
A Practical Security Infrastructure
for Distributed Agent Applications

Lars Braubach, Kai Jander, and Alexander Pokahr

Distributed Systems and Information Systems
Computer Science Department, University of Hamburg

Vogt-Kölln-Str. 30, 22527 Hamburg, Germany
{braubach,jander,pokahr}@informatik.uni-hamburg.de

Abstract. Security is a vital feature for most real-world distributed
applications. For applications using an agent-based middleware, compre-
hensive support for many security-related aspects can and should already
be provided by the platform in a holistic manner. Moreover, security in
practice does not only concern the enforcement of well-known security
objectives like authenticity and confidentiality but also requires a sim-
ple yet effective usage concept that renders it easy for developers to
define their security requirements. In this paper a security concept and
implementation for multi-agent systems is introduced, which focuses on
external, i.e. inter-platform, security aspects. The solution encompasses
a usage concept distinguishing security intents from realization details
and allows service providers as well as service clients to impose secu-
rity constraints on communication relationships. The security concept
requirements have been elicited from and the results have been evaluated
with a real-world company project in the area of distributed workflow
management in business intelligence.

1 Introduction

Distributed systems allow applications to be used in a widely distributed man-
ner, which confers unique advantages over more centralized or server-based ap-
proaches such as increased performance and fault-tolerance. These systems offer
application platforms, which are capable of executing parts of the software and
enabling the communication between them and other platforms in a convenient
manner for the developer. However, a large number of real-world applications
especially in sectors such as banking, health and communication are mandated,
sometimes by law, to fulfill certain requirements regarding the security of the
system. Such requirements are frequently relegated to an afterthought, for exam-
ple by encrypting traffic using HTTPS, which often fails to address application
requirements such as fine-grained access control. In some cases, security require-
ments are ignored by the software platform and thus deferred to the application
level, which means that every application is forced to reimplement its own secu-
rity measures. Given that initial implementations often have flaws, this amplifies
the problem by given each application its own chance to include the same flaws
and requiring separate modification to address the problem.

M. Klusch, M. Thimm, and M. Paprzycki (Eds.): MATES 2013, LNAI 8076, pp. 29–43, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



30 L. Braubach, K. Jander, and A. Pokahr

As a result, it would be beneficial for the platform itself to offer a useful set of
security features that can be employed by all applications being executed on the
platform. While some features are too specialized to be provided in a generalized
manner, a number of features can be offered which are often not included in such
platforms. The first step towards implementing security features in a platform is
to ensure that basic security is maintained even in an only partially controlled
environment that is used by multiple stakeholders. Specifically, this means that
platforms should restrict access to functionality by default and only allow it when
specified. This allows the platform to prevent unauthorized access and achieve
specific security goals[11]. In addition to the access restriction, some applications
also require that non-repudiation can be established. This means that actions
taken on a platform by an entity can be accounted for and it can be proven that
specific service requests were placed by specific issuers.

This first step allows the inclusion of security features from the perspective
of a user of the MAS infrastructure, such as an application developer. The first
of these user security objectives is the integrity of communication between plat-
forms. This means ensuring that an attacker will be unable to tamper with
messages without the target platform noticing the change. If the communica-
tion is performed using a public network, the issue of eavesdropping needs to
be accounted for by establishing confidentiality of the data exchanged between
platforms. Since platforms restrict access by default and allow only some entities
access to its functionality, the authenticity of the entity needs to be established.
After authentication has been established, the authorization of the entity to
perform a function needs to be verified.

In addition to the user security objectives, the usability of the security model
provided by the platform must be part of the overall security concept of the
system and balanced against the security requirements[12]. Here, two groups
are particularly important. First, application developers should be offered easy-
to-use APIs and configuration options to integrate the offered features in their
application. Second, administrators of nodes that run the platform must be
offered management tools, for example to generate and distribute certificates.

