
Enhancing Flexible Querying Using

Criterion Trees

Guy De Tré1, Jozo Dujmović2, Joachim Nielandt1, and Antoon Bronselaer1

1 Dept. of Telecommunications and Information Processing, Ghent University,
Sint-Pietersnieuwstraat 41, B-9000 Ghent, Belgium

{Guy.DeTre,Joachim.Nielandt,Antoon.Bronselaer}@UGent.be
2 Dept. of Computer Science, San Francisco State University,

1600 Holloway Ave, San Francisco, CA 94132, U.S.A.
jozo@sfsu.edu

Abstract. Traditional query languages like SQL and OQL use a so-
called WHERE clause to extract only those database records that fulfil
a specified condition. Conditions can be simple or be composed of con-
ditions that are connected through logical operators. Flexible querying
approaches, among others, generalized this concept by allowing more
flexible user preferences as well in the specification of the simple condi-
tions (through the use of fuzzy sets), as in the specification of the logical
aggregation (through the use of weights). In this paper, we study and
propose a new technique to further enhance the use of weights by work-
ing with so-called criterion trees. Next to better facilities for specifying
flexible queries, criterion trees also allow for a more general aggregation
approach. In the paper we illustrate and discuss how LSP basic aggre-
gation operators can be used in criterion trees.

Keywords: Fuzzy querying, criterion trees, LSP, GCD.

1 Introduction

1.1 Background

Traditionally, WHERE-clauses have been used in query languages to extract
those database records that fulfil a specified condition. This condition should
then reflect the user’s preferences with respect to the records that should be
retrieved in the query result. Most traditional query languages like SQL [10]
and OQL [2] only allow WHERE-conditions which can be expressed by Boolean
expressions. Such Boolean expression can be composed of simple expressions
that are connected by logical conjunction (∧), disjunction (∨) and negation (¬)
operators. Parentheses can be used to alter the sequence of evaluation.

Adequately translating the user’s needs and preferences into a representative
Boolean expression is often considered to be a difficult and challenging task.
This is especially the case when user requirements are complex and expressed in
natural language. Soft computing techniques help developing fuzzy approaches

H.L. Larsen et al. (Eds.): FQAS 2013, LNAI 8132, pp. 364–375, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Enhancing Flexible Querying Using Criterion Trees 365

for flexible querying that help to solve these difficulties. An overview of ‘fuzzy’
querying techniques can, among others, be found in [18].

In this paper, ‘fuzzy’ querying of a regular relational database is considered.
Such a database consists of a collection of relations, represented by tables [3],
comprising of attributes (columns) and tuples (rows). Each relation R is defined
by a relation schema

R(A1 : T1, . . . , An : Tn)

where the Ai : Ti’s are the attributes of R, each consisting of a name Ai and an
associated data type Ti. This data type, among others, determines the domain
domTi consisting of the allowed values for the attribute. Each tuple

ti(A1 : v1, . . . , An : vn)

with vi ∈ domTi , 1 ≤ i ≤ n represents a particular entity of the (real) world
modelled by the given relation.

The essence of ‘fuzzy’ querying techniques is that they allow to express user
preferences with respect to query conditions using linguistic terms which are
modelled by fuzzy sets. The basic kind of preferences, considered in ‘fuzzy’
database querying, are those which are expressed inside an elementary query
condition that is defined on a single attribute A : T . Hereby, fuzzy sets are used
to express in a gradual way that some values of the domain domT are more
desirable to the user than others. For example, if a user is looking for ‘cheap
houses’, a fuzzy set with membership function μcheap on the domain of prices,
as depicted in Fig. 1 can be used to reflect what the user understands by its
linguistically expressed preference ‘cheap house’.

