupts the other
two participants to end the protocol. Note this diagram actually intends that stop (and
timeout) can arise anytime after (1), e.g. between pause and resume (a notational am-
biguity that is compensated by additional prose comments in the specification).

Interruptible Multiparty Session Types. Figure 2 (right) shows a Scribble protocol
that formally captures the structure of interaction in the Resource Access Control use
case and demonstrates the uses of our new extension for asynchronous interrupts. Be-
sides the formal foundations, we find the Scribble specification is more explicit and
precise, particularly regarding the combination of compound constructs such as choice
and recursion, than the sequence diagram format, and provides firmer implementation
guidelines for the programmer (demonstrated in § 3.1).

A Scribble protocol starts with a header declaring the protocol name (in Figure 2,
ResourceAccessControl) and role names for the participants (three roles, aliased in the
scope of this protocol definition as U, C and A). Lines 3 and 5 straightforwardly corre-
spond to the first two communications in the sequence diagram. The Scribble syntax
for message signatures, e.g. req(duration:int), means a message with operator (i.e.
header, or label) req, carrying a payload int annotated as duration. The start() mes-
sage signature means operator start with an empty payload.

We now come to “phase” (1) of the sequence diagram. The new interruptible

construct captures the informal usage of protocol phases in disciplined manner, making
explicit the interrupt messages and the scope in which they apply. Although the syntax



Practical Interruptible Conversations 135

has been designed to be readable and familiar to programmers, interruptible is an
advanced construct that encapsulates several aspects of asynchronous interaction, which
we discuss at the end of this section.

The intended communication protocol in our example is clarified in Scribble as two
nested interruptible statements. The outer statement, on lines 6–22, corresponds to
the options for User and Controller to end the protocol via the stop and timeout inter-
rupts. An interruptible consists of a main body of protocol actions, here lines 7–18,
and a set of interrupt message signatures, lines 19–22. The statement stipulates that
each participant behaves by either (a) following the protocol specified in the body until
finished for their role, or (b) raising or detecting a specified interrupt at any point during
(a) and exiting the statement. Thus, the outer interruptible states that U can interrupt
the body (and end the protocol) by a stop() message, and C by a timeout().

The body of the outer interruptible is a labelled recursion statement with label X.
The continue X; inside the recursion (line 17) causes the flow of the protocol to return
to the top of the recursion (line 7). This recursion corresponds to the loop implied
by the sequence diagram that allows User to pause and resume repeatedly. Since the
recursion body always leads to the continue, Scribble protocols of this form state that
the loop should be driven indefinitely by one role, until one of the interrupts is raised
by another role. This communication pattern cannot be expressed in multiparty session
types without interruptible.

The body of the X-recursion is the inner interruptible, which corresponds to the
option for User to pause the stream. The stream itself is specified by the Y-recursion, in
which A continuously sends data() messages to U. The inner interruptible specifies
that U may interrupt the Y-recursion by a pause() message, which is followed by the
resume() message from U before the protocol returns to the top of the X-recursion.

Challenges of Asynchronous Interrupts in MPST. The following summarises our
observations from the extension and usage of MPST with asynchronous interrupts. We
find the basic operational meaning of interruptible, as illustrated in the above exam-
ple, is readily understood by architects and developers, which is a primary consideration
in the design of Scribble. The challenges in this extension are in the design of the sup-
porting runtime and verification techniques to preserve the desired safety properties in
the presence of interruptible. The challenges stem from the fact that interruptible
combines several tricky, from a session typing view, aspects of communication

1 // Well-formed, but incorrect semantics:
2 // the recursion cannot be stopped
3 par {
4 rec Y {
5 data() from A to U;
6 continue Y; }
7 } and {
8 // Does not stop the recursion
9 pause() from U to A;

10 }
11 resume() from U to A;

1 // Naive mixed-choice is not well-formed
2 choice at A {
3 // A should make the choice..
4 rec Y {
5 data() from A to U;
6 continue Y; }
7 } or {
8 // ..not U
9 pause() from U to A;

10 }
11 resume() from U to A;

Fig. 3. Naive, incorrect interruptible encoding attempts using parallel (left) and choice (right)
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Conversation API operation Purpose
create(protocol name, invitation config.yml) Initiate conversation, send invitations
join(self, role, principal name) Accept invitation
send(role, op, payload) Send message with operation and payload
recv(role) Receive message from role
recv async(self, role, callback) Asynchronous receive
scope(msg) Create a conversation scope
close() Close the connection to the conversation

Fig. 4. The core Python Conversation API operations

behaviours that session type systems traditionally aim to prohibit, in order to prevent
communication races and thereby ensure the desired safety properties.

A key aspect, due to asynchrony, is that an interrupt may occur in parallel to the ac-
tions of the roles being interrupted (e.g. pause by U to A while A is streaming data to U).
Although standard MPST (and Scribble) support parallel protocol flows, the interesting
point here is that the nature of an interrupt is to preclude further actions in another par-
allel flow under the control of a different role, whereas the basic MPST parallel does
not permit such interference. Figure 3 (left) is a naively incorrect attempt to express this
aspect without interruptible: the second parallel path is never able to intefere with the
first to actually stop the recursion.

Another aspect is that of mixed choice in the protocol, in terms of both communi-
cation direction (e.g. U may choose to either receive the next data or send a stop), and
between different roles (e.g. U and C independently, and possibly concurrently, interrupt
the protocol) due to multiparty. Moreover, the implicit interrupt choice is truly optional
in the sense that it may never be selected at runtime. The basic choice in standard MPST
(e.g. as defined in [17,13]) is inadequate because it is designed to safely identify a single
role as the decision maker, who communicates exactly one of a set of message choices
unambiguously to all relevant roles. Figure 3 (right) demonstrates a naive mixed choice
that is not well-formed (it breaks the unique sender condition in [13]).

Due to the asynchronous setting, it is also important that interruptible does not
require implicit synchronisations to preserve communication safety. The underlying
mechanisms are formalised and the correctness of our extension is proved in § 5.

3 Runtime Verification

This section discusses implementation details of our monitoring framework and the ac-
companying Python API (Conversation API) for writing monitorable, distributed MPST
programs. This work is the first implementation of the theory in [7] in practice, and is
the first (theory or practice) to support a general, asynchronous MPST interrupt mech-
anism in the protocol language and API for endpoint implementation.

We first outline the verification methodology of our framework to clarify the pur-
pose of the main components. Developers write endpoint programs in native Python
using the Conversation API, an MPST-based message passing library that supports
the core MPST primitives for communication programming. The execution of these
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1 local protocol ResourceAccessControl
2 at User as U (role Controller as C,
3 role Agent as A) {
4 req(duration:int) to C;
5 interruptible {
6 rec X {
7 interruptible {
8 rec Y {
9 data() from A;

10 continue Y;
11 }
12 } with {
13 pause() by U;
14 }
15 resume() to A;
16 continue X;
17 }
18 } with {
19 stop() by U;
20 timeout() by C;
21 }
22 }

1 class UserApp(BaseApp):
2 user, controller, agent =
3 [’User’, ’Controller’, ’Agent’]
4 def start(self):
5 conv = Conversation.create(
6 ’RACProtocol’, ’config.yml’)
7 c = conv.join(user, ’alice’)
8 # request 1 hour access
9 c.send(controller, ’req’, 123)

10 with c.scope(’timeout’, ’stop’)
11 as c1:
12 while not self.limit_reached():
13 with c1.scope(’pause’) as c2:
14 while not buffer.full:
15 resource = c2.recv(controller)
16 buffer.append(resource)
17 c2.send_interrupt(’pause’)
18 # sleep before resume
19 c1.send(agent, ’resume’)
20 if self.should_stop():
21 c1.send_interrupt(’stop’)
22 c.close()

Fig. 5. Scribble local protocol (left) and Python implementation (right) for the User role

operations at each endpoint is performed by the local conversation library runtime.
The full runtime includes infrastructure for inline monitoring of conversation actions,
while the lightweight version is used with an outline (i.e. externally hosted) monitor. In
both cases, the API enables MPST verification of message exchanges by the monitor by
embedding a small amount of MPST meta data (e.g. conversation identifier, message
kind and operator, source and destination roles), based on the actions and current state
of the endpoint, into the message payload. For each conversation initiated or joined by
an endpoint, the monitor generates an FSM from the local protocol for the role of the
endpoint. The monitor uses the FSM to track the progress of this conversation according
to the protocol, validating each message (via the meta data) as it is sent or received.

3.1 Conversation API

The Python Conversation API offers a high-level interface for safe conversation pro-
gramming, mapping the interaction primitives of session types to lower-level commu-
nication actions on concrete transports. Our current implementation is built over an
AMQP [2] transport. In summary, the API provides the functionality for (1) session
initiation and joining, (2) basic send/receive and (3) conversation scope management
for handling interrupt messages. Figure 4 lists the core API operations. The invitation
operations (create and join) have not been captured in standard MPST systems, but
have formal counterparts in the literature in formalisms such as [11].

We demonstrate the usage of the API in a Python implementation of the local proto-
col projected for the User role. Figure 5 gives the local protocol and its implementation.

Conversation Initiation. First, the create method of the Conversation API (line 5,
right) initiates a new conversation instance of the ResourceAccessControl (Figure 2)
protocol, and returns a token that can be used to join the conversation locally. The
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config.yml file specifies which network principals will play which roles in this session
and the runtime sends invitation messages to each. The join method confirms that the
endpoint is joining the conversation as the principal alice playing the role User, and
returns a conversation channel object for performing the subsequent communication
operations. Once the invitations are sent and accepted (via Conversation.join), the
conversation is established and the intended message exchanges can proceed. As a result
of the initiation procedure, the runtime at every participant has a mapping (conversation
table) between each role and their AMQP addresses.

Conversation Message Passing. Following its local protocol, the User program sends
a request to the controller, stating the duration for which it requires access to agent.
The send method called on the conversation channel c takes, in this order, the des-
tination role, message operator and payload values as arguments. This information is
embedded into the message payload as part of the conversation meta data, and is later
used by the monitor in the runtime verification. The recv method can take the source
role as a single argument, or additionally the operator of the desired message. Send is
asynchronous, meaning that the operation does not block on the corresponding receive;
however, the basic receive does block until the complete message has been received.
For asynchronous, non-blocking receives, the API provides recv async to be used in an
event-driven style.

Interrupt Handling via Conversation Scopes. This example demonstrates a way of
handling conversation interrupts by combining conversation scopes with the Python
with statement (an enhanced try-finally construct). We use with to conveniently cap-
ture interruptible conversation flows and the nesting of interruptible scopes, as well
as automatic close of interrupted channels in the standard manner, as follows. The
API provides the c.scope() method, as in line 10, to create and enter the scope of
an interruptible Scribble block (here, the outer interruptible of the RAC protocol).
The timeout and stop arguments associate these message signatures as interrupts to
this scope. The conversation channel c1 returned by scope is a wrapper of the parent
channel c that (1) records the current scope of every message sent in its meta data, (2)
ensures every send and receive operation is guarded by a check on the local interrupt
queue, and (3) tracks the nesting of scope contexts through nested with statements. The
interruptible scope of c1 is given by the enclosing with (lines 10–21); if, e.g., a timeout

is received within this scope, the control flow will exit the with to line 22. The inner
with (lines 13–17), corresponding to the inner interruptible block, is associated with the
pause interrupt. When an interrupt, e.g. pause in line 17, is thrown (send interrupt) to
the other conversation participants, the local and receiver runtimes each raise an internal
exception that is either handled or propagated up, depending on the interrupts declared
at the current scope level, to direct the interrupted control flow accordingly. The de-
lineation of interruptible scopes by the global protocol, and its projection to each local
protocol, thus allows interrupted control flows to be coordinated between distributed
participants in a structured manner.

The scope wrapper channels are closed (via the with) after throwing or handling an
interrupt message. For example, using c1 (outside its parent scope) after a timeout is
received will be flagged as an error. By identifying the scope of every message from its
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Fig. 6. Monitor workflow for (1) invitation and (2) in-
conversation messages

C!req(int)
new scope

A?data

A!pauseA!resume

{C, A}!stopC?timeout

Fig. 7. Nested FSM generated from the
User local protocol

meta data, the conversation runtime (and monitor) is able to compensate for the inher-
ent discrepancies in protocol synchronisation, due to asynchronous interrupts between
distributed endpoints, by safely discarding out-of-scope messages. In our example, the
User runtime discards data messages that arrive after pause is thrown. To prevent the
loss of such messages in the application logic when the stream is resumed, we could
extend the protocol to simply carry the id of the last received resource in the payload
of the resume (in line 21). The API can also make the discarded data available to the
programmer through secondary (non-monitored) operations.

An alternative event-driven implementation using receive asyc and callbacks (that
can, however, be safely monitored against the same local protocol) is given in [35].

3.2 Monitoring Architecture

Inline and Outline Monitoring. In order to guarantee global safety, our monitoring
framework imposes complete mediation of communications: no communication action
should have an effect unless the message is mediated by the monitor. This principle
requires that all outgoing messages from a principal before reaching the destination, and
all incoming messages before reaching the principal, are routed through the monitor.

The monitor implementation (and the accompanying theory [7]) is compatible with a
range of monitor configurations. At one end of the spectrum is inline monitoring, where
the monitor is embedded into the endpoint code. Then there are various configurations
for outline monitoring, where the monitor is positioned externally to its component. In
the OOI project, our focus has been to integrate our framework for inline monitoring
due to the architecture of the OOI message interceptor stack [31].

Monitor Implementation. Figure 6 depicts the main components and internal work-
flow of our prototype monitor. The lower part relates to conversation initiation. The
invitation message carries (a reference to) the local protocol for the invitee and the
conversation id (global protocols can also be exchanged if the monitor has the fa-
cility for projection.) The monitor generates the FSM from the local protocol fol-
lowing [13]. Our implementation differs from [13] in the treatment of parallel sub-
protocols (i.e. unordered message sequences), and additionally supports interrupts. For
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efficiency, we extend [13] to generate a nested FSM for each conversation thread, avoid-
ing the potential state explosion that comes from constructing their product. This allows
FSM generation in polynomial time and space in the length of the local protocol. The
(nested) FSMs are stored in a hash table with conversation id as the key. Transition func-
tions are similarly hashed, each entry having the shape: (current state, transition) 
→
(next state, assertion, var), where transition is a triple (label,sender,receiver) and var
is the variable binder for the message payload. Due to standard MPST well-formedness
(message label distinction), any nested FSM is uniquely identifiable from any unordered
message, i.e. message-to-transition matching in a conversation FSM is deterministic.

The upper part of Figure 6 relates to in-conversation messages, which carry the con-
versation id (matching an entry in the FSM hash table), sender and receiver fields, and
the message label and payload. This information allows the monitor to retrieve the cor-
responding FSM (by matching the message signature to the FSM’s transition function).
Assertions associated to communication actions are evaluated by invoking an external
logic engine; a monitor can be configured to use various logic engines, such as for the
validation of assertions, automata-based specifications (e.g. security automata), or other
stateful properties. Our current implementation uses a basic Python predicate evaluator,
which is sufficient for the use case protocols we have developed so far.

Monitoring Interrupts. FSM generation for interruptible local protocols again makes
use of nested FSMs. Each interruptible induces a nested FSM given by the main
interruptible block, as illustrated in Figure 7 for the User local protocol. The monitor
internally augments the nested FSM with a scope id, derived from the signature of the
interruptible block, and an interrupt table, which records the interrupt message signa-
tures that may be thrown or received in this scope. Interrupt messages are marked via
the same meta data field used to designate invitation and in-conversation messages, and
are are validated in a similar way except that they are checked against the interrupt ta-
ble. However, if an interrupt arrives that does not have a match in the interrupt table
of the immediate FSM(s), the check searches upwards through the parent FSMs; the
interrupt is invalid if it cannot be matched after reaching the outermost FSM is reached.

4 Evaluation

Our dynamic MPST verification framework has been implemented and integrated into
the current release of the Ocean Observatories infrastructure [30]. This section reports
on our integration efforts and the performance of our framework.

4.1 Experience: OOI Integration

The current release of OOI is based on a Service-Oriented Architecture, with all of
the distributed system services accessible by RPC. As part of their efforts to move to
agent-based systems in the next release, and to support distributed governance for more
than just individual RPC calls, we engineered the following step-by-step transition. The
first step was to add our Scribble monitor to the message interceptor stack of their mid-
dleware [31]. The second was to propose our conversation programming interface to
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x = Registry.save("some data")

def save(data):

return RPCClient.request("Registry", "save", data)

#follows generic Scribble protocol
def request(svc addr, op, args*):

c = create and join("RPCProtocol")
invite and send(svc addr, c, op, args*)
return c.receive()

core conversation primitives:
� create, join, create and join: creation
� invite, invite and send: initial request
� send, receive: in-conversation messages

Application Code

Local Proxy

RPC Library

Conversation Layer

event-based scheduling ION channels

Fig. 8. Translation of an RPC command into lower-level conversation calls

the OOI developers. To facilitate the use of session types without obstructing the exist-
ing application code, we preserved the interface of the RPC libraries but replaced the
underlying machinery with the distributed runtime for session types (as shown in Fig-
ure 8, the RPC library is now realised on top of the Conversation Layer). As wrappers
to the conversation primitives, all RPC calls are now automatically verified by the inline
MPST monitors. This approach was feasible because no changes were required to ex-
isting application code, but at the same time, developers now have the option to use the
Conversation API directly for conversations more complex than RPC. The next step in
this ongoing integration work involves porting higher-level and more complex OOI ap-
plication protocols, such as distributed agent negotiation [29], to Scribble specifications
and Conversation API implementations.

4.2 Benchmarks

The potential performance overhead that the Conversation Layer and monitoring could
introduce to the system is an important consideration. The following performance mea-
surements for the current prototype show that our framework can be realised at reason-
able cost. Table 1 presents the execution time comparing RPC calls using the original
OOI RPC library implementation and the conversation-based RPC with and without
monitor verification. On average, 13% overhead is recorded for conversations of 10
consecutive RPCs, mostly due to the FSM generation from the textual local Scribble
protocol (our implementation currently uses Python ANTLR); the cost of message vali-
dation itself is negligible in comparison. We plan to experiment with optimisations such
as pre-generating or caching FSMs to reduce the monitor initialisation time.

The second benchmark gives an idea of how well our framework scales beyond ba-
sic RPC patterns. Table 2 shows that the overall verification architecture (Conversation
Layer and inline monitor) scales reasonably with increasing session length (number of
message exchanges) and increasing parallel states (nested FSM size): “Rec States” is
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Table 1. Original OOI RPC
vs. conversation-based RPC

10 RPCs (s)
RPC Lib 0.103
No Monitor 0.108 +4%
Monitor 0.122 +13%

Table 2. Conversation execution time for an increasing
number of sequential and parallel states

Rec NoM Mon
States (s) (s)
10 0.92 0.95 +3.2%
100 8.13 8.22 +1.1%
1000 80.31 80.53 +0.8%

Par NoM Mon
States (s) (s)
10 0.45 0.49 +8%
100 4.05 4.22 +4.1%
1000 40.16 41.24 +2.7%

the number of states passed through sequentially by a simple recursive protocol (used
to parameterise the length of the conversation), and “Par States” the number of parallel
states in a parallel protocol. Two benchmark cases are compared. The main case “Mon-
itor” (Mon) is fully monitored, i.e. FSM generation and message validation are enabled
for both the client and server. The base case for comparison “No Monitor” (NoM) has
the client and server in the same configuration, but monitors are disabled (messages
do not go through the interceptor stack). As above, we found that the overhead intro-
duced by the monitor when executing conversations of increasing number of recursive
and parallel states is again mostly due to the cost of the initial FSM generation. We
also note that the relative overhead decreases as the session length increases, because
the one-time FSM generation cost becomes less prominent. For dense FSMs, the worse
case scenario results in linear overhead growth wrt. the number of parallel branches.

In both of the above tables, the presented figures are the mean time for the client
and server, connected by a single-broker AMQP network, to complete one conversation
after repeating the benchmark 100 times for each parameter configuration. The client
and server Python processes (including the conversation runtime and monitor) and the
AMQP broker were each run on separate machines (Intel Core2 Duo 2.80 GHz, 4 GB
memory, 64-bit Ubuntu 11.04, kernel 2.6.38). Latency between each node was mea-
sured to be 0.24 ms on average (ping 64 bytes). The full source code of the benchmark
protocols and applications and the raw data are available from the project page [35].

4.3 Use Cases

We conclude our evaluation with some remarks on use cases we have examined. Table 3
features a list of protocols, sourced from both the research community and our industry
use cases, that we have written in Scribble and used to test our monitor implementation
on more realistic protocol specifications. A natural question for our methodology, being
based on explicit specification of protocols, is the overhead imposed on developers wrt.
writing protocols, given that a primary motivation for the development of Scribble is to
reduce the design and testing effort for distributed systems. Among these use cases, we
found the average Scribble global protocol is roughly 10 LOC, with the longest one at
26 LOC, suggesting that Scribble is reasonably concise.

The main factors that may affect the performance and scalability of our monitor
implementation, and which depend on the shape of a protocol, are (i) the time required
for the generation of FSMs and (ii) the memory overhead that may be induced by the
generation of nested FSMs in case of parallel blocks and interrupts. Table 3 measures
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Table 3. Use case protocols implemented in Scribble

Global Scribble FSM Memory Generation Time
Use Cases from research papers (LOC) (B) (s)
A vehicle subsystem protocol [21] 8 840 0.006
Map web-service protocol [15] 10 1040 0.010
A bidding protocol [24] 26 1544 0.020
Amazon search service [16] 12 1088 0.010
SQL service [32] 8 1936 0.009
Online shopping system [14] 10 1024 0.008
Travel booking system [14] 16 1440 0.013

Use Cases from OOI and Savara
A purchasing protocol [20] 11 1088 0.010
A banking example [29] 16 1564 0.013
Negotiation protocol [29] 20 1320 0.014
RPC with timeout [29] 11 1016 0.013
Resource Access Control [29] 21 1854 0.018

these factors for each of the listed protocols. The time required for FSM generation
remains under 20 ms, measuring on average to be around 10 ms. The memory overhead
also remains within reasonable boundaries (under 1.5 KB), indicating that FSM caching
is a feasible optimisation approach. The full Scribble protocols can be found at [35].

From our experience of running our conversation monitoring framework within the
OOI system, we expect that, in many large distributed systems, the cost of a decen-
tralised monitoring infrastructure would be largely overshadowed by the raw cost of
communication (latency, routing) and other services running at the same time. Consid-
ering the presented results, we thus believe the important benefits in terms of safety
and management of high-level applications come at a reasonable cost and would be a
realistic mechanism in many distributed systems.

5 Interruptible Session Type Theory and Related Work

5.1 Session Type Theory for Interrupts

In this subsection, we sketch the underlying session type theory with interrupts and
its correctness result, session fidelity, justifying our design choices. We build over the
multiparty session theory [17], adding syntax and semantics for interrupts. In our theory,
global types correspond to session specifications whereas local types are used to express
monitored behaviours of processes [7]. We show that interruptible blocks can be treated
through the use of scopes, a new formal construct that realises, through an explicit
identifier, the domain of interrupts. Our scope-based session types can handle nested
interrupts and multiparty continuations to interruptible blocks, allowing us to model
truly asynchronous exceptions implemented in this paper (these features have not been
modelled in existing MPST theories for exceptions [11,10,9]). The full definitions and
proofs are available from [35].
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Global types (G) below correspond to Scribble protocols. Scopes are made explicit
by the use of scope variables S, corresponding to the dynamic scope generation present
in the implementation in § 3.1. Roles in types are denoted by r, and labels with l.

G ::= r→r′ :{li.Gi}i∈I | G|G | {|G|}S〈l by r〉;G′ | μx.G | x | end | Eend
T ::= r!{li.Ti}i∈I | r?{li.Ti}i∈I | T |T
| {|T |}S � 〈r!l〉;T ′ | {|T |}S � 〈r?l〉;T ′ | μx.T | x | end | Eend

The main primitive is the interaction with directed choice: r→r′ :{li.Gi}i∈I is a com-
munication between the sender r and the receiver r′ which involves a choice between
several labels li, the corresponding continuations are denoted by the Gi. Parallel com-
position G1|G2 allows the execution of interactions not linked by causality.

Our types feature a new interrupt mechanism by explicit interruptible scopes: we
write {|G|}S〈l by r〉;G′ to denote a creation of an interruptible block identified by scope
S, containing protocol G, that can be interrupted by a message l from r and contin-
ued after completion (either normal or exceptional) with protocol G′. This construct
corresponds to the interruptible of Scribble, presented in § 2. Note that we allow
interruptible scopes to be nested. This syntax (and the related properties) can be easily
extended to multiple messages from different roles. We use Eend (resp. end) to denote
the exceptional (resp. normal) termination of a scope.

The local type syntax (T ) given above follows the same pattern, but the main differ-
ence is that the interruptible operation is divided into two sides, one � side for the roles
which can send an interrupt {|T |}S � 〈r!l〉;T ′, and the � side for the roles which should
expect to receive an interrupt message {|T |}S � 〈r?l〉;T ′.

GResCont = U→C : req;C→A : start{| μX .{|μY.A→U :data;Y |}S2〈pause by U〉;
U→A : resume;X |}S1〈stop by U, timeout by C〉;end

Above we describe a global type which corresponds to the Scribble protocol in Fig-
ure 2. The explicit naming of the scopes, S1 and S2, correspond to the dynamic scope
generations in § 3.1, and are required to formalise the semantics of local types.

We define the relation G � G′ as:
r→r′ :{li.Gi}i∈I � Gi {|G|}S〈l by r〉;G0 � {|Eend|}S〈l by r〉;G0

G � G′ implies {|G|}S〈l by r〉;G0 � {|G′|}S〈l by r〉;G0 G � G′ implies G | G0 � G′ | G0

and say G′ is a derivative of G if G �∗ G′. We define configurations Δ ,Σ as a pair of a
mapping from a session channel to a local type and a collection of queues (a mapping
from a session channel to a vector of the values). Configurations model the behaviour of
a network of monitored agents. We say a configuration Δ ,Σ corresponds to a collection
of global types G1, . . . ,Gl whenever Σ is empty and the environment Δ is a projection
of G1, . . . ,Gl . The reduction semantics of the configuration (Δ ,Σ → Δ ′,Σ ′) is defined
using the contexts with the scopes. Formal definitions can be found in [35].

The correctness of our theory is ensured by Theorem 1, which states a local en-
forcement implies global correctness: if a network of monitored agents (modelled as
a configuration) corresponds to a collection of well-formed specifications and makes
some steps by firing messages, then the network can perform reductions (consuming
these messages) and eventually reaches a state that corresponds to a collection of well-
formed specifications, obtained from the previous one. This property guarantees that
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the network is always linked to the specification, and proves, with the previous dy-
namic monitoring process theory [7], that the introduction of interruptible blocks to the
syntax and semantics yields a sound theory. The proofs can be found in [35].

Theorem 1 (Session fidelity). If Δ corresponds to G1, . . . ,Gn and Δ0,ε →∗ Δ ,Σ , there
exists Δ ,Σ →∗ Δ ′,ε such that Δ ′ corresponds to G′1, . . . ,G

′
n which are derivatives of

G1, . . . ,Gn.

5.2 Related Work

Distributed Runtime Verification. The work in [3] explores runtime monitoring based
on session types as a test framework for multi-agent systems (MAS). A global session
type is specified as cyclic Prolog terms in Jason (a MAS development platform). Their
global types are less expressive in comparison with the language presented in this paper
(due to restricted arity on forks and the lack of session interrupts). Their monitor is
centralised (thus no projection facilities are discussed), and neither formalisation, global
safety property nor proof of correctness is given in [3].

Other works, notably from the multi-agent community, have studied distributed en-
forcement of global properties through monitoring. A distributed architecture for local
enforcement of global laws is presented by Zhang et al. [36], where monitors enforce
laws expressed as event-condition-action. In [26], monitors may trigger sanctions if
agents do not fulfil their obligations within given deadlines. Unlike such frameworks,
where all agents belonging to a group obey the same set of laws, our approach asks
agents to follow personalised laws based on the role they play in each session.

In runtime verification for Web services, the works [24,25] propose FSM-based mon-
itoring using a rule-based declarative language for specifications. These systems typi-
cally position monitors to protect the safety of service interfaces, but do not aim to
enforce global network properties. Cambronero et al. [8] transform a subset of Web Ser-
vices Choreography Description Language into timed-automata and prove their trans-
formation is correct with respect to timed traces. Their approach is model-based, static
and centralised, and does not treat either the runtime verification or interrupts. Baresi et
al. [5] develop a runtime monitoring tool for BPEL with assertions. A major difference
is that BPEL approaches do not treat or prove global safety. BPEL is expressive, but
does not support distribution and is designed to work in a centralised manner. Kruger et
al. [22] propose a runtime monitoring framework, projecting MSCs to FSM-based dis-
tributed monitors. They use aspect-oriented programming techniques to inject monitors
into the implementation of the components. Our outline monitoring verifies conversa-
tion protocols and does not require such monitoring-specific augmentation of programs.
Gan [14] follows a similar but centralised approach of [22]. As a language for proto-
col specification, a main advantage of Scribble (i.e. MPST) over alternatives, such as
message sequence charts (MSC), CDL and BPML, is that MPST has both a formal ba-
sis and an in-built mechanism (projection) for decentralisation, and is easily integrated
with the language framework as demonstrated for Python in this paper.

Language-Based Monitoring Tools. Jass [19] is a precompiler tool for monitoring
the dynamic behaviour of sequential objects and the ordering of method invocations
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by annotating Java programs with specifications that can be checked at runtime. Other
approaches to runtime verification of program execution by monitors generated from
language-based specifications include: aspect-oriented programming [23]; other works
that use process calculi formalisms, such as CSP [19]; monitors based on FSM skeletons
associated to various forms of underlying patterns [1,4]; and the analysis of dynamic
parametric traces [4]. Our monitor framework has been influenced by these works and
shares similarities with some of the presented RV techniques. However, the target pro-
gram domain and focus of our work are different. Our framework is specifically de-
signed for decentralised monitoring of distributed programs with diverse participants
and interleaving sessions, as opposed to monitoring the execution of a single program
and verifying its local properties. The basis of our design and implementation is the
theory of multiparty session types, over which we have developed practically motivated
extensions to the type language and the methodology for runtime verification.

6 Conclusion

We have implemented the first dynamic verification of distributed communications
based on multiparty session types and shown that a new feature for interruptible con-
versations is effective in the runtime verification of message exchanges in a large cy-
berinfrastructure [28] and Web services [33,34]. Our implementation automates dis-
tributed monitoring by generating FSMs from local protocol projections. We sketched
the formalisation of asynchronous interruptions with conversation scopes, and proved
the correctness of our design through the session fidelity theorem. Future work includes
the incorporation of more elaborate handling of error cases into monitors and automatic
generation of service code stubs. Although our implementation work is ongoing through
industry collaborations, the results already confirm the feasibility of our approach. We
believe this work contributes towards methodologies for better specification and more
rigorous governance of network conversations in distributed systems.
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Abstract. We introduce Runtime Verification with Particle Filtering (RVPF), a
powerful and versatile method for controlling the tradeoff between uncertainty
and overhead in runtime verification. Overhead and accuracy are controlled by
adjusting the frequency and duration of observation gaps, during which pro-
gram events are not monitored, and by adjusting the number of particles used
in the RVPF algorithm. We succinctly represent the program model, the program
monitor, their interaction, and their observations as a dynamic Bayesian network
(DBN). Our formulation of RVPF in terms of DBNs is essential for a proper for-
malization of peek events: low-cost observations of parts of the program state,
which are performed probabilistically at the end of observation gaps. Peek events
provide information that our algorithm uses to reduce the uncertainty in the mon-
itor state after gaps.

We estimate the internal state of the DBN using particle filtering (PF) with
sequential importance resampling (SIR). PF uses a collection of conceptual par-
ticles (random samples) to estimate the probability distribution for the system’s
current state: the probability of a state is given by the sum of the importance
weights of the particles in that state. After an observed event, each particle chooses
a state transition to execute by sampling the DBN’s joint transition probability
distribution; particles are then redistributed among the states that best predicted
the current observation. SIR exploits the DBN structure and the current observa-
tion to reduce the variance of the PF and increase its performance.

We experimentally compare the overhead and accuracy of our RVPF algorithm
with two previous approaches to runtime verification with state estimation: an
exact algorithm based on the forward algorithm for HMMs, and an approximate
version of that algorithm, which uses precomputation to reduce runtime overhead.
Our results confim RVPF’s versatility, showing how it can be used to control the
tradeoff between execution time and memory usage while, at the same time, being
the most accurate of the three algorithms.

1 Introduction

Runtime verification does not come for free. It introduces runtime overhead, thereby
altering the timing-related behavior of the program under scrutiny. In applications with
realtime constraints, overhead control may be necessary to reduce overhead to an ac-
ceptable level.

In previous work [5], we introduced Software Monitoring with Controllable Over-
head (SMCO), an overhead-control technique that selectively turns monitoring on and
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off, such that the use of a short- or long-term overhead budget is maximized and never
exceeded. Gaps in monitoring, however, introduce uncertainty in the monitoring results.

To quantify the uncertainty, one can estimate the current state of the program. We de-
veloped a framework for this, called Runtime Verification with State Estimation
(RVSE) [10], in which a hidden Markov model (HMM) is used to succinctly model
the program and compute the uncertainty in predictions due to incomplete information.

While monitoring is on, the observed program events drive the transitions of the
property checker, modeled as a deterministic finite automaton (DFA). They also pro-
vide information used to help correct the state estimates (specifically, state probability
distributions) computed from the HMM transition probabilities, by comparing the out-
put probabilities in each state with the observed outputs. When monitoring is off, the
transition probabilities in the HMM alone determine the updated state estimate after the
gap, and the output probabilities in the HMM drive the transitions of the DFA. Each
gap is characterized by a gap length distribution, which is a probability distribution for
the number of missed observations during that gap.

Our algorithm was based on an optimal state estimation algorithm, known as the
forward algorithm, extended to handle gaps. Unfortunately, this algorithm incurs high
overhead, especially for longer sequences of gaps, because it involves repeated matrix
multiplications using the observation-probability and transition-probability matrices. In
our measurements, this was often more than a factor of 10 larger than the overhead of
monitoring the events themselves!

To reduce the runtime overhead, we developed a version of the algorithm, which we
call approximate precomputed RVSE (AP-RVSE), that precomputes the matrix calcula-
tions and stores the results in a table [1]. Essentially, AP-RVSE precomputes a poten-
tially infinite graph unfolding, where nodes are labeled with state probability distribu-
tions, and edges are labeled with transitions. To ensure the table is finite, we introduced
an approximation in the calculations, controlled by an accuracy parameter ε: if a newly
computed matrix differs from the matrix on an existing node by at most ε according to
the L1-norm, then we re-use the existing node instead of creating a new one. With this
algorithm, the runtime overhead is low, independent of the desired accuracy, but higher
accuracy requires larger tables, and the memory requirements could become problem-
atic. Also, if the set of gap length distributions that may appear in an execution is not
known in advance, precomputation is infeasible.

This paper introduces an alternative approach, called Runtime Verification with Par-
ticle Filtering (RVPF), to control the balance among runtime overhead, memory usage,
and prediction accuracy. In particle filtering (PF) [7], the probability distribution of
states is approximated by the proportion of particles in each state. The particle filtering
process works in three recurring steps. First, the particles are advanced to their suc-
cessor states by sampling from the HMM’s transition probability distribution. Second,
each particle is assigned a weight corresponding to the output probability of the ob-
served program event. Third, the particles are resampled according to the normalized
weights from the second step; this has the effect of redistributing the particles so that
they provide a better prediction of the program events.

To reduce the variance of PF, we exploit the knowledge of the current program event
and the particular structure of the DBN and employ a variant of PF known as sequential
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importance resampling (SIR). The resampling step (which is a performance bottleneck)
does not have to be performed in each round, and the particles are advanced to their
successor states by sampling from the HMM’s transition probability distribution condi-
tioned by the current observation. While this conditional probability distribution cannot
be computed in general, it can be computed for HMMs.

To handle gaps, we extend PF in a manner that is consistent with the one we devised
for the forward algorithm: as long as gaps are the only observations, the particles are
advanced to their successor states by sampling from the HMM’s transition probability
distribution conditioned on the most probable output event. Such output events are cho-
sen by sampling from the output probability distribution of the HMM conditioned on
the previous HMM state. These events are used to drive the DFA transitions.

In contrast to our previous work [10,1], we model the HMM, the DFA, and their
composition in a more elegant and succinct way as a dynamic Bayesian network (DBN).
This allows us to properly formalize a new kind of event, called peek events, which are
inexpensive observations of part of the program state. In many applications, program
states and monitor states are correlated, and hence peek events can be used to narrow
down the possible states of the monitor DFA. We use peek events at the end of moni-
toring gaps to refocus the HMM and DFA states. Our combination of these two kinds
of observations, program events and peek events, is akin to sensor fusion in robotics.

Adjusting the number of particles used by RVPF provides a versatile way to tune the
memory requirements, runtime overhead, and prediction accuracy. With larger numbers
of gaps, the particles get more widely dispersed in the state space, and more particles are
needed to cover all of the interesting states. To evaluate the performance and accuracy of
RVPF, we implemented it along with our previous two algorithms in C and compared
them through experiments based on the benchmarks used in [1]. Our results confirm
RVPF’s versatility. Specifically, we demonstrate in Section 6 that, with the right choice
of the number of particles, RVPF consumes 80–100 times less memory than AP-RVSE
while being twice as fast as RVSE, and the most accurate of the three algorithms.

The rest of the paper is organized as follows. Section 2 provides background. Sec-
tions 3 and 4 define the runtime verification problem we are addressing and system
model, respectively. Section 5 presents the RVPF algorithm. Section 6 describes our
evaluation methodology and the results of our experiments. Section 7 discusses related
work. Section 8 offers concluding remarks and directions for future work.

2 Background

This section provides background information on Bayesian networks, dynamic Bayesian
networks, particle filtering, and runtime verification with state estimation.

A Bayesian network is a directed acyclic graph in which each node corresponds to
a (discrete or continuous) random variable. An edge from node X to node Y indicates
that X has a direct influence on Y , and X is called a parent of Y . Let B be a Bayesian
network over variables X1, . . . , Xn. Each Xi has a conditional probability distribution
P(Xi | Parents(Xi)) that quantifies the influence of the parents on the node [7].

The meaning ofB is a joint distribution over its variables. Let P(x1, . . . , xn) abbre-
viate P(X1 = x1 ∧ · · · ∧ Xn = xn), i.e., the conjunction of particular assignments
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to each variable. Then P(x1, . . . , xn) =
∏

P(xi | parents(Xi)), where parents(Xi)
denotes the values of Parents(Xi) that appear in x1, . . . , xn.

A dynamic Bayesian Network (DBN) is a Bayesian network that relates random vari-
ables to each other over adjacent time steps. Moreover, some variables are observable,
and some are not. Let Xt denote the set of state variables at time t. State variables are
assumed to be unobservable. Let Ot denote the set of observable variables at time t.
The observation at time t is Ot = ot for some set of values ot.

A Hidden Markov Model (HMM) is a special kind of DBN; specifically, an HMM is
a DBN with a single state variable and a single observable variable. We refer to a value
of the observable variable of an HMM as an observable action.

To construct a DBN, one must specify the prior distribution P(X0), capturing the
initial state distribution; the transition model P(Xt | Xt−1), capturing the dependency
of the next state on the current state; and the observation model P(Ot | Xt), encoding
the dependency of the observation on the current state. The transition and observation
models are represented as a Bayesian network.

Particle filtering (PF) is a sequential Monte Carlo method that can be used to per-
form state estimation in a Bayesian network [7]. PF can be used to estimate the state
probability distribution P(Xt), given an observation sequence o1:t. In one of the most
commonly used forms of particle filtering, known as sequential importance resampling
(SIR), a population of Np particles is first created and assigned initial states by sam-
pling from the prior distribution P(X0). A three-step update cycle is then repeated
for each time step: (i) each particle is propagated forward by sampling the new state
value xt given the previous state xt−1 of the particle, based on the transition model
P(Xt | xt−1); (ii) each particle is weighted by the probability it assigns to the new
evidence, P(ot | xt); (iii) the population is resampled, i.e., a new population of Np

(unweighted) particles is created, where each new particle is selected from the current
population, and the probability that a particular particle is selected is proportional to
its weight. Resampling focuses the particles on the high-probability regions of the state
space, by probabilistically discarding particles with low weight and duplicating parti-
cles with high weight.

One can reduce the variance of PF by using evidence ot in the first step of the update
cycle by sampling the next state xt from the conditional probability distribution P(Xt |
xt−1,ot). As we show in Section 5, this probability distribution can be computed as
P(xt |xt−1, ot) = P(xt |xt−1)·P(ot |xt)/P(ot |xt−1). Precomputing P(ot |xt−1) is
possible if the HMM transition probabilities and observation probabilities are given
explicitly. By reducing the variance, the resampling frequency (which is a considerable
performance bottleneck) can also be reduced.

PF approximates P(xt | o1:t), the probability of state xt after observation sequence
o1:t, by 1

Np

∑N(xt|o1:t)
i=1 wi, where N(xt | o1:t) is the number of particles in state

xt after processing observations o1, . . . ,ot and wi are the weights of the individual
particles which are in state xt.

Runtime Verification with State Estimation (RVSE) [10] is an algorithm for runtime
verification in the presence of observation gaps. In RVSE, a Hidden Markov Model
of the monitored program is constructed, monitored event sequences are treated as ob-
servation sequences of the HMM, and an extension of the optimal forward algorithm
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for HMM state estimation [7] is used to estimate the state of the HMM and the moni-
tor DFA. We extended the forward algorithm to handle observation gaps, by using the
HMM to estimate the unobserved states and events. The time complexity of the RVSE
algorithm for a single observation is O(N2

h ·Nd) for a non-gap event and O(N2
h ·N2

d )
for a gap event, where Nh and Nd are the numbers of states of the HMM and the
DFA, respectively. The approximately precomputed RVSE (AP-RVSE) algorithm, de-
scribed briefly in Section 1, significantly reduces the runtime overhead of RVSE by pre-
computing and storing the results of the matrix calculations performed by RVSE [1].

3 Problem Statement

The problem statement is based closely on [10]. A problem instance is defined by an
HMMH modeling the monitored system, an observation sequence o1:T , and a temporal
property φ over sequences of actions of the monitored system.

The observation sequence contains events that are occurrences of actions performed
by the monitored system. In addition, it may contain the symbol gap(L) denoting a pos-
sible gap whose length is drawn from a length distribution L, a probability distribution
over the natural numbers: L(�) is the probability that the gap has length �. In the rest of
this paper, we consider a simpler definition of gaps, with gap symbols of form gap(�),
where the length � of each gap is encoded in the trace.

The HMM H models the monitored system. The HMM need not be an exact model
of the system; it simply embodies the available information about the system’s behav-
ior. It can be learned automatically from complete traces using standard learning algo-
rithms [7]. Let SH denote the set of states of the HMM, i.e., the set of possible values
of its state variable.

The property φ is represented by a DFA M = 〈SM ,minit , A, δ, F 〉, consisting of a
set SM of states, an initial state minit , an alphabet A, a transition relation δ, and a set
F of final (also called “accepting”) states. The alphabet A is a subset of the observable
actions of the HMM; actions not in A leave the DFA’s state unchanged. 1

The goal is to computeP(φ | o1:T ), that is, the probability that the system’s behavior
satisfies φ, given observation sequence o1:T . This probability is computed from the
probability distribution on composite states, where a composite state (x, s) is a pair
containing an HMM state x and a DFA state s. Specifically,

P(φ | o1:t) =
∑

xt∈SH ,st∈F P(xt, st | o1:t)/
∑

xt∈SH ,st∈SM
P(xt, st | o1:t)

where P(xt, st | o1:t) is the probability that the HMM is in state xt and the DFA is in
state st after observation sequence o1:t.

4 System Model

The composition of the HMM H modeling the monitored system and the monitor DFA
M defines a DBND representing the entire system. This DBN is illustrated in Figure 1.
It shows dependencies among the state variables and observation variables during the
t’th time step as well as the dependencies of the state variables Xt and St from the

1 In Section 5 we use a different, HMM-like notation for the DFA.
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previous states Xt−1 and St−1, respectively. These relationships hold for consecutive
observations, without gaps.

Fig. 1. DBN D composed from the HMM H and the monitor DFA M . Xt and Ot denote the
state and observation variables of H at time t, respectively, and St denotes the state variables of
M , at time t. Note that Ot is also M ’s input.

4.1 Peek Operations

When a gap occurs, the missing observations cause uncertainty in the state of the DFA.
Our algorithm performs a peek operation, which is a lightweight procedure that inspects
a part of the monitored system’s state immediately after a gap, and can be regarded as an
event which is used to reduce the uncertainty in the state of the DFA. Which part of the
program state is considered during a peek operation depends on the particular problem
and is built into the definition of the procedure that implements the peek operation.

Specifically, peek events are useful for applications in which certain DFA states are
known to be inconsistent with certain program states. In such situations, the probabili-
ties associated with composite states containing DFA states which are inconsistent with
the partial program state provided by the peek operation can be zeroed, after which the
probabilities associated with other composite states are renormalized so that they sum
to 1. The additional dependencies between the variables are represented by the DBN in
Figure 2.

Because our algorithm uses peek events to reduce uncertainty in the DFA state, we
characterize the result of a peek operation qt by a probability distribution P(Qt | St),
which is the probability that a peek operation returns Qt given that the DFA is in state
St. Using Bayes’ rule, after a peek operation that returns qt after a gap, the probability
that the DFA is in state st is P(st | qt) = αP(qt | st)P(st), where α is a constant
factor used for normalization, and P(st) is the probability that the DFA is in state st
after processing the gap and before processing the peek event.

We do not directly use peek events to reduce uncertainty in the state of the HMM,
because generally we do not know a correspondence between concrete program states
(provided by peek events) and states of the HMM. This is because the HMM is typically
an abstract model learned automatically from traces. However, if such a correspondence
is known, then peek events can be used to reduce uncertainty in the state of the HMM,
in the same way they are used to reduce uncertainty in the state of the DFA.
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Fig. 2. DBN D composed from the HMM H and the monitor DFA M , when observation ot is
missing due to a gap, and peek event qt provides information about possible states of the DFA at
time t

Fig. 3. DFA used to detect violations of a locking discipline

4.2 Running Example

Consider a monitor for a locking discipline for a structure type S in a program. The
structure type S contains a lock field (i.e., a field that refers to a lock), protected fields,
and unprotected fields. There is a monitor instance for each combination of a thread and
a structure of type S. The monitor checks that, when the thread accesses a protected
field of the instance of S, the thread holds the lock associated with the instance. The
DFA is shown in Figure 3; the parameterization by a thread and a structure is implicit.
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Fig. 4. Graphical representation of the transition and observation probability distributions of an
HMM model of a system that usually follows the locking discipline
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The alphabet contains four types of events: LOCK, UNLOCK, PROT (representing an
access to a protected field) and UNPROT (representing an access to an unprotected
field). The states of the monitor have the following interpretation: s1 – initial state, s2
– lock is held, s3 – lock is not held, s4 – error state (i.e., violation of locking discipline
has been detected).

In general, after a gap, the joint probability distribution P(Xt, St) may contain non-
zero probabilities for all composite states, reflecting uncertainty in the current state of
the DFA. The monitor can, however, quickly peek at the state of the lock to check
whether it is held by the associated thread. If so, the DFA can only be in states s2 or
s4, so probabilities of composite states containing s1 or s3 can be set to zero. If not,
the DFA can only be in states s1, s3, or s4, so the probabilities of composite states
containing s2 can be set to zero. For example, some sample entries in the probability
distribution for peek events are P(s2 | held) = 1 and P(s2 | notHeld) = 0.

Figure 4 shows in a graphical way the transition and observation probability distri-
butions of an HMM model of a system that usually follows this locking discipline but
has a small chance of violating it.

5 RVPF Algorithm

This section describes our RUNTIMEVERIFICATIONPARTICLEFILTERING (RVPF) al-
gorithm, which performs approximate state estimation based on particle filtering. Like
the original RVSE algorithm [10], RVPF estimates the probability that the system is
in a composite state (xt, st) at time t. Let (x(i)t , s

(i)
t ) denote the state, also called the

“position”, of the i’th particle at time t.

5.1 The Precomputation Phase

In Line 1 of the RVPF algorithm, whose pseudo code is given on page 157, the prob-
abilities P(Ot |Xt−1) and P(Xt |Xt−1, Ot) are precomputed so they can be accessed
quickly by the rest of the algorithm. The exact details of the precomputation are shown
in algorithm PRECOMPUTEPROBABILITIES.

Algorithm PRECOMPUTEPROBABILITIES

Input: System Model HMM H =(X,O,P(Xt |Xt−1),P(Ot |Xt),P(X0))
Output: P(Ot |Xt−1), P(Xt |Xt−1, Ot)

1 P(Ot |Xt−1) = P(Xt |Xt−1)P(Ot |Xt)
2 for i = 1 to |dom(X)| do
3 for j = 1 to |dom(X)| do
4 for k = 1 to |dom(O)| do
5 P(Xt = xi |Xt−1 = xj , Ot = ok) =

P(Xt = xi |Xt−1 = xj) · P(Ot = ok |Xt = xi) /P(Ot = ok |Xt−1 = xj)
6 end
7 end
8 end
9 return [P(Ot |Xt−1), P(Xt |Xt−1, Ot) ]
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Algorithm RUNTIMEVERIFICATIONPARTICLEFILTERING

Input: System Model HMM H =(X,O,P(Xt |Xt−1),P(Ot |Xt),P(X0)),
Monitor DFA M =(S,Q,P(St |St−1),P(Qt |St),P(S0), F ),
Program Events o1:T , Peek Events q1:T , Number of particles Np

Output: Joint probability distribution P(XT , ST |o1:T , q1:T ) after seeing o1:T and q1:T

1 [P(Ot |Xt−1), P(Xt |Xt−1, Ot) ] = PRECOMPUTEPROBABILITIES(H)
2 (x0, s0,w0) = INITIALIZEPARTICLEDISTRIBUTION(P(X0), P(S0), Np)
3 for t = 1 to T do
4 if ot �= gap then
5 for i = 1 to Np do
6 SAMPLE x

(i)
t FROM P(Xt |x(i)

t−1, ot)

7 SAMPLE s
(i)
t FROM P(St | s(i)t−1, ot)

8 w
(i)
t = w

(i)
t−1 · P(o

(i)
t |x(i)

t−1)
9 end

10 else
11 � = LENGTH OF GAP

12 (xt−1, st−1,wt−1) = RESAMPLE(xt−1, st−1,wt−1)
13 for i = 1 to Np do
14 (x′

0, s
′
0, w

′
0) = (x

(i)
t−1, s

(i)
t−1, w

(i)
t−1)

15 for k = 1 to � do
16 SAMPLE o′k FROM P(O′

k |x′
k−1)

17 SAMPLE x′
k FROM P(X ′

k |x′
k−1, o

′
k)

18 SAMPLE s′k FROM P(S′
k | s′k−1, o

′
k)

19 w′
k = w′

k−1 · P(o′k |x′
k−1)

20 end
21 (x

(i)
t , s

(i)
t , w

(i)
t ) = (x′

k, s
′
k, w

′
k)

22 end
23 for i = 1 to Np do w

(i)
t = w

(i)
t · P(qt | s(i)t ) /* handling a peek event qt */

24 end
25 NORMALIZE WEIGHTS wt

26 m = 0
27 for i = 1 to Np do m = m+w2

i

28 if 1/m � Np ∨ qt �= ∅ then (xt, st,wt) = RESAMPLE(xt, st,wt)
29 end
30 INITIALIZE MATRIX P(XT , ST |o1:T , q1:T ) WITH ZEROS

31 for i = 1 to Np do P(x
(i)
T , s

(i)
T | o1:T , q1:T ) = P(x

(i)
T , s

(i)
T |o1:T , q1:T ) + w

(i)
T

32 return P(XT , ST |o1:T , q1:T )

On Line 1 of PRECOMPUTEPROBABILITIES, the matrix P(Ot |Xt−1) is obtained
through a straightforward matrix multiplication of P(Xt |Xt−1) and P(Ot |Xt). This
is followed by the construction of the 3D-array P(Xt |Xt−1, Ot) in Lines 2–8.

P(Xt |Xt−1, Ot) can be best thought of as an array of transition probability matrices
P(Xt |Xt−1), one for each observation symbol ot. This layout makes it possible for the
RVPF algorithm to choose the appropriate transition probability distribution depending
on the observation symbol generated by the HMM.
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5.2 Initial Particle Distribution

The function INITIALIZEPARTICLEDISTRIBUTION, which is invoked on Line 2 of the
RVPF algorithm, distributes Np particles in the state space based on the initial proba-
bility distributions P(X0) and P(S0) of the HMM and DFA, respectively.

In the code for this function, variable Di,j holds the number of particles in HMM

state xi and DFA state sj . The rationale for using �Np · P(x
(i)
0 ) · P(s

(j)
0 )� on Line 3

is to guarantee that every state with a non-zero initial probability will contain at least
one particle. The code in Lines 1–5 is guaranteed to generate at least Np particles. If
the number of generated particles exceeds Np, the number is reduced in Lines 6–9 by
removing individual particles from the richest states.

Algorithm INITIALIZEPARTICLEDISTRIBUTION

Input: Initial probability distributions P(X0) and P(S0) of the HMM and DFA, respectively,
Number of particles Np

Output: Initial positions x0, s0 and weights w0 of particles

1 for i = 1 to |dom(X0)| do
2 for j = 1 to |dom(S0)| do
3 Di,j = �Np · P(x

(i)
0 ) · P(s

(j)
0 )�

4 end
5 end
6 while

∑| dom(X0)|
i=1

∑| dom(S0)|
j=1 Di,j > Np do

7 FIND a, b FOR WHICH Da,b = max(D)
8 Da,b = Da,b − 1
9 end

10 n = 1
11 for i = 1 to |dom(X0)| do
12 for j = 1 to |dom(S0)| do
13 for k = 1 to Di,j do
14 (x

(n)
0 , s

(n)
0 , w

(n)
0 ) = (xi, sj , 1/Np)

15 n = n+ 1
16 end
17 end
18 end
19 return (x0, s0,w0)

5.3 Deriving the Optimal Importance Density Function

The simplest form of the SIR particle filter, known as the bootstrap filter, uses the
transition prior P(Xt |xt−1) as the importance density function, i.e., the probability
distribution from which new particle positions are drawn. Subsequent weight calcula-
tions are performed based on the observation probabilities P(ot |xt), and the particles
are then moved to the interesting regions of the state space through resampling. This
approach, however, gives poor results in our setting.

The probability distributions of our learned HMMs often have large transition prob-
abilities of xt−1 associated with small observation probabilities of xt, and small tran-
sition probabilities of xt−1 associated with large observation probabilities of xt. As a
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consequence, if the observation ot corresponds to a low probability transition in xt−1,
drawing particles from P(Xt |xt−1) moves all particles in the “wrong” direction (i.e.,
contrary to the information provided by the observation), and resampling will have a
hard time to move them back to the interesting states.

The solution is to draw new particle positions from an importance density function
that takes the observation ot into account. It has been shown in [3] that the target distri-
bution P(Xt |xt−1, ot) minimizes the variance of importance weights wt conditioned
on x1:t−1 and o1:t. In practice, it is often difficult to sample from P(Xt |xt−1, ot). For-
tunately, in our case, it is possible to obtain P(Xt |Xt−1, ot) in closed form [4], which
leads to an optimal filter.

5.4 The Forward Step

The loop in Lines 3–29 of the RVPF algorithm estimates the state of the system af-
ter each observation. Lines 5–9 handle the regular case in which an observation ot is
available. Lines 11–23 handle gaps.

Handling Program Events. If an observation ot is available, each particle currently in
(xt−1, st−1) is moved first to (xt, st−1) by sampling from P(Xt |xt−1, ot) in Line 6.
In next step, the particle is moved to (xt, st) by sampling from P(St | st−1, ot). Note
that P(St | st−1, ot) is a conditional probability table which corresponds to the DFA
transition function δ. Therefore, the sampling step in Line 7 is guaranteed to return
st = δ(st−1, ot). Subsequently, in Line 8, the importance weight of each particle is up-
dated by multiplying its current weight with the value from the precomputed matrix
P(Ot |Xt−1), where Ot = ot and Xt−1 = xt. If the number of particles with signif-
icant weights becomes too low (which is estimated in Lines 26–28), the particle posi-
tions are resampled in Line 28, based on the weight distribution w. This concentrates
the particles in the more probable regions of the state space.

Handling Gaps. Upon encountering a gap of length � in the trace, the RVPF algo-
rithm moves each particle, from current state (xt−1, st−1), � steps forward to state
(xt+
−1, st+
−1), following the probability distributions in the HMM. A single step
consists of: sampling an observation ot from P(Ot |xt−1) in Line 16; sampling next
HMM state xt from P(Xt |xt−1, ot) in Line 17; sampling next DFA state st from
P(St | st−1, ot) in Line 18 (which, again, corresponds to advancing the DFA using
st = δ(st−1, ot)); and updating the particle weight on Line 19 using the same equation
as on Line 8.

Handling Peek Events. Peek events help correct the movement errors introduced by
using the HMM model during gaps. After each gap, a peek operation inspects a variable
or a set of variables in the program state and returns an observation qt. On Line 23, each
particle i is weighted by P(qt | s(i)t ), the probability DFA state s(i)t assigns evidence qt.
Particles with impossible DFA states are assigned a weight of zero, and particles with
possible DFA states are assigned a weight of 1. The resampling in Line 28 redistributes
all particles across the possible DFA states.
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5.5 Resampling

Resampling plays a crucial role in maintaining the diversity among particles. Resam-
pling relies on drawing particles from their corresponding weight distribution. To do
so, Lines 1–5 of algorithm RESAMPLE compute a distribution containing prefix sums
of particle weights:Ci is the sum of weightsw1, w2, ..., wi. In each iteration of the loop
in Lines 6–9, new particle positions are drawn by sampling from C.

Algorithm RESAMPLE

Input: Particle positions and weights (x, s,w)
Output: Particle positions and weights after resampling (x̃, s̃, w̃)

1 C0 = 0
2 Np = dimx
3 for i = 1 to Np do
4 Ci = Ci−1 + w(i)

5 end
6 for i = 1 to Np do
7 SAMPLE PARTICLE INDEX k FROM C

8 (x̃(i), s̃(i), w̃(i)) = (x(k), s(k), 1/Np)
9 end

10 return (x̃, s̃, w̃)

5.6 Calculating the Probability Distribution

After T time steps, the probability distribution P(XT , ST |o1:T , q1:T ) is estimated on
Lines 30–31 by summing the weights of particles in each state.

6 Evaluation

In this section, we evaluate the performance of the RVPF algorithm by comparing it to
the RVSE and AP-RVSE algorithms. We conducted multiple experiments focusing on
three important factors: execution time, memory usage, and state-estimation accuracy.
All our experiments were carried out under Fedora Linux 17 on a computer with 4GB
of RAM and a quad-core Intel R© CoreTM i5-2500 CPU running at 3.3GHz. For these
experiments, we adapted the existing implementation of AP-RVSE and created new im-
plementations of RVSE and RVPF, reusing relevant parts from the code for AP-RVSE.
All three programs are written in C.

The micro-benchmark is a multi-threaded application developed for the purpose of
experimental evaluation of the AP-RVSE algorithm [1]. It consists of five threads con-
currently accessing 100 objects. Each thread can perform four possible operations on
any of the objects: LOCK, UNLOCK, PROT, and UNPROT. Threads choose which of
these operations to execute according to the HMM in Figure 4. The DFA in Figure 3 is
used to check for proper access to the protected fields of each object.

To offer a fair comparison, all three algorithms were evaluated on the same set of
micro-benchmark-generated traces (event sequences), which contain gaps of varying fre-
quency (measured as the percentage of trace elements that are gap symbols) and length.
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Moreover, each of the algorithms performed state estimation using the same HMM that
was used to generate the traces in the first place (i.e., the HMM of Figure 4). In this
way, we eliminated the imprecision that might have occurred as a result of re-learning
an HMM from the traces, thereby giving each algorithm the opportunity to perform state
estimation as accurately as it can. The fact that we used a predefined HMM to drive the
micro-benchmark from which we collected the traces allowed us to also log the current
state of the HMM and the DFA along with each emitted observation symbol.

6.1 Execution Time and Memory Usage

We conducted experiments aimed at understanding how the number of particles affects
the execution time and memory usage of the RVPF algorithm, and how RVPF compares
to RVSE and AP-RVSE in terms of these performance measures. For all our experi-
ments, we used both the original HMM (Figure 4) and an additional 10-state HMM
learned from the micro-benchmark-generated traces using the Baum-Welch algorithm.

One of our first tests was to measure the execution time of AP-RVSE for different gap
lengths (GLs) and gap frequencies (GFs). As expected, in all cases, AP-RVSE always
had nearly the same execution time, and was faster than RVPF and RVSE. This was true
even when there were no gaps and only two particles were used by RVPF.

The speed of AP-RVSE, however, comes at a price of high memory usage, which is
several orders of magnitude higher than that of RVSE and RVPF.

Table 1. Memory consumption in bytes of RVSE, AP-RVPF (with accuracy parameter ε = 0.1)
and RVPF (for 150 and 350 particles)

Algorithm RVSE AP-RVSE RVPF (Np = 150) RVPF (Np = 350)

Original 5-state HMM 480 361,240 3,380 6,580

Learned 10-state HMM 960 764,560 5,960 9,160

As Table 1 shows, RVSE uses a relatively small amount of memory, only for storing
the HMM and DFA matrices. For RVPF, the amount of required memory is a linear
function of the number of particles Np and was measured to be 16 · Np + 980 bytes
in case of the original 5-state HMM and 16 · Np + 3560 bytes in case of the learned
10-state HMM. In case of the original HMM, with 150 particles RVPF requires around
100 times less memory than AP-RVSE. For the learned HMM and 350 particles, the
memory consumption of RVPF is still around 80 times lower than that of AP-RVSE.

We also compared the speed of RVPF to the speed of RVSE. Instead of reporting abso-
lute execution times, we used the execution time of RVSE as the basis for the comparison
and determined the number of particles for which RVPF runs exactly as fast as RVSE.
For varying GFs and GLs 1-3, we first measured the execution time of RVSE. We then
measured the execution time of RVPF with an increasing number of particles until we
found the number of particles for which RVPF is exactly as fast as RVSE.

Figure 5 shows that the execution time of RVPF relative to RVSE improves mono-
tonically with respect to the GF, leveling off and reaching a maximum value at a GF of
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Fig. 5. The number of particles for which RVPF is exactly as fast as RVSE, measured for different
GFs and GLs. The figure on the left shows the results for the original 5-state HMM. The figure
on the right shows the results for the learned 10-state HMM.

50%. These results also provide a useful guide for choosing the number of particles that
maximizes RVPF’s accuracy while maintaining its performance advantage over RVSE.

Figure 5 justifies our choice of 150 and 350 particles in Table 1. Namely, with 150
particles RVPF outperforms RVSE for all GLs from 10% to 50% in case of the original
5-state HMM. The same is true for 350 particles when the learned 10-state HMM is
used instead.

6.2 Accuracy of State Estimation

Since we recorded the HMM and DFA states in our traces, we can use these values to
determine the accuracy of each algorithm’s state estimation. We consider first the DFA
state. Figure 6 contains our results for estimating the probability for DFA state s2. The
gray line in the graphs serves as a reference value, showing exactly when the DFA was
in state s2. These results are for the worst-case scenario in which there is a gap after
each observation symbol (GF = 50%).

The number of particles used for RVPF in obtaining these results was determined
as follows. To guarantee that RVPF would always be about twice as fast as RVSE, a
significant speed-up, we used the results of Figure 5 to choose the number of particles
for RVPF to be half of the value for which it matched RVSE’s execution time.

Although we performed state estimation for each DFA state, for presentation pur-
poses, we show only the results for the estimation of DFA state s2. Even though we
are usually interested in state s4 of the DFA, which is the error state, this state has a
very low probability of being reached. The estimated probability of s4 is therefore al-
most always zero and rises very slowly. Also, state s4 is a trap-state, meaning that once
entered, the DFA will remain in the state forever. These considerations make s4 less
suitable for measuring accuracy of state estimation. In contrast, s2 is entered and exited
frequently and is thus much more suitable for measuring accuracy of state estimation.

The effect of a 50% GF can be seen in Figure 6 as a form of jitter in the graphs for all
three algorithms. Each available observation symbol helps the algorithms increase their
certainty, whereas each gap introduces uncertainty. The repeated alternation between
visible symbols and gap symbols thus causes the estimated probability to oscillate.
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Fig. 6. Measuring accuracy of RVSE, AP-RVSE and RVPF in estimating probability of DFA state
s2 for GF = 50% and GL = 1 (top) and GL = 2 (bottom)

Table 2. Accuracy of RVPF, AP-RVPF and RVSE in estimating probability of DFA state s2
expressed as L1-norm of the distance between estimated probability and actual probability at 100
consecutive points in the trace

Algorithm RVSE AP-RVSE RVPF

Gap length 1 (Figure 6 (top)) 19.9740 22.5312 17.6149

Gap length 2 (Figure 6 (bottom)) 27.1269 24.4361 18.2829

Gap length 2 with peek events (Figure 7) 10.6527 10.2417 8.2252

For each algorithm, we also calculated the L1-norm of the difference between the
estimated probability and the actual probability of DFA state s2, at 100 consecutive
points in the trace. The results are summarized in rows 1 and 2 of Table 2. As the
table shows, RVPF gives more accurate results than both RVSE and AP-RVSE in both
considered cases (gap length 1 and 2). The reason for this lies in the fact that RVSE
and AP-RVSE tend to spread their estimates across all of the states, whereas the limited
number of samples drives the estimates of RVPF to the most probable parts of the state
space. The RVPF curves in Figure 6 thus show much less jitter and follow the reference
curve better than those of RVSE and AP-RVSE. The spreading of estimates across the
entire state space in case of RVSE significantly reduces its accuracy as the gap length
grows. This can be observed by comparing the results for RVSE and AP-RVSE in the
upper two rows of Table 2.
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6.3 Estimation Accuracy with Peek Events

To show how peek events help correct estimation errors due to gaps, consider again the
results of Figure 6 (bottom), where monitoring is turned off two thirds of the time; i.e.,
each observation symbol is followed by a gap of length 2. Since, in general, none of
the algorithms performs well in this case, we repeated the same test, this time allowing
each algorithm to perform a peek operation on the lock after each gap. The noticeable
improvements are visible in Figure 7 and quantified in row 3 of Table 2. As expected,
peeking results in nearly the same accuracy for RVSE and AP-RVSE, with RVPF being
more accurate than both of them for the same reasons given in the previous section (i.e.
less jitter and concentration of the estimates in most probable parts of the state space).

0.0

0.5

1.0

P(s2)

 0  20  40  60  80 time t

DFA in s2
RVSE

AP-RVSE
RVPF

Fig. 7. Estimation of probability of DFA state s2 for GF = 50% and GL = 2 after correction
through peek operations

Peek operations also allow RVPF to correct the estimation of the current state of the
HMM. Even though peek events are used only to exclude DFA states from the belief
space, the link between a peek observation and the state of the HMM is established
through the DBN (Figure 2). This connection allows the peek observation to affect
(correct) the estimated probability of the state of the HMM. Figure 8 illustrates the
effect of peeking on the estimation of an HMM state by all three algorithms. Recall that
we recorded the actual state of the HMM in the traces, depicted in the figures as the
gray (reference) curve.

7 Related Work

Particle filtering (PF) has recently been applied to hybrid systems for monitoring and
diagnosis purposes, and in particular to estimate the hidden hybrid discrete-continuous
state from a set of available measurements [6,2,8,9]. In [6], PF is applied to a class of
distributed hybrid systems with autonomous transitions, non-linear system dynamics,
and non-Gaussian noise. They demonstrate their approach on a cryogenic propulsion
system. In [2], the authors present a PF-based method for discrete-time stochastic hy-
brid systems, where each particle has two components: a Euclidean component rep-
resenting the continuous state and a discrete component representing the mode. Their
approach combines exact conditional mode probabilities, given the observations, with
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Fig. 8. Estimation of probability of HMM state x3 with GF = 50% and GL = 1 before and after
correction through peek operations

the use of particles to estimate the Euclidean component, showing that this technique
works significantly better than standard PF.

Sistla et al. use PF to investigate the effectiveness of algorithms for monitorability
and strong monitorability of partially observable stochastic systems [8,9]. Familiarity
with PF is assumed and no further details, except for the number of particles used, are
provided. This application of PF is closest in nature to RVPF but there are significant
differences, as witnessed by the contrasting goals of RVPF. In particular, we seek to
show how PF can be a highly effective technique for runtime verification, and give a
detailed presentation of the RVPF algorithm and its experimental evaluation. Further-
more, we extend PF to handle gaps and peek events. Our experimental results, which
compare the accuracy and overhead of RVPF with those of RVSE [10] and approximate
precomputed RVSE [1], confirm RVPF’s versatility.

The problem we consider—estimating the probability that a safety property is vio-
lated by a program execution when monitoring gaps may be present—was introduced
in [10]. There an optimal but compute-intensive solution based on the forward algo-
rithm was given. In this paper, we additionally consider peek events, which required us
to reformulate the problem in terms of DBNs. We also show how to enhance our RVPF
algorithm with the sequential importance resampling (SIR) strategy using an optimal
importance density function, to reduce the variance in state estimation in our setting.
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8 Conclusions

This paper introduces RVPF, a versatile method for runtime verification with state es-
timation in which the balance among runtime overhead, memory usage, and prediction
accuracy can be controlled by varying the number of particles RVPF uses for state es-
timation. Our benchmarking results confirm RVPF’s flexibility and its superiority over
RVSE and AP-RVSE in terms of state-estimation accuracy.

Although RVPF cannot match the speed of AP-RVSE, its relatively low memory
footprint gives it an advantage in the context of embedded systems, where memory
resources are limited. Our results also show that RVPF can be configured to outperform
RVSE without significantly impacting the accuracy of state estimation.

As future work, we are developing a version of RVPF where the number of particles
used for state estimation can vary at runtime. This would allow for dynamic control of
the tradeoff involving estimation accuracy, memory consumption, and speed.

Acknowledgements. We thank Justin Seyster for introducing the concept of peek
events and developing the micro-benchmarking facility on which our experimental re-
sults are based.
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Abstract. Runtime assertion checking provides a powerful, highly au-
tomatizable technique to detect violations of specified program proper-
ties. However, monitoring of annotations for pointers and memory lo-
cations (such as being valid, initialized, in a particular block, with a
particular offset, etc.) is not straightforward and requires systematic in-
strumentation and monitoring of memory-related operations.

This paper describes the runtime memory monitoring library we devel-
oped for execution support of e-acsl, executable specification language
for C programs offered by the Frama-C platform for analysis of C code.
We present the global architecture of our solution as well as various op-
timizations we realized to make memory monitoring more efficient. Our
experiments confirm the benefits of these optimizations and illustrate
the bug detection potential of runtime assertion checking with e-acsl.

Keywords: runtime assertion checking, memory monitoring, executable
specification, invalid pointers, memory-related errors, Frama-C, e-acsl.

1 Introduction

Memory related errors, including invalid pointers, out-of-bounds memory ac-
cesses, uninitialized variables and memory leaks, are very common. For exam-
ple, the study for IBM MVS software in [1] reports that about 50% of detected
software errors were related to pointers and array accesses. This is particularly
an issue for a programming language like C that is paradoxically both the most
commonly used for development of system software with various critical com-
ponents, and one of the most poorly equipped with adequate protection mech-
anisms. The C developer is responsible for correct allocation and deallocation
of memory, pointer dereferencing and manipulation (like casts, offsets, etc.), as
well as for the validity of indices in array accesses.

Among the most useful techniques for detecting and locating software er-
rors, runtime assertion checking is now a widely used programming practice [2].
Turing advocated the use of assertions already in 1949 and wrote that “the
programmer should make a number of definite assertions which can be checked
individually, and from which the correctness of the whole program easily follows”
[3]. A lot of research works have addressed efficient techniques and tools for run-
time assertion checking. Leucker and Schallhart provide a survey on runtime
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verification and conclude that “one of its main technical challenges is the syn-
thesis of efficient monitors from logical specifications” [4]. An efficient memory
monitoring for C programs is the purpose of the present work.

In this paper, we present the solution for memory monitoring of C programs
we have developed for runtime assertion checking in Frama-C [5], a platform
for analysis of C code. It includes an expressive executable specification lan-
guage e-acsl and a translator, called e-acsl2c in this paper, that automati-
cally translates an e-acsl specification into C code [6, 7]. In order to support
memory-related annotations for pointers and memory locations (such as being
valid, initialized, in a particular block, with a particular offset, etc.), we need to
keep track of relevant memory operations previously executed by the program.
Hence, we have developed a monitoring library for recording and retrieving va-
lidity and initialization information for the program’s memory locations, as well
as an automatic instrumentation of source code in e-acsl2c inserting necessary
calls to the library during the translation of an e-acsl specification into C.

The proposed solution is designed both for passive and active monitoring,
though this paper discusses only passive monitoring, that is the default one.
Passive monitoring only aims at observing and reporting failures, while active
monitoring introduces new actions e.g. for recovery from detected erroneous
situations. Our solution implements a non-invasive source code instrumentation,
that is, monitoring routines do not change the observed behavior of the program.
In particular, it does not modify the memory layout and size of variables and
memory blocks already present in the original program, and may only record
additional monitoring data in a separate memory store.

The contributions of this paper include:

– a detailed description of our solution of memory monitoring for runtime
assertion checking with Frama-C [5], allowing to automatically generate
monitors from assertions and function contracts written in the e-acsl spec-
ification language [6];

– an efficient storage of memory related operations based on Patricia tries [8];
– optimized records and queries in the store for faster recording and retrieving

information on memory blocks;
– an optimized instrumentation reducing the amount of memory monitoring

for memory locations that are irrelevant with respect to the provided asser-
tions;

– experiments illustrating the benefits of these optimizations and the capacity
of error detection using e-acsl.