This paper proposes a platform-based security model for agent applications
that is motivated by a real-world usage scenario which will be introduced in the
next section. In Section 3, related approaches will be presented. The security
concept for the platform-based approach will be introduced in Section 4, followed
by an elaboration of the implementation of the approach in the Jadex agent
platform in Section 5. The approach is then evaluated in Section 6 based on the
real-world scenario, followed by a conclusion in Section 7.

2 Real World Scenario

In a commercial project called DiMaProFi (Distributed Management of Pro-
cesses and Files) carried out with the company Uniique AG1 a new business

1 http://www.uniique.de/

http://www.uniique.de/


A Practical Security Infrastructure for Distributed Agent Applications 31

intelligence tool is currently under development. The tool will target the mod-
eling and automated execution of distributed ETL (extract, transform, load)
workflows. These kinds of workflows serve the purpose of collecting and pre-
processing data and files and finally move them into a data warehouse, which
is subsequently used by domain experts for sales and other business evaluation
tasks. The targeted scenario is naturally distributed, spanning often more than
one network as the relevant source data is generated at different customer sites.

In such a setting many security related problems arise:

– The DiMaProFi application is distributed and needs to work on different
nodes, on the one hand to bring about its functionality and on the other
hand to save time by distributing the system load. This means that the nodes
of the system have to form an overlay network which permits access to the
members but prohibits access from other nodes and protects the integrity
and confidentiality of the exchanged messages.

– Another important aspect is that the system needs to have access to pass-
word protected resources like databases and also the target data warehouse.
To avoid the distribution of passwords among all participating nodes, a
mechanism for acquiring authentication at runtime needs to be provided.
In DiMaProFi, a specific password safe is used which can be interrogated
by authenticated parties to obtain credentials for access restricted resources.
For this approach it is important to support origin authentication of the dif-
ferent parties at the password safe and also provide confidential messaging
to protect credentials from being eavesdropped.

– Regarding the communication with the customers it is important that in
error cases the activities of the system have been exactly monitored and
recorded. On the one hand this facilitates the failure recovery and on the
other hand it might be important with respect to legal responsibilities con-
cerning the service level agreements with the customer. For this purpose the
correctness of the monitoring data is significant and should be safeguarded
by a non-repudiation mechanism.

From this description it becomes obvious that in distributed applications like
DiMaProFi security objectives become vital and mechanisms for access restric-
tion, authentication, integrity and non-repudiation need to be established. These
objectives are also considered in literature to be of primary importance [7] for
distributed system security.2 Moreover, these security solutions should be prac-
tical in the sense that they are easy to install, configure and maintain, i.e. secu-
rity should not become a complicated overhead possibly fostering the bypass of
important mechanisms.

3 Related Work

While security features are a frequent requirement for applications, security as-
pects are often either overlooked or only superficially considered when designing
2 We decided to exclude availability here as it is more related to system design as a

whole in contrast to basic design entities like agents.



32 L. Braubach, K. Jander, and A. Pokahr

multi-agent systems [8]. Most platform-based systems rely on the use of stan-
dardized or established algorithms such as AES [10] and RSA [16] and protocols
like SSL/TLS [3] and Kerberos [9] to meet the requirements of the applications.
Since designing both security algorithms and protocols always carries the risk of
flaws and established approaches have been used and vetted for many years, us-
ing established solutions is generally a good idea. However, the approaches often
lack good integration with the platform, resulting in a system that is difficult to
configure and use.

Regarding distributed systems, one can distinguish two classes of security: In-
ternal security, which attempts to enforce restrictions between components such
as agents executing on the same platform, and external security, which centers
on the communication between different platforms and the enforcement of re-
strictions between platforms. Generally speaking, internal security is fairly hard
to enforce since code executed within the same process instance is usually able
to circumvent security measures, either through approaches like reflection APIs
or by simply reading or manipulating the process memory. A notable exception
are sandboxing approaches [14], which attempt to encase certain parts of locally
executed code by restricting its API access and memory reading capabilities in
order to contain the sandboxed part of the application within a known scope of
permissions.

