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Abstract. Many commercial relational Data Base Management Systems 
(DBMSs) maintain histograms to approximate the distribution of values in the 
relation attributes and based on them estimate query result sizes. A histogram 
approximates the distribution by grouping data into buckets. The estimation-
errors resulting from the loss of information during the grouping process affect 
the accuracy of the decision, made by query optimizers, about choosing the 
most economical evaluation plan for a query. In front of this challenging 
problem, many histogram-based estimation techniques including the equi-depth, 
the v-optimal, the max-diff and the compressed histograms have well 
contributed to approximate the cost of a query evaluation plan. But, most of the 
times the obtained estimates have much error. Motivated by the fact that 
inaccurate estimations can lead to wrong decisions, we propose in this paper an 
efficient algorithm, called Compressed-V2, for accurate histogram 
constructions. Both theoretical and effective experiments are done using 
benchmark data set showing the promising results obtained using the proposed 
algorithm. We think that this algorithm will significantly contribute for helping 
to solve the problem of Multi-Query Optimization (MQO) resulting from 
queries interactions especially in Relational Data Warehouses (RDW) which 
represent the ideal environment in which complex OLAP queries interact with 
each other.    

Keywords: Optimal histograms, Query result size estimation, Intermediate 
query result distribution, DBMS, Estimation error, Multi-query optimization, 
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1 Introduction 

Many commercial DBMSs maintain a variety of types of histograms to summarize the 
contents of the database relation by approximating the distribution of values in the 
relation attributes and based on them estimate sizes and value distributions in query 
results [1, 2, 3, 4]. Different techniques for constructing histograms are described in 
[5]. The simplest approach for constructing a histogram on attribute X is by 
partitioning the domain D of X into β (β >1) mutually disjoint subsets called buckets. 
A histogram approximates the distributions by grouping the data values into buckets. 
This grouping into buckets loses information. This loss of information engenders 
errors in estimates based on these histograms. The resulting estimation-sizes errors 
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directly or transitively affect the accuracy of the decision, made by query optimizers, 
about choosing the most efficient access plan for a query [6] and undermine the 
validity of the optimizers’ decisions.  

The problem of query optimization consists in choosing, among many different 
query evaluation plans, the most economical one for a given query. Since the number 
of query evaluation plans increases exponentially with the number of relations 
involving the query [7], query optimization was becoming a worthwhile problem. A 
query can be performed by means of different intermediate operations such as join. A 
simple sequence of join operations that leads to the same final result is called a query 
evaluation plan [7]. Each query evaluation plan has an associated cost which depends 
on the number of operations performed in the intermediate joins. In [8], it has shown 
that errors in query result size estimates may increase exponentially with the number 
of operations performed in the intermediate joins. In worse of the cases, the chance of 
choosing the optimal query evaluation plan decreases since the query optimizer uses 
erroneous data to accomplish its task [9]. In that case, the query optimizer must 
estimate various parameters for the intermediate results of the operations and then use 
the obtained values to estimate the corresponding parameters of the results of 
subsequent operations [9]. Even if the original errors are small, their transitive effect 
on estimates derived for the final result may be devastating and so leading query 
optimizers to wrong decisions. For multi-join queries that are processed as a sequence 
of many join operations, the transitive effect of error propagation among the 
intermediate results on the estimates derived for the complete query may be 
destructive. This problem has been solved by approximating the cost of a query 
evaluation plan using histogram-based estimation techniques including the equi-width 
[10], the equi-depth [11], the v-optimal [1, 9, 12, 13], the max-diff [3] and the 
compressed histograms [3]. The idea was to estimate the query result sizes of the 
intermediate results and based on them selecting the most efficient and economical 
query evaluation plan.    

Another important problem in which query result estimation techniques may be 
very useful is the phenomenon of query interaction which raises the problem of 
multiple queries optimization (MQO) especially in the relational data warehouse 
context (RDW). Relational data warehouses represent the ideal environment in which 
complex OLAP queries interact with each other. The problem of MQO combines the 
problem of efficient buffer management and the problem of query scheduling [14, 
15]. It consists in finding an optimal scenario of queries processing that permits a total 
benefits from the buffered intermediate results which represents a major cause of 
performance problems in database systems. In fact, before executing a given query, it 
may get benefit from the actual content of the buffer if it has some intermediate 
results with previous queries [16]. Based on this scenario, if the query scheduler has a 
snapshot of the buffer content (intermediate results), it may reorder the queries to 
allow them getting benefit from the buffer [16]. 