The paper is organized as follows. Sec. 2 presents the context of this work,
including Frama-C and e-acsl. Sec. 3 gives a global overview of our solution
for memory monitoring, in particular, the instrumentation realized by e-acsl2c

and the basic primitives provided by our monitoring library. Optimized data
storage and search operations are described respectively in Sec. 4 and 5. Sec. 6
presents the optimization reducing irrelevant memory monitoring. Our initial
experiments are described in Sec. 7 and summarized at the end of Sec. 4, 5 and
6. Finally, Sec. 8 and 9 present respectively related work and the conclusion.
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e-acsl keyword Its semantics

\base_addr(p) the base address of the block containing pointer p

\block_length(p) the size (in bytes) of the block containing pointer p

\offset(p) the offset (in bytes) of p in its block (i.e., w.r.t. \base_addr(p))
\valid_read(p) is true iff reading *p is safe
\valid(p) is true iff reading and writing *p is safe

⎫⎬
⎭

here p must be a
non-void pointer

\initialized(p) is true iff *p has been initialized

Fig. 1. Memory-related e-acsl constructs currently supported by e-acsl2c

2 Executable Specifications Require Memory Monitoring

The executable specification language e-acsl [6, 9] was designed to support
runtime assertion checking in Frama-C. Frama-C [5] is a platform dedicated
to analysis of C programs that includes various analyzers, such as abstract in-
terpretation based value analysis (Value plug-in), dependency analysis, pro-
gram slicing, jessie and wp plug-ins for proof of programs, etc. acsl [10] is a
behavioral specification language shared by different Frama-C analyzers that
takes the best of the specification languages of earlier tools Caveat [11] and
Caduceus [12], themselves inspired by JML [13].

acsl is expressive enough to express most functional properties of C pro-
grams and has already been used in many projects, including large-scale indus-
trial ones [5]. It is based on a typed first-order logic in which terms may contain
pure (i.e. side-effect free) C expressions and special keywords. An Eiffel-like
contract [14] may be associated to each function in order to specify its pre- and
postconditions. The contract can be split into several named guarded behaviors.
Contracts may also be associated to statements, as well as assertions, loop invari-
ants and loop variants. acsl annotations also include definitions of (inductive)
predicates, axiomatics, lemmas, logic functions, data invariants and ghost code.

Designed as a large subset of acsl, e-acsl preserves acsl semantics. More-
over, the e-acsl language is executable: its annotations can be translated into
C monitors by e-acsl2c and executed at runtime. This makes it suitable for
runtime assertion checking. Fig. 1 presents some memory-related e-acsl an-
notations. We use the term (memory) block for any (statically, dynamically or
automatically) allocated object. A block is characterized by its size and its base
address, that is, the address of its first byte.

Fig. 2 shows a simple C function findchr with an acsl contract (that is also an
e-acsl contract) enclosed into @-comments. Given a character c and a pointer
s to an array of n characters, findchr returns a pointer to an occurrence of c in
the array, and NULL otherwise. It is very similar to the C standard memchr function
(basically, our contract does not require to find the first occurrence of c). The
contract contains two behaviors (lines 2–6, 7–9) with a common precondition
(line 1). The precondition states that s must refer to a valid readable location
with at least n characters to the right of s. The first behavior found is defined by
the assumes clause line 3. Whenever the assumes condition is satisfied, the behav-
ior’s postconditions (lines 4–6) must be ensured. They state that the returned
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1 /*@ requires \valid_read(s) && \offset(s)+n <= \block_length(s);
2 @ behavior found:
3 @ assumes \exists int i; 0 <= i < n && s[i] == c;
4 @ ensures \base_addr(s) == \base_addr(\result);
5 @ ensures \offset(s) <= \offset(\result) < \offset(s)+n;
6 @ ensures * \result == c;
7 @ behavior not_found:
8 @ assumes \forall int i; 0 <= i < n ==> s[i] != c;
9 @ ensures \result == \null;

10 @*/
11 char * findchr(char *s, char c, unsigned int n) {
12 unsigned int i;
13 for(i = 0; i < n; i++)
14 if(s[i] == c)
15 return s+i; // found, returns the pointer
16 return (void*)0; // not found, returns NULL
17 }

Fig. 2. Function findchr specified with an e-acsl contract

value (keyword \result) must refer to the same block as s (line 4), to one of the
n characters starting from *s (line 5), and the referred character must be equal
to c (line 6). Similarly, the second behavior states that the null pointer must be
returned (line 9) whenever c in not present in the array (line 8).

Translation into C of basic e-acsl features (including overflow-free arithmetic
operations for integers, behaviors, quantifications over finite sets, some special
keywords, values at the Pre, Post or any labeled state, etc.) was described in [6].
However, runtime assertion checking of e-acsl specifications involving memory-
related constructs of Fig. 1 is particularly complex. Languages with pointers,
such as C or C++, do not allow the developer to easily check for pointer va-
lidity. The developer is supposed to know when a pointer is valid or not. For
example, even when the size of an input array a is provided in a function sig-
nature int f(int a[10]), it is ignored according to the ISO C 99 norm [15, Sec.
6.7.5.3.7]. In other words, this declaration is equivalent to int f(int *a), so the
array size is lost. At runtime, sizeof(a) inside f returns the size of a pointer, and
nothing guarantees that a really refers to an array with 10 elements. Runtime
checking of memory-related e-acsl annotations can be realized using systematic
monitoring of memory operations as shown in the next section.

3 Memory Monitoring for e-acsl: An Overview

Runtime assertion checking of e-acsl specifications is based on a non-invasive
source code instrumentation by e-acsl2c. In order to evaluate memory-related
e-acsl annotations (Fig. 1), we record information on validity and initializa-
tion of memory locations during program execution in a dedicated data store,
that we call below the store. We have developed a memory monitoring library
that provides primitives for both evaluating memory-related e-acsl annotations
(by making queries to the store) and recording in the store all necessary data
on allocation, deallocation and initialization of memory blocks. Thus e-acsl2c
inserts calls to library primitives for two purposes:
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– to translate into C and evaluate memory-related e-acsl annotations; and
– to record memory-related program operations in the store.

The following subsections present these two aspects in detail.

3.1 Translation and Evaluation of Memory-Related Annotations

When a specified property is violated at runtime, the instrumented code gener-
ated by e-acsl2c calls a special function, that we denote here e_ascl_fail, whose
default version reports the assertion failure and exits the execution.1

The instrumentation is different for an internal annotation in a function and
for a function contract. An annotation inside a function f is directly translated
by e-acsl2c into C code that checks the annotation condition inside f (this case
will be illustrated on Fig. 7). For a function f with a function contract, e-acsl2c
adds a new C function __e_acsl_f with the same signature as f, and replaces all
initial calls to f by calls to __e_acsl_f. Basically, __e_acsl_f contains three parts:
checking the precondition of f, a call to f and checking the postcondition of f.
Thus a contract of f is systematically checked by __e_acsl_f in the instrumented
code whenever f is called in the original code, even if the code of f is not provided
during the instrumentation step.

The library provides primitives for the most frequently used memory-related
e-acsl annotations shown in Fig. 1. They have the same role and similar names
(with “__” as prefix instead of “\”). For the last three of them, library func-
tions expect an additional second argument indicating the size (in bytes) of the
memory location *p.

For example, Fig. 3 presents (a simplified version of) function __e_acsl_findchr

automatically generated by e-acsl2c for the function findchr of Fig. 2. Lines 4–5
of Fig. 3 check the precondition (and report any violation). Lines 6–9 compute
if the first behavior’s assumes clause is satisfied, i.e. if this behavior is applicable
for the current call of findchr. Since execution of an e-acsl annotation must not
introduce any risk of runtime error, an additional check of validity of reading
s[i] is automatically added at line 7 before an access to s[i]. Similarly, lines
10–13 compute if the second behavior is activated by the current call of findchr.
Then findchr is called line 14. Next, lines 15–22 check that if the first behavior’s
assumption is true, its postconditions are satisfied as well. Again, to avoid any
risk of a runtime error inserted by e-acsl2c, an additional validity check is
added at line 20 before an access to *__res. Similarly, the second behavior is
checked at lines 23–25.

3.2 Recording Validity and Initialization Data in the Store

In order to be able to provide requested information on memory locations, the
code instrumented by e-acsl2c records in the store for each block the block

1 Actual instrumentation allows the user to customize this function by defining its
own action according to several parameters [7].
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1 char * __e_acsl_findchr(char *s, char c, unsigned int n) {
2 char * __res; unsigned int i;
3 int __e_acsl_exists = 0; int __e_acsl_forall = 1;
4 if(!( __valid_read(s,1) && __offset(s)+n <= __block_length(s) ))
5 e_acsl_fail("findchr","Pre","line 3");
6 for( i=0; i<n && __e_acsl_exists == 0 ; i++ ) {
7 if(! __valid_read(s+i,1)) e_acsl_fail("findchr","mem_access:s[i]","line 5");
8 if( s[i] == c ) __e_acsl_exists = 1;
9 }

10 for( i=0; i<n && __e_acsl_forall == 1 ; i++ ) {
11 if(! __valid_read(s+i,1)) e_acsl_fail("findchr","mem_access:s[i]","line 10");
12 if(!( s[i] != c )) __e_acsl_forall = 0;
13 }
14 __res = findchr(s, c, n);
15 if( __e_acsl_exists ){
16 if(!( __base_addr(s) == __base_addr(__res) ))
17 e_acsl_fail("findchr","Post","line 6");
18 if(!( __offset(s) <= __offset(__res) && __offset(__res) < __offset(s)+n ))
19 e_acsl_fail("findchr","Post","line 7");
20 if(! __valid_read(__res,1)) e_acsl_fail("Post","mem_access:*__res","line 8");
21 if(!( *__res == c )) e_acsl_fail("Post","findchr","line 8");
22 }
23 if( __e_acsl_forall )
24 if(!( __res == (void *)0 )) e_acsl_fail("Post","findchr","line 11");
25 return __res;
26 }

Fig. 3. Simplified version of function __e_acsl_findchr automatically generated by
e-acsl2c for runtime checking of the contract for the function findchr of Fig. 2

Function Its meaning

__store_block(p,len) records a block of size len and base address p in the store
__delete_block(p) removes existing block with base address p from the store
__malloc(len) allocates a block of size len and records it in the store
__free(p) deallocates the block with base p and removes it from the store
__initialize(p,len) marks len bytes starting from pointer p as initialized
__full_init(p) marks the whole block with base address p as initialized

Fig. 4. Basic recording primitives provided by the memory monitoring library

metadata including its base address, size (in bytes), validity status (whether
reading or writing the block is safe) and the initialization status for each byte of
the block. Our memory monitoring library has been designed to be compatible
with various implementations of the underlying store. This section presents the
instrumentation scheme for recording operations using high-level library prim-
itives, while the store implementation and optimizations are discussed later in
Sec. 4, 5 and 6.

Fig. 4 presents some recording primitives provided by the library. They allow
to register a new block in the store, to mark some particular bytes (or the
whole block) as initialized and to remove the block from the store when it is
not valid anymore. For convenience, instrumented versions of basic dynamic
allocation functions (malloc, calloc, realloc, free) are provided as well. They
directly add/remove from the store the allocated/deallocated block (and, in case
of realloc, transfer recorded initialization information for the old block to the
new one).
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0010****

00100110 00101***

00101001 00101101

a) 0010****

0010011*

00100110 00100111

00101***

00101001 00101101

b)

Fig. 5. Example of a Patricia trie a) before, and b) after inserting 00100111

Thanks to these primitives, the (unoptimized) instrumentation for record-
ing in the store is mostly straightforward. To monitor the block of an argu-
ment or a local variable v of type T in function f, e-acsl2c adds the calls
__store_block(&v,sizeof(T)) in the beginning, and __delete_block(&v) at the end of
the scope of v. For a global variable, these calls are inserted in the beginning
and at the end of the function main. In addition to them, for global variables
(initialized by default to 0 in C) and function arguments (initialized by a func-
tion call), the __store_block(&v,sizeof(T)) is followed by __full_init(&v) to mark
the whole block as initialized. To monitor an assignment v = exp; to a variable
(or a left value) v, a call to __initialize(&v,sizeof(v)); is inserted. Literal strings
and initializers are easily handled as well. Finally, dynamic allocation functions
are simply replaced by their instrumented counterparts.

4 Optimized Storage for the Memory Monitoring Library

Efficient implementation of the store requires a data structure with a good time
and space complexity, since the instrumented code may perform frequent modi-
fications and lookups in the store. It is intuitively clear that the structure has to
be sorted: treating e-acsl constructs may require to access a block metadata di-
rectly by its base address as well as to find a block’s predecessor or successor. For
example, the query __base_addr(p) searches the store for the closest to p base ad-
dress less than p (and checks the bounds afterwards). Thus, a hash table will not
fit. Lists are not efficient enough due to a linear worst-case complexity. Unbal-
anced binary search trees have a linear worst-case complexity too when inserted
base addresses are monotonically increasing, and this may be quite common.
Finally, the cost of balancing (e.g. in a self-balancing binary search tree) would
be amortized if the store modifications (that may lead to rebalancing) were less
frequent than simple queries (that take advantage of a balanced structure). For
tested examples of code instrumented by e-acsl2c this is not necessarily true.

Our implementation of the store is based on a Patricia trie [8], also known as
a radix tree or compact prefix tree, which is efficient even if the tree is unbalanced.
Node keys are base addresses (e.g. 32-bit or 64-bit words) or address prefixes.
Any leaf contains a block metadata with the block base address. Routing from
the root to a block metadata is ensured by internal nodes, each of them contains
the greatest common prefix of base addresses stored in its successors.

For instance, Fig. 5a shows a Patricia trie, for simplicity, over 8-bit addresses.
It contains three blocks in its leaves (only block base addresses are shown here),
and greatest common prefixes in internal nodes. A “*” denotes meaningless bits
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following the greatest common prefix. Fig. 5b presents another trie obtained from
the first one by adding the base address 00100111, that required to create a
new internal node 0010011*. Conversely, removing 00100111 from the trie
of Fig. 5b would give that of Fig. 5a.

Theoretical worst-case complexity of a lookup in a Patricia trie in our case
is O(k) where k is the word length (e.g. 32-bit or 64-bit). In practice, since a
program is allowed to allocate blocks in a limited memory space, the trie height
remains far below this upper bound. In addition, unlike for arbitrary strings,
comparisons for words can be very efficiently implemented by bit operations
(see also Sec. 5).

Storage of a block metadata takes a few bytes, except for initialization in-
formation when the block itself is long. In this case, initialization of each byte
is monitored separately (bit-level initialization through bit-fields is not yet sup-
ported). To reduce the memory space occupied by the store, recording block
initialization information is optimized in two ways. First, since initialization of
each byte in a block can be recorded in one bit, block initialization is recorded
in a dynamically allocated array, whose size is therefore 8 times less than the
block size. Second, when none or all of the bytes of a memory block have been
initialized (that are very common cases), initialization array is freed. Instead, an
integer field counting initialized bytes is used. Third, the __full_init primitive
can be used to mark the whole block as initialized, avoiding multiple calls to
__initialize for particular bytes.

Experiments. To choose which datastructure is most appropriate for imple-
menting the store, we compared the implementation based on Patricia tries to
three other implementations of the store: based on linked lists, on unbalanced bi-
nary search trees, and on Splay trees used in earlier memory safety related tools
(see e.g. [16]). Our implementation appears to be in average more than 2500
times faster than linked lists, 200 times faster than unbalanced binary search
trees and 27 times faster than Splay trees. For linked lists and search trees, it
confirms the intuition given earlier in this section. The results for Splay trees
are comparable to Patricia tries on most examples, maybe 2-3 times faster for
some examples, and dramatically (> 500 times) slower for examples (like multi-
plication of big matrices, matrix inversion etc.) where the program’s consecutive
accesses to memory are not at all performed to the same memory blocks. The
reason is also intuitively clear: since Splay trees move recently accessed elements
to the top of the tree, this takes time and brings no benefit when the follow-
ing queries to the store are not related to the same memory blocks again. For
instance, since matrix multiplication requires to take elements in different rows
and columns each time, multiplication of big matrices, where all matrix elements
do not fit to the same memory block, results in loss of time due to useless restruc-
turing of the Splay tree. On the contrary, on programs with frequent consecutive
accesses to the same block metadata in the store, Splay trees appear to be (up
to three times in our examples) more efficient.
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1 typedef unsigned char byte;

2 // index 0 1 2 3 4 5 6 7 8

3 byte masks[] = {0x00,0x80,0xC0,0xE0,0xF0,0xF8,0xFC,0xFE,0xFF};

4 int longer [] = { 0, -1, 3, -3, 6, -5, 7, 8, -8};

5 int shorter[] = { 0, 0, 1, -2, 2, -4, 5, -6, -7};

6 byte gtCommonPrefixMask(byte a, byte b) {

7 byte nxor = ˜(a ˆ b); // a bit = 1 iff this bit is equal in a and b

8 int i = 4; // search starts in the middle of the word

9 while(i > 0) // if more comparisons needed

10 if (nxor >= masks[i]) i = longer[i]; // first i bits equal,try a longer prefix

11 else i = shorter[i]; // otherwise, try a shorter prefix

12 return masks[-i]; // if i<=0, masks[-i] is the answer

13 }

Fig. 6. Search for greatest common prefix mask, illustrated here for bytes

5 Optimized Records and Queries in the Store

Queries for adding, removing, or searching a given base address A in the store
based on a Patricia trie require comparisons of A with existing nodes and com-
putations of the greatest common prefix for two elements (cf Fig.5). For Patricia
tries storing addresses (strings of 0’s and 1’s of fixed length rather than strings
of arbitrary length over a wider set of characters), these comparisons may be
simplified due to the nature of elements. Let us call by the greatest common
prefix mask M of A and B the mask containing 1’s for the positions of common
bits in the greatest common prefix P of A and B. SoM starts with n 1’s followed
by 0’s, where n is the number of common bits in P . For example, the greatest
common prefix of bytes A =01100111 and B =01111111 is P =111*****,
while the greatest common prefix mask is M =11100000.

We carefully optimized all prefix computations and comparisons by intensive
usage of efficient bit-to-bit operations. Interestingly, one optimization that we
realized for computation of the greatest common prefix mask appeared particu-
larly efficient. Fig. 6 illustrates the optimized version, for simplicity, over bytes
instead of words. It is based on the classic dichotomic search of the index i such
that the greatest common prefix mask starts with exactly i 1’s. In addition to
precomputed masks (line 3) and bit operations (line 7), our version uses precom-
puted indices (lines 4,5) for the next prefix length i to try, therefore it avoids
the usual mid=(high+low)/2 computation at each iteration, making frequent calls
to the function much faster. A negative value i<=0 indicates that -i is the fi-
nal greatest common prefix length. The next value of i is simply extracted (lines
10,11) of the arrays depending if the next candidate prefix should be tried longer
or shorter. For instance, for A and B above, nxor equals the byte 11100111,
and the function will try i=4, then i=shorter[4]=2, then i=longer[2]=3 and finally
stop with i=longer[3]=-3 and return the mask masks[3]=0xE0 of length 3, that is in
binary precisely 11100000.
Experiments. We compared our optimized implementation to a non-optimized
version of the common prefix mask computation based on the usual comparison
of strings commonly used for Patricia tries (with a linear run over the elements
from left to right, that we have also optimized by bit operations). On the tested
examples, our optimized version illustrated by Fig. 6 makes the execution of the
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1 #include<stdlib.h>
2 int last;
3 int* new_inversed(int len, int *v) {
4 int i, *p;
5 //@ assert \valid(v) && \offset(v)+len*sizeof(int) <= \block_length(v);
6 p = malloc(sizeof(int)*len); // allocate a new vector p
7 for(i=0; i<len; i++)
8 p[i] = v[len-i-1]; // write inversed vector v into p
9 return p;

10 }
11 void main() {
12 int v1[3]={1,2,3}, *v2;
13 //@ assert \valid(&v1[2]);
14 last = v1[2];
15 v2 = new_inversed(3, v1);
16 last = v2[2];
17 //@ assert last == 1;
18 free(v2);
19 }

Fig. 7. File vector.c where the function new_inversed allocates and returns a new vector
containing the inversed given vector v of len integers

instrumented code in average 2.7 times faster. This rate goes up to 4.7 times for
examples with intensive usage of the memory monitoring library.

6 Optimized Instrumentation Using Static Analysis

The instrumentation presented in Sec. 3 is sound and complete: the code in-
strumented by e-acsl2c reports an e-acsl annotation failure at runtime if
and only if this e-acsl annotation is indeed violated. However it has the ma-
jor drawback of being hugely verbose and time-consuming: for each variable,
each (de)allocation and each assignment, one or even several new statements are
generated. It is however sufficient to monitor the memory locations involved in
memory-related constructs in the provided e-acsl annotations.

To solve this drawback, we have designed an interprocedural backward data-
flow analysis which computes an over-approximated set σ of memory locations
that it is sufficient to monitor in order to preserve soundness and completeness
of the instrumentation. Let us explain on the example of Fig. 7 how this analysis
works (for lack of space, we do not give its formal presentation here). Without
any analysis, we have to monitor every variable of the program and to record
when it is allocated, initialized and deallocated by systematically adding calls
to the recording primitives of Fig. 4 as explained in Sec. 3.2.

However, this monitoring is only required for memory blocks involved in
memory-related e-acsl constructs. In our example, they are \valid(v), \offset(v)
and \block_length(v) at line 5, and \valid(&v1[2]) at line 13. So we need to monitor
the formal parameter v of function new_inversed and the location &v1[2]. For the
latter, we keep less precise information. Our current analysis is purely syntacti-
cal and does not perform any precise semantic aliasing analysis. To be sound, we
perform an over-approximation and monitor any information about the whole
local array v1 of function main, including *(v1+i) for any offset i. Basically, from
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1 int last;

2 int* new_inversed(int len, int *v) {

3 int i, *p;

4 __store_block(&v,sizeof(int*)); __full_init(&v);

5 if(!( __valid(v,sizeof(int)) && __offset(v)+len*sizeof(int) <= __block_length(v) ))

6 e_acsl_fail("new_inversed","assert","line 4");

7 p = __malloc(sizeof(int)*len);

8 for(i=0; i<len; i++)

9 p[i] = v[len-i-1];

10 __delete_block(&v);

11 return p;

12 }

13 int main() {

14 int v1[3]={1,2,3}, *v2;

15 __store_block(v1,3*sizeof(int)); __full_init(v1);

16 if(! __valid(v1+2,sizeof(int)) ) e_acsl_fail("main","assert","line 13");

17 last = v1[2];

18 v2 = new_inversed(3, v1);

19 last = v2[2];

20 if(!( last == 1 )) e_acsl_fail("main","assert","line 17");

21 __free(v2);

22 __delete_block(v1); __clean();

23 }

Fig. 8. Simplified instrumentation of the file vector.c of Fig. 7 with e-acsl2c

these e-acsl annotations, the analysis goes backwards in the code in order to
find where the monitored variables v and v1 are assigned and where aliases are
potentially created.

More precisely, the analysis starts from the end of the program with σ = ∅,
and goes backwards up to the beginning, analyzing statements, annotations and
called functions in order to collect memory locations to be monitored into σ. For
the example of Fig. 7, it collects nothing until the assertion at line 5 in function
new_inversed called from the line 15 (still in a context with σ = ∅). At this point,
it remembers that v has to be monitored. Going back to the callsite (line 15), as
the formal parameter v has to be monitored, the corresponding argument v1 is
also collected into σ. For the assertion of line 13, the analysis computes that v1

has to be monitored (actually, it is already in σ, so nothing new is discovered).
Finally the analysis concludes that v and v1 have to be monitored, leading to the
optimized instrumentation of Fig 8. We notice that variables last, len, i, p and
v2 are not monitored, unlike in the unoptimized instrumentation.

If v1 was a pointer referring to another array v3 (e.g. if the line 12 was
int v3[3]={1,2,3}, *v1=v3, *v2;), the analysis would deduce from the assignment
v1=v3 that v3 should be monitored as well.

Experiments. In the tested examples, the optimization based on dataflow anal-
ysis reduced the total execution time of instrumented code by 66% in average. It
is due to a smaller number of monitored variables (decreasing by 78% in average)
and hence a smaller number of records and queries to the store (number of calls
to gtCommonPrefixMask throughout the execution decreased by 71% in average).
The analysis was rather fast: no example has been slowed down by integrating
this optimization.
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Example Orig. Lists BST PT−anal. PT−mask PT Splay Valgrind

binarySearch 0.01 0.51 0.62 1.59 0.53 0.53 0.64 0.27

insertionSort 0.12 1.27 1.26 3.86 1.25 1.25 1.30 2.81

matrixMult 0.01 58.48 90.43 9.01 8.57 8.75 398.60 0.48

matrixInv 0.02 21.54 29.94 1.90 1.42 1.53 145.80 0.47

quickSort 0.01 11.15 2.67 0.48 0.36 0.13 0.02 0.27

bubbleSort 0.22 4.64 7.16 32.58 7.26 6.90 7.21 3.36

merge 0.01 101.33 94.80 0.29 0.47 0.14 0.05 0.45

RedBlackTree 0.01 101.69 145.20 0.30 0.39 0.27 19.59 0.51

mergeSort 0.01 >24h >24h 513.85 25.02 7.63 2.50 0.27

Fig. 9. Detailed execution time (in sec.) for selected examples and techniques

7 Experimental Results

Performances. To evaluate our memory monitoring solution, we performed in
total more than 300 executions for more than 30 programs obtained from about
10 examples with different levels of specifications and values of parameters. These
initial experiments were conducted on small-size examples because they were
mostly manually specified in e-acsl. We measured the execution time of the
original code and of the code instrumented by e-acsl2c with various options in
order to evaluate their performances (with and without optimizations, with four
different implementations of the store, etc.). Such indicators as the number of
monitored variables, memory allocations, records and queries in a Patricia trie
were recorded as well.

Fig. 9 presents some of these examples and indicators in detail. Its columns
give execution time of the original program, using store implementation based on
lists, binary search trees, three versions of Patricia tries and Splay trees. Patricia
tries based implementations were tested respectively without dataflow analysis
of Sec. 6, without query optimization of Sec. 5 and with both optimizations.
Time of analysis with Valgrind tool [17] is indicated in the last column.

Most experimental results have already been summarized at the end of Sec. 4,
5 and 6, where the average rates were computed for a complete list of examples
(some of which are not presented in Fig. 9). We notice in addition that the exe-
cution time with Valgrind is not comparable with our solution and may depend
on the number of memory-related annotations in the specification.

Error detection capacity. In addition to performance evaluation, we used mu-
tational testing to evaluate the capacity of error detection using runtime as-
sertion checking with Frama-C. We considered five annotated examples (see
Fig. 10), generated their mutants (by performing a mutation in the source
code) and applied assertion checking on them. Annotations included precon-
ditions, postconditions, assertions, memory-related constructs etc., and were
written in e-acsl. Mutations included: numerical-arithmetic operator modifi-
cations, pointer-arithmetic operator modifications, comparison operator modi-
fications and logic (land and lor) operator modifications. The PathCrawler

test generation tool [18] has been used to produce test cases. Each mutant was
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alarms mutants equivalent killed % erroneous killed

fibonacci 19 27 2 25 100%

bubbleSort 15 44 2 42 100%

insertionSort 10 39 3 36 100%

binarySearch 7 38 1 37 100%

merge 5 92 5 87 100%

Fig. 10. Error detection for mutants

instrumented by e-acsl2c and executed on each test case in order to check
at runtime if the specification was satisfied. The original programs successfully
passed all these checks. As usual, when a violation of an annotation was reported
for at least one test case, the mutant was considered to be killed. Fig. 10 illus-
trates the results. Except for equivalent mutants (where the mutation produced
by chance an equivalent program), all erroneous mutants were killed.

8 Related Work

Runtime Assertion Checking. The present work is part of an extension of
Frama-C, an existing toolset for analysis of C code, for supporting runtime
assertion checking. It is therefore related to a lot of works on runtime assertion
checking [2] and, more generally, runtime verification [4]. More specifically, one
of our main objectives is to support and execute annotations in e-acsl, an ex-
pressive executable specification language shared by static and dynamic analysis
tools. Hence, our work continues previous contributions to development of ex-
pressive specification languages such as Eiffel [14], JML [19] for Java and Alfa
[20] for Ada.

Memory Safety. Since the main purpose of this paper is the support of memory-
related e-acsl annotations, our work is also related to previous efforts for en-
suring memory safety of C programs at runtime. They include safe dialects of C,
specific fail-safe C compilers and memory safety verification tools for C code. In
particular, the idea to store object metadata on valid memory blocks in a sepa-
rate database was previously exploited in [16, 21–24] and appeared well-adapted
for most spatial errors (that is, accesses outside the bounds [25]). Advantages
of this approach include relative efficiency (propagation of pointer metadata at
each pointer assignment is not required) and compatibility (the memory layout
of objects is preserved). However, this technique results in significant time over-
head due to lookup operations in the database, and is not directly adapted to
detect sub-object overflows inside nested objects (e.g. an array of structures) and
temporal errors (that is, accesses to an object that has been deallocated [25]). An
alternative approach is based on pointer metadata stored inside multi-word fat
pointers extending the pointer representation with bounds information [26–28].
Hybrid techniques combining ideas of both approaches have been proposed as
well [29, 25]. The technique of shadow pages [17, 30] makes it possible to imme-
diately find stored validity information for a pointer without providing an easy
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way to find the base address of the block, block size and pointer offset required
by memory-related e-acsl clauses.

Our global objective is quite different from these efforts. Unlike these ad-
vanced works focused on detection of memory safety errors, we aim at supporting
runtime checking for memory-related annotations of an expressive specification
language e-acsl. Even if we have already realized several optimizations, per-
formances of our implementation remain below the most advanced proposals
addressing memory safety [26–28, 30, 25]. It must be further studied if the ef-
ficient solutions they implement are compatible with our objective to support
runtime assertion checking for such a rich specification language as e-acsl. On
the other hand, the ambitious objective to perform runtime assertion checking
for C code completely specified in e-acsl and directly compatible with inte-
grated Frama-C tools for proof of programs (where manual analysis of proof
failures can be even more costly) could justify a higher overhead.

Optimizations. Our proposal to record block metadata using Patricia tries is
related to Jones’s and Kelly’s work [16] that proposed to use Splay trees for this
purpose. Splay trees were also used in several recent tools related to memory
safety [24, 29]. To the best of our knowledge, Patricia tries have never been
used in this context. Static analysis based techniques to reduce memory mon-
itoring have been used in earlier works, for instance, in [27, 28, 24]. Similarly,
our dataflow analysis described in Sec. 6 performs an overapproximation of the
necessary memory monitoring and successfully removes many irrelevant records
and queries. We intend to further improve its precision in our future work.

9 Conclusion and Future Work

We have presented our solution of memory monitoring for runtime assertion
checking with Frama-C. It can be applied on C code annotated in e-acsl, an
executable specification language offering among other features various memory-
related constructs on validity and initialization of memory locations. The advan-
tages of this solution include a very expressive specification formalism, a deep
integration into the Frama-C platform and various possibilities of collaboration
with other analyzers [7]. Thus, runtime assertion checking can benefit from an-
notations automatically generated by other plug-ins (e.g. Value or RTE), help
to understand proof failures (e.g. during program proof with jessie or wp plug-
ins), skip runtime checking of properties already established by other plug-ins
and contribute to consolidated statuses of annotations in Frama-C [5].

We have described the global architecture, instrumentation with e-acsl2c

and particular aspects related to efficient storage of block metadata, efficient
updates and lookups in the store and static analysis based optimization of mon-
itored variables, as well as our initial experimental results. In particular, runtime
assertion checking has indeed found errors in 100% of non-equivalent mutants
for several simple C programs with complete e-acsl contracts.

One future work direction is extending the support of e-acsl language by
e-acsl2c, in particular, for temporal memory safety and advanced memory-
related constructs like \assigns, \freeable or \separated [10]. Even if our main
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objective is different from many other works focused on memory safety, we would
like to better evaluate our solution with respect to the state-of-the-art tools on
commonly used benchmarks. Since we check only specified properties at runtime,
that will require to write or automatically generate e-acsl annotations related
to memory safety. While runtime assertion checking for such a rich specification
language as e-acsl will likely have a greater overhead compared to these tools
(that do not need to monitor function contracts and variable initialization, or
treat specific memory-related e-acsl constructs), some of the implementation
solutions they used can still be applicable in our context. Future work also
includes further optimizations to minimize the calls to the monitoring library
(e.g. redundant checks or irrelevant monitoring).
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Abstract. We study monitoring of visibly context-free properties. These
properties reflect the common concept of nesting which arises naturally
in software systems. They can be expressed e.g. in the temporal logic
CaRet which extends LTL by means of matching calls and returns. The
future fragment of CaRet enables us to give a direct unfolding-based
automaton construction, similar to LTL. We provide a four-valued, im-
partial semantics on finite words which is particularly suitable for mon-
itoring. This allows us to synthesize monitors in terms of deterministic
push-down Mealy machines. To go beyond impartiality, we develop a con-
struction for anticipatory monitors from visibly push-down ω-automata
by utilizing a decision procedure for emptiness.

1 Introduction

In Runtime Verification (RV) an actual execution of a system is checked with
respect to a given correctness property [1]. Therefore, typically a so-called mon-
itor is synthesized from the high-level specification of the correctness property,
which yields an assessment or a verdict, denoting to which extent the property
is satisfied by the current execution.

RV is a verification technique that is becoming more and more popular in
recent years but is also a key ingredient in new programming paradigms such as
monitor-oriented programming [2] or software architectures for reliable systems
such as runtime reflection [1].

In runtime verification, one always faces a finite execution of a potentially
infinite run of a system. Such an execution may be completed, and for exam-
ple, completely stored in a log file and subsequently checked with respect to
some property, or it may be checked on-line while it is continuously evolving.
Depending on the application, different notions of correctness assessments are
appropriate and monitors evaluating an execution and a property accordingly
are needed.

As explained in [3] and [4], a two-valued assessment yielding yes/true or
no/false seems appropriate when faced with completed executions as either a
property is satisfied or not.

When checking an execution on-line, at least three different assessments
(true/false/inconclusive) are needed to adhere to the maxim of impartiality.
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This states that a property should only be evaluated to true or false, if any con-
tinuation of the execution will yield the same verdict. This ensures that runtime
verification is not stopped prematurely with the (misleading) understanding that
a property is violated or fulfilled although subsequent observations may yield a
different verdict.

The inconclusive verdict can be refined further to a verdict of presumably true
and presumably false. Presumably true expresses the fact that no violation has
been seen but one might still occur in the future as the observation might be
extended. Presumably false describes that some obligation is not satisfied but
might still be fulfilled in the future. These verdicts are of particular interest when
a system terminates as they still allow for some assessment where an inconclusive
verdict would have provided no information at all.

The maxim of impartiality can trivially be fulfilled with a monitor always
yielding the verdict inconclusive. The maxim of anticipation on the other hand
states that a verdict of true or false should be evaluated as soon as this is possible,
meaning for example for a violated safety property that the violation should be
reported by a monitor for the shortest execution of a run (i.e. the shorted prefix
of the run) violating the property.

The methods for checking properties of executions can broadly be divided into
rewriting-based and automata-based approaches. As described in [4], the latter
can sometimes be seen as pre-computations of rewriting-based approaches, high-
lighting that rewriting can be understood as on-the-fly automata constructions.
Thus, typically, rewriting-based approaches are easier to implement, may have a
better memory performance but may have a worse runtime performance. More-
over, anticipatory approaches to runtime verification need a complex check in
each verification step which can be done more efficiently using pre-computations
with automata.

A prominent specification formalism for denoting properties to check is Linear-
time Temporal Logic (LTL) [5], which allows to specify star-free regular prop-
erties. A bunch of different approaches for checking LTL properties at runtime
have been proposed. These can be categorized into two-valued rewriting-based
approaches [6,7,8], impartial three and four-valued rewriting and automata-
based approaches [9,4], or impartial and anticipatory automata-based approaches
[10,11]. The latter approach was then generalized to arbitrary linear-time tem-
poral logics which come with an automaton-based abstraction for a satisfiability
check in [12].

For practical applications, plain LTL specifications are typically not enough.
Besides enrichments like dealing with data or real-time aspects, one of the impor-
tant goals is to specify context-free properties, as, in software systems, nesting
structures arise naturally, in particular in the context of recursive programs
with calls and returns. State-full protocols impose nested structures on message
sequences. For example, a transaction protocol requires (recursively) any sub-
transactions of some transaction to finish before its completion. Similar prop-
erties arise in nested document formats such as XML or serialization of nested
data structures.
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This common concept of nesting is reflected in the class of visibly context-
free languages. Alur et al. proposed in [13] visibly pushdown automata as an
automaton characterization of visibly context-free languages. The nature of this
automaton model is that the stack action is determined by the input symbol.
This is analogous to calls and returns in recursive programs. In contrast, a push-
down property that is not visibly, is the language anban where a stack is needed
rather for counting than for recognizing a nesting structure.

In the context of temporal specifications, the logic CaRet is a natural exten-
sion of LTL with the ability to express nesting [14,15]. The concept of a direct
temporal successor is extended to the concept of a so-called abstract successor.
That is, the successor on the same level between a call and its matching return.
CaRet, however does not cover the full class of visibly context-free properties.
Logics with full expressiveness regarding visibly context-free languages are, for
example VP-μTL [16] and MSOμ [13].

Monitor synthesis for CaRet was first considered in [17]. More specifically, a
monitoring approach for a version of CaRet is provided that allows for checking
globally a past-time property, i.e. safety properties [18]. According to our tax-
onomy, the approach is rewriting-based. Due to the additional stack that has to
be kept in this setting, a translation to an impartial automaton approach is not
straightforward. Note that for CaRet the general scheme developed in [12] is not
applicable.

In this paper, we study monitoring of visibly context-free properties. The
future fragment of CaRet allows, similar to LTL a direct unfolding-based au-
tomaton construction. We provide a four-valued, impartial semantics on finite
words in Section 3 which is particularly suitable for monitoring. It allows us to
synthesize monitors in terms of deterministic push-down Mealy machines.

Additionally, we study an anticipatory approach to monitoring of visibly
context-free properties in Section 4. We achieve to construct anticipatory mon-
itors from visibly push-down ω-automata by utilizing a decision procedure for
emptiness. Thus, this allows us to monitor properties expressed e.g. in full CaRet
or VP-μTL. As such, we provide a complete picture of monitoring context-free
properties in the taxonomy introduced in [4] and explained at the beginning of
this paper.

2 Preliminaries

Alphabets and Words. Let AP be a finite set of atomic propositions and Σ =
2AP a finite alphabet. We assume Σ to be the disjoint union of call symbols
Σc, return symbols Σr and internal symbols Σint. Furthermore, call, int and
ret denote propositional formulae characterizing exactly the call, internal and
return symbols, respectively. A word over Σ is a possibly infinite sequence w =
w0w1w2. . . s.t. wi ∈ Σ. We denote by w(i) = wiwi+1. . . the suffix starting at
position i and, if w ∈ Σn, by |w| = n its length. Let Σ∗ and Σω denote the sets
finite and infinite words overΣ, respectively, andΣ∞ = Σ∗∪Σω,Σ+ := Σ∗\{ε}.

We denote B4 = {�,�p,⊥p,⊥} the four-valued De-Morgan lattice with linear
order, i.e. the lattice with � * �p * ⊥p * ⊥, � = ¬⊥ and �p = ¬⊥p. Note,
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that we assume big operators to have lower precedence than small ones, thus⊔
a $ b =

⊔
(a $ b).

Visibly Push-Down Automata. A (non-deterministic) push-down automaton is a
tuple F = (Q,Σ, Γ, δ,Q0, F ) where
– Σ,Γ are the finite input and stack alphabet, respectively, and Γ# := Γ ∪̇{#}

the stack alphabet enriched by a new bottom symbol # �∈ Γ ,
– Q is a finite set of control states,
– Q0 ⊆ Q is the set of initial states,
– F ⊆ Q is the set of accepting states and

– δ : Q× Γ# ×Σ → 2Q×Γ
≤2
# is the non-deterministic, transition function.

A configuration of F is a tuple (q, s) ∈ Q × (Γ ∗{#}) comprising the current
control state and a stack assignment ending with #. A run of F on a finite
input word w = w0w1. . . wn ∈ Σ∗ is a sequence c0c1. . . cn+1 of configurations
ci ∈ Q× (Γ ∗{#}) s.t.
– c0 ∈ Q0 × {#} and
– if ci+1 = (q′, γ′γ′′s) then ci = (q, γs) with (q′, γ′γ′′) ∈ δ(q, γ, wi),

where q ∈ Q ,γ ∈ Γ#. A run (q0, s0)(q1, s1). . . (qn+1, sn+1) is accepting if qn+1 ∈
F .

We call a push-down automaton P reading infinite words a push-down ω-
automaton. A run of P on an infinite word u = u0u1. . . ∈ Σω is an infinite
sequence of configurations c0c1. . . defined as above. A run (q0, s0)(q1, s1). . . is
accepting if the sequence of states q0q1. . . satisfies a Büchi condition, i.e. there
is some q ∈ F that occurs infinitely often in the sequence.

A push-down (ω-)automaton accepts a word w ∈ Σ∞ if there is an accepting
run on w. By L(P) ⊆ Σω and L(F) ⊆ Σ∗ we denote the set of words accepted
by P and F , respectively.
F and P are called a visibly push-down automaton (Vpa) and a visibly push-

down ω-automaton (ω-Vpa), respectively, if the input alphabet Σ is the union
of three disjoint alphabets Σc, Σr, Σint and for (q′, u) ∈ δ(q, γ, a)
– u = ε iff a ∈ Σr and γ �= #,
– u = # iff a ∈ Σr and γ = #,
– u = γ iff a ∈ Σint and
– u ∈ (Γ{γ}) iff a ∈ Σc.

Emptiness of Push-Down Automata. Let P = (Q,Σ, Γ, δP , Q0, F ) be a push-
down ω-automaton. Following [19], we can represent the set configurations of P ,
from which all inputs are rejected (empty configurations), by means of a multi
automaton A = (S∪̇Q,Γ, δ,Q,A). S∪̇Q is the state space where S is a finite set
and disjoint from the states Q of P , which are the initial states of A. The stack
alphabet Γ of P is the input alphabet of A and A ⊆ S are the accepting states.
δ : S∪̇Q×Γ → 2S∪̇Q is the transition function. The multi-automaton A accepts
configurations (q, s#) of P by behaving like a finite automaton with initial state
q and reading the stack configuration s ∈ Γ ∗ as input.

Note, that in [19] the state space of A and P are disjoint but each initial state
s of A corresponds (bijectively) to some q ∈ Q. We therefore identify those.
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Further, we can assume A to have a deterministic transition function δ since A
is basically a compact representation of a set of finite automata.

3 Four-Valued Semantics of CaRet+ on Finite Traces and
Impartial Monitoring

In this section, we consider the logic CaRet as a specification formalism for
nesting structures. For its future fragment CaRet+, we provide a four-valued,
impartial semantics on finite words. We show how to construct a push-down
Mealy machine as monitor that incrementally reads input symbols and outputs
the semantics of the observed trace. Our aim is to give an easily implementable
monitor construction for properties expressing nesting structures.

3.1 Four-Valued CaRet+

The syntax of CaRet+ formulae is defined by the following grammar.

ϕ ::= p | ϕ ∧ ϕ | Xϕ | Xa ϕ | ϕUϕ | ϕUa ϕ |
¬p | ϕ ∨ ϕ | Xϕ | Xa ϕ | ϕRϕ | ϕRa ϕ

The idea of how CaRet extends the operators known form LTL is as follows:
Consider for example a program procedure. While the direct successor of a line
might be the first line in a called procedure, the abstract successor jumps directly
to the next line in the current procedure and omits to enter any called procedures.
Moreover, the last line in the procedure has a direct successor, namely the return
position in its caller, but no abstract successor. CaRet uses the abstract next
modality Xa to specify a property at the next abstract position. Further, in
general, it contains the abstract past modality Xa− for specifying a property at
the call position of the current procedure. Intuitively, consecutive application
of Xa− walks up the call stack. Also, CaRet provides abstract versions of the
common until and since operators. However, for sake of simplicity, we do not
support the past operators in this section. It shall be noted, that in contrast to
LTL, past modalities add expressiveness to the logic.

For a formula Φ, we denote sub(Φ) the set of sub-formulae including unfold-
ings, e.g. ψ ∨ ϕ ∧ X(ϕUψ) for a sub-formula ϕUψ of Φ.

Semantics on Finite Traces. The semantics of CaRet is defined on infinite traces.
Since monitoring inherently deals with finite traces we provide the impartial
finitary semantics FCaRet4. It is intended to intuitively resemble the infinite
trace semantics, similar to finitary semantics for LTL formulae, e.g. FLTL and
FLTL4 [4].

As the latter, FCaRet4 uses the four truth values true (�), false (⊥), presum-
ably true (�p) and presumably false (⊥p), allowing for impartiality.



188 N. Decker, M. Leucker, and D. Thoma

The distinguishing aspect between finitary and infinitary semantics is the need
for handling the end of a trace which is reflected by discriminating weak and strong
operators. A formula Xϕ describes what should happen at the next time step. If
the trace ends here, it needs to be specified if that is desired or not. The temporal
operatorsX, Xa, U andUa are considered as strong operators having an existential
character. They require the next position to exist and evaluate to ⊥p if not. Con-
sequently, their duals X, Xa, R and Ra have a weak, i.e. universal character; they
impose restrictions only on actually existing positions. If there is no successive po-
sition, they evaluate to �p. Note that the next operators and their (weak) duals
therefore do not coincide on finite traces as they do on infinite ones.

Abstract Successors. For the semantics of the abstract temporal modalities, we
use the notion of abstract steps in terms of the abstract successor function succa

as in the infinitary CaRet semantics. We define the partial function succa :
Σ∞ ⇀ N0 mapping a word to the abstract successor of its first position. For
any w ∈ Σ∞, succa(w) = 1 if |w| ≥ 2, w0 �∈ Σc is not a call and w1 �∈ Σr is
not a return. If w starts with a call, then the abstract successor is its matching
return, if it exists: succa(w) = i if w0 ∈ Σc and i ∈ N0 is the smallest number
s.t. wi ∈ Σr and in w1. . . wi the number of positions j with wj ∈ Σr is greater
than the number of positions j′ with wj′ ∈ Σc. succ

a(w) is undefined in all other
cases. Further, we let succa∗(w) denote the set of positions {i1, i2, . . . } on a word
w ∈ Σ∞ s.t. i1 = 0 and ij+1 = succa(w(ij )). Additionally, we define a predicate
complete(w) that is true if succa∗(w) has a maximal element i < |w| − 1 and
wi+1 ∈ Σr is a return, otherwise complete(w) is false. That is, complete(w) is
true if a return in w is not matched and thus the abstract sequence formed by
the positions in succa∗(w) terminates because of the first unmatched return.

We define the semantics in conformance with FLTL4 as defined in [4]. The
semantics of a formula is given in terms of a function that maps words w ∈ Σ =
2AP to the B4-lattice. For propositions and boolean connectives, the two-valued
semantics can be directly lifted to the B4-lattice.

�p�4(w) =
{
� if p ∈ w0

⊥ if p �∈ w0

�ϕ ∧ ψ�4(w) = �ϕ�4(w) $ �ψ�4(w)
�¬p�4(w) =

{
� if p �∈ w0

⊥ if p ∈ w0

�ϕ ∨ ψ�4(w) = �ϕ�4(w) % �ψ�4(w)
For the (direct) strong and weak next operators the semantics is defined as
discussed above.

�Xϕ�4(w) =
{�ϕ�4(w(1)) if |w| > 1

⊥p otherwise
�Xϕ�4(w) =

{�ϕ�4(w(1)) if |w| > 1

�p otherwise

The standard semantics of the U and R operator is lifted to B4. The right parts
of the definitions deal with the end of words.
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�ϕUψ�4(w) =
⎛⎝ ⊔

i<|w|
�ψ�4(w(i)) $

�
j<i

�ϕ�4(w(j))

⎞⎠ %
⎛⎝⊥p $

�
i<|w|

�ϕ�4(w(i))

⎞⎠
�ϕRψ�4(w) =

⎛⎝ ⊔
i<|w|

�ϕ�4(w(i)) $
�
j≤i

�ψ�4(w(j))

⎞⎠ %
⎛⎝�p $

�
i<|w|

�ψ�4(w(i))

⎞⎠
The abstract next operator can be defined in a similar manner as their direct

counter parts using the abstract successor succa instead of the direct successor.
While the the two-valued semantics FLTL considers observations as termi-

nated, the four-valued semantics FLTL4 reflects the intuition, that a finite ob-
servation might still be continued and therefore next operators X and X evaluate
to ⊥p and �p, respectively, at the end of a word. For the end of an abstract se-
quence, i.e. when there is no abstract successor, both cases are possible. When
observing an (unmatched) return symbol as the direct successor, the current
“procedure” definitely returns and there is no continuation. The abstract next
operators shall then give a definite verdict, i.e. � or ⊥. On the other hand, if
the abstract sequence ends because the whole observation ends before the next
abstract successor, there might be a continuation and hence the evaluation is
preliminary, i.e. �p or ⊥p.

�Xa ϕ�4(w) =
⎧⎪⎨⎪⎩

�ϕ�4(w(n)) if succa(w) = n ∈ N

⊥ if succa(w) is undef. ∧ w1 ∈ Σr

⊥p otherwise

�Xa ϕ�4(w) =
⎧⎪⎨⎪⎩

�ϕ�4(w(n)) if succa(w) = n ∈ N

� if succa(w) is undef. ∧ w1 ∈ Σr

�p otherwise

Note that the semantics of Xa is slightly different from the one in [14] to fit
together with the Ua operator.

Based on the same idea, the abstract until and release operators are defined
as follows.

�ϕUa ψ�4(w) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

( ⊔
i∈succa∗(w)

�ψ�4(w(i)) $
�

j∈succa∗(w)
j<i

�ϕ�4(w(j))

)
if complete(w)

( ⊔
i∈succa∗(w)

�ψ�4(w(i)) $
�

j∈succa∗(w)
j<i

�ϕ�4(w(j))

)

%
(
⊥p $

�
i∈succa∗(w)

�ϕ�4(w(i))

) otherwise
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�ϕRa ψ�4(w) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

( ⊔
i∈succa∗(w)

�ϕ�4(w(i)) $
�

j∈succa∗(w)
j≤i

�ψ�4(w(j))

)
if complete(w)

( ⊔
i∈succa∗(w)

�ϕ�4(w(i)) $
�

j∈succa∗(w)
j≤i

�ψ�4(w(j))

)

%
(
�p $

�
i∈succa∗(w)

�ψ�4(w(i))

) otherwise

In contrast to the until and release operators two cases have to be distinguished
for their abstract counterparts. If the sequence of abstract successors for a word
is complete, i.e. if the sequence terminates because of an umatched return, the
operators cannot evaluate to ⊥p or �p, respectively.

3.2 Visibly Push-down Mealy Machines (VPMM)

A typical approach to monitoring temporal properties is based on formula rewrit-
ing. When observing a symbol, the formula is evaluated and additionally rewrit-
ten to maintain the gained information. This requires equations for transforming
any formula into a formula where each temporal operator is an X operator or is
guarded by some X. Then, every sub-formula can explicitly be evaluated when
reading only one new letter. For the U operator, the unfolding equation is stan-
dard and the abstract operator can be unfolded analogously:

ϕUψ ≡ ψ ∨ (ϕ ∧ X(ϕUψ))

ϕUa ψ ≡ ψ ∨ (ϕ ∧ Xa(ϕUa ψ))

What remains is an unfolding of the abstract next operator Xa. According
to the semantics, reading a return or an internal symbol it behaves like the
classical X operator, accept that there must not follow a return symbol in the
next step. Evaluating a formula Xa ϕ for a call symbol, the evaluation of ϕ needs
to be postponed until the matching return symbol is read. If a return follows
immediately it is matching. Otherwise the matching return can be reached by
following the abstract sequence of positions until the first unmatched return.

Xa(ϕ) ≡ ( ¬call ∧X( ¬ret ∧ ϕ))
∨( call ∧X( ret ∧ ϕ))
∨( call ∧X( ¬ret ∧ trueUa(¬call ∧ X(ret ∧ ϕ))))

Using this equality for substituting Xa operators, we can equivalently transform
any CaRet formula s.t. every temporal operator is guarded by X and hence do
a step-wise evaluation. When only the classical operators are considered, the
number of different formulae arising during evaluation is bounded (as long as
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the formulae are kept in e.g. disjunctive normal form). This is no longer the
case for the abstract operators as during evaluation an unbounded number of
inequivalent formulae may occur. This is expected, as the formula describes a
pushdown-language and encodes a stack. In the following, we will use pushdown
machines to handle the stack explicitly. This simplifies implementation as well
as theoretical discussion.

The outline for the rest of this section is as follows. We introduce non-deter-
ministic push-down Mealy machines (Pmm) and show how they can be deter-
minized. Next, based on the FCaRet4 semantics defined above, we give a pro-
cedure to construct a Pmm from a CaRet+ formula, that reads symbols and
outputs the FCaRet4 semantics of the word read so far.

Mealy Machines. A non-deterministic Mealy machine can, in general reach mul-
tiple configurations at a time. Each such current configuration yields an output.
To consistently define the overall output of the automaton, we need to be able
to summarize the single outputs in each step. The existential character of a
non-deterministic model is lifted to a supremum (join) operation on all possible
outputs in each step. A configuration may have multiple successors, which have
no order. We therefore need commutativity, associativity and idem-potency of
the join operation on the outputs, that is, we require the output domain to be
a semi-lattice.

Definition 1 (Push-down Mealy Machine). A (non-deterministic) push-
down Mealy machine (Pmm) is a tuple M = (Q,Σ, Γ, δ,Q0,L) where
– Σ,Γ are the finite input and stack alphabet, respectively, and Γ# := Γ∪{#}

the stack alphabet enriched by a new bottom symbol # �∈ Γ ,
– L is the output alphabet with (L,%) forming a semi-lattice,
– Q is a finite set of control states,
– Q0 ⊆ Q is the set of initial states and

– δ : Q × Γ# × Σ → 2Q×Γ≤2
# ×L is the non-deterministic, labeled transition

function.

A configuration of M is a tuple (q, s) ∈ Q × (Γ ∗{#}) comprising the cur-
rent control state and a stack assignment ending with #. The run of M on
a non-empty input word w = w0w1. . . wn ∈ Σ+ is the alternating sequence

C0

1−→ C1. . .


n−→ Cn of sets of configurations Ci ⊆ Q × (Γ ∗{#}) and output
symbols �i ∈ L s.t.
– C0 = Q0 × {#},
– Li+1 ⊆ L and Ci+1 are the smallest sets such that, for γ ∈ Γ , (q, γs) ∈ Ci

and (q′, γ′γ′′, �) ∈ δ(q, γ, ai+1) implies (q′, γ′γ′′s) ∈ Ci+1 and � ∈ Li+1, and
– �i =

⊔
Li+1.

The output of M on w is M(w) := �n.
M is called a visibly Pmm (Vpmm), if it satisfies the corresponding con-

straints defined above for Vpa.



192 N. Decker, M. Leucker, and D. Thoma

3.3 Determinizing VPMM

In order to be able to actually implement a Vpmm as monitor to evaluate ob-
servations it must be deterministic. We can lift the determinization construc-
tion for Vpa [13] to determinize a Vpmm P = (Q,Σ, Γ, δ,Q0,L) by adding
treatment of output symols. We construct an equivalent deterministic Vpmm

P ′ = (Q′, Σ, Γ ′, δ′, q′0,L) as follows.
In the finite control Q′ = 2Q×Q × 2Q we store, as in the standard subset

construction for finite automata, a set of current states R ⊆ Q and additionally
an effect relation S ⊆ Q×Q.

Inbetween a call action ac and its corresponding return action ar, S summa-
rizes the transitions that were made on every state. That is, when P were in
some state q just after reading ac and from there possibly reached some state q′

before reading ar, S contains the tuple (q, q′).
The stack of P ′, stores triples (S′, R′, ac) from Γ ⊆ Q′ × Σc where R′, S′

are the current states and the effect relation at the time the last open call ac
occurred. In the initial state q′0 = {(IdQ, Q0)}, there is no recorded effect, i.e.
each q points to itself, and the current states are the initial states of P .

Internal. An internal action aint ∈ Σint simply updates the set of current states by
applying δ element-wise. The effect relation is updated analogously. If (q, q′) ∈ S
is a recorded effect on q and q′ is mapped to q′′ by δ on reading aint, then in the
next state of P ′ we record the tuple (q, q′′) as effect on q.

We let δ′((S,R), aint, γ) = (S′, R′, γ, �) such that

S′ = {(q, q′) | ∃q′′, γ′, �′ : (q, q′′) ∈ S, (q′, γ′, �′) ∈ δ(q′′, aint, γ′)}
R′ = {q′ | ∃q ∈ R, γ′, �′ : (q′, γ′, �′) ∈ δ(q, aint, γ′)}

� =
⊔
{�′ | ∃q ∈ R, γ′, q′ : (q′, γ′, �′) ∈ δ(q, aint, γ′)}

As opposed to the construction for Vpa, we have also to compute the current
output �. It is obtained from all possible transitions from the current states q ∈ R
via reading aint. Since δ is non-deterministic these are in general multiple values
that are considered in disjunction. We therefore take the join, i.e. the supremum,
of those.

Call. Upon reading a call symbol ac ∈ Σc, the current states set R and the
current effect S is stored by pushing them, together with ac, onto the stack.
While the set of current states is maintained by applying ac via δ, the effect
relation is reset s.t. every state q maps to itself. The output is obtained in the
same way as by reading an internal action.

We let δ′((S,R), ac, γ) = (IdQ, R
′, (S,R, ac)γ, �) such that

R′ = {q′ | ∃q ∈ R, γ′, γ′′, �′ : (q′, γ′′, �′) ∈ δ(q, ac, γ′)}

� =
⊔
{�′ | ∃q ∈ R, γ′, γ′′, q′ : (q′, γ′′, �′) ∈ δ(q, ac, γ′)}
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Return. Having all the information from the stack when reading a return symbol
ar ∈ Σr, P ′ can simulate the transition relation δ on all current states. This,
however is not done directly on R but on the current states at call-time R′

by consecutively applying ac, S and then ar to obtain the new set of current
states R′′ and the new effect relation S′′. We obtain the output from all possible
transitions via ar, after ac and S have been applied.

We let δ′((S,R), ar, (S′, R′, ac)) = (S′′, R′′, ε, �) such that

U = {(q, q′, �′) | ∃q1, q2, γ′, γ′′, �′′ : (q1, γ′′γ′, �′′) ∈ δ(q, ac, γ′),
(q1, q2) ∈ S, (q′, ε, �′) ∈ δ(q2, ar, γ′′)}

S′′ = {(q, q′) | ∃q3, �′ : (q, q3) ∈ S′, (q3, q′, �′) ∈ U}
R′′ = {q′ | ∃q ∈ R, �′ : (q, q′, �′) ∈ U}

� =
⊔
{�′ | ∃q ∈ R, q′ : (q, q′, �′) ∈ U}

Note that the stack might have been necessary for computing the effect S but
once it is known, the effect can be applied to a set of states without using the
stack.

Finally, we need to specially treat the case of a return action ar ∈ Σr when
reading the bottom symbol. Let δ′((S,R), ar,#) = (S′, R′,#, �) such that

S′ = {(q, q′) | ∃q′′, �′ : (q, q′′) ∈ S, (q′,#, �′) ∈ δ(q′′, ar,#)}
R′ = {q′ | ∃q ∈ R, �′ : (q′,#, �′) ∈ δ(q, ar,#)}

� =
⊔
{�′ | ∃q ∈ R, q′ : (q′,#, �′) ∈ δ(q, ar,#)}

3.4 Constructing a VPMM for CaRet+

The idea of the construction is that the Mealy machine maintains the formulae
that need to be proved. When reading an input symbol it verifies the proposi-
tional part and postpones the resulting future obligations. Standard LTL formu-
lae are encoded into the finite control and evaluated on the next input. Abstract
until and release operators are reduced to checking their unfolding.

When observing a call action, the abstract next modalities push their argu-
ment on the stack as future obligation. On return, this obligation is removed
from the stack and evaluated together with the current obligation stored in the
finite control.

The transition function maintains a disjunctive clause form of stored obliga-
tions and thereby removes alternation on the fly. The output in every step is the
truth value from the evaluation of the current finite control state combined with
the current evaluation of the stack. The stack evaluation describes the truth
values of the suspended abstract operators from higher levels.

Given a CaRet+ formula Φ we construct a Vpmm M = (Q,Σ, Γ, δ,Q0,B4)
where the control states Q = 2sub(Φ) store a set of formulae to be evaluated upon
the next input symbol and the stack alphabet Γ = 2sub(Φ) × B4 × B4 stores the
future obligations, the current and the previous stack evaluation.
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For better readability, the transition function δ : Q×Γ ×Σ → 2Q×B4×Γ≤2

, is
specified in two parts, one handling the evaluation of the finite control separately
and another part working on the stack. Let therefore be δc : Q×Σ → 2Q×B4 the
control transition function.

Finite Control. The finite control evaluates propositional formulae directly
according to the input symbol, also, next formulae just consume the input and
delegate their argument to the next step. The semantics of a formula Xa ϕ eval-
uates to ⊥ if the next position is a return and the current position is not a call.
However, δc will never be evaluated on Xa when reading a call symbol, as can
be seen from the definition of the transition function δ below. Therefore we do
not make a distinction for that case here. Until and release formulae are simply
handled using their unfolding.

δc({p}, a) =
{
{(∅,�)} if p ∈ a
∅ if p �∈ a

δc({¬p}, a) =
{
∅ if p ∈ a
{(∅,�)} if p �∈ a

δc({ϕ ∧ ψ}, a) = δc({ϕ, ψ}, a)
δc({ϕ ∨ ψ}, a) = δc({ϕ}, a) ∪ δc({ψ}, a)
δc({Xϕ}, a) = {({ϕ},⊥p)}
δc({Xϕ}, a) = {({ϕ},�p)}
δc({Xa ϕ}, a) = {({ϕ,¬ret},⊥p)}
δc({Xa ϕ}, a) = {({ϕ,¬ret},�p)}
δc({ϕUψ}, a) = δc({ψ ∨ (ϕ ∧X(ϕUψ))}, a)
δc({ϕRψ}, a) = δc({ψ ∧ (ϕ ∨X(ϕRψ))}, a)
δc({ϕUa ψ}, a) = δc({ψ ∨ (ϕ ∧Xa(ϕUa ψ))}, a)
δc({ϕRa ψ}, a) = δc({ψ ∧ (ϕ ∨Xa(ϕRa ψ))}, a)

Sets of formulae (clauses) are interpreted as conjunctions. We can therefore
remove alternation by directly evaluating the single formulae on the input symbol
and combining the respective results:

δc({ϕ1, . . . , ϕn}, a) = δc({ϕ1}, a) $· . . . $· δc({ϕn}, a)

The result of a single evaluation δc(ϕ, a) are sets of tuples (K, b) of clauses
and verdicts. In order to combine them the clauses need to be brought back
to the disjunctive clause form which is realized by an operation $· : Let Ki =
(Ki, bi),Hj = (Hj , cj) ∈ Q×B4 be tuples of states (i.e. conjunctive clauses) and
verdicts. Sets of such tuples are combined by means of a the meet-like operation
$· : 2Q×B4 × 2Q×B4 → 2Q×B4 as follows.



Monitoring of Visibly Context-Free Properties 195

{K1, . . . ,Kn} $· {H1, . . . ,Hm} =
⋃

i∈[1,n]
j∈[1,m]

{Ki} $· {Hj} (1)

{(K, b)} $· {(H, c)} = {(K∪H, b$c)} (2)

The operation maintains the disjunctive form of the clause structure (1). Single
clauses are conjunctive and thus their meet is simply the union of the clauses.
The truth values are combined in terms of the meet on B4 (2).

Stack Control. The actual transition function of M makes direct use of the
finite control function δc on internal action aint ∈ Σint actions since they do not
involve a stack operation. Only the stack evaluation is used in the output:

δ({ϕ1, . . . , ϕn}, (K, b1, b2), aint) = (δc({ϕ1, . . . , ϕn}, aint) �· {(∅, b1)})× {(K, b1, b2)}

On return operations ar ∈ Σr, the top-most stack symbol is removed and
combined to the current control state. That is, the obligation suspended to the
stack earlier on the matching call is now evaluated. Note, that the preliminary
verdict at call time (b1) now is obsolete and the previous one (b2) is evaluated.

δ({ϕ1, . . . , ϕn}, (K, b1, b2), ar) = (δc({ϕ1, . . . , ϕn}, ar) $· {(K, b2)})× {ε}

For a call a ∈ Σc we have

δ({ϕ1, . . . , ϕn}, γ, a) = δ({ϕ1}, γ, a) $̃ . . . $̃ δ({ϕn}, γ, a)
δ({Xa ϕ}, (K, b1, b2), a) = {(∅, ⊥p$b1, ({ϕ},⊥p$b1, b1)(K, b1, b2))}
δ({Xa ϕ}, (K, b1, b2), a) = {(∅, �p$b1, ({ϕ},�p$b1, b1)(K, b1, b2))}

δ({ϕUa ψ}, γ, a) = δ({ψ ∨ (ψ ∧ Xa(ϕUa ψ))}, γ, a)
δ({ϕRa ψ}, γ, a) = δ({ψ ∧ (ψ ∨ Xa(ϕRa ψ))}, γ, a)

and for ϕ �= Xa ϕ′, ϕ �= ϕ′ Ua ψ, ϕ �= Xa ϕ′ and ϕ �= ϕ′ Ra ψ

δ({ϕ}, (K, b1, b2), a) = (δc({ϕ}, a) $· {(∅, b1)})× {(∅, b1, b1)(K, b1, b2)}

Let Ki = (Ki, bi, αiγ),Hj = (Hj , cj , βjγ) ∈ Q × B4 × Γ 2 be tuples of states
(i.e. conjunctive clauses), verdicts and the top-most stack symbols. Note, that
when ever a call occurs, the topmost stack symbol is not touched but a new
symbol is pushed onto the stack. Therefore, the pushed symbols αi = (Ai, ui)
and βi = (Bi, vi) may differ whilst the symbol underneath is the same γ = (G, g)
for all tuples Ki and Hi.

Sets of such tuples are combined by means of a the meet-like operation

$̃ : 2Q×B4×Γ 2

× 2Q×B4×Γ 2

→ 2Q×B4×Γ 2
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as follows:

{K1, . . . ,Kn} $̃ {H1, . . . , Hm} =
⋃

i∈[1,n]
j∈[1,m]

{Ki} $̃ {Hj}

{(K, b, (A, u, g1)(G, g1, g2))} $̃ {(H, c, (B, v, g1)(G, g1, g2))}
= {(K∪H, b$c, (A∪B, u$v$g1, g1)(G, g1, g2))}

Theorem 1. Let Φ be a CaRet formula and w ∈ Σ∗. Then MΦ(w) = �Φ�4(w).
Corollary 1. Given a CaRet formula ϕ, we can construct in 2-ExpTime a
push-down Mealy machine M implementing the four-valued FCaRet4 semantics
of ϕ.

4 Anticipatory Monitoring of Visibly Context-Free
Properties

In this section we describe an anticipatory monitor construction for visibly
context-free ω-languages. By basing the construction on properties given by
ω-Vpa we provide support for complete CaRet including past operators and
more expressive logics like VP-μTL and MSOμ which are complete for the visi-
bly context-free ω-languages. Furthermore, integrating an emptiness check into
the monitor construction allows for the synthesis of anticipatory monitors, i.e.
monitors that yield a definite verdict as early as possible.

Given a property L ⊆ Σω we define a three-valued, anticipatorymonitor func-
tion M3 thereby lifting the concept of [10] from LTL to arbitrary ω-languages.
M3 : 2Σ

ω → (Σ∗ → B3) is given as

M3(L)(w) =

⎧⎪⎨⎪⎩
� if ∀u∈Σω : wu ∈ L
⊥ if ∀u∈Σω : wu �∈ L
? otherwise.

The monitor function yields � for a good prefix w i.e. if any continuation of w
is in L, it yields ⊥ for a bad prefix w i.e. if any continuation of w is not in L
and it yields ? otherwise.

4.1 Emptiness Per Configuration

Let P = (Q,Σ, Γ, δ,Q0, F ) be an ω-Vpa. In the following, we show how to
construct a deterministic Vpa that accepts exactly the good and inconclusive
prefixes of L(P), i.e. {w ∈ Σ∗ | ∃u∈Σω : wu ∈ L(P)}.

As Bouajjani et al. describe in [19], we can, in polynomial time, construct a
multi-automaton A = (S ∪ Q,Γ,Q, δA, A) accepting exactly the set of configu-
rations from which there is an accepting run of P . That is, P can still accept



Monitoring of Visibly Context-Free Properties 197

at least one word in a configuration (q, w#) iff w ∈ Γ ∗ accepted by A when
starting in the state q ∈ Q.

We construct a Vpa F = (Q,Σ, Γ×SQ, δF , Q0, FF ) that behaves like P but
simultaneously simulates A. The initial configuration of F represents the initial
configurations of P and A. Reading inputs form Σ, F simulates the behavior of
P and when P pushes a symbol γ onto the stack, F additionally simulates A
reading γ and stores the new configuration of A on the stack. When P removes
the top-most symbol γ from the stack, F also removes the top-most symbol
including the current configuration of A and thereby restoring the configuration
of A before having read γ.

A configuration of A is a state s ∈ S ∪Q for each initial state q ∈ Q, meaning
if A started in q it would currently be in state s. A configuration is therefore a
mapping from Q to S ∪Q. Let δ̂A : SQ × Γ → SQ be the transition function of
A lifted to mappings f ∈ SQ s.t. δ̂A(f, γ) : q 
→ δA(f(q), γ). That is δ̂A applies
a γ transition “state-wise” to f . Following this idea, we define the transition
function of F as follows. Note, ω-Vpa can, in general, not be determinized and
thus we construct a non-deterministic automaton F . However since F is a Vpa,
it can be determinized afterwards [13].

(q′, (γ, f)) ∈ δF(q, (γ, f), a)⇔ (q′, γ) ∈ δP(q, γ, a) (for a ∈ Σint)

(q′,#F) ∈ δF(q,#F , a)⇔ (q′,#P) ∈ δP(q,#P , a) (for a ∈ Σr)

(q′, ε) ∈ δF(q, (γ, f), a)⇔ (q′, ε) ∈ δP(q, γ, a)
(
for a ∈ Σr

and γ �= #P

)
(q′, (γ′, f ′)(γ, f)) ∈ δF(q, (γ, f), a)⇔

(q′, γ′γ) ∈ δP(q, γ, a)
and f ′ = δ̂A(f, γ′)

(for a ∈ Σc)

Here, #F and #P denote the bottom stack symbols of F and P , respectively.
To correctly treat the empty stack, we interpret the bottom symbol #F of F
as (#P , id) since for each state q of P , A is initially in the corresponding initial
state, which is q itself.

In every state q ∈ Q, P is in a non-empty configuration, iff the multi-
automaton A accepts the current stack for q. The current configuration f of
A is stored in the top-most stack symbol of F . So, when f(q) is an accepting
state of A and the current control state is q, P had a non-empty configuration
and we hence let F accept exactly in the configurations (q, (γ, f)s) s.t. f(q) ∈ FA.
This condition can be realized technically by storing the top-most stack symbol
in the finite control and define the set of accepting states of F accordingly.

From that construction we conclude that F accepts exactly the non-bad pre-
fixes for the language accepted by P .
Theorem 2. For all w ∈ Σ∗, w ∈ L(F) if and only if M3(L(P))(w) �= ⊥.

4.2 Anticipatory Monitors for Visibly Context-Free Properties

Using the construction above we can now construct a Moore machine that com-
putes the three-valued monitoring semantics M3(P ) for any visibly context-free
property P ⊆ Σω, assuming that P is presented as ω-Vpa.
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Definition 2 (Push-down Moore Machine). A (deterministic) push-down
Moore machine is a tuple M = (Q,Σ, Γ, δ, q0, Λ, λ) where
– Q is a finite set of states and q0 ∈ Q the initial state,
– Σ, Γ , Λ are the finite input-, stack- and output alphabets, respectively, and
Γ# := Γ ∪# the stack alphabet enriched by a new bottom symbol # �∈ Γ ,

– δ : Q× Γ# ×Σ → Q× Γ≤2
# the deterministic transition function and

– λ : Q→ Λ the output function.

A configuration of M is a tuple (q, s) ∈ Q× (Γ ∗{#}) comprising the current
control state and a stack assignment ending with #. The run ofM on a wordw =
a1. . . an ∈ Σ∗ is the sequence of configurations c0c1. . . cn+1 s.t. c0 = (q0,#) and
for γ ∈ Γ , ci = (q, γs) and δ(q, γ, ai+1) = (q′, γ′γ′′) we have ci+1 = (q′, γ′γ′′s).
The output of M on w is M(w) := λ(qlast) where (qlast, slast) = cn+1.

The Moore Machine for M3. In the fashion of [10] we construct FP and
also F¬P accepting all non-bad prefixes for the complement of P and combine
them to a Moore machine. We know that if some w ∈ Σ∗ is rejected by FP , then
M3(P )(w) = ⊥ and consequently if w is rejected by F¬P then M3(P )(w) = �.
These cases exclude each other and if both accept then M3(P )(w) = ?.

Note, while it is always possible to complement an ω-Vpa for some property P
and construct F¬P from it, it might be preferable to negate the property earlier.
In particular, when using a logic that allows direct negation, it is advised to
negate before constructing an automaton. Recall, we can assume FP and F¬P

determinized. We combine both and obtain a deterministic visibly push-down
Moore machine M, that outputs � for every good, ⊥ for every bad and ? for
every inconclusive prefix for P .

For FP = (QP , Σ, ΓP , δP , IP , FP ) and F¬P = (Q¬P , Σ, Γ¬P , δ¬P , I¬P , F¬P )
we let M = (QP ×Q¬P , Σ, ΓP × Γ¬P , δ, IP × I¬P ,B3, λ)
with δ((q1, q2), (γ1, γ2), a) := ((q′1, q

′
2), (γ

′
1, γ

′
2)(γ

′′
1 , γ

′′
2 ))

where (q′1, γ
′
1γ

′′
1 ) = δϕ(q1, γ1, a) and (q′2, γ

′
2γ

′′
2 ) = δ¬ϕ(q2, γ2, a).