A prominent example of this approach is the Java Security Manager [5], which
allows the application of method-based restrictions on parts of the executing
code. However, since this approach relies on complex code analysis and inter-
preter assistance, it is prone to include subtle flaws [4]. As a result, internal
security remains difficult to maintain. Furthermore, basing security policies on
the method level is often too fine-grained to be easy to configure and often allows
attacks if not done with extreme caution. This complexity can be considerably
reduced when considering external security.

Nevertheless, some agent-based approaches attempt to enforce internal secu-
rity in addition to external security. For example, the JADE-S add-on [17] for
the JADE agent platform allows the user to restrict access to platform services
using access control lists (ACLs) and user authentication. While this addresses
one kind of authentication with regard to administrative aspects of platform
management, there is no mechanism to assist authentication for agent interac-
tions and services. JADE-S also offers the option to encrypt and sign messages
between agents, potentially opening the possibility of agent authentication and
message confidentiality. However, this is supported by key pairs held by each
agent. This means that enforcing inter-agent secrecy on the same platform re-
quires the enforcement of internal security with the aforementioned complexity
and there appears to be no readily available function for key distribution, which
greatly increases administrative overhead and reduces usability. This problem is
magnified by the lack of scalability because each requires a key pair.

Other agent systems attempt to address the problem of keeping confiden-
tiality between platform and agent or between multiple agents. The concerns
here are less about communication but rather the danger of compromising the



A Practical Security Infrastructure for Distributed Agent Applications 33

execution space of either the agent or the platform. For example, in [6] a method
is proposed which lets mobile agents perform computations on encrypted data,
preventing the platform from gaining access. In the opposite direction, sand-
boxing approaches are once again chosen to maintain internal security of the
platform with regard to the mobile agent. Similarly, the use of controlled query
evaluation (CQE) techniques is proposed in [1] in order to prevent agents from
revealing confidential information during interactions. These approaches focus
primarily on maintaining the confidentiality either within the same MAS appli-
cation or between executing platform and agent while the approach presented
in this paper focuses on maintaining the confidentiality of inter-agent communi-
cation against an outside attacker.

Due to the difficulties associated with the enforcement of internal security
through sandboxing, many approaches forego this approach, instead focusing on
the easier-enforced external security similar to the approach presented in this
paper, which relies either on well-tested operation system process security, vir-
tualization or physical separation of machines to aid in access restriction. Since
additional platforms can always be added automatically as additional processess,
this reduces the implementation difficulties of sandboxing by offloading the is-
sue to the operation system process security, which receives a higher degree of
scrutiny. For example, WS-Security provides features for encryption and signa-
tures which can be used to secure web services [13]. This approach provides
support for external security for web service calls. However, while aspects such
as certificate formats and the use of security tokens is part of this approach, it
does not offer an easy key distribution mechanism. Furthermore, authentication
relies, in large part, on the application layer with support mostly provided for
basic aspects such as confirmation of signatures.

4 Security Concept

In this section, the security concept is introduced. First, the scope of the security
concept is explained, i.e., the setting in which security measures are applied and
which security objectives are supported. Afterwards details of the security model
are illustrated to show how the security objectives can be achieved.

4.1 Scope of the Security Model

Multi-agent systems can be deployed in various settings ranging from simple
closed networks to internet scale distributed systems. The security model pre-
sented here aims at open distributed systems, in which agents are used to realize
some of the systems functionality. This functionality is exposed to the outside as
services, which e.g. may be accessed using message-based interaction protocols.
It is assumed that agent platforms represent the nodes in the network and each
agent platform is under some administrative control.

The focus is on security issues due to agent services being accessed from the
outside (cf. Fig. 1). With regard to the usage of these services four common
security objectives can be identified.



34 L. Braubach, K. Jander, and A. Pokahr

Fig. 1. Basic security model

Access Restriction: The functionality must only be provided to those who are
allowed to use it.

Authentication: The agent should be able to uniquely identify the user of its
functionality, e.g. for accounting purposes.