Fig. 1. The modelling of ‘Cheap house prices’

During query processing, basically all relevant database tuples t are evaluated
to determine whether they satisfy the user’s preferences (to a certain extent) or
not. Hereby, each elementary query criterion ci, i = 1, . . . ,m of the query is
evaluated, resulting in an elementary matching degree γci(t) which is usually
modelled by a real number of the unit interval [0, 1] (where γci(t) = 1 represents
that the tuple t fully satisfies the criterion and γci(t) = 0 denotes no satisfaction).
For example, evaluating the elementary criterion ‘cheap price’ for a tuple t with
price attribute value t[Price] = 110K results in an elementary satisfaction degree
γcheap price(t) = μcheap(110K) = 0.9, which expresses that a house of 110K
satisfies the criterion ‘cheap house’ to an extent 0.9.

366 G. De Tré et al.

Next, the elementary degrees are aggregated to compute the overall matching
degree γ(t) of the tuple. In its simplest form, the aggregation of elementary
matching degrees is determined by the fuzzy logical connectives conjunction,
disjunction and negation which are respectively defined as follows:

γc1∧c2(t) = i(γc1(t), γc2(t)) (1)

γc1∨c2(t) = u(γc1(t), γc2(t)) (2)

γ¬c(t) = 1− γc(t) (3)

where i and u resp. denote a t-norm and its corresponding t-conorm [12].
In a more complex approach, users are allowed to express their preferences

related to the relative importance of the elementary conditions in a query, hereby
indicating that the satisfaction of some query conditions is more desirable than
the satisfaction of others. Such preferences are usually denoted by associating
a relative weight wi (∈ [0, 1]) to each elementary criterion ci, i = 1, . . . ,m of
the query. Hereby, as extreme cases, wi = 0 models ‘not important at all’ (i.e.,
should be omitted), whereas wi = 1 represents ‘fully important’. Assume that
the matching degree of a condition ci with an importance weight wi is denoted
by γc∗i (t). In order to be meaningful, weights are assumed to satisfy the following
requirements [4]:

– In order to have an appropriate scaling, at least one of the associated weights
has to be 1, i.e., maxi wi = 1.

– If wi = 1 and the associated elementary matching degree for ci equals 0, i.e.,
γci(t) = 0, then the weight’s impact should be 0, i.e., γc∗i (t) = 0.

– If wi = 1 and γci(t) = 1, then γc∗i (t) = 1.
– If wi = 0, then the weight’s impact should be such as if ci does not exist.

The impact of a weight can be computed by first matching the condition as
if there is no weight and then second modifying the resulting matching degree
in accordance with the weight. A modification function that strengthens the
match of more important conditions and weakens the match of less important
conditions is used for this purpose. From a conceptual point of view, a distinction
has been made between static weights and dynamic weights.

Static weights are fixed, known in advance and can be directly derived from
the formulation of the query. These weights are independent of the values of the
tuple(s) on which the query criteria act and are not allowed to change during
query processing. As described in [4], some of the most practical interpretations
of static weights can be formalised in a universal scheme. Namely, let us assume
that query condition c is a conjunction of weighted elementary query conditions
ci (for a disjunction a similar scheme has been offered). Then the matching de-
gree γc∗i (t) of an elementary condition ci with associated implicative importance
weight wi is computed by

γc∗i (t) = (wi ⇒ γci(t)) (4)

where ⇒ denotes a fuzzy implication connective. The overall matching degree
of the whole query composed of the conjunction of conditions ci is calculated

Enhancing Flexible Querying Using Criterion Trees 367

using a standard t-norm operator. Implicative weighting schemes in the context
of information retrieval and weights that have the maximum value 1 were mostly
investigated by Larsen in [13,14].

The approach for static weights, has been refined to deal with a dynamic,
variable importance wi ∈ [0, 1] depending on the matching degree of the associ-
ated elementary condition. Extreme (low or high) matching degrees could then
for example result in an automatic adaptation of the weight.

A further, orthogonal distinction has been made between static weight as-
signments, where it is also known in advance with which condition a weight is
associated (e.g., in a situation where the user explicitly states his/her prefer-
ences) and dynamic weight assignments, where the associations between weights
and conditions depend on the actual attribute values of the record(s) on which
the query conditions act (e.g., in a situation where most criteria have to be sat-
isfied, but it is not important which ones). OWA operators [16] are an example
of a technique with dynamic weight assignments.

