

H.L. Larsen et al. (Eds.): FQAS 2013, LNAI 8132, pp. 40–56, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Improving Range Query Result Size Estimation
Based on a New Optimal Histogram

Wissem Labbadi and Jalel Akaichi

Computer Science Department, ISG-University of Tunis, Le Bardo, Tunisia
wissem.labbadi@yahoo.fr, jalel.akaichi@isg.rnu.tn

Abstract. Many commercial relational Data Base Management Systems
(DBMSs) maintain histograms to approximate the distribution of values in the
relation attributes and based on them estimate query result sizes. A histogram
approximates the distribution by grouping data into buckets. The estimation-
errors resulting from the loss of information during the grouping process affect
the accuracy of the decision, made by query optimizers, about choosing the
most economical evaluation plan for a query. In front of this challenging
problem, many histogram-based estimation techniques including the equi-depth,
the v-optimal, the max-diff and the compressed histograms have well
contributed to approximate the cost of a query evaluation plan. But, most of the
times the obtained estimates have much error. Motivated by the fact that
inaccurate estimations can lead to wrong decisions, we propose in this paper an
efficient algorithm, called Compressed-V2, for accurate histogram
constructions. Both theoretical and effective experiments are done using
benchmark data set showing the promising results obtained using the proposed
algorithm. We think that this algorithm will significantly contribute for helping
to solve the problem of Multi-Query Optimization (MQO) resulting from
queries interactions especially in Relational Data Warehouses (RDW) which
represent the ideal environment in which complex OLAP queries interact with
each other.

Keywords: Optimal histograms, Query result size estimation, Intermediate
query result distribution, DBMS, Estimation error, Multi-query optimization,
Query interaction.

1 Introduction

Many commercial DBMSs maintain a variety of types of histograms to summarize the
contents of the database relation by approximating the distribution of values in the
relation attributes and based on them estimate sizes and value distributions in query
results [1, 2, 3, 4]. Different techniques for constructing histograms are described in
[5]. The simplest approach for constructing a histogram on attribute X is by
partitioning the domain D of X into β (β >1) mutually disjoint subsets called buckets.
A histogram approximates the distributions by grouping the data values into buckets.
This grouping into buckets loses information. This loss of information engenders
errors in estimates based on these histograms. The resulting estimation-sizes errors

 Improving Range Query Result Size Estimation Based on a New Optimal Histogram 41

directly or transitively affect the accuracy of the decision, made by query optimizers,
about choosing the most efficient access plan for a query [6] and undermine the
validity of the optimizers’ decisions.

The problem of query optimization consists in choosing, among many different
query evaluation plans, the most economical one for a given query. Since the number
of query evaluation plans increases exponentially with the number of relations
involving the query [7], query optimization was becoming a worthwhile problem. A
query can be performed by means of different intermediate operations such as join. A
simple sequence of join operations that leads to the same final result is called a query
evaluation plan [7]. Each query evaluation plan has an associated cost which depends
on the number of operations performed in the intermediate joins. In [8], it has shown
that errors in query result size estimates may increase exponentially with the number
of operations performed in the intermediate joins. In worse of the cases, the chance of
choosing the optimal query evaluation plan decreases since the query optimizer uses
erroneous data to accomplish its task [9]. In that case, the query optimizer must
estimate various parameters for the intermediate results of the operations and then use
the obtained values to estimate the corresponding parameters of the results of
subsequent operations [9]. Even if the original errors are small, their transitive effect
on estimates derived for the final result may be devastating and so leading query
optimizers to wrong decisions. For multi-join queries that are processed as a sequence
of many join operations, the transitive effect of error propagation among the
intermediate results on the estimates derived for the complete query may be
destructive. This problem has been solved by approximating the cost of a query
evaluation plan using histogram-based estimation techniques including the equi-width
[10], the equi-depth [11], the v-optimal [1, 9, 12, 13], the max-diff [3] and the
compressed histograms [3]. The idea was to estimate the query result sizes of the
intermediate results and based on them selecting the most efficient and economical
query evaluation plan.

Another important problem in which query result estimation techniques may be
very useful is the phenomenon of query interaction which raises the problem of
multiple queries optimization (MQO) especially in the relational data warehouse
context (RDW). Relational data warehouses represent the ideal environment in which
complex OLAP queries interact with each other. The problem of MQO combines the
problem of efficient buffer management and the problem of query scheduling [14,
15]. It consists in finding an optimal scenario of queries processing that permits a total
benefits from the buffered intermediate results which represents a major cause of
performance problems in database systems. In fact, before executing a given query, it
may get benefit from the actual content of the buffer if it has some intermediate
results with previous queries [16]. Based on this scenario, if the query scheduler has a
snapshot of the buffer content (intermediate results), it may reorder the queries to
allow them getting benefit from the buffer [16].

Motivated by the fact that inaccurate estimations can lead to wrong decisions, our
contribution can be summarized on preparing an experimental comparative study of
the effectiveness of the different optimal histograms reported in the literature in order
to identify the best one for reducing error in the estimations of sizes and value

42 W. Labbadi and J. Akaichi

distributions especially in the results of queries with high complexity, e.g., multi-join
queries. We envisage by this study to determine the main features of a good histogram
in order to take them into account when developing our algorithm called Compressed-
v2 algorithm for accurate histogram construction. Both theoretical and effective
experiments are done using real data sets.