Confidentiality The usage of the functionality as well as private data should
not be visible to others.

Non-Repudiation Users of the functionality should not be able to deny that
a certain request was used.

Due to the focus on outside requests, certain security issues are intentionally not
covered in the model. First, issues of mobile code are excluded, because mobile
agents are considered unnecessary for many real world applications. Moreover,
security issues due to an attacker having direct access to the computer running
the agent platform are not considered. Such an attacker might be able to install
malicious code or sniff sensitive data from local memory. Yet, these kinds of
attacks do not require agent-specific solutions, but can be already covered with
user-based access control, anti-malware-checkers, etc.

4.2 Security Model Details

Security objectives are related to individual services. Each service may require a
different combination of security objectives. E.g. instantiating a new data man-
agement process in DiMaProFi only requires access control but no confiden-
tiality, because no sensitive data is transferred. In a later step of the process,
confidentiality might become necessary, e.g. when the process accesses a sensitive
customer file.

Therefore, security policies are introduced to allow fine-grained, yet easy to
use configuration of security objectives. These security policies may be specified
both at the sender as well as the receiver side (cf. Fig. 2). Typically, the receiver
side providing the service will already specify the general security objectives that
apply to any usage of the service. Therefore, the receiver can choose to demand
that all access to the service must be authorized, that data must always be
transmitted confidentially etc. Furthermore, the sender side can supply a custom
policy for each request to demand further security measures. For example, if a
service does not demand confidentiality in general, the sender can still request
that communication be encrypted for a specific interaction.



A Practical Security Infrastructure for Distributed Agent Applications 35

Fig. 2. Security model details

To achieve the desired security objectives, a security manager is introduced
that operates as part of each agent platform. This approach allows all security-
related functionality to be handled by the agent platform itself and relieves agent
programmers from tedious and time-consuming implementations of security de-
tails. The platform security managers are responsible for processing the requests
before they are sent and after they are received. Each request between two agents
is thus routed through two platform security managers, one at the sender and
one at the receiver side (cf. Fig. 2). In the following, for each security objective
it will be described, how it can be realized inside the platform security managers
using further security concepts, such as keys and certificates.

Access Restriction. By specifying an according security policy for an agent
service, a developer can control, if agents from other platforms may access the
service. For simplicity, the model allows two modes of access restriction. One
that requires authentication and one that does not. The simple mode without
authentication relies on the concept of trusted platforms and trusted networks
as described below. The idea is that an agent platform should allow access to all
services of its agents when requested by remote agents from trusted platforms or
from platforms in trusted networks. All other agents are only allowed to access
services, which have been explicitly marked as public by the developer. The
validation of trusted platforms is done by using platform and network keys, which
are kept in a key store on each platform. The difference between platform and
network keys is that a platform key allows only access to a single platform, while
a network key allows access to a logical network of platforms. A platform only has
one own platform key but it may participate in any number of trusted networks
and thus may have multiple network keys. In addition to its own platform key,
the key store also contains the known keys of remote platforms.

An example is shown in Fig. 3. Platform A has a local platform key as well
as network keys for networks N1 and N2. As it shares network and key for N1
with platform B, platform A will consider B as trusted. Similarly, platform E
is trusted by A as both share the key of network N2. Furthermore, platform G



36 L. Braubach, K. Jander, and A. Pokahr

Fig. 3. Trusted platforms and trusted networks

is trusted by A, because G is in possession of A’s platform key. Due to their
disjoint network memberships, platforms B and E would not trust each other.

Whenever a request is issued to a remote platform, the security manager on
the sending side will intercept the request and enhance it with digests of the
relevant platform and network keys. The security manager at the receiver side
also produces digests of its local keys and checks if one of them matches the
sent digests. If a match is found, the platform can be considered as trusted
as it shares a common secret with the sender. Due to the use of digests, no
keys need to be transferred and therefore cannot be sniffed by eavesdroppers.
Furthermore, using timestamps as part of the digested text provides protection
against replay-attacks.