Another aspect of ‘fuzzy’ querying concerns the aggregation of (partial) query
conditions to be guided by a linguistic quantifier (see, e.g., [11,9]). In such ap-
proaches conditions of the following form are considered:

c = Ψ out of {c1, . . . , ck} (5)

where Ψ is a linguistic (fuzzy) quantifier and ci are elementary conditions to be
aggregated. The overall matching degree γc(t) of c can be computed in different
ways. Commonly used techniques are for example based on liguistic quantifiers
in the sense of Zadeh [17], OWA operators [16] and the Sugeno integral [1].

1.2 Problem Description

In many real-life situations users tend to group and structure their preferences
when specifying selection criteria. Quite often, criteria are generalised or further
specialised to obtain a better insight in what one is looking for. Such gener-
alisations and specialisations then result in a hierarchically structured criteria
specification, which will further on be called a criterion tree.

For example, for somebody who is searching for a house in a real estate
database it is quite natural to require affordability (acceptable price and mainte-
nance costs) and suitability (good comfort, good condition and a good location).
Good comfort might be further specified by living comfort and basic facilities,
where living comfort refers to at least two bathrooms, three bedrooms, garage
etc. and basic facilities refer to gas, electricity, sewage, etc. Good condition might
be specified by recent building and high quality building material. Finally, good
location might be subdivided by accessibility, healthy environment, nearby fa-
cilities etc. The criterion tree corresponding to these user requirements is given
in Fig. 2.

Query languages have no specific facilities for efficiently handling criterion
trees. Indeed, criterion trees have to be translated to logical expressions, but for
large criterion trees containing many criteria, this translation becomes difficult

368 G. De Tré et al.

Fig. 2. Criterion tree for house selection

to interpret. Moreover, when working with weighted criteria, users often like to
express preferences over subgroups of criteria. For example, a user might want
to specify that the condition of a house is more important than its location.
Such kinds of preferences require weight assignments to the internal nodes of a
criterion tree. Translating such weights to weights for individual criteria is arti-
ficial and requires a significant effort as it becomes almost impossible to obtain
a weight set which correctly reflects the preferences of the user. The latter even
holds more generally: the more criteria we have to deal with, the more difficult it
is to assign meaningful weights to the criteria [8]. Weight assignment is especially
difficult for queries of high complexity which can contain hundreds of criteria and
of which the weights should be easily adjustable. These kind of difficulties can be
avoided by only considering manageable subsets of semantically related criteria
to which weights are assigned in accordance with the user’s preferences. Remark
that humans use a similar approach when specifying complex requirements.

1.3 Objectives

In this paper we propose a novel flexible query specification and handling tech-
nique which is based on LSP (Logic Scoring of Preference) [5], a methodology
which originates from decision support. The presented technique supports work-
ing with criterion trees and moreover allows for more flexibility in aggregat-
ing elementary degrees of satisfaction. The latter being obtained by providing
the user with a selected number of generalized conjunction/disjunction (GCD)

Enhancing Flexible Querying Using Criterion Trees 369

operators. Furthermore we illustrate that the use of criterion trees and GCD
aggregation more adequately reflects the way how users reason while specifying
their preferences related to their database search.

The remainder of the paper is organised as follows. In the next Section 2,
criteria specification in criterion trees is discussed. The issues respectively dealt
with are hierarchic query specification, weight specification and GCD selection.
Next, the evaluation of a criterion tree is presented in Section 3. This evaluation is
an important component of query processing and results in an associated overall
satisfaction degree for each tuple that is relevant to the query result. In Section 4
we give an illustrative example based on house selection in order to justify the use
of criterion trees with soft computing aggregation like GCD. Finally, in Section 5
the main contributions of the paper are summarised, conclusions are stated and
some directions for future research are given.

2 Specification of Criterion Trees

A criterion tree is a hierarchical structure that is recursively defined as a collec-
tion of nodes starting at a root node. Each node can be seen as a container for
information and can on its turn be connected with zero or more other nodes,
called the child nodes of the node, which are one level lower in the tree hierarchy.
A node that has a child is called the child’s parent node. A node has at most
one parent. A node that has no child nodes is called a leaf.