This paper is organized as follows. Section 2 provides an overview of several
earlier and some more recent classes of histograms that are close to optimal and
effective in many estimation problems. In section 3, we propose a new technique
based on an effective algorithm called HistConst to construct a very promising
histogram called compressed-v2 in terms of query result size estimation accuracy. In
section 4, we propose a running example to show the efficiency of our algorithm.
Section 5 presents a set of experiments to compare the effectiveness of the different
histogram. Finally, Section 6 concludes and outlines some of the open problems in
this area.

2 State of the Art

The buckets in a histogram are determined according to a partitioning rule and are
limited by the disk space. We classify, in this section, the histograms listed in the
literature into two classes based on two partitioning constraints. The first constraint
consists in partitioning the attribute domain based on trivial rules and it concerns
earlier histograms like the equi-width [10] and the equi-depth [11] histograms. The
second constraint aims to avoid grouping vastly different values into the same bucket
and it covers relative recent histograms like v-optimal [1, 9, 12, 13], max-diff [3] and
compressed histograms [3].

2.1 Earlier Histograms

Trivial Histograms. This kind of histograms has a single bucket where all the
attribute values fall into the same bucket. Frequencies approximated based on this
histogram are identical for all attribute values [17]. This histogram assumes the
uniform distribution over the entire attribute domain [6] and this assumption,
however, didn’t hold in real data. That’s why trivial histograms usually have large
error rate in query result estimation [8, 18].

Example 1. Let us consider the histogram maintaining, over one single bucket, the
approximated frequencies of the attribute SALARY in a relation R with information
on 100 employees (see Fig. 1). The domain of SALARY is the interval from 1000 $
to 5000 $.

According to the histogram in Fig. 1, the number of employees having for example
a salary equal to 1500 $, denoted SEL (SALARY=1500 $) [11], is approximated by
the average frequency of all salaries which is / , where S (R) is the
size of the relation R and V(R, SALARY) is the number of distinct values present in the
attribute SALARY. Three different approaches were proposed in the literature to
approximate the number of distinct values within a bucket [1, 6, 11].

 Improving Range Query Result Size Estimation Based on a New Optimal Histogram 43

The accurate number of tuples satisfying the above query is anywhere from 0 to
100. So, this approximation can be wrong at least by 50% (for V(R, SALARY) = 2) and
in general usually by more than 50% (for V(R, SALARY) > 2) which represents a very
large error rate.

Equi-Width Histograms. This kind of histograms consists in dividing the domain of
the attribute values into K equal-width buckets and counting the number of
tuples falling into each bucket [11]. Typically, equi-width histograms have 10 to 20
buckets [10].

Example 2. Let us consider the histogram maintaining the distribution of the attribute
SALARY from example 1 (see Fig. 2). For reasons of simplicity, let this histogram
divide the domain of the attribute into 3 equal-width buckets.

Continuing with the same query from example1, the accurate number of the
employees having SALARY = 1500$ is anywhere from 0 to 48. So the true
percentage of the employees with SALARY = 1500 $ is anywhere from 0 to 0.48 (0 ≤
SEL (=1500 $) ≤0.48). An estimation, on average, of SEL (=1500 $) from the
histogram in Fig. 2 corresponds to the mid-point in this range which is 0.24. So, this
estimate can be wrong by 0.24. In general, the maximum error in estimating SEL (=
Const) on average, denoted SEL~ (=Const) [11], is half the height of the bucket in
which Const falls.

In [11], it has been shown that estimations of histograms belonging to the class of
equi-width histograms are often better than trivial ones. They have frequently large
errors since they force buckets to have equal width without controlling the height of
each bucket. In such a histogram, we may find too high buckets and too low other
ones. This huge disparity is due to the unexpected distribution of values over the
entire attribute. In general, the distributions of values in the attributes of relations
rarely follow any functional description, such as Zipf distribution [19] which leads to
an inequitable distribution of values over the different buckets. In that case, if the
bucket in which Const falls is too high, the range in which SEL (=Const) belongs will
be very large (the superior limit of the range is close to 100%) and a selectivity
estimate will be wrong by 50% (mid-point in this range).

We can conclude that in order to control the maximum estimation error, the height
of each bucket in the histogram should be controlled. Hence, the idea of creating
histograms having buckets with equal height instead of equal width.

Equi-Depth Histograms. The maximum error in estimating from a histogram the
selectivity of comparison, based on relational operators, is half the height of the
bucket in which the comparison constant falls into. This error can be very close to 0.5,
with an unlucky distribution of attributes values, where the tallest bucket contains
almost 100% of the tuples in the relation. Creating a histogram where the attribute
values are equally distributed over the different buckets will avoid having, in all
cases, large errors in selectivity estimates. Such a histogram is called equi-depth [11].
In an equi-depth histogram, called also equi-height, the sum of the frequencies in each
bucket is the same. This kind of histograms guarantees estimation with small error
(usually < 0.5) and the maximum error can be reduced to an arbitrarily small value by
increasing sufficiently the number of buckets in a way that half the height of a bucket

44 W. Labbadi and J. Akaichi

will be negligible. For the construction of this histogram, we must first sort the
attribute values in an ascending order to obtain a height balanced histogram.

