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Abstract. The Resource Description Framework (RDF) is the W3C 
recommended standard for data on the semantic web, while the SPARQL 
Protocol and RDF Query Language (SPARQL) is the query language that 
retrieves RDF triples. RDF data often contain valuable information that can 
only be queried through filter functions. The SPARQL query language for RDF 
can include filter clauses in order to define specific data criteria, such as full-
text searches, numerical filtering, and constraints and relationships between 
data resources. However, the downside of executing SPARQL filter queries is 
the frequently slow query execution times. This paper presents a SPARQL filter 
query-processing engine for conventional triplestores called FILT (Filtering 
Indexed Lucene Triples), built on top of the Apache Lucene framework for 
storing and retrieving indexed documents, compatible with unmodified 
SPARQL queries. The objective of FILT was to decrease the query execution 
time of SPARQL filter queries. This aspect was evaluated by performing a 
benchmark test of FILT compared to the Joseki triplestore, focusing on two 
different use-cases; SPARQL regular expression filtering in medical data, and 
SPARQL numerical/logical filtering of geo-coordinates in geographical 
locations. 

Keywords: RDF full-text search, SPARQL filter queries, SPARQL regex 
filtering, SPARQL numerical filtering, RDF data indexing, Lucene.  

1 Introduction 

RDF (Resource Description Framework) is a language for describing things or entities 
on the World Wide Web [8]. RDF data is structured as connected graphs, and is 
composed of triples. A triple is a statement consisting of three components: a subject, 
a predicate and an object. The World Wide Web Consortium (W3C) standard query 
language for looking up RDF data is the SPARQL Protocol and RDF Query 
Language, referred to as SPARQL [13]. SPARQL makes it possible to retrieve and 
manipulate RDF data, whether the data is stored in a native RDF store, or expressed 
as RDF through middleware conversion mechanisms. SPARQL queries are expressed 
in the same syntax as RDF, namely as triples. 
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As the Web evolves into one enormous database, locating and searching for 
specific information poses a challenge. RDF data consists of graphs defined by 
triples, meaning that there are many more relationships and connections between data 
resources, compared to the traditional Web structure consisting of clear text 
documents. The RDF data structure offers a more flexible and accurate way of 
retrieving information, as specific relationships between data resources can be looked 
up. Moreover, the architecture of the Semantic Web poses a need for another search 
design opposed to the traditional Web. However, full-text searches will also be 
important when searching the Semantic Web, as there usually exist a great deal of 
textual descriptions and numerical values stored as literals in most RDF data sets. 
Moreover, full-text searches in RDF data are important, because users often do not 
know to a full extent what information exists. SPARQL is a good way of searching 
for explicit data relationships and occurrences in RDF data sets, also offering the 
possibility of performing full-text searches and filtering terms and phrases through 
SPARQL filter clauses. These filter clauses enables the filtering of logical expressions 
and variables expressed in the general SPARQL query. Examples of SPARQL clauses 
are filtering string values, regular expressions, logical expressions and language 
metadata. Unfortunately, SPARQL filter clauses pose a major challenge when it 
comes to query-execution time. When applying filter clauses in SPARQL queries, the 
queries have to perform matching of logical expressions or terms and phrases, 
meaning that the SPARQL queries will execute slower than general SPARQL queries. 
As SPARQL filter queries can discover data relationships that general SPARQL 
queries cannot, they play an important role in retrieving RDF data. However, because 
SPARQL filter queries in most cases have a much slower query-execution time than 
general SPARQL queries; it is easy to shy away from applying filter clauses to the 
queries. Minack et al. [9] argue that literals are what connect humans to the Semantic 
Web, giving meaning and an understanding to all the data that exist on the Web. If 
literals are taken away from RDF data, the directed graphs that amount to the Web of 
Data will merely be a set of interconnected nodes that are to a certain extent name- 
and meaningless. This argument suggests that discovering efficient ways of filtering 
literals in RDF data will be of great value to the information retrieval aspect of the 
Semantic Web. 