Motivated by the fact that inaccurate estimations can lead to wrong decisions, our 
contribution can be summarized on preparing an experimental comparative study of 
the effectiveness of the different optimal histograms reported in the literature in order 
to identify the best one for reducing error in the estimations of sizes and value 
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distributions especially in the results of queries with high complexity, e.g., multi-join 
queries. We envisage by this study to determine the main features of a good histogram 
in order to take them into account when developing our algorithm called Compressed-
v2 algorithm for accurate histogram construction. Both theoretical and effective 
experiments are done using real data sets.   

This paper is organized as follows. Section 2 provides an overview of several 
earlier and some more recent classes of histograms that are close to optimal and 
effective in many estimation problems. In section 3, we propose a new technique 
based on an effective algorithm called HistConst to construct a very promising 
histogram called compressed-v2 in terms of query result size estimation accuracy.  In 
section 4, we propose a running example to show the efficiency of our algorithm. 
Section 5 presents a set of experiments to compare the effectiveness of the different 
histogram. Finally, Section 6 concludes and outlines some of the open problems in 
this area. 

2 State of the Art 

The buckets in a histogram are determined according to a partitioning rule and are 
limited by the disk space. We classify, in this section, the histograms listed in the 
literature into two classes based on two partitioning constraints. The first constraint 
consists in partitioning the attribute domain based on trivial rules and it concerns 
earlier histograms like the equi-width [10] and the equi-depth [11] histograms. The 
second constraint aims to avoid grouping vastly different values into the same bucket 
and it covers relative recent histograms like v-optimal [1, 9, 12, 13], max-diff [3] and 
compressed histograms [3].     

2.1 Earlier Histograms 

Trivial Histograms. This kind of histograms has a single bucket where all the 
attribute values fall into the same bucket. Frequencies approximated based on this 
histogram are identical for all attribute values [17]. This histogram assumes the 
uniform distribution over the entire attribute domain [6] and this assumption, 
however, didn’t hold in real data. That’s why trivial histograms usually have large 
error rate in query result estimation [8, 18].  

Example 1. Let us consider the histogram maintaining, over one single bucket, the 
approximated frequencies of the attribute SALARY in a relation R with information 
on 100 employees (see Fig. 1). The domain of SALARY is the interval from 1000 $ 
to 5000 $.  

According to the histogram in Fig. 1, the number of employees having for example 
a salary equal to 1500 $, denoted SEL (SALARY=1500 $) [11], is approximated by 
the average frequency of all salaries which is / ,  where S (R) is the 
size of the relation R and V(R, SALARY) is the number of distinct values present in the 
attribute SALARY. Three different approaches were proposed in the literature to 
approximate the number of distinct values within a bucket [1, 6, 11]. 
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The accurate number of tuples satisfying the above query is anywhere from 0 to 
100. So, this approximation can be wrong at least by 50% (for V(R, SALARY) = 2) and 
in general usually by more than 50% (for V(R, SALARY) > 2) which represents a very 
large error rate. 

Equi-Width Histograms. This kind of histograms consists in dividing the domain of 
the attribute values into K equal-width buckets and counting the number of  
tuples falling into each bucket [11]. Typically, equi-width histograms have 10 to 20 
buckets [10].  

Example 2. Let us consider the histogram maintaining the distribution of the attribute 
SALARY from example 1 (see Fig. 2). For reasons of simplicity, let this histogram 
divide the domain of the attribute into 3 equal-width buckets.  

Continuing with the same query from example1, the accurate number of the 
employees having SALARY = 1500$ is anywhere from 0 to 48. So the true 
percentage of the employees with SALARY = 1500 $ is anywhere from 0 to 0.48 (0 ≤ 
SEL (=1500 $) ≤0.48). An estimation, on average, of SEL (=1500 $) from the 
histogram in Fig. 2 corresponds to the mid-point in this range which is 0.24. So, this 
estimate can be wrong by 0.24. In general, the maximum error in estimating SEL (= 
Const) on average, denoted SEL~ (=Const) [11], is half the height of the bucket in 
which Const falls. 

In [11], it has been shown that estimations of histograms belonging to the class of 
equi-width histograms are often better than trivial ones. They have frequently large 
errors since they force buckets to have equal width without controlling the height of 
each bucket. In such a histogram, we may find too high buckets and too low other 
ones. This huge disparity is due to the unexpected distribution of values over the 
entire attribute. In general, the distributions of values in the attributes of relations 
rarely follow any functional description, such as Zipf distribution [19] which leads to 
an inequitable distribution of values over the different buckets. In that case, if the 
bucket in which Const falls is too high, the range in which SEL (=Const) belongs will 
be very large (the superior limit of the range is close to 100%) and a selectivity 
estimate will be wrong by 50% (mid-point in this range).  