The second access restriction mode with authentication allows more fine-
grained control over which services may be accessed by which remote platform.
This can be specified in two ways. First, the names of allowed platforms can be
annotated in the service policy. Second, virtual group names can be specified
that are later mapped to concrete platform names. The first way is simpler, but
may introduce maintainability issues as changes in platform names may require
security policies to be updated. The second way allows for role-based access con-
trol as the virtual names can be used to represent roles. Therefore, developers
can specify which roles are allowed to access which services and administrators
later configure, which platforms are allowed to play which roles. The details of
the authentication mechanism are described next.

Authenticity and Integrity. Authenticity is about establishing the identity of
a communication partner and integrity means that no tampering with message
contents is possible. They come hand in hand as requirements for other security
objectives such as access control and non-repudiation. In the presented security
model, authenticity and integrity are established by the use of digital signatures
and platform certificates. When authentication is required, the security man-
ager of the sending platform will add a digital signature to the message, which
is produced by the private key of the platform. To validate the authenticity and
integrity using the digital signature, the security manager of the receiving plat-
form uses the platform certificate, which contains the public key of that platform.



A Practical Security Infrastructure for Distributed Agent Applications 37

The means that only when the receiving platform already has the certificate of
the remote platform, the digital signature can be validated. Therefore an impor-
tant aspect of authentication is the distribution of platform certificates.

A common and safe but tedious way is to manually install the certificates. In
a network of n platforms, n ∗ (n− 1) installation operations would be required
to be performed by platform administrators. Therefore alternative solutions are
provided to simplify the process. These solutions allow obtaining certificates
during the process of validation a signature and thus are called certificate ac-
quisition protocols. The first protocol uses a certificate server as a trusted third
party. Due to the central server only n∗2 operations would be required to install
each platform certificate at the server and also install the server certificate at
each platform. An additional advantage of the approach is that when adding a
platform, only the newly added platform and the server need to be considered as
no additional certificates need to be installed at previously existing platforms.

The second protocol is based on trust relationships to other platforms. It
realizes a consensus mechanism that asks a set of available platforms for a specific
and currently unknown platform certificate and compares the received results.
If a configurable threshold of platforms has delivered the same certificate it is
accepted and added to the internal key store. The number of manual installation
operations of this protocol directly depends of the chosen threshold for accepting
a certificate. In the best case (threshold=1) 0 manual installations are necessary,
while in general with (threshold=x) (x− 1) ∗ n operations are required.

In order to reduce the efforts of manual installation to a minimum a two-
staged process can be used. In the first stage the network of platforms, e.g.
running in a company intranet, has to be cut-off from the internet so that so
no malicious platforms can participate. In this initialization phase the certificate
acquisition has to be enabled at the security manager of each platform and
e.g. the consensus protocol can be used with threshold=1. After having set up
the network a complete certificate exchange is started in which each platform
requests certificates of all other visible platforms. After the exchange has finished
the initialization phase is completed, the certificate acquisition can be turned off
and the internet connection can be reestablished.

Confidentiality. Confidentiality can be specified at the receiver side for all re-
quests to a service as well as at the sender side for a specific request. In both
cases, confidentiality means that all communications pertaining to the service
usage (i.e. requests as well as replies) should be encrypted to prohibit outsiders to
gain access to the exchanged information. When performing confidential com-
munication, the platform security managers are responsible for ensuring that
the corresponding messages are sent through secure channels. For confidential
communication between different platforms, the use of secure message transport
protocols is obligatory. If no such transport is available, the sending agent is
notified about the request failure and the message is discarded.

Non-repudiation. Non-repudiation means that it can be proven that a cer-
tain request was issued by a certain party. To achieve this it is required that



38 L. Braubach, K. Jander, and A. Pokahr

authenticity and integrity of requests can be established. To prove the issuance
of a request at a later point means further that all relevant requests should be
logged. This is achieved using a mechanism for monitoring the service invoca-
tions. For each agent it can be specified, which services are of interest and thus
which requests need to be written to the log.