This paper presents a technique for optimizing the query-execution times of 
SPARQL filter queries. A prototype solution called FILT (Filtering Indexed Lucene 
Triples) has been built in order to show that a general SPARQL filter query processor 
can decrease the query-execution time of SPARQL filter queries, thus enhancing the 
value of integrating full-text searches with the SPARQL query language. The paper is 
divided into six sections apart from the introduction: section 2 presents the 
implementation and features of FILT, section 3 presents previous related work, 
section 4 presents the framework for evaluating FILT through a benchmark test, 
section 5 presents the results of the benchmark test, section 6 discuss the results, and 
finally section 7 presents conclusions and further work. 
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2 Implementation of FILT with Apache Lucene 

FILT is a SPARQL filter-processing engine and enables storing and querying of RDF 
data through the Apache Lucene framework [3]. It is supports unmodified SPARQL 
queries, meaning that users do not have to re-write their SPARQL queries in order to 
execute them. The main purpose of FILT is to decrease the query-execution time of 
SPARQL queries containing filter clauses, thus optimizing the efficiency of semantic 
information retrieval. FILT currently provides storing of triples, a SPARQL endpoint, 
and a SPARQL querying user-interface. FILT can store any data set stated as triples. 
The data set must be expressed in one of the three most common syntaxes for RDF 
triples: N-Triples, Turtle or RDF/XML. Moreover, FILT will supplement a traditional 
triplestore by stripping filter queries away from the SPARQL query during a pre-
processing phase. It then passes the set of triples that match the filter conditions back 
to the Jena SPARQL query engine. General SPARQL queries without filter clauses 
are sent directly to an external triplestore SPARQL endpoint, or to a local RDF model 
of the entire data set. This means that a SPARQL endpoint URL of a triplestore, or 
the raw RDF data set file, has to be specified in FILT in order for any type of 
SPARQL query to execute properly. The architecture of FILT is shown in Figure 1. 
This figure illustrates how SPARQL queries are executed through FILT. There are 
several steps in this process: first, the user issues a SPARQL query. If the query does 
not contain filter clauses, the query is immediately executed through an external RDF 
store, either a triplestore or a local RDF model loaded into the Jena framework. If the 
SPARQL query contains filter clauses, it is sent to the query-rewriting module that 
performs two processes: extracting the filter clauses from the query and transforming 
them into Lucene queries, and stripping the filter clauses from the SPARQL query, 
leaving only the general SPARQL query. The Lucene queries, constructed based on 
the filter clauses in the query, are executed through the Lucene index consisting of the 
indexed data of the entire RDF data set. The output of the Lucene queries executed 
through the index consists of triples that will be the foundation of building an internal 
RDF model. This RDF model contains the triples corresponding to the filter clauses 
of the SPARQL query, and the general SPARQL query stripped of filter clauses will 
be executed over this local model. Finally, the output returned from the general 
SPARQL query is the final query output that is returned to the user that issued the 
SPARQL query. 

As mentioned, FILT is built on top of the Apache Lucene framework. Apache 
Lucene is a free open-source high-performance information retrieval engine written in 
the Java Programming language. It offers full-featured text search, based on indexing 
mechanisms. Lucene is a vital part of storing and querying data in FILT. A Lucene 
index contains a set of documents that contain one or more fields. These fields can be 
stored as text or numerical values, and can either be analyzed or not analyzed by the 
Lucene library, which will later affect how the given information can be retrieved. 
Moreover, a Lucene Document Field is a separated part of a document that can be 
indexed so that terms in the field can be used to retrieve the document through Lucene 
queries. The index structure in FILT is based on a dynamic index structure that  
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Fig. 1. The architecture of FILT 

contains a default “graph” and “subject” fields, which contain the RDF graph 
locations (paths to data set files) and the subject URI of the data entity being indexed. 
Apart from this, the index structure is a dynamic structure that names each field in a 
document by its predicate URI and giving it the object-value of the given triple as its 
input. Moreover, this means that apart from the static field named "subject", the other 
document-field names will vary depending on what the predicate URI is. This makes 
it easy to query the index by specifying predicate names for the field names in the 
Lucene queries. The overall index structure can be described in a more formal way 
like this:  