The leaf nodes of a criterion tree contain an elementary query condition cA
that is defined on a single database attribute A : T as described in the intro-
duction Section 1. This condition expresses the user’s preferences related to the
acceptable values for attribute A : T in the answer set of the query.

All non-leaf nodes, i.e., the internal nodes, of a criterion tree contain a symbol
representing an aggregation operator. Each child node ni of a non-leaf node n
has an associated weight wi reflecting its relative importance within the subset
of all child nodes of the non-leaf node. Hereby, for a non-leaf node with k child
nodes it must hold that

∑k
i=1 wi = 1. With this choice, we follow the semantics

of the LSP methodology [5], which are different form those presented in [4].
Using Extended BNF (EBNF) notation [15], a criterion tree can be described

by:

aggregator = "C" | "HPC" | "SPC" | "A" | "SPD" | "HPD" | "D"

criterion tree = elementary criterion | composed criterion

composed criterion = aggregator "(" criterion tree":"weight","

criterion tree":"weight {"," criterion tree":"weight}")"

elementary criterion = attribute "IS {("min value"," suitability")"

{",(" value"," suitability")" } ",("max value"," suitability")}"

where { } means ‘repeat 0 or more times’. The values in elementary criterion
must form a strictly increasing sequence.

The supported aggregators are denoted by ‘C’ (conjunction), ‘HPC’ (hard
partial conjunction), ‘SPC’ (soft partial conjunction), ‘A’ (neutrality), ‘SPD’
(soft partial disjunction), ‘HPD’ (hard partial disjunction) and ‘D’ (disjunction).

370 G. De Tré et al.

This set is in fact a selection of seven special cases from the infinite range of
generalized conjunction/disjunction (GCD) functions and can be easily extended
when required.

The seven aggregators can be combined yielding nine combined aggregators
as presented in Fig. 3.

Fig. 3. Basic and combined simultaneity and replaceability operators

Two basic special cases of GCD are the partial conjunction (PC) and the
partial disjunction (PD). Partial conjunction is a model of simultaneity, whereas
partial disjunction is a model of replaceability. If we want to use GCD as an
aggregator in a criterion tree, we have to select one of the supported aggregators
based on the desired degree of simultaneity or replaceability.

Both ‘C’ and ‘HPC’ are models of high simultaneity and mandatory require-
ments. All inputs must be (partially) satisfied, and therefore they reflect manda-
tory requirements. If any input in an aggregated group of preferences is 0, the
output is going to be 0. ‘SPC’ is also a model of simultaneity, but its (adjustable)
level of simultaneity is lower than in the case of HPC. No input is mandatory.
A single nonzero input is sufficient to produce a (small) nonzero output.

‘D’, ‘HPD’, and ‘SPD’ are models of replaceability symmetrical to ‘C’, ‘HPC’,
and ‘SPC’. ‘D’ and ‘HPD’ are models of high replaceability and sufficient require-
ments. If only one input is completely satisfied, that is sufficient to completely
satisfy the whole group and the values of other inputs are insignificant. Each
input can fully compensate (replace) all remaining inputs. ‘SPD’ is also a model
of replaceability, but its (adjustable) level of replaceability is lower than in the
case of HPD. No input is sufficient to completely satisfy the whole group, but
any nonzero input is sufficient to produce a nonzero output.

Enhancing Flexible Querying Using Criterion Trees 371

The neutrality aggregator A (arithmetic mean) provides a perfect logic bal-
ance between simultaneity and replaceability. Thus, the logic interpretation of
the arithmetic mean is that it represents a 50-50 mix of conjunctive and disjunc-
tive properties; that is explicitly visible in the case of two inputs:

x1θx2 =
x1 + x2

2
=

(x1 ∧ x2) + (x1 ∨ x2)

2
. (6)

For any number of inputs, all inputs are desired and each of them can partially
compensate the insufficient quality of any other of them. No input is mandatory
and no input is able to fully compensate the absence of all other inputs. In other
words, the arithmetic mean simultaneously, with medium intensity, satisfies two
contradictory requests: (1) to simultaneously have all good inputs, and (2) that
each input has a moderate ability to replace any other input.