Example 3. The distribution of the salaries of 100 employees in an equi-sum fashion
over 3 equal height buckets is represented in Fig. 3.

Again choosing the maximum error in selectivity estimates as the half of the
bucket, the estimation of SEL (=1500$) can be wrong at most by 0.16 (half the height
of the first bucket in which 1500 falls). This error is 1 time and a half less than the
error that can be present in the selectivity estimate obtained using an equi-width
histogram. But the difficulty in this type of histograms consists in how to determine
the required boundaries of the buckets in order to guarantee the equality of height
between the different buckets.

Fig. 1. Distribution of salaries
over one singleton bucket

Fig. 2. Distribution of salaries
over equal-width buckets

Fig. 3. Distribution of salaries
over equal-height buckets

2.2 Relative Recent Histograms

V-Optimal Histograms. The v-optimal histograms [9, 12, 13], called also variance-
optimal try to avoid grouping vastly different values into a bucket by reducing the
weighted variance between the actual and the approximate distribution over all the

approximated values within each bucket [13]. This variance is defined as ∑ ,
where p is the number of frequencies,V is the variance of frequencies in the jth bucket
and β is the maximum number of buckets.

The v-optimal histogram is optimal for estimating on average the result sizes of
equality join and selection queries [1]. In order to approximating the number of
distinct values with in a bucket, contrary to the previous histograms which instead of
storing the actual number of distinct values in each bucket, they make assumptions
about it such as continuous values assumption and point value assumption and both
can lead to significant estimation errors, V-optimal histograms record every distinct
attribute value that appeared in each bucket. Since bucket groups close frequencies
and under the above assumption, all frequencies will be close to the average of
frequencies so that estimations will be close to the actual results.

Definition 1. Let H1 and H2 be two different histograms partitioning the values of an
attribute X into the same number β (≥1) of buckets. The v-optimal histogram on X,
among H1 and H2, is the histogram with the least variance.

 100

48

SALARY (1000 $)

of
employees

1 5

48

 32 20

of
employees

 1 2 2.5 3.5 4 5

SALARY (1000 $)

 32 34 34
of
employees

SALARY (1000 $)

1 1.5 2 3 3.5 5

 Improving Range Query Result Size Estimation Based on a New Optimal Histogram 45

Example 4. Fig. 4 illustrates the above definition by the meaning of two different
histograms H1 and H2 on the attribute SALARY with 3 buckets in each one. The
frequencies of the different attribute values are listed in Fig. 4. a Fig. 4. b and Fig. 4. c
show the partitioning technique employed for grouping the frequencies into buckets
respectively for H1 and H2.

Fig. 4. Example of optimal histograms

The cumulated variances VH1 and VH2 respectively of H1 and H2 are calculated as
follows. VH1 = 14+74+16.6667 = 104.6667 and VH2 = 24.5+52.8+0.5 = 77.8. Based on
Definition 1, the v-optimal histogram on the attribute SALARY, defined previously,
between H1 and H2 is H2 since it has the least cumulated variance.

Maxdiff Histograms. The maxdiff histograms try to avoid grouping vastly different
values within a bucket by inserting a boundary between two adjacent values vi and
vi+1 if the difference between the area of vi+1 and vi is one of the β-1 largest such
differences [3]. The area ai of vi is defined as ai = f(vi).si where si is the spread of vi
and is defined as si = vi+1 – vi [3, 20]. Continuing with the set of values shown in Fig.
4a, the differences between the areas of the different successive values, noted Δ area,
are calculated in Table 1. So, according to this table the bucket boundaries of a
maxdiff histogram, approximating the distribution of values in Table 1 over 3
buckets, are inserted respectively between the two pairs of adjacent values (2, 2.5)
and (3, 3.5) since they differ the most than the other pairs of adjacent values.
The corresponding Maxdiff histogram is illustrated in Fig. 5.

This histogram estimates the number of tuples having the value 1500 in the
attribute SALARY to be 22 engendering then an error on average that can reach 22%.

The comparison between the different histograms based on the error obtained in
the estimates provided by each one for the same query (SEL (SALARY = 1500))
shows that v-optimal and max-diff are significantly more accurate and practical than
earlier histograms.

 (1, 12) (1.5, 20) (2, 16) (2.5, 10) (3, 8) (3.5, 14) (4, 10) (4.5, 6) (5, 4)
a. Pairs of actual values and corresponding frequencies

 14 18 13 13 8 14 7 8 5 10 15 11 15 16 14 6 7 6
 b. Approximate frequencies in H1 c. Approximate frequencies in H2

 45 42

 62

of
employees

 1 2 2.5 3.5 4 5

of
employees

1 1.5 2 4 4.5 5

13 13
25

SALARY (1000 $)

d. Partition of H1

SALARY (1000 $)

e. Partition of H2

46 W. Labbadi and J. Akaichi

Table 1. Computing the spread, area and Δ area

Compressed Histograms. The compressed histograms try to achieve the new
partition constraint consisting at avoiding to group, into a bucket, values with highly
different frequencies by selecting the n values having the highest frequencies and
placing them separately in n singleton buckets. The remaining values are partitioned
over equi sum buckets [3]. Different techniques have been proposed to determine
either a value is one of the n highest values or not. For example, in [3] they choose n
to be the number of values that exceed the sum of the total frequencies divided by the
number of buckets.