 
for each sub-graph in the superior graph { 

      new Document 
      add field to document(FieldName: graph, FieldValue: <The filename of the data 
set file>) 
      add field to document(FieldName: subject, FieldValue: <subject-URI>) 
      for each predicate and object in graph { 
            add field to document(FieldName: predicate, FieldValue: <object-value>) 
       }  
} 
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FILT translates SPARQL queries into Lucene queries in order to retrieve 
information from the pre-stored index. Only SPARQL queries with filter clauses run 
through the index. All other queries run through the local model or the SPARQL 
endpoint specified by the data set owner. FILT has mainly focused on implementing 
compatibility with SPARQL regex filter clauses and SPARQL logical/numerical 
expression filter clauses. In FILT, the regex filter clause is executed through the 
RegexQuery class in Lucene. This query class allows regular expression to be 
matched against text stored in the index documents. To illustrate how FILT deals with 
the aspect of number filtering, look at this SPARQL query containing a “logical 
expression” filter clause for filter numbers: SELECT * WHERE {?s geo:lat ?lat; 
geo:long ?long. Filter(xsd:double(?lat) > 50 && ?long = 60)}. The objective of this 
filter clause is to find all data entities where the latitude is above 50 and the longitude 
equals 60. These expressions can easily be translated into existing Lucene queries, 
namely the NumericRangeQuery and the RegexQuery classes. The first expression 
“xsd:double(?lat) > 50” is translated into the NumericRangeQuery “geo:lat:[50 TO 
*]” and the second expression “?long = 60” is transformed into the RegexQuery 
“geo:long:60”. In this case, the NumericRangeQuery “geo:lat:[50 TO *]” has defined 
the lower term in the query to be exclusive, meaning that only data entities with a 
latitude over 50 returns true. If the lower term was set to be inclusive, data entities 
with a latitude equaling 50 would also return true. This would be correct to apply if 
the filter expression rather stated “xsd:double(?lat) >= 50”. The same principles apply 
to any NumericRangeQuery, whether the query contain only a lower term or an upper 
term, or both. Any expression containing the EQUAL expression operator (“=”) or the 
NOT EQUAL expression operator (“!=”), regardless of filter value, is translated into 
the RegexQuery. If the query is based on the equal operator, it will only include the 
filter value itself as the query input, such as the query just mentioned: “geo:long:60”. 
However, if the filter expression stated “?long != 60” instead of “?long = 60”, the 
RegexQuery would have to generate a regular expression with a “negative look-
ahead” condition, in order to find data entities with a latitude not matching the value 
“60”. This RegexQuery would look like this: geo:long^(?!.*60).*$). The built-in 
Lucene query library offers the possibility of easily translating simple number 
filtering into different queries. However, more complex number filtering cannot be 
directly translated into Lucene queries. This can be demonstrated through this query: 
SELECT ?subject WHERE {?subject geo:lat ?lat; geo:long ?long . FILTER 
((xsd:double(?lat) - 37.785834 <= 0.040000) && (37.785834 - xsd:double(?lat) <= 
0.040000) &&(xsd:double(?long) - -122.406417 <= 0.040000) && (-122.406417 - 
xsd:double(?long) <= 0.040000) )}. 

The filter clause expressions in this query is tricky to filter by using Lucene 
queries, as none of the built-in Lucene query classes can execute mathematical 
expressions containing numeric operators. This means that in order to execute the 
number filtering expressions in the filter clause, the mathematical expressions have to 
be simplified in order to meet the requirements of the Lucene query libraries. FILT 
translates complex numeric expressions into more simple expressions in order to meet 
the requirements of the built-in Lucene query library. The rules for simplifying the 
numerical expressions are based on the standard mathematical rules for equations and 
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inequalities. The Lucene queries are built based on the filter clauses in the given 
SPARQL query that is being executed, and each specific filter clause is converted to 
one or more separate Lucene queries. When every filter clause have been divided into 
distinct Lucene queries, these different Lucene queries will be joined as one large 
query and finally executed over the index. 

3 Previous Work 

Interesting research has been conducted within the area of semantic searching and 
indexing of RDF data. Sindice is a lookup-index over data entities crawled on the 
Semantic Web [12]. SIREn is a semantic information retrieval engine plugin to 
Lucene [7], and is the search engine that Sindice is based on. SIREn includes a node-
based indexing scheme for semi-structured data, based on the Entity-Attribute value 
model [6]. As the Sindice project focuses mostly on storing and querying 
decentralized, heterogeneous data sources as a semantic search-engine on the Web of 
Data, FILT heads in the direction of storing and querying pre-defined data sets where 
the data schema is fully known. FILT does not analyze or tokenize the data being 
indexed so that all data values are stored as their full value, meaning that they also 
have to be queried by denoting their entire data values. As FILT is mainly a SPARQL 
filter query processing engine, this indexing approach supports the idea behind 
SPARQL queries, where the data schema is fully known to the user executing the 
query. 