4.3 Usability Concerns

One main focus of the presented security model is ease of use at two levels -
for the agent programmer and for the platform administrator. The presented
model is easy to use for agent programmers, because security issues are speci-
fied as non-functional properties. As a result, the agent implementations do not
need to deal with security issues leading to an advantageous separation of con-
cerns. Furthermore, using the non-functional properties, security configurations
can easily be added to existing agent implementations. Usability is further fa-
cilitated by the flexibility and simplicity of the model. For example, for access
control, the developer can choose from three access modes: public, trusted, and
authenticated access. The public access mode allows easily enabling global access
to non-critical public services without compromising security of critical services.
The trusted access mode is enabled by default thus automatically protecting any
service implementation without further effort from unauthorized access. There-
fore, agent platforms and applications can safely be hosted in open networks
without having to consider security at first. Finally, authenticated access allows
fine-grained role-based access control, if required.

For administrators, usability issues arise as the platforms need to be con-
figured with two conflicting goals in mind: 1) keep the platform as closed as
possible to prevent any malicious activities and 2) keep the platform as open
as necessary for the distributed application to operate correctly. The concept of
trusted networks provides a simple solution for this conflict that is applicable to
many real world situations. By establishing a trusted network, an administrator
can easily allow platforms from heterogeneous company networks to interop-
erate without exposing their functionality to the outside. More control about
which platforms are allowed to access which services can be exercised by using
platform certificates, which come at the cost of some administrative overhead
for managing local and remote certificates on each platform. To ease the ad-
ministrative burden of certificate management, the model proposes protocols for
(semi-)automatic certificate exchange.

5 Implementation Aspects

The proposed security concept has been implemented in the Jadex platform [15].
The platform uses an extended agent concept called active components, which
in essence allows agents to expose and use explicit services with asynchronous
object-oriented interfaces. Regarding the usage of security aspects, a distinction
is made between the security objectives and their enforcement, which is the task



A Practical Security Infrastructure for Distributed Agent Applications 39

@SecureTransmission
@Authenticated({”DatabaseUser”, “Admin”})
public interface IPasswordSafeService {
public IFuture<Credentials> fetchCredentials(String ressourceid);
...

}
Fig. 4. Provider side security usage example

IFileRegistrationService service = searchService();
ServiceCall call = ServiceCall.getInvocation();
call.setProperty(SecureTransmission.SECURE_TRANSMISSION, true);
service.registerFile(file);

Fig. 5. Client side security usage example

of the platform’s security manager realized as security service. The specification
of security objectives differs for service provider and client side.

5.1 Provider Side Usage

The specification of aspects at the provider side is handled with different Java an-
notations that can be attached to a service method or the service interface itself
(which means that the objective is applicable for all methods of the interface). In
Fig. 4 it is highlighted with an example how security annotations can be used. In
this case a cutout of the DiMaProFi password safe service is shown, which is be-
sides other things in charge of providing credentials for agents that need to access
password restricted resources like databases. In order to make all methods con-
fidential and authenticated the corresponding annotations (@SecureTransmission
and @Authenticated) are attached to the interface IPasswordSafeService. Addition-
ally, the authentication is parameterized with two roles (“DatabaseUser” and
“Admin”), which are allowed to access the password safe. These role names are
mapped to concrete platform names in the security manager of the platform.

5.2 Client Side Usage

At the client side security objectives can also be requested dynamically.3 This is
achieved by a concept similar to a thread local4 but not based on a thread but
on a service invocation, i.e. a specific service call object allows for equipping an
invocation with additional meta data that is automatically preserved between
caller and callee during the complete call, regardless if the call is performed
locally or remotely. The service call object can be fetched and attributed with
security objectives by the caller before a service call is issued. An example usage,
again taken from DiMaProFi, is shown in Fig. 5. It can be seen, how a service call
can be made confidential at runtime. For this purpose the service call object is
3 Please note that not all security objectives can be set up without the receiver side,

e.g. authentication requires the receiver side to declare which identities are allowed
to use a service.