The arithmetic mean is located right in the middle of GCD aggregators but
we cannot use it as a single best representative of all of them. The central lo-
cation of the arithmetic mean is not sufficient to give credibility to additive
scoring methods. Indeed, it is difficult to find an evaluation problem without
mandatory requirements, or without the need to model various levels of simul-
taneity and/or replaceability. These features are ubiquitous and indispensable
components of human evaluation reasoning. Unfortunately, these features are
not supported by the arithmetic mean. Therefore, in the majority of evaluation
problems the additive scoring represents a dangerous oversimplification because
it is inconsistent with observable properties of human evaluation reasoning.

Once specified, criterion trees can be used in the specification of the WHERE-
clause of a query. Their evaluation for a relevant database tuple t results in a
criterion satisfaction specification, which can then be used in the further evalua-
tion and processing of the query. In the next section, it is presented how criterion
trees are evaluated.

3 Evaluation of Criterion Trees

Criterion trees are evaluated in a bottom-up way. This means that, when con-
sidering a relevant database tuple t, firstly, the elementary criteria ci of the leaf
nodes are evaluated. Any elementary criterion specification used in ‘fuzzy’ query-
ing can be used. In its simplest form, ci is specified by a fuzzy set F denoting the
user’s preferences related to an attribute A : T , as illustrated in Fig. 1. Criterion
evaluation then boils down to determining the membership value of the actual
value t[A] of A for t, i.e.,

γci(t) = μF (t[A]). (7)

Next, all internal nodes (if any) are evaluated, bottom-up. An internal node
n can be evaluated as soon as all its child nodes ni, i = 1, . . . , k have been eval-
uated. For evaluation purposes, an implementation of GCD is required [7]. We
can use the following implementation based on weighted power means (WPM):

372 G. De Tré et al.

M(x1, . . . , xn; r) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
∑n

i=1 wix
r
i)

1/r , if 0 < |r| < +∞
∏n

i=1 x
wi

i , if r = 0

min(x1, . . . , xn) , if r = −∞
max(x1, . . . , xn) , if r = +∞

(8)

where xi ∈ [0, 1], 1 ≤ i ≤ n are the input values which in the context of flexi-
ble querying represent satisfaction degrees (hereby, 0 and 1 respectively denote
‘not satisfied at all’ and ‘fully satisfied’); the normalised weights 0 < wi ≤ 1,
1 ≤ i ≤ n,

∑n
i=1 wi = 1 specify the desired relative importance of the inputs

and the computed exponent r ∈ [−∞,+∞] determines the logic properties of
the aggregator. Special cases of exponent values are: +∞ corresponding to full
disjunction ‘D’, −∞ corresponding to full conjunction ‘C’, and 1 corresponding
to weighted average ‘A’. The other exponent values allow to model other aggre-
gators, ranging continuously from full conjunction to full disjunction and can be
computed from a desired value of orness (ω), and for this form of GCD function
we can use the following numeric approximation [5]:

r(ω) =
0.25 + 1.89425x+ 1.7044x2 + 1.47532x3 − 1.42532x4

ω(1− ω)
(9)

where

x = ω − 1/2.

Suitable orness-values are the following: ω = 1/6 for ‘HPC’, ω = 5/12 for ‘SPC’,
ω = 4/6 for ‘SPD’ and ω = 5/6 for ‘HPD’.

Implication w ⇒ x = w ∨ x = w ∧ x means that ‘it is not acceptable that w
is high and x is low’, or ‘important things must be satisfied’. The product wx
used in Eq. (8) is also a form of implication because the effect is similar, i.e.,
again ‘important things must be satisfied’.

Considering tuple t, the query satisfaction degree γn(t) corresponding to n,
computed using Eq. (8) with arguments γni(t), i = 1, . . . , k, wi being the weight
that has been associated with ni, i = 1, . . . , k, and r being the value that models
the aggregator that is associated with n.