SEMPLORE [14] also offers full-text searches through indexed RDF data. 
SEMPLORE treats any data value that has a data type property as a virtual keyword 
of concepts, meaning it will be available for full-text searches. These virtual 
keywords of concepts can be combined with concepts in an ontology using Boolean 
operators. Opposed to SPARQL queries, where a query can have multiple query 
targets, the querying capabilities of SEMPLORE restrict the queries to have a single 
query target. This supports conventional ways of retrieving information on the Web, 
but FILT differs from this solution in terms of letting the users query multiple targets 
through SPARQL queries. In addition, FILT is a database solution opposed to 
SEMPLORE, which is mainly a web solution.  

Castillo et al. [5] present a solution called RDFMatView for decreasing the query 
processing time of SPARQL queries containing multiple graph patterns. As several 
implemented SPARQL processors are built on top of relational databases, SPARQL 
queries are translated into one or more SQL queries. If queries have more than one 
graph pattern, the query processing requires roughly as many joins as the query has 
graph patterns. Castillo et al. [5] argue that optimizing these joins is vital in order to 
achieve scalable SPARQL systems.  In order to avoid the computation of several join 
queries RDFMatView indexes fractions of queries that occur frequently in executed 
queries. Only graph patterns that are used together regularly in queries are indexed. 
RDFMatView matches FILT in terms of indexing data in order to decrease the query-
execution time of SPARQL queries, but it only focuses on decreasing the query 
execution time of SPARQL queries with multiple graph patterns, disregarding the 
complications of SPARQL filter queries regarding query-execution time.  
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There exist several solutions trying to implement efficient full-text searches 
through the SPARQL query language. Apache Jena LARQ [2] is a querying solution 
based on Lucene and the Jena SPARQL query engine Apache Jena ARQ [1]. 
NEPOMUK [10] also offers the translation of full-text searches from the regex filter 
clause in SPARQL queries into Lucene queries. FILT differs from LARQ and 
NEPOMUK in terms of not just implementing full-text searches, but also 
implementing the filtering of logical expressions and several other SPARQL filter 
clauses. In addition, LARQ and NEPOMUK do not translate SPARQL queries into 
customized query solutions for the users, but rather offer the possibility for the users 
to rewrite the queries themselves. Moreover, LARQ and NEPOMUK offer extensions 
for performing full-text searches on literals, whereas FILT propose a solution for 
executing full-text searches and logical expression filtering on any triple-component 
through an index, directly translated from user-generated SPARQL queries. Minack et 
al. [9] present the Sesame LuceneSail solution, a part of the NEPOMUK project. 
Sesame LuceneSail is a solution for performing full-text search on RDF data by 
storing the data in a Lucene index and executing keyword queries through the index. 
FILT differs from this in terms of not being dependent on an external triplestore when 
executing SPARQL filter queries, as the general graph pattern SPARQL query 
stripped from filter clauses is executed over the relevant triples extracted from the 
Lucene query. In addition, Sesame LuceneSail has certain restrictions on its query 
expressiveness in terms of not offering the possibility of querying more than one 
keyword query on each subject of a triple. FILT offers the same flexibilities and 
expressiveness as defined in the SPARQL query language, as FILT directly translates 
SPARQL filter queries into Lucene queries, obtaining the exact same results as 
executing the SPARQL queries through a conventional triplestore. 

Many triplestores contain built-in mechanisms for coping with queries containing 
filtering functions. For instance, the Jena and Joseki (http://www.joseki.org/) 
SPARQL engines provide a possibility of executing full-text queries through LARQ. 
The difference between the full-text search-engine in LARQ compared to FILT is that 
LARQ requires the SPARQL queries to include different syntaxes that do not 
correspond with the general SPARQL syntax. FILT does not require any additional 
statements or functions in the SPARQL queries and executes regular SPARQL 
queries with filter clauses. Full-text searches through FILT are simply run by adding a 
regex filter clause in the SPARQL query based on the standard SPARQL syntax. 
Another example of a built-in mechanism for executing specific filtering functions is 
the SQL MM function for executing geospatial queries in the Virtuoso triplestore 
(http://virtuoso.openlinksw.com/). The SQL MM function in Virtuoso makes it more 
efficient to execute geospatial queries [11]. However, just as Joseki and Jena 
combined with LARQ, the built-in SQL MM filtering function in Virtuoso is 
dependent on another query-syntax than SPARQL filter queries, meaning that the 
SPARQL queries have to be modified from their original syntax in order to benefit 
from the built-in filtering mechanisms. FILT is not dependent on additional filter 
statements or different query syntaxes in order to execute filter queries, as FILT 
simply execute queries of the standard SPARQL syntax. 
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4 Benchmark Evaluation 