We can conclude that in order to control the maximum estimation error, the height 
of each bucket in the histogram should be controlled. Hence, the idea of creating 
histograms having buckets with equal height instead of equal width. 

Equi-Depth Histograms. The maximum error in estimating from a histogram the 
selectivity of comparison, based on relational operators, is half the height of the 
bucket in which the comparison constant falls into. This error can be very close to 0.5, 
with an unlucky distribution of attributes values, where the tallest bucket contains 
almost 100% of the tuples in the relation. Creating a histogram where the attribute 
values are equally distributed over the different buckets will avoid having, in all 
cases, large errors in selectivity estimates. Such a histogram is called equi-depth [11]. 
In an equi-depth histogram, called also equi-height, the sum of the frequencies in each 
bucket is the same. This kind of histograms guarantees estimation with small error 
(usually < 0.5) and the maximum error can be reduced to an arbitrarily small value by 
increasing sufficiently the number of buckets in a way that half the height of a bucket 
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will be negligible. For the construction of this histogram, we must first sort the 
attribute values in an ascending order to obtain a height balanced histogram. 

Example 3. The distribution of the salaries of 100 employees in an equi-sum fashion 
over 3 equal height buckets is represented in Fig. 3. 

Again choosing the maximum error in selectivity estimates as the half of the 
bucket, the estimation of SEL (=1500$) can be wrong at most by 0.16 (half the height 
of the first bucket in which 1500 falls). This error is 1 time and a half less than the 
error that can be present in the selectivity estimate obtained using an equi-width 
histogram. But the difficulty in this type of histograms consists in how to determine 
the required boundaries of the buckets in order to guarantee the equality of height 
between the different buckets.  

 

 

 

Fig. 1. Distribution of salaries
over one singleton bucket 

Fig. 2. Distribution of salaries 
over equal-width buckets 

Fig. 3. Distribution of salaries 
over equal-height buckets 

2.2 Relative Recent Histograms 

V-Optimal Histograms. The v-optimal histograms [9, 12, 13], called also variance-
optimal try to avoid grouping vastly different values into a bucket by reducing the 
weighted variance between the actual and the approximate distribution over all the 

approximated values within each bucket [13]. This variance is defined as ∑ , 
where p is the number of frequencies,V is the variance of frequencies in the jth bucket 
and β is the maximum number of buckets. 

The v-optimal histogram is optimal for estimating on average the result sizes of 
equality join and selection queries [1]. In order to approximating the number of 
distinct values with in a bucket, contrary to the previous histograms which instead of 
storing the actual number of distinct values in each bucket, they make assumptions 
about it such as continuous values assumption and point value assumption and both 
can lead to significant estimation errors, V-optimal histograms record every distinct 
attribute value that appeared in each bucket. Since bucket groups close frequencies 
and under the above assumption, all frequencies will be close to the average of 
frequencies so that estimations will be close to the actual results.   
 
Definition 1. Let H1 and H2 be two different histograms partitioning the values of an 
attribute X into the same number β (≥1) of buckets. The v-optimal histogram on X, 
among H1 and H2, is the histogram with the least variance. 
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Example 4. Fig. 4 illustrates the above definition by the meaning of two different 
histograms H1 and H2 on the attribute SALARY with 3 buckets in each one. The 
frequencies of the different attribute values are listed in Fig. 4. a Fig. 4. b and Fig. 4. c 
show the partitioning technique employed for grouping the frequencies into buckets 
respectively for H1 and H2.  

 

Fig. 4. Example of optimal histograms 

The cumulated variances VH1 and VH2 respectively of H1 and H2 are calculated as 
follows. VH1 = 14+74+16.6667 = 104.6667 and VH2 = 24.5+52.8+0.5 = 77.8. Based on 
Definition 1, the v-optimal histogram on the attribute SALARY, defined previously, 
between H1 and H2 is H2 since it has the least cumulated variance.  
 