The DBMS maintaining a compressed histogram estimates accurately the
selectivity each time the query looks for the periodicity of a high frequent value.

Example 5. Let’s consider a compressed histogram approximating the distribution of
the salaries over 5 buckets (see Fig. 6). According to [3] to choose the highest values,
1500$ is considered a high frequent value and is stored separately in a singleton
bucket.

The compressed histograms by keeping values with high frequencies in singleton
buckets and grouping contiguous values into buckets, they achieve great accuracy in
estimating selectivity in databases [3]. That’s, this histogram provides an accurate
estimation on average (with a null error) of the same previous query SEL (SALARY
= 1500$).

Fig. 6. Distribution of salaries in a compressed histogram

3 Compressed-V2 Histogram

The problem of constructing a good histogram and maintaining it well is primordial
for the validity of the query optimizers’ decisions [8, 18]. Due to their typically low-
error estimates and simplicity in representing data distributions in low costs, there has

Value 1 1.5 2 2.5 3 3.5 4 4.5 5

Frequency 12 20 16 10 8 14 10 6 4

Spread 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

Area 6 10 8 5 4 7 5 3

 Area 4 2 3 1 3 2 2

-
-

- -

 20
 [singleton bucket]
 28 24
 18
 10

 1 2 2.5 33.5 4 4.5 5 1.5[high value]

SALARY (1000 $)

of
employees

 48
 18 32

of
employees

 1 2 2.5 3 3.5 5

 SALARY (1000 $)

Fig. 5. Distribution of salaries
in a Maxdiff histogram

 Improving Range Query Result Size Estimation Based on a New Optimal Histogram 47

been considerable work on identifying good histograms for estimating the result sizes
of various query operators with reasonable accuracy [1, 3, 11, 21, 22]. The proposed
histograms differ in how the attribute values are assigned to buckets to achieve good
estimates and especially by the error rate in their estimates. In this work, we propose
an efficient algorithm for constructing an improved version, called compressed-v2, of
existing compressed histogram [3].We developed both theoretical and effective
experiments to underline the effectiveness and the accuracy of our algorithm and to
prove that the new version of compressed histogram generates the lowest estimation
error among the existing techniques.

In a compressed-v2 histogram, the n highest attribute values are stored separately
in n singleton buckets. In our algorithm, we choose n to be the number of values that
exceed the sum of all values divided by the number of buckets. The rest of values are
partitioned over maxdiff buckets [11] instead of being partitioned over equi-depth
ones [3]. An optimization phase is applied to the exceptional buckets in order to
guarantee they generate good estimations. An exceptional bucket is a maxdiff bucket
taller than the equi-depth bucket(s) approximating both the same distribution of
values.

The problem of multi-query processing consists in finding an optimal scenario of
query processing that permits a total benefits from the buffered intermediate results
which represents a major cause of performance problems in database systems. The
effectiveness of our histogram in estimating the size and the distribution of the
intermediate results helps to well ordering the queries in order to allow them to get
benefit form the buffer.

3.1 Definitions and Problem Formulation

In this section we define the accuracy of a histogram and formulate the problem
studied in this paper.

Definition 2. Let H1, respectively H2 be a compressed, respectively compressed-v2
histograms approximating the frequency distribution of an attribute X. We say that
H2 is more optimal than H1 if and only if the error of H2 in approximating the
frequency of each infrequent value of X is strictly less than the error of H1 in
approximating the frequency of the same value.

Theorem 1. Given a frequency distribution of a data set, a max-difference bucket
with a height h1 provides estimation on average more accurate than an equi-depth
bucket with a height h2 for all h1 ≤ h2.

Proof. Consider a relation R containing an attribute X. The value set V of X is the set
of values of X that are present in R and F the set of their corresponding frequencies.
Let M and E be respectively a maxdiff and an equi-depth histograms constructed by
partitioning the values of V into β (≥1) buckets.

Let i=1..N and i=1..k be the respective heights of the buckets i=1..N and
i=1..k that compose respectively the histograms M and E.

48 W. Labbadi and J. Akaichi

Let’s take a maxdiff bucket and an equi-depth bucket , having common
values that lie in their ranges, such that ≤ for a given 1 ≤ i ≤ N and 1 ≤ j ≤ K.
To prove that the frequency approximations on average of the common values based
on the bucket are more accurate than those based on the bucket , it suffices to
prove that: Error () ≤ Error (), where Error , respectively Error ()
represents the total error of the approximation of , respectively of .

This inequality is verified since M, the max-diff histogram, is already constructed
by minimizing the difference between the grouped values, whereas equi-depth permits
vastly different values to be stored in the same bucket. Thus, the values grouped in

 are close to the average of frequencies in while those in are dispersed from
the average of frequencies in . Hence, Error () ≤ Error ().

The case where > and there are common approximated values between
and for 1 ≤ i ≤ N and 1 ≤ j ≤ K represents the main problem we focus in this paper.
We try to improve the accuracy of these i=1..N, called exceptional buckets, using
the proposed HistConst algorithm.