The output of M is defined as

λ(q1, q2) =

⎧⎪⎨⎪⎩
� if q2 �∈ F¬ϕ

⊥ if q1 �∈ Fϕ

? otherwise.

Note, that λ is well defined since P and ¬P exclude each other.

Theorem 3. Given an ω-Vpa P, we can construct a deterministic push-down
Moore Machine M implementing the three-valued monitoring function for L(P),
i.e. for all w ∈ Σ∗, M(w) = M3(L(P))(w).

Corollary 2. Given a CaRet formula ϕ, we can construct in 3-ExpTime a
push-down Moore machine M implementing the three-valued semantics function
for ϕ.
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5 Conclusion

In this paper, we investigated the problem of monitoring visibly context-free
properties. In particular we proposed a four-valued semantics for the future
fragment of the temporal logic CaRet on finite words, together with a mon-
itor synthesis algorithm yielding deterministic push-down Mealy machines for
properties with calls and returns.

For the full CaRet logic, or more generally, for any visibly context-free lan-
guage, we provided a three-valued monitoring approach adhering both, to the
maxims of impartiality and anticipation. It comprises a three-valued anticipatory
semantics as well as corresponding synthesis algorithm yielding deterministic
push-down Moore machine.

Together with [17] this gives a complete picture of two-valued, impartial and
anticipatory semantics for runtime monitoring.
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Abstract. Programmers are taking advantage of the increasing availability of on-
chip parallelism to meet the rising performance demands of diverse applications.
Support of tools that can facilitate the detection of incorrect program execution
when concurrent threads are involved is critical to this evolution. Many concur-
rency bugs manifest as some form of data race condition, and their runtime detec-
tion is inherently difficult due to the high overhead of the required memory trace
comparisons. Various software and hardware tools have been proposed to detect
concurrency bugs at runtime. However, software-based schemes lead to signif-
icant performance overhead, while, hardware-based schemes require significant
hardware modifications. To enable cost-efficient design of data race detectors, it
is desirable to utilize available on-chip resources. The recent integration of CPU
cores with data-parallel accelerator cores, such as GPU, provides the opportunity
to offload the task of data race detection to these accelerator cores. In this paper,
we explore this opportunity by designing a GPU Accelerated Data Race Detector
(GUARD) that utilizes GPU cores to process memory traces and detect data races
in parallel applications executing on the CPU cores. GUARD further explores
various optimization techniques for: (i) reducing the size of memory traces by
employing signatures; and (ii) improving accuracy of signatures using coherence-
based filtering. Overall, GUARD achieves the performance of hardware-based
data race detection mechanisms with minimal hardware modifications.

1 Introduction

With the increased availability of on-chip parallelism in modern multicore processors,
programmers are actively parallelizing applications from diverse domains to take ad-
vantage of the abundant computing power at their disposal. However, ensuring the cor-
rect execution of parallel applications is challenging due to the difficulty in tracking
concurrency bugs [1, 2]. This characteristic has necessitated the development of effi-
cient concurrency bug detection tools. Data race is one of the main classes of concur-
rency bugs; and being able to detect data races efficiently at runtime can facilitate the
development of powerful tools that can enhance the reliability of parallel applications.
However, existing proposals can be expensive in terms of performance overhead and/or
implementation cost. Software-based data race detection tools [3, 4] often slow down
the monitored application by orders of magnitude, thus, limiting their applicability. Al-
though hardware-based data race detection tools [5, 6] inflict a near-zero performance
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impact on the monitored application, they often have a significant implementation over-
head that limits their scalability. In this paper, we propose to utilize the computing
power that is available on-chip emerging heterogeneous multicore processors to detect
data races.

Integration of data-parallel accelerator cores with CPU cores on the same chip has
emerged as a new trend to facilitate energy-efficient computing with diverse cores. The
AMD Fusion APU [7], Intel Sandy Bridge [8], and Nvidia Project Denver [9] are be-
coming part of mainstream computing. The data-parallel cores in these designs can
support a significant number of parallel threads providing computing power needed for
executing data race detection algorithms efficiently. When these cores are not being em-
ployed for performance acceleration, we propose to utilize them for detecting data races
in the application executing on the CPU cores. Without loss of generality, we consider
the Graphics Processing Unit (GPU) as the data-parallel accelerator in our proposal.
In the following sections, we refer to our design as GUARD which stands for GPU
Accelerated Data Race Detector.

The volume of the memory access trace information generated makes it difficult for
a data race detection mechanism to process the trace at runtime. GUARD handles this
by encapsulating the trace generated by the CPU cores into signature. Compacting the
memory access trace also helps in reducing the communication cost between the CPU
and GPU cores. GUARD is also able to provide trade-offs among the two main char-
acteristics of a data race detector: performance and accuracy. GUARD improves the
performance of the data race detection algorithm by parallelizing the GPU kernel at
different levels. By doing so, GUARD is able to perform data race detection at near-
zero performance overhead. Additionally, to improve the accuracy of data race detec-
tion in the presence of signatures, we introduce a novel filtering mechanism that uses
coherence state information in the cache line to filter out innocuous accesses. Overall,
GUARD proves to be a highly customizable tool which can trade-off between speed
and accuracy to achieve a particular performance-vs-precision goal.

2 Background and Related Work

When two threads access the same memory location without a separating synchroniza-
tion, and at least one of the accesses is a write, there is a data race. A data race could
lead to incorrect or unexpected program behavior, and is a potential security risk. An
example of a data race is shown in Figure 1, where thread0 and thread1 access the same
memory location addr2. This is a potential concurrency bug as thread0 could modify
the value at address addr2 before its next intended use by thread1. Data races can be
divided into three categories: (i) read-after-write (RAW); (ii) write-after-read (WAR);
and (iii) write-after-write (WAW). A WAR data race condition is shown in Figure 1. Not
all data races are hazardous or potential security risks; some of them could be benign.
However, it is essential for data race detectors to identify and evaluate all potential data
race conditions. Due to space limitations, we only discuss selected work that are closely
related to GUARD in this section.
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Time

RACE!
sync

sync sync

sync

thread1thread0

rd addr1

wr addr2

rd addr2

Fig. 1. An example of a data race, on address addr2, between thread0 and thread1. Figure shows
the synchronization and memory instructions in the two threads. Synchronization instructions
define the beginning and end of epochs. Shaded boxes mark epochs in the instruction stream.

2.1 Data Race Detection Algorithms

There are two classes of data race detection algorithms: lockset-based [4,6] and happened-
before-based [3, 5]. Lockset-based schemes track the set of locks held by threads while
accessing a shared variable, and report a data race when the accesses are not protected
by common locks. Happened-before (H-B) algorithm is based on Lamport’s happened-
before relation [10]. In this scheme, memory accesses between synchronizations are
grouped into epochs. Epochs belonging to different threads are concurrent only if their
execution times overlap. H-B schemes compare memory accesses in concurrent epochs
and report a data race condition if they contain accesses to the same memory location
with at least one of the access being a write. Lockset-based schemes do not track syn-
chronizations other than locks, whereas, H-B scheme covers all types of synchroniza-
tions and hence can potentially detect more data races. For this reason, we use the H-B
algorithm as the basis for our design. However, it is equally possible to use other data
race detection algorithms, such as lockset, as the basis for GUARD.

2.2 Runtime Support for Data Race Detection

There exists a large body of work for identifying data races offline, either through static
analysis [11] or by post-mortem analysis [12]. Static analysis based approaches ana-
lyze the source code to detect data race conditions and experience high false positive
rates due to their conservative nature. Post-mortem methods that collect and analyze the
execution trace of applications have significant storage overhead and cannot identify po-
tential security risks in real-time. Due to these drawbacks, current data race detection
techniques emphasize on runtime support.

Previous work has proposed utilizing hardware transactional memory (HTM) mech-
anism for data race detection. RaceTM [13] utilizes lightweight debug transactions to
detect data races with the help of the conflict detection mechanism of the HTM. How-
ever, GUARD differs from such an HTM-based data race detection. RaceTM requires
the underlying HTM support for operation, whereas, GUARD requires minimal hard-
ware support for the extraction of memory access trace. The crux of GUARD’s data
race detection, the signature comparison, is performed by the general purpose GPU
cores available on-chip. However, the memory access trace extraction mechanism can
potentially be shared by several functionalities, including GUARD and HTM.
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Concurrency bug detection tools for applications executing on GPU architectures
have been proposed [14–16]. GUARD differs from these software-based mechanisms
as it targets data race detection for CPU application, by utilizing on-chip GPU cores. A
recently proposed work, KUDA [17], proposes to utilize GPU threads to improve the
performance of data race detection on CPU threads. GUARD, however, differs from
KUDA in several aspects. KUDA needs binary instrumentation and the help of addi-
tional CPU threads (worker threads) for the extraction of memory access trace. Ad-
ditionally, the memory trace compression technique employed by GUARD helps in
outperforming KUDA.

2.3 Instruction-Grain Program Monitoring

Instruction-grain program monitors have been proposed to efficiently extract runtime
information from the CPU. These tools monitor programs at an instruction-level gran-
ularity and collect information such as program counter, instruction type, input/output
operands, and access addresses. Such monitors have been used for specialized pur-
poses such as memory checking, security tracking, and taint analysis [4,6,18]. Runtime
data race detection requires extraction of memory access information from the CPU
cores while the parallel applications are executing. General purpose instruction-grain
program monitors such as Log-based Architecture [19] can efficiently extract runtime
information from the CPU without significant hardware modifications. Previously, we
have proposed utilizing hardware support for extracting runtime information for dy-
namic program execution monitoring [18]. GUARD utilizes a similar hardware extrac-
tion logic that tracks the program execution and extracts the execution trace of the CPU
application being monitored. This extracted execution trace is then compressed into sig-
natures and forms the input to the data race detection algorithm. GUARD’s Signature
Generator, described in the next section, is build on top of such previously proposed
instruction-grain program monitors.

3 GPU Accelerated Data Race Detection

A snapshot of the basic GUARD mechanism is shown in Figure 2. The heterogeneous
architecture we model consists of CPU and GPU cores connected to each other and their
respective L2 caches through a common on-chip interconnection network (ICNT). Solid
lines with double arrows indicate data communication paths between the cores and
the caches through the interconnection network. Dotted lines indicate the flow of data
race detection related information in GUARD. Features of the heterogeneous multicore
processor modeled here are discussed in Section 4.

In GUARD, the memory access trace generation is orchestrated by a dedicated hard-
ware component we refer to as the Signature Generator (SG). An extraction logic in-
side the SG extracts the memory access trace of the application executing on the CPU
core. However, the volume of the trace generated at runtime makes it intractable to be
processed in real-time, even with GPU. To reduce the storage, communication, and
computation costs associated with managing these traces, they must be compressed
before processing. SG utilizes Bloom Filter [20] to compress the extracted trace into
signatures.
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Fig. 2. GUARD mechanism is based on a heterogeneous multicore processor with CPU cores
and Data-parallel accelerator (GPU) cores. Signature Generator, the only hardware modification
to the baseline processor, is highlighted.

When GUARD is enabled for data race detection, a library function is invoked. It cre-
ates two data structures, the signature table and the data race table, in the GPU memory
space. The SG is configured with the starting addresses of these tables. Henceforth, the
SG is able to write generated signatures to the signature table and read flagged data race
conditions from the data race table. It then launches the GPU kernel that performs the
happened-before algorithm. In GUARD, the GPU cores work in tandem with the CPU
cores to detect data races. We describe the CPU-side actions ( 1© and 4© in Figure 2)
and GPU-side actions ( 2© and 3© in Figure 2) in detail in the next two sections.

3.1 CPU-Side Actions

Memory trace generated by each CPU core is partitioned into chunks called epochs.
Synchronization instructions, such as lock/unlock, barriers, etc. define epochs. All the
addresses belonging to an epoch are encapsulated into representative signatures using
Bloom Filters and H3 hash functions [21]. For each epoch, the SG generates two sig-
natures: a read (RD) and a write (WR). Once the signatures are generated, they are
written to the signature table (action 1© in Figure 2) stored in the GPU memory space.
The signature table contains signatures from all CPUs, and forms the input to the H-B
algorithm running on the GPU. It is a circular queue structure where the oldest pro-
cessed entry for each processor is over-written by the latest entry. A flag is maintained
for each signature entry indicating whether the entry has been processed by the GPU or
not. The SG refers to this flag before the entry is over-written with a new signature, and
resets the flag when a new entry is written.

Once a data race is detected, the related information is written to the data race table
by the GPU kernel and a notification is sent to the CPU in the form of an exception.
An appropriate response such as rollback or replay is then initiated (action 4© in Fig-
ure 2). GUARD can utilize existing record/replay mechanisms [22] to perform this step.
Efficient checkpointing systems such as Revive [23] can create checkpoints with low



206 V. Mekkat, A. Holey, and A. Zhai

overhead. An appropriate checkpoint for rollback or replay is selected using informa-
tion from the data race table. Further analysis could include detailed debugging to find
out the exact memory location and instructions responsible for the data race. Informa-
tion from the data race table and checkpoints could also be used to modify the thread
scheduling to avoid the occurrence of data race conditions in re-execution.

Signature Generator. GUARD’s only hardware addition, the SG, performs three key
tasks: (i) extracting load/store information from committed instructions through an ex-
traction logic; (ii) compressing the memory access traces into signatures using Bloom
Filters; and (iii) forwarding signatures to the signature table. The extraction logic mon-
itors the CPU application for load and store instructions and extracts the addresses
accessed by these instructions. These load/store addresses are then compressed into
respective RD/WR signatures using Bloom Filters.

The potential speed difference between the CPU application and the GUARD kernel
means that the CPU could retire instructions faster than GUARD’s ability to process
them. This could lead to GUARD missing some instructions and consequently missing
data race conditions. To avoid this, we design the SG on a feedback-based architecture
where the CPU retire stage and the SG communicate through special registers. When
GUARD is enabled, the CPU retire stage checks the SG state through the special regis-
ters and if SG is stalled, CPU pipeline is stalled to avoid missing any races. We evaluate
the impact of this design on the performance of the CPU application in Section 5.1.

Signature Selection. Signatures are long bit vector structures used to encapsulate ad-
dresses in the memory access trace in a compressed form. Figure 3(a) shows the signa-
ture creation process used for a signature of size 2048-bits, divided into eight bins. The
64-bit address in the extracted memory access instruction is divided into three sections
and these sections are passed through 8 different H3 hash functions, h1 through h8, and
a particular bit is set in each of the signature bins. Two signatures indicate a potential
data race only when all the eight bins have at least one common bit set. Here, we ana-
lyze the effect of various signature parameters on its false positive rate. A false positive
is defined as an incorrectly flagged data race condition due to two separate addresses
mapping to the same signature bits. We observe that the false positive rates are 18.78%,
37.88%, and 89.86% for 2048-bit, 1024-bit, and 512-bit signatures respectively. Use of
hardware signatures in data race detection has been explored by previous works [5, 6]
and the false positive rates we observe are similar to the rates observed by them.

This false positive data is based on epochs that could contain up to 2000 individual
instructions. Higher instruction count inside an epoch will lead to higher false positive
rate for signatures of the same length. Ideally, an epoch is closed by a synchronization
instruction. However, if there are no synchronization instructions within 2000 instruc-
tions, we forcibly close the epoch and write the signature to the signature table. This is
a practical design choice as data race conditions between memory accesses that execute
close to each other in time are the most critical, while those which occur far apart in
time are potentially benign data races.
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(a) Signature formation: A 2048-bit signature is
divided into 8 bins and 8 different hash functions
are applied on the 64-bit address to set the signa-
ture bits.
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Fig. 3. Signature formation process and the structure of the signature table

Signature Table Size: The difference in frequency of instructions in different cores
could mean that an epoch in one core needs to be H-B compared with a significantly
large number of concurrent epochs from another core. This, in turn, means that the H-B
scheme would need a significantly large number of entry slots in the signature table to
perform ideal data race detection without missing any concurrent epochs. However, in
practical systems such as GUARD, we cannot afford such a large signature table. In
addition to the larger signature table size, this will also lead to a greater performance
penalty, as the data race detector will have to perform a significantly higher number of
H-B signature comparisons. Limiting the number of entries in the signature table, on
the other hand, inevitably leads to missing the comparison of some concurrent epochs;
a parameter we refer to as Missed Epoch Comparisons.

In our experiments, we evaluate the missed epoch comparisons for a 16-entry and a
64-entry signature table compared with an ideal signature table with an infinite number
of entries. We observe that the 16-entry signature table misses 3.16% of epoch compar-
isons, while the 64-entry signature table misses 0.12% of epoch comparisons, versus the
ideal signature table. Since the 64-entry signature table incurs a significantly higher per-
formance overhead compared to the 16-entry signature table, for a small improvement
in missed epoch comparisons, we chose to evaluate GUARD with a 16-entry signature
table.

Size of the signature table grows linearly with the number of CPU cores monitored
and the number of signature entries. Even for a small core count and number of sig-
nature entries, this is high overhead to be constructed as a dedicated on-chip hardware
structure. For example, a four-core CPU with 2048-bit signatures and 16 signature en-
tries has a signature table size of 32 kilo bytes [5]. GUARD stores the signature table in
the GPU last-level cache (LLC), without any additional hardware overhead. GUARD
shares the LLC space with other GPU applications and hence the space is reusable.
Designs that store the data race detection related information as an extension of the
cache line, such as HARD [6], suffer from lost detection opportunities when the lines
are evicted. GUARD does not suffer from this limitation as the signatures are not based
on information in cache line extension.
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Algorithm 1. The GPU kernel for the H-B comparison between CPU cores X

and Y. SIGX and SIGY corresponds to signature from CPUX and CPUY. The
algorithm is explained in Section 3.2. Custom kernel synchronization function

gpu sync() and function concurrent() are discussed in Section 3.2.
Data: Memory access signatures (SIG).
Result: Flagged data race conditions.
while (1) do

if isNew(SIGX) then
for each current SIGY do

if concurrent(SIGX,SIGY) && (SIGX ∩ SIGY �= NULL) then
Flag data race condition;

end
end
mark SIGX for graduation;

end
gpu sync();

end

3.2 GPU-Side Actions

The happened-before comparisons of the signatures generated by the SG is performed
by a GPU kernel. In a nutshell, each signature from a particular CPU thread is compared
with each concurrent signature from all other CPU threads. If the intersection of the
concurrent signatures is not NULL, we have a potential data race condition. Figure 3(b)
shows the signature table with entries for an n-core CPU. Entries for processors CPUX

and CPUY are marked. Each entry in the signature table, say SIGX0, consists of a read
(RDX) signature and a write (WRX) signature along with the epoch start (TS1) and end
(TS2) timestamps. Since a read-after-read access is not potentially harmful, we have
to compare only three signature combinations for CPUs X and Y: RDX-WRY, WRX-
RDY, and WRX-WRY. These combinations are indicated in the figure. This signature
comparison is extremely parallel and we utilize the data-parallel architecture of GPU to
perform these comparisons.

Algorithm 1 shows the GPU kernel algorithm for GUARD. The GPU threads monitor
the signature table for new incoming signatures. Once a new signature entry (SIGX) is
identified, the GPU thread iterates through each of the current SIGY entries present
in the signature table. Potential data race is identified if the intersection of concurrent
signatures is not NULL. Timestamp information embedded in the signature is used to
test the concurrency of these signatures using the function concurrent(). Bitwise AND

operation is used to efficiently calculate the intersection of the signatures. When a data
race condition is identified, information related to the race condition such as thread
and epoch numbers is written to the data race table. Once the GPU thread has iterated
through all the current SIGY signatures, it marks SIGX for graduation and moves on to
the next SIGX. The signature marked for graduation can now be overwritten by CPUX

with new signature.
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GPU Kernel Parallelization. We map the H-B algorithm to the GPU in the follow-
ing way: each GPU thread is assigned to perform signature comparison between two
CPU threads X and Y. Each thread is also assigned a particular signature combina-
tion, among RDX-WRY, WRX-RDY, or WRX-WRY. To speedup the H-B data race
detection algorithm, we parallelize the GPU kernel at different levels:

– Between two CPU threads X and Y, three different GPU threads are used to compare
the three signature combinations (RDX-WRY, WRX-RDY, and WRX-WRY) in
parallel.

– The current signature of CPUX could be compared with all 16 signatures of CPUY

in parallel. We evaluate three levels of parallelization (throttling) for this: full, half,
and quart. In full throttle, 16 different GPU threads are used to H-B compare the
current signature of CPUX with the 16 signatures of CPUY in parallel. Half and
quart throttle, on the other hand, use 8 and 4 GPU threads, respectively.

– We read the 2048-bit signatures in chunks of 64-bit UNSIGNED INTEGER data type
for bitwise AND calculations for the intersection operation of the H-B algorithm.
We further parallelize the GUARD’s GPU kernel by utilizing different threads to
perform the bitwise AND calculations on the different chunks of the same signature.

GPU Kernel Synchronization. The GPU kernel synchronizes all the threads after the
comparison of the current SIGX with all the present SIGY entries, using a custom syn-
chronization function gpu sync(). The current SIGX is then graduated before each
thread moves to a new SIGX. This lock-step behavior ensures correctness of signature
data accessed by GPU threads by avoiding untimely overwriting of SIGX by CPUX.
Since GUARD’s GPU Kernel could utilize several thread blocks, spread across multiple
SMs, it is essential for gpu sync() to be able to synchronize across SMs. While the
CUDA library function syncthreads() [24] can only synchronize among threads in a
block, gpu sync() utilizes a global mutex variable and atomic operations to synchro-
nize among multiple SMs. gpu sync() is inspired by the GPU Lock-based Synchro-
nization discussed by Xiao and Feng [25].

3.3 Coherence-Based Filtering

Use of signature to compress the memory access trace could lead to incorrect data
race detection (false positive) as discussed in Section 3.1. GUARD compresses load
(LD) and store (ST) addresses into separate read (RD) and write (WR) signatures of
same size for comparison purposes. However, we observe that LD instructions gener-
ally outnumber ST instructions by ten to one. This means that LD instructions are the
major source of false positive rate in GUARD. The false positive rate can be reduced
by increasing signature sizes. However, this increases the signature table size and the
signature comparison effort leading to significant performance penalty.

In this section, we discuss a novel coherence-based filtering mechanism that im-
proves the accuracy of data race detection in GUARD. The filtering mechanism uti-
lizes coherence state information to identify the LD instructions that access private and
shared read-only addresses, and filters them out. This way, only LD instructions that ac-
cess shared addresses modified by other threads are compressed into the RD signature.
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These are the potential data race accesses and we call such addresses shared-modified.
Since the impact of ST instructions on accuracy is very low, we do not apply any fil-
tering on them. By filtering out innocuous LD instructions, we are able to bring down
the false positive rate for GUARD without any negative impact on performance or data
race detection capability.

We consider a memory hierarchy design with private L1 caches and a shared LLC
which is common in current multicore processors. When the filtering mechanism is
enabled, SG monitors the data response message from the LLC to check the shared-
modified state. If the data was written to by another thread and is in modified state in
the LLC, the shared-modified state is set by the LLC controller. When the state is set,
SG concludes that this is a potential data race candidate and adds the address to the RD
signature. Otherwise, the address is filtered out. The filtering mechanism considers the
following three scenarios:

– L1 Hit: When a LD instruction hits the L1 data cache, the data is either private
or shared read-only. Such an access will not cause a data race, and hence it is
considered safe and the address is filtered out.

– L1 Miss & LLC Hit: When a LD instruction misses L1 data cache and hits the
shared LLC, the LLC controller uses the coherence information to identify the state
of the address. If the address was in a modified state prior to the load request, it was
written to by another thread recently. Hence, this address is considered shared-
modified and the corresponding bit is set in the response message.

– LLC Miss: If the access misses the shared LLC, it is potentially a cold miss or an
access to the address after a long interval. Such accesses are considered safe as they
will not cause a data race. Hence, the LLC controller resets the shared-modified bit
and the address is filtered out.

These scenarios, however, could still experience a situation where the access could
lead to a data race condition. In a potential write-after-read (WAR) race condition sce-
nario, when the read instruction occurs at first, there is not enough information to make
a decision on filtering. However, a future write to the same memory location by another
thread in a concurrent epoch results in a potential data race. Hence, if this LD instruc-
tion was filtered out due to insufficient information, a potential WAR race condition
could be missed.

This issue can be addressed by using temporary hardware signatures. For every thread,
the filtered LD addresses from the current epoch are compressed and stored in tempo-
rary signatures. When a ST occurs (rather infrequent) in a thread, LLC controller sends
invalidation messages to sharers and the cache line is set to modified state. The SG in
these sharers compare the address in the invalidation message with the addresses in their
temporary RD signature, and if there is a match, the address is added back to the thread’s
RD signature. However, only the addresses from the current epoch could be saved as the
previous epochs would have already been dispatched to the GPU for data race detection.
Also, limited capacity of the LLC or time gap between the two instructions could lead
to the related cache line being evicted from the shared LLC. The scheme will then fil-
ter out the LD instruction, due to lack of information in the LLC. However, it should be
emphasized here that the most crucial data race accesses are the ones that occur in close
proximity, and those are unlikely to be filtered out due to this limitation.
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SG picks up the shared-modified state of the address from the cache response mes-
sage from the LLC controller. Since the SG is private to a core, it need only moni-
tor coherence messages destined to the local first-level cache. Only a single additional
shared-modified bit is required to pass this information. The filtering mechanism does
not alter the cache coherence scheme in any way, which is desirable as they are highly
optimized designs. The temporary signatures will be the size of a RD signature per core,
which is 256 bytes for a 2048-bit signature. Prior work [26] has proposed an algorithm
that uses coherence state information to detect data races. Also, software-based data
race detection mechanisms [27] have employed techniques to filter stack and duplicate
addresses to improve performance. However, to the best of our knowledge, this is the
first work to utilize a coherence-based filtering technique to improve the accuracy of a
data race detection tool that already works at near-hardware speed.

4 Evaluation Infrastructure

In spite of the recent heterogeneous designs [7–9], some of which are already in the
market, the optimal design of a multicore CPU with on-chip data-parallel cores is still
unclear. The memory hierarchy design and shared memory consistency models are am-
biguous and the programming model is still in its nascent state. Nevertheless, such
designs provide a suitable infrastructure to off-load the task of CPU data race detection
to on-chip accelerator cores. In this work, we describe a generic execution model and
propose a data race detector inspired by these designs.

4.1 Heterogeneous Execution Environment

We utilize a heterogeneous multicore processor, consisting of CPU and GPU cores on
the same die, as shown in Figure 2. The cores and their respective LLCs are con-
nected through a common on-chip interconnection network. Communicating through
the shared on-chip interconnection network improves the efficiency of GUARD. These
cores work on different address spaces and hence we do not consider the complexities
of coherence between CPU and GPU cores in our design. We base our evaluation on
a GPU SM, with 8 SPs, that can each support up to 1024 threads. This is modeled on
Nvidia Geforce R© 8600 GTS. Various parameters of the CPU and GPU cores simulated
are given in Table 1.

To simulate multicore CPU in detail, we use Simics [28] combined with GEMS [29].
The GPU cores are simulated using GPGPU-sim [30]. The on-chip interconnection net-
work is simulated using Garnet [31]. GUARD GPU Kernel is compiled using CUDA
2.3 [24]. We evaluate GUARD with applications from two widely used benchmark
suites: PARSEC [32] and SPLASH-2 [33]. Our evaluation reports data from 15 pro-
grams in total: seven PARSEC and eight SPLASH-2 programs as indicated in Table 2.

Using Simics and GEMS, we simulate a many-core system with Sun Microsystem’s
UltraSPARC R© III processor running Solaris R© 8 operating system. All the benchmark
programs are written in C/C++ and parallelized using either OPENMP or PTHREADS.
They are compiled using GCC 4.5.2 at -O3 optimization level. The reported results are
based on running the selected benchmarks for 1 billion instructions in total from the
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Table 1. System configuration parameters for the heterogeneous CPU-GPU evaluation infrastruc-
ture

CPU GPU

Cores 4 / 8 / 16 / 32 Warp Size 32
Frequency 2600MHz Frequency 1300MHz

Pipeline Width 4 SIMD Pipeline Width 8
L1 Cache (Size/Assoc/Line) 32KB / 2 / 64B L1 Cache (Size/Assoc/Line) 32KB / 2 / 64B
L2 Cache (Size/Assoc/Line) 2MB / 4 / 64B L2 Cache (Size/Assoc/Line) 512KB / 4 / 64B

RoB / IW Size 64 / 32 Shared Memory per Core 16KB
MSHR / TLB Entries 256 / 64 Threads / Registers per core 1024 / 16384

L2 / DRAM Access Latency 6 / 200 Cycles Memory Channels 8

start of their respective parallel sections, also known as the region of interest. Full sys-
tem simulation is extremely time consuming, and therefore it is practical to simulate 1
billion instructions in the region of interest. We observe that GUARD’s ability to detect
data race conditions and its performance characteristics are comprehensively evaluated
by simulating 1 billion instructions in the region of interest.

Cycle accurate simulators are utilized to evaluate the performance impact of GUARD
on the CPU application being monitored. GUARD GPU kernel invocations, data trans-
fer operations and signature comparison operations are simulated in a cycle accurate
manner. We enable L1 data cache in the GPU to improve the performance of GUARD
kernel. Potentially, we could also make use of the GPU shared memory to store the
signature table. However, we utilize the L1 data caches as the access times are simi-
lar. Shared memory in the GPU is explicitly managed by the programmer and when
the signature table is updated at regular interval by the CPU, copy of the signature ta-
ble in shared memory will also need to be manually updated. This will prove to be an
additional overhead when using GPU shared memory.

5 Evaluation

This section performs a detailed evaluation of the effectiveness of GUARD. First of all,
we look at the effectiveness of our scheme in detecting data races. Then, we move on to
the performance characteristics of GUARD. We also discuss the performance-accuracy
trade-off achievable, given the limited on-chip resources available.

Table 2 shows the number of data races GUARD detects. GUARD is based on the
happened-before principle that has been used by prior work such as SigRace [5], and
thus is expected to capture the same set of data races. It is worth pointing out that simi-
lar to SigRace, GUARD does not capture all potential data races. The set of data races
captured are only those that lead to violation of happen-before principal at runtime.
GUARD works at address level granularity and hence each data race reported corre-
sponds to a unique address. The ability to detect actual data races proves the effective-
ness of GUARD. Some of the data race conditions reported here are benign, harmless,
or intended race conditions. However, it is essential for a concurrency bug detection
tool to report all potential bugs and let the programmer make a decision on its severity.



Accelerating Data Race Detection 213

Table 2. Number of data race conditions detected by GUARD

Parsec Races Splash− 2 Races
blackscholes 1 barnes 2

bodytrack 0 cholesky 2
canneal 1 fft 4

fluidanimate 4 lu 2
freqmine 0 ocean 0

streamcluster 7 radiosity 2
swaptions 1 raytrace 1

waterNS 0

5.1 Performance-Accuracy Trade-Offs

Although massively parallel, signature comparison based data race detection involves
significant amount of computational work. If not properly managed, it could slow down
the data race detection process and, in turn, stall the CPU application. Here, we analyze
the performance cost of GUARD and the performance-accuracy trade-offs we could
make. In particular, we look at two main parameters of GUARD, signature size and
throttling:

– We consider three signature sizes in our experiments: 2048-bits, 1024-bits, and
512-bits. The maximum size of an epoch is limited to 2000 instructions. The false
positive rate increases with decreasing signature size as discussed in Section 3.1.

– We consider three levels of parallelization (throttling) as discussed in Section 3.2:
full, half, and quart. For an n-core CPU, the number of GPU threads required for
GUARD throttling at T grows at the rate of O(n2*T).

Figure 4 presents the performance-accuracy trade-off characteristics of GUARD for
a 4-core CPU. The performance overhead (in bars) is evaluated as the slowdown (% in-
crease in cycles per instruction) of the CPU application being monitored with GUARD,
over its native execution. The values shown are average (geometric mean) of all the 15
benchmarks we evaluated. The accuracy (in lines) is evaluated as the false positive rate
(% of data races reported that are false) for the signature size used in GUARD. In this
section, we consider false positive rate without any filtering mechanisms (w/o Filter).
We discuss the filtering mechanism (w/ Filter) later in this section.

We observe that the difference in throttle level is well pronounced in the results. For
any particular signature size, full throttle performs better than half throttle which in turn
performs better than quart throttle. This is expected as the data race detection algo-
rithm is extremely parallel and with more GPU threads assigned, better performance is
obtained. Similarly, for any particular throttling, the performance of GUARD improves
with decreasing signature size as GPU kernel has less signature comparisons to perform.
However, this performance improvement is accompanied by increase in the false posi-
tive rate. We observe that at full throttle, we are able to achieve near-zero performance
overhead for data race detection on a 4-core CPU. Furthermore, by scaling the number
of GPU cores employed for data race detection, GUARD is able to perform data race
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Fig. 4. Performance and accuracy characteristics of GUARD. The graph shows (in bars) the
slowdown (%) of application being monitored for different throttling levels and signature sizes.
The graph also shows (in lines) the false positive rate (%) for different signature sizes used in
GUARD.

detection for 8-core, 16-core, and 32-core CPUs with near-zero (less than 2%) perfor-
mance overhead at full throttling. Table 3 shows the amount of GPU resources required
to perform data race detection, for different CPU configurations, at different throttling.

Table 3. Number of GPU SMs required for data race detection, for different CPU core count, at
different throttling. The GPU SM architecture is described in Section 4

CPU Core Count quart throttling half throttling full throttling

4 1 1 1
8 1 2 3

16 3 6 12
32 12 24 48

On detailed analysis of the performance of the GPU kernel, we observe that the
performance overhead of GUARD is mainly due to two reasons: (i) data accesses related
to the long signatures; and (ii) synchronization of the hundreds of threads used for H-B
comparisons. GUARD’s GPU kernel stalls only for about 1.54% of its execution cycles
due to unavailability of data in any threads (memory related stalls). We see that the
signature table size is small enough to fit inside the GPU L2 cache. For a reasonable
GPU L1 data cache size, as in Table 1, the L1 data cache hit rate is more than 99%. We
also observe that GPU does a good job of coalescing memory accesses and limiting the
impact of data access latency on the performance of GUARD. Thread synchronizations,
on the other hand, are necessary for the correctness of H-B algorithm when mapped to
a highly parallel architecture like GPU.
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Kernel Parallelizations. We observe that not all parallelization opportunities discussed
in Section 3.2 work equally well. In addition to throttling, we also discussed utilizing
multiple threads to compare the chunks inside each signature. While we observe that
throttling has a significant impact on the performance of GUARD, the signature chunk-
level parallelism does not improve the performance significantly. When utilizing chunk-
level parallelism, each GPU thread performs a very short computation (comparing two
64-bit unsigned integers) which does not yield significant benefits. Additionally, the
overhead of managing a high number of GPU threads is not recovered by the short 64-
bit comparison. This indicates that the H-B algorithm used in GUARD benefits more
from coarse-grained parallelism than from fine-grained parallelism.

Customizable Design. The high performance of full throttle mode is obtained at the
cost of utilizing larger amount of on-chip GPU resources as shown in Table 3. If on-chip
resources are constrained, we could also select a smaller signature size and still achieve
better performance for the same level of throttling as shown in Figure 4. However, this
will be achieved at the cost of higher false positive rate. GUARD allows customiz-
ing either of these parameters, signature size, or throttling, to achieve the performance
goal we set for a particular accuracy constraint. This level of performance-accuracy
customizability is hard to achieve in hardware-based data race detection mechanisms.

Coherence Filtering. In Section 3.3 we introduced a novel coherence-based filtering
mechanism to reduce the false positive rate of data race detection using signatures. Here,
we evaluate the impact of the coherence-based filtering on GUARD. The coherence-
based mechanism filters 93.6% of all LD instructions, which results in filtering out
accesses to 96.56% of unique addresses. With filtering, the false positive rate drops
significantly as shown (w/ Filter) in Figure 4:

– from 18.8% to 4.8% for 2048-bit signatures
– from 37.9% to 9.6% for 1024-bit signatures
– from 89.9% to 65.6% for 512-bit signatures

Additionally, the filtering mechanism achieves this improvement without missing
any data race conditions in our experiments. Thus, coherence-based filtering proves
to be very efficient in improving the accuracy of GUARD. Our evaluations are based
on MOSI coherence protocol. However, the filtering mechanism can easily be adapted
to other coherence protocols. With filtering, false positive rate for 1024-bit signature
is now under 10%. Hence, half throttling with 1024-bit signatures can be utilized to
run GUARD with negligible performance overhead, reasonable accuracy, and low GPU
utilization. This is particularly attractive for CPUs with higher number of cores as the
GPU resources required to perform data race detection at full throttling can become
quite large as shown in Table 3.

Bandwidth Utilization. Signature transfer between CPU and GPU consumes on-chip
bandwidth. For a 2048-bit signature, we observe that GUARD utilizes less than 15%
of the on-chip bandwidth provided by current designs [7] to transfer signatures. This
bandwidth utilization can further be reduced by using additional hardware to compress
the signatures [5] before transferring through the on-chip interconnection network.
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Effect on GPU Applications. GUARD shares the GPU computational power with
other GPU applications. Hence, while GUARD is enabled, other applications will have
less GPU resources available and their performance could suffer. GUARD, however, is
envisioned as a runtime tool that is exclusively used for debugging purposes and not
for continuous usage while other applications are utilizing GPU resources. Hence, the
impact of GUARD on the performance of other GPU applications is minimal.

Supporting Thread Migration and Simultaneous Multithreading. Thread migra-
tion in a multicore processor enables application threads to migrate from one core to
another. GUARD can support thread migration as the signature table entries correspond
to a thread, and are not tied to any particular core. When a thread migrates from a core,
the current signature is forcibly closed and transferred to the signature table for data
race detection. Additionally, GUARD can handle parallel applications utilizing more
number of threads than the number of cores present in the processor. Since the signa-
ture table is stored in memory, instead of dedicated hardware, GUARD is able to adapt
to the number of threads utilized by the application. This capability also lets GUARD
support simultaneous multithreading.

Hardware Support. In baseline GUARD, the only additional hardware support re-
quired is the SG. We build SG on top of well studied generic instruction-grain pro-
gram execution monitors [18,19] that is used for efficient extraction of execution trace.
Bloom filter hardware is used to compress the extracted traces into signatures. Hard-
ware buffers are used to temporarily store the signature while an epoch is being created.
For a 2048-bit signature, combined RD/WR signature size will be 512 bytes per core.

6 Conclusions

As the integration of data-parallel accelerator cores onto the modern multicore pro-
cessor becomes common, it is desirable to be able to utilize this computing power
for enhancing non-performance aspects of parallel execution. Concurrency bug detec-
tion, particularly data race detection, assumes increased importance in the current land-
scape of parallel computing. In this paper, we design, implement, and evaluate a GPU
Accelerated Data Race Detector (GUARD). GUARD utilizes GPU cores available on-
chip to perform data race detection for the multithreaded applications running on the
CPU cores. The GPU cores are employed for data race detection when they are not be-
ing utilized for performance acceleration of applications. This paper proposes several
optimizations each allowing a different trade-off between performance and accuracy of
data race detection: (i) accelerating CPU data race detection utilizing available on-chip
data-parallel cores; (ii) compressing generated memory traces, using Bloom filters, to
drastically reduce the computational requirement; and (iii) filtering out innocuous mem-
ory accesses, using coherence state information, to improve the accuracy of signatures.

Using a single GPU core (SM architecture described in Section 4), GUARD per-
forms data race detection on a 4-core CPU with 1.8% performance overhead and 18.8%
false positive rate. Coherence-based filtering mechanism reduces the false positive rate
by nearly 75%, without missing any data race conditions. Furthermore, by scaling the
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number of GPU cores employed for data race detection, GUARD is able to perform
data race detection for 8-core, 16-core, and 32-core CPUs with near-zero performance
overhead. With minimal hardware support, GUARD can be invoked for data race de-
tection with negligible performance impact. Overall, GUARD proves to be a powerful
tool in the parallel programming environment, necessitated by the emergence of many-
core processors, and facilitated by the development of heterogeneous architectures with
on-chip data-parallel cores.
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Abstract. Any application, database server, telephony server, or oper-
ating system maintains different states for their internal elements and
resources. When tracing is enabled on such systems, the corresponding
events in the trace logs can be used to extract and model the different
state values of the traced modules to analyze their runtime behavior. In
this paper, a generic method and corresponding data structures are pro-
posed to model and manage the system state values, allowing efficient
storage and access. The proposed state organization mechanism gener-
ates state intervals from trace events and stores them in a tree-based
state history database. The state history database can then be used to
extract the state of any system resources (i. e. cpu, process, memory, file,
etc.) at any timestamp. The extracted state values can be used to track
system problems (e. g. performance degradation). The proposed system
is usable in both the offline tracing mode, when there is a set of trace
files, and online tracing mode, when there is a stream of trace events.
The proposed system has been implemented and used to display and an-
alyze interactively various information extracted from very large traces
in the magnitude order of 1 TB.

1 Introduction

Tracing of computer systems allows programmers and administrators to extract
useful data about the runtime behavior of their systems or applications. From a
high-level point of view, the concept of tracing relies on inserting trace points, or
probes, at specific places in a program’s code. Whenever execution reaches those
points, an event about reaching this location is sent to the tracer. The LTTng
tracer (Linux Tracing Toolkit Next Generation) [DD08, DD06] was developed by
the DORSAL lab in the Ecole Polytechnique de Montreal university. This tracer
integrates with the Linux kernel, and allows kernel and user-space tracing.

Although the trace data provides valuable information from system runtime
execution, the event generation rate can be quite large, especially in a multi-
core system and for a detailed kernel execution trace (system calls, interrupts,
etc.). Extracting, saving and analyzing this information without impacting the
running system is a serious challenge.
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There are several tools available to visualize and analyze such traces. View-
ers like LTTV (Linux Tracing Toolkit Viewer)1, TMF (Tracing and Monitoring
Framework, an Eclipse plugin part of Linux Tools)2, Jumpshot [ZLGS99] or Triva
[SHN09] give a graphical representation of different runtime aspects (cpu usage,
memory consumption, file accesses, critical path analysis, etc.) of the system
under study using the collected trace logs.

While it is being traced, a process, application or individual component may
have different execution states. For instance, the state of a process may be
changed subsequently between new, ready, waiting, running or dead. Efficiently
managing the different state values for the different system attributes (the term
“attribute” is used here to describe the system resources and modules) and
making them quickly available to the administrators and monitoring tools at
any requested time, can be used to better comprehend the execution or track
system problems, as used in [CZG+05, CGK+04]. For example, suppose a prob-
lem or attack is detected, or a performance degradation is reported. In these
cases, having the states of the important system resources (e. g. what are the
running processes, what files are opened, which CPUs are scheduled, how many
bytes are read or written through network devices) at the reported time can help
administrators to understand better the problems and possibly to find their root
cause.

Re-reading and re-running the trace events or checkpoint method (Figure
1) can be used to manage the different state values of the system, as used in
TMF and LTTV viewers [Mon11]. However, by having a large number of system
attributes and a large trace duration (traces up to several hours and in terabyte
range), these solutions may not be efficient or scalable to extract the values of any
given attribute at any given time. As an example, assume a trace viewer aimed
to display a histogram of some metrics such as the number of interrupts (as a
defined system attribute) within a 1 TB trace. To do so, the viewer may extract
the values at 100 different points (corresponding to the number of available pixels
of the graphical view), and for each point reading of a 10 GB (= 1 TB / 100
points) length of the trace is required. However, rereading such a large section
of the trace would clearly be unacceptable for an interactive browsing. This is
where an efficient state history database may greatly help.

The main contribution of this work consists of a generic, scalable and efficient
tree-based state history data structure, and corresponding algorithms to store,
manage and retrieve the different state values for an arbitrary trace size, for
any number of system resources. The method works by building incrementally a
data structure to store the state history as it sequentially reads the trace events.
The state values, extracted from the trace events, are stored as intervals in this
state history database. The genericity comes from the fact that the method
does not hard-code the state definitions, neither in the viewer modules nor in
the tracer. This makes it possible to support different trace formats, and allows
defining different attributes, state variables and values. For scalability purposes,

1 http://lttng.org/LTTV
2 http://www.eclipse.org/linuxtools/projectPages/lttng/

http://lttng.org/LTTV
http://www.eclipse.org/linuxtools/projectPages/lttng/
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the method uses a disk-based data structure and does not impose limitations on
the input trace size. Using the tree-based structures, the history database also
offers a fast query response time (O(log n)).

The remainder of the paper is organized as follows: after investigating the
background and related work, we present the architecture of the method, and
the details of its modules. Then, we discuss the implementation, visualization
and also evaluation and experimental results of the method. Finally, we conclude
and outline the possible future work.

Fig. 1. The process of resolving a query with the checkpoint method. (1) loading the
nearest previous checkpoint value, (2) replaying the trace events and updating the state
value, (3) returning the current state in response to the query.

2 Background

Modeling the system attributes and corresponding state values allows quickly
responding to queries about the system runtime behavior. In this research, we use
events and state values extracted from LTTng kernel tracer [DD08]. Colleagues
have shown [GDG+11, EJD12] examples of information and state values that
can be extracted from LTTng trace events. It would be technically possible for
LTTng to generate the state model at the same time as tracing, and save the
resulting information in the same trace events. However, this method may cause
problem: LTTng is presented as a high-performance tracer [DD08], with very
low impact on system behavior when tracing is enabled. The computation of the
state while tracing would increase the overhead.

To manage the state values, an inefficient method could be rereading and re-
playing the trace, from the beginning to the requested query time, and updating
and extracting the required state values. Although this method can be used for
small traces and for specific usages (e. g. no space on disk for indexes), it is slow
and the delay increases with the position within the trace.

To improve the overall access time, some tools and viewers (e. g. LTTV and
TMF) use checkpoint method to store and manage the state vales, which consists
in saving in memory or disk at regular intervals (e. g., every 50,000 events or every
10 minutes of tracing), a complete snapshot of all system state values. When
users request the state value of a specific resource at any arbitrary time t of the
trace, the method loads the snapshot from the nearest previous checkpoint (t0)
and starts rereading and replaying the trace events from that point and updates
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the state values for events whose time value is greater than or equal to t0 but
lower than t. Then, the resulting updated state is returned as response to the
user. Figure 1 represents a trace and its various snapshots at checkpoints. It also
shows the process of resolving a user query for the time indicated by X .

The checkpoint method avoids having to reread the trace from the beginning
every time. Using such a method works well enough for small traces (tens or
hundreds of MB). However, it brings some storage scalability issues, since the
snapshot storage space grows with both the number of state elements and the
trace duration. There is some wasteful redundancy arising from the fact that
some information may not change from one checkpoint to another and yet is
repeated in each snapshot. In addition, the size of each snapshot increases on a
larger system, if there are more processes running and more activity at the same
time. If these checkpoints are stored in RAM, there is a hard limit on the size
of the trace that can be analyzed. It could, up to a certain point, reduce the
number of checkpoints, but that would degrade the query performance of the
state system.

A dynamic checkpoint method is proposed in [EJD13], which uses dynamic
intervals, instead of a fixed number of events, for storing the snapshots. Although
it utilizes the memory better than the previous solution, but still encompasses
the other potential problems of the checkpoint method.

Another possible alternative is to store state information directly in the trace.
This does not replace the need for state storage, but avoids the viewer hav-
ing to define the state changes associated with events. This approach is used
by [CGL08]. Their traces contain both specific events and states with associ-
ated time interval. They display the events and states with the Jumpshot tool
[ZLGS99] which clearly shows the communication between MPI processes. Our
work focuses on the management of state information at the viewer level, not
in the tracer. The generation and processing of this information, during tracing,
however, may be explored in a future work.

The proposed state history database stores different intervals representing
the state value changes. Several data structures have been presented in the lit-
erature to store and manage the records of intervals [GG98] like segment-tree,
interval-tree, Hb-tree, R-tree (and its many variants). These solutions are mostly
designed to work inside the main memory, rather than the disk, which threaten
the scalability and can not be used well for very large traces (in the range of hun-
dreds of gigabytes). Even by forcing and changing the above methods to store
the data in disk, a problem still exists. These data structures work properly
for static data sets, but not for the incrementally built intervals. For instance,
the R-Tree has to be constantly rebalanced to cope with the incrementally re-
ceived intervals which requires a large number of nodes splitting and merging
(re-balancing) operations. This resulted in very long history construction times,
which makes them inappropriate to use in trace viewers where the data is re-
ceived incrementally.

Another disk based interval management method, SLOG File Format, is pro-
posed by Chan et al. [CGL08], which is a hierarchical r-tree based file format to
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store drawable trace objects (events, states, message arrows and so on). It stores
the objects belong to the same time buckets in the same blocks. This solution
works well for the traces with uniform event distribution. However, in cases
where there exists unbalanced traces, in which some parts have more operations
and events than other parts, the tree will be unbalanced and some blocks will be
larger than others, which results in having different response times for different
trace areas. However, our solution does not fix the size of the time buckets and
creates more blocks for the busy areas which makes the response time almost
the same for different parts of the trace.

3 Modeled State System Architecture

The general idea of the solution is to extract and record incrementally the in-
tervals of different state values for system resources (processes, CPUs, disks,
etc.) from trace events. Tree-based organization is used to store the state values.
Figure 2 depicts the architecture of the system which shows the different compo-
nents and their interactions during the construction of the data structure. From
now on we use term “modeled state system” to refer to the architecture shown
in Figure 2.

Fig. 2. Modeled state system architecture

The modeled state system contains two important parts: the current state
and the state history tree. The current state manages the ongoing state values
for the current time of the trace, while the state history tree encompasses the
past state values of the system attributes. The following sections describe the
different components of the system.
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3.1 State Provider

The state provider computes the effects of an event on the current state and
converts the trace events into state changes. It observes the type and contents
of all events in the trace one by one (using a switch/case for example), and
updates the modeled state accordingly.

It is possible for events to cause several state changes, or no change at all
(n-to-m relationship). For instance, a file close event changes the state of the
corresponding file to “closed”, and linux sched switch (p1, p2) event changes
the states of two processes, one to “waiting” and the other to “running”, respec-
tively. The state provider module uses a mapping table which contains different
mapping rules, from a simple “if x then y” rule to complex state transition pat-
terns, depending on the type of event and its effects on the status of the system
resources.

Therefore, the state provider module needs to know, for example, the types
of events that will be presented in the trace, their names and contents. This
is the only part of the modeled state that is platform-specific, and should be
customized for any new trace format. A possible solution to make this part also
generic is to inject the mapping table dynamically, e. g. though an XML file.
This will be investigated as a future work.

The state provider should also be aware of the various outputs of other analysis
modules. For instance, higher level synthetic events, which are typically created
using different trace abstraction techniques [EJD12], may in turn be used to
further modify the system state. For example, several low level events may be
used to create a “brute-force attack” abstract event, which could change the
state of the system to “compromised”.

The state provider is a critical part of the system. It is called for each event
in the trace and updates the state database for each change. It is therefore im-
portant that it is optimized. One method is to avoid recording redundant or
unnecessary state changes. Another method, the partial history update, is to
update the state database for a group of state changes (each 10 state changes),
instead of at each state change [EJD13]. This significantly reduces the amount
of information to be recorded. The impact of the state provider on system per-
formance, using both the complete and partial history updates, will be shown in
the experimental results section.

3.2 Attribute Tree

We define a general term, “attribute”, as any basic unit of the modeled state
system, which can contain only one state value at any given time during the
execution. An attribute can be basically anything, as it is defined by applications.
For example, “name or ID of the process scheduled on CPU 0”, “the name of an
open file” or “the number of active processes” could be attributes in the model.
With this definition, each attribute can be used to describe a system resource,
but a resource may also have several attributes to describe its different aspects,
e. g. parent process id of a process, exec name of a process, fd (file descriptor)
of a file, address of a socket, and so on.
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To manage a large number of different but somehow related attributes, we
can organize them in a tree, called the attribute tree. The attribute tree is an in-
memory organization of the attributes of the system resources. One could keep
everything in one level for very simple systems. For complex systems, as the
number of attributes increases, placing them in a tree provides a better struc-
tured organization and, depending on the type of queries, better performance.
An example of an attribute tree is shown in Figure 3.

Fig. 3. An example of an attribute tree

In the attribute tree, there is a unique access path for each attribute from
the root node. We can compare this arrangement to the files and directories
in a filesystem. Directories correspond to attribute access paths, and filenames
correspond to the names of attributes. The content of the file represents the
different state values of that attribute. Unlike a regular filesystem where you
have either directories or files, here attributes are both and can simultaneously
link to children and contain a value. This behavior is similar to that of the ZFS
file-system3.

Attributes are considered to be static and created on-the-fly. A new CPU
could be hot-plugged, which would add an entry in the tree, but those entries
cannot be removed (if a CPU is “hot-unplugged”, the entry will simply not be
used anymore). However, their values may be changing often as the system runs.
It is important to note that no state value (attribute value modification) is stored
in the attribute tree. The purpose of the attribute tree is to give a structure to
the resources and attributes. Each attribute in this tree has a pointer to the
state values in another database in which all current and previous values are
stored. For example, the attribute “current process scheduled on CPU 0” may
have different values during the system execution, which are stored in the state
database and not in the attribute tree.
3 http://en.wikipedia.org/wiki/ZFS

http://en.wikipedia.org/wiki/ZFS
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3.3 Transient State and History State

When a state change is reported by the state provider, a transient state record is
created for the requested attribute and stored in memory, in the (current) state
system. Each transient record contains an attribute name, a time and a state
value. If an entry currently exists for this attribute (i. e. there was already a state
value for this particular attribute) then the current value is replaced by the new
value. However, the previous value is kept and stored in the state history, to be
available in subsequent enquiries. To do so, we first create one interval record
from the available information containing and attribute (from the attribute tree),
the old status value, the old value of time (interval start time) and new time
value (interval end time). Start and end times represent the bounds of the period
for which the state value is valid for the corresponding attribute.

The completed interval can now be inserted into the state history to become
part of the history. This process is continuing until the end of trace, during
which we obtain a set of completed intervals (i. e. state history values) for each
attribute.

As mentioned earlier, the history state values are stored in a tree-based struc-
ture named “state history tree”. This set of data will be used later to navigate
through the state history for different time values and to reason about the run-
time behavior of the system resources.

3.4 History Tree

Finally, the biggest piece of the puzzle, the State History Tree is a data structure
to store intervals, optimized to be stored on a rotational disk. It is by no means
balanced, so there is no concept of re-balancing the tree. Its two main components
are intervals, as mentioned in the previous section, and nodes. The nodes are the
direct containers for intervals. There is a configurable size (e. g. 32KB, 64KB,
1MB,...) for the nodes. Each node also keeps track of all its children and parent.

Fig. 4. The process of incrementally building the history tree

The State History Tree is based on the fact that insertions will be done se-
quentially, with intervals being inserted to be sorted by ascending end times as
much as possible. The tree supports inserting elements farther in the past, but
doing it too often can lead to some imbalance (higher level nodes being filled
faster than leaves), and at worst the tree would degenerate in a simple list of
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nodes. When a node is full (that is, there is no more room in the block on disk),
it gets “closed off”, and the latest end time found in the intervals it contains
becomes the node’s end time. A new sibling node is then added to its right. If the
maximum number of nodes is reached in the parent, a new sibling is added to
the parent, and so on up to the root node. Figure 4 shows the steps of a tree that
gets built from scratch (from left to right). The numbers represent hypothetic
start and end times of each node.

4 State System Querying and Visualization

This section investigates the querying and visualization of the values stored in
the state system in both the offline and online tracing modes.

4.1 Querying in Offline Mode

The transient state is only required during the construction of the history. It
means that when the trace reading is completed, no more events will be sent
to the handler. Therefore, no new state changes will be created on the system.
Consequently, at trace end, all transient intervals are closed and added to the
state history. The state history is then complete and ready for future queries.

Once the history is completed, the state system is ready to receive queries.
The user application can access the attribute tree and resources hierarchy, and
use it to extract and browse the different state values of the attributes.

A typical query starts by providing a timestamp and a resource (attribute).
Since the attribute tree always resides in main memory, we can use a multi-level
hashmap of the attribute’s path elements, which will give us the key of the given
resource or attribute in the attribute tree. Having a timestamp and attribute key,
a search in the history tree will be started from the root node downwards, explor-
ing only the branch that can possibly contain the target timestamp. Within each
node, it iterates through all possible intervals and return only those intersecting
the target time. (Since intervals are sorted in the node by their end times, we
can cut in half, on average, the number of intervals to iterate over.) All returned
key/value pairs are returned and the external application is then free to look at
the contents for whatever information it needs. Figure 5 shows an example of
a complete and closed-off tree, on which we would run a query for timestamp
t = 280.

4.2 Live Mode

Note that if we are querying a “live” state system, it is possible for some infor-
mation to still be “current” and not yet part of the state history. Indeed, the
start timestamp may be earlier than the queried time but still ongoing. Thus,
the query system first looks at the current state and, if the value is not found,
then searches the state history.
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Fig. 5. Searching through the tree to get all intervals intersecting t = 280

Although the traces may be arbitrarily long, the current state normally does
not grow with the trace size. The state history, however, grows linearly with the
trace size. In other words, the current state contains the state values for a given
time, like a snapshot, while the history encompasses all of the previous snapshots.
Keeping separate the current state and the history makes the proposed method
usable for live trace mode, where the method just keeps track the current state
system and may not keep any history, or possibly a fraction of that (e. g. the
last 10 seconds).

4.3 Visualization

The proposed modeled state system is contributed to TMF (Tracing and Moni-
toring Framework), the Eclipse plugin of Linux Tools)4 and is accessible under
the terms of Eclispe Public License 5.

The implementation has actually two parts: a plugin that implements the
library to handle the state provider, attribute tree, history tree and other struc-
tures, and a visualization part named the State System Explorer, which enables
browsing and exploring the state system data directly (Figure 6). The viewer
firstly displays the hierarchical organization of the resources and their attributes,
extracted from the attribute tree, and then shows the state values of any selected
attribute, at any given time. Using this view, users can directly browse the state
values of the resources/attributes, which can help to study its overall behav-
ior. This is interesting because users may not need to look at the trace events
anymore and can directly analyze the state values gathered previously from the
trace. For example, to study the behavior of a particular CPU or a process during
the system execution.

Furthermore, there are other graphical views in TMF that allow analyzing a
system from different aspects using the state values stored in the modeled state
system. For instance, as shown in Figure 7, the Control Flow and Resources views

4 http://www.eclipse.org/linuxtools/projectPages/lttng/
5 http://git.eclipse.org/c/linuxtools/org.eclipse.linuxtools.git/

http://www.eclipse.org/linuxtools/projectPages/lttng/
http://git.eclipse.org/c/linuxtools/org.eclipse.linuxtools.git/
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show the different states of various processes, CPUs, and other resources along
the time axis using the stored state values. In the Resource view, for example,
green states denote the times that CPU used in userspace mode in which a
process utilizes the CPU for its internal instructions, while blue states show the
times that CPU is executing system calls. Using the Resource the Control Flow
views simultaneously, we can observe that the Xorg process is doing a system call
on CPU4. In parallel, the Compiz process requests access to the same processor
CPU4 with an event sched wakeup. As we can see, this process changes its state
from WAIT (yellow) to WAIT FOR CPU (orange).

Fig. 6. A detailed view of state values in TMF State System Explorer

Fig. 7. Summary view of the states in TMF State System Explorer
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5 Experimental Results

All experiments were conducted on a Intel Core i7 920 @ 2.67GHz machine with
6 GB RAM, using Eclipse version 3.7 and OpenJDK version 7. The trace files
were generated using LTTng version 0.232. The trace files contain the detailed
execution trace at kernel level, including all the system calls, scheduling events
and interrupts.

5.1 Construction Time

History Tree Construction: Figure 8 shows the time required to read a trace,
update the attribute tree and transient (current) state, and build the history tree.
The first case is to measure the time taken by the trace reader to only read the
trace events, without passing them to the state provider module. This gives an
idea of the proportion of time taken by each step. As Figure 8 shows, the time
required to write the intervals to the disk-based history tree is an important
factor. A solution to reduce the construction time is using the partial history
update, instead of complete update. In this case, as mentioned previously, the
history database is updated for a group of state changes, instead of each single
state change. The effect of using a partial database update (partial history tree)
on the construction time, storage space and query time is studied in the following
sections.
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Fig. 8. Time for reading the trace and constructing the attribute tree

Partial Tree Update: Figure 9 shows the time required to store the values in
the history tree in different cases: the case that updates the database for each
single state changes and the case that updates the database partially for each
20,000, 50,000, 100,000 events, respectively.

With a partial history tree, the number of updates to database will be de-
creased during the construction phase, therefore less time is required. Please
note that in all cases, it still requires to inspect each event. For that reason, the
time required for the partial storage cases is almost the same.
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Fig. 9. History tree construction time

Comparison with R-Tree: To compare the construction time of the proposed
method against a R-Tree, we use a main memory implementation of a R-Tree.
Figure 10 shows the construction time comparison of two methods. As mentioned
earlier, the R-Tree is very slow because it requires lots of re-balancing. The
comparison proves the efficiency of our method for the incrementally arriving
data.
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Fig. 10. Comparing the construction time with the R-Tree method

5.2 Storage Space

Figure 11 compares the storage required in 4 cases: the case that updates the
database completely for each single state change, and the cases that update
the database partially, for each 20,000, 50,000, 100,000 events, respectively. As
mentioned earlier, updating the history database for every single state change is
a costly operation and requires more storage space.
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5.3 Query Time

For the different database update strategies of the previous experiment, we mea-
sure the query time, which is shown in Figure 12. The best case is using the
complete history, where all data is accessible through a direct query of the his-
tory tree. For the other cases, although the size of the database is smaller, it
first needs to fetch the states stored in the previous snapshot, and then reread
the trace to extract the current state values up to the query time.

 10

 20

 30

 40

 50

 60

 70

 0  2000  4000  6000  8000  10000  12000

Q
ue

ry
 T

im
e 

(m
s)

Size of the orignal trace (MB)

Complete History
Granularity 20 000 ev.
Granularity 50 000 ev.

Granularity 100 000 ev.

Fig. 12. Comparison of query times for different cases

6 Conclusion

In trace analysis, it can be sufficient to process the trace once, update the current
state all along, and displaying it live. In a posteriori analysis however, one wants
to be able to navigate through the trace back and forth and be able to look at
the system state for any point in the trace.

To solve this problem, we proposed efficient data structures and algorithms
to store and manage the system state values gathered from trace logs. In the
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proposed solution, we model the state values as intervals and store them in
an interval tree, called the history tree, which has special support for typical
interval queries. To fill the tree, every time a state change is reported, a state
interval is created and sent to state history database. However, by maintaining
a distinction between the creation of intervals and storage it is possible to easily
change the storage method, and even use different methods or chain several of
them. Comparisons with R-Trees and other experiments are undertaken, and the
results are provided.

This solution is designed to work with any trace format. We have tested our
solution with LTTng trace format in Linux and is accessible through Eclipse
TMF framework. However, adding the capability to work with other trace for-
mats (e. g. Dtrace, Event Tracing for Windows (ETW), etc) will be done as
a future work. Reading the event-state mapping from XML files and doing it
dynamically is another possible future work.

Acknowledgement. The support of the Natural Sciences and Engineering Re-
search Council of Canada (NSERC), Ericsson Software Research, and Defence
Research and Development Canada (DRDC) is gratefully acknowledged.
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Abstract. Despite the substantial advances in techniques for finding and remov-
ing bugs, code is often deployed with (unknown or known) bugs, which pose
a fundamental problem for software reliability. A promising approach to ad-
dress this problem is data structure repair—a runtime approach designed to per-
form repair actions, i.e., mutations of erroneous data structures to repair (certain)
errors in program state, to allow the program to recover from those errors and
continue to execute. While data structure repair holds much promise, current
techniques for repair do not scale to real applications.

This paper introduces repair abstractions for more efficient data structure re-
pair. Our key insight is that if an error in the program state is due to a fault
in software or hardware, a similar error may occur again, say when the same
buggy code segment is executed again or when the same faulty memory loca-
tion is accessed again. Conceptually, repair abstractions capture how erroneous
program executions are repaired using concrete mutations to enable faster repair
of similar errors in future. Experimental results using a suite of complex data
structures show how repair abstractions allow more efficient repair than previous
techniques.

Keywords: Data structure repair, Error recovery, Runtime analysis.

1 Introduction

Despite substantial advances in finding and removing bugs in code, software systems
are often deployed with unknown or known bugs. Bugs in deployed code can be costly
– not only in terms of the cost of failures they can cause but also in terms of the cost
of fixing them. Specification-based data structure repair [6, 8, 17] is a promising ap-
proach for handling and recovering from errors in deployed systems. The key idea is
to use specifications of crucial properties, e.g., data structure invariants, at runtime for
error recovery. Thus, the specification use is not just for monitoring executions as in
traditional runtime checking, say using assertions [4], but additionally for repairing
erroneous executions by mutating erroneous states to conform to the specifications.
Given an erroneous state and the specification that it violates, data structure repair tech-
niques utilize the specific properties that are violated to perform a sequence of repair
actions, which update erroneous field values to new values that conform to the expected
properties.

While data structure repair provides a powerful mechanism for enforcing confor-
mance of actual behavior to expected behavior as specified, existing techniques that

A. Legay and S. Bensalem (Eds.): RV 2013, LNCS 8174, pp. 235–250, 2013.
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embody this approach remain computationally expensive and the promise of the ap-
proach remains largely unfulfilled for real applications. The key issue is that finding a
sequence of repair actions, which produces a desired state necessitates trasmuting the
specification into a partial implementation, say using a backtracking search over a large
state space – an inherently complex operation.

This paper introduces repair abstraction, a novel mechanism for more efficient data
structure repair. Our key insight is that specific repair actions that are performed to re-
cover from an error may be required again in the future when the same error occurs
again, e.g., when a particular faulty line of code is re-executed to create a new state
with an error similar to the erroneous state created when that line of code was executed
in the past. Conceptually, repair abstraction provide a form of memoization, which cap-
tures the essence of how erroneous program executions in specific error scenarios are
repaired using concrete repair actions and allow replaying similar actions in future,
thereby enabling substantially faster repair of errors that recur.

We make the following contributions:

– Repair abstraction. We introduce a novel abstraction mechanism – repair abstrac-
tion – for runtime error recovery using data structure repair;

– Abstract repair actions. We present a representation for abstract repair actions,
which provides the foundations of our work;

– Framework. We present our framework DREAM (Data structure Repair using Ef-
ficient Abstraction Methods) for repair abstraction. DREAM provides a generic
framework that can be embodied by different data structure repair techniques.

– Embodiment. We present two techniques that embody DREAM. Our first tech-
nique utilizes specifications in Alloy [14], a first-order, relational language, and its
accompanying SAT-based tool-set. Our second technique utilizes specifications in
Java and an algorithm for solving constraints using Java predicates [3].

– Evaluation. We present an experimental evaluation using a suite of small programs
that perform intricate operations on the program heap to evaluate the efficacy of
repair abstraction in the context of complex data structure properties. Experimental
results show that the use of repair abstraction enables significantly faster repair than
previous techniques.

2 Running Example: Faulty Singly Linked List

In this section, we provide a motivating example. The example shows how DREAM
efficiently finds and fixes a subtle error and helps the program recover from an otherwise
fatal state. Listing 1.1 shows an implementation of the addLast method for a Singly
Linked List data structure in Java. This method, which is supposed to add a node to
the end of a list while maintaining acyclicity, works well when it receives a newly
generated node that has null as its next pointer. However, it produces a wrong (i.e.,
cyclic) list if provided with an input node that already has a self loop. While the logic
of the implementation is correct, missing to check the input causes an incorrect output.
Such a wrong output list is shown in Fig. 1 (a).

Data structure repair can be utilized to fix this wrong output list and similar erro-
neous states. The basic idea is to augment the program with specifications, and use
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1 p u b l i c c l a s s Example{
2 p u b l i c s t a t i c vo id main ( S t r i n g a r g s [ ] ) {
3 L i n k e d L i s t l = new L i n k e d L i s t ( ) ;
4 l . h e a d e r = new Node ( ) ;
5 Node n = new Node ( ) ;
6 n . n e x t = n ;
7 l . a d d L a s t ( n ) ;}}
8 c l a s s L i n k e d L i s t{
9 Node h e a d e r ;

10 vo id a d d L a s t ( Node n ){
11 Node newN = n . c l o n e ( ) ;
12 i f ( h e a d e r == n u l l ){
13 h e a d e r = newN ;
14 } e l s e {
15 Node p o i n t e r = h e a d e r . n e x t ;
16 Node p r e v P o i n t e r = h e a d e r ;
17 whi le ( p o i n t e r != n u l l ){
18 p o i n t e r = p o i n t e r . n e x t ;
19 p r e v P o i n t e r = p r e v P o i n t e r . n e x t ;}
20 p r e v P o i n t e r . n e x t = newN;}}}
21 c l a s s Node{
22 Node n e x t ;
23 p r o t e c t e d Node c l o n e ( ) {
24 . . . }}

Listing 1.1. Motivating example: erroneous Singly Linked List addLast method

header �� �������	N0
next �� �������	N1

next
��

header �� �������	N0
next �� �������	N1

next �� ... next�� 
������N500

next
��

(a) (b)

Fig. 1. The output of the method of Listing 1.1 on an initial list of (a) one and (b) 500 node(s)

those specifications to check and repair data structures. In addition to data structure in-
variant specifications supported by most repair frameworks [8, 13, 17, 23, 24, 27], some
data structure repair frameworks [23, 24, 27] support pre- and post-conditions of pro-
gram methods too. As an example of specifications, Listing 1.2 displays the invariant
(commonly called repOK [18]) of Singly Linked List and a partial post-condition of the
addLast method in the Alloy [14] specification language1. When repair is triggered
on the faulty data structures of Fig. 1, it enforces this specification by breaking the cycle
and setting the next pointer of the last node to null.

Most data structure repair frameworks [8, 13, 17, 23, 24, 27] instantiate a search in
the space of valid data structures to find a close and correct data structure to replace the
faulty one. This search poses a major challenge to scalability of data structure repair,
as the size of the state space increases exponentially with the size of the data structure.
For example, our previous work Cobbler [23] uses a combination of SAT solvers and
heuristics for data structure repair. While Cobbler can break the cycle and repair the
faulty list in Fig. 1 (a) in few hundred milliseconds, it runs out of heap space and a time
out of 500 seconds when there are 500 nodes in the list (Fig. 1 (b)). Yet, the conceptual

1 We use the syntactic sugar of adding back-tick (‘‘’) to distinguish post-state from pre-state in
this Alloy specification. More details on Alloy specifications can be found elsewhere [14, 23].
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1 s i g L i n k e d L i s t{
2 h e a d e r : l o n e Node ,
3 h e a d e r ’ : l o n e Node}
4 s i g Node{
5 n e x t : l o n e Node ,
6 n e x t ’ : l o n e Node}
7 p red repOk ( l : L i n k e d L i s t ){ / / c l a s s i n v a r i a n t o f L i n k e d L i s t
8 a l l n : l . h e a d e r .∗ n e x t | n ! i n n . ˆ n e x t} / / a c y c l i c i t y
9 p red a d d p o s t c o n d i t i o n ( T h i s : L i n k e d L i s t , n : Node ){

10 repOk [ T h i s ]
11 T h i s . h e a d e r .∗ n e x t + n = T his . h e a d e r ’ .∗ n e x t ’}

Listing 1.2. Alloy specification for the addLast method

action required to break the cycle is the same, no matter how many nodes are present in
the list. Indeed, it is enough to set the next pointer of the last node to null.

Our key insight is to abstract out repair actions and use them as possible repair action
candidates in the future, before opting into searching the state space. The idea is that
if an error in the data structure is due to a fault in software or hardware, a similar
error may occur again, for example when the same buggy code segment is executed
again or when the same faulty memory location is accessed again. Repair abstractions
capture the essence of how certain data structure corruptions are repaired by specific
actions of a data structure repair routine, such as Cobbler [23], Juzi [8], PBnJ [27] or
any other repair framework. Conceptually, a repair abstraction is a tuple (condition;
action) where action is an abstract repair action performed when condition is met on a
program state that needs repair.

Consider the example of repairing the faulty output of addLast shown in Fig 1 (a).
The concrete repair action suggested by any repair framework should include the as-
signment N1.next = null. We abstract out this concrete repair action to the ab-
stract action [LAST NODE](in post-state).next = null. Suppose that a
similar error occurs again, now on a list of 500 nodes as shown in Fig 1 (b). Before
starting to search the state space of correct data structures, we first try the previous ab-
straction in the hope of finding a quick fix. Concretizing the abstract repair action on
the current data structures givesN500.next = null which is a correct fix.

Repair abstractions offer two key advantages. One, they allow summarizing concrete
repair actions into intuitive descriptions of how certain errors in data structures were
fixed, which helps users understand and debug faulty program behaviors (when the
errors in state were due to bugs in code). Two, they allow a direct reuse of repair actions
without the need for a systematic exploration of a large number of data structures when
the same error appears in a future program execution. The cost of repair, in cases that
we do perform a search, will now be amortized over many repairs.

3 DREAM Framework

In this section, we explain the fundamentals of DREAM in abstracting and reusing
repair actions. DREAM sits on top of an external data structure repair framework
(Fig. 2). When a data structure repair framework is in place, specifications are periodi-
cally checked to make sure that data structure invariants and/or method post-conditions
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hold. Once a check fails, the repair routine is triggered. Our repair algorithm (shown as
a Java like pseudo code in Listing 1.3) has three major phases:

1. DREAM tries previously abstracted repair actions to see if a fix can be found with-
out calling the repair routine of the underlying repair framework.

2. If the previous phase does not generate an acceptable fix, the repair routine of the
underlying repair framework is called.

3. The concrete repair actions taken by the underlying repair framework are abstracted
out and saved as possible repair candidates for future.