Maxdiff Histograms. The maxdiff histograms try to avoid grouping vastly different 
values within a bucket by inserting a boundary between two adjacent values vi and 
vi+1 if the difference between the area of vi+1 and vi  is one of the β-1 largest such 
differences [3]. The area ai of vi is defined as ai = f(vi).si where si is the spread of vi 
and is defined as si = vi+1 – vi [3, 20]. Continuing with the set of values shown in Fig. 
4a, the differences between the areas of the different successive values, noted Δ area, 
are calculated in Table 1. So, according to this table the bucket boundaries of a 
maxdiff histogram, approximating the distribution of values in Table 1 over 3 
buckets, are inserted respectively between the two pairs of adjacent values (2, 2.5) 
and (3, 3.5) since they differ the most than the other pairs of adjacent values.  
The corresponding Maxdiff histogram is illustrated in Fig. 5.   

This histogram estimates the number of tuples having the value 1500 in the 
attribute SALARY to be 22 engendering then an error on average that can reach 22%. 

The comparison between the different histograms based on the error obtained in 
the estimates provided by each one for the same query (SEL (SALARY = 1500)) 
shows that v-optimal and max-diff are significantly more accurate and practical than 
earlier histograms.  
 

            (1, 12) (1.5, 20) (2, 16) (2.5, 10) (3, 8) (3.5, 14) (4, 10) (4.5, 6) (5, 4) 
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                          45       42     

                                                                                                                      

               
        

 

                                                          62 

                    

     
    

# of                
employees   

 1     2  2.5 3.5 4        5    

# of                
employees 

1    1.5 2     4 4.5      5 

13 13 
25 

SALARY (1000 $) 
 

d. Partition of H1 

SALARY (1000 $) 
 

e. Partition of H2



46 W. Labbadi and J. Akaichi 

 

Table 1. Computing the spread, area and Δ area 

 

 
Compressed Histograms. The compressed histograms try to achieve the new 
partition constraint consisting at avoiding to group, into a bucket, values with highly 
different frequencies by selecting the n values having the highest frequencies and 
placing them separately in n singleton buckets. The remaining values are partitioned 
over equi sum buckets [3]. Different techniques have been proposed to determine 
either a value is one of the n highest values or not. For example, in [3] they choose n 
to be the number of values that exceed the sum of the total frequencies divided by the 
number of buckets. 

The DBMS maintaining a compressed histogram estimates accurately the 
selectivity each time the query looks for the periodicity of a high frequent value.   

Example 5. Let’s consider a compressed histogram approximating the distribution of 
the salaries over 5 buckets (see Fig. 6). According to [3] to choose the highest values, 
1500$ is considered a high frequent value and is stored separately in a singleton 
bucket.   

The compressed histograms by keeping values with high frequencies in singleton 
buckets and grouping contiguous values into buckets, they achieve great accuracy in 
estimating selectivity in databases [3]. That’s, this histogram provides an accurate 
estimation on average (with a null error) of the same previous query SEL (SALARY 
= 1500$).  

 

Fig. 6. Distribution of salaries in a compressed histogram 

3 Compressed-V2 Histogram 

The problem of constructing a good histogram and maintaining it well is primordial 
for the validity of the query optimizers’ decisions [8, 18]. Due to their typically low-
error estimates and simplicity in representing data distributions in low costs, there has 
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Fig. 5. Distribution of salaries 
in a Maxdiff histogram



 Improving Range Query Result Size Estimation Based on a New Optimal Histogram 47 

 

been considerable work on identifying good histograms for estimating the result sizes 
of various query operators with reasonable accuracy [1, 3, 11, 21, 22]. The proposed 
histograms differ in how the attribute values are assigned to buckets to achieve good 
estimates and especially by the error rate in their estimates. In this work, we propose 
an efficient algorithm for constructing an improved version, called compressed-v2, of 
existing compressed histogram [3].We developed both theoretical and effective 
experiments to underline the effectiveness and the accuracy of our algorithm and to 
prove that the new version of compressed histogram generates the lowest estimation 
error among the existing techniques. 

In a compressed-v2 histogram, the n highest attribute values are stored separately 
in n singleton buckets. In our algorithm, we choose n to be the number of values that 
exceed the sum of all values divided by the number of buckets. The rest of values are 
partitioned over maxdiff buckets [11] instead of being partitioned over equi-depth 
ones [3]. An optimization phase is applied to the exceptional buckets in order to 
guarantee they generate good estimations. An exceptional bucket is a maxdiff bucket 
taller than the equi-depth bucket(s) approximating both the same distribution of 
values.       

The problem of multi-query processing consists in finding an optimal scenario of 
query processing that permits a total benefits from the buffered intermediate results 
which represents a major cause of performance problems in database systems. The 
effectiveness of our histogram in estimating the size and the distribution of the 
intermediate results helps to well ordering the queries in order to allow them to get 
benefit form the buffer.       