In this project, an extensive benchmark evaluation of FILT has been performed. The 
objective of the benchmark test was to compare the features of FILT to the Joseki 
triplestore by evaluating several metrics regarding the speed of query execution. The 
benchmark evaluation included executing two pre-defined sets of SPARQL filter 
queries over two separate data sets. The two different data sets that the queries were 
executed over were the DrugBank data set and the Geographic Coordinates RDF 
graph of the DBpedia data set. The DrugBank data set contains 766,920 triples, 
whereas the Geographic Coordinates data set contains 1,771,100 triples. For this 
benchmark evaluation, both the DrugBank data set and the Geographical Coordinates 
(DBpedia) data sets were divided into three data sets; each with a distinct amount of 
triples. The data sets were split into one sub-set containing 1/7 of the total amount of 
triples and one sub-set containing 1/2 of the total amount of triples. Finally, the entire 
data set was tested. These data sets were loaded into two different data stores: FILT 
and Joseki. Joseki is a triplestore for Jena, developed by W3C RDF Data Access 
Working Group. It supports the SPARQL protocol and the SPARQL RDF Query 
Language. The version of FILT that will be applied in the benchmark evaluation is 
v1.0, and the Joseki version used is v3.4.4. The query mixes were executed over each 
of the divided data sets, both through the Joseki triplestore and FILT, in order to 
illustrate the scalability performance of a conventional triplestore opposed to FILT. 
The DrugBank data set can be downloaded from: http://dl.dropbox.com/ 
u/21236338/drugbank.zip. The Geographical Coordinates of DBpedia data set can be 
downloaded from: http://downloads.dbpedia.org/ 3.7/en/geo_coordinates_en.nt.bz2. 

The metrics of this benchmark evaluation are based on the performance metrics 
specified by Bizer & Shultz [4]. The metrics are “Milliseconds per Query (MSpQ)”, 
“Average Query Execution Time (aQET)”, “Overall Runtime (oaRT)” and 
“Average Query Execution Time over all Queries (aQEToA)”. However, the 
benchmark evaluation in this paper will only evaluate and present the aQET. The 
aQET will be calculated by the average time it takes to execute a single query 
multiple times. The aQET of each query will then be combined with the aQET of 
the queries of the same query form. Moreover, this means that the aQET of all 
SELECT queries will be calculated into a combined aQET for SELECT queries. 
The same procedure will be repeated with all query forms. This way it is possible to 
analyze the performance of the two data stores based on different query forms. The 
query mixes of both the regex use-case and the numerical filtering use-case 
contained 24 queries; six queries of each SPARQL query form (SELECT, 
DESCRIBE, CONSTRUCT and ASK). This way, the performance of all the query 
forms isolated could be analyzed. The query mixes were executed three times for 
each data set sizes. Prior to each execution of the query mixes, the data sets were re-
loaded along with executing a warm-up query-mix. 
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5 Results 

This section will refer to each of the data set sizes of the DrugBank and Geographical 
Coordinates data sets as “S” for the smallest data set version, “M” for the medium 
data set version, and “L” for the large data set, consisting of the entire data set. The 
results from the DrugBank data set and the Geographical Coordinates data set were 
each analyzed in a separate, two way analysis of variance (ANOVA) with the factors 
Size (S, M, L) and Store (FILT, Joseki). The critical values for F will be reported in 
the results with the signifiers “*” where the probability number is less than 0.05, “**” 
where the probability number is less than 0.01, and “***” where the probability is less 
than 0.001. 

 

 

Fig. 2. The overall benchmark results of the DrugBank regular expression filtering use-case 