Java Virtual Machine

Underlying Repair Framework

DREAM

Java Program

Fig. 2. The relationship between DREAM,
the underlying repair framework, the Java
Virtual Machine, and the program

To illustrate, consider the execution of
Listing 1.1. The very first time this ex-
ecution causes a failure, no previous re-
pair abstraction is available (in Listing 1.3,
abstractRepairCandidateSets is
empty). Therefore, the first phase (Lines 3
to 19 of Listing 1.3) is skipped. Line 20
performs the second phase and calls the
underlying repair framework, which repairs
the data structure by setting N1.next =
null. This concrete action is abstracted in
the third phase by Lines 21 to 23 to be saved
as [LAST NODE](in post-state).next = null. More details about the ab-
straction process will follow in Section 3.1.

The next time an error is observed in the data structure, DREAM attempts to reuse
previous repair actions to avoid the prohibitively costly repair routine of the underlying
repair framework. Let us say that we have Fig. 1 (b) this time. Lines 3 to 19 imple-
ment the first phase of DREAM. They examine candidate sets of abstract repair actions.
Firstly, DREAM concretizes each abstract action on the current data structure. An ab-
stract action (like [LAST NODE](in post-state).next = null) contains a
left hand side dereferencing list ([LAST NODE] in this example), a field on which
the assignment should be applied (here next), and a right hand side dereferencing
list (here null). Such dereferencing lists are abstracted forms of actual dereferenc-
ing lists that were used in concrete repair actions and may contain abstract fields (e.g.,
[LAST NODE]) as well as concrete fields (e.g., next). In the concretization process,
which is the reverse process of abstraction (Section 3.1), abstract fields are translated
back into sequences of concrete data structure fields. (Here the left hand side derefer-
encing list would become header .next . . . .next︸ ︷︷ ︸

500 times

.)

Secondly, the concretized lists are then applied on the input or the faulty output to
identify the target object on which the assignment should take place, the target field, and
the target value (e.g., header .next . . . .next︸ ︷︷ ︸

500 times

givesN500). DREAM can utilize either the

input or the faulty output for concretizing abstract actions and identifying target objects
by using baseObject and flags like derefLeftInOutput (see Section 3.1 for
more details).
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1 O b j e c t d reamRepa i r ( O b j e c t i n p u t , O b j e c t f a u l t y O u t p u t ){
2 O b j e c t r e p a i r e d O u t p u t ;
3 f o r ( Set<Abstrac tRA> a b s t r a c t C a n d : a b s t r a c t R e p a i r C a n d i d a t e S e t s ){
4 Set<ConcreteRA> c o n c r e t e C a n d = new HashSet<ConcreteRA >() ;
5 f o r ( Abs trac tRA a c t i o n : a b s t r a c t C a n d ){
6 L i s t<F i e l d . C o n c r e t e F i e l d > l e f t = new L i n k e d L i s t<F i e l d . C o n c r e t e F i e l d >() ;
7 O b j e c t b a s e O b j e c t = a c t i o n . d e r e f L e f t I n O u t p u t ? f a u l t y O u t p u t : i n p u t ;
8 f o r ( F i e l d . A b s t r a c t F i e l d f : a c t i o n . d e r e f L e f t )
9 l e f t . addAl l ( c o n c r e t i z e O n O b j e c t ( f , b a s e O b j e c t ) ) ;

10 O b j e c t l e f t H a n d S i d e = g e t O b j e c t ( l e f t , b a s e O b j e c t ) ;
11 . . . / / S i m i l a r l y f o r t h e r i g h t hand s i d e and f i e l d
12 c o n c r e t e C a n d . add ( new ConcreteRA ( l e f t H a n d S i d e , c o n c r e t e F i e l d ,

r i g h t H a n d S i d e ) ) ;
13 }
14 r e p a i r e d O u t p u t = a p p l y ( f a u l t y O u t p u t , c o n c r e t e C a n d ) ;
15 i f ( check ( i n p u t , r e p a i r e d O u t p u t ) ){
16 i n c r e a s e S c o r e ( a b s t r a c t C a n d ) ;
17 re turn r e p a i r e d O u t p u t ;
18 }
19 }
20 r e p a i r e d O u t p u t = r e p a i r ( i n p u t , f a u l t y O u t p u t ) ;
21 Set<ConcreteRA> newConcre teCand = ge tConc re teRA ( f a u l t y O u t p u t , r e p a i r e d O u t p u t )

;
22 Set<Abstrac tRA> newAbs t rac tCand = a b s t r a c t O u t ( newConcre teCand , i n p u t ,

f a u l t y O u t p u t ) ;
23 a b s t r a c t R e p a i r C a n d i d a t e S e t s . add ( newAbs t rac tCand ) ;
24 }

Listing 1.3. DREAM main algorithm

Thirdly, on Line 14, the set of concrete actions is applied on the faulty output. Finally,
the next line checks if the result is indeed a correct output with respect to the specifi-
cation. If so, DREAM ascends the abstract set that created this fix in the ordered list
of candidates abstractRepairCandidateSets and returns the repaired output
without continuing to phases two and three.

3.1 Abstraction and Concretization

DREAM uses a pre-defined yet generic and extensible repository of meaningful ab-
stractions. We define the following abstractions as the basis of our approach:

– First: the first object of a type reachable from the given root pointer (e.g., the root
of a tree or the first node in a list);

– Self : the object itself;
– Last or Leaf : the furthest object(s) of a type reachable from the given root pointer

(e.g., leaves of a tree or the last node in a list);
– Neighbor: a neighboring object, where two object O1 and O2 are neighbors if a

field of O1 points to O2 (e.g., the parent of a node in a tree);
– A value with an offset: the numeric value of a node plus/minus an offset (e.g., the

size of a binary heap plus one);
– A value with a coefficient: the numeric value of a node multiplied/divided by a

coefficient (e.g., twice the value of a key in a Red Black Tree);
– Null: the null value;
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The abstraction process has two steps:

1. A breath first search of the data structure (for both the input and the faulty output)
is performed along all concrete fields. This search assigns a concrete dereferencing
list that can be used to reach any object. For example, N0 in Fig. 1 (a) is reached
via header andN1 is reached via header.next.

2. Using the above repository of abstractions, all possible abstractions that are equal to
a concrete dereferencing list are built. For instance header.next is considered
equal to FIRST NODE.next, FIRST NODE.NEIGHBOR, and LAST NODE. The
abstractions Self, Null, Offset, and Coefficient are only helpful as the right hand
side of a repair action.

The concretization process is an exact reverse of the abstraction. First, DREAM
transforms the abstract fields of a dereferencing list to their concrete forms which only
use the data structure fields. Then, it traverses the data structure along those fields to get
to the desired objects. When multiple abstractions/concretizations are valid, all of them
are used as possible candidates.

Both abstraction and concretization can be performed on the input data structure as
well as the faulty output of a method. This flexibility enhances DREAM’s ability to
access objects that get lost because of broken pointers. derefLeftInOutput and
similar boolean flags are put in place to distinguish between the cases that the faulty
output and the input are used to access an object.

4 DREAM with Different Back-Ends

The idea of abstracting concrete repair actions is orthogonal to the underlying repair
framework used. Therefore, we can plug in our repair framework of interest to DREAM
and utilize its abstraction power. Some repair frameworks [23, 24, 27] use a SAT solver
to search the space of correct data structures while others [8, 13, 17] leverage dedicated
solvers. To showcase how DREAM can be used regardless of the underlying repair
method, we integrate it with Cobbler [23], our previous SAT based repair framework,
and Juzi [8, 9], which uses a dedicated Java based solver.

4.1 DREAM with Alloy Back-End

Connecting DREAM with an Alloy based repair framework (like PBnJ [27], Cob-
bler [23] or Tarmeem [24, 25]) is quite straightforward. The underlying repair frame-
work performs regular checks and provides concrete repair actions in case the abstrac-
tions do not work.

The only limitation is that even checking the correctness of a data structure using
SAT might be rather time consuming. To tackle this limitation, we used the Minshar [1]
technique. Minshar is a tool that translates Alloy specification checks to Java assertions
by viewing Alloy as a set based language. Minshar starts by parsing the Alloy specifica-
tion into Alloy Abstract Syntax Tree (AST), which indicates how Alloy expressions are
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recursively built from subexpressions. It then traverses this AST and translates it to Java
in the following manner: Minshar views Java objects as one-element sets and navigates
the data structure fields (obtained via reflection) to construct the sets that correspond
to subexpressions used in the AST, such as subexpressions that have reflective closure.
Once the sets are generated, Minshar asserts the Alloy checks and returns false if they
do not hold.

4.2 DREAM with Juzi Back-End

Juzi [8, 9] is an automated data structure repair framework. Given a corrupt data struc-
ture, as well as a repOK method that describes the invariants of the data structure, Juzi
monitors the execution of repOK which checks the invariants. Upon a failure, Juzi sys-
tematically mutates the fields of the corrupt data structure, starting from the ones that
were accessed last in repOK and trying different values, to make them satisfy the given
specifications. In addition to repairing the data structure, Juzi reports the mutations it
performed in a log file that holds a sequence of tuples < O1, f, O2 >, i.e., an assign-
ment to field f of object O1 to the value O2 – each tuple represents a repair action.

Juzi has two properties that make it a good fit for DREAM. First, it uses checks
written in Java (i.e., repOK methods) instead of Alloy or other specification languages.
Second, once it reports a faulty data structure, it also reports the field that is responsible
for the failure of the repOK method on the current data structure. DREAM uses these
properties of Juzi to facilitate finding effective repair abstractions. The first property
provides a fast way of checking the correctness without a need to translate specifications
to Java (as it was the case with Alloy for which we used Minshar). The second property
pinpoints to the exact object and field that need mutation in the current faulty data
structure, taking care of the left hand side and the filed of the repair action.

As with any other repair framework, every time Juzi finds a correct fix for a specifi-
cation violation, DREAM computes an abstraction for the repair. For example, if Juzi
repairs the data structure by assigning a field f of an object O to null, then DREAM
records O.f = null, meaning that if f needs to be mutated, it should be set to null.
Thereby, DREAM prioritizes null when a future execution encounters the same error
even if the underlying repair routine would have first tried a non-null value according
to its default search.

Juzi has one drawback compared to Alloy based repair routines: It does not support
pre- and post-conditions of methods, only invariants. Therefore, it fails to find cases
that a method is not conforming to its specification in changing a data structure.

5 Evaluation

We present the experimental evaluation of DREAM combined with Cobbler [23] in
Section 5.1, and combined with Juzi [8, 9] in Section 5.2. All the experiments used
a 2.50GHz Core 2 Duo processor with 4.00GB RAM running 64 bit Windows 7 and
Sun’s Java SDK 1.7.0 JVM. Cobbler used MiniSat and MiniSatProver SAT solvers.
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Table 1. Description of the Singly Linked List errors used for experimental evaluation

Err. # Description
Si

ng
ly

L
in

ke
d

L
is

t

1 Sets the header to null
2 Fails to update the size
3 Deletes a node with a non-matching element
4 Introduces a cycle after performing correct remove
5 Breaks the list to retain only the first two nodes
6 Deletes the matching element but adds it again
7 Fails to remove the element and updates the size incorrectly
8 Fails to remove the element
9 Fails to update the size because of a missing left hand side in an assignment

5.1 Evaluation: DREAM with Alloy Back-End

We used our tool Cobbler, a data structure repair framework that utilizes SAT and
heuristics, for the first set of experiments with DREAM. In order to improve the per-
formance of SAT solving for data structure repair, Cobbler iteratively calls SAT and
gradually increases the size of the search space. To guesstimate the size of the search
space (i.e., to find out which fields it should include for a possible change when calling
SAT), Cobbler uses program execution history, obtained via reads and writes performed
to the heap, as a source of identifying corrupt fields of data structures and fixes for them.
Furthermore, it uses unsatisfiable cores that SAT solvers provide after a failing call, to
further prune the search space.

The first data structure we looked at was a basic Singly Linked List that also keeps its
size. To minimize threats to validity, we used independently written errors we used to
evaluate Cobbler in our previous work [23]. In that work, we included seven erroneous
remove methods for Singly Linked List. We used the same seven errors plus two new
ones here. Table 1 shows the errors and a brief description of each of them. Some of the
errors violate the invariants of Singly Linked List (e.g., Error 4), some violate the post-
condition of the remove method (e.g., Error 1), and some violate both (e.g., Error 7).

We started by repairing a Singly Linked List of ten nodes. Upon the very first error,
no repair abstraction is available, so DREAM has to use the underlying repair routine
which is Cobbler here. Then DREAM abstracts out the set of concrete repair actions
taken by Cobbler and memorizes them for future use. In the next experiment, we used
a Singly Linked List of 500 nodes with each error. DREAM applies the abstract repair
actions which fix the problem without calling Cobbler in 8 out of 9 errors. Table 2 shows
the abstractions that DREAM extracted for each error. Some abstractions, e.g., the first
and second abstraction for Error 9, are unnecessary but harmless since they change now
unreachable nodes. These unnecessary actions exist because SAT suggested them as
concrete repair actions.

Table 3 displays the time performance of Cobbler repairing lists of size 10 and 500, as
well as DREAM repairing the same lists. For the case of calling Cobbler, an initial call is
made to SAT to discover the problem and trigger repair (the check column in Table 3).
Hence, the total time for repair with Cobbler includes the initial check time plus the
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Table 2. Abstract repair actions suggested by DREAM for Singly Linked List

Err. # Abstract Repair Action(s)
Si

ng
ly

L
in

ke
d

L
is

t

1 [] (in post-state).header = [FIRST NODE] (in pre-state)
2 DREAM Not Working: Call SAT
3 [FIRST NODE] (in post-state).next = [header.next.next] (in pre-state)
4 [LAST NODE] (in post-state).next = [null]
5 [LAST NODE] (in post-state).next = [header.next.next.next] (in pre-state)
6 [FIRST NODE] (in post-state).elt = [header.elt] (in pre-state)
7 [FIRST NODE] (in post-state).elt = [header.elt] (in pre-state)

[](in post-state).size = [size] - 1 (in post-state)
8 [FIRST NODE] (in post-state).next = [null]

[] (in post-state).header = [header.next] (in post-state)
[header.next] (in post-state).elt = [header.elt] (in post-state)
[FIRST NODE] (in post-state).elt = [null]

9 [header.next] (in pre-state).next = [null]
[header.next] (in pre-state).elt = [null]
[] (in post-state).size = [size] - 1 (in post-state)

Table 3. Time taken to repair erroneous Singly Linked Lists (ms). OH means Out of Heap.

E
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Cobbler/DREAM Cobbler DREAM
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(Size = 10) (Size = 500) (Size = 500)
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ck Repair
C
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l
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.
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pp

.

1 320 799 1119 287034 125638 412672 24 0 0 1 77 78 5291x
2 915 8846 9761 241701 446 OH Not Working: Call SAT N/A
3 166 417 583 127434 240674 368108 14 38 0 39 37 114 3229x
4 128 381 509 81428 52 OH 6 0 0 1 41 42 N/A
5 130 292 422 52621 61751 114372 6 0 0 6 40 46 2486x
6 145 410 555 55691 142061 197752 7 42 0 44 32 118 1676x
7 126 319 445 52356 133512 185868 6 19 0 21 32 72 2582x
8 131 259 390 51766 234913 286679 6 16 1 17 32 66 4344x
9 228 797 1025 92219 298215 390434 8 64 1 69 69 203 1923x

repair time. For DREAM, first the repair actions are abstracted (column Abs.) using
concrete repair actions taken by Cobbler on the data structure of ten nodes. Then, using
the data structure of 500 nodes, a Java check is performed to find that the specification is
violated. This Java check is a manual translation of the specification from Alloy to Java
using the Minshar technique which can be automated using the Minshar tool. When this
initial check fails, DREAM repair performs concretization (the Con. column) followed
by the application of concretized actions (the App. column). Unlike Cobbler which only
suggests correct fixes, the result of applying a set of abstract repair actions by DREAM
should be checked to see if the abstractions can indeed resolve the problem. Therefore,
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Table 4. Description of the Red Black Tree errors used for experimental evaluation

Err. # Description

R
ed

B
la

ck
Tr

ee

1 Sets the root’s parent to itself
2 Changes the color of the root’s grand child
3 Assigns an incorrect key to the root’s child
4 Makes a part of the tree unaccessible

Table 5. Abstract repair actions suggested by DREAM for Red Black Tree

Err. # Abstract Repair Action(s)

R
ed

B
la

ck
Tr

ee

1 [root] (in post-state).parent = [null] (in post-state)
[root] (in post-state).color = [root.right.right.right.left.key] (in post-state)

2 [root.left.left] (in post-state).color = [root.color] (in post-state)
[root] (in post-state).color = [root.right.right.right.left.color] (in post-state)

3 [root.right] (in post-state).key = [root.right.key] (in pre-state)
4 [root] (in post-state).right = [root.right] (in pre-state)

[root] (in post-state).color = [root.right.right.right.right.color] (in pre-state)

there is another Java based check after DREAM repair. Note that abstracting repair
actions is a one time procedure whose results are reused multiple times, therefore it is
not included in the total time for repairing with DREAM.

DREAM abstractions do not work for Error 2, mainly because the fix suggested by
Cobbler is too tailored to the specific data structure of 10 nodes and cannot be gen-
eralized. However, even Cobbler cannot fix a data structure of 500 nodes for Error 2
because it runs out of the heap space. Cobbler also fails to fix Error 4 on 500 nodes
while DREAM solves this error in a total of 42 ms. As Table 3 shows DREAM is sub-
stantially (about 3000 times on average) faster than Cobbler and it fixes 8 out of 9 errors
in less than a quarter of a second.

The second data structure we considered was the Red Black Tree implementation
in the open source Kodkod model finder [29]. We used the insert method in the
Kodkod.util.ints.IntTree class. This class has 570 lines of code and 21 meth-
ods and serves as one of the most important data structures used by Kodkod. We injected
errors that violate data structure invariants (acyclicity, color constraints, key constraints,
and parent constraints) as well as method post-conditions. Table 4 shows a brief descrip-
tion of each error.

Similar to the Singly Linked List experiment, we repaired Red Black Trees of 10 and
500 nodes. Table 5 shows the abstract repair actions suggested by DREAM.

Table 6 shows the performance measurements. For a Red Black Tree of 500 nodes,
Cobbler always times out where the time out value is 500,000 ms. DREAM repairs all
the errors in less than one minute.
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Table 6. Time taken to repair erroneous Red Black Trees (ms). TO represents a time out of
500,000 ms.
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1 282 582 864 TO TO TO 7 11 0 14 54642 54667 N/A
2 249 521 770 TO TO TO 5 37 0 40 56042 56119 N/A
3 331 772 1103 TO TO TO 6 9 0 11 53954 53974 N/A
4 251 494 745 TO TO TO 6 1045 0 1048 53508 55601 N/A

5.2 Evaluation: DREAM with Juzi Back-End

In this section, we compare DREAM with the original Juzi [8, 9] repair algorithm for
efficiency improvement. Juzi uses imperative descriptions of data structure invariants
called repOkmethods [26]. Given a predicate repOK that represents desired structural
integrity constraints and a structure S1 that violates them, the Juzi algorithm performs
repair actions that mutate the given structure to generate a new structure S2 that satisfies
the constraints. Each repair action assigns some value to a field of an object in the
structure. This assignment is made based on the exploration of the possible set of field
assignments to reference variables. The fundamental problem that Juzi addresses is
the enormous number of combinations of field assignments that make it impossible
to enumerate all possible assignments (even for small structures) and check whether
any assignment represents a repaired structure. DREAM drastically reduces this search
space for error patterns that are repeated. The basic Juzi algorithm assumes that each
structural error is purely random and requires re-execution of the search for repair every
time. When the errors are repeated, Juzi performance does not improve but DREAM is
able to use repair abstractions to quickly fix the error.

Both Juzi and imperative implementation of DREAM have to check the structure
for validity after every mutation. Therefore, the number of calls made to repOK (the
routine checking of structural validity) is a good measure of the size of the exploration
each algorithm had to perform before fixing the structure. In our experiments, we use
the number of calls made to repOK to compare the efficiency of the two algorithms.

In our experiments we used the following structures:

– A Linked List based implementation of Circular List. The errors injected in this
structure violated the circularity constraint.

– Doubly Linked List with bad previous field assignment. The violated structural
constraint is that next is the transpose of previous.

– Binary Tree with acyclicity constraint violation.
– Binary Tree with Parent Pointer having a bad parent field assignment. The violated

structural constraint is that child is the transpose of parent.

Table 7 summarizes the results of our experiments with the subject structures. For
these experiments, each structure had only one injected error in it, also the error was a
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Table 7. The number of repOK calls made by DREAM vs Juzi for fixing the errors

Structure size = 10 size = 500
Juzi DREAM Juzi DREAM

Circular List 8 2 477 2
Doubly Linked List 6 2 251 2
Binary Tree 2 2 2 2
Binary Tree with Parent Pointers 8 2 263 2

repeating error and not the first time error. As expected, Juzi’s time to repair is a linear
function for single errors while DREAM was able to fix the error in constant time. The
abstraction rules (Section 3.1) used by DREAM for each of the error are as follows.

– In the case of circularity violation in the Circular List, DREAM used First and Last
abstractions to point the next of the last node to header.

– For Doubly Linked List the Neighbor rule was used by DREAM.
– Binary Tree with acyclicity constraint violation is an interesting case because both

Juzi and DREAM performed equally well. The rule used by DREAM was Null, and
it is interesting to note that Juzi also attempts null as the first value mutation to a
field.

– Binary Tree with Parent Pointer having a bad parent field assignment was also able
to exploit the Neighbor rule.

Juzi bounds the space of possible mutations to a structure and then performs system-
atic exploration of this space. The implementation of the algorithm employs various
heuristics to make its search efficient but the basic algorithm is memoryless and does
not benefit from observed repairs. DREAM improves over Juzi by remembering the
fixes used earlier and reusing them. A real challenge for DREAM was to recall the prior
fixes when the underlying structure and object references have changed. The abstract
representation and code instrumentation make it possible for DREAM to learn from
Juzi repairs and subsequently try them before exhaustive exploration is attempted.

6 Related Work

Dynamic repair techniques which fix the faults at runtime and keep the state consis-
tent have been in existence for a long time. Examples of such techniques are file sys-
tem utilities such as fsck [10] and chkdsk [21], database check-pointing, and rollback
techniques.

As opposed to generic data structure repair, some systems support dedicated routines
for monitoring and repairing data structures. The idea of dedicated repair routines has
been applied in some commercial systems such as the IBM MVS operating system [22]
and the Lucent 5ESS telephone switch [12]. The most important drawback of such
repair routines is the lack of generality and extensibility.
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The first work on generic constraint based data structure repair belongs to Demsky
and Rinard [5, 6]. Their method supports constraints in a declarative language similar
to Alloy. Also similar to SAT, their method translates constraints to disjunctive normal
form and solves them using an ad hoc search.

The Juzi tool [7,17] implements assertion based data structure repair. The user writes
data structure invariants in repOK methods. Juzi monitors the execution of repOK as it
checks the invariants. If a repOK check returns false, Juzi keeps systematically mutating
fields and running repOK until repOK returns true. Juzi mutates fields starting from the
ones accessed later in repOK, hypothesizing that those are more likely to be responsible
for the false return value. As an improvement, symbolic execution of repOK is added
to make the repair process even faster. Juzi only supports invariants that are checked
at one given point during the execution, hence it misses failures that correspond to the
relationship between pre- and post-conditions of methods.

Dynamic Symbolic Data Structure Repair [13] (DSDR) extends Juzi’s technique by
producing a symbolic representation of fields and objects along the path executed in re-
pOK. DSDR builds the path constraint required to take the current path in repOK. When
repOK returns false, DSDR uses the conjunction of the negation of the path constraint
with the other path conditions and solves them, directly generating a fix irrespective of
the exact location of the corrupted object references or fields in the repOK method.

The Plan B approach and its tool PBnJ [27] support data structure invariants as well
as method pre- and post-conditions in a declarative first order relational logic extension
to Java that is similar to Alloy. Once a failure is observed, PBnJ falls back on executing
the specifications: i.e., it ignores the Java implementation and uses a SAT solver to
come up with a data structure that satisfies both invariants and method post-conditions.
Similarly to DREAM, PBnJ translates specifications to Java predicates which it uses for
fast checking. However, PBnJ suffers from a low repair performance, as it completely
ignores the Java code, the execution history of the program, the previous repair actions,
and the current faulty data structure.

Cobbler [23] aims to improve the scalability of SAT based data structure repair by
iteratively calling SAT and pruning the state space. To do so, Cobbler takes advantage
of program execution history: It considers the dynamic trace of field write and reads that
happened during the execution to guide repair actions. In addition, it uses unsatisfiable
cores provided by SAT solvers to limit the search space.

We would like to emphasize that DREAM’s technique is independent of the underly-
ing repair framework and will enhance the performance of any repair routine. DREAM
can be combined with any of the above repair tools, or new data structure repair frame-
work tools and techniques. Furthermore, in the event that the failure is due to a bug in
code, DREAM can serve as a debugging aid, by providing an intuitive description of
the repair actions performed so that the user can incorporate a bug fix and eliminate the
need to repair altogether.

Even though our technique differs from automated debugging and program repair
techniques [2, 11, 15, 16, 20, 28, 30, 31], which mainly try to debug programs before de-
ployment, as we previously suggested [19] dynamic data structure repair can translate
into program statements that patch programs. Data structure repair actions can act as
an input to program repair frameworks such as the AUTO E-FIX tool [30], providing
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useful information regarding the differences between faulty and correct concrete pro-
gram states. DREAM abstractions directly aid in program repair by summarizing repair
actions and helping users comprehend concrete repair actions better.

7 Conclusion

Data structure repair, a runtime approach designed to keep program state (i.e., data
structures) consistent in the event of software or hardware errors, has seen improve-
ments in recent years. However, it still suffers from low performance and lack of scala-
bility. We introduced repair abstractions to enhance the efficiency and scalability of data
structure repair. Our insight is that if an error is due to a fault in software or hardware,
it is likely to recur. Therefore, we can abstract the concrete repair actions taken to fix a
particular state and reuse them when a similar error is detected in future.

We implemented the idea of repair abstractions in the DREAM (Data structure Re-
pair using Efficient Abstraction Methods) tool. DREAM piggybacks on other repair
frameworks and records concrete repair actions they take to fix a particular erroneous
state. DREAM abstracts the concrete actions and attempts to reuse them when a similar
error is detected, eliminating the need to go to the underlying repair framework again.
Hence, DREAM amortizes the repair cost from the cases it has to invoke the underlying
repair framework among many repairs.

We combined DREAM with two data structure repair frameworks: Cobbler that uses
a combination of SAT solvers and heuristics, and Juzi that implements a dedicated
search engine for repair. The experimental evaluation of the use of DREAM in ac-
cordance with these two frameworks on basic and complex data structures showed that
DREAM offers significant performance improvement. We envision that repair abstrac-
tions can be a valuable addition to data structure repair frameworks. DREAM’s ability
to integrate with different repair frameworks provides a promising step towards making
repair scale to real applications.
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Abstract. When program verification fails, it is often hard to understand what
went wrong in the absence of concrete executions that expose parts of the im-
plementation or specification responsible for the failure. Automatic generation of
such tests would require “executing” the complex specifications typically used
for verification (with unbounded quantification and other expressive constructs),
something beyond the capabilities of standard testing tools.

This paper presents a technique to automatically generate executions of pro-
grams annotated with complex specifications, and its implementation for the Boo-
gie intermediate verification language. Our approach combines symbolic execu-
tion and SMT constraint solving to generate small tests that are easy to read
and understand. The evaluation on several program verification examples demon-
strates that our test case generation technique can help understand failed verifica-
tion attempts in conditions where traditional testing is not applicable, thus making
formal verification techniques easier to use in practice.

1 Help Needed to Understand Verification

Static program verification has made tremendous progress, and is now being applied
to real programs [16,11] well beyond the scale of “toy” examples. These achievements
are impressive, but still require massive efforts and highly-trained experts. One of the
biggest remaining obstacles is understanding failed verification attempts [19]. Most
difficulties in this area stem from inherent limits of static verification, and hence could
benefit from complementary dynamic techniques.

Static program proving techniques—implemented in tools such as Boogie [17],
Dafny [18], and VeriFast [8]—are necessarily incomplete, since they target undecid-
able problems. Incompleteness implies that program verifiers are “best effort”: when
they fail, it is no conclusive evidence of error. It may as well be that the specification is
sound but insufficient to prove the implementation correct; for example, a loop invariant
may be too weak to establish the postcondition. Even leaving the issue of incomplete
specifications aside, the feedback provided by failed verification attempts is often of
little use to understand the ultimate source of failure. A typical error message states
that some executions might violate a certain assertion but, without concrete input val-
ues that trigger the violation, it is difficult to understand which parts of the programs
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should be adjusted. And even when verification is successful, it would still be useful
to have “sanity checks” in the form of concrete executions, to increase confidence that
the written specification is not only consistent but sufficiently detailed to capture the
intended program behavior.

Dynamic verification techniques are natural candidates to address these shortcom-
ings of static program proving, since they can provide concrete executions that conclu-
sively show errors and help narrow down probable causes. Traditional dynamic tech-
niques based on testing are, however, poor matches to the capabilities of static provers.
Testing typically targets simple properties, such as out-of-bound and null dereferencing
errors, or, only in a minority of cases, lightweight executable specifications (e.g., con-
tracts). Program provers, in contrast, work with very expressive specification and imple-
mentation languages supporting features such as nondeterminism, unbounded quantifi-
cation, infinitary structures (sets, sequences, etc.), and complex first- or even higher-
order axioms; none of these is executable in the traditional sense. As we argue in
Sec. 2, however, even relatively simple programs may require such complex specifi-
cations. Program provers also support modular verification, where sufficiently detailed
specifications of modules or routines are used in lieu of missing or incomplete imple-
mentations; this is another scenario where runtime techniques fall short because they
require complete implementations.

In this paper, we propose a technique to generate executions of programs annotated
with complex specifications using features commonly supported by program provers
(nondeterminism, unbounded quantification, partial implementations, etc.). The tech-
nique combines symbolic execution with SMT constraint solving to generate small
and readable test cases that expose errors (failing executions) or validate specifications
(passing executions).

The proposed approach supports executing both imperative and declarative program
elements, which accommodates the implementation semantics of loops and procedure
calls, defined by their bodies, as well as their specification semantics, used in modu-
lar verification, where the effect of a procedure call is defined solely the procedure’s
pre- and postcondition and the effect of a loop by its invariant. The implementation
semantics is useful to discriminate between inconsistent and incomplete specifications;
while the specification semantics makes it possible to generate executions in the pres-
ence of partial implementations, as well as to expose spurious executions permitted by
incomplete specifications.

Our technique simplifies the constraints passed to the SMT solver, only targeting
the values required for a particular symbolic execution. This avoids the solver getting
bogged down when reasoning about complex specifications—a problem often arising
with program provers—without need for additional guidance in the form of quantifier
instantiation heuristics. The simplification also improves the predictability of test case
generation. Combined with model minimization techniques, it produces short—often
minimal-length—executions that are quite easy to read. While constraint simplifica-
tion might also produce false positives (infeasible executions), the evaluation of Sec. 5
shows that this rarely happens in practice: the small risk amply pays off by producing
easy-to-understand executions, symptomatic of the rough patches in the implementation
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1 procedure Max(N: int, a: [int] int) returns (max: int)

2 ensures (∀ j: int • 0 ≤ j ∧ j < N =⇒ a[j] ≤ max);

3 ensures (∃ j: int • 0 ≤ j ∧ j < N ∧ a[j] = max);

4 {

5 var i: int;

6 i := 0;

7 max := 0;

8 while (i < N) {

9 if (a[i] > max) { max := a[i]; }

10 i := i + 1;

11 }

12 }

Fig. 1. Boogie procedure Max that finds the maximum element in an array. Both the specification
and the implementation contain errors, and no loop invariant is provided.

or specification that require further attention. We also identify a subset of the annotation
language for which no infeasible executions are generated.

We implemented our technique for the Boogie intermediate verification language,
used as back-end of numerous program verifiers [18,4,26]. Working atop an inter-
mediate language opens up the possibility of reusing the tool with multiple high-
level languages and verifiers that already translate to Boogie. It also ensures that
our technique is sufficiently general: Boogie is a small yet very expressive lan-
guage (including both specification and imperative constructs), designed to support
translations of disparate notations with their own supporting methodologies. Our im-
plementation is available as a tool called Boogaloo, distributed as free software:
https://bitbucket.org/nadiapolikarpova/boogaloo/ and accessible through the
web: http://cloudstudio.ethz.ch/comcom/#Boogaloo . For simplicity, in the paper
we will use “Boogaloo” to denote the execution generation technique as well as its
implementation, and will employ the self-explanatory Boogie syntax in the examples.

2 Illustrative Example

We give a concise overview of the capabilities of Boogaloo using a simple verification
example: finding the maximum element in an integer array.1 Fig. 1 shows a straight-
forward Boogie implementation as procedure Max, which inputs an integer N, denoting
the array size, and a map2 a that represents the array elements a[0], . . ., a[N-1]; it
returns an integer max for a’s maximum. The Boogie procedure includes specification
in the form of two postconditions (ensures), formalizing the definition of maximum:
max should be no smaller than any element of a (line 2); and it should be an element of
a (line 3).

What happens if we try to verify procedure Max, as shown in Fig. 1, using Boogie?
Verification fails with a vague error message (“Postconditions on lines 2 and 3

1 The tool output messages in this section are abridged without sacrificing the gist of the original.
2 In general, maps have an infinite domain in Boogie.

https://bitbucket.org/nadiapolikarpova/boogaloo/
http://cloudstudio.ethz.ch/comcom/#Boogaloo
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might not hold.”) which is inconclusive and of little help to understand the source
of failure. Rather, running Boogaloo on the same input generates concrete inputs that
make the program fail; we get the message “Postcondition on line 3 violated

with N -> 0, a -> [], max -> 0”, which clearly singles out a problem with Max:
the maximum of an empty array is undefined.

We can formalize the expectation that Max ought to be a partial function (unde-
fined for empty arrays) as the precondition requires N > 0. Boogie’s output does
not, however, change if we add such a precondition: it still cannot establish either
postcondition since it would need a loop invariant to reason about loops—no matter
how simple they are. Instead, running Boogaloo on Max annotated with the precondi-
tion shows another input that triggers a failure: “Postcondition on line 3 violated

with N -> 1, a -> [0 -> -1], max -> 0”. This time the problem is with the imple-
mentation rather than with the specification: when a contains a single negative value,
initializing max to 0 (line 7) does not work. With this concise concrete counterexample,
it is easy to understand that the same problem occurs with any array containing only
negative elements. Designing a correction is also routine: we change the initialization
on line 7 to max := a[0], which is well-defined thanks to the precondition N > 0.

We can see that the modified program—including precondition and new initializa-
tion of max—is finally correct. However, Boogie’s behavior on it does not change at all:
without a loop invariant, it still fails to prove either postcondition. Boogaloo, in con-
trast, can generate a number of test cases and successfully check all of them against
the specification. While this still falls short of a formal correctness proof, it provides
evidence that the program is indeed correct, and that all we have to do is strengthen the
specification by adding a suitable loop invariant.

While we selected a simple example which can be briefly presented, we were able to
demonstrate, in a nutshell, several fundamental issues of working with static program
verifiers such as Boogie, and how Boogaloo can complement their weaknesses. Specif-
ically, Boogaloo’s capabilities to provide concrete inputs that show errors or amass
evidence for correctness; and to work with the same programs used for verification in-
cluding elements such as first-order quantification (lines 2 and 3), but without requiring
specifications at all costs (a loop invariant). Another distinguishing, and practically cru-
cially important, feature of Boogaloo is that it produces small (often minimal) tests:
in the example, the smallest arrays and the smallest integer values exposing faults and
discrepancies.

Comparison with Other Approaches. To further demonstrate the unique features of
Boogaloo, let us consider the behavior of other approaches to complementing static
program verification on the same example of procedure Max.

Assuming Max were a Boogie encoding produced from some high-level program-
ming language, we could use standard testing tools on the source program to generate
concrete inputs and discover failures. One problem is that first-order quantifications
(and other features used by Boogie) are inexpressible using the simple Boolean ex-
pressions of standard programming languages. While the quantifications used in Max

are bounded, and hence expressible using executable constructs such as finite iterations
over arrays or list comprehensions, getting rid of quantifiers and other non-executable
constructs is neither possible nor desirable in general. As soon as we look at examples
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more complex than Max, we need to express abstract properties potentially involving
infinitely many elements, such as for framing and for reasoning about unbounded se-
quences of pointers to heap-allocated data. Even in an example as simple as sorting,
if a sorting procedure takes a function pointer as argument to denote the comparison
function, we need to express that it encodes a total order—something involving quan-
tification over a potentially unbounded domain. More generally, we designed Boogaloo
to work with the same proof-oriented annotated programs used by static verifiers, which
involve features difficult to execute and normally not found in high-level programming
languages.

Another option to debug Max is using the Boogie Verification Debugger (BVD [14]),
which extracts concrete counterexamples from failed verification attempts. The rele-
vance of such counterexamples is, however, limited in the presence of loops and proce-
dure calls with incomplete specifications. On Max as in Fig. 1, BVD returns the assign-
ment “N = 1, a = [], max = -900”; after adding N > 0 as precondition, it returns “N
= 797, a = [], max = -900”; after fixing the implementation, it returns “N = 797,

a = [0 -> -901], max = -901”. These examples fail to point out the two errors in
Max, because according to modular reasoning [17] and in the absence of an invariant,
any loop is equivalent to assigning arbitrary values to program variables. While BVD’s
modular semantics helps debug incompleteness in specifications, it also enforces an
“all-or-nothing” development style, where developers first have to get right the most
complicated part (the invariants), before they can proceed with debugging the rest of
the program. This lack of incrementality is what makes modular verification so hard in
the first place.

It is possible to make Boogie use loop and procedure bodies instead of their specifi-
cation by unrolling loops and inlining proceduresU times, for a given U ≥ 0. With un-
rolling, BVD finds counterexamples for executions where N ≤ U , and in particular the
same counterexamples constructed by Boogaloo. The approach, however, has its limi-
tations. First, unrolling and inlining require users to guess a suitable U ; since all longer
executions are ignored, verification vacuously succeeds when the shortest counterexam-
ple requires > U iterations or nested calls, without providing any concrete feedback.
Second, unrolling of complex loops and inlining of recursive procedures scale poorly,
as they consist of literally rewriting the code U times; Boogaloo, in contrast, uses sym-
bolic execution techniques, which are less likely to incur blow up. Building a debugger
on top of the Boogie verifier also means that it cannot generate passing executions
(Boogie does not produce a model in case verification succeeds) and cannot help when
the theorem prover gets bogged down. In contrast, Boogaloo uses simpler verification
conditions, designed for predictable generation and readability of counter examples as
opposed to sound proofs.

3 A Runtime Semantics of Boogie Programs

This section describes the syntax of Boogaloo programs (Sec. 3.1) and their opera-
tional semantics (Sec. 3.2). We use the following notation: Z is the set of mathe-
matical integers; and B is the set {�,⊥} of Boolean values. A map m is a math-
ematical function from a domain D1 × · · · × Dn, for n ≥ 0, to a codomain D0;
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P ::= D∗

D ::= type tid | var V : T

| procedure pid ( 〈V : T 〉∗ ) returns ( 〈V : T 〉∗ ) modifies (V ∗) 〈{ 〈V : T 〉∗ 〈lid : S〉∗ }〉?
S ::= S;S | havoc V + | V + :=E+ | call V ∗ := pid (E+) | assume E | goto lid+ | return | R
R ::= halt | abort | pick
T ::= bool | int | [T+ ]T | tid
E ::= C | V | E [E+ ] | E [E+ :=E ] | old E

| UOp E | E BOp E | if E then E else E | QOp 〈V : T 〉+ • E
V ::= vid C ::= true | false | 0 | 1 | 2 | · · ·

UOp ::= − |¬ BOp ::= + | − | · · · | < | ≤ |=| · · · | ∧ |∨ | · · · QOp ::= ∃ | ∀ | λ

Fig. 2. Desugared language supported by Boogaloo, consisting of programs P , declarations D,
statements S, types T , and expressions E. Angular brackets 〈 〉 are part of the grammar metalan-
guage, used to mark optional (?) or repeated (∗, +) expressions.

square brackets denote map applications. Whenever convenient, we see m as a set
of (n + 1)-tuples: m ⊂ D1 × · · · × Dn × D0 such that (d1, . . . , dn, d0) ∈ m iff
m[d1, . . . , dn] = d0. dom(m) and rng(m) denote the domain and range of m; m is
total if dom(m) = D1 × · · · × Dn, and finite if |dom(m)| ∈ Z; m[d1, . . . , dn 
→ d]
denotes a map m′ identical to m except that m′[d1, . . . , dn] = d. We overload this no-
tation to denote variable substitution: if e, y1, . . . , yn are expressions, and x1, . . . , xn,
are variable names, e[x1, . . . , xn 
→ y1, . . . yn] denotes e with all occurrences of xk
replaced by yk, for k = 1, . . . , n.

3.1 Input Language

Boogaloo desugars generic Boogie programs [17] into the simpler language described
in Fig. 2. Programs P are lists of declarations D, whose order is immaterial. Dec-
larations include uninterpreted types, global variables, and procedures with input
parameters, output parameters (returns), global variables the procedure may mod-
ify (modifies clause), and body (between braces). Procedure bodies consist of local
variable declarations followed by a list of labeled statements S. The latter include se-
quential composition, regular and nondeterministic assignment (:= and havoc, possibly
in parallel to multiple variables), procedure call, assume, nondeterministic goto a set
of label identifiers, and abrupt return to the caller procedure, as well as directives R
described shortly. Expressions must be properly typed as booleans, integers, maps
[T1, . . . , Tn]T0 from arbitrary domain (T1, . . . , Tn) and codomain T0 types, and user-
defined uninterpreted types3. Expressions E include literal constants C, variables V ,
map applicationsm[t1, . . . , tn], map updatesm[t1, . . . , tn := t], old expressions which
refer to the value of an expression when the procedure was entered, plus the usual
applications of unary operators UOp, binary operators BOp, a ternary if/then/else
operator, and quantifications and lambda expressions QOp.

The directives halt, abort, and pick are Boogaloo-specific and characterize sym-
bolic executions: halt terminates the current execution with success (marking pass-

3 While Boogaloo supports Boogie’s type constructors with arguments, as well type parameters
in procedures and maps, we do not include them in the discussion for simplicity.
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ing executions); abort also terminates the current execution but with error (mark-
ing failing executions); pick forces the interpreter to resolve nondeterminism by try-
ing to build a concrete state out of the current symbolic constraints. Boogaloo auto-
matically inserts a halt at the end of every control path in the input program; and
uses abort to desugar assert statements as follows. A Boogie statement assert B,
where B is a Boolean expression, indicates that B must hold in every non-failing ex-
ecution reaching the statement; assume B, on the other hand, indicates that only ex-
ecutions where B holds upon reaching the assume are feasible. Therefore, Boogaloo
expresses the semantics of assert B using assume, abort, and nondeterministic choice
as: goto T, F; F: assume ¬ B; abort; T: assume B. Boogaloo also injects a pick

statement right before every halt and abort, so that every terminating execution gets
a concrete state. Boogaloo automatically instruments programs with the directives R,
based on different strategies (see Section 5) so that one can use Boogie programs with-
out additional annotations.

The rest of the desugaring of Boogie into the language of Fig. 2 is fairly stan-
dard. We rewrite function declarations function f(T1, . . . , Tn) returns(T0) into con-
stants const f: [T1, . . . , Tn]T0 of map type, and express the corresponding function
definitions as axioms. In turn, we express axioms and other specification constructs—
where clauses (used to constrain the values of uninitialized variables), pre- and post-
conditions, and loop invariants—using assume and assert reflecting the standard se-
mantics. We replace constants with variables. Finally, we transform procedure bodies
into sets of basic blocks (labeled sequential blocks of code that end with a return or
goto) using standard techniques [17].

3.2 Runtime Operational Semantics

We now describe an operational semantics for the language in Fig. 2. The presentation
focuses on the most interesting aspects while omitting standard details.

Let us start with an informal overview of the basic concepts. The operational seman-
tics describes the effect, on the symbolic state, of executing statements. The symbolic
state associates symbolic values to program variables in scope. Executing some state-
ments may involve enforcing constraints between symbolic values; the most obvious
example is that of assume P: the symbolic values associated to variables mentioned in
P must satisfy P in every computation that continues after the statement. Therefore, the
symbolic state includes constraints which are updated as execution progresses. Finally,
pick directives select concrete values that satisfy the current constraints; executions
continue after pick with the selected concrete state components replacing the corre-
sponding symbolic state components (but subsequent statements will be executed sym-
bolically until the next pick). In this sense, symbolic executions are speculative, in that
the constraints may not have a solution (infeasible executions), and nondeterministic,
in that the constraints may have more than one solution; pick forces the interpreter to
resolve nondeterministic choice before continuing. Another source of nondeterminism
comes from executing gotos with multiple labels; such choices are resolved immedi-
ately, resulting in explicit path enumeration. Since Boogaloo injects pick statements at
every terminating location, it can provide concrete input and output values for every
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LOG-IN

 ∈ dom(λ)

�
� E=Eλ[
]
LOG-OUT


 �∈ dom(λ)

�
� E=E

QUANT-F

� ˜Q1x1 · · · ˜Qnxn • ¬q� E=E′�
�Q1x1 · · ·Qnxn • q� E=E′⊥

VAR-IN
v ∈ dom(σ) �σ[v]� E=Ee

�v� E=Ee
VAR-OUT

v �∈ dom(σ) 
 is fresh σ′ = σ[v �→ 
]

�v� E=E′



SEL-IN
�(m,a)� E=E′

(
m,a′) a′ ∈ dom(μ′[
m]) �μ′[
m][a′]� E′
=E′

e

�m[a]� E=E′
e

SEL-OUT

 is fresh �(m,a)� E=E1(
m,a1) a1 /∈ dom(μ1[
m]) m′ = [μ1[
m][a1] �→ 
]

�m[a]� E=E′

 E′ = 〈σ1, μ1[
m �→ m′], υ1〉

UPD

 is fresh �(m,a, e)� E=E1(
m,a1, e1) m′ = [μ1[
m][a1] �→ e1]

�m[a :=e]� E=E′

 E′ = 〈σ1, μ1[
 �→ m′], υ1 ∪ {∀x •x �= a1 ⇒ 
[x] = 
m[x]}〉

LAMBDA

 is fresh �e� E=E1e1 σ1(x) = �1

�λx • e� E=E′

 E′ = 〈σ1, μ1, υ1 ∪ {∀x • e1[�1 �→ x]}〉

QUANT-T
Skolem[Q1x1 · · ·Qnxn • q] E=E1 ∀y • q1 �q1� E1=E2q2 σ2(y) = �

�Q1x1 · · ·Qnxn • q� E=E′� E′ = 〈σ2, μ2, υ2 ∪ {∀y • q2[� �→ y]}〉

Fig. 3. Symbolic evaluation (significant cases)

feasible execution, while still availing of symbolic representation to limit the combina-
torial explosion introduced by the inherently nondeterministic nature of specifications.

The main source of complexity in executing Boogie programs lies in solving con-
straints, in particular when they involve universal quantifiers and uninterpreted maps
with infinite domains. Even though state-of-the-art SMT solvers can decide satisfia-
bility of quantified formulas in many practical cases, they can hardly generate read-
able “natural” infinite models. In light of these difficulties, we drop Boogie’s standard
interpretation—where all maps are total—and replace it with a finitary interpretation
where maps have finite domains. Finite, small instances are sufficient to expose errors
and inconsistencies in most programs; Alloy’s techniques are based on a similar “small
scope” hypothesis [7]. We also treat universally quantified constraints in a special way:
the pick directive finitizes them, that is turns them into simpler quantifier-free con-
straints. Finitization is in general unsound, but Sec. 5 demonstrates that the precision
loss is normally acceptable, especially if the goal is finding inconsistencies and errors.

Concrete Values. Each Boogie type corresponds to a set of concrete values: bool cor-
responds to B, int corresponds to Z; each user-defined type U corresponds to a count-
able uninterpreted set U ; each map type [T1, . . . , Tn] T0 corresponds to the set of all
finite maps from T1 × · · · × Tn to T0, where Tk is the set of concrete values of type Tk,
for k = 0, . . . , n. K denotes the union of all concrete value sets.

Symbolic Values correspond to the set Σ defined as:

Σ ::= K | L | UOp Σ | Σ BOp Σ | ifΣ then Σ else Σ ,
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where K is the set of concrete values defined above; unary UOp and binary BOp op-
erators are in Fig. 2, and L denotes a set of logical variables of the same types as the
concrete values. A logical variable � of type T corresponds to a symbolic placeholder
(a “promise”) for a concrete value of type T . To represent quantifiers in constraints, we
also introduce a set of universal symbolic valuesΣ∀ ::= ∀ 〈V : T 〉+ • ΣV , whereΣV

is a symbolic expression, which can also include bound variables V . Given a set X of
expressions, LV(X) is the set of all logical variables appearing in X .

Symbolic States. A symbolic state (environment) is a tuple E = 〈σ, λ, μ, κ, υ, τ〉,
where the store σ : V → Σ maps variables to symbolic values; the logical store
λ : L → Σ maps scalar logical variables to symbolic values; the map store μ : L →
(Σ∗ → Σ) maps map logical variables to symbolic maps; κ ⊂ Σ is a finite set of
simple state constraints; υ ⊂ Σ∀ is a finite set of universal state constraints; and τ
is one of ✧,✓,✗, denoting an intermediate state (✧), or the final state of a passing
(✓) or failing (✗) execution. The map store associates logical variables of map type to
symbolic maps: finite maps whose domain and range are in Σ; symbolic maps extend
their finite domains as execution progresses; pick concretizes their domain and range,
turning symbolic maps into concrete ones.

Expression Evaluation. Let E denote the set of all expressions defined by E in Fig. 2
but whose atoms range over C ∪ V ∪ L (i.e., including logical variables L). The eval-
uation of an expression e ∈ E in an environment E is a symbolic value in Σ. We use
the notation: �e� E=E′

e′ to denote that e ∈ E evaluates in E to e′ ∈ Σ. As we de-
tail shortly, evaluating an expression may change the environment; correspondingly, E ′
denotes the updated environment, whose components are written 〈σ′, λ′, μ′, κ′, υ′, τ ′〉.
When convenient, we extend this notation to sequences e = e1, . . . , en of expressions,
evaluated one after another. Fig. 3 shows the evaluation rules for the most interesting
expression kinds. Since evaluation does not change the λ, κ, and τ environment com-
ponents, Fig. 3 omits them. Also notice that evaluating a symbolic value never changes
the environment, and every concrete value evaluates to itself.

Rules LOG-IN and LOG-OUT describe the simple cases of evaluating a logical vari-
able �: if λ[�] is defined, it yields �’s evaluation; otherwise, � evaluates to itself.

Rules VAR-IN and VAR-OUT describe the evaluation of a (program) variable v. If
it has already been initialized, the evaluation of σ[v] gives its symbolic value. Other-
wise (VAR-OUT), such as when v enters the scope or after executing havoc v, σ[v] gets
initialized to a fresh logical variable �.

The rules for map selection are similar to those for variables but target the map store
μ: if a map selection has already been evaluated, its symbolic value is returned (SEL-
IN); otherwise, a fresh logical variable is generated and stored in μ (SEL-OUT).

Rules UPD and LAMBDA deal with evaluating expressions of map type for updates
and lambda abstractions. Both rules introduce a fresh map logical variable and add
to υ a universally quantified constraint that defines the map. Thus, map expressions
(variables, updates, and lambdas) always evaluate to a logical variable; this justifies
using the evaluation �m of m as an index in μ in the premises of SEL-IN, SEL-OUT,
and UPD.
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The rules for quantified expressions are non-deterministic. Consider an expression
Q = Q1x1 · · ·Qnxn • q in prenex normal form, where n > 0, Qk is one of ∀ and ∃
for all k’s, and q is quantifier-free. Rule QUANT-T evaluates Q to true and adds it to
the universal constraints υ after the following transformation. First, Q is Skolemized
as ∀y • q1, where y is the subsequence of x1, . . . , xn including only those xk’s for
which Qk is ∀; E1 is the environment after Skolemization, which contains fresh logical
variables for the Skolem functions introduced by the process. Evaluating q1 in E1 yields
some q2 where the bound variables y map to fresh logical variables �; after performing
the substitution q′ = q2[� 
→ y], ∀y • q′ is added to υ. Rule QUANT-F, which evaluates
Q to false, follows by duality (∀̃ denotes ∃, and ∃̃ denotes ∀).

Procedure Call Semantics. The precise semantics of procedure calls involves several
details to support recursion—mainly, maintaining a stack of environments and corre-
spondingly keeping track of scope. We overlook these tedious aspects and focus on the
gist of the semantics of a call to a generic procedure P (before desugaring):

procedure P (a) returns (o) requires p ensures q modifies(m) 〈{B}〉?

with formal input a and output o parameters, modified global variablesm, bodyB, and
pre- and postcondition p and q. The desugaring of Sec. 3.1 turns pre- and postcondition
into checks at the call site:

assert p[a 
→ u]; call v := P(u); assume q[a,o 
→ u,v];

(For brevity, we do not discuss the handling of old expressions in postconditions.) It
also generates a modified procedure body B′ to reflect the implementation or spec-
ification semantics, according to whether P has a body or not: if B is defined, B′

adds an assert q before each return statement in B; if B is not defined, B′ con-
sists of the single statement havoc o,m. The effect of the call statement is then given
by B′[a 
→ u]@entry where @entry denotes the basic block of statements at proce-
dure P’s entry. Even though Boogaloo defaults to implementation semantics whenever
a body is available, one can always switch to the specification semantics for a particular
procedure by commenting out its body.

Operational Semantics. Fig. 4 describes the operational semantics of statements other
than procedure calls, using the notation E −S� E ′ to denote that executing statement
S changes the environment E into E ′. Rules are applicable only if τ = ✧, that is if
the computation has not terminated yet; after rules HALT or ABORT have changed τ to
passing ✓ or failing ✗ no rule is applicable and hence the computation terminates.

Rules SEQ for sequential composition, GOTO for branch, and RETURN for abrupt
termination are standard, using the notation @caller to denote the basic block beginning
after the current call in the caller procedure. Rule GOTO is clearly nondeterministic.

Rule ASSUME adds the assumed Boolean formula to the set κ of state constraints.
Rule HAVOC “forgets” the symbolic value of the variable v, as if uninitialized. Rule ASS

updates the symbolic value in σ associated to the assigned variable v.
The most interesting rule is PICK, which details how pick concretizes symbolic

states. It extends κ into κ′, adding map instance constraints κμ = {m[x] = y |
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SEQ
τ = ✧ E −I� E1 E1 −J� E′

E −I; J� E′ GOTO
τ = ✧ k ∈ {1, . . . , n} E −@xk� E′

E −goto x1, . . . , xn� E′

RETURN
τ = ✧ E −@caller� E′

E −return� E′ ASSUME
τ = ✧ �P� E=E′

p

E −assume P� 〈σ′, λ′, μ′, κ′ ∪ {p}, υ′, τ ′〉

HAVOC τ = ✧

E −havoc v� 〈σ \ {(v, σ[v])}, λ, μ, κ, υ, τ〉 ASS
τ = ✧ �e� E=E′

e′

E −v := e� 〈σ[v �→ e′], λ′, μ′, κ′, υ′, τ ′〉

HALT τ = ✧

E −halt� 〈σ, λ, μ, κ, υ, ✓〉 ABORT τ = ✧

E −abort� 〈σ, λ, μ, κ, υ, ✗〉

PICK
τ = ✧ κ′ = κ ∪ κμ ∪ Φ(υ) dom(Λ) = {
 ∈ LV(κ′) | 
 scalar} E′ = 〈σ, λ ∪ Λ, μ, ∅, υ, τ〉 �

∧

κ′� E′
=E′


E −pick� E′

Fig. 4. Symbolic execution: operational semantics. All rules describe transformations of a generic
symbolic state E = 〈σ, λ, μ, κ, υ, τ 〉.

(m,x, y) ∈ μ}, which express the information in μ about symbolic maps; as well
as finitized universal constraints Φ(υ). It then picks a solution Λ : L → K of κ′: an
assignment of concrete values to scalar logical variables for which the conjunction of
constraints in κ′ evaluates to true. It finally adds the picked solution to λ and drops
the solved constraints. The rule is nondeterministic, as κ′ might have multiple solu-
tions. When κ′ has no solutions, the rule cannot apply and executions gets stuck at
pick: we call such executions infeasible. The rule is also agnostic with respect to the
exact method of solving simple constraints, as well as to the finitization mapping Φ.
The only requirement on Φ : Σ∀∗ → Σ is that it is an over-approximation: any valid
solution of υ is also a solution of Φ(υ). In practice, Φ performs quantifier instantia-
tion: it replaces a quantified formula ∀x • q with a finite set of quantifier-free formulas
{q[x 
→ e] | e ∈ R}, for some finite setR of “relevant” symbolic values. The challenge
is to choose an R that is large enough to describe all relevant values in the current envi-
ronment, yet small enough to produce constraints that can be solved efficiently. Sec. 4
gives more details about Boogaloo’s finitization procedure.

Boogaloo vs. Boogie Semantics. How does the operational semantics discussed in this
section compare with the original Boogie semantics? For this discussion, a semantics
of a program P is a set of sequences of concrete states, corresponding to its feasible
terminating executions; a (concrete) state C = 〈σ, τ〉 consists of a store σ (involving
finitely many variables) and a termination flag τ ∈ {✧,✓,✗}. A state C is finitary if
it involves only finite maps: for all m ∈ dom(σ), |dom(σ[m])| is finite; otherwise, it
is infinitary. A state CF finitizes another state C (written CF ,F C) iff CF is finitary,
τF = τ , dom(σF ) = dom(σ) and, for all map variablesm ∈ dom(σ), σF [m] ⊆ σ[m].
A sequence e of states is finitary (infinitary) if all its elements are finitary (infinitary); e
finitizes another sequence e′ if every state of e finitizes the corresponding state of e′.

For a programP , I[P ] denotes the Boogie semantics defined in [17], which is infini-
tary since all maps are total; andF [P ] denotes the finitary semantics of this paper, where
all maps have finite domains. Assuming perfect constraint-solving capabilities, the only
aspect where F may drop information w.r.t. I is in the rule PICK, and more precisely in
the finitization mapping Φ. The requirement that Φ be an over-approximation implies
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that every Boogie execution is finitized by some Boogaloo execution. The converse does
not hold in general: in particular, for some programsS, I[S] = ∅ butF [S] �= ∅ contains
executions (which we regard as spurious). For example, the following program:

var a: [int] int;

assume (∀ i, j: int • i < j =⇒ a[i] < a[j]);

assume a[0] = 0 ∧ a[1000] = 1;

has no feasible executions in I, while the current implementation of Boogaloo produces
a passing execution where the quantified constraint is only instantiated for i = 0 and
j = 1000. Sec. 5 demonstrates that such unsound executions are infrequent in practice,
and, even when they occur, workarounds are possible, for example forcing the evalua-
tion on more points by accessing them in a loop. Also, Boogaloo’s implementation of
Φ does not produces spurious executions for programs where all quantified constraints
are derived from terminating recursive function definition (see Sec. 4).

There is an additional source of discrepancies between I and F , due to the fact that
Boogie always uses the specification semantics for loops and procedure calls, while
Boogaloo defaults to the implementation semantics, which might contain fewer exe-
cutions. This discrepancy between the two semantics is a useful feature, which makes
it possible to debug programs in presence of incomplete specifications. The specifica-
tion semantics is still available on demand in Boogaloo: it is sufficient to replace an
imperative construct with its specification.

4 Boogaloo: Implementation Details

This section presents some details of the Boogaloo tool—our prototype implementa-
tion of the approach described in the previous sections. The tool takes as input a Boogie
source file and a procedure name as entry point, and produces a set of feasible execu-
tions, characterized by their concrete initial and final states. Boogaloo is implemented
in Haskell, and uses the SMT solver Z3 [5] in the back-end.

Finitizing Universal Constraints. The choice of the finitization mapping Φ plays an
important role. Our experiments suggest that the powerful quantifier instantiation strate-
gies available in SMT solvers such as Z3 have some downsides when applied to solve
constraints generated by executing Boogie programs, as their performance is unpre-
dictable unless additional user input (in the form of “triggers”) is provided. Instead,
Boogaloo preprocesses constraints using a simple strategy, based on the observation that
universally quantified formulas are typically used to axiomatize uninterpreted maps;
since we are only interested in finitely many points (those stored in μ), we just instanti-
ate the bound variables at those points. Quantified constraints that do not contain map
applications are simply ignored; the examples in Sec. 5 suggests that this finitization
strategy is not too restrictive on typical verification examples.

This is how Boogaloo implements Φ for a formula ∀x • P (x). For each term m[y]
in P such that y includes some bound variable (i.e., y ∩ x �= ∅), Boogaloo extracts
a parametrized map constraint of the form (m,Q(y,m[y])), where Q is a subformula
of P including the term, and y are the parameters free in Q; if x �⊆ y, then Q is
itself quantified. For example, ∀i • a[i] > i ∧ b[i, 0] = 1 determines two parametrized
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constraints: (a, a[i] > i) and (b, j = 0 =⇒ b[i, j] = 1); whereas ∀i, j • i < j =⇒
c[i] < c[j] determines: (a, ∀j • i < j =⇒ c[i] < c[j]).

Boogaloo evaluates parametrized constraints for a given map store μ iteratively: pick
an element p = (m, e, s) of μ, instantiate all parametrized constraints for m with e
and evaluate them, and mark p; repeat until all elements of μ are marked. If a Q in a
parametrized constraint (m,Q) contains quantifiers, instantiatingm triggers the gener-
ation of new parametrized constraints fromQ.

Since evaluating a parametrized constraint may add new points to μ, termination
of the evaluation procedure is not guaranteed in the presence of recursive formulas,
which determine constraints (m,Q(y,m[y])) whereQ also contains applications ofm
to elements other than y. For example, an axiomatization of the factorial f as f [0] = 1
and ∀i • i > 0 =⇒ f [i] = i · f [i − 1] determines the constraint q = (f, i > 0 =⇒
f [i] = i · f [i − 1]). If μ[f ] = (�0, �1), evaluating q for i = �0 introduces a new
map application at �0 − 1, which then introduces an application at �0 − 2, and so on.
Boogaloo evaluates such recursive constraints using fair unrolling similarly to [24],
based on the notion of guard: a parametrized constraint is guarded if has the form
(m,G(y) =⇒ B(y)). When Boogaloo’s iterative evaluation picks an element p =
(m, e, s), it nondeterministically chooses a subset D of all guarded constraints for m
and “disables” them in the evaluation determined by p: for a parametrized constraint
q = (m,G =⇒ B), it evaluates the constraint ¬G if q ∈ D, and G ∧ B otherwise.
For the “right” selection of D, recursive definitions are disabled, so that they do not
add new points to μ and evaluation terminates. In the factorial example, there are two
choices for f [�0]: disabling or enabling the guarded constraint. Disabling it terminates
the finitization process, producing an execution with �0 = 0; enabling the guarded
constraints produces one iteration (for f [�0 − 1]), which in turn recursively leads to the
same two choices, and so on. Unlike [24], which works only with function definitions
and thus assumes that guards are mutually exclusive and cover all cases, Boogaloo’s
fair enumeration applies to guards of any form and constraints other than equality; it
also provides an option to limit the number of unrollings, because recursive constraints
may be not well-founded (a sufficient condition for termination).

Nondeterminism. There are four sources of nondeterminism in Boogaloo semantics:
evaluation of quantified expressions, gotos, and pick—involving the disabling of
guarded constraints in Φ and constraint solving to select a solutionΛ. Boogaloo enumer-
ates nondeterministic choices using backtracking monads (e.g. [9]). The command-line
interface currently offers depth-first and fair exploration strategies, but the implementa-
tion easily accommodate others parametrically.

When executing goto statements, the order in which labels are tried may affect
progress: if the first chosen label leads back to the same statement, execution gets stuck
in a loop. To avoid this situation, Boogaloo keeps track of how often each label was
taken along the current execution path, and always tries labels in ascending order of
their frequencies (least frequent first). This strategy also has the nice effect of enumer-
ating shorter executions before longer ones in the long run. A similar strategy applies
to disabling parametrized constraints.

Since symbolic computation is speculative, it introduces the risk that long computa-
tions are constructed only to realize, when solving the symbolic constraints, that they
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are infeasible. This risk is mitigated by the enumeration technique, which produces
short execution first. Moreover, whenever a constraint evaluates to the concrete value
⊥, the current execution path is immediately aborted. This mitigates the overhead in-
curred by nondeterministic evaluation of quantified expressions: such expressions are
likely to occur inside assume statements, thus branches where they evaluate to false are
immediately abandoned. Additionally, Boogaloo transparently tests the satisfiability of
the current constraints κ at various points during an execution, and proceeds only if the
constraints are satisfiable; unlike pick which may enumerate multiple solutions, a sat-
isfiability check does not cause additional nondeterminism. One can still explore the
trade-off between few expensive symbolic executions and many cheap concrete execu-
tions by adding pick directives at arbitrary points.

Minimization. In addition to producing short executions first, Boogaloo also uses a
minimization technique based on binary search (similar to the one in [12]) in order to
favor small integers for concrete values. In our experience, this significantly improves
readability: for example, a constraint “x is positive and divisible by 5” with minimiza-
tion produces the most natural solution x = 5 as first witness.

5 Experimental Evaluation

We evaluated Boogaloo on a choice of 15 examples from various sources4. Tab. 1 lists
the programs and some data about them. The bulk of the evaluation targets the veri-
fication of algorithms of various kinds, listed in the top part of the table. For each of
these problems, we constructed a correct version equipped with consistent but gener-
ally incomplete specifications, and a buggy one, obtained by injecting implementation
or specification errors. We ran Boogaloo on both versions, with the goal of generating
executions: passing executions for the correct programs, and failing executions expos-
ing the bug for the buggy programs. The rest of the programs, in the bottom part of
Tab. 1, are examples of declarative programming, which exercise Boogaloo’s constraint
solving capabilities to generate outputs satisfying given properties, in the absence of im-
perative implementations. We now briefly mention the most interesting features of our
examples, and summarize the experimental results.

Verification. The majority of the programs in the top part of Tab. 1 are slightly adapted
examples from the Boogie project repository5, verification competitions [10], or previous
work [6,14]; they contain features that exercise various aspects of the test-case gener-
ation process. Strong preconditions (such as an array being sorted in BinarySearch or
being a permutation in Invert) make generating valid executions challenging using stan-
dard testing enumeration techniques. Inlining (available in Boogie) scales poorly with
the recursive procedure calls of Fibonacci and QuickSort. The specifications of Binary-
Search, BubbleSort, QuickSort, and Invert use nested universal quantifiers with bound
variables mentioned in different predicates. QuickSort PI (partial implementation) is a

4 Examples are available online at
http://se.inf.ethz.ch/people/polikarpova/boogaloo/

5 http://boogie.codeplex.com/

http://se.inf.ethz.ch/people/polikarpova/boogaloo/
http://boogie.codeplex.com/
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Table 1. Programs tested with Boogaloo: name, main features, lines of code, number of specifica-
tion functions, annotations (axioms A, asserts S, assumes U , requiresR, ensuresE,
loop invariants I), time to generate passing executions, time to generate failing executions
for the buggy version. Times in seconds, rounded to the nearest integer: for a given input size N ,
time tΣ with fully symbolic execution and tC with concretization. ∞ denotes a timeout of 180
seconds.

PROGRAM FEATURES LOC FUN ANNOTATIONS TIME BUG

A S U R E I N tΣ tC N tΣ tC
ArrayMax see Sec. 2 33 0 0 0 1 1 2 1 26 4 0 0 0 0
ArraySum recursive definition 34 1 0 0 1 1 1 2 26 75 2 1 0 0
BinarySearch complex precondition 49 1 0 0 2 2 3 2 26 2 0 0 0 0
BubbleSort complex postcond. and inv. 74 1 0 0 2 1 4 5 6 80 21 2 0 0
DutchFlag user-defined types [6] 96 3 0 0 2 2 8 6 7 132 43 1 0 0
Fibonacci recursive procedure 40 1 3 1 0 2 0 0 11 88 0 0 0 0
Invert complex pre- and postcond. 37 0 0 0 3 3 2 1 9 19 118 2 0 2
LinkedListTraversal heap model 49 3 2 0 0 1 1 1 8 50 54 2 0 0
ListInsert see [14] 52 1 0 0 2 1 1 0 6 78 5 1 0 0
QuickSort helper and recursive proc. 89 3 0 0 2 1 6 0 3 4 1 2 ∞ 0
QuickSort PI partial implementation 79 3 0 0 2 2 9 0 4 ∞ 64 2 1 0
TuringFactorial unstructured control flow 37 1 2 5 0 1 1 0 11 1 0 3 0 0
Split linear arithmetic [13] 22 0 0 0 0 1 3 0 – 0 0
SendMoreMoney fixed-size array constr. [12] 36 1 0 0 15 0 0 0 – 2 2
Primes recursive definition [12] 31 2 0 0 0 0 2 0 8 7 4
NQueens variable-size array constraints 37 2 1 0 3 0 0 0 11 45 1

variant of QuickSort whose partitioning procedure has a complete pre- and postcondi-
tion but no implementation. This may represent an intermediate development step where
we want to validate the overall logic of QuickSort before proceeding with implement-
ing the partitioning procedure. Boogaloo simulates array partitioning based only on its
specification—something unachievable with traditional testing techniques. The injected
bugs are mostly off-by-one errors and missing preconditions, both of which frequently
occur in practice; the bugs in BinarySearch are among those found in textbooks [22].

Declarative Programming. The other four examples come from previous work on con-
straint programming and code synthesis [13,12], and involve linear arithmetic, recur-
sively defined functions, and quantification over variable-sized arrays. Constraints are
declared using assume statements or procedures without implementation; Boogaloo
generates program outputs satisfying the constraints.

Experimental Results. All problems in Tab. 1 but two include a parameter N that de-
fines the input size (the input array or list for most problems). Column TIME displays
the value of N used in the experiments; and the time required to generate a passing
execution with different concretization strategies: tΣ corresponds to fully symbolic ex-
ecutions where the state is concretized only once after terminating; tC , instead, corre-
sponds to executions where the state is concretized before every jump statement. Col-
umn BUGGY displays the same time measures for the buggy programs; for these, the
value of N corresponds to the input size exposing the bug found by Boogaloo (which
is the smallest possible for all programs). In all experiments we imposed a timeout of
180 seconds, to reflect the expectation to use Boogaloo with good responsiveness.

Concretizing before jumping generally leads to faster executions, even with an
order-of-magnitude difference. This strategy may lead to heavy backtracking when the
constraints on a given logical variable are imposed incrementally, with one or more con-
cretization points in between, producing potentially lengthy combinatorial enumerations.
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In most examples this does not happen—constraints are “local”—and hence concretizing
does not degrade performance. The performance difference between fully symbolic and
concretized executions for the same example is particularly conspicuous in the current
prototype implementation, which uses Z3 through a pure API and hence cannot make use
of incremental constraint solving (which would be useful to avoid solving the same con-
straints multiple times during a single symbolic execution). We speculate that incremen-
tal solving would greatly reduce the performance difference between the two concretiza-
tion strategies. Even though the current implementation has a big potential for improving
performance, the experimental results are encouraging: in particular, exposing bugs—the
primary purpose of Boogaloo—is fast, even in the presence of partial implementations.
Understanding the unexpected behavior with QuickSort, where fully symbolic execution
times out, requires further investigation.

6 Related Work

Debugging Failed Verification Attempts. While still an incipient research area, a few
techniques have recently been proposed to help understand and debug failed attempts of
program verifiers. Sec. 2 already mentioned the Boogie Verification Debugger (BVD,
[14]); the Spec# debugger [21] implements similar functionalities which construct con-
crete counterexamples from failed Boogie runs. Two-step verification [27] compares
verification with different semantics (based on unrolling and inlining) to attribute veri-
fication failures to either inconsistent or incomplete specifications.

The fact that all these approaches are built around the output provided by a program
verifier determines their main limitations compared to Boogaloo. As we demonstrated
in Sec. 2, when verification fails because of insufficient specification, the counterexam-
ples generated by BVD or similar tools are typically uninformative or even misleading,
because they ignore the implementation even when it is correct (e.g., a loop), unless
it is comes with an accurate specification (e.g., a loop invariant). Boogaloo supports
a more incremental approach, where users can concentrate on fixing major bugs first.
Sec. 2 also discussed how inlining and unrolling (available in Boogie and automatically
used in two-step verification) ameliorate these problems, but they are also not directly
comparable to Boogaloo, since they scale poorly and require to know explicit unrolling
bounds. Of course, the finitary semantics implemented by Boogaloo comes with its
own shortcomings: if the shortest counterexamples are very long, it may be infeasible
to generate them by enumeration, whereas a static verifier’s modular reasoning is insen-
sitive to the length of concrete execution paths since it is entirely symbolic; tools such
as BVD can directly work on any failed verifier attempts.

Another approach to produce readable counterexamples is restricting the input lan-
guage (e.g., [24]), trading off expressiveness for decidability. Bounded model-checking
techniques (e.g., [3]) also target standard programming languages and the verification of
properties that do not include features such as infinite mappings and unbounded quan-
tification. Boogaloo follows a different course: it supports the entire Boogie language
as used in practice, which does not restrict expressiveness a priori, but may produce
spurious counterexamples.

Testing is the process of executing programs to make them fail. Since it is based on
execution, it is typically limited to violations of simple properties that can be efficiently
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evaluated at runtime and are implicit in the programming language semantics (e.g., null
dereferencing). Languages such as Eiffel [23], JML [15], and Jahob [28] incorporate a
richer language for annotations that is still executable, so as to extend the applicability
of standard testing techniques. Another line of research in testing is the combination
with static techniques, with the goal of complementing each other’s strengths to search
the input state space more efficiently. In [25], we combined testing with program prov-
ing at a high level. A different array of techniques combines testing with symbolic
execution; see the recent survey [2]. Boogaloo is also based on symbolic execution, but
with a different overall goal; as future work, we will leverage other techniques from
symbolic execution to improve the enumeration of executions.