3.1 Definitions and Problem Formulation  

In this section we define the accuracy of a histogram and formulate the problem 
studied in this paper. 
 
Definition 2. Let H1, respectively H2 be a compressed, respectively compressed-v2 
histograms approximating the frequency distribution of an attribute X. We say that 
H2 is more optimal than H1 if and only if the error of H2 in approximating the 
frequency of each infrequent value of X is strictly less than the error of H1 in 
approximating the frequency of the same value.   
 
Theorem 1. Given a frequency distribution of a data set, a max-difference bucket 
with a height h1 provides estimation on average more accurate than an equi-depth 
bucket with a height h2 for all h1 ≤ h2.   
 
Proof. Consider a relation R containing an attribute X. The value set V of X is the set 
of values of X that are present in R and F the set of their corresponding frequencies. 
Let M and E be respectively a maxdiff and an equi-depth histograms constructed by 
partitioning the values of V into β (≥1) buckets.  

Let i=1..N and i=1..k be the respective heights of the buckets i=1..N and 
i=1..k that compose respectively the histograms M and E. 
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Let’s take a maxdiff bucket  and an equi-depth bucket , having common 
values that lie in their ranges, such that   ≤  for a given 1 ≤ i ≤ N and 1 ≤ j ≤ K. 
To prove that the frequency approximations on average of the common values based 
on the bucket  are more accurate than those based on the bucket , it suffices to 
prove that: Error ( ) ≤ Error ( ), where Error , respectively Error ( ) 
represents the total error of the approximation of , respectively of .    

This inequality is verified since M, the max-diff histogram, is already constructed 
by minimizing the difference between the grouped values, whereas equi-depth permits 
vastly different values to be stored in the same bucket. Thus, the values grouped in 

 are close to the average of frequencies in  while those in  are dispersed from 
the average of frequencies in . Hence, Error ( ) ≤ Error ( ).      

The case where   >  and there are common approximated values between  
and  for 1 ≤ i ≤ N and 1 ≤ j ≤ K represents the main problem we focus in this paper. 
We try to improve the accuracy of these i=1..N, called exceptional buckets, using 
the proposed HistConst algorithm.  

3.2 HistConst Algorithm 

In general, the construction of a histogram on an attribute is performed on two steps. 
The first consists on partitioning the frequencies of the attribute into buckets, and the 
second step is to approximate the frequencies and values in each bucket in some 
technique [2]. We suggest in this section a naïve algorithm called HistConst which 
gives an accurate histogram with respect to the estimation error specified for the given 
sequence of values and number of buckets in O (n) time. The HistConst algorithm is 
illustrated in Fig. 7.   
 
HistConst Algorithm. This algorithm takes in input the approximate frequencies of 
the attribute values and the number of permitted buckets. The HistConst algorithm 
proceeds as follow. First, there will be a call to the procedure Find( ) to determine the 
highest values to store them separately in singleton buckets. Then, the procedure 
maxdiff( ) takes care to partition the rest of values, over the remaining buckets in a 
maxdiff fashion, by inserting a bucket boundary between two adjacent values that 
differ the max. In the optimization phase, we try to reduce the height of the 
exceptional buckets to guarantee accurate estimations. This phase proceeds as 
follows:  

We consider the height of an equi-depth bucket as a threshold.  
Migrate, from each exceptional bucket, the minimum values in their order in the 

bucket range to the previous bucket while the height of this latter is lower than the 
threshold and the height of the exceptional bucket remains greater than the threshold. 
Once the previous bucket reach the threshold and the exceptional bucket is still higher 
than the threshold, then migrate all possible maximum values in the bucket range to 
the next bucket without that this latter exceeds the threshold.  
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Values from the previous bucket (respectively next bucket) can be migrated, if 
necessary, in their turn to its previous (respectively its next) bucket in order to respect 
the maximum tolerated height for a bucket.   

 

Fig. 7. The HistConst algorithm 

Finding Highest Values. We present in the Fig. 8 a pseudo code to find the high 
frequent values among those actually present in the relation.   