The overall results of the DrugBank regular expression filtering use-case are 
shown in Figure 2. The results of the DrugBank use-case indicate that the SELECT 
queries of the query mix had a significant difference in the results of FILT and Joseki. 
FILT performs faster than Joseki with SELECT regex queries for all data set sizes. 
The results indicate that the larger the data set is, Joseki performs significantly worse, 
as opposed to FILT that more or less performs in the same way regardless of data set 
size, with small differences in the aQET. The probability numbers showed that the 
data set size (Size) is a significant factor when executing the SELECT queries in both 
triplestores, with p < 0.01. The difference between the two triplestores (Store) is also 
a significant factor, with p < 0.001. The interaction between the data set sizes and the 
triplestores (Size:Store) is not significant, with p < 0.10. Further, the chart shows that, 
as opposed to the results of the SELECT queries, FILT and Joseki performed almost 
similar on the small data set size (S) when executing the DESCRIBE queries, with 
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Joseki having a slight advantage. However, as the data set size increased Joseki 
performed faster than FILT. The statistics made it evident that the data set size (Size) 
is a significant factor when executing the DESCRIBE queries in both triplestores, 
with p < 0.001. The difference between the two triplestores (Store) is also a 
significant factor, with p < 0.001. The interaction between the data set sizes and the 
triplestores (Size:Store) is also significant, with p < 0.01. The results also show that 
Joseki performed better than FILT when executing the CONSTRUCT queries, 
regardless of the data set size. As the data set size increased FILT performed worse, 
whereas Joseki performed more or less the same for all data set sizes. The statistics 
made it evident that the data set size (Size) is a significant factor when executing the 
CONSTRUCT queries in both triplestores, with p < 0.001. The difference between 
the two triplestores (Store) is also a significant factor, with p < 0.001. The interaction 
between the data set sizes and the triplestores (Size:Store) is also significant, with a p 
< 0.001.  

Joseki clearly performed better than FILT when executing the ASK queries. FILT 
executed the ASK queries slower as the data set size increased, whereas there were 
minimal differences in the aQET of Joseki as the data set size increased. Despite 
Joseki executing the ASK queries faster than FILT, the largest difference between the 
aQET of Joseki and FILT when executing the ASK queryieswere 145 milliseconds. 
The statistics made it evident that that the data set size (Size) is not a significant factor 
when executing the ASK query in both triplestores, with p = 0.662. The difference 
between the two triplestores (Store) is highly significant, with p < 0.001. The 
interaction between the data set sizes and the triplestores (Size:Store) is not 
significant, with p = 0.076. The overall aQET of all queries in the query mix shows 
that Joseki performs faster than FILT to a great extent, and the difference is bigger as 
the data set size increases. FILT performed faster than Joseki for the SELECT 
queries, but for the other three query forms Joseki performed faster than FILT. The 
statistics made it evident that the data set size (Size) is a significant factor when 
executing the entire query mix in both triplestores, with p < 0.001. The difference 
between the two triplestores (Store) is also a significant factor, with p < 0.001. The 
interaction between the data set sizes and the triplestores (Size:Store) is also 
significant, with p < 0.001. 

To summarize the SPARQL regex use-case, FILT outperforms Joseki when it 
comes to SELECT queries. The results also show that Joseki performs faster than 
FILT with the other query forms: DESCRIBE, CONSTRUCT and ASK.  

The results of the Geographical Coordinates use-case clearly show that the 
SELECT queries of the query mix had a significant difference in the results of FILT 
and Joseki. Figure 3 shows that FILT performed remarkably faster than Joseki for the 
six SELECT queries in the query mix. The difference between FILT and Joseki for 
the small data set (S), consisting of 250,000 triples, were noteworthy, and as the data 
set size increased FILT performs significantly faster than Joseki. The biggest 
difference in the aQET of the SELECT queries occurred when executing the queries 
over the large data set (L), consisting of 1,700,000 triples, where FILT executed the 
SELECT queries more than 35,000 milliseconds (35 seconds) faster than Joseki. The 
statistics made it evident that the data set size (Size) is a significant factor when  
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Fig. 3. The overall benchmark results of the Geographical Coordinates numerical/logical 
filtering use-case 

executing the SELECT queries in both triplestores, p < 0.001. The difference between 
the two triplestores (Store) is also a significant factor, p < 0.001. The interaction 
between the data set sizes and the triplestores (Size:Store) is also significant,  p < 0.001.  

Further, the chart shows that there is a similarity between the aQET of SELECT 
queries and DESCRIBE queries in both FILT and Joseki. However, both FILT and 
Joseki performed faster when executing the SELECT queries compared to 
DESCRIBE queries. The difference of the aQET between FILT and Joseki were 
significant when executing the DESCRIBE queries. The biggest difference in the 
aQET of the DESCRIBE queries occurred when executing the DESCRIBE queries 
over the large data set (L), consisting of 1,700,000 triples, with a time difference of 
27,000 milliseconds (27 seconds). The statistics made it evident that the data set size 
(Size) is a significant factor when executing the DESCRIBE queries in both 
triplestores, p < 0.001. The difference between the two triplestores (Store) is also a 
significant factor, p < 0.001. The interaction between the data set sizes and the 
triplestores (Size:Store) is also significant, p < 0.001.  