Constraint Programming supports program definitions based on declarative
constraints, describing properties of the solution, rather than on traditional imperative
constructs. Logic programming extends functional programming languages [1]; more
recent approaches combine declarative constraints with imperative languages [20,12].
All these approaches restrict the expressiveness of the constraint language to have pre-
dictable performance and some guarantees about soundness, completeness, or both. As
briefly demonstrated in Sec. 5, Boogaloo can also be used as a Boogie-based constraint
programming language. Unless we also restrict the language of assertions, we cannot
offer strong guarantees about properties of the executions generated by Boogaloo (see
the end of Sec. 3.2 for a discussion). However, the usage as a constraint programming
language brings much flexibility to Boogaloo as a testing environment for Boogie pro-
grams, since users can achieve different trade-offs between modularity and scalability
opting for the implementation or the specification semantics.

7 Conclusions and Future Work

We presented a technique and a prototype implementation to execute programs with
complex specifications and nondeterministic constructs, written in the Boogie interme-
diate verification language.

Among the various directions for future work, let us mention: integrating domain-
specific decision procedure to reduce spurious counterexamples; improving the perfor-
mance by solving constraints incrementally and by pruning infeasible branches; more
experiments with automatically generated Boogie translations; and a user study to as-
sess the practical usability alongside Boogie.
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Abstract. Nop-shadows Analysis (NSA) is an efficient static typestate
analysis, which can be used to eliminate unnecessary monitoring instru-
mentations for runtime monitors. In this paper, we propose two opti-
mizations to improve the precision of NSA. Both of the optimizations
filter interferential configurations when determining whether a monitor-
ing instrumentation is necessary. We have implemented our optimization
methods in Clara and conducted extensive experiments on the DaCapo
benchmark. The experimental results indicate that the optimized NSA
can further remove unnecessary instrumentations after the original NSA
in more than half of the cases, without a significant overhead. In addi-
tion, for two cases, all the instrumentations are removed, which implies
the program is proved to satisfy the typestate property.

Keywords: Typestate Analysis, Runtime Monitoring, Static Analysis,
Nop-shadows Analysis.

1 Introduction

A typestate property [23] describes the acceptable operations on a single ob-
ject or a group of inter-related objects, according to the current state (i.e., the
typestate) of the object or the group [7,10]. For example, usually, programmers
cannot call the method write until the method open is called on a same File
object. Lots of large-scale software system errors are caused by the violations of
typestate properties. What is worse, it is very difficult and time-consuming to
find out and fix these errors [6,22]. The static analysis of a program with respect
to a typestate property is generally undecidable. The existing static typestate
checking tools [3,19] suffer from the scalability and the false-alarm problems.
Dynamic typestate checking methods complement the static methods with run-
time monitoring to improve the scalability and the accuracy of the analysis, but
sacrifice the completeness.

Usually, dynamic typestate analysis approaches, such as runtime verification
[5,11,15,16], automatically convert typestate properties into runtime monitors
that can detect the property violations at runtime. Implementing runtime mon-
itors needs to instrument the monitored programs. The instrumentation can
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be done manually or automatically based on existing techniques, such as AOP
[14]. However, the programs instrumented with runtime monitors usually con-
tain many redundant instrumentations, which result in a significant monitoring
overhead. Therefore, some approaches [6,12] exploit static analysis information
to remove provable unnecessary instrumentations for reducing the overhead of
runtime monitoring. These methods are often called hybrid typestate analysis.

Theoretically, hybrid typestate analysis is equivalent to the static analysis of
typestate properties. If all the instrumentations of a runtime monitor can be
removed, the program is proved to satisfy the typestate property. Nop-shadows
analysis (NSA) [6,7] is one of the existing hybrid analysis methods. NSA is
implemented in Clara [1] to optimize the runtime monitoring of large-scale
Java programs. NSA uses intra-procedural flow-sensitive and partially context-
sensitive data-flow analysis to identify the redundant instrumentations generated
for monitors.

Although NSA is effective [6,7], there are some cases in which unnecessary
instrumentations still remain after NSA. One of the main reasons is that NSA
is only an intra-procedural flow-sensitive static analysis. The overly conservative
approximations of inter-procedural cases in NSA reduce the accuracy of the
analysis. In this paper, we propose two optimizations to improve the precision
of NSA. Both of the optimizations can filter interferential configurations when
determining whether a monitoring instrumentation is necessary. An interferential
configuration refers to the configuration that lowers the precision of identifying
“nop shadows” in NSA. One optimization identifies changeless configurations
produced by the backward data-flow analysis of NSA; the other one utilizes
local object information to refine the iterations of data-flow analysis. Using the
two optimizations, more unnecessary instrumentations can be removed.

To evaluate our optimizations, we have integrated our optimizations into
Clara, and applied them to the DaCapo benchmark suite [4]. In more than
half of the cases, the optimized NSA can further remove unnecessary instru-
mentations after the original NSA. In two cases, we get a perfect result, i.e.,
all the monitoring instrumentations are removed, entirely obviating the need for
monitoring at runtime.

To summarize, our paper has the following contributions:

- Propose two optimizations for NSA to improve the precision of the analysis.
Both of the optimizations filter interferential configurations by identifying
changeless configurations and exploiting local object information.

- Propose and implement an approximate, but sound, intra-procedural flow-
sensitive algorithm to determine whether a variable points to a local object.

- Implement the two optimizations and integrate them into Clara.
- Conduct extensive experiments on the DaCapo benchmark suite to show the
effectiveness of our optimizations.

The remainder of this paper is organized as follows. We begin with an overview
of NSA in Section 2. In Section 3, we give two motivating examples to illustrate
the two different optimization methods, respectively. Section 4 formulates the
details of our proposed optimizations. Our experiments, described in Section 5,
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justify that our optimizations are effective in the majority of cases. Section 6
describes the related work and the paper is concluded in Section 7.

2 Nop-shadows Analysis

As in the literature [6,7,17], we also use the term “shadow” to represent an
instrumentation point created for runtime monitoring. NSA is a static typestate
analysis method proposed and implemented in the Clara framework [6], which
extends tracematch [2] with static analysis to remove “nop shadows”. Here a
“nop shadow” means that the shadow does not influence the results of runtime
monitoring, i.e., it can neither trigger nor suppress a property violation [6,7].

Clara consists of three static analysis stages, in which NSA is the most expen-
sive and precise one. Given a typestate property (usually a finite-state machine
(FSM)) and an instrumented Java program, NSA uses an intra-procedural data-
flow analysis to check whether a shadow in a method of the program can be
removed. The basic idea of NSA is to compute the reachable states of each
statement in a program according to the semantics of the program and the mon-
itored typestate property. Given an FSM typestate property M and its state set
S, for each statement st, there are two types of reachable states: source(st) and
futures(st), which are calculated respectively by a forward data-flow analysis
(forward analysis) and a backward data-flow analysis (backward analysis). The
source set source(st) ⊆ S contains all the states that can be reached before ex-
ecuting st from the beginning of the program; futures(st) ⊆ P(S) is the future
set, and each element of futures(st) contains the states from which the remain-
der program execution after st can reach a final state (usually the error state) of
M . Therefore, for a given shadow s, which is usually a method call statement in
the program, NSA identifies s as a “nop shadow” if the execution of the shadow
has no impact on the monitoring result, which can be formalized by following
two conditions:

– target(s) ∩ F = ∅, where target(s) = {q2 | ∃q1 ∈ sources(s) • q2 = δ(q1, s)}
is the resulting state set after executing s, δ(q1, s) is the resulting state after
executing s from the state q1 according to the FSM property M , and F is
the final state set of M . This condition means the execution of s does not
directly lead to an error state.

– ∀q1 ∈ source(s), ∀Q ∈ futures(s) • q1 ∈ Q ⇔ δ(q1, s) ∈ Q. It means the
execution of s does not influence whether or not a final state will be reached.

The shadow s can be removed if both conditions are valid.
Figure 1 gives an example for NSA. The left part is an FSM for “Connec-

tionClosed” [7] typestate property, which requires the “write” operation should
not be called after a connection is closed. The right part displays a program
annotated with the state information of each statement. The elements in the
source set and the futures set of each statement are next to the downward and
upward arrows, respectively. For instance, for the shadow s3 at line 3, we have:

source(s3) = {0}
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target(s3) = {1}
futures(s3) = ∅

futures(s3) = ∅ means that there is no state from which the property state
machine can reach the final state via the execution after line 3. According to the
preceding two conditions, s3 is a “nop shadow” that can be removed.

210

writeclose

close

reconnect

1  public static void m(String args[]) {
2    Connection c1 = new Connection(args[0]);

………………… 0     {}                        
3       c1.close();

………………… 1     {}   
4       c1.reconnect ();

………………… 0 {1, 2}
5 c1.write(args[1]);

………………… 0     {2}            
6 }

“ConnectionClosed” typestate property 

reconnect

reconnect, write close write

Fig. 1. An example for Nop-shadows Analysis

After removing a “nop shadow”, the source(st) and futures(st) of each state-
ment will be calculated again, until no “nop shadow” exists. If there is no shadow
after NSA, the program is proved to satisfy the typestate property. For exam-
ple, all the shadows of the program in Figure 1 will be removed finally. For the
inter-procedural cases, the method calls are soundly approximated by using the
transitive closure of the shadows in the called methods.

3 Motivating Examples

We motivate our optimizations of NSA through two examples. We also use the
“ConnectionClosed” property in Figure 1 as the typestate property. Figure 2
shows an example that invokes the “close” and “write” methods of the class
Connection. The shadows at line 7 and 10 violate the typestate property, because
they can both drive the state machine into the final state. The “close” operation
at line 8 is between these two violating shadows. Hence, from the semantics of
the program and the property FSM (c.f. Figure 1), the runtime monitor does
not need to monitor the shadow at line 8. Whereas, the original NSA cannot
identify the shadow at line 8 as a “nop shadow” at compile-time. The reason is
explained as follows.

For the sake of brevity, Figure 2 only shows partial critical state information
calculated by the forward and backward analysis. In order to distinguish the
typestates of multiple different objects or groups of related objects, the data-
flow analysis of NSA propagates “configurations” instead of only state sets [7].
A configuration specifies the state information of some specific objects. A con-
figuration C = (Q, b) is composed by a state set Q and a variable binding b.
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1  public static void m(String args[]) {
2    Connection c1 = new Connection(args[0]);
3   Connection c2 = new Connection(args[0]);
4     c1.close();
5     c2.close();
6      c1.write(args[1]);
7      c2.write(args[1]);

……………………… S8 = ({2}, C = {O2})              …
8     c2.close();

……………………… T8 = ({1}, C = {O2})   F8 = ({2}, C≠ {O1}) 
9     c1.write(args[1]);

……………………… … F9 = ({2}, T)      
10     c2.write(args[1]);
11 }

Fig. 2. The example for motivating the first optimization

The variable binding specifies the static objects [9] which represent the concrete
runtime objects. Actually, for a shadow s, it also has a variable binding [8] spec-
ifying the objects whose typestates can be changed by s. Two variable bindings
are compatible if they can be bound to a same static object or a same group
of related static objects. A configuration and a shadow are compatible if their
variable bindings are compatible. For a statement st associated with a configu-
ration (Q, b), in forward analysis, the elements in set Q represent all the possible
states which the static objects specified by the variable binding b can reach just
before st; in backward analysis, they are the states from which the static objects
specified by b can reach a final state via the execution after st. For example, the
configuration S8 in Figure 2 represents that the static object O2 can reach state
2 before executing line 8. The configuration F12 in Figure 3 represents that the
static object O can reach the final state from state 0 or 1 via the execution after
line 3.

Providing that the program creates the compile-time static objects O1 and
O2 at line 2 and line 3, respectively. The variable binding of the shadow at line
8 is C = {O2}, and the shadow at line 8 changes the configuration from S8 =
({2}, C = {O2}) to T8 = ({1}, C = {O2}) in the forward analysis, with respect
to the typestate property. F8 = ({2}, C �= {O1}) associated to the shadow at
line 8 is one of the resulting configurations produced by the backward analysis
starting at line 9, which means the typestate of the object does not change if
the object is not O1. The variable bindings of S8 and F8 are both compatible to
that of the shadow at line 8. According to the “nop shadow” conditions, because
the states of the state transition caused by the shadow at line 8, i.e., state 2 in
S8 and state 1 in T8, are not both contained in the state set {2} of F8, NSA fails
to identify this shadow as a “nop shadow”.

Actually, the configuration F8 is induced by the “final shadow”1 at line 9,
in which the variable c1 is totally unrelated to the variable c2 at line 8, i.e.,

1 “final shadow”, which can drive the FSM of the property into a final state [6].
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they must not alias. Hence, in principle, we should filter this type of interferen-
tial configurations generated from backward analysis when checking whether a
shadow can be removed. Based on this insight, our optimized NSA can success-
fully identify the shadows, similar to the shadow at line 8, as “nop shadows”.

Figure 3 shows another example to motivate the second optimization ap-
proach. Different from the former one, the typestate property “Connection-
Closed” is not violated by the method m. Therefore, all the shadows in method
m can be safely removed. However, by using the original NSA, all the shadows
will remain.

1  public static void m(String args[]) {
2    Connection c1 = new Connection(args[0]);

………………… S12 = (0, T)             S22 = (1, C = {O})   F12 = ({1,2}, C = {O})  F22= ({0,1,2}, C = {O})    
3 c1.write(args[1]);

………………… S13 = (0, C = {O})  S23 = (2, C = {O}) F13= ({2}, T)                F23 = ({0,1,2}, C = {O})    
4 c1.close();

………………… S14 = (1, C = {O})  S24 = (1, C = {O})                                         F24 = ({1,2}, C = {O})                       
5 }

Fig. 3. The example for motivating the second optimization

The problem is mainly resulted by the approximated inter-procedure analysis.
Figure 3 shows partial forward and backward analysis results that are next to
the two downward arrows and two upward arrows, respectively. Because there
may be several consecutive method calls to a method in a program, for ensuring
the soundness, the forward analysis needs to propagate the configuration at the
end of a method to the entry of the method until a fixed-point is reached. For
example, S14 is propagated to the entry configuration S22 of the next iteration
(indicated by the red dotted line). The propagation also happens in backward
analysis. After reaching the fixed-point, the shadow at line 3 can produce the
configuration S23, which contains an error state. Thus, this shadow cannot be
removed. In addition, the shadow at line 4 changes the configuration S13 to S14,
but state 0 in S13 and state 1 in S14 are not both contained in the state set {1,
2} of the configuration F24. Therefore, the shadow at line 4 cannot be removed
either.

After carefully analyzing the example program, we find the reason is that the
configuration propagation disregards the local object information. In this paper,
we call a static object, which is created by a “new” statement within the method
currently being analyzed, a local object. For example, the static object O created
by the statement at line 2 is a local object. Obviously, at runtime, each local ob-
ject will be assigned with a different runtime object each time when the method
is invoked and the “new” statement is executed. Therefore, for the example in
Figure 3, the configuration S22 should not have a same variable binding as S14.
If we have the local object information of the example program, i.e., no need to
do the second forward iteration and the second backward iteration, then both
of the “nop shadows” at line 3 and line 4 can be removed. Based on the obser-
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vations motivated by this example, we optimize NSA by exploiting local object
information.

For simplicity, the motivating examples do not contain complex program-
ming language features, such as recursion, exception handling and aliasing. In
Section 4, we will give the details of our optimization methods that can be ap-
plied in general.

4 Optimization Methods

This section presents the details of our optimization methods for filtering in-
terferential configurations when checking whether a shadow is a “nop shadow”.
The first subsection explains how to identify changeless configurations generated
from backward analysis. The second subsection proposes an algorithm for deter-
mining whether a static object is a local object, and describes how to propagate
configurations along the inter-procedural control-flow of a analyzed method. The
two optimizations are complementary to each other. They separately address dif-
ferent issues that can potentially lead NSA to lose precision. Therefore, these
two optimizations can be combined together to further improve the accuracy
of NSA.

4.1 Identifying Changeless Configurations

How can we identify changeless configurations, like F8 in Figure 2, from the re-
sults produced by backward analysis? Basically, if the states of a configuration
have never been through a state transition during backward analysis, then we
consider the configuration as a changeless configuration. For a changeless con-
figuration Ci = (Qi, bi) that is induced by a “final shadow” sf and associated
to a shadow si, even if Ci is compatible with si, there is no need to consider
Ci when checking whether the shadow si is a “nop shadow”. The reason is: the
states in set Qi of the objects specified by the variable bindings bi will definitely
not change anymore before program execution passes the “final shadow” sf , and
the execution of the “final shadow” sf would not trigger an error because of the
incompatibility of sf and Ci.

Hence, we extend the original configuration tuple from (Q, b) to (Q, b, T ),
where Q is the state set, b is the variable bindings and T indicates whether
the states of this configuration have ever been through a state transition be-
fore. Therefore, we need to record the information of T during the configuration
transitions in backward analysis. The new configuration transition algorithm is
displayed in Algorithm 1.

The algorithm is basically the same as that in [6]. The different parts are
enclosed in boxes. Line 4 computes the state set of the successor configuration.
If the shadow s can drive the state set Qc to Qt (c.f. line 4), and the shadow is
compatible to the configuration (determined by β+ �=⊥ at line 7), the value of
T in the successor configurations is assigned with true, indicated by Lines 7-9;
otherwise, the value of T remains the same during the configuration transition
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Algorithm 1. transition((Qc, bc, Tc), s, δ)

1: cs := ∅; // initialize result set
2: l := label(s), βs := shadowBinding(s); //extract label and bindings from s
3: //compute target states
4: Qt := δ(Qc, l);
5: //compute configurations for objects moving to Qt;
6: β+ := and(bc, βs);
7: if β+ �=⊥ then

8: cs := cs ∪ (Qt, β
+, true);

9: end if
10: //compute configurations for objects staying in Qc;
11: B− :=

⋃
v∈dom(βs)

andNot(bc, βs, v) \ {⊥};

12: cs := cs ∪ {(Qc, β
−, Tc) | β− ∈ B−};

13: return cs;

(Lines 11-12). Moreover, for the backward analysis, when we create an initial
configuration, the value of T in the initial configuration is set to false.

Based on the extended configuration definition and the transition algorithm,
we can identify changeless configurations produced by backward analysis. For
a given shadow s and a configuration (Q, b, T ) in futures(s), if T is false, the
configuration will be considered to be interferential, and should be filtered when
checking whether the shadow s is a “nop shadow”.

4.2 Exploiting Local Object Information

First, we present how to determine whether a static object is a local object. We
have the following two observations: first, for a given static object inside in a
method, if it is created by a “new” statement within the method, the object
must be a local object to this method; second, for any two strong must-alias [9]
static objects O1 and O2 inside a method, these two objects always refer to a
same heap object, which implies that they always point to a same local object
or a same non-local object. Based on these two insights, Algorithm 2 is designed
to identify local objects.

For a given method m and a static object O, the algorithm returns true
if O is a local object in m; otherwise returns false. Algorithm 2 first declares
a set newObjects, and then adds all the local objects created by the “new”
statements in m to newObjects (Lines 1-7). Then, the algorithm checks whether
there exists an element in newObjects that is strong must-alias to O (Lines 8-
12). Currently, the must-alias analysis is only intra-procedural flow-sensitive,
and makes a conservative assumption that any two static objects coming from
different methods may alias. Therefore, Algorithm 2 is an approximated, but
sound, evaluation. In order to gain more efficiency, we extract Lines 2-7 from
Algorithm 2 and compute the newObjects set before the optimized NSA.
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Algorithm 2. isLocalObject(m, O)

1: Set〈staticObject〉 newObjects;
2: for all stmt ∈ m do
3: if stmt is a new statement then
4: create a new static object Oi;
5: newObjects := newObjects ∪ {Oi};
6: end if
7: end for
8: for all Oj ∈ newObjects do
9: if Oj must-alias O then
10: return true;
11: end if
12: end for
13: return false;

Besides identifying local objects, for a configuration, we also need to know
whether it is gotten by statically modeling the multiple consecutive invocations
of the analyzed method in forward or backward analysis. Same as the first op-
timization, we also extend the original configuration tuple to a triple (Q, b,R),
where R is true if the current configuration is indeed gotten by statically mod-
eling the multiple consecutive invocations of the analyzed method.

For a given method m, the intra-procedural control-flows cannot lead to the
multiple consecutive invocations of m. Hence, the shadows in methods cannot
change the value of R. Figure 4 visualizes four types of possible inter-procedural
control-flows (solid arrows) of m [7]. Solid arrows (1) and (2) are used to model
the transitively recursive method calls to m. We cannot determine that a method
call must be transitively recursive at compile-time. Hence, both of the arrows
(3a) and (3b) are used to model the non-recursive method calls within m. Addi-
tionally, methodm can re-executes again after its returning. Arrows (4) is used to
model this case. Obviously, there are only three types of inter-procedural control
flows (solid arrows (1), (2) and (4)) in Figure 4, which can lead to the multiple
consecutive invocations of the method m. Therefore, in forward analysis, for all
the configurations that reach the entry statements of m or the recursive call
sites within m along these inter-procedural control flows, we should assign true
to R in these configurations. Based on the same argument, in backward analysis,
the value of R in configurations, which reach the exit statements of m or the
recursive call sites within m along these reverse inter-procedural control flows,
should be assigned true. Furthermore, for each initial configuration, the value of
R is set to false in both forward and backward analysis.

Based on Algorithm 2 and the extended configuration, we can filter interferen-
tial configurations as follows: for a given shadow s, which is usually a method call
statement, inside a method, if there exists a variable v in the variable bindings of
s pointing to a local object, a configuration (Q, b,R) in source(s) or futures(s)
can be safely eliminated if R is true. The reason is: even if the shadow s and the
configuration have a same static variable binding with respect to the variable
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public void m(){

x.m()

y.n()

}

method exit

method entry
(1)

(4)

(3a)

(3b)

(2)

potentially
recursive 
call site

provably 
non-recursive
call site

Fig. 4. Possible inter-procedural control-flows of a method [7]

v, v will definitely point to a different object during each method invocation
at runtime, which means that the shadow s and the configuration are actually
not compatible at runtime. After eliminating all the interferential configurations
from sources(s) and futures(s), we use the remaining configurations to deter-
mine whether the shadow s is a “nop shadow” according to the conditions in
Section 2.

5 Experiments and Discussion

We have implemented our optimizations on the Clara framework [6] and con-
ducted experiments on the DaCapo benchmark suite [4]. NSA cannot support
multi-threaded programs. Hence, we ignore the multi-threaded programs hsqldb,
lusearch and xalan in the benchmark. Our experiments are based on the experi-
ments of the original NSA in [7]. We are only interested in 23 property/program
combinations for each of which the original NSA cannot remove all the shadows.
These 23 combinations involve 8 typestate properties and 7 programs. Table 1
lists the typestate properties used in the experiments.

In order to make our experimental results more convincible, we also limit
the maximum number of configurations to be 15000, which is the same as that
of the original NSA in [7]. Once the number of configurations computed by our
optimized analysis is above the threshold, it will abort the analysis of the current
method and process the next one.

We evaluate our optimizations as follows: for each optimization, we carry out
original NSA first, then use the optimized NSA to further identify “nop shad-
ows”. This way of evaluation is different from using an optimized NSA directly.
Actually, according to our experimental results, under the same configuration
limit, using an optimized NSA after original NSA will have better results than
that of using the optimized NSA directly. The reason is that using each optimized
analysis directly generates more configurations than the original NSA.
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Table 1. Typestates properties used in our experiments

Property Name Description

FailSafeEnum do not update a vector while iterating over it
FailSafeEnumHT do not update a hash table while iterating over its elements or keys
FailSafeIter do not update a collection while iterating over it
FailSafeIterMap do not update a map while iterating over its keys or values
HasNextElem always call hasMoreElements before calling nextElement on an Enu-

meration
HasNext always call hasNext before calling next on an Iterator
Reader do not use a Reader after its InputStream is closed
Writer do not use a Writer after its OutputStream is closed

We conducted all the experiments on a Server with 256GB memory and four
2.13GHz XEON CPUs.

5.1 Experiment Results

To justify the effectiveness of our optimizations, we use original NSA as the
baseline for our experiments. Table 2 shows the results of our optimizations, and
the cases on which optimizations have no effect are not listed. The forth column
(Opt1) shows the number of remained shadows after using the first optimization,
i.e., identifying changeless configurations generated from backward analysis. For
4 out of 23 combinations (17.4%), our optimized analysis can further identify
removable shadows after the original NSA. In one case (FailSafeIterMap +
bloat), the shadows removed by the optimized analysis are twice more than the
shadows removed by the original NSA.

The fifth column (Opt2) of Tables 2 shows the number of the shadows that
remain after using the optimization based on local object information. For 10
out of these 23 combinations (43.5%), the optimized NSA can further remove
shadows after the original NSA. In two cases (FailSafeEnum + fop and Fail-
SafeIter + luindex), the optimization can remove all the shadows that remain
after the original NSA. Hence, the optimized NSA by local object information
can give the static guarantee that the program satisfies the typestate property
in each of these two cases. Furthermore, for 5 out of these 10 cases (50%), the
optimized analysis can further remove more irrelevant shadows than the original
one. Especially, in two cases (FailSafeEnum + fop and FailSafeEnumHT +
jython) out of these 5, the original NSA cannot remove any shadow.

The last column of Tables 2 shows the results of the combination of two
optimizations, i.e., optimizing by local object information first and then by re-
moving changeless configurations. For 13 out of these 23 combinations (56.5%),
the combined optimized analysis can further identify “nop shadows” after the
original NSA. In one case (FailSafeIter + bloat), the two optimizations both
have positive effects and identify different “nop shadows” respectively. Inter-
estingly, compared to perform these two optimizations after the original NSA
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Table 2. Results of the optimized NSA

Property + Program BN AN Opt1 Opt2 Both

FailSafeEnum + fop 5 5 5 0 0
FailSafeEnum + jython 47 44 44 36 36

FailSafeEnumHT + jython 76 76 76 72 72
FailSafeIter + bloat 1010 916 911 905 899
FailSafeIter + chart 158 150 150 120 120
FailSafeIter + jython 119 115 115 105 105
FailSafeIter + luindex 30 15 15 0 0
FailSafeIter + pmd 305 290 290 262 262

FailSafeIterMap + bloat 481 479 476 479 476
FailSafeIterMap + jython 153 133 133 119 119
FailSafeIterMap + pmd 372 262 262 260 260

Writer + antlr 44 35 34 35 34
Writer + bloat 19 11 9 11 9

BN: The number of shadows that remain before the original NSA. AN: The
number of shadows that remain after the original NSA. Opt1: The number of
shadows that remain after the first optimization. Opt2: The number of shadows
that remain after the second optimization. Both: The number of shadows that
remain after the combination of two optimizations.

individually, the combination can identify one more “nop shadow” in this case.
The reason is: after the original NSA, the second optimization firstly removes
some shadows from the instrumented program, so the first optimization gener-
ates less configurations and can identify one more “nop shadow” under the same
configuration limit. In addition, there are three cases where local object opti-
mization cannot remove any “nop shadow” but the other one can, which also
justifies that the two optimizations complement each other.

5.2 Analysis Time

The analysis time of NSA is mainly dominated by the prior supporting analyses,
such as constructing call graphs and computing points-to information. Because
we evaluate each optimization by using NSA first and then the optimized NSA,
the analysis time for evaluating each optimization is definitely longer than that
of the original NSA. Table 3 displays the results of the analysis time of the cases
on which our optimizations have effects.

From the experimental results, it can be justified that the time for NSA is
just a small part of the total compilation time. In all cases but two, the total
compilation time including our optimizations is under 10 minutes. The average
analysis time of the original NSA is under 1 minute, though in some cases it
needs a few more minutes, such as FailSafeIter + bloat. In some cases, the
analysis time for the optimized analysis is less than that of the original NSA.
One of the key reasons is that the optimized NSA analyzes less shadows. For
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Table 3. The results of analysis time (in seconds)

Property + Program The 1st optimization The 2nd optimization
NSA Opt Total NSA Opt Total

FailSafeEnum + fop 0.98 0.1 251.14 1.21 0.39 276.87
FailSafeEnum + jython 8.06 0.2 243.55 8.23 1.87 269.35

FailSafeEnumHT + jython 10.30 0.69 240.91 10.41 8.19 271.05
FailSafeIter + bloat 298.05 133.94 806.02 288.50 516.82 1214.12
FailSafeIter + chart 25.35 1.64 305.92 24.15 66.08 393.04
FailSafeIter + jython 16.9 0.74 270.23 17.69 14.87 303.80
FailSafeIter + luindex 2.21 0.07 99.1 2.53 0.47 110.64
FailSafeIter + pmd 46.01 2.51 352.67 46.97 112.01 490.54

FailSafeIterMap + bloat 58.78 30.17 433.4 65.92 85.19 521.37
FailSafeIterMap + jython 49.67 17.61 276.74 58.38 56 337.73
FailSafeIterMap + pmd 77.67 4.25 420.05 77.72 96.84 541.66

Writer + antlr 12.95 0.83 223.76 13.7 9.06 253.48
Writer + bloat 1.56 0.24 128.66 1.68 0.34 140.08

NSA: The analysis time that original NSA consumes. Opt: The analysis time of
the optimized NSA after the original NSA. Total: the total compilation time of the
case.

the optimized NSA with the combination of two optimizations, the analysis time
introduced by optimization is under 2 minutes in the majority of cases. Overall,
our optimization methods do not cause a significant overhead on the weaving
process in experiments. Considering the total compilation time, the overhead
incurred by our optimizations is acceptable.

5.3 Discussions

According to the experimental results, the first optimization only has effects in
17.4% cases, which is not very impressive. The reason is that the optimization
works well on the methods containing several interleaved relevant method invo-
cations on different objects. For example, for the program in Figure 5(a), which
is slightly different from that in Figure 2 (the method calls on c1 and c2 are
not interleaved), the original NSA can identify the shadow at line 9 as a “nop
shadow”. Hence, the capability of the optimized NSA is the same as that of the
original one in this case.

The optimization based on local objects also has limitations. For example,
it has no effect on the local objects created within loop statements. In Figure
5(b), we show a method m that extends the method in Figure 3 by adding a
loop. Obviously, the method satisfies the typestate property in Figure 1, but the
optimized NSA by using local object information cannot remove the shadows at
lines 5 and 6. The reason is the forward analysis will propagate the configurations
at the end of a “for” statement to the entry of the “for” statement, and the
backward analysis will propagate configurations in the inverse direction too.
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1  public static void main(String args[]) {
2    Connection c1 = new Connection(args[0]);
3   Connection c2 = new Connection(args[0]);
4     c1.close();
5     c1.write(args[1]);
6      c1.write(args[1]);
7       c2.close();
8 c2.write(args[1]);
9 c2.close();

10     c2.write(args[1]);
11 }

1  public void m(String args[]) {
2  for(int i = 0; i < 10; i++)
3  {
4           Connection c1 = new Connection(args[0]);
5           c1.write(args[1]);
6           c1.close();
7   }
8  }

(a) A program similar to the program in figure 3

(b) An example similar to the example in figure 4

Fig. 5. Examples on which optimizations have no effect

Therefore, we can further optimize NSA based on the local objects created in
loop statements, which will be the future work.

Finally, we should note that even if the original NSA is inter-procedural flow-
sensitive, it could not remove the shadows in Figure 2 and Figure 3 either. Hence,
the main ideas of our optimizations can also be used in the inter-procedural flow-
sensitive static analysis.

6 Related Work

Recently, typestate analysis of large-scale programs attracts much attention,
and several static and dynamic typestate analysis methods are proposed and
implemented. In [13], Fink et al. propose a context-sensitive, flow-sensitive and
integrated static typestate verifier. The verifier utilizes a combined abstract do-
main of typestate and pointer abstractions to improve the precision of alias
analysis. Their static analysis framework is designed to be a staged system to
improve the scalability and efficiency. However, their approach cannot verify the
typestate specifications of multiple objects. In [18], a hybrid typestate analy-
sis is proposed and implemented to be context-sensitive and inter-procedural
flow-sensitive. The static analysis in [18] is based on a lattice-based operational
semantics, which supports to track individual objects along control-flow paths
and compute typestate information and points-to information simultaneously.
However, their approach suffers from unsoundness problem [7]. Besides those
work, Rahul Purandare presents in [20] a cost model for runtime monitoring.
The model explains key factors of monitoring overhead and the relationship
among them. The cost model guides the optimization of runtime monitoring.
Different from the hybrid method in this paper, the approach in [20] also tries to
remove instrumentations at runtime [21]. Furthermore, their optimization can
reduce the runtime overhead by reclaiming unnecessary monitors. Whereas, their
hybrid approach may easily lead to unacceptable overhead at runtime, especially
for the typestate properties involving multiple interacting objects. In addition,
when unchecked exceptions happen, the method may produce unsound results.
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7 Conclusion

In this paper, we present two optimization approaches for NSA to improve the
precision. One optimization identifies changeless configurations during the back-
ward analysis; the other one use local object information to refine the forward
analysis and backward analysis of NSA. According to the experiments on the
DaCapo benchmark suite, in more than half of the studied cases, the optimized
NSA can further remove unnecessary instrumentations, without a significant
overhead. Additionally, we dissect the experimental results and the situations
in which our optimizations have no effect. Furthermore, the main ideas of our
optimizations can also be used in inter-procedural flow-sensitive static analysis.
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Abstract. We propose an approach to enhance the fault diagnosis in
black-box component-based systems, in which only events on component
interfaces are observable, and assume that causal dependencies between
component interface events within components are not known. For such
systems, we describe a causality analysis framework that helps us estab-
lish the causal relationship between component failures and system fail-
ures, given an observed system execution trace. The analysis is based on
a formalization of counterfactual reasoning, and applicable to real-time
systems. We illustrate the analysis with a case study from the medical
device domain.

1 Introduction

Component-based design in systems engineering enables independent develop-
ment of system components as well as their incremental construction and modi-
fication. The complexity of systems that are built with component-based design
renders it difficult to determine the culprit components of the system that are
responsible for the discovered system failure on a given system execution. We in
this paper aim to present a formal framework for the analysis of the causal rela-
tion between the faulty components and an observed system failure on a given
system execution.

While this problem is common to all safety-critical domains, our immediate
motivation comes from the domain of medical devices. In the United States,
the Food and Drug Administration (FDA) is responsible for assessing safety of
medical devices and regulating their use in health care. When a system failure
that harms a patient, known as an adverse event occurs, the hospital is required
to report it to the FDA-maintained database [9]. Diagnosis of the root cause
is crucial for the subsequent recovery and follow-up prevention measures. Such
diagnosis requires recording of system executions leading to the failure, as well
as methods for the efficient analysis of the recorded system trace.
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Existing work in fault diagnosis (e.g., [6,21,8,5,23,17] to name only a few)
aims to study (1) the discovery of existence of faults in the system, and (2) the
identification of the types and locations of the faults. A main assumption implic-
itly used in the work of fault diagnosis is that, the computed fault propagation
chain is the actual cause-effect chain [17].

We in this work consider systems whose components are black-boxes, where
only events on component interfaces are observable, and assume that causal
dependencies between component interface events within components are not
known. The presence of uncertainty in computing fault propagation chain in-
side components leads to an over-approximation of the fault propagation chain.
We have shown in our preliminary study [26] that, the precision of this over-
approximation can be improved by causality analysis, i.e., reasoning about
whether a fault inside a component is the cause for system failure.

Causality is commonly defined by the use of counterfactual reasoning [13,16,19].
Some recent work in the engineering domain has discussed several versions of
causality definitions for finite state automata [11] and temporal logics [4,14,15].
In this work, we extend our previous result in [26] to consider the case of real-time
systems where a system execution trace is a sequence of timestamped events,
and the system/component specifications are based on the timing of events.

Contributions. We present a framework for the causality analysis for compo-
nent-based systems. We identify the steps of the analysis and the input and
output for each step. We show with a case study from the medical device domain
how to use the proposed framework to establish the causal relationship between
component failures and the system failure. In particular, we extend our approach
presented in [26] to handle the causality analysis for real-time systems.

Paper Organization. We first use a simple example as an illustration to define
the causality analysis problem in Section 2. We then present a proposed causality
analysis framework for component-based systems in Section 3. In Section 4, we
present the main technique used for causality analysis. We show how to apply
the causality analysis to our case study in Section 5. We discuss some of the
assumptions of our approach in Section 6 and related work in Section 7, and
conclude in Section 8.

2 Motivating Example and Problem Statement

2.1 The Generic Patient-Controlled Analgesia Pump Case Study

The Generic Patient Controlled Analgesic (GPCA) infusion pump project [10]
aims at developing a reference software model for PCA infusion pump systems
with which formal techniques can be performed to ensure the GPCA safety
requirements [12]. We focus on the core safety requirements in this case study
to demonstrate our causality analysis framework:

A bolus dose shall be given when requested by the patient, and when
the drug reservoir is empty and an infusion session is in progress, an
alarm shall be issued and the pump motor should be stopped.
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An infusion session is defined as the interval from the start of the pump motor
till its stop.

TASK: BolusReq TASK: EmptyRsvDetection

TASK: PlatformIndependent

TASK: PumpMotorCtr TASK: AlarmCtr

ACTUATOR: MOTOR ACTUATOR: ALARM

ENQ(Q1, BOLUS) ENQ(Q1, EMPTY)

DEQ(Q1, BOLUS) DEQ(Q1, EMPTY)

ENQ(Q2, BOLUS)
ENQ(Q3, EMPTY) /  
ENQ(Q3, NON-EMPTY)

DEQ(Q2, BOLUS) DEQ(Q3, EMPTY)

START ALARM

QUEUE: Q1

QUEUE: Q2 QUEUE: Q3

BOLUS

SENSOR: BOLUS_REQ SENSOR: EMPTY_RSV

EMPTY / NON_EMPTY

STOP
STOP

Fig. 1. Data flow of the GPCA

We implemented software that cap-
tures the requirements on an Atmel
SAM7X-EK development board [2], run-
ning the FreeRTOS real-time operating
system [3]. The development board is in-
terfaced to the sensors and actuators of
the Baxter PCA infusion pump hardware.
Sensor signals from the bolus request but-
ton and the empty reservoir detection
switch are captured through periodic sam-
pling. Instructions for the pump motor
to start and stop are delivered via pulse
width modulation. Alarms are signaled
with flashing LEDs in our experiments.

The FreeRTOS in our case study runs a
priority-based, preemptive scheduler. Five
tasks, each implemented with an indepen-
dent C function, communicate with each
other by sending and receiving messages in three message queues, Q1, Q2, and
Q3. Some tasks have individual local variables, which we deem as unknown to the
analysis due to our black-box assumption, but they do not share global variables
in our implementation. In this case study, we view each task as a component;
the terms task and component are used interchangeably.

The five tasks are summarized in Table 1. The Priority column indicates the
task priorities in addition to the system idle task’s priority of FreeRTOS. The
left (right, resp.) arrow means that the corresponding task reads (sends, resp.)
messages from (to, resp.) the queue. An event in the system is a single action
performed by a task. We attach each event with a timestamp, denoted as a
pair (e, t), where e is the event and t ∈ R≥0 is the timestamp. For example,
(alarm, 9760) represents an event where the AC task has raised an alarm, at
time 9760 ms since the system starts execution. The events we recorded for this
case study is summarized in Table 2. We assume it is known which task produces
which event. In particular, we assume we know whether an instance of the stop

event is produced by AC or PM .

Table 1. Tasks in FreeRTOS Implementation for GPCA

Task Name Abbreviation Period Priority Queues Accessed

PumpMotorCtr PM 300 ms +6 ← Q2

PlatformIndependent PI Aperiodic +5 ← Q1, → Q2, Q3

BolusReq BR 500 ms +4 → Q1

AlarmCtr AC 500 ms +3 ← Q3

EmptyRsvDetection ER 1000 ms +2 ← Q3
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Table 2. Events Recorded in GPCA Controller

Event Task Description

start PM The pump motor has been started.

stop PM or AC The pump motor has been stopped.

alarm AC The alarm has been fired.

enq(q, m) BR, ER, or PI Messagem has been put to queue q.

deq(q, m) PI , PM , or AC Messagem has been retrieved from queue q.

The data flow of the events in the system is depicted in Figure 1. The Bolus-
Req (BR) and EmptyRsvDetection (ER) tasks periodically check if there are
patient bolus request or empty/non-empty reservoir signals from sensors, respec-
tively; if there are, they put the messages to Q1. We do not consider faults in
these two tasks in our analysis. The aperiodic PlatformIndependent (PI) task is
triggered whenever there is a message sent to Q1. It moves the bolus request and
empty/non-empty reservoir messages to Q2 and Q3, respectively. The PumpMo-
torCtr (PM) task periodically checks if there are bolus request messages in Q2;
if there are, it will start the infusion session by keeping the pump motor running
for 30 periods (i.e., 9 seconds for each patient bolus request). The AlarmCtr
(AC) task periodically checks if there are empty reservoir messages in Q3; if
there are, it will raise an alarm and stop the pump motor. Each task has a
response time of 10 ms after a message is received. We assume here that the
queues in the system are reliable, i.e., no messages are lost/duplicated/altered
in a queue.

The task behaviors described above reflect our black-box assumption: the two
data flow paths shown in Figure 1 both pass through queue Q1 and the task PI,
yet we do not know whether there is fault propagation from the EMPTY RSV
sensor to the PM task, due to the assumption that PI is a black-box to the
analysis. (The dashed links inside PI in Figure 1 indicate unknown data flows.)
Essentially, this is what we intend to infer from the causality analysis.

With the recorded events, we express the GPCA safety requirement as the
following Metric Interval Temporal Logic (MITL) [1] property:

ϕS := �(0,∞)[enq(Q1, bolus) → ♦(0,650)[start∧
[�(0,9000)¬enq(Q1, empty) ∧ ♦(8990,9010)stop]∨
[�(0,9000) [enq(Q1,empty) → [♦(0,1050)alarm ∧ ♦(0,1050)stop]]]]].

(1)

The values in the formula are obtained from the system implementation. For
example, the value 650, indicating the maximal allowed delay (in milliseconds)
from the instance when a bolus is put to Q1 to the instance when the start

message is delivered by PM , is due to that (a) the aperiodic task PI has a worst
case delay of 10 ms to retrieve the message bolus from Q1, plus a possible 10 ms
delay due to preemption by PM ; (b) similarly a 20 ms worst case delay for PI
to move the bolus message to Q2; (c) since PM has a period of 300 ms, in
the worst case, it takes up to two periods of PM to read the message once it is
enqueued in Q2 (see Figure 3 in Subsection 5.2 for details), and (d) the worst
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case delay of the PM task is 10 ms. The rest of the time periods are analogously
specified. It is required that the behaviors of the tasks constitute a subset of the
behaviors specified by the system constraint ϕS , which is formally stated later
in Hypothesis 1 in Subsection 2.2.

A system execution is captured by collecting the events with their timestamps
by instrumenting the GPCA implementation. We assume in this paper that
recording is perfect, i.e., no events in the system are missing on a trace, and
each event on a trace actually happened at its recorded timestamp.

A trace is a set of timestamped events. For example, {(enq(Q1, bolus),
8500), (deq(Q1, bolus), 8502), (enq(Q3, empty), 8503), (deq(Q3, empty),
8701), (alarm, 9760), (stop, 9760)} is a trace with six events observed. The
events are naturally ordered by their corresponding timestamps. On this trace,
PI mistakenly put the bolus request message to the wrong queue with the wrong
message. AC reads the empty reservoir message but fails to alarm and stop

within its deadline. The system property ϕS is violated since there is no bolus
dose delivered to the patient after the bolus request event enq(Q1, bolus) (i.e.,
Equation (1)). So two faulty tasks, PM and AC, may have caused the system
property violation.

In the causality analysis problem, we would like to investigate which subset
of the faulty tasks, {PI}, {AC}, or {PI,AC}, caused the system property vio-
lation. We leave the details of the analysis to Section 5 but only show the result
here: both {PI} and {PI,AC} satisfy the counterfactual test for causality, so we
report the minimal subset {PI} as the cause for the system property violation.

2.2 The Causality Analysis Problem Definition

In this subsection, we abstract the problem illustrated by the example in Sub-
section 2.1 and provide the formal definition of the causality analysis problem.

Definition 1 (Trace). A trace of length n is a set of n timestamped events,
denoted {(e1, t1), . . . , (en, tn)}, such that t1 ≤ · · · ≤ tn.

A trace only contains a finite number of events. For time beyond tn, no events
happen in the system. We use logical formula to express component/system
behaviors. It is assumed that given a trace Tr, the semantics of the chosen logic
is two-valued: for any formula φ, either Tr |= φ or Tr �|= φ. In this paper, MITL
and first order logic (FOL) are used for component/system specifications.

Definition 2 (Constraint). Given a set E of events, a constraint is a logical
formula defined on E. In details, for MITL, E is the set of atomic propositions;
for an event e ∈ E, (Tr, t) |= e if and only if (e, t) ∈ Tr. For FOL, E is the set
of logical constants.

Definition 3 (Component). A component C = 〈IC , OC , ϕC〉 is a tuple where
the IC and OC are its set of input and output, respectively, such that IC∩OC = ∅,
and ϕC is a constraint defined on IC ∪OC .

The notion of the component input/output is general. In the GPCA case
study, the input and output for each component are the events it could receive
and send through the queues, respectively; in [26], the input and output are
values passing through component data ports.
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Definition 4 (System Definition). A system definition S = 〈C1, . . . , CJ 〉 con-
sists of a set of components.

The set of all events in the system is defined by ES =
⋃J

j=1 ICj ∪OCj , where
J is the number of components in the system.

Definition 5 (System Property). A system property ϕS for system definition
S is a constraint defined on the set ES of system events.

Hypothesis 1. There must be at least one component violation for a system
property violation, or equivalently,

∧J
j=1 ϕCj → ϕS .

Hypothesis 1 is the basis for the causality analysis. A violation to Hypothesis 1
implies a flawed system design, which is out of the scope of this paper.

Definition 6 (Violation). We say that a property ϕ is violated on trace Tr if
and only if Tr �|= ϕ. A system property violation is called a system failure. A
component property violation is called a component failure; in such cases, the
component is called faulty.

Definition 7 (Faulty Components). Given an observed trace Tr and a system
definition S on which a system property ϕS is violated, we define

F = {C | C is a component in S and Tr �|= ϕC} (2)

to be the set of faulty components for the violation of ϕS on Tr.

Consider a suspected subset C ⊆ F of faulty components. Replacing every
component in C with a correct one would result in an alternative system S′. Let

TRC = {tr | tr is a trace for S′, and
tr has the same system input as observed on Tr}

(3)

be the set of possible system traces for S′ when rerunning the system S′ with the
same system input as observed on Tr. The formal characterization of TRC is a
case-by-case analysis, for which we show with the GPCA case study in Section 5.
Based on TRC, several notions of causes can be defined.

Definition 8 (Contributory Cause [22]). A (non-empty) suspected subset C ⊆
F of faulty components is a contributory cause for the violation of a system
property ϕS on an observed trace Tr if and only if ∃tr ∈ TRC.tr |= ϕS .

Definition 9 (Main Contributory Cause/Necessary Cause [26,11]). A (non-
empty) suspected subset C ⊆ F of faulty components is a main contributory
cause for the violation of a system property ϕS on an observed trace Tr if and
only if ∀tr ∈ TRC.tr |= ϕS.

Definitions 8 and 9 bound the two extremes of defining necessary cause. Def-
inition 8 requires there exists at least one alternative system execution trace on
which the system failure disappears while Definition 9 requires so on all alterna-
tive system execution traces. In this work, we do not fix a causality definition,
but take it as a parameter of the causality analysis problem.

Definition 10 (Causality Analysis Problem Definition). Given a system defi-
nition S, a system property ϕS , and a trace Tr such that Tr �|= ϕS , let F be
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as defined in Equation (2). The causality analysis problem with respect to a
causality definition CD, is to identify the set

Culprit = {C ∈ 2F | C is a cause according to causality definition CD,

and no proper subset of C satisfies CD}.
(4)

We call the tuple 〈S, ϕS , T r, CD〉 an instance of the causality analysis prob-
lem. It can be seen from the causality definitions that, the reconstruction of the
set TRC of alternative system execution traces is at the heart of the causality
analysis. In [26] we have proposed an approach based on the transformation of
a causality analysis problem instance into an unsatisfiability checking problem
instance. In this paper we extend the technique to handle real-time systems
where a system execution trace is a set of events ordered by their timestamps,
and the system/component specifications are based on both the occurrences and
timestamps of events. In the following, we first show an overview of the causality
analysis framework in Section 3, and detail the techniques for causality analysis
in Section 4 with a case study in Section 5.

3 The Causality Analysis Framework

In a bird’s-eye view, the causality analysis process is conceptually divided into
four steps, as shown in Figure 2. The shaded ovals System Definition S, System
Property ϕS , observed Trace Tr with system failure, and Causality Definition CD
are the input to the analysis; the output is a set Culprit of Minimal Culprits
for the violation of ϕS on trace Tr with respect to the causality definition CD.
The intermediate artifacts, shown as unshaded ovals, and the four steps of the
analysis, shown as solid boxes, are discussed below.

Loop for each 
non-empty 

element in 2F

Minimal 
Culprits

Powerset 2F of 
Faulty Components

Reconstructed  
Set of Traces

Set of 
Culprits

1. Offline Analysis & 
Powerset Construction

2. Trace Reconstruction

3. Causality Analysis
 & Collecting Causes

4. Culprit
Minimization

Trace with 
System Failure

System 
Property

System 
Definition

Causality 
Definition

Causality Analysis Framework Overview

Fig. 2. The Causality Analysis Framework Overview
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Step 1. Offline Analysis & Powerset Construction. In this step, a sanity check
of whether a system property violation occurs is first performed. If not,
then there is no need for the causality analysis. Otherwise, we check
Hypothesis 1 defined in Subsection 2.2. When Hypothesis 1 holds, we
gather the set F of faulty components for the violation of ϕS on trace
Tr, and construct the powerset 2F of F .

Step 2. Trace Reconstruction. The trace reconstruction for the causality analysis
is based on the system specification, and parametric to the suspected
subset C ⊆ F of faulty components and the causality definition. This
step is at the core of the causality analysis, and we will discuss it in
Section 4.

Step 3. Causality Analysis & Collecting Causes. For each suspected subset C ⊆
F of faulty components, the causality analysis checks whether C is a
culprit according to the chosen causality definition CD. If yes, it is
collected for the subsequent culprit minimization; otherwise C is not a
cause for the violation of system property ϕS according to CD.

Step 4. Culprit Minimization. The last step of causality analysis is to check
the minimality of each collected culprit, according to Definition 4. Non-
minimal culprits are pruned for precise results of causality analysis.

4 Trace Reconstruction and Causality Analysis

The trace reconstruction step in the causality analysis is to identify the set TRC
of traces when the suspected subset C of faulty tasks in system S are replaced
with correct ones and the system is rerun with the same input as observed on
trace Tr. The main idea in obtaining TRC is to specify the logical constraint
ψ that exactly the traces in TRC satisfy. The constraint ψ is composed based
on (1) task constraints for correct tasks, (2) tasks constraints for faulty tasks,
(3) constraints on values observed on trace Tr, and (4) trace reconstruction rules.
With the constructed logical constraint ψ, the problem of checking of causality
based on Definition 8 (Definition 9, resp.) can be transformed into the problem
of satisfiability (unsatisfiability, resp.) checking, for which state-of-the-art solvers
exist [26].

In this section, we show the extension of the work presented in [26] to the case
where real-time systems are considered, i.e., traces are sequences of timestamped
events as in Definition 1, and system/task specifications are given as logical
constraints in either temporal logics or first order logic on events.

Given a causality analysis problem instance 〈S, ϕS , T r, CD〉, Step 1 of the
causality analysis framework is to identify the set F of faulty tasks according to
Definition 2. In Step 2, for each non-empty suspected subset C ⊆ F , a set TRC
of system traces is reconstructed, given that the faulty tasks in C are replaced
with good ones and the system S is rerun with the same input events. Each
task’s behavior in the system is determined by the trace reconstruction rules,
which indicate what constraint must be put on each task Cj in S, according to
whether the task is (1) non-faulty, (2) faulty but not suspected, and (3) faulty
and suspected. Informally, the three rules are summarized as follows.
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(R1) If Cj �∈ F , then it is deemed as a good task. In the trace reconstruction,
Cj ’s behavior is constrained by ϕCj , i.e., a correct task’s constraint.

(R2) If Cj ∈ F \ C, i.e., Cj is faulty but not in the consideration of being
suspected, then all output events produced by Cj on trace Tr are preserved
on any reconstructed traces.

(R3) If Cj ∈ C ⊆ F , then Cj is a faulty task that is replaced by a good one. In
this case, the trace reconstruction “removes” the events that should not
have occurred on the trace Tr, and “adds” those which must be produced
by Cj .

The logical constraint to express that an event e is observed at time t on the
trace Tr is expressed as

onTr(e, t) := ∃(e′, t′) ∈ Tr.e′ = e ∧ t′ = t. (5)

The constraint that all events task Cj produced on Tr are preserved on re-
constructed traces is specified with

κCj := ∀e ∈ OCj .∀t ∈ R≥0.[onTr(e, t)→ ∃(e′, t′).e′ = e ∧ t′ = t]. (6)

The constraint κCj means that, any execution trace that satisfies κCj must
have an event e′ which is the same as the e delivered at time t′ = t, for any
timestamped event (e, t) on Tr.

The task constraint of “removing” events from a trace in the trace reconstruc-
tion is done by adding more constraints to rule out traces where the events that
have to be removed occur. An event e must be removed in the trace reconstruc-
tion if (1) e is produced by a suspected faulty task Cj , and (2) there is no other
event on the trace that triggers the event e. The task constraint of “adding”
events that a faulty task Cj must have produced is specified by augmenting the
task constraint ϕCj to specify the allowed time ranges for output events from
Cj . The definitions of the “removing” and “adding” constraints are application
dependent. We defer the details to Subsection 5.3, and use ρCj and αCj for now
to represent the two constraints for “removing” and “adding”, respectively.

The conditions for the rules (R1)–(R3) are defined as

ξCj ,1 := ¬in(Cj ,F). (7)

ξCj ,2 := in(Cj ,F) ∧ ¬in(Cj , C). (8)

ξCj ,3 := ¬in(Cj , C). (9)

Here the in is the set membership relation defined as in(Cj ,F) :=
∨

C∈F C = Cj .
The task constraint for Cj in the trace reconstruction is then specified as

ψCj :=

⎧⎪⎨⎪⎩
ϕCj , if ξCj ,1,

κCj , if ξCj ,2,

αCj ∧ ρCj , if ξCj ,3.

(10)

Finally, it is required that exactly the set of observed system input events
on Tr occur in reconstructed traces. The set I of possible system input
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events is application dependent. For example, for the GPCA case study, I =
{enq(Q1, bolus), enq(Q1, empty), enq(Q1, non-empty)}. This constraint
is defined as

ι := ∀e ∈ I.∀t ∈ R≥0.[onTr(e, t)↔ ∃!(e′, t′).e′ = e ∧ t′ = t]. (11)

Here, the ∃! quantifier means “there exists one and only one.” The behavior
of the reconstructed system is then specified with the formula

ψ := ι ∧ ψC1 ∧ . . . ψCJ . (12)

Proposition 1. The formula ψ defined in Equation (12) defines the set TRC
of the possible system behaviors with the same input as observed on Tr, after
suspected tasks in C are replaced with correct ones. That is, TRC = {tr | tr |= ψ}.

The construction in this section is a combination of Steps 2 and 3 in the
causality analysis framework (cf. Figure 2) for a given suspected faulty subset
C. The formula ψ in Equation (12) characterizes the set of reconstructed traces,
whereas the satisfiability (unsatisfiability, resp.) result corresponds to whether
the subset C is a cause with respect to Definition 8 (Definition 9, resp.). Due to
Proposition 1, to check that the subset C is a cause according to Definition 8,
it suffices to check that ψ ∧ ϕS is satisfiable. To check that the subset C is a
cause according to Definition 9, it suffices to check that ψ∧¬ϕS is unsatisfiable.
State-of-the-art SAT/SMT solvers, e.g., Z3 [7], can be leveraged in solving the
causality analysis problem, as shown in our previous work [26].

5 The GPCA Case Study
Table 3. A Sample Trace for GPCA

ID Task Event Time (ms)

1 BR enq(Q1, bolus) 8500

2 PI deq(Q1, bolus) 8502

3 PI enq(Q2, bolus) 8503

4 PM deq(Q2, bolus) 8701

5 PM start 8702

6 ER enq(Q1, empty) 17000

7 PI deq(Q1, empty) 17004

8 PI enq(Q3, empty) 17005

9 AC deq(Q3, empty) 17007

10 AC alarm 17008

11 AC stop 17008

12 PM stop 17701

In this section, we use the GPCA case
study to illustrate how the causality
analysis problem is solved. We first
show a few informal examples, then
the formal definitions of the GPCA
system, and finally the analysis using
the causality analysis framework and
trace reconstruction techniques from
Sections 3 and 4.

A sample trace we will analyze is
shown in Table 3. The ID column
is added for the convenience of ref-
erence. The Task column indicates
which task has produced the corre-
sponding event. The Time column is the timestamp for the corresponding event.
On this trace, a bolus request is detected at 8500 ms, and an infusion session
starts at 8702 ms. An empty reservoir is detected at 17000 ms, and an alarm is
raised at 17008 ms, together with a stop event from AC which ends the infusion
session. The stop event from PM does not affect the pump operation in this
case.
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5.1 Informal Causality Analysis Examples

It can be easily verified that the trace shown in Table 3 satisfies the GPCA
safety property in Equation (1). Now we show the causality analyses via a series
of examples, based on variants of the trace observed in Table 3.

Example 1 (Faulty tasks, no system failure). Given a trace as observed in Ta-
ble 3, with Event 12 missing. In this case, PM is faulty by not sending the stop
event. However the system property is not violated since the AC task detects
an empty reservoir message and alarms and stops the pump motor.

According to Step 1 of the causality analysis framework, there is no need for
subsequent causality analysis.

Example 2 (Single faulty task caused system failure). Consider a trace where
only Event 1 and Event 2 in Table 3 are observed. In this case, the PI task
fails to move the bolus request event from Q1 to Q2, read by the PM task.
Subsequently the PM task does not perform any actions, since it does not know
there is a bolus request. In this case the PI task is faulty while PM is not.

Example 3 (Multiple faulty tasks jointly caused system failure). Consider the
trace in Table 3 with Events 3–5 and Events 10–12 missing. In this case, the PI
task is faulty by not moving the bolus request message to Q2. The AC task is
faulty by not delivering the alarm and stop events. However, replacing neither
the PI nor the AC task individually could make the system failure disappear.
Both PI and AC must be replaced with good ones for the system failure to
disappear.

Example 4 (Multiple faulty tasks, but only one caused system failure). In the
example in Subsection 2.1, a trace with six events {(enq(Q1, bolus), 8500),
(deq(Q1, bolus), 8502), (enq(Q3, empty), 8503), (deq(Q3, empty), 8701),
(alarm, 9760), (stop, 9760)} is shown. In this example, both PI and AC are
faulty. However AC’s faulty behavior would not have been triggered in the first
place if PI were not faulty, and thus should not be considered as a cause for
system failure. In the meanwhile, although it is the PM task’s job to send the
start event, it should not be the cause of system failure in this case either since
it is not a faulty task: it does not receive the bolus request message in the first
place, due to PI’s fault.

Example 5 (Multiple faulty tasks, but only one caused system property violation).
Consider the trace in Table 3 with only Events 1–9 observed. In this case, both
the AC and the PM tasks are faulty by not delivering the corresponding events.
In this case, if the AC task were not faulty, the system failure would disappear.

Examples 4 and 5 show the improvement in precision that we have achieved
using causality analysis: not all of the identified faulty tasks are the culprits for
the system failure. By ruling out the tasks which are not culprits, the subsequent
analysis for the system failure can be focused on the identified minimal culprits.
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5.2 Formal Definitions for GPCA System

We first define constraints ϕAC , ϕPI , and ϕPM for the three tasks that can fail.
We do not consider faults in BR and ER in this paper. The constraint for each
task consists of two parts:
(1) what would a task do when it reads a message from a queue, and
(2) when would a task read a message if there is one in the corresponding queue.

For Part (1), the AC task’s constraint is specified with

τAC := ∀(e, t).[e = deq(Q3, empty) →∃!(e′, t′).[e′ = stop ∧ t′ ≤ t + 10] ∧
∃!(e′′, t′′).[e′′ = alarm ∧ t′′ ≤ t + 10]].

(13)

It is interpreted as, as long as there is a deq(Q3, empty) event on the trace,
there must be a stop event within 10 ms and an alarm event within 10 ms.
Similarly, the PI task’s constraint is specified with

τPI := ∀(e, t).[[e = deq(Q1,bolus) → ∃!(e′, t′).[e′ = enq(Q2, bolus) ∧ t′ ≤ t + 10]] ∧
[e = deq(Q1, empty) → ∃!(e′, t′).[e′ = enq(Q3, empty) ∧ t′ ≤ t + 10]] ∧
[e = deq(Q1, non-empty) → ∃!(e′, t′).[e′ = enq(Q3, non-empty) ∧ t′ ≤ t + 10]]].

(14)

The PM task’s constraint is specified with

τPM := ∀(e, t).[e = deq(Q2,bolus) → ∃!(e′, t′).[e′ = start ∧ t′ ≤ t + 10 ∧
∃!(e′′, t′′).[e′′ = stop ∧ 8990 ≤ t

′′ − t
′ ≤ 9010]]].

(15)

For Part (2), the aperiodic task PI and the two periodic tasks PM and AC
have different behaviors when a message the task should read is present in the
corresponding queue. In the GPCA implementation, PI is set to preempt lower
priority tasks to process the message and put it to the corresponding queues.
This behavior is specified with the constraint γPI in Equation (16). The value
20 ms is due to the possible preemption of PI by the even higher priority PM .

γPI := ∀(e, t).[[e = enq(Q1,bolus) → ∃!(e′, t′).[e′ = deq(Q1, bolus) ∧ t′ ≤ t + 20]] ∧
[e = enq(Q1, empty) → ∃!(e′, t′).[e′ = deq(Q1, empty) ∧ t

′ ≤ t + 20]] ∧
[e = enq(Q1, non-empty) → ∃!(e′, t′).[e′ = deq(Q1, non-empty) ∧ t′ ≤ t + 20]]].

(16)

For periodic tasks AC and PM , when a message is present in a queue, it may
be processed nearly two periods later as illustrated in Figure 3 (for AC). AC
is dispatched at the beginning of each period, but can only execute in boxed
durations where the FreeRTOS schedules AC by switching it in and out. Sup-
pose there is a check function in the AC’s implementation to check if there is
an empty message in Q3. It may happen that the check function is executed at
the very beginning of one period, slightly before the message empty is put to
Q3 (in which case AC does not know there is a message empty during the rest
of the period); in the following period, the check function may be executed at
the very end of the period.

This scenario is the worst case for a periodic task to detect a message in a
queue. Therefore, the constraints for AC and PM are respectively:

γAC := ∀(e, t).[[e = enq(Q3, empty) → ∃!(e′, t′).[e′ = deq(Q3, empty) ∧ t
′
< t + 1000]] ∧

[e = enq(Q3, non-empty) → ∃!(e′, t′).[e′ = deq(Q3, non-empty) ∧ t′ < t + 1000]]].
(17)
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Fig. 3. Illustration of Message Processing for Periodic Tasks in FreeRTOS

γPM := ∀(e, t).[e = enq(Q2, bolus) → ∃!(e′, t′).[e′ = deq(Q2, bolus) ∧ t′ < t + 600]]. (18)

Notice that we have asymmetric treatments on the response time requirements
for Part (1) and Part (2) of a task’s constraint. For Part (1), a hard response
time of 10 ms is imposed; for Part (2), the task scheduling in FreeRTOS is
considered. This is due to the view that for Part (1), a task knows that a message
has arrived and is thus required to deliver the corresponding event within the
imposed response time; Part (2) of the constraint reflects the fact that a task’s
worst case delay to detect a message in a queue.

With Equations (13)–(18), the complete task constraints are defined as:

ϕAC := τAC ∧ γAC , (19)

ϕPI := τPI ∧ γPI , (20)

ϕPM := τPM ∧ γPM . (21)

The GPCA system is then defined as S = 〈BR,ER,AC, PI, PM〉. For each task
C, its sets IC and OC of input/output events, as well as its constraint ϕC , are
shown in Table 4.

Table 4. Tasks in GPCA Case Study

Task C Input IC Output OC ϕC

BR {enq(Q1, bolus)} True
ER {enq(Q1, empty), enq(Q1, non-empty)} True
AC {deq(Q3, empty), deq(Q3, non-empty)} {alarm, stop} ϕAC (19)

PI {deq(Q1, *)} {enq(Q2, bolus),
ϕPI (20)

enq(Q3, empty), enq(Q3, non-empty)}
PM {deq(Q2, bolus)} {start, stop} ϕPM (21)

5.3 Formal Causality Analysis

An instance of the causality analysis problem is defined by a tuple 〈S, ϕS , T r, CD〉.
Now we show the application of the causality analysis framework and trace re-
construction technique to solve the causality analysis problem in Example 4.

The system property is defined as in Equation (1). The trace is Tr =
{(enq(Q1, bolus), 8500), (deq(Q1, bolus), 8502), (enq(Q3, empty), 8503),
(deq(Q3, empty), 8701), (alarm, 9760), (stop, 9760)}. The causality defini-
tion CD is the main contributory cause in Definition 9. In Step 1 of the causal-
ity analysis frame work, the set F = {PI,AC} of faulty tasks is identified.
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In Step 2, for each non-empty subset C ⊆ F , the formula ψ in Equation (12) is
constructed according to the Equations (5) through (12) and information from S,
Tr, C and F . We now discuss the construction for the two application dependent
constraints ρCj and αCj not discussed in Section 4.

Defining “Removing” and “Adding” Constraints. As discussed in Sec-
tion 4, one condition for an event to be removed from a trace is that it is not
triggered by any other events. The trigger relation between timestamped input
and output for a task is derived from the task’s constraint. For example, the
constraint for AC specifies that the stop event and alarm event must be de-
livered within 10 ms once the enq(Q3, empty) event is read from queue Q3,
as defined in Equation (13). In this case, the trigger relation is expressed as

trigAC := {((deq(Q3, empty), t), (stop, t′)) | for all t′ ≤ t+ 10}
∪ {((deq(Q3, empty), t), (alarm, t′)) | for all t′ ≤ t+ 10}.

(22)

Similarly, the trigger relations for PI and PM are defined as follows.

trigPI := {((deq(Q1, bolus), t), (enq(Q2, bolus), t′)) | ∀t′ ≤ t+ 10}
∪ {((deq(Q1, empty), t), (enq(Q3, empty), t′)) | ∀t′ ≤ t+ 10}
∪ {((deq(Q1, non-empty), t), (enq(Q3, non-empty), t′)) | ∀t′ ≤ t+ 10}.

(23)

trigPM := {((deq(Q3, empty), t), (start, t′)) | ∀t′ ≤ t+ 10}. (24)

The constraint for traces where the events produced by a faulty task Cj are
removed is specified with

ρCj := ∀e ∈ OCj .∀t ∈ R≥0.[[¬∃(e′, t′).((e′, t′), (e, t)) ∈ trigCj ] →
¬∃(e′′, t′′).e′′ = t ∧ t′′ = t].

(25)

Informally, this constraint means that if there is no trigger for event e at time
t, then it should not occur on any reconstructed traces.

For “adding” events to a trace, a task must only deliver output events when it
is activated by the FreeRTOS scheduler. This piece of information is unavailable
to offline analysis. We assume that the FreeRTOS scheduler would schedule each
task the same as on the observed trace Tr. The instance at which an event can
be produced on a reconstructed trace is then limited both by the task response
time and its activation time. For example, if AC reads the empty message at
time 8701 ms, and it is observed on Tr that AC is active in time ranges [8700 ms,
8703 ms], [8709 ms, 8712 ms], etc., then in addition to the 10 ms deadline to
deliver the events alarm and stop in the range [8701 ms, 8711 ms], AC can
only produce the events during the ranges of [8701 ms, 8703 ms] or [8709 ms,
8711 ms]. The constraint for this requirement is obtained by augmenting the task
constraint with the time information. For example, for AC, the specification is

αAC := γAC ∧ ∀(e, t).[e = deq(Q3, empty) → ∃(e1i , t1i ), (e1o, t1o), (e2i , t2i ), (e2o, t2o) ∈ Tr.

[e1i = e2i = in(AC) ∧ e1o = e2o = out(AC) ∧ t ≤ t1o ∧ t ≤ t2o ∧
¬∃(e′i, t′i), (e′o, t′o) ∈ Tr.[[e′i = in(AC) ∧ t1i < t′i ≤ t1o] ∨ [e′o = out(AC) ∧ t1i ≤ t′o < t1o]] ∧
¬∃(e′i, t′i), (e′o, t′o) ∈ Tr.[[e′i = in(AC) ∧ t2i < t′i ≤ t2o] ∨ [e′o = out(AC) ∧ t2i ≤ t′o < t2o]]] →
∃!(e1, t1).[e1 = stop ∧ [max(t, t1i ) ≤ t1 ≤ min(t + 10, t1o)]] ∧
∃!(e2, t2).[e1 = alarm ∧ [max(t, t2i ) ≤ t2 ≤ min(t + 10, t2o)]]].

(26)
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The third and fourth lines of Equation (26) constraint the pairs (e1i , e
1
o) and

(e2i , e
2
o) to bound single time chunks of execution for task AC (i.e., a single box

in Figure 3). The constraint αAC means, if an event e = deq(Q3, empty) at
time t is on the reconstructed trace, then its corresponding events (stop and
alarm) must be produced by AC within the 10 ms deadline, as well as when
AC is active. αPM and αPI can be similarly defined.

Causality Analysis Result. For the constructed constraint ψ for each case, we
have manually proved that ψ∧¬ϕS is unsatisfiable for the cases when C = {PI}
or C = {PI,AC}, while it is satisfiable for C = {AC}. This result shows that
both {PI} and {PI,AC} are culprits, according to the main contributory cause
definition (Definition 9). These two subsets are collected as the set of culprits
in Step 3 of the causality analysis framework. In Step 4, the two culprits {PI}
and {PI,AC} are minimized to be {PI} only. This result is consistent with our
intuition in that it is the PI task’s fault in the first place to put a bogus empty
reservoir message to Q3, which triggers AC’s fault.

6 Discussion

FreeRTOS Scheduling in Trace Reconstruction. When defining the
“adding” constraint, we have assumed that the FreeRTOS scheduler would sched-
ule all the tasks the same as on the observed trace during trace reconstruction.
This assumption must be made due to the unavailability of FreeRTOS scheduling
information should the system be rerun. Without this assumption, the analysis
would have to include the FreeRTOS scheduler as part of the system and model
it (or even the entire FreeRTOS operating system) as a component too. This is
by itself a challenging task and is beyond the scope of this paper.

Causality Analysis vs. Fault Diagnosis. Unlike many approaches to fault
diagnosis, we address the case of black-box components [25], in which internal
flows of information between component input and output are unknown. In this
case, techniques based on computing fault propagation paths lead to an over-
approximation of cause-effect chains. The causality analysis we proposed in the
paper improves the precision of this over-approximation.

Alternative Ways to Trace Reconstruction. Our causality analysis is based
on counterfactual reasoning [16], where the system behavior is reevaluated on
the possible alternative traces. A commonly used criterion for constructing al-
ternative traces is to measure the similarity between the reconstructed traces
and the actual observed one. Causality analysis is only performed on alternative
traces which are similar to the observed trace. However, the notion of similarity
is subjective, reflected by the rules used for the trace reconstruction.

In our approach, the trace reconstruction rules (R1)–(R3) represent a view at
the task level : a faulty task is replaced with a good one, and all its events, except
for system inputs, are reconstructed via the “removing” and “adding” operations.
In contrast, one could perform trace reconstruction at the finer grained event
level : the trace under analysis is scanned through until the first occurrence ef of
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an event that leads to task failure is found, and trace reconstruction is started
only from that particular occurrence; every event that happens before ef is kept
the same as observed.

Compared to the set TRt
C of reconstructed traces produced by task-level trace

reconstruction, the event-level trace reconstruction could produce a smaller set
TRe

C ⊆ TRt
C of tracesmore similar to the observed trace. Using the finer-grained

event-level trace reconstruction, it is comparatively more likely to establish a
necessary cause (Definition 9), since less traces have to be examined for the
“for all” quantification to be satisfied. On the other hand, it is comparatively
less likely to establish a contributory cause (Definition 8), since less possible
alternative traces can be used to satisfy the “exists” quantification.

Full Observability. Full observability involves two assumptions: (1) we are able
to put probes at the interfaces of components so that each event is observable,
and (2) the recording facility is capable of capturing all events at component
interfaces. The first assumption is by our consideration of black-box components,
where internal events within a component is not observable, but the events at
its interface are observable. Violations to the second assumption may lead to
undetected faulty components, yielding a smaller set F of faulty components.
This may possibly lead to spuriously identified culprits.

Causality Definitions. Several causality definitions have been discussed in
previous work [13,24,11,15,4,26], all based on the notion of counterfactual rea-
soning [16]. We in this work used the main contributory cause (Definition 9),
but showed that the causality analysis framework is parametric to the causal-
ity definition of choice. The capability of using different causality definitions
in the analysis increases the flexibility for the investigator to make reasonable
arguments.

The definitions of contributory and main contributory causes express different
levels of necessity needed to judge for the cause. If the sufficiency of causality
definition is of concern, one could use alternative trace reconstruction rules and
causality definitions.

Scalability.While we are working on larger case studies to gain empirical results
on the scalability of our approach, we foresee two limitations. First, for a given
subset C of suspected faulty components, the complexity of computing whether C
is a necessary cause is coNP-complete for propositional logic [26] and undecidable
in general for first order logic [18]. This limits the scalability of our approach
to the capability of state-of-the-art SAT/SMT solvers, such as Z3 [7]. Second,
we have shown in the paper the direct computation of the minimal culprit,
which requires the explicit generation of the powerset of F , limiting the possible
number of faulty components that can be analyzed practically. Further studies
on algorithms exploiting the underlying structure of the sets of reconstructed
traces could potentially speed up the explicit computation.
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7 Related Work

Halpern and Pearl [13] were among the first to introduce the counterfactual rea-
soning for causes into the engineering domain. Some later development [15,4] is
based on the notions in [13]. In this work, we formally characterized the set of
reconstructed traces, and showed that causality can be defined based on the set
of reconstructed traces. One advantage of our work is the explicit treatment of
real-time systems, which is not presented in previous work on causality analy-
sis. Timestamps are considered as variables so that constraints on timestamped
events symbolically characterize sets of traces that satisfy the constraints.