 
Fig. 8. Code of the procedure Find 

Algorithm HistConst 
Objective: Construct an optimal histogram with respect to the estimation error specified for the given sequence of 

values and number of buckets.  
Input:B:Number of permitted buckets (b1, b2, …,bB)  
threshold: maximum tolerated height for a bucket  
check: booleanvariable that receive True if the actual bucket is an exceptional one. 
Output: compressed-v2 histogram 
begin 

1. Find (F, V,B, V’) 
2. Maxdiff(L, F, B’, maxdiff) 
Optimization phase     
3. Repeat 

check :=false 
4. Fori := 1 toB’do { 
5. If (exceptional_bucket(bi)) then { 
6. check:=true 
7. While ( h(prev_bucket(bi)) < threshold) and (h(bi) > threshold) do {  // h(bi):determines the height of bi 
8. migrate (min_val(bi), bi, prev_bucket(bi)) // min_val(bi):determinesminimum value in the range of bi 
9. } 
10. If h(prev_bucket(bi) ≥ threshold) then // prev_bucket(bi): determines the previous bucket of bi  
11. While ( h(next_bucket(bi)) < threshold) and (h(bi) > threshold) do { // next_bucket(bi): determines the 

successive bucket of bi 
12. migrate (max_val(bi), bi, next_bucket(bi)) //max_val(bi):determines maximum value in the range of bi 
13. } 
14.   } 
15.  } 
16. Until (check = false) 
17. Result:return compressed-v2  
end 

 
Procedure Find (F, V, B, V’) 
Inputs:V: set of values of the attribute that are present in the relation, V= {vi ǀ 1 ≤ i ≤ N} 

F: frequency vector of the attribute, F= {f(vi) ǀ 1 ≤ i ≤ N} 

Output: V’: set of the high frequent values, V’ = {vi ǀ f(vi) ˃  , 1 ≤  i ≤ N} 
begin 

1. fori: = 1to Ndo{ 

2.    if ( f(vi) > ) then 
3. Add(vi, V’) 
4. } 
5. Result: return V’ 
end 
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Having the approximated values and the corresponding approximated frequencies, 
the procedure Find( ) takes care to determine the highest values to store them 
separately in singleton buckets. Each value is compared to the sum of all source 
values divided by the number of total buckets. If the value exceeds this quotient, then 
is considered a high frequent value.  
 
Constructing Maxdiff Histogram. After finding the highest values and storing each 
one separately in a singleton bucket, we propose an algorithm of the procedure 
maxdiff presented in Fig. 9 to partition the remaining values following the technique 
that consists in separating vastly different values into different buckets. 

 

Fig. 9. Code of the procedure maxdiff 

The procedure Maxdiff begins first by calculating the differences between all the 
adjacent values. Then, it inserts bucket boundaries between the pairs of adjacent 
values that differ the most in their frequencies with respect to the number of buckets 
permitted to partition the remaining values.  

 

 

Fig. 10. Code of the function Exceptional_bucket 

Procedure Maxdiff(L,F, B’,maxdiff) 
Inputs:L:set of the remaining values (low frequent values) that are present in the relation, L= {vj ǀ f(vj) ≤ 

, 1 ≤ j ≤ M < N} 
B’:number of the remaining buckets (non singleton buckets) for grouping the low frequent values 
Output:maxdiff:max-diff histogram partitioning the remaining values 
begin 

1. fori:= 1to(B’-1)do { 
2. [max_area := 0]for j :=1 to (M-1) do { 
3. Δ Area := [f(vj+1)*Sj+1 ] – [f(vj)*Sj] 
4. If (Δ Area >max_area) then { 
5. max_area := Δarea 
6. bound :=j 
7. } 
8. } 
9. Insert bucket_boundary (vbound, vbound+1) 
10. } 
11. Result: return maxdiff 
end 

Procedure Exceptional_bucket(bM) 
Input:bM:maxdiff bucket  
begin 

1. If (h (bM) > threshold) then 
2. Exceptional_bucket:= True 
3. ElseExceptional_bucket := False 
4. Result: return Exceptional_bucket 
end 
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Finding Exceptional Buckets. We propose in this section a boolean function to 
determine the exceptional buckets (Fig. 10). We remind that the threshold is the 
height of an equi-depth bucket partitioning the same values which is approximately 

equal to 
∑

′
 with 1 ≤ i ≤ M. We remind also that B’ is the number of buckets used 

to partition the remaining values.   
After approximating the low frequent values and their frequencies in each bucket 

according to the maxdiff partitioning technique, this function returns true for each 
exceptional bucket, false else. In the affirmative, the corresponding bucket undergoes 
the change of the optimization phase described above in order to adjust its height with 
respect to the height of an equi-depth bucket.      

In Table 2., we describe the complexity of the HistConst main components. 

Table 2. HistConst time complexity 

 
 

Where N is the number of attribute values, M is the number of low frequent values 
and B’ is the number of non-singleton buckets. 

4 Running Example 

Suppose we have the following values from an integer-valued attribute with their 
corresponding low frequencies (see Table 3).  