4 A thread local is an object that belongs to a thread and which can be used to store
and retrieve data without having to pass it explicitly as method parameter value.



40 L. Braubach, K. Jander, and A. Pokahr

fetched via the static method getInvocation() of the ServiceCall class. Afterwards,
the secure transmission property is set to true in the call object and the service
call (here a file registration operation) is performed as usual.

5.3 Administration Tools

To facilitate the administration of security aspects of the platform tool support
is provided. In Fig. 6 a screenshot of the platform security manager interface
is depicted. The tool supports four different use cases via a tabbed view. First,
the local password settings can be configured, i.e. the platform password can be
changed, en- or disabled. Second, certificate and key pair administration can be
accessed via the key store tab (active in Fig. 6). This view displays the content of
the currently used key store, i.e. the contained key pairs and certificates and on
the other hand it allows for manually adding or removing keys and certificates
of trusted platforms. Importing a certificate can be either done by using a cer-
tificate file or by directly requesting it from the corresponding target platform
(if that platform is currently online). Moreover, the view allows for selecting and
configuring the used certificate acquisition mechanism (lower right of Fig. 6). It
is also possible to completely disable automatic certificate acquisition. Third, the
remote passwords tab can be used to view, add or remove credentials of known
remote platforms. Alternatively, in the fourth tab network names and passwords
can be managed to set up virtual platform networks without having to specify
individual platform passwords.

Fig. 6. Platform security manager user interface



A Practical Security Infrastructure for Distributed Agent Applications 41

6 Evaluation in Practice

The evaluation is based on the real world application scenario presented in Sec-
tion 2. The DiMaProFi system consists of loosely coupled nodes, each hosting
a Jadex platform and application components. The application components use
local and remote services of each other in a transparent way. Service discovery
is performed dynamically at runtime and can take into account non-functional
properties. The overlay network of agent platforms is created by an awareness
mechanism, which automatically discovers other nodes [2].

– To prevent unauthorized platforms from using services of DiMaProFi the
virtual network access restriction mechanism is employed. The usage is very
simple as it is sufficient to start each platform with an application specific
virtual network name and password. In this way these platforms share a
common secret and can communicate seamlessly. To further avoid denial of
service attacks the visibility of the platforms is also hidden. This means that
the platforms use a private relay server for managing awareness between
different physical networks.

– In order to solve the problem of access to protected resources the password
safe concept has been realized using a corresponding service that allows
for requesting credentials for a protected action. The service itself exposes
its methods only for authenticated users by declaring a set of allowed user
names. Within the platform security manager these user names are mapped
to trusted platform certificates. Incoming requests need to provide a signed
digest that is verified before the call is processed.

– The monitoring infrastructure of DiMaProFi is based on the service and
component monitoring of the Jadex platform. This infrastructure creates
events for service calls in the system and automatically sends them to a
local monitoring service. This service saves the events and offers a subscrip-
tion based interface for fetching possibly filtered events. For DiMaProFi a
custom component has been realized that uses the monitoring service and
employs workflow specific rules to detect errors as early as possible. Given
that authentication is used in service calls the monitoring logs can be used
for proving also non-repudiation of the corresponding invocations.

Besides achieving the overall security objectives within the project it was of
crucial importance to tailor the solutions in a way that they become easy to
administer and use. In this respect especially the virtual security network and
the certificate distribution concepts were considered very helpful by our practice
partners as those render it possible to change the underlying nodes infrastructure
without huge configuration efforts.