The results clearly indicate that FILT performed better than Joseki when executing 
the CONSTRUCT queries, regardless of the data set size. The biggest difference in 
the aQET of the two CONSTRUCT queries occurred when executing the 
CONSTRUCT queries over the large data set (L), consisting of 1,700,000 triples, with 
a time difference of 46,000 milliseconds (46 seconds). The statistics made it evident 
that the data set size (Size) is a significant factor when executing the CONSTRUCT 
queries in both triplestores, p < 0.001. The difference between the two triplestores 
(Store) is also a significant factor, p < 0.001. The interaction between the data set 
sizes and the triplestores (Size:Store) is also significant, p < 0.001. Joseki executed 
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the ASK queries faster than FILT, regardless of data set size. However, there is an 
indication that FILT performs faster as the data set size increases, whereas Joseki 
performs slower as the data set size increases. Moreover, despite FILT performing 
slower when executing the ASK queries, the results indicate that FILT eventually 
would perform faster than Joseki as the data set size increased even further. The 
statistics shows that the data set size (Size) is a significant factor when executing the 
ASK query in both triplestores, with p < 0.001. The difference between the two 
triplestores (Store) is also a significant factor, with p < 0.001, and finally the 
interaction between the data set sizes and the triplestores (Size:Store) is also 
significant, with p < 0.001. The results show the overall aQET of all queries in the 
query mix. The statistics made it clear that the data set size (Size) is a significant 
factor when executing the entire query mix in both triplestores, p < 0.001. The 
difference between the two triplestores (Store) is also a significant factor, p < 0.001. 
The interaction between the data set sizes and the triplestores (Size:Store) is also 
significant, p < 0.001. 

To summarize the SPARQL numerical/logical filter query use-case, FILT 
outperforms Joseki to a great extent for all query forms, except ASK queries. The 
biggest difference in the aQET between FILT and Joseki occurred when executing the 
query mix over the large data set (L), where FILT performed 28 milliseconds (28 
seconds) faster than Joseki. The biggest difference for any of the query forms 
occurred when executing the CONSTRUCT queries, where FILT executed the queries 
46 seconds faster than Joseki for the large data set. 

6 Discussion 

The results of the benchmark evaluation show that FILT outperforms Joseki on 
SELECT queries in both use cases. In addition, every query form apart from the ASK 
queries was performed significantly faster with FILT than by Joseki in the SPARQL 
numerical/logical filter query use-case. However, this was not the case with the with 
the SPARQL regular expression filter query use-case, as Joseki performed faster than 
FILT with the DESCRIBE, CONSTRUCT and ASK query forms. The results of the 
ASK, CONSTRUCT and DESCRIBE queries in the query mix of the SPARQL 
regular expression filter use-case affected the overall results of the use-case to a great 
extent, despite the aQET of the SELECT queries being faster in FILT than Joseki. It is 
worth mentioning that even though Joseki performs better than FILT for the 
CONSTRUCT, DESCRIBE and ASK query forms in the SPARQL regex filter query 
use-case; the differences in the aQET between Joseki and FILT are so small that they 
are hardly noticeable in a real-world querying scenario unless the times are actually 
recorded. This means that it is hard to locate any noticeable factors in the architecture 
of FILT that can lead to the aQET of the three query forms being slower than Joseki. 
However, certain aspects of how FILT returns query results are worth discussing in 
light of the different outcomes of the four SPARQL query forms. 
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FILT executes all query forms in the exact same manner; the SPARQL filter 
clauses are being executed through Lucene, and the general SPARQL query is being 
executed through the Jena SPARQL processing engine. However, the difference in 
the way FILT returns query results from SELECT queries on one hand, and 
DESCRIBE and CONSTRUCT queries on the other hand, is that the results of the 
DESCRIBE and CONSTRUCT queries are converted from a Jena RDF model to a 
text string containing the raw RDF data, whereas SELECT queries are merely 
returned a SPARQL XML result set. Converting the Jena RDF model to a text string 
containing the raw RDF data is necessary in order to send the result object across the 
HTTP protocol, as a raw Jena RDF model cannot be sent through the HTTP protocol. 
This process is not time-consuming, but in many cases the time being spent by this 
conversion procedure is enough for FILT to return the results of the DESCRIBE and 
CONSTRUCT queries slower than Joseki, meaning that the aQET will be slower. It is 
likely that this conversion process is a major cause to the disadvantage FILT has 
compared to Joseki when executing DESCRIBE and CONSTRUCT regex queries. 
For the SPARQL numerical/logical filter query case, the conversion process would 
not have a significant outcome on the results, because Joseki was already executing 
the queries several seconds slower than FILT.  