Table 3. Set of integer values with their frequencies 

 

Following the HistConst algorithm steps to partition these values over four buckets 
as in a maxdiff histogram, the three pairs of adjacent values that differ the most in 
their frequencies are (5, 6), (2, 3) and (7, 8). Thus, the bucket boundaries are placed 
between these adjacent values (see Fig. 11). 

According to HistConst algorithm, the bucket with a range [3, 5] and a height equal 
to 9 is considered an exceptional bucket. In the context of approving exceptional 
buckets in a compressed-v2 histogram, the procedure Exeptional_bucket( )migrates 
the value 3 from the second bucket to the first bucket, as shown in Fig. 12, since the 
two adjacent values 2 and 3 are contiguous and grouping them into the same bucket 
doesn’t affect the accuracy of frequency approximation inside a bucket.  

Algorithm Time Complexity 

Procedure Find O(N) 
Procedure Maxdiff O(M) 
Algorithm HistConst O(N) 
Procedure Exceptional_bucket  O(B’) 

Value 1 2  3 4 5 6 7 8 9 
Frequency 2 1 2 3 4 1 2 3 2 
∆Frequency 1 1 1 1 3 1 1 1  

 



52 W. Labbadi and J. Akaichi 

 

The result of the optimization phase is a histogram that discards vastly different 
values and then partitions them like in an equi-depth histogram such that the sum of 
frequencies in each bucket is approximately the same. This is in contrast to the equi-
depth histograms that permit vastly different values to be stored in the same bucket. 
The resulting histogram is illustrated in Fig. 13.  

 

  

Fig. 11. Partitioning of 
low frequent values in
a maxdiff fashion 

Fig. 12. Improvement
phase 

 

Fig. 13. Partitioning
the rest of values after
optimization 

 

Fig. 14. Partitioning
infrequent values in 
equi-depth fashion 

 
4.1 Selectivity Estimation of Low Frequent Values with Compressed and 

Compressed-v2 Histograms 

The accuracy of estimates of range query result sizes obtained through maintained 
histograms depends heavily on the partitioning rules used to group attribute values 
into buckets [9, 11]. Here, we compare the average errors incurred when estimating 
the selectivity only of low frequent values based on compressed and compressed-v2 
histograms. The same highest values are chosen for the two types of histograms and 
hence their frequencies are similarly approximated in both histograms.  

The compressed histogram approximating, over four buckets, the frequencies of 
these values is illustrated in Fig. 14. To investigate the accuracy of query result size 
estimates obtained from compressed and compressed-v2 histograms, we choose to 
compare the accuracy of the selectivity estimation of the values 5 and 6 obtained from 
the two types of histograms described as follows: 

- Compressed: The value 5 falls in the third bucket (Fig. 14). Then, SEL (SALARY 
= 5) is estimated by the average of frequencies in this bucket which is 2. The true 
fraction of tuples with salary equal to 5 is 4, then this estimate is wrong by 0.5. 
Similarly, the value 6 falls into the same bucket and its selectivity is estimated on 
average by 2. The true fraction of tuples with salary equal to 6 is 1 and hence this 
estimate is wrong by 0.5. 

- Compressed-v2: The value 5 falls in the second bucket (Fig. 13) and SEL 
(SALARY = 5) is estimated by 3. The true fraction of tuples with salary equal to 5 
is 4 which mean that the estimate is wrong by 0.25. Contrary to the compressed 
histogram, the value 6 is separated from the value 5 and is stored in the third 
bucket (Fig. 13) since they are judged as two large different values. SEL 
(SALARY = 6) is estimated on average by 1 where the real frequency is 1.  
The error in the estimate in this case is equal to 0.  
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Comparing the errors in the estimates based on the two types of histograms, we see 
clearly that the compressed-v2 approximates much better the frequency of the values 
5 and 6 than the compressed histogram. The frequencies of the other values are almost 
equally approximated in the two histograms since each group contains contiguous 
values which are stored in approximately equal height buckets in both histograms.  

5 Experimentation Results 

We investigated the effectiveness of the different histogram types cited above for 
estimating range query result sizes. The average errors due to the different 
histograms, as a function of the number of buckets, are computed each time when 
estimating based on histograms the result size of a selection query where the 
selectivity conditions are related each time to values with different frequencies like 
infrequent values, balanced values and very frequent values.  