The treatment of trace reconstruction is another difference between our work
and previous ones [15,11]. In [15], each occurrence of an event on a trace is
represented by a boolean variable e, indicating whether the event is present on
the trace (e is true) or not (e is false). The underlying component behaviors
are not considered in [15]. Similarly, in [11], the trace reconstruction rules place
a more rigid requirement than in this paper, which may occasionally lead to
undesired analysis result, as we have discussed in [26]. On the other hand, the
work in [11] in addition defines horizontal causality between one component’s
failure and another’s, which is not discussed in any other work in causality
analysis. Also, our Hypothesis 1 is due to [11].

The result of causality analysis naturally provides an explanation to the sys-
tem failure: which components’ faulty behaviors are the causes to the system
property violation. The work in [4] provides an application in explaining coun-
terexamples from formal verification of system properties specified in linear tem-
poral logics (LTL) [20]. We believe the approach in [4] can be extended to the
setting in this paper.

8 Conclusion

We proposed the causality analysis problem for black-box component-based sys-
tems. By using causality analysis we are able to establish causal relationship
between component failures and system failure. We provided a formal analysis
framework to solve the causality analysis problem, and detailed the trace recon-
struction rules for the analysis for real-time systems. We illustrated our approach
with the GPCA case study. In the future, we are planning to enhance the ap-
plication of the analysis by providing tool support for safety-critical systems in
the medical device domain.

Acknowledgement. We would like to thank FDA researchers Paul L. Jones
and Yi Zhang for their motivating discussions on the causality analysis prob-
lem and help in explaining infusion pumps and the GPCA safety requirement
document [12].
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Abstract. Runtime verification is a formal technique used to check
whether a program under inspection satisfies its specification by using
a runtime monitor. Existing monitoring approaches use one of two ways
for evaluating a set of logical properties: (1) event-triggered, where the
program invokes the monitor when the state of the program changes,
and (2) time-triggered, where the monitor periodically preempts the pro-
gram and reads its state. Realizing the former is straightforward, but the
runtime behaviour of event-triggered monitors are difficult to predict.
Time-triggered monitoring (designed for real-time embedded systems),
on the other hand, provides predictable monitoring behavior and over-
head bounds at run time. Our previous work shows that time-triggered
monitoring can potentially reduce the runtime overhead provided that
the monitor samples the program state at a low frequency.

In this paper, we propose a hybrid method that leverages the benefits
of both event- and time-triggered methods to reduce the overall monitor-
ing overhead. We formulate an optimization problem, whose solution is a
set of instrumentation instructions that switches between event-triggered
and time-triggered modes of monitoring at run time; the solution may
indicate the use of exactly one mode or a combination of the two modes.
We fully implemented this method to produce instrumentation schemes
for C programs that run on an ARM Cortex-M3 processor, and experi-
mental results validate the effectiveness of this approach.

1 Introduction

Runtime verification [5, 19, 26] is a technique, where a monitor checks at run
time whether or not the execution of a system under inspection satisfies a given
correctness property. The main challenge in augmenting a system with runtime
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time

- critical event

- monitor invocation (ET)

- monitor invocation (TT)

frequent monitor

activity

1 ni j

- ‘redundant’ sample

- mode switch (ET to TT)

- mode switch (TT to ET)

(a) Event-triggered monitoring.
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(b) Time-triggered monitoring.

time1 ni j

(c) Hybrid monitoring.

Fig. 1. Comparing different methods of monitoring

verification is to contain its runtime overhead. Most monitoring approaches in
the literature are event-triggered (ET), where the occurrence of a new (critical)
event (e.g., change of value of a variable) triggers the monitor to verify a set
of logical properties. For example, in the timing diagrams in Figure 1(a), the
dots 1 through n along the timeline represent the critical events that occur for
an execution trace of the program under scrutiny at run time. The calls to the
monitor are added as instrumentation instructions in the program. As shown
in the figure, there is a burst of events in this execution trace from event i to
event j. The frequent monitor invocations that occur from i to j leads to a
burst of monitoring, which causes high execution overhead and unpredictability
of program behavior.

In [2,3], we introduced a time-triggered (TT) method that makes the runtime
overhead controllable and predictable, and makes monitoring tasks schedulable.
In this method, a monitor samples the state of the program in periodic time in-
tervals. The period, known as the sampling period (SP) is such that the monitor
misses no critical events. Time-triggered monitoring is especially desirable for
designing real-time embedded systems, where time predictability plays a cen-
tral role. Figure 1(b) shows the interactions that occur between the program
and a TT monitor. To decrease the sampling frequency and thus decrease the
overhead, we introduced a technique, where the program stores critical events
in a history buffer and the monitor reads this buffer to evaluate properties with
respect to all state changes stored in the history [2, 3]. From the figure, it is
evident that the monitoring activity between events i and j is significantly less
than what an event-triggered monitor would require. However, for the sampling
period adopted in this example, there are some ‘redundant’ samples that the
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monitor takes; a ‘redundant’ sample is an invocation of the monitor, where there
are no events to process in the buffer. The dashed ovals in Figure 1(b) mark
the redundant samples in this example. Although our goal in [2, 3] was tack-
ling the unpredictability of runtime overhead, we observed that time-triggered
runtime verification (TTRV) may also reduce the cumulative runtime overhead
effectively.

From Figures 1(a) and 1(b), it is evident that both event- and time-triggered
monitoring techniques have some advantages and disadvantages with respect to
the monitor’s execution overhead. Event-triggered monitoring tends to be ad-
vantageous in situations, where critical events occur sparsely since the monitor
is active only when the program encounters a critical event; time-triggered mon-
itoring tends to be better when many critical events to process within a short
time frame.

With this motivation, in this paper, we propose a novel technique based on
static analysis that exploits the benefits of both ETRV and TTRV to reduce the
runtime overhead, which we call hybrid runtime verification (HyRV). Our goal
is to supply a program under scrutiny with a monitor that supports both ET
and TT modes of operation. The program switches from one mode to another
at run time depending upon the current execution path. HyRV automatically
obtains the locations to switch modes in the program by solving an optimization
problem; this method accounts for all monitoring and switching costs in terms
of execution time overhead. The main challenge in formulating the optimization
problem is threefold:

1. determining the precise timing behaviour of the program under inspection,
2. identifying the overhead of all required activities for implementing an ET

or TT monitor (e.g., cost of monitoring mode switching, sampling, monitor
invocation),

3. identifying the execution subpaths that are likely to be suitable for ET and
TT monitoring modes.

The solution to the problem is an instrumentation scheme for a program
that may switch monitoring modes at runtime. For instance, in Figure 1(c),
the reduction in monitoring activity will likely reduce the overall monitoring
execution overhead. Obviously, using hybrid monitoring will incur overhead costs
in performing mode switches. In this example, a mode switch occurs right before
i and right after j to switch from ET to TT and TT to ET monitoring modes,
respectively.

We implemented this technique in a toolchain that leverages static analysis
techniques and integer linear programming (ILP) to solve the optimization prob-
lem. The input to our toolchain is a C program and a set of variables to monitor.
The toolchain outputs the program source code augmented with the instrumen-
tation scheme that may toggle the monitoring mode at runtime to reduce the
monitoring overhead. Currently, our toolchain does not include static analysis of
library calls. The results of our experiments on a benchmark suite for real-time
embedded programs strongly validate the effectiveness of our technique.



Reducing Monitoring Overhead 307

Organization. The rest of the paper is organized as follows. Section 2 describes
the concepts of ETRV and TTRV. Section 3 introduces the HyRV optimization
problem. We analyze the results of our experiments in Section 4. Section 5 dis-
cusses the related work. Finally, in Section 6, we make concluding remarks and
discuss future work.

2 Background

Let P be a program under inspection and Π be a logical property (e.g., in LTL),
where P is expected to satisfy Π. Let VΠ denote the set of variables that par-
ticipate in Π. In event-triggered runtime verification (ETRV), the instrumented
version of P invokes the monitor to evaluate Π whenever the value of some
variable in VΠ changes.

In time-triggered runtime verification (TTRV) [2, 3], a monitor samples the
value of variables in VΠ periodically and evaluates Π. Accurate reconstruction of
states of P between two consecutive samples is the main challenge in using this
mechanism; e.g., if the value of a variable in VΠ changes more than once between
two samples, then the monitor may fail to detect violations of Π. TTRV usually
leverages control-flow analysis to reconstruct the states of P .

To ensure that the behaviour of a time-triggered monitor is correct, the mon-
itor must sample at a ‘safe’ rate determined by statically analyzing P ’s control-
flow graph:

Definition 1. The control-flow graph (CFG) of a program P is a weighted di-
rected simple graph CFGP = 〈V, v0, A, w, vf 〉, where:

– V : is a set of vertices, each representing a basic block of P . Each basic block
consists of a sequence of instructions in P .

– v0: is the initial vertex with in-degree 0, which represents the initial basic
block of P .

– A: is a set of arcs (u, v), where u, v ∈ V . An arc (u, v) exists in A, if and
only if the execution of basic block u immediately leads to the execution of
basic block v.

– w: is a function w : A → N, which defines a weight for each arc in A. The
weight of an arc is the best-case execution time (BCET) of the source basic
block.

– vf : is a dummy vertex which acts as final vertex. It has incoming arcs from
all actual final vertices. This helps in simplifying analysis by allowing us to
easily consider weight of final vertices.

For example, consider the C program in Figure 2 [2]. Figure 3(a) shows the
resulting CFG assuming that the BCET of each line of code is one time unit.
Vertices of the graph in Figure 3 list the corresponding line numbers of the C
program in Figure 2.

To identify the sampling period that a monitor can accurately reconstruct
program states between two samples, we modify CFGP as follows:
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1 sc an f ( ”%d” , &a ) ;
2 i f ( a % 2 == 0 ) {
3 p r i n t f ( ”%d i s even” , a ) ;
4 } e l s e {
5 b = a / 2;
6 c = a / 2 + 1;
7 p r i n t f ( ”%d i s odd” , a ) ;
8 }
9 d = b + c;

10 end program

Fig. 2. A simple C program

Step 1: Identify Critical Vertices
We ensure that each critical instruction (i.e., an instruction that modifies a vari-
able in VΠ) is in a basic block that contains no other critical instructions. We
refer to such a basic block as a critical basic block or critical vertex. For example,
in Figure 2, if variables b, c, and d are in VΠ, then lines 5, 6, and 9 are critical
instructions. Since instructions in lines 5 and 6 are critical and they both reside
in basic block c, we split c into c1 and c2 as shown in Figure 3(b); the highlighted
vertices in the figure denote the critical basic blocks.

Step 2: Calculate the Longest Sampling Period
As mentioned earlier, the main challenge in using TTRV is accurate program
state reconstruction. To preserve all critical program state changes, the monitor
must sample at a rate that can capture all possible critical state changes of P
at run time. The corresponding sampling period is called the longest sampling
period (LSP). Definition 2 formally defines LSP.

Definition 2. Let CFG = 〈V, v0, A, w〉 be a control-flow graph; Vc ⊆ V be the
set of vertices that correspond to critical basic blocks of CFG; and Πc be the set
of paths 〈vh → vh+1 → · · · → vk−1 → vk〉 in CFG such that vh, vk ∈ Vc and
vh+1, . . . , vk−1 ∈ V \Vc. The longest sampling period (LSP) for CFG is

LSPCFG = min
π∈Πc

⎧⎪⎪⎨⎪⎪⎩
∑

(vi,vj)∈A
vi,vj∈π

w(vi, vj)

⎫⎪⎪⎬⎪⎪⎭
Intuitively, the LSP is the minimum timespan between two successive changes

of any two variables in VΠ. This means that the minimum distance between all
pairs of critical vertices in CFG is the LSP. For example, the LSP of the CFG
shown in Figure 3(c) is LSP = 1, as indicated in the figure. All property viola-
tions can be detected if the monitor samples with a period of LSP [2].

Step 3: Increase the Sampling Period Using Auxiliary Memory
To increase the longest sampling period (and, hence, decrease the involvement of
the monitor), we use auxiliary memory to buffer critical state changes between
two consecutive samples. Precisely, let v be a critical vertex in a control-flow
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Fig. 3. Steps for obtaining optimized instrumentation and sampling period

graph, CFG , where critical instruction inst in v changes the value of a variable
a ∈ VΠ. We insert an instruction inst ′ : a′ ← a immediately following inst , where
a′ is an auxiliary memory location, to the sequence of instructions corresponding
to vertex v. After instrumenting (i.e., adding inst ′) v, v is no longer a critical
basic block (i.e., v ∈ V \Vc) because the added instruction guarantees that
the monitor will observe this change when it processes the history stored in
auxiliary memory. For example, instrumenting vertex c2 in Figure 3(c) by adding
an instruction of the form ‘ch = c’ directly after line 6 of the program results
in the CFG shown in Figure 3(d). Instrumenting the critical instruction in c2
effectively increases the LSP to 3 because of the buffered event. The maximum
violation detection latency (i.e., the time elapsed between the occurrence of a
property violation and the detection of the violation) of Π, the availability of
auxiliary memory and other system constraints limit the number of times we
can apply step 3 to increase the LSP.

3 Hybrid Event-Triggered and Time-Triggered Runtime
Verification

In this paper, our goal is to select the monitoring scheme that minimizes the ex-
pected total overhead incurred from executing the monitor. In order to formally
introduce the problem statement, we need to define the underlining monitoring
overhead cost model.

3.1 Overhead Runtime Costs

Broadly, we classify the overhead costs incurred from monitoring into three cat-
egories:
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– Cevent : the cost incurred to handle each critical event (i.e., in TT mode, this
includes the costs of writing and retrieving the history, and the property
evaluation; in ET mode, this includes calling the monitor and the property
evaluation),

– Cswitch : the cost incurred from switching between ET and TT modes and
vice versa, and

– Csample : the cost incurred from sampling in TT mode.

To derive expressions for the monitoring overhead, the cost of monitoring is
broken down into five elementary cost values, which capture the costs incurred
from performing specific interactions between the program and the monitor:

– cET : cost of invoking monitor to check a single critical event in ET mode
– chist: cost of saving a critical event into the history buffer in TT mode
– cTT : cost of processing the history buffer at a sample in TT mode
– cE→T : cost of a switch from ET mode to TT mode
– cT→E : cost of a switch from TT mode to ET mode

Note that these costs are derived in terms of best-case execution time of the
corresponding instructions. In particular, we calculate these costs in the same
fashion we obtain the arc weights of a control-flow graph (see Definition 1).

3.2 Problem Definition

Let G = 〈V, v0, A, w, vf 〉 be the control-flow graph of program P and Vc ⊆ V
be the set of critical vertices after computing the longest sampling period LSP
through application of 3 steps given in Section 2. We are also given five el-
ementary costs cET , chist, cTT , cE→T , and cT→E as defined in Subsection 3.1.
Assuming all execution paths in G are equally likely, our goal is to find a HyRV
monitoring scheme M , such that Mo(G) (monitoring overhead of M) is mini-
mum. A HyRV monitoring scheme is

M : V → {0, 1} (1)

Where 0 denotes that vertex should be monitored using ET monitor whereas
1 indicates TT monitor should be used to monitor the vertex. Note that to
uniquely determine the location of a switch, we take domain of V rather than
just Vc. For a given path π = v0 → v1 → · · · → vf of G, the overhead of a
monitoring scheme is defined as:

Mo(π) =
∑
v∈Vc

[cET · (1−M(v)) + chist ·M(v)]

+
∑

(v1,v2)∈A

[cE→T · (1−M(v1)) ·M(v2) + cT→E ·M(v1) · (1−M(v2))]

+
∑

δ=〈vi→...→vj〉,
δ∈Δπ

[
cTT ·

(
�
∑k=j

k=i w(vk)

LSP
�
)]

(2)
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Where Δπ is set of longest subpaths of π whose vertices are monitored using TT
scheme. Three sums in equation 2 correspond to Cevent, Cswitch, and Csample

costs respectively. Let Π denotes set of all execution paths of CFG G, the over-
head of a monitoring scheme M for program P with CFG G is:

Mo(G) =
∑
π∈Π

Mo(π) (3)

3.3 Complexity Analysis

We believe that finding the monitoring scheme 1, which minimizes the over-
head cost (Equation 3) for a given CFG, requires knowledge of execution paths
of the CFG. This is because depending upon what had happened on a path it
may not be beneficial to switch to the optimal monitoring scheme for the rest
of the path. Such an interference is not only present in an execution path but
also among interacting paths. To illustrate this further consider Figure 4. In an
optimal solution, the distribution of critical events on the path c� d affects the
decision about the monitoring mode (i.e., TT or ET) for vertices on the path
� a and vice-versa. It may not be correct to choose optimal strategy for the
paths � a and c� d separately if it causes switching on edge (a, c), and the cost
of this switching overruns the benefit gained by choosing local optimal solutions
for the two paths. This causes intra-path interference among vertices. Note that
monitoring mode decision about vertices on the path � b is influenced by choice
of monitoring mode for virtices on the path c� d which in turn gets affected by
events on the path � a. This results into inter-path interference among inter-
secting paths. The presence of intra- and inter-path interference among vertices
indicates that local optimization cannot guarantee overall optimal solution for
a given CFG, and all execution paths should be analyzed. However, the pres-
ence of unbounded loops makes analysis of all execution paths impossible. Also,
even in the absence of unbounded loops, a general CFG can have exponentially
many execution paths. This makes the problem of finding the optimal solution
intractable.

In order to tackle the high computational complexity of the problem and to
make this technique practical, we introduce a heuristic that aims to return a
monitoring scheme whose monitoring overhead is equal to or better (i.e. lower)
than exclusively in ET or TT schemes. We formulate an integer linear program
(ILP) as a heuristic for this problem. In order to make this heuristic reflect
the realities of the program without computing all execution paths, we assume
that function F : (u, v) → N, (u, v) ∈ A, u, v ∈ V is provided along with CFG
of a program P . F(u, v) defines the expected number of times P will execute
the basic block corresponding to v immediately after executing the basic block
corresponding to u. Figure 5 illustrates a CFG , where the critical vertices are
highlighted. The set of numerical values within parentheses defines the function,
F(u, v). We note that this function can be evaluated using standard techniques
such as program profiling and symbolic execution. The suboptimality stems from
the division of the program into subpaths to estimate the monitoring cost and



312 C.W.W. Wu et al.

a b
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e f

Fig. 4. Intra- and inter-path interference among vertices

the use of function F which may not represent correct system’s behaviour. Com-
puting function F with high accuracy is desirable because even a small reduction
in overhead will have large benefit in the long run of a monitor.

For the rest of this paper, let CFG = 〈V, v0, A, w, vf ,F〉 be a control-flow
graph corresponding to a program P . Each vertex corresponds to a critical basic
block containing one critical instruction. The definitions of V , v0, A, w, and vf

correspond to the Definition 1 (see Figure 3(b) for an example).

3.4 The Optimization Problem as an Integer Linear Program

The ILP problem is of the form:⎧⎨⎩
Minimize c.z

Subject to A.z ≥ b

where A (a rational m × n matrix), c (a rational n-vector) and b (a rational
m-vector) are given, and z is an n-vector of integers to be determined. In other
words, we try to find the minimum of a linear function over a feasible set defined
by a finite number of linear constraints. It can be shown that a problem with
linear equalities and inequalities can always be put in the above form, implying
that this formulation is more general than it might look.

Objective Function. The objective function for our ILP model is:

minimize (Cevent + Cswitch + Csample) (4)

We now describe how we map the optimization objective (Equation 4) by in-
troducing ILP variables and computing each of three costs in terms of these
variables and given elementary costs for a CFG.
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ILP Variables. We associate two binary variables xv and yv for each v ∈ V
in CFG . If xv = 1, then the monitor will operate in ET mode whenever the
corresponding basic block executes, and if yv = 1, the monitor will operate in
TT mode whenever the program is executing the basic block. The following
constraint expresses the mutual exclusivity of monitoring modes for v ∈ V :

xv + yv = 1 (5)

Constraint of Handling Critical Events. Equation 6 expresses the cost
incurred at each critical event in P :

Cevent =
∑
v∈Vc

∑
(u,v)∈A
u∈V

[F(u, v) · (cET · xv + chist · yv)] (6)

where Vc ⊆ V is the set of nodes that correspond to the critical basic blocks
in CFG . The number of times that P will transit from the set of nodes u to
v, where (u, v) ∈ A, determines the expected number of times that the basic
block corresponding to v will execute. Equations 5 and 6 guarantee that the cost
incurred for the critical event in v is exclusively cET or cTT if the monitor is
operating in ET or TT mode at that point in the program, respectively.

Constraints of Switching Monitoring Mode. The following equation ex-
presses the cost of switching between ET and TT modes:

Cswitch =
∑

(v1,v2)∈A
v1,v2∈V

[F(v1, v2) · (cE→T · xv1 · yv2 + cT→E · yv1 · xv2)] (7)

There exists a mode switch between basic blocks v1 and v2 when xv1 = yv2 = 1
or yv1 = xv2 = 1. The former case implies that the monitor switches from ET
mode to TT mode and the latter case implies that the monitor switches from
TT mode to ET mode. Equation 7 is non-linear; to linearize this expression,
we introduce the binary variables pv1,v2 , qv1,v2 , rv1,v2 , and sv1,v2 and rewrite
Equation 7 as:

Cswitch =
∑

(v1,v2)∈A
v1,v2∈V

[F(v1, v2) · (cE→T · pv1,v2 + cT→E · qv1,v2)] (8)

subject to:

xv1 + yv2 + 2rv1,v2 ≥ 2 (9)

pv1,v2 + rv1,v2 = 1 (10)

xv1 + yv2 − 2(1− rv1,v2) < 2 (11)

yv1 + xv2 + 2sv1,v2 ≥ 2 (12)

qv1,v2 + sv1,v2 = 1 (13)

yv1 + xv2 − 2(1− sv1,v2) < 2 (14)
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Fig. 5. CFG used for illustrating ILP model

Equations 9 through 11 ensure that if xv1 = yv2 = 1, then pv1,v2 = 1, i.e.,
we incur the cost of switching from ET to TT mode. Similarly, the constraints
reflected in Equations 12 through 14 ensure that if there exists a switch from
TT to ET mode, then qv1,v2 = 1 and we incur the cost cT→E .

Constraints of Sampling Cost in TT Mode. Finally, Equation 15 captures
the cost incurred from the sampling the monitor does in TT mode:

Csample =
∑

π∈Π′(CFG)

(cTT · Fπ ·Nsampπ ) (15)

where Π ′(CFG) denotes the set of all subpaths π = v1 → v2 → · · · → vk in
CFG that satisfy the following four conditions:

1. k ≥ 2
2. indegree(vi) = outdegree(vi) = 1, 2 ≤ i ≤ k − 1
3. indegree(v1) �= 1 ∨ outdegree(v1) �= 1
4. indegree(vk) �= 1 ∨ outdegree(vk) �= 1
5. for each (vi, vj) ∈ A, (vi, vj) appears in exactly one π ∈ Π ′(CFG)

For example, if we consider the CFG shown in Figure 5, Π ′(CFG) = {〈a →
b → c → d〉, 〈d → e → f〉, 〈f → d〉, 〈d → g → h → f〉, 〈f → i → j〉}. Moreover,
in Equation 15, Fπ is the expected number of times that π will execute at run
time. Fπ = F(vi, vj), where (vi, vj) is any arc on path π. Nsampπ is the number
of samples that the monitor takes when P executes π once:

Nsampπ =
∑

γ=〈vi→...→vj〉,
γ∈Γπ

[(
W (γ) + chist ·

∑j
m=i yvm

SP

)
·

(
xvi−1 · xvj+1 ·

j∏
l=i

yvl

)]
(16)

where W (γ) returns the sum of weights of all arcs on the path γ ∈ Γπ; vi−1 and
vj+1 denote the immediate predecessor and successor of vi, vj ∈ V , respectively;
and SP is the allowed sampling period of the monitor when it is operating in TT
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mode. Γπ is the enumerated set of paths in π ∈ Π ′(CFG) of length 2 or greater.
Using Π ′(CFG) for the CFG shown in Figure 5, if we consider the subpath
π = 〈d → g → h → f〉, then Γπ = {〈d → g → h → f〉, 〈d → g → h〉, 〈g → h →
f〉, 〈d→ g〉, 〈g → h〉, 〈h→ f〉}. Note that |Γπ| = Θ

(
|π|2
)
. If vi−1 does not exist

in π, xvi−1 = 1. Similarly, xvj+1 = 1 if vj+1 does not exist in π. Considering the
example where π = 〈d → g → h → f〉, if γ ∈ Γπ starts with d or ends with
f , then we would ignore the terms xvi−1 and xvi+1 by substituting them with
the value of 1, respectively. Nsampπ is linearized by the linearization technique
employed for Cswitch .

4 Implementation and Experimental Results

We empirically tested and verified our hybrid monitoring approach for a sub-
set of programs from the SNU Real-time benchmark suite [1] on an embedded
development platform with real-time guarantees. In Subsection 4.1, we describe
the experimental setup and the toolchain. Then, in Subsection 4.2, we present
and analyze the results of our experiments.

4.1 Experimental Setup

Figure 6 depicts the constructed toolchain used to generate instrumentation
schemes from the model described in Section 3. The toolchain generates the
program’s CFG with estimated execution times of basic blocks by statically an-
alyzing the program’s source code with clang and llvm [18]. We use the tool
CodeSurfer [9] to determine the location of the critical events the monitor should
track at run time. The model generator takes this information along with the
estimated monitoring costs to produce the corresponding model for the pro-
gram. The toolchain then uses Yices [23], an SMT solver, to identify a solu-
tion (i.e., an instrumentation scheme) to the optimization problem described in
Section 3. A script then takes the instrumentation scheme and instruments the
program source with the necessary instructions required to monitor the program
accordingly.

The monitor and programs were compiled and executed on the Keil μVision
simulator that emulates the behavior of the MCB1700 development platform,
which sports an ARM Cortex-M3 processor. We emphasize that the observed
execution time across multiple runs of the experiment remains constant because
the hardware platform provides accurate timing behavior of instructions, and
in each experiment, the only tasks running were the program under inspection
and the monitor. Therefore, it is safe to present the results without reporting
statistical measures.

We used SNU-RT [1] benchmark suite for the performance analysis. We se-
lected six programs from the suite with different sizes: bs, fibcall, insertsort,
fir, crc, and matmult. The largest program has 250 lines of code, and the small-
est has 20. We picked two sets of variables for monitoring for each program: (1)
a set containing frequently changing variables and (2) a set containing rarely
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Fig. 6. HyRV instrumentation toolchain for C applications

Table 1. Monitor cost configurations [clock cycles]

Configuration chist cET cTT cE→T cT→E

1 50 100 100 100 100
2 50 100 100 150 150
3 50 150 150 100 100
4 50 150 150 150 150
5 50 250 250 100 100
6 50 250 250 150 150

changing variables. Instructions that potentially change the value of these vari-
ables form the set of critical instructions monitored in the experiments. For each
program, the monitoring overheads were measured using the cost configurations
(listed in Table 1) and associated instrumentation schemes. The cost configura-
tions depend on the implementation of the monitor (e.g., running on the same
processor, distributed). We use the configurations in Table 1 to demonstrate that
the instrumentation schemes may change as a result of the relative differences
in the elementary monitoring costs.

4.2 Experimental Results

We classify the results of our experiments based on the generated instrumenta-
tion scheme and runtime overhead:

1. The first class consists of cases, where our ILP model suggests a hybrid
monitor and the monitor indeed significantly outperforms an ET or TT
monitor in practice (see Figure 7).

2. The second class consists of cases where the ILP model suggests either an
ET or TT monitor and the suggested solution indeed outperforms other
monitoring modes (see Figure 8).

3. The third class consists of cases where the solution to the ILP model ei-
ther exhibits slight improvement over other monitoring modes or it slightly
underperforms in practice (see Figure 9).
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In the rest of this section, we will discuss the experimental results and focus
on one program from each class. We note that the three other programs not
specifically discussed in this section exhibit similar results.

Hybrid Monitor with Significant Improvement. The program represent-
ing this class (i.e., crc with CFG of the size 65 vertices and 82 arcs) has two
characteristics: it has (1) two tight loops, each containing one critical instruction,
and (2) a relatively large initialization function that contains only non-critical
instructions. Intuitively, if the program is monitored by an ET monitor, then
the tight loops in the program will cause monitor invocations for each iteration.
This is an instance where a burst of events creates a large overhead over a short
period of time (similar to the timeline in Figure 1). In such cases, an ET monitor
suffers.

On the contrary, the large initialization function does not contain critical
events; hence, a TT monitor would suffer from redundant sampling overhead.
We hypothesize that the combination of these two characteristics can exploit
the benefits of employing a hybrid monitor. The graph in Figure 7 validates
our hypothesis. As can be seen, in all cost configurations, the hybrid monitor
incurs significantly less overhead than both the ET monitor and TT monitor op-
erating with the same sampling period. Another interesting observation is that
increasing the cost of ET and TT monitor invocations does not greatly increase
the overhead of the hybrid monitor. This is because the hybrid monitor only
samples when the program reaches its tight loop, which reduces the cost of mon-
itoring frequently occurring critical events by buffering them into memory before
sampling. In addition, the monitoring scheme reduces the number of redundant
samples by letting the monitor run in ET mode when critical events are infre-
quent. In such cases, the behavior of a hybrid monitor is quite robust when the
cost of monitor invocation increases.

Time-Triggered Monitor with Significant Improvement. The common
characteristic of the member programs of this class (i.e., bs, fibcall, insertsort,
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urations

and matmult) is that the programs have dense and evenly distributed critical
instructions in their respective CFG. This makes the use of TT mode a suitable
choice to monitor this class of programs. Figure 8 shows the overhead of monitor-
ing insertsort with three monitoring modes (ET-only, TT-only, and hybrid)
for all cost configurations. The rest of the programs in this class also exhibit
similar monitoring overhead patterns. From Figure 8, one can observe that the
corresponding ILP model correctly detects the even distribution of events and
the solution suggests monitoring exclusively in TT mode as its solution for all
cost configurations. Another observation in these experiments is that the num-
ber of redundant samples for these programs is either zero or close to zero. The
low number of redundant samples again validates the choice of monitoring these
programs using the time-triggered method.

Hybrid Monitor with Mixed Behavior. The program representing this class
(i.e. fir with CFG of the size 24 vertices and 27 arcs) does not clearly belong
to the previous two classes. The number of redundant samples for this program
reduces by a factor of six as the sampling period increases from 10 × LSP to
20 × LSP . This brings the overheads of ET and TT modes to a comparable
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level and makes the ILP model outcome highly sensitive to the elementary mon-
itoring costs. Figure 9 shows the monitoring overhead of fir under the three
modes of monitoring for different cost configurations. One can observe that when
the sampling period is 10× LSP , the model correctly chooses ET mode for the
monitoring schemes. However, if we set the sampling period to 20 × LSP , then
the ILP model provides a hybrid solution for all three cost configurations. The
proposed hybrid solutions have slightly higher overheads in comparison to ET
mode, but perform as good as TT mode except for two cases in practice. The
reason for this discrepancy lies in the fact that our approach is a heuristic algo-
rithm and, hence, finds suboptimal solutions in some cases. Note, however, that
this discrepancy does not dramatically affect the usefulness of our approach.

5 Related Work

In classic runtime verification [21], a system is composed with an external ob-
server, called the monitor. This monitor is normally an automaton synthesized
from a set of properties under which the system is scrutinized. From the logical
and language point of view, runtime verification has mostly been studied in the
context of Linear Temporal Logic (LTL) properties [8, 10–12,25] and, in partic-
ular, safety properties [14, 22]. Other languages and frameworks have also been
developed for facilitating specification of temporal properties [15,16,27]. [6] con-
sidered runtime verification of ω-languages. In [7], the authors address runtime
verification of safety-progress [4, 20] properties.

The main focus in the literature of runtime verification is on event-triggered
monitors [17], where every change in the state of the system triggers the mon-
itor for analysis. Alternatively, in time-triggered monitoring [2, 3], the monitor
samples the state of the program under inspection at regular time intervals. The
time-triggered approach involves solving an optimization problem that aims at
minimizing the size of auxiliary memory required so that the monitor can cor-
rectly reconstruct the sequence of program state changes. Several heuristics were
introduced to tackle

Finally, in [13], the authors propose a method to control the overhead of soft-
ware monitoring using control theory for discrete event systems. In this work,
overhead control is achieved by temporarily disabling involvement of monitor,
thus avoiding the overhead to pass a user-defined threshold. Another relevant
work to this line of research is [24], where the authors propose sampling using
state estimation. In particular, they use hidden Markov models to estimate fu-
ture reachable states for deciding whether or not the monitor must sample the
program under inspection. However, the methods in [13] and [24] do not guaran-
tee correct state reconstruction because the monitor is unaware of all program
state changes that may occur between samples.

6 Conclusion

In this paper, we concentrated on combining two techniques in the literature of
runtime verification to reduce the overhead: (1) the traditional event-triggered
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(ET) approach, and (2) the time-triggered (TT) method for real-time systems.
We showed that one can effectively exploit the advantages of both approaches
to reduce the overhead of runtime monitoring. To this end, we formulated an
optimization problem that takes into account the cost of different monitoring
interactions (i.e., monitor invocation in ET, sampling and building history in TT,
and mode switching). In particular, the objective of the problem is to minimize
the cumulative overhead in all execution paths using the aforementioned costs.
Since solving the general problem can be computationally unsolvable (e.g., due
to the existence of unbounded loops) or intractable, we proposed a heuristic that
finds suboptimal but effective solutions to the problem by transforming it into an
instance of the integer linear programming problem. Our experimental results on
the SNU-RT benchmark suite showed that our technique effectively reduces the
overhead as compared to selecting the ET or TT method in an ad-hoc manner.

There exist several interesting future research directions. We plan to employ
symbolic execution techniques to implement a more accurate and realistic pre-
diction function used for conditional and loop statements (see Section 3). An-
other open problem is to design other heuristics with lower time complexity that
eliminate subpath generation. Examples include techniques that exploit static
analysis such as graph density and dynamic analysis such as feedback control.

Acknowledgements. This research was supported in part by NSERC Dis-
covery Grant 418396-2012, NSERC Strategic Grant 430575-2012, NSERC DG
357121-2008,ORF-RE03-045, ORF-RE04-036, ORF-RE04-039, CFI 20314, CMC,
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A Scala DSL for Rete-Based
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Abstract. Runtime verification (RV) consists in part of checking ex-
ecution traces against formalized specifications. Several systems have
emerged, most of which support specification notations based on state
machines, regular expressions, temporal logic, or grammars. The field of
Artificial Intelligence (AI) has for an even longer period of time studied
rule-based production systems, which at a closer look appear to be rele-
vant for RV, although seemingly focused on slightly different application
domains, such as for example business processes and expert systems. The
core algorithm in many of these systems is the Rete algorithm. We have
implemented aRete-based runtime verification system, named LogFire

(originally intended for offline log analysis but also applicable to online
analysis), as an internal DSL in the Scala programming language, using
Scala’s support for defining DSLs. This combination appears attractive
from a practical point of view. Our contribution is in part conceptual
in arguing that such rule-based frameworks originating from AI may be
suited for RV.

1 Introduction

Runtime Verification (RV) consists of monitoring the behavior of a system, either
online as it executes, or offline after its execution, for example by analyzing log
files. Although this task seems easier than verification of all possible executions,
this task is challenging. From an algorithmic point of view the challenge consists
of efficiently processing events that carry data. When a monitor receives an event,
it has to efficiently locate what part of the monitor is relevant to activate, as a
function of the data carried by the event. This is called the matching problem.
From an expressiveness point of view, a logic should be as expressive as possible.
From a elegance point of view a logic should be easy to use and succinct for simple
properties. The problem has been addressed in several monitoring systems within
the last years. Most of these systems implement specification languages which
are based on state machines, regular expressions, temporal logic, or grammars.
The most efficient of these, for example [11], however, tend to have limited
expressiveness as discussed in [3].
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California Institute of Technology, under a contract with the National Aeronautics
and Space Administration.
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It can be observed that rule-based programming seems like an attractive ap-
proach to monitoring, as exemplified by the Ruler system [5]. Rules are of the
form lhs ⇒ rhs, where the left-hand side are conditions on a memory of facts,
and the right-hand side is an action that can add or remove facts, or execute
other code, including yielding error messages. This model seems very well suited
for processing data rich events, and is simple to understand due to its opera-
tional flavor. Within the field of Artificial Intelligence (AI) rule-based production
systems have been well studied, for example in the context of expert systems
and business rule systems. The Rete algorithm [6] is a well-established efficient
pattern-matching algorithm for implementing such production rule systems. It
maintains a network of nodes through which facts filter to the leaves where ac-
tions (rule right-hand sides) are executed. It avoids re-evaluating conditions in
a rule’s left hand side each time the fact memory changes. This algorithm has
acquired a reputation for “extreme difficulty”. Our primary goal with this work
has been to understand how well this algorithm serves to solve the runtime ver-
ification task, and hence attempt to bridge two communities: formal methods
and artificial intelligence. An initial discussion of this work was first presented
in [8]. We have specifically implemented a rule-based system, named LogFire,
based on the Rete algorithm in the Scala programming language as an internal
DSL, essentially extending Scala with rule-based programming. We have made
some modifications to the algorithm to make it suitable for the RV problem,
including fitting it for event processing (as opposed to fact processing) and opti-
mizing it with fast indexing to handle commonly occurring RV scenarios. Early
results show that the algorithm performs reasonably, although not as optimal as
specialized RV algorithms, such as Mop [11].

There are several well-known implementations of the Rete algorithm, in-
cluding Drools [1]. These systems offer external DSLs for writing rules. The
Drools project has an effort ongoing, defining functional programming exten-
sions to Drools. In contrast, by embedding a rule system in an object-oriented
and functional language such as Scala, as done in LogFire, we can lever-
age the already existing host language features. Drools supports a notion of
events, which are facts with a limited life time. These events, however, are not as
short-lived as required by runtime verification. The event concept in Drools is
inspired by the concept of Complex Event Processing [10]. Two rule-based inter-
nal DSLs for Scala exist: Hammurabi [7] and Rooscaloo [2]. Hammurabi

is not Rete-based, and instead evaluates rules in parallel. Rooscaloo [2] is
Rete based, but is not documented in any form other than experimental code.
A Rete-based system for aspect-oriented programming with history pointcuts is
described in [9]. The system offers a small past time logic, which is implemented
with a modification of the Rete algorithm. This is in contrast to our approach
where we maintain the core of the Rete algorithm, and instead write or generate
rules reflecting specifications. In previous work we designed the internal Scala
DSL TraceContract for automaton and temporal logic monitoring [4]. An
internal Scala DSL for ‘design by contract’ is presented in [12].
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2 The LogFire DSL

In this section we shall illustrate LogFire by specifying a monitor for the re-
source management system for a planetary rover. Subsequently we will briefly
explain the operational meaning of the specification.

2.1 Specification

Consider a rover that runs a collection of tasks in parallel. A resource arbiter
manages resource allocation, ensuring for example that a resource is only used
by one task at a time. Consider that we monitor logs containing the events:

grant(t, r) : task t is granted resource r.
release(t, r) : task t releases resource r.
end() : the end of the log is reached.

Consider next the following informal requirement that logs containing instances
of these event types have to satisfy:

“A resource can only be granted to one task (once) at any point in time,
and must eventually be released by that task.”

We shall now formalize this requirement as a LogFire monitor. The main com-
ponent of LogFire is the class Monitor, which any user-defined monitor must
extend to get access to constants and methods provided by LogFire. User-
defined monitors will contain rules of the form:

name -- condition1 & . . .& conditionn |-> action

A rule is defined by a name, a left hand side consisting of a conjunction of con-
ditions, and a right hand side consisting of an action to be executed if all the
conditions match the fact memory. A condition is a pattern matching facts or
events in the fact memory, or, as we shall later see, the negation of a pattern,
being true if such a fact does not exist in the fact memory. Arguments to condi-
tions are variables (quoted identifiers of the type Symbol) or constants. The first
occurrence of a variable in a left-hand side condition is binding, and subsequent
occurrences in that rule much match this binding. An action can be adding facts,
deleting facts, or generally be any Scala code to be executed when a match for
the left-hand side is found. Our monitor becomes:

class ResourceProperties extends Monitor {
val grant, release , end = event
val Granted = fact

”r1” −− grant(’t, ’r) & not(Granted(’t, ’r)) |−> Granted(’t, ’r)
”r2” −− Granted(’t, ’r) & release(’t , ’ r) |−> remove(Granted)
”r3” −− Granted(’t, ’r) & grant(’ , ’ r) |−> fail(”double grant”)
”r4” −− Granted(’t, ’r) & end() |−> fail(”missing release”)
”r5” −− release(’t,’ r) & not(Granted(’t,’r)) |−> fail(”bad release”)

}
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Value definitions introduce event and fact names. Rule r1 formalizes that if a
grant(′t,′ r) is observed, and no Granted(′t,′ r) fact exists in the fact memory
(with the same task ′t and resource ′r), then a Granted(′t,′ r) fact is inserted
in the fact memory to record that the grant event occurred. Rule r2 expresses
that if a Granted(′t,′ r) fact exists in the fact memory, and a release event occurs
with matching arguments, then the Granted fact is removed. The remaining
rules express the error situations - r3: granting an already granted resource, r4:
ending monitoring with a non-released resource, and r5: releasing a resource not
granted to the releasing task. LogFire allows to write any Scala code on the
right-hand side of a rule, just as any Scala definitions are allowed in LogFire

monitors, including local variables and methods. We can create an instance of
this monitor and submit events to it (not shown here), which then get verified
for conformance with the rules. Any errors will be documented with an error
trace illustrating what events caused what rules to fire.

2.2 Meaning

Each rule definition in the class ResourceProperties is effectively a method call,
or rather: a chain of method calls (commonly referred to as method chaining),
which get called when the class gets instantiated (a Scala class body can contain
statements). Note that Scala allows to omit dots and parentheses in method
calls. As an example, the definition of rule r2 is equivalent to the statement:

R(”r2”).−−(C(’Granted)(’t, ’r)).&(C(’release)(’t , ’ r )). |−> {
remove(’Granted)

}

The functions R (standing for Rule) and C (standing for Condition) are so-
called implicit functions. An implicit function in Scala is defined as part of the
program (in this case in the class Monitor), but is not explicitly called. Such
functions are instead applied by the compiler in cases where type checking fails
but where it succeeds if one such (unique) implicit function can be applied. In the
statement above we have inserted them explicitly for illustration purposes, as the
compiler will do. The function R takes a string as argument and returns an object
of a class, which defines a function --, which as argument takes a condition, and
returns an object, which defines a method &, which takes a condition, and returns
an object defining a method |->, which takes a Scala statement (passed call
by name, hence not yet executed), and finally creates a rule internally.

Creating the rules internally means building the Rete network as an internal
data structure in the instantiated ResourceProperties object, representing the
semantics of the rules. Figure 1 illustrates the network created by the definitions
of rules r2, r3, and r4 (rules r1 and r5 contain negated conditions which are
slightly complicated, and therefore ignored in this short exposition). When events
and facts are added to the network, they sift down from the top. For example,
a Granted(7, 32) event will end up in the lower grey buffer, from which three
join nodes lead to different actions depending on what the next event is: release,
grant, or end. The join nodes perform matching on arguments.
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top

join

[Granted(t,r)]

join join join

Granted(t,r)

release(t,r) grant(t,r) end

remove(Granted(t,r)) fail fail

Fig. 1. The Rete network for rules r2, r3, and r4

2.3 Specification Patterns

Rule-based programming as we have seen demonstrated above is an expres-
sive and moderately convenient notation for writing monitoring properties. Al-
though specifications are longer than traditional temporal logic specifications,
they are simple to construct due to their straight forward and intuitive seman-
tics. However, the more succinct a specification is, the better. We have as an
example implemented a specification pattern in 50 lines of Scala code in the
class PathMonitor (not shown here). In a path expression one can provide a
sequence of events and/or negation of events. A match on such a sequence any-
where in the trace will trigger a user-provided code segment to get executed.
As an example, consider the following formulation of the requirement that a
resource should not be granted to a task if it is already granted:

class DoubleGrant extends PathMonitor {
when(”double grant”)(grant(’t, ’r ),no(release (’ t , ’ r )), grant(’ , ’ r)) {

fail ()
}

}

The property states that when a grant(′t,′ r) is observed, and then subsequently
another grant(′ ,′ r) of the same resource, without a release(′t,′ r) in between,
then the code provided as the last argument is executed, in this case just the
reporting of a failure. The function when is itself defined as a sequence of rule
definitions.
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3 Conclusion

We have illustrated how rule-based programming based on the Rete algorithm,
integrated in a high-level programming language, can be used for runtime ver-
ification. The initial experiments show that the system is very expressive and
convenient, and is acceptable from a performance point of view, although not as
efficient as optimized specialized RV algorithms.
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Abstract. This paper presents a novel technique for handling a precondition
in dynamic symbolic execution (DSE) testing tools. It delays precondition con-
straints until the end of the program path evaluation. This method allows Path-
Crawler, a DSE tool for C programs, to accept a precondition defined as a C func-
tion. It provides a convenient way to express a precondition even for developers
who are not familiar with specification formalisms. Our initial experiments show
that it is more efficient than early precondition treatment, and has a limited over-
head compared to a native treatment of a precondition directly expressed in con-
straints. It has also proven useful for combinations of static and dynamic analysis.

Keywords: test input generation, dynamic symbolic execution, concolic testing,
executable preconditions.

1 Introduction

In software testing, the precondition of the program under test (often called test context)
specifies the admissible values of program inputs on which the program is supposed to
be executed and should be tested. This ability to select test input domains is essential to
test generation. Indeed, it allows concentrating the testing effort on admissible inputs of
the program. The most common use of the test precondition is to select inputs for which
the behavior of the program is specified. In that particular case, the test precondition
corresponds to the specification precondition. Other uses include testing outside the
specification to check for unwanted behaviors and partitioning the test domain.

In the case of automated test input generation tools, the precondition offers two inter-
esting challenges. First, one must encode the precondition in a formalism understood by
the tool. Second, the tool must take into account the precondition in its test generation
process to minimize rejects for test inputs outside the precondition.

PATHCRAWLER [1] is a test input generation tool for C programs. It is based on
dynamic symbolic execution (DSE), a technique that combines concrete execution and
symbolic execution of the program under test. Originally PATHCRAWLER accepted a
precondition written in a declarative constraint-based formalism specific to the tool,
referred below as native precondition. But user feedback encouraged us to find an al-
ternative solution.
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c© Springer-Verlag Berlin Heidelberg 2013



A Late Treatment of C Precondition 329

In this paper, we propose a new approach to handle the precondition in a DSE tool,
written in the tested language. It is based on a late exploration of the precondition’s
code during the test generation. This paper also provides an experimental evaluation of
the late-precondition technique implemented in PATHCRAWLER. Our approach offers
a greater expressiveness than PATHCRAWLER’s native precondition. Our experiments
also show that the late-precondition approach offers comparable performances to the
native precondition and better performances than another alternative approach.

The paper is organized as follows. First, Sec. 2 gives a brief overview of precondition
handling. Next, Sec. 3 describes the new method, while Sec. 4 evaluates it experimen-
tally. Finally, Sec. 5 concludes the paper.

2 Related Work

Some test input generation tools allow to express the precondition in the tested lan-
guage. Tools like Korat [2] are specifically designed to generate valid inputs based on
such a precondition without considering the code of the program under test. However,
a few code-based test generation tools may also handle the precondition that way. For
instance, Java PathFinder [3] (generalized symbolic execution) and CUTE [4] (DSE)
allow the user to provide a consistency check as a function in the tested language. The
function is first solved, using the normal process of the tool. Similarly, Pex [5], a DSE
tool for the .NET platform, treats Code Contracts, an embedded form of specification
that is automatically translated into dynamic checks during compilation. For the pre-
condition, assumption statements are placed before the code to be tested and handled
as any other part of the code. Many DSE tools do not address the precondition problem
specifically. However, at the cost of extra test cases, the precondition can be written as a
conditional statement around the program code, leading to a solution almost equivalent
to previous approaches. Like these tools, our approach proposes to encode the precon-
dition in the tested language. However, it separates and delays the exploration of the
precondition in order to minimize the exploration of the program code. To the best of
our knowledge, this approach has never been used in other tools.

Another way to enforce the precondition is to describe how to construct a valid input
rather than how to check whether a test case is valid. This method, sometimes called
finitization [2], is dual to a classic precondition. Indeed, some complex structures are
simpler to check than to construct, while others are better handled constructively.

The late-precondition method combines multiple symbolic executions. A related
combination of symbolic executions is compositional symbolic execution proposed by
Godefroid [6]. It aims at separating the symbolic execution of called functions in order
to maximize reuse and to limit path exploration by generating so-called function sum-
maries. Our late-precondition method has another objective. Indeed, it only separates
the symbolic execution of two components (program and precondition) and does not
create summaries. However, our late-precondition has a remarkable trait: the precondi-
tion is considered after the program. This ensures that the program’s paths are explored
only once without requiring to compute and store function summaries.
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Notation
f C function under test
π current partial path in f
p C function that checks if a test t

satisfies the precondition of f
ρ current partial path in p

(A1) init., set precond., π := ε

(A2) symb. exec. π in f (A3) generate test t

(A5) compute next π (A4) execute f on t

finish

ok

fail ok
fail

ok

no more paths in f

Fig. 1. Basic PATHCRAWLER test generation method (with a native precondition)

(A′
1) init., π := ε

(A′
2) symb. exec. π in f (A′′

1 ) ρ := ε

(A′′
2 ) symb. exec. ρ in p (A′′

3 ) generate test t

(A′′
5 ) compute next ρ (A′′

4 ) execute p on t

(A′
5) compute next π (A′

4) execute f on t

finish

failok

no more paths in f

ok

ok

fail ok
fail

p is true on t

p is

false
on t

ok

no more paths in p

Fig. 2. Our late-precondition method using a precondition defined in a separate C function

3 Late-Precondition Method

Usual Test Generation in PATHCRAWLER In Fig. 1 we briefly present (following
[7, Sec.2.1]) the DSE-based test generation method for a C function f implemented
in PATHCRAWLER. Step A1 creates a logical variable for each input of f and posts
the constraints for the precondition of f (given in an internal format). The depth-first
exploration of program paths (steps A2-A5) starts with the empty path ε. A2 symboli-
cally executes the current partial path π in f and posts corresponding path constraints,
solved at A3 in order to generate a test t activating a path starting with π. If A2 or
A3 fails, i.e., π is infeasible, then A5 continues directly to the next partial path in a
depth-first search. If a test t is found, A4 executes f on t and observes the complete
executed path and its results. Note that some solvers (e.g., Colibri the constraint solver
used in PATHCRAWLER) support incremental constraint solving. That is why, if the
constraints are sent to the solver during the symbolic execution and if the solver detects
the infeasibility of a path at steps A2-A3, the process skips A4 and goes to A5.

Late-Precondition Process. Let us assume given the precondition of f defined by
a C function p, returning true (a non-zero value) when the inputs are admissible for
f . One could suggest to filter inputs by p before exploring f . It can be done when
the precondition is a conjunction of elementary conditions (it is the case in the native
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N Example Key part of Native Early Late
the precond. Time Paths Time Paths Time Paths Precond. calls

1 Merge ∀i, ti ≤ ti+1 3m32s 8718 117m43s 73644 4m8s 8142 31415
2 TriangMatrix ∀i ≥ j, Mij = 0 — 38.6s 4893 27.5s 4093 557
3 PermutOrder ∀i �= j, pi �= pj 17.9s 5153 23s 5179 23.2s 6071 2273
4 PermutOrder ∀i,∃j, pj = i — 2m12s 14491 25s 6027 2266

Fig. 3. Late precondition compared to native and early precondition treatment in PATHCRAWLER

precondition format of PATHCRAWLER). The difficulty of treating any C function p is
that p can have several paths that may lead to an accepting return statement since a
C precondition may encode a complex logic formula with disjunctions. How to cover,
without repetitions, every program path in f by a test executing an accepting path in p?

Fig. 2 presents our late-precondition method. It consists in “exploring p after f”, that
is, searching, for each partial path π of f , a test accepted by p after posting the path
constraints of π at A′

2. The steps A′
i explore the paths of f in the same manner as the

classical DSE method, presented above, in Fig. 1, except that the test generation step
A3 is replaced by another DSE-like exploration A′′

1 -A′′
5 for the precondition p. At the

steps A′′
1 -A′′

5 , the process keeps in the constraint store the constraints for π all the time
and adds those for the current partial path ρ in p when necessary. If A′′

3 finds a test t
satisfying the precondition, t also satisfies the path constraints of π and the exploration
of p stops. Otherwise, the process explores all paths of p to check that no admissible
test executes the partial path π of f .

This method treats a C precondition in a completely automatic way and is available
online [8] (see e.g. example MergePrecond). It never considers again the same path of
f . The “exploring p before f” approach cannot guarantee this property, so the same
path in f may be covered several times. In addition, our technique allows us to continue
to benefit from incremental constraint solving approach (where the constraints of the
same partial path π are never re-posted and re-solved again), one of the main forces of
the PATHCRAWLER method.

4 Experimental Evaluation

Fig. 3 presents selected experiments of path test generation with PATHCRAWLER for
some typical examples and compares our technique with a native precondition (when
it can be expressed so in PATHCRAWLER) and with an early C precondition called
before (or in the beginning of) the function under test. The indicators include total test
generation time, the number of explored (covered and infeasible) paths and, for the late
treatment, number of calls to the precondition function (step A′′

4 in Fig. 2). The third
column illustrates the form of the essential part of the precondition (shown in italic
below). Ex. 1 is a merge of two given sorted arrays t, t′ into a third one. Ex. 2 checks
for a given upper triangular matrix M if M2 = 0. Ex. 3 and Ex. 4 contain the same
function computing the order of a given permutation p, but this property is ensured in
different ways: we check that p : {0, . . . , n− 1} → {0, . . . , n− 1} is injective in Ex. 3
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and surjective in Ex. 4. For simpler examples of preconditions (over a few variables
without quantifiers), no noticeable difference in performances has been recorded.

Late precondition method appears to be more expressive than native precondition
and has a limited overhead. It is more convenient for C developers to write precondition
directly in C, using existing code fragments and/or familiar notation. Unlike in the early
precondition treatment, our late precondition technique does not explore each path in
the function under test several times for each path in the precondition function, that
avoids to uselessly consider again already covered paths.

It is natural to expect that this feature brings a valuable benefit for preconditions with
disjunctions or existential quantifications (like in Ex. 4) since the precondition likely has
multiple accepting paths for a given path in the program under test. Interestingly, even
for programs with only conjunctive and universally quantified preconditions, our tech-
nique may significantly reduce the global number of paths to be explored (cf. Ex. 1). We
also observe that the late precondition treatment appears to be less sensitive to the form
of the precondition: as illustrated by Ex. 3–4, writing logically the same precondition in
a different way can result in a significant loss of performances for the early precondition
while the late precondition treatment is not affected so much. Finally, we notice that a
potentially great number of calls to (an efficient executable version of) the precondition
does not dramatically slow down test generation (cf. Ex. 1–4).

5 Conclusion

We propose a late-precondition method for dynamic symbolic execution that combines
at least two benefits. First, it takes as input an executable precondition written in the
tested language, i.e., C for PATHCRAWLER. Such a precondition is easier to write for
developers and can be very expressive. Second, the method ensures that paths of the
function under test are considered once and only once during test generation. This no-
tably allows high path coverage, where each uncovered path is either infeasible or out-
side chosen limits (e.g., on the number of loop iterations). This article also gives an
initial experimental evaluation of the method. It was made possible through the imple-
mentation of the method in PATHCRAWLER. Our experiments report a little overhead
with respect to a native precondition and significantly better performances with respect
to an early precondition.

Moreover, C precondition appears particularly useful when combining static and dy-
namic analysis, notably in the SANTE tool [9] and in treating E-ACSL, an executable
specification language for C [10]. Indeed, when combining tools with very different
views on the program, the program’s own language is often the most suitable common
language to express a precondition. That is why C precondition is used in those works
to encode preconditions given in Pre/Post specifications.

Future work includes further experiments with late precondition and studying the
form of precondition for which it is more or less efficient. In case of a precondition
filtering out a lot of inputs, one may expect that late precondition could be more expen-
sive than the traditional approach since it may lead to the exploration of many irrelevant
program paths. Further improvements (such as a combination with a summarized early
precondition, or early treatment of a conjunctive part of the precondition) could improve
the performances in more cases.
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Abstract. Temporal dependencies between programming library API
operations form a protocol that can be used to automatically detect in-
correct use of abstractions provided by the API. Traditionally, aliasing of
abstraction instances is one of the main problems of detecting this kind of
protocol violations. In this paper we describe our runtime fault detection
approach that uses dynamic data-flow tracking to cope with the alias-
ing problem. In addition, we present a proof-of-concept fault detection
framework for integrating our approach to a development environment.

Keywords: Fault detection, runtime verification, framework, testing.

1 Introduction

Practically all programs use libraries to cope with software complexity and to
reduce development effort. Library APIs usually define abstractions of resources
and sets of operations that can be applied to them. Often abstractions have a
state that the operations may transform. Furthermore, some of the operations
may expect an instance of an abstraction to be in a certain state when they are
applied. Thus, operations have temporal dependencies. Missing a dependency
may result in hard to detect and debug errors.

Nevertheless, verifying that all the required dependencies are satisfied is not
always an easy task: use of an abstraction may be scattered not only in time,
but also over several source code files, making it difficult to reason about all the
possible execution sequences. Furthermore, programmers unfamiliar with APIs
often misunderstand them or make false assumptions about their intended usage.

Temporal dependencies between operations form a pattern, or a protocol,
that describes how an abstraction should be used. Several tools that utilize
such dependencies for detecting violations of specific protocols, such as locking
discipline, exist. A more generic approach, typestate analysis [1], was developed
as an extension of programming language types to identify syntactically legal,
but semantically undefined execution sequences. Originally typestate analyses
were mainly static analyses, but because of difficulties in precise static analysis
more recent approaches use runtime monitoring when static properties cannot
be established [2], [3]. Despite the long history of related research, we are not
aware of any of the resulted tools being widely adopted in the industry.
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Fig. 1. Partial socket protocol

In this paper we describe our own approach for runtime detection of incorrect
use of APIs for C programs. Moreover, we discuss how we think such a tool should
be integrated as part of a development environment in order for it to be adopted
as a useful tool. We also introduce a proof-of-concept framework that seamlessly
integrates our own approach into an existing development environment.

The remainder of the paper is structured as follows. First, in Section 2 we
shortly discuss our own approach to detecting protocol violations. Next, in Sec-
tion 3 we introduce our proof-of-concept implementation of the approach and
describe how we have integrated it as a part of a development environment.
Finally, in Section 4 we discuss the possible future directions of our work.

2 Our Approach

Sockets are a good example of the abstractions discussed is the previous sec-
tion. Figure 1 illustrates, in a form of a state machine, a partial protocol for
using sockets: before data can be sent or received, a socket must be created and
connected to an address. After a socket is not used anymore, it should be closed.

Aliasing is one of the main problems of detecting violations of such protocols.
Often abstraction instance is represented by a reference to it, e.g., file descriptor,
that may be freely copied. A change in one of the copies should also affect all the
others. Compared to static analysis, dynamic analysis simplifies identification of
aliases. However, often it is not possible to detect aliases by just comparing
references, as implementations may reuse resources. For example, a file descrip-
tor may be reused after a file has been closed. Using the newly allocated file
descriptor via an old reference, while possible, is clearly semantically an error.

Our approach originates from dynamic data flow tracking that considers tag-
ging and tracking of interesting data as it propagates through the program during
execution. We solve the aliasing problem by using tags to track which memory
areas actually represent the same abstraction instances. All these areas share the
same tag. With each tag we associate a state and a type. The state represents
the current abstract state of the abstraction instance. As an example, that a
socket is bound or connected. The type defines which protocol to apply on the
state, i.e., the valid state changes.
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Correct use of an abstraction is modelled as a state machine. The model
consists of a set of states and a set of possible transitions between the states.
State transitions are triggered by computation steps that are somehow related
to the modelled abstraction, e.g., the functions calls discussed in the socket
example above. These computation steps are called input symbols of the model.
In addition, models describe preconditions that must hold before input symbols
and how each of the input symbols affects the data flow.

At runtime, we track program’s data flow to propagate the memory tags. In
addition, program’s control flow is monitored in order to detect when the execu-
tion encounters an input symbol that should be passed to a state machine. The
correct state machine instance is determined by the data on which the computa-
tion step operates. A fault occurs if an input symbol is detected separately from
any state machine instance or if the corresponding state machine instance is in
a state for which there is no defined state transition for that particular symbol.

Typestate analysis and our approach have clear similarities, however our ap-
proach is in some ways more generic. Typestate analysis associates types with a
set of typestates that define allowed operations on each state. Each object of a
given type is in one of the related typestates in each program point. Those anal-
yses using residual runtime analysis must, similar to our approach, track object
instances. Instead of types, we focus on input symbols, some of which generate
tags, others of which change them. Between symbols, the data is considered sim-
ply as tagged memory areas. Even though a tagged memory area may equal to
an object of a certain type, we do not limit it to do so: a tag could equally well
represent objects of different types sharing some property.

Aliasing is not necessarily limited to copies of one abstraction, but instances
of different abstractions may also depend on each other. For example, the C
API offers two abstractions for file handling: low level file descriptors and higher
level buffered streams. An instance of one abstraction can be converted into an
instance of the other, and instances of both the abstractions sharing part of the
same state may be present simultaneously. Clearly, state transitions, e.g., clos-
ing a file, on one instance should be propagated to the others. However, sockets,
also represented as file descriptors, can too be converted into streams. Never-
theless, some socket operations are only available via the descriptor. Since not
every file used via the stream API is a socket, it makes sense to model protocols
for both the abstractions separately. To support modeling of dependencies be-
tween abstractions, we allow models to specify links that define effects of a state
transition in an instance of one abstraction to the other, related, instances.

3 Fault Detection Framework

In order to use the approach discussed so far, an abstraction must first be mod-
elled and the program must be instrumented to support data flow tracking. Then
the program is invoked with a test input and the execution path is automati-
cally checked for faults according to the modelled protocol. Finally, the results
are inspected by a tester.
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Fig. 2. Fault detection framework

We have built a proof-of-concept framework to support this work-flow. The
framework consist of the following three main components that are illustrated
in Figure 2. A model compiler is used to transform models into runtime libraries
containing description of the model. A compiler plug-in instruments the program
under test. At runtime, besides the model specific library, another library is
loaded into the program. This library contains generic functionality for dynamic
data flow tracking, storing state information, and reporting errors.

We claim that from the software engineering perspective for a tool to be widely
adopted it should be as automated as possible in order to reduce the amount
of costly human work. Because of this, we find reusability of models, minimum
user interaction, and accurate error reporting valuable.

Models can represent library or application specific protocols. Ideally, in order
to obtain as accurate models as possible, models should be specified by the
authors of an API and distributed with the programming library when possible.
However, this clearly won’t often be the case. Therefore, models for common
APIs, e.g., the socket interface, could also be provided by the fault detection
framework developer community. Nevertheless, developers using the framework
may sometimes need to specify models themselves because there is no model
available for the API they are using, they need application specific models, or
wish to check some functionality that has not been modelled at all. Thus, the
modelling activity itself should be easy and straightforward. In addition, in order
to allow developers to easily specify program specific protocol requirements or
behavior, models should be extensible.

The models should be separated from the program’s source code for two main
reasons. First, models should be reusable across programs, i.e., no changes to a
model should be required when testing two programs that use exactly the same
API. Second, to allow a tool to be easily taken into use in existing projects, the
tool should be non-intrusive from the source code point-of-view, i.e., no source
code level changes should be required in order to use the tool.

According to our experience, for a tools to be adopted into use, in addition to
the benefits for testing, easy and seamless integration into existing development
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environments is essential. As we use compiler instrumentation, the compiler is
a natural integration point. We use the GCC compiler, also widely used in the
industry. Our instrumentation is generated by a plug-in, which can be loaded
into a standard compiler. We have successfully integrated our plug-in into the
build system of a production environment compiling about million lines of C
code by just adding a simple compiler wrapper.

Our current implementation uses extensive program instrumentation in order
to track memory tags and do state checks at runtime. During compilation, large
amount of detailed program information is saved into the binary and generic in-
strumentation is added to stop the execution at certain points. At the beginning
of the program execution, the saved information and the model description are
used to precompute the effect of each basic block to the data flow. This infor-
mation is then used to interpret changes to the memory tags during execution.

The taken approach avoids the need to recompile for each model, but causes
high performance penalty. It can be argued that dynamic binary instrumentation
could lead to better overall performance and would also allow monitoring of third
party libraries. However, we decided to use compile-time instrumentation as we
believe that the precision of the analysis and error reporting can benefit from
the rich information extracted from the compiler’s intermediate representation.

Many optimizations must be made to our implementation in order to gain
acceptable performance for industry use. We plan to add, e.g, static analyses
to our framework in order to reduce the runtime overhead. Nevertheless, it is
obvious that in general plenty of extra computation is required. However, widely
used dynamic analysis tools, such as Valgrind [4], have shown that if the offered
benefits are valuable enough, e.g., the tool finds more errors or makes debugging
easier, even relatively high overhead can be acceptable. Also, often execution
time of a single test case is not what matters, but the total execution time of the
test suite. Thus, high overhead can be compensated with other solutions such
as test case selection techniques [5] that minimize the amount of tests that need
to be run at all.

The proposed approach allows protocol violations to be detected immediately
when they happen. However, a protocol violation itself might merely be a symp-
tom of the real bug. Thus, it is important to aid the developer to locate the
actual root cause. The rich control-flow information saved into the program bi-
nary allows techniques, such as dynamic program slicing, to be incorporated into
the framework in order to support debugging.

4 Conclusions and Future Work

In this paper, we proposed an approach for runtime detection of incorrect use of
APIs. We further argued that in order for an implementation of such an approach
to be adopted by developers, it must be easy to use and seamlessly integrated
into existing development environments. Moreover, we presented a framework
that integrates our implementation to the widely used GCC compiler.

The work presented in this paper is but just a first step. The most obvious
future direction to our research are performance optimizations. Especially static
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analysis could be used to reduce the runtime overhead of the data flow tracking.
Another interesting path to consider is how the runtime analysis could be effi-
ciently implemented in presence of concurrency. Lastly, modelling of protocols
opens other interesting questions, including how models, especially input sym-
bols, should be specified, and how they are mapped to the program execution.

Acknowledgements. The research leading to these results was partly con-
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by TEKES – the Finnish Funding Agency for Technology and Innovation.
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Abstract. In prior work we proposed a mechanism of “witness genera-
tion and propagation” to construct proofs of the correctness of program
transformations. Here we present a simpler theory, and describe our ex-
perience with an initial implementation based on the LLVM open-source
compiler and the Z3 SMT solver.

1 Introduction

Ensuring the correctness of an optimizing compiler is a classic question in com-
puting. Compilers are very large programs – for instance, GCC is over 7 million
lines of code, and LLVM is near a million – and they carry out the essential task
of transforming other programs (often themselves large) into executable machine
code. Ensuring the correctness of compiler transformations is thus a critical ques-
tion; however, manual inspection is impossible, which has led to much work on
the construction of automated proofs of correctness.

In [7] we proposed a methodology for creating such a proof. There, each
optimization procedure in the compiler is augmented with an auxiliary witness
generator. For every instance of optimization, the generator constructs, at run
time, a witness relation between its target and source programs. The conditions
for a relation to be a proper witness are checked off-line, using an automated
theorem prover. Thus, when a witnessing compiler is used on a source program,
it generates a chain of witnesses, one for each optimization, which connects the
source program with the final target program. Each link of the chain may be
verified independently of the compiler code.

Witness generation can be positioned in-between two well known methods
of compiler verification: machine-checked proofs of correctness (e.g., [5]) and
Translation Validation (TV) (e.g., [10]). It is substantially simpler to define
a witness generation procedure than to prove an optimization correct, as the
definition does not require one to show (or assume) the correctness of the analysis
phase of an optimization. Moreover, as the generating procedure is written with
full knowledge of the optimization, one avoids the heuristic constructions which
limit the scope of translation validation. The potential drawback to witness
generation is the run-time overhead of generation and checking.

In this paper, we report on early experiments with witness generation. The im-
plementation is carried out using the LLVM compiler framework [4]. It currently
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supports a limited set of instructions (enough to represent while programs over
the integers) and a small set of transformations (simple constant propagation,
dead-code-elimination, loop invariant code motion). The generated witnesses are
checked for validity with the Z3 SMT solver [3]. Our experience has been en-
couraging: the witness generation approach is feasible and requires only small
amounts of additional code. The overhead of witness checking is high, but we
expect this to reduce with better implementation techniques.

2 Transformations and Witnesses

This section summarizes ideas described in more depth in [7].

Definition 1 (Program). A program is described as a tuple (V,Θ, T ), where

– V is a finite set of (typed) state variables, including a distinguished program
location variable, π,

– Θ is an initial condition characterizing the initial states of the program,
– T is a transition relation, relating a state to its possible successors.

A program state is a type-consistent interpretation of its variables. The tran-
sition relation is denoted syntactically as a predicate on V and V ′, which is a
primed copy of V . For every variable x in V , its primed version x′ refers to the
value of x in the successor state.

To match the LLVM structure, we consider programs described by a control
flow graph (CFG), where each node is a basic block (BB) consisting of a single-
entry single-exit straight line code. The transition relation of the program can
thus be viewed as a disjunction of transition relations Tij , each describing the
transition between basic block i (BBi) and basic block j (BBj) such that BBj

is an immediate successor of BBi. The program location variable π ranges over
the set of basic block identifiers. We assume that a CFG has a unique initial BB
with no incoming edges, and a unique terminal BB without outgoing edges.

A witness relation connects the values of source and target program locations
at corresponding basic blocks. In the simplified view, we define a witness relation
to have two components:

– A control mapping κ from the basic blocks of T to those of S. The function
κ maps the initial block of T to the initial block of S, and the terminal block
of T to that of S.

– A data relation, ϕi,κ(i)(VT , VS), which connects the values of target and
source variables at corresponding blocks i and κ(i). For this paper, it suffices
to have relations which are defined as conjunctions of the form v = e where
v is a program variable and e is an expression, over variables of either S or
T . For instance, one can define equality of corresponding source and target
variables by a set of conjunctions of this form.

There are three conditions, shown in Figure 1, which are checked to ensure
that a relation is a proper witness (i.e., it ensures the correctness of the transfor-
mation). The first checks that the witness relation is a (stuttering) simulation;
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the second, that source and target variables match at initial and final blocks.
The stuttering simulation check allows infinite stuttering on the source program
side; this can be fixed, as described in [7], by generating an auxiliary ranking
function. As our current implementation does not do that, we omit it from the
rule. The predicate oeq(VT , VS) (read as “observably equal”) asserts that corre-
sponding target and source variables are equal in value. The correspondence is
specific to the optimization. (Hence, a witness is correct up to a correspondence.)

1. For every target block i, the following implication must be valid.
[ϕi,κ(i)(VT , VS) ∧ T T

ij (VT , V
′
T ) ⇒ (∃V ′

S : (T S
κ(i),κ(j)(VS , V

′
S) ∧ ϕj,κ(j)(V

′
T , V

′
S))) ∨

ϕj,κ(i)(V
′
T , VS)]

2. For the initial block a, [(∃VS : ϕa,κ(a)(VT , VS) ∧ oeq(VT , VS))] must be a validity.
3. For the final block f , [ϕf,κ(f)(VT , VS) ⇒ oeq(VT , VS)] must be a validity.

Fig. 1. Witness Checking

Typically, a witness relation encodes invariants about the source and target
programs, which are inferred during the analysis phase of an optimization. For
instance, constant propagation generates assertions about which variables of the
source program are constant, and dead-code elimination depends on a liveness
analysis that generates assertions about the live variables at each program point.
The witness relation for constant propagation, for example (see [7]), states that
(xT = xS) for every variable x and that (xS = c) for those variables x which are
known to have constant value c at the source location κ(i).

3 Implementation

The source code of the implementation is a fork from LLVM, and is available
as a git repository at https://bitbucket.org/itajaja/llvm-csfv. Currently,
the implementation targets the intra-procedural optimization passes in LLVM,
defined over its intermediate representation (IR). Programs in the IR are in SSA
(single static assignment) form for each function.

The process that is followed to build a witnessing pass is similar for every pass.
The starting base is the LLVM source code for an optimization pass. First, the
analysis phase of the pass is augmented – if needed – to store all the invariants
found by the analysis for each program location (or basic block). These invariants
are used for the witness generation. To validate a witness, it is necessary to
build the transition relations for the source and target programs. The validation
checks implement the proof rule in Fig. 1 using the Z3 SMT solver. As basic
blocks are (guarded) deterministic code fragments, the existential quantification
in the simulation check can be eliminated, which simplifies the check.
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Table 1. Measurements

Pass Original Witness Avg. runtime in
LOC Gen. LOC ms (overhead multiple)

Simple Constant Propagation 99 118 101.36 (12x)

Dead Code Elimination 135 37 41.71 (10x)

Loop Invariant Code Motion 895 65 200.03 (31x)

The framework design is based on the following main components: Op-
timizer/Analyzer, Witness Generator, Translator, Witness Checker, Invariant
Propagator. The Optimizer/Analyzer augments the LLVM pass to store the anal-
ysis invariants; the Witness Generator takes care of generating the optimization-
specific witness using the invariants found during the analysis; the Translator
builds the transition relation of a given CFG and is usually run over the target
and the source of every optimization pass; and the Witness Checker combines
the generated witness and the target and source transition relation to verify
that the witness is a stuttering simulation using Z3. In addition, an Invariant
Propagator uses the witness relation and symbolic manipulations using Z3 to
propagate invariants (computed during analysis or externally supplied) from a
source program to the target. Out of these five components only the first two
are optimization-specific.