3.2 HistConst Algorithm

In general, the construction of a histogram on an attribute is performed on two steps.
The first consists on partitioning the frequencies of the attribute into buckets, and the
second step is to approximate the frequencies and values in each bucket in some
technique [2]. We suggest in this section a naïve algorithm called HistConst which
gives an accurate histogram with respect to the estimation error specified for the given
sequence of values and number of buckets in O (n) time. The HistConst algorithm is
illustrated in Fig. 7.

HistConst Algorithm. This algorithm takes in input the approximate frequencies of
the attribute values and the number of permitted buckets. The HistConst algorithm
proceeds as follow. First, there will be a call to the procedure Find() to determine the
highest values to store them separately in singleton buckets. Then, the procedure
maxdiff() takes care to partition the rest of values, over the remaining buckets in a
maxdiff fashion, by inserting a bucket boundary between two adjacent values that
differ the max. In the optimization phase, we try to reduce the height of the
exceptional buckets to guarantee accurate estimations. This phase proceeds as
follows:

We consider the height of an equi-depth bucket as a threshold.
Migrate, from each exceptional bucket, the minimum values in their order in the

bucket range to the previous bucket while the height of this latter is lower than the
threshold and the height of the exceptional bucket remains greater than the threshold.
Once the previous bucket reach the threshold and the exceptional bucket is still higher
than the threshold, then migrate all possible maximum values in the bucket range to
the next bucket without that this latter exceeds the threshold.

 Improving Range Query Result Size Estimation Based on a New Optimal Histogram 49

Values from the previous bucket (respectively next bucket) can be migrated, if
necessary, in their turn to its previous (respectively its next) bucket in order to respect
the maximum tolerated height for a bucket.

Fig. 7. The HistConst algorithm

Finding Highest Values. We present in the Fig. 8 a pseudo code to find the high
frequent values among those actually present in the relation.

Fig. 8. Code of the procedure Find

Algorithm HistConst
Objective: Construct an optimal histogram with respect to the estimation error specified for the given sequence of

values and number of buckets.
Input:B:Number of permitted buckets (b1, b2, …,bB)
threshold: maximum tolerated height for a bucket
check: booleanvariable that receive True if the actual bucket is an exceptional one.
Output: compressed-v2 histogram
begin

1. Find (F, V,B, V’)
2. Maxdiff(L, F, B’, maxdiff)
Optimization phase
3. Repeat

check :=false
4. Fori := 1 toB’do {
5. If (exceptional_bucket(bi)) then {
6. check:=true
7. While (h(prev_bucket(bi)) < threshold) and (h(bi) > threshold) do { // h(bi):determines the height of bi
8. migrate (min_val(bi), bi, prev_bucket(bi)) // min_val(bi):determinesminimum value in the range of bi
9. }
10. If h(prev_bucket(bi) ≥ threshold) then // prev_bucket(bi): determines the previous bucket of bi
11. While (h(next_bucket(bi)) < threshold) and (h(bi) > threshold) do { // next_bucket(bi): determines the

successive bucket of bi
12. migrate (max_val(bi), bi, next_bucket(bi)) //max_val(bi):determines maximum value in the range of bi
13. }
14. }
15. }
16. Until (check = false)
17. Result:return compressed-v2
end

Procedure Find (F, V, B, V’)
Inputs:V: set of values of the attribute that are present in the relation, V= {vi ǀ 1 ≤ i ≤ N}

F: frequency vector of the attribute, F= {f(vi) ǀ 1 ≤ i ≤ N}

Output: V’: set of the high frequent values, V’ = {vi ǀ f(vi) ˃ , 1 ≤ i ≤ N}
begin

1. fori: = 1to Ndo{

2. if (f(vi) >) then
3. Add(vi, V’)
4. }
5. Result: return V’
end

50 W. Labbadi and J. Akaichi

Having the approximated values and the corresponding approximated frequencies,
the procedure Find() takes care to determine the highest values to store them
separately in singleton buckets. Each value is compared to the sum of all source
values divided by the number of total buckets. If the value exceeds this quotient, then
is considered a high frequent value.

Constructing Maxdiff Histogram. After finding the highest values and storing each
one separately in a singleton bucket, we propose an algorithm of the procedure
maxdiff presented in Fig. 9 to partition the remaining values following the technique
that consists in separating vastly different values into different buckets.

Fig. 9. Code of the procedure maxdiff

The procedure Maxdiff begins first by calculating the differences between all the
adjacent values. Then, it inserts bucket boundaries between the pairs of adjacent
values that differ the most in their frequencies with respect to the number of buckets
permitted to partition the remaining values.

Fig. 10. Code of the function Exceptional_bucket

Procedure Maxdiff(L,F, B’,maxdiff)
Inputs:L:set of the remaining values (low frequent values) that are present in the relation, L= {vj ǀ f(vj) ≤

, 1 ≤ j ≤ M < N}
B’:number of the remaining buckets (non singleton buckets) for grouping the low frequent values
Output:maxdiff:max-diff histogram partitioning the remaining values
begin

1. fori:= 1to(B’-1)do {
2. [max_area := 0]for j :=1 to (M-1) do {
3. Δ Area := [f(vj+1)*Sj+1] – [f(vj)*Sj]
4. If (Δ Area >max_area) then {
5. max_area := Δarea
6. bound :=j
7. }
8. }
9. Insert bucket_boundary (vbound, vbound+1)
10. }
11. Result: return maxdiff
end