The experiments were conducted on six different histogram algorithms including 
equi-width, equi-depth, v-optimal, maxdiff, compressed and compressed-v2 in three 
specified histogram data-frequency category including low, balanced and very high, 
while using two different distributions of the attribute Salary from the American 
League Baseball Salaries (Albb) and National League Baseball Salaries (Nlbb) 
databases respectively for the years 2003 and 2005. The values in the attribute Salary 
vary from 300 000$ to 22 000 000$ in the two databases.  

The frequencies of the values in the attribute Salary in the database of Albb 
(respectively Nlbb) vary from 1 to 44 (respectively from 1 to 25). We consider [1..9] 
(respectively [1..8]) to be the range of low frequencies, [10..30] (respectively [9..15]) 
the range of balanced frequencies and [31..44] (respectively [16..25]) to be the range 
of very high frequencies.  

In the following experiment, we studied the performance of the different 
histograms by comparing through several graphs the typical behavior of the 
histograms errors in approximating the frequencies of different values with varying 
the number of buckets. For an efficient study of the effectiveness of these histograms, 
we select randomly three values from each database: an infrequent value, a balanced 
value and a very frequent value. The errors in approximating the frequency of a given 
value are represented in a graph separately. The x-axis of each graph shows the 
number of buckets and the y-axis shows the average error of each histogram for 
different number of buckets. 

 

Fig. 15. Average error as a function of the number of buckets of approximating, in Nlbb, the 
frequency of a) an infrequent value, b) a balanced value, and c) a very frequent value 
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We select from the database of Nlbb the following values with their corresponding 
real frequencies (1000000, 1), (500000, 10) and (316000, 25). The errors of the six 
histograms in approximating the frequencies of these values are illustrated 
respectively in Fig. 15.a, Fig.15.b and Fig. 15.c.   

We select from the database of Albb the following values with their corresponding 
real frequencies (7500000, 1), (600000, 10) and (300000, 25). The errors of the six 
histograms in approximating the frequencies of these values are illustrated 
respectively in Fig. 16.a, Fig.16.b and Fig. 16.c.  

 

Fig. 16. Average error as a function of the number of buckets of approximating, in Albb, the 
frequency of a) an infrequent value, b) a balanced value, and c) a very frequent value 

Looking at the different figures, we observe that the error generated is monotony 
proportional to the number of buckets. As shown in the two figures, the accuracy can 
be reached when increasing the number of buckets for all histogram types and the 
compressed-v2, compressed, max-diff and v-optimal histograms are significantly 
better than the others that they show the least error for different number of buckets. 
Moreover, the equi-width histogram exhibits the worst accuracy.  

Based on the different figures, we distinguish clearly, by comparing the average 
errors generated by the entire set of histograms when estimating the selectivity of 
infrequent values, balanced or very frequent values, a set of effective histograms, i.e. 
compressed-v2, compressed, V-optimal and Max-diff, where the compressed-v2 
presents each time the least approximation error for different number of buckets. The 
same behavior of compressed-v2 errors in all the figures improves the victory of this 
histogram over the other ones that it gives 100% accurate approximation of the 
frequencies the highest values since their actual frequencies are stored separately in 
individual buckets.  

In conclusion, the comparison between the different histograms presented above 
based on the average error generated when estimating range query result sizes shows 
that the histograms based on the new partition constraints and on their heads the 
compressed-v2 performs always significantly better than those based on trivial 
constraints. 

6 Conclusion and Future Work 

The problem of minimizing the error in estimating range query result sizes remains a 
real challenge despite the serious research done on identifying classes of optimal 
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histograms that generate least errors in the estimations of sizes and value distributions 
especially in the results of queries with high complexity, e.g., multi-join queries.  

In this paper, we provided an overview of several earlier and some more recent 
classes of histograms that are close to optimal and effective in many estimation 
problems. In addition to that, we have introduced a new algorithmic technique, 
HistConst, for constructing a more accurate histogram called compressed-v2.  An 
experimental comparative study was proposed to study the effectiveness of the 
different classes of optimal histograms reported in the literature and our proposed 
histogram in estimating sizes and value distributions especially in the results of 
complex queries, e.g., multi-join queries. The experiments show that estimations 
based on our histogram are always better than those based on the other remaining 
types of histograms.     

The identification of the optimal histogram remains an open field. As several new 
research opportunities appear, we will try to identify optimal histograms for different 
types of queries to limit not only the average estimation error but also other metrics of 
error, to determine the appropriate number of buckets to build the optimal histogram 
and to find the histogram that can handle uncertain data.    

An important direction for research is to focus on the problem of data stream which 
is the transmission of the flow of data that changes over time. Existing database 
systems do not process data streams efficiently and this makes this area a popular 
search field [23, 24]. 
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