Table 1 gives measurements which show (a) the effort required to write a
witness generator and (b) the overhead incurred to check the correctness of
witnesses. The implemented passes are chosen by their commonality, ease of
study and for clearly highlighting some of the critical parts of the framework. The
lines of code (LOC) for witness generation are those that are required specifically
for that optimization. In addition, there is code which is common to all passes,
and implements a witness checker, the invariant propagator, the translator, and
basic definitions, amounting in total to approximately 1 KLOC.

The LOC numbers are encouraging: compared to the effort required to define
the optimization, the effort required to define a witness generator is high only
for the simple constant propagation pass, but is much lower for the other two
passes. The run-time overhead measures the overhead of witness generation and
checking compared to the optimization time, measured with the time-passes

tool of the LLVM optimizer. The current runtime overhead for witness checking
is very high. However, this is a rough, unoptimized implementation, so we expect
this overhead to reduce substantially as the implementation is improved.

4 Conclusion and Related Work

The implementation described here is a work in progress, and is currently at an
early stage. Support for the instruction set of the IR is limited to binary oper-
ations over integers, return, branch (conditional and unconditional), compare,
and φ nodes. (This set suffices to describewhile programs over the integers.) For
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this reason, it is not possible yet to test the framework against “real” programs
that contain many currently unsupported instructions and data types.

Ensuring the correctness of program transformations – in particular, compiler
optimizations – is a long-standing research problem. In [6], Leroy gives a nice
technical and historical view of approaches to this question. A primary approach
is to formally prove each transformation correct, over all legal input programs.
This is done, for example, in the CompCert project [5], and in [2], which derives
and proves correct optimizations using denotational semantics and a relational
version of Hoare’s logic Formal verification of a full-fledged optimizing compiler
is often infeasible, due to its size, evolution over time, and, possibly, proprietary
considerations. Translation Validation offers an alternative to full verification. A
primary assumption of this approach is that the validator has limited knowledge
of the transformation process. Hence, a variety of methods for translation vali-
dation arise (cf. [9,8,11,13,14,12]), each making choices between the flexibility of
the program syntax and the set of possible optimizations that are handled. As
details of the optimization are assumed to be unknown, heuristics are used, which
naturally limits the scope of the method. Recently, [1] proposes a method for
proving equivalence based on relational Hoare logic; it resembles our witnesses,
yet is closer to translation validation and has similar limitations.

Since we assume the optimization process is visible to the witness generator,
the generator is able to make use of auxiliary invariants derived by the opti-
mizer in order to produce a witness. This implies that witness generation is, in
principle, applicable to any optimization.
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Abstract. We report on the use of runtime monitoring to automatically
discover gameplay bugs in the execution of video games. In this context,
the expected behaviour of game objects is expressed as a set of tempo-
ral logic formulæ on sequences of game events. Initial empirical results
indicate that, in time, the use of a runtime monitor may greatly speed
up the testing phase of a video game under development, by automating
the detection of bugs when the game is being played.

1 Introduction

The domain of video games is currently booming; a recent Gartner survey re-
vealed that consumer expenses for video games would raise from 67 billion dollars
in 2011 to more than 112 billion by the year 2015 [2]. Similar to all computer
systems, video games have not been spared from programming errors making
their way to the release of a product. For example, in Halo Reach (2010), it is
possible for players to go out of the game’s map in some places, allowing them
to make actions that would otherwise be forbidden [1].

It is therefore important for a designer to detect a maximum of gameplay
errors as soon as possible during the development phase of a game, since for
some systems, correcting an error using an update after the product’s release
is technically impossible. Moreover, video games are a special type of emergent
system: their complexity arises from the combination of multiple simpler parts
like the physics engine, the graphics or the graphical user interface. A minor
problem can bring a bigger one later in the execution. Therefore, to facilitate
debugging, it is important to identify exactly when a bug occurs and report it
as fast as possible.

Typically, video game companies hire manual testers, whose hourly salary
varies from $20 to $100, with the special purpose of discovering gameplay bugs
and manually filing them into a bug tracker database. Obviously, this technique
� With financial support from the Natural Sciences and Engineering Research Council

of Canada (NSERC) and the Fonds de recherche Québec – Nature et technologies
(FRQNT).
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is time-consuming and far from fail-proof: in some cases, gameplay bugs are
not immediately apparent to the human eye. In this setting, the use of runtime
verification techniques presents the potential for improving the gameplay bug
harvesting step. However, video games rely a lot on fast player inputs and are
much more sensitive to speed and timing than traditional software; it is there-
fore important that the use of a monitor does not slow down the game in any
noticeable way. This paper presents early results on this approach and illustrates
how gameplay bugs of a popular platform game, Infinite Super Mario Bros., can
be specified as temporal logic formulæ and efficiently caught at runtime using
an off-the-shelf monitor.

2 Gameplay as Temporal Logic Constraints

As opposed to most standard software, video games are not entirely driven by the
user. Most games include a physics engine and a form of artificial intelligence to
update the game environment even in the absence of any input from the player.
Moreover, these updates must be executed a minimum of 30 times (called frames)
per second, with 60 frames per second (fps) being a reasonable target for quality
animation. Noticeable disruptions of the frame rate are regarded by players as
bugs and have in the past caused the demise of some video game titles. This
concept is best exemplified by a well-known game called Infinite Mario Bros.
(Figure 1), an open-source reimplementation of the popular platform game Super
Mario World, where various enemies and other game objects move around the
game area independently of the player’s (i.e. Mario’s) actions.

Infinite Mario is made of 6,500 lines of Java code and is available online.1 It
is notable for being the subject of many research works on game testing and
applications of Artificial Intelligence algorithms in the past [5]. It has recently
been used as a testbed for the automated application of condition-action rules
aimed at correcting erroneous game states [7]. A similar approach has been
applied to FreeCol, a free version of the strategy game Civilization [4].

In the following, we push the concept further and attempt to formalize the
expected behaviour of various game objects as temporal logic constraints. In this
context, events represent various changes of state, both of the player’s character
and of the surrounding enemies and objects. Each event is represented as a list
of parameter-value pairs, and has a parameter called name, indicating the type of
the event (e.g. Jump, Stomp, EnemyDead, etc.). The number and name of the
remaining parameters may differ depending on the event’s type. For example,
when Mario stomps on an enemy, the unique ID of that enemy will be included
in the event; when Mario jumps, the height of the jump will be recorded.

The rules used to express the properties to monitor are represented with LTL-
FO+, an extension of Linear Temporal Logic (LTL). For example, the following
expression indicates that globally, if an enemy gets hit by a fireball that Mario

1 http://mojang.com/notch/mario/

http://mojang.com/notch/mario/
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Fig. 1. The GUI of the modified version of Infinite Mario Bros

threw (event name EnemyFireballDeath), the next event should indicate the
disappearance of the fireball so that it does not hit anything else.

G (name = EnemyFireballDeath → X name = FireballDisappear)

The presence of first-order quantifiers is necessary for two reasons: the same
parameter may occur multiple times in the same event (such as when multiple
enemy IDs are killed by Mario at the same time), and some gameplay properties
may affect a single element across multiple events, as in the following expression.

G ((name = Stomp ∧ isWinged = true) →
∀x ∈ id : X (id = x → name �= EnemyDead))

In a normal playthrough, if Mario jumps on a flying enemy, it should lose
its wings. In this formula, we make sure that a winged enemy cannot die after
Mario stomps on it, as it should only stop flying. Since we are keeping the
corresponding id in a variable named x, we can check the next event related
to the same enemy to make sure it’s respecting the normal flow of the game.
However, one can see that, for this correlation between object IDs to be possible,
first-order quantification on event parameters is necessary. As a matter of fact,
we discovered early on that propositional Linear Temporal Logic is not expressive
enough to represent but the simplest gameplay properties.
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3 Empirical Results

Once a number of game properties were formalized as LTL-FO+ formulæ, we
devised an experimental setup to assess the performance of our runtime monitor-
ing approach in actual runs of the game.2 As we have seen, any errors caught by
a monitor should be identified before the next frame, yielding an upper bound
of 17 to 33 ms for the processing of each batch of events. Any processing time
slower than this would either slow down the game and cause jerky animation, or
have the monitor increasingly lag on the current game state and fill some event
buffer.

The BeepBeep runtime monitor3 [3] was selected to be inserted into the game,
since it was developed in Java and uses LTL-FO+ formulæ as its input language.
The BeepBeep monitor accepts events in the form of XML strings. Some strings
are constant, while others like this one are dynamically created based on the
specific parameters of the event (enemy IDs, etc.). For example, the following
shows the instrumentation to generate an event indicating that some enemy died:

MonitorTimer.Instance().updateWatchers("
<action>
<name>
EnemyDead

</name>
<id>
"+id+"

</id>
</action>

");

The game’s code was manually instrumented to produce these events; about 30
locations in the code had instruction of this kind inserted. We could have chosen
AspectJ [6] to facilitate the instrumentation but we decided not to because this
solution is Java-specific, and most games use languages like C++ or even unique
ones like UnrealScript. Relying on AspectJ would not faithfully represent the
restrictions one shall face when monitoring video games in general.

To keep track of the different outcomes for each property, we also added some
elements to the game’s GUI. First, circles of colour, each representing a property,
can be found on the lower left part of the screen. A green dot indicates a property
evaluates to true on the sequence of events received so far, while red indicates
it evaluates to false. Since each monitor is constantly queried on a finite trace
prefix, the value of some properties may not be defined yet; this is indicated by a
yellow dot. For debugging purposes, we also print the last two events produced at
the top of the window. The lower-right corner displays in real time the overhead
incurred by the presence of the monitors.

Finally, in order to make sure that our monitor can actually intercept game-
play bugs, we manually performed modifications to the game’s code to create
2 The instrumented version of Inifinite Mario and the runtime monitor can be down-

loaded from http://github.com/sylvainhalle/BeepKitu
3 http://beepbeep.sourceforge.net

http://github.com/sylvainhalle/BeepKitu
http://beepbeep.sourceforge.net
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specific problems, such as removing instructions that handle the killing of some
enemies. We then performed numerous runs of the game and computed various
metrics on the game’s and the monitor’s execution.

The results were positive. Every formula we used could be monitored using
our method, without slowing down the game in any noticeable way. A surprising
finding of our study is that in a normal playthrough, the game generated roughly
2.9 events per second (Figure 2a). This event rate is very small compared to
rates in typical runtime verification works. One can see that an event could take
9 milliseconds to process for 10 different properties (Figure 2b). It is possible to
see a drop in the time required as the game progress, since monitors for properties
that evaluate to true or false no longer need any updating. Even if, in a worst
case scenario, no properties were resolved and each event took 9 milliseconds to
handle, we can safely assume that it would not affect gameplay since 27 spare
milliseconds are left before reaching the threshold time for 30 fps.
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Fig. 2. Experimental results on the monitoring of Infinite Mario Bros. a) Number of
events generated in a sample run of the game; b) Monitor processing time for each
event.

Finally, since video game companies keep track of their bugs in a database,
we implemented a similar functionality using a MySQL server. We instrumented
the code in such a way that, upon violation of some temporal property, the
monitor sends an SQL query to the server, thereby automatically filing various
metadata about the discovered violation: name of property violated, occurrence
time, event trace prefix leading to the violation.

4 Conclusion

Overall, the results we obtained were conclusive as a first step in the applica-
tion of runtime monitoring to video games. We succeeded in the monitoring of
different properties using LTL-FO+ in a video game without affecting the game
experience. We also provided the game with a GUI that easily shows the out-
comes for each monitored property. If one of them becomes violated, indicating
a problem in the expected gameplay, the monitor automatically saves informa-
tion about the bug in a database, something that could help in video game
development.
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Some improvements to the method could be implemented. For example, man-
ual instrumentation of the game is tedious and error prone; it is believed that
one could make good use of the game loop present in every video game to sim-
plify its instrumentation: instead of manually finding and inserting the events
to monitor, one could keep track of the game objects’ state by interpreting the
differences from one game loop iteration to the next. Moreover, compiling the
monitor within the game does not seem a desirable choice for a larger-scale ap-
plication of monitoring, as one would have to change the monitor to fit every
game’s implementation language. Finally, the game’s graphical API made it hard
to integrate monitor controls within its own GUI and limited the amount of in-
formation that could be input from (or displayed to) the user. As future work,
we are currently working on a much larger open source game, drawing from the
lessons learnt when monitoring Infinite Mario Bros.
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Abstract. In the absence of a test framework for runtime verification tools, the
evaluation and testing of such tools is an onerous task. In this paper we present the
tool SMock; an easily and highly configurable mock system based on a domain-
specific language providing profiling reports and enabling behaviour replayabil-
ity, and specifically built to support the testing and evaluation of runtime verifi-
cation tools.

1 Introduction

Two of the major challenges in runtime verification, which are crucial for its adoption
in industry, are those of the management of overheads induced through the monitoring
and the ensuring the correctness of the reported results. State-of-the-art runtime verifi-
cation tools such as Java-MOP [7] and tracematches [1] have been tested on the DaCapo
benchmark1, but the kind of properties in these case studies were typically rather low
level, contrasting with our experience with industrial partners who are more interested
in checking business logic properties (see e.g., [4,3]). Whilst we had the chance to test
our tool Larva [5] on industrial case studies, such case studies are usually available
for small periods of time and in limited ways due to confidentiality concerns. Relying
solely on such case studies can be detrimental for the development of new tools which
need substantial testing and analysis before being of any use.

To address this lack, we have built a configurable framework which may be used to
mock transaction2 systems under different loads and usage patterns. The key feature of
the framework is the ease with which one can define different types of transactions and
farm out concurrent instances of such transactions through user-specified distributions.
Profiling the overheads induced by different runtime verification tools, thus, enables
easier benchmarking and testing for correctness of different tools and techniques under
different environment conditions. Although not a replacement of industrial case studies,
this enables better scientific evaluation of runtime verification systems.

SMock allows straightforward scripting of case studies, giving control over trans-
action behaviour, timing issues, load buildup, usage patterns, etc., which can be used
to benchmark the correctness and performance of different runtime verification tools.
A major issue SMock attempts to address is that of repeatability of the experiments,

� The research work disclosed in this publication has been partially funded by the University of
Malta Research Fund 2012, grant number CPSRP04-02.

1 http://www.dacapobench.org/
2 We use transaction to refer to an independent, highly replicated unit of processing.
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ensuring the scientific validity of the conclusions. To evaluate the use of the tool, we
have used it to build a suite of benchmarks and compared the performance of JavaMop
[7] and polyLarva [2] under different mocked scenarios.

2 The Architecture and Design of SMock

SMock has been built in such a manner so as to enable the easy generation of families
of transaction systems with two levels of configurability: (i) the form of the underlying
transactions (possibly including variations); and (ii) the scenarios depicting transaction
firing as distributed over time. To enable us to achieve this goal, SMock takes a script
describing these options and generates a Java mock system behaving in the prescribed
manner, generating events which can be captured by monitoring tools. Such a system
is then typically monitored using a specification script in a runtime monitoring tool,
enabling the measurement of overheads induced by the monitors in such a setting. Since
the mock system may include parts which are randomly generated (e.g., launch between
100 and 120 transactions in the first 10 seconds), its execution also tracks information
to allow exact replayability. This enables, for instance, comparison of the performance
of the different versions of a runtime verification tool, or its performance against that
of other tools, or as a regression test following a bug fix. The general usage pattern of
SMock is shown below:
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3 Scripting Behaviours

One of the strengths of SMock is that it allows users to script scenarios to be used
for testing. The scripts are written in a small domain-specific language which provides
a number of constructors to enable the description of processes and how they are to
be launched. Basic processes are individual actions which are characterised by three
parameters — their duration, memory consumption and CPU usage. These parameters
can be exact values or probability distributions3, to enable the mock system to behave
within a range of possible behaviours. Actions can be named if one would want to be
able to monitor their moment of entry and exit, but can also be left unnamed.

Processes can be combined using the following operators: (i) sequential composition;
(ii) probability weighted choice between processes; and (iii) parallel composition of
processes. The combinators come in a binary form and also generalised versions which
allow the combination of multiple processes together.

3 The tool currently supports uniform and normal distributions.
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Example 1. Consider a document management system which allows users to login,
browse, upload documents, edit these documents, etc. The resources used by some of
these actions can be characterised as follows:

login
df
= action〈duration = uniform(3, 5),memory = normal(20, 40), cpu = 0.1〉

browse
df
= action〈duration = normal(5, 8),memory = 300, cpu = normal(0.5, 0.7)〉

logout
df
= action〈duration = normal(1, 3),memory = normal(20, 40), cpu = 0.1〉

One can now generate 300 users acting in one of two possible ways — browsing or
editing a number of files:

usertype1
df
= login; browse; logout

usertype2
df
= login;

seq foreach document ∈ {1 . . .3} do
open; edit; save; edit; close;

logout
system

df
= par foreach user ∈ {1 . . .300} do

choice

{
0.9 �→ usertype1
0.1 �→ usertype2

In practice, for a more realistic scenario, we would not want the user transactions
to be launched all together at a single point in time, so we would add an (unnamed)
action preceding each user transaction, which takes some time to terminate, but does
not consume CPU or memory resources. �

As seen in the above simple example, when writing a script, one would usually want
to be able to define and reuse transactions, requiring further (non-functional) constructs
in the language. Similarly, one may want to add compile-time computations which cal-
culate constants to be used in the rest of the script (e.g., memory usage of a class of
actions could be automatically calculated as a function of CPU usage and duration). To
avoid having to extend the language with such constructs, we have chosen to build the
scripting language as an embedded language [6] in Python. This allowed us to avoid
having to build a parser and type-checker for the language, and also allows the user to
use Python for function definitions and computation.

4 An Application of SMock

SMock supports the generation of mock systems written in the Java language. As a case
study SMock has been used to generate a mock document management system — an
extension of the example given in Section 3.

In this case study, the generated system was used in conjunction with existing run-
time verification tools in order to analyse the effects these tools have on the overall
performance of concurrent systems, of which the document management system is an
example. Two runtime verification tools, JavaMop [7] and polyLarva [2] were used in
this case study. In both instances a sample property: an edited document must always
be saved before closing, has been monitored.
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The programs in Program 4.1 for JavaMop and polyLarva, show simplified ex-
cerpts of the specification scripts used to generate runtime monitors for JavaMop and
polyLarva. The most relevant feature of these scripts is the definition of noteworthy
system events, such as ➀ and ➁, which one must necessarily hook onto, to monitor
the required property. Our previous explanation of the SMock specification language
has highlighted how these system events are created through the definition of named
actions. Both RV tools use AspectJ4 technology to convert the event specifications to
aspect code that can identify the occurrence of these events on the system. The resul-
tant code is woven into the mock system’s code to provide runtime monitoring of its
execution.

Program 4.1 JavaMop and polyLarva specifications

JavaMOP:
SavedDoc(Document d) {
➀ event open after(Document d):call(* Document.open(..)) && target(d) {}
...
ere: (open save* edit edit* close) }

polyLarva:
upon { newDocument(doc) } {
events {

➁ open(doc) = {doc.open();}
... }

rules { ... } }

The aim of this case study was not to carry out comparison between the runtime
monitoring tools; but rather its purpose is that of highlighting the type of analysis that
can be carried out using a mock system generated by SMock. In particular we wanted
to note the effect of runtime monitoring on the system’s performance when it is under
considerable load. Changes to the specification affecting the choice settings result in
different executions which model differing loads. We generated systems where only
10% of the users are carrying out document editing tasks and then increased this to
50% and 100% for the following executions. Since the property triggers only when a
document is manipulated, this affects the overheads induced by the runtime monitors.

The analysis uses the profiling information from the runs of the generated document
management system. For each configuration, the mock system was executed multiple
times in the following setups: (i) without any code instrumentation; (ii) using JavaMop;
and (iii) using polyLarva. Replaying was used to ensure comparison between identical
executions.

The table below compares performance of the system execution and demonstrates
how profiling data extracted by SMock can give a good indication of the effect that
differing system loads can have on the overall system performance and execution time.

4 http://www.eclipse.org/aspectj/
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For each different load of users carrying out document management activities, the table
shows the average memory usage and CPU usage across the whole execution together
with an indication of system duration.

% users Average Mem Average % Total Sys Time (mins)

monitored (Kb) CPU None MOP poly

10 13.8 31.3 1.6 1.7 1.7

50 24.3 32.9 3.2 3.3 3.3

100 27.2 33.5 3.4 3.5 5.7

The monitoring overheads are non-trivial in these scenarios and the analysis allows
an understanding of how monitoring affects the overall system execution.

5 Related Work

While industry-calibre tools (e.g., jMock5) exist for mocking parts of a system under
test, to the best of our knowledge, no tools exist which enable one to mock a whole
system. Another significant difference of SMock from existing mocking tools is that
these do not explicitly support the specification of CPU and memory usage. SMock, not
only provides this through a dedicated language, but also provides constructs for the
specification of probability distributions over such resources. These differences make
SMock ideal to test systems which act upon other systems, e.g., monitoring systems
and testing systems.

Another area of somewhat related work is the area of traffic generators (e.g., Apache
JMeter6) for performance testing. However, such tools assume the existence of a system
on which traffic is generated. Since the load on a runtime verification tool occurs by
proxy, i.e. as a consequence of the load of another system, performance testing tools
cannot be used directly for the performance testing of runtime verification tools.

6 Conclusions and Future Work

With the significant advancements in the area of runtime verification in recent years, the
availability of mature tools is crucial for the increased adoption in industry. To facilitate
the testing and profiling of runtime verification tools we have presented SMock7, a
mock system generator coupled with replay and profiling capabilities. The tool has
been successfully applied to two state of the art tools showing the overheads in terms
of time taken, memory consumption, and processing resources.

Future improvements to SMock will focus on providing more advanced profiling fea-
tures such as power consumption measurement and automatic measurement repetition

5 http://jmock.org/
6 http://jmeter.apache.org/
7 The tool can be downloaded from http://www.cs.um.edu.mt/svrg/Tools/SMock
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to ensure that results are not affected by external factors such as garbage collection or
unrelated operating system activities. Furthermore, we would like to build an appropri-
ate test suite to test runtime monitoring tools for correctness. Although, at the moment
we only support the generation of a mock system written in Java, the design of the tool
makes it straightforward to extend to other languages — which we plan to do in the
near future.
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Abstract. This paper presents a toolchain for designing deadlock-free
multiparty global protocols, and their run-time verification through au-
tomatically generated, distributed endpoint monitors. Building on the
theory of multiparty session types, our toolchain implementation vali-
dates communication safety properties on the global protocol, but en-
forces them via independent monitoring of each endpoint process. Each
monitor can be internally embedded in or externally deployed alongside
the endpoint runtime, and detects the occurrence of illegal communica-
tion actions and message types that do not conform to the protocol. The
global protocol specifications can be additionally elaborated to express
finer-grained and higher-level requirements, such as logical assertions on
message payloads and security policies, supported by third-party plugins.
Our demonstration use case is the verification of choreographic commu-
nications in a large cyberinfrastructure for oceanography [10].

1 Introduction

The application-level interactions in distributed systems and Web services often
involve complex, high-level communication patterns between multiple parties.
It is common for implementations of each participant to be written separately,
or for a system to be constructed by composing separate services managed by
different administrative domains. Implementations are also commonly based on
informal protocol specifications, and thus informal verification mechanisms, and
can be prone to concurrency errors such as communication mismatch (e.g. the
arrival of an unexpected message or request of an unsupported service opera-
tion) and deadlock (e.g. party A waits to receive a message from B while B is
waiting for a message from A). This is why the need for rigorous description and
verification of protocols has been observed in many different contexts.

The Scribble language [6,12] (foundation of the JBoss Savara project [13])
is a formal protocol description language developed towards tackling this chal-
lenge. The goal of Scribble is to provide an intuitive engineering language and
tools, based on the theory of multiparty session types (MPST) [7], for spec-
ifying and reasoning about message passing protocols and their implementa-
tions. As a verification technique, the previously published implementations
of MPST focus on static type checking of protocol specifications against end-
point processes. Well-typed processes are guaranteed to enjoy properties such
as communication-safety (all processes conform to a globally agreed commu-
nication protocol) and deadlock-freedom. Static session type checking in these

A. Legay and S. Bensalem (Eds.): RV 2013, LNCS 8174, pp. 358–363, 2013.
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mainstream languages, however, requires support in the form of the language
extensions and pre-compiler processing to be tractable.

In this paper, we demonstrate a toolchain (SPY: Session Python) for runtime
verification of distributed Python programs against Scribble protocol specifica-
tions. Our aim is to adapt the MPST protocol verification techniques to runtime
verification in order to be directly applicable to standard mainstream languages.
Due to the distributed setting, our toolchain works to enforce a global proto-
col by decomposing it into local specifications to be independently monitored
at each endpoint. Runtime verification can also be more practical for enforc-
ing advanced protocol features, e.g. we have extended our version of Scribble to
support annotations for logical assertions, which would be more complicated to
verify statically, even conservatively and with language extensions.

Given a Scribble specification of a global protocol, our toolchain validates
consistency properties, such as race-free branch paths, and generates Scribble
(i.e. syntactic) local protocol specifications for each participant (role) defined
in the protocol. At runtime, an independent monitor (internal or external) is
assigned to each Python endpoint. When a session between the endpoints is
initiated, each monitor retrieves the local protocol for its endpoint, and generates
the corresponding finite state machine (by an extension of the algorithm in [4])
to verify the local trace of communication actions executed during the session.
The evaluation of assertions is handled through a third-party engine.

To summarise the main features and characteristics of our toolchain: (1) it
is based on a specification language [6,12] with a formal semantics [3,2] (with
proof of the soundness of local monitoring of global protocols), and is the first
implementation of runtime verification for this theory; (2) protocol specifications
can be decorated to perform third-party validation of constraints beyond the core
message passing protocol; (3) monitoring is decentralised with each participant
verified locally and therefore no synchronisation between monitors is needed;
(4) two kinds of monitor, internal (synchronous) and external (asynchronous),
are implemented; and (5) the toolchain has been integrated into an industry
project [10] for the verification of RPC services and multiagent protocols [11].

The rest of the paper illustrates the key steps of the toolchain, outline its
usage requirements and discusses current applications. A discussion of related
work and additional examples can be found within the same volume [8]. The
source code of the tools and performance benchmarks are available from the
project website [9].

2 Multiparty Session Types and Runtime Verification

We illustrate our toolchain through an introductory example, an online pay-
ment application, which we call OnlineWallet (Fig. 1). The scenario involves
three parties: a Client (C), a Payment Server (S) and a separate Authentica-
tor (A). At the start of a session, C sends its login details to A, and A replies
to inform C and S whether the authentication is successful or not. If so, C and
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global protocol OnlineWallet
(role S, role C, role A) {

login(id:string , pw:string)
from C to A;

choice at A {
login_ok () from A to C, S;
rec LOOP {

account (balance :int,
overdraft:int) from S to C;

choice at C {
@<amount <= balance +overdraft>
pay(payee:string, amount:int)

from C to S;
continue LOOP;

} or {
quit() from C to S; }}

} or {
login_fail(error:string)

from A to C, S; }}

Fig. 1. OnlineWallet protocol in Scribble

S enter a loop: in each iteration, S
sends C the current account status,
and C has the choice to make a pay-
ment (but only for an amount that
would not overdraw the account) or
end the session. In the first case, C
sends the payee and amount to S, and
the loop is repeated. In the other case,
or if the authentication failed, the ses-
sion ends.

Our toolchain performs the veri-
fication across several levels, as ex-
plained below.

Global Protocol Correctness. The
first level of verification is in the de-
sign of the global protocol. The Scribble in Fig. 1 describes interactions between
session participants from the global perspective using message passing sequences,
branching (choice) and recursion. Each message has an operator (a label) and a
payload. The toolchain validates that the protocol is coherent and deadlock-free,
and thus projectable [7] for each role. For example, in each case of a choice con-
struct, the deciding party (e.g. at A) must correctly communicate the decision
outcome unambiguously to all other roles involved; a choice is badly-formed if
the actions of the deciding party would cause a race condition on the selected
case between the other roles, or if it is ambiguous to another role whether the
decision has already been made or is still pending. The interested reader may
refer to [6,12] for a comprehensive overview of the Scribble syntax, a tutorial,
and further references to the formal conditions for protocol correctness.

Local Protocol Conformance. The second level is runtime verification to
ensure that each endpoint program conforms to the core protocol structure ac-
cording to its role. There are two main factors. First, we verify that the type
(operation and payload) of each message matches its specification (operations
can be mapped directly to message headers, or to method calls, class names or
other relevant artifacts in the program). Second, we verify that the flow of inter-
actions is correct, i.e. interaction sequences, branches and recursions proceed as
expected, respecting the explicit dependencies (e.g. m1() from A to B; m2() from B

to C; imposes an input-output causality at B). These measures rule out errors,
such as communication mismatches, that violate the permitted protocol flow.

Fig. 2 outlines the concrete verification steps. First, local protocols are me-
chanically generated from the validated global protocol. A local protocol is essen-
tially a view of the global protocol from the perspective of one role. The projec-
tion algorithm works by identifying the message exchanges where the participant
is involved, and disregarding the rest while preserving the overall structure of
the global protocol. Each local protocol has a corresponding FSM, generated
by the monitor at runtime. When a party requests to start or join a session,
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Fig. 2. Global specification to local runtime verification methodology

the initial message specifies which role it intends to play. Its monitor retrieves
the local specification based on the protocol name and the role. Fig. 2 gives the
local protocol and associated FSM for the client role C (we omit the protocols
for S and A). The FSM encodes the flow of local communication actions, with
transitions fired by the input and output of the permissible messasges.

Policy Validation. The final level of verification enables the elaboration of
Scribble protocols using annotations (@<...> in Fig. 1 and 2). The annotations
function as API hooks to the verification framework: they are not verified by
the MPST monitor itself, but delegated to a third-party engine. Various pol-
icy domains (e.g. security policies) can be enforced by integrating engines for
predicates on endpoint state, automata-based properties, etc., as extensions to
the core protocol monitor. Our current implementation uses a Python library for
evaluating basic predicates (e.g. the overdraft check in Fig. 1), which is sufficient
for the application protocols we have developed with [11]. At runtime, the moni-
tor passes the annotation information, along with the FSM state information, to
the appropriate policy engine to perform the additional checks or calculations.
To plug in an external validation engine, our toolchain API requires modules for
parsing and evaluating the annotation expressions specified in the protocol.

3 Toolchain Requirements and Evaluation

3.1 Monitor Requirements

Positioning. The network monitoring in our theory imposes complete mediation
of communications: no communication action should have an effect unless the
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message is mediated by the monitor. The tool implements this principal for both
inline and outline monitor configurations. Inline monitoring relies on internal
message interception: the local conversation runtime, in place at each endpoint,
synchronously passes every message (on arrival or prior to dispatch) through the
monitor component. Ouline monitoring is realised by dynamically modifying the
application-level network configuration to asynchronously route every message
through a monitor. Our prototype is built over an Advance Messaging Queue
Protocol (AMQP) [1] transport, where we use the AMQP exchange-to-exchange
binding functionality to perform the message rerouting. A monitor dispatcher
is assigned to each network endpoint as a conversation gateway. The dispatcher
can create new routes and spawn new monitor processes if needed, to ensure the
scalability of this approach.

Message Format. To monitor Scribble conversations, our toolchain relies on a
small amount of message meta data that we refer to as the Scribble header, but
is actually embedded into the message payload (for more flexibile interoperabil-
ity). Messages are processed depending on the message type, as recorded in the
header. There are two kinds of conversation messages: initialisation (exchanged
when a session is started, carrying information such as the protocol name and
the role of the monitored process) and in-session (carrying the message opera-
tion and the sender/receiver roles). Initialisation messages are used for routing
reconfiguration, while in-session messages are checked for protocol conformance.

Conversation API. Our toolchain is accompanied by a message-passing li-
brary for implementing Python endoint applications, that augments message
payloads with the conversation information required for monitoring. The library
API concisely exposes the core MPST primitives [3,2] for (1) initiating and join-
ing a conversation and (2) asynchronous message dispatch and consumption by
the participants. The API can be used directly by the programmer as a stan-
dalone conversation library, or as a complementary support module by another
library to handle the formatting of conversation messages for monitoring.

3.2 Evaluation

Our work is applied to and running within the Ocean Observatories Initiative
(OOI) [10,11], an ongoing project to establish a cyberinfrastructure for the de-
livery, management and analysis of scientific data from a large network of ocean
sensor systems. The OOI architecture relies on the combination of high-level pro-
tocol specifications (to express how the infrastructure services should be used)
and distributed run-time monitoring to regulate the behaviour of every appli-
cation within the system, for which the present toolchain is used. Performance
measurements for our current implementation (the project is at release two of
a planned four) show a reasonable overhead (13% percent per message call, see
[9] for the full benchmarks). The overhead is mostly due to just-in-time FSM
generation, which we believe can be reduced by caching or pre-generation of the
FSM for each protocol. We also note that the relative overhead due to FSM
generation decreases as the length of the conversation increases.
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Our collaboration in the OOI project has had interesting impacts on our work
and research. First, the practical requirements, emerging from their use cases,
led to the several advances of the MPST theory and the Scribble language (in-
terruptible conversations [8], generic protocols [5] and protocol annotations).
Second, we found that many OOI use cases can be categorised into a small set of
parameterised protocols. As an example, the majority of service-oriented proto-
cols, with diverse message signatures, are now derived from a single parametrised
RPC service protocol; rather than requiring a Scribble protocol per application
instance, one parameterised protocol can be provided per application library.
This is a convenient approach because we have observed that developers are (so
far) often not accustomed to writing protocols explicitly and formally. Finally,
the integration of our toolchain proceeded from the specification and verification
of the smaller, lower-level protocols in the OOI system, such as RPC. In general,
the kinds of bugs detected by our toolchain (e.g. messages to/from the wrong
participant) did not frequently arise for these smaller protocols; however, this
starting point enabled a straightforward, non-intrusive integration (not a single
line of existing application code was changed) that eased the adoption of the tool
by the developers. The next phase of the ongoing integration is to port the more
complex application protocols to Scribble, given the monitoring infrastructure
(independent of the protocol size) is already in place: our toolchain is able to
verify any Scribble protocol using the single generic monitor implementation.
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Abstract. Program instrumentation is a widely used mechanism in dif-
ferent software engineering areas. It can be used for creating profilers and
debuggers, for detecting programming errors at runtime, or for securing
programs through inline reference monitoring.

This paper presents a tutorial on instrumenting Android applications
using Soot and the AspectBench compiler (abc). We show how two well-
known monitoring languages –Tracematches and AspectJ– can be used
for instrumenting Android applications. Furthermore, we also describe
the more flexible approach of manual imperative instrumentation directly
using Soot’s intermediate representation Jimple. In all three cases no
source code of the target application is required.

Keywords: Android, Java, Security, Dynamic Analysis, Runtime
Enforcement.

1 Introduction

According to a recent study [1], Android now has about 75% market share in
the mobile-phone market, with a 91.5% growth rate over the past year. With
Android phones being ubiquitous, they become a worthwhile target for security
and privacy violations. Attacks range from broad data collection for the purpose
of targeted advertisement, to targeted attacks, such as the case of industrial
espionage. Attacks are most likely to be motivated primarily by a social element:
a significant number of mobile-phone owners use their device both for private and
work-related communication [2]. Furthermore, the vast majority of users installs
apps containing code whose trustworthiness they cannot judge and which they
cannot effectively control.

One approach to combat such threats is to augment Android applications
obtained from arbitrary untrusted sources with additional instrumentation code.
This code alters the behaviour of the target application and can thus enforce
certain predefined security policies such as disallowing data leaks of confidential
information. Since the instrumentation code runs as an integrated part of the
target application, it has full access to the runtime state, thereby avoiding the
imprecisions that usually come with static analysis approaches [3–5]. It has full
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access to environment information, user inputs, and external resources. Policy
violations can be captured as they actually occur, thus minimizing the number of
false alarms. Furthermore, it has also the advantage that the underlying Android
framework does not have to be changed at all, as done so by [6, 7].

In many cases, the source code of the target application is not available.
Therefore, a mechansim for conveniently analyzing and instrumenting binary
applications is required. Soot [8] and the abc compiler [9] for AspectJ both
support Android bytecode, both as input and as output for the instrumented
application. In this paper, we will give an overview of the two tools, explain how
to integrate instrumentation code on various layers of abstraction, and illustrate
the mechanisms using examples. Though this paper focuses on the Android
platform, many of the tools and concepts presented herein are directly applicable
to Java applications as well.

The remainder of this paper is structured as follows. In Section 2, we give an
overview of the Android platform, present an example application we will use for
instrumentation in the remainder of the paper, and discuss some Android-specific
aspects like application signatures. Section 3 is dedicated to high-level instru-
mentation using AspectJ while Section 4 focuses on Tracematches. In Section 5,
we introduce Soot and its Jimple intermediate representation which is then used
for manual instrumentation in Section 6. Section 7 concludes the paper.

2 Android Platform Overview

The Android platform is built as a stack with various layers running on top
of each other [10]. Lower-level layers provide services to upper-level layers. The
lowermost layer is built on a customized Linux system and its libraries. The
Android middleware builds an abtraction between the operating system and the
user-level application running on the very top of the architecture stack. In this
tutorial, we concentrate on instrumenting user-level applications.

Applications are provided to the user via different application markets like
the official Google Play Store [11] and various third-party stores. Application
developers can also host applications for download on their own websites.

2.1 Application Architecture

Most of the applications are written in the Java programming language1. They
are compiled to Android’s own bytecode format, called the Dalvik executable
(dex). On application launch, the Android middleware spawns a new Dalvik
Virtual Machine to execute the application’s dex file. This enables Android to
exploit the process isolation mechanisms of the underlying Linux operating sys-
tem and ensures that all applications are run inside their own isolated con-
tainers. Note that Android applications do not use Java’s concept of security
managers [12]. Instead, Android implements its own permission systems for cer-
tain sensitive function calls. Furthermore, the Dalvik Virtual Machine is not

1 In this tutorial, we disregard portions written in native code or script languages.
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stack-based like the Java VM, but register-based and optimized for resource-
constrained mobile devices [13].

Android applications do not have a single entry-point, such as the main
method in Java. Developers must instead design the application in terms of
components, each one adhering to a set of predefined interfaces. Every com-
ponent is implemented as Java class derived from a specific base class in the
Android middleware. Components react to OS events by overwriting the respec-
tive methods or calling specific OS methods to register further callbacks that
are invoked when e.g. device’s physical location changes.

There exist four different kinds of components: activities, services, content
providers, and broadcast receivers [14]. Activities are single focused activities a
user can interact with. They are the visible parts of an applications. In con-
trast, the services run in the background and are not interacting with the user
directly. They are used for long-running background operations, such as MP3
playback. Broadcast receivers react to global events, such as incoming calls or
text messages. Content providers implement domain-specific databases for, e.g.,
contacts [15].

The first three component types can communicate via asynchronous messages
called intents. An intent is an abstract description of an action “intended” to be
performed, such as “launch the following website”. Intents are a powerful feature
in the Android platform that allow communication between components, both
inside an application and across application boundaries. Intents are dispatched
by the Android middleware, either to a directly specified receipient or to all
receivers registered with the system for a specific intent type, e.g., all components
capable of displaying a website to a user.

Each of the four different types of components have a distinct lifecyle that
defines how the component is created, used and destroyed. The lifecycle is guided
using events, i.e., a sequence of methods called by the OS. For instance, the
onCreate()method gets called when an activity is loaded for the first time [16].

2.2 Android SMS Messenger Example

We next describe a simple Android application implementing an SMS Messenger.
The app’s user interface simply consists of two user inputs, one for the phone
number and one for the message to be sent. When the user clicks on the“Send
SMS” button, the application sends the given text message to the given phone
number.

Listing 1.1 shows the corresponding source code. The code comprises the two
methods onCreate and sendSms. As described in Section 2.1, the onCreate event
method gets called when the activity is launched for the first time. The method
defines some layout settings (setContentView) and prints out some debug in-
formation. Section 2.5 will give more details on Android’s logging infrastructure.

The sendSms callback method is the more interesting part. It is called when
the user clicks on the “Send SMS” button. The link between the method and
the button is established using a layout XML file, which is a declarative way
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1 public class RV2013 extends Activity
2 {
3 private EditText phoneNr , message ;
4 private SmsManager smsManager = SmsManager.getDefault();
5
6 @Override
7 protected void onCreate (Bundle savedInstanceState) {
8 super.onCreate (savedInstanceState);
9 setContentView(R.layout.activity_rv2013);

10
11 Log.i("INFO", "in onCreate ");
12 }
13
14 public void sendSms (View v){
15 Log.i("INFO", "in sendSms ");
16
17 phoneNr = (EditText )findViewById(R.id.phoneNr );
18 message = (EditText )findViewById(R.id.message );
19
20 System.out.println ("in sendSms ");
21
22 smsManager.sendTextMessage(phoneNr .getText ().toString (), null ,

message .getText ().toString (), null , null);
23 }
24 }

Listing 1.1. Source Code of SMS Messenger Example

to register callsbacks for UI components2. The button handler again writes out
some debug information (“in send Sms”), then extracts the user input in the
different text fields using the findViewById OS function, afterwards calls the
println method in the PrintStream class with the string “in SendSms” and
finally sends out the SMS message, again using an OS function.

2.3 Overview of Android API Calls

The Android middleware provides abstractions for conveniently using device
functions like sending SMS messages directly from applications written in Java
without having to directly interact with native code libraries on the system level.
The most important Android API methods for this paper are the following ones:

– Log.i(String tag, String msg):
Static methods which writes an info message to the log. The log can be
browsed using the tool LogCat (c.f. Section 2.5).

tag: usually identifies the class or activity where the log call occurs
msg: the message that should be logged

– findViewById(int id):
Returns references to GUI objects. In this example, the findViewById

method is used to get the text field contents for message text and recipi-
ent phone number. Note that such calls are generated by the compiler; one
usually use the constants in the R pseudo class to access GUI elements from
app code.

2 The other alternative would have been to programatically set a listener in onCreate.
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id: the object id to search for

– SMSManager.sendTextMessage(String destinationAddress, String

scAddress, String text, PendingIntent sentIntent, PendingIntent

deliveryIntent):
sends a text-based SMS message

destinationAddress: the address to send the message to
scAddress: the service center address; pass null to use the default
text: the body of the message to send
sentIntent: a broadcast message to be generated by the system when the
message has been sent; pass null if not required
deliveryIntent: a broadcast message for the message delivery; pass null
if not required

2.4 Android.jar: Where Android Lives

The Android middleware consists of predefined Java classes and a set of native
libraries. To be able to compile Android apps that make use of this API on a
desktop PC, the Java classes of the Android API must be present. Therefore, the
Android SDK provides these classes in a file called android.jar in its platforms
directory. There is one such file for every version of the OS. We recommend
using the appropriate version of the JAR file since new APIs are added from
time to time and old, deprecated ones are removed. The minimum compatible
OS version specified in the application’s manifest file is usually a good pick.

However, note that these JAR files can only be used to create a somewhat
complete callgraph and points-to set in the user code, but they cannot be used
to actually run the application. This is because for many methods they only
contain stubs and no actual implementations. Stubbed methods just throw a
NotImplementedException. Obtaining a full android.jar file from a real phone
is possible, but not trivial, as the Android API is stored in a precompiled and
optimized file format. In most cases, such complete JAR files are not needed
anyway.

2.5 Useful Tools

The Android SDK provides a number of tools that support a developer during the
developement of an Android application. For instance, debugging or running on
an emulator is essential during the developement phase. Therefore, we will briefly
introduce the two most important tools: Logcat and the Android emulator.

Logcat. Android’s logging system provides a mechanism for collecting different
kinds of log messages from various applications and system components. These
logs can be easily viewed and filtered using the logcat tool which is built on
top of Android’s debug bridge adb. Logcat can directly be launched from the
command line with adb logcat. It supports various settings for filtering and
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formatting the output as explained in [17]. The Android eclipse plugin provides
a more convenient graphical user interface to logcat.

A log entry can be produced by invoking the static methods in the android.
util.Log class. For instance, the statement Log.e("TAG", "Ooops") creates an
error line in the log. The Log.e method takes two parameters: The tag (first pa-
rameter) can be used for filtering and categorization. The error message (second
parameter) contains the error message or failure reason.

Android Emulator. As the name already suggests, the Android emulator [18]
is a virtual mobile device that runs on a computer and is similar to a real device.
It does not contain all the features of a real mobile device such as sending emails,
but for most purposes, it is sufficiently complete. However, note that applications
may suffer from serious performance penalties when run on the emulator.

With the help of the Android debug bridge [19], it is easy to create a new emu-
lator. The command android create avd -n <name> -t <targetID> creates
a new virtual device with the given name. The targetID is the API level one
needs, e.g., 17 for Android 4.2. The new emulator is started by emulator -avd

<name>. Afterwards, the virtual device’s user interface is shown and one can
interact with the emulator through the SDK’s command-line tools. A more con-
venient way for the creation of an emulator is the usage of the grafical interface
provided by eclipse (Android Virtual Device Manager).

2.6 Managing APKs on the Device

For author identification purposes, the Android framework requries that each
application has to be signed with a certificate. This, for instance, allows the
system to check whether an application update actually comes from the original
application developer. Furthermore, applications signed with the same key are
granted special privileges in interprocess communication. On the Android plat-
form, it is common that most of the application certificates are self-signed [20].
When changing the APK file, e.g., by instrumenting the code, the signature is
lost and the application must be signed again.

Standard tools like keytool and jarsigner can be used for signing the applica-
tion. An example for the generation of a private/public key pair with keytool [20]
is shown in Listing 1.2.

1 $ keytool -genkey -v -keystore my-release -key.keystore
2 -alias alias_name -keyalg RSA -keysize 2048 -validity 10000

Listing 1.2. Generation of a private/public key pair with keytool [20]

The jarsigner tool can be used for signing the application my application.apk
with the private key generated with keytool. Listing 1.3 shows the command for
signing an app with jarsigner.

1 $ jarsigner -verbose -sigalg SHA1withRSA -digestalg SHA1 -keystore
2 my -release -key.keystore my_application.apk alias_name

Listing 1.3. Signing my application.apk with jarsinger [20]
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After signing the application, Google [21] recommends to use the zipalign tool
to optimize the final APK. It ensures that all uncompressed data starts with
a particular alignment relative to the start of the file. The zipalign tool comes
with the Android SDK and Listing 1.4 shows the corresponding command.

1 $ zipalign -v 4 my_application.apk my_application_release.apk

Listing 1.4. Alignment of my application.apk befor release

3 Instrumentation with abc and AspectJ

In this section, we describe how AspectJ and the AspectBench Compiler abc [9]
can be used to declaratively instrument Android applications. Our goal is to
modify the example application from Listing 1.1 such that no premium SMS
messages to costly 0900 phone numbers can be sent anymore. Instead, an error
message shall be written into the log file whenever the target phone number
starts with 0900. SMS messages to normal phone numbers should be sent as
usual. Obviously, this requires us to inline a monitor since no static analysis can
know the target phone number the user is going to enter.

We create a new file SendPremiumSMS.aj with the contents shown in List-
ing 1.5. Note that the name of the file must match the name of the aspect. We
first declare a pointcut for the SmsManager.sendTextMessagemethod. We could
also have inlined it into the advice definition, but we are using it twice (once
for blocking premium-rate SMS messages and once for logging that a message
has actually been sent), so we keep it separate. The pointcut matches calls to
the SMS sending method in the Android operating system, not our own user
code. This way, we ensure that actually all SMS messages are intercepted which
is especially useful when instrumenting unknown target applications.

1 import android .telephony.SmsManager;
2 import android .app.PendingIntent;
3 import android .util.Log;
4
5 public aspect SendSMS_PremiumAspect {
6 pointcut sendSms (String no) :
7 call(void SmsManager.sendTextMessage(..)) && args(no, ..);
8
9 after (): sendSms (*) {

10 Log.i("Aspect", "SMS message sent");
11 }
12
13 void around(String no): sendSms (no) {
14 if (no.startsWith("0900"))
15 Log.i("Aspect", "Premium SMS message blocked ");
16 else proceed (no);
17 }
18 }

Listing 1.5. Aspect for blocking premium-rate SMS messages
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In general, the aspects as such are written in the well-known AspectJ syntax
and are not Android-specific except for the methods intercepted in the pointcuts
and the ones called in the pieces of advice. All mapping to the Android platform
is done by the abc compiler during the weaving process.

Since we only want a notification when an SMS message has actually been
sent, the order of the pieces of advice inside the aspect is important: We place the
around advice last to give it precedence over the after advice which shall only
be executed when the around advice proceeds, i.e., the target phone number is
not a premium-rate number. Otherwise, the SMS message is blocked and thus
shall not be logged.

abc supports two different frontends for parsing Java source code: Polyglot
and JastAdd. The Polyglot frontend is a bit dated and should not be used for
instrumenting Android applications from source. JastAdd can be enabled as an
extension using the -ext abc.ja command-line option. Also note that abc has
its own class path which is independent of the JDK’s class path and which must
be set using the -cp option. It should include both the JRE’s rt.jar file and
abc’s own abc-runtime.jar file. Since our target application references classes
from the Android framework, we also need to include the android.jar file.

If applications written for modern versions of the Android API are also sup-
ported on older platforms (i.e., have a lower minimum SDK version that one
they were developed for), the Android eclipse plugin automatically integrates
so-called support classes which add some newer APIs to older platforms. The
respective jar file can then found in the libs directory of the application project
and needs to be included in abc’s class path as well.

The complete command-line for instrumenting the example is shown in List-
ing 1.6. The Android support is enabled with the -android option, the APK file
name is given with the -injars switch.

1 java -cp abc-ja-exts -complete .jar abc.main.Main \
2 -cp /path/to/rt.jar: \
3 /path/to/android -support -v4.jar: \
4 /path/to/android .jar: \
5 /path/to/abc-runtime .jar \
6 -ext abc.ja \
7 -android -injars /path/to/RV2013.apk \
8 /path/to/SendSMS_PremiumAspect.aj

Listing 1.6. abc compiler command-line

Unsigned applications will not run on the Android OS, which is why the instru-
mented apk file still needs to be signed before it can be run on a real phone or
the emulator (c.f. Section 2.6).

4 Instrumentation with Tracematches

While AspectJ is rather convenient for describing Android instrumentations (see
Section 3), it requires additional manual effort when sequences of actions shall be
tracked. Tracematches [22] provide a simple regular-expression based approach
to declaratively abstract from such tracking. Let us assume we want to raise an
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1 import android .telephony.SmsManager;
2 import android .app.PendingIntent;
3
4 public aspect SMSSpam {
5 tracematch(String no) {
6 sym sendSms after:
7 call (void SmsManager.sendTextMessage(..)) && args(no, ..);
8
9 sendSms [3] sendSms + {

10 System.out.println ("SMS spam detected to no: " + no);
11 }
12
13 }
14 }

Listing 1.7. Aspect for blocking premium-rate SMS messages

alert when more than three SMS messages are sent to the same phone number
by an application, as this might indicate SMS spam. In AspectJ such counting
would have to be implemented manually. In Tracematches, we simply define the
pattern shown in Listing 1.7. Note that the name of the file and the name of the
aspect must match, i.e., SMSSpam.aj in this case.

For compiling the tracematch, we again use the AspectBench compiler abc.
The command-line is similar to the one shown in Section 3 for AspectJ, we only
need to enable the tracematch extension as shown in Listing 1.8.

1 java -cp abc-ja-exts -complete .jar abc.main.Main \
2 -cp /path/to/rt.jar: \
3 /path/to/android -support -v4.jar: \
4 /path/to/android .jar: \
5 /path/to/abc-runtime .jar \
6 -ext abc.ja.tm \
7 -android -injars /path/to/RV2013.apk \
8 /path/to/SMSSpam .aj

Listing 1.8. abc compiler command-line

5 The Machinery: Soot and Jimple

Soot [8] is an extensible program analysis and optimization framework for Java
and Java-like environments such as Dalvik. It supports various input formats
including Java source code, Java class files, and Dalvik dex files and also allows
to write out these file formats after transformation. Figure 1 gives an overview
of all possible input and output formats.

Code included in an Android application’s apk file is automatically extracted
before analysis. Afterwards, a new apk file containing the transformed code is
built which can then be signed and executed on a phone or the emulator. abc
uses Soot internally to weave aspects or tracematches into Java programs or
Android apps.

Soot is organized in phases and packs [23]. Every pack contains an ordered list
of phases. The first pack applied to every single method is the Jimple Bodies pack
jb which translates the respective method’s body into an intermediate represen-
tation called Jimple. Afterwards, if whole-program analysis is enabled, a number
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Fig. 1. Input and Output Formats in Soot

of whole-program packs run. They do not target single methods or classes, but
the whole so-called scene containing all classes that have been loaded. Which
classes are loaded depends on Soot’s command line options. Consult the online
documentation for details [24]. Usually, you only need to enable whole program
mode if your analysis requires a complete call graph. If not, you can skip these
phases by leaving the whole-program-mode option disabled which can consider-
ably improve performance.

The first whole-program pack to run is the cg pack which creates the callgraph.
Soot implements various callgraph construction algorithms. In this tutoral, we
will use SPARK [25] for maximum precision. In some cases, less precise, but faster
algorithms might be more appropriate. Once the callgraph is done, three more
whole-program packs (whole-jimple-transformation, whole-jimple-optimization,
whole-jimple-annotation) are executed, followed by a sequence of single method-
packs (jimple-transformation, jimple-optimization, jimple-annotation).

For our purposes, we leave the whole-porgram-mode disabled and add a new
phase to the jimple-transformation pack jtp which places our code directly after
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the Jimple bodies are produced and before all other optimizations like dead
code elimination run. This allows us to exploit the transformations done in
the latter. If we needed a complete callgraph, we would use the whole-jimple-
transformation-pack wjtp instead.

In the remainder of this section, we will show how to programatically configure
and launch Soot, how to access the Jimple code of a method, and explain how
Jimple is structured.

5.1 Jimple: Java, But Simple

Jimple stands between full Java sourcecode on one side and Java/Dalvik byte-
code on the other side. While the first is impractically complex for static analysis
or program transformations, the latter is quite cumbersome to work with because
of its large number of (untyped) instructions. Jimple combines the advantages of
both sides: There is only a limited instruction set, data is stored in variables, and
statements are generally of a simple three-operand form. More complex state-
ments or expressions are broken up into simple single-operation pieces and a set
of intermediate variables. For instance, in Jimple a=b+c+2 would be transformed
to temp=b+c, a=temp+2 with a new intermediate variable temp.

Jimple contains two general concepts: locals which are local variables and units
which are statements. Every method body contains one chain of locals and one
ordered chain of units. Units are usually of some type derived from Stmt, which in
turn can contain references to expressions derived from Expr. Jimple generalizes
all Java constructs to units and locals. The Java this reference, for instance,
is assigned to a local at the beginning of an instance method. Afterwards, it
behaves just like an ordinary local variable. The same happens with method
parameters. These special assignments are called IdentityStatements (c.f. lines
12 and 13 in Listing 1.9).

Assignments between locals, constants, and fields are done using AssignState-
ments (c.f. line 23). Since Soot represents the AST as an object model in memory,
the left and right side of an assignment are references to the objects represent-
ing the expressions standing on either side. Programatically traversing Jimple
code thus simply means following chains of references. For instance, in line 16,
the right-hand side of the assignment is a typecast represented by a CastExpr
object.

To call methods, Jimple supports four different expressions, depending on the
type of the target method. The three most important ones are VirtualInvokeExpr
for a virtual dispatch invoke to an instance method (lines 15 and 18), StaticInvo-
keExpr for calling a static method (line 14), and InterfaceInvokeExpr for calling
a method of an object of which only its interface type is known (line 26). Any in-
voke expression can be part of standalone statement called InvokeStmt (lines 14,
22, and 30), but can also serve as the right side of an assignment (i.e. AssignStmt,
e.g., in line 15) unless the return type is void.
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1 public void sendSms (android .view.View)
2 {
3 de.ecspride .RV2013 $r0;
4 android .view.View $r1;
5 java.lang.String $r2 , $r3;
6 android .widget.EditText $r4;
7 int $i0;
8 java.io.PrintStream $r5;
9 android .telephony.SmsManager $r6;

10 android .text.Editable $r7;
11
12 $r0 := @this: de.ecspride .RV2013;
13 $r1 := @parameter0: android .view.View;
14 staticinvoke <android .util.Log: int

i(java.lang.String,java.lang.String)>("INFO", "in sendSms ");
15 $r1 = virtualinvoke $r0.<de.ecspride .RV2013: android .view.View

findViewById(int) >(2131165184) ;
16 $r4 = (android .widget .EditText ) $r1;
17 $r0.<de.ecspride .RV2013: android .widget.EditText phoneNr > = $r4;
18 $r1 = virtualinvoke $r0.<de.ecspride .RV2013: android .view.View

findViewById(int) >(2131165187) ;
19 $r4 = (android .widget .EditText ) $r1;
20 $r0.<de.ecspride .RV2013: android .widget.EditText message > = $r4;
21 $r5 = <java.lang.System: java.io.PrintStream out >;
22 virtualinvoke $r5.<java.io.PrintStream: void

println (java.lang.String)>("in sendSms ");
23 $r6 = $r0.<de.ecspride .RV2013: android .telephony.SmsManager

smsManager >;
24 $r4 = $r0.<de.ecspride .RV2013: android .widget.EditText phoneNr >;
25 $r7 = virtualinvoke $r4.<android .widget.EditText : android .text.Editable

getText () >();
26 $r3 = interfaceinvoke $r7.<android .text.Editable : java.lang.String

toString () >();
27 $r4 = $r0.<de.ecspride .RV2013: android .widget.EditText message >;
28 $r7 = virtualinvoke $r4.<android .widget.EditText : android .text.Editable

getText () >();
29 $r2 = interfaceinvoke $r7.<android .text.Editable : java.lang.String

toString () >();
30 virtualinvoke $r6.<android .telephony.SmsManager: void

sendTextMessage(java.lang.String ,java.lang.String ,java.lang.String ,
android .app.PendingIntent ,android .app.PendingIntent)>($r3 ,

null , $r2 , null , null);
31 return ;
32 }

Listing 1.9. Jimple code for sending an SMS message

Method bodies are commonly analyzed by iterating over the units (i.e., state-
ments) they comprise. For program rewriting, the chain of units is patched by
removing existing units, inserting new units at the desired positions, or changing
the expressions within existing units. All of these changes will be explained in
the remainder of this paper.

5.2 Soot Options

Soot provides a lot of different command-line options. An online tutorial [26]
gives a good overview of the different kinds of options available. The most im-
portant options for instrumenting Android applications are the following:

-cp pathlist : The classpath to be used when loading classes into Soot.
Not to be confused with the classpath used by the JVM.
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-pp: This option prepends the VM’s classpath to Soot’s own classpath.
-validate: Causes sanity checks to be performed on Jimple bodies to make
sure the transformations have caused no type errors. This option may de-
grade Soot’s performance, but might be useful for debugging instrumentation
code.
-output-format format : Specifies the format of output files Soot should
produce, if any. In case of Android instrumentation, the dex format has to be
set. For debugging purposes, one can use the jimple output format to inspect
the instrumentation results in the intermediate language. Note, though, that
one cannot create outputs in multiple formats at the same time.
-process-dir dirs : Adds all classes in dirs to the set of classes to be
analyzed and transformed by Soot. The list dirs can also contain jar or apk
files.
-src-prec format : Sets format as Soot’s preference for the type of source
files to read when it looks for a class. In the case of Android, the apk format
must be set.
-w: Tells Soot to enable the whole-program transformation packs. Required
if one requires a callgraph or wants to use the wjtp pack for performing global
transformations spanning multiple methods.
-allow-phantom-refs: Allows Soot to model classes not found on the class-
path by stubs containing no methods or fields. Useful for saving memory by
not including full implementations of some libraries.

These options can either be set via the command line or directly in the Java
code via Options.v(), e.g., Options.v().set whole program(true) for en-
abling whole-program mode if required. Listing 1.10 shows an example of a
possible Soot initialization for instrumenting Android applications.

1 private static boolean SOOT_INITIALIZED = false;
2 private final static String androidJAR = "./ lib/android .jar";
3 private final static String apk = "./apk/RV2013 .apk";
4
5 public static void initialiseSoot(){
6 if (SOOT_INITIALIZED)
7 return;
8
9 Options .v().set_allow_phantom_refs(true);

10 Options .v().set_prepend_classpath(true);
11 Options .v().set_validate(true);
12
13 Options .v().set_output_format(Options .output_format_dex);
14 Options .v().set_process_dir(Collections.singletonList(apk));
15 Options .v().set_force_android_jar(androidJAR);
16 Options .v().set_src_prec(Options .src_prec_apk);
17
18 Options .v().set_soot_classpath(androidJAR);
19
20 Scene.v().loadNecessaryClasses();
21
22 SOOT_INITIALIZED = true;
23 }

Listing 1.10. Soot Initialization Example for Instrumenting Android Applications
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6 Manual Instrumentation

Besides the convenient way of instrumenting Android applications with the help
of AspectJ (c.f. Section 3) or tracematches (c.f. Section 4), one can also use
Soot to directly manipulate an Android application’s code using the Jimple
intermediate representation. This is especially important for instrumentations
that are not possible with ApsectJ or tracematches. We described a range of
such policies in previous work [27]. As a simple example, AspectJ cannot be
used to remove debugging outputs including all intermediate computations that
are only used in such debugging statements. These computations will remain
even if the debug outputs as such are filtered using an around advice.

This section demonstrates the two possiblities in direct code modification:
removing or adding code. Manipulating existing units is straight-forward given
that knowledge. Instead of generating new Jimple units, one simply changes the
fields of existing objects. As a first step, we need to configure launch Soot as
desribed in section 5. We then register a jimple-transformation transformation
phase as shown in listing 1.11. As discussed in section 5.2, this is more efficient
than using a whole-jimple-transformation whole-program phase. Furthermore,
we do not need a complete callgraph for our goal, so there is no reason to have
Soot create one.

1 PackManager.v().getPack ("jtp").add(
2 new Transform("jtp.myAnalysis", new MyBodyTransformer()));
3 PackManager.v().runPacks ();
4 PackManager.v().writeOutput();

Listing 1.11. Adding new Phase to Jimple Transformation Pack

The runPacks() methods triggers the execution of the packs and calls the
overwritten internalTransform()method inside the MyBodyStranformer class
derived from BodyTranformer3. In order to iterate over all classes and methods
in the Android application, one can use the code in listing 1.12 as a starting
point. The code must be placed inside internalTransform().

1 for (SootClass c : Scene.v().getApplicationClasses()) {
2 for(SootMethod m : c.getMethods()){
3 if(m.isConcrete()){
4 Body body = m.retrieveActiveBody();
5 Iterator <Unit > i = body.getUnits ().snapshotIterator();
6 while (i.hasNext ()) {
7 Unit u = i.next();
8 //do something
9 }

10 }
11 }
12 }

Listing 1.12. Iterating over the Android Code

3 In whole-program-mode, we would have used a SceneTransformer in the wjtp pack.
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One important point in this code snippet is the snapshotIterator() method
that should be used if statements in the method’s body will be changed while
the loop runs. This avoids ConcurrentModificationExceptions.

6.1 Removing Statements

The fact that all statements in the body of a method are stored into a chain
makes it very easy to remove a complete statement from the Jimple code. This
can be done by just removing it from the chain:

body.getUnits ().remove (unit);

After removing statements, dead code can remain. Soot already offers optimiza-
tions for removing such code, propagating definitions that are only used once,
and others. If the subsequent Jimple optimization pack (jop) is enabled, those
optimizations are applied automatically.

6.2 Adding New Statements

In general, the unit chain allows new statements to be placed before
(insertBefore()) or after (insertAfter()) a specific code point. These must
be fully-constructed Jimple units containing all required expressions, i.e., the
operands in case of a primitive arithmetic operation. The Jimple.v() singleton
provides factory methods called Jimple.v().newX for generating new Jimple
statments and expressions where X stands for the different kinds of AST ele-
ments. An example is newStaticInvokeExpr() which creates a new static in-
voke expression to be used inside an invoke statement or as the right side of an
assignment.

Let us go back to our original SMS Messenger Example (c.f. Section 2.2)
and insert some checks that prevent the application from sending SMS mes-
sages to premium rate numbers. This check has to be placed before the
sendTextMessage() method in line 30 and could look like the one described
in Listing 1.13 for premium rate numbers that start with 0900.

1 if(! phoneNr .getText ().toString ().startsWith("0900"))
2 smsManager.sendTextMessage(phoneNr .getText ().toString (), null ,
3 message .getText ().toString (), null , null);

Listing 1.13. 0900 Premium Rate SMS Check

Before this statement can be constructed, various expressions must be generated:

– String constant for the number “0900”
– Method call to the startsWith() method. The result must be stored in a

new local variable that does not conflict with any existing local variable.
– “if” statement with then and else branch

A complete example for integrating such a check is described in Listing 1.14.
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1 private void eliminatePremiumRateSMS(Unit u, Body body) {
2 Stmt stmt = (Stmt) u;
3 if (stmt.containsInvokeExpr()){
4 InvokeExpr iinv = (InvokeExpr) invoke.getInvokeExpr();
5 if(iinv.getMethod().getSignature().equals(SEND_SMS_SIGNATURE)){
6 Value phoneNumber = invoke.getInvokeExpr().getArg (0);
7 if (phoneNumber instanceof Local){
8 Local phoneNoLocal = (Local)phoneNumber;
9

10 // Invoke startsWith and save result
11 VirtualInvokeExpr inv = generateStartsWith(body , phoneNoLocal);
12 Local invRes = generateNewLocal(body , BooleanType.v());
13 AssignStmt astmt = Jimple.v().newAssignStmt(invRes, inv);
14 body.getUnits ().insertBefore(astmt , u);
15
16 //generate condition
17 NopStmt nop = Jimple.v().newNopStmt();
18 IfStmt ifStmt = Jimple.v().newIfStmt(invRes , nop);
19
20 body.getUnits ().insertBefore(ifStmt , u);
21 body.getUnits ().insertAfter(nop, u);
22 }
23 }
24 }
25
26 private InvokeExpr generateStartsWith(Body body , Local phoneNoLocal) {
27 SootMethod sm = Scene.v().getMethod(STARTS_WITH_SIGANTURE);
28 return Jimple.v().newVirtualInvokeExpr(phoneNoLocal , sm.makeRef (),

StringConstant.v("0900"));
29 }
30
31 private Local generateNewLocal(Body body , Type type){
32 LocalGenerator lg = new LocalGenerator(body);
33 return lg.generateLocal(type);
34 }

Listing 1.14. Generation of Jimple Statements for Premium Rate SMS Check

SEND SMS SIGNATURE is a string constant containing the method signature of the
sendTextMessage. STARTS WITH SIGNATURE is the signature of the startsWith()
method in the String class.

Note that we do not directly create new locals by giving a name and a type.
Instead, we defer this task to the LocalGenerator class which automatically
creates a unique local name.

Finally, the eliminatePremiumRateSMS()method has to be called inside the
code snipped shown in Listing 1.12 so that the instrumentation is performed for
all methods that possibly send SMS messages.

7 Conclusion

In this tutorial paper, we have shown how to instrument Android applications
using AspectJ, Tracematches and manual imperative instrumentation based on
Soot. All these techniques can also be applied to classical Java programs. For
Android, there are a number of platform-specific issues to keep in mind such as
the need for signing the APK file before running it on a phone or the emulator.
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The techniques shown in this paper can not only be used for security purposes,
but also for code optimization and analysis in general. Many optimizations like
constant propagation or dead code elimination are already built into Soot, mak-
ing instrumentations easier for the user.

8 Examples

The SMS Messenger example (RV2013) as well as the instrumentation
examples can be downloaded from https://github.com/secure-software-

engineering/android-instrumentation-tutorial
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Tutorial Description

Temporal Logic (TL) is a popular formalism, introduced into systems design
[Pnu77] as a language for specifying acceptable behaviors of reactive systems.
Traditionally, it has been used for formal verification, either by deductive meth-
ods [MP95], or algorithmic methods (Model Checking [CGP99,QS82]). In this
framework, the behaviors in question are typically discrete, that is, sequences of
states and/or events. In recent years, several trends suggest alternative ways to
use TL. One is due to the state-explosion wall, which limits the size of systems
that can be verified especially when dealing with programs involving numerical
computations or hybrid (discrete-continuous systems). As a result we can see a
proliferation of statistical methods -la Monte-Carlo, where universal quantifica-
tion is replaced by random simulation, with and sometimes without statistical
coverage guarantees. In this framework, related to runtime verification, asser-
tion checking or monitoring, the temporal formula is still used for a rigorous
specification of the requirements, but unlike model-checking, it is evaluated on a
single behavior at a time. Another trend is concerned with quantitative evalua-
tion of TL formula. In many real-life applications, especially when dealing with
continuous dynamics and numerical quantities, yes/no answers provide only par-
tial information and could be augmented with quantitative information about
the satisfaction to provide a better basis for decision making. Such notions have
been introduced into TL by Fainekos and Pappas [FP09] and later In [DM10]
where notions of robustness both in space and time are described. This tutorial
is concerned with signal temporal logic (STL), a formalism for specifying prop-
erties of dense-time real-valued signals, originally introduced in [MN04]. It will
review both the fundamentals of STL and the most recent progress, and will
introduce the tool Breach [Don10] for illustration and practical applications. It
will be organized into three parts:

Part 1 will provide a general introduction to dense-time and real-valued tem-
poral logics

Part 2 will present the STL monitoring algorithm of [MN04], notions of robust
semantics [DM10] and robust monitoring algorithms [DFM13]

Part 3 will review various extensions, namely Parametric STL [ADMN11],
Time-Frequency Logic [DMB+12]) as well as different applications in
particular in the automative industry [JDDS13] and in systems biology
[DFG+11,MDMF12].
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Abstract. Advanced computational models are transforming the way
research is done in biology, by providing quantitative means to assess the
validity of theories and hypotheses and allowing predictive capabilities,
raising an urgent need to be able to systematically and efficiently analyze
runtime properties of models. In this tutorial I describe key biological
applications, modeling formalisms, property specification languages, and
computational tools utilized in this domain, survey the techniques and
research from the formal verification, machine learning and simulation
communities that are currently being used, and outline opportunities for
the runtime verification community to contribute new scalable methods.

1 Introduction

Understanding how biological and ecological systems develop and function re-
mains one of the main open scientific challenges of our times, and is key towards
developing treatments for disease, helping conserve biodiversity and addressing
global environmental challenges . Computational models are becoming increas-
ingly important in biology and ecology, as a way to formulate hypotheses, as-
sumptions and mechanisms and quantitatively assess whether a theory explains
the known data, and make new predictions. As the utility of computational mod-
els grows in the biological sciences, it is becoming critical to be able to efficiently
test whether a biological model explains known data, what assertions and tem-
poral properties hold for a model, and which initial conditions and environment
inputs can lead to a specific desired outcome.

Techniques from runtime verification have the potential to be adapted and
utilized to address these challenges, especially since many of the biological mod-
els are very complex, and therefore a pure testing approach can easily fail to
identify important model behavior, whereas formal verification methods do not
scale to many of the real-world models. In this tutorial I will survey the state
of the art biological research with significant modeling components in areas of
developmental biology, immunology, stem cells, DNA computing and global eco-
logical studies, focusing on the challenges related to run time verification and
and model refutation.
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2 Models in Biology

Models are used intensively by experimental biologists to describe their mecha-
nistic understanding of living processes, however until recently they were most
often informal pictures and diagrams representing interactions between different
components of a biological system, for example signalling between cells or inter-
actions between proteins within a cell. In recent years, new modeling languages
and tools have been introduced, with the aim of providing formal semantics to
diagrammatic languages that can be used by biologists to describe their systems
and then gain the benefits of executable models. To help deal with complex-
ity, methods and languages from the programming languages community have
been introduced and adapted for biological applications, utilizing process calculi,
statecharts and rule-based formalisms. Overall progress in the field is allowing
the construction of exciting models that are increasingly grounded on biologi-
cal knowledge, and so offering opportunities for predictive capabilities, together
with raising a more urgent need to systematically analyze runtime properties.

3 Model Refutation and Verification

In software and system engineering, a main challenge is to improve the con-
fidence that a system satisfies a given specification, where specifications can
be described using, e.g., automata, temporal logic, pre- and post-conditions. In
studying natural biological systems, the specification is unknown, so this can
be viewed as a reverse engineering problem, where the scientific process aims
to construct models and theories about how the system works and identify the
specification. A model should be able to explain and reproduce the experiments
and data, and should typically not produce runs that are in contradiction with
known experiments. Thus effective ways to compare a model against known ex-
perimental results and hypotheses is crucial to allow the scientific research. Par-
ticular challenges for biological models is that they are highly parallel, include
probabilistic decisions representing stochastic elements, and are often very large
and computationally intensive to simulate. The runtime verification community
can contribute to biological research, by designing new specification formalisms,
improving runtime verification methods, and targeting new biological areas in-
cluding recent developments in the ability to construct computational circuits
from biological material [2,3], applications to reprogramming cells for medical
applications, and global ecological models [1].

References

1. Purves, D., et al.: Ecosystems: Time to model all life on earth. Nature 493(7432),
295–297 (2013)

2. Qian, L., Winfree, E.: Scaling Up Digital Circuit Computation with DNA Strand
Displacement Cascades. Science 332(6034), 1196–1201 (2011)

3. Yordanov, B., Wintersteiger, C.M., Hamadi, Y., Kugler, H.: SMT-based Analysis
of Biological Computation. In: Brat, G., Rungta, N., Venet, A. (eds.) NFM 2013.
LNCS, vol. 7871, pp. 78–92. Springer, Heidelberg (2013)



A Lesson on Runtime Assertion Checking

with Frama-C

Nikolai Kosmatov and Julien Signoles

CEA, LIST, Software Reliability Laboratory, PC 174
91191 Gif-sur-Yvette France

firstname.lastname@cea.fr

Abstract. Runtime assertion checking provides a powerful, highly au-
tomatizable technique to detect violations of specified program proper-
ties. This paper provides a lesson on runtime assertion checking with
Frama-C, a publicly available toolset for analysis of C programs. We
illustrate how a C program can be specified in executable specifica-
tion language e-acsl and how this specification can be automatically
translated into instrumented C code suitable for monitoring and run-
time verification of specified properties. We show how various errors can
be automatically detected on the instrumented code, including C run-
time errors, failures in postconditions, assertions, preconditions of called
functions, and memory leaks. Benefits of combining runtime assertion
checking with other Frama-C analyzers are illustrated as well.