The overall satisfaction degree for tuple t using a criterion tree is obtained
when the root node nroot of the tree is evaluated, i.e., this satisfaction degree
yields

γnroot(t). (10)

4 An Illustrative Example

As an example we reconsider the search for a house in a real estate database as
presented in Fig. 2. Assuming that a user is looking for an affordable house with
good comfort, good condition and a good location and wants to specify each of
these subcriteria in more detail. Using GCD aggregators, the criterion tree given
in Fig. 2 can be further detailed as shown in Fig. 4.

Enhancing Flexible Querying Using Criterion Trees 373

Fig. 4. Detailed criterion tree for house selection

Such a criterion tree can then be specified in an SQL statement that is used
to query a regular relational database. Our approach is to use a predefined
function TREE which takes a criterion tree as argument and computes the
overall satisfaction degree of the tuples being processed by the query. This is
illustrated with the following query which includes a regular join condition and
a condition tree c house.

SELECT id, address, price, TREE(c_house) AS satisfaction

FROM real_estates r, location l

WHERE (r.location_id=l.id) AND satisfaction>0.5

ORDER BY satisfaction

The tree condition tree c house is further specified by

c_house=HPC(c_affordability:0.5,c_suitability:0.5)

where

c_affordability=HPC(c_price:0.7, c_maintenance:0.3)

c_suitability=HPC(c_comfort:0.3, c_condition:0.4, c_location:0.3)

374 G. De Tré et al.

Furthermore,

c_comfort=

A(C(c_#bedrooms:0.18, c_#bathrooms:0.18, c_garage:0.18,

c_living_room:0.18, c_restroom:0.18, D(c_swimming_pool:0.2,

sauna:0.4, c_spa:0.4):0.1):0.5,

SPC(c_gas:0.3, c_electricity:0.3, c_sewage:0.3,

c_wired_telephone:0.1):0.5)

c_condition=HPC(c_construction_date:0.2, c_building_material:0.8)

c_location=

A(SPC(c_bus_stop:0.1, c_railway_station:0.2,

c_regional_road:0.5, c_highway:0.2):0.4,

D(c_green_area:0.4, c_lakes:0.1, c_forest:0.2, c_park:0.3):0.2,

HPC(c_leisure/sport:0.25, c_hospital:0.1, c_doctor:0.25,

c_pharmacy:0.25, c_restaurant/bar:0.15):0.4)

The elementary criteria can generally be handled using soft computing tech-
niques as presented in Fig. 1. For example, c price can be specified by

r.price IS {(100,1), (200,0)}

where {(100, 1), (200, 0)} is used to specify the fuzzy set that is depicted in
Fig. 1. So the criterion c price denotes that the price of the house should be
compatible with the linguistic term ‘cheap’. Compatibility is then determined by
the membership grade of the stored price value of the house under consideration.
For the other elementary conditions, similar preference specifications can be
provided. Once all elementary conditions are evaluated, the criterion tree for the
house under consideration can be evaluated as described in Section 3 and the
resulting value will be returned by the function TREE (in the example labelled
as satisfaction). If preferred, a basic condition acting as a threshold condition
on the satisfaction degrees can be added in the WHERE-clause of the query
(satisfaction > 0.5 in the example). The satisfaction degrees can also be used
to rank the tuples in the query result.

5 Conclusions and Future Work

In this paper, we proposed the concept of a criterion tree. Criterion trees offer
flexible facilities for specifying complex query conditions. More specifically, they
provide adjustable, generalized aggregators and weights denoting relative pref-
erences among (sub)criteria can be assigned to all non-root criteria of the tree.
These are requirements for adequately reflecting human decision making, to the
best of our knowledge not being considered in flexible querying up to now. The
proposed work is currently being implemented within the framework of the open
source PostgreSQL object-relational database system.