Procedure Exceptional_bucket(bM)
Input:bM:maxdiff bucket
begin

1. If (h (bM) > threshold) then
2. Exceptional_bucket:= True
3. ElseExceptional_bucket := False
4. Result: return Exceptional_bucket
end

 Improving Range Query Result Size Estimation Based on a New Optimal Histogram 51

Finding Exceptional Buckets. We propose in this section a boolean function to
determine the exceptional buckets (Fig. 10). We remind that the threshold is the
height of an equi-depth bucket partitioning the same values which is approximately

equal to
∑

′
 with 1 ≤ i ≤ M. We remind also that B’ is the number of buckets used

to partition the remaining values.
After approximating the low frequent values and their frequencies in each bucket

according to the maxdiff partitioning technique, this function returns true for each
exceptional bucket, false else. In the affirmative, the corresponding bucket undergoes
the change of the optimization phase described above in order to adjust its height with
respect to the height of an equi-depth bucket.

In Table 2., we describe the complexity of the HistConst main components.

Table 2. HistConst time complexity

Where N is the number of attribute values, M is the number of low frequent values
and B’ is the number of non-singleton buckets.

4 Running Example

Suppose we have the following values from an integer-valued attribute with their
corresponding low frequencies (see Table 3).

Table 3. Set of integer values with their frequencies

Following the HistConst algorithm steps to partition these values over four buckets
as in a maxdiff histogram, the three pairs of adjacent values that differ the most in
their frequencies are (5, 6), (2, 3) and (7, 8). Thus, the bucket boundaries are placed
between these adjacent values (see Fig. 11).

According to HistConst algorithm, the bucket with a range [3, 5] and a height equal
to 9 is considered an exceptional bucket. In the context of approving exceptional
buckets in a compressed-v2 histogram, the procedure Exeptional_bucket()migrates
the value 3 from the second bucket to the first bucket, as shown in Fig. 12, since the
two adjacent values 2 and 3 are contiguous and grouping them into the same bucket
doesn’t affect the accuracy of frequency approximation inside a bucket.

Algorithm Time Complexity

Procedure Find O(N)
Procedure Maxdiff O(M)
Algorithm HistConst O(N)
Procedure Exceptional_bucket O(B’)

Value 1 2 3 4 5 6 7 8 9
Frequency 2 1 2 3 4 1 2 3 2
∆Frequency 1 1 1 1 3 1 1 1

52 W. Labbadi and J. Akaichi

The result of the optimization phase is a histogram that discards vastly different
values and then partitions them like in an equi-depth histogram such that the sum of
frequencies in each bucket is approximately the same. This is in contrast to the equi-
depth histograms that permit vastly different values to be stored in the same bucket.
The resulting histogram is illustrated in Fig. 13.

Fig. 11. Partitioning of
low frequent values in
a maxdiff fashion

Fig. 12. Improvement
phase

Fig. 13. Partitioning
the rest of values after
optimization

Fig. 14. Partitioning
infrequent values in
equi-depth fashion

4.1 Selectivity Estimation of Low Frequent Values with Compressed and

Compressed-v2 Histograms

The accuracy of estimates of range query result sizes obtained through maintained
histograms depends heavily on the partitioning rules used to group attribute values
into buckets [9, 11]. Here, we compare the average errors incurred when estimating
the selectivity only of low frequent values based on compressed and compressed-v2
histograms. The same highest values are chosen for the two types of histograms and
hence their frequencies are similarly approximated in both histograms.

The compressed histogram approximating, over four buckets, the frequencies of
these values is illustrated in Fig. 14. To investigate the accuracy of query result size
estimates obtained from compressed and compressed-v2 histograms, we choose to
compare the accuracy of the selectivity estimation of the values 5 and 6 obtained from
the two types of histograms described as follows:

- Compressed: The value 5 falls in the third bucket (Fig. 14). Then, SEL (SALARY
= 5) is estimated by the average of frequencies in this bucket which is 2. The true
fraction of tuples with salary equal to 5 is 4, then this estimate is wrong by 0.5.
Similarly, the value 6 falls into the same bucket and its selectivity is estimated on
average by 2. The true fraction of tuples with salary equal to 6 is 1 and hence this
estimate is wrong by 0.5.

- Compressed-v2: The value 5 falls in the second bucket (Fig. 13) and SEL
(SALARY = 5) is estimated by 3. The true fraction of tuples with salary equal to 5
is 4 which mean that the estimate is wrong by 0.25. Contrary to the compressed
histogram, the value 6 is separated from the value 5 and is stored in the third
bucket (Fig. 13) since they are judged as two large different values. SEL
(SALARY = 6) is estimated on average by 1 where the real frequency is 1.
The error in the estimate in this case is equal to 0.

 9
 5
 3 3

1 2 3 5 6 7 8 9

 9
 5
 3 3

1 2 3 5 6 7 8 9

 7
 5
 3 5

1 3 4 5 6 7 8 9

 7

 3 5 5

1 2 3 4 5 7 8 9

 Improving Range Query Result Size Estimation Based on a New Optimal Histogram 53

Comparing the errors in the estimates based on the two types of histograms, we see
clearly that the compressed-v2 approximates much better the frequency of the values
5 and 6 than the compressed histogram. The frequencies of the other values are almost
equally approximated in the two histograms since each group contains contiguous
values which are stored in approximately equal height buckets in both histograms.