7 Conclusion

In this paper an approach for achieving external security within multi-agent sys-
tems operating in open networks has been presented that is directly motivated by



42 L. Braubach, K. Jander, and A. Pokahr

real world requirements of a company project dealing with business intelligence
workflows. The security concept supports the achievement of the security ob-
jectives integrity, confidentiality, authentication and non-repudiation for service
calls. In contrast to most other works, usability was a key factor of the proposed
solution. Hence, the usage as well as the administration have been designed to
be as simple as possible with usage based on security annotations at the service
provider side and dynamically added security meta information at the client side.
Moreover, tedious aspects of administration have been resolved at the platform
level. Using virtual networks makes it easy to set up large sets of communicat-
ing nodes without configuration efforts. Furthermore, also automatic platform
certificate acquisition protocols have been included, which largely relieve an ad-
ministrator from installing platform certificates manually. As part of future work
it is planned to include security aspects also in the service search mechanism.
This will allow searching for services satisfying specific security features.

References

1. Biskup, J., Kern-Isberner, G., Thimm, M.: Towards enforcement of confidentiality
in agent interactions. In: Proceedings of the 12th International Workshop on Non-
Monotonic Reasoning (NMR 2008), University of New South Wales, Technical
Report No. UNSW-CSE-TR-0819, pp. 104–112 (September 2008)

2. Braubach, L., Pokahr, A.: Developing Distributed Systems with Active Compo-
nents and Jadex. Scalable Computing: Practice and Experience 13(2), 3–24 (2012)

3. Dierks, T., Rescorla, E.: The Transport Layer Security (TLS) Protocol Version 1.2.
Internet Engineering Task Force (August 2008)

4. Goichon, F., Salagnac, G., Frénot, S.: Exploiting Java Code Interactions. Technical
Report RT-0419, INRIA (December 2011)

5. Gosling, J., Joy, B., Steele, G., Bracha, G., Buckley, A.: The Java Language Spec-
ification, 7th edn. Addison-Wesley Professional, California (2012)

6. Lee, H., Alves-Foss, J., Harrison, S.: The use of encrypted functions for mobile
agent security. In: HICSS, pages 10. IEEE, New York (2004)

7. Moffett, J.D.: Distributed Systems Security. A. Kent, J.G. Williams 15 (1995)
8. Nagaraj, S.V.: Securing multi-agent systems: A survey. In: Meghanathan, N., Naga-

malai, D., Chaki, N. (eds.) Advances in Computing & Inform. Technology. AISC,
vol. 176, pp. 23–30. Springer, Heidelberg (2012)

9. Neuman, B.C., Ts’o, T.: Kerberos: An authentication service for computer net-
works. Comm. Mag. 32(9), 33–38 (1994)

10. NIST. Advanced Encryption Standard (AES) (FIPS PUB 197). National Institute
of Standards and Technology (November 2001)

11. NIST. Underlying Technical Models for Information Technology Security. National
Institute of Standards and Technology (Decmeber 2001)

12. Norman, D.A.: The way i see it: When security gets in the way. Interactions 16(6),
60–63 (2009)

13. OASIS. Web Services Security: SOAP Message Security 1.1 (February 2006)
14. Oey, M., Warnier, M., Brazier, F.: Security in Large-Scale Open Distributed Multi-

Agent Systems. In: Autonomous Agents, Rijeka, Croatia, pp. 1–27. IN-TECH
(2010)



A Practical Security Infrastructure for Distributed Agent Applications 43

15. Pokahr, A., Braubach, L.: The active components approach for distributed sys-
tems development. International Journal of Parallel, Emergent and Distributed
Systems 28(4), 321–369 (2013)

16. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures
and public-key cryptosystems. Communications of the ACM 21, 120–126 (1978)

17. Vila, X., Schuster, A., Riera, A.: Security for a Multi-Agent System based on
JADE. Computers & Security 26(5), 391–400 (2007)


	A Practical Security Infrastructurefor Distributed Agent Applications
	1 Introduction
	2 Real World Scenario
	3 Related Work
	4 Security Concept
	4.1 Scope of the Security Model
	4.2 Security Model Details
	4.3 Usability Concerns

	5 Implementation Aspects
	5.1 Provider Side Usage
	5.2 Client Side Usage
	5.3 Administration Tools

	6 Evaluation in Practice
	7 Conclusion
	References