Keywords: runtime assertion checking, program monitoring, executable
specification, invalid pointers, Frama-C, e-acsl.

1 Introduction

Runtime assertion checking has become nowadays a widely used programming
practice [1]. More and more practitioners and researchers are interested in ver-
ification tools allowing to automatically check specified program properties at
runtime. Assertions offer one of the most convenient and scalable automated
techniques for detecting errors and providing information about their locations,
even for errors that are traversed during execution but do not lead to failures.

This tutorial paper presents a lesson on runtime assertion checking using
Frama-C [2,3], an open-source platform dedicated to the analysis of C programs
and developed at CEA LIST. It has an extensible architecture organized as a
kernel with several plug-ins for individual analyses which may collaborate with
each other. Frama-C offers various analyzers [3] such as control-flow graph
construction, abstract-interpretation-based value analysis, dependency analysis,
program slicing, automatic test generation, impact analysis, proof of programs,
etc.

All static analyzers of Frama-C share a common specification language,
called acsl [4]. To bridge the gap between static and dynamic tools, a recent
work [5,6] specified e-acsl, an expressive sub-language of acsl that can be
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a) b)

1 #include<assert.h>
2 int absval( int x ) {
3 return ( x < 0 ) ? x : (-x);
4 }
5

6 void main(){
7 int n;
8 n=absval(0); // test 1
9 assert(n==0);

10 n=absval(3); // test 2
11 assert(n==3);
12 // other tests...
13 }

1 // returns absolute value of x
2 int absval( int x ) {
3 return ( x < 0 ) ? x : (-x);
4 }
5

6 void main(){
7 int n;
8 n=absval(0); // test 1
9 //@ assert n==0;

10 n=absval(3); // test 2
11 //@ assert n==3;
12 // other tests...
13 }

Fig. 1. Function absval, specified a) with assert macros, b) with e-acsl assertions

translated into C, compiled and used as executable specification. An automatic
translator into C has been implemented in the e-acsl plug-in [7] of Frama-C.

This paper is organized as follows. Section 2 presents the executable specifi-
cation language e-acsl and illustrates how the e-acsl plug-in can be used to
automatically translate the specified C code into an instrumented version suit-
able for runtime verification of specified properties. Section 3 shows how this
solution can be used to automatically detect and report various kinds of errors
such as wrong assertions, wrong postconditions, function calls in a wrong context
(unsatisfied precondition) and memory leaks. The benefits of combining runtime
assertion checking with proof of programs are discussed in Section 4. Section 5
illustrates how existing Frama-C analyzers can make runtime assertion check-
ing even more efficient. On the one hand, automatic generation of assertions
for frequent runtime errors may help to thoroughly check the program for these
kinds of errors without manually writing assertions. On the other hand, some
assertions may be statically validated by a static analysis tool, reducing the
number of assertions to be checked. Section 6 shows how program monitoring
with e-acsl can be customized in order to define particular actions to be exe-
cuted whenever a failure is detected. Finally, Section 7 concludes the paper and
presents future work.

2 Executable Specifications in e-acsl

Various ways of specifying assertions have been proposed in the literature [1].
One of the simplest ways to insert an assertion into a C program and to check
it at runtime is to use the assert macro. Unless assertion checks are switched
off (usually, by setting the preprocessor option NDEBUG), the condition specified
as the argument of the assert macro is evaluated and whenever it is false, the
execution stops and the failure is reported. Fig. 1a illustrates this approach for
the function absval returning the absolute value of its argument, that is tested
by the function main. The code contains an error (wrong inequality at line 3)
that would be reported by the second assertion check (line 11).
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a) b)

1 #include<limits.h>
2 /*@ requires x > INT_MIN;
3 ensures (x >= 0 ==> \result == x) &&
4 (x < 0 ==> \result == -x);
5 assigns \nothing;
6 */
7 int absval( int x ) {
8 return ( x >= 0 ) ? x : (-x);
9 }

1 #include<limits.h>
2 /*@ requires x > INT_MIN;
3 assigns \nothing;
4 behavior pos:
5 assumes x >= 0;
6 ensures \result == x;
7 behavior neg:
8 assumes x < 0;
9 ensures \result == -x;

10 */
11 int absval( int x ) {
12 return ( x >= 0 ) ? x : (-x);
13 }

Fig. 2. Two ways to specify function absval with an e-acsl contract

Specifying assertions in a programming language like C has several drawbacks.
First, complex properties (e.g. with quantifications and different behaviors) can
be difficult to specify and to check, may require significant additional program-
ming effort and appear to be error-prone themselves. Comparing computed val-
ues with initial or intermediate ones may need storing some values in additional
auxiliary variables. Some arithmetic properties (e.g. absence of overflows after
an arithmetic operation) are simpler to express in a specification language with
mathematical integers than using bounded machine integers in C. Second, clear
separation of the code required only for assertion checking and the functional
code may be desirable to optimize performances of the final release, but it often
remains manual, even if preprocessor or configuration options may help to ex-
clude assertion related statements in a particular build. Mixing both can make
source code more heavy and less readable. Third, absence of unintended side-
effects cannot be automatically ensured for assertion checking code written in
C. Finally, the usage of resulting C assertions is limited to runtime verification
and cannot be extended to verification techniques requiring formal specifications
(such as proof of programs).

Other specification formalisms offer more expressive notations compatible
with formal verification, for example, Eiffel [8], JML [9], Spec# [10], SPARK
2014 [11] (see [1] for other references). One of them is the e-acsl specification
language [5,6].

e-acsl can express the C assertions of Fig. 1a using the assert clause as shown
in Fig. 1b. However, e-acsl language is much more expressive than C assertions.
Indeed, in addition to C expressions and occasional assertions (like in Fig. 1b),
an e-acsl specification can include function contracts with preconditions and
postconditions, behaviors, first-order logic predicates (with quantifications over
finite intervals of integer values), mathematical integers (translated into C us-
ing GMP library1 when required), references to the value of a variable or an
expression at a particular program point (e.g. a label), memory-related clauses
(specifying pointer validity, offset, memory block properties), etc. An e-acsl

clause cannot contain side-effects, so there is no risk to introduce an unintended

1 http://gmplib.org

http://gmplib.org
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1 #include "stdlib.h"
2

3 typedef int* matrix;
4

5 /*@
6 requires size>=1;
7 requires \forall integer i,j; 0<=i<size && 0<=j<size ==> \valid(a+i*size+j);
8 requires \forall integer i,j; 0<=i<size && 0<=j<size ==> \valid(b+i*size+j);
9 ensures \forall integer i,j; 0<=i<size && 0<=j<size ==> \valid(\result+i*size+j);

10 ensures \forall integer i,j; 0<=i<size && 0<=j<size ==>
11 \result[i*size+j] == a[i*size+j]+b[i*size+j];
12 */
13 matrix sum(matrix a, matrix b, int size) {
14 int i, j, k, idx;
15 matrix c = (matrix)malloc(sizeof(int) * size * size );
16 for(i = 0; i < size; i++)
17 for(j = 0; j < size; j++) {
18 idx = i * size + j;
19 c[idx] = a[idx] + b[idx];
20 }
21 return c;
22 }

Fig. 3. File sum.c with function sum returning the sum of two given square matrices of
given size in a new allocated matrix

modification of program behavior inside annotations. At the same time, specific
ghost code statements can be used when side-effects are necessary. In addition,
e-acsl has been designed as a subset of acsl, a specification language for C
programs shared by each static analyzer of Frama-C. Therefore, an e-acsl

specification can also be used for instance for proof of programs as illustrated
by Section 4.

Since e-acsl statements are not limited to assertions, we will now use the
term annotation (rather than assertion) to refer to any e-acsl statement.

Fig. 2 illustrates two equivalent ways to specify the contract of the function
absval. The contract of Fig. 2a contains a precondition and a postcondition. The
precondition (requires clause) prevents the risk of an overflow since the value
-INT_MIN cannot be represented by a machine number of type int. The postcon-
dition contains an ensures clause and a frame clause assigns specifying that the
function cannot modify any non-local variables. An equivalent specification using
two behaviors is shown in Fig. 2b.

Another example of an e-acsl contract is given in Fig. 3. Given two square
matrices a and b with size rows and size columns, function sum allocates and
returns a new matrix of the same size containing the sum of a and b. The validity
clause \valid(p) specifies that the memory location pointed by p is valid. For more
detail on C code specification in acsl, we refer the reader to [4,12].

3 Detecting Errors at Runtime with e-acsl Plug-In

In this section, we illustrate how the e-acsl plug-in can be used for runtime
verification of C programs. We consider several kinds of errors: failures in asser-
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#!/bin/sh
share=‘frama-c -print-share-path‘

frama-c -pp-annot -machdep x86_64 $1 -e-acsl -then-on e-acsl -print -ocode out.c

gcc -DE_ACSL_MACHDEP=x86_64 out.c $share/e-acsl/e_acsl.c
$share/e-acsl/memory_model/e_acsl_bittree.c
$share/e-acsl/memory_model/e_acsl_mmodel.c -o runme -lgmp

./runme

Fig. 4. Script check.sh that instruments the file given in its argument with e-acsl

plug-in, compiles and executes it

tions and postconditions, function calls in a context that does not respect the
callee’s precondition, potential segmentation faults and memory leaks.

3.1 e-acsl Plug-In and Assertion Failures

We assume that the Frama-C platform with e-acsl plug-in2 and the gcc

compiler have been installed on the machine. Suppose the file absval.c con-
tains the program of Fig. 1b. This program can be instrumented with the
e-acsl plug-in, compiled and executed on a Linux machine by the command
./check.sh absval.c using the script given at Fig. 4. The options -machdep x86_64

and -DE_ACSL_MACHDEP=x86_64 should be used for a 64-bit machine (a 32-bit archi-
tecture x86_32 is currently assumed by default).

The instrumentation translates the e-acsl specification into executable C
code that performs corresponding runtime checks and reports any failure. For
Fig. 1b, two assertions at lines 9 and 11 will be checked at runtime exactly as for
Fig. 1a. The first one is verified (producing no output), while the second one fails
due to a wrong inequality at line 3. The program exits with an explicit message:
Assertion failed at line 11 in function main. The failing predicate is: n == 3.

Section 6 shows how the user can customize the actions when checking the
validity of a predicate.

3.2 Function Contracts

Providing function contracts makes runtime assertion checking even more sys-
tematic and powerful. When a function is specified with an e-acsl contract
(with a pre- and/or a postcondition), the e-acsl plug-in performs their system-
atic checks on entry (for the precondition) and on exit (for the postcondition)
each time the function is called. Suppose we complete the file of Fig. 2a (or
Fig. 2b) with a simple function

1 int main(){
2 absval(0);
3 absval(3);
4 absval(INT_MIN);
5 return 0;
6 }

2 Downloads and installation instructions available at http://frama-c.com/

http://frama-c.com/
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and instrument and run it using the script of Fig. 4. For each call of absval, the
precondition is checked before the call and the postcondition is checked after the
call without requiring any additional assertions. The checks for the first two calls
succeed, while the call absval(INT_MIN) violates the precondition, so the program
exits and reports:

Precondition failed at line 2 in function absval.
The failing predicate is: x > -2147483647-1.

If the inequality at line 8 of Fig. 2a was erroneously written again as “<”,
the program would exit after the call absval(3) and explicitly report a postcon-
dition failure. In this way, the preconditions and postconditions are automati-
cally ensured by the instrumented code for each function call. In particular, the
precondition check guarantees that the function is called on admissible inputs
and prevents from calling it in an inappropriate context. The current release of
e-acsl does not yet support runtime checking of the assigns clause, this feature
will be integrated in a future version.

3.3 Segmentation Faults

Segmentation faults represent one of the most important issues in C programs.
Some of them may lead to runtime errors, others may remain unnoticed and
provoke memory corruption. To address this issue, the e-acsl plug-in provides
a memory monitoring library [13] and allows the user to check specified memory-
related properties at runtime. Let us illustrate this feature on the program of
Fig. 3 completed with the following test function.

1 int main(void) {
2 int a[]={1,1,1,1}, b[]={2,2,2}; // one element missing, should be {2,2,2,2}
3 matrix c = sum(a, b, 2);
4 free(c);
5 return 0;
6 }

The resulting file can be instrumented by the e-acsl plug-in and run using the
script of Fig. 4. The execution reports a failure in the precondition of sum at line
8 of Fig. 3 since the array b has 3 elements instead of 4 as expected for a 2 × 2
matrix. Thanks to the precondition, e-acsl prevents an invalid access to b[3]

at line 18 of Fig. 3 that would be out-of-bounds. This is an example of a spatial
error, i.e. an invalid memory access due to an out-of-bounds offset or array index.
To correct this error, the array b must be initialized with 4 elements.

Let us now illustrate some more subtle errors detected by e-acsl. Replace the
line 15 of Fig. 3 by a local array int c[4]; and complete the resulting program
with the following test function.

1 int main(void) {
2 int a[]={1,1,1,1}, b[]={2,2,2,2};
3 matrix c = sum(a, b, 2);
4 int trace = c[0] + c[2};
5 free(c);
6 return 0;
7 }
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Runtime checking with the e-acsl plug-in for this example reports a postcon-
dition failure at line 9 of Fig. 3 since the elements of c are not valid after exiting
the function sum. Thanks to the postcondition, e-acsl prevents invalid accesses
to the elements c[0] and c[2] in function main. This is an example of a temporal
error, i.e. an invalid memory access to a deallocated memory object.

Another example of a temporal error is a use-after-free. To give an example,
we complete the program of Fig. 3 with the function:

1 int main(void) {
2 int a[]={1,1,1,1}, b[]={2,2,2,2};
3 matrix c = sum(a, b, 2);
4 free(c);
5 //@ assert \valid(&c[0]) && \valid(&c[2]);
6 int trace = c[0] + c[2];
7 return 0;
8 }

Runtime checking with the e-acsl plug-in for this example reports an assertion
failure since the accesses to c[0] and c[2] in function main become invalid after
the array is freed.

Notice that memory access validity is only checked when it is specified by
(or required for safe translation of) the provided e-acsl annotations. We show
in Section 5 how to enforce memory safety checks with the e-acsl plug-in by
automatic generation of annotation using the rte plug-in.

3.4 Memory Leaks

Memory leaks represent another common type of defects in programs with inten-
sive dynamic memory allocation. A memory leak appears when an inaddressable
memory object remains uselessly stored on the system reducing the amount of
available memory. In some cases, memory leaks can be a serious problem for pro-
grams running for a long time and/or containing frequent memory allocations.
When the amount of available memory decreases, the developer may suspect
memory leaks. In this case it can be helpful to define (or to bound) the expected
difference of the size of dynamically allocated memory at two program points. If
the amount of allocated memory increases unexpectedly, additional annotations
specifying the difference between closer and closer points may help to find the
precise function where the memory leak occurs. The e-acsl plug-in provides
such a means to precisely control the amount of dynamically allocated memory
that helps to detect memory leaks.

To illustrate this feature, consider the program of Fig. 5. It includes the file
sum.c of Fig. 3 and defines a function sum3 computing the sum of three given
matrices. If the program performs frequent calls to such a function sum3, the
amount of available memory will decrease. The size of dynamically allocated
memory in bytes can be referred by the variable __memory_size (line 2 of Fig. 5)
defined by the memory monitoring library of the e-acsl plug-in. Line 16 of
function main illustrates how the user can specify that the amount of dynamically
allocated memory must not change between two points, at label L1 before the call
to sum3 and at line 16 after deallocating the returned array d. This assertion fails,
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1 #include "sum.c"
2 extern size_t __memory_size;
3

4 matrix sum3(matrix a, matrix b, matrix c, int size) {
5 matrix x, y;
6 x = sum(a, b, size);
7 y = sum(x, c, size);
8 return y;
9 }

10

11 void main(void) {
12 int a[] = {1,1,1,1}, b[] = {2,2,2,2}, c[] = {3,3,3,3};
13 matrix d;
14 L1: d = sum3(a, b, c, 2);
15 L2: free(d);
16 //@ assert \at(__memory_size,L2) - \at(__memory_size,L1) <= sizeof(int) * 4;
17 }

Fig. 5. Function sum3 returns the sum of three given square matrices of given size

so the user may investigate this difference between two closer points, replacing
the assertion at line 16 by another one:

//@ assert \at(__memory_size,L2)-\at(__memory_size,L1) <= sizeof(int)*size*size;

indicating that only an array of size * size integers can be allocated between
L1 and L2. This assertion fails again, indicating that the memory leak probably
happens inside the function sum3. Inserting a postcondition of function sum3 at
line 3

//@ ensures __memory_size - \old(__memory_size) == sizeof(int) * size * size;

precisely comparing the size of dynamically allocated memory before and after
the function call is another way to find out that the memory leak occurs in
function sum3. The problem is indeed due to the allocation for the array returned
at line 6 of Fig. 5 that becomes inaddressable when function sum3 exits. To solve
this issue, free(x); should be inserted before the return statement at line 8 of
Fig. 5.

4 Runtime Checking and Analysis of Proof Failures

As we have shown in the previous section, runtime assertion checking helps to
ensure that the program execution respects the provided annotations. When the
annotations are supposed to be correct, an annotation failure reveals an error in
the program. But runtime assertion checking can be also used in a dual way, to
find a potentially incorrect annotation. It can also provide more confidence in
conformance of the program to its specification when no failures are detected.
This approach can be very helpful during proof of programs.

Indeed, in order to formally prove a program, the validation engineer has to
specify it. This is a tedious task, and errors in the first versions of specifications
are very common. Moreover, when the program proof fails, the proof failure is
not necessarily due to a wrong specification or a wrong implementation, but can
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be also due to the incapacity of the proving tool to find the proof automatically.
Proof failures have to be analyzed and fixed manually.

Runtime assertion checking provides an automatic technique allowing the val-
idation engineer to check the conformance between program and specification at
runtime on a number of program executions. The instrumented program can be
executed on an available test suite, or generated test inputs (e.g. randomly, or
by a structural test generation tool like PathCrawler [14], another Frama-C
plug-in). Runtime checking does not give a precise answer in all cases, but it
can provide a useful indication. When a failure is detected at runtime, the failed
annotation and the corresponding program inputs indicate the case that has not
been properly taken into consideration in the implementation or in the specifi-
cation. The engineer can immediately deduce that the proof failure is not due to
the limitations of the prover. For example, if the postcondition of the program
of Fig. 2a were erroneously written as

ensures (x >= 0 && \result == x) && (x < 0 && \result == -x);

or as

ensures (x >= 0 && \result == x) || (x < 0 && \result == x);

the failure would be detected on a concrete program input as illustrated in
Sec. 3.2. Although the specification error is obvious for this simple example,
automatic runtime checking can save significant time for more complex programs.

When no failure is detected at runtime, the prover may need additional an-
notations (e.g. assertions, loop invariants), so the specification effort is worth to
be continued (even if the risk of an error cannot be completely excluded since
runtime checking was performed only on a final set of tests).

5 Combinations with Other Analyzers

Frama-C is a platform which provides a wide variety of plug-ins. The e-acsl

plug-in is only one of them. It is possible to make e-acsl more efficient by com-
bining it with other existing plug-ins. Section 5.1 explains how to automatically
generate annotations to be checked by e-acsl, while Section 5.2 shows how to
reduce the number of dynamic checks by verifying some of them statically.

5.1 Generating Annotations Automatically

The e-acsl plug-in may be used to dynamically verify the absence of runtime
errors in C code, by combining it with the rte plug-in. Indeed, this plug-in gener-
ates e-acsl annotations preventing potential runtime errors: if these annotations
are proven valid, then we get the guarantee that the code provokes no runtime er-
ror. For instance, rte generates /*@ assert \valid_read(p); */ each time a pointer
p is read, and two assertions /*@ assert 0 <= i; */ and /*@ assert i < 10; */ each
time an access t[i] in an array t of length 10 is performed. If these annotations
are translated into C code by the e-acsl plug-in, they will be checked at runtime:
either a dynamic check fails and the program reports a clear assertion failure, or
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no dynamic check fails and the whole program does not fail with a runtime error
either. Therefore, a potential runtime error does not remain unnoticed thanks
to explicit annotations added by rte and checked by e-acsl.

Consider for instance the function sum of Fig. 3 in which we modify line 18
idx = i * size + j; into the incorrect line idx = i * size + j + 1;. Since the index
idx is now too great, that introduces an access out of the bounds of the matrices
a, b, and c when computing the sum. We also complete this program with the
following test function.

1 int main(void) {
2 int a[]={1,1,1,1}, b[]={2,2,2,2};
3 matrix c = sum(a, b, 2);
4 free(c);
5 return 0;
6 }

Running the rte plug-in on this program generates several additional annota-
tions corresponding to potential arithmetic overflows while computing idx or the
sum of the matrices’ elements, and potential invalid memory accesses when read-
ing the matrices’ elements. You can see them in the Frama-C GUI by running
the following command.

frama-c-gui -rte sum.c

Below are two examples of such annotations.

/*@ assert rte: signed_overflow: i*size <= 2147483647; */
/*@ assert rte: mem_access: \valid(c+idx); */

We can now combine the rte and e-acsl plug-ins to translate these additional
annotations (and the already existing ones) into C code in the following way.

frama-c sum.c -rte -machdep x86_64 -e-acsl-prepare -then -e-acsl \
-then-on e-acsl -print -ocode out.c

The special option -e-acsl-prepare tells Frama-C to generate an e-acsl-compa-
tible abstract syntax tree (AST). It is required when the computation of the AST
is needed by another analysis than e-acsl (here by the generation of annotations
by rte).

Now, if we compile and run the resulting program out.c as shown in Fig. 4, we
get the following output which indicates that an assertion preventing a memory-
access error failed when dereferencing c+idx at line 19.

Assertion failed at line 19 in function sum.
The failing predicate is:
rte: mem_access: \valid(c+idx).

5.2 Verifying Annotations Statically

Frama-C comes with two static analyzers which try to verify acsl specifica-
tions: Value, based on abstract interpretation [15], and wp, based on weakest
precondition calculus [16].
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Consider again the function sum of Fig. 3 with the following test function.

1 int main(void) {
2 int a[]={1,1,1,1}, b[]={2,2,2,2};
3 matrix c = sum(a, b, 2);
4 free(c);
5 return 0;
6 }

Combination with wp Plug-In. Running wp on this program (with the au-
tomatic theorem prover Alt-Ergo [17]) automatically proves the preconditions
of function sum as you can see, for instance, running the Frama-C GUI:

frama-c-gui -wp sum.c

It does not prove, however, the postconditions of the function: such a proof with
wp requires to write loop invariants for both loops of the function. Nevertheless
it is possible to combine wp and e-acsl: wp proves the preconditions3, while
e-acsl establishes that the postconditions are not violated for a given execution.
By default, the e-acsl plug-in does not perform code instrumentation to check
already proved properties: if wp proves the preconditions first, the code gener-
ated by e-acsl performs fewer runtime checks and so is more efficient. Such a
combination is run by the following command.

frama-c -machdep x86_64 -e-acsl-prepare -wp sum.c -then -e-acsl \
-then-on e-acsl -print -ocode out.c

The generated program out.c is then linked and executed as usual. In this par-
ticular case, it does not report any error since the program is actually correct.

Combination with Value Plug-In. We can run Value on the same example
as follows.

frama-c -val sum.c

Below is a summary of the output.

1 sum.c:6:[value] Function sum: precondition got status valid.
2 sum.c:7:[value] Function sum: precondition got status unknown.
3 sum.c:8:[value] Function sum: precondition got status unknown.
4 sum.c:19:[kernel] warning: out of bounds write. assert \valid(c+idx);
5 sum.c:9:[value] Function sum: postcondition got status unknown.
6 sum.c:10:[value] Function sum: postcondition got status unknown.

It indicates than Value automatically proves the first precondition size >= 1,
but does not prove neither the other ones4 nor the postconditions. Value also
generates an acsl annotation because it detects a potential out-of-bounds access
when writing into the array cell c[idx] at address c+idx . It does not detect similar
out-of-bounds accesses for reading a[idx] and b[idx] because it assumes that the
preconditions of the function are valid.

In the same way as for wp, we can combine Value and e-acsl to dynamically
check with e-acsl only what remains unproved byValue. e-acsl will also check
the additional annotation generated by Value. Such a combination is run by
the following command.

3 The wp’s default memory model assumes that malloc never returns NULL.
4 The Value’s default memory model assumes that malloc may return NULL.
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1 frama-c -machdep x86_64 -e-acsl-prepare -val sum.c -then -e-acsl \
2 -then-on e-acsl -print -ocode out.c

Linking and executing the generated program in the usual way does not report
any failure on this correct program.

6 Customization of Runtime Monitoring

By default, as shown in the previous examples, when the evaluation of a predicate
fails at runtime, the execution stops with an error message and exit code 1. This
behavior is implemented by the function e_acsl_assert provided in the file e_acsl.c

of the e-acsl library. This function is called each time an annotation is checked.
It is fully possible to modify this behavior by providing your own definition of
e_acsl_assert. The prototype of the function to implement is as follows.

void e_acsl_assert(int, char *, char *, char *, int);

For each annotation a to be checked, the parameters are the following:

– the first one is the validity status of a (0 if false, non-zero if true);

– the second one is a string describing the kind of a (an assertion, a precondi-
tion, a postcondition, etc);

– the third one is the function name where a takes place;

– the fourth one is a textual description of a;

– the fifth one is the line number of a in the source file.

For instance, Fig. 6 provides an implementation which does not stop the program
execution, but appends an error message at the end of file log_file.log when an
annotation is violated.

Then, in the script of Fig. 4, we can replace the file $share/e-acsl.c by the one
defining the function of Fig. 6. Thus, executing it on the binary generated from
the first example of Section 3.3 generates a file log_file.log which contains the
following lines:

Precondition failed at line 8 in function sum.
The failing predicate is:
\forall integer i, integer j;

(0 <= i && i < size) && (0 <= j && j < size) ==> \valid((b+i*size)+j).
RTE failed at line 11 in function sum.
The failing predicate is:
mem_access:

\valid_read(__e_acsl_at_7
+(long long)((long long)((long long)__e_acsl_i_4*(long long)__e_acsl_at_8)
+(long long)__e_acsl_j_4)).

It indicates that there were actually two failed runtime checks. The former
was previously described in Section 3.3 and corresponds to the invalid precondi-
tion about the array b (which has 3 elements while 4 are expected). The latter
corresponds to an out-of-bound error detected when trying to evaluate the post-
condition since b[i*size+j] tries to access the fourth element of the array b of
length 3 (when i = 1, j = 1 and size = 2).
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1 #include <stdio.h>
2

3 void e_acsl_assert
4 (int predicate, char *kind, char *fct, char *pred_txt, int line)
5 {
6 if (! predicate) {
7 FILE *f = fopen("log_file.log", "a");
8 fprintf(f,
9 "%s failed at line %d in function %s.\n\

10 The failing predicate is:\n%s.\n",
11 kind, line, fct, pred_txt);
12 fclose(f);
13 }
14 }

Fig. 6. Modifying the runtime behavior when an annotation is violated

7 Conclusion and Future Work

In this tutorial paper, we have presented how the e-acsl plug-in of Frama-C
can be used to perform runtime assertion checking of C programs. The user
expresses the expected properties of the program statements and functions in a
powerful formal specification language. These properties are then automatically
translated into C code in order to be checked at runtime.

In addition to usual runtime assertion checking, e-acsl may help to debug
specifications before proving a program formally. When combined with other
Frama-C analyzers, e-acsl is even more efficient: it may automatically check
for any runtime errors in C programs, and may discard runtime checks of prop-
erties previously statically verified.

Future work includes the support of missing parts of the e-acsl specification
language, in particular assigns clauses, loop invariants and variants, and logic
functions and predicates. It also includes the verification of new kinds of prop-
erties like additional memory temporal properties, LTL properties or security
properties, and new areas of application like combinations of testing and static
analysis, security monitoring and teaching formal specification.
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With Real-Time Performance Analysis

and Monitoring to Timing Predictable
Use of Multi-core Architectures

Kai Lampka

Uppsala University

Motivation

With future societies and individuals possibly becoming more and more depen-
dent on highly capable (control) systems, the ability to carry out precise system
analysis and to enforce the expected behaviour of systems at run-time, i. e., dur-
ing their operation, could become an irrevocable requirement. –Who would accept
that a computer takes full or partial control over one’s car without believing that
the system is always reacting as expected?– Correctness of system designs and
their implementations is only one aspect. The other major aspect is the capa-
bility to build cost-effective systems. Advances in (consumer) electronics have
brought about multi-cored micro-controllers equipped with considerably large
memory. This will stimulate the building of embedded (control) systems where
multiple applications can be integrated into a single controller and thereby ef-
fectively lower the per unit costs of a system as a whole.

The integration of embedded control software brings, via the joint use of
hardware, the potential for hidden dependencies between applications. The de-
pendencies can provoke unwanted side effects that are difficult to anticipate and
potentially corrupting to the system’s behaviour. As an examples to this, one
may think of a dual core system with a shared L2-cache. The software executing
on the different cores will mutually over-write their cache entries. This in turn,
will significantly add to their execution times as code segments and data items
must be re-fetched from the main memory. However, this interference does not
stop at the level of caches. When fetching items from the main memory, cores
need to wait for getting access to the memory. As the Dynamic Memory Access
(DMA) controller might implement complex access patterns, on top of the non-
deterministically arriving access requests, waiting times may also drastically add
to the execution time of the software. For these reasons, it might be the case that
a (control) software misses its assumed deadline and a control signal does not
reach the actor in time. This in turn can do harm to the overall systems stability
and provoke its damage or complete loss, not to mention human casualties.

The challenge inherent to the analysis of such integrated systems is to not
drastically over-estimate the execution time of a software component, e.g. by
pessimistically bounding the number of cache misses and the waiting times of
memory accesses. The challenge inherent to the design of the run-time envi-
ronment of such integrated system is to not waste compute-capacity, but still
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guarantee that real-time constraints are met. On top of this, the run-time system
must be not too complex as this makes any formal system analysis infeasible and
thereby neglects the possibility to demonstrate the formal timing correctness of
the system, which is of greatest importance when it comes to the implementation
of safety-relevant features by means of electronics, e.g. an anti-blocking system of
a car. Overall, this makes the analysis and design of embedded (control) systems
extremely challenging, particularly when deploying less predictable multi-core
processors, originally designed for the consumer electronics market and not for
executing safety-relevant applications.

Contents

This tutorial is concerned with the analysis and run-time support for real-time
constrained software executing on multi-core processors with shared resources
like caches, memory and intra-core connects. In this setting the challenge is to
organize resource use in such a way, that the system is good to analyse, but
one avoids waste of compute-capacity or other resources. E.g. static resource
arbitration or allocation leads to deterministic system behavior, but may yield
low resource utilization which in turn limits the number of applications to be
concurrently executed. For addressing these topics the tutorial will present

Part 1: Real-Time Performance Analysis. A modelling and analysis
methodology for (formally) analysing real-time constrained software deployed
on multi-core architectures. This will contain an introduction to Timed Au-
tomata [1] and Real-time Calculus [7] and a in-depth presentation of research
results concerned with the modelling and analysis of real-time constraint em-
bedded systems, e.g., [4,5,2].

Part 2: Monitoring of Real-Time Workloads. This part will present run-
time mechanisms for ensuring timing correctness (a) in the presence of race
conditions and complex arbitration schemes to coordinate access to the
shared resource and (b) for carrying out online dynamic power management.
The presented material is based on the work presented in [3,6]

The co-development of run-time mechanisms and analysis methods is motivated
by the fact that the mechanisms which reduce the non-determinism of the system
and its performance model can be exploited within the analysis, as well as within
the running system.

The presented techniques support the design safety-critical embedded real-
time systems on non-customized multi-core chip designs, originally designed for
the consumer-electronic market, rather than for being deployed in a safety sys-
tem’s context.
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Abstract. Dynamic analysis techniques have made a significant impact in secu-
rity practice, e.g. by automating some of the most tedious processes in detect-
ing vulnerabilities. However, a significant gap remains between existing software
tools and what many security applications demand. In this paper, we present our
work on developing a cross-platform interactive analysis tool, which leverages
techniques such as symbolic execution and taint tracking to analyze binary code
on a range of platforms. The tool builds upon IDA, a popular reverse engineering
platform, and provides a unified analysis engine to handle various instruction sets
and operating systems. We have evaluated the tool on a set of real-world applica-
tions and shown that it can help identify the root causes of security vulnerabilities
quickly.

1 Introduction

Dynamic and symbolic execution based techniques have made a significant impact on
analyzing the binary code, e.g. to help automate some of the most tedious and yet non-
trivial analysis in security practice. One example is white-box fuzzing [1], where the
goal is to systematically generate test inputs to exercise all feasible program paths. An-
other example is taint analysis [2], where the goal is to track how tainted inputs propa-
gate and trigger security vulnerabilities. In addition, these techniques have been used to
detect a broad class of zero-day attacks [3,4] and to generate vulnerability signatures [5]
in a honey-pot.

Despite the aforementioned progress, however, there are major limitations in existing
techniques that prevent them from being widely adopted. First, there is a lack of support
for interactive analysis. Current research on dynamic binary analysis focuses primarily
on fully automated methods, which is undoubtedly important for applications such as
software testing. However, security applications such as malware analysis and exploita-
tion analysis often cannot be fully automated. Although automated analysis can serve
as the starting point of another round of deeper analysis, human in the loop is still indis-
pensable. For example, an exhaustive white-box fuzzer can merely exercise all feasible
program paths and identify the necessary conditions to trigger software bugs, but cannot
decide whether the bugs are exploitable. To decide whether a bug is exploitable, the user
needs to refine the input along that path to decide whether it is a security vulnerability.
During this process, tools that support interactive analysis would be useful.

Second, there is a lack of support for cross-platform analysis by existing tools. This
is a burning issue as well because software today runs on an increasingly diverse set
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of microprocessors and operating systems. Even if a software bug is exploitable on one
platform – a specific combination of microprocessor and OS – it is not necessarily ex-
ploitable on a different platform, and vice versa. The reason is because a working exploit
is often highly dependent on the runtime environment (stack layout, memory model,
etc.). Similarly, effective protection, such as address space randomization (ASR), non-
executable page, and stack/heap hardening, is also highly dependent on the runtime
environment. Unfortunately, existing tools rarely support multiple platforms. For ex-
ample, ARM based processors are popular in smart phones; many network routers and
switchers use PowerPC and MIPS; and embedded devices often use some type of RISC
chips. But existing dynamic analysis tools such as TEMU [6] and SAGE [1] focus only
on the x86 instruction set.

To bridge the gap, we propose a unified framework for binary code analysis, to sup-
port both interactive analysis and cross-platform analysis. Interactive analysis allows
for the user to make an assumption about the target program, and then quickly check for
evidence that supports or contradicts that assumption. For example, the user can mark
certain memory locations or registers as taint sources and then quickly check for other
instructions that are either control-dependent or data-dependent on the taint sources.
Since the user often needs to review the same execution scenario repeatedly, e.g. from
different angles and in varying degree of details, our tool also supports trace replay
augmented with dynamic slicing. Along certain program paths, the user can not only
review what has happened but also perform what-if analysis: to see whether the pro-
gram would behave differently if it were to take a different branch or input value. Such
analysis is supported by applying on-demand symbolic execution using SMT solvers.

To support cross-platform analysis, we adopt a unified binary code intermediate rep-
resentation (IR) of the target programs, and implement the core analysis algorithms
on this IR. We also develop various reverse engineering tools that translate the na-
tive execution traces of the program into this IR. Since core analysis algorithms such
as symbolic execution and taint analysis are made architecture-independent and OS-
independent, the maintenance cost is significantly reduced. This is in sharp contrast to
most existing tools, which are all tied to specific instruction set architectures (ISAs)
and operating systems (OSs). In our approach, native execution traces from different
platforms, together with the native program state, are captured and then translated into
the architecture-independent IR. Similarly, the analysis results are mapped back to the
native platforms before they are presented to the user.

To the best of our knowledge, such cross-platform interactive analysis framework
does not exist before. In addition to symbolic execution and taint analysis, our tool
supports deterministic replay. More specifically, at the operating system layer, we use
a generic debug breakpoint based mechanism [7] to support trace generation in user
mode, kernel mode, and on real devices. It allows us to avoid the limitations of the
existing dynamic binary instrumentation (DBI) tools [8,9] and whole-system emula-
tors [10]. Although there exist many replay systems for binary programs (e.g. [11]),
they do not seem to integrate well with mainstream security analysis tools and do not
support interactive analysis. For example, there are tools that extend the debugger gdb
to support replay [12], but do not support taint analysis. Reverse engineering tools such
as IDA [13] also support replay but not taint analysis. Without taint analysis, replay
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itself does not provide enough information about the data relations critical for security
analysts. Typically, security analysts need to construct the data flow relations manually.

We have implemented the cross-platform interactive analysis system in the popu-
lar IDA Pro tool. New features such as symbolic execution, taint tracking, and replay
have been integrated seamlessly with the existing features of IDA Pro. We have eval-
uated the new tool on a set of real world applications with known vulnerabilities, and
demonstrated the effectiveness of the tool.

The remainder of the paper is organized as follows. We provide an overview of our
tool in Section 2, and present the cross-platform symbolic execution engine, called
CBASS, in Section 3. We present the interactive taint analysis engine, called TREE,
in Section 4. We present our experimental evaluation in Section 5, review related work
in Section 6, and then give our conclusions in Section 7.

2 System Overview

The proposed system, shown in Fig. 1, consists of the following subsystems:

– CBASS (Cross-platform Binary Automated Symbolic execution System), which
separates the platform dependent execution trace generation process from the plat-
form independent analysis process.

– TREE (Taint-enabled Reverse Engineering Environment), which provides a unified
replay, debugging, and taint tracking environment, allowing security analysts to
form a hypothesis and then check it interactively.

– Front-end subsystems that support both static processing and dynamic tracing.
They translate native traces from different platforms to the common intermediate
representation (IR) and map the analysis results back.

We provide a brief description of static processing and dynamic tracing in this section,
while postponing CBASS and TREE to Sections 3 and 4, respectively.

Fig. 1. The Architecture of our Cross-platform Interactive Analysis System
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Static processing and dynamic tracing are crucial components for supporting cross-
platform analysis at the instruction set architecture (ISA) level and the operating system
(OS) level. ISAs often differ significantly in their encoding and semantics of the instruc-
tions. Operating systems often differ in how they use registers to represent high-level
data structures. For example, Windows and Linux use fs and gs segment registers for
very different purposes. In our system, however, these differences are mostly removed
due to the use of a common IR. In the front-end, only a thin layer needs to deal with
remaining subtle differences. In the back-end, all core analysis algorithms are based on
the common IR.

We shall use the program called basicov plus.exe in Fig. 2 as the running exam-
ple. It reads the data inputs from a file and adds each input byte, except for the last two,
with its right neighboring byte. If the first byte is ’b’, the transformed bytes are fed to
a vulnerable function called StackOverflow. The function is vulnerable in that, if the
input is larger than a local buffer inside the function, there will be a buffer overflow,
causing the return address to be overwritten. Although the program is small, it consists
of all the important elements of a typical security vulnerability: the potentially tainted
data source (input), the transformation (addition), the trigger (path condition), and the
anomaly manifestation (buffer overflow). In practice, of course, each of these elements
can be significantly more complex. For example, the transformation itself may involve
not just one instruction but a few millions of instructions.

Fig. 2. Example: A Conditional Buffer Overflow Program

Static Processing. There are two main components for static processing. One com-
ponent is responsible for pre-processing the binary code statically and building a map
from each native instruction to a set of IR instructions. Another component consists of
a set of simple static analysis on the resulting IR, e.g. to identify interesting locations
that are potential targets of the subsequent dynamic analysis.

Table 1 shows the mapping from a few instructions used by the program in Fig. 2
to the IR instructions. In this table, the native x86 instructions are shown in the first
column. The corresponding IR translations are shown in the second column. For exam-
ple, the native x86 instruction at the address 0x00401073 is mapped to the sequence of
REIL instructions from the imaginary address 0x0040107300 to the imaginary address
0x0040107306. We postpone our detailed presentation of the IR format, called REIL
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(for reverse engineering intermediate language), to next section. For now, we only show
the mapping.

After the REIL IR is constructed, a set of simple static analysis may be conducted.
For example, one analysis may be used to measure the Cyclomatic complexity of each
function in the IR. The cyclomatic complexity is believed to be useful in identifying
a set of functions where bugs most likely hide. Another analysis may be used to de-
tect loops heuristically and annotate the loop counters whenever possible. This is useful
because loops, as well as recursive call sites, are places where out-of-bound buffer ac-
cesses and non-termination most likely occur.

Table 1. The Mapping from Native Instructions to REIL IR Instructions

Native Instruction (x86) REIL IR Instruction

00401073 movsx edx, byte 40107300: add [DWORD FFFFFFF0, DWORD ebp, QWORD t0]
ss:[ebp-10] 40107301: and [QWORD t0, DWORD FFFFFFFF, DWORD t1]

40107302: ldm [DWORD t1, EMPTY , BYTE t2]
40107303: xor [BYTE t2, BYTE 0x80, BYTE t3]
40107304: sub [BYTE t3, BYTE 0x80, DWORD t4]
40107305: and [DWORD t4, BYTE FFFFFFFF, BYTE t5]
40107306: str [DWORD t5, EMPTY , DWORD edx]

00401077 cmp edx, 0x62 40107700: and [DWORD edx, DWORD 0x80000000, DWORD t0]
40107701: and [DWORD 98, DWORD 0x80000000, DWORD t1]
40107702: sub [DWORD edx, DWORD 98, QWORD t2]
40107703: and [QWORD t2, QWORD 0x80000000, DWORD t3]
40107704: bsh [DWORD t3, DWORD -31, BYTE SF]
40107705: xor [DWORD t0, DWORD t1, DWORD t4]
40107706: xor [DWORD t0, DWORD t3, DWORD t5]
40107707: and [DWORD t4, DWORD t5, DWORD t6]
40107708: bsh [DWORD t6, DWORD -31, BYTE OF]
40107709: and [QWORD t2, QWORD 0x100000000, QWORD t7]
4010770A: bsh [QWORD t7, QWORD -32, BYTE CF]
4010770B: and [QWORD t2, QWORD FFFFFFFF, DWORD t8]
4010770C: bisz [DWORD t8, EMPTY , BYTE ZF]

0040107a jnz loc 40108e 40107A00: bisz [BYTE ZF, EMPTY , BYTE t0]
40107A01: jcc [BYTE t0, EMPTY , DWORD 0x40108e]

Dynamic Tracing. There are three main components for dynamic tracing. Together,
they are responsible for generating a logged execution trace, which will be the starting
point of the subsequent offline analysis. Notice that, in our system, there is a clear
separation between online trace generation and offline trace analysis. This makes our
trace analysis as platform independent as possible. Among the existing binary analysis
tools, some have adopted online analysis [6,14], meaning that the analysis takes place
at the time the program is executed, while others have adopted offline analysis [1],
meaning that the trace is captured and then analyzed later. However, all of them are
tied to a particular platform, making it difficult to maintain and extend to a different
platform. In contrast, our system does not have such problems.

In Fig.1, the components labeled Dynamic Binary Instrumentation and Whole-system
Emulation implement the two popular approaches adopted by many existing tools.
However, these two components alone doe not meet the demand of our system, for
the following reasons. Popular DBI tools, such as PIN and DynamoRIO, provide user
mode x86 binary instrumentation but do not support non-x86 ISAs. Valgrind supports
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non-x86 ISAs such as ARM, PowerPC, and MIPS, but runs only on Linux. None of
them provides kernel mode instrumentation. Whole-system emulators can provide ker-
nel instrumentation, but often through an additional instrumentation layer that is not
portable to new versions. For example, tools built on the QEMU simulator, such as
TEMU [6], DroidScope [15], and S2E [14], have different instrumentation layers. In
each case, the implementation is tied to a specific microcode used by QEMU, making
it difficult to port. Therefore, although it is well-known that Android builds upon a cus-
tomized version of QEMU, porting the aforementioned tools to Android is challenging.

In contrast, we propose to use the debug breakpoint mechanism [7] for dynamic trac-
ing. This mechanism, already used by interactive debuggers such as gdb, is supported by
almost all processors and operating systems. Therefore, it provides a unified approach for
collecting execution traces from different platforms. It can collect traces in kernel mode.
It can also collect traces on real devices such as Cisco routers and Android phones, since
almost all of these devices have development tools that provide the breakpoint capability.
This debug breakpoint approach has significant advantages over DBI tools. Running in-
side the target process, DBI tools often disturb the behavior of the target program, e.g. by
affecting the target’s stack and heap layout. This is a serious problem because interesting
scenarios in security applications tend to manifest only in certain program states.

Our experience shows that breakpoint based tracing is effective for short and interac-
tive analysis. To support long traces, our system leverages existing DBI tools and whole-
system emulators, e.g. PIN plug-in for Windows/Linux x86 for trace generation. We have
implemented a heuristic algorithm to automatically switch between these techniques, in
order to use the best instruction tracer available in each individual application scenario.

Trace Format. The execution trace starts with a snapshot of the program state, which
consists of the module, thread, stack, and heap information. The program state is a
valuation of the setR of registers for all threads, including privileged registers for kernel
mode, and a global memory map M . Therefore, we have the program state represented
as PS = {R,M}.

A tracer on a particular platform would record the finite sequence of events starting
from the initial state. An event is an execution instance of an instruction that trans-
forms the program state PS into a new program state PS′. Each event in the trace has
a unique sequence number. The vast majority of events in a trace are of the form I =

{instInfo, threadID,relevantRegisters, memoryAccess}, where instInfo
contains the address of the instruction, the encoding bytes, and the size, threadId
is the index of the thread that executes this instruction, relevantRegisters and
memoryAccess contain values of the related registers and memory elements before
this instruction is executed.

Trace can be optimized to reduce the size while maintaining the same amount of
information required by the subsequent analysis. In our implementation, we record only
the information that is relevant to the subsequent analysis. For example, for instruction
movsx edx, byte ss:[ebp-10], our trace includes the values of registers edx and ebp.
For user mode analysis, we capture the precondition and postcondition of each system
call or call to a standard library function as a function summary, to avoid recording the
large number of instructions inside the function. For example, after a call to ReadFile,
we record the address of the input buffer, the input size, and the content of the buffer.



Dynamic Analysis and Debugging of Binary Code for Security Applications 409

3 Cross-Platform Binary Symbolic Execution System (CBASS)

In contrast to existing symbolic execution tools, where the core analysis algorithms
are tied to specific DBI tools or whole-system emulators, CBASS performs symbolic
execution on the platform independent REIL IR. This is advantageous because any
enhancement to the core analysis algorithms would automatically benefit all platforms.

3.1 The REIL IR

REIL stands for Reverse Engineering Intermediate Language [16]. It is a platform in-
dependent intermediate representation of disassembled code, originally designed for
supporting static code analysis. We adopt REIL in our system for three reasons:

– Translators for statically mapping the native instruction set to REIL IR are readily
available for most of the ISAs, including x86, ARM, PowerPC, and MIPS.

– The REIL instructions are sufficiently close to native instructions on most platforms
and therefore can be used to preserve the native register state easily.

– The semantics of REIL instructions can be encoded in SMT formulas precisely by
using the bit-vector theory, and therefore is amendable to symbolic analysis.

REIL has only seventeen instructions, each of which has a simple effect on the program
state. Each REIL instruction has three operands. The first two operands are always the
source operands and the last operand is always the destination operand. One or more of
the operands can be empty. Table 2 summarizes the seventeen REIL instructions. For a
more detailed description of REIL, please refer to the online document [17].

Designed for reverse engineering purposes, REIL provides the support to statically
translate native instructions in x86, ARM, PowerPC, and MIPS to their IR equivalents
for an instruction, a function, or the entire program. More importantly, REIL provides

Table 2. The REIL Instructions and Their Semantics

Category REIL Instruction Semantics

Arithmetic ADD s1, s2, d d = s1 + s2
SUB s1, s2, d d = s1 s2
MUL s1, s2, d d = s1 ∗ s2
DIV s1, s2, d d = s1/s2
MOD s1, s2, d d = s1 mod s2
BSH s1, s2, d if s2>0 d = s1∗2s2

else d = s1 /2−s2

Bitwise AND s1, s2, d d = s1& s2
OR s1, s2, d d = s1 | s2
XOR s1, s2, d d = s1 xor s2

Logical BISZ s1, � ε, d if s1 = 0, d = 1 else d = 0
JCC s1, � ε, d iff s1�=0, set eip = d

Transfer LDM s1, � ε, d d = mem[s1]
STM s1, � ε, d mem[d] =s1
STR s1, � ε, d d = s1

Other NOP, � ε, � ε, � ε No op
UNDEF � ε, � ε,d Undefined instruction
UNKN � ε, � ε, � ε Unknown instruction
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a one-to-one mapping of the native instruction address to the imaginary IR address.
For example, in Table 1, the x86 instruction movsx edx, byte ss:[ebp-10] at address
0x401073 will always be mapped to a list of REIL instructions from 0040107300 to
0040107305. Therefore, it is easy to map the analysis results back to the native forms
before reporting them to the user.

REIL has a simple register-based architecture, which can keep native registers and
create temporary registers when needed. Preserving native registers is particularly use-
ful for implementing the offline concrete and symbolic (or concolic) execution. Recall
that in concolic execution, the program state has to be saved during trace generation
and later reconstructed during the offline analysis. At runtime, our trace generator will
only save the native program state (related native registers and global memory). During
the offline analysis, we can compute the IR program state directly from these native
registers and the memory.

In all of the seventeen REIL instructions, the destination operand can be represented
by a mathematical or logical formula of the source operands. Consider the second native
instruction 00401077 cmp edx, 0x62 in Table 1. Notice that the REIL instructions use
a few basic mathematical and logical operations to precisely compute all the eflags;
in other words, all the eflags can be represented as an expression in terms of edx
and 0x62. For example, ZF = (edx 98) and 0xffffffff. In some sense, REIL
instructions are compatible with the input language of the satisfiability modulo theory
(SMT) solver Z3 [18], which supports the theories of integers, bit-vectors, and arrays.

3.2 Symbolic Execution

The symbolic execution procedure consists of three steps:

1. Mark taint source and symbolize its value. Here, taint sources refer to the untrusted
data in the target program. When a program variable is marked as a taint source, our
tool symbolizes the variable, by replacing its concrete value with a symbolic one (a
free variable). Traditionally, the taint sources are program inputs. However, during
interactive security analysis, the user may be interested in tracking other program
variables as well. For example, some sensitive data items such as the password
and the registry key may become the focus of the analysis. At any time during the
program execution, CBASS can mark any byte in any register or at any memory
location as the taint source.

2. Symbolic execution of REIL instructions. CBASS implements the symbolic execu-
tion engine based on the REIL IR. As we have already mentioned, the semantics
of REIL instructions can be close to that of the input language of the SMT solvers.
Therefore, the symbolic encoding procedure, which takes an IR trace as input and
returns an SMT formula, is straightforward. In our implementation of the proposed
system, we have used the Z3 SMT solver, which is capable of solving formulas
expressed in the theories of bit-vectors and arrays.

3. Check taint sink to construct constraint. Depending on the application, security
analysts may mark different memory location or register at some interesting point
as the taint sinks. For example, to generate potential exploits, the taint sinks are
usually registers such as EIP. We may create a constraint to steer the execution into
a desired code section and make EIP equals to the address of that code section.
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To detect vulnerabilities, the taint sinks are usually the unexplored branches. When
we encounter a branch instruction, we create a path condition if the branch predicate
is tainted by a symbolic input.

As shown in Table 2, there are four categories of REIL instructions directly related
to symbolic execution. Mathematical and logical instructions perform the correspond-
ing operations on constants, registers, or memory. Memory instructions handle memory
read or write operations, which propagate values between registers and memory. Con-
trol instructions decide where to jump if the branch conditions are true. During symbolic
execution, we use a concrete and symbolic memory (CSM) map to represent the memory
state. It has both the concrete value and the symbolic value. For memory instructions, if
the address is symbolic, also called a symbolic pointer, we have to under-approximate
it by using the concrete value derived from the actual execution trace.

3.3 The Running Example

We use the instructions in Table 1 to demonstrate how to construct a path condition
during symbolic execution and how to generate the SMT formula. As the IR instructions
are fed to the symbolic execution engine, CBASS creates symbolic variables for the
taint sources and constructs the symbolic expressions. For each IR instruction, it creates
a new symbolic expression for the destination operand if any of the source operands is
symbolic. If all the source operands have concrete values, then it uses the concrete value
for the destination operand.

Table 3. Example: The REIL IR based Symbolic Execution

Native Instruc-
tions

REIL Instructions Symbolic Execution, with ebp = 0x12ff84
and mem[12ff74] = INPUT

00401073
movsx edx, byte
ss:[ebp-10]

40107300: add [DWORD FFFFFFF0, DWORD ebp,
QWORD t0]

t0 = 0x12ff84+0xfffffff0 = 10012ff74

40107301: and [QWORD t0, DWORD FFFFFFFF,
DWORD t1]

t1 = t0 and 0xffffffff =0x12ff74

40107302: ldm [DWORD t1, EMPTY , BYTE t2] t2 = mem[t1] =INPUT VAR[8]
40107303: xor [BYTE t2, BYTE 0x80, BYTE t3] t3 = INPUT VAR[8] xor 0x80
40107304: sub [BYTE t3, BYTE 0x80, DWORD t4] t4 = (INPUT VAR[8] xor 0x80) -0x80
40107305: and [DWORD t4, BYTE FFFFFFFF,
BYTE t5]

t5 = ((INPUT VAR[8] xor 0x80) -0x80)
and 0xffffffff

40107306: str [DWORD t5, EMPTY , DWORD edx] edx = ((INPUT VAR[8] xor 0x80) -0x80)
and 0xffffffff

00401077 cmp
edx, 0x62

40107700: and [DWORD edx, DWORD
0x80000000, DWORD t0]

t0 = (((INPUT VAR[8] xor 0x80) -0x80)
and 0xffffffff)and 0x80000000

40107701: and [DWORD 98, DWORD 0x80000000,
DWORD t1]

t1 = 98 and 0x80000000 = 98

40107702: sub [DWORD edx, DWORD 98,
QWORD t2]

t2 = (((INPUT VAR[8] xor 0x80) -0x80)
and 0xffffffff) - 98

Ignore irrelevant temps ... ...
4010770B: and [QWORD t2, QWORD FFFFFFFF,
DWORD t8]

t8= ((((INPUT VAR[8] xor 0x80) -0x80)
and 0xffffffff) 98) and 0xffffffff

4010770C: bisz [DWORD t8, EMPTY , BYTE ZF] ZF = ite(t8==0,1,0)
0040107a jnz
loc 40108e

40107A00: bisz [BYTE ZF, EMPTY , BYTE t0] t0 = ite(ZF==0,1,0)

40107A01: jcc [BYTE t0, EMPTY , DWORD
0x40108e]

eip = ite(t0==1,0x40108e,0x40107c)
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Table 3 shows the symbolic execution of the REIL instructions of the three native
x86 instructions. Notice that each native instruction is mapped to a sequence of REIL
instructions. The REIL instructions take the native registers and memory values as in-
put, transform them by using intermediate registers, and return the results back to the
native registers and memory. For example, the instruction at 0x401073 has the native
register ebp and memory value at address 0x12ff74 as input, and the native regis-
ter edx as output. Just before executing the instruction, the concrete value of ebp is
assumed to be 0x12ff84 and the memory at the address 0x12ff74 has a symbolic
value. From the first two REIL instructions, we have t1 = 0x12ff74. The ldm in-
struction sets t2 = mem[0x12ff74], which contains a symbolic value, and then t2

= INPUT VAR[8].
After carrying out the symbolic execution as shown in Table 3, the branch condition

before executing 0040107a jnz loc 40108e becomes ite(ite(((((INPUT VAR[8]

xor 0x80) -0x80) and 0xffffffff) 98) and 0xffffffff). This is equiv-
alent to the SMT formula shown in Fig. 3. By negating the path condition and asking
the SMT solver for a satisfying solution, we can compute the new input value to be 98,
which corresponds to sBigBuf[0] == b in the original code in Fig. 2.

Fig. 3. Example: The Path Constraints in Z3 SMT Formula

4 Taint-Enabled Reverse Engineering Environment (TREE)

To unleash the analysis power of CBASS in security practice, we need to support in-
teractive analysis. Toward this end, we have developed the infrastructure that can (1)
generate REIL traces on demand, (2) visualize the analysis results on demand, (3) per-
form taint tracking on demand. Together, these new features form the basis of our taint-
enabled reverse engineering environment (TREE).

4.1 Interactive Trace Generation

TREE leverages existing features of IDA, a popular reverse engineering tool, to support
on-demand trace generation. IDA is a widely used tool in mainstream security prac-
tice. It has become the de facto standard tool for conducting vulnerability and malware
analysis. IDA can statically disassemble binary code on more than 50 processors and
support a wide range of operating systems.
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We have implemented the debug breakpoint based trace collection framework in
IDA and integrated it seamlessly with the existing features of IDA. Our experience
shows that the debug breakpoint based approach works well in supporting interactive
trace generation, which typically involves short traces. For lengthy traces and large
interactive sessions, we rely on the traces generated from the more traditional DBI tools
such as PIN, and whole-system emulators such as QEMU.

Compared to the existing tools, the dynamic trace generator in TREE has the follow-
ing features:

– Interactive tracing: The user can select a starting point and an end point at any time
during the analysis and request the tool to conduct a deeper analysis on a relatively
short trace segment. This feature can be used by security analysts to quickly verify
or refute a hypothesis.

– Kernel tracing: The trace generator in TREE can generate traces on any platform
that supports windbg and gdb server, allowing kernel mode traces to be generated
from both Windows and Linux.

– Mobile tracing: The trace generator in TREE can generate traces on Android/ARM
platforms through IDA’s debug agent. IDA supports real devices such as Android
phones and tablets. IDA also supports some versions of iPhone, Windows CE, and
Symbian OS, although these platforms have not been integrated with TREE.

4.2 On-Demand Taint Analysis

Broadly speaking, taint dependencies fall into three categories: data dependency, ad-
dress dependency, and control dependency.

– Data dependency means that the taint source affects the taint sink through data
movement, mathematical operations, or logical operations. The value of the taint
source often directly affects the value of the taint sink.

– Address dependency means that the taint source affects the taint sink through its
address for read or write, but the taint source does not directly affect the value of
the taint sink. One example for address dependency is the use of a tainted data as
the index to access a look-up table. Without tracking the address dependency, we
would lose track of the tainted data after such a table lookup.

– Control dependency is a form of implicit information flow. Although it can happen
in benign programs, it is often more deliberately used by malware. It can be of the
form if x =0 then y=0 else y=1. If x is tainted, the value of y is dependent
of x. But there is no direct link between the value of x and the value of y.

In security analysis, it is often challenging to keep track of all three types of dependen-
cies. In the remainder of this section, we will show how TREE can make it easier.

The main difficulty in taint tracking for the x86 instruction set is to handle the large
number of instructions and their variants, since these native instructions often have com-
plex side effects. REIL provides a unified framework for capturing these side effects,
e.g. by breaking down a native x86 instruction into a sequence of simple REIL instruc-
tions. Notice that there are only seventeen REIL instructions. Furthermore, each REIL
instruction has only one effect, making taint tracking easy to implement. Fig. 4 (1)
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Fig. 4. TREE Uses REIL IR for Comprehensive Taint Analysis

shows a comparison of the native x86 instructions and the corresponding REIL in-
structions. The REIL instructions capture the side effects of the native instructions on
eflags including SF, OF, CF and ZF.

REIL also supports static analysis that can provide hints for dynamic analysis. They
can be useful for x86 instructions that have embedded conditions or loop structures.
For example, cmpxchg compares the values in the AL, AX or EAX registers with the
destination operand, and depending on the comparison result, different operands may
be loaded into the destination operand. Some x86 instructions with prefix such as rep
behave like a loop. Fig. 4 (2) shows the REIL instructions for x86 instruction rep

movsb. Since dynamic analysis can only follow one path at a time, in general, it cannot
handle the branch and loop dependency. However, a conservative static analysis on
REIL IR often can reveal the branch and loop structure. This is the case for rep movsb

where such analysis can identify ecx as the loop counter. We have incorporated such
analysis into our REIL-based dynamic taint analysis.

We use the same example for CBASS symbolic execution to show the major steps
in dynamic taint analysis. Fig. 5 shows the details of this algorithm. After merging the
temporary register nodes, the final taint graph for native instructions is shown in the last
column of this table.

4.3 Replay with Taint-Enabled Breakpoints

In an interactive analysis session, the user may want to scrutinize a particular program
behavior repeatedly. TREE provides a replay mechanism to support such analysis. One
application is to reconstruct the execution states. Comparing to tools such as gdb and
IDA, the replay mechanism in TREE is significantly more powerful. For example, it
allows the user to break at any tainted points, after the user marks the initial taint source
and specifies the type of impact (taint policy). This new feature of break by data relation
is key to interactive analysis. It essentially allows the user to break at any point that she
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Fig. 5. Example: Dynamic Taint Analysis
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is interested, without the need to construct the chain of events mentally. In addition,
TREE can presents the chain of events within the proper semantic context visually.

We illustrate the replay process by using the same buffer overflow example in Fig. 2.
When this program runs with a 16-byte input that triggers the StackOverflow func-
tion, the input bytes at offsets 13 to 16 would overwrite the EIP bytes. This chain of
events can be tracked by TREE, for which a user-clickable graph is shown in Fig. 6. In
this graph, each node represents a byte, annotated by its transformation instruction and
followed by its edge type. D is the default edge type that stands for data dependency.
The first byte of EIP (id =207) is overwritten by input bytes 13 and 14 (id=13,14) after
a few steps.

First, these two bytes are added to form a new byte at memory mem 0x14fe1c(id

=159). Then the byte is moved to a local buffer at 0x14fdfc and overflowed the buffer
at function stackOverflow(). When the call to this function returns, the byte, at the
top of the stack at mem 0x14fdfc[id=196] is popped into the first byte of register
EIP [id =207]. For this trivial example, there are already 477 instructions logged
in the trace, but only 8 unique instructions are involved in the handling of the input
bytes. In such cases, the taint graph allows the user to focus on the most relevant set of
instructions quickly.

Fig. 6. Taint Graph and Visualization of Running Example

5 Evaluation

We have implemented the proposed cross-platform interactive analysis system using
the client/server architecture. More specifically, CBASS runs as the back-end server,
responding to requests from the front-end. It shares the REIL IR with TREE. TREE
is responsible for handling OS level differences and mapping the analysis results back
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to the native instruction context. The client/server architecture enables parallel develop-
ment and optimization of CBASS and TREE, and makes it easy to port either subsystem
to a different platform without affecting the other.

Currently, CBASS and TREE are able to run on Windows and Linux, and support
target programs running on the x86 and Android/ARM platforms. CBASS is written
in Jython, a Python-based language that can access Java objects and call Java libraries.
CBASS interfaces with REIL through the REIL Java library for IR translation. TREE is
implemented as an IDA Pro plug-in. TREE also uses Qt/Pyside and extends the IDA
graph to support a number of visualization features and user interaction. During the
process of developing TREE, we have found a number of bugs in both IDA and REIL
related tools. In most cases, the IDA and REIL developers have responded to our bug
reports promptly and provided fixes in their latest releases.

In the remainder of this section, we will first provide an overview of our detailed
evaluation and then present a case study with a real-world application. Together, they
demonstrate the effectiveness of our system in supporting cross-platform interactive
security analysis.

5.1 Overview

We have conducted two sets of experiments. The first set consists of unit level tests for
the CBASS and TREE subsystems. The second set consists of case studies using real-
world applications. At the unit testing level, we have used a large number of binary pro-
grams (each around 100 LOC) to check if the core analysis algorithms in TREE/CBASS
are implemented correctly. We have designed various transformation functions to pro-
cess the input (taint source) and created the corresponding test oracles to ensure that
TREE and CBASS produce correct results. The test programs are compiled on different
platforms (Windows, Linux, and Android) using different compilers (VC, GCC) with
various optimization settings. This also allows us to evaluate the effectiveness of our
front-end subsystems, which are crucial for the cross-platform analysis.

With real-world applications, the goal of our case study is to evaluate the effective-
ness of TREE/CBASS in analyzing vulnerabilities. More specifically, we would like to
know whether security analysts, armed with our tool, can quickly discover the chain
of critical events leading to the real vulnerability. Toward this end, we have selected
a set of Windows/Linux applications with known vulnerabilities. Table 4 shows the
statistics of the benchmark programs. In the following, we shall briefly describe each
vulnerability and then focus on using WMF (CVE-2005-4560) to explain in details how
TREE/CBASS can help reduce the analysis time required to identify the root cause.

The first two columns in Table 4 show the application name, version, and vulnera-
bility identifier. Both the WMF (CVE-2005-4560) and the ANI (CVE-2007-0038) vul-
nerabilities were present on many Windows versions prior to Windows Vista, and could
be triggered by applications including Picture and Fax Viewers, Internet Explorer, Win-
dows Explorer, and various email viewers. Audio Code 0.8.18 has a buffer overflow
vulnerability that can be triggered when adding a crafted play list (.lst) file. This vul-
nerability can enable arbitrary code execution. Streamcast 0.9.75 has a stack buffer
overflow, allowing attackers to use the http User-Agent field to overwrite the return
address of a function call. POP Peeper 3.4.0.0, an email agent, has a vulnerability in



418 L. Li and C. Wang

Table 4. Results of Our Analysis on Real World Vulnerabilities

Program Name and
Version

Vulnerability
Identifier

Binary Code and
Trace Size(KB)

Taint
Sources
(Byte)

Total/Unique
Instructions

Total/Unique
Tainted Inst.

GDI32.dll
5.1.2600.2180

CVE-2005-4560 272 / 2,422 68 76,618 / 5,677 206 / 115

User32.dll
5.1.2600.2180

CVE-2007-0038 564 / 53,548 4,385 250,534 / 23,868 7,195 / 1,043

AudioCoder 0.8.18 OSVDB-2939 731 / 29,000 620 473,922 / 27,265 12,666 / 66
Streamcast 0.9.75 CVE-2008-0550 804 / 26,541 1,230 83,204 / 3,354 8,351 / 35
POP Peeper 3.4.0.0 BugTraq-34192 1,436 / 68,731 400 182,382 / 8,226 1,106 / 2
PEiD 0.95 OSVDB-94542 214 / 14,163 1,000 32,779 / 9,501 25 / 20
SoulSeek 157 ExploitDB-8777 3,410/147,931 49 4,435,526/142,220 217/121
SoX 12.17.2 CVE-2004-0557 225 /14,441 1,184 180,034 / 2,801 56,138 / 647

its From field, where the stack buffer can overflow to overwrite the return address and
the Windows Structural Exception Handler (SEH). PEiD is a popular tool for detecting
packers, cryptors and compilers found in PE executable files. A carefully crafted EXE
file can be used to exploit this vulnerability to run arbitrary code. SoulSeek 157 NS12d,
a free file sharing application, has a vulnerability that can be remotely exploited to over-
write SEH. SoX (Sound eXchange) is a sound processing application in Linux. Its WAV
header handling code has a known buffer overflow vulnerability that can be exploited
by the attacker to execute arbitrary code.

The third column in Table 4 shows the size of the binary code and the size of the trace,
respectively. Recall that the on-demand trace logging starts when the target program
reads the taint source (input in all these test cases), and stops when the tainted data have
taken control of program, e.g. when EIP contains a tainted value or the program jumps
to the tainted memory location. The fourth column shows the number of bytes of the
taint sources, ranging from a few dozen bytes to a few thousand bytes. For all cases,
CBASS/TREE can successfully build the taint graph previously described.

For any specific taint sink, the CBASS/TREE system can generate a slice of the
tainted instructions from the taint sources to the taint sink. The last two columns in Ta-
ble 4 show the total and unique instructions in the trace, and the total and unique tainted
instructions for all the tainted sources and sinks, respectively. In general, tainted in-
structions are only a very small portion of the total instructions (<5%). For any specific
byte of the tainted target, for example, a tainted register or a tainted memory location,
usually only a few dozen tainted instructions are involved.

For more real world vulnerabilities to which we have applied TREE/CBASS, please
refer to http://code.google.com/p/tree-cbass/. We will continue our ongoing evaluation
process and update the results on this website.

5.2 Case Study: WMF (CVE-2005-4560)

In this section, we will illustrate how TREE/CBASS can support interactive security
analysis by using CVE-2005-4560, also known as the WMF SetAbortProc Escape

vulnerability. WMF stands for Windows Metafile Format. The formal specification of
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Fig. 7. Case Study: The WMF Key Data Structures

WMF is very complex. In short, the overall WMF file structure has one meta header,
followed by zero or more meta records. The key structure of the WMF file format is
shown in Fig. 7.

Each meta data record is an encoded Windows GDI (Graphics Device Interface)
function call. It is a means of storing and playing back the command sequence that nor-
mally would be sent to GDI to display graphics. Among the meta records, one type is
called the escape record. Although this type of record is deprecated, the code that han-
dles the record has not been removed in a timely fashion. If an escape record contains
certain values for the Function (0626) and Parameters (09) fields defined in the WM-
FRECORD structure, the SETABORTPROC escape will inform GDI to call a function
provided in the file. This vulnerability allows remote attackers to execute arbitrary code
via a WMF format image with a crafted SETABORTPROC GDI Escape function call,
related to the Windows Picture and Fax Viewer (SHIMGVW.DLL). It is relatively easy
to craft a WMF image file and cause the viewer application to crash.

The lower part of Fig. 7 shows an WMF file with 68 bytes. From the time the viewer
program finishes reading the file to the point where an exception happens, 76,618 in-
structions would be executed. Given that most people do not know WMF format well,
we can assume that it is difficult to manually identify which bytes of the WMF file
are responsible for the crash, how many instructions are directly involved in rendering
the file, from which functions, and under what condition. Without such information, it
would be difficult to understand the root cause of this vulnerability. From the exploit
development point of view, it would not be obvious which input bytes are critical to a
working exploit, and what are the constraints a working exploit must satisfy.
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With the dynamic analysis techniques provided by TREE/CBASS, we are able to
answer the aforementioned questions in a few minutes. More specifically, the tool can
generate a trace that leads to the crash. Furthermore, it can replay the trace by first
marking the whole 68 bytes of the file as the taint sources, and then stopping at the
tainted points. From the taint graph, we are able to see the connection between the
instruction that caused the crash (call eax where eax = 0xa8b94) and some of the file
structures. We have identified 12 unique instructions in WMF that are directly related
to moving and processing the file and causing the application to crash. Since our tool
can generate an interactive graph, the user can navigate along the chained data and
instructions by clicking on each tainted node in the graph.

Fig. 8 shows part of the WMF crash taint graph. The right side is a snapshot taken
from the TREE GUI. The nodes in green show the taint source bytes (WMF file), and
the nodes in red show the bytes pointed by eax in the call eax instruction that caused
an exception. The left side of the figure shows some internal text representation of the
taint graph. For example, the node 355 shows the tainted node of 0xa8b94. Following
the D link (highlighted in bold), we can see that it is data-dependent on node 233, which
in turn is data-dependent on node 29, an input byte that corresponds to part of the
shell-code section. Following the C link (highlighted by underline), we can see that it
is affected by a loop whose iteration number depends on the values from the 7th to the
10th bytes in the WMF file. When looking back at the WMFHead structure, we find that
bytes 7-10 actually correspond to the FileSize field.

Fig. 8. Case Study: The WMF Crash and Taint Graph
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6 Related Work

Independently, Heelan and Gianni [19] have explored the idea of supporting manual
vulnerability detection in their work called Pinnacle. However, Pinnacle is limited to
taint tracking on the x86 instruction set only. In contrast, our system can handle bi-
nary code from multiple platforms. Furthermore, our interactive analysis is significantly
broader than the scope of Pinnacle, including not only vulnerability analysis but also ex-
ploitation analysis and malware analysis. Our system also supports symbolic execution
and replay, which Pinnacle does not. Among the offline binary analysis tools, SAGE [1]
is the closest to ours. However, SAGE is designed primarily for white-box fuzzing and
works only for the x86 instruction set. It does not focus on interactive analysis and does
not support multiple platforms.

Since dynamic taint analysis is independent of the vulnerability specific details, it can
analyze a broad class of attacks controllable via input. Therefore, it has become a pop-
ular technique for detecting attacks such as buffer overflow and control-flow hijacking.
However, online taint analysis often has high runtime overhead and requires intrusive
code instrumentation. To make taint analysis more efficient for online intrusion detec-
tion, Sekar proposed taint inference [20] for web applications by using approximate
string match. Li and Sekar [21] later demonstrated that taint inference could be used to
detect buffer-overflow attacks in low-level binary code.

Dytan [2] extended the data-flow based taint tracking to also include control depen-
dency, and developed a framework to support the x86 instruction set. Ganai et al. [22]
extended this framework to support multithreaded applications. Predictive dynamic
analysis provides a new way of conducting trace-based analysis for multithreaded ap-
plications [23]. It can detect not only security vulnerabilities in the observed execution
traces, but also security vulnerabilities that may appear in some alternative thread inter-
leavings. Wang and Ganai [24] developed a tool for predicting concurrency failures in
the generalized execution traces of x86 executables.

Newsome and Song proposed TaintCheck [4], which used dynamic taint analysis
for detecting vulnerabilities and for generating vulnerability signatures. TaintCheck
was implemented using Valgrind [9]. Portokalidis et al. developed Argos [5] based on
QEMU to generate fingerprints for zero-day attacks. However, none of these existing
tools supports cross-platform interactive security analysis.

7 Conclusions

We have presented a cross-platform interactive analysis framework, which integrates
state-of-the-art dynamic analysis techniques with a mainstream reverse engineering
tool to meet the demand in security practice. Our framework, comprising CBASS and
TREE, supports interactive analysis through on-demand symbolic execution and taint
tracking. It also supports cross-platform analysis, by separating online trace generation
from offline trace analysis and by using a reverse engineering intermediate representa-
tion. We have implemented the proposed framework and conducted some preliminary
experimental evaluation. Our results have demonstrated its effectiveness in identifying
root causes of security vulnerabilities in real applications.
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