5 Experimentation Results

We investigated the effectiveness of the different histogram types cited above for
estimating range query result sizes. The average errors due to the different
histograms, as a function of the number of buckets, are computed each time when
estimating based on histograms the result size of a selection query where the
selectivity conditions are related each time to values with different frequencies like
infrequent values, balanced values and very frequent values.

The experiments were conducted on six different histogram algorithms including
equi-width, equi-depth, v-optimal, maxdiff, compressed and compressed-v2 in three
specified histogram data-frequency category including low, balanced and very high,
while using two different distributions of the attribute Salary from the American
League Baseball Salaries (Albb) and National League Baseball Salaries (Nlbb)
databases respectively for the years 2003 and 2005. The values in the attribute Salary
vary from 300 000$ to 22 000 000$ in the two databases.

The frequencies of the values in the attribute Salary in the database of Albb
(respectively Nlbb) vary from 1 to 44 (respectively from 1 to 25). We consider [1..9]
(respectively [1..8]) to be the range of low frequencies, [10..30] (respectively [9..15])
the range of balanced frequencies and [31..44] (respectively [16..25]) to be the range
of very high frequencies.

In the following experiment, we studied the performance of the different
histograms by comparing through several graphs the typical behavior of the
histograms errors in approximating the frequencies of different values with varying
the number of buckets. For an efficient study of the effectiveness of these histograms,
we select randomly three values from each database: an infrequent value, a balanced
value and a very frequent value. The errors in approximating the frequency of a given
value are represented in a graph separately. The x-axis of each graph shows the
number of buckets and the y-axis shows the average error of each histogram for
different number of buckets.

Fig. 15. Average error as a function of the number of buckets of approximating, in Nlbb, the
frequency of a) an infrequent value, b) a balanced value, and c) a very frequent value

54 W. Labbadi and J. Akaichi

We select from the database of Nlbb the following values with their corresponding
real frequencies (1000000, 1), (500000, 10) and (316000, 25). The errors of the six
histograms in approximating the frequencies of these values are illustrated
respectively in Fig. 15.a, Fig.15.b and Fig. 15.c.

We select from the database of Albb the following values with their corresponding
real frequencies (7500000, 1), (600000, 10) and (300000, 25). The errors of the six
histograms in approximating the frequencies of these values are illustrated
respectively in Fig. 16.a, Fig.16.b and Fig. 16.c.

Fig. 16. Average error as a function of the number of buckets of approximating, in Albb, the
frequency of a) an infrequent value, b) a balanced value, and c) a very frequent value

Looking at the different figures, we observe that the error generated is monotony
proportional to the number of buckets. As shown in the two figures, the accuracy can
be reached when increasing the number of buckets for all histogram types and the
compressed-v2, compressed, max-diff and v-optimal histograms are significantly
better than the others that they show the least error for different number of buckets.
Moreover, the equi-width histogram exhibits the worst accuracy.

Based on the different figures, we distinguish clearly, by comparing the average
errors generated by the entire set of histograms when estimating the selectivity of
infrequent values, balanced or very frequent values, a set of effective histograms, i.e.
compressed-v2, compressed, V-optimal and Max-diff, where the compressed-v2
presents each time the least approximation error for different number of buckets. The
same behavior of compressed-v2 errors in all the figures improves the victory of this
histogram over the other ones that it gives 100% accurate approximation of the
frequencies the highest values since their actual frequencies are stored separately in
individual buckets.

In conclusion, the comparison between the different histograms presented above
based on the average error generated when estimating range query result sizes shows
that the histograms based on the new partition constraints and on their heads the
compressed-v2 performs always significantly better than those based on trivial
constraints.

6 Conclusion and Future Work

The problem of minimizing the error in estimating range query result sizes remains a
real challenge despite the serious research done on identifying classes of optimal

 Improving Range Query Result Size Estimation Based on a New Optimal Histogram 55

histograms that generate least errors in the estimations of sizes and value distributions
especially in the results of queries with high complexity, e.g., multi-join queries.

In this paper, we provided an overview of several earlier and some more recent
classes of histograms that are close to optimal and effective in many estimation
problems. In addition to that, we have introduced a new algorithmic technique,
HistConst, for constructing a more accurate histogram called compressed-v2. An
experimental comparative study was proposed to study the effectiveness of the
different classes of optimal histograms reported in the literature and our proposed
histogram in estimating sizes and value distributions especially in the results of
complex queries, e.g., multi-join queries. The experiments show that estimations
based on our histogram are always better than those based on the other remaining
types of histograms.

The identification of the optimal histogram remains an open field. As several new
research opportunities appear, we will try to identify optimal histograms for different
types of queries to limit not only the average estimation error but also other metrics of
error, to determine the appropriate number of buckets to build the optimal histogram
and to find the histogram that can handle uncertain data.

An important direction for research is to focus on the problem of data stream which
is the transmission of the flow of data that changes over time. Existing database
systems do not process data streams efficiently and this makes this area a popular
search field [23, 24].