In the presented work, only basic GCD aggregators have been considered.
However, it is clear that not all criterion specifications necessary to reflect human
reasoning can be modelled using the current approach. Therefore, the current

Enhancing Flexible Querying Using Criterion Trees 375

work has to be extended with other aggregators, what will be subject to future
work. One such extension concerns the handling of bipolarity and the ability to
deal with mandatory, desired and optional conditions.

References

1. Bosc, P., Lietard, L., Pivert, O.: Sugeno fuzzy integral as a basis for the interpre-
tation of flexible queries involving monotonic aggregates. Information Processing
and Management 39(2), 287–306 (2003)

2. Cattell, R.G.G., Barry, D.K. (eds.): The Object Data Standard: ODMG 3.0.
Morgan Kaufmann, San Francisco (2000)

3. Codd, E.F.: A Relational Model of Data for Large Shared Data Banks. Communi-
cations of the ACM 13(6), 377–387 (1970)

4. Dubois, D., Prade, H.: Using fuzzy sets in flexible querying: why and how? In:
Andreasen, T., Christiansen, H., Larsen, H.L. (eds.) Flexible Query Answering
Systems. Kluwer Academic Publishers, Dordrecht (1997)

5. Dujmović, J.J.: Preference Logic for System Evaluation. IEEE Transactions on
Fuzzy Systems 15(6), 1082–1099 (2007)

6. Dujmović, J.J., Larsen, H.L.: Generalized conjunction/disjunction. Int. Journal of
Approximate Reasoning 46, 423–446 (2007)

7. Dujmović, J.J.: Characteristic Forms of Generalized Conjunction/Disjunction. In:
Proc. IEEE World Congress on Computational Intelligence, Hong Kong (2008)

8. Dujmović, J.J., De Tré, G.: Multicriteria Methods and Logic Aggregation in Suit-
ability Maps. Int. Journal of Intelligent Systems 26(10), 971–1001 (2011)

9. Galindo, J., Medina, J.M., Cubero, J.C., Garcia, M.T.: Relaxing the Universal
Quantifier of the Division in Fuzzy Relational Databases. Int. Journal of Intelligent
Systems 16(6), 713–742 (2001)

10. ISO/IEC 9075-1:2011: Information technology – Database languages – SQL – Part
1: Framework (SQL/Framework) (2011)

11. Kacprzyk, J.: Zió�lkowski, A.: Database queries with fuzzy linguistic quantifiers.
IEEE Transactions on Systems, Man and Cybernetics 16, 474–479 (1986)

12. Klement, E.P., Mesiar, R., Pap, E. (eds.): Triangular Norms. Kluwer Academic
Publishers, Boston (2000)

13. Larsen, H.L.: Efficient Andness-directed Importance Weighted Averaging Op-
erators. Int. Journal of Uncertainty, Fuzziness and Knowledge-Based Systems
12(suppl.), 67–82 (2003)

14. Larsen, H.L.: Importance weighting and andness control in De Morgan dual power
means and OWA operators. Fuzzy Sets and Systems 196(1), 17–32 (2012)

15. Wirth, N.: What Can We Do About the Unnecessary Diversity of Notation for
Syntactic Definitions. Communications of the ACM 20(11), 822–823 (1977)

16. Yager, R.R., Kacprzyk, J.: The Ordered Weighted Averaging Operators: Theory
and Applications. Kluwer Academic Publishers, Norwell (1997)

17. Zadeh, L.A.: A computational approach to fuzzy quantifiers in natural languages.
Computational Mathematics Applications 9, 149–184 (1983)

18. Zadrozny, S., De Tré, G., De Caluwe, R., Kacprzyk, J.: An Overview of Fuzzy
Approaches to Flexible Database Querying. In: Galindo, J. (ed.) Handbook of
Research on Fuzzy Information Processing in Databases, pp. 34–54. IGI Global,
Hershey (2008)

	Enhancing Flexible Querying Using Criterion Trees
	1 Introduction

	1.1 Background

	1.2 Problem Description

	1.3 Objectives

	2 Specification of Criterion Trees

	3 Evaluation of Criterion Trees

	4 An Illustrative Example

	5 Conclusions and Future Work�
	References