Moreover, a couple of hundred milliseconds spent on converting the results are not 
noticeable in the SPARQL numerical/logical filter query use-case. Optimizing the 
process of returning results from DESCRIBE and CONSTRUCT queries in FILT are 
worth having a closer look at if FILT should be developed further. ASK queries are 
constructed to check if the graph patterns and functions in the queries exists or do not 
exists in the data set. FILT copes with ASK queries the same way it copes with all the 
other query forms; the filter clauses are executed through Lucene and the general 
SPARQL query is executed through the Jena SPARQL processing engine. FILT does 
not retrieve all the entities that match the filter clauses executed through Lucene, but 
merely one of the entities. This is because as long as one entity corresponds to the 
filter clauses in the ASK query, this is enough for the filter clauses to be true. The 
entity is then being loaded into a local RDF model where the general SPARQL query 
is being executed. The results are finally returned as a SPARQL XML result set with 
a true or false binding. In FILT this is the most obvious and efficient way to deal with 
ASK queries discovered in this project, and it is difficult to say why Joseki 
outperforms FILT when it comes to all ASK queries, regardless of the two different 
use-cases. Finally, it is still worth mentioning that the highest time difference between 
FILT and Joseki with all ASK queries is only 145 milliseconds, which is hardly 
noticeable in a real-world querying scenario. Also, the results of the ASK queries 
executed in the SPARQL numerical/logical filter use-case indicate that FILT will 
eventually execute the ASK queries faster if the data set size increases further. A final 
aspect worth discussing is the index structure of FILT and the variety of Lucene 
queries that are executed depending on what the SPARQL filter clauses of a query 
represent. The index structure in terms of document field analyzers and the entire 
indexer itself (Lucene provides several different indexing classes) may be factors that 
to some extent can provide answers as to why there are significant differences 
between the two use-cases. Also, the SPARQL regular expression filter clauses are 
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executed through the Lucene RegexQuery class, whereas SPARQL numerical/logical 
filter clauses are mainly executed through the NumericRangeQuery, meaning that it is 
possible that the two Lucene query types have entirely different ways of filtering 
through data, and that one of them may be considerably faster than the other. 

The fact that Joseki struggles largely with SPARQL numerical/logical filter queries 
compared to SPARQL regex filter queries suggests that the major strength of Joseki 
lies in coping with SPARQL regex filter queries. FILT however, copes much better 
with SPARQL regular expression queries than Joseki does with SPARQL 
numerical/logical filter queries. This means that the weakness of FILT is much less 
significant and noticeable than the weakness of Joseki. Additionally, if the results of 
both use-cases were combined into one huge result set, FILT would outperform Joseki 
to a great extent. This is because even though FILT performs slightly slower than 
Joseki in the SPARQL regex use-case the query execution times are still very low (in 
most cases the aQET does not even reach a whole second). Finally, a conclusion can 
be drawn stating that FILT is a solution that should be used for executing SPARQL 
SELECT regex filter queries and SPARQL numerical/logical filter queries of all 
query forms. 

7 Conclusions and Future Work 

This paper has demonstrated the practical advantages of using a text-indexing 
platform in conjunction with a regular triplestore, for executing certain kinds of 
SPARQL queries. Our implementation of FILT, based on Lucene, demonstrated that 
in the most successful cases, FILT returned results 46 seconds faster than Joseki. In 
usability terms, a18 second response from FILT is far more acceptable than a 64-
second response from Joseki. The aim now is to implement FILT as a general 
architecture that can be deployed by any triplestore maintainer. The advantage of our 
approach is that it is agnostic about the companion triplestore, and does not require 
any special syntax. In other words, it can be transparently deployed alongside any 
triplestore.  

A number of outstanding issues need to be resolved. First, we need to solve the 
puzzling limitations in CONSTRUCT and DESCRIBE regex filter queries, as well as 
ASK queries of both regex and numerical SPARQL filter queries. Second, we need to 
include more rewrite rules to cope with the full range of FILTER queries. Finally, we 
need to ensure that the solution is scalable to any required implementation. Once 
these issues are resolved, FILT will be distributed as a simple package that will 
handle the indexing of RDF data in the triplestore, and be deployed as a seamless 
layer that passes non-FILTER queries onto the regular triplestore, but executes 
FILTER queries through its own speedy execution engine. 
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