References

1. Ioannidis, Y., Poosala, V.: Balancing histogram optimality and practicality for query result
size estimation. In: Proceedings of the 1995 ACM SIGMOD International Conference on
Management of Data, pp. 233–244 (1995)

2. Jagadish, H.V., Koudas, N., Muthukrishnan, S., Poosala, V., Sevcik, K., Suel, T.: Optimal
histograms with quality guarantees. In: Proceedings of the 24th International Conference
on Very Large Data Bases (VLDB), New York, USA, pp. 275–286 (1998)

3. Poosala, V., Ioannidis, Y.E., Haas, P.J., Shekita, E.J.: Improved histograms for selectivity
estimation of range predicates. In: Proceedings of the 1996 ACM SIGMOD International
Conference on Management of Data, pp. 294–305 (1996)

4. Jagadish, H.V., Jin, H., Ooi, B.C., Tan, K.-L.: Global optimization of histograms. In:
Proceedings of the 1998 ACM SIGMOD International Conference on Management of
Data, pp. 223–234 (2001)

5. Yu, C., Philip, G., Meng, W.: Distributed top-N query processing with possibly
uncooperative local systems. In: Proc. 29th VLDB Conf., Berlin, Germany, pp. 117–128
(2003)

6. Selinger, P.G., Astrahan, M.M., Chamberlin, D.D., Lorie, R.A., Price, T.G.: Access path
selection in a relational database management system. In: Proceedings of the ACM
SIGMOD International Symposium on Management of Data, Boston, Mass., pp. 23–34
(June 1979)

7. John Oommen, B., Rueda, L.G.: An empirical comparison of histogram-like techniques for
query optimization. In: Proceedings of the 2nd International Conference on Entreprise
Information Systems, Stafford, UK, July 4-7, pp. 71–78 (2000)

56 W. Labbadi and J. Akaichi

8. Ioannidis, Y., Christodoulakis, S.: On the propagation of errors in the size of join results.
In: Proceedings of the 1991 ACM SIGMOD Conference, Denver, CO, pp. 268–277 (May
1991)

9. Ioannidis, Y., Christodoulakis, S.: Optimal histograms for limiting worst-case error
propagation in the estimates of query optimizers. To appear in ACM-TODS (1992)

10. Kooi, R.P.: The optimization of queries in relational databases. PhD thesis, Case Western
Reserver University (September 1980)

11. Shapiro, G.P., Connell, C.: Accurate Estimation of the Number of Tuples Satisfying a
Condition. In: Proceedings of ACM-SIGMOD Conference, pp. 256–276 (1984)

12. Ioannidis, Y.: Universality of serial histograms. In: Proceedings of the 19th Int. Conf. on
Very Large Databases, pp. 256–267 (December 1993)

13. Poosala, V., Ioannidis, Y.: Estimation of query-result distribution and its application in
parallel-join load balancing. In: Proceedings of the 22nd Int. Conf. on Very Large
Databases, pp. 448–459 (1996)

14. Gupta, A., Sudarshan, S., Viswanathan, S.: Query scheduling in multi query optimization.
In: IDEAS, pp. 11–19 (2001)

15. Thomas, D., Diwan, A.A., Sudarshan, S.: Scheduling and caching in multi query
optimization. In: COMAD, pp. 150–153 (2006)

16. Kerkad, A., Bellatreche, L., Geniet, D.: Queen-Bee: Query interaction- aware for buffer
allocation and scheduling problem. In: Cuzzocrea, A., Dayal, U. (eds.) DaWaK 2012.
LNCS, vol. 7448, pp. 156–167. Springer, Heidelberg (2012)

17. Ioannidis, Y.: Query optimization. In: ACM Computing Surveys, Symposium Issue on the
50th Anniversary of ACM, vol. 28, pp. 121–123 (1996)

18. Christodoulakis, S.: Implications of certain assumptions in database performance
evaluation. ACM TODS 9(2), 163–186 (1984)

19. Zipf, G.K.: Human Behavior and the Principle of Least Effort: an Introduction to Human
Ecology. Addison-Wesley, Cambridge (1949)

20. Liu, Y.: Data preprocessing. Department of Biomedical, Industrial and Human Factors
Engineering Wright State University (2010)

21. Ioannidis, Y., Poosala, V.: Histogram-based solutions to diverse database estimation
problems. IEEE Data Engineering Bulletin 18(3), 10–18 (1995)

22. Muralikrishna, M., Dewitt, D.J.: Equi-depth histograms for estimating selectivity factors
for multi-dimensional queries. In: Proceedings of ACM SIGMOD Conference, pp. 28–36
(1988)

23. Mousavi, H., Zaniolo, C.: Fast and Accurate Computation of Equi-Depth Histograms over
Data Streams. In: Proceedings of EDBT, Uppsala, Sweden, March 22-24 (2011)

24. Gomes, J.S.: Adaptive Histogram Algorithms for Approximating Frequency Queries in
Dynamic Data Streams. In: 12th International Conference on Internet Computing, ICOMP
2011, Las Vegas, NV, July 18-21 (2011)

	Improving Range Query Result Size Estimation Based on a New Optimal Histogram
	1 Introduction
	2 State of the Art
	2.1 Earlier Histograms

	3 Compressed-V2 Histogram
	3.1 Definitions and Problem Formulation
	3.2 HistConst Algorithm

	4 Running Example
	4.1 Selectivity Estimation of Low Frequent Values with Compressed and Compressed-v2 Histograms
	Compressed-v2:

	5 Experimentation Results
	6 Conclusion and Future Work
